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Abstract

In this dissertation methods of obtaining high throughput rate digital filters are 

examined. The use of Canonic Signed Digit (CSD) filter coefficients is established 

and a new chromosome coding technique is developed to enable efficient design of 

non-recursive filters using a Genetic Algorithm.

The new genetic algorithm approach using the proposed new coding scheme is 

extended to efficiently handle recursive filters using a new unstable penalty factor to 

handle the instability constraints imposed by such filters. A technique is presented 

that allows these new methods to be applied to the design of high throughput 2-D 

filters.

The throughput rate of CSD coefficients digital filters is further increased by the 

use of common sub-expression elimination. A new graphical transformation is 

presented that allows for optimization of the elimination of CSD-coefficient common 

sub-expressions in both the vertical and horizontal dimensions.

The effectiveness of the proposed methods is demonstrated with example designs 

and comparisons to other methods.
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CHAPTER 1. INTRODUCTION

Digital Signal Processing (DSP) is a field of engineering that deals with the processing, 

enhancement, and extraction of information for discrete time data. DSP has been applied 

in the areas of radar signal processing, speech processing, communication, biomedical 

image processing, and computer vision. Increasingly, DSP algorithms and devices are 

being found in consumer products such as home theatre , music players, cell phones, etc.

An important area of DSP is digital filtering. It is a computational process, which 

transforms a signal represented by an input array of numbers to another signal 

represented by an output array of numbers, in order to alter the signal response 

characteristic according to some prescribed specification.

Digital filters can be applied in one-dimension (1-D), two-dimensions (2-D), and in 

general N-dimensions (N-D) and can be implemented on a general-purpose computer or 

special-purpose hardware. The throughput of a digital filter is the rate at which an input 

array can be transformed into a corresponding output array. For many applications a high 

throughput will be required.

A 1-D recursive digital filter can be characterized by its difference equation (1.1)

N M

y i n T )~'Zj aix ( r iT - iT ) - 'Y J b ,y {n T - iT )  (1.1)
( = 0  i = 1

or by its transfer function (1.2). Where x(nT) is the input signal, y(nT) is the

1
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a  ( i ) z  1
HI  \ -  A{ z )  n  nH{z) „ ~ 5 (z)  (1.2)

X  b { i ) z  ‘
i = 0

fo r  stability B ( z ) ^ 0  a n d  | z | ^ l

output signal, n is a sequential sample number, T is the sample period and a„ bj are the 

filter coefficients [1]. The magnitude and phase of the filter at a particular frequency w 

is given by the transfer function when z = e J“T.

Filter design is the process determining the coefficient a.’s and bfs of the transfer 

function such that the magnitude or phase of the frequency spectrum of the designed filter 

approximates some desired response. Without loss of generality we assume M=N.

The filtering operation is performed according to the difference equation (1.1). Present 

and past input and past output samples are multiplied by the filter coefficient a/s and bi's. 

These products are summed to arrive at the output sample. The maximum speed at which 

this operation can proceed is dominated by the time needed for multiplying the samples 

by the filter coefficients. Decreasing the time needed for this multiplication will improve 

the speed of the filter thus yielding higher throughput.

Binary multiplication is performed by a shift and add operation. The multiplier is 

repeatedly shifted one or more bit positions and added to a partial product according to 

the bit pattern of the multiplicand as shown in Fig. 1.1.

2
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(10 1 ! ) • ( 10 10 )

1 0 1 1

0 0 0 0

1 0 1 1

0 0 0 0

0 1 1 0 1 1 1

Fig. 1.1 Shift-Add binary multiplication

While shift operations execute quickly, additions are slower and comprise the bulk of 

the multiplication time. Since an addition is required only when a 1 bit occurs in the 

multiplicand, a multiplicand with fewer 1 bits will take less time to be multiplied than a 

multiplicand with more 1 bits.

When performing a filtering operation the multiplier is chosen to be the input or output 

sample and the multiplicand is one of the filter coefficients. Filters designed to have 

coefficients comprising a small number of binary 1 digits are able to execute faster than 

filters having coefficients comprising more binary 1 digits.

1.1 Canonical Signed Digit Number System

A common method [2]-[6] method for decreasing the number of binary 1 digits and 

hence reducing the number of additions required during multiplication is to use the 

Canonical Signed Digit (CSD) number system which inherently has a large number of 

zero digits. It is based on the signed digit number systems [7] which allows individual 

digits to have a sign as well as a value.

digit e

3

(1.3)
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Generally the digits of these number systems are chosen as shown in (1.3) and can have 

any base. As a replacement of the binary system for high speed multiplication, the ternary 

number system where r = 2 is used. This allows the digits to have values of 0, 1 or -1. 

Typically the -1 digit may be written as I or as the letter n (for negative 1). Here, the I 

form will be used for clarity in equations, while the simpler n form will be used for long 

compilations of CSD numbers.

In this number system, the sign and value of the overall number is determined by the 

weighted sum of the signed digits as shown in (1.4).

N -  1

value = d 0d ]d 2 —, d N_\ = '^J d jx2~‘
i = 0

In multiplication, the shift and add operation of the binary number system is extended 

to include subtraction for the case when a digit has a value of -1. Subtraction and addition 

are comparable in terms of speed of execution so allowing -1 digits does not hinder 

multiplication time yet the extra freedom offers a great potential to increase the number 

of zero digits used to represent a given value.

The signed-digit number system is a redundant number system, since a given value 

may be represented by more than one sequence of digits. For example,

0.01 =  1 X2~2 = .25 and 0. l I  =  l x 2 1- l x 2 “2= - . 2 5  are two different

representations with the same value.

4
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However, for any given value with two or more redundant representations there will be 

only one representation where the A-digit signed-digit number follows the constraint of 

(1.5).

d nXd„+i = 0 for 0< n< N  — 2 (1.5)

Such a number is said to be the canonical form of the signed-digit number or simply 

the CSD form. Following from (1.5) is the property that the number has no adjacent non

zero digits.

Another property of the CSD form is that it has the fewest number of non-zero digits 

among the redundant forms. An N bit number in CSD format is able to uniquely express 

every value of an N bit binary number but it will never have more (N+l)/2 non-zero bits. 

This makes it a very desirable form for high throughput filtering.

1.2 Limiting Non-Zero Bits in Coefficients

A method of further reducing the number of non-zero digits in a coefficient is to simply 

place an arbitrary limit on the the number of such digits allowed. Unfortunately, this 

reduces the available values in the number system resulting in a loss of granularity in 

coefficient choice thus ultimately limiting the quality of the filters which can be designed. 

However, using appropriate design methods, good filters can still be designed.

For example, the designer can opt to allow no more than 3 non-zero digits within a 16 

digit CSD coefficient. Such non-zero-bit limited (bit limited) CSD numbers are still 

technically CSD numbers since they form a subset of the CSD number set but they can no 

longer represent all possible values within their range.

5
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For example, the CSD number represented by 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0  would not 

be allowed if we were to set a non-zero bit limit of 3. Since this uniquely represents the 

value -0.3359375, such a value would not be available. The closest value that could be 

represented would be -0.328125 having a representation of OOlOlOTOOOOOOOOO 

which, in this case, exhibits an approximate 2.3% error from the desired value.

Coefficients in this bit-limited format are guaranteed not to have more than the given 

limit of non-zero digits making them well suited as operands in high speed multiplication. 

However, filter designs become more difficult with fewer coefficient values to choose 

from.

1.3 Survey of Filter Design Methodologies with CSD Coefficients

Several design methodologies have been used for designing CSD Coefficient Filters.

1.3.1. Conversion

Simply designing a filter using infinite precision numbers and converting each of the 

filter's coefficients to bit-limited CSD numbers is problematic at best. Due to the poor 

granularity of bit-limited CSD numbers, each conversion could introduce a fair amount of 

error. It is likely that the accumulated errors of all coefficients will detrimentally effect 

the filter's response. In addition, for recursive filters, a formerly stable filter may become 

unstable. Consequently, this method is not often used.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.3.2. Algebraic Design

Designing a filter completely within a bit-limited CSD number system using direct 

algebraic filter synthesis is not possible. Bit-limited CSD number systems are not closed 

under normal arithmetic operations such as addition or multiplication. For example, the 

sum of two bit limited CSD numbers may have more non-zero digits than the limit allows 

placing it outside the number system. Thus no bit-limited CSD algebra exists within 

which direct filter synthesis calculations can be performed.

1.3.3. Search and Optimization

Some form of search and optimization is often used to design these filters. Standard 

optimization algorithms, such as hill climbing, will get trapped in a local maximum of the 

multimodal search space of a filter design.

Integer programming has been used successfully for low order filters but it tends to 

become impractical for higher order filters [5] due to the search space becoming 

extremely large.

Simulated annealing has been shown to be effective in filter design but it suffers from 

high computational costs [8].

A computationally efficient method which has a parallel searching capability is the 

Genetic Algorithm [9]. It can handle large search spaces and has been shown to work 

with both recursive [2]-[4] and non-recursive [6] filter designs.

7
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To date though, this method has been hampered by its inability to efficiently handle the 

CSD constraints. All solutions have introduced some form of random search into an 

otherwise robust search method. The resulting search methods are no longer pure Genetic 

Algorithms but hybrids of random search and GA principles.

In this dissertation a method is presented for applying a GA to this problem with a new 

coding technique that makes it possible to utilize the full potential of the genetic 

algorithm. Many examples and comparisons are included to demonstrate the effectiveness 

of this method.

1.4 Common Sub-expression Elimination

The throughput of the implementation of CSD-coefficient filters is determined by 

the number of additions required to implement the coefficient multiplication using a 

shift/add procedure. The number of these additions can be reduced by avoiding redundant 

calculations through the use of common sub-expression elimination.

In this dissertation a method is presented for transforming this problem into one similar 

to the well understood Traveling Salesman problem [9]. An example using a standard GA 

is included to demonstrate the effectiveness of this method.

1.5 Organization of this Dissertation

This dissertation covers several topics. Chapter 1 is a general introduction. Chapter 2 

continues with a detailed examination of Genetic Algorithms. Chapter 3 looks at 1-D 

filter non-recursive design and Chapter 4 extends this to recursive filter design. Chapter 

5 covers 2-D filter design and Chapter 6 looks at common sub-expression elimination

8
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CHAPTER 2. GENETIC ALGORITHMS

2.1 Introduction

This chapter examines the basic operation of Genetic Algorithms including the 

essential operations of selection, crossover and mutation. The theoretical foundations are 

reviewed including the fundamental theorem of Genetic Algorithms, the building block 

theorem and implicit parallelism. Advancements and refinements to the basic operators, 

as well as techniques for managing GA difficulties, are examined.

2.2 Origin and Operation

Genetic algorithms are a class of computational methods that are modeled on the 

mechanisms of natural evolutionary genetics. The first rigorous study of GA principles 

was reported by John Holland in his book Adaptation in Natural and Artificial Systems 

published in 1975 [10]. This work has been subsequently extended by many others. They 

utilize methods that are similar to the methods found in natural selection to work. These 

methods operate on a population of problem solutions in an effort to find the fittest 

individual. It is hoped that this fittest individual is at or close to the optimal solution

The technique is based on the principles of survival of the fittest. Individuals in a 

population must compete with each other for a limited number of resources and 

ultimately for survival. The most successful individuals will more likely survive and thus 

mate. The less successful individuals will be less likely to survive and thus will produce 

fewer offspring than a successful individual. This means that each succeeding generation

9
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will more likely inherit genes from the successful individuals than from the unsuccessful 

ones.

Genetic algorithms borrow heavily from this natural evolutionary process to allow 

solutions to real world problems to evolve over many succeeding generations. Therefore, 

in order to artificially use the mechanisms of natural selection on a search and 

optimization problem, it is necessary to formulate the problem in line with that observed 

in nature. The solution to the problem must be expressed as a character string called a 

chromosome and there must also be a fitness function that can be applied to this string to 

determine the individual’s fitness.

For example, in the design of a bridge the chromosomes may represent the size and 

weight of certain beams. The fitness function would calculate the strength to weight ratio 

of a bridge built with these beams. The GA would then be searching for the beams with 

the highest strength to weight ratio.

Within a population of individual solutions to a problem there are more fit and less fit 

solutions. Individuals are chosen from this population for mating depending upon their 

fitness score. Two chosen individuals are mated by cutting and splicing their 

chromosomes to form a new chromosome. The offspring will thus inherit features from 

both parents. In this way the good characteristics of a population are transferred to each 

succeeding population while the bad characteristics are not. This results in the most 

promising areas of the search space being explored. If the problem has been coded into 

chromosomes properly, the population will converge to an optimal solution.

10
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The GA is robust since the only requirement for applying it to a particular problem is 

that the solution can be expressed as a chromosome and there exists a fitness function to 

evaluate this chromosome’s fitness. No other information about the problem is needed. 

This means that a GA can be applied to a wide variety of problems including some of 

those where there are no other solution techniques.

A GA does not actually find a solution to a problem but instead creates new and better 

solutions based on existing solutions. Fortunately, the coding of a solution into a string as 

required by the GA allows initial solutions to be randomly generated. While GAs are not 

guaranteed to find the global optimum, they are good at finding good solutions in a 

reasonable amount of time.

2.3 Classes of Search Techniques

Genetic algorithms are a type of optimization search technique. Search techniques in 

general, as illustrated in Fig. 2.1, can be grouped into three broad classes [10] calculus 

based, enumerative and random search.

SEARCH
TECHNIQUES

CALCULUS 
BASED _

NUMERATIVERANDOM

R andom  W alkniRFCT
EVOLUTIONARY
ALGORITHMS

Zero GradientNewton’s
M ethod

EVOLUTIONARY
STRATEGIES

GENETIC
ALGORITHMS

P ara lle l S eq u en tia l

Fig. 2.1 Search Techniques
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Calculus based methods include direct and indirect. Indirect is the search for the peaks 

of maxima by finding zero of the gradient. Direct techniques are those such as Newton’s 

method. Random methods include simulated annealing, evolutionary strategies, genetic 

algorithms and the simple random walk through the search space. Enumerative methods 

are the brute force methods where all the solutions in the whole search space are 

generated.

BEGIN SIMPLE GENETIC ALGORITHM 
Randomly generate initial population
Compute the fitness of each individual in the population 
WHILE (NOT finished) DO

// produce new generation 
FOR (population_size / 2) DO 

Reproduction:
- Copy two parent individuals randomly selected from 
current generation using probability biased to favor the 
fittest
- Mate these copies by randomly splitting and recombining 
them to form two new offspring

Crossover:
- Remove the two original parents from current generation
- Place the two offspring into new generation 

END FOR
Designate new generation to be current generation 
Randomly change some randomly selected individuals 
Mutation:
Compute the fitness of each individual
IF (population has converged) THEN 

finished 
END IF 

END WHILE
END GENETIC SIMPLE ALGORITHM

Fig. 2.2 Simple Genetic Algorithm

The basic simple genetic algorithm, as described by Goldberg [10], is shown in Fig.

2.2. It is composed of three operators: reproduction, crossover, and mutation. These are 

applied to a population of individuals each of which is composed of a coded solution to

12
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the problem. The problem must have a fitness function that can be applied to each 

solution to determine its merit or fitness. Applying the operators to a population results in 

a new population with hopefully increased average fitness as well as an increase in the 

fitness of the fittest individual. This process is repeated until there is no further fitness 

increase at which time the solution is said to have converged. The cycle is shown more 

graphically in Fig. 2.3.

I V f u t a T i o t w .  ( ]
T j

x

j* - -

Fig. 2.3 Simple Three Operator Genetic Algorithm

2.4 Problem Coding

The problem solution must be encoded in a form suitable for use with the reproduction, 

crossover, and mutation operators. The solution must be configured as a string of 

characters called a chromosome after its biological analogue. The characters, also called 

genes, may be taken from any fixed alphabet that may be used to represent the problem. 

Early work [11] suggested that a longer string is superior to a shorter string so a low 

cardinality alphabet is superior to a higher one. Later work however [12],[13], shows that 

some problems do better with a higher cardinality7 chromosome. The lowest cardinality 

that will work is an alphabet of only two characters so a binary string is often used to
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code problems. In biology, chromosomes are made of strings of four different proteins so 

the biological alphabet has a cardinality of four.

2.4.1. Fitness Function

The problem must also have an objective or fitness function that takes a solution 

chromosome and returns a value that represents a figure of merit for this solution. A 

higher figure of merit indicates a superior or fitter solution.

The genetic algorithm works on a population of chromosome strings each of which 

represent a solution to the problem. To begin, an initial population of solution strings is 

chosen by some method such as simple random choice. This population is applied to the 

objective function and each solution is assigned a fitness value. The population is then 

subjected to the three operators of the genetic algorithm.

2.4.2. Reproduction

Reproduction is the process of randomly selecting chromosome strings biased by their 

fitness value and making new chromosome strings out of them. A chromosome string 

with a higher fitness value will have a higher probability of being chosen for 

reproduction. This is analogous to the natural selection process whereby an organism that 

is more fit has a higher chance of surviving to reproduce.

Implementing a biased random selection in algorithmic form can be accomplished in 

many ways. A common method is to create a biased roulette wheel where each 

chromosome string is assigned a slot on the wheel but the slots are not uniform in size.

14
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Instead each is sized in proportion to its corresponding chromosome's fitness. When the 

wheel is spun the chromosome string with the highest fitness will have the greatest 

possibility of being chosen. An entire population is chosen this way. Some may be 

chosen more than once. This method was used throughout this dissertation.

These selected individuals are used to create new strings through the crossover 

operation. In single point crossover, as shown in Fig. 2.4, a crossover point is chosen at a 

random position between 1 and the string length-1 which in this case is the third position. 

Two new chromosome strings are now created by dividing the initial chromosome strings 

into two sections each at the crossover point and appending the first half of the first 

chromosome string to the second half of the second chromosome string and vice versa.

F i r s t  p a r e n t =  A B C | D E F G s u b s t r i n g l =  A B C

S e c o n d  p a r e n t =  a b c | d e f g s u b s t r i n g 2 =  d e f g

o f f s p r i n g l  = s u b s t r i n g l  + s u b s t r i n g 2  = A B C d e f g

o f f s p r i n g 2  = s u b s t r i n g 2  + s u b s t r i n g l  = a b c D E F G

Fig. 2.4 Single Point Crossover

The mutation operator is now applied to the population. This operator applies a random 

alteration to the value of a chromosome string position. This alteration occurs with very 

small probability so that the likelihood of a bit actually mutating is very small. Mutation 

is necessary to replace genetic information that may have been lost or may never have 

existed in the original population.

2.5 Example Problem

The simplicity and power of genetic algorithms can best be demonstrated with the step 

by step solution of a simple problem. The problem shown in Table 1 and Table 2 is so
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simple that it was solved by hand by Goldberg [9] using nothing more than a coin to 

generate random numbers. Yet even with this simplicity the improvements possible in 

only a single generation are readily apparent.

The problem goal is to maximize the function f(x)=x2 where x is permitted to vary 

between 1 and 31 which is coded as a 5 bit binary number. To keep things manageable it

is run with a population of only 4 individuals.
String
Number

Initial
Population

(Chromosome)

x Value 
(as 

Integer)

Objective
Function

Value
f(x)=x2

Probabi lit 
y of
Selection

Expected
Count

Actual Count 
(From 
Roulette 
Wheel)

1 0 1 1 0  1 13 169 0.14 0.58 1

2 1 1 0 0 0 24 576 0.49 1.97 2

3 0 1 0  0 0 8 64 0.06 0.22 0

4 1 0 0 1 1 19 361 0.31 1.23 1

Sum 1170 1.00 4.00 4.0
Average 293 0.25 1.00 1.0
Maximum 576 0.49 1 97 2 0

Table 1 GA Example: Initial Population

String
Number

Mating Pool 
After
Reproduction

Mate
(Randomly
Selected)

Crossover
Site

New
Population

x Value 
(Integer)

Fjx}
X2

1 0 1 1 0 1 2 4 0 1 1 0 0 12 144
2 1 1 0 0 0 1 4 1 1 0 0 1 25 625
3 11 0 0 0 4 2 1 1 0 1 1 27 729
4 10  0 1 1 3 2 1 0 0 0 0 16 256

Sum 1754
Average 439
Maximum 729

Table 2 GA Example: Second Population

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In the initial population the average fitness is 293 and the best individual fitness is 576. 

After one generation the average fitness has increased to 439 and the best individual 

fitness has increased to 729.

2.6 Analysis of the Simple Three Operator Genetic Algorithm

The previous section demonstrated the mechanics of the simple three operator genetic 

algorithm. By mimicking nature, a procedure has been developed that seems to provide 

useful results. However, to understand why it works requires a theoretical analysis.

This theoretical basis for the GA’s operation was first worked out by Holland [11] and 

later embellished by Goldberg [9]. It provides a thorough, generalized analysis of the 

operation of GA’s. This analysis is often called the schema theorem, but its real 

importance is underscored by its other commonly used name: the fundamental theorem of 

genetic algorithms.

2.6.1. Schemata

In order to analyze the workings of genetic algorithms it is necessary to have some 

method of describing a subset of a string. A subset can be described using the similarity 

template called a schema (in plural form they are called schemata). This is a string 

composed of the letters of the given chromosome alphabet plus a special symbol, usually 

*, that is used to indicate a don’t care position in the chromosome string. A schema can 

be thought of as a pattern matching devise as it matches the particular chromosome string

17
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if in every location a 1 in the schema matches a 1 in the chromosome string and a 0 in the

schema matches a 0 in the chromosome string and a * matches either.

For example, consider the case of a binary string of length 5. The schema * 1 0 1*

matches only the chromosome strings 01010, 01011, 11010 and 11011.

2.7 The Fundamental Theorem of Genetic Algorithms

The schemata theorem or the fundamental theorem of genetic algorithms is one of the 

most important properties related to genetic algorithms. In order to analyze the operation 

of genetic algorithms it is necessary to be able to count the schemata present within a 

population of strings and determine which grow and which decay during each generation. 

This is done by considering the affect of reproduction, crossover and mutation on a 

particular schema. The objective is to quantifying the GA’s simultaneous manipulation of 

a very large number of schemata.

2.7.1. Notation

In this analysis it is considered, without loss of generality, that strings are composed of 

characters from the binary alphabet V= {0,1}. For notational purposes strings will be 

referred to by capital letters and individual characters in the string by lower case letters. 

These individual characters may be subscripted by their position in the string as in 

5,=SiS2s3S4. Populations of individual strings will be denoted as P„ j  = 1, 2,. . ,,n . A 

population existing at a time or generation t and will be denoted as P(t), where the 

boldface denotes a population rather than a string.
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In order to describe the schema contained in individual strings and populations the 

three letter alphabet V+ = {0,1,*} will be used. The additional character * is used as a 

don’t care or wild card symbol which will match either a 0 or a 1 at any particular string 

position.

For a string of length / there are 3 ' schemata which are defined over it. In general, for 

an alphabet of cardinality j  there are (j + 1) '  schemata.

The order of a schema is denoted by O (H ) , and is the number of fixed (as opposed to 

wild card) positions that it has. For example, a schema of length 5 and order 3 is 1 1 1 * *

A schema H will also have a defining length denoted by 6 ( H)  . This is the distance 

between the first and last fixed string position. For example the schema 1 * 1 * * has a 

defining length 5 ( H ) —2 because the first fixed position is 1 and the last fixed position 

is 3 and 3-1 = 2 . Similarly, the schema * 1 * * * * would have a defining length of 

<5(/F) = 2 —2=0 .

2.7.2. Analysis of the Fundamental Theorem Of Genetic Algorithms

The previously discussed notation will be used to discuss the effect of reproduction on 

the expected number of schemata in the population. Suppose at a given time t there are m 

examples of a particular schema H  contained within population A(t). This can be written 

asm = m(h, t). During reproduction a string A gets selected for copying with a probability

of p i = f i l ^ f i  • Once the non-overlapping population of size n is chosen with

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



replacement from the population Aft), there should be m(H, t + 1) representatives of the 

schema H  in the population at time t + 1 as given by (2.1).

m (H  , t + \ ) =m ( H  (2.1)
2 -i J  i

If f { H )  is the average fitness of the strings representing schema H  at time t and since 

the average fitness of an entire population may be written as /  = £ / , / « the reproductive 

schemata growth equation may be written as:

m ( H  J + \ ) = m ( H  j ) ^ = P ~  (2.2)

This shows that a particular schema grows as the ratio of the average fitness of the 

schemata to the average fitness of the population. Schemata with fitness values greater 

than the population average will be present in greater numbers in the next generation 

while schemata with fitness values lower than the population average will be present in 

lesser numbers in the next generation. This operation is carried out with every schema in 

a particular population A  in parallel. All schemata in the population grow or decay 

according to their schemata averages under the operation of reproduction. This simple 

operation of reproduction on the strings in a given population results in many more 

operations being performed on many more schemata.

Individual schema will increase or decrease in number from generation to generation 

depending upon their fitness values. The exact rate of this growth or decay can be 

determined from the Schema’s difference equation. Suppose that a particular schema
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remains above average by about c /  with c a constant. The schema difference equation 

can then be rewritten as in (2.3).

Starting at / = 0 , and assuming c is constant from generation to generation, (2.4) is 

obtained:

This equation has the same form as the compound interest equation. It is a geometric 

progression which shows that reproduction allocates exponentially increasing or 

decreasing numbers of schemata. It can also be seen that for a schema that is above or 

below average, reproduction will allocate exponentially increasing or exponentially 

decreasing offspring in subsequent generations.

The reproduction operation ensures that subsequent generations will have exponentially 

increasing numbers of schemata that are fit and exponentially decreasing numbers of 

schemata that are not fit. This operation serves to concentrate the existing good solutions 

while eliminating some of the less good solutions. It does nothing to find new and 

possibly better solutions. This is the job of the crossover operator.

Crossover allows for a randomized exchange of information between strings. It creates 

new strings while preserving the allocation strategy pursued by reproduction. The result 

is an exponentially increasing or decreasing collections of particular schema throughout 

the population.

(2.3)

(2.4)
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During the operation of crossover some schema are more likely to survive than others. 

