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ABSTRACT

The sliding wear encountered by aluminum alloys tends to induce plastic 

deformation below the contact surfaces, even at light loads. There is experimental 

evidence of damage accumulation in the form of nucleation of voids and microcracks 

around second phase particles in the material layers adjacent to the contact surface. 

The crack propagation found at a certain depth below the surface may lead to the 

creation of long, thin plate-like wear debris particles. The objective of this work was to 

study the deformation and damage accumulation processes experienced by aluminum 

alloys during sliding wear. The explicit finite element program LS-DYNA was used to 

model sliding contacts. The material model used in the finite element analysis was 

based on the stress/strain behavior of a 356 Al (AI-7 % Si) alloy, and determined directly 

from the analysis of the subsurface deformation generated during the sliding wear tests. 

Strain rate and thermal effects were also considered by a coupled thermal and 

mechanical analysis. Rigid cylindrical asperities were loaded and moved, at a constant 

sliding velocity, over a three-dimensional 356 Al structure. Both Eulerian and Lagrangian 

finite element formulations were used, and the accumulation of stresses and strains was 

studied as a function of the asperity contact cycle number. The finite element model was 

validated by comparing its results with the normal and sliding contact experiment 

observations.

Initially, the von Mises stress in the aluminum subsurface layers increased 

rapidly. With a loading condition of 10 m/s sliding velocity and 150 N/mm normal load, 

the von Mises stress and the equivalent plastic strain at the contact surface were 

514 MPa and 0.19, respectively after the first asperity contact. After the fourth asperity 

passage, the stress and the plastic strain at the contact surface increased to 586 MPa 

and 0.78. During the subsequent sliding contacts, the subsurface stresses attained a 

constant value with only a 2% increase in the stress between the fourth and the seventh 

asperity contacts. Variations in hydrostatic pressure, strain rate and temperature values 

at the surface and subsurface regions were also determined, based on different loading 

conditions, as a function of the sliding contact numbers. The hydrostatic pressure at the 

surface increased from 1150 MPa to 1300 MPa as the sliding process progressed from 

the first to the seventh asperity contacts. A total temperature increase of 45 K occurred

in
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at the surface after the seventh sliding contact, compared to the 300 K initial surface 

temperature.

A model of the subsurface damage accumulation process was proposed based 

on the Rice and Tracey void growth model, which considered the presence of a damage 

gradient that reached a maximum at a critical depth. For a sliding velocity of 10 m/s and 

a normal load of 150 N/mm, the location of material where the maximum rate of damage 

occurred corresponded to a normalized depth (depth/asperity diameter) of 0.060. 

Increasing the load to 250 N/mm caused an increase in the critical depth of damage to a 

normalized depth of 0.085. An increase of the sliding velocity from 5 m/s to 10 m/s 

moved the location of maximum damage from 0.050 to 0.060. Friction (coefficient of 

friction s 0.3) changed the subsurface damage gradient distribution completely, moving 

the location of the maximum damage rate to the surface. The effects of hard particles on 

the distribution of subsurface stresses, strains and the damage gradient were also 

investigated. Si particles in different shapes (square, rectangular and circular) embedded 

in the aluminum matrix helped to resist the penetration of deformation below the surface 

of the 356 Al matrix. However, an increase in the stresses and plastic strains prompted 

an increase in the damage gradient in some locations adjacent to the Si particles.

iv
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NOMENCLATURE

Chapter 1

R : radius of a void

R: void growth rate

a H : mean or hydrostatic stress

° f : equivalent flow stress

£: the strain rate

Chapter 2

V: volume of the wear sheet

SD: sliding distance

L: applied normal load

H: hardness of the material

K: proportionality constant

W: wear rate

P: applied load

Sv: sliding speed

/■ mass fraction of oxygen in the oxide

t: thickness of oxide film

F material density

Ap: material constant

Qi activation energy of the oxidation,

R: gas constant
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T: temperature

A L : contact length

d: subsurface depth of the crack

X: spacing between the asperities

lc: spacing between cracks

ACL: average crack propagation rate of the left side of crack

ACR : average crack propagation rate of the right side of crack

N\ number of contact cycles

o m: hydrostatic tension component of the stress

a f : flow stress of the material

<jrr: maximum interfacial stress

<7C: critical value of normal stress for micro-void nucleation

<7loc: local stress

p loc: local dislocation density

eN : void nucleation strain

dr]zb: damage rate

Fzb: relative growth factor

Fzb : critical value of the relative growth factor for fracture

b: radius of the growing cylindrical cavity

lb: mean spacing between the cavities

b°: initial value of the radius

4°: mean spacing

de : equivalent strain
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n: strain hardening coefficient,

o : equivalent stress

<7a: applied transverse tensile stress

<7b: applied transverse tensile stress

ei : strain rate in the i direction

v : Lode variable

Rk : rates of change in the radius of the void in the directions X2 and X3

(1+.E): factor describing the amplification of the void’s growth rate relative to the

strain rate of the matrix

Ds: factor describing the void’s growth rate relative to the stresses in the

matrix

<r0 : the yield stress

R : overall void growth rate

R: radius

x: position in the X direction

P(x): pressure distribution in the X direction

P0\ maximum contact pressure

a: semi-contact width

E*\ combined modulus

E: elastic modulus

v: Poisson’s ratio

<7X: first principle stress

<7y: second principle stress

crz : third principle stress
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t : maximum shear stress

u : displacement

Q(x)- shear traction distribution in the X direction

JU\ coefficient of friction

k. yield strength in shear

h\ height of coating layer

s: sliding distance

A: contact area

h: wear depth

k. dimensional wear coefficient

T- wear coefficient

Fn : applied normal load

equivalent or flow stress

e : equivalent strain

Kn: work hardening coefficient

a 0: initial yield stress

a s \ saturation stress, the stress at which the work hardening rate becomes

zero

£c . material constant

D: material constant

q- material constant

C: material constant

Of'- flow stress at temperature T

Groom- flow stress at room temperature
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T m e lt-

m\

nR:

A o'G:

O'.

e.

e :

/:

cf.

Chapter 4

O f

e.

o 0: 

os-

£c-

P\

E\

Po-

P-

Co'

room temperature 

melting temperature

Johnson-Cook thermal material parameter
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CHAPTER 1

INTRODUCTION

Aluminum-silicon alloys boast a high strength-to-weight ratio and superior 

castability, which makes them an integral element in many vehicle components. Some of 

these components such as pistons and cylinder bores, however, are subjected to a 

considerable amount of sliding motion. Despite their benefits, aluminum-silicon alloys 

have a relatively low wear resistance when compared to steel—a factor that has 

restricted the widespread application of these alloys in parts that operate in sliding 

contact conditions. Sliding wear is complicated, and incorporates several physical, 

chemical and thermal events. The mechanisms of sliding wear, such as cutting and 

plowing in the form of abrasive wear, asperity deformation, subsurface crack initiation 

and growth have left the associated problems open to investigation. This study seeks to 

better understand and optimize the tribological behaviour of aluminum alloys.

