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ABSTRACT 

The electrostatic high-speed rotating bell (ESRB) applicator is widely used in the 

automotive finishing industry because of its atomization characteristics and high transfer 

efficiency. In order to study the paint spray process of an ESRB, a three-step CFD 

simulation methodology has been developed in this research work, using the commercial 

CFD code FLUENT. First, the paint flow in the atomizer is simulated, using an Euler 

approach. Paint droplet size and velocities at the edge of the atomizer are determined 

based on the simulation. Then, the Euler-Lagrange approach is applied to investigate the 

droplet transfer process. The air is treated as a continuum and the paint droplets are 

tracked as dispersed parcels. Models for electrostatic force and drag force on the droplets, 

and droplet breakup and collision models are incorporated in this step. Finally, the paint 

film thickness on the target plate and the transfer efficiency are calculated based on the 

paint mass accretion on the target plate. The effects that various operating parameters, 

such as flow rates, bell rotation speed and voltage, have on the flow field and, in 

particular, on the film build and transfer efficiency are examined. The results of the 

simulations are compared with experimental observations and data from published 

literature and from the paint spray lab at the University of Windsor/DaimlerChrysler 

Canada Automotive Research & Development Centre (ARDC). 
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NOMENCLATURE 

Q Mass flow rate of paint, kg/s 

p Density, kg/m3 

pa Density of air, kg/m3 

pp Density of paint, kg/m3 

R Internal radius of atomizer bell cup at its edge, m 

5 Paint film thickness at the edge of atomizer bell cup, m 

va Axial velocity of paint, m/s 

vr Radial velocity of paint, m/s 

vs Tangential velocity of paint, m/s 

9 Spray angle or cone angle, degree 

d Paint droplet diameter, micron 

F Electric force on droplet, N 

<f> Electric potential, V 

E Electric field strength, V/m 

q Electric charge, C 

Cv Volumetric solid component ratio 

C m Droplet charge-to-mass ratio, C/kg 

CD Drag coefficient 

Sf Swirl fraction 

mj Mass of droplet /, kg 

Aj Area of the cell facey, m2 

Dj Discrete phase model (DPM) accretion on cell face j , kg/m2 

Mk Mass ofpaint accretion on band k, kg 

Ak Averaged wet paint film thickness on band k, milliinch (2.54e-5 m) 

gx Gravitational acceleration in x direction, m/s2 



gy Gravitational acceleration in y direction, m/s2 

g2 Gravitational acceleration in z direction, m/s2 

/j Dynamic viscosity, N*s/m2 

jua Dynamic viscosity of air, N*s/m2 

u Fluid phase velocity, m/s 

up Paint droplet velocity, m/s 

Red Droplet Reynolds number 
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CHAPTER 1 INTRODUCTION 

Appearance, colour and durability of the painted surface are very important 

criteria that customers consider when making a decision regarding the purchase of a 

motor vehicle. Therefore, automotive manufacturers are continuously searching for ways 

to improve the finish quality of their products. They are also driven by the market, and 

indirectly by government policy, to increase the transfer efficiency (TE) in the paint spray 

process and reduce the volatile organic compounds (VOC) emission. 

Painting is an expensive process in the automotive industry. A one percent 

improvement in transfer efficiency (the ratio of the mass of paint deposited on the target 

object to that injected from the nozzle) of paint spray can save millions of dollars per year 

because of the savings on paint, energy and resources. Also, in order to protect the 

environment, automotive producers require low emission of VOC. High transfer 

efficiency leads to a reduction of VOC emissions and solid waste. 

Coating application by means of electrostatic high-speed bell-type rotary 

atomizers is now widely used in the automotive industry. Compared with the 

conventional air atomization application, the transfer efficiency is significantly higher. 

The above factors provide a strong motivation for the study of the paint spray process. 

Figure 1.1 shows a schematic of a typical automotive coating process. First, the 

anti-chip powder is sprayed onto the vehicle using the powder spray robots. Then the 

vehicle is moved into the oven in order to melt the powder, and the quality of the powder 

coating is inspected. If the result is satisfactory, the vehicle is moved into the basecoat 

and clearcoat zone where basecoat and clearcoat paints are sprayed onto it. The vehicle is 

then moved into the oven again to dehydrate the paint layer. After that, the paint layer on 

the vehicle is inspected again. If the result is satisfactory, the painting process is finished. 

In this study the basecoat spray process, using electrostatic high-speed rotating bell 

applicators (ESRB), is simulated. 
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Figure 1.1 Schematic of Typical Automotive Coating Process 

Figure 1.2 shows the layout of a basecoat spray booth. The ESRB applicator is 

installed at the end of each robot. The vehicle is placed in the middle of the booth during 

spraying. 

Figure 1.2 Basecoat Spray Booth 
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Figure 1.3 shows a paint spray gun nozzle with an electrostatic high-speed bell-

type rotary atomizer used in a typical paint spray booth. Since water-based paint is used 

in this study, an indirect electrostatic charge is supplied from six long cylindrical 

electrodes in an annular locus outside the paint spray gun nozzle. A bell-shape atomizer 

is installed at the tip of the nozzle. The rotation of the bell cup is driven by compressed 

air. For the applicator considered in this work, this (turbine) air and the bearing air 

exhaust along the outer wall of the bell cup, between the bell wall and the shaping air 

inlet. This exhaust air, along with the shaping air, forms an air curtain that confines the 

paint spray and increases deposition efficiency. 

There is an annular jet ring near the outer rim of the bell cup. During normal 

operation, jets of paint emerge from the bell cup and the paint undergoes an atomization 

process, breaking up into droplets. Once airborne, the paint droplets mix with the 

surrounding air, and droplets collide, break up and coalesce. The flight of the droplets is 

confined by the air curtain that emerges from the rim of the bell cup. The electrostatic 

force generated by the positively charged electrodes and the grounded target plate also 

draws the paint droplets to the plate. Finally, the paint droplets hit the plate and the paint 

film is generated. 

Figure 1.3 Perspective and Section View of Paint Spray Nozzle 
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Researchers have conducted experiments in which paint is sprayed onto a flat 

plate, and the resulting paint film thickness is measured. In the experimental setup, after 

the vertical paint spray was fully developed, a rectangular workpiece (target plate) with 

dimension of 36 inch x 4 inch was passed under the nozzle with a speed of 16 ft/min, i.e., 

3.2 inch/s, at a distance of 10 inches from the nozzle. Since the width of the workpiece 

was 4 inches, it took 1.25 (4-K3.2) seconds for the plate to pass through the paint spray. 

During this process, paint droplets deposited on the workpiece and formed a thin layer of 

paint on it. The paint film that had deposited on the plate was then heated until 99 percent 

of the VOC had been removed. The dry paint film thickness was then measured along the 

centreline of the rectangular plate. 

In order to determine the optimal setting combination to use in the ESRB paint 

spray process, such as geometric properties of the nozzle and atomizer, voltage of the 

electrodes, paint and shaping air flow rate, and distance between nozzle and target plate, 

experimentalists traditionally have to set up costly experiment facilities. These facilities 

include the particular spray nozzle being tested, high-voltage power source, and 

expensive light-scattering interferometry instruments, such as a Phase Doppler 

Anemometer (PDA) and/or a Malvern Particle Sizer. Meanwhile, the testing methods can 

only obtain data at the exact location where the measurement is taken. For example, PDA 

can only measure the droplet velocities where the interference area of the laser beams is 

located. In order to get the droplet properties at any location in the spray, the laser 

interference area must loop through the whole spray region. Furthermore, measurement 

difficulties arise in the following aspects: (i) the large amount of droplets in a spray, (ii) 

the high speed and widely varying velocity of the droplets, (iii) the wide range of droplet 

sizes encountered in most sprays, and (iv) the changes in droplet size through evaporation, 

breakup and coalescence. The high cost of building facilities and conducting experiments 

provides strong motivation for the relatively less expensive Computational Fluid 

Dynamics (CFD) simulation for the study of the paint spray process. 

Although ESRB paint spray has been used for many years in the industry, a 

deeper understanding of paint atomization, droplet transport and deposition may lead to 

overall paint quality and process improvements. Typically a spray system can be broken 

down into three regions: disintegration region, fully developed spray region and 
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droplet/wall interaction region, as illustrated in Figure 1.4. In the disintegration zone, the 

liquid paint jet from the nozzle is atomized and a very dense spray is generated. 

Downstream of this atomization region, the spray is assumed to be fully developed, and 

the droplet/droplet and droplet/air interactions dominate the flow. In the third region, 

deposition and/or reflection of the droplets occur at the target plate. 

The overall objectives of the present study are: (i) to acquire a more detailed and 

comprehensive understanding of the spray application process, (ii) to develop a 

methodology for numerical simulation of the paint spray process, (iii) to investigate 

various factors affecting the paint spray process, and their effect on paint film thickness 

on the target plate and droplet transfer efficiency, and (iv) to provide suggestions to 

improve the paint spray process. 

Disintegration region 

Fully developed 

spray region 

- Droplet/wall 
interaction region 

Figure 1.4 Spray Regions 

Three commercial softwares have been used to carry out this study. The CAD 

model of the atomizer is created with CATIA. The meshes are created with ANSYS 

ICEM CFD HEXA. The flow simulations are performed and post-processed using 

FLUENT, which is run on a workstation. 

The CFD predictions for the paint film thickness on the target plate and the spray 

transfer efficiency are compared to the experimental results from the ARDC paint lab. 

This dissertation is organized as follows: A survey of the relevant literature is 

presented in Chapter 2. Sorne general approaches for multiphase simulation are described 

in Chapter 3. Chapter 4 is devoted to the CFD simulation in the atomizer. Droplet transfer 

simulation is described in Chapter 5. A method for calculating paint film thickness 
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applicator " : 

- • • • -
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Target plate 
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profiles and spray transfer efficiency is presented in Chapter 6, and the computational and 

experimental results are compared. Finally, some conclusions and recommendations are 

suggested in Chapter 7. 
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CHAPTER 2 LITERATURE REVIEW 

Sprays are applied in many applications, such as agriculture, fuel injection, 

pharmaceuticals, powder and liquid paint coatings. 

Paint spray is a very complex process. Lefebvre (1989) provided one of the first 

comprehensive classifications of atomizers and described the general droplet 

measurement methods and facilities needed for experimental atomization studies. He 

listed and explained many terminologies used in spray research. These terminologies 

have now been widely adopted by many researchers. Typically, a spray system consists 

of three regions: disintegration region, fully developed spray region and droplet/wall 

interaction region (see Figure 1.4). Most studies reported in the literature are limited to 

only one of these three parts of the whole spray system. 

In order to validate the CFD simulation of the paint spray process, CFD results 

should be compared with experimental data. Thus, some researchers have set up test 

facilities to provide the measurements. Others have developed CFD simulation models. 

In the current study, the rotational speed of the atomizer is very high. Thus, the spray 

forms a hollow cone close to the edge of the atomizer. Since a pressure-swirl atomizer 

also generates a hollow cone-shaped spray, some relevant research on pressure-swirl 

atomizers is reviewed in this chapter. Also, since a properly aligned electrostatic force 

significantly improves the spray efficiency, review on electrostatic force research cannot 

be overlooked. 

The literature contains a considerable number of papers and books concerning 

experiments and CFD simulations of spray. The review of the relevant literature is 

organized in the following sections: (i) disintegration region, (ii) fully developed spray 

region, (iii) droplet/wall interaction region, (iv) electrostatic force in spray applications, 

(v) numerical simulations of pressure-swirl atomizer and (vi) high-speed rotary atomizers. 

Finally a summary of the previous research is presented. 
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2.1 Disintegration Region 

Different types of atomizers have been employed in various applications. Typical 

atomizers encountered in industry include the fan atomizer, pressure-swirl atomizer and 

electrostatic high-speed rotary atomizer. The diversity of the atomizers demonstrates the 

variety of atomization mechanisms that may occur. 

Many researchers have attempted to measure the droplet size in the disintegration 

region and summarized their results with empirical formulas, or stated their observations 

on a specific atomizer, e.g., Hinze and Milborn (1950), Bell and Hochberg (1981), 

Lefebvre (1987), Wang and Lefebvre (1987), St-George and Buchlin (1994), Bailey 

(1988), Snyder et al. (1989a & 1989b), McCarthy (1991), Corbeels et al. (1992), 

Bauckage et al. (1994) and Xing et al. (1999). The phase Doppler interferometry 

technique has been widely used in these studies. The most commonly used equipment for 

measuring droplet size and velocities are the Laser Doppler Anemometer (LDA), Phase 

Doppler Anemometer (PDA) and Malvern Particle Sizer (for size only). Unfortunately, 

no general relationships for the drop size of high-speed rotary atomizers have been 

proposed by these researchers 

Li and Tankin (1988) calculated the droplet size distribution for pressure-swirl 

atomizers using information theory (or maximum entropy formalism) applied to 

atomization theory. They obtained a distribution that contains the Weber number as a 

parameter, and this Weber number is a function of the total number of droplets. The 

Sauter Mean Diameter (SMD) was also derived as a function of Weber number. Similar 

methodologies for predicting droplet size have been proposed by Bhatia and Durst (1989) 

and Van Der Geld and Vermeer (1994). Since the formulas they have proposed contain 

many geometric parameters of pressure-swirl atomizers, their formulas are not directly 

applicable to the rotary atomizer studied here. 

2.2 Fully Developed Spray Region 

Most published articles in the literature on the fully developed spray region 

consider both measurement and numerical simulation. 
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Hicks (1995) and Hicks and Senser (1995) numerically simulated paint transfer in 

an air spray process by incorporating a number of assumptions based on measurements. 

The direct effect of turbulent air velocity fluctuations on the trajectories of paint droplets 

was incorporated via a stochastic separated flow approach. They compared their results 

with measurements and other published simulation results on the axial air velocity along 

the centreline of the spray, and the droplet transfer efficiency. They found that their 

assumptions were valid over broad ranges of atomizing air pressure and liquid flow rate 

since the shaping air augmented mixing and created a high aspect ratio spray. 

Bauckage et al. (1994 & 1995) experimentally investigated the atomization 

characteristics of a commercial electrostatic high-speed rotary atomizer. The fluid 

atomized was a water-borne metallic paint typically used in automotive coating processes. 

Three geometrically different bell types were tested, one with serrations and two without. 

