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ABSTRACT

Age differences in hemispheric asymmetry were investigated by using 

lateralization memory tasks in different sensory modalities in order to examine 

current theories o f aging and hemispheric asymmetry. Participants included 45 young 

and 16 older right-handed adults. In the auditory domain, participants were 

dichotically presented with two different word lists simultaneously and asked to pay 

attention to and memorize only the list presented to one ear. Then, an immediate and 

a delayed recognition test were given. The test was repeated with the other ear using 

new word lists. In the visual domain, participants were asked to memorize the visual 

stimuli that were presented either to their left or right visual field. Then, an 

immediate and a delayed recognition test were given. In the tactile domain, 

participants were instructed to feel and memorize textures that were presented to one 

hand only. Following the presentation, an immediate and a delayed recognition test 

were given. The test was repeated using the other hand and a new set o f stimuli. 

Results showed a greater right ear advantage in the older group compared to the 

younger group on the dichotic listening memory task but age-related changes in 

asymmetry were not found on the other tasks. In addition, an age-related decline in 

recognition memory was found on the dichotic listening and tactile tasks. The 

findings of the study did not consistently support the current theories o f aging and 

hemispheric asymmetry.
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1.0 Introduction

1.1 General

It is well known that the two cerebral hemispheres are anatomically and 

functionally different. This is supported by abundant converging evidence from in vivo 

and post-mortem research in neuroanatomy, neurochemistry, neuropsychology, and 

neuroimaging. There is also evidence that these asymmetries are affected by conditions 

that alter the anatomical and functional integrity of the brain, such as brain damage and 

aging. The present study examines theories of hemispheric asymmetry and aging using 

novel memory tasks developed to assess cognitive asymmetry in three different sensory 

modalities, namely, auditory, tactile, and visual domains.

1.2 History

In 1836, Marc Dax presented a short paper at a medical society meeting in France 

(Finger & Roe, 1996). He had worked as a physician for many years and had seen many 

patients suffering from aphasia. Although this observation was not new, Dax was the 

first one to discover an association between loss of speech and the side of the brain where 

the damage had occurred: In more than 40 patients with aphasia, the damage was always 

on the left. He concluded that each hemisphere of the brain controls different functions 

and that speech is controlled by the left hemisphere (LH). However, this paper aroused 

little interest at the meeting and it was soon forgotten (Finger & Roe, 1996). It was not 

until Broca’s demonstration in 1861 that the concept of cerebral dominance (i.e., one side 

of the brain is more important for certain functions than the other side) began to gain 

acceptance.
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In 1861, Paul Broca met a patient named Leborgne (also known as Tan) in a 

hospital at Bicetre (Benjamin, 1997). Broca found that the man lost his ability to speak at 

the age of 30 and about a decade later the right side of his body started to become 

paralyzed. When the patient died, Broca studied his brain and its lesions. He concluded 

that there were two periods, one in which the third frontal convolution was damaged, and 

another period in which the disease gradually spread toward other regions of the brain. 

These periods corresponded to the progression of the symptoms: The first period lasted 

ten years, during which only speech was abolished. In the second period of eleven years, 

right side paralysis occurred. Broca concluded that language ability is located in the LH 

and suggested that the two hemispheres had different functions.

Since the work of Dax and Broca, it had been recognized that damage to the LH 

produces disturbances of language function, whereas damage to the right hemisphere 

(RH) usually does not grossly affect language functions. In 1868, John Hughlings 

Jackson proposed his idea of the “leading” hemisphere, arguing that in most people the 

left side of the brain was the leading side (Springer & Deutsch, 1993). From then on, the 

LH was believed to be dominant not only for language but for other higher cognitive 

functions as well. The RH was often referred to as the “nondominant” hemisphere. 

Interestingly, it was also Jackson who argued that this one-sided view of the way brain 

functions were organized was wrong after observing a patient with visuospatial difficulty 

following a RH tumour. Although other similar reports began to appear, researchers 

were more interested in localizing various functions within the LH. Until the 1960s, the 

view that the RH might have its own special capabilities was not given wide support, but 

as evidence accumulated, the concept of cerebral dominance was replaced by the concept

2
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of hemispheric specialization or hemispheric asymmetry of functions, which emphasized 

that each hemisphere has its own distinct functions (Bogen, 1969; Davidson & Hugdahl, 

1995; Hellige, 1993).

1.3 Methods o f Measurement 

Hemispheric asymmetry research has benefited from a variety of techniques that 

can be used to make inferences about the role of each cerebral hemisphere. Some 

techniques, such as dichotic-listening tests for auditory functions, tactile tests for 

somatosensory functions, and visual hemifield presentations for visual functions are 

inexpensive and easy to manufacture and apply, and therefore, available to any interested 

researcher (Bryden, 1982). Neuropsychological tests used to test verbal and “nonverbal” 

functions are also easily accessible in both research and clinical settings. In contrast, 

other techniques such as event-related potentials (ERPs), computerized axial tomography 

(CAT), positron emission tomography (PET), and magnetic resonance imaging (MRI) are 

not as accessible because of their high cost (Hellige, 1993). In this section, various 

techniques used in hemispheric asymmetry research are reviewed.

1.3.1 Auditory Tasks

The auditory system may be divided into five separate relay stations (Bryden, 

1982). An auditory stimulus activates neurons in the cochlear nucleus. Among the 

subdivisions of the cochlear nucleus, the ventral acoustic stria enters the second level, the 

superior olivary complex. From there, both inhibitory and excitatory impulses are 

projected to the dorsal and ventral nuclei of the lateral lemniscus, which make up the 

third-level relay station. Up to the level of the nuclei of the lateral lemniscus, the 

auditory system projects bilaterally. However, from the nuclei of the lateral lemniscus,

3
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projections are mainly contralateral, projecting to the fourth relay station, the inferior 

colliculus in the tectum. The contralateral fibres then innervate the medial geniculate 

body in the pulvinar of the thalamus, which is the fifth relay station, sending its axons to 

neurons in the auditory cortex in the posterior superior temporal gyrus (Blumenfeld,

2002; Bryden, 1982). Therefore, although auditory signals from one ear reach both 

auditory cortices in the temporal lobes, the contralateral projections are stronger and 

predominant. This ultimately favours representation of the contralateral ear in the 

auditory cortex.

The primary test used to study functional hemispheric asymmetry in the auditory 

system in both brain-damaged and normal individuals is the dichotic-listening task 

(Jancke & Shah, 2002; Kimura, 1961a, b). Initially, it was Broadbent (1954) who 

developed the dichotic-listening technique to simulate the attentional load experienced by 

air traffic controllers when receiving information from multiple flights simultaneously. 

However, it was Kimura who adapted this task for the study of hemisphere function and 

popularized it in the field of hemispheric asymmetry. The method is variable but 

generally involves the simultaneous presentation of two different and competing auditory 

signals to the ears. In 1961, Kimura published two papers that demonstrated a clear 

relation between speech lateralization and performance on a dichotic-listening task. In her 

studies, the procedure involved the presentation of short lists of numbers, arranged so 

some numbers came to the left ear while others came to the right ear simultaneously 

(Kimura, 1961 a, b).

Generally, in dichotic-listening tasks, a right ear advantage (REA), which means 

superior accuracy reports from the right compared to the left ear, is observed for

4
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linguistic processing, reflecting LH specialization, and a left ear advantage (LEA) is 

observed for some forms of nonlinguistic processing, reflecting RH specialization 

(Bryden, 1982). The direction of the ear advantage depends on the task, and not on the 

nature of the stimulus itself. For example, when messages are presented in different 

emotional tones of voice, a REA is observed when attending to linguistic content, but a 

LEA is observed when attending to the tone of voice or emotional prosody (Bryden & 

MacRae, 1988; Ley & Bryden, 1982).

Kimura (1967) argued that the REA for verbal stimuli or linguistic content is 

caused by several interacting factors. First, the auditory input to the contralateral 

hemisphere is more strongly represented in the cortex. Second, auditory information that 

is sent along the ipsilateral pathways is suppressed by the contralateral information.

Third, the LH is specialized for language processing, so information that reaches the 

ipsilateral RH has to be transferred across the corpus callosum to the LH language- 

processing areas.

Until a few years ago, the brain structures involved in the dichotic-listening task 

were thought to be the temporal lobes following Kimura’s (1961b) finding that temporal 

lobe excision resulted in a decrease in performance on the ear contralateral to the removal. 

However, using functional MRI (fMRI), Jancke and Shah (2002) recently demonstrated 

that additional brain regions are involved during the task. When 10 right-handed, normal 

participants listened to consonant-vowel syllable pairs to detect a target syllable, they 

were asked to either concentrate on the stimuli presented in both ears, only in the left ear, 

or only in the right. They found general activations in fronto-temporal networks during 

all conditions of the dichotic-listening task. When participants were asked to attend to

5
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stimuli presented to both ears, strong bilateral activity was observed in the inferior frontal 

gyrus, Broca’s area, the left middle frontal, and in the left superior temporal gyrus. When 

participants were asked to concentrate on stimuli presented to the left ear, additional 

activity in the right inferior frontal gyrus was observed and when participants attended to 

the right ear, stronger activations in Broca’s area and the left superior temporal gyrus 

were observed. This study showed that the frontal lobes, as well as the temporal lobes, 

play a crucial role during the dichotic-listening task.

In sum, Kimura’s findings offered the field of neuropsychology an exciting 

opportunity to assess hemispheric specialization for speech in neurologically healthy 

individuals as well as in brain-damaged individuals. Researchers are now including other 

techniques such as fMRI to discover other neural structures that are involved during the 

task.

1.3.2 Tactile Tasks

Although many studies have used dichotic-listening procedures, relatively few 

have used somatosensory or tactile procedures to study hemispheric specialization. In the 

somatosensory system, the ascending sensory fibres from the skin and joints cross the 

midline and project to the postcentral gyrus of the opposite hemisphere. There is also 

sensory representation in the precentral gyrus (the primary motor cortex).

In addition, both ipsilateral and contralateral sides of the body are represented in each 

hemisphere in the secondary sensory area along the superior border of the Sylvian fissure 

in the parietal cortex. There is also evidence for bilateral representation of the lower part 

of the face area in the postcentral region. Therefore, despite the general assumption that 

the somatosensory system is completely crossed, evidence indicates that some

6
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information is projected via ipsilateral pathways (Bryden, 1982; Penfield & Rasmussen, 

1950).

Nevertheless, the predominantly crossed representation of the somatosensory 

system would lead one to expect right-side (i.e., LH) advantages for verbal tasks and left

side (i.e., RH) advantages for nonverbal tasks. Although the anatomical situation is 

relatively simple, tactile stimuli are difficult to construct and control, and this seems to be 

one of the reasons that there are so few studies in this modality (Bryden, 1982). Once the 

researcher determines which stimuli to use, the task can be designed in two ways. One 

procedure is to stimulate one hand at a time (i.e., unimanual) and the other is to stimulate 

both hands simultaneously (i.e., bimanual). Some researchers reported differences 

between the two tasks. For example, Minami, Hay, Bryden, and Free (1994) studied 

laterality effects in the discrimination of tactile patterns presented to the fingertips of 

right-handed participants. A small right-hand advantage was observed for a sequential 

task and a small left-hand advantage was noticed for a spatial task when both hands were 

stimulated at the same time. On unimanual tasks, no laterality effects were observed with 

sequential tasks, but a right-hand advantage was found for a spatial task. The researchers 

concluded that there were differences between bimanual and unimanual presentations and 

that the effects related to hemispheric specialization were more evident with 

simultaneous presentation of stimuli to both hands.

However, many studies have found greater sensitivity in the left hand regardless 

of type of task (Benton, Levin, & Varney, 1973; Dodds, 1978; Koenig, 1987). Using a 

unimanual task, Benton et al. (1973) examined tactile perception of the direction of linear 

punctate stimulation of brief duration on the palms of the right and left hands of right-

7
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handed normal participants and found a left-hand advantage. Dodds (1978) also found a 

left-hand advantage using a tactual recognition task using six random forms presented in 

various orientations. Harris (1980) reviewed evidence for left-hand superiority in 

recognizing Braille characters in normal participants unfamiliar with these shapes. Using 

a bimanual method, Koenig (1987) had right-handed, male participants palpate two 

different artificially created textures consisting of 0.5 mm high components 

simultaneously with the index and middle finger of each hand. Then the participant was 

asked to respond orally by giving the two texture numbers from the visual board that 

corresponded to the two stimuli just palpated. The results indicated a left-hand advantage. 

Although these studies found a left-hand advantage, it is unclear whether this was due to 

the stimuli characteristics that are predominantly processed by the RH such as shape and 

orientation, or the possible RH specialization in processing tactile stimuli. Therefore, 

further research is necessary to determine each hemisphere’s contribution to tactile 

perception and processing.

1.3.3 Visual Tasks

Kimura’s (1961a, b) work with a verbal dichotic-listening task prompted others to 

extend her logic to visual paradigms (Cherry, Hellige, & McDowd, 1995; Elias & 

Kinsboume, 1974; Nebes, Madden, & Berg, 1983; Obler, Woodward, & Albert, 1984). 

However, the anatomy and functioning of the visual system are sufficiently different 

from those of the auditory system to make a completely analogous procedure difficult to 

achieve. In the visual modality, the left half of each retina sends its ascending fibers to 

the left visual cortex, and the right half of each retina sends its fibers to the right visual 

cortex (see Figure 1). This means that the image of objects lying to the right of the line

8
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of sight for either eye is transmitted to the left cortex, while that lying on the left of the 

line of sight pass to the right visual cortex (Kolb & Whishaw, 1996).

In order to ensure that the task is adequately analogous to the dichotic-listening 

task, one must present material lateralized to one visual field or the other, not to one eye 

or the other (Bryden, 1982). In addition, when one designs lateralizing stimuli, it is not 

simply a matter of presenting stimuli to one side or the other of the line of sight. The 

eyes are constantly in motion, shifting from one location to another; therefore, some 

control must be applied over this. One method that was often used in the past was to fix 

the image of the target on the retina so that when the eyes moved, the target moved with 

them. This was accomplished either through the use of a contact lens system (Pritchard, 

Heron, & Hebb, 1960) or through the use of a prolonged after-image (MacKinnon, Forde, 

& Piggins, 1969). However, these techniques are now rarely used to study perceptual 

asymmetries because of the associated technical problems (Bryden, 1982). The more 

contemporary approach is to present the stimuli briefly so that the eyes do not have the 

time to move from one location to another during the exposure. It takes approximately 

180 ms to initiate a saccadic eye movement to move the eyes to a new fixation point 

(Hugdahl, 1996; Woodworth, 1938). However, when the participant does not know 

which of two locations will be stimulated, it may take up to 300 ms to initiate an eye 

movement (Bryden, 1982).

The major finding with the visual half-field technique is a right visual field (i.e., 

LH) preference for word recognition, when words and nonwords are briefly flashed on 

the screen (Boles, 1994; Cherry et al., 1995; Kimura, 1966). Better performance for left
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Figure 1. A diagrammatic representation of the visual system pathway (Adapted from: 

Bednar, 1997)
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field presentations is seen for visuospatial tasks, like shape and form identification, and 

face processing (Boles, 1994; Cherry et al., 1995; Kimura, 1966; McKeever, 1986). For 

example, Kimura reported that normal individuals identified letters presented to the right 

visual field more accurately than the ones presented to the left visual field but that non- 

alphabetic stimuli (forms and dots) were better recognized in the left visual field. These 

results were consistent with the view that the RH plays a dominant role in processing 

visual stimuli compared to the LH.