Engineering surfaces are not smooth. They contain peaks and valleys called 

asperities— sites where contact between two solid surfaces occurs. These asperities are 

responsible for supporting the applied loads and tractions that are formed when surfaces 

meet. It follows that understanding the interactions of the asperities between converging 

surfaces is an essential part of wear studies. While the elastic contact between a sphere 

or a cylinder and a plane has been studied extensively since the leading work of 

Hertz [1], plastic deformation of the asperities in aluminum alloys occurs during dry 

sliding wear—even at low loads—and theoretical contact mechanics solutions are limited 

in regard to these cases. The finite element method provides a convenient tool for the 

study of plastic contact problems, and there are a few investigations aimed at studying 

such contact problems with the goal of modeling wear events using numerical tools. The 

plastic material models used in these published studies tend to be simple in nature, 

making it necessary to implement realistic material models. It stands to reason that the 

distribution and accumulation of subsurface stress and strain within sliding asperity 

contacts should be investigated in more detail if we are to fully comprehend the sliding 

contact behaviour of aluminum alloys.

1
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Some examples of experimental work on the topic of subsurface plastic 

deformation during wear are given in [2-5]. These experimental investigations revealed 

that, during sliding contact, the nucleation of voids and micro-cracks occurs around the 

second phase particles, such as silicon [2-5]. Examination of the affect of inclusions and 

secondary particles on the ductile fracture of alloys, including aluminum alloys containing 

7 % and 13 % silicon, revealed that second phase particles are the source of cracks that 

lead to ductile rupture [6 , 7], The fracture mechanisms of silicon particles in aluminum 

alloys have been explored by various researchers [8, 9],

Thin, plate-like flake debris formation is commonly observed in sliding wear 

systems. Suh [10, 11] revealed that in dry or poorly lubricated sliding conditions, cracks 

initiating from secondary particles or inclusions had a tendency to spread parallel to the 

surface—forming wear particles that had a thin, flaked shape. This process of 

delamination was confirmed by both analytical and experimental work [12-16]. The dry 

sliding behaviour of an AI-7 % Si (A356 Al) alloy was investigated by Zhang and 

Alpas [17], Their study also indicated that thin, flake or plate-like debris particles were 

generated during the process of subsurface delamination—a process that occurred as a 

result of the formation of cracks which originated from the silicon particles and spread 

parallel to the surface. Figure 1 shows a micrograph where subsurface crack 

propagation can be observed under dry sliding contact conditions [17],

The fracture mechanics approach has also been applied in the study of 

subsurface delamination problems [12, 18-22], Fleming and Suh [12] made one of the 

first attempts to model the subsurface crack propagation in sliding contact using linear 

elastic fracture mechanics. They proved that both the stress intensity factor and, in turn, 

the crack propagation rate increased in tandem with an increase in the coefficient of 

friction. Rosenfield [18] calculated the stress intensity associated with a subsurface 

crack— driven by shear stresses due to an asperity contact— but elastic fracture 

mechanics models do not provide appropriate solutions for the wear of ductile materials.

A more promising approach argues that delamination cracks are, in fact, ductile 

plastic shear fractures formed by the linking of voids along high shear planes [22], 

Tierlinck et al. [23] have shown that a superimposed hydrostatic compression tends to 

facilitate shear fractures by suppressing the dilatation of voids that would otherwise lead 

to tensile failure [24], The basic need that must be met when modeling the delamination 

is the ability to define the depth at which cracks initiate and propagate. Ductile void

2
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growth theories provide insight into the damage processes observed in ductile materials 

and they could be used to study how a void grows under an imposed stress and strain 

field. Rice and Tracey [25] developed one of the well known relationships used to 

describe the growth rate of a spherical void in a ductile solid that has been subjected to 

a triaxial stress and strain rate field. They estimated the growth rate of a void of radius R 

in a ductile and hardening matrix during shear by using the following relationship:

R =
5 ^  V3 <7h

3 2 0 7
eR (1.1)

where R is the void growth rate, a H is the mean or hydrostatic stress, c y is  the 

equivalent flow stress and e is the strain rate.

In the subsurface layers that lie adjacent to the contact surfaces, the competition 

between the hydrostatic pressure—which suppresses void growth—and the equivalent 

stress—which enhances it— is considered to be responsible for the generation of a 

damage gradient [17]. Figure 1.2 illustrates the formation of a subsurface damage 

gradient. Working with this concept, debris formation can be attributed to the 

delamination of the subsurface layers at a certain depth—where the damage 

accumulation rate is the highest. The distributions of the subsurface stresses and strains 

must, in turn, be determined in order to quantify the process. Attempting to 

experimentally determine the subsurface deformation state— hydrostatic stresses and 

strain rates generated during sliding contact in particular—is a formidable challenge. 

Numerical analyses are needed to predict the subsurface damage gradients under 

various loading conditions.

Accordingly, this work studied the deformation and damage accumulation 

processes observed during the sliding wear of aluminum alloys. It investigated the 

accumulation of subsurface stresses and strains in an Al-Si alloy that had been 

subjected to sliding contact cycles, using a finite element model that was built 

specifically for this purpose. The numerical material model was based on the stress- 

strain relationship for a 356 grade Al (7 % Si) alloy, which was obtained from the sliding 

wear tests (not from tensile tests). Finite element models were tested and validated by 

comparing the results with theoretical elastic contact studies as well as normal and
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sliding contact experiments. A model of debris formation was then proposed, using the 

Rice and Tracey void growth model that considers the presence of a damage gradient 

that reaches its maximum at a critical depth.

The work presented in this dissertation is compiled into 9 chapters. Chapter 2 

provides a description of the sliding wear and its mechanisms, then continues with a 

review of the theoretical and numerical contact mechanics solutions used in the contact 

problems. Chapter 2 also contains a summary of constitutive equations for the aluminum 

alloys. Chapter 3 covers the objectives and scope of the research, while the details of 

the numerical and experimental procedures utilized are presented in Chapter 4 and 5. 

Chapter 6 presents the validation studies where accuracy of the numerical model 

predictions are investigated by using several methods including energy balance 

analysis, time history data analysis, Hertz theory comparisons and experimental and 

numerical comparisons. In Chapter 7, the results and discussion on subsurface 

deformation are given with an analysis of subsurface damage accumulation process 

during sliding contacts. Chapter 8 summarizes the results and gives the conclusions of 

the work. Finally, the suggestions for future work are presented in Chapter 9.

4
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Figure 1.1: Subsurface crack propagation observed in a 356 Al alloy during dry

sliding wear [17].
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Figure 1.2: Distributions of the hydrostatic pressure (cjh) and the equivalent stress

(oEqv) that create a subsurface damage gradient (damage rate is 

examined in Section 7.5 and presented as normalized void growth rate, 

R / R). (zc is the location of the highest damage).
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CHAPTER 2

LITERATURE REVIEW

This chapter summarizes previous work on the sliding wear of ductile materials 

and the mechanisms that control the wear, then reviews published literature on the 

contact mechanics. This section also presents current knowledge of the effects that 

hydrostatic pressure, strain rate and temperature have on the mechanical behaviour of 

aluminum alloys. The finite element models developed in this study were built on 

guidance obtained from this critical literature review, which has also proved the novelty 

of this study.