Axial zones of circulating droplets were observed. They also used a Phase Doppler 

Particle Analyzer to study the effect of electrostatic force and found that the droplet size 

was smaller with higher voltage and that the spray cone was wider. 

Im (1999) and Im et al. (2001 & 2004) reviewed technological challenges and 

research issues, and then described the spray atomization, visualization, droplet size and 

velocity measurement results of a water-borne paint spray system under a range of 

various operating parameters such as liquid flow rate, shaping air flow rate, bell 

rotational speed and high voltage setting. Their results showed that the bell speed 

dominated the atomization, but high voltage and flow rate settings significantly modified 

the spray transport. They concluded that the droplet size decreased with the increase in 

bell speed, an increase in liquid flow rate widened the spray shape slightly, the spray 

cone was narrowed by a high flow rate of the shaping air, the spray cone decreased due to 

more consistent and finer atomization at higher bell speed, and the spray became denser 

and more uniform in the core region at high voltage. They also developed their own code 

to simulate the spray transfer process in an electrostatic high-speed rotary bell sprayer by 

using the Euler-Lagrange approach. The initial droplet properties, applied on the inlet to 

the fully developed spray region, were obtained from their experiments. They performed 

a parametric study by changing the voltage, the shaping air flow rate and charge-to-mass 

ratio. In each simulation, a uniform charge-to-mass ratio was applied on all the droplets. 
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Only the forces acting on the droplets were considered in their study. They neglected the 

effect that the droplets have on the air, and did not consider droplet breakup and 

coalescence. Unfortunately, there was no comparison with experimental data in their 

study. By employing the Euler-Lagrange approach, similar numerical simulations of the 

droplet transfer process have been carried out by McCarthy (1995), Bai and Gosman 

(1995), Dooley et al. (1997), Yarin and Weiss (1995), Mundo et al. (1995c), Ruger et al. 

(2000), Huang et al. (2000) and Fogliati et al. (2006). 

Some researchers have carried out only a numerical investigation on the droplet 

transfer process. For example, Ellwood and Braslaw (1998) developed a model based on 

a Lagrangian particle tracking scheme to simulate the formation of spray patterns for 

charged droplets. Steady state spray patterns were computed using an iterative particle 

source in cell approach, which represented momentum exchange between the droplet and 

gas phase as a body force. The flow solver was based on a finite element formulation 

incorporating the streamlined upwind Petrov Galerkin method for stabilization. They did 

not provide validation for their simulation based on experimental data. Han et al. (1997) 

proposed a modified Taylor Analogy Breakup (TAB) model to simulate the breakup of 

initial blobs and subsequent droplets for the pressure-swirl atomizer and obtained good 

agreement with experiment. Their model has been adopted by many researchers, and has 

been incorporated into the commercial CFD code FLUENT for the simulation of droplet 

breakup. 

2.3 Droplet/Wall Interaction Region 

When a single droplet hits the solid plate, it may deposit on the plate, rebound 

from the plate, or break up into several smaller droplets. If a liquid film already exists on 

the plate, the incident droplet may cause ripples and splashing. The properties of the 

liquid (viscosity, density, surface tension), droplet diameter, droplet velocity and incident 

angle determine the fate of the droplet upon impingement. The Weber number is usually 

chosen as the criterion to predict the result of impingement since it includes surface 

tension and velocity, i.e., crucial parameters determining the deformation of droplets. 

Many researchers have experimentally investigated the impingement of a droplet on a 
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wall, or a droplet on a liquid film, including Pumphrey and Elmore (1990), Oguz and 

Prosperetti (1990), Trapaga and Szekely (1991), Chandra and Avedisian (1991), Rein 

(1993), Sommerfeld et al. (1993), Fukai et al. (1993 & 1995), Yarin and Weiss (1995), 

Cossali et al. (1997), Mao et al. (1997), Mundo et al. (1994, 1995a, 1995b, 1995c & 

1998), Tropea and Marengo (1999), Weiss and Yarin (1999), Bussmann et al. (2000). 

Numerical simulations on single droplet deformation during impingement, using 

the Volume of Fluid (VOF) model, have been performed by Ghafouri-Azar et al. (2002) 

and Garbero et al. (2002). 

When a large number of spray droplets strike the wall or film, the impingement 

process will be significantly more complicated. McCarthy (1991) studied droplet rebound 

from a small workpiece in the spray of a conventional air applicator. Drop sizes and 

velocities were measured with a Phase Doppler Particle Analyzer. The workpiece was 

very small so as to minimize the aerodynamic blockage of the spray and allow optical 

access at positions very near the workpiece surface. He observed that rebound was 

significant at low shaping air flow rate, but became negligible when sufficient shaping air 

was applied. Bai and Gosman (1995) built a diesel engine spray impingement model, 

which was incorporated in a computer program - EPISO-SPRAY. The model involved 

the analysis of the impingement regimes and associated post-impingement characteristics. 

The predicted spray pattern near the wall, wall spray radius, wall spray height and droplet 

velocities during a very short period of time were compared with measurement and good 

agreement was achieved. Recently, Fogliati et al. (2006) predicted the paint deposition 

distribution on rectangular target plates using FLUENT. Sprays injected from a fan 

nozzle were used in their study. The nozzle and the target plates were kept stationary. 

The sprays were simulated using the Euler- Lagrange approach. The initial droplet 

properties were set based on experimental results. They simulated the sprays and paint 

deposition at plate orientation angles of 45°, 60° and 90°. Unfortunately, they did not 

report any comparison between numerical prediction and experimental measurement for 

the paint distribution on the target plates. 
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2.4 Electrostatic Force in Spray Applications 

Electrostatic paint spray application has been a widely used industrial process for 

many years. The electrostatic charge on spray droplets causes most of the paint to deposit 

on the workpiece. 

The applied potential on the electrodes must be sufficiently high so that an 

electrostatic field is established in the vicinity of points where air molecules are disrupted 

by the electrostatic stress into ion-electron pairs. Electrode potentials of a few kilovolts 

and above are normally used. An electrode at a positive potential attracts negative 

electrons and repels positive ions away from it, thus behaving as a positive ion source. 

The positive ions attach to neutral paint molecules to form positive charged paint droplets. 

Although the electrostatic field is mainly dominated by the electric charge on the 

electrodes, it is also affected by the charge of the droplets and the movement of the 

charged droplets (Bailey (1988)). 

A thorough and detailed determination of the electrostatic field is very 

complicated. Following Bailey (1998), Ellwood and Braslaw (1998) and Im (1999), the 

electrostatic field force F on the charged droplet can be expressed as 

F = qE (2.1) 

where q is the charge of the droplet and E is the electric field strength, defined as 

E = ̂ - (2.2) 
ds 

where ^ is electric potential and s is distance. 

Neglecting the effect of charged droplets on the electrostatic field, the governing 

equation for the electric potential is 

VV = 0 . (2.3) 

The charge on the droplet is determined by many factors, including properties of 

the liquid, mass of the droplet, surface area of the droplet, strength of the electrostatic 

field, etc. Although a comprehensive formula for droplet charge is not available, charge-

to-mass ratio {cqm) is a basic parameter that is widely used in charged droplet transfer 

simulations. Although Ellwood and Braslaw (1998) and Im (1999) used fixed charge-to-

mass ratio in the whole domain of their simulations, the fact is that the charge-to-mass 
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ratio is not uniform to all the droplets in an electrostatic field. Gemci et al. (2002) 

calculated the individual droplet charge-to-mass ratio based on the drop size and velocity 

measured with a Phase Doppler Interferometer. He concluded that the droplet size 

decreased with increasing electric potential. 

2.5 Numerical Simulations on Pressure-Swirl Atomizers 

Four features are shared by pressure-swirl atomizers and rotary atomizers: (i) the 

liquid has high swirl near the exit of the atomizers, (ii) a liquid film forms along the 

atomizer wall near the exit, (iii) a cone of air exists at the centre of the atomizer, and (iv) 

a hollow cone spray is produced. There are also some important differences between 

them: (i) the swirling of liquid in pressure-swirl atomizers is caused by the helical 

channels, whereas the liquid swirling in rotary atomizers results from the rotation of the 

atomizer wall, (ii) the fluid rotational speed in a rotary atomizer is much higher than in a 

pressure-swirl atomizer, and (iii) the liquid film thickness at the rotary atomizer edge is 

much thinner, and so are the droplet sizes, compared to the pressure-swirl atomizer. 

The similarities between the pressure-swirl atomizer and rotary atomizer, and the 

limited amount of literature on the rotary atomizer, make a review of the research on 

pressure-swirl atomizers necessary. 

Yule and Chinn (1994) proposed a revised inviscid theory to calculate the 

discharge coefficient and spray angle for the pressure-swirl atomizer. By considering the 

conservation of axial momentum, this revised theory provided a better basis for the 

performance analysis and design of pressure-swirl atomizers. 

Arcoumanis and Gavaises (2000) proposed a combined two-phase CFD nozzle 

model and ID fuel injection system model to predict the flow development inside the 

discharge hole of a pressure-swirl atomizer connected to a common-rail based fuel 

injection system for DISI engines. The fuel injection model accounted for the transient 

pressure pulses that develop inside the common-rail and the injector upstream of the 

nozzle tip and predicted the fuel injection rate through the nozzle. The predicted transient 

velocity distribution upstream of the needle seat flow passage was used as the initial 
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condition to a 2D two-phase VOF model that solved for the location of the liquid-gas 

interface. These two-phase flow predictions were linked to experimental images. 

Cousin and Nuglisch (2001) presented four models for predicting high pressure-

swirl injector performance. A critical review of these models was made by using a huge 

experimental database where more than 3000 injectors were tested. The authors showed 

that one of the models predicted the flow rate and cone angle well. These authors also 

coupled this model with a model that predicted the linear stability of conical sheets. This 

coupling allowed the determination of a theoretical droplet diameter. 

Moriyoshi et al. (2002) used the VOF model to simulate the two-phase flow 

inside the pressure-swirl injector and the liquid film formation process outside the nozzle. 

The Discrete Phase Model (DPM) was adopted to simulate a free fuel spray in a constant 

volume chamber. Multiphase simulation inside the pressure-swirl injector was also 

carried out by Alajbegovic and Meister (2001). 

Chryssakis et al. (2003) developed a comprehensive model for pressure-swirl 

injectors. The model consisted of pre-spray and main spray modeling. The pre-spray 

modeling was based on an empirical solid cone approach with varying cone angle. The 

main spray modeling was based on the Liquid Instability Sheet Atomization approach. 

Compared with experimental data, some qualitative agreements of spray tip penetration 

and droplet size were achieved. 

2.6 High-speed Rotary Atomizers 

Although high-speed rotary atomizers have been investigated by some researchers, 

most of the published articles are focused on experiments. Some people have developed 

arguments about the general characteristics of the atomizer, others measured the droplet 

size. However, no universal formula about droplet size has been proposed. 

Hinze and Milborn (1950) experimentally studied the atomization of liquids in a 

rotating cup. They proposed a formula for liquid film thickness at the edge of the cup. 

They observed that three different types of disintegration might take place around and 

beyond the edge of the cup: (a) direct drop formation disintegration, (b) ligament 

formation disintegration, and (c) film formation disintegration. Transition from (a) into 
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(b), or (b) into (c) is caused by an increased quantity of supply, an increased angular 

speed, a decreased diameter of the cup, an increased density, an increased viscosity, and a 

decreased surface tension of the liquid. 

Bell and Hochberg (1981) studied the atomization, transportation and deposition 

of coatings of a high-speed electrostatic rotary atomizer. The dynamics of atomization 

and droplet deposition were examined using high-speed video recording techniques. They 

measured spray droplet sizes and speeds with laser scattering and Doppler methods. They 

also calculated the average droplet charge-to-mass ratio. 

Corbeels et al. (1992) studied the effect of fluid properties and operational 

parameters on the atomization of a high-speed rotary bell paint applicator with serrations, 

using laser diffraction instrumentation and photography. They did not consider the 

influence of electrostatic force or shaping air. They found that a higher viscosity fluid 

filmed the bell more evenly and produced long regular ligaments. 

Domnick and Thieme (2004) experimentally studied the atomization of the ESRB 

atomizer. They suggested that the atomization process could be divided into two models, 

viz., jet disintegration and turbulent disintegration. They also proposed empirical 

equations to determine the droplet SMD. 

2.7 Summary of Previous Studies 

Based upon the literature reviewed, the following observations can be made: 

• Very few simulations of flow in a high-speed rotary atomizer have been 

performed. 

• Few equations for the prediction of droplet size and velocity for a high-speed 

rotary atomizer have been proposed. 

• Previous simulations of paint spray from a high-speed rotary atomizer are 

limited to the fully developed spray region. 

• In previous droplet transfer simulations, the injected droplet properties have 

been specified based on experimental droplet size and velocity data. 

• The effect of droplets on the air flow has been neglected. 

• In most studies, droplet collision and breakup have been neglected. 
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• According to Gemci et al. (2002), the charge-to-mass ratio varies greatly with 

the droplet size in an electrostatic field. However, uniform charge-to-mass 

ratio values have been assumed without justification by previous researchers. 

• Some researchers described the simulation of single droplet impingement with 

a target plate or liquid film. However, no simulation or calculation of paint 

film build on the target plate has been published. 

• There has been little research on whether the impingement and deposition 

information is applicable to a paint film build calculation. Most of the 

previous work has focused only on single droplet impingement. 

• Very few comparisons of simulated and experimental paint spray transfer 

efficiency (TE) have been published, although the TE value is one of the most 

important factors of concern to industry. 

• The methodology that Moriyoshi et al. (2002) used is very instructive because 

it combines the atomization and droplet transfer simulation, although the 

atomizer they used is a pressure-swirl atomizer, instead of an ESRB atomizer. 

• Although the atomizer used by Domnick and Thieme (2004) is a rotary 

atomizer, it is not the exact same type of atomizer used in the current study. 

For example, there is no centre hole in their atomizer. Furthermore, the 

droplet size they proposed was much less than the one used by Im (1999) and 

Im et al. (2001 & 2004), which was set based on their experimental data. 

Analysis of the literature indicates that there is a critical need to develop a 

methodology to simulate the whole spray process, including atomization, droplet transfer 

and paint deposition. Having this capability will enable engineers to properly evaluate the 

result of a paint spray process so as to improve on the performance, i.e., increase transfer 

efficiency and paint film build uniformity, and decrease VOC emission. 
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CHAPTER 3 MULTIPHASE SIMULATION APPROACHES 

The paint spray process under investigation in this study is a multiphase process. 