1.3.4 Localized Brain Activity Measures

Currently, new methods allow the in vivo comparison of the hemispheres in both 

healthy individuals and patients, at both anatomical and functional levels. A variety of 

electrophysiological measures are the oldest and still commonly used techniques to study 

brain activity. Electroencephalograms (EEGs) and measures of ERPs are the two most 

popular techniques. The EEG is a continuous recording of electrical activity from which 

the ongoing activity is broken down into several frequency ranges. The frequency of 

greatest interest is usually 8 to 12 Hz (the alpha frequency); suppression of activity in the 

alpha range is thought to reflect ongoing processing. EEG studies have shown greater 

suppression in alpha activity over the LH than the RH during a variety of verbal tasks and 

the opposite has been found for certain nonverbal tasks (e.g., spatial or musical tasks; 

Davidson & Schwartz, 1977; Galin & Omstein, 1972; Morgan, McDonald, & McDonald, 

1971). The ERP is a recording, time-locked to a particular stimulus event. The electrical 

responses to several repetitions of the stimulus event are averaged and the resulting 

average ERP is examined for the magnitude and latency of various positive and negative 

shifts in electrical potential.
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With both of these techniques, electrodes are placed at various sites on the scalp 

and the results from different recording sites are compared. When the goal is to study 

hemispheric asymmetry, differences between the electrical activity are measured at 

homologous sites on the two sides of the scalp.

Auditory evoked potentials are a subclass of ERPs. As the name suggests, the 

“event” is an auditory stimulus in this method. Researchers have conducted a number of 

experiments recording auditory evoked potentials from the LH and RH of participants 

(Molfese, Freeman, & Palermo, 1975; Molfese, 1978; Molfese, 1984). They consistently 

found that the LH auditory evoked potentials to speech stimuli were larger in amplitude 

compared to the RH potentials, whereas non-speech stimuli produced an opposite pattern.

An advantage of these electrical measures is that they have excellent temporal 

resolution (e.g. ERPs resolve the dynamic pattern of events in the human brain down to 

the millisecond range; Brandeis & Lehman, 1986), but they have poor spatial resolution 

(they might localize activity with a resolution of a few inches). Other techniques such as 

CAT scans, MRI, and angiograms offer better spatial resolution (1-2 mm) but much 

lower temporal resolution (ranging from approximately 30 seconds to over 30 minutes). 

Such techniques are useful for studying morphological asymmetries in the brain but are 

not able to provide a dynamic picture of how activation changes during task performance 

(Brandeis & Lehman, 1986).

However, methods such as PET and fMRI, can provide dynamic pictures by 

measuring regional cerebral blood flow (Beason-Held, Golski, Draut, Esposito, & 

Resnick, 2005; Jancke & Shah, 2002). When a particular area of the brain has been 

metabolically active, localized increases in carbon dioxide lead to a dilation of blood
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vessels serving that area. As a consequence, blood flow is increased to that area. Now 

that there are techniques to measure the relative amounts of blood flow to localized brain 

areas, it is possible to determine how the regions of greater activation change with 

differences in task demand. As noted earlier, depending on the specific technology 

employed, a participant must engage in the same task for anywhere from 30 seconds to 

several minutes in order for the measures to be taken, and this requirement places l im its 

on the types of tasks that can be used and the inferences that can be drawn (Wood, 

Flowers, & Naylor, 1991). In general, during verbal tasks, regional cerebral blood flow 

has been found to be greater for specific areas of the LH than for homologous areas of the 

RH (Kelley et al., 1998; Posner, Petersen, Fox, & Raichle, 1988).

Additional techniques are sometimes used to study hemispheric asymmetry. One 

example is the Wada or sodium amytal test (Wada & Rasmussen, 1960). In the Wada 

procedure, sodium amytal is injected unilaterally into the carotid artery. The carotid 

artery on each side provides the blood supply to the ipsilateral hemisphere. This 

technique is used prior to certain types of neurosurgery to identify which hemisphere in a 

particular patient is dominant for language and/or to assess memory functioning in each 

hemisphere (Loring et al., 1990). Research using this technique suggests that the LH is 

dominant for speech in 90-95 percent of right-handed adults (Rasmussen & Milner, 1975).

Various research strategies and techniques enable researchers to examine 

hemispheric asymmetry. From this brief review of research methods, it is apparent that 

no single approach can provide a complete picture of hemispheric asymmetry and 

function. With this in mind, the strongest findings will emerge when a number of
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different techniques are used in combination to examine the same issues and converging 

evidence is found.

1.4 Participant Populations

1.4.1 Patients with Unilateral Lesions

Some of the strongest evidence of cerebral lateralization comes from studies of 

individuals with brain damage (Bohbot et al., 1998; Boll, 1974; Fontenot & Benton,

1971; Hough, 1990; Rubino, 1970). Studies of unilateral brain damage can be useful 

because if  damage to the LH produces a different effect than damage to the RH, then one 

can relate the behaviour to functional cerebral asymmetry.

Before the unilateral lesion studies are reviewed, several methodological issues 

must be considered: 1) it is extremely unlikely that a brain lesion will destroy a single 

functional system without intruding on other functionally separate systems or disrupting 

the connections between them; 2) one must recognize that the brain-injured patient may 

use quite a different strategy for carrying out a task than does a normal individual; 3) it is 

often not possible to obtain premorbid measures of performance, so one cannot be certain 

about the effects of a particular surgery; and 4) it is difficult to draw inferences regarding 

structure-function relations in healthy individuals given that most patients with unilateral 

lesions used in many studies had long-standing epilepsy that might have altered 

hemispheric organization (Hellige, 1993; Springer & Deutsch, 1993).

Researchers have discovered hemispheric specialization for processing various 

stimuli from studying individuals with unilateral lesions. Fontenot and Benton (1971) 

compared right-handed patients with lesions of the RH or LH to a control group of 

patients without cerebral lesions on a task involving the perception of the direction of
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tactile stimulation applied to the palms of the hands. Whereas patients with lesions of the 

LH showed significant impairment only on the right hand, bilateral impairment in 

patients with lesions of the RH was observed. In the control group, there was no 

difference apparent in the accuracy of tactile perception of direction between the left and 

right hands. As a result of this investigation, the researchers concluded that the RH 

played an important role in mediating spatial perception in the tactile domain. However, 

Fontenot and Benton also noted that the results should be interpreted with caution 

because they used a tactile-visual matching procedure to assess the tactile perception of 

direction, and therefore, the cross-modal nature of the task may have played a part in the 

finding of bilateral impairment in patients with RH lesions. Indeed, cross-modal 

performance has been found to be poorer than intra-modal performance (Garbin, 1988; 

Picard, 2006). That is, more errors likely occur when the information acquired in one 

modality is tested in another modality (e.g. touch to vision).

Similar results were found in Boll’s study (1974). Three tests of tactile- 

perceptual ability commonly used in neuropsychological practice (Tactile Finger 

Localization, Finger-tip Number Writing Perception, and Tactile Form Recognition) were 

administered to 30 participants with RH lesions and 30 participants with LH lesions. The 

results showed that patients with RH damage were more impaired on the contralateral 

and ipsilateral sides of the body than were patients with lesions of the LH. Total errors 

were also greater in the RH group than in the LH group. This study suggests that the RH 

plays a greater role than the LH in producing tactile-perceptual deficits in patients with 

brain lesions.
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The study of patients with specified lesions in the LH or RH may yield valuable 

insights into the functional basis of side advantages in various tasks. For example, 

unilateral medial temporal lobe damage yields material-specific impairments. Extensive 

damage to the right medial temporal region, including the hippocampus, impairs spatial 

memory whereas similar damage in the LH impairs verbal memory (Milner, 1965; Smith 

& Milner, 1989). Smith and Milner found that patients with left or right temporal lobe 

excisions performed as well as control participants when asked to recall the location of 16 

objects immediately after presentation. However, the patients with right temporal 

excisions including extensive resections of the hippocampal region were impaired after a 

4-minute delay. These results suggest that patients with right hippocampal region lesions 

were able to encode the spatial location of the objects, but they could not retain the 

information compared to patients with left temporal lesions, patients with smaller right 

hippocampal region lesions, and normal controls.

Rubino (1970) selected two types of material (nonsense words and nonsense 

figures) to present to three groups of participants: patients with left temporal lobe lesions; 

patients with right temporal lobe lesions; and normal participants. The participants with 

left temporal lesion displayed a deficit in the identification of the words and the 

participants with right temporal lesion showed a deficit in the identification of the figures. 

Both groups performed worse on both tasks compared to the normal group.

The effects of selective damage to medial temporal lobe structures can also be 

examined. Bohbot et al. (1998) investigated patients with unilateral lesions of various 

medial temporal lobe structures on spatial tasks (invisible sensor task, eight-arm radial 

maze task) and non-spatial working memory tasks. In addition, the patients were
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assessed with a complex visuo-spatial memory task (Rey-Osterrieth Figure) and a word- 

list learning task (Rey Auditory Verbal Learning Test). The patients had undergone 

thermo-coagulation with a single electrode along the amygdalo-hippocampal axis to 

alleviate their epilepsy. With this surgical technique, lesions to single medial temporal 

lobe structures can be carried out and the precise location of the lesion can be confirmed 

with MRI. The patients were classified into two groups: those with lesions involving the 

hippocampus without damage to the parahippocampal cortex, and those with damage to 

the parahippocampal cortex. One of the main cortical inputs to the hippocampus comes 

via the parahippocampal cortex. Thus, if lesions outside the hippocampus block inputs to 

the hippocampus, this could result in a functional hippocampal lesion (Van Hoesen,

1982). The results indicated that the right hippocampus was important for visual-spatial 

memory tasks (object location, Rey-Osterrieth Figure immediate and delayed recall) and 

the left hippocampus was important for verbal episodic memory tasks (Rey Auditory 

Verbal Learning Test delayed recall). Patients with lesions either to the right or to the 

left hippocampus were unimpaired on several memory tasks, including the invisible 

sensor task. However, patients with lesions to the right parahippocampal cortex were 

impaired on this task, suggesting that the parahippocampal cortex plays a crucial role in 

spatial memory.

The effects of unilateral frontal lobe lesions have been investigated as well. 

Hugdahl, Bodner, Weiss, and Benke (2003) examined perception of consonant-vowel 

syllables in patients with left or right frontal lobe lesions and in normal controls. 

Consonant-vowel syllables were dichotically presented and the participants were asked to 

respond by verbally indicating or pointing to the syllables on a response sheet. The
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patients with right frontal lesions as well as the controls showed a REA of the same 

magnitude although the overall performance was lower in the right frontal lesion group 

compared to the controls. Patients with left frontal lesions showed no ear advantage at all, 

and their right ear scores were impaired compared to both the control group and the right 

frontal lesion patient group. The researchers concluded that dichotic-listening tasks tap 

into a neuronal circuitry that involves the frontal lobes and that the frontal lobes serve an 

important function in speech perception. As such, they added that dichotic-listening tests 

may not test temporal lobe functions exclusively. Their results are consistent with the 

findings from Jancke and Shah’s (2002) fMRI study using normal participants.

1.4.2 Split-brain Patients

The split-brain patient provides a unique opportunity for exploring the function of 

each hemisphere. The term split-brain denotes complete sectioning of the corpus 

callosum, including anterior commissure, dorsal and ventral hippocampal commissures, 

and in some cases, the massa intermedia (Gazzaniga, 1970). Commissurotomies are 

performed on patients for the relief of severe, intractable epilepsy to prevent the spread of 

seizures across the brain. The inclusion of these patients in hemispheric lateralization 

research is based on the fact that each hemisphere is most strongly associated with the 

opposite half of the body (Bouma, 1990). If the isolated LH can perform a certain task 

but the isolated RH cannot, then there is good evidence that the LH is important for 

performance on the specified task (Gazzaniga, 1970).

However, similar to research involving individuals with unilateral lesions, there 

are problems of interpretation associated with the findings of split-brain research (Bouma, 

1990). First, the nature of the patient sample must be kept in mind. They are usually few
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in number and they vary greatly in age at the time of original brain damage, age at 

operation, and the etiology, severity, and location of lesion. Also, most had severe and 

longstanding epilepsy, and are unlikely to have had normal brain functioning prior to 

surgery. Furthermore, early brain damage may also lead to abnormal functioning, 

development, and/or reorganization of functions. Second, commissurotomy itself may 

lead to certain cognitive disturbances. Often, the operation is followed by a general 

impairment of memory. Not surprisingly, patients show greater difficulty learning to 

associate names with faces after surgery and they are severely impaired in performing 

new movements that require interdependent regulation of speed and timing between the 

left and the right hand. Finally, functioning of the hemispheres may be different from 

that in normal individuals. In the normal brain, the hemispheres communicate with each 

other and it is possible that activity in one hemisphere inhibits activity in the 

corresponding region in the other hemisphere. For example, it has been suggested that in 

normal individuals, the language capacities of the RH are inhibited by those in the LH 

(Bouma, 1990; Moscovitch, 1976). Therefore, these factors must be kept in mind when 

interpreting hemispheric specialization for various tasks in this patient sample.

Researchers have found that specific classes of verbal stimuli (i.e., consonant- 

vowel syllables versus digits) elicit various degrees of asymmetry in split-brain patients. 

Springer, Sidtis, Wilson, and Gazzaniga (1978) studied the contribution of left ear stimuli 

to dichotic-listening performance in five right-handed, male patients following 

commissurotomy. Patients were asked to identify in writing both members of a pair of 

competing stimuli, either digits or consonant-vowel syllables. Dichotically presented 

consonant-vowel syllables showed a substantial REA for each patient, whereas the ear
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asymmetry with digits as stimuli was considerably reduced. That is, in four out of five 

cases, the report of digits presented to the left ear was over 80 percent correct. The 

results suggest that there are differences in types of speech stimuli and their respective 

degree of ipsilateral inhibition. Indeed, a more recent study using normal individuals 

indicated low correlations among verbal stimuli (Jancke, Steinmetz, & Volkman, 1992).

Researchers have also explored hemispheric specialization by administering 

nonverbal tasks to individuals with commissurotomy. Milner and Taylor (1972) tested 7 

commissurotomized patients and 10 neurological patients with intact commissures as 

controls on a delayed matching of tactile pattern task. The patients were required to feel 

an irregular wire shape carefully with one hand and then, after a short delay, to select that 

shape again by touch only from a set of four similar ones. The results showed that left- 

hand performance was superior to right in commissurotomized patients, thus 

demonstrating RH specialization for the perception and recognition of nonsense wire 

shapes. There was no difference in performance between the two hands in the control 

group. These results suggest that both cerebral hemispheres normally participate in such 

tasks, but the RH plays a predominant role.

Some patients undergo a partial commissurotomy, in which a portion of the 

corpus callosum is spared. Kumar (1977) studied short-term memory for a tactual task in 

patients with complete and partial commissurotomy. Four of the patients had complete 

cerebral commissurotomy for treatment o f  epilepsy and two patients had the same 

procedure except that the posterior portion (splenium) of the corpus callosum was spared. 

They used a test in which the participant felt designs and then reproduced them by 

drawing with the same hand immediately following the stimulus presentation. In the
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patients with complete commissurotomy, the left hand produced fewer errors compared 

to the right hand. In the patients with partial commissurotomy, there was no difference 

between the right and left-hand performance suggesting that the splenium of the corpus 

callosum plays an important role in coordinating interaction between the two 

hemispheres.

In general, research with split-brain patients has increased our understanding of 

functional lateralization. Research shows that although complex linguistic functions are 

mainly served by the LH (Dean & Hua, 1982; Kimura, 1961a; Sperry, 1968), the type of 

verbal stimuli affects the degree of involvement in each hemisphere (Springer et al.,

1978). In addition, although nonverbal functions are predominantly linked to the RH, 

evidence from comparison studies of patients with commissurotomy versus non- 

commissurotomized individuals shows that both cerebral hemispheres normally 

participate in nonverbal tasks (Kumar, 1977; Milner & Taylor, 1972).

1.4.3 Neurologically Normal Individuals

Initially, hemispheric specialization research mainly examined brain-damaged 

patients and/or postmortem brains, raising questions about extending these findings to 

healthy individuals. Starting in the 1980s, hemispheric asymmetry research using 

“normal” individuals began to flourish (Bryden, 1982; Cherry et al., 1995; Hellige, 1993). 