2.1. WEAR

2.1.1. DEFINITION AND MECHANISMS

Wear can be defined as damage to a solid surface that generally involves the 

progressive loss of material, due to relative motion between that surface and a 

contacting substance or substances [26]. Material can be removed from a solid surface 

in three ways: by melting, by chemical dissolution or by the physical separation of atoms 

from the surface [27], However, wear processes can also occur without the removal of 

materials. Material displacement and plastic deformation may occur in the surface and 

subsurface during the sliding process, accompanied by some changes in shape and/or 

properties [28],

When two nominally plane and parallel surfaces are brought together, contact 

will initially occur at only a few points. As the normal load is increased, however, the 

surfaces move closer together and a larger number of the peaks or asperities on the two 

surfaces come into contact. Since the asperities provide the only points at which the 

surfaces touch, they are responsible for supporting the normal load on the surface, and 

transmitting tangential forces (Figure 2.1) [5]. In addition, they are responsible for 

generating any frictional forces that act between them. A comprehensive understanding

6
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of the way in which the asperities of two surfaces interact under varying loads is crucial 

to any study of friction and wear [29],

Wear processes may be classified by the type of relative motion to which the 

surfaces are subjected— sliding wear, rolling wear, oscillation wear, impact wear and 

erosive wear. Wear processes are called dry, lubricated, two-body and three-body wear 

related to the interfacial element [5]. Sliding wear occurs when two solid surfaces slide 

against each other [5, 27, 29]. A simple theoretical analysis of this type of wear was 

initially proposed by Archard [30,31]. Archard’s approach was based on the concept of 

asperity contacts: that contact between the two surfaces will occur where asperities 

touch, and the true area of contact will be equal to the sum of the individual asperity 

contact areas. Asperities that are subjected to high normal loads deform plastically until 

the areas of contact are large enough to support the load, and the plastically deformed 

asperities adhere to each other. Large shear forces— localized at these adhesions—  

cause fractures in one of the materials, and a fragment is removed and transferred to the 

other. Archard stated that when two materials slide against each other, the wear volume 

V is linearly proportional to the sliding distance Sd and normal load L , but inversely 

proportional to the hardness H  of the material. This may be expressed as:

3 H
(2 .1)

where K  is a dimensionless proportionality constant, commonly known as the wear 

coefficient. The factor 3 is given by Archard [30] for adhesion. Although Equation 2.1 

implies that harder materials wear less, there are many exceptions to this statement. For 

example, a soft, commercially pure copper can be much more resistant to wear than 

AISI 1045 steel, which is much harder. In abrasive wear, the surface of a softer metal is 

plowed by hard abrasive particles, wear particles or hard asperities of the counterface. 

Abrasive wear follows the relationship given by Equation 2.1 reasonably well; that is, the 

harder the material the lower the wear rate [32],

Quinn [33] developed an oxidative theory of wear for the dry sliding of steels. He 

proposed that the frictional heat flux generated at the real contact areas is divided so 

that part of the heat flows into one specimen, and the remainder flows into the second

7
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specimen. This raises the temperature of the contacting surfaces and, if the heat flux 

and the temperature are sufficiently great, the asperities of the contacting metals 

undergo oxidation—forming an oxide film on the contacting surfaces. The oxide film is 

removed when it reaches a critical thickness and becomes mechanically unstable. He 

proposed the following equation for the wear rate ( W):

W  =
KHSr f 2t2p 2y

Ap exp z Qjl
v RT

(2 .2 )

where P  is the load, / / is  the hardness of the metal, Sv is the sliding speed,/is the mass 

fraction of oxygen in the oxide, t is the thickness of oxide film, p  is the density of the 

oxide, Ap is a constant, Qp is the activation energy of the oxidation, R is the gas constant 

and T is the temperature at the contact. This theory is valid in cases where oxidation is 

the dominant wear mechanism.

Plate-like wear debris is commonly observed in sliding wear systems. Suh 

[10,11] developed a delamination wear theory to model the formation of this type of wear 

particle or debris. Figure 2.2 shows the steps of plate-like wear debris formation, 

according to the delamination theory [5]. The theory states that during sliding, normal 

and tangential forces are transmitted through asperities. Each asperity along the softer 

surface experiences cyclic loading. The harder asperities cause plastic shear 

deformation on the softer surface, and increasing subsurface deformation leads to the 

nucleation of cracks below the surface. Crack nucleation cannot occur very near the 

surface, due to the triaxial state of compressive loading existing just below the contact 

region. Pre-existing cracks and voids and newly formed cracks grow with further loading 

and deformation. Then, the cracks propagate parallel to the surface at a specific depth 

that depends on the loading conditions and material properties. When the cracks are 

finally able to shear to the surface in certain weak positions, long and thin wear sheets 

are formed [32], Fleming and Suh [12,15] developed a wear equation based on this 

delamination theory for a subsurface crack as shown in Figure 2.3:

8
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real area of contactapparent area of contact

Static Contact

real area of contact

Sliding Contact

real area of contact

Figure 2.1: Apparent and real area (Aj) of contact (FN: normal load, FT: tangential

load) [5],
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Figure 2.2:

Figure 2.3:

Formation of wear sheets due to delamination: (a) Smoothing of the softer 

surface, (b) Strain accumulation below the surface, (c) Initiation of 

subsurface cracks and (d) Formation of sheet-like wear particles [5].

Surface

L  Crack R

Subsurface crack under a moving asperity [32],
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where V is the volume of the wear sheet, SD is the sliding distance, AL is the contact 

length, d  is the subsurface depth of the crack, X is the spacing between the asperities, lc 

is the spacing between cracks and ACL and ACR are the average crack propagation 

rates during N  contact cycles of the left {L) and the right (R) sides of crack, respectively 

(Figure 2.3). Many experimental studies have substantiated the delamination theory, 

agreeing that the delamination process is initiated when the subsurface plastic 

deformation causes the nucleation of voids, and that with further deformation, these 

voids elongate and link up to form long cracks in a direction parallel to the wear surface. 

Figure 2.4 shows micrographs where void formation around inclusions and crack 

propagation are shown in an annealed F e -1.3 % Mo [32],

2.1.2. SUBSURFACE MICROSTRUCTURES OF THE WORN SURFACES

The subsurface layers below the worn surfaces in samples subjected to sliding 

wear may show heavily deformed regions adjacent to worn surfaces. Many 

investigations show that large subsurface strains and plastic deformation can be 

generated near the worn surfaces, even under light loads [2-5, 28, 29]. Figure 2.5 

schematically illustrates the different regions observed in the worn layers [29]. Three 

distinct regions are generally reported: i) Zone 1 is the region of bulk material that 

remains undeformed; ii) Zone 2 consists of plastically deformed material, with plastic 

shear strains increasing towards the surface; iii) In Zone 3, the material closest to the 

surface— often a mixed structure— is found with very fine grains composed of original 

bulk material, material from the counterface and oxides (tribolayers). Grain refinement 

and reorientation may be observed towards the boundary between Zones 2 and 3.