The liquid paint is pumped into the nozzle and pushed towards the outer wall of the 

atomizer by the centrifugal force produced by the high-speed rotation of the bell cup. At 

the edge of the bell cup, the paint is atomized into droplets. As these droplets move into 

the spray zone they undergo breakup, coalescence and collision. The trajectories of the 

droplets are affected by the aerodynamic force exerted by the air and the electrostatic 

force generated by the charged electrodes and grounded target plate. Furthermore, the 

charged moving droplets also affect the air flow and the electric field (Bailey, 1998). 

Finally, the droplets strike the target plate or paint film on the plate, and reflect or deposit 

onto it. The paint deposited on the plate will further spread out on the plate. Besides paint 

liquid and air, there are water and volatile organic compounds (VOC) of the paint that 

evaporate from the paint droplets and paint film on the plate. It is clear that paint spray is 

a very complex multiphase (paint, vapour and air) process. 

Multiphase flow is usually simulated with the Euler-Euler approach or the Euler-

Lagrange approach. These approaches are described in the next two sections. 

3.1 Euler-Euler Approach 

In the Euler-Euler approach, the different phases are treated mathematically as 

interpenetrating continua. Since the volume of one phase cannot be occupied by the other 

phases, it is convenient to introduce the concept of phase volume fractions. These volume 

fractions are assumed to be continuous functions of space and time, and their sum is 

equal to one. Conservation equations for each phase are derived to obtain a set of 

governing partial differential equations, which have a similar structure for all phases. 

These equations are closed by providing constitutive relations that are obtained from 

empirical information or from some theoretical arguments. 

In FLUENT, three different Euler-Euler multiphase models are available: the 

Volume of Fluid (VOF) model, the mixture model, and the Eulerian model. 
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3.1.1 The Eulerian Model 

The Eulerian model is the most complex of the multiphase models in FLUENT. 

The Eulerian multiphase model allows for the modeling of separate, yet interacting 

phases. The phases can be liquids, gases or solids in nearly any combination, and all 

phases are treated as continua. For n phases, it solves n sets of momentum and 

continuity equations, one set for each phase. Coupling is achieved through the pressure 

and interphase exchange coefficients. The manner in which this coupling is handled 

depends upon the type of phases involved; granular (fluid-solid) flows are handled 

differently than non-granular (fluid-fluid) flows. Momentum exchange between the 

phases is also dependent upon the type of the mixture being modeled. An Eulerian 

treatment is used for each phase, in contrast to the Eulerian-Lagrangian treatment that is 

used with the discrete phase model. 

With the Eulerian multiphase model, the number of phases is limited only by 

memory requirements and convergence behaviour. Any number of secondary phases can 

be modeled, provided that sufficient memory is available. For highly complex multiphase 

flows, however, the solution may be limited by convergence behaviour. 

3.1.2 The Mixture Model 

The mixture model is designed for two or more phases (fluid or particulate). As in 

the Eulerian model, the phases are treated as interpenetrating continua. The mixture 

model solves one set of momentum equations, referred to as the mixture momentum 

equations. 

The mixture model is a simplified multiphase model that can be used to model 

multiphase flows where the phases move at different velocities, but assume local 

equilibrium over short spatial length scales. The coupling between the phases should be 

strong. It can also be used to model homogeneous multiphase flows with very strong 

coupling and with the phases moving at the same velocity. 

The mixture model can model n phases by solving the momentum, continuity, 

and energy equations for the mixture, the volume fraction equations for the secondary 

phases, and algebraic expressions for the relative velocities. Typical applications include 

18 



sedimentation, cyclone separators, particle-laden flows with low loading, and bubbly 

flows where the gas volume fraction remains low. 

The mixture model is a good substitute for the full Eulerian multiphase model in 

several cases. Implementation of a full multiphase model may not be feasible when there 

is a wide distribution of a particulate phase or when the interphase laws are unknown or 

their reliability is questionable. In such cases a simpler model like the mixture model can 

perform as well as a full multiphase model while solving a smaller number of variables 

than the full multiphase model. 

3.1.3 The VOF Model 

The Volume of Fluid (VOF) model uses a surface-tracking technique applied on a 

fixed Eulerian mesh. It is designed for two or more immiscible fluids where the position 

of the interface between the fluids is of particular interest. In the VOF model, a single set 

of momentum equations is shared by the fluids, and the volume fraction of each of the 

fluids in each computational cell is tracked throughout the domain. 

The VOF formulation relies on the assumption that two or more fluids (or phases) 

are not interpenetrating. For each additional phase added to the model, the volume 

fraction of the phase in the computational cell is introduced. In each control volume, the 

volume fractions of all phases sum to unity. The fields for all variables and properties are 

shared by the phases and represent volume-averaged values, as long as the volume 

fraction of each of the phases is known at each location. Thus the variables and properties 

in any given cell are either purely representative of one of the phases, or representative of 

a mixture of the phases, depending upon the volume fraction values. 

Typical VOF applications include the prediction of jet breakup, the motion of 

large bubbles in a liquid, the motion of liquid after a dam break, and the steady or 

transient tracking of any liquid-gas interface. 

3.2 Euler-Lagrange Approach 

In the Euler-Lagrange approach, the fluid phase is treated as a continuum 

governed by the time-averaged Navier-Stokes equations, while the dispersed phase is 
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solved by tracking a large number of particles, bubbles, or droplets through the calculated 

flow field. The fluid and dispersed phases can exchange momentum, mass, and energy. 

The Lagrangian discrete phase model (DPM) in FLUENT follows the Euler-

Lagrange approach. In addition to solving the transport equations for the continuous 

phase, FLUENT simulates the discrete second phase in a Lagrangian frame of reference. 

This second phase consists of spherical particles (which may be taken to represent 

droplets or bubbles) that disperse throughout the continuous phase. FLUENT computes 

the trajectories of these discrete phase entities, as well as heat and mass transfer to and 

from them. Coupling between the phases and its impact on both the discrete phase 

trajectories and the continuous phase flow can be included. The droplet or particle 

trajectories can be computed individually at specified intervals during the fluid phase 

calculation. 

A fundamental assumption made in the Euler-Lagrange model is that the 

dispersed second phase occupies a low volume fraction, even though high mass loading is 

acceptable. 

3.3 Summary 

According to the description in sections 3.1.1 - 3.1.3, the Eulerian model should 

be applied for the simulation of the complete paint spray process. But the reality is that it 

may not be affordable to use an Euler—Euler approach for the simulation on the whole 

spray process, due to the high cost associated with such calculations and the available 

computational resources. On the other hand, the discrete phase model cannot be applied 

for the whole process because (i) the paint inside the atomizer is continuous and there are 

no droplets, i.e., no dispersed phase, before atomization, and (ii) the discrete phase model 

cannot be used to simulate the atomization process. 

A three-step procedure has been devised in the present study to accomplish the 

simulation of the complete paint spray process. The spray simulation in each region (see 

Figure 1.4) was treated with a different approach and modeled separately. An Euler-Euler 

model can be used to simulate the flow inside the atomizer (disintegration region) to 

predict the initial droplet size and velocities at the edge of the atomizer. These predicted 
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droplet properties are then taken to set the boundary and initial conditions for the droplet 

transfer simulation in the fully developed spray region, using the Euler-Lagrange 

approach and the discrete phase model. Finally, information related to the paint 

deposition on the target plate can be used to calculate the paint film thickness profiles and 

transfer efficiency. 
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CHAPTER 4 SIMULATION OF FLOW IN THE ATOMIZER 

As indicated in previous chapters, a single simulation of the complete paint spray 

process, from inlet to target plate, is not feasible or practical. In order to simulate the flow 

in the fully developed spray region (see Figure 1.4), the paint particle size and velocities 

entering the spray region must be known. Of course, initial droplet sizes and velocities 

can be obtained through experiment. However, as discussed in Chapter 1, the expense 

involved in setting up and conducting experiments motivates one to consider a numerical 

method to acquire these droplet properties. Thus, in this chapter, we develop a numerical 

procedure to determine the flow in the high-speed rotary bell-shape atomizer, with 

particular emphasis on predicting the sizes and velocities of paint droplets leaving the 

outer rim of the bell cup. 

Paint is supplied into the rotating atomizer from the end connected to the nozzle 

(see Figure 4.1). The paint attains its rotational speed because of the friction between the 

fluid and the wall of the atomizer. The centrifugal force pushes the paint towards the 

outer wall. At low rotational speed conditions, the paint will be sprayed into the air from 

both the central hole and the ring jet close to the rim. If the rotational speed is high 

enough, the paint will form a thin continuous film and leave the atomizer only at the rim 

of the bell cup, and the central hole will suck the air back into the atomizer. This 

indicates that a two-phase flow exists inside the atomizer. Thus, in order to determine the 

initial droplet sizes near the edge of the bell cup atomizer, a two-phase (paint and air) 

simulation should be conducted. Furthermore, since the paint is indirectly charged by the 

electrodes surrounding the nozzle, the electrostatic field can be neglected because it has 

no effect on the paint within the atomizer. 
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Figure 4.1 Schematic Meridian View of the Bell-shape Atomizer 

As an initial test, FLUENT was used to set up a two-dimensional, two-phase 

simulation in the atomizer. Because the atomizer rotates at very high speed and there is 

no moving blade inside, the paint and air do not mix with each other in the atomizer. 

Since the VOF model is good for modeling immiscible fluids and is less computationally 

intensive compared to the other two multiphase models described in Chapter 3, it was 

selected for this simulation. The results of this simulation indicate that the paint is 

ejected from the ring jet, while air is sucked in through the central hole. However, this 

test case also demonstrated that even the two-dimensional, two-phase simulation using 

VOF model is still computationally expensive. In order to obtain the solution for this 

highly rotational two-phase flow, an unsteady solver, extremely small under-relaxation 

factors and very fine grids are required. All of these requirements place a high demand on 

computing resources. Thus, from an industrial perspective, a two-phase three-

dimensional simulation of the flow in the atomizer may not be practical if an alternative 

can be found. Furthermore, a three-dimensional pure paint simulation in the atomizer also 

shows that paint flows out from the ring jet and that the paint flow direction reverses at 

23 



the central hole for high rotational speeds. These test simulations show that a dead zone 

develops at the entrance to the central hole channel, effectively blocking the mixing of 

the fluid entering through the inlet with that which flows through the channel. Thus, it is 

reasonable to assume that paint entering the atomizer from the inlet is not significantly 

affected by the type of fluid (paint or air) sucked in from the central hole of the atomizer 

at high rotating speeds. The flow of the paint entering from the inlet remains essentially 

the same regardless of whether a single-phase (pure paint) simulation or a two-phase 

(paint and air) simulation is performed. This makes it possible to derive the droplet sizes 

and other flow properties based on a pure paint steady flow simulation in the bell cup. 

4.1 The Computational Domain 

The physical domain is approximately conical with four small channels uniformly 

located along the circumferential direction at the centre of the atomizer, converging to the 

central hole of the atomizer downstream. Therefore, a one-fourth slice of the atomizer 

domain was chosen for the computation. Periodic boundary conditions were specified on 

both sides of the slice. Generally speaking, for a complicated irregular domain, it is easier 

to create a tetrahedral mesh rather than a hexahedral mesh. However, in order to meet the 

mesh quality requirements, such as small skewness, smoothness of cell volume change 

and at least five cells in a flow passage, the number of cells of a tetrahedral mesh needed 

for this bell cup would be more than 3 million. Furthermore, the convergence for solving 

the high-swirling flow based on a tetrahedral mesh is very slow. By using a hexahedral 

mesh, larger cell dimensions can be applied in the circumferential direction and along the 

wall of the ring jet, without jeopardizing the convergence and accuracy. Thus, a 

hexahedral mesh was created because it significantly reduced the total amount of cells 

needed for accurate simulation. The mesh is block-structured and was created using 

ANSYS ICEM CFD HEXA. There are 341,325 cells in the mesh (see Figure 4.2). 
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Figure 4.2 Mesh for One Quarter of the Atomizer 

Numerical Algorithm 

The momentum equations of fluid flow are know as the Navier-Stokes equations 

can be written as 

rdu du du du. dp 
p{ + W + V + W ) = — + pg^ +/ /( r- + r + T) 

dt dx dy dz dx dx dy' dz' 

,dv dv dv 
s Yu h v — 
dt dx dy 

3 dp 

dy 

d'u d'u d w, 
— 7 + — r + — T 
dx dy' dz 

d2v d2v d V 
p(—+u—+v—+w—) = —r+pgv+M(—r+^T+-rT) 

- - - - • - chc dy' dz 

,dw dw dw dw. dp 
p( YU hV + W ) = —+ Pg. +/ /( 

dt dx dy dz' dz 

,d2w d2w d'w 

"dx2 dy2 dz2 ) 

(4.1a) 

(4.1b) 

(4.1c) 
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where p is the density of the fluid, p is the pressure, n is the viscosity, u, v, and w 

are velocities in x, y, and z directions respectively, and gx, gy and gz are gravitational 

acceleration in x, y, and z directions respectively. 

FLUENT, which is based on the finite volume method, has been implemented to 

solve the 3D Navier-Stokes equations (4.1). The steady state segregated solver, the cell-

centre scheme, SIMPLE pressure-velocity coupling and first order upwind discretization 

scheme were used. The realizable k - E turbulence model was used rather than the 

standard k - 8 turbulence model because of the strong swirl in the bell atomizer. Because 

the thickness of the paint film (see Figure 4.3) is very small, very fine cells close to the 

bell wall are required for the accurate calculation of the film thickness. These small cell 

sizes along the wall resulted in a small y+ value, which called for the enhanced wall 

treatment option in FLUENT. Mass flow rate inlet boundary condition and pressure 

outlet boundary condition with "Radial Equilibrium Pressure Distribution" were specified. 

When the "Radial Equilibrium Pressure Distribution" feature is active, the specified 

gauge pressure applies only to the position of minimum radius (relative to the axis of the 

rotation) at the boundary. The static pressure on the rest of the outlet zone is calculated 

from the assumption that radial velocity is negligible, so that the pressure gradient is 

given by 

^ = ̂ i (4.2) 
dr r 

where r is the radial distance from the centre of the bell and ve is the tangential velocity. 