For example, the schema * * * 1 0 * *  can only be destroyed if the crossover point is 

chosen so that it falls between the 1 and the zero at the 4* position. On the other hand the 

schema * 1 * * * * 0 can be destroyed if the crossover point falls between the 1 and the 0 

at any of positions 2, 3, 4, 5 or 6. The likelihood of survival is based on the defining

length of the schema and is given by the crossover survival probability p s .

The lower bound of the crossover survival probability P s can be calculated under

simple crossover as p s= \ —6(H) / ( l  — l)  since the schema is likely to be destroyed 

whenever a crossover site within the defining length is selected from the l —l possible 

sites. Since the crossover is itself performed by random choice with a probability P c at a 

particular mating, the survival probability may be given by (2.5).

P s ^ - P c ' - J Z l  (2-5)

As can be seen, this expression reduces to the previous expressions whenever P c - 1 .

In order to calculate the number of a particular schema H  expected in the next 

generation under the combined effect of reproduction and crossover, the combined 

expression in (2.6) is used.

6(H)
1 - P c " / - l

(2 .6)
/

The third and final operation performed by the simple genetic algorithm is mutation. 

This is the random alteration of a single string position with probability p m . For a
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schema H  to survive, all of its fixed positions must survive. Therefore, a single character 

of a schema survives with the probability 1-  Pm . Since each of the mutations is 

statistically independent, a particular schema survives when each of the o ( H ) fixed 

positions within the schema survives. Multiplying the survival probability 1— Pm by

itself o( H)  times is the probability of surviving mutation as ( \ —p m)°^H\  Since the 

probability Pm is very small (Pm«  1) this can be approximated as 1 - o ( H ) ( p m) .

Combining this with the previous expression gives the following relation describing the 

number of copies of a particular schema that can expect to survive into the next 

generation under all three operations of reproduction, crossover and recreation.

5( H)* f ( H )m( H , t  + \ ) > m( H , t) 1-Pc 1-1 ~ ° ( H ) p  (2.7)
f

This shows that short, low order, above average schemata receive exponentially 

increasing trials in subsequent generations. These schemata are often referred to as 

building blocks and their exponentially increasing importance to the outcome of a GA is 

often referred to as the building block theorem.

2.8 Implicit Parallelism

The results of the preceding analysis has been used to define a phenomenon called 

implicit parallelism [9] that explains the power of GAs. Here a GA, with a population of 

n, processes n chromosomes for each generation. During these n calculations the GA is 

shown to be actually processing n3 schemata. This exponential increase in the processing 

capacity is credited with giving GAs their superior abilities.
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2.9 Advanced Techniques

The simple genetic algorithm, as discussed so far, is the basic starting point for all 

genetic algorithms. Much research has gone into extending and improving the algorithm. 

Many of these advanced techniques have come to be used routinely.

2.9.1. Crossover Techniques

The simple GA performs crossover by making a single cut at the same location in each 

of the two parent chromosomes. This cut occurs somewhere between the first gene and 

the last gene. The cut sections are then exchanged to form two offspring. This method is 

somewhat simplistic and tends to destroy the building blocks that contain widely spaced 

genes. For this reason researchers have devised many new crossover techniques often 

using more than one cut point.

The effectiveness of multiple-point crossover was investigated and it was found [14] 

that while 2-point crossover gives an improvement, adding further crossover points 

reduces the performance of the GA. As additional crossover points are added, the search 

becomes more random because building blocks are more likely to be disrupted. The 

problem space is searched more thoroughly at the expense of greatly increased search 

time. In the extreme, the search simply becomes a random search.

2 .9 .l.a ) 2-Point Crossover

2-point crossover has chromosomes arranged in loops by joining their ends together. 

Two cuts are made in the loop and the resulting segments are exchanged. From this it can
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be seen that 1-point crossover is just a special case of the more general 2-point crossover 

where one of the cut points is fixed as falling between the last and first position. This 

would account for the increased performance seen when 2-point crossover is used. It is no 

more disruptive than 1-point crossover since they both have 2 cut points and 2-point 

crossover does not always destroy building blocks with widely spaced genes as is the 

case for 1-point crossover. That is, a chromosome treated as a loop with no beginning and 

no end can contain more building blocks, since they are able to wrap around at the end of 

the string. It is generally considered that 2-point crossover is superior to 1-point 

crossover.

2.9.1.b) Uniform Crossover

Another form of crossover is the n-point uniform crossover where the number of points 

n varies dynamically with each mating. In this method, a randomly generated crossover 

mask is used to determine which genes of an offspring come from which parent. Each 

gene in the first offspring is created by copying the corresponding gene from one or the 

other parent according to the crossover mask. Where there is a 1 in the mask, the gene is 

copied from the first parent, and where there is a 0 in the mask, the gene is copied from 

the second parent. The process is repeated with the parents exchanged to produce the 

second offspring. A new crossover mask is randomly generated for each pair of parents. 

Offspring, therefore, contain a mixture of genes from each parent. The number of 

effective crossing points, while not fixed, will average L/2 (where L is the length of the 

chromosome).
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For example, suppose we let the first parent be an arbitrary 10-bit binary string 

represented by the sequence ABCDEFG where A represents the most significant bit and 

G the least significant bit and similarly we let the second parent be represented by 

abcdefg then they would mate using uniform crossover as follows:

1. A random crossover mask is chosen, ( e.g. 0011101001)

2. Wherever the mask has a 1, choose the corresponding character from the 
first parent

3. Wherever the mask has a 0, choose the corresponding character from the 
second parent

4. The resulting offspring is combined as shown in Fig. 2.5

5. Reverse parents and repeat steps 2, 3, & 4 yielding the second offspring 
(A B c d e F g)

P a r e n t  A  B  C D E  F  G a  b  c d  e f G

M a s k  0  0  1 1 1 0  1  0  0  1 1  1 0 1

R e s u l t  - - C D E  -  G a  b  - -  - f -

C o m b i n e d  O f f s p r i n g a  b  C D E f  G

Fig. 2.5 Uniform Crossover

2.9.2.Crossover Comparisons

Research on the different methods of crossover [15] has shown that uniform crossover 

produces long defining length schema which are less likely to be disrupted than those 

produced by 2-point crossover. But while the short defining length schemata of 2-point 

crossover are more likely to be disrupted, the overall amount of schemata disruption is 

lower.
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Under 2-point crossover the defining length, and not the order of the schemata, 

determines the likelihood of its disruption. Under a uniform crossover, the likelihood of 

disruption of a given schema is based only on its order and not its defining length. This 

means that under a uniform crossover, the ordering of genes within a chromosome is 

completely irrelevant and it eliminates the need for re-ordering operators such as 

inversion (see Section 2.9.6 Inversion and Reordering, on page 30). Also, since the 

positioning of genes is immaterial there is no need to worry about coding the 

chromosome in such a fashion so as to create good building blocks.

In another study [16] an extensive comparison of 1-point, 2-point, multi-point and 

uniform crossover operators was performed. Theoretical analysis was performed in terms 

of positional and distributional bias on several problems. The findings indicated that there 

was only about a 20% difference in speed between the slowest and fastest techniques. 

From these results the choice of a crossover operator would seem to be relatively 

unimportant.

Other analysis [17] of crossover has shown that due to reduced productivity, 2-point 

crossover will perform poorly when the population has largely converged. Productivity is 

the ability of a crossover operator to produce new chromosomes that are different, 

thereby sampling new points in the search space. If two similar chromosomes undergo 2- 

point crossover, then the exchanged segments are likely to be identical causing the 

offspring to be identical to their parents. Under uniform crossover, this is less likely to 

happen.
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Many problems benefit when a few parents are not crossed over at all but passed on 

intact. Many algorithms apply a high probability crossover rate which performs crossover 

most of the time but once in a while randomly passes the parents through with performing 

crossover.

Another operator called elitism takes the most fit individual and automatically passes it 

through, intact, to the next generation. This is done to make sure the best solution so far 

is not lost.

2.9.3. Other Crossover Techniques

A new 2-point crossover operator has been reported [18] where the offspring are 

checked after crossover and if they are found to be identical to their parents then 

crossover is repeated using two new crossover points. When tested, this new operator was 

found to perform slightly better than uniform crossover. This new 2-point crossover is 

best only when there is a large population, and that for small populations uniform 

crossover is best due to the increased disruption that it causes.

Several methods have been described [19]-[22] that vary the probability of crossover 

occurring at a particular string position. The crossover probabilities themselves become 

part of the chromosome so that the GA dynamically adjusts the sites that should be 

favored for crossover. With the crossover probabilities included as part of the 

chromosome, they are crossed over and passed on to descendants allowing the GA to 

learn which building blocks are more important than other genes in the chromosome.
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2.9.4.Crossover Conclusion

Although the crossover method used has only a modest affect on the overall 

performance of a GA, one of the top ranked crossovers is uniform crossover. As well, 

under uniform crossover the ordering of genes within a chromosome is completely 

irrelevant. For these reason all GA's used in the examples in this dissertation will employ 

elitism and uniform crossover.

2.9.5. Mutation

Normally, mutation occurs with low probability and functions as a background operator 

[14]. It is included to allow for the searching space that may otherwise be precluded by 

the converging chromosomes as the genetic information is discarded during crossover. 

The exact amount of mutation necessary is somewhat open to debate. Too little mutation 

and useful schemata that are not currently in the population can never be found while too 

much mutation will cause the GA to degenerate into a random search.

A study [23] to determine the optimum parameters for GAs found that mutation plays a 

larger role than previously thought. Another study [24] compared crossover and mutation 

and found that each operator contained characteristics not found in the other but that each 

is simply a form of a more general exploration operator that modifies schemata based on 

available information. As the population converges, mutation plays an increasingly 

important role while the role of crossover diminishes.
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Although it has a low probability of use and it is sometimes seen as nothing more than 

a background operation, mutation plays a very important part in a GA solution. Changes 

in the mutation rate will affect the performance more than the changes to the crossover 

parameters [23]. However adjusting for the optimum mutation rate is difficult as long as 

extremes are avoided. There is a fairly broad range of values that seem to work well in 

most situations.

2.9.6. Inversion and Reordering

For a GA to work effectively, the building block theorem requires that the genes be 

arranged in a particular order in the chromosome. To accomplish this, techniques for 

reordering the positions of genes have been developed. One of these techniques is 

inversion [11] which reverses the order of genes between two randomly chosen positions 

within the chromosome. To keep track of a gene's position within the chromosome some 

auxiliary positioning information must be maintained with each chromosome. Gene 

reordering is an attempt to create chromosome codings with better evolutionary potential 

[9].

When reordering is used, the search space is greatly expanded, since the GA is 

searching for a solution to the original problem and simultaneously searching for the 

optimum gene ordering. The extra search time spent on ordering might be better spent on 

the original problem.
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When a uniform crossover is used, the ordering of genes is irrelevant so reordering 

would have absolutely no effect. Since in this dissertation uniform crossover will be used 

exclusively, reordering will not be performed.

2.9.7. Deception

The building block principle states that over succeeding generations there will be an 

increase in the number of chromosomes containing schemata that are also found in the 

global optimum until eventually these schemata will crossover into a single individual 

and the global optimum will be found. But on certain GA deceptive problems, this does 

not occur and schemata that are not in the global optimum increase in numbers faster than 

those that are.

This phenomenon has been studied in depth by many [9],[26],[27] and it has been 

shown that the number of chromosomes containing a particular schema will increase if 

the schema’s fitness is higher than the average fitness of all schemata in the population. 

The difficulty arises if the average fitness of schemata which are not contained in the 

global optimum is greater than the average fitness of those which are. This class of 

problem is deemed to be deceptive. A GA will usually, but not always, have difficulty 

solving a deceptive problem.

A problem that is deceptive with one chromosome coding format may not be with a 

different format. Therefore the coding format can be crucial to the success or failure of 

applying a GA to a specific problem.
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2.9.8. Epistasis

A given gene’s contribution to the overall fitness of an individual may be conditional 

on the value of other genes in the chromosome. Such a gene would be called epistatic. In 

general, the amount of co-dependency among genes is termed epistasis and occurs in 

nature on a regular basis. For example, bats have a gene that gives them their keen 

hearing and another to make high pitched chirps. Either of these genes alone would not 

increase a bat’s fitness but together they form a sonar system and have a major impact on 

fitness.

The amount of epistasis which occurs can vary from none to severe. An example of a 

problem with no epistasis is the counting of ones task where the task is to maximize the 

number of 1 s in the binary string. In this case each gene (bit) either has a value of 1 and 

contributes to the fitness or has a value of 0 and doesn’t. An example of moderate 

epistasis is the plateau function where the fitness is 1 if all the bits in a chromosome are 

set to 1, and zero otherwise. Here the genes do interact but only for the global optimum 

when they all must be 1. Severe epistasis is where the genes interact in numerous and 

complex ways. An example of this would be a scheduling problem where the availability 

of a resource is dependent on other schedules.
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Problems which exhibit no epistasis or even mild epistasis are easily solved by 

techniques like hill-climbing and do not require a GA [28], When the problem has 

moderate to severe epistasis though, observations indicate that the other, simpler 

techniques do not perform as well as GAs. There are ample examples[29] of GA's being 

successfully applied in domains of high epistasis.

It is possible to lower the epistasis of a given problem by changing the chromosome 

coding. This type of problem recoding is demonstrated [30] in a bin-packing problem. 

The chromosome of the converted problem has less epistasis than the original problem.

Having a good chromosome coding scheme is the key to having low epistasis in s given 

problem.

2.9.9. Chromosome Alphabets

The fundamental theorem of Genetic Algorithms suggests that the strength of a genetic 

algorithm lies in the implicit parallelism of the operation since the algorithm works on 

many schemata at the same time. Because of this it was initially believed [9] that a binary 

alphabet having the largest number of schemata of any alphabet, was the best. However 

later interpretations of schemata [12] shows that high-cardinality alphabets contain more 

schemata than binary alphabets and therefore offer better performance. Others [12],[13] 

report that some problems do better with a higher cardinality chromosome. Therefore if a 

particular problem can be more precisely coded in a non-binary format then that format 

will perform better than the ill-fitting binary format.
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2.9.10. Operator Parameters

The exact values of operator parameters, such as mutation rate, population size etc., 

that lead to the greatest GA performance is hard to pin down. As noted in Section 2.9.5, 

mutation has a greater effect than crossover toward the end of a search and vice-versa.

An analysis [32] of the interacting roles of population size, crossover rate and mutation 

rates shows that these values are not critical as long as they are not extreme. Increasing 

population size makes the GA converge in fewer generations but each generation takes 

longer to calculate so the overall time needed changes little.

Extreme values are to be avoided but most problems will typically respond well to 

values for mutation rate mr of 0.05 < mr < 0.1 and crossover rate cr of 0 < cr < 0.2 and 

a population size in the hundreds.

2.9.11. Problem Constraints and Invalid Chromosomes

Many problems have so many constraints that certain chromosome values may violate 

one or more of these constraints. It is also possible that the number of discrete solutions 

to the problem is not a power of 2, so it can not be expressed exactly as a binary number. 

In this case, the binary number will be larger than the number of available solutions 

resulting in a number of chromosome values that are not valid.

The ideal solution is to use domain knowledge to prevent invalid chromosomes from 

being produced in the first place. But domain specific knowledge is not always available
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and requiring it reduces the robustness of a pure GA. But when it is available, it 

eliminates the time used to process and identify invalid values.

Without domain specific knowledge, there is no guarantee that such invalid codes will 

not arise. Crossover and mutation will explore the whole range of the chromosome space 

including valid and invalid areas. To deal with this, a number of solutions have been 

proposed [14].

The first and easiest is to simply discard an invalid chromosome and produce a 

different valid chromosome. This requires that all offspring be checked for validity after 

they are generated and discarding any that are found to be invalid. This will result in 

discarding fatal chromosomes which may contain some great schemata values intermixed 

among the fatal gene values. This destroys the hard won schemata already found and if 

too many get discarded the GA will degenerate into a random search.

Another method is to simply assign an invalid chromosome a low fitness value. This 

makes the most sense in terms of the GA process, for indeed, such a chromosome is not 

fit at all. But this interferes with the essential GA processing for if the low fitness value is 

too low then the result is the same as discarding them, while if it is not low enough then 

some invalid solutions may be produced.

Another method for dealing with invalid chromosomes is chromosome remapping 

where invalid chromosomes are mapped onto valid ones.
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2.9.11.a) Chromosome Remapping

There are currently two types of chromosome remapping in use now. The first, fixed 

remapping, takes a particular invalid value and either changes it to some other particular 

valid value or processes it as if it were that other value. While the remapping mechanism 

is simple and it essentially removes all invalid chromosomes from the search space, it has 

the disadvantage that in the remapping potentially good schemata are completely 

discarded and replaced by new random schemata. If this happens too frequently the GA 

will degenerate into a random search.

Random remapping tries to fix this shortcoming by remapping an invalid value to a 

randomly chosen valid value. This eliminates the representational bias problem but 

completely discards all parental inheritance information, instead opting to choose a 

random offspring when an invalid offspring is encountered. Again, if too many 

chromosomes get randomly remapped the GA will degenerate into a random search.

2.10 Conclusion

Genetic algorithms are an important tool to be used against the problems encountered 

in search and optimization. It has properties that make it superior to other techniques for 

many broad classes of problems. It can work when there is absolutely no problem domain 

knowledge other than the objective function.
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CHAPTER 3. 1-D FILTER DESIGN

3.1 Application of the GA to Filter Design

Using a genetic algorithm to design a filter is simply a matter of coding a chromosome 

to represent the filter coefficients a, and bjof equations 1.1 and 1.2. The GA cycle of Fig.

2.3 starts with a population of filters whose chromosomes are randomly chosen. Each 

chromosome is decoded into its a  and bi filter coefficients and its magnitude response is

determined by evaluating the transfer function of Equation 1.2 with z= eJw7 over some 

frequency range of interest. The magnitude of the transfer function at each frequency is 

compared to the desired magnitude at that frequency and an error value is calculated. This 

value is squared and summed with the square of the error values at the other frequencies 

of interest to form a least mean square (LMS) error value. A fitness value for this filter is 

formulated as the inverse of the LMS error value. Alternately, it is sometimes desirable to 

minimize the maximum error in the magnitude response (MINIMAX) so the fitness value 

can be based on this calculation instead of the LMS value.

Some of the filters within this population are selected and mated to form a new 

population of filters which is likely to be more fit than the parent population. The cycle is 

repeated until an individual filter is found with a fitness that exceeds some desired fitness 

level.

3.2 CSD Chromosome Coding

Each filter in the GA search space gets coded as a chromosome. The a  and bi 

coefficient values of the filter are first coded into a string of symbols or digits to form a
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partial chromosome. These are concatenated in a predetermined order to form the overall 

filter chromosome.

For instance, suppose Aj = di,jd2,i...dN,i represents a coded string of digits for the N a, 

coefficients and Bi = di,id2,i...dM,i represents the coded string of digits for the M bi 

coefficients of a filter whose difference equation is (1.1). This filter's chromosome would 

be the concatenation of the A; and Bi partial chromosome codes in the form A1A2 ... 

AnBiB2 ... Bm-

Since the filter is to have coefficients in CSD format, the coding of the a, and bi 

coefficients into Aj and B, digit strings must also preserve the CSD format. The usual 

approach is to code each coefficient as a sequence of ternary signed digit strings. 

However, a ternary signed digit string is not necessarily a CSD string as it may violate the 

canonical constraints of Equation (1.5) as well as any non-zero bit limit imposed by the 

design requirements. This coding is problematic for the genetic algorithm operators.

3.3 Effects of Crossover and Mutation on CSD Values

P a r e n t  1 0 0 1 | 0 0 1
Pa r e n t  2 0 0 0 I 1 0 0
O f f s p r i n g  1. 0 0 1  | 1 0 0

Fig. S. 1 Invalid CSD Crossover

The problem is that the genetic algorithm operation of crossover and mutation are not 

closed for CSD numbers in ternary digit form. For example, the two CSD parents in Fig.

3.1 undergoing single point crossover at the point shown produce an offspring that is not 

a CSD number.
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Fig. 3.2 shows how mutation of a CSD number can have a similar result. These 

examples are for pure CSD numbers, for CSD numbers with non-zero bit limiting the 

problem is worse.

O r i g i n a l  0 0 1 000 1 0 1  0 0 0 0 1 0 1
M u t a t e d  0 OlOOO1 1 1 0 0 0  OT0 1

Fig. 3.2 Invalid CSD Mutation

Several approaches to maintaining the coefficients in CSD format have been proposed 

and all involve some form of modification of the genetic algorithm.

One approach is to fix any chromosomes which have non-CSD coefficients by 

converting them to CSD numbers [33]-[35]. This has been accomplished both as a 

straight conversion and by converting to floating point and back. While this type of 

approach has been shown to work, it destroys many schemata introducing serious search 

inefficiencies.

The implicit parallelism of a GA stems from its ability to coalesce fit schemata found 

over the generations into a veiy fit population. Converting a partial chromosome 

sequence into another numerically equivalent sequence destroys all of the schemata of the 

original sequence. To the genetic algorithm this new sequence represents a random 

collection of schemata causing a major disruption to the search procedure.

Another approach that has been used with some success is to modify the GA [36] so 

that non CSD chromosomes are never produced. In this method an offspring resulting 

from crossover or mutation is checked for proper CSD formatting. If the offspring fails 

this test it is discarded and another crossover or mutation is performed using the original
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source chromosome(s). The hope is that since crossover points and mutation parameters 

are chosen at random another try might produce a valid result. If after several attempts it 

still has not produced a valid result then the operation is aborted and new chromosomes 

are chosen from the population.

While this may arguably be less disruptive to the GA than the previous approach of 

throwing out hard won schema patterns it can still be very disruptive. Under this 

approach there may exist parents where the likelihood of successful crossover is slim or 

non-existent. For example, if the parents shown in Fig. 3.3 are from a design with a non

zero bit limit of 2 then there are very few crossover points where one offspring would be

valid and none where both would be valid under uniform crossover.
pa r e n t  A lOlOOOOOOOOOOOOO 
p a r e n tB  OOOOOOOOOOOOOlOl 
Fig. 3.3 Unlikely Mating Partners

The parents shown in Fig. 3.4 will never produce CSD offspring under uniform 

crossover. While other types of crossover exist they all have similar cases of unlikely and

impossible mating partners.

p a r e n t A  Ol O1 0 1 0 1 0 1 0 1 OlO 
pa r e n t B  TO 1 0 1 0 1 0 1 0 1 0 1 0 1 '
Fig. 3.4 Impossible Mating Partners

The operation of discarding offspring because they are not in proper CSD form also 

discards the offspring's particular mix of schemata blocking search paths that might prove 

useful.
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3.4 Effects of GA Disruption

In each of the previous approaches the GA mechanism is compromised. Either a 

chromosome with completely new schemata is introduced or a combination possibly 

containing some good schemata is discarded. This disruption tends to make the GA lose 

some of its implicit parallelism and causes it to deteriorate toward a random search.

Since the typical coefficient search space is so large, a random search is very 

inefficient. For example, a 10th order filter using 16-bit CSD coefficients with a 

maximum of 3 non-zero digits has a search space of approximately 1038 different filters.

An exhaustive search of this space on a modem desktop PC would take about 1027 

centuries to complete at 100 filters per second. A random search for a suitable filter 

would be quicker than an exhaustive search for a particular filter but even so, it will still 

average many centuries.

Whenever the GA mechanism is disrupted, inherited schemata are replaced by random 

sequences and the GA search deteriorates into a random search. The time needed to find a 

suitable filter also deteriorates toward the time needed for a random search. Since a 

random search is so slow, only a little deterioration can result in a large increase in search 

time.

3.5 Proposed Design Technique

In order to keep the GA from slipping toward a random search, we must avoid 

modifying the GA mechanism and avoid any procedure where invalid offspring must be 

fixed. To accomplish this a CSD chromosome coding that is closed under the operations
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of crossover and mutation is used. Since the commonly used ternary string chromosome 

coding scheme is not suitable another must be devised.

To see how this is accomplished it is necessary to look at the fundamental attributes of 

a CSD number. Typically a CSD number has the attributes shown in (3.1).

V -  d o, d v ...,0pr_], z Pn,0 Pn+:, . . . ,d L_2,d L_l (3.1)

Here d, is any digit at position i, 0, is a zero digit at position i and z; is a non-zero 

digit at position i. Each CSD number has a value V, a length of L digits of which N  are 

non-zero digits z. which are located at position p„ ( \< n < N Z max) having a sign

Se{+ ,  -} .

In this form the canonical constraints of equation (1.5 ) can be written as (3.2).

d p - x -  0 , d Pi+,= 0 where { \< n< N Z mJ  (3-2)

For designs with an arbitrary limit on the number of non-zero digits allowed, the value of 

NZmax can be chosen. For pure CSD values NZmax = (L +1 )/2 is the inherent CSD limit.

From this it can be seen that the problem of maintaining canonical form under 

crossover and mutation is a result of the position p„ in the canonical constraints of 

equation. So rather than basing the chromosome on a ternary encoded value which allows 

an unrestricted number of positions p„ , the coding itself should be based on the NZmax 

non-zero digit positions p„. This forces the above constraints on the chromosome making 

it closed under all operations including crossover and mutation.
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As before, the filter coefficients a, and b, will be coded into partial chromosomes A, = 

di,id2,i...dN,i and B, = dijd2,i...dM.i. These will be concatenated into the complete 

chromosome as A 1A 2 ... AnBiB2 ... Bm.

Each At or B, partial chromosome is coded as a string of NZmax genes g  in the form

Si S 2 ' ‘ ‘ A Nzmax , where each gene g designates both the position P and sign S  of a non

zero digit.

The key to doing this is to abandon the binary or ternary gene strings normally used in 

genetic algorithms and allow genes to take on values from a much larger symbol set. As 

discussed in Section 2.9.9, chromosomes with a high cardinality work well for those 

problems suited to them. CSD filter coefficients are just such a problem since the use of 

small symbol sets has many drawbacks.

Consequently, we allow each gene to take on one of 2L symbol values where L is the 

number of CSD digits in each a, or 6, filter coefficient. The 2L symbols are used to 

designate the position occupied by a non-zero digit within a CSD coefficient as well as 

the sign of that digit. The actual symbols used are immaterial.