The methods used to assess hemispheric asymmetry in neurologically intact individuals 

are generally the same as the ones used to assess the function of the LH and RH in 

individuals with brain damage. Perceptual asymmetries observed between the left and 

right side and verbal and nonverbal performance discrepancies are assumed to reflect 

functional differences between the hemispheres for a particular task. However, one
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should be cautious when interpreting data obtained from lateralization tasks. Evidence 

from studies of brain damage and sodium amytal procedures indicate that 96 percent of 

right-handers have speech represented in the LH (Rasmussen & Milner, 1977; Segalowitz 

& Bryden, 1983) but only about 75 -85 percent of normal right-handed participants show 

a REA in verbal dichotic-listening tasks (Bryden, 1982). This shows that the results 

obtained from brain-damaged versus normal individuals using different procedures are 

not perfectly correlated. Therefore, it is important to consider the possibility that side 

advantages or performance asymmetries are influenced by other factors which are 

unrelated to hemispheric asymmetry (Bryden, 1982).

1.5 Biological Asymmetries

1.5.1 Neuroanatomical Asymmetries

Investigations of anatomical asymmetries began in the 19th century (Finger & Roe, 

1996). However, the field did not gain widespread attention from researchers until the 

1960s (Geschwind & Levitsky, 1968; McRae, Branch, & Milner, 1968). In most human 

brains, the frontal region of the RH is wider and protrudes further forward than the LH 

but the occipital region of the LH is wider and protrudes further backward compared to 

the RH (Bradshaw & Nettleton, 1983). In addition, there seems to be a difference in the 

grey matter to white matter ratio between the two hemispheres. Gur et al. (1980) found 

more grey matter relative to white matter in the LH than in the RH, particularly in the 

frontal (including precentral regions) and suggested that the organization of the LH 

emphasized processing or transfer within regions rather than transfer across regions 

compared to the RH.
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However, the most evident and studied anatomical asymmetry of the brain is the 

planum temporale, which is a small triangularly shaped area located immediately 

posterior to Heschl’s gyrus and the primary auditory cortex (in the LH, it is an extension 

of Wernicke’s area; Hughdahl, 1996). Geschwind and Levitsky (1968) studied 100 right- 

handed adult brains and confirmed the presence of asymmetries in the planum temporale. 

It was larger on the left sides in 65 percent of the brains, approximately equal in 24 

percent, and larger on the right in 11 percent. Geschwind and Levitsky suggested that this 

asymmetry is an anatomical marker of the specialization of the LH for language. 

Subsequent review of this same sample of brains using more precise measurements found 

63 percent larger on the left, 21 percent on the right, and 16 percent equal (Galaburda, 

Corsiglia, Rosen, & Sherman, 1987). It is interesting to note that these numbers are 

closer to the REA observed in dichotic-listening performance in normal right-handed 

individuals (i.e. 75-85 percent, Bryden, 1982) than evidence of 96 percent LH speech 

representation in right-handed, brain-damaged individuals from Wada testing 

(Rasmussen & Milner, 1975).

Asymmetries of planum temporale are associated with asymmetries of the lateral 

or Sylvian fissure, which is longer on the left than on the right in most brains 

(Cunningham, 1892). Rubens, Mahowald, and Hutton (1976) reported that the lateral run 

of the fissure is shorter on the right side, before it turns upward. It turns upward earlier 

and ends at a higher level on the right than the left side.

Sylvian fissure morphology is associated with an asymmetry of the angles formed 

by the posterior branches of the middle cerebral arteries as they loop over the fissure, 

wider on the right than the left in most people (Annett, 2002). This may reflect
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physiological differences in the perfusion of brain tissue in left and right temporal areas 

(Galaburda, 1995). Ratcliff, Dila, Taylor, and Milner (1980) examined the asymmetry of 

the posterior Sylvian branches of the middle cerebral artery by using the carotid 

angiograms of 59 patients in whom the lateralization of speech representation was known 

from sodium amytal tests (39 with LH speech, 11 with bilateral speech, and 9 with RH 

speech). The branches of the middle cerebral artery that leave the posterior part of the 

Sylvian fissure typically slope more sharply downward on the left side than right, 

forming a narrower arch. They found asymmetry of these vessels in the group of patients 

with LH speech representation but a reduced asymmetry in patients with atypical 

(bilateral or RH speech representation) cerebral dominance for speech.

The use of recent imaging techniques has made the examination of structural- 

functional relations possible in laterality research. Strauss, LaPointe, Wada, Gaddes, and 

Kosaka (1985) attempted to link a cognitive measure of language dominance to 

neuroanatomical asymmetry evidence. These researchers administered a dichotic- 

listening task to patients with medically refractory seizures. The results of these tests 

were considered in light of the width of the posterior Sylvian region as revealed through 

carotid angiograms. The results revealed that neurological patients who show a REA 

(suggesting LH language dominance) are more likely to have a wider left posterior 

Sylvian region and patients who show a LEA are more likely to have a wider right 

posterior Sylvian region. This study shows that it is possible to associate cognitive 

results with neuroanatomical asymmetry.

Recently, Chiarello, Kacinik, Manowitz, Otto, and Leonard (2004) measured 

asymmetrical neural structures involved in language functioning (Heschl’s gyrus, planum
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temporale, and planum parietale) using MRI and correlated these findings with visual 

field lexical task asymmetries in 20 male right-handers. They found task asymmetries to 

be positively correlated with asymmetry of the planum temporale. They also found a 

relation between the anatomical and behavioural asymmetries in that the participants with 

the greatest modal cortical asymmetry across regions were also likely to show the 

greatest variability in asymmetry across tasks. The authors concluded that individual 

differences in language laterality tasks may be associated with variation in asymmetry of 

posterior language structures and the absence of these asymmetries may be coincident 

with a less strictly localized distribution of function across hemispheres.

1.5.2 Neurochemical Asymmetries

Given that the two hemispheres are anatomically asymmetric, the presence of 

neurochemical asymmetries would not be surprising. Indeed, some neurotransmitters 

appear to be more abundant and more utilized in one hemisphere than the other. Oke, 

Keller, Mefford, and Adams (1978) showed an asymmetry in content of norepinephrine 

in the thalamus of 5 post-mortem, normal human brains. Specifically, the left pulvinar 

and the right ventrobasal complex (the area of the thalamus which receives most of the 

somatosensory input) were richer in norepinephrine than their contralateral counterparts.

Similarly, Amaducci, Sorbi, Albanese, and Gainotti (1981) showed hemispheric 

differences in choline acetyltransferase activity (an index of acetylcholine activity) in the 

Brodmann area 22 (Wernicke’s area in the LH) in four post-mortem brains of patients 

who died with non-neurological disorders. The results showed that the left Brodmann 

area 22 contained greater choline acetyltransferase activity than the same region on the 

right.
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In contrast, Rossor, Garret, and Iversen (1980) had found no asymmetric 

distribution of neurotransmitters in the human brain. However, Glick, Ross, and Hough 

(1982) reassessed the data of Rossor et al. and found asymmetric concentration of 

neurotransmitters. They found higher levels of dopamine and choline acetyltransferase in 

the left globus pallidus than in the right.

In a review of the evidence on the neurotransmitter substrates of neural systems, 

Tucker and Williamson (1984) argued that neurotransmitter pathways are lateralized in 

the human brain. They concluded that dopamine is more abundant in the LH and 

norepinephrine is more abundant in the RH. Associated with this lateralization, processes 

dependent on dopamine (e.g. complex motor operation) are more dominant in the LH 

than in the RH and processes dependent on norepinephrine (e.g. integration of bilateral 

perceptual input) are more dominant in the RH compared to the LH.

In sum, there are various anatomical and chemical asymmetries present in the 

human brain and these asymmetries are linked to functional differences in some cases. 

However, this is more true for anatomical than for neurochemical asymmetries because 

of a relative paucity of studies examining neurochemistry and function in tandem.

Despite this scarcity of research, the available research suggests that generally, dopamine 

and choline acetyltransferase activity are more abundant in the LH and norepinephrine is 

more abundant in the RH. However, one should be cautious when summarizing the 

research findings because handedness information on the individuals from whom the 

brains were obtained was missing in most of the reviewed studies.
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1.6Individual Differences

Most of the research reviewed is based on studies in which participation was 

restricted to right-handed individuals because it is generally acknowledged that the 

pattern of hemispheric asymmetry is related to handedness (i.e., reduced laterality effect 

in left-handers contrasted with right-handers; Segalowitz & Bryden, 1983). Some have 

also suggested that there are gender differences regarding hemispheric asymmetry, that is, 

more lateralization in men than in women (Lake & Bryden, 1976; Wada, Clark, & Hamm, 

1975), but there is no consensus on this issue (Bryden, 1982; Jancke, Schlaug, Huang, & 

Steinmetz, 1994; Raz et al., 2004). Many researchers have examined the relation 

between participant attributes, such as gender and handedness, and hemispheric 

asymmetries (Jancke et al., 1994; Lake & Bryden, 1976; Rasmussen & Milner, 1975; 

Wada et al., 1975).

Wada et al., (1975) pioneered investigations of gender-related differences in brain 

anatomy by measuring the surface of the right and left planum temporale in 100 

postmortem adult brains (aged 17 to 96 years) of people who had died from non- 

neurological conditions and were free of central nervous system abnormality. Generally, 

they observed that the left planum temporale was larger than the right planum temporale 

in both genders, but the reverse pattern was observed more often in women. However, 

their result must be interpreted with caution because handedness information was not 

reported in this study.

Handedness information is easier to obtain through in vivo studies. Kulynych, 

Yladar, Jones, and Weinberger (1994) investigated the relation between gender and the 

anatomy of the planum temporale in 24 right-handed participants. They measured the
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surface of the planum temporale using MRI and replicated the results obtained by Wada 

et al. (1975). They observed a larger right planum temporale than left more often in 

women compared to men. That is, in women, 5 out of 12 had larger left than right, 6 had 

larger right than left, and 1 had equal surface area. In men, 10 out of 12 had larger left 

than right, 1 had larger right than left, and 1 had equal surface area.

However, not all researchers have found these gender-related differences in 

planum temporale anatomy, and there is considerable controversy. Jancke et al. (1994) 

measured planum temporale surface area using MRI in a sample of healthy adults and did 

not find any sex differences in size or asymmetry. Recently, Barta and Dazzan (2003) 

investigated sex differences by measuring the surface area of the cortex using a 

straightforward extension of stereologic methods to MRIs and also failed to find evidence 

for sex differences in size or asymmetry.

In addition to possible gender differences in lateralization, a difference in 

handedness also has been investigated. Lake and Bryden (1976) used a dichotic-listening 

task to study the effects of gender and handedness. They presented pairs of consonant- 

vowel syllables dichotically to female and male left- and right-handers and asked them to 

report the items they had heard. They found a significant sex difference, in that males 

were more lateralized than females. Specifically, in right-handed men, 94 percent showed 

a REA, whereas only 67 percent of the right-handed women did. No conclusion was 

drawn regarding handedness because the authors indicated that the social bias toward 

right-hand use makes drawing any relation between skill and preference difficult for left- 

handed people.
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Rasmussen and Milner (1975) studied lateralization of speech in a group of 140 

right-handed and a group of 122 left-handed and ambidextrous patients with epilepsy 

using sodium amytal testing. Of the right-handed patients, 96 percent had speech in the 

LH, 4 percent had speech in the RH, and none had evidence of bilateral control of speech. 

Of the left- or mixed-handed patients examined, 70 percent had speech in the LH, 15 

percent had speech in the RH, and 15 percent had bilateral speech representation.

In a meta-analytic study, Kim (1994) reviewed 28 perceptual asymmetry 

experiments conducted from 1965 to 1992 to investigate whether left-handers have a 

greater variance in perceptual asymmetry than right-handers. Meta-analyses were run 

separately for verbal divided visual-field studies, verbal dichotic-listening studies, and 

free-vision face studies. The results revealed that in verbal divided visual-field studies, 

right-handers had a greater mean right visual-field asymmetry than left-handers but a 

greater variance in visual field asymmetry was found in left-handers than right-handers. 

In verbal dichotic-listening studies, right-handers had a greater mean REA than left

handers, whereas left-handers had a greater variance compared to right-handers. In the 

free-vision laterality studies, researchers used tasks that involve judging which of the two 

mirror-imaged chimeric faces, one with a smile to the viewer’s left or one with a smile to 

the viewer’s right, looks happier. The results showed that right-handers have a greater 

mean leftward bias than left-handers, and correspondingly left-handers have a greater 

variance than right-handers. Overall, the results suggest that right-handers have greater 

mean hemispheric asymmetry than left-handers, whereas left-handers have greater 

variance in hemispheric asymmetry than right-handers.
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Recently, Dos Santos Sequeira et al. (2006) used structural MRI scans to examine 

planum temporal asymmetry and found an overall leftward (left greater than right) 

asymmetry, in which handedness, gender, or dichotic-listening ear advantage prevailed. 

The mean magnitude of the leftward asymmetry varied depending on the specific 

combination of the factors. A clear correspondence between structural and functional 

asymmetry was observed only among right-handed males (that is, more pronounced 

structural asymmetry was associated with an enlarged planum temporal on the left side, 

whereas the enhanced leftward asymmetry of left-handed females resulted from smaller 

volumes of their right planum temporale).

In sum, research findings concerning individual differences generally indicate that 

greater hemispheric asymmetries are found in right-handers compared to left-handers, 

and in men compared to women.

1.7 Cognitive and Behavioural Asymmetries

1.7.1 Dichotomies

Throughout the history of hemispheric asymmetry research, several dichotomies 

have been proposed by various researchers in order to integrate the functions of each 

hemisphere into a single fundamental dichotomy (Bouma, 1990; Bradshaw & Nettleton, 

1981; Goldberg & Costa, 1981; Hellige, 1993; Semmes, 1968). In this section, some of 

the well-known dichotomies are reviewed.

1.7.1.1 Verbal/nonverbal

Earlier work on hemispheric asymmetry stressed the role of the nature of the 

stimulus. For example, in dichotic-listening tasks, a REA is found for verbal materials, 

and a LEA was found for nonverbal acoustic stimuli such as music (Doehring & Ling,
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1971; Goodglass & Calderon, 1977; King & Kimura, 1972). However, later 

investigations found that ear and visual-field superiorities could be reversed for the same 

participants and stimuli as a function of an imposed set of strategies (e.g., during a 

dichotic-listening task using verbal stimuli, the experimenter could either ask the 

participant to identify the tone of the voice or repeat the words; Bryden, 1982). This 

suggested that it was not the stimulus material per se but rather the task requirements and 

the cognitive strategies induced by those requirements that determined the predominance 

of one or the other hemisphere. Therefore, this verbal and nonverbal stimuli dichotomy 

was reformulated to a verbal versus nonverbal processing dichotomy. However, one of 

the problems facing this verbal/nonverbal dichotomy is that the LH is not always 

dominant for verbal or language processing and the RH is not always dominant for 

nonverbal processing. For example, when judgments involving temporal order, duration, 

simultaneity, rhythm, or categorical perception are required while listening to music, 

there is no LEA (Bradshaw & Nettleton, 1981). Also, the RH has considerable speech 

comprehension capacity as will be described later (Beeman & Chiarello, 1998).

1.7.1.2 Focal/diffuse

In 1968, Semmes proposed that both simple and complex abilities are represented 

focally in the LH but diffusely in the RH. She found evidence of this organization from 

studying the sensory and motor abilities of both hands in brain-damaged patients. In 

patients with LH injury, sensorimotor deficits were found for both hands only after injury 

to the primary sensorimotor projection area. However, in patients with RH injury, 

sensorimotor deficits were found even when injury was outside of the primary projection 

areas. In addition, she found that injury to a specific area of the LH usually led to
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disruption of a specific function whereas equivalent injury to the RH typically disrupted 

more than one specific function. Semmes further argued that a focal representation of 

elementary functions in the LH would favour the integration of similar units and lead to 

specialization for behaviours that demand fine sensorimotor skills such as manual 

dexterity and speech. In contrast, a diffuse representation of elementary functions in the 

RH would favour the integration of dissimilar units and lead to specialization for 

behaviours that demand multimodal coordination and integration of information across 

wide areas of space such as visuospatial ability. Although this theory has received 

attention, her specific results have not been replicated (Hellige, 1993). However, in the 

field of hemispheric contributions to the processing of language, the LH is known to have 

a local bias in language processing (i.e., more involved in the processing of speech 

sounds and syntax), whereas the RH has a global bias (i.e., more involved in prosody, 

processing emotional content, and gist information; for an overview, see Beeman & 

Chiarello, 1998).