Transmission electron microscopy revealed some important developments in the 

deformation structures of the worn surfaces. Ohmae et al. [34], Rigney et al. [35] and 

Heilman et al. [36] found that dislocation density below the wear surface was extremely 

high, and the formation of a dislocation cell structure was predominant. As the depth

11
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Figure 2.4: Void formation around inclusions and crack propagation from these voids

near the surface in annealed Fe-1.3 % Mo [32],
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Figure 2.5: Schematic diagram showing how the severity of plastic deformation is

distributed beneath a worn metal surface in the severe wear regime [29].
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from the surface decreased, the cell size and the misorientation between the cells 

decreased as well.

2.1.3. SUBSURFACE DAMAGE MECHANISMS DURING DELAMINATION

The process of delamination—the plastic deformation of a subsurface layer, void 

nucleation and crack propagation below the surface—was shown to be one of the main 

mechanisms during sliding wear of the metals. Voids around inclusions or hard 

secondary-phase particles could only nucleate below a certain depth from the surface—  

due to the large hydrostatic pressure near the asperity contact—and only above other 

depths— due to the decrease in stress and deformation with distance from the contact 

[10-15],

Although the state of stress and strain in wear is different from that found in 

uniaxial testing, void nucleation studies in uniaxial tension and in pure shear testing will 

be reviewed initially, because of the similarities. The void nucleation process in uniaxial 

tension and in pure shear testing has been the subject of both theoretical and 

experimental investigations. The experimental results indicate that voids nucleate from 

hard particles, either by particle-matrix separation, or by particle fracture. Matrix-particle 

separation (or interface decohesion) tends to be the case if the particles are equiaxed, 

while particle fracture is common for elongated particles. The tensile fracture process 

normally occurs in several stages, which are illustrated in Figure 2.6 [37], First, after 

necking begins, small cavities or micro-voids form in the interior of the sample. As 

deformation continues, these micro-voids enlarge, come together and coalesce to form 

an elliptical crack, which has its long axis perpendicular to the stress direction. The crack 

continues to grow in a direction parallel to its major axis via this micro-void coalescence 

process. Finally, fracture ensues, prompted by the rapid propagation of a crack by shear 

deformation around the outer perimeter of the neck at an angle of about 45° with the 

tensile axis where the shear stress is at its maximum. Fractures with these characteristic 

surface contours are called “cup-and-cone” fractures, because one of the mating 

surfaces is in the form of a cup, and the other is shaped like a cone [37].

Previous investigations of void formation can be grouped into three categories, 

according to criterion used for void formation: the energy criterion, the local stress 

criterion and the local strain criterion [13]. Gurland and Plateau [6] examined the role of
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inclusions and secondary particles on the ductile fracture of alloys— including an 

aluminum 13% silicon casting alloy—and showed that inclusions or precipitates are often 

the source of the cracks that lead to ductile rupture. They proposed that voids can form 

at the interface when the locally concentrated elastic strain energy, which could be 

released upon decohesion, becomes comparable with the energy of the surfaces to be 

generated. A more detailed analysis by Tanaka et al. [38] revealed that, in a purely 

elastic situation, the energy criterion is always satisfied for particles larger than 25 nm 

when the stress almost reaches the yield stress. However, in many instances, much 

larger particles have been observed to remain attached to the matrix, even at strains 

much larger than the yield strain [13]. Therefore, the energy criterion is a necessary, but 

not a sufficient condition.

Since the energy requirement is not a sufficient condition, some local stress or 

strain criterion must be satisfied before void nucleation. Argon et al. [39-41] analyzed the 

void nucleation process around rigid inclusions of circular cross sections embedded in 

an elastic-plastic matrix in plane strain condition, subjected to pure shear and 

superimposed hydrostatic tension. They suggested that the hydrostatic tension 

component of the stress ( o m) could be superimposed on the flow stress of the material

where Grr is the maximum interfacial stress. Void nucleation was stated as possible if 

reaches the particle-matrix bond strength. Equation 2.4 states that voids can 

nucleate more easily if a hydrostatic tensile stress is present, and that void nucleation 

can be suppressed in the presence of a hydrostatic compressive stress.

Le Roy et al. [42] suggested a critical value of normal stress ( Gc ) for micro-void 

nucleation, by decohesion of the particle-matrix interface by using Equation 2.4:

(o>):

(2.4)

° C  ~  ° lo c  + (2.5)
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Figure 2.6:
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Stages in the cup-and-cone fracture (a) Initial necking, (b) Small cavity 

formation, (c) Coalescence of cavities to form a crack, (d) crack 

propagation and (e) Final shear fracture at a 45 ° angle relative to the 

tensile direction [37],
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where <j 1oc is the local stress. The value of <j 1oc was determined by the local dislocation 

density ( p loc), which has accumulated at the particle. By assuming that the local 

dislocation density increases linearly with strain and o l0Ca ^ p l0C , the void nucleation 

strain (eN) was determined as:

1/2 _  (°C  >
N ~ K

(2 .6 )

where K  is a constant. The void nucleation strain obtained from Equation 2.6 as a 

function of hydrostatic stress is shown in Figure 2.7, where experimental results for 1045 

steel is also included [40, 42, 43]. The experimental data is consistent with the form of 

Equation 2.6. In addition, the intercept value ioxeN = 0 yields an estimate of crc equal

to 1200 MPa. This value is comparable with the value of 1700 MPa, derived by Argon, 

and Im [40], as well as with the values of the interfacial strength for various carbides in 

steel of 1000 to 3000 MPa—derived by other techniques [42],

The fracture of ductile solids was observed to result from the growth and 

coalescence of microscopic voids [44-46]. Once a micro-void has been nucleated in a 

plastically deforming matrix— by the debonding or cracking of a second phase particle or 

inclusion—the resulting stress-free surface of the void causes a localized stress and 

strain concentration in the adjacent plastic field. With the continuing plastic flow of the 

matrix, the micro-void will undergo a volumetric growth and shape change that amplifies 

the distortion imposed by the remote uniform strain rate field [47], The relation between 

the growth of a void and imposed stress and strain must be discovered and understood 

to develop a fracture criterion. McClintock [48] presented an analysis of the expansion of 

a long, circular cylindrical cavity in a non-hardening material, pulled in the direction of its 

axis while subjected to transverse tensile stresses. He showed that the relative void 

expansion per unit applied strain increment increases exponentially with the transverse 

stresses:
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Figure 2.7: The void nucleation strains for various hydrostatic stresses in a

spheroidised 1045 steel [42].
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r

where drjzb is the damage defined as drjzb = d (\nFzb) / \n F zfb, Fzb is the relative 

growth factor defined asFz6 = ( b / lh)/(b° / l b) , Fzbf  is the critical value of the relative 

growth factor for fracture defined as Fzb = (1/2 )/(b° / l b), b is the radius of the growing 

cylindrical cavity, 4  is the mean spacing between the cavities, b° and 4 ° are the initial 

values of the radius and the mean spacing, respectively, de is the equivalent strain, n is 

the strain hardening coefficient, o  is the equivalent stress and o a and <Jb are the applied 

transverse tensile stresses.

Rice and Tracey [25, 47] determined the growth rate of a spherical void in a 

ductile solid, subjected to remote, uniform triaxial stress and strain rate fields—a more 

realistic approach than the one-dimensional growth case studied by McClintock [48]. 