As an example of this coding, consider a 7 digit CSD coefficient upon which we 

impose an upper limit NZmax of 3 non-zero digits. Since L=7, we need 2L or 14 symbols 

to code each digit. If we choose 0 to 9 and A to D for the symbols we can assign them as 

follows: the symbols 0 to 6 indicate that a +1 exists in the CSD coefficient at position 1 

to 7 respectively and the symbols 7 to D indicate that a -1 exists at position 1 to 7 

respectively. Since our CSD coefficient has a maximum of 3 non-zero digits we will need
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three gene digits, one for each non-zero position. Table 3 shows the symbol conversions 

for this case.

S y m b o l 0 1 2 3 4 5 6 7 8 9 A B C D

N o n - z e r o

D i g i t

S i g n

+ + + + + + +

N o n - Z e r o

D i g i t

P o s i t i o n

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Table 3 Conversion Table for CSD Length L=7

Suppose a CSD coefficient was represented by the three digit partial chromosome 

2AD. From Table 1 the 2 would signify a +1 in position 3, the A would signify a -1 in 

position 4 and the D would signify a -1 in position 7. Therefore the CSD coefficient in 

question would be 0 0 1 1 0 0 1 .

Under this coding scheme, CSD coefficients with fewer than the maximum allowed 

non-zero digits simply have two non-zeros occupying the same position. For example, for 

a 7 bit CSD with a maximum of 3 non-zero digits the partial chromosome 744 would 

indicate a -1 at position 1, a +1 at position 5 and another +1 also at position 5 resulting in 

the CSD TOOOIOO The second non-zero is simply ignored since a non-zero already 

exists at that location.
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The canonical adjacency constraint of (1.5) is addressed in much the same fashion. If a 

partial chromosome digit indicates that a non-zero should be positioned adjacent to a non

zero from an earlier digit then it is simply ignored. This has the advantage of mapping 

any potentially non-canonical sequences to canonical sequences with fewer than the 

maximum number of non-zeros.

For instance, a 7 bit CSD with a maximum of 3 non-zero digits with a partial 

chromosome 743 would normally decode to TOOllOO which would violate the CSD 

constraint. But by ignoring the 3 in 743 since it causes the problem, we get TOO 1000 

which is a valid CSD number with fewer than NZmax non-zero digits.

Sequences with fewer than NZmax non-zero digits are very desirable so by having two 

mechanisms which map to this space it tends to be searched more often. This increases 

the likelihood of finding CSD coefficients with even fewer than the maximum allowed 

non-zeros.

Since this chromosome coding has no sequences which violate either the CSD 

constraint or a NZmax constraint, it is completely closed under the operation of crossover 

and mutation. In addition, it uses some search space redundancy to advantage by forcing 

the GA to search more often in the most desirable search space.

3.6 Non-Recursive Filter Design Example

A sixteenth order linear phase low pass FIR filter using 16 bit CSD coefficients each 

limited to a maximum of 3 non-zero digits was designed using the following target 

frequency response.
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The genetic algorithm used the parameters shown in Table 4 and each design took 

approximately five minutes to complete on a 2.0 Ghz Pentium computer.

Population Size Number of Generations Crossover rate Mutation Rate

500 500 .95 .05
Table 4 Genetic Algorithm Parameters

3.7 Comparison with Existing Design

To ascertain the effectiveness of the new method, a detailed comparison was 

performed. The same type filter was designed using Matlab's optimal least square filter 

design function firls. The resulting coefficients, which are accurate to 15 significant digits 

and are considered to be infinite precision (IP), were converted to the closest 16 digit 

CSD value with a maximum of 3 non-zero digits. The square error of this filter for both 

IP format coefficients and CSD format coefficients is compared with the filter obtained 

using the new method design. Also compared is an existing design [36] which utilizes the 

same CSD format coefficients and target frequency response.

For each filter the square error was calculated at 16384 points equally spaced points 

along the frequency spectrum shown in (3.4)

16383

Square Error (M a(n il\6 3 8 3 )-M ,{n il\6 3 $ 3 ))2 (3.4)
/ = 0

where M a(co) and M t(co) are the actual and target magnitude responses at frequency 

(jo respectively.
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For the filter with infinite precision coefficients, the square error is 7.1306 xlO'2 and a 

plot of the frequency response is shown in Fig. 3.5.

Optimal Method (Infinite P recision)
in JU S
I  °
1  -50
1 -100 
'C  o>
2  -150

2.5 35
Frequency (Hertz)

? -200
|  -400 
-b
j  -600

I  -800.

0.5 25 3 5
Frequency (Hertz)

Fig. 3.5 Response of Optimal Design using IF Coefficient
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Coefficient Infinite precision (IP) Infinite precision converted to CSD

CSD format decimal format

aO -0.00461277865458 OOOOOOOOnOnO1000 -0.0046386719

al -0.00826443773636 OOOOOOOnOOOnOOO1 -0.0082702637

a2 0.01183883759729 0000001OnOOOO100 0.0118408203

a3 0.02875781248896 00000lOOOnOnOOOO 0.0288085938

a4 -0.02035661622626 OOOOOOnOnOnOOOOO -0.0205078125

a5 -0.08033874590455 OOOOnOnOOnOOOOOO -0.0800781250

a6 0.02849524621471 000001OOnO100000 0.0283203125

a7 0.30905318429880 00101OOOnOOOOOOO 0.3085937500

a8 0.46878831168206 OlOOOnOOOOOOOOOl 0.4687805176

a9 0.30905318429880 00101OOOnOOOOOOO 0.3085937500

alO 0.02849524621471 00000lOOnO100000 0.0283203125

a ll -0.08033874590455 OOOOnOnOOnOOOOOO -0.0800781250

al2 -0.02035661622626 OOOOOOnOnOnOOOOO -0.0205078125

al3 0.02875781248896 00000lOOOnOnOOOO 0.0288085938

al4 0.01183883759729 0000001OnOOOO100 0.0118408203

al5 -0.00826443773636 OOOOOOOnOOOnOOO1 -0.0082702637

al6 -0.00461277865458 OOOOOOOOnOnO1000 -0.0046386719
Table 5 Coefficients from Optimum Design 

For the filter with infinite precision coefficients converted to CSD format, the square 

error is 8.1343 xlO'2 and a plot of the frequency response is shown in Fig. 3.6.
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Optimal M ethod Converted to C lo s e s t  C SD  (16 bit C SD  with <= 3  n on -zero s)

o>
VC DU
OJ

1  -1Q0
a>
I 450

0 5

g> -400•g
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Fig. 3.6 Response o f Optimal Design Converted to CSD Coefficients
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M odified G A  M ethod by A . L ee  (1 6  bit C S D  w ith < =  3  n o n -z er o s )
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Fig. 3.7 Response o f Filter from [36]
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Coefficient Decimal Value CSD Representation 
(where n = -1)

aO -0.0039062500 OOOOOOOOnOOOOOOO

al 0.0117187500 000000lOnOOOOOOO

a2 0.0039062500 0000000010000000

a3 -0.0351562500 OOOOOnOOnOOOOOOO

a4 -0.0019531250 OOOOOOOOOnOOOOOO

a5 0.0820312500 0000101010000000

a6 -0.00097656.25 OOOOOOOOOOnOOOOO

a7 -0.3125000000 OOnOnOOOOOOOOOOO

a8 -0.5000000000 OnOOOOOOOOOOOOOO

a9 -0.3125000000 OOnOnOOOOOOOOOOO

alO -0.0009765625 OOOOOOOOOOnOOOOO

a ll 0.0820312500 0000101010000000

al2 -0.00195312.50 OOOOOOOOOnOOOOOO

al3 -0.0351562500 OOOOOnOOnOOOOOOO

al4 0.0039062500 0000000010000000

al5 0.0117187500 000000lOnOOOOOOO

al6 -0.0039062500 OOOOOOOOnOOOOOOO
Table 6 Coefficients for Filter from [36]

For the filter design of [36] the square error is 98.124 xlO'2 . The coefficients of this 

filter are given in Table 6 and a plot of the frequency response is shown in Fig. 3.7
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New M ethnd CSD Design
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Fig. 3.8 Response o f design by proposed new method

For the filter designed using the proposed new method the square error is 7.2157 xlO"2. 

The coefficients of this filter are given inTable 7 and a plot of the frequency response is 

shown in Fig. 3.8.
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Coefficient Decimal Value CSD Representation 
(where n = -1)

aO -0.0046386719 OOOOOOOOnOnO1000

al -0.0079040527 OOOOOOOnOOOOOnO1

a2 0.0114746094 000000lOnOOOnOOO

a3 0.0288085938 00000lOOOnOnOOOO

a4 -0.0205078125 OOOOOOnOnOnOOOOO

a5 -0.0800781250 OOOOnOnOOnOOOOOO

a6 0.0283203125 000001OOnO100000

a7 0.3085937500 00101OOOnOOOOOOO

a8 0.4687805176 OlOOOnOOOOOOOOOl

a9 0.3085937500 00101OOOnOOOOOOO

alO 0.0283203125 00000lOOnO100000

a ll -0.0800781250 OOOOnOnOOnOOOOOO

al2 -0.0205078125 OOOOOOnOnOnOOOOO

al3 0.0288085938 000001OOOnOnOOOO

al4 0.0114746094 0000001OnOOOnOOO

al5 -0.0079040527 OOOOOOOnOOOOOnO1

al6 -0.0046386719 OOOOOOOOnOnO1000

Table 7 Coefficients o f Filter from Proposed GA Method

A Performance comparison summary is shown in Table 8. The filters are compared 

relative to the optimal IP filter's error which is the lowest possible error.

Approach Absolute E rror Relative E rror

Infinite precision 0.071306 1

IP converted to CSD 0.081343 1.141

Lee [36] 0.98124 13.76

Proposed GA Method 0.072157 1.012
Table 8 Comparison Summary
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3.8 Comparison of Optimum Solution with CSD Conversion

To determine the performance of the proposed method and to validate the bit limited 

CSD approach, a series of filters were designed for comparison. A filter designed using 

the proposed method is compared with a design obtained by converting the infinite 

precision coefficients of an optimal design to their nearest CSD counterparts. This was 

repeated 8 times with the maximum number of allowable non-zero digits in each of the 

16 digit CSD coefficients ranging from 1 to 8 non-zero digits. All designs were for a 

20th order non-recursive filter with the target frequency response of (3.3). The GA 

designs used the parameters given in Table 4 and the optimum design with infinite 

precision coefficients used the Matlab firls function. CSD conversions were made to the 

closest valued CSD with the required maximum number of non-zero digits. The time 

taken by the GA to complete the designs was aproximately 5 minutes on a 2 Ghz Pentium 

computer.

When the infinite precision coefficients are converted to the 16 bit CSD format the 

largest values have only 14 significant digits. A 14 digit CSD without any non-zero bit 

limiting can have, at most, 7 non-zero digits. In this case though, none of the converted 

coefficients has more that 6 non-zero digits so the results for 7 and 6 allowable non-zero 

digits are the same as those for 7 . Therefore, the results for 8 and 7 maximum allowable 

non-zero digits are the same as that for 6 maximum allowable non-zero digits and are not 

presented separately.
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For each filter the square error was calculated at 200 equally spaced points along the 

frequency spectrum shown in (3.5)

199

Square Error = ( Ma( n i /1 9 9 )-M , { n i / 199))2 (3.5)
;= 0

where M a(w) and M,{w)  are the actual and target magnitude responses at frequency 

co respectively.

For the optimum filter with infinite precision coefficients the square error is 4.4383 

xlO'5 .The frequency response is shown in Fig. 3.9 and the coefficients are given in Table 

9.
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Fig. 3.9 Response using Infinite Precision Coefficients
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The response of the filter with CSD coefficients converted from IP with maximum 6

non-zero digits is shown in Fig. 3.10 and the coefficients are listed in Table 10. This filter

has a square error of 4.4690 xlO'5.
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Fig. 3.10. Response o f Filter with CSD Coefficients Converted from IP 
with a Maximum o f 6 Non-Zero Digits
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Coefficient

aO 0.00174526230891

al 0.00247787716625

a2 -0.00597187090745

a3 -0.01095329466689

a4 0.01280672911904

a5 0.03225811726060

a6 -0.02079199250683

a7 -0.08381600086404

a8 0.02730877450506

a 9 0.31021651105280

alO 0.47017097295796

a ll 0.31021651105280

al2 0.02730877450506

al3 -0.08381600086404

al4 -0.02079199250683

al5 0.03225811726060

al6 0.01280672911904

al7 -0.01095329466689

al8 -0.00597187090745

al9 0.00247787716625

a20 0.00174526230891
Table 9 Infinite Precision Coefficients
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6 Max. 
Non- 
Zero 
Digits

Converted from Optimum Design GA Design

Decimal CSD (n=-l) Decimal CSD (n=-l)

aO 0.0017395020 000000000lOOnOOl 0.0017395020 000000000lOOnOOl

al 0.0024719238 0000000001010001 0.0024719238 0000000001010001

a2 -0.0059814453 OOOOOOOnO1OOOnOO -0.0059814453 OOOOOOOnO1OOOnOO

a3 -0.0109558105 OOOOOOnO101OnOO1 -0.0109558105 OOOOOOnO101OnOO1

a4 0.0128173828 0000001OnO100100 0.0128173828 0000001OnO100100

a5 0.0322570801 0000010000100001 0.0322570801 0000010000100001

a6 -0.0207824707 OOOOOOnOnOnOnOOn -0.0208129883 OOOOOOnOnOnOnOnO

a7 -0.0838012695 OOOnOlOlOlOOlOnO -0.0838012695 OOOnOlOlOlOOlOnO

a8 0.0273132324 00000lOOnOOOOOOn 0.0273132324 00000lOOnOOOOOOn

a9 0.3102111816 00101OOOOnOnO101 0.3102111816 00101OOOOnOnO101

alO 0.4701843262 01OOOnOOO1OnOOOn 0.4701538086 01OOOnOOOlOnOOnO

a ll 0.3102111816 00101OOOOnOnO101 0.3102111816 00101OOOOnOnO101

al2 0.0273132324 000001OOnOOOOOOn 0.0273132324 00000lOOnOOOOOOn

al3 -0.0838012695 OOOnOlOlOlOOlOnO -0.0838012695 OOOnOlOlOlOOlOnO

al4 -0.0207824707 OOOOOOnOnOnOnOOn -0.0208129883 OOOOOOnOnOnOnOnO

al5 0.0322570801 0000010000100001 0.0322570801 0000010000100001

al6 0.0128173828 0000001OnO100100 0.0128173828 0000001OnO100100

al7 -0.0109558105 OOOOOOnO101OnOO1 -0.0109558105 OOOOOOnO101OnOO1

al8 -0.0059814453 OOOOOOOnO1OOOnOO -0.0059814453 OOOOOOOnO1OOOnOO

al9 0.0024719238 0000000001010001 0.0024719238 0000000001010001

a20 0.0017395020 000000000lOOnOOl 0.0017395020 000000000lOOnOOl
Table 10 Coefficients with a Maximum o f  6 Non-Zero Digits
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The response of the filter with CSD coefficients from the proposed GA method with a

maximum of 6 non-zero digits is shown in Fig. 3.11 and the coefficients are listed in

Table 10. This filter has a square error of 4.4551 xlO'5 .

-50

-100
□>

-1500 05 1 5 •2.52 3 35
F requency  (Hertz)

-500

S  -1 0 0 0

-15000 0.5 1 5 2 2 5 3 3 5
F requency  (Hertz)

Fig. S. 11 Response o f Filter with CSD Coefficients Designed by GA 
with Maximum 6 Non-Zero Digits
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5 Max. 
Non- 
Zero 
Digits

Converted from Optimum Design GA Design

Decimal CSD (n=-l) Decimal CSD (n=-l)

aO 0.0017395020 000000000lOOnOOl 0.0017395020 0000000001OOnOO1

al 0.0024719238 0000000001010001 0.0024719238 0000000001010001

a2 -0.0059814453 OOOOOOOnOlOOOnOO -0.0059814453 OOOOOOOnOlOOOnOO

a3 -0.0109558105 OOOOOOnO101OnOO1 -0.0109863281 OOOOOOnO101OnOOO

a4 0.0128173828 0000001OnO100100 0.0128173828 0000001OnO100100

a5 0.0322570801 0000010000100001 0.0322875977 0000010000100010

a6 -0.0207824707 OOOOOOnOnOnOnOOn -0.0207824707 OOOOOOnOnOnOnOOn

a7 -0.0838623047 OOOnOlOlOlOOOlOO -0.0838623047 OOOnOlOlOlOOOlOO

a8 0.0273132324 00000lOOnOOOOOOn 0.0273132324 000001OOnOOOOOOn

a9 0.3102416992 00101OOOOnOOnOnO 0.3102416992 00101OOOOnOOnOnO

alO 0.4701843262 01OOOnOOOlOnOOOn 0.4701843262 01OOOnOOOlOnOOOn

a ll 0.3102416992 00101OOOOnOOnOnO 0.3102416992 00101OOOOnOOnOnO

al2 0.0273132324 00000lOOnOOOOOOn 0.0273132324 00000lOOnOOOOOOn

al3 -0.0838623047 OOOnOlOlOlOOOlOO -0.0838623047 OOOnOlOlOlOOOlOO

al4 -0.0207824707 OOOOOOnOnOnOnOOn -0.0207824707 OOOOOOnOnOnOnOOn

al5 0.0322570801 0000010000100001 0.0322875977 0000010000100010

al6 0.0128173828 0000001OnO100100 0.0128173828 0000001OnO100100

al7 -0.0109558105 OOOOOOnO101OnOO1 -0.0109863281 OOOOOOnO101OnOOO

al8 -0.0059814453 OOOOOOOnOlOOOnOO -0.0059814453 OOOOOOOnOlOOOnOO

al9 0.0024719238 0000000001010001 0.0024719238 0000000001010001

a20 0.0017395020 0000000001OOnOO1 0.0017395020 000000000lOOnOOl
Table 11 Coefficients with a Maximum o f 5 Non-Zero Digits
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The response of the filter with CSD coefficients converted from IP with a maximum of

5 non-zero digits is shown in Fig. 3.12 and the coefficients are listed in Table 11. This

filter has a square error of 4.4959 xlO'5 .
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Fig. 3.12 Response o f Filter with CSD Coefficients Converted from  
IP with a Maximum o f 5 Non-Zero Digit.
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The response of the filter with CSD coefficients from the proposed GA method with a

maximum of 5 non-zero digits is shown in Fig. 3.13 and the coefficients are listed in

Table 11. This filter has a square error of 4.4621 xlO'5 .
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Fig. 3.13 Response o f  filter with CSD Coefficients Designed by 
proposed GA method with a Maximum 5 o f Non-Zero Digits
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The response of the filter with CSD coefficients converted from IP with a maximum of

4 non-zero digits is shown in Fig. 3.14 and the coefficients are listed in Table 12. This

filter has a square error of 5.29lx l O'5.
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Fig. 3.14 Response offilter with CSD coefficients converted from  
IP with maximum 4 non-zero digits.
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4
Max.
Non-
Zero
Digits

Converted from Optimum Design GA Design

Decimal CSD (n=-l) Decimal CSD (n=-l)

aO 0.0017395020 000000000lOOnOOl 0.0017395020 000000000lOOnOOl

al 0.0024719238 0000000001010001 0.0025024414 0000000001010010

a2 -0.0059814453 OOOOOOOnOlOOOnOO -0.0059814453 OOOOOOOnOlOOOnOO

a3 -0.0109863281 OOOOOOnOlOlOnOOO -0.0109863281 OOOOOOnOlOlOnOOO

a4 0.0128173828 0000001OnO100100 0.0128173828 0000001OnO100100

a5 0.0322570801 0000010000100001 0.0323791504 0000010000100101

a6 -0.0207519531 OOOOOOnOnOnOnOOO -0.0207519531 OOOOOOnOnOnOnOOO

a7 -0.0839843750 OOOnOl0101000000 -0.0839843750 OOOnO10101000000

a8 0.0273132324 00000lOOnOOOOOOn 0.0272521973 00000lOOnOOOOnOl

a9 0.3103027344 00101OOOOnOOnOOO 0.3103027344 00101OOOOnOOnOOO

alO 0.4702148438 OlOOOnOOOlOnOOOO 0.4702148438 OlOOOnOOOlOnOOOO

a ll 0.3103027344 00101OOOOnOOnOOO 0.3103027344 00101OOOOnOOnOOO

al2 0.0273132324 00000lOOnOOOOOOn 0.0272521973 000001OOnOOOOnO1

al3 -0.0839843750 OOOnO10101000000 -0.0839843750 OOOnO10101000000

al4 -0.0207519531 OOOOOOnOnOnOnOOO -0.0207519531 OOOOOOnOnOnOnOOO

al5 0.0322570801 0000010000100001 0.0323791504 0000010000100101

al6 0.0128173828 0000001OnO100100 0.0128173828 0000001OnO100100

al7 -0.0109863281 OOOOOOnO101OnOOO -0.0109863281 OOOOOOnOlOlOnOOO

al8 -0.0059814453 OOOOOOOnOlOOOnOO -0.0059814453 OOOOOOOnOlOOOnOO

al9 0.0024719238 0000000001010001 0.0025024414 0000000001010010

a20 0.0017395020 0000000001OOnOOl 0.0017395020 000000000lOOnOOl
Table 12 Coefficients with a Maximum o f  4 Non-Zero Digits
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The response of filter with CSD coefficients from the proposed GA method with

maximum 4 non-zero digits is shown in Fig. 3.15 and the coefficients are listed in Table

12. This filter has a square error of 4.8028 xlO'5.
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Fig. 3.15 Response o f filter with CSD coefficients designed by GA 
with maximum 4 non-zero digit.
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The response of filter with CSD coefficients converted from IP with maximum 3 non

zero digits is shown in Fig. 3.16 and the coefficients are listed in Table 13. This filter has

a square error of 1.0343 xlO'3.
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Fig. 3.16 Response o f Filter with CSD Coefficients Converted from  
IP with a Maximum o f 3 Non-Zero Digits
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3 Max. 
Non
zero 
digits

Converted from optimum design GA Design

Decimal CSD (n=-l) Decimal CSD (n=-l)

aO 0.0017395020 0000000001OOnOO1 0.0006713867 0000000000lOnOnO

al 0.0024719238 0000000001010001 0.0009155273 00000000001OOOnO

a2 -0.0059814453 OOOOOOOnOlOOOnOO -0.0043334961 OOOOOOOOnOOnOO10

a3 -0.0107421875 OOOOOOnO10100000 -0.0078125000 OOOOOOOnOOOOOOOO

a4 0.0126953125 0000001OnO100000 0.0114746094 0000001OnOOOnOOO

a5 0.0322570801 0000010000100001 0.0283203125 00000lOOnO100000

a6 -0.0205078125 OOOOOOnOnOnOOOOO -0.0205078125 OOOOOOnOnOnOOOOO

a7 -0.0820312500 OOOOnOnOnOOOOOOO -0.0800781250 OOOOnOnOOnOOOOOO

a8 0.0273132324 000001OOnOOOOOOn 0.0283203125 00000lOOnO100000

a9 0.3105468750 00101OOOOnOOOOOO 0.3085937500 00101OOOnOOOOOOO

alO 0.4697265625 OlOOOnOOOO100000 0.4686279297 OlOOOnOOOOOOOnOO

a ll 0.3105468750 00101OOOOnOOOOOO 0.3085937500 00101OOOnOOOOOOO

al2 0.0273132324 00000lOOnOOOOOOn 0.0283203125 00000lOOnO100000

al3 -0.0820312500 OOOOnOnOnOOOOOOO -0.0800781250 OOOOnOnOOnOOOOOO

al4 -0.0205078125 OOOOOOnOnOnOOOOO -0.0205078125 OOOOOOnOnOnOOOOO

al5 0.0322570801 0000010000100001 0.0283203125 00000lOOnO100000

al6 0.0126953125 0000001OnO100000 0.0114746094 0000001OnOOOnOOO

al7 -0.0107421875 OOOOOOnOlOl00000 -0.0078125000 OOOOOOOnOOOOOOOO

al8 -0.0059814453 OOOOOOOnOlOOOnOO -0.0043334961 OOOOOOOOnOOnOO10

al9 0.0024719238 0000000001010001 0.0009155273 00000000001OOOnO

a20 0.0017395020 000000000lOOnOOl 0.0006713867 0000000000lOnOnO
Table 13 Coefficients with a Maximum o f 3 Non-Zero Digits
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The response of the filter with CSD coefficients from the proposed GA method with a

maximum of 3 non-zero digits is shown in Fig. 3.17 and the coefficients are listed in

Table 13. This filter has a square error of 3.4379 xlO'4 .
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Fig. 3.17 Response o f  the Filter with CSD coefficients Designed by 
GA with a Maximum 3 Non-Zero Digits
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2 Max. 
Non- 
Zero 

Digits
Converted from Optimum Design GA Design

Decimal CSD (n=-l) Decimal CSD (n=-l)

aO 0.0017089844 000000000lOOnOOO -0.0002441406 OOOOOOOOOOOOnOOO

al 0.0024414063 0000000001010000 0.0006103516 0000000000010100

a2 -0.0058593750 OOOOOOOnO1000000 -0.0029296875 OOOOOOOOnO100000

a3 -0.0117187500 OOOOOOnO10000000 -0.0073242188 OOOOOOOnOOO10000

a4 0.0136718750 000000lOOnOOOOOO 0.0097656250 0000000101000000

a5 0.0322265625 0000010000100000 0.0273437500 000001OOnOOOOOOO

a6 -0.0195312500 OOOOOOnOnOOOOOOO -0.0195312500 OOOOOOnOnOOOOOOO

a7 -0.0781250000 OOOOnOnOOOOOOOOO -0.0781250000 OOOOnOnOOOOOOOOO

a8 0.0273437500 000001OOnOOOOOOO 0.0273437500 000001OOnOOOOOOO

a 9 0.3125000000 0010100000000000 0.3125000000 0010100000000000

alO 0.4687500000 01OOOnOOOOOOOOOO 0.4687500000 01OOOnOOOOOOOOOO

a ll 0.3125000000 0010100000000000 0.3125000000 0010100000000000

al2 0.0273437500 000001OOnOOOOOOO 0.0273437500 000001OOnOOOOOOO

al3 -0.0781250000 OOOOnOnOOOOOOOOO -0.0781250000 OOOOnOnOOOOOOOOO

al4 -0.0195312500 OOOOOOnOnOOOOOOO -0.0195312500 OOOOOOnOnOOOOOOO

al5 0.0322265625 0000010000100000 0.0273437500 000001OOnOOOOOOO

al6 0.0136718750 0000001OOnOOOOOO 0.0097656250 0000000101000000

al7 -0.0117187500 OOOOOOnOl0000000 -0.0073242188 OOOOOOOnOOO10000

al8 -0.0058593750 OOOOOOOnO1000000 -0.0029296875 OOOOOOOOnO100000

al9 0.0024414063 0000000001010000 0.0006103516 0000000000010100

a20 0.0017089844 000000000lOOnOOO -0.0002441406 OOOOOOOOOOOOnOOO
Table 14 Coefficients with a Maximum o f 2 Non-Zero Digits
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The response of the filter with CSD coefficients converted from IP with a maximum of