4.3 Droplet Properties at the Atomizer Edge 

Since the paint entering the atomizer from the inlet is blocked and deflected by 

the fluid (paint or air) sucked in from the central hole of the atomizer at high rotating 

speed, as discussed previously, the paint from the inlet flows along the outer wall and 

forms a paint film, regardless of whether a single-phase (pure paint) simulation or a two-
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phase (paint and air) simulation is performed. Thus a single-phase (paint) simulation has 

been used to calculate the paint flow characteristics at the edge of the bell cup. The 

electrostatic field has been neglected since it has no effect on the paint within the 

atomizer. 

Once the simulation has been completed, the blob diameters and velocities at the 

bell cup edge can be estimated by employing the following steps: 

1. Assume an initial film thickness 80. 

2. Construct an annular zone at the bell edge plane with outer radius R and inner 

radius R-S0, where R is the radius of the bell cup at the edge (see Figure 4.3). 

3. From the FLUENT simulation, determine the average axial velocity va of this 

annular zone. 

4. Calculate the film thickness 8 from the following equation: 

S = ^— (4.3) 
2nPp{R—±)va 

where Q is the paint mass flow rate at the inlet and p is the paint density. 

5. If 8 * 80, let S0 = 8 and go to step 2. Otherwise, stop the calculation. 

A flow chart of this procedure is described in Figure 4.4. 

The calculated film thickness value can be used to estimate the paint droplet size 

at the edge of the bell cup. The three-dimensional velocities within the paint film can be 

adopted as inlet droplet velocities for subsequent calculations in the fully developed spray 

region between the atomizer and the target plate, as described in Chapter 5. 
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Figure 4.3 3D Illustration of Paint Film Thickness at the Bell Edge 
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Figure 4.4 Flow Chart for Calculating the Paint Film Thickness at the Bell Edge 

4.4 Simulation Conditions 

The paint density and viscosity are taken as 1241 kg/m3 and 0.065 kg/(m*s), 

respectively. Numerical simulations of the flow in the atomizer were performed at 
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different operating conditions, by varying paint flow rate and bell rotating speed. Fixing 

the paint flow rate at 150 cc/min, the cases given in Table 4.1 were considered. 

Bell Rotating Speed (rpm) 

25000 

30000 

34000 

38000 

44000 

50000 

55000 

60000 

Table 4.1 Numerical Simulation Conditions for Paint Flow Rate of 150 cc/min 

Specifying the bell rotation speed at 38000 rpm, the simulation cases outlined in 

Table 4.2 were carried out. 

Table 4.2 Numerical Simu 

Paint Flow Rate (cc/min) 

100 

150 

200 

240 

250 

300 

320 

ation Conditions for Bell Rotating Speed of 38000 rpm 

4.5 Results and Discussion 

Velocity vectors on a meridian plane are displayed in Figure 4.5, with a closeup 

view of the inlet region shown in Figure 4.6. The reversing flow in the central hole 

channel and the dead zone are labeled in these two figures, confirming that the paint 
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injected at the inlet moves along the outer wall of the bell cup. These velocity vectors are 

coloured by velocity magnitude (m/s). 
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Figure 4.5 Velocity Vectors on a Meridian Plane of the Bell-shape Atomizer 
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Figure 4.6 Velocity Vectors on a Meridian Plane near the Inlet of the Bell-shape 

Atomizer 

The Reynolds numbers, based on rotational speed and diameter of the bell cup, of 

this study are approximately 107. The width of the films obtained by the procedure 

outlined in Section 4.3 is in the range of 6 to 12 micron. This film thickness agrees very 
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well with data published by Domnick and Thieme (2004) (see Figure 4.7), which shows 

the film thickness varying between 15 micron at Reynolds number 106 to around 5 

micron at Reynolds number of 107. 

t£HS»6l M83&.BS t,#W*frB 

Figure 4.7 Film Thickness at the Bell Edge as a Function of Reynolds Number [from 

Domnick & Thieme (2004)] 

The variations of the calculated droplet size with bell rotational speed and paint 

flow rate are presented in Figure 4.8 and Figure 4.9. These figures indicate that, over the 

range of parameters considered, the droplet size increases linearly with the paint flow rate 

and decreases linearly with the rotational speed of the bell cup. This trend was also 

observed experimentally by Bauckage et al. (1994 & 1995) and predicted numerically by 

Im (1999) and Im et al. (2004). 

The predicted droplet velocities are plotted in Figure 4.10 - Figure 4.13. The 

droplet velocity magnitude at the edge of the atomizer is dominated by the tangential 

component, increasing with the increase of bell rotational speed and decreasing as the 

flow rate increases. 

The droplet size and velocities in Figure 4.8 - Figure 4.13 show a linear relation 

with the horizontal coordinate variables. Using the least square curve fit method, these 

linear relations can be summarized in the formula 

y = ax + b . (4.4) 
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Table 4.3 shows the coefficients and R2 values of the linear least square curve fit 

for variables in Figure 4.8 - Figure 4.13. 

Relationship 

Droplet size vs. bell rotational speed 

Droplet size vs. paint flow rate 

Droplet axial velocity vs. bell rotational speed 

Droplet radial velocity vs. bell rotational speed 

Droplet axial velocity vs. paint flow rate 

Droplet radial velocity vs. paint flow rate 

Droplet tangential velocity vs. bell rotational 

speed 

Droplet tangential velocity vs. paint flow rate 

Slope a 

-0.0001 

0.0238 

2E-05 

1E-05 

0.0041 

0.0021 

0.0034 

-0.017 

Intercept 

b 

12.39 

4.5366 

0.5673 

0.2969 

0.7962 

0.416 

-0.2239 

132.75 

R2 

0.9924 

0.9931 

0.9933 

0.9915 

0.9661 

0.9731 

1 

0.9445 

Fig. 

No. 

4.8 

4.9 

4.10 

4.10 

4.11 

4.11 

4.12 

4.13 

Table 4.3 Coefficients and R2 Values of Linear Curve Fit 

It can be seen that all the R2 values are close to 1, which indicates there are strong 

linear relations for these data. 

The spray angle 6 is defined as 

^ = tan"1(^) (4.5) 

where va is the axial velocity of the droplet and vr is the radial velocity of the droplet. 

The variation of the calculated spray angle with bell rotational speed and inlet flow rate 

are presented in Figure 4.14 and Figure 4.15. The spray angle is determined by both the 

axial and radial components of the droplet velocity. Its value remains approximately 

constant at 27.5° over a typical range of flow rates and rotating speeds. 
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4.6 Conclusions 

This chapter presents a numerical procedure to calculate the paint droplet sizes 

and velocities at the edge of the high-speed rotary atomizer, by performing a single-phase 

paint flow simulation inside the bell cup. 

The simulations indicate that the droplet size and velocities vary linearly with 

rotational speed and flow rate. There is no such linearity observed for the spray angle. 

The droplet properties obtained through this procedure can be used as inputs for 

the droplet transfer simulation. The details of droplet transfer simulation will be 

discussed in Chapter 5. The results indicate that this method is a good alternative to more 

expensive droplet measurement experiments. 
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Figure 4.8 Droplet Size vs. Bell Rotation Speed (paint flow rate =150 cc/min) 
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CHAPTER 5 DROPLET TRANSFER SIMULATION 

In the fully developed spray region, the paint droplets can be viewed as dispersed 

throughout a continuum of air. In order to simulate the paint droplet transfer process, the 

discrete phase model of FLUENT, following the Euler-Lagrange approach, was adopted. 

This approach treats the air and droplets as a continuous phase and a dispersed phase 

respectively, without solving the Navier-Stokes equations for both phases (see details in 

Chapter 3), which effectively saves computer resources without sacrificing the accuracy 

of the droplet transfer process simulation. The Euler-Lagrange approach has been 

adopted by Bai and Gosman (1995), Dooley et al. (1997), Yarin and Weiss (1995), 

Mundo et al. (1995c), Huang et al. (2000) and Im (1999) and Im et al. (2001 & 2004) for 

their investigations of the droplet transfer. 

In this chapter, descriptions of FLUENT's discrete phase model, spray models, 

electrostatic force incorporation, turbulent dispersion modeling, computational domain, 

numerical algorithm and simulation conditions are presented. Then, discussion and 

comparison of the air flow field and paint trace under various operating conditions are 

presented. 

For figures shown in this thesis, the units corresponding to the numbers on the 

colour scale are as follows: 

• for pressure, Pa 

• for velocity magnitude, m/s 

• for electric potential, V 

• for electric field strength, V/m 

• for droplet residence time, s 

• for turbulence kinetic energy, m2/s2 

• for turbulence dissipation rate, m2/s3 

5.1 FLUENT'S Discrete Phase Model 

FLUENT predicts the trajectory of a discrete phase droplet (or particle or bubble) 

by integrating the force balance on the droplet, which is written in a Lagrangian reference 
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frame. This force balance equates the droplet inertia with the forces acting on the droplet, 

and can be written as 

—L = fD(u-up) + p- + F (5.1) 

dt pp 

where fD{u-up) is the drag force per unit paint droplet mass, u is the fluid phase 

velocity, up is the paint droplet velocity, p is the density of the continuous phase, i.e., 
air, pp is the density of the paint droplet and F is any additional force acting on the 

droplet, such as lift force, centrifugal force, Coriolis force, etc. The coefficient fD can be 

written as 

18// CDRed 

Ppd
2

p 24 
fo - z D::J (5-2) 

where /J. is the viscosity of the fluid, CD is the drag coefficient and dp is the droplet 

diameter. The droplet Reynolds number is defined as 

pd \u -u\ R e d = ^ ± J ! 1 _ (5_3) 

M 

Considering the droplet effect on the continuous phase, the momentum equations 

for the air flow become 

,du du du dwN dp ,d'u d u d'us 

I + U + V + W ) = — + Pgx+M( T + 2+ 2~) 
dt dx dy dz dx dx dy dz 

,dv dv dv dv. dp ,d2v d2v d2v. „ . , .., 
^ • H 7 + M ^ + v ^ r + w ^ ) = "^+^v+M-jT+^T+Tr> + ̂  (5-4b) 

dt dx dy dz dy ' dx dy dz 
,dw dw dw dw^ dp ,d2w d2w d2w. „ ,. . . 
dt dx dy dz dz dx dy dz 

where FD^ , FDy and FDz are components of the droplet force FD in x, y and z 

directions respectively. FD is the force on the continuous phase exerted by droplets, 

defined as 

h =-//>(«-«») • (5-5) 
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5.2 Components of the Spray Model 

In order to simulate the spray, several types of models need to be selected in 

advance to account for various aspects of the complex physical phenomena that occur 

during the spray process. 

5.2.1 Injection Model 

Because the simulations of paint in the bell cup indicates that the paint is drawn 

back to the bell cup at the centre, it can be deduced that the droplets are injected into the 

spray zone only from the rim of the bell cup and form a hollow cone. Thus the "hollow 

cone injection model" is chosen to simulate the droplet transfer process. 

In order to use FLUENT's hollow cone model, the values of cone angle and swirl 

fraction need to be specified. In this study, 6 described in section 4.5 is taken as the 

spray angle, determined from 

0 = tan - ,(—). (5.6) 

Swirl fraction is the fraction of the velocity magnitude that is accounted for by the 

swirl component of the flow. Therefore, the value of the swirl fraction (Sf) is determined 

from 

Sf= . Ve (5.7) 
J l 2 2 2 

where va, vr, and ve are axial, radial and tangential velocities of the injected droplet 

from the bell cup simulation described in Chapter 4. 

5.2.2 Droplet Collision Model 

FLUENT provides an option for estimating the number of droplet collisions and 

their outcomes in a computationally efficient manner. The difficulty in any collision 

calculation is that for N droplets, each droplet has N - 1 possible collision partners. Thus, 

1 , 
for large N, the number of possible collision pairs is approximately — N . 
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Since a spray can consist of several million droplets, the computational cost of a 

collision calculation for the real number of droplets is prohibitive. This motivates one to 

consider the concept of parcels. Parcels are statistical representations of a number of 

individual droplets. For example, if FLUENT tracks a set of parcels, each of which 

represents 1000 droplets, rather than tracking each individual droplet, the cost of the 

collision calculation is reduced by a factor of 106. 

The algorithm of O'Rourke (1981) is used to calculate the collisions. It efficiently 

reduces the computational cost of the spray calculation. Rather than using geometry to 

determine whether parcel paths intersect, O'Rourke's method is a stochastic estimate of 

collisions. O'Rourke also makes the assumption that two parcels may collide only if they 

are located in the same continuous-phase cell. These assumptions are valid only when the 

continuous-phase cell size is small compared to the size of the spray. For these conditions, 

the method of O'Rourke is second-order accurate at estimating the chance of collisions. 

The concept of parcels together with the algorithm of O'Rourke makes the calculation of 

collision possible for practical spray problems. Once it has been decided that two parcels 

of droplets collide, the algorithm further determines the type of collision. Only 

coalescence and bouncing outcomes are considered. The probability of each outcome is 

calculated from the collisional Weber number and a fit to experimental observations. The 

properties of the two colliding parcels are modified based on the outcome of the collision. 

5.2.3 Spray Breakup Model 

The Taylor Analogy Breakup (TAB) model is used in this study. The TAB model 

is a classic method for calculating droplet breakup, which is applicable to many 

engineering sprays. This method is based upon Taylor's analogy (Taylor (1963)) between 

an oscillating and distorting droplet and a spring-mass system. Table 5.1 illustrates the 

analogous components. 

Spring-Mass System 

Restoring force of spring 

External force 

Damping force 

Table 5.1 Anology between a Spring-

Distorting and Oscillating Droplet 

Surface tension forces 

Droplet drag force 

Droplet viscosity forces 

Vlass System and a Distorting Droplet 
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The resulting TAB model equation set, which governs the oscillating and 

distorting droplet, can be solved to determine the droplet oscillation and distortion at any 

given time. When the droplet oscillations grow to a critical value the "parent" droplet will 

break up into a number of smaller "child" droplets. As a droplet is distorted from a 

spherical shape, the drag coefficient will change. A drag model that incorporates the 

distorting droplet effects is available in FLUENT, and described in the next section. 