They treated the void growth problem in the domain of continuum plasticity, which 

considers separation to be a kinematical result of large but localized plastic 

deformations. Figure 2.8 shows the geometry of the void growth problem. First, a 

variational principle was established to characterize the flow field in an elastically rigid 

and incompressible plastic material (either perfectly-plastic or strain hardening) that 

contained an internal void or voids and had been subjected to a remote uniform stress 

and strain rate field. Then, a Rayleigh-Ritz procedure was developed and applied to the 

enlargement of an isolated spherical void for approximate solutions. The strain rate field 

is characterized, in terms of the principal componentsex > e2 > £3, by the Lode variable 

v  defined by:

v = —
£ 1  - £ *

(2.8)
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The results for the rates of change RK in the radius of the void R, in the 

directions X2 and X3 of the principle strain rates for the remote strain rate field, were 

shown to have the form:

(1 + E)£k + J skD s

Rf( -  [o + E )£k + £k D s

R for non-hardening material

for hardening material

(2.9)

(2 .10)

where K  = 1, 2, 3 and (1+E) is a factor between 5/3 and 2 that describes the 

amplification of the void’s growth rate relative to the strain rate of the matrix. The 5/3 

factor is given as an appropriate value of (1+E) for strain hardening and low triaxiality in 

non-hardening, and the 2 factor is appropriate for the higher triaxiality in the non

hardening case. Ds is given by the following equations:

D v = 0.558 sinh

= 43_ oj l  

s 2 cr,

' l ? J L + 0.008v cosh' l? J L
V2 a o J

for non-hardening material (2 .11)

for hardening material (2 .12)

where o H is the mean or hydrostatic stress, o Q is the yield stress and cry is the 

equivalent flow stress. For the condition of plane strain, the state of deformation is pure 

shear, where ex = e , £2=0, £3= -£  and v=0. In this condition, the overall void growth

rate/? of a void of radius R in a ductile matrix during shear was shown to depend on the 

ratio of hydrostatic stress and flow (or yield) stress of the material:

R = 0.558sinh
3 <7 \ \

H

2 cr,o J )
eR for non-hardening material (2.13)
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R =
5 V3

eR for hardening material (2.14)

Equations 2.13 and 2.14 suggest that the deformation transforms voids that are initially 

spherical into “infinitesimally neighbouring ellipsoids”. It should be noted that the 

interaction and unstable coalescence of neighbouring voids are not covered by this 

analysis. However, the variation of the damage rate beneath the contact surface of a 

ductile material can be evaluated with respect to the depth of deformation using 

Equations 2.13 and 2.14— provided that the variations in flow stress, hydrostatic 

pressure and strain rate can be determined with the depth. The experimental 

determination of the subsurface deformation state, in particular the hydrostatic stresses 

and strain rates generated during sliding contact, is a significant challenge. Analytical or 

numerical analyses are necessary to predict the subsurface damage gradients under 

various loading conditions. The next section reviews analytical and numerical solutions 

of contact stress fields.

2.2. ANALYTICAL AND NUMERICAL SOLUTIONS OF CONTACT STRESS FIELDS

Subsurface damage processes have dominant effects on the sliding wear 

behaviour of ductile materials. Therefore, understanding the subsurface damage 

processes, including the subsurface stresses and strains produced in the contacting 

materials, is vital. This section reviews published literature on the analytical and 

numerical solutions of contact problems.

2.2.1. ANALYTICAL SOLUTIONS OF CONTACT PROBLEMS

Hertz [1] presented the first analysis of the stresses at the contact of two elastic 

solids. His approach is frequently used in contact stress calculations. The main 

assumptions of this theory are continuous surfaces, small strains, elastic half-space 

solids and frictionless contact. According to the Hertz theory, when two cylinders or 

spheres are pressed against each other, or a cylinder is loaded against a half-space, the
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Figure 2.8: A spherical void subjected to remote stress and strain rate fields [25, 47].
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area of contact is elliptical in shape (Figure 2.9). This elliptical pressure distribution is 

formulated, and the pressure at any position x  is given by [49]:

P(x) = P j l -
\ a )

(2.15)

where P(x) is pressure distribution, Po is the maximum contact pressure and a is semi

contact width.

The equation relating applied load (P) to the maximum contact pressure (P0) 

within the solids is as follows [49]:

Pn =
I PE 

nR
for cylinders in contact (2.16)

P =  3 ^ 1  
0 V j f R 1

for spherical contact (2.17)

The semi-contact width is given by:

a = .
I4PR
lt£

for cylinders in contact (2.18)

a - l \
I3PR 
4 E

for spherical contact (2.19)

where E  is the combined modulus given by E = , E i and E2 are the
Ex x̂ 2 j

elastic modulus of the contacting solids, V\ and v% are the Poisson’s ratio of the
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( 1 1 Vcontacting solids, R is the combined radius given by R = -----1- —
1*1 *2 ;

R\ and R2 are the radius of the contacting solids.

Stress distributions for cylinders in contact under the surface of solids along z 

axis at x=0 are given as [49]:

(7x = - — {(a2 + 2z2)(a2 + z 2)"1/2 - 2 z} (2.20)
a

<Ty = - P 0a(a2 + z 2y U2 (2.21)

(Tz =v(<rx +<Ty) (2 .22)

T = - — {z -  z 2 (a2 + z2)~1/2} (2.23)

These stresses are all independent of Poisson’s ratio, except for the third 

principle stress (crz ). The variations of <j x , <jy and rwith depth below the surface given

by Equations 2.20, 2.21 and 2.23 are shown in Figure 2.10. Maximum shear stress ( t )  

occurs at x = 0.78 a.

The stresses and displacements produced by a concentrated point force P  acting 

normally to the surface of an elastic half-space (Figure 2.11) are given by Boussinesq 

and Cerruti [49], Stress components are given by the following equations:

cr = -------
2/r

( l - 2v) 1- *
(  2 2 ^ x —y + zy 3zx

(2.24)

° y I n
( l - 2v) l-i-

(  2 2 ^ y  - x + -
ZX 3 zy2

(2.25)
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Contact Zone
2a

(a) (b)

Figure 2.9: Contact between cylindrical surfaces: (a) Area of contact in Hertz theory,

(b) Maximum contact pressure and axes.

0.5 x/a

0.5

1.0

1.5

2.0

Figure 2.10: Hertz theory (a) Subsurface stresses along the axis of symmetry, (b)

Contours of maximum shear stress [49],

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.11: Geometry of the single point contact problem by Boussinesq and Cerruti

[49].
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cr =  —
I P  j r  

2k  p 5
(2.26)

Txy 2k

( l - 2v ) r  \
1- i

v A y

r  xy^ xyz I 3 xyz
(2.27)

=  —

3P x r  

2;r p 5
(2.28)

2k  p 5
(2.29)

where r2 = j^+y2, v is the Poisson’s ratio and p?= x2+yl+z2. Alternatively, the stress 

components may be given by using symmetry in polar coordinates [49]:

p f (  1 > 1 z 3 z r21
(7r ------

2k
( l - 2v) 2 2 \ r  p.r ) - A .