1.7.1.3 Analytic/holistic

Bradshaw and Nettleton (1981, 1983) suggested that an important difference 

between the two hemispheres was the extent to which a task demanded analytic versus 

holistic processing. They came to this conclusion by examining the data collected by 

other researchers and looking for similarities among tasks that reliably produced a LH 

advantage and contrasting them with similarities among tasks that reliably produced a RH 

advantage. Clinical observations of patients’ drawings indicated that LH lesions are 

associated with problems in sequential organization, in which objects are sorted by 

conceptual or abstract categories, and with oversimplification or lack of detail in
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drawings. On the other hand, lesions of the RH showed over-attention to details, a lack 

of awareness of overall organization or form, and problems in dealing with maps, 

appreciating spatial wholes, perspective, and closure (Levy, 1974). Although this 

dichotomy helped to organize a vast literature in the area, it has been criticized because it 

has never been operationalized with sufficient precision to make empirical tests possible 

(Hellige, 1993). Regardless, the analytic/holistic dichotomy is still widely used to 

capture the fundamental difference between the two hemispheres.

1.7.1.4 Novel/routinized

Goldberg and Costa (1981) proposed that the RH is best equipped to process 

novel information and the LH is best equipped to assimilate and deal with familiar 

information. Based on neuroanatomical studies (Galaburda et al., 1978; Geschwind & 

Levitsky, 1968; Gur et al., 1980), Goldberg and Costa summarized that there is relatively 

greater emphasis on interregional integration inherent in the neuronal organization of the 

RH and on intraregional integration in the LH. In addition, areas of sensory and motor 

representations are proportionally larger in the LH, whereas the RH shows proportionally 

larger areas of associative cortex. As a result, the RH has a greater ability to perform 

intermodal integration and to process novel stimuli and the LH is more capable of 

unimodal and motor processing as well as the storage of well-learned information. When 

acquisition of novel information is needed, the RH plays a critical role in initial stages of 

acquisition whereas the LH is superior at utilizing well-routinized information. In sum, 

this process leads to a right-to-left shift of hemisphere superiority as a function of 

increased competence with respect to a particular type of processing. The RH is 

important for initial orientation and processing of novel information. Once an appropriate
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processing system for the novel information has been established, the LH takes over in its 

utilization. Their theory has been supported by research examining nonmusicians versus 

musicians (Bever & Chiarello, 1974; Gaede, Parsons, & Bertera, 1978), verbal naming of 

unfamiliar visual symbols (Gordon & Carmon, 1976), and face recognition (Reynolds & 

Jeeves, 1978).

In sum, instead of searching for a global dichotomy, all of these theories of 

dichotomy can be combined to conceptualize how each hemisphere operates.

1.7.2 Language

The view that the LH is dominant for all aspects of language has been replaced by 

the idea that there is hemispheric asymmetry for different components of language 

processing. Researchers have shown that the LH is dominant for producing overt speech, 

phonetic decoding, using syntax, and certain semantic processes (Kraemer & Zenhausen, 

1993; Zaidel & Peters, 1981). In contrast, the RH is dominant for processing the 

pragmatic aspects of language, integrating information across sentences, and using 

context (understanding stories, jokes, and utterances in context; Foldi, 1987; Hough, 

1990; Kaplan, Brownell, Jacobs, & Gardner, 1990; Weylman, Brownell, Roman, & 

Gardner, 1989).

For example, Hough (1990) examined the effects of delayed presentation of a 

central theme on the comprehension and interpretation of narratives in adults with either 

RH damage or LH damage and in normal individuals. The performance of subgroups of 

the brain-damaged participants was also examined (anterior versus posterior). Hough 

was interested in finding out whether individuals with brain damage were able to retain 

information without the aid of a central theme and subsequently to organize and
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comprehend this information when the theme was presented at the end of the narrative. 

The results showed that RH brain-damaged groups with anterior and posterior lesions 

were significantly less accurate and identified significantly fewer central themes when 

the theme was delayed until the end of a narrative than when the theme was presented at 

the beginning. The performance of normal controls and participants with LH damage 

was unaffected by the organization of the central theme in the narratives. Hough added 

that in participants with LH damage, although their poor linguistic skills may adversely 

affect theme identification, they retain an organizing principle in the comprehension of 

narratives.

Brownell, Simpson, Bihrle, Potter, and Gardner (1990) investigated appreciation 

of metaphoric and non-metaphoric alternative word meanings in 19 aphasic (LH 

damaged) and 15 non-aphasic (RH damaged) stroke patients. They used metaphoric and 

non-metaphoric polysemous words (words associated with at least two different 

meanings). On each trial, a participant saw a triad of words consisting of a target 

polysemous concept (e.g. “warm”), a synonym (e.g. “loving”) of its secondary meaning, 

and a foil (e.g. “blanket”) that was closely associated but not synonymous with the 

primary meaning of the target. An example of a non-metaphoric noun-based triad 

includes the target “account”, the synonym “explanation”, and the foil “withdrawal”.

The task was to pick the two words that were the most similar in meaning; thus the 

correct answer would be selection of the target and its synonym. The results showed that 

both patient groups performed worse overall than a group of non-brain-damaged control 

participants. Relative to the RH damaged patient group, the LH damaged patient group 

showed an appreciation of metaphoric alternative meanings. In addition, patients with
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LH damage performed better on metaphoric adjective trials when there was high 

similarity between a word’s dominant and metaphoric meanings compared to patients 

with RH damage. They concluded that patients with RH damage show a pervasive 

insensitivity to alternative interpretations of linguistic units, and that there is a special 

role for the intact RH in lexical-semantic processes related to metaphor comprehension. 

Language- processing research findings indicate that the RH is important in 

comprehending and organizing narratives and understanding metaphoric meanings.

1.7.3 Visuospatial Processes

The notion that the RH is dominant for all aspects of visuospatial processing has 

also been replaced by the idea that hemispheric asymmetry exists for different aspects of 

visuospatial processing. That is, each hemisphere specializes in processing different 

types of visuospatial information. For example, the RH is dominant for processing global 

aspects of visual stimuli whereas the LH is dominant for processing local aspects of 

stimuli. When individuals with unilateral brain damage are asked to draw an object, the 

nature of the drawings depends on which hemisphere has been injured (Bouma, 1990). 

When the RH is damaged, the drawing lacks spatial unity although individual 

components may be present. In contrast, when the LH is damaged, the drawings are 

usually lacking in detail, but an overall spatial organization is present. Similarly, when 

processing faces, patients with RH damage often recognize faces by focusing on 

distinctive features, such as a beard, whereas patients with LH damage often use more 

holistic or configural properties (Bradshaw, 1989).

In addition, evidence exists that the LH and RH are biased toward efficient use of 

higher and lower visual-spatial frequencies, respectively. Here, one must keep in mind
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that the absolute range of spatial frequencies contained in a stimulus is relevant and that 

the range of spatial frequencies that is most relevant for the task being performed is also 

considered. Moreover, the task-relevant frequencies are judged high or low relative to 

other frequencies contained in a stimulus. Using visual half-field experiments, 

researchers (Hellige, 1980; Hellige & Webster, 1979) found a RH advantage for the 

identification of perceptually degraded visual material (preserving lower visual-spatial 

frequencies). This makes sense when the predominant role of the RH in processing of 

visual information is considered. When the visual stimuli are more difficult to see (i.e., 

degraded), the RH plays a predominant role in processing.

Regarding localizing visual stimuli in space, it has been hypothesized that the LH 

makes more effective use of a categorization subsystem (i.e., provides efficient 

information about the relative location of an object such as “above and “inside o f ’) and 

the RH makes use of a coordinate subsystem (i.e., provides efficient information about 

distance and absolute location; Kosslyn, 1987). For example, Michimata (1997) used a 

visual half-field experiment using “clock” stimuli to investigate hemispheric processing 

of categorical and coordinate spatial relations. For the categorical task, participants 

indicated whether the long and short hands of a clock were above or below the horizontal 

midline of the dial. For the coordinate task, they indicated whether the long and short 

hands of a clock formed an angle that was more or less than 60°. For both tasks, clock 

stimuli were either analog clocks (Visual version) or digital clocks from which 

participants generated images of analog clocks (Imagery version). The results showed 

that for both versions, there was a trend toward a LH advantage in the categorical task 

and a significant RH advantage in the coordinate task.
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According to Hellige (1993), the above three dichotomies are interrelated. For 

instance, information about global versus local aspects of a stimulus is carried by 

relatively low versus relatively high ranges of spatial frequencies. In addition, computer 

simulation models imply that categorical aspects of spatial locations are computed better 

by networks with relatively small, non-overlapping receptive fields (similar to relatively 

high spatial frequencies), whereas coordinate aspects of spatial locations are computed 

better by networks with relatively large, overlapping receptive fields (similar to relatively 

low spatial frequencies).

1.7.4 Emotional Processes

There is some controversy in the literature concerning whether the RH is 

primarily involved in emotion, or whether the two hemispheres play complementary roles. 

Clinical observations have shown that damage to the LH is more often associated with 

catastrophic reactions, which include bursts of tears, swearing, anxiety, expression of 

irritation and aggressive behaviour, and depression, whereas RH injury leads to more 

indifferent reactions (e.g., a cheerful acceptance of disability and indifference toward 

failure; Gainotti, 1987). These findings suggest that the LH is more critically involved in 

processing positive emotions and the RH in processing negative emotions.

Other studies involving patients with unilateral brain lesions have shown that the 

RH plays a special role in all aspects of affective behaviours (Heilman, Bowers, Speedie, 

& Coslett, 1984; Heilman, Bowers, & Valenstein, 1993). For example, RH injury is 

more likely to lead to disruptions of prosody and i ntonation in speech, and this is true 

whether the emotion being expressed is positive or negative. Prosody is the part of 

speech that conveys shades of meaning by variations in stress and pitch, irrespective of
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the words used or the grammatical constructions. There are two types of speech prosody: 

emotional and propositional. Emotional prosody conveys one’s emotions while speaking 

by changes in rhythm, pitch, distribution of stress, and melodic contour. Propositional 

prosody can alter the propositional message. That is, the rise in pitch at the end of a 

sentence can indicate a question in a sentence without an interrogative word or without 

reversed order (e.g., “Why”) or without reversed order of noun and verb (e.g., “is he”). 

Generally, patients with RH damage have more difficulty in appreciating the emotional 

tone of spoken language, but not in understanding the linguistic content of sentences 

(Tucker, Watson, & Heilman, 1977). Heilman et al. (1984) studied patients with damage 

of either the RH or LH and control participants to determine whether patients with RH 

damage had a global (emotional and non-emotional) or limited (only emotional) prosodic 

defect. The results showed that patients with RH damage had decreased comprehension 

of emotional prosody (happy, sad, or angry) compared to either the LH group or normal 

controls whereas both patient groups had more impaired comprehension of propositional 

prosody than controls. The two patient groups did not differ. Therefore, the results 

suggest that the RH is dominant for comprehending emotional prosody but not 

propositional prosody.

Furthermore, several studies have shown that patients with RH damage have more 

difficulty than do those with LH damage in the recognition of emotional faces and the 

judgment of emotional situations (e.g. Cicone, Wapner, & Gardner, 1980). Similarly, the 

patient’s ability to express affective states through emotional prosody in speech, facial 

expression and gesture is more impaired after RH lesions than after LH lesions (Ross,
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1985). These findings suggest that the RH may be more important than the LH in the 

perception as well as expression of emotional behaviour.

Overall, research findings from cognitive and behavioural domains indicate 

hemispheric specialization for different functions. These differences exist when the 

brain processes information such as language, visuospatial information, and emotion.

1.8 Hemispheric Asymmetry and Aging

1.8.1 Research Methods in Aging Studies

There are different ways to investigate age differences. The two most popular 

methods are cross-sectional and longitudinal designs. The third type of method, which is 

seen to be the most favourable type by at least some researchers (Schaie, 1994; Finkel, 

Pedersen, Plomin, & McCleam, 1998), is the cross-sequential method. The cross- 

sectional method measures differences by comparing different age groups at a point in 

time, the longitudinal method measures changes within participants over a period of time, 

and the cross-sequential method involves longitudinal follow-up of an originally cross- 

sectional sample.

There are advantages and disadvantages associated with each method of study. 

Cross-sectional studies are generally easier, quicker, and less expensive to conduct but 

confound cohort differences with true aging or maturation differences. For example, age 

differences have been shown in cross-sectional studies (Horn & Cattell, 1967; Horn & 

Hofer, 1992; Verhaeghen & Salthouse, 1997), but there is the possibility that older 

individuals reached lower peak level performance than younger individuals because of 

environmental conditions (e.g., poorer nutrition or less formal education). In this case,
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part of the age differences observed at a single point in time might reflect cohort factors 

rather than aging (Ronnlund & Nilsson, 2006).

With longitudinal studies, aging effects versus cohort effects may be separated. 

However, even with longitudinal studies, one cannot necessarily generalize from one 

cohort to another and they are time-consuming and expensive to conduct. In addition, 

longitudinal designs cannot distinguish the effects of the measurement occasion from the 

effects of age (Botwinick, 1977). That is, both selective attrition and practice effects may 

attenuate estimated cognitive decline in longitudinal studies. Selective attrition occurs 

when individuals most likely to exhibit greater cognitive decline drop out from the study 

at higher rates; this indeed has been found in longitudinal studies (Ronnlund &Nilsson, 

2006; Schaie, 1994). Consequently, cognitive decline is underestimated because studies 

tend to include only the subset of individuals most likely to return for follow-up testing. 

As well, practice effects of repeated cognitive testing can mask cognitive change 

(Hertzog & Nesselroade, 2003; Salthouse, 1999; Schaie, 1996). In addition to selective 

attrition and practice effects, the length of the follow-up interval influences the likelihood 

of detecting significant changes (Ronnlund & Nilsson, 2006). The inclusion of a cohort- 

matched sample at the time of retest is used by some researchers who want to estimate 

and adjust for potential practice effects (Schaie, 1988; Ronnlund & Nilsson, 2006).

The cross-sequential design allows for investigation of the confounds inherent in 

cross-sectional and longitudinal designs when used independently (Schaie & Baltes,

1975). These designs are presumed to be more precise and the results are seen to be more 

generalizable across time and cohorts. However, they are also expensive and time- 

consuming to conduct. Finkel et al. (1998) used cross-sequential methods of analysis to
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interpret data from the Swedish Adoption/Twin Study of Aging. They found that cross

cohort differences were much greater than within-cohort differences but partly attributed 

this trend to the shorter longitudinal period for the within-cohort (6 years) than the cross

cohort age range (30 years).

Although cross-sectional methods have been criticized, when potential confounds 

such as cohort differences in education attainment are controlled, the find ings  between 

the cross-sectional and longitudinal methods sometimes converge. Ronnlund, Nyberg, 

and Backman (2005) examined five-year changes in episodic and semantic memory in a 

sample of 829 participants ranging from age 35 to 80 years. They used a cohort-matched 

sample to control for practice effects. Their cross-sectional analyses indicated gradual 

age-related decrements in episodic memory. However, the longitudinal data revealed no 

decrements before age 60, even with a practice-effects adjustment. Semantic memory 

showed minor increments until age 55 longitudinally, with smaller decrements after 60. 

Interestingly, cross-sectional and longitudinal estimates of change for groups 60-85 years 

old were similar. In addition, when the researchers adjusted for differences in education, 

improvements up to approximately age 55 in semantic memory were shown in the cross- 

sectional estimate. This study showed that when potential threats to internal validity such 

as differences in education and practice effects are controlled, the cross-sectional and 

longitudinal aging patterns converged in both episodic and semantic memory.