5.2.4 Drag Model 

The spherical drag model is used in this simulation. The drag coefficient CD in 

Eq. (5.2) is defined as 

„ a-, a, 
c°="'+ii;+i$" <5-8) 

where a, , a2 and a3 are constants given by Morsi and Alexander (1972). These 

constants change with droplet Reynolds number Re, , for example, 

C D = - ^ f o r R e , < 0 . 1 
Re, 

- , „ 22.73 0.0903 . n , _ 
Cn =3.69+ + r— for 0.1 < Re, <1 

Re, Re^ 
„ . ___ 29.1667 3.889 . , _ 1A 

CD =1.222+ r- for l < R e , <10 
R e , Re2

d 

CD = Q . 4 6 - i g g ^ + 5 7 - 8 7 ; 1 0 4 for 5000 <Re, < 10000 
Re, Re* 

CD = 0 . 5 1 9 1 - ^ ^ + 5 ' 4 1 6 7 * 1 0 for 10000 <Re, < 50000 
Re, Re^ 

The droplet Reynolds number Re, is defined in equation (5.3). 
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5.3 Electrostatic Force Incorporation 

The electrostatic field force on the charged droplet is 

F = qE (5.9) 

where q is the charge of the droplet and E is the electric field strength, which is equal to 

— , where </> is electric potential and s is distance . Neglecting the effect of charged 
ds 

droplets on the electrostatic field, the electric potential equation is 

VV = 0 . (5.10) 

This equation can be defined and solved using the User Defined Scalar (UDS) 

transport modeling feature in FLUENT (FLUENT 6.1, UDF Manual). 

Charge on the droplet is determined by many factors, including property of the 

liquid, mass of the droplet, surface area of the droplet, strength of the electrostatic field, 

etc. Although a comprehensive formula for droplet charge is not available, charge-to-

mass ratio (cq m) is a basic parameter that is widely used in charged droplet transfer 

simulations. In general, the charge-to-mass ratio is not uniform for all the droplets in an 

electrostatic field. Gemci et al. (2002) measured the charge-to-mass ratio of droplets in a 

spray of an electrostatic rotary bell atomizer, and plotted these charge-to-mass ratios 

versus drop diameter (see Figure 5.1 and Figure 5.2). The fluid they used was water. It 

can be seen that there is no significant difference of charge-to-mass ratio with the change 

of operating voltage. Since water-based paint is used in the current study and most cases 

studied in this research are at 70 kV operating voltage, a charge-to-mass ratio vs. drop 

size function was produced with the least squares curve fit method, using the data in 

Figure 5.2. The relation between the charge-to-mass ratio and the droplet diameter is: 

1 „-O.00005*<//+0.0052*d/-0.1873V,, +3.3829 

c - = ~ Wo (5Al) 

where d is the paint droplet diameter. 
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Figure 5.1 Charge-to-Mass Ratio vs. Drop Diameter for the Rotary Bell Atomizer at 
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70 kV Operating Voltage [from Gemci et al. (2002)] 
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5.4 Modeling Turbulent Dispersion of Droplets 

A stochastic tracking method is used to capture the effects of the turbulent 

dispersion. In the stochastic tracking approach, FLUENT predicts the turbulent dispersion 

of droplets by integrating the trajectory equations along the droplet path for individual 

droplets. By computing the trajectory in this manner for a sufficient number of 

representative droplets, the random effects of turbulence on the droplet dispersion may be 

accounted for. In FLUENT, the Discrete Random Walk (DRW) model is used. In this 

model, the fluctuating velocity components are discrete piecewise constant functions of 

time. Their random value is kept constant over an interval of time given by the 

characteristic lifetime of the eddies 

5.5 The Computational Domain 

Based on the geometric simplicity and features of the flow domain, a cylindrical 

computational domain was adopted. ANSYS ICEM HEXA was used to create a block-

structured mesh. Separate meshes were constructed for the electric field and the flow 

field simulations. This is appropriate and feasible for the following reasons: 

• In order to capture the very small sized electrodes, very small cells must 

be generated around them. 

• Small cells should be created at the inlets and outlets in order to accurately 

propagate the boundary effects into the domain and obtain acceptable 

results. 

• Viscous stress is dominant and changes rapidly in the wall boundary layer. 

The effect of the viscous stress plays an important role in the development 

of the entire flow field. In order to capture the characteristics of the 

viscous force, a very fine grid is required at wall boundaries. 

• In order to achieve accuracy and convergence, a fine mesh is required in 

the high swirling regions. 

• Droplet deposition on the target plate needs to be accurately predicted in 

order to calculate the film build, which is one of the most important 
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objectives of this study. Obviously, a coarse mesh along the target plate 

would be unacceptable. 

• The fine grid size for inlets, wall boundary layers, high swirling regions 

and droplet deposition is not required in a pure electrostatic field 

simulation. A coarse mesh can be applied in these regions when 

calculating the electrostatic field. 

• Because rapid changes in cell volume between adjacent cells translate into 

larger truncation errors and perhaps divergence, only meshes with 

moderate cell volume change can be used. 

• Im (1999) reported that although the high electric potential existed near 

the electrodes, the potential soon became circumferentially uniform away 

from the electrodes. This indicates that there is no need to use a fine grid 

aligned to the shape of the electrodes in the fully developed spray region, 

which significantly reduces the mesh size and makes the droplet transfer 

simulation over a larger period of physical time feasible. 

A single mesh satisfying all the above requirements would have too many cells. 

The simulation with such a mesh would require too much time and computer resources, 

so the simulation could only be carried out for a very short physical time period. This 

would not give a significant film thickness profile and therefore be of little use for the 

coating industry. 

Neglecting the effect of droplet movement on the electrostatic field, it is feasible 

to solve the electrostatic field using one mesh, and incorporate the obtained electrostatic 

potential value into the other mesh used for the air flow and droplet transfer simulation. 

5. J. 1 Mesh for Electrostatic Field Simulation 

As mentioned above, one mesh is used just for solving the electrostatic field. The 

axial length of this computational domain is 0.327 m, which is the distance from the 

workpiece to the base of the electrode leads. The diameter of the cylindrical domain is 

0.9144 m, which is equal to 36 inches, i.e., the width of the workpiece used in the 

experiments. There are six electrodes located at the top of the domain, represented by six 
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small cuboids. The bottom of the domain represents the target plate, i.e., the workpiece. 

There are 632,886 cells in this mesh. Figure 5.3 shows this domain for the electrostatic 

potential calculation. Figure 5.4 shows a cutaway view, illustrating the mesh distribution. 

Electrode 

-Target plate 

Figure 5.3 Computational Domain for Electrostatic Potential Calculation 

Fine grid created 
for the electrodes 

Figure 5.4 Computational Mesh Distribution for Electrostatic Potential Calculation 

5.5.2 Mesh for Droplet Transfer Simulation 

The second cylindrical domain, used for the droplet and air flow simulation, 

covers the region from the target plate to the edge of the bell cup, from which the droplets 

are sprayed. Turbine air, bearing air and shaping air are injected separately from two 

annular surfaces at the top of this domain. The inlets of turbine air, bearing air and 

shaping air are located on the same top plane. The droplets are injected along a ring of 
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0.0682 m diameter, i.e., the inner edge of the bell cup. The axial length of this domain is 

0.256 m, 0.071 m shorter than the previous one. 

In order to determine the appropriate diameter of the computational domain, two 

2-D axisymmetric swirl simulations were executed. The difference between these two 

simulations is the radial extent of the domains, one is the same as the radius of the target 

plate, and the other is two times that radius. Applying the same boundary conditions, pure 

air flow simulations (without droplets) were conducted. Figure 5.5 and Figure 5.6 show 

static pressure contours for these two simulations. Figure 5.7 and Figure 5.8 show the 

velocity magnitude contours. Comparison of these contours indicates that there is no 

significant difference in the results from these two domains. Thus the domain with the 

same radius as the plate, i.e., 0.4557 m, is adopted in order to reduce the total amount of 

cells for the paint spray simulation. 

If' 
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Figure 5.5 Static Pressure Contours from 2D Air Jet Simulation 
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Figure 5.7 Velocity Magnitude Contours from 2D Air Jet Simulation 
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Figure 5.8 Velocity Magnitude Contours from 2D Air Jet Simulation with Extended 
Domain 

Im (1999) indicated that the high electric potential was concentrated around the 

six electrodes and that the potential was circumferentially uniform in most of the zone 

away from the electrodes location. Since the air flow, droplet injection and electrostatic 

field are all uniform in the circumferential direction, one quarter of the cylindrical 

domain with circumferentially uniform mesh was used for the droplet transfer 

simulations so as to further reduce the mesh size of the simulation. 

In order to accurately predict the droplet deposition on the target plate, very fine 

cells near the plate are required. Figure 5.9 shows the mesh distribution for the droplet 

transfer simulation. The properties of the two meshes are summarized in Table 5.2. 



Bell Air inlets Top 

Figure 5.9 Mesh Distribution for Air Flow and Droplet Transfer Simulation 

Domain Name 

Electrostatic 

field domain 

Droplets and air 

flow domain 

Axial 

Length (m) 

0.327 

0.256 

Diameter 

(m) 

0.9114 

0.9114 

Domain Shape 

Cylindrical 

Quarter of 

cylindrical 

Mesh Size 

632,886 

103,212 

Table 5.2 Characteristics of Electrostatic Field Domain and Flow Domain 
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5.6 Numerical Algorithm 

The numerical algorithm is chosen differently for the electric field simulation and 

the droplet/air flow simulation. 

5.6.1 Numerical Algorithm for Electric Field Simulation 

The electric potential was set as a user defined scalar (UDS). The UDS at the 

surface of the electrodes was set with positive potential values. Zero UDS value was 

applied at the target plate. Zero UDS flux was specified on the rest of boundaries. 

In the electric field simulations, by turning off the flow equations, only the UDS 

equations are solved, using the finite volume method, with structured hexahedral and 

prismatic cells. The steady, segregated solver with the cell-centred scheme was 

implemented. 

5.6.2 Numerical Algorithm for Droplet/Airflow Field Simulation 

For the droplets/air flow simulation, the electric potential values calculated from 

the electric field domain were imported, and the potential values at cells in the droplet/air 

flow mesh were interpolated from the imported data. Using FLUENT'S User Defined 

Function, the three-dimensional electric field strength vector, i.e., gradient of the electric 

potential, was calculated and stored in User Defined Memory, and the electrostatic force 

was applied on the droplets as a body force. See UDF1 and UDF2 in Appendix for details. 

FLUENT has been used to solve the unsteady 3-D Navier-Stokes equations. 

Structured hexahedral and prismatic cells, cell-centre scheme, unsteady and segregated 

solver, SIMPLE pressure-velocity coupling scheme, first order upwind discretization 

scheme, realizable k - s turbulence model and enhanced wall treatment are used. In a 

comparison study, Fogliati (2006) has shown that the realizable k - e model performs 

better that the RNG k - E model. Velocity inlet boundary conditions are specified for the 

air inlets. The air flow satisfies the no-slip wall boundary condition at the target plate, 

and pressure outlet boundary is specified at all the other boundaries of the domain. A 

typical time step for this study is At = 0.0005 s. 
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When a droplet reaches a boundary (e.g., a wall or outlet boundary), FLUENT 

applies a discrete phase boundary condition to determine the fate of the trajectory at that 

boundary. The boundary condition, or trajectory fate, can be defined separately for each 

boundary. There are three discrete phase boundary conditions available in FLUENT, the 

"reflect" boundary condition, the "trap" boundary condition and the "escape" boundary 

condition. "Reflect" means the droplet rebounds off the boundary and goes back into the 

domain. The trajectory calculation of the droplet continues after reflection. "Trap" 

implies that the trajectory calculation of the droplet is terminated and the fate of the 

droplet is recorded as "trapped". "Escape" indicates the fate of the droplet is reported as 

"escaped" when it hits the boundary and no more trajectory calculation is done on this 

droplet. In this study, the discrete phase boundary conditions are set as "escape" at the 

outlets. The discrete phase boundary conditions are set as "reflect" at the air inlets 

because the droplets can not leave the domain from the inlets. Since droplets bouncing 

off the target plate may hit the plate again and only one type of discrete phase boundary 

condition can be specified at the plate, the "trap" boundary condition is specified at the 

plate so as to simplify the calculation on the droplet. 

5.7 Simulation Conditions 

The baseline working conditions for a spray simulation were set as: 

" Paint flow rate =150 cc/min 

• Bell rotational speed = 38000 rpm 

• Shaping air flow rate = 250 cc/min 

• Electrodes potential = 70 kV 

• Downdraft air flow speed = 0.31 m/s 

A parametric study was carried out by changing some of the parameters while 

keeping the remaining parameters at the baseline condition. Numerical simulations of the 

droplet transfer were performed at the conditions summarized in Table 5.3 to Table 5.6. 

The effect of different spray cone angle, i.e., 22.5°, 27.5°and 32.5° was also tested. The 

droplet size formula proposed by Domnick and Thieme (2004) estimated the droplet 
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diameter is about one-tenth of the film thickness at the bell edge. The effect of droplet 

size was tested by using one-fifth and one-tenth of the droplet film thickness at the bell 

edge while keeping the rest of the parameters unchanged. 

Electrodes Potential (kV) 
50 

70 

90 

Table 5.3 Numerical Simulation Conditions of Droplet Transfer Process for Varying 

Electric Charge 

Paint Flow Rate (cc/min) 

150 

175 

200 

Table 5.4 Numerical Simulation Conditions of Droplet Transfer Process for Varying 

Paint Flow Rate 

Shaping Air Flow Rate (cc/min) 

150 

200 

250 

Table 5.5 Numerical Simulation Conditions of Droplet Transfer Process for Varying 

Shaping Air Flow Rate 

Bell Rotational Speed (rpm) 

34000 

38000 

42000 

Table 5.6 Numerical Simulation Conditions of Droplet Transfer Process for Varying Bell 

Rotational Speed 
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5.8 Results and Discussion 

The results and discussion are organized in the following subsections: (i) electric 

field simulation, (ii) air and droplet flow fields (baseline conditions), (iii) effect of 

voltage, (iv) effect of droplet diameter, (v) effect of bell rotational speed, (vi) effect of 

paint flow rate, (vii) effect of shaping air flow rate, and (viii) effect of spray angle. 

5.8.1 Electric Field Simulation 

Figure 5.10 shows the horizontal view of the electric potential contours at Z = 

0.327 m, i.e, the top plane of the electric potential simulation domain. It can be seen that 

the potential close to the six electrodes is high, i.e., 70 kV, and falls dramatically a short 

distance away from the electrodes. 