2 non-zero digits is shown in Fig. 3.18 and the coefficients are listed in Table 14. This

filter has a square error of 1.4394 xlO'2 .
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Fig. 3.18 Response o f the Filter with CSD Coefficients Converted 
from IP with a maximum o f 2 Non-Zero Digits
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The response of the filter with CSD coefficients from the proposed GA method with a

maximum of 2 non-zero digits is shown in Fig. 3.19 and the coefficients are listed in

Table 14 . This filter has a square error of 7.8210 xlO"3 .
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Fig. 3.19 Response o f the Filter with CSD Coefficients Designed by 
GA with a Maximum 2 Non-Zero Digits
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1 Max. 
Non- 
Zero 
Digits

Converted from Optimum Design GA Design

Decimal CSD (n=-l) Decimal CSD (n=-l)

aO 0.0019531250 0000000001000000 -0.0156250000 OOOOOOnOOOOOOOOO

al 0.0019531250 0000000001000000 -0.0156250000 OOOOOOnOOOOOOOOO

a2 -0.0078125000 OOOOOOOnOOOOOOOO 0.0312500000 0000010000000000

a3 -0.0078125000 OOOOOOOnOOOOOOOO 0.0312500000 0000010000000000

a4 0.0156250000 0000001000000000 -0.0312500000 OOOOOnOOOOOOOOOO

a5 0.0312500000 0000010000000000 -0.0312500000 OOOOOnOOOOOOOOOO

a6 -0.0156250000 OOOOOOnOOOOOOOOO 0.0156250000 0000001000000000

a7 -0.0625000000 OOOOnOOOOOOOOOOO -0.0312500000 OOOOOnOOOOOOOOOO

a8 0.0312500000 0000010000000000 -0.0009765625 OOOOOOOOOOnOOOOO

a9 0.2500000000 0010000000000000 0.2500000000 0010000000000000

alO 0.5000000000 0100000000000000 0.5000000000 0100000000000000

a ll 0.2500000000 0010000000000000 0.2500000000 0010000000000000

al2 0.0312500000 0000010000000000 -0.0009765625 OOOOOOOOOOnOOOOO

al3 -0.0625000000 OOOOnOOOOOOOOOOO -0.0312500000 OOOOOnOOOOOOOOOO

al4 -0.0156250000 OOOOOOnOOOOOOOOO 0.0156250000 0000001000000000

al5 0.0312500000 0000010000000000 -0.0312500000 OOOOOnOOOOOOOOOO

al6 0.0156250000 0000001000000000 -0.0312500000 OOOOOnOOOOOOOOOO

al7 -0.0078125000 OOOOOOOnOOOOOOOO 0.0312500000 0000010000000000

al8 -0.0078125000 OOOOOOOnOOOOOOOO 0.0312500000 0000010000000000

al9 0.0019531250 0000000001000000 -0.0156250000 OOOOOOnOOOOOOOOO

a20 0.0019531250 0000000001000000 -0.0156250000 OOOOOOnOOOOOOOOO
Table 15 Coefficients with a Maximum o f 1 Non-Zero Digit
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The response of the filter with CSD coefficients converted from IP with a maximum of

1 non-zero digit is shown in Fig. 3.20 and the coefficients are listed in Table 15. This

filter has a square error of 1.5444.

I  °
8  -5

I  
| - 1 0  
a>
T i
g  -15
1TO
2  -20

0  0 5  1 1 5  2 2 5  3 3 5

-2000
3 50 .5 1.5 2

Frequency (Hertz)
2.5

Fig. 3.20 CSD Coefficients Converted from IP with a Maximum o f  
1 non-zero digit
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The response of the filter with CSD coefficients from the proposed GA method with a

maximum of 1 non-zero digit is shown in Fig. 3.21 and the coefficients are listed in Table

15. This filter has a square error of 7.1102 xlO'1 .

ClL

-g 20

1.5' . 2
Frequency (Hertz)

0.5 2 5 3 5

Frequency (Hertz)

5.-1000

Fig. 3.21 Response o f the Filter with CSD Coefficients Designed by 
GA with a Maximum o f 1 Non-Zero Digit

A Performance comparison summary is shown in Table 16. The filters are compared 

relative to the optimal IP filter's error which is the lowest possible error.
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Maximum number 
of allowed non-zero 
digits in any filter 
coefficient

Normalized Square Error 
(relative to optimum error of 4.4383 xlO"5)

Improvement 
in Error 
IncreaseFilter with infinite 

precision coefficients 
converted to CSD

Filter with CSD coefficients 
determined by proposed GA 
Method

6 1.006922 1.003792 45.2%

5 1.01297 1.00535 58.8%

4 1.19215 1.08214 57.3%

3 23.306 7.746 69.8%

2 324.30 176.2 45.8%

1 34796.6 16020 53.9%
Table 16 Filter Square Error Relative to Filter with Optimum Infinite Precision 
Coefficients

In all cases the GA designed filter has a lower square error than a filter converted from 

an infinite precision design. While all filters using CSD coefficients will have a higher 

error than the optimum design using infinite precision coefficients the improvement in 

this increase of the proposed GA method over a conversion to CSD format of the IP 

coefficients ranges from 45.2% to 69.8%. A specially noteworthy case is the conversion 

method with 6 non-zero digits compared to the proposed GA method design with 5 non

zeros. Here the GA design produces lower error while utilizing fewer non-zero digits.

In some cases the GA designed filter has a lower error than a converted filter design 

with more non-zero digits.
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3.9 Conclusion

The method presented in this chapter maximizes the potential of a GA search for 1-D 

non-recursive filters with CSD coefficients. The improved functionality of the GA allows 

it to find filters which would have previously been difficult to find. The full capability of 

the genetic algorithm is now available for designing non-recursive CSD coefficients 

filters.
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CHAPTER 4. 1-D RECURSIVE FILTER DESIGN

4.1 Recursive Filters

When the b, filter coefficients of (1.1) or (1.2) are all 0 except for bo the filter is a non

recursive filter and is always stable. For this type of filter design, the preceding method 

works well. However, for recursive filter designs the possibility exists that the filter will 

not be stable. The forgoing GA approach of for non-recursive filters must be extended to 

handle the additional constraint. As always care must be taken to ensure that the effect on 

performance is minimized.

Several approaches have been proposed for handling the constraint imposed by 

unstable filters. The most common method [35]-[37] is to simply give any filter that is 

not stable a fitness value of zero. As discussed in Section 2.9.11, a filter with such a low 

fitness will have a very slim chance of being selected and for all intents and purposes has 

been rejected. Discarding an unstable filter discards all of the filter's schemata even 

though some of them may be quite good with possibly only a few bad ones causing the 

instability.

An unstable filter has inherited schemata from parents which were selected on the basis 

of merit. These hard won schemata could be passed on to offspring that may themselves 

be stable especially if the unstable parent filter is on the verge of stability. However 

unstable filters are definitely undesirable so some form of penalty must be applied.
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4.2 Determining Filter Stability

The criterion for filter stability [1] is that the poles, which are the roots of the 

denominator of a filter's transfer function, B(z) in equation (1.2), must all lie within the 

unit circle on the z plane. If any poles are on or outside of the unit circle, then the filter is 

not unconditionally stable.

To ascertain a suitable penalty factor for an unstable filter it would be helpful to 

quantify the degree of instability. A measure, such as the sum of the distances to the unit 

circle for all poles outside the limit, could be used as the basis of a penalty factor. Those 

filters showing more instability would have a larger penalty applied to their normal 

fitness value.

Such a scheme would necessitate root finding for each filter to determine the pole 

locations. This is computationally intensive especially with large population sizes and 

would negate any efficiency gained as a result of not simply rejecting unstable filters.

A simple and quick method of determining filter stability is the Jury-Marsden [1] 

method. It does not require that any polynomial roots be found and only requires the 

calculation of a series of 2 by 2 determinants. Unfortunately, it is a pass/fail type of test 

that does not yield any measure of the amount of unstableness.

For maximum GA efficiency the fitness lowering penalty factor must strike a balance 

between destroying the schemata of unstable filters by outright rejection and allowing 

some to survive with a low enough probability that the final design will not be unstable. 

The optimum penalty factor is determined empirically.
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A series of test designs was done for several penalty factors ranging from 2 to infinite. 

For each penalty factor 100 filters were designed with each design being allowed to run 

for 300 generations. Any unstable filter occurring in any generation had it's fitness 

penalized by the penalty factor using the formula fitness = fitness/penalty factor.

The fitness of each of the 100 filters for each penalty factor was averaged and the 

result plotted in Fig. 4.1. The number of unstable filters designed is also plotted.
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As can be seen, when using a low penalty factor of 2, the 100 filter designs had an 

average fitness of 35 with 24 of the 100 filters being unstable. When that was raised to 4, 

the average fitness increased to 41 and no unstable filters were produced. In fact, no 

unstable filters were produced for any penalty factor greater than 2.
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From the graph it is clear that the optimum penalty factor occurs somewhere between 8

method used in previous approaches. When using the optimum penalty factor the average 

fitness is improved by 19% over the infinite penalty factor and no unstable filters are 

produced.

4.3 Recursive Filter Design Example

A recursive filter was designed for the target frequency response shown in (4.1).

The unstable filter penalty factor was set at 10 and the design converged on the 

coefficients of Table 17. The mean square error in the frequency response taken at 16384 

points along the spectrum is only 0.00855 The stability of the filter is determined by

and 10. The infinite penalty factor is the same as setting the fitness value to 0 which is the

(4.1)

plotting the poles on the z plane in Fig. 4.2. They are all within the unit circle indicating

that the filter is stable.
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Coefficient CSD Representation Decimal

aO 00000000001OnOOO +0.00006103516

al 0000000100000010 +0.00787353516

a2 0000010010100000 +0.03613281250

a3 0001OnOnOOOOOOOO +0.08593750000

a4 000100001OnOOOOO +0.12792968750

a5 0001000000101000 +0.12622070310

a6 0001OnOnOOOOOOOO +0.08593750000

a7 0000010010100000 +0.03613281250

a8 0000000100101000 +0.00903320310

a9 00000000001OOnOO +0.00085449220

bO 0100000000001001 +0.50027465818

bl OnOOnOOOl0000000 -0.55859375000

b2 1OOnOOnOOOOOOOOO +0.85937500000

b3 OnOOnOOl00000000 -0.55468750000

b4 01OnOOOOOnOOOOOO +0.37304687500

b5 OOOnOOnOOnOOOOOO -0.14257812500

b6 00001OnOOOOnOOOO +0.04638671880

b7 OOOOOOOnOO100000 -0.00683593750

b8 OOOOOOOOOOOOnOOO -0.00024414060

b9 0000000000000001 +0.00003051758
Table 17 Coefficients o f Example Recursive Filter
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Fig. 4.2 z-Plane Plot of the Poles (X) and Zeros (O) of the Example Non-Recursive 

Filter

4.4 Optimum GA Population Size Test

As stated in Section 2.9.10, the exact values of operator parameters, such as population 

size, crossover rate and mutation rates are not critical as long as they are not extreme. To 

verify that statement a test was performed to measure the effects on GA performance due 

to changes in the GA population size.

The design of a 4th order non-recursive filter was used for all tests. It used 10 digit CSD 

coefficients limited to a maximum of 3 non-zero digits. The probability of crossover was
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fixed at 0.9 and the rate of mutation was fixed at 0.05. The filter had the target frequency 

response shown in (4.2)

1 0<co<0.3n
0.75 w = 0.4n  

\H{eJW)\= ^  o.5 c o -n l2  
0.25 w =0.6tt 
0 0.7 TT<CU <0.3 TT

(4.2)

Increasing population size requires more calculations to be performed on each 

generation but also makes the GA converge in fewer generations. So to keep the test fair 

the number of calculations per filter design was fixed at 40000. Therefore as the 

population size is increased the number of generations the GA performs before being 

terminated will decrease so as to keep the number of calculations constant.

Each population size was run 100 times and the total Elapsed time and the average 

square error of each filter design was tabulated as shown in Table 18.

Population
Size

Number of 
Generations

Number of 
Calculations per 

Filter

Elapsed Time 
for 100 Filter 

(Seconds)

Avg. Filter 
Square Error 

(x lO'2)
100 400 40000 307.91 1.350
200 200 40000 298.55 1.348
300 133 40000 303.25 1.366
400 100 40000 310.11 1.326
500 80 40000 319.49 1.390

Table 18 Optimum GA Population Size Test Results 

The results are shown graphically in Fig. 4.3.
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Fig. 4.3 Optimum GA Population Size Test Results

As can be seen the average square error changes very little with population size 

changes. The variation is less than 5% and there is no clear pattern or trend as to which 

population size is best.

An interesting result though is the total time taken. The pattern would seem to indicate 

that even though the number of calculations is held constant, the total time required is 

not. A population size of 200 appears to be the optimum with gradual slowing for the 

population sizes on either side of this.

However, since the total elapsed time variation is less than 7% for a population size 

change of 500% it can be concluded that population size has very little effect on GA 

performance as long as extreme values are avoided.
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4.5 Conclusion

The method presented in this chapter extends the capabilities of a GA search for 1-D 

filters with CSD coefficients to include recursive filters. An efficient method for handling 

unstable filters has been demonstrated allowing the full capability of the genetic 

algorithm to be used for designing non-recursive and recursive CSD coefficient filters.
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CHAPTER 5. TWO-DIMENSIONAL FILTERS

5.1 INTRODUCTION

Two-dimensional (2-D) filters have the transfer function given in (5.1)

M N

EE a k , i >*1 A ( z t , z 2)
H ( z v z 2) =  ---------------------------- =  .................................. (5.1)

M N B i z  z )V V  -* -/ ^ \ Z\ ’Z2>
j L h b k , l  Z \ > Z 2
k  = 0 1 = 0

Where z ]—eJm'J , z2= e 'a'21 , T is the sample period and ay and by are the 

coefficients of the numerator and denominator of the filter respectively [3 8],[39].

For the transfer function to be stable:

B ( z l , z2)^0,  n \zi\ > 1 (5-2)/= 1

2-D filters can be implemented by direct calculation of the difference equation (5.3).

M N M N

y ( m T , n T )  = ̂ l '^Jak / x(mT — kT ,nT  — YT) —̂  ^  bkl y (mT — k T , nT  — IT)
k =0 1 = 0  k =0 1 = 0

Ic+l* 0

(5.3)

High throughput two-dimensional (2-D) filters can be achieved using a two stage 

approach. First, the 2-D filter is reformulated as a series of cascaded one-dimensional (1- 

D) filters which reduces the number of overall multipliers needed. Then the component 1- 

D filters are implemented using CSD coefficients allowing for efficient coefficient 

multiplication.
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5.2 2-D Filters as Cascaded 1-D Filters

It has been shown [40],[41] that a 2-D filter can be implemented as M parallel sections 

of two cascaded 1-D filters in zi and Z2 as shown in Fig. 5.1.

Fig. 5.1 Cascaded 1-D Filters Form a 2-D Filter 

Direct implementation of a 2-D filter of order N  x N  requires (N  + l)2 multipliers, 

whereas for parallel sections of cascaded 1-D filter implementations the requirement is 

2 k (N  + 1) multipliers. Since N > 2 k a hardware saving will be achieved. Such a filter 

is suitable for a pipelined, high throughput implementation, which is an advantage over 

the direct implementation of 2-D filters.

Let A=^ap_q} be the desired sampled amplitude response of a 2-D filter where

/ < p < P ,  l< ( ? < g  (5-4)

and u p and v q are the normalized frequencies given by:

ap,q=\H{ejnu' , e jnv')\

_ p - 1 _ q - 1
UP p _ l  Q _ l

such that 0<up< l ,0 < v ?< 1
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The SVD of matrix A  is

r

^ = Z ° ,i“ ivi (5-5)
i =  \

where a ]> a 2> a 3> a 4> - - > a r are the singular values of  A, u, and v, are unit vectors 

and r is the rank of A .

If d>, = cr’/2w, and y, = cr;1/2v, then

A = ± 4 , , y ,  <5-6>
i — i

These <fi, y, are the sampled amplitude response characteristics of the 1-D filters Fj(zi) 

and Gi(z2) which can be used to form the 2-D filter A  by cascading F and G  in parallel 

branches.

When the number of parallel branches k —r the filter will be a minimal square error 

approximation of the desired 2-D response. The number of parallel branches may be 

arbitrarily reduced such that k<r  to further reduce the number of multiplications 

required. This will result in higher filter error but since the higher order branches 

contribute little to the filter response it may be a worthwhile compromise.

The transfer function of the designed filter using this approach will be in the form

k

H ( z l , z 2) = ' Z x , ( z  x)Yt{z2) (5-7)

where k<r  and the orders of filters X, and Y, are considered to be identical and equal 

to iVfor i = 1,2,3, ••• ,k.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For the first branch, none of the sampled amplitude responses in the vectors 4>t and y, 

can have negative values. This is not true for the subsequent branches. Each vector <fi, 

andy, (i >1) are dealt with individually. A positive value equal to each vector’s most 

negative value is added to all elements of that vector. This shifts the whole vector up so 

that it has no negative members. These shifts must be accounted for in the filter 

implementation [41].

5.3 FIR Design Example

Design a 2-D filter with the target frequency response \Md(a>l co2)| shown in (5.8). 

A graph of this response is shown in Fig. 5.2.

M d(u)X'C0 2)=\H(eJto' ,eJUh)\= 0<VoOi + 0Un< 1 rad/sec
-2,v̂ h > - (5-8>

1 1 2" 
1, otherwise

The filter designed utilized M= 3 for three parallel sections. Each parallel section has 2 

linear phase 1-D filters of 41st order. Each of the 21 unique coefficients for these 1-D 

filters was calculated as a 20-digit CSD number with a maximum limit of 3 non-zero 

coefficients. The genetic algorithm used parameters given in Table 19 and each 1-D 

design took approximately four minutes to complete on a 2.0 Ghz Pentium computer. Fig.

5.3 shows the magnitude response |M (co, co2)| of the designed filter.

Population Size Number of Generations Crossover Rate Mutation Rate

500 1000 .95 .05
Table 19. GA Parameters for 2-D FIR Example

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Target R esponse

M P N 8 R

Fig. 5.2 Target Response

High Throughput Filter Response

Fig. 5.3 High Throughput Filter Response

The closeness of this approach can be seen by the error given in Fig. 5.4. The greatest 

error occurs in two regions of the transition slope where the response is not entirely 

circular. The other areas show very little error.
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This error could be reduced in a couple of ways. Another parallel branch could be 

added to 2-D implementation, the order of the 1-D component filters could be increased 

or the number of allowable CSD non-zero digits could be increased allowing better 

granularity for coefficient selection. All of these methods will increase the number of 

additions required to perform all of the required multiplication.

Magnitude Error

O)TJ
=3

Fig. 5.4 Target Response Error

The CSD filter coefficients in both CSD format and decimal value for the six 1-D 

(F1,G1,F2,G2,F3,G3 ) filters are given in Table 20,Table 21 and Table 22.
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Coefficient FI (decimal) FI (CSD) (n = -l) G1 (decimal) G1 (CSD) (n = -l)

aO 0.0024490356 00000000010100000100 -0.0005493164 OOOOOOOOOOOnOOnOOOOO

al 0.0002479553 00000000000010000010 -0.0012512207 OOOOOOOOOOnOnOOnOOOO

a2 0.0009689331 00000000001OOOOOOnOO -0.0009727478 OOOOOOOOOOnOOOOOOO10

a3 -0.0076904297 OOOOOOOnOOOOO1000000 0.0075645447 0 0 0 0 0 0 0 lOOOOnOOOOOnO

a4 -0.0019683838 OOOOOOOOOnOOOOOOnOOO 0.0031738281 00000000 lOnO10000000

a5 -0.0012817383 OOOOOOOOOOnOnOnOOOOO 0.0014038086 0 0 0 000000 lOnOOnOOOOO

a6 0.0236816406 OOOOOlOnOOOOl0000000 -0.0239257813 OOOOOnO1OOOnOOOOOOOO

a7 0.0160522461 00000010000lOOnOOOOO -0.0161151886 OOOOOOnOOOOnOOOOOOOn

a8 -0.0390548706 OOOOOnOnOOOOOOOOOl00 0.0390625000 00000101000000000000

a9 -0.2812423706 OOnOOnOOOOOOOOOOO100 0.2812500000 00100100000000000000

alO -0.4726562500 OnOOOlOOnOOOOOOOOOOO 0.4688720703 OlOOOnOOOOOOO1000000

a l l -0.2812423706 OOnOOnOOOOOOOOOOO100 0.2812500000 00100100000000000000

a l2 -0.0390548706 OOOOOnOnOOOOOOOOOl00 0.0390625000 00000101000000000000

a l3 0.0160522461 00000010000 lOOnOOOOO -0.0161151886 OOOOOOnOOOOnOOOOOOOn

a l4 0.0236816406 000001OnOOOO10000000 -0.0239257813 OOOOOnO1OOOnOOOOOOOO

a l5 -0.0012817383 OOOOOOOOOOnOnOnOOOOO 0.0014038086 0000000001OnOOn00000

a l6 -0.0019683838 OOOOOOOOOnOOOOOOnOOO 0.0031738281 000000001OnO10000000

a l7 -0.0076904297 OOOOOOOnOOOOO1000000 0.0075645447 00000001OOOOnOOOOOnO

a l8 0.0009689331 00000000001OOOOOOnOO -0.0009727478 OOOOOOOOOOnOOOOOOO10

a l9 0.0002479553 00000000000010000010 -0.0012512207 OOOOOOOOOOnOnOOnOOOO

a20 0.0024490356 00000000010100000100 -0.0005493164 OOOOOOOOOOOnOOnOOOOO

Table 20 Coefficients o f FI and G1 for 2-D FIR Example.
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Coefficient F2 (decimal) F2 (CSD) (n = -l) G2 (decimal) G2 (CSD) (n = -l)

aO 0.0019493103 000000000lOOOOOOOOnO -0.0000629425 OOOOOOOOOOOOOOnOOOOn

al 0.0010375977 00000000001000100000 -0.0097656250 OOOOOOOnOnOOOOOOOOOO

a2 -0.0018920898 OOOOOOOOOnOOOO100000 0.0000381470 00000000000000010100

a3 -0.0039138794 OOOOOOOOnOOOOOOOOnOO 0.0151367188 0000001OOOOnOOOOOOOO

a4 -0.0038452148 OOOOOOOOnOOOOO100000 0.0273456573 000001OOnOOOOOOOOOO1

a5 -0.0076751709 OOOOOOOnOOOOO1001000 0.0019454956 000000000 lOOOOOOOnOO

a6 -0.0024337769 OOOOOOOOOnOnOOOOO100 -0.0322265625 OOOOOnOOOOnOOOOOOOOO

a7 0.0312213898 0 0 0 0 0 lOOOOOOOOOnOOOl -0.0937500000 OOOnO100000000000000

a8 0.1259765625 00010000001000000000 -0.0703048706 OOOOnOOnOOOOOOOOO100

a9 0.2812576294 00100100000000000100 -0.0161094666 OOOOOOnOOOOnOOOOOO10

alO -0.0783691406 OOOOnOnOOOOOnOOOOOOO 0.3125000000 00101000000000000000

a l l 0.2812576294 00100100000000000100 -0.0161094666 OOOOOOnOOOOnOOOOOO10

a l2 0.1259765625 00010000001000000000 -0.0703048706 OOOOnOOnOOOOOOOOO100

a l3 0.0312213898 0 0 0 0 0 lOOOOOOOOOnOOOl -0.0937500000 OOOnO100000000000000

a l4 -0.0024337769 OOOOOOOOOnOnOOOOO100 -0.0322265625 OOOOOnOOOOnOOOOOOOOO

a l5 -0.0076751709 OOOOOOOnOOOOO1001000 0.0019454956 0000000001OOOOOOOnOO

a l6 -0.0038452148 OOOOOOOOnOOOOO100000 0.0273456573 000001OOnOOOOOOOOOO1

a l7 -0.0039138794 OOOOOOOOnOOOOOOOOnOO 0.0151367188 0000001OOOOnOOOOOOOO

a l8 -0.0018920898 OOOOOOOOOnOOOO100000 0.0000381470 00000000000000010100

a l9 0.0010375977 00000000001000100000 -0.0097656250 OOOOOOOnOnOOOOOOOOOO

a20 0.0019493103 0000000001OOOOOOOOnO -0.0000629425 OOOOOOOOOOOOOOnOOOOn

Table 21 Coefficients o f F2 and G3 for 2-D FIR Example
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Coefficient F3 (decimal) F3 (CSD) (n = -l) G3 (decimal) G3 (CSD) (n=-1)

aO -0.0000591278 OOOOOOOOOOOOOOnOOOO1 0.0004940033 000000000001OOOOOlOn

al 0.0018920898 000000000lOOOOnOOOOO 0.0039443970 00000000100000010100

a2 0.0156230927 000000 lOOOOOOOOOOOOn 0.0117263794 0000001OnOOOOOOOO100

a3 0.0001564026 00000000000001010010 -0.0048828125 OOOOOOOOnOnOOOOOOOOO

a4 -0.0273475647 OOOOOnOO1OOOOOOOOOnO -0.0273437500 OOOOOnOO100000000000

a5 -0.0388183594 OOOOOnOnOOOOl0000000 -0.0546913147 OOOOnOO1OOOOOOOOOOnO

a6 -0.0468730927 OOOOnO10000000000001 -0.0478515625 OOOOnOlOOOnOOOOOOOOO

a7 -0.0155029297 OOOOOOnOOOOOO1000000 -0.0156097412 OOOOOOnOOOOOOOOO1000

a8 0.0312194824 000001OOOOOOOOOnOOOO 0.0234375000 00000 lOnOOOOOOOOOOOO

a9 0.0137939453 0 0 0 0 0 0 lOOnOOO1000000 0.0273361206 000001OOnOOOOOOOOnOO

alO -0.2811889648 OOnOOnOOOOOOOO100000 -0.2656269073 OOnOOOnOOOOOOOOOOOOn

a l l 0.0137939453 0000 0 0 lOOnOOO1000000 0.0273361206 000001OOnOOOOOOOOnOO

a l2 0.0312194824 000001OOOOOOOOOnOOOO 0.0234375000 0 0 0 0 0 lOnOOOOOOOOOOOO

a l3 -0.0155029297 OOOOOOnOOOOOO1000000 -0.0156097412 OOOOOOnOOOOOOOOO1000

a l4 -0.0468730927 OOOOnO10000000000001 -0.0478515625 OOOOnOlOOOnOOOOOOOOO

a l5 -0.0388183594 OOOOOnOnOOOOl0000000 -0.0546913147 OOOOnOO1OOOOOOOOOOnO

a l6 -0.0273475647 OOOOOnOO1OOOOOOOOOnO -0.0273437500 OOOOOnOO100000000000

a l7 0.0001564026 00000000000001010010 -0.0048828125 OOOOOOOOnOnOOOOOOOOO

a l8 0.0156230927 0 0 0 0 0 0 lOOOOOOOOOOOOn 0.0117263794 0000001OnOOOOOOOO100

a l9 0.0018920898 0000000001OOOOnOOOOO 0.0039443970 00000000100000010100

a20 -0.0000591278 OOOOOOOOOOOOOOnOOOO1 0.0004940033 000000000001OOOOOlOn

Table 22 Coefficients o f F3 and G3 for 2-D FIR Example

5.4 Recursive 2-D Design Example

Three 2-D filters with the following magnitude specifications were designed:

M d(whw 2) = \H{eJW' ,eJU,')\ =
1, i f  yjcô  + ool < 0.08 tt

0.5, i f  0.08 t t  < ^ool+wl < 0.12tt 
0, otherwise.