(2.30)

<re = - — (\ -2v)
IK 2 2 3r  p.r p

(2.31)

c r =  —
2k  p 5

(2.32)

=  —

3P_r̂ _ 

2k  p 5
(2.33)

Strains can be derived from the stresses, and the integration of strain equations 

provides the displacements. On the surface of the solid (z=0), displacements are given 

by the following equations, and the displacement in the z direction is also shown in 

Figure 2.11.
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(1 -2  v ) P  
4 nG r

(2.34)

2nG r
(2.35)

Hamilton and Goodman [50] derived equations for the stress field created by a 

circular sliding contact. They defined a circular contact region carrying a hemispherical 

Hertzian normal pressure, and a proportional distributed shear traction. Shear traction or 

tangential traction was calculated from Hertzian normal pressure by the following 

equation:

where P(x) is the normal pressure distribution, Q(x) is shear traction distribution and / /  is 

the coefficient of friction (COF). Superposition of normal and shearing distributions on 

the circular contact region created the sliding contact geometry as shown in Figure 2.12. 

The equations of stresses are given by:

On the surface inside the zone of contact;

Q(x) = juP(x) (2.36)

<?, = ( t ^ 5-)[2i« 0 + ( l -2 v ) (G „ r -2 - 2 x 2r^ G „  + x 2r 2K 0)]
2m

(2.37)

a, = (^r)[2«o + (1 - 2vXG„r-2 -2A _40„ + A -2*.)] 
2m

(2.38)

= ( t A - ) I ( 1 - > ) ( w ‘ ! * o - 2 x y r - 'G a)} 
2m

(2.39)

Outside the zone of contact;
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, 3 P  
a ’  = {^

xy
3 P  (— —) 

2 m }

— a3 (1 -  2v)(2y2r~4 —r~2)

^ a 3( l-2 v ) (x y r  4)

(2.41)

(2.42)

where

Go =
(a1 - r 2) 3'2 - a3

K 0 = ~(a2 —r 2)112 

r  = (x2 + y 2)m

3 ^ , 1/3a  =  ( r )
4 E

R : radius of the sphere,

E : combined elastic modulus calculated by E = 1 - v 2 , l - v 22 V l

(2.43)

(2.44)

(2.45)

(2.46)

Figures 2.13 to 2.15 present the distribution of von Mises stress— normalized by 

maximum contact pressure (P0is defined by Equation 2.17)— predicted by Hamilton and 

Goodman s stress field equations on plane y  = 0 beneath circular contact. For frictionless 

conditions ( f i=  0.0J, Figure 2.13 shows that the region of maximum yield occurs on the 

centerline a distance of 0.5a below the surface. Figures 2.14 and 2.15 show the effect of 

friction (// = 0.25 and 0.5). The maximum von Mises stress moves toward the surface 

and becomes more intense, while a second region of high von Mises stress develops 

simultaneously in the surface at x = -1.0a. The point of maximum von Mises stress 

changes from below the surface to a position on the surface at an approximate 

coefficient of friction of 0.27.
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z

Sliding direction

—- —  ---- - l a  —— —̂ *

Figure 2.12: Schematic view of sliding contact from Hamilton and Goodman [50].

Figure 2.13: Lines of constant von Mises stress normalized by maximum contact

pressure (P0) on plane y  = 0 beneath circular contact [50].
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Figure 2.14: Lines of constant von Mises stress normalized by maximum contact

pressure (Po) on plane y = 0 beneath circular contact, jli = 0.25 [50].
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Figure 2.15: Lines of constant von Mises stress normalized by maximum contact

pressure (Po) on plane y  = 0 beneath circular contact, ju = 0.50 [50].
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Figures 2.16 to 2.18 present the distribution of the von Mises stress for the 

cylinders in line contact, assuming a state of plane strain. The region of maximum von 

Mises stress moves toward the surface in both cases as the friction is increased, but 

less rapidly in the case of a circular contact.

Johnson [49] calculated the stresses produced by the sliding of a curved profile 

over a flat surface (Figure 2.19). He followed a similar approach to Hamilton and 

Goodman to define tangential traction at the surface. Pressure distribution of a normal 

load P  was given by the Hertz formulation:

Then, assuming Amonton’s law of friction (Equation 2.36) the tangential traction 

is given as follows:

The stresses in the contact surface due to both pressure and frictional tractions 

are calculated as:

p w = - ( a 2 - x 2r
m

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

^ = - ^ o d - 4 ) i/2a
(2.52)
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Figure 2.16: Lines of constant von Mises stress normalized by maximum contact

pressure (Po) beneath contact between normally loaded cylinders [50].
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Figure 2.17: Lines of constant von Mises stress normalized by maximum contact

pressure (Po) beneath contact between cylinders, j i  = 0.25 [50].

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



z

0 * 5

U,

oso.

10 ■ffM'

.(MO-

10

Figure 2.18: Lines of constant von Mises stress normalized by maximum contact

pressure (Po) beneath contact between cylinders, ju=  0.50 [50].

Fixed
slider

Figure 2.19: Sliding contact by Johnson [49] P  is the normal load and Q is the

tangential traction.
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The principal shear stress in the plane of the deformation is given by:

(2.53)

where

(2.54)

Contours of T\ due to combined normal pressure and tangential traction for 

p = 0.2 are illustrated in Figure 2.20.

Merwin and Johnson [51] developed an approximate analytical and numerical 

method to calculate the state of stress for the rolling contact of an elastic-perfectly plastic 

material. This method was modified for sliding contacts by Jahanmir and Suh [13]. 

Figure 2.21 shows the model of the contact between a stationary rigid asperity and a 

sliding elastic-perfectly plastic plane [32]. The stress distribution at the asperity contact 

was assumed to be elliptic over the contact area {po), and the tangential traction (qo) was 

calculated by Equation 2.36. The stepwise analytical and numerical solution was 

obtained by using FORTRAN programming language. Details of the step-by-step 

solution procedure can be found in [13, 32 and 51], The result for the applied stress po = 

4k and different tangential stresses— ranging from q0 = 0 to qo = 4k—  is given in 

Figure 2.22 where k is the yield strength in shear. Figure 2.22 implies that the size of the 

plastic region increases with an increasing coefficient of friction. For coefficients of 

friction smaller than a critical value (0.25), the plastic region is below the surface 

whereas at larger coefficients of friction, the plastic region extends to the surface.
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Sliding
direction

Figure 2.20: Contours of the principal shear stress beneath a sliding contact (p = 0.2)

[49].
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(perfectly plastic)

z

Figure 2.21: Model of a contact between a stationary rigid asperity and a sliding

elastic-perfectly plastic plane (U: sliding velocity) [32],

1.03.0-4.0 2,0 - 1.0
M = 0,25

0.1250.5
0.75

1.0

2,0

Figure 2.22: Steady state plastic deformation regions in an elastic-perfectly plastic

material under a sliding contact, for a maximum applied normal stress 

po = 4&and different coefficients of friction [32].
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2.2.2. FINITE ELEMENT ANALYSES APPLIED TO SLIDING CONTACT 

PROBLEMS

The finite element analysis method is a well-known technique for investigating 

the deformation behaviour of materials, as well as a versatile tool for computing stress 

and strain distributions. As a result, the finite element techniques are frequently applied 

to contact problems involving wear. The objective of this section is to review published 

literature on the finite element analysis of sliding contact wear.