Figure 5.11 presents the electric potential contours on the plane Z = 0.2 m. The 

electric potential is circumferentially uniform on this plane, which agrees well with the 

results of Im (1999). Figure 5.12 shows the meridian view of the electric potential. The 

electric potential is high near the electrodes and falls to 0 V at the target plate. Because 

this plane does not pass through the electrodes, the highest potential in this figure is 4.91 

kV, instead of 70 kV. The electric field strength vectors in a meridian plane are shown in 

Figure 5.13. The direction of these vectors show that the electric force points outwards in 

the radial direction close to the electrodes and points downward towards the workpiece in 

most of the domain. Thus we anticipate that the electric force expands the spray near the 

sprayer, but confines the spray in most of the domain. Like the electric potential, the field 

strength diminishes rapidly from the electrodes to the target plate. 
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Figure 5.10 Horizontal View of Electric Potential Contours at Z = 0.327 m 
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Figure 5.11 Horizontal View of Electric Potential Contours at Z = 0.2 m 
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Figure 5.12 Meridian View of Electric Potential Contours 
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Figure 5.13 Meridian View of Electric Field Strength Vectors 

5.8.2 Air and Droplet Flow Fields (Baseline Conditions) 

Figure 5.14 shows the static pressure contours on the target plate for a pure air 

spray simulation on the full cylindrical domain (without paint droplets or electric field). It 

can be seen, as expected, that the static pressure is circumferentially uniform, with higher 

pressure near the centre of the plate. We also note that the pressure is essentially constant 
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over the outer two-thirds of the plate. These observations support the validity of using 

one quarter of the cylindrical domain for the droplet transfer simulation and applying 

periodical boundary conditions on the two meridian boundaries. 
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Figure 5.14 Static Pressure Contours on the Target Plate for a Pure Air Spray (shaping air 

flow rate = 250 cc/min) 

Figure 5.15 shows a meridian view of the air velocity vectors of the spray at paint 

flow rate of 150 cc/min and shaping air flow rate of 250 cc/min (baseline conditions). It 

illustrates that a large circulation zone forms between the nozzle and workpiece. This 

circulation zone was also observed experimentally by Bauckage et al. (1994 & 1995) and 

predicted numerically by Im (1999) and Im et al. (2004). A high velocity zone exists in 

the vicinity of the strong combined turbine-bearing air inlet. In this and subsequent 

figures, the range has been clipped in order to see the variation of the parameter in the 

flow field. The actual velocity magnitude in Figure 5.15 ranges from 0 m/s at the target 

plate to 86 m/s near the turbine-bearing air inlet. 
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Figure 5.15 Meridian View of Air Velocity Vectors (paint flow rate = 150 cc/min, 

shaping air flow rate = 250 cc/min) 

Figure 5.16 shows a meridian view of the air velocity magnitude contours at the 

baseline conditions. The higher velocity zone and the relatively lower velocity zone at the 

centre of this figure represent the turbine-bearing air inlet region and the circulation 

region, respectively. This figure also shows that the velocity at the upper part of the 

boundary of the domain is very low, essentially undisturbed by the spray. The electric 

field, the downdraft and the shaping air orientation and velocity combine to confine the 

spray. The velocity in the region where the mixed turbine-bearing air and shaping air 

stream strike the plate is also very low. 

Figure 5.17 shows the meridian view of the static pressure contours at the baseline 

conditions. The actual pressure ranges from -1195 Pa to 251 Pa. The high speed stream 

caused by the turbine-bearing air flow creates a minimum pressure zone next to it. A low 

pressure zone forms around the axis of the domain. The circular low pressure zone at the 

centre of this figure corresponds to the circulation zone seen in Figure 5.15. 
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Figure 5.16 Meridian View of Air Velocity Magnitude Contours (paint flow rate = 150 

cc/min, shaping air flow rate = 250 cc/min) 
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Figure 5.17 Meridian View of Static Pressure Contours (paint flow rate =150 cc/min, 

shaping air flow rate = 250 cc/min) 
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Turbulent kinetic energy distribution is shown in Figure 5.18. The actual turbulent 

kinetic energy value ranges from 5e"6 K*m2/s2 to 779.2 K*m2/s2. The higher turbulent 

kinetic energy zone, in the region of the turbine-bearing air stream, characterizes the 

stronger turbulent zone. The strong turbulence in this region near the bell cup enhances 

the paint and air mixing and promotes the atomization process. 
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Figure 5.18 Meridian View of Turbulent Kinetic Energy Contours (paint flow rate = 150 

cc/min, shaping air flow rate = 250 cc/min) 

Figure 5.19 shows the turbulent dissipation rate contours. The actual range of the 

turbulent dissipation rate is from 1.4e~6 m2/s3 to 4.3e7 m 2/s3. It can be seen that the 

turbulent dissipation rate is higher in the turbine-bearing air region and, like the turbulent 

kinetic energy, uniformly low over the rest of the spray region. 

62 



l.DDcD4 
9.50c-113 
9.0Dc-D3 
8.5Dc-D3 
3.DDc-C3 
7.5De'B3 
7.00B-B3 
6.50c-D3 
6.DDc-D3 
5.5BC-B3 
5.DDe-D3 
4.5Dc-D3 
4.DDe'D3 
3.50c-113 
3.006-03 
2.50cD3 
2.D0c-D3 
1.5De-D3 

Tkrget plate 

Figure 5.19 Meridian View of Turbulent Dissipation Rate Contours (paint flow rate 

150 cc/min, shaping air flow rate = 250 cc/min) 

Figure 5.20 shows the static pressure distribution on the target plate. The pressure 

is very low at the centre of the target plate. An annular high pressure zone is formed in 

the area where the air velocity decreases sharply. Comparing Figure 5.14 and Figure 5.20, 

it is seen that the injection of the paint droplets has a dramatic effect on the plate pressure. 

The pressure, which decreases with radius for the pure air spray, now has its lowest value 

at the plate centre, increases out to about one-third of the plate radius, then decreases 

slightly before increasing again to reach its maximum value at approximately 70% of the 

distance to the edge of the plate. This variation is caused by the rotating vortex seen 

above the plate in Figure 5.15. 
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Figure 5.20 Static Pressure Contours on the Target Plate (paint flow rate = 150 cc/min, 

shaping air flow rate = 250 cc/min) 

Figure 5.21 shows a closeup view of static pressure near the centre of the target 

plate. These pressure contours show fairly good uniformity along the circumferential 

direction and an increase in pressure in the radial direction for this section of the plate. 
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Figure 5.21 Static Pressure Contours at the Centre of the Target Plate (paint flow rate 

150 cc/min, shaping air flow rate = 250 cc/min) 
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Figure 5.22 and Figure 5.23 show the complete and centre closeup view of the 

turbulent kinetic energy on the target plate, respectively. The contour shapes illustrate 

that the turbulent kinetic energy is more circumferentially uniform near the centre of the 

plate. These figures also show that the plate turbulent kinetic energy, which is very low 

across the entire plate, attains its maximum value close to the plate centre. 
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Figure 5.22 Turbulent Kinetic Energy Contours on the Target Plate (paint flow rate 

150 cc/min, shaping air flow rate = 250 cc/min) 
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Figure 5.23 Turbulent Kinetic Energy Contours at the Centre of the Target Plate (paint 

flow rate =150 cc/min, shaping air flow rate = 250 cc/min) 

Figure 5.24 and Figure 5.25 show the complete and centre closeup view of the 

turbulent dissipation rate contours on the target plate, respectively. Like pressure and 

turbulent kinetic energy, the turbulent dissipation rate contours are more 

circumferentially uniform at the centre of the plate. 
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Figure 5.24 Turbulent Dissipation Rate Contours on the Target Plate (paint flow rate 

150 cc/min, shaping air flow rate = 250 cc/min) 
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Figure 5.25 Turbulent Dissipation Rate Contours at the Centre of the Target Plate (paint 

flow rate = 150 cc/min, shaping air flow rate = 250 cc/min) 

Figure 5.26 illustrates the droplet distribution at baseline conditions. This figure 

shows that the droplets at the centre of the spray cone experience longer residence time. 

Examining Figure 5.15 and Figure 5.26, it can be seen that the droplets fly along the edge 

of the spray cone soon after the injection. Some of them deposit when they hit the target 

plate, some of them fly out of the domain, and the majority of them are drawn back 

towards the centre of the spray cone and circulate with the air vortex. Most of these 

circulating droplets eventually deposit near the centre of the target plate. 
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Figure 5.26 Droplet Trace Coloured by Droplet Residence Time (paint flow rate =150 

cc/min, shaping air flow rate = 250 cc/min) 

5.8.3 Effect of Voltage 

Figure 5.27 and Figure 5.28 show the meridian view of air velocity magnitude 

contours for sprays with 50 kV and 90 kV electric charge respectively. All other 

parameters are kept at their baseline values. Comparing Figure 5.16, Figure 5.27 and 

Figure 5.28, it can be seen that there is no significant difference in the air velocity field 

among these three conditions. 

Static pressure distribution on the target plate for 50 kV and 90 kV are plotted in 

Figure 5.29 and Figure 5.30, respectively. Comparing Figure 5.20, Figure 5.29 and 

Figure 5.30, we observe that the pressure contour shapes for 70 kV and 90 kV are very 

close, which agrees well with the observation from experiments reported by Im et al. 

(2001). 
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Figure 5.27 Meridian View of Air Velocity Magnitude Contours at 50 kV 
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Figure 5.28 Meridian View of Air Velocity Magnitude Contours at 90 kV 
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Figure 5.29 Static Pressure Contours on the Target Plate at 50 kV 
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Figure 5.30 Static Pressure Contours on the Target Plate at 90 kV 

Droplet tracks for sprays with 50 kV and 90 kV are plotted in Figure 5.31 and 

Figure 5.32, respectively. Compared with Figure 5.26, it can be seen that there is no 

significant difference between the 70 kV and 90 kV cases, while the spray is more 

confined in the 70 kV case than in the 50 kV case. 
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Figure 5.31 Droplet Trace Coloured by Droplet Residence Time at 50 kV 
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Figure 5.32 Droplet Trace Coloured by Droplet Residence Time at 90 kV 

5.8.4 Effect of Droplet Diameter 

As mentioned previously, there is no definitive formula to determine the size of 

the droplets resulting from the atomization in the bell cup. Based on our earlier 

discussion, we have taken the initial droplet size at the inlet of the spray region to be the 

same as the paint film thickness at the outer edge of the bell cup. As seen in Figure 4.8 
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and Figure 4.9, we use droplet sizes in the range of 6 to 12 microns, depending upon 

operating conditions. Other researchers, such as Domnick and Thieme (2004), estimated 

droplets sizes in the range of 5 to 15 microns, while Im (1999) and Huang et al. (2000) 

used a droplet diameter of 25 microns based on their experimental data. The average 

droplet size that Bauckage et al. (1994 & 1995) calculated based on their experimental 

data was about 30 microns. On the other hand, empirical formulae suggested by Domnick 

and Thieme (2004) estimate droplet sizes that are an order of magnitude smaller than 

those used here. To test the effect of initial droplet size, spray simulations were 

conducted for initial droplet diameters of one-fifth and one-tenth the paint film thickness 

at the bell edge. 

Figure 5.33 to Figure 5.37 show contours and droplet trace obtained by using 

one-tenth of the film thickness at the bell edge as the initial droplet diameter, with all 

other parameters set at the baseline values. Compared to the baseline condition, the 

contours of velocity magnitude, turbulent kinetic energy, turbulent dissipation rate and 

static pressure (see Figure 5.17 and Figure 5.33) on the meridian plane do not change. 

The plate pressure is unchanged (see Figure 5.20 and Figure 5.34), while the turbulent 

kinetic energy and turbulent dissipation rate on the plate differ only slightly (compare 

Figure 5.22 with Figure 5.35, and Figure 5.24 with Figure 5.36). The droplets residence 

time is somewhat larger in this case, as seen from Figure 5.26 and Figure 5.37. This 

indicates that the smaller droplets tend to circulate with the circulating air because their 

lower momentum is more easily overcome by the air flow, while the larger droplets tend 

to overcome the air flow and fly out of the spray cone. Im (1999) and Im et al. (2001) 

also reached this conclusion based on their measurements. Overall, it appears that the 

initial droplet diameter has very little effect on the spray flow field. Thus, all subsequent 

results correspond to simulations for which the droplet size is taken to be the same as the 

paint film thickness at the edge of the bell cup. 
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Figure 5.33 Meridian View of Static Pressure Contours using One-tenth of Film 

Thickness at the Bell Edge as Initial Droplet Diameter 
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Figure 5.34 Static Pressure Contours on the Target Plate using One-tenth of Film 

Thickness at the Bell Edge as Initial Droplet Diameter 
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Figure 5.35 Turbulent Kinetic Energy Contours on the Target Plate using One-tenth of 

Film Thickness at the Bell Edge as Initial Droplet Diameter 
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Figure 5.36 Turbulent Dissipation Rate Contours on the Target Plate using One-tenth of 

Film Thickness at the Bell Edge as Initial Droplet Diameter 
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Figure 5.37 Droplet Trace Coloured by Droplet Residence Time using One-tenth of Film 

Thickness at the Bell Edge as Initial Droplet Diameter 

5.8.5 Effect of Bell Rotational Speed 

Figure 5.38 to Figure 5.42 show the contours at bell rotational speed of 42000 

rpm. Compared with the baseline condition (38,000 rpm), the velocity vectors close to the 

turbine-bearing air inlet are more horizontal (see Figure 5.15 and Figure 5.42), which 

suggest higher circumferential velocity caused by the higher bell rotational speed. Figure 

5.39 shows a corresponding change in the pressure field, particularly near this air inlet. 