In another study, Ronnlund and Nilsson (2006) examined aging patterns cross- 

sectionally and longitudinally using the Block Design Test from the Wechsler Adult 

Intelligence Scale-Revised (Wechsler, 1981). The cross-sectional analyses showed a 

gradual age-related deterioration from 35 to 85 years. In contrast, the longitudinal data

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



indicated stable performance from ages 35-55 even with practice-effect and attrition 

adjustments. When cross-sectional differences were education-adjusted, a similar aging 

pattern emerged.

In sum, the results of cross-sectional and longitudinal studies need to be 

interpreted with caution unless proper adjustments are incorporated into the analyses. 

Research shows that when confounds are controlled, the results from cross-sectional and 

longitudinal studies show a similar aging pattern. In addition, the cohort effect seems to 

be more of an issue with younger cohorts (younger than 60) in most studies (Backman, 

Small, & Wahlin, 2001; Ronnlund et al., 2005).

1.8.2 Theories o f Hemispheric Asymmetry and Aging

There is evidence that hemispheric asymmetries are affected by conditions such 

as aging that alter the anatomical and functional integrity of the brain. Recently, Dolcos, 

Rice, and Cabeza (2002) reviewed two models of hemispheric aging: the older, RH aging 

model (Albert & Moss, 1988; Brown & Jaffe, 1975; Goldstein & Shelly, 1981), which 

suggests that the RH shows greater age-related decline than the LH; and the more recent, 

hemispheric asymmetry reduction in old adults (HAROLD) model, which suggests that 

the activity in the prefrontal cortex during cognitive performances have a tendency to be 

less lateralized in older than in younger adults (Cabeza, 2002). In this section, evidence 

for these two different models of hemispheric asymmetry and aging are examined.

1.8.2.1 The RH Aging Model

The first suggestion of the RH aging hypothesis came from the observation that 

psychometrically measured nonverbal, visuospatial functions tend to decline more rapidly 

than verbal functions as people age (Goldstein & Shelly, 1981; Reitan, 1955a; Wechsler,
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1958). The hypothesis is based on the assumption that the RH is dominant for 

psychometrically measured nonverbal, visuospatial functions whereas the LH is dominant 

for verbal functions. The age-related differential decline on the verbal and visuospatial 

subtests of the Wechsler Adult Intelligence Scale begins around age 40 with visuospatial 

measures declining to a much greater extent than verbal measures (Wechsler, 1958). 

Another theory of aging that indirectly supports the RH aging model is the “fluid” and 

“crystallized” intelligence theory (Horn & Cattell, 1967). This theory also suggests that 

over-learned verbal skills are more resistant to aging, while the novel, unfamiliar 

performance or “nonverbal” tasks appear to be most sensitive to age-related decline. The 

proper interpretation of this pattern of decline has long been a matter of dispute because a 

direct comparison may be confounded by the speeded nature and greater novelty of the 

more visuospatial tasks and the non-speeded nature and greater reliance on previously 

learned information of the more verbal tasks (Hellige, 1993; Mittenberg, Seidenberg, 

O’Leary, & DiGiulio, 1989). Nonetheless, many studies have found evidence supporting 

this hypothesis.

Goldstein and Shelly (1975, 1981) conducted two studies on age differences in 

hemispheric asymmetry. They used a variety of tests known to be sensitive to localized 

and diffuse brain injuries. Results were collected both from older participants and from 

patients with verified unilateral or bilateral cerebral lesions. In the first study (Goldstein 

& Shelly, 1975), it was hypothesized that if the effects of aging were similar to those of 

diffuse brain injury, then the performance patterns of aging participants should resemble 

those of patients with bilateral or diffuse cerebral dysfunction. That is, there would be 

less difference between the older brain-damaged and non-brain-damaged participants
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than there would be between the corresponding younger groups. They tested groups of 

younger brain-damaged, younger non-brain-damaged, older brain-damaged and older 

non-brain-damaged male participants with a battery of tests (Wechsler Adult Intelligence 

Scale and Halstead Battery of Neuropsychological Tests). The results did not show less 

difference between the older brain-damaged and non-brain-damaged individuals than 

between the corresponding younger groups. In the second study, Goldstein and Shelly 

(1981) tested the RH aging hypothesis by comparing older participants to patients with 

known lesions confined to either the RH or the LH. Again, they used tests from the 

Halstead-Reitan Neuropsychological battery, which included a number of sensorimotor 

tasks that were designed to index the presence and location of brain injury. The test 

results were scored in a way that produced “points” associated with RH versus LH 

function, such that a greater number of points was associated with poorer performance. 

The results indicated that, although both cerebral hemispheres deteriorate with age, RH 

functions age more rapidly than LH functions.

A series of experiments conducted by Myerson and colleagues (Lawrence, 

Myerson, & Hale, 1998; Myerson, Hale, Rhee, & Jenkins, 1999; Jenkins, Myerson, 

Joerding, & Hale, 2000) found evidence indicating that visuospatial skills are affected 

more than verbal skills by aging. Lawrence et al. (1998) examined the effect of aging on 

both verbal and visuospatial processing speed by using a cross-sectional design. They 

tested the same participants on four verbal tasks (single lexical decision, double lexical 

decision, category judgment, and synonym-antonym judgment) and four visuospatial 

tasks (line-length discrimination, shape classification, visual search, and abstract 

matching) in order to compare the rate of change. When the mean verbal and
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visuospatial response times of older groups were compared to the corresponding response 

times of the young adult groups, the slope of the visuospatial regression was greater than 

that for the verbal regression at all ages. Specifically, verbal processing time increased 

linearly by approximately 50 percent while visuospatial processing time increased 

exponentially by approximately 500 percent from 18 to 90 years of age. They concluded 

that aging affects visuospatial processing to a much greater extent than verbal processing.

Subsequently, Myerson et al. (1999) investigated verbal and spatial working 

memory using digit and location memory-span tasks with and without verbal and spatial 

secondary tasks in 20 young (M = 20.4 years) and 20 older individuals (M age = 67.0 

years). They found a greater age-related decline in spatial working memory compared to 

verbal working memory. Both groups showed domain-specific interference, that is, 

naming colours selectively interfered with memory for digits, leaving memory for 

locations unaffected, and pointing to matching colours selectively interfered with 

memory for locations, leaving memory for digits unimpaired. The results of this study 

also support the hypothesis that visuospatial skills decline more than verbal skills in 

aging.

Recently, Jenkins et al. (2000) replicated the above experiments and designed 

another experiment to measure age-related changes in verbal and visuospatial abilities in 

16 young (M = 19.9 years) and 16 older (M = 70.9 years) adults. The tasks were the 

verbal and visuospatial processing-speed tasks and verbal and visuospatial working- 

memory tasks mentioned above, and verbal and visuospatial paired-associates learning 

tasks. In the first two experiments, the results were consistent with the previous studies. 

In the third experiment, older adults had greater difficulty learning novel information
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than young adults overall, but older adults displayed greater deficits learning visuospatial 

information than verbal information. The researchers concluded that in sum, the 

differential deficits observed on both speeded and non-speeded tasks suggested that 

visuospatial cognition is generally more affected by aging than verbal cognition.

In addition to the studies that used verbal and visuospatial tests, studies that used 

various lateralization tests also support the RH aging hypothesis. For example, Clark and 

Knowles (1973) investigated the effect of aging on the dichotic-listening task using vocal 

and written recall conditions. One hundred twelve right-handed participants were divided 

into the age groups of 15 to 29, 30 to 44, 45 to 59, and 60 to 74 years. The participants 

within each age group were randomly assigned to one of two experimental groups. The 

groups differed in that the participants were instructed either to vocalize the dichotically 

presented digits at the time of recall or to write them down on a sheet. They found a 

decline in recall performance with age for both vocal and written recall conditions but the 

age-related decrement was predominantly for the left-ear material.

The RH aging hypothesis is also supported by various studies that used tactile 

stimuli. Despite an almost exclusive use of the right hand in tasks of manual dexterity, 

normal individuals were more proficient with the left hand in tactual perception of 

direction in space (Benton et al., 1973) or shape of random forms (Dodds, 1978; Riege, 

Metter, & Williams, 1980). For example, Riege et al. (1980) used non-meaningful wire 

shapes to investigate tactual recognition memory in young (aged 20-29), middle (30-39), 

old (60 to 69), and old-old (over 70) groups. The wire figures were presented twice for 

palpating for 15 seconds each (2 different figures per hand). Then, a recognition test was 

given immediately following the presentation phase in which the four target figures
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recurred three times each intermingled in random order with 12 other distractor figures. 

The wire figures were presented one after the other to the hand that felt them during the 

presentation phase. The young group showed RH superiority but this was reduced in the 

two older groups. Overall, they found a decline in recognition scores across age groups 

for both hands. However, the left hand demonstrated a greater decline with age, in 

particular, from young to middle-aged, and from old to very old groups.

The Tactual Performance Test (Halstead, 1947) has been used in a number of 

studies with aging individuals. In this test, the participant is blindfolded and is asked to fit 

blocks of various shapes and sizes into the spaces on the board that is set upright, first 

with his or her dominant hand, then with the nondominant hand, and finally with both 

hands as quickly as possible (Spreen & Strauss, 1998). As expected, the completion time 

decreases as the trials proceed in normal younger individuals. Many older individuals, 

however, show an atypical pattern of performance on this test. That is, after completing 

the task with the right hand, they fail to improve their performance when using the left 

hand in an immediately following trial (Price, Fein, & Feinberg, 1980). This difficulty is 

often associated with RH dysfunction, thus supporting the RH aging hypothesis.

Elias and Kinsboume (1974) studied male and female younger and older 

participants using a visual hemifield paradigm with verbal and nonverbal stimuli. 

Participants were told to respond “same” or “different” using microswitches. Both older 

groups (male and female) had slower performance than the younger groups, but the age 

difference did not affect verbal and nonverbal processing in the same way for men and 

women. Men were equally proficient at verbal and nonverbal matching but young 

women were less proficient nonverbally than verbally and elderly women showed the
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same pattern of performance in amplified form. In other words, the RH aging hypothesis 

was supported by their female sample only.

Although many studies support the RH aging hypothesis, there is contradictory 

evidence (Mittenberg et al., 1989; Raz et al., 2004; Schear & Nebes, 1980). Schear and 

Nebes studied verbal and spatial memory in younger (M = 18.8 years) and older (M =

69.5 years) participants under identical task conditions. The participants recalled either 

the identities or spatial locations of seven letters arranged randomly within a 5 x 5 grid.

In order to examine whether the participants encoded the verbal and spatial 

characteristics of the array differently, verbal and spatial interference tasks were 

administered during the retention interval. The results indicated that the memory 

decrement in the elderly was not greater for the spatial aspects of the stimulus array than 

for its verbal aspects. Therefore, they found no evidence for a greater decline with age in 

spatial memory than in verbal memory.

Shelton, Parsons, and Leber (1982) examined the RH aging hypothesis in 24 

middle-aged (M = 37.6 years) and 24 older (M = 71.2 years) male participants. 

Participants performed structurally similar verbal and visuospatial paired-associate 

learning tasks that have been found sensitive to left- and right-hemispheric dysfunction, 

respectively. They found no evidence to support the RH aging hypothesis as 

performance decreased for both verbal and visuospatial learning tasks equally in the older 

group.

One study used an interesting method to investigate verbal and nonverbal memory 

in younger and older individuals. Janowsky, Carper, and Kaye (1996) had two groups of 

younger participants (M = 31.3 and 32.5 years) and one group (M = 71.4 years) of
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healthy elderly participants. Participants incidentally learned the identity and location of 

a group of objects and later verbally recalled the objects as well as recalling their 

previous spatial location. Younger participants were tested after retention intervals that 

equated their performance with that of the older participants. That is, the older 

participants were tested after a 1-day retention interval whereas one group of younger 

participants was tested after a 2-3 day retention interval so that their spatial recall 

performance would match the spatial recall performance of the older participants. The 

second group of younger participants was tested after a 1-week retention interval so that 

their verbal recall performance matched the verbal recall performance of the older 

participants. These retention intervals were derived through pilot testing. The measures 

of interest then were whether spatial memory was comparable in older and younger 

participants when verbal memory was the same and whether verbal memory was similar 

in older and younger participants when spatial memory was the same. When the 

performance of older and young participants on verbal recall was equated, older 

participants outperformed younger participants on spatial recall and when spatial recall 

was equated between groups, older participants performed worse than younger 

participants on verbal recall. The researchers concluded that memory did not change 

uniformly with age: verbal recall was more affected than nonverbal recall in aging. This 

is a result opposite to that which would have been predicted by the RH aging model.

Recently, Park, Lautenschlager, Hedden, Davidson, and Smith (2002) examined 

the distinctiveness and interrelations among visuospatial and verbal memory processes in 

short-term, working, and long-term memories in participants ranging in age from their 

20s through to their 80s. The researchers found a continuous age-related decline across
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the life span for processing-intense tasks such as speed of processing, working memory, 

and long-term memory and relatively little differentiation between declines in 

visuospatial and verbal memory processes across the life span.

Ellis and Oscar-Berman (1989) reviewed cerebral hemispheric asymmetry in 

aging and in alcoholism. The researchers investigated alcoholism as well as aging 

because earlier studies had shown that alcoholism affects visuospatial skills more than 

verbal skills, similar to the effects purportedly found in aging. After an extensive review 

of empirical research findings based on laterality techniques, the researchers concluded 

that the pattern of functional laterality, both in alcoholics and in aging individuals, is 

similar to those of normal controls. They added that the results that show preservation of 

ability in some areas and impairments in other areas should be analyzed in terms of the 

complexity of the task involved and the overall contributions of cerebral information- 

processing mechanisms to intact performance.

Some researchers used various lateralization techniques and also failed to support 

the RH hypothesis. Nebes et al. (1983) examined the speed with which young and old 

participants identified stimuli in their right and left visual fields and performance on a 

dichotic-listening test using syllables. In the first experiment, they measured 

participants’ response times for naming verbal and pictorial stimuli in their right and left 

visual fields. The verbal stimuli were the printed names of numbers between “one” and 

“twelve”, and the pictorial stimuli were clocks with their hands set at the various hours. 

Thus, for each number between 1 and 12, there were two representations, one verbal and 

one spatial. The researchers argued that, although the clock faces had a readily available 

verbal label, actual identification of the time required a visuospatial discrimination.
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Words were identified faster in the right visual field (i.e., LH) and pictorial stimuli in the 

left (i.e., RH) in both young and old groups. There was a main effect of age but not an 

age by stimulus type or by visual field interaction. That is, there was no evidence that 

aging produced a greater decrement in the RH than in the LH. In the second experiment, 

a dichotic-listening test was used with consonant-vowel syllables. Participants were 

given two different syllables simultaneously, one in each ear, and they had to report the 

two items. The results showed the typical REA, but there was no age by ear interaction.

Obler et al. (1984) administered two visual hemifield tasks to 96 right-handed 

participants divided into 3 age groups (young adults, 25-39 years; middle-aged adults, 50- 

64 years; older adults, 65-79 years). One task required a linguistic judgment in which the 

participant compared two, two-letter syllables written in upper and lower case presented 

one over the other, and the other required a judgment about human faces in which the 

participant saw the upper and lower sections of ph otographs of people. For both the 

verbal and the nonverbal tasks, participants were required to make a same/different 

judgment on stimuli presented in either the left or right visual field. The results showed 

that although older participants required longer exposures to achieve 80 percent correct 

and took longer to respond, there was no evidence of systematic change in direction or 

degree of lateralization related to age.

In summary, the RH aging hypothesis has been supported by some research 

findings but not others. Although the theory itself is interesting, a theory indicating a 

faster aging process of one hemisphere compared to the other mainly supported with 

visuospatial versus verbal ability studies (Goldstein & Shelly, 1981; Lawrence et al.,
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1998) and single lateralization studies (Clark & Knowles, 1973; Elias & Kinsboume,

1974) appears to be too simplistic.