One of the early attempts to analyze wear processes using the finite element 

method was conducted by Ohmae and Tsukizoe [52], They studied the wear of a pure 

aluminum pin on a pure copper plate in a two-dimensional, elastic-plastic problem where 

a normal load of 9.8x1 O'2 N was applied to the pin. There is not enough information in the 

published paper about the material model, or a definition of the sliding action. They 

observed the origination of a failure zone at the rear portion of the sliding surface, which 

extends parallel to the sliding direction.

Sin and Suh [53] used the finite element method to investigate subsurface crack 

propagation prompted by surface traction in sliding wear. They used the ADINA finite 

element program. The finite element mesh used around the crack tip is shown in Figure 

2.23. A Hertzian pressure distribution was applied to the top of a half-space, and surface 

traction was defined by a coefficient of friction (COF) of 0.25. The surface studied was 

defined as an elastic-perfectly plastic material. Although the computational costs and the 

finite element code limited their study, the numerical results indicated that the relative 

displacements of crack tips vary with the magnitude of the moving load, and are a 

function of the geometric location of cracks. Specifically, the crack closer to the surface 

was found to have larger displacements. It was concluded that cracks near the surface 

should propagate faster than those away from the surface. According to their 

experimental observations, cracks were present at a finite distance below the surface 

because of high compressive stresses developed near the surface.

Bhargava et al. [54] studied a plane strain elastic-perfectly plastic finite element 

model of rolling contact. The rolling contact was simulated by translating a semi-elliptical 

pressure distribution. They assumed the frictionless contact of a rigid cylinder with a 

steel half-space. The finite element software ABAQUS was used, with 0.2 mm smallest 

mesh dimension. The results were tested by comparing the von Mises stresses 

predicted by the finite element model with the predictions of the Hertz Theory (Figure

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.24). From the deformed mesh, forward flow near the contact surface and backward 

flow under the surface was reported. They concluded that the pressure distribution and 

contact width for the simulation of rolling contact were similar to Hertzian predictions. 

More recent studies have proved that an elliptical pressure distribution is only valid for 

elastic contact, and it changes with plasticity to a more uniform distribution over the 

contact length [55-57],

Bhargava et al. [58] also analyzed repeated contacts using the finite element 

model presented above. Contact width and maximum pressure were calculated for a 

rigid cylinder with a 50 mm radius on an elastic steel half-space, and multiple translation 

of the semi-elliptical pressure distribution was used to simulate rolling contacts. Up to 4 

contact cycles were studied. The results indicated that with repeated rolling contact, a 

steady state is attained within the first two cycles— provided the flow stress did not 

change.

An updated Lagrangian formulation was used to solve a large plastic deformation 

problem in plane strain by Ohmae [59], A 99.999 % purity Cu pin (30 mm length and 

6 mm diameter) with a hemispherical tip (10.5 mm diameter) was loaded with 4.9 N and 

6.37 N normal loads and slid over a 99.999 % purity Cu disk (45 mm diameter). 

Triangular elements with a 0.5 pm minimum size were used in the model. Information 

about the finite element model, material model, sliding conditions and whole geometry 

were addressed poorly in the manuscript. The generation of a large tensile stress at the 

rear portion of the slider with frictional contact was reported. The researcher concluded 

that large plastic deformation resulted in void nucleation and crack propagation, which 

might act as origins of fracture during friction processes.

One the first credible studies of the finite element analysis of sliding contact was 

preformed by Komvopoulos et al. [60]. They conducted lubricated and dry sliding 

experiments on titanium and steel surfaces, with and without TiN sputtered coatings of 

various thicknesses. The significance of layer thickness, interfacial friction, magnitudes 

of normal and tangential surface tractions and the mechanical properties of the layers 

(e.g. elastic modulus and hardness) were examined by experimental evidence and 

analytical results. After experimental studies, the finite element software ABAQUS was 

used to simulate the plane strain sliding contact of a rigid cylinder (28.1 pm radius) and 

an elastic layered half-space. Sliding was simulated by imposing 0.5 pm upward
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Figure 2.23:

Figure 2.24:

Crack

Finite element mesh around a crack tip by Sin and Suh [53].

Comparison of contours of von Mises stress values normalized by P0; 

sharp lines: finite element analysis, smooth lines: theoretical values [54],
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displacements and 0.5 pm horizontal displacements of the half-space. The finite element 

mesh contained 326 quadrilateral, 8-node isoperimetric elements with minimal 

dimensions of 1x0.5 pm2 and 1148 nodes. A 3x3 integration scheme was used for the 

elements, and three different coefficients of friction (0.0, 0.1 and 0.5) were used in the 

investigation. They revealed that yielding initiates below the surface with non-layered 

elastic half-space, and von Mises equivalent stress in the substrate is greatly reduced if 

a layer is used. Figure 2.25 shows the von Mises stress contours predicted by the finite 

element model after the penetration and sliding of a half-space surface and a layered 

surface for two different friction values.

King and O’Sullivan [61] investigated the sliding line contact of a single-layer 

elastic half-space. They developed a finite element code and established integral 

equations based on displacement constraints at the contact interface, and at the layer- 

substrate interface—which was assumed to be perfectly bonded. Normal contact 

simulations were assessed against the Hertz theory, while sliding contact simulations 

were compared to the exact solution presented by Hamilton and Goodman [50]. 

Changes in von Mises stress, shear stress, tensile stress (q^) with friction and different 

elastic modulus ratio of layers were discussed. They showed that the size of the contact 

zone and the pressure under the centre of the indenter was quite different from the 

Hertzian case when the elastic moduli of the layers differ. Figure 2.26 presents the 

change of pressure profiles under the indenter for a layered medium with the elastic 

modulus ratio of layers.

Tian and Saka [62] conducted a two-dimensional finite element stress and strain 

analysis of the sliding contact of a two layer bilinear elastic-plastic work hardening (i.e. 

the plastic modulus Ep is calculated by multiplication of elastic modulus E  by a constant 

a) half-space for various friction coefficients between 0.0 and 0.5. A rigid cylinder with a 

radius of 0.75 mm was pressed into the half-space of 200X200 pm2 with normal loads of 

5 N and 10 N. The finite element software ABAQUS was used, with 630 quadrilateral 

eight-node isoperimetric elements and 2023 nodes. The first two rows of the mesh were 

assigned to the gold top layer (1.25 pm), and the next two rows were assigned to the 

nickel interlayer (2.5 pm). The substrate was defined as a copper alloy. Figure 2.27 

shows the geometry of the problem studied by the authors. It was assumed that the 

normal contact pressure distribution was independent of the tangential loading, and 

hence the pressure distribution of normal indentation was used for the tangential traction
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determination. Tangential traction was calculated by multiplying normal surface loads 

and the friction coefficient along the contact line. Perfect bonding was assumed at the 

interface between layers. The results of the elastic sliding of a homogeneous half-space 

was compared with Hamilton and Goodman’s [50] analytical solutions. The authors 

found that when the friction coefficient was small (less than 0.3), yielding initiated in the 

substrate region near the leading edge of the contact— provided that the normal load 

was large enough. However, when the friction coefficient was large (greater than 0.3), 

yielding initiated on the surface at the trailing edge of the contact. They showed that 

surface deformation, the location of initial yield and stresses and strains along the 

interface between layers strongly depended on the friction coefficient. In addition, a 

small bulge formation was observed at the leading edge of the contact when the friction 

coefficient was large.