(5.9)

This target magnitude \Md(to,;to2)| is plotted in Fig. 5.5.
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Fig. 5.5. D esired Magnitude Response o f  the 2-D  Filter.

All 2-D filters utilized k=3 for three parallel sections with each section composed of 

two 1-D non-recursive filters. The three example 2-D designs are identical except for the 

order of the component 1-D filters. They are composed of either all 2nd order, all 3rd 

order or all 4th order 1-D component filters. Each of the coefficients for these 1-D filters 

is a 16-digit CSD number with a maximum limit of 3 non-zero digits.

The genetic algorithm used the parameters given in .Table 23.

Population Size Number of Generations Crossover rate Mutation Rate

500 500 .95 .05
Table 23 GA Parameters usedfor the 2-D Non-Recursive Example 

The magnitude response |M(co, co2)| for the 2-D filter composed of all 2nd order 1- 

D filters is shown inFig. 5.6 and the coefficients are given in Table 24.
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Fig. 5.6. Amplitude Response o f  the 2-D Filter using Cascaded 
2nd order 1-D Filters with CSD Coefficients.
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FI: CSD value G1:CSD value

aO OOOOnOlOOOnOOOOO -0.0478515625 OOOOnOlOOOnOOOOO -0.0478515625

al 0000000010101000 0.0051269531 0000000010101000 0.0051269531

a2 OOOOnO1OOnOOOOOO -0.0488281250 OOOOnO1OOnOOOOOO -0.0488281250

bO 1OOOOnOnOOOOOOOO 0.9609375000 1OOOOnOnOOOOOOOO 0.9609375000

bl nOOnOnOOOOOOOOOO -1.1562500000 nOOnOnOOOOOOOOOO -1.1562500000

b2 001001OOnOOOOOOO 0.2773437500 001001OOnOOOOOOO 0.2773437500

F2: CSD value G2:CSD value

aO OOnOnOOOOnOOOOOO -0.3144531250 0000010101000000 0.0410156250

al OOOOnOOnOnOOOOOO -0.0722656250 0000010000100100 0.0323486328

a2 OOnO101000000000 -0.1718750000 0001OOOOOnO10000 0.1235351562

bO lOOOOnOOOOOOOnOO 0.9686279297 1OnOOnOOOOOOOOOO 0.7187500000

bl 0101OOOOOnOOOOOO 0.6230468750 0lOOnOOOOO100000 0.4384765625

b2 010000001OOOOnOO 0.5037841797 0010001010000000 0.2695312500

F3: CSD value G3:CSD value

aO OOOnOnOOOOOOnOOO -0.1564941406 01OOOnOnOOOOOOOO 0.4609375000

al OOnOOOOOnOO10000 -0.2534179688 OnOOOlOOOOOnOOOO -0.4692382812

a2 OOnOOOnOOOOO1000 -0.2653808594 OOOOOnOOOOOOOnOO -0.0313720703

bO 1OOOOOnOnOOOOOOO 0.9804687500 1010000100000000 1.2578125000

bl 0010101000000000 0.3281250000 nOOOOnOOOOOOOlOO -1.0311279297

b2 01OOnOOnOOOOOOOO 0.4296875000 OOOnOnOOOO100000 -0.1552734375
Table 24. Coefficients in Decimal and CSD Representation (where n = -1) for the 2-D 
Filter using Cascaded 2nd Order 1-D Filters.
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The magnitude response \M(wl w2)| for the 2-D filter composed of all 3rd order 1-D

filters is shown in Fig. 5.7 and the coefficients are given in Table 25.

w2

Fig. 5.7 Amplitude Response o f the 2-D Filter using Cascaded 3rd 
Order 1-D filters with CSD Coefficients
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FI: CSD value Gl-.CSD value

aO OOOOOnOOOO101000 -0.0300292969 OOOOOnOOOO101000 -0.0300292969

al 0000000001000010 0.0020141602 0000000001000010 0.0020141602

a2 000000001OOOOOnO 0.0038452148 000000001OOOOOnO 0.0038452148

a3 OOOOOnOOOOO10010 -0.0307006836 OOOOOnOOOOO10010 -0.0307006836

a4 10001OnOOOOOOOOO 1.0468750000 10001OnOOOOOOOOO 1.0468750000

bO nOnOOOOOnOOOOOOO -1.2539062500 nOnOOOOOnOOOOOOO -1.2539062500

b2 OOnOOOOOOOOnOnOO -0.2506103515 OOnOOOOOOOOnOnOO -0.2506103515

b3 010000lOOOnOOOOO 0.5146484375 0100001OOOnOOOOO 0.5146484375

F2: CSD value G2:CSD value

aO 0001010010000000 0.1601562500 0000001010100000 0.0205078125

al OOOOOnOnOnOOOOOO -0.0410156250 0000001OnO100000 0.0126953125

a2 001001OOnOOOOOOO 0.2773437500 0000101000001000 0.0783691406

a3 OOnOOOlOOnOOOOOO -0.2363281250 000000001OOOOnOO 0.0037841797

a4 1000001OOnOOOOOO 1.0136718750 OlOOnO1000000000 0.4531250000

bO OOOOnOO101000000 -0.0527343750 001OOOOOnOOOnOOO 0.2458496094

b2 0000010101000000 0.0410156250 0001000000010010 0.1255493164

b3 OOnOnOnOOOOOOOOO -0.3281250000 OOOOOOnOOOl01000 .0.0144042969

F3: CSD value G3:CSD value

aO 00000lOOnOnOOOOO 0.0263671875 OnOOOOOO10100000 -0.4951171875

al OOnOOOOlOOOOOnOO -0.2423095703 01OOOOnOOOnOOOOO 0.4833984375

a2 OOnOlOnOOOOOOOOO -0.2031250000 OOOOOOnOl0100000 -0.0107421875

a3 OOOnOnOnOOOOOOOO -0.1640625000 OOOOOnOnOnOOOOOO -0.0410156250

a4 1OOOOOnOnOOOOOOO 0.9804687500 101OOOOOOOOOOOnO 1.2499389648

bO 000lOnO100000000 0.1015625000 nOOnOOnOOOOOOOOO -1.1406250000

b2 01OOOOOnOnOOOOOO 0.4902343750 OOOOOOOOnOOOnO10 -0.0040893554

b3 OOnO100100000000 -0.1796875000 00000001OOOOOnOn 0.0076599121
Table 25. Coefficients in Decimal and CSD Representation (where n = -1) for 2-D Filter 
using Cascaded 3rd Order 1-D Filters.
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The magnitude response |M(o), u>2)| for the example filter composed of all 4th order

1-D filters is shown in Fig. 5.8 and the coefficients are given in Table 26.

Fig. 5.8 Amplitude response o f the 2-D filter using cascaded 4th order 1-D filters 
with CSD coefficients.

FI: CSD value G1:CSD value

aO OOOOOnOOO1010000 -0.0288085938 OOOOOnOOO1010000 -0.0288085938

al OOOOOOOOnOnOnOOO -0.0051269531 OOOOOOOOnOnOnOOO -0.0051269531

a2 000000001OOOOOnO 0.0038452148 000000001OOOOOnO 0.0038452148

a3 OOOOOOOnOOnOOnOO -0.0089111328 OOOOOOOnOOnOOnOO -0.0089111328

a4 OOOOOnOO10000100 -0.0272216797 OOOOOnOO10000100 -0.0272216797

bO 1OOOOOnOOOOnOOOO 0.9838867188 1OOOOOnOOOOnOOOO 0.9838867188

b2 nOOOOOOO1OOnOOOO -0.9965820312 nOOOOOOOlOOnOOOO -0.9965820312

b3 OnO1OOOOOOnOOOOO -0.3759765625 OnO1OOOOOOnOOOOO -0.3759765625

b4 0010100000000010 0.3125610352 0010100000000010 0.3125610352
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b5 0001001010000000 0.1445312500 0001001010000000 0.1445312500

F2: CSD value G2:CSD value

aO 000000lOOOnOOnOO 0.0145263672 OOOOOOOOnOOnOOOn -0.0044250488

al OlOOOOOOOOOOOnOO 0.4998779297 001OOOOnOnOOOOOO 0.2402343750

a2 OnOOOOOO10000000 -0.4960937500 OOnOOOOOOOnOOOOn -0.2510070801

a3 0000000101010000 0.0102539062 000000000lOOnOOn 0.0016784668

a4 000000lOOOnOnOOO 0.0144042969 0000000100010001 0.0083312988

bO 1000000001001000 1.0021972656 1OOOOOOnOnOOOOOO 0.9902343750

b2 nOOO1OOOOOOOnOOO -0.9377441406 nOOOOOnOnOOOOOOO -1.0195312500

b3 OOOOOOOOOOOnOOnO -0.0005493164 0000000010000001 0.0039367676

b4 0000000100010001 0.0083312988 0000001010100000 0.0205078125

b5 OOOOOOOnOnOOOOnO -0.0098266602 0000101010000000 0.0820312500

F3: CSD value G3:CSD value

aO 0001OOOOOnOOOOOO 0.1230468750 0000000010010000 0.0043945312

al OOOnOOOnOnOOOOOO -0.1347656250 00000lOOnOOnOOOO 0.0268554688

a2 OOnOOO1000001000 -0.2341308594 OOOOOOOOnOnOOOnO -0.0049438477

a3 OOOnOOnOnOOOOOOO -0.1445312500 OnOO100000010000 -0.4370117188

a4 OOOOOOOOnOnOOOOO -0.0048828125 01OOOOOOOnOnOOOO 0.4975585938

bO 1000000000001000 1.0002441406 1010000100000000 1.2578125000

b2 0000001010001000 0.0197753906 nOOOOOnOnOOOOOOO -1.0195312500

b3 0000101000100000 0.0791015625 OOOOOnOOOO100100 -0.0301513672

b4 OOOOnOnOnOOOOOOO -0.0820312500 00000lOOOOOOnOOO 0.0310058594

b5 OOOOnOOnOnOOOOOO -0.0722656250 OOOnO10100000000 -0.0859375000
Table 26 Coefficients in Decimal and CSD Representation (where n = -I) for 2-D Filter 
using Cascaded 4th Order 1-D Filters

If the 2-D target response is specified as a complex frequency response then after SVD 

transformation the 1-D component target responses will also be specified as complex 

frequency responses [40]. Consequently, the magnitude of the target responses of the 1-D
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filters can never be negative. In the example filter however, the 2-D target response 

|M rf(to , eo2)| is specified for magnitude only. After SVD transformation the 1-D filter 

responses are also specified as magnitude only. In this case, 1-D filters F„ and Gn (n>l) 

can have a negative magnitude specification [41]. To compensate, a bias value is added to 

shift the target magnitude response up making all values positive. An inverse bias must 

be used in the filter implementation to compensate. This will require four additions 

beyond those required for coefficient multiplication. The bias values used in the example 

design are given in Table 27.

F2 G2 F3 G3

0.51452313093353 0.24328398326778 0.13827000193691 0.40588223422716
Table 27. 1-D component filter bias values

5.5 2-D Non-Recursive Filter Example Comparison

To check the results the 2-D designs the results using the proposed GA technique are 

compared with the design in [42]. While this design is also a non-recursive filter, has the 

same target frequency response \Md( w] co2)| and utilized a GA for the design it was 

not specifically intended for a high throughput implementation and utilizes full range 32 

bit binary coefficients. The frequency response |M(co, co2)| of the filter in [42] is 

reproduced in . The mean square error of the example filters and the comparison filter 

taken at 50 equally spaced points Px>y, in each dimension ( —tz< x , y  < n)  is given in 

Table 28.
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Design 
o f [42]

Design 
using 
2nd Order 
Components

Design 
using 
3rd Order 
Components

Design 
using 
4th Order 
Components

Mean Square 
Error (xlO3)

2.048 1.899 0.9810 0.6847

Number of additions 240 (average) 106 138 168
Table 28 Mean Square Error and Number ofAdditions Required for Coefficient 
Multiplication o f Considered 2-D Filters

Normally it would be expected that the high throughput filter with bit-limited CSD 

coefficients would not be able to match the mean square error of a filter using full range 

32 bit binary coefficients. The results however, prove otherwise. The example 2-D filter 

using second order 1-D filters has a slightly better mean square error than [42] but 

requires only 106 additions to perform the coefficient multiplication. As the remaining 

two examples show, this error can be further lowered at the expense of more additions. 

For the example using forth order 1-D filters, the error is a third of that in [42] and yet 

still only requires 168 additions for coefficient multiplication.

Since the design in [42] was not intended as a high throughput design, no attempt was 

made to quantify the actual number of additions required. Instead an average figure is 

calculated which applies to any filter such as this with fifteen coefficients using 32 bit 

binary coefficients. Since on average a 32 bit binary number will have 16 ones, on 

average 15 coefficients will require 240 additions.

5.6 Conclusion

The approach presented in this chapter for the design of high throughput 2-D filters 

uses several strategies for increasing perfomiance. The design of the 2-D filters as a

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



parallel arrangement of 1-D filters provides for high throughput, pipelined, parallel 

processing and permits the use of high performance 1-D filters with CSD coefficients. 

This method can produce 2-D filters with better response characteristics and reduced 

computational requirements.
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CHAPTER 6. COMMON SUBEXPRESSION ELIMINATION

6.1 Introduction

Further reduction in the number of additions required for the multiplication of CSD 

filter coefficients can be gained through the use of common subexpression elimination

[43],[44]. When a portion of an expression (subexpression) occurs more than once it can 

be calculated once and the result used wherever that subexpression occurs within the 

expression. Since removing one subexpression may preclude the removal of others, 

identifying which sub-expressions are most advantageous to remove is a difficult search 

and optimization problem.

6.2 Subexpression Types

Sub-expression can be any bit pattern within a CSD coefficient but the most commonly 

occurring ones [44] are the 2-bit CSD subexpressions such as 101,101,1001, etc. 

which have a non-zero on each end and one or more zeros in the middle. 2-bit CSD sub

expressions may be common within the coefficients (horizontal sub-expressions) or 

between coefficients (vertical sub-expressions).

6.3 Horizontal Sub-Expression Elimination within a Coefficient

Sub-expressions can be found and eliminated horizontally within a CSD coefficient

[44],[46]. As an example, suppose we wish to calculate (6.1).

y = (1010101)jc (6.1)

Using shift/add in place of multiplication this would become (6.2) which requires three 

additions.
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y  = x-t-x<3C2-)-x<s:4 + x<§;6 (6.2)

The 2-bit sub-expression 1 01 appears more than once (three times but only two are 

in a position to be eliminated). This can be algebraically re-arranged as in (6.3).

y=x+x<fZ 2+(x+x<$c2)<s:4 (6.3)

This clearly shows the sub-expression x + x<3C2 (101) occurring twice. By pre

calculating this sub-expression as .v= x + x <§: 2 our expression becomes y=.s’+.s'« : 4 

which requires a total of only 2 additions including the one for calculating sub

expressions. This represents a 1/3 savings in the number of additions required.

6.4 Vertical Sub-Expression Elimination

Sub-expressions can also be found and eliminated in the vertical dimension [47] when 

the coefficients are staked. As an example of vertical sub-expression elimination, suppose 

we wish to calculate (6.4).

^ = (1 0 0 l0 1 )x [0 ]
+ (10 1 001)x[—1 ] Cb-4j

Here the 2-bit common sub-expression, shown in bold, is the pair of l's appearing 

vertically in the first bit position when the coefficients are stacked as shown. This sub

expression appears again in the last bit position.

This is calculated as in (6.5) for a total of 5 total additions.

y = x[0] — x[0]<?c2 + x[0l<$c5 (f.
+ x[—l] + x[—l ] « 3  + x[—1 ]« 5

This can be more readily shown by rearranging (6.5) to get (6.6).
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y=(x[0] + x[— l]) + (x[0] + x[— 1])<?C5 — x[0]<SC2 + x[— 1 ] <$C 3 (6.6)

Here the common sub-expression is .v= x [ 0 ]+ x [ — 1 ] . By pre-calculating s our 

original expression becomes (6.7).

>’ = 5' + 5«C5 — x [0]<SC2 + x [-1]<§:3 (6.7)

This has a total of 4 total additions including the one used in calculating 5  for a

reduction of one addition.

6.5 Horizontal Sub-Expression Elimination Across Coefficients

Horizontal sub-expressions can be eliminated across coefficients if the appropriate 

input delay is taken into consideration. In (6.4) of the previous example there also appears 

the 2-bit horizontal sub-expression 10001 in both coefficients. In this example, x[0] is the 

current input value and x[-l] is the previous input value that has been delayed. To 

eliminate this we can pre-calculate the 10001 sub-expression and simply delay the result 

until it is needed. Rearranging (6.4) yields (6.8).

y' = (x[0] + x[0]<§;5) — x[0]<SC2 + (x[ — 1 ]+x[— 1 ]<3C5) + x[— 1 ] 3 (6.8)

Pre-calculating .v[0]=x[0]+x[0]<g:5 this becomes

>'=^[0]—x[0]^c2+5[—1]+x[— 1 ]<?C3 (6.9)

where s[-l] is the delayed sub-expression value from the previous calculation. 

Eliminating this sub-expression results in a saving of 1 addition operation.

Note that eliminating the vertical sub-expression in (6.4) will preclude eliminating the 

horizontal sub-expression across coefficients and vice-versa.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As well, in the first example y = (I 01 0 1 01) x the sub-expression 101 appears 3 

times but only the two that do not share a non-zero digit with the other can be eliminated.

In general, the elimination of a 2-bit sub-expression will remove the sub-expression's 

two terminating non-zero digits from participation in any other subexpression. These 

potential sub-expressions are therefore no longer available for elimination.

6.6 Graphical Transformation

There has been some study as to whether it is better to remove the vertical 

subexpression [44], horizontal subexpressions [47], A comparison of these methods [48] 

determined that the best approach varies by problem type. Without predetermined 

knowledge about which type to eliminate, the best approach would be to search for both 

vertical and horizontal simultaneously to find the best combination for the particular 

problem at hand

To this end, a new graphical method of identifying sub-expressions and potential 

elimination paths is proposed to optimally eliminate both vertical and horizontal sub

expressions. The method employs a two-step graphical transformation which converts the 

problem into one very similar to the much studied traveling salesman problem [1] where 

well known methods such as a Genetic Algorithm can be applied.

6.6.1. Identification Graph

The first transformation step is the identification (ID) graph Gid={Vid, E id). This 

graph is similar to the admissibility graph of [49] but it has been extended to include both
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vertical and horizontal subexpressions and only contains the information necessary for 

subexpression identification.

To create this graph the CSD coefficients are first stacked vertically for easy 

identification of the horizontal and vertical sub-expression dimensions. Then the graph 

vertices are created according to (6.10).

V id= {non-zero digits in all coefficients} (6.10)

Next a partial ID graph G 'id={V id, E 'id) with edges E'ui representing all possible 

vertical and horizontal sub-expressions are defined as Eid—E h-\-Ev where

E h—[{Va, V b) \ / V a, Vh within the same coefficient} (6.11)

and

E v—{{Va, Vb) V  Va, Vhwith the same vertical bit location} (6.12)

Therefore, Eh and Ev are the edges for fully connected sub-graphs in the horizontal and 

vertical dimensions respectfully.

The edges are next labeled with their properties. They have a start and end vertices Va 

and Vh as all edges do. They have a type: horizontal or vertical. They have a polarity to 

indicate if the sign of their non-zero digit vertices have matching signs. For example, 

edges representing 101 or -10-1 have positive polarity while those representing 10-1 and 

-101 have negative polarity. Horizontal types also have a bit position separation distance 

to indicate their length and vertical types have a coefficient pair (cl,c2) and a bit position.
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The final ID graph edges Em representing only the common sub-expressions is now 

formed from £ V  . The edges that do not share the same (common) properties with at least 

one other edge are removed to leave only the common subexpressions. The final edges 

are determined by

E i d ~  & jd ~  Eunique (6-13)

where Emique={ edges with unique properties } .

To illustrate this, suppose a filter has the CSD coefficients

c0=1010T 001,c, = 10000101 (6.14)

To get the actual dimensions to match the nomenclature they are first stacked vertically 

as in Table 29.

Co 1 0 1 0 1 0 0 1

Cl 1 0 0 0 0 1 0 1

Table 29 Coefficient Stacking 

The vertices of  Gm V id={V representing the non-zero digits of the coefficients

are formed and have the properties shown in Table 30.
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Vertex 
(Non-zero digit)

Digit Polarity Coefficient digit
Position

V, +1 0 8

v2 +1 0 6

V3 -1 0 4

V4 +1 0 1

V5 +1 1 8

Vfi +1 1 3

v7 +1 1 1
Table 30 Properties o f Vertices in ID Graph Example

These are graphed to get Fig. 6.1.

Fig. 6.1 ID Graph with Only Vertices

The edges E \ d  representing all vertical and horizontal subexpressions are now added to 

get the partial ID graph G \ d shown in Fig. 6.2.
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Fig. 6.2 Partial ID Graph G'td 

The properties of each edge is tabulated in Table 31 and added to each edge of the 

graph.

Edge (Va,Vb) Type Polarity Length (C ,,C 2)

1 (1 ,2) h + 1 —

2 (1 ,3) h - 3 —

3 (1 ,4) h + 6 —

4 (1 ,5) V + — (Co,Cl)

5 (2 ,3) h - 1 —

6 (2 ,4 ) h + 4

7 (3 ,4 ) h - 2

8 (4 ,7) V + — (Co,Cl)

9 (5 ,6) h + 4 —

10 (5 ,7 ) h + 6 —

11 (6 ,7 ) h + 1 —

Table 31 Edge list E ',d  with Edge Properties

The edges that do not share the same (common) properties with at least one other edge 

are removed from the edge list. The completed ID graph Gjd containing edges 

representing only common vertical and horizontal subexpressions results as shown in Fig. 

6.3.
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Fig. 6.3 Completed ID Graph Gid

6.7 Search Graph

With the ID graph complete it is used to form the search graph G = ( Vs, E x) . Each 

edge of the ID graph becomes a vertex of the search graph E,d -> Vs.

Since each vertex represents a subexpression, a Hamiltonian walk through the vertices 

will yield one possible elimination scheme. It is now possible to use a search and 

optimization technique to find the Hamiltonian walk through Gs which yields the greatest 

subexpression elimination.

This is very similar to the Traveling Salesman Problem (TSP) where the verticees 

represent cities and the edges represent the distance between cities and the object is to 

find the Hamiltonian walk that produces the smallest sum of edge distances.

The major difference here is that the distances are all known in advance for the TSP but 

with the sub-expression elimination problem traversing a sub-expression edge may not 

yield a reduction in additions immediately if at all. Only when an identical sub

expression is also traversed can an elimination occur and even then it may not happen.
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A subexpression can only participate in an elimination if neither of its non-zero digits 

(vertices of Gut) have been allocated to a previous elimination. So depending on the path 

taken, the edge with identical properties may not be available. This difference will 

preclude some optimization methods such as those based on gradients but others such as 

the genetic algorithm are not affected.

To illustrate, taking the edges of G,j of Table 31 and using them as vertices Si to Sg in 

G.s we get the serach graph of Fig. 6.4.

Fig. 6.4. Search Graph Gs

6.8 Example Walk Through Search Graph

One possible Hamiltonian walk is S6.S7,S3Ss,Sg,S4,Si,S2 as shown in . Here, as the path 

goes from S6 to S7, an examination shows that they have different properties and are 

therefore not common subexpressions and can not be eliminated. Then S3 is traversed 

which has identical properties to S6 (h,4,+) making them candidates for elimination.