1.8.2.2 The HAROLD Model

As various neuroimaging techniques became available, many researchers began to 

use these techniques to study hemispheric functioning. In PET and fMRI studies, higher- 

order cognitive functions, such as memory, have been associated with major activations 

in the prefrontal cortex (Fletcher & Henson, 2001). Upon investigating the effects of 

aging, researchers found that prefrontal activity during episodic memory retrieval was 

right-lateralized in younger adults but bilateral in older adults (Backman et al., 1997; 

Cabeza et al.,1997; Grady, Bernstein, Beig, & Siegenthaler, 2002; Madden et al. 1999). 

Evidence from such studies enabled Cabeza (2002) to propose the HAROLD model, 

which suggests that prefrontal activity during cognitive performances tends to be less 

lateralized in older adults than in younger adults. Cabeza further suggested that this 

change may help counteract age-related neuro-cognitive decline (compensation 

hypothesis) or reflect an age-related difficulty in recruiting specialized neural 

mechanisms (dedifferentiation hypothesis). In order to investigate this, Cabeza, 

Anderson, Locantore, and McIntosh (2002) measured prefrontal activity in young, low- 

performing old, and high-performing old people during verbal recall and recognition 

memory (selected using a composite memory score based on the results of four memory 

measures). They found that prefrontal activity during recognition memory was right- 

lateralized in young and low-performing old participants but bilateral in high-performing 

old participants. Cabeza et al. (2002) interpreted this as low-performing older adults 

recruiting a similar network as young adults but using it inefficiently, whereas high-
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performing older adults counteracted age-related decline through a reorganization of 

neuro-cognitive networks, supporting the compensation hypothesis.

Because the HAROLD model was mainly derived from functional neuroimaging 

research, it would be important to find converging evidence from other domains using 

various techniques. Because the model is relatively new, not much evidence is found in 

other domains. However, some studies indicate changes in frontal lobe structure and 

functioning with aging. For example, Raz et al. (2004) used MRI to examine structural 

changes in the brain. Specifically, they investigated age-, sex-, and hemisphere- 

associated differences in the cerebral cortex by measuring volumes of the cerebral 

hemispheres and of 13 specific regions of 200 healthy adults. They found that the 

cortical volume declined steadily during the whole adult life-span, with different cortical 

regions varying in the rate of decline. Interestingly, they found that the lateral prefrontal 

cortex exhibited the greatest age-related differences. Also, accelerated hippocampal 

shrinkage was noticed past 45 years of age. Men showed larger volumes in most areas 

when sexual dimorphism and body size were statistically controlled, and some regions 

(hippocampus and fusiform gyrus) showed steeper negative age-associated trends in men. 

The direction and magnitude of hemispheric asymmetry was inconsistent.

Mittenberg et al. (1989) studied right-handed young (20-35 years old) and old 

(55-75 years old) healthy participants using neuropsychological measures of lateralized 

and focal function that had been selected to eliminate systematic procedural differences 

among tests (e.g. timed vs. un-timed, over-learned vs. unfamiliar). The tests selected had 

demonstrated sensitivity to localized hemispheric function. The tests included Verbal 

Fluency (left-frontal), Recency for Words (left-frontal), Design Fluency (right-frontal),

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Recency for Pictures (right-frontal), Cross-Modal matching (left-parietal), Right-Left 

Orientation (left-parietal), Line Orientation (right-parietal), Facial Recognition (right- 

parietal), Memory for Nonsense Syllables (left-temporal), Hebb’s recurring digits (left- 

temporal), Memory for Spatial Position (right-temporal), and Corsi’s Blocks (right- 

temporal). They found that the functioning of both hemispheres showed equal 

vulnerability to the effects of aging, but more pronounced declines were evident in frontal 

abilities.

In summary, the RH aging model is supported by some behavioural studies in 

various domains but the evidence has been mixed. Available evidence for the HAROLD 

model, primarily functional neuroimaging evidence, is supportive of the model. The two 

models are not incompatible and may actually be complementary. That is, the HAROLD 

model may apply to prefrontal regions while the RH aging model may apply to other 

brain regions.

1.9 Objective o f the Present Study 

Since Dax and Broca, many researchers have attempted to find anatomical or 

functional differences between the two hemispheres of the brain. Accumulated evidence 

from these attempts shows that the two hemispheres are indeed anatomically, chemically, 

and functionally asymmetric (Doehring & Ling, 1971; Galaburda, 1995; Oke et al., 1978). 

In addition to these differences, some evidence indicates that the two hemispheres age at 

different rates. For example, many researchers (e.g., Goldstein & Shelly, 1975,1981; 

Jenkins et al., 2000; Myerson et al., 1999) noticed that RH functions (e.g., visuospatial 

ability) declined more rapidly than those of the LH. Other evidence shows a decrease in 

the degree of asymmetry in performing cognitive tasks with aging (Cabeza, 2002).
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In the past, many researchers have used dissimilar measures of verbal and 

visuospatial tasks, which can have differing psychometric properties, to study 

hemispheric asymmetry. Clearly, one cannot be certain whether these instruments tap 

skills exclusively mediated by homologous areas in the two hemispheres. In order to 

solve this problem, various lateralization tasks have been used to investigate hemispheric 

asymmetry but most of the tasks examined only the perception of the stimuli and not 

memory for the stimuli. The study of memory is important especially in older individuals 

because age-related declines have been reported, especially in episodic memory 

(Backman et al., 2001; Park & Gutchess, 2005).

This study is the first to examine age differences in auditory, visual, and tactile 

performances using the same participants. The present study systematically investigates 

age differences in hemispheric asymmetry using memory tasks in three different 

modalities. A modified dichotic-listening memory test, a novel tactile recognition 

memory test, and a visual hemifield memory test were used. All tests compared the left 

side and right side performance independently: The dichotic-listening memory test 

(DLMT) compared the performance of each ear on the same task, the tactile recognition 

memory test (TRMT) compared the performance of each hand on the same task, and the 

visual hemifield memory test (VHMT) compared the performance of each visual field. 

Additional departures from the typical approach to the questions of interest are that the 

tactile stimuli used in this task are purely textural and thereby are expected to elicit 

responses from both hemispheres given that somatosensory information is processed by 

both hemispheres. Potential correlations between measures from all three tasks were
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investigated in order to examine whether the relations (if any) among different 

asymmetry measures changed as a function of age.

The present study evaluates theories of hemispheric asymmetry and aging.

Results from a pilot study involving younger individuals showed a REA on the DLMT 

and no side preference on the other two tasks. The RH hypothesis would be supported by 

a larger REA on the DLMT, a right-sided advantage on the TRMT, and a right visual 

field advantage on the VHMT in the older group compared to the younger group. The 

HAROLD model has mostly been examined and supported using neuroimaging evidence. 

Therefore, the present study investigates whether this model could be supported with 

behavioural measures. The HAROLD model would be supported by a decreased 

asymmetry on the DLMT in the older individuals. The other tasks are less likely to show 

a decline in hemispheric asymmetry with age given that they do not show asymmetry or 

side preference in younger individuals.

2.0 Method

2.1 Participants

The participants were right-handed (confirmed using the Edinburgh Handedness 

Inventory shown in Appendix A; Oldfield, 1971), native English-speakers with normal or 

corrected-to-normal visual acuity, and normal hearing, and no complaints of cognitive 

impairment. The younger group consisted of 45 undergraduate student volunteers from 

the University of Windsor. The ages of these 22 women and 23 men ranged from 18 to 27. 

The older group consisted of 10 women and 6 men (ages ranged from 63 to 84) who were 

recruited through advertisements placed in various senior centres in the community. One 

additional participant from the younger group and seven from the older group were
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excluded based on information gleaned from a health- status interview to determine 

eligibility for participation in the study (see Appendix B). The exclusion criteria included 

a history of a learning disability, neurological illness (e.g. stroke, tumour, epilepsy, 

Alzheimer’s disease), carpal tunnel syndrome, Paget’s disease, and any sensory 

impairment. The excluded participant from the younger group had a unilateral hearing 

loss, and the six older participants were excluded because of history of stroke, sensory 

impairment or in one case because English was a second language. Participant 

characteristics are displayed in Table 1. Members of the younger group received a course 

credit and members of the older group received $20 for their participation.

2.1.1 Participant Demographics

T-tests revealed no difference between the two groups in years of education, t(59) 

= .11, p > .05.

2.2 Procedures

2.2.1 General Procedures

The participants attended a single 70- to 90-minute testing session. The first procedure in 

this session was the brief health-status interview to determine eligibility. Eligible 

participants were then screened for deficits in tactile and visual perception and/or neglect 

using the Tactile Form Recognition Test (Reitan & Wolfson, 1993) and Bells 

Cancellation Test (Gauthier, DeHaut, & Joanette, 1989), respectively. The Tactile Form 

Recognition Test ruled out the presence of sensory deficits that would impair 

discrimination of the experimental tactile stimuli by palpation. The test requires 

participants to blindly identify a plastic shape (triangle, circle, square or cross) that is 

placed in their hand by pointing with the opposite hand to one of the four plastic shapes
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Table 1. Participant Demographic Variables

Group

Younger
(n=45)

Older
(n=16)

Age
M 21.11 73.25
SD 2.08 6.40

Education
M 13.92 15.13
SD .93 2.80
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mounted on a board. The participants completed this task twice for both hands; a cut-off 

of more than one error per side was used. In the Bells Cancellation Test, the participants 

were asked to circle all the bells on a sheet of paper printed with 35 bells and 245 other 

distractor figures (e.g. guitar, tree, key, saw, and car). The total number of missed bells 

on each side was measured and a cut-off of six in total or more than three omissions per 

side was used as recommended by Azovi et al. (2002).

The Mini Mental State Examination (MMSE; Folstein, Folstein, & McHugh,

1975) was administered only to the older participants as a screening measure for 

cognitive impairment. The MMSE assesses orientation to time and place, attention, 

calculation, naming, repetition, comprehension, reading, writing, copying, and immediate 

and delayed recall. The total number of correct answers was recorded (maximum is 30). 

The abnormal error cut-off criterion from a possible 30 has been established for separate 

age and education groups by Crum, Anthony, Bassett, & Folstein (1993) and these cut

offs were used in the present study. All participants performed above the cut-off scores 

on the screening tests.

After successful completion of the screening procedures the experimental tasks 

(the DLMT, TRMT, and VHMT) were administered as was a series of common 

neuropsychological tests that acted as distractor tests (Wechsler Memory Scale-Third 

Edition [WMS-III], Digit Span and Spatial Span subtests [Wechsler, 1997]; Wide Range 

Achievement Test- Third Edition [WRAT-3], Reading subtest [Wilkinson, 1993]; Trail 

Making Test A and B [Reitan, 1955b]; and the Grooved Pegboard Test [Matthews & 

Klove, 1964]). Each test is described in Appendix C and descriptive statistics are shown 

in Appendix D. For the order of presentation see Appendix E.
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2.2.2 Description o f Experimental Tasks

2.2.2.1 DLMT

The DLMT test is a modified version of the Dichotic Word Listening Test 

(Auditec of St. Louis, 1991). This test uses an audio tape to present words in a male 

voice using a set of headphones (Koss UR-15C). The test first presents practice trials of 

single words presented randomly to the left or right side and test trials of word pairs 

being presented simultaneously. In the Dichotic Word Listening Test, the words “now 

repeat” were presented prior to each word pair but in the DLMT, those instructions were 

removed. In addition, the original test had two versions with each version containing 30 

word pairs. Only the first ten word pairs of each version were used in the DLMT. The 

intensity of the word presentation was set at approximately 70 dB measured by a digital 

sound-level meter but adjusted accordingly when participants indicated that they could 

not hear the practice stimuli clearly.

The 10 practice trials served as a hearing screening test as well as a means of 

familiarizing the participant with the test. Following the presentation of each word, the 

participant was instructed to repeat the word and raise his or her right or left hand 

depending on the side of word presentation. All participants were able to repeat the words 

and indicate the sides without difficulty.

Following the practice trials, the testing began. The test stimuli consisted of ten 

pairs of words with each pair of words (one word per ear) being presented simultaneously 

at the rate o f 4 seconds per pair. Participants were asked to remember the list of words 

that was presented to the specified ear (right or left first, counterbalanced among 

participants) while simultaneously being presented with a different word list to the other
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ear. Immediately following the presentation, the experimenter gave a recognition 

memory test that included the words presented to the specified ear and ten distractor 

words, in which the participants were instructed to say “yes” to the words that were 

presented to the specified ear or “no” to other words. A delayed-recognition test was 

given after a 15-20 minute delay with a new set of distractor words. Subsequently, the 

practice trials with ten new words were given and the test was repeated with the other ear 

with a new set of ten word pairs and new distractor words.

2.2.22 TRMT

The TRMT examines tactile memory by presenting tactile stimuli to either the 

right or left hand. This was done using a specially constructed apparatus with an opening 

for the hand and a mounting area inside that holds the experimental tactile stimulus. The 

stimuli were hidden from view and the participants wore ear muffs to eliminate auditory 

cues that may arise through texture palpation. The participant was asked to put one hand 

(right or left first, counterbalanced) through the opening and place the hand on the 

stimulus (Figure 2).

The stimuli consisted of pieces of 19 cm x 19 cm x 1 cm plywood covered with 

various textures (for a sample list of textures, see Appendix F). Each stimulus (five 

stimuli in total) was presented and the participant was asked to feel it for three seconds 

with the whole hand and remember it for later testing. Immediately following the 

presentation of the test stimuli, a recognition memory test was given by presenting the 

test stimuli and a set of five distractor stimuli in random order. The examiner asked the 

participant to say “yes” if it was a stimulus that was presented before, and say “no” if  it 

was not. After a 15-20 minute delay, another recognition test was given using the test
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Figure 2. Tactile Recognition Memory Test apparatus is shown in this figure. Each 

presentation lasted for three seconds and the participants were asked to feel the stimulus 

with their whole hand and to try and remember it for later testing.
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stimuli and a different set of distractor stimuli. The test was repeated using the other hand 

and a new set of test and distractor stimuli.

2.2.23 VHMT

Participants used both a chin rest and a forehead bar to limit head movement while 

maintaining a distance of approximately 30 cm from the computer screen (see Figure 3). 

Stimuli for this experiment consisted of eight easy-to-verbalize figural designs for the 

practice trials and ten difficult-to-verbalize figural designs for the experimental trials, 

examples of which appear in Figure 4 (Silverberg & Buchanan, 2005). Each trial started 

with the presentation of a white fixation cross that remained at the centre of the black 

background for 2000 ms. Upon termination of the cross, a white rectangle containing a 

black figural design was presented to either the right or left visual field for 200 ms. The 

edge of the rectangle nearest the centre was approximately 5° of visual angle from centre. 

For all trials, participants were asked to keep their eyes focused on the centre of the 

screen (cross) and to avoid eye movements. A practice session consisting of eight 

presentation trials with each practice figural design appearing randomly to either the right 

or left visual field familiarized participants with the task. This practice session was 

followed by 40 experimental trials.

The experimental trials consisted of each of the ten figures (five figures per side) 

appearing pseudo-randomly with a constraint of not more than three consecutive 

presentations to the same visual field and that each visual field had 20 presentations (Five 

figures, each figure appearing four times in one visual field). Immediately following the 

completion of the presentation phase, a recognition memory test was given using the 

presented stimuli and ten other difficult-to-verbalize figural designs as distractors. The
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Figure 3. For the Visual Hemifield Memory Test, the participant puts her chin on the chin 

rest with a forehead bar to prevent movement of the head.
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Figure 4. A sample of Visual Hemifield Test stimuli is shown. Easy-to-verbalize 

drawings used for practice trials are shown in a) and difficult-to-verbalize drawings for 

the test trials are shown in b).

a)

b)
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items were presented centrally on the screen. Participants indicated whether they saw 

each design before by pressing one of two computer keys with their right hand. A 

delayed recognition test using ten different distractors was given after a 15-20 minute 

delay.