The effects of roughness and sliding friction on contact stresses were 

investigated by Bailey and Sayles [63], They developed a numerical normal contact 

model where the dry elastic contact of a smooth, cylindrical body was studied against 

digitized topographic data recorded by a stylus-measuring instrument. In this analysis, 

the imposition of tangential traction was assumed to have no effect on the normal 

pressure. To assess the accuracy of the subsurface stress model, a series of test cases 

using smooth body Hertzian pressure distributions were computed and compared with 

the Hertz Theory solutions. Figure 2.28 shows the distribution of subsurface principal 

shear stress for the elastic contact of surfaces. It reveals that for a range of real rough 

engineering surfaces, the maximum principle shear stress occurs very close to the 

surface, even when frictionless conditions are considered.

Tian and Saka [64] studied the growth of an interface crack during sliding contact 

in an elastic-bilinear plastic Au/Ni/Cu multilayer half-space structure used in electrical 

contacts in a plane strain finite element model. The effect of friction— both on the surface 

and between crack faces—was investigated. The finite element model by the same 

authors— previously presented in this review [62]—was used in this analysis, and a 

crack was added to the model by not connecting the elemental nodes along the crack 

(Figure 2.29). 1200 quadrilateral eight-node isoperimetric elements and 4423 nodes 

were used in the model. The crack length (2c) was specified as 6 pm for the simulations. 

The analysis revealed that the size of the plastic zone around the crack tips was 

comparable to the crack length and coating thickness. Plastic deformation at the crack
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tips expanded primarily in two directions, as predicted by a slip line field for a closed 

interface crack. The results indicated that the surface sliding friction tended to increase 

the plastic zone size and enhance the relative displacement of the crack faces in the 

direction of the friction force. The level of friction between the crack faces, in contrast, 

considerably reduced the size of the plastic zone.

Djabella and Arnell [65] investigated the stress field created by a combined 

normal pressure and tangential traction in a coating/substrate system consisting of a 

high elastic modulus thin coating on a relatively low elastic modulus substrate. A 

Hertzian pressure distribution was first applied, then the equivalent normal load at each 

node of the loaded area was multiplied by the COF to obtain the corresponding 

tangential traction. Three values of COF— 0.15, 0.3 and 0.5—were considered. The 

PAFEC finite element package was used with 8 node isoperimetric elements for the 

numerical calculations. The results of a finite element analysis corresponding to an 

uncoated substrate were compared with a corresponding analytical solution by Hamilton 

and Goodman [50], It has been shown that both direct and shear stresses are 

considerably dependent on the system elastic modulus ratio and the coefficient of 

friction. Moreover, this analysis revealed that both tensile and compressive stresses—  

which may lead, respectively, to tensile fracture and buckling—and the shear stress—  

which can be responsible for delamination at the interface—vary, in a rather complicated 

fashion, as a function of the coating thickness. The results indicated that a relatively thin 

layer is preferred to avoid brittle fracture at the surface of the coating, whereas a 

relatively thick layer reduces the risk of delamination at the interface.

Djabella and Arnell [66] used the finite element model discussed above to 

investigate the two-dimensional analysis of elastic stresses in double-layer systems. 

They showed that for double-layer coatings with a decreasing elastic modulus from the 

surface to the bulk, the surface maximum tensile stress at the trailing edge of the contact 

zone increased with friction and decreased with the total thickness of the double-layer. In 

addition, at the coating/substrate interface, the effect of the friction coefficient becomes 

negligible for thick coatings. Moreover, at the surface, the maximum shear stress—which 

also increases with friction— is higher than that of a homogeneous material for the same 

friction coefficient. Conversely, in the substrate, the maximum shear stress is lower than 

that of a homogeneous material for the same loading condition.
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Figure 2.25: von Mises stress contours after penetration and sliding of a half-space

surface: (a) p=0.1, (b) p=0.5, von Mises stress contours after penetration 

and sliding of a layered surface for (x=0.1, E(layer)/E(substrate)= 4: 

(c) h/R= 0.0356 (d) h/R= 0.142 (Stresses are in GPa, h: height of layer, 

R: radius of cylinder, E: elastic modulus) [60].
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Figure 2.28: Distribution of contact pressure and subsurface principal shear stress for

simulated elastic contact of surfaces: (a) Contact geometry and surface 

pressure distribution, (b) Contour plot of principle shear stress distribution 

normalized by maximum contact pressure, (c) Effect of friction, p=0.1, on 

stress distribution shown in (b) (Due to the effect of rough engineering 

surface, the maximum principle shear stress is observed very close to the 

surface, even when frictionless conditions are considered) [63].
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Figure 2.29: Schematic diagram of the geometry of an interface crack by Tian and

Saka [64],
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Komvopoulos and Cho [67] analyzed subsurface cracking in a homogeneous 

half-space due to a moving asperity, using linear elastic fracture mechanics and finite 

element simulations. A rigid cylindrical asperity of radius 25 pm was assumed to indent 

and slide over a cracked half-space of 164X200 pm2. The asperity was first displaced 

toward the half-space by a total distance of 0.3 pm, and was subsequently translated 

parallel to the surface while it was constrained against vertical displacement. A 

horizontal crack (length 2c = 8pm, depth d = 4 and 8 pm) was modeled by the approach 

used by Tian and Saka [64], The finite element mesh consisted of 2762 isoperimetric 8 

node quadrilateral plane strain elements. The minimum element size around the crack 

was 1 pm. The finite element software ABAQUS was used in the simulations. 

Figure 2.30 shows the schematic representation of the geometry investigated. The 

simulations indicated that in-plane crack growth occurs due to shear mechanisms, 

whereas there is also the possibility of out-of-plane crack growth due to tensile 

mechanisms. The effects of crack length-to-depth ratio and friction (at the contact region 

and at the crack interface) on the shear and tensile mode crack growth directions were 

found to be insignificant.

Podra and Andersson [68] simulated sliding wear with the finite element software 

package ANSYS. They assumed that the wear rate obeyed Archard’s law (Equation 2.1) 

and developed special subroutines to calculate linear wear by using the following 

equation:

where Fis the volume wear (m3), 5 is the sliding distance (m), A is the contact area (m2), 

h is the wear depth (m), k is the dimensional wear coefficient (Pa-1) and P  is the normal 

contact pressure (Pa). The written subroutines used to calculate wear by using the 

following equation derived from Equation 2.55:

(2.55)
sA s

Ah = kPAs (2.56)
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An elastic steel pin (R = 5 mm) was tested on an elastic steel disk with the 

normal loads of 21 N and 50 N. The linear wear law presented in Equation 