To ascertain if these candidates can be eliminated a check of the availability of their 

non-zero digits as represented by their ID graph vetices V a,b is required. This is kept in an
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availability table which initially shows all vertices are available. Since the table shows 

none of the non-zero digits of Se, or S3 has been allocated to other eliminations, these two 

subexpressions are eliminated. Their ID graph vertices V5,6 and V2>4 are now marked as 

unavailable as shown in Table 32 to prevent their non-zero digits from participating in 

any subsequent eliminations.

vid 1 Available

Vid 2 Not Available

Vid 3 Available

V id 4 Not Available

Vid 5 Not Available

Vid 6 Not Available

Vid 7 Available
Table 32 ID Graph Vertex Availability Table after (St, S 3)  Elimination 

As the walk continues, common pairs (S5 S4), (Si Ss) and (S2 S7) are found but in each 

case at least one of the non-zero digits specified by their ID graph vertices has already 

been used by the (SsA) elimination.

6.9 Example Elimination using a GA

As an example, a genetic algorithm (GA) is used to eliminate sub-expressions of a 

typical filter. A standard GA designed for the TSP is used [1], The chromosome is simply 

an ordered list of edges which form a Hamiltonian walk through the graph. The only 

change was to the fitness function which returns a value based on the number of sub

expressions eliminated instead of the distance the salesman must travel.

6.9.1. Fitness Function
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At the start of the fitness evaluation all vertices from the ID graph G,d are listed in a 

table and marked as available. These represent the available non-zero digits on the end of 

each 2-bit sub-expression to be eliminated. Traversing the search graph Gs through the 

Hamiltonian walk specified by the GA chromosome we get the first or next edge. The 

vertices in the availability table are marked as available then we mark the edge as an 

elimination candidate and mark its vertices as taken otherwise we mark the edge as not 

eliminated. We increment the occurrence count for an edge with this ones properties 

(type, polarity and length or coefficient pair). We repeat for all edges in order.

The fitness value is then determined by summing the n occurrence count (OC) values 

as shown in (6.15).

n

f itn ess  =  ̂ _l (O C i— 1 , i f  O C ,>  1 else  0 ) (6 .15)
i = i

During the GA run it is not necessary to know which edges have been eliminated, only 

how many. However, on the final GA run we need to show which edges have been 

eliminated. This is done by repeating the walk again only this time we print out all the 

candidate edges that have an associated occurrence count of 2 or greater since these 

represent the sub-expression that will be eliminated.

6.10 Example

The filter chosen is a 10th order FIR with the CSD 16 digit coefficients bit limited to 3 

non-zero digits maximum as shown in Table 33. There are 27 non-zero digits in the 

coefficients requiring 26 additions for coefficient multiplication. The circled sub-
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expressions are the ones eliminated. In this case even with an already low number of non

zero digits and additional 6 or 23.1% were eliminated.

Coefficient CSD
Representation
(n -1 )

a 0 OlOOnO100000

a 1 nOnOOnOOOOOO

a 2 OOnOnOnOOOOO

a 3 01OOnOl00000

a 4 OOlOnOOOnOOO

a 5 OOOnOOOOOOOO

a 6 OOOOnOOnOOlO

a 7 0000001OOOnO

a 8 000000lOnOnO

a 9 000000000001

a 10 0000001OOOnO
Table 33 CSD Coefficients
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Table 34 Coefficients with Eliminated Subexpressions

6.11 Application to Previous Results 

The method was used on the 1 -D filters designed in Chapter 3 to determine the amount 

of reduction that can be expected from filters with bit-limited CSD coefficients.

In the results that follow, the original CSD format coefficients ao to aio are shown and 

the then the same coefficients are given with the eliminated subexpression labeled on 

each of its terminating non-zero digits. The labeling is according to Table 35.

Label Meaning

Subexpression + for matching non-zero digit polarity
Polarity - for opposite non-zero digit polarity

Size Number of digits between terminating non-zero digits (if H type)

Digit position counting from the most significant digit (if V type)

Type H for horizontal subexpression
V for vertical subexpression

Table 35 Eliminated Subexpression Labeling
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For example the subexpression 1001 would be shown as +2H 0 0 +2H since it is a 

horizontal type with matching polarity and 2 digits between the termination non-zero 

digits. There will always be two or more subexpressions with the same labeling and each 

pair represents one less addition (each triple represents two less, etc.).

Table 36 shows the eliminated subexpressions for the filter with a maximum of 2 non

zero digits. The total number of non-zero digits is 21 requiring 20 additions for 

coefficient multiplication. After the elimination the number of additions was reduced by 6 

or 30.0%.
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CSD Coefficients
aO 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
al 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
a2 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0
a3 0 0 0 0 -1 0 -1 0 0 0 0 0 0 0 0 0
a4 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 0 0
a5 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0
a6 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
a7 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0
a8 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0
a9 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
alO 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
Coefficients with eliminated subexpressions labeled
aO 0 -3H 0 0 0 -3H 0 0 0 0 0 0 0 0 0 0
al 0 0 +1H 0 +1H 0 0 0 0 0 0 0 0 0 0 0
a2 0 0 0 0 0 +6V 0 0 +9V 0 0 0 0 0 0 0
a3 0 0 0 0 1H 0 1H 0 0 0 0 0 0 0 0 0
a4 0 0 0 0 0 0 1H 0 1H 0 0 0 0 0 0 0
a5 0 0 0 0 0 +6V 0 0 +9V 0 0 0 0 0 0 0
a6 0 0 0 0 0 0 0 +1H 0 +1H 0 0 0 0 0 0
a7 0 0 0 0 0 0 0 -3H 0 0 0 -3H 0 0 0 0
a8 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0
a9 0 0 0 0 0 0 0 0 0 0 0 +1H 0 +1H 0 0
alO 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

Table 36 Eliminated Sub-Expressions for Maximum 2 Non-Zero Digits
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Table 37 shows the eliminated subexpressions for the filter with a maximum of 3 non

zero digits. The total number of non-zero digits is 20 requiring 29 additions for 

coefficient multiplication. After the elimination the number of additions was reduced by 7 

or 24.1%.

CSD Coefficients
aO 0 1 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0
al 0 0 1 0 1 0 0 0 -1 0 0 0 0 0 0 0
a2 0 0 0 0 0 1 0 0 -1 0 1 0 0 0 0 0
a3 0 0 0 0 -1 0 -1 0 0 -1 0 0 0 0 0 0
a4 0 0 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 0
a5 0 0 0 0 0 1 0 0 -1 0 1 0 0 0 0 0
a6 0 0 0 0 0 0 1 0 -1 0 0 0 -1 0 0 0
a7 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
a8 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 1 0
a9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0
alO 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0
Coefficients with eliminated subexpressions labeled
aO 0 -3H 0 0 0 -3H 0 0 0 0 0 0 0 -1 0 0
al 0 0 -5H 0 1 0 0 0 -5H 0 0 0 0 0 0 0
a2 0 0 0 0 0 +6V 0 0 +9V 0 +11V 0 0 0 0 0
a3 0 0 0 0 +1H 0 +1H 0 0 -1 0 0 0 0 0 0
a4 0 0 0 0 0 0 +1H 0 +1H 0 -1 0 0 0 0 0
a5 0 0 0 0 0 +6V 0 0 +9V 0 +11V 0 0 0 0 0
a6 0 0 0 0 0 0 -5H 0 -1 0 0 0 -5H 0 0 0
a7 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
a8 0 0 0 0 0 0 0 0 -5H 0 0 -1 0 0 -5H 0
a9 0 0 0 0 0 0 0 0 0 0 -3H 0 0 0 -3H 0
alO 0 0 0 0 0 0 0 0 0 0 -3H 0 -1 0 -3H 0

Table 37 Eliminated Sub-Expressions for Maximum 3 Non-Zero Digits
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Table 38 shows the eliminated subexpressions for the filter with a maximum of 4 non

zero digits. The total number of non-zero digits is 41 requiring 40 additions for 

coefficient multiplication. After the elimination the number of additions was reduced by 

13 or 32.5 percent.

CSD Coefficients
aO 0 1 0 0 0 -1 0 0 0 1 0 -1 0 0 0 0
al 0 0 1 0 1 0 0 0 0 -1 0 0 -1 0 0 0
a2 0 0 0 0 0 1 0 0 -1 0 0 0 0 -1 0 1
a3 0 0 0 -1 0 1 0 1 0 1 0 0 0 0 0 0
a4 0 0 0 0 0 0 -1 0 -1 0 -1 0 -1 0 0 0
a5 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1
a6 0 0 0 0 0 0 1 0 -1 0 1 0 0 1 0 0
a7 0 0 0 0 0 0 -1 0 1 0 1 0 -1 0 0 0
a8 0 0 0 0 0 0 0 -1 0 1 0 0 0 -1 0 0
a9 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0
alO 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 1
Coefficients with eliminated subexpressions labeled
aO 0 1 0 0 0 -1 0 0 0 -1H 0 -1H 0 0 0 0
al 0 0 +1H 0 +1H 0 0 0 0 +2H 0 0 +2H 0 0 0
a2 0 0 0 0 0 -2H 0 0 -2H 0 0 0 0 -1H 0 -1H
a3 0 0 0 -1H 0 -1H 0 +1H 0 +1H 0 0 0 0 0 0
a4 0 0 0 0 0 0 + 1H 0 +1H 0 +1H 0 +1H 0 0 0
a5 0 0 0 0 0 1 0 0 0 0 1 0 0 + 1H 0 +1H
a6 0 0 0 0 0 0 -1H 0 -1H 0 +2H 0 0 +2H 0 0
a7 0 0 0 0 0 0 -1H 0 -IE 0 -1H 0 -1H 0 0 0
a8 0 0 0 0 0 0 0 -1H 0 -1H 0 0 0 -1 0 0
a9 0 0 0 0 0 0 0 0 0 1 0 +2H 0 0 +2H 0
alO 0 0 0 0 0 0 0 0 0 -2H 0 0 -2H 0 0 1

Table 38 Eliminated subexpressions for maximum 4 non-zero digits
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Table 39 shows the eliminated subexpressions for the filter with a maximum of 5 non

zero digits. The total number of non-zero digits is 37 requiring 36 additions for 

coefficient multiplication. After the elimination the number of additions was reduced by 

10 or 27.8 percent.

CSD Coefficients
aO 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 -1
al 0 0 0 -1 0 1 0 1 0 1 0 0 0 1 0 0
a2 0 0 0 0 0 0 -1 0 -1 0 -1 0 -1 0 0 -1
a3 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0
a4 0 0 0 0 0 0 1 0 -1 0 1 0 0 1 0 0
a5 0 0 0 0 0 0 -1 0 1 0 1 0 -1 0 0 0
a6 0 0 0 0 0 0 0 -1 0 1 0 0 0 -1 0 0
a7 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
a8 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 1
a9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
alO 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
Coefficients with eliminated subexpressions labeled
aO 0 0 0 0 0 1 0 0 +6H 0 0 0 0 0 0 +6H
al 0 0 0 -1H 0 -1H 0 +5H 0 1 0 0 0 +5H 0 0
a2 0 0 0 0 0 0 +3H 0 +3H 0 +3H 0 +3H 0 0 -1
a3 0 0 0 0 0 1 0 0 0 0 3H 0 0 0 3H 0
a4 0 0 0 0 0 0 +6H 0 -1H 0 -1H 0 0 +6H 0 0
a5 0 0 0 0 0 0 -1H 0 -1H 0 -1H 0 -1H 0 0 0
a6 0 0 0 0 0 0 0 -1H 0 -1H 0 0 0 -1 0 0
a7 0 0 0 0 0 0 0 0 0 1 0 +3H 0 0 0 +3H
a8 0 0 0 0 0 0 0 0 0 +5H 0 0 -1 0 0 +5H
a9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
alO 0 0 0 0 0 0 0 0 0 1 0 +3H 0 0 0 +3H

Table 39 Eliminated subexpressions for maximum 5 non-zero digits
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Table 40 shows the eliminated subexpressions for the filter with a of maximum 6 non

zero digits. The total number of non-zero digits is 46 requiring 45 additions for 

coefficient multiplication. After the elimination the number of additions was reduced by 

14 or 31.1 percent.

CSD Coefficients
aO 0 1 0 0 0 -1 0 0 0 1 0 -1 0 0 0 -1
al 0 0 1 0 1 0 0 0 0 -1 0 -1 0 1 0 1
a2 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 -1 0
a3 0 0 0 -1 0 1 0 1 0 1 0 0 1 0 -1 0
a4 0 0 0 0 0 0 -1 0 -1 0 -1 0 -1 0 0 -1
a5 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
a6 0 0 0 0 0 0 1 0 -1 0 1 0 0 1 0 0
a7 0 0 0 0 0 0 -1 0 1 0 1 0 -1 0 0 1
a8 0 0 0 0 0 0 0 -1 0 1 0 0 0 -1 0 0
a9 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
alO 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 1
Coefficients with eliminated subexpressions labeled
aO 0 1 0 0 0 +9H 0 0 0 -1H 0 -1H 0 0 0 +9H
al 0 0 +1H 0 +1H 0 0 0 0 +1H 0 +1H 0 +1H 0 +1H
a2 0 0 0 0 0 -2H 0 0 -2H 0 0 0 0 0 -1 0
a3 0 0 0 -1H 0 -1H 0 +1H 0 +1H 0 0 -1H 0 -1H 0
a4 0 0 0 0 0 0 +1H 0 +1H 0 +1H 0 +1H 0 0 -1
a5 0 0 0 0 0 +9H 0 0 0 0 1 0 0 0 0 +9H
a6 0 0 0 0 0 0 -1H 0 -1H 0 1 0 0 1 0 0
a7 0 0 0 0 0 0 -1H 0 -1H 0 -1H 0 -1H 0 0 1
a8 0 0 0 0 0 0 0 -1H 0 -1H 0 0 0 -1 0 0
a9 0 0 0 0 0 0 0 0 0 +1H 0 + 1H 0 0 0 1
alO 0 0 0 0 0 0 0 0 0 -2H 0 0 -2H 0 0 1

Table 40 Eliminated subexpressions for maximum 6 non-zero digits
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6.12 Summary of Application to Previous Results

Shown in Table 41 is a summary of the results of common subexpression elimination 

on each of the filters. The reduction ranges from 24.1 to over 32.5 %. Even for the filter 

with only two non-zero digits per coefficient the method was able to reduce the number 

of additions required by 30%.

Filter
(by non-zero 
digit count)

Original
Addition
Count

Reduction
(additions)

Additions 
Required After 
Elimination

Reduction
(%)

6 45 14 31 31.1%

5 36 10 26 27.7%

4 40 13 27 32.5%

3 29 7 22 24.1%

2 20 6 14 30.0%
Table 41 Summary o f Application to Previous Results

6.13 Conclusion

The method presented in this chapter allows for the efficient and simultaneous 

elimination of both vertical and horizontal common subexpressions occurring within a 

filter's coefficient multiplication expressions. A computational savings of up to 31% has 

been demonstrated.
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CHAPTER 7. FUTURE WORK

Several areas discussed in this dissertation deserve further examination for possible 

improvements in filter throughput.

7.1 1-D Recursive Filters

The penalty factor was empirically determined using a single representative example. 

More examples using different filter designs should be taken to see if what if any effects 

it has on the optimum penalty factor value.

7.2 2-D Filters

The 2-D filters in this dissertation used three parallel branches and all were treated 

equally. It is possible that some branches are more important to the overall filter that 

others. Studies should be taken to ascertain the contribution of each branch and to see if it 

may be possible to use lower order 1-D component filters on the less important branches.

7.3 Common Sub-expression Elimination

The amount of common subexpression elimination is dependent on bit pattern of 

coefficients so it may be possible to integrate common subexpression elimination into 

CSD design algorithm. Such a scheme would use the amount of CSE reduction as part of 

GA search criteria along with error during design process.

In this dissertation only 2-bit common sub-expressions were considered. It may be 

possible to gain some additional elimination through the use of n-bit common sub

expression elimination.
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CHAPTER 8. CONCLUSION

In this dissertation, high throughput digital filters have been achieved by using CSD 

filter coefficients and eliminating as many common sub-expressions as possible

Genetic Algorithms have been successfully applied to the design of CSD coefficient 

filters through the use of a proposed new chromosome coding technique that eliminates 

the problems previously encountered in using GAs to design such filters.

A new unstable penalty factor has been empirically determined that allows Genetic 

Algorithms to efficiently handle the unstable filter constraint inherent in recursive filter 

design. A techniques has been presented that allows these methods to be used to create 

high throughput 2-D filters

A proposed new graphical transformation allows for optimization of the elimination of 

CSD- coefficient common sub-expressions in both the vertical and horizontal dimensions. 

This improves coefficient multiplication efficiency resulting in increased filter 

throughput.

This proposed new techniques have been shown to work on both recursive and non

recursive filters for both 1-D and 2-D filters. These effectiveness new methods has been 

demonstrated with example designs and comparisons to other methods.
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Appendix A Source Code

The following is the C++ source code for the Genetic Algorithm.

File of unitl.h

//_-----------------------------------------
#ifhdef U nitlH
# define U nitlH
//.-----------------------------------------
#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
^include <system.hpp>
#include "sgr_data.hpp"
#include "sg rdef.hpp"
#include <M enus.hpp>
#include <ExtCtrls.hpp>
#include"Chromosome.h"
# define M IN M A X def 0
# define LM Sdef 1 
#define STABLE 0
# define UNSTABLE 1
II.--------------------------------------------------------------------------------------------------------------

class T Form l : public TFonn 

{
published: //  IDE-managed Components
TLabel *Labell;
TLabel *LabeI2;
TLabel *Label3;
TButton *Buttonl;
TLabel *Label4;
TButton *Button2;
Tsp_XYPlot *sp_X YPlotl;
Tsp XYLine *sp_X Y Linel;
TButton *Button3;
TM ainM enu *M ainM enul;
TPopupM enu *PopupM enul;
TM enuItem * File 1;
TM enuItem *Exitl;
TM enuItem *FileMenu;
TM enuItem *Exit;
TM enuItem *FilterMenu;
TM enuItem *HelpM enu;
TLabel *Label5;
TLabel *Label6;
TLabel *Label7;
TLabel *Label8;
TM enuItem *LPFilter;
TM enuItem *HighPassFilterl;
TM enuItem *SettingsM enu;
TM enuItem *PassBandFilterl;
TM enuItem *Coefficients2;
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TM enuItem  *Algorithm2;
TM enuItem  *LowPassl;
TM enuItem  *HighPassl;
TM enuItem  *BandPassl;
TM enuItem  *Notchl;
TM enuItem  * Arbitrary 1;
TM enuItem  ‘ Frequency 1;
TM enuItem  ‘ Radssecl;
TM enuItem  *H zl;
TLabel *LabeI9;
v o id __fastcall ButtonlClick(TObject ‘ Sender);
void fastcall Button2Click(TObject *Sender);
v o id __fastcall Button3Click(TObject * Sender);
v o id  fastcall Coefficients2Click(TObject ‘ Sender);
void _ fa s tc a ll  Algorithm2Click(TObject ‘ Sender);
v o id  fastcall ArbitraryFilterlClick(TObject ‘ Sender);
v o id __fastcall LowPasslClick(TObject ‘ Sender);
void fastcall Arbitrary lClick(TObject ‘ Sender);
v o id  fastcall FormClose(TObject ‘ Sender, TCloseAction &Action);

private: //  User declarations

public:
// User declarations 

char elitism  ; 
int FitnessType;

int xoverType; // 0 = uniform, 1 = 1 point, 2 =  2 point 
int popSize,chromCard,chromLength,NumGens; 

float desiredFitness; 
int numFreqPoints;

double mutRate,crossRate;
String fitFunc, cliromDecode; 

int numUniqueCoeffs,Ndigits,NcsdOnes,numRecursiveCoeffs,numAi,numBi; 
double PassBandStop; 
double StopBandStart; 
double ws; 
int order; 
bool linearPhase;
int SaveCSDs(Chromosome ‘ Best,int Gen);
int stats(char ‘ bufferl);
int unstablePenalty;
double ‘ fresp;
double *target;

fastcall TForm l(TCom ponent* Owner);

};//---------------------------------------------------
extern PACKAGE TForm l *Form l;
//extern void sgenrand(unsigned long); 
extern "C" void sgenrand(unsigned long); 
extern "C" double genrand(void);
//.---------------------------------------------------
#endif

File Unitl.cpp:

//---------------------------------------------------
#include <vcl.h>
#pragma hdrstop
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//#include "FitFunc.h" 
#include "ArbitraryForm.h" 
#include "Unit2.h" 
#include "Unit3.h" 
#include "Unit4.h" 
#include "Unit5.h" 
^ include "U nitl.h" 
#include <stdlib.h> 
^include "M TRand.h"
# define GC_DEBUG 
#include "g ccp p .h "  
^include "GA.h"
#include <sys\timeb.h>

//.-------------------------------------------------------------------------------
#pragm a package(sm artjn it)
#pragm a link "sgr_data"
#pragm a link " s g r d e f 1 
#pragm a resource ” *. dfin"
//---------------------------------------------------

# define UNSTABLEPENALTY 9 
int num Trials =  100;
int unstablePenalty =  UNSTABLEPENALTY;
GA *theGaPtr;
Chrom osom e *GlobalBest -  NULL; 
int GenCount,numAi,numBi;
TForm l *Form l; 
bool quit; 
char bufl2[60];
double SDweights[41]= {1.0, 5 .e-l, 2.5e-01, 1.25e-01, 6.25e-02,3.125e-02, 1.5625e-02, 7.8125e-03, 3.90625e-03, 1.953125e-03, 
9.765625e-04, 4.882812e-04,2.441406e-04, 1.220703e-04, 6.103516e-05, 3.051758e-05, 1.525879e-05, 7.629395e-06, 3.814697e- 
06, 1.907349e-06, 9.536743e-07, 4.768372e-07, 2.384186e-07, 1.192093e-07, 5.960464e-08, 2.980232e-08, 1.490116e-08, 
7.450581e-09, 3.72529e-09, 1.862645e-09, 9.313226e-10, 4.656613e-10,2.328306e-10, 1.164153e-10, 5 .820766e-ll, 2.910383e- 
11, 1 .455192e-ll, 7.275958e-12, 3.637979e-12, 1.818989e-12, 9.094947e-13};
//.----------------------------------
 fastcall T Form l ::TForml(TComponent* Owner)

: TForm(Owner)

(
//  Default Filter Values

order =  20; / /1 0 ;  //20; //2 1; // filter order 
// set numRecCoeffs to 0 for FIR
num RecursiveCoeffs =  4; //5 for 4th order //10; //2; // Num ber o f b[i]'s (a[i]'s -  order - numRecursiveCoeffs) 
linearPhase= false; //true; 
ws =  M_PI *  2.0;

//C S D  Values
Ndigits= 16; // 20; // Num ber o f  CSD digits
NcsdOnes = 3; // 10;//3; //  Num ber o f  o f  non-zeros allowed in CSD

// GA settings 
elitism =  1; // 0 =  o ff l=on; 
xoverType =  0; 
popSize =  500; 
mutRate = 0.05; 
crossRate = 0.95;
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NumGens =  500; //20000; //0;
desiredFitness =  9999999; // set to a 9999999 for unlimited
//FitnessType = MINMAXdef;
FitnessType = LMSdef; // Least mean Square error
// Set up M ersenne Twister MT19937 Pseudorandom Number Generator
randomize();
unsigned long seed = random(32000); // use built in PNG to get seed for MT19937 
sgenrand(seed);
unstablePenalty = UNSTABLEPENALTY;

}
//----------------------------------------------------

v o id  fastcall TForm l::ButtonlClick(TO bject *Sender)

I

//  Calc some Variables
i f  (linearPhase && numRecursiveCoeffs =  0) 

numUniqueCoeffs =  ((order-1)/2) +1; //  Number o f  unique filter coefficients 
else

numUniqueCoeffs = order; 
numBi -  numRecursiveCoeffs; 
numAi = numUniqueCoeffs-numBi; 
numUniqueCoeffs = numAi + numBi;

chromLength = numUniqueCoeffs*NcsdOnes;
chromCard = Ndigits*2;
FilterSpec *theFilterSpec =  new (GC) FilterSpec(

target, fresp, ws, numFreqPoints, numUniqueCoeffs);
FILE *p;
int nonZeroCount; 
p =  fopen ("0Timeouts.txt" ,"w");

sprintf(buff2,"CSD digits = %d, Non-zeros =  %d\n",Ndigits,NcsdOnes); 
fprintf(p,"Results for %s",buff2);
fprintf(p,"time (seconds), Pbripple, Sbgain, Num ber o f  Non-zeroes, Number o f  Gens\n");
Form l->Label9->Caption -  buff2;
flushall();
for (int i= l;i<=num Trials && quit —  false;i++) {

//float diff; 
struct timeb tm; 
float start,stop; 
ftime(&tm);
start =  (tm.time -1048196000)+ tm .m illitm /1000.0;

GA *theGa = new  (GC) GA( elitism, xoverType,
popSize, chromCard, chromLength, NumGens, desiredFitness, 
mutRate, crossRate,theFilterSpec,chromDecode,

numUniqueCoeffs,NcsdOnes,Ndigits); 
theGaPtr=theGa;
theGa->PerformGA(&GlobaIBest); 
delete theGa; 

ftime(&tm);
stop =  (tm.time - 1048196000) + tm.millitm/1 OOO.O; 
double Pbripple,Sbgain;
Pbripple =  Sbgain =0; //GlobalBest->getFreqStats(&Pbripple,&Sbgain); 
nonZeroCount = SaveCSDs(GIobalBest,i);
fprintf(p,"Trial %d, % f% f% f  %d %dVn", i, stop-start,Pbripple,Sbgain,nonZeroCount,theGa->generationCount); 
//SaveCSDs(GlobalBest,i);
//fopen ("0Timeouts.txt" ,"w"); 
fflush(p);

}
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fclose(p);

}
//-----------------------------------------------
v o id  fastcall TForm l::Button2Click(TObject *Sender)