Although there is no noticeable difference for the static pressure on the target plate (see 

Figure 5.21 and Figure 5.40), the turbulent kinetic energy and dissipation rate on the 

target plate show significant difference (compare Figure 5.23 with Figure 5.41, and 

Figure 5.25 with Figure 5.42). 
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Figure 5.38 Meridian View of Velocity Vectors (bell rotational speed = 42000 rpm) 
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Figure 5.39 Meridian View of Static Pressure (bell rotational speed = 42000 rpm) 
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Figure 5.40 Static Pressure Contours at the Centre of the Target Plate (bell rotational 

speed = 42000 rpm) 
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Figure 5.41 Turbulent Kinetic Energy Contours at the Centre of the Target Plate (bell 

rotational speed = 42000 rpm) 
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Figure 5.42 Turbulent Dissipation Rate Contours at the Centre of the Target Plate (bell 

rotational speed = 42000 rpm) 

5.8.6 Effect of Paint Flow Rate 

Figure 5.43 to Figure 5.46 show contours and droplet trace at paint flow rate of 

200 cc/min, with shaping air flow rate the same as at the baseline condition, i.e., 250 

cc/min. Compared with the baseline case, there are some minor differences in the 

contours shape of pressure, both near the bell cup and near the target plate (see Figure 

5.17 and Figure 5.43, Figure 5.21 and Figure 5.44). The turbulent kinetic energy and 

turbulent dissipation rate on the central portion of the plate are noticeably different 

(compare Figure 5.45 with Figure 5.23, and Figure 5.46 with Figure 5.25). The droplets 

residence time (Figure 5.47) at the centre of the spray cone in this case is larger than in 

the baseline case (Figure 5.26), which indicates more droplets deposit at the centre of 

plate and the paint film is expected to be thicker at the centre. 
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Figure 5.43 Meridian View of Static Pressure Contours (paint flow rate = 200 cc/min, 

shaping air flow rate = 250 cc/min) 
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Figure 5.44 Static Pressure Contours at the Centre of the Target Plate (paint flow rate: 

200 cc/min, shaping air flow rate = 250 cc/min) 
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Figure 5.45 Turbulent Kinetic Energy Contours at the Centre of the Target Plate (paint 

flow rate = 200 cc/min, shaping air flow rate = 250 cc/min) 
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Figure 5.46 Turbulent Dissipation Rate Contours at the Centre of the Target Plate (paint 

flow rate = 200 cc/min, shaping air flow rate = 250 cc/min) 

80 



Figure 5.47 Droplet Trace Coloured by Droplet Residence Time (paint flow rate = 200 

cc/min, shaping air flow rate = 250 cc/min) 

5.8.7 Effect of Shaping A ir Flow Rate 

Figure 5.48 to Figure 5.51 show the contours at paint flow rate of 175 cc/min, 

with shaping air flow rate of 150 cc/min. Figure 5.52 to Figure 5.55 show these contours 

at the same paint flow rate, but with a shaping air flow rate of 250 cc/min. Comparing 

these two cases, the most significant differences are seen in the contours for pressure 

(Figure 5.48 and Figure 5.52, Figure 5.49 and Figure 5.53), turbulent kinetic energy 

(Figure 5.50 and Figure 5.54) and turbulent dissipation rate (Figure 5.51 and Figure 5.55). 

Significant differences cannot be observed in the droplets trace plots for these 

flow rates, although the higher shaping air flow rate does tend to confine the spray more 

than the lower flow rates. 

81 



I .DDB'01 

9.l5cDD 
8.306*00 
7.45c-DB 
S.6DC-0D 
5.75erOO 
4.9Dc-DD 
4.D5cOD 
3.2 De-Oil 
2.35C-DO 
1.5 06*00 
6.5De-Bl 
-2.DDc-Dl 
-1.D5C-OD 
-1.90e'-DD 
-2.75e'DD 
-3.6DcDD 
- 4 . 4 5 B 

-5.30C-OD 
- 6 . 1 5 B * 

-7.0De 

OD 7 

.v 

' * 

» * 

Target plate 

Figure 5.48 Meridian View of Static Pressure Contours (paint flow rate = 175 cc/min, 

shaping air flow rate = 150 cc/min) 
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Figure 5.49 Static Pressure Contours on the Target Plate (paint flow rate = 175 cc/min, 

shaping air flow rate = 150 cc/min) 
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Figure 5.50 Turbulent Kinetic Energy Contours at the Centre of the Target Plate (paint 

flow rate = 175 cc/min, shaping air flow rate = 150 cc/min) 
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Figure 5.51 Turbulent Dissipation Rate Contours on the Target Plate (paint flow rate: 

175 cc/min, shaping air flow rate = 150 cc/min) 
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Figure 5.52 Meridian View of Static Pressure Contours (paint flow rate = 175 cc/min, 

shaping air flow rate = 250 cc/min) 
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Figure 5.53 Static Pressure Contours on the Target Plate (paint flow rate =175 cc/min, 

shaping air flow rate = 250 cc/min) 

84 



L 
Figure 5.54 Turbulent Kinetic Energy Contours at the Centre of the Target Plate (paint 

flow rate = 175 cc/min, shaping air flow rate = 250 cc/min) 
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Figure 5.55 Turbulent Dissipation Rate Contours on the Target Plate (paint flow rate: 

175 cc/min, shaping air flow rate = 250 cc/min) 

85 



5.8.8 Effect of Spray Angle 

In previous sections we have examined the effects that the various flow 

parameters, which can be adjusted by the user, have on the spray. In an attempt to also 

see how the bell cup design can affect the spray, two additional simulations were 

performed. In one, the angle at which the paint droplets are injected into the domain has 

been decreased from 27.5° to 22.5°, in the other the spray angle was increased to 32.5°. 

All other parameters are kept at their baseline values. Figure 5.56 to Figure 5.59 show the 

contours at 22.5° spray angle. Compared with the baseline, the high pressure zone close 

to the turbine-bearing air inlet is smaller in this case (see Figure 5.17 and Figure 5.56). 

There is no significant difference for the static pressure on the target plate, as seen by 

comparison of Figure 5.20 and Figure 5.57. However, the turbulent kinetic energy (see 

Figure 5.23 and Figure 5.58) and the turbulent dissipation rate (see Figure 5.24 and 

Figure 5.59) on the target plate are quite different. 
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Figure 5.56 Meridian View of Static Pressure Contours (spray angle = 22.5°) 
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Figure 5.57 Static Pressure Contours on the Target Plate (spray angle = 22.5°) 
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Figure 5.58 Turbulent Kinetic Energy Contours at the Centre of the Target Plate (spray 

angle = 22.5°) 
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Figure 5.59 Turbulent Dissipation Rate Contours at the Centre of the Target Plate (spray 

angle = 22.5°) 

5.9 Conclusions 

Based on the simulations undertaken in this chapter, the following conclusions 

can be drawn. 

It is advantageous to use separate meshes for the electric field calculation and the 

droplet transfer calculation. The circumferential uniformity of the electric potential 

(shown in Figure 5.11) confirms the plausibility and feasibility of calculating the electric 

field in a mesh that is clustered (but not circumferentially uniform) around the electrodes. 

Then, the results can be imported into a circumferentially uniform mesh, provided the 

electric field is circumferentially uniform in the region where the second mesh is 

constructed. 

The droplet transfer simulations can be carried out in reasonable time. The 

predicted electric potential contours, electric field strength and spray pattern are realistic. 

The predicted air circulation zone was observed by previous researchers. It can be 

concluded that the mesh structure, spray models and numerical algorithm applied in the 

present study are appropriate. 
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CHAPTER 6 PAINT FILM THICKNESS AND TRANSFER 

EFFICIENCY 

When a droplet hits the target plate (wall), it may deposit or rebound, and some of 

the rebounded droplets may fall to the plate again and deposit onto it. The paint droplets 

that deposit onto the plate accumulate to form the paint film. Assuming that the fate of all 

the droplets hitting the plate is to deposit, a method is developed in this chapter to predict 

the paint film thickness profile on the plate. Information from the film thickness profile 

can then be used to estimate the spray transfer efficiency. 

The Discrete Phase Model in FLUENT is capable of computing the accretion at a 

cell face j of the wall, defined as: 

where mi is the mass of a droplet / that hits that cell face on the wall, Aj is the area of 

that cell face, and Ny is the total number of droplets striking that cell face. By turning on 

the Erosion/Accretion option of FLUENT, the accretion at the wall boundary faces is 

calculated when the droplet tracks are updated. Figure 6.1 shows the paint accretion on 

the target plate after 0.25 s, at the baseline condition. 
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u 
Figure 6.1 Paint Accretion on the Target Plate for 0.25 s at the Baseline Operating 

Condition (kg/m2) 

6.1 Paint Film Thickness Calculation 

Since the measurement data were taken at 36 points with uniform interval along 

the central line of the target plate, the circular surface of the plate used in the numerical 

simulations was divided into 36 bands with equal width in the x direction. Figure 6.2 

shows the bands created for the paint film thickness calculation. The circular plate 

represents the target plate boundary in the computational domain. The rectangular plate 

corresponds to the actual 36 inch x 4 inch workpiece used in the experiment. 

The total mass of the paint deposited in a band k can be calculated from the 

accretion as 

^=£v7=£i>i (6.2) 
7=1 /=1 

where Aj is now the face area of a cell in the band k of the plate and L is the total 

number of cells in band k. This calculation can be accomplished by using the UDF 
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feature of FLUENT. The details associated with this calculation can be obtained by close 

examination of UDF3 found in the Appendix. 

36 

Band/r 

3 

-* 

Figure 6.1 Bands Created for Paint Film Thickness Calculation 

In the experiments, the workpiece passed below the spray nozzle with a speed of 

3.2 inch/s and the width of the workpiece is 4 inch. Therefore, it takes 1.25 seconds for 

the workpiece to pass through the nozzle. Considering the workpiece to be divided into 

36 bands, the width of each band is 1 inch. Thus, the area of a band on the workpiece is 

four square inches. All the paint deposited on the band k of the circular plate in the 1.25 
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seconds actually, in the experiments, deposits on the band k of the workpiece. The 

averaged wet film thickness Ak on band k of the workpiece can be calculated using 

A,=J^ (6.3) 
AtPp 

where Ak is the area of band k on the workpiece, i.e. 4 inch2, and pp is the paint 

density. 

Once the predicted wet film thickness is calculated, it can be converted into a 

corresponding dry film thickness by multiplying by the volumetric solid component ratio 

Cv of the paint. The experimental and CFD paint film thickness profiles will be 

compared in Section 6.3. 

6.2 Transfer Efficiency Calculation 

The spray transfer efficiency is defined as the ratio of the mass of droplets 

deposited on the plate to the mass of paint injected from the nozzle in a specified period 

of time, i.e., 

^^ Mass of deposition ,. .. 
TE = — . (6.4) 

Mass of injection 

In the current work, the mass of deposition is the mass of paint accreted on the 

plate and the mass of injection is the total mass of paint injected from the nozzle. 

FLUENT can report the mass of paint accretion on the target plate during a 

specific period of time, by evaluating a surface integral within the DPM. The mass of 

paint injection is the product of the paint mass flow rate and the time taken. 
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6.3 Results and Discussion 

The paint film thickness and transfer efficiency have been calculated based on the 

total accretion in a time interval of 0.25 seconds after the spray region has become fully 

developed. This length of time corresponds to that in the experiments. 

6.3.1 Paint Film Thickness Profile and Spray Transfer Efficiency at Baseline Condition 

Figure 6.3 show the paint film thickness profile and transfer efficiency (TE) of the 

spray at paint flow rate of 150 cc/min and shaping air flow rate of 250 cc/min (baseline 

conditions). Overall the predicted profile is more flat than the profile measured in the 

experiment. Of course, since the simulation has been carried out on a quarter cylindrical 

domain with periodic boundary conditions, the predicted film thickness profile is 

symmetric about the centre of the plate. On the left part of the target plate, the predicted 

profile is a little lower than the experimental result. Although a similar feature is 

observed at the right end of the plate, the predicted profile is higher than the experimental 

one over most of the plate. The transfer efficiency of 0.69 from the CFD prediction 

agrees very well with the experimental value of 0.67. 

0 7 -

0.6-

g 0.5 

I 0.4 

i ° - 2 -
0.1 -

o 
( 

w1 

y1 

il 
yy xj 

) 

- n 
JVW, TH 

10 

,. J £ \ 
^ V s 

^ 
\ 

20 

Position along the plate (inch) 

V* -NV 
Vx 

30 4 0 

- • — E x p . (TE=0.67) 

CFD (TE=0.69) 

Figure 6.3 Paint Film Thickness Profile and Transfer Efficiency (paint flow rate =150 

cc/min, shaping air flow rate = 250 cc/min) 
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6.3.2 Effect of Voltage 

Figure 6.4 shows the effect of electric potential on the film build profile. It is 

obvious that the voltage of 50 kV results in a wavy profile shape and very low paint 

deposition. Although the profile of the 70 kV and 90 kV cases are very close, the 90 kV 

produces a slightly flatter profile. Figure 6.4 also indicates that the electric charge 

dramatically improves the TE when electric potential on the electrodes changes from 50 

kV to 70 kV. However, applying higher electric potential, e.g., 90 kV, does not seem to 

improve the efficiency further. 

~ 5 0 k V ( T E = 0.24) 

— — 7 0 kV (TE = 0.69) 

• — • 9 0 kV (TE = 0.69) 

0 10 20 30 40 

Position along the plate (inch) 

Figure 6.4 Predicted Paint Film Thickness Profiles and Transfer Efficiencies for Varying 

Electric Charge 

6.3.3 Effect of Droplet Diameter 

Figure 6.5 shows the effect of initial droplet size on the paint film thickness 

profile. Compared with the other two cases, the initial droplet size of 1.62 micron results 

in a globally flatter profile, although the profile at the centre of the plate is worse. Figure 

6.5 also indicates that the transfer efficiency decreases slightly with the decrease of 

droplet size. 
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Figure 6.5 Predicted Paint Film Thickness Profiles and Transfer Efficiencies for Varying 

Initial droplet Diameter 

6.3.4 Effect of Bell Rotational Speed 

The bell rotational speed effect on the profile is shown in Figure 6.6. The 42000 

rpm case demonstrates a globally better profile. Figure 6.6 also shows that, for this range 

of bell speed, there is no significant effect of bell rotational speed on the TE. 

Figure 6.6 Predicted Paint Film Thickness Profiles and Transfer Efficiencies for Varying 

Rotational Speed 
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6.3.5 Effect of Paint Flow Rate 

Figure 6.3, Figure 6.7 and Figure 6.8 show the effect that varying the paint flow 

rate has on the paint film thickness and transfer efficiency, at a fixed shaping air flow rate 

of 250 cc/min. As seen in these figures, the predicted paint film thickness profiles agree 

well with experimental data. There is no flatness trend of paint film thickness profile with 

paint flow rate, as seen in Figure 6.9. Although there is no trend of the TE value for the 

measurement, the CFD results predict that the TE decreasing as the paint flow rate 

increases. 
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Figure 6.7 Paint Film Thickness Profile and Transfer Efficiency (paint flow rate = 175 

cc/min, shaping air flow rate = 250 cc/min) 
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Figure 6.8 Paint Film Thickness Profile and Transfer Efficiency (paint flow rate = 200 
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Figure 6.9 Predicted Paint Film Thickness Profiles and Transfer Efficiencies for Varying 

Paint Flow Rate (shaping air flow rate = 250 cc/min) 

6.3.6 Effect of Shaping A ir Flow Rate 

Figure 6.7, Figure 6.10 and Figure 6.11 show the paint film thickness and transfer 

efficiency at a fixed paint flow rate of 175 cc/min, with varying shaping air flow rate. 