2.3 Experimental analysis 

A mixed ANOVA with Delay type (immediate and delayed), and Side of 

Presentation (right or left) as within-subject variables and Age (younger and older) as a 

between-subject variable was used to analyze performance on each task. The dependent 

variable was the percentage of correct responses on each side, calculated by adding hits 

and true negatives out of total responses on the DLMT and TRMT tasks. For example, if 

a participant achieved 7 hits and no false positives (i.e., 10 true negatives) on a DLMT 

condition, then the calculation would be (7 + 10)/20 x 100, yielding 75%. Because the 

VHMT tested memory in a central display it was impossible to attribute false positives to 

a specific side and in this task only the number of hits was analysed.

In addition to the main analyses, because the same individuals completed all three 

tasks, it was possible to examine the extent to which the cognitive asymmetries measured 

by the different tasks were related to one another. By comparing the pattern of relations 

for younger and older participants, it was possible to determine whether there were age 

differences in the pattern of relations. In order to examine the relations among the tasks, 

a laterality index was calculated. This laterality index reflects the direction and 

magnitude of performance asymmetries. For each participant this index was calculated 

for each task using the formula:

Lateralization index = (R-L)/(R+L),
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in which R represents the right-side hits and L represents the left-side hits. This formula

is commonly used in lateralization or hemispheric asymmetry studies (Hiscock & Stewart,

1984; Strauss et al., 1985).

Finally, in order to examine the difference in the difficulty level of each task, the 

percentage of total correct responses for the immediate condition of each task (both sides 

combined) were analysed in a mixed ANOVA with Task as a within-subject variable and 

Age as a between-subject variable.

3.0. Results

Possible sex differences in performance were explored but there was no 

difference between the sexes so data from the two sexes were combined. Descriptive 

statistics for the younger and older groups are presented in Table 2.

3.1 Lateralization Tasks

3.1.1 DLMT

A main effect of Age was found with younger participants achieving a higher 

percentage of correct responses overall than older participants (90.22 % vs. 81.17%), F (1, 

59) = 18.19, p < .01. A main effect of Side of Presentation was also found, F (1, 59) = 

30.38, p < .01, such that the percentage of correct responses was higher for words 

presented to the right ear (M = 89.64%) than the left (M = 81.76%).

A three-way interaction of Delay, Side of Presentation, and Age was found, F (1, 

59) = 10.98, p < .01 (see Figure 5). For the younger group, the difference in percentage 

of correct responses between the right and left sides did not change across the delay 

conditions but in the older group, the difference in percentage of correct responses
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Table 2. Descriptive Statistics on Lateralization Task Measures by A ge Group

Younger Older

Measure Min. Max. Mean S.D. Min. Max. Mean S.D.

DLMT Immediate R H 5 1 0 8.76 1.15 5 1 0 7.81 1.94
DLMT Immediate R FP 0 2 .09 .36 0 1 .06 .25
DLMT Immediate L H 5 1 0 8 . 1 1 1.50 0 1 0 5.56 2.78
DLMT Immediate L FP 0 1 .24 .44 0 3 . 8 8 1.15
DLMT Delay R H 4 1 0 8.42 1.34 3 1 0 7.31 2.33
DLMT Delay R FP 0 1 .07 .25 0 2 .38 .72
DLMT Delay L H 3 1 0 7.56 1.89 1 1 0 6.31 2 . 6 8

DLMT Delay L FP 0 2 .27 .54 0 3 .75 1.24
TRMT Immediate R H 3 5 4.67 .56 3 5 4.56 .73
TRMT Immediate R FP 0 3 .82 .78 0 4 1.63 1.09
TRMT Immediate L H 4 5 4.80 .41 4 5 4.63 .50
TRMT Immediate L FP 0 3 .78 .80 0 3 1.69 .79
TRMT Delay R H 2 5 4.71 .63 2 5 4.25 .93
TRMT Delay R FP 0 3 .56 .76 0 4 1.81 1.33
TRMT Delay L H 3 5 4.44 . 6 6 3 5 4.56 .73
TRMT Delay L FP 0 3 2.06 .85 0 3 .95 .99
VHMT Immediate R H 1 5 3.93 .99 2 5 3.88 1.03
VHMT Immediate L H 1 5 3.76 1.09 3 5 4.00 .82
VHMT Delay R H 1 5 3.69 1.08 3 5 4.06 . 6 8

VHMT Delay L H 1 5 3.91 1.13 3 5 4.19 .83

DLMT = Dichotic-listening Memory Test 
TRMT = Tactile Recognition Memory Test 
VHMT = Visual Hemifield Memory Test 
R = right (ear or hand or visual field)
L = left (ear or hand or visual field)
H = hits
FP = false positives
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Figure 5. Mean percentage o f correct responses in the younger and older groups on the

Dichotic-Listening Memory Test

Age x Delay x Side of Presentation

Immediate Delay Immediate Delay 
Younger Older

a Right ear 
l  Left ear
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between the right and left sides changed across the delay conditions. That is, there was a 

larger REA in the immediate condition than the delayed condition.

The interaction of theoretical interest involving Age and Side of Presentation was 

obtained, F (1, 59) = 5.05, p < .05, with a larger REA in the older group than the younger 

group (See Figure 6 ). A two-way interaction of Delay and Side of Presentation was also 

found, F (1, 59) = 5.80, p < .02, with a larger REA in the immediate condition than the 

delayed condition (see Figure 7). However, this result was likely influenced by the larger 

REA in the older group in the immediate condition.

3.1.2 TRMT

The Age and Side of Presentation interaction of theoretical interest was not 

obtained. However, a main effect of Age was found, F (1, 59) = 58.76, p < .01, with the 

younger participants obtaining a higher percentage of correct responses (M = 89.78 %) 

than the older participants (M = 77.03%). In addition, an interaction of Age and Delay 

was found, F ( 1, 59) = 4.43, p < .05, with no difference in performance across the delay 

conditions in the younger group but a decrease in correct responses from immediate to 

delayed conditions in the older group (see Figure 8 ).

3.1.3 VHMT

There was no main effect of Age, Delay, or Side of Presentation and there were 

no interactions including Age and Side of Presentation.

3.2 Correlations o f Lateralization Index Scores 

Table 3 shows Pearson correlation coefficients of the laterality index scores across tasks 

and conditions for younger participants, for older participants, and for all participants
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Figure 6. Mean percentage o f correct responses for Right and Left sides (immediate and

delayed conditions combined) in the younger and older groups on the Dichotic-Listening

Memory Test.
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Figure 7. Mean percentage o f correct responses for right and left sides in the immediate

and delayed conditions (the groups combined) on the Dichotic-Listening Memory Test
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Figure 8. Mean percentage o f correct responses on the immediate and delayed conditions

(right and left sides combined) in the younger and older groups on the Tactile

Recognition Memory Test
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Table 3. Correlations of Laterality Index scores for Younger, Older, and Two Groups

Combined

Index and Group 1 2 3 4 5 6

1. DLMT Immediate
Younger
Older
All

.54**
7 3 **
.61**

-.06
-.27
- . 1 2

- . 1 0

- . 0 1

-.14

.04
. 1 1

. 0 1

- . 1 0

.19
. 1 1

2. DLMT Delay
Younger
Older
All

-.24
.08

- . 1 2

-.34*
-.04
-.24

-.13
.06
-.08

.08
-.18

. 0 2

3. TRMT Immediate
Younger
Older
All

.31*
- . 2 0

.16

-.19
.14

- . 1 2

-.26
-.04

- . 2 2

4. TRMT Delay
Younger
Older
All

-.06
-.14
-.05

- . 2 0

-.33
- . 2 2

5. VHMT Immediate
Younger
Older
All

.65**

.32
5 9 **

6 . VHMT Delay
Younger
Older
All

Note. * p<.05 (2-tailed), ** p <.01 level (2-tailed).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



combined. There were no correlations among the three laterality tasks. That is, one’s 

cognitive asymmetry on one task did not predict asymmetry on other tasks.

Within each task, when the two groups were combined, there were positive 

correlations between the immediate and delayed conditions of the DLMT and between 

the immediate and delayed condition of the VHMT (p < .01). For the TRMT, there was 

no correlation between the immediate and delayed conditions. When the groups were 

examined separately, there were correlations between the immediate and delayed 

conditions on all three tasks in the younger group and a negative correlation between the 

delayed condition of the DLMT and the delayed condition of the TRMT but the only 

correlation in the older group was between the immediate and delayed conditions of the 

DLMT.

3.3 Difficulty Level o f Tasks 

There was a main effect of Task, F (2, 58) = 15.64, p < .01 and Age, F (1, 59) = 

37.15, p <.01, but no Task by Age interaction (F=2, 58) =. 41, p = .67. Pairwise 

comparisons showed that the overall performance on the VHMT was lower than on the 

other two tasks. There was no difference between the DLMT and the TRMT (Figure 9).
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Figure 9. The graph showing the percentage o f correct responses for the immediate

condition of each task (both sides combined).

Percentage of Correct Responses Across Tasks

°  65

DLMT TRMT VHMT

Task

Note: DLMT = Dichotic Listening Memory Test 
TRMT = Tactile Recognition Memory Test 
VHMT = Visual Hemifield Memory Test
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4.0 Discussion

4.1 Summary o f Findings 

The aim of the present study was to investigate age differences in hemispheric 

asymmetry using novel lateralized recognition memory tasks. This is the first study to 

date in which three different modalities in the same participants using a memory 

paradigm have been investigated. Using these tasks, the current theories in hemispheric 

asymmetry and aging research (i.e., the RH aging and the HAROLD hypotheses) were 

considered. The results of the present study did not fully support either hypothesis: age- 

related differences in hemispheric asymmetry from the DLMT supported the RH aging 

hypothesis but not the HAROLD hypothesis. In addition, when laterality-index scores 

were correlated among the three tasks, performance on one laterality task did not predict 

performance on the other tasks; however, the results indicated age differences in 

recognition memory performance on the DLMT and TRMT.

4.2 DLMT

The younger group performed better than the older group on the DLMT, 

consistent with earlier dichotic-listening studies (Alden, Harrison, Snyder, & Everhart, 

1997; Gootjes, Strien, & Bouma, 2004; Hallgren, Larsby, Lyxell, & Arlinger, 2001).

Also consistent with previous findings was the REA in both older and younger groups 

(Alden et al., 1997; Gootjes et al., 2004; Hallgren et al., 2001; Kimura, 1967) and an age- 

related decrease of left-ear performance (Alden et al., 1997; Beilis & Wilber, 2001; Clark 

& Knowles, 1973; but see Nebes et al., 1983’s report of no age by ear interaction). The 

HAROLD model suggests a reduction in hemispheric asymmetry in older individuals but 

this was not the finding obtained here .
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Several theories have been proposed to explain this increased ear asymmetry in 

the older individuals. The RH aging theory (Goldstein & Shelly, 1981) proposes that the 

functions of the RH decline faster with age than the functions of the LH. Therefore, the 

left ear would be more susceptible to an age-related decrease in dichotic-listening 

performance. Although the RH aging theory generated much interest in the past two 

decades, accumulated findings do not consistently support the global RH aging 

hypothesis (Cherry et al., 1995; Mittenberg et al., 1989; Schear & Nebes, 1980; Janowsky 

et al., 1996). Another theory that may explain the decline in left-ear performance is the 

corpus callosum deficit theory (Goldstein & Braun, 1974), which suggests that an age- 

related decrease in corpus callosum size causes less efficient transmission of the 

information from the left ear to the LH and therefore results in decreased left ear 

performance in older individuals. The corpus callosum serves a critical function in 

transmitting verbal information from the left ear via the RH to the language areas on the 

left (Kimura, 1967). Certainly, there is evidence that the size of the corpus callosum 

decreases with age (Sullivan et al., 2001; Weis, Jellinger, & Wenger, 1991) and that the 

size correlates with performance on dichotic-listening tasks in healthy individuals (Clarke, 

Lufkin, & Zaidel, 1993; Yazgan, Wexler, Kinsboume, Peterson, & Leckman, 1995) and 

in patients with neurological diseases affecting white matter (Gadea et al., 2002;

Reinvang, Bakke, Hugdahl, Karlsen, & Sundet, 1994).

The present study was the first to investigate immediate and delayed memory 

performance using a dichotic-listening procedure. The results of the DLMT showed that 

the encoded information was retained over a delay in the younger group for both sides 

but in the older group some information encoded by the right ear was lost whereas the
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information encoded by the left ear was retained. Research in memory and aging has 

shown evidence of age-related changes in both encoding and retention of episodic 

memory (Backman et al., 2001; Park & Gutchess, 2005). Both the frontal and medial 

temporal lobes have been shown to be critical to episodic memory (Daselaar, Veltman, 

Rombouts, Raaijmakers, & Jonker, 2003). Raz et al. (2004) reported age-related changes 

in the prefrontal cortex and hippocampal regions without coincidental changes in 

hemispheric asymmetry. Because the present study is the first to investigate immediate 

and delayed memory of dichotically presented information, it is currently unclear why the 

difference in retention between the two hemispheres exists in older individuals.

Therefore, further research is necessary to replicate the present findings.

4.3 TRMT

The younger group performed better on the TRMT task overall consistent with 

previous studies (Price et al., 1980; Riege et al., 1980). This finding (e.g. Price et al., 

1980) has been partially explained by an age-related decrement in tactile sensitivity 

emerging from changes in mechanical properties of the skin with advanced age (Ivy, 

MacLeod, Petit, & Markus, 1992; Kenshalo, 1986). However, the change in tactile 

performance appears to be due to more than just peripheral changes associated with aging. 

Woodward (1993) reported an age-related decline in tactile discrimination thresholds 

even after controlling for skin sensitivity, and Resnick et al. (2000) found age differences 

in the area of the brain that is associated with tactual processing, the parietal cortex.

There was no side advantage in performance overall, which is in agreement with 

some of the previous tactile research findings that found no side advantage in normal 

individuals (Fontenot & Benton, 1971; Milner & Taylor, 1972) but is inconsistent with
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other findings that have found a left-hand advantage (Benton et al., 1973; Dodds, 1978; 

Koenig, 1987). However, most previous studies utilized different types of tactile stimuli 

that usually contained visuospatial characteristics (i.e., shapes and forms) except Koenig 

(1987). Koenig used six artificial textures consisting of a number of 0.5 mm high 

components in a bimanual recognition task but still found a left-hand advantage. 

However, Koenig used a cross-modal recognition method, in which a visual board that 

consisted of two-dimensional representations of the textures drawn in ink was shown and 

the participant was required to verbally indicate the correct choices. Therefore, it is 

difficult to determine whether the effect that was found was associated with the RH 

advantage of processing visuospatial information or processing textures. The present 

study was the first to examine tactile memory using textures obtained from the 

environment (i.e., non-artificial) as stimuli using an intramodal recognition method. 

Therefore, it is possible that the results obtained in the present study were a result of the 

equal capability of the hemispheres in processing these textures.

Another explanation for the failure to find a side advantage in the present study 

could be the use of a unimanual method rather than a bimanual method. Minami et al. 

(1994) indicated that there were differences between bimanual and unimanual 

presentations and that the effects related to hemispheric specialization were more evident 

with simultaneous presentation of stimuli to both hands. However, previous studies have 

found a left-hand advantage using unimanual methods in tactile research (Benton et al., 

1973; Dodds, 1978; Harris, 1980).

More recent studies have used both unilateral and bilateral methods and found 

that both hemispheres are equally capable of processing tactile information (Brown &
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Sainsbury, 2000; Clark & Geffen, 1990). Clark and Geffen examined judgments of 

simultaneity for somatosensory stimuli using both unilateral and bilateral conditions.

Both index fingers were stimulated in the bilateral condition, whereas the index and 

middle fingers were stimulated in each unilateral condition (i.e., within left hand, within 

right hand). Participants had to report whether the two stimulus events occurred 

simultaneously. Clark and Geffen reported no difference in simultaneity thresholds for 

the bilateral condition (i.e., left hand stimulation preceding right hand; right hand 

stimulation preceding left hand). They also reported no difference in threshold values 

when the two unilateral conditions were examined suggesting that both hemispheres are 

equally capable of processing temporal tactile information.