{
i f  (theGaPtr->pause) theGaPtr->pause =  false; 

else theGaPtr->pause =  true;

}//.----------------------------------------------

v o id  fastcall TForm l::Button3Click(TO bject *Sender)

{
i f  (GlobalBest —  N U L L ) return; 
ResultsForm->Visible =  true;

//double value;
int num points -  numFreqPoints; //200;
ResultsForm ->sp_XYPlotl->BufferedDisplay =  true;
ResultsForm->sp_XYLine 1 ->Clear();
ResultsForm->sp_XYLine2->Clear();
Freq *ff =  new  (GC) Freq[numpoints]; 
fr =  GlobalBest->FreqResp(numpoints); 
for (int i = 0; i <  numpoints; i++) {

ResultsForm->sp_XYLinel->AddXY(ff[i].w,fr[i].mag); 
ResultsForm->sp_XYLine2->AddXY (If [i]. w,Form l ->target[i]);

}
ResultsForm ->sp_XYPlotl ->Paint(); 
int c j= 0 ,i=0;
char *Buffer =  new  (GC) char[5000]; //Create Buffer for display 
stats(Buffer);
char *lineBuffer =  new  (GC) char[50];
ResultsF orm->M emo 1 ->Lines->Clear(); 
for (c=Bufifer[i++];c!-\0';c=Buffer[i++]) { 

if(c— \ri) {
lineBuffer[j]='\0’;
ResultsForm->M emol->Lines->Add(lineBuffer);

j=0;
}
else {

lineBuffer[j++]=(char)c;

)
)
ResultsForm->M emo 1 ->Lines->EndUpdate();

}//---------------------------------------------------
void setGlobalBest(Chromosome *p){

GlobalBest=p;
>

int TForm l::stats(char *display){ 
double value=0,values[100]; 
int nonzeroes=0,count=0,i;
char *Buffer =  new (GC) char[500]; //Creates Buffer dynamic variable 
double **CSDs =  GlobalBest->toCSDGenotype();; 

sprintf(Buffer,"At Generation %d: \n",theGaPtr->generationCount);strcat (display, Buffer); 
sprintf(Buffer,"Best Fitness %f: \n",theGaPtr->bestFitness);strcat (display, Buffer);
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for (int nc  = 0; nc<GlobalBest->numUniqueCoeffs; nc++) { 
sprintf(Buffer,"CSD %2d: ",nc);strcat (display, Buffer); 
for (int i =  0; i<GlobalBest->Ndigits; i++) { 

if  (CSDs[nc][i] —  0) 
strcat (d isp lay ," 0"); 

i f  (CSDs[nc][i] —  1) ( 
strcat (d isp lay ," 1"); 
value = value + SDweights[i]; 
nonzeroes++;

}
i f  (CSDs[nc][i] =  -1) ( 

strcat (display, "-1"); 
value = value - SDweightsfi]; 
nonzeroes++;

}
}
sprintf(Buffer," %21.18f: \n",value);strcat (display, Buffer);
values[count++] =  value;
value=0;

}
int nuc;
i f  (linearPhase) { //  do the rest o f  the Coeffs

sprintf(Buffer,"Linear Phase Filter: Repeat Coeffs\n"); strcat (display, Buffer);
i f  (order% 2 == 0 ) nuc = GlobalBest->numU niqueCoeffs-l; // even order --> odd # o f  coeffs -> use middle coeff only once 
else nuc = GlobalBest->nutnUniqueCoeffs; // odd order ~ >  even # o f  coeffs --> use all coeffs twice 
for (int nc = nuc-1; nc>=0; nc--) {

sprintf(Buffer,"CSD %2d: ",nc);strcat (display, Buffer); 
value-0;
for (int i =  0; i<GlobalBest->Ndigits; i++) { 

i f  (CSDs[nc][i] —  0) 
strcat (d isp lay ," 0"); 

i f  (CSDs[nc][i] =  1) { 
strcat (d isp lay ," 1"); 
value =  value + SDweights[i]; 
nonzeroes++;

}
i f  (CSDs[nc][i] = - 1 )  { 

strcat (display, "-1"); 
value =  value - SDweights[i]; 
nonzeroes++;

}
}
sprintf(Buffer,"%21.18f: \n",value);strcat (display, Buffer);
values[count++] =  value;
value=0;

sprintf(BufFer,"The total number o f  non-zero digits is %d\n",nonzeroes); 
strcat (display, Buffer); 
i f  (linearPhase) { 

sprintf(Buffer,"linearPhase = ["); 
for (i=count/2;i<count-l;i++) { 

sprintf(B uffer,"% 15.10f; ",values[i]); 
strcat (display, Buffer);

!
for (i=0;i<count/2;i++) { 

sprintf(B uffer,"% 15.10f; ",values[i]); 
strcat (display, Buffer);

}
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sprintf(Buffer,"] \n"); 
strcat (display, Buffer);
sprintf(Buffer,"freqz(linearPhase, 1,1024,2*pi); filterSqErr(linearPhase, 1 )\n"); 
strcat (display, Buffer);

}

double *Coeffs;
Coeffs = GlobalBest->toCSDPhenotype(); 
i f  (! linearPhase && numBi— 0) ( 

sprintf(Buffer,"Coeffs = [ "); 
strcat (display, Buffer); 
for (i=0;i<count;i++) { 

sprintf(B uffer,"% f; ",Coeffs[i]); 
strcat (display, Buffer);

}
sprintf(Buffer,"] \n"); 
strcat (display, Buffer);
sprmtf(Buffer,"freqz(Coeffs, 1,1024,2*pi); [r,f]-freqz(Cocffs, 1,1024,2*pi);Err = sum((phi l-abs(r)).A2)\n"); 
strcat (display, Buffer);

}

/ / H R

i f ( n u m B i> 0 )  { 
sprintf(Buffer,"Ai = ["); 
strcat (display, Buffer); 
for (i=0;i<numAi;i++) ( 

sprintf(Buffer,"% 15.12f ”,Coeffs[i]); 
strcat (display, Buffer);

}
sprintf(Buffer,"] \n"); 
strcat (display, Buffer);

sprintf(Buffer,"Bi = ["); 
strcat (display, Buffer); 
for (i=0;i<numBi;i++) { 

sprintf(Buffer,"% 15.12f ",Coeffs[i+numAi]); 
strcat (display, Buffer);

}
sprintff Buffer,"] \n"); 
strcat (display, Buffer);
sprintf(Buffer,"ifeqz(Ai,Bi,1024,2*pi);figure; zplane(Ai,Bi); [r,f]=freqz(Ai,Bi,1024,2*pi);Err -  sum ((phil-abs(r)).A2)\n"); 
strcat (display, Buffer);

i f  (GlobalBest->stable =  STABLE)
sprintf(Buffer,"This filter is stable\n"); 

else
sprintf(Buffer,"This filter is unstable\n"); 

strcat (display, Buffer);

}

return 0;
}

v o id  fastcall TForm l::Coefficients2Click(TObject *Sender)

{
CSDSettings->Visible =  true;
CSDSettings->Edit 1 ->Text= AnsiStrmg(Ndigits);
CSDSettings->Edit2->Text= AnsiString(NcsdOnes);

}
//.-------------------------------------------------------------------------------
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v o id  fastcall TForml::Algorithm2Click(TObject *Sender)

{
AlgorithmSettings->Visible -  true;
AlgorithmSettmgs->Edit 1 ->T e x t-  AnsiString(popSize); 
AlgorithmSettings->Edit2->'l c x t-  AnsiString(NumGens); 
AlgorithmSettings->Edit3->Text= AnsiString(numFreqPoints); 
AlgorithmSettings->Edit4->Text= AnsiString(mutRate); 
AlgorithmSettings->Edit5->Text= AnsiString(crossRate); 
i f  (FitnessType =  LMSdef) 

AlgorithmSettings->RadioButton2->Checked -  true; 
else

AlgorithmSettings->RadioButtonl->Checked = true;;

}
//.-------------------------------------------------------------------------------

v o id  fastcall TForm l::A rbitraryFilterlClick(TO bject *Sender)

{
Arbitrary-> Visible = true;

i//---------------------------------------------------

v o id  fastcall TForm l::Low PasslC lick(TO bject *Sender)

{
LPFilterSettings->Visible = true;
LPFilterSettings->Editl->Text= AnsiString(PassBandStop); 
LPFilterSettings->Edit2->Text= AnsiString(StopBandStart); 
LPFilterSettings->Edit3->Text= AnsiString(ws); 
LPFilterSettings->Edit4->Text= AnsiString(order);

>
/ / . ------------------------------------------------------------------------------------------

v o id  fastcall TForm l;:A rbitrarylC lick(TO bject *Sender)

{
Arbitrary->Visible =  true;

)//_----------------------------------

v o id  fastcall TForm l::Foim Close(TO bject *Sender, TCloseAction &Action)

{
if  (MessageDlg("Close application ?", mtConfirmation, TM sgD lgB uttons()«  mbYes «  mbNo,0) == mrYes){ 

quit = true;
theGaPtr->quit =  true;
Action =  caFree;

}
else

Action =  caM inimize;

}
//-----------------------------------------------------------
int TForm l::SaveCSDs(Chrom osome *Best,int Run){

//  put CSD's in a file and return the num ber o f  non-zero digits 
if  (GlobalBest =  N U L L ) return 0; 
int nonZeroCount=0;

//double value=0.0;
FILE *p;
char nam e[80],Bufferl [5000]; 
sprintf(name,"CSDout\\run%d.txt",Rim);
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p =  fopen (name,"w"); 
tprintffp,’"Results for % s",buffi);
fprintf(p,"Thc best filter for Generation %d has these CSDs:\n",Run);

stats(B ufferl); 
fprintfip, "%s",Buffer 1); 
fclose(p);
return nonZeroCount;

}

File Unit2.h:

//------------------------------------------
# ifndef Unit2H 
# define Unit2H
//------------------------------------------------------------------
^include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
#include "sgr_data.hpp"
#include "sgr def.hpp"
//.------------------------------------------------
class TResultsForm  : public TForm 

{
 published: // IDE-managed Components

Tsp_XYPlot *sp_X Y Plotl;
T sp X Y L in e  *sp_X YLinel;
Tsp_XYLine *sp_XYLine2;
TButton *B uttonl;
TM emo *M em ol;
TLabel *Labell;
TLabel *Label2;
TLabel *Label3;
void fastcall ButtonlClick(TO bject *Sender); 

private: //  User declarations
public: // User declarations

fastcall TResultsForm(TComponent* Owner);

};
//-------------------------------------------------
extern PACKAGE TResultsForm *ResultsForm;
//.------------------------------------------------
#endif

File Unit2.cpp:

//---------------------------
#include <vcl.h>
#pragma hdrstop

^include "Unit2.h"
//---------------------------------------
#pragma package(sm artin it) 
#pragma link "sgr_data" 
#pragma link "sgr d e f1
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//pragma resource "*.dfm"
TResultsForm *ResultsForm;
//.----------------------------------------------------------
 fastcall TResultsForm::TResultsForm(TComponent* Owner)

: TForm(Owner)

{

)
//-----------------------------------------------------------
v o id  fastcall TResultsForm ::ButtonlClick(TObject * Sender)

!
Close();

}
/ /- -----------------------------------------------------------------------------------------

File Unit3.h:

/ / .----------------------------------------------------
#ifiidef Unit3H 
//define Unit3H
/ /- --------------------------------------------------------------------------------
#include <Classes.hpp>
//include <Controls.hpp>
//include <StdCtrls.hpp>
//include <Forms.hpp>
/ / .----------------------------------------------------
class TLPFilterSettings : public TForm 

{
published: // IDE-managed Components
TLabel *Labell;
TLabel *Label2;
TLabel *Label3;
TButton *B uttonl;
TEdit *E ditl;
TButton *Button2;
TEdit *Edit2;
TEdit *Edit3;
TLabel *Label4;
TLabel *Label5;
TEdit *Edit4;
void fastcall ButtonlClick(TO bject *Sender);
v o id  fastcall Button2Click(TObject *Sender);

private: // User declarations
public: // User declarations

 fastcall TLPFilterSettings(TComponent* Owner);

};
//.----------------------------------------------------
extern PACKAGE TLPFilterSettings *LPFilterSettings;
H.----------------------------------------------------
#endif

File Unit3.cpp:

/ / .--------------
# include <vcl.h> 
//pragma hdrstop
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#include "Unit3.h"
#include "U nitl.h"
//-----------------------------------------------------------
#pragm a package(sm artin it)
#pragm a resource "*.dfrn"
TLPFilterSettings ’ LPFilterSettings;
//-----------------------------------------------------------
 fastcall TLPFilterSettings::TLPFilterSettings(TComponent* Owner)

: TForm(Owner)

{

}
/ / .----------------------------------------------------------

v o id  fastcall TLPFilterSettings::ButtonlClick(TObject ’ Sender)

{
Form l->PassBandStop = EditI->Te\t.ToD ouble(); 
Form l->StopBandStart =  Edit2->Text.ToDouble();
Form l->w s = Edit3->Text.ToDouble();
Form l->order =  Edit4->TextToDouble();
Close();
}
//-----------------------------------------------------------

void fastcall TLPFilterSettings::Button2Click(TObject ’ Sender) 

{
Close();

}
//-----------------------------------------------------------

File Unit4.h:

n-------------------------------------------------
#ifndef Unit4H 
# define Unit4H
/ / .------------------------------------------------
#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
//-------------------------------------------------
class TCSDSettings : public TForm 

{
 published: //  IDE-managed Components

TLabel ’ Label 1;
TLabel *Label2;
TEdit ’ E d itl;
TEdit *Edit2;
TButton *Button2;
TButton ’ Button 1;
void fastcall B uttonlClick(TO bject ’ Sender);
v o id  fastcall Button2Click(TObject ’ Sender);

private: // User declarations
public: // User declarations

 fastcall TCSDSettings(TComponent’ Owner);

};
//-------------------------------------------------
extern PACKAGE TCSDSettings ’ CSDSettings;
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/ / . -----------------------------------------

#endif

File Unit4.cpp:

//-------------------------------------------------------------------------------------
#include <vcl.h>
#pragm a hdrstop

#include "Unit4.h"
#include "U nitl .h"
//-------------------------------------------------------------------------------------
#pragm a package(sm artjn it)
#pragm a resource "*.dfm"
TCSDSettings *CSDSettings;
//-------------------------------------------------------------------------------------

 fastcall TCSDSettings: :TCSDSettings(TComponent* Owner)
: TForm(Owner)

{

i
/ / . ------------------------------------------------------------------------------------------

v o id  fastcall TCSD Settings::ButtonlClick(TObject *Sender)

{

Form l->N digits =  Editl->Text.ToDouble(); //  Number o f  CSD digits 
Form l->N csdO nes =  Edit2->Text.ToDouble();
Close();

}
/ / . ------------------------------------------------------------------------------------------

v o id  fastcall TCSDSettings: :Button2Click(TObject *Sender)

{
Close();

}
//.----------------------------------------------------------

File Unit5.h:

//----------------------------------------------------------------------

#ifndef Unit5H 
#define Unit5H
//----------------------------------------------------------------------

#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
/ / . ----------------------------------------------------------------------------------

class TAlgorithmSettings : public TForm 

{
published: // IDE-managed Components
TLabel *Labell;
TLabel *Label2:
TLabel *Label3;
TLabel *Label4;
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TLabel * Label 5;
TEdit ‘ E d itl;
TEdit *Edit2;
TEdit *Edit3;
TEdit *Edit4;
TEdit *Edit5;
TButton ‘ Button 1;
TButton *Button2;
TGroupBox *GroupBoxl;
TRadioButton ‘ RadioButtonl;
TRadioButton *RadioButton2;
void _ fa s tc a ll  ButtonlClick(TO bject ‘ Sender);
v o id  fastcall Button2Click(TObject ‘ Sender);
v o id  fastcall RadioB uttonlC lick(TO bject ‘ Sender);
void fastcall RadioButton2Click(TObject ‘ Sender); 

private: // User declarations
public: //  User declarations

 fastcall TAlgorithmSettings(TComponent* Owner);

};
/ / .------------------------------------------------------------------------------------

extern PACKAGE TAlgorithmSettings ‘ AlgorithmSettings;
/ / . ------------------------------------------------------------------------------------------

#endif

File Unit5.cpp:

/ / .------------------------------------------------------------------------------------

#include <vcl.h>
# pragma hdrstop

#include "Unit5.h"
#include "U nitl.h"
//.----------------------------------------------------------
#pragma package(sm artin it)
#pragma resource "*.dfin"
TAlgorithmSettings ‘ AlgorithmSettings;
//---------------------------------------------------
 fastcall TAlgorithmSettings::TAlgorithmSettings(TComponent‘  Owner)

: TForm(Owner)

{

}
/ / .------------------------------------------------------------------------------------
vo id  fastcall TAlgorithm Settings::ButtonlClick(TObject ‘ Sender)

I
Form 1->popSize =  Editl->Text.ToD ouble(); / / Num ber o f  CSD digits 
Form l->Num Gens =  Edit2->Text.ToDouble();
Fom rl->num FreqPoints = Edit3->Text.ToDouble();
Form l->m utRate = Edit4->Text.ToDouble();
Form l->crossRate = Edit5->Text.ToDouble();
Close();
}
//----------------------------------------------------
v o id  fastcall TAlgorithmSettings: :Button2Click(TObject ‘ Sender)

{
Close();

}
/ / .------------------------------------------------------------------------------------
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v o id   fastcall TAlgoritlimSettings::RadioButtonlClick(TObject *Sender)

{
Foim l->FitnessType =  MINMAXdef;

}//---------------------------------------------------

v o id  fastcall TAlgorithmSettings: :RadioButton2Click(TObject *Sender)

{
Form l->FitnessType = LMSdef;

}//---------------------------------------------------

File ArrayGen.h:

#ifiidef A r r a y G e n H  
#define A rrayG en_H  
# define GC DEBUG 
((include "g ccp p .h "  
((include <complex.h>

class ArrayGen:public gc { 
public:

int **new2D(int **,int,int); 
double **new2D(double **,int,int); 
float **new2D( float **,int,int);
complex<doublc>* * new2D(complex<double>* *,int,int); 
void del2D(int **p,int m); 
void del2D(double **p,int m); 
void del2D(float **p,int m);

>;

#endif

File ArrayGen.cpp:

^include "ArrayGen.h" 
# include <vcl.h> 
^include <exception> 
#include <iostream.h>

// Allocates and dealloacates 2D ArTays
complex<double>** ArrayGen::new2D(complex<double>**p,int m ,int n) { 

try ( //  TEST FOR EXCEPTIONS,
p = new (GC) complex<double> *[m]; 
for (int j  = 0; j  < m; j++) 

p[j]= new (GC) complex<double>[n];

}
catch (std::bad_alloc) { / / bad alloc THROWN.

Application->M essageBox("Out o f  Memory","Memory Error",IDOK);

}
re tum p;

}
int** ArrayGen::new2D(int **p,int m ,int n) {
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try { // TEST FOR EXCEPTIONS.
p =  new (GC) int *[m]; 
for (int j  =  0; j  < m; j++) 

p[j]= new (GC) int[n];

catch (std::bad_alloc) { / / bad_alloc THROWN.
Application->M essageBox("Out o f  Memory","Memory Error",IDOK); 

}
return p;

double** ArrayGen::new2D(double **p,int m,int n) (

try {
p  =  new  (GC) double *[m]; 
for (int j  =  0; j  < m; j++) 

p[j]= new (GC) double[n];

}
catch (std::bad_alloc) { // bad_alloc THROWN.

Application->MessageBox("Out o f  Memory","M emory Error",IDOK);

}
return p;

)

float** ArrayGen::new2D(float **p,int m ,int n) { 
try {

p  =  new (GC) float *[m]; 
for (int j  =  0; j < m; j++) 

p[j]= new  (GC) floatfn];

}
catch (std::bad_alloc) { / / bad_alloc THROWN.

Application->M essageBox("Out o f  M emory","M emory Error",IDOK);

}
return p;

}

void ArrayGen::del2D(float **p,int m) { 
for (int i = 0; i < m; i++) 

delete[] p[i]; // STEP 1: DELETE THE COLUMNS
delete[] p; // STEP 2: DELETE THE ROWS

void ArrayGen: :del2D(int **p,in tm ) { 
for (int i =  0; i < m; i++)

delete[] p[i]; 
deleted p;

// STEP 1: DELETE THE COLUMNS 
// STEP 2: DELETE THE ROWS

void ArrayGen::del2D(double **p,int m) {
for (int i = 0; i < m; i++) 

delete[] p[i]; 
deletef] p; ;

// STEP 1: DELETE THE COLUMNS 
// STEP 2: DELETE THE ROWS

}
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File Chromosome.h:

#iftidef S U P P O R T H
#define S U P P O R T JI
extern "C" void sgenrand(unsigned long);
extern "C" double genrand(void);
((include <system.hpp>
#define G C D E B U G  
#include "g ccp p .h "
((include "FiltSpec.h"
((include <complex.h>
# define STABLE 0
# define UNSTABLE 1
# define MAXORDER 100 
class Freq :public gc{

public: 
double w; 
double mag; 
double phase;

};
class Chromosome: public gc { 

private:
unsigned char *gene; 

int cardinality, Length; 
double fitness; 
int tmp;
FilterSpec *theFilterSpec; 
double getFitness(Chromosome *c); 
complex<double> e2jwT(double w);

// relative fitness = fitness /  sum(population fitness) 
double rfitness; 

double phenotype();
// cumulative relative fitness (from chrom[0] to this chrom) for roulette wheel 

double cfitness;
int NcsdOnes; // Number o f  o f  non-zeros allowed in CSD 
double FreqError(double *C oeffs); 

public:
bool fitnessEvaluated; 
double rfitnessGet(); 
double cfitnessGet(); 
void rfitnessSet(double value); 
void cfitnessSet(double value);

String toString(void);
Chromosome(int cc,int cr,FilterSpec *ff, int nc, 

int ndigits,int ncsdones);
Chromosome();
~Chromosome();

int getChromosomeLength(); 
double getFitness();
void copyChromosome(Chromosome *c);

Chromosome *cloneChromosome(); 
void initializeChromosomeRandomO; 

void clearChromosome(); 
imsigned char getGene(int locus); 
void setGene(int locus, unsigned char allele); 
void mutateGene(int locus);
String toGenotype();
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String toPhenotype();
double evalChromosome();
int numUniqueCoeffs, // Number o f  filter coefficients
int Ndigits; // Number o f  CSD digits
double *toCSDPhenotype();
// **toCSDGenotype() calculates CSD string as 2d array:
//  an array o f  array o f  ints where ints =  0,1 or -1 
double **toCSDGenotype();

Freq *FreqResp(int numpoints);
Freq *FreqResp(FiIterSpec *theFilterSpec); 
int stable;

};
/**************************************************************/

/* Crossover: performs crossover o f  the two selected parents. */
y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  >ic * * * * * * /

class Crossover:public gc { 
public:

int cromLength,xoverType; 
bool *mask; 
bool bit;
unsigned char xoPoin tl, xoPoint2; 
int locus;
Crossover(int cl, int xot);
Crossover();
~Crossover();
void xOver(Chromosome *one, Chromosome *two);

};
class M yRandom  :public gc{ 

public:
double dbl(); // Returns a random double in [0,1).
bool boolean();// Return a random boolean (false or true).
unsigned char integer(int n); // Return a random integer from 1 to n inclusive.