These figures further demonstrate that the CFD results agree well with measurements. 

The simulations indicate that the paint film thickness profile narrows when the shaping 
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air flow rate becomes large, as seen in Figure 6.12. For shaping air flow rates between 

150 cc/min and 200 cc/min, the profiles are fairly flat over the middle half of the plate. 

Figure 6.12 also indicates that an increase of shaping air flow rate can enhance the spray 

transfer efficiency (TE) value. 
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Figure 6.10 Paint Film Thickness Profile and Transfer Efficiency (paint flow rate =175 

cc/min, shaping air flow rate = 150 cc/min) 
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Figure 6.11 Paint Film Thickness Profile and Transfer Efficiency (paint flow rate = 175 

cc/min, shaping air flow rate = 200 cc/min) 
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Figure 6.12 Predicted Paint Film Thickness Profiles and Transfer Efficiencies for 

Varying Shaping Air Flow Rate (paint flow rate = 175 cc/min) 

6.3.7 Effect of Spray Angle 

Figure 6.13 shows the effect of initial spray angle on the profile. It can be seen 

that the spray angle at 32.5 degrees results in a flatter profile. Figure 6.13 also shows that 

there is no significant TE difference with varying spray angle. 
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6.4 Conclusions 

Based on the above results and discussion, the following conclusions can be 

drawn, for the range of parameters used in this study. 

The predicted paint film thickness profiles and transfer efficiency values match 

the experimental data very well. 

The rate at which the paint is pumped into the nozzle affects both the transfer 

efficiency and the film profile by thickening the film and decreasing the efficiency. 

The shaping air noticeably confines the spray. An increase in shaping air flow rate 

improves the transfer efficiency and narrows the film thickness profile. 

An increase in electric charge can improve the transfer efficiency over that 

attained at low potential. 

The transfer of the paint from the bell cup to the target plate is more efficient for 

larger paint particles. These particles also create a thicker film build on the plate. 

The rotational speed of the bell cup has very little effect on the film thickness, and 

no effect on the transfer efficiency. 

An increase in the spray angle causes the film thickness profile to flatten slightly 

without influencing the transfer efficiency. 

These effects have been summarized in Table 6.1. 

Parameter increased (t) 

Voltage 
50 - 70 kV 

70 - 90 kV 

Droplet diameter 

Rotational speed 

Paint flow rate 

Shaping air flow rate 

Spray angle 

Thickness 

T 

i 
*-* 

i 

T 

T 

1 

TE 

T 
<-* 

T 
<-* 

1 

t 
•«-» 

Table 6.1 Summary of the Parametric Study on the Paint Film Thickness and Transfer 

Efficiency 
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

In this study, a three-step numerical simulation procedure has been devised and 

shown to be a feasible methodology to study the spray process of the electrostatic high

speed rotary bell applicator. These three steps involve separate modeling for the 

disintegration, fully developed spray and droplet/wall interaction regions. This procedure 

is general enough that it could be applied to other atomizers operating under similar 

conditions. Conclusions can be drawn on (i) simulation of the flow in the atomizer, (ii) 

the droplet transfer simulation and (iii) the film thickness and transfer efficiency 

calculation. 

7.1.1 Simulation of the Flow in the Atomizer 

A numerical procedure to calculate the paint droplet sizes and velocities at the 

edge of the high-speed rotary atomizer has been successfully developed. Most 

significantly, it has been demonstrated that this information can be obtained by 

performing a single-phase paint flow simulation inside the bell cup, rather than a more 

complicated and computationally expensive two-phase simulation. 

The simulations predict that the droplet size and velocities vary linearly with 

rotational speed of the bell and flow rate of the paint, in agreement with previously 

published data. The spray angle varies slightly with bell speed and flow ra^e. 

The droplet properties obtained through this procedure can be used as inputs for 

the droplet transfer simulation. This method is a good alternative to using data from more 

expensive droplet measurement experiments, as done by previous researchers. 

7.1.2 Droplet Transfer Simulation 

Separate meshes are created for the electric field calculation and the droplet 

transfer calculation. This is shown to be advantageous because of the flow and 

corresponding mesh complexities associated with each of these calculations. The 

circumferential uniformity of the electric potential in the droplet transfer region supports 
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the plausibility and feasibility of calculating the electric field in a mesh that is clustered 

(but not circumferentially uniform) around the electrodes. Then, the results can be 

imported into a circumferentially uniform mesh, provided the electric field is 

circumferentially uniform in the region where the second mesh is constructed. This 

approach significantly reduces the size of the computational mesh, and consequently the 

run times. 

The droplet transfer simulations can be carried out in reasonable computational 

time. The predicted electric potential contours, electric field strength and spray pattern 

are realistic. The predicted air circulation zone is similar to that observed by previous 

researchers. It can be concluded that the mesh structure, spray models and numerical 

algorithm applied in the present study are appropriate. 

7.1.3 Film Thickness and Transfer Efficiency Calculation 

A simple procedure has been developed to compute the paint film thickness on 

the target plate and the transfer efficiency of the spray, using the data from the CFD 

simulation of the fully developed spray. Over the range of parameters used in this study, 

the predicted paint film thickness profiles and transfer efficiency values match the 

experimental data very well. No procedure of this type, and no paint film thickness 

profiles have been previously reported in the literature. 

The rate at which the paint is pumped into the nozzle affects both the transfer 

efficiency and the film profile by thickening the film and decreasing the efficiency. The 

shaping air noticeably confines the spray. An increase in shaping air flow rate improves 

the transfer efficiency and narrows the film thickness profile. An increase in electric 

charge can improve the transfer efficiency over that attained at low potential. The transfer 

of the paint from the bell cup to the target plate is more efficient for larger paint particles. 

These particles also create a thicker film build on the plate. The rotational speed of the 

bell cup has very little effect on the film thickness, and no effect on the transfer 

efficiency. An increase in the spray angle causes the film thickness profile to flatten 

slightly without influencing the transfer efficiency. 
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7.2 Recommendations for Future Work 

There are several possible reasons for any discrepancies between the experimental 

film profile and the predicted film profile. Some of the following factors should be 

considered: 

• The experimental film build profile data are not based on duplicated experiments. 

The data would be more reliable if the experiments had been repeated at any 

single condition, and any errors in instrument setting and measurement were 

further removed. 

• The experimental film build profile data were measured from the dry paint film. 

The numerical film thickness data are derived from the wet film thickness 

multiplied by the ratio of dry component. 

• Droplet evaporation and paint film deformation and evaporation have been 

neglected in the simulation. 

• Surface tension value of water was assumed for the surface tension value of the 

paint. 

• Single-phase instead of two-phase simulations were conducted in the bell 

atomizer. 

• The film thickness at the edge of the bell was taken as the initial droplet diameter. 

Film thickness has a very close relation with droplet size, but they may not be 

exactly equal to each other. 

• The force exerted on the electrostatic field by the moving charged droplets has 

been neglected. Only the electrostatic force on the droplets exerted by the 

electrostatic field was considered. 

• The electrostatic interaction between droplets has been neglected. 

• The polynomial for charge-to-mass ratio vs. droplet diameter was derived from a 

published figure of experimental data, which was very rough. Since this is an 

important parameter affecting the droplet transfer, a better representation of this 

relationship may lead to more accurate predictions. 

As an extension of the work reported in this dissertation, further improvements on 

this study could be accomplished through the following efforts: 
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• Scrutinize the setting of the experiments and repeat the experiments several times 

for a single condition so as to minimize the experimental errors. 

• Develop a method to measure the wet film profile on the target plate. 

• Run the two-phase simulation within the atomizer. 

• Determine the correlation of film thickness at the bell edge and initial droplet 

diameter. 

• Incorporate evaporation modeling into the numerical simulations. 

• Incorporate the electrostatic interaction between charged droplets, and the effect 

that the moving charged droplets have on the electrostatic field. 

• Incorporate more precise paint property values. 

• Determine and incorporate more accurate charge-to-mass ratio vs. droplet size 

functions. 
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APPENDIX USER DEFINED FUNCTIONS 

UDF1 - Electrostatic Field Strength Calculation 

/* UDF for calculating the electrostatic field strength*/ 

# include "udf.h" 

DEFINE_ON_DEMAND(store_gradient) 

{ 

Domain *domain; 

cell_t c; 

Thread *t; 

domain=Get_Domain( 1); 

/* Fill the UDM with the three dimensional electrostatic field strength */ 

thread_loop_c (t,domain) 

{ 

begincloop (c,t) 

{ 

C_UDMI(c,t,0) = 0-C_UDSI_G(c,t,0)(0); 

C_UDMI(c,t,l) = 0-C_UDSI_G(c,t,0)(l); 

C_UDMI(c,t,2) = 0-C_UDSI_G(c,t,0)(2); 

C_UDMI(c,t,3) = NV_MAG(C_UDSI_G(c,t,0)); 

} 

end_c_loop (c,t) 

} 

} 

113 



UDF2 - Electrostatic Force Incorporation 

/* UDF for incorporating the electrostatic force on a charged droplet */ 

/* C_UDMI(c,t,0) is x component of electrostatic field strength in the cell. 

C_UDMI(c,t,l) is y component of electrostatic field strength in the cell. 

C_UDMI(c,t,2) is z component of electrostatic field strength in the cell. 

*/ 

/* Define bforceacceleration as the electrostatic acceleration */ 

include "udf.h" 

#include "dpm.h" 

#include "surf.h" 

#define TSTART 0 /* electric field applied at t = 0 */ 

/* Calculate electrostatic acceleration on charged droplet*/ 

/* The force = droplet mass * charge-to-mass ratio * electric field strength*/ 

/* The acceleration = charge-to-mass ratio * electrostatic field strength*/ 

DEFINEJ3PM_BODY_FORCE(electrostaticJ>odyJbrce, p, i) 

{ 

float dia,Q_TO_MASS_RATIO; /* Droplet diameter (micron) and charge-to-

mass ratio */ 

cell t c; 

Thread *t; 

real bforceacceleration; 

c=P_CELL(p); 

t=P_CELL_THREAD(p); 

dia=1000000*P_DIAM(p); 
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Q_TO_MASS_RATIO=pow(10,3.3829-0.1837*dia+0.0052*dia*dia-

0.00005*dia*dia*dia)/1000; 

if(P_TIME(p)>=TSTART) 

{ 

if(i=0)bforce_acceleration=Q_TO_MASS_RATIO*C_UDMI(c,t,0); 

else if(i=l) bforce_acceleration=Q_TO_MASS_RATIO*C_UDMI(c,t,l); 

else if(i=2) 

bforce_acceleration=Q_TO_MASS_RATIO*C_UDMI(c,t,2); 

} 

else 

bforce_acceleration=0.0; 

return (bfprceacceleration); 
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UDF3 - Calculation of Mass Accumulation on the Target Plate 

/* UDF for calculating the paint mass accumulation on the target plate 

*/ 

#include"udf.h" 

#include"dpm.h" 

#define f id 4 

DEFINEONDEMAND(filmthickness) 

{ 

FILE *fpr,*fpwl,*fpw2; /* declare file pointer */ 

real x(ND_ND); 

real area(ND_ND); 

char string(50); 

int Nocells^O, i=0, j=0, No_bands=l 8,id; 

float location_f=0, location_b=0, coordinated; 

float mass_of_cell=0, radius=0.4572, interval,mass=0; 

Domain *d=Get_Domain(l); 

facet f; 

Thread *t; 

fpwl=fopen("plate.xy", "w"); 

t=Lookup_Thread(d,f_id); 

begin_f_loop(f,t) 

{ 

F_CENTROID(x,f,t); 

coordinate=x(0); 
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F_AREA(area,f,t); 

mass_of_cell=NV_MAG(area)*F_STORAGE_R(f,t,SV_DPMS_ACCRETION); 

No_cells++; 

fprintf(fpwl, "%d %e %e\n",No_cells,coordinate,mass_of_cell); 

/*print number of cells on the target plate, the x coordinate of 

each cell and the mass accretion in that cell*/ 

} 

end_f_loop(f,t) 

fclose(fpwl); 

interval=radius/No_bands; 

location_b=location_b+interval; 

fpwl=fopen("film_thickness.xy", "w"); 

fprintf(fpwl, "(title %cDPM Accretion%c)\n", 34,34); 

fprintf(fpwl, "(labels %cPosition%c %cDPM Accretion%c)\n\n", 34,34,34,34); 

fprintf(fpwl, "((xy/key/label %cplate%c)\n", 34,34); 

fpw2=fopen("film_thickness_br.xy", "w"); 

fprintf(fpw2, "(title %cDPM Accretion%c)\n", 34,34); 

fprintf(fpw2, "(labels %cPosition%c %cDPM Accretion%c)\n\n", 34,34,34,34); 

fprintf(fpw2, "((xy/key/label %cplate%c)\n", 34,34); 

for(j=0; j<=No_bands; j++) 

{ 

fpr=fopen("plate.xy", "r"); 

for(i=0; i<No_cells; i++) 

{ 
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fscanf(fpr, "%d", &id);/*just move the file pointer to the 

next datum*/ 

fscanf(fpr, "%e", &coordinate); 

fscanf(fpr, "%e", &mass_of_cell); 

if((coordinate>location_f)&&(coordinate<=location_b)) 

{ 

mass=mass+mass_of_cell; 

} 

} 

printf("%e %e\n", location_f,location_b); 

fprintf(fpwl, "%f %e\n", location_f,mass); 

fprintf(fpw2, "%f %e\n", ((location_f)/0.0254+18),mass); 

mass=0; 

locationfNocationb; 

location_b=location_b+interval; 

fclose(fpr); 

} 

fprintf(fpwl,")"); 

fprintf(fpw2, ")"); 

fclose(fpwl); 

fclose(fpw2); 

} 
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