Similarly, Brown and Sainsbury (2000) examined hemispheric asymmetry, 

interhemispheric transfer time, and age-related differences in judgments of simultaneity 

to tactile stimulation. Participants judged whether pairs of tactile stimulation to index and 

middle fingers were delivered simultaneously. Results of both bimanual and unimanual 

conditions supported a model of hemispheric equivalence in that both hemispheres were 

equally capable of making judgments of simultaneity to fine tactile stimuli. However, the 

older adults had significantly higher simultaneity thresholds than younger adults.

Therefore, the present findings along with previous findings (Brown & Sainsbury, 

2000; Clark & Geffen, 1990; Fontenot & Benton, 1971; Milner & Taylor, 1972) suggest 

that when the visuospatial aspects of tactile information are minimized, the two 

hemispheres are equally capable of processing tactile information.

The results of the TRMT on the immediate and delay memory conditions reflect 

the participants’ abilities to encode and retain tactile information. Encoding and retention
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of the tactile information were different between the two age groups. Age-related 

declines in encoding and retention of tactile information mimics that for verbal or 

visuospatial information (Backman et al., 2001; Park & Gutchess, 2005).

4.4 VHMT

Age-related changes in hemispheric asymmetry were not found on the VHMT 

task, and this is consistent with most previous studies (Cherry et al., 1995; Ellis & Oscar- 

Berman, 1989; Nebes, 1990; Obler et al., 1984 but see Elias & Kinsboume,1974, who 

showed an age-related hemispheric asymmetry in females only). In contrast to previous 

findings, the present results did not show an age effect (Cherry et al., 1995; Nebes et al., 

1983; Obler et al., 1984) or a side advantage (Kimura, 1966; McKeever, 1986). There are 

two possible explanations for the absence of age differences. One is that there are no age- 

related differences in cognitive abilities or processes involved in performing the VHMT. 

The VHMT is different from previous tasks in that only recognition memory rather than 

processing speed was measured. Processing speed has been shown to decrease with 

aging and previous visual hemifield studies have supported this notion (Cherry et al., 

1995; Craik & McDowd, 1987; Jenkins et al., 2000; Kimura 1966; Nebes et al., 1983). 

However, the absence of decline because of not using a speeded task is unlikely given 

previous findings that indicate age-related differences in visuospatial memory (Shelton et 

al., 1982; Schear & Nebes, 1980). The absence of side advantage was also surprising 

given that visuospatial memory is associated with functioning of the right temporal lobe, 

including the hippocampus (Kimura, 1963; Miner, 1971) and that difficult-to-verbalize 

stimuli used in the present study likely limited verbal encoding of the stimuli. Another,
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more plausible explanation for the absence of age difference is the nature of the VHMT 

that prevented the measurement of false positive responses for each side.

4.5 Intercorrelations among tasks 

The results of the present study showed that there were no systematic age-related 

changes in hemispheric asymmetry. That is, there were no consistent correlations among 

the three tasks. The independence of asymmetries measured by the three tasks is 

consistent with previous studies that have correlated various laterality tasks and failed to 

find any relations (Andresen & Marsolek, 2005; Cherry et al., 1995; Hellige et al., 1994; 

Jancke et al., 1992; Teng, 1981; Wexler & King, 1990). For example, Jancke et al. used 

seven different dichotic-listening tests (free recall of digit lists, free recall of consonant- 

vowel syllables, four different consonant-vowel syllable monitoring paradigms, and free 

recall of Morse codes) and found variable reliability scores and generally low intertest 

correlations. Cherry et al. (1995) used three different visual hemifield tasks (consonant- 

vowel-consonant nonsense trigrams, chair identification, and face processing) and also 

found no asymmetry correlations. This suggests that different laterality tasks measure and 

reflect very different aspects of hemispheric asymmetry. That is, even when participants 

are tested entirely within a single modality, performance asymmetries are often a 

combination of factors such as the direction and degree of hemispheric specialization for 

specific parts of information processing, complementarity of asymmetry, and 

interhemispheric communication (Hellige, 1993).

4.6 A comment on models o f neurocognitive aging 

The findings of the present study along with previous research findings in 

hemispheric asymmetry and aging suggest that it is difficult or perhaps impossible to find
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a common factor that explains age-related changes in neurocognitive functioning. 

However, researchers nonetheless continue to search for a common factor that could 

explain the neurocognitive aging processes. With the emergence of neuroimaging 

techniques, researchers have begun to explore in vivo neuroanatomical age-related 

changes and neuroanatomical correlates of cognitive processes. Neuroimaging studies 

have found age-related changes in the brain, more so in the frontal and temporal regions 

than in parietal and occipital lobes but the findings have been mixed (Raz et al., 2004; 

Raz, 2005; Resnick et al., 2000).

A hypothesis that currently seems to be dominating the field of psychology of 

aging is the frontal lobe hypothesis of neurocognitive aging, which states that cognitive 

functions supported by these areas are more susceptible to age effects than functions that 

depend on posterior and subcortical areas (West, 1996). Indeed, there is evidence for 

relative age-related changes in the frontal cortex, in terms of general decreased volume, 

decreased frontal myelin, development of neurofibrillary tangles, neurotransmitter 

responsivity, decreased metabolic activity, and decreased number of synapses and 

dendrites (Albert, 1993; Fulop & Seres, 1994; Gibson, 1983; Raz et al., 2004; Salmon et 

al., 1991; Uylings et al., 2000). However, the past tells us that one hypothesis is never 

enough to explain the complexities involved with the neurocognitive aging process. For 

example, just as it is the case that the entire RH does not age faster than the LH, not all 

frontal areas are implicated in cognitive aging, and not all cognitive aging depends on 

neuronal loss in the frontal cortex. Relevant age-related changes occur in other areas 

such as the temporal and parietal cortices as well as in the subcortical systems 

(Greenwood, 2000; Raz et al., 2004; Raz, 2005; Resnick et al., 2000).
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Similarly, another emerging hypothesis of aging is the dopamine hypothesis, 

which states that the loss of dopamine receptors in the basal ganglia, the anterior 

cingulate, and the preffontal cortex can explain a variety of age-related changes 

(Backmann et al., 2000; Braver et al., 2001; Li, Lindenberger, & Sikstrom, 2001). For 

example, Li et al. showed how loss of dopaminergic support can explain age effects on 

working memory, selective attention, and inhibition. Although the support for the new 

hypotheses may appear promising, a similar caution against extending the findings more 

broadly than warranted should be applied when interpreting results.

5.0 Conclusions

5.1 General Conclusions 

The results of the present study do not fully support the RH aging hypothesis, 

which predicts a decrease with age in RH functioning, or the HAROLD hypothesis, 

which predicts a decrease in asymmetry in the frontal lobe functioning. Age-related 

cognitive effects appear to be heterogeneous depending on the task and the associated 

cognitive processes involved. Although many researchers have identified and continue to 

aim to identify a common factor that could capture the plethora of age-related changes, 

there seems to be no unitary factor that is broad enough to explain neurocognitive 

changes that occur with aging.

5.3 Directions for Future Research 

Given the findings of the present study, it would be interesting to conduct further 

studies using the DLMT and the TRMT given the dearth of research in memory and 

lateralized tasks. The first step would be to establish reliability of the tests by replicating 

the findings and conducting reliability studies (e.g. test-retest, split-half). Once the
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reliability of the test instruments has been established, other studies could ensue. 

Regarding the DLMT, it would be interesting to examine recall versus recognition 

performance of each side given that aging affects recall more than recognition (Craik & 

McDowd, 1987; Kemps & Newson, 2006). Regarding the TRMT, it would be interesting 

to examine the TRMT using both bimanual and unimanual methods to see if  there is a 

difference in hemispheric asymmetry given previous research findings showing that 

bimanual tasks are more sensitive in detecting hemispheric differences than unimanual 

tasks (Minami et al., 1994). In addition, for both tasks, distractor stimuli could be given 

more than once (in contrast to the present experiment in which each stimulus was only 

used once) in order to increase the difficulty of the task and also to investigate the 

performance difference between the present method and this method.

Another important step would be to examine the construct validity of these 

measures. One method would be to utilize functional neuroimaging techniques to 

examine the neuroanatomical correlates of these tasks. Another method would be to 

study individuals with right or left-sided brain dysfunction, such as patients with epilepsy, 

in order to determine whether the dysfunctional side is associated with poorer 

performance. It would be important to study individuals before and after temporal lobe 

excisions to determine whether the performance changes with surgery.

5.3 Practical Implications 

The results from the DLMT suggest that older individuals would likely to 

remember information that is presented to the right ear more than to the left. This finding 

can be applied to people’s daily functioning in a sense that when an older person is 

speaking on the telephone, he or she should put the phone to his or her right ear. In
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addition, this finding can be applied in a public setting. For example, when one wishes to 

present in front of older individuals in an enclosed setting, one may wish to set up the 

podium on the right side of people or set up the speaker in such a way that information 

could be detected well by people’s right ear. This will likely facilitate the older 

individual’s ability to absorb and retain information.
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Appendix A 

Edinburgh Handedness Inventory

Participant Code:________ Date of Birth____________ Age_____Sex________

Please indicate your preferences in the use of hands in the following activities by putting 
+ in the appropriate column. Where the preference is so strong that you would never try 
to use the other hand unless absolutely forced to, put ++. If in any case you are really 
indifferent put + in both columns.
Some of the Activities require both hands. In these cases that part of the task, or object, 
for which hand preference is wanted is indicated in brackets.
Please try to answer all the questions, and only leave a blank if you have no experience at
all of the object or tas c.

Left Right
1 Writing
2 Drawing
3 Throwing
4 Scissors
5 Toothbrush
6 Knife (without fork)
7 Spoon
8 Broom (upper hand)
9 Striking Match 

(match)
1 0 Opening box (lid)

i Which foot do you 
prefer to kick with?

ii Which eye do you 
use when using only 
one?
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Appendix B

Health Questionnaire 
Background Information

General Information

Participant Code:

Do B/Age_______________________
Sex____________________________
Language (native, age, most frequent) 
Handedness (writing, always?)______

________________ Education and Work History
Highest education___________________________
Learning problems?__________________________
Occupation_________________________________
Other

______________________ Medical History_______
Previous hospitalizations_______________________
Stroke/TIA__________________________________
Brain surgery/tumour__________________________
Head trauma (LoC, hospitalized overnight)________
Seizures or epilepsy___________________________
Other neurological disorders (MS, PD, HD, CP, AD)
Cancer (time of dx, treatment)___________________
Diabetes/Thyroid/HBP_________________________
Heart attack (cognitive change 24 hours later)______
Carpal tunnel syndrome________________________
Paget’s disease_______________________________
Birth history & developmental milestones_________
Numbness___________________________________
Mental or emotional problems requiring treatment
Alcohol use (# per day)________________________
Tobacco use_________________________________
Colour blindness_____________________________
Medication

Other
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Memory
Complaints?
Examples

Type of memory affected (immediate, recent, remote)
Duration_____________________________________
Family History________________________________

___________________ Other Cognitive Skills_____
Concentration (focus, distraction)________________
Word-finding_________________________________
Understanding conversation_____________________
Understanding reading material__________________
Problem Solving______________________________
Driving______________________________________

 ______________________Mood____________
Sad/depressed?_______________________________
Anxious/worried?

Other
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Appendix C

Description of Distractor Tasks

WMS-III Digit Span
The first part of this two part test is the forward span in which the experimenter 

says a series of digits at one digit per second and the participant repeats the digits in the 
same order. The second part of the test is the backward span in which the participant is 
asked to repeat the digits backward. There are two trials per block, with the number of 
digits per trial ranging from two to nine in both forward and backward parts. The test is 
discontinued either when the participant misses both trials of a particular level or when 
all the trials are given, whichever comes first. The total number of correct trials and the 
longest forward and backward spans are measured.

WMS-III Spatial Span
This task is analogous to the Digit Span task except the experimenter taps a series 

of raised blocks on a board at a rate of one block per second and the participant repeats 
this pattern. The second part of the test is the backward span in which the participant taps 
the blocks in a pattern that is the reverse of the pattern presented by the experimenter. In 
the forward span the number of blocks increases after every second trial going from two 
to nine and in the backward span the umber increases from two to eight. The test is 
discontinued either when the participant misses both trials of a particular level or when 
all the trials are given, whichever comes first. The total number of correct trials and the 
longest forward and backward spans are measured.

WRAT-3 Reading
The participant reads aloud a series of words printed on a card and the number of 

correct responses is recorded. The test is discontinued when ten consecutive failed 
responses are observed or when all the words are read.

Trail Making Test Part A and Part B
In Part A, participants are asked to connect 25 randomly arranged numbers in 

numeric order as quickly as possible. In Part B, the participants connect 25 numbers and 
letters in alternating order with increasing number and alphabetical order as quickly as 
possible. The completion time of each part is measured.

Grooved Pegboard
The Grooved Pegboard consists of a metal board with a matrix of 25 randomly 

positioned holes. The participant fits the pegs into peg holes as quickly as possible in 
sequence, first with the right hand and then with the left hand. The completion time for 
each hand is measured.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix D

Descriptive Statistics on Distractor Task Measures by Age Group (raw scores)

Younger Older

Measure Min. Max. Mean. S.D. Min. Max. Mean. S.D.

WRAT-III Reading 38 55 47.16 3.93 43 57 52 4.38
Digit Span Forward Total 7 15 10.89 2.06 7 14 9.94 2.27
Digit Span Backward Total 4 12 6.87 1.77 4 11 6.44 1.83
Digit Span Total 11 25 17.76 2.98 11 25 16.50 3.69
Longest Digit Span Forward 5 9 6.91 1.14 5 8 6.50 1.03
Longest Digit Span Backward 3 7 5.00 1.13 3 7 4.75 1.18
Spatial Span Forward Total 6 13 8.93 1.62 4 10 6.69 1.62
Spatial Span Backward Total 5 11 8.02 1.32 6 8 6.44 0.81
Spatial Span Total 13 22 17.00 2.33 10 17 13.13 2.03
Longest Spatial Span Forward 4 8 6.16 0.82 3 6 4.75 1.07
Longest Spatial Span Backward 4 8 5.49 0.87 4 6 4.56 0.73
Trail Making Test A 12 45 19.62 6.26 19 44 31.63 7.78
Trail Making Test B 24 78 48.84 13.63 49 136 88.13 27.11
Grooved Pegboard Right 48 74 59.71 6.40 64 155 91.15 25.60
Grooved Pegboard Left 43 74 63.82 6.48 67 126 93.92 18.42

WRAT-III = Wide Range Achievement Test -  Third Edition
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Appendix E 

Order of Task Presentation

Interview

Edinburgh Handedness Questionnaire 

Mini-Mental State Examination (Older group only)

Bells Cancellation Test 

Tactile Form Recognition Test

Visual Hemifield Memory Test-presentation of stimuli and immediate recognition 

Dichotic-listening Memory Test-side 1-presentation and immediate recognition 

Tactile Recognition Memory Test-side 1-presentation and immediate recognition 

Visual Hemifield Memory Test -delayed recognition 

Dichotic-listening Memory Test -side 1-delayed recognition 

Tactile Recognition Memory Test -side 1-delayed recognition 

Dichotic-listening Memory Test-side 2-presentation and immediate recognition 

Tactile Recognition Memory Test -side 2-presentation and immediate recognition 

Trail Making Test A &B 

Spatial Span

Dichotic-listening Memory Test -side 2-delayed recognition 

Tactile Recognition Memory Test -side 2-delayed recognition 

Digit Span 

WRAT-3 Reading 

Grooved Pegboard Test
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Appendix F 

A Sample List of Textures Used

■ Bubble pad

■ Corduroy

■ Corrugated fiberglass roofing

■ Different grits of sand paper

■ Expanded aluminum

■ Flannel

■ Foam carpet under-pad

■ Foam packing material

■ Half-round moulding

■ Metallic coarse weave

■ Nylon

■ Plastic light diffuser

■ Plush carpet

■ Quilted mattress cover

■ Rough side of tempered masonite

■ Scotch-brite scouring pad 

- Silk

■ Wire mesh
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