>;
y *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/* Selection function: Standard proportional selection for */
/* m aximization problems incorporating elitist model - makes */
/* sure that the best mem ber survives. */
*̂ ****************************************************** *******y

// also called the roulette wheel method 
class Selection :public gc{ 

public:
void select(Chromosome **population,

Chromosome **nextPopulation, int populationSize);

};

#endif

File Chromosome.cpp:

#include "Chromosome.h"
#include <math.h>
#defme G C D E B U G  
#include "gc_cpp.h"
MyRandom MyRandom 1;
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double Chromosome: :rfitnessGet() { 
return rfitness;

}
double Chromosome::cfitnessGet() { 

return cfitness;

}
void Chromosome::rfitnessSet(double value) { 

rfitness = value;

}
void Chromosome;:cfitnessSet(double value) { 

cfitness =  value;

)
String Chromosome: :toString() {

return this->toGenotype();

}

Chromosome: :Chrotnosome() {
gene = new (GC) unsigned char[Length]; 
fimessEvaluated -  false; 
fitness = rfitness =  cfitness = 0;

}
Chromosome: :Chromosome(int cc,int cr,FilterSpec * ff , in tn c , 

int ndigits, int ncsdones) { 
cardinality = cc;

Length = cr; 
theFilterSpec =  ff;

gene =  new (GC) unsigned char[Length]; 
fitnessEvaluated = false;

fitness =  rfitness = cfitness -  0; 
numUniqueCoeffs = nc; // Number o f  filter coefficients 
Ndigits=ndigits; // Num ber o f  CSD digits 
NcsdOnes =  ncsdones; // Num ber o f  o f  non-zeros allowed in CSD 
stable=STABLE;

}
Chromosome: :~Chromosome() { 

delete[] gene;

}
int Chromosome: :getChromosomeLength() { 

return Length;

i
double Chromosome: :getFitness() {

if  (! fitnessEvaluated) {
fitness = evalChromosome();

// System.err.println("getFitness: negative fitness so quit");
// System .exit(l); 
fitnessEvaluated=true;

}
return fitness;

)
void Chromosome::copyChromosome(Chromosome *c) { / /  copy this to c 

Chromosome ‘ destination =  c; 
destination->fitness — this->fitness; 
destination->rfitness =  this->rfitness; 
destination->cfitness = this->cfitness; 
fitnessEvaluated = this->fitnessEvaluated; 
for (int locus = 0; locus <  Length; locus++) {

destination->gene[ locus] = this->gene[locus];

}
}
void Chromosome::initializeChromosomeRandom() {
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for (int locus = 0; locus < Length; locus++) {
geneflocus] = MyRandom 1. integer] cardinality);

)
fitnessEvaluated = false; // set this again since we
fitness =  rfitness -  cfitness -  0; //  may be called more than once

}
unsigned char Chromosome: :getGene(int locus) { 

return gene[locus];

}
void Chrom osom e::setGene(int locus, unsigned char allele) { 

gene[locus] = allele; 
fitnessEvaluated = false; 
fitness =  rfitness = cfitness = 0;

}
voidC hrom osom e::m utateG ene(int locus) {

// randomize this gene
gene[locus] = M yRandoml.integer(cardinality); 
fitnessEvaluated = false; 
fitness =  rfitness =  cfitness =  0;

}
String Chromosome: :toGenotype() {

String genotype = 
for (int locus = 0; locus < Length; locus++) {

genotype += AnsiString(gene[locus]);

}
return genotype;

}
double Chromosome: :phenotype() {

// evaluate chromosome as a number 
double value -  0;

for (int locus = 0; locus < Length; locus++) {
value += pow(cardinality, (double)locus ) * gene[Length-locus-l];
)
return value;

}
String Chromosome: :toPhenotype() {

String x = "x";
return x + AnsiString(phenotype());;

}
/♦sic************************************************************/

/* Crossover: performs crossover o f  the two selected parents. *1
/♦a************************************************************/

Crossover: :Crossover (int cl, int xot) { 
cromLength =  cl;
xoverType= xot; // 0 = uniform, 1 = 1 point, 2 = 2 point 
m ask = new (GC) bool [cromLength]; 
bit =true;

}
Crossover: C rossover () {

m ask =  new (GC) bool [cromLength]; 
bit =true;

}
Crossover: :~Crossover() { 

delete mask;

}
void Crossover: :xOver(Chromosome *one, Chromosome *two) { 

unsigned char temp;
// create xo mask

xoPoint2 = M yR andom l.integer(crom Length-l);

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



if  (xoverType =  1 ) {
// one point: start cut at zero 
xoPointl =0;

)
else {

xoPointl = M yRandom l.integer(crom Length-l);

!
i f  (xoverType =  0 ) {

for (locus =  0; locus < cromLength; locus++) { 
mask[locus]= MyRandom 1 ,boolean();

}
}
else (

i f  (xoPointl > xoPoint2 ) {
//reverse order and reverse bit flag; 
bit = false; 
temp =xoPoint2; 
xoPoint2=xoPointl; 
xoPointl “ temp;

)
for (locus = 0; locus <  cromLength; locus++) 

mask[locus] -  bit; 
for (locus = xoPointl; locus <  xoPoint2; locus++) 

mask[locus] =  !bit;

}
// Do the Crossover using the mask 

for (int locus =  0; locus < cromLength; locus++) { 
i f  (mask[locus]) {

// swap
temp =  one->getGene(locus);

one->setGene(locus, two->getGene(locus)); 
two->setGene(locus, temp);

}
}

}
double MyRandom: :dbl() {

// Return a random  double in [0,1). 
return genrand();

}
bool M yRandom::boolean() {

// Return a  random boolean (false or true), 
if  (genrand() >= 0.5) return true; 
return false;

}
unsigned char M yRandom::integer(int n) {

//  Return a  random integer (char) from 0 to n-1 inclusive, 
unsigned char i;
i=(unsigned char)(genrand()*n); // genrand() returns a double in [0,1] 
i f  ( i = n )  i=0; //O n the chance the interval [0,1] really does include 1 
return i;

}
y + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/* Selection function: Standard proportional selection for */
/ *  maximization problems incorporating elitist model - makes */
/* sure that the best member survives. */
/**************************************************************/

/ /  also called the roulette wheel method
void Selection::select(Chromosome **population,

Chromosome **nextPopulation, int populationsize){ 
double p, sum  = 0;
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int i;
// find total fitness of the population 
for (i = 0; i < populationSize; i++) {

sum += population[i]->getFitness();
1
// calculate relative fitness
for (i = 0; i < populationSize; i++) {

population[i]->rfitnessSet(population[i]->getFitness()/sum);
}
population[0]->cfitnessSet(population[0]->rfitnessGet());
// calculate cumulative fitness 
for (i = 1; i < populationSize; i++) {

population[i]->cfitnessSet(population[i-l]->cfitnessGet() + population[i]->rfitnessGet());
}
// finally select survivors using cumulative fitness, 
for (i = 0; i < populationSize; i++) { 

p = MyRandom 1 .dbl(); 
if(p < population[0]->cfitnessGet()) { 

population[0]->copyChromosome(nextPopulation[i]);
//System.err.println("replacing 0 with " + i);

i
else {

for (int j = 0; j < populationSize; j++) { 
if (p >= population[j]->cfitnessGet()

&& p < population[j+l]->cfitnessGet()) { 
population[j+1 ]->copyChromosome(nextPopulation[i]);

}
}

}
}

}

File FiltSpec.h:

(fifndef F IL T S P E C H
# define F1LTSPEC_H 
#include <math.h>
# define GC DEBUG 
#include "g c c p p .h "
#include <complex.h> 
class FilterSpec: public gc {

private: 
void calcFilterZs(void); 
int numUniqueCoeffs; 
double ffeqStart; 

public: 
bool linearPhase; 
bool skipTransitionBand; 
double *targetResp; 
int numFreqPoints;
FilterSpec(double *targetResp, double *targetFreqs. double ws, int nep.int nc); 

double FiltSquareError(double w,double mag); 
double T; //  sample period 
double ws; //sam ple freq. 
complex<double> **zsum; 
double *FilterZfreqs;

};
#endif

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



File FiltSpec.cpp:

#include <m ath.h>
# include <complex.h>
# define GC DEBUG 
#include "gc cpp.h"
#include "FiltSpec.h"
#include "ArrayGen.h"
#include"U nitl ,h"
FilterSpec: :FilterSpec(double *tr, double *tf, double w, int nep,int nc) { 

targetResp -  tr;
FilterZfreqs = tf;
w s =  w;
T= (2.0 * M_PI)/ws; 
numFreqPoints = nep;
numUniqueCoeffs=nc; // number o f  coeffs
calcFilterZs();
lfeqStart=0;

}
void FilterSpec::calcFilterZs(void) { 

double w;
int n,i,NumTotalCoeffs; 
com plex<double> z,zScale;
i f  (linearPhase && Form l->num Bi —  0) NumTotalCoeffs =  Form l->order; // reverse o f  ((order-l)/2) +1 
else NumTotalCoeffs=numUniqueCoeffs;
ArrayGen *A =  new  (GC) ArrayGen;
zsum -  A->new2D(zsum ,num FreqPoints,Num TotalCoeffs);
for (i = 0; i <  numFreqPoints; i++) {

w -  F ilterZ ffeqs[i]; // ffpassBandStart + increment * (double)i; 
z= exp(complex<double>(0,T*w));
if  (linearPhase && Form l->num Bi =  0 )  (// Linear Phase FIR 

for (n=0; n < NumTotalCoeffs; n++) { 
zsum [i][n] -  pow(z,n) + pow(z,-n);

}
zScale =  pow(z,-NumTotalCoeffs); 
zsum[i][n] *= zScale;

}
i f  ('linearPhase && Form l->num Bi =  0 )  { //FIR 

for (n=0; n  < NumTotalCoeffs; n++) { 
zsum[i][n] “  pow(z,-n);

1
}
if  (Form l->num B i > 0 ) { 

int max = Form l->num Bi;
if  (Form 1->numAi > max) max =Form l->num Ai; //IIR 
for (n=0; n <  max; n++) { 

zsum[i][n] =  pow(z,-n);

)
}

}
}

File FitFunc.h:

//---------------------------------------------------
#ifhdef FitFuncFI
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#define FitFuncH
//.------------------------
#define M IN M A X def 0 
#define LM Sdef 1 
#endif

File FitFunc.cpp:

//-----------------------------------
^include <vcl.h>
# pragma hdrstop 
#include "FitFunc.h"
#include "ArrayGen.h"
/ / .---------------------------------------------------------

# pragma package(smart_init)
#include "Chromosome.h"
# include <math.h>
# define GC_DEBUG 
^include "gc_cpp.h"
#include <M ath.h>
#include <Complex.h>
#include "U nitl.h"
int juryM arCheck(double B[],int); 
int juryM arChck2(double C[],int,int);

double Chromosome::evalChromosome() { 
double * Coeffs;
Coeffs =  toCSDPhenotype(); 
return FreqError(Coeffs);

double **Chromosome::toCSDGenotype() { // to ternary bit string 
in tg ;

complex<float> z,cn,cmn,z2n,z2mn,H; 
double **CSDs;
ArrayGen *AG -  new  (GC)ArrayGen;
// Calc Coeffs 
CSDs=NULL;
CSDs =  AG->new2D(CSDs,numUniqueCoeffs,Ndigits); 
int *OneLoc = new  (GC) int[NcsdOnes]; 
int *OneVal =  new (GC) int[NcsdOnes]; 
for (int nc =  0; nc<numUniqueCoeffs; nc++) { 

for (int i =  0; i<NcsdOnes; i++) { 
g = gene[i + nc * NcsdOnes ]; // gene goes from 0 to (2*NcsdOnes -1) cardinality -1
g -= Ndigits; 
i f ( g < 0 ) {

OneVal[i]= -1;
OneLoc[i] — abs(g) -1; // -16 to -1 become 15 to 0

}
else {

OneVal[i]= 1;
OneLoc[i] = g;

}
}
for (int i =  0; i<Ndigits; i++) {

CSDs[nc][i] = 0;

}
CSDs[nc][OneLoc[0]] = OneValfO];
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for (int i= l;i<  NcsdOnes;i++) { 
i f  (OneLocfi] == 0) {

if  (CSDs[nc][0] =  0 && CSDs[nc][l] == 0 )  
CSDs[nc][OneLoc[i]] =  OneVal[i];

}
else {

if  (OneLoc[i] =  N digits-1) { 
i f  (CSDs[nc][N digits-l] == 0 && CSDs[nc][Ndigits-2] =  0 ) 

CSDs[nc][OneLoc[i]] =OneVal[i];

}
else {

if  (CSDs[nc][OneLoc[i]] =  0 &&
CSDs[nc][OneLoc[i]-l] =  0 &&
CSDs[nc][OneLoc[i]+l] —  0)

CSDs[nc][OneLoc[i]] = OneVal[i];

}
}

>
}
return CSDs;

}
double *Chromosome::toCSDPhenotype() {

// Convert CSD's to Floating point value
double *Coeffs -  new (GC) double[numUniqueCoeffs];
double **CSDs = toCSDGenotype();

for (int nc = 0; nc<numUniqueCoeffs; nc++) {
Coeffs[nc] -  0.0;
for (int i -  0; i<Ndigits; i++) {

Coeffs[nc] += ((double)CSDs[nc][i])/(pow(2.0,i));

}
}
return Coeffs;

Freq *Chromosome::FreqResp(int numpoints) {
numpoints = Form l->num FreqPoints; e 

FilterSpec *theFilterSpec2 =  new (GC) FilterSpec(
Form l->target, Form l->ffesp, Form l->w s, numpoints, numUniqueCoeffs); 

return FreqResp(theFilterSpec2);

}
Freq *Chromosome::FreqResp(FilterSpec *thcFilterSpec) { 

double w;; 
int i,n;
complex<double> H;
Freq *fr =  new (GC) Freq[theFilterSpec->numFreqPoints]; 
double *Coeffs =  toCSDPhenotype(); 
double mag;

for (i = 0; i < theFilterSpec->numFreqPoints; i++) {
w = theFilterSpec->FilterZlreqs[i];
fr[i].w=w;
complex <double> sumA = eomplex<double>(0.0,0.0); 
complex <double> sum =  eomplex<double>(0.0,0.0); 

for (n=0; n < Form l->num A i; n++) {
sumA += theFilterSpec->zsum[i][n] * Coeffs[n];

I
complex <double> sumB =  complex<double>(0.0,0.0); 

if  (Form l->num B i > 0 ) { / / I IR
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for (n=0; n < Form l->num Bi; n++) {
sumB += theFilterSpec->zsum[i][n] * Coeffs[n+Forml->numAi];

>

stable = juryM arCheck(Coeffs + Form l->num Ai,Form l->numBi);

}
else { / / F IR

sumB = com plex<double>(l.0,0.0);

}
sum = sumB;
i f  ( abs(sum) == 0 ) {

sum = complex<double>(.00000000001,0.0);

}
sum = sumA /  sum;
H=sum;
ff[i].mag =  mag =  abs(H);

ff[i],phase -  arg(H);

} */ 
return ff;

}
double Chromosome: :FreqError(double *ff) { 

int i ;
i f  (Form l->FitnessType —  LMSdef) {

Freq *fr = FreqResp(theFilterSpec); 
double error=0.0;
for (i =  0; i < theFilterSpec->numFreqPoints; i++) { 

error += pow((theFilterSpec->targetResp[i] - ff[i].mag),2.0);

}
i f  (stable == UNSTABLE) 

error *= Form l->unstablePenalty; //5; 2; // double error; 
return 1.0/error;

}
else {

double Pbr,Sbg,PBdiff,SBdiff;
Pbr=Sbg = 0 ;
PB diff = pow( 10.0,Pbr/20.0);
S B d iff=  pow (l 0.0,Sbg/20.0); 
return 1.0 /(P B d iff+ 3*SBdiff);

}
i
int juryM arCheck(double B [],in tn ) { 

int i,m inuslFlag; 
double D l-0 ;
int N = n-1; / / n  is number o f  Coeffs, N is highest index (going 0 to n-1) 
for (i=0;i<=N;i++) {

D 1=D 1 + B [i];

1
i f  (D1 <= 0 ) 

return UNSTABLE;

D1=0;
minus lF lag= + l;
for (i—N;i>=0;i—) { // Add in reverse order, from B(N) to B(0)

D l=  D1 +  minus lFlag*B[i]; //  D (-l) = B(N) - B(N-1) + B (N -2 )... 
m inuslF lag  =  m inuslF lag  * -1;

}
D1 = D1 * m inuslF lag  *-1; // D1 * (-1) to the N (minus flag =  -1 to the N-1) 
if  (D1 <=0) return UNSTABLE;

if  (n<3) 
return STABLE;
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return juryMarChck2(B,n, 1);

}
int juryM arChck2(double c[],int n,int first) { 

int i;
double d[100];
int N  =  n -1 ; // n is number o f  Coeffs, N  is highest index (going 0 to n-1) 
i f  (first) { / /  first call, B0> abs(BN) 

i f  ( c[0] <= fabs(c[N ])) 
return UNSTABLE;

}
else { // not first call, abs(CO) > abs (CN-1) (N was already decremented in recursive call)

i f  (fabs(c[0])<= fabs(c[N])) 
return UNSTABLE;

}
i f  (N— 2) // down to rO, r l ,  r2 

return STABLE; 
else {

for (i=0; i<= N-1; i++) { 
d[i] =  c[0]*c[i] - c[N-i] * c[N];

}
return juryM arChck2(d,n-1,0);

}
}

File GA.h:

#ifiidef GA_H 
#define GA_H 
#include "Chromosome.h"
#include "FiltSpec.h"
#include <system.hpp>

class GA:public gc {
// Initial GA parameters 
private: 

char elitism; 
int xoverType;
int populationSize,chromCard,chromLength,numGenerations;
float desiredFitness;
double mutationRate.crossoverRate;
String chromDecode;
FilterSpec ‘ aFilterSpec;
int theBestGeneration; // generation where theBest first showed up

Chromosome *‘ population;
Chromosome * ‘ nextPopuIation;

//Selection ‘ theSelection;
//Crossover ‘ theCrossover;
int Xrange;
int numUniqueCoetfs; //  Num ber o f  filter coefficients 
int NcsdOnes; // Number o f  o f  non-zeros allowed in CSD 
int Ndigits; // Number o f  CSD digits 
double Yupper;
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double Ylower;
//private double _count =  0.0; 

void genPlot();

public:
GA(char e,int xot,int ps,int chc,int chi,int ng, float df, 

double mr, double xor, FilterSpec *ff, String chd, 
int nc, int ncsdOnes, int ndigits); 

bool pause; 
bool quit;
void PerformGA(Chromosome **GlobalBestPtr);
Chromosome *theBest;
int generationCount; // generation counter
double bestFitness; 
double PBR,SBG;

#endif

File GA.cpp:

#include "GA.h"
#include"U nitl.h"
# define GC_DEBUG 
#include "g ccp p .h "
#include<stdio.h>
#include<math.h>

GA::GA(char e, int xot, int ps, int chc, int chi, int ng, float df,
double mr, double xor,FilterSpec *ff, String chd, 

int nc, int ncsdOnes, int ndigits) { 
generationCount = 0;

Xrange =  10; 
elitism =  e;

Yupper = 0.1;
Ylower =  0.0; 
xoverType =  xot;

populationSize = ps; 
chromCard = chc; 
chromLength -  chi; 
numGenerations = ng; 

desiredFitness -d f;
mutationRate = mr; 
crossoverRate = xor; 
aFilterSpec = ff; 
cliromDecode = chd; 

num U niqueCoeffs-nc; // number o f  
NcsdOnes=ncsdOnes; // number o f  allowed non-zeros in csd 
Ndigits=ndigits; // number o f  ternary digits 
quit = false;

populationSize = ps; 
mutationRate = mr; 
numGenerations -  ng;

// Set up and initialize the GA structures
theBest =  new (GC) Chromosomc/chromCard,chromLength,aFilterSpec. 

numUniqueCoeffs, Ndigits, NcsdOnes);
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population = new (GC) Chromosome*|populationSize]; 
nextPopulation = new (GC) Chromosome*[populationSize]; 
for (int j  = 0; j  < populationSize; j++) {

population[j] = new (GC) Chromosome(chromCard, 
chromLength,aFilterSpec,numUniqueCoeffs,Ndigits,NcsdOnes); 

population[j]->initializeChroTnosoineRandoin(); 
nextPopulation[j] = new  (GC) Chromosome(chromCard, 

chromLength,aFilterSpec,numUniqueCoeffs,Ndigits,NcsdOnes);

}

void GA::PerformGA(Chromosome **G lobalBestPtr) { 
bool done =  false; 

pause=false;
MyRandom M yR andom l;
Selection *theSelection = new (GC) Selection();
Crossover *theCrossover =  new (GC) Crossover(chromLength, xoverType);

♦GlobalBestPtr = population[0];
Form 1 ->SaveCSDs (population[0],generationCount);

if  (Idone) {
//  getBest() Search the population for the individual with the highest fitness 
int BestSoFarlndex =  0; //  index o f  the current best individual
double BestSoFar =  population[BestSoFarIndex]->getFitness(); 
double fitness;

Form l->sp_X Y Plotl->BufferedD isplay = true;
Form 1 ->sp_XYLine 1 ->ClearO;

for (int i = 1; i < populationSize; i++) {
if  ((fitness =  population[i]->getFitness()) > B estSoFar) (
BestSoFarlndex =  i;
BestSoFar =  fitness;

}
}
//  once the best m ember in the population is found, copy the genes 
population[BestSoFarIndex]->copyChromosome(theBest); 

double currentBestFitness =  0;
Form l->SaveCSDs (theBest,generationCount);

while ((quit == false) && ((generationCount <-- numGenerations 
|| numGenerations —  0 ))
&& ( desiredFitness > currentBestFitness )) {

generationCount++;
theSelection->select(population, nextPopulation, populationSize);
Chromosome **temp -  population; 
population =  nextPopulation; 
nextPopulation = temp;
//  crossover(); 
int one =  -1;
int first =  0; // count o f  the num ber o f  members chosen 
for (int i =  0; i < populationSize; ++ii) {

i f  (M yRandom l .dbl() < crossoverRate) {
++first;
if  (first %  2 =  0) {
theCrossover->xOver(population[one], population[i]);
} else one = i;

}
}
i f  (elitism  =  1 || (elitism==2 && generationCount != 2000000 )) { / /  && generationCount >30))) 
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//  keep the best by replacing one individual 
theBest->copyChromosome(population[0]);

}
for (int i = 0, i < populationSize; i++) {

for (int j  = 0; j  < chromLength; j++) ( 
if  (M yRandom l.dbl() < mutationRate) { 
population[i]->mutateGene(j);

)

}
}
/ /  update The Best
currentBestFitness =  population[0]->getFitness(); 
double next = -1;
int currentBest = 0; // index o f  the current best individual

for (int j  = 1; j  < populationSize; j++) {
if  ((next =  population[j]->getFitness()) > cunrentBestFitness ) { 
currentBest =  j;

currentBestFitness = next;
}

}
genPlot();

*GlobalBestPtr = theBest;
if  (currentBestFitness > theBest->getFitness() |j generationCount =  2000000 ) {/ /* 0.1 ) { 

population[currentBest]->copyChromosome(theBest); 
theBestGeneration -  generationCount; 

i f  (generationCount >  3) //100)
Form 1 ->SaveCSDs (theBest.generationCount);

}
// done so print findings 

Form l->U pdate();
Application->ProcessM essages();

}

}

void GA::genPlot() {
bestFitness=0.0; // best population fitness 
double sum=0.0; //  total population fitness
double fitness;

for (int i =  0; i < populationSize; i++) { 
fitness =  population[i]->getFitness();

i f  (bestFitness < fitness) bestFitness =  fitness; 
sum += fitness;

)
bestFitness =  theBest->getFitness(); 

PBR=SBG=0;//theBest->getFreqStats(&PBR,&SBG);
Form l->Labell->C aption = bestFitness;
Form l->Label7->Caption =  PBR;
Form l->Label8->Caption = SBG;
Form l->Label2->Caption -  generationCount,
Form 1 ->Update();
Form 1 ->sp_X YLine 1 ->AddXY(generationCount, bestFitness);
Form 1 ->sp_X YPIot 1 ->Paint();
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File ArbitraryForm.h:

//------------------------------------------------
# ilhdef ArbitraryFormH 
#define ArbitraryFormH
//.------------------------------------------------
#include <Classes.hpp>
^include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>
#include <ComCtrls.hpp>
#include <ExtCtrls.hpp>
#include <ToolW in.hpp>
#include <ImgList.hpp>
//.------------------------------------------------
class TArbitrary : public TForm 

{
 published: // IDE-managed Components

TToolBar *ToolB arl;
TToolButton ‘ ToolB uttonl;
TToolButton *TooIButton2;
TIm ageList ‘ Im ageListl,
TToolButton *ToolButton3;
T lm age *Im agel;
v o id  fastcall Panel lClick(TObject ‘ Sender);

private: //  User declarations
public: // User declarations

 fastcall TArbitrary(TComponent* Owner);

};
//-------------------------------------------------
extern PACKAGE TArbitrary *Arbitrary;
#endif

File ArbitraryForm.cpp:

//--------------------------------------------------------
# include <vcl.h>
#pragma hdrstop 
^include "ArbitraryForm.h"
//.-------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfin"
TArbitrary ‘ Arbitrary;
/ / .-------------------------------------------------------
 fastcall TArbitrary: :TArbitrary(TComponent* Owner)

: TForm(Owner)

{
}
/ / .-------------------------------------------------------
void fastcall TArbitrary: :PanellClick(TObject ‘ Sender) 

{
int X=2,Y=6;
Imagel->Canvas->M oveTo(0, 0);

Im agel->Canvas->LineTo(X, Y);

)
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Appendix B Definitions

Allele

Each gene occupies a specific character location within the chromosome string. Each 

gene position may take a character value called an allele.

Canonic Signed Digit (CSD) Number

Also known as Canonical Signed Digit; a number composed of 0,1 and -1 digits 

whose format follows the canonic constraint and has the fewest non-zero digits of any 

signed digit representation

Chromosome

A data structure consisting of a character string of coded task parameters.

Converged

A gene is said to have converged when 95% of the chromosomes in the population all 

contain the same allele for that gene. A population is said to have converged when all 

genes have converged.

It is commonly used to mean that the GA has slowed to a point that it doesn’t seem to 

be finding new, better solutions.

Crossover

A reproduction operator which forms a new chromosome by combining parts of each of 

two parent chromosomes.
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Deception

The condition where mating leads to reduced overall population fitness, rather than 

increased fitness. Proposed by Goldberg[gol89a] as a reason for the failure of gas on 

many tasks.

Elitism

A mechanism which is used to ensure that the chromosome of the most highly fit 

member of the population is passed on to the next generation without being altered by 

genetic operators. Using elitism ensures that the maximum fitness of the population can 

never reduce from one generation to the next. Elitism usually brings about a more rapid 

convergence of the population.

Epistasis

The interaction between different genes in a chromosome. It is the extent to which the 

contribution to fitness of one gene depends on the values of other genes.

Exploitation

The process of using information gathered from previously visited points in the search 

space to determine which places might be profitable to visit next.

Exploration

The process of visiting entirely new regions of a search.

Fitness
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A value assigned to an individual which indicates how well the individual solves the 

task at hand. A fitness function is used to map a chromosome to a fitness value.

Gene

A position on a chromosome which usually holds the encoded value of a single 

parameter.

Generation

An iteration the creation of a new population by means of reproduction operators.

Genetic drift

Gene value changes resulting from chance rather than selection in a population over 

many generations.

Individual

A single member of a population which contains a chromosome representing a 

potential solution to the problem under consideration.

Mutation

A reproduction operator which forms a new chromosome by making random 

alterations to the values of genes. It usually occurs with low probability.

N o n - R e c u r s iv e  f i l t e r

A filter whose output depends only on input values. It is always stable.

Offspring
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An individual generated by any process of reproduction.

Optimization

The process of iteratively improving the quality of a solution to a problem as 

determined by a specified objective function.

Parent

An individual which takes part in reproduction to generate one or more other 

individuals, known as offspring.

Population

A group of individuals which interact together by mating to produce offspring. 

Recursive filter

A filter whose output depends on input values and previous output values. It is not 

guaranteed to be stable.

Reproduction

The creation of a new individual from two parents.

Schema

A pattern of gene values in a chromosome, which may include 

'don’t care' states.

Schema theorem
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The fundamental theorem of genetic algorithms. It says that a GA gives exponentially 

increasing reproductive trials to above average schemata. The rate of schema processing 

in the population is very high, leading to a phenomenon known as implicit parallelism. 

This gives a GA with a population of size N an implicit processing factor of N3.

Selection

The process by which some individuals in a population are chosen for reproduction. It 

is biased in favor of individuals with higher fitness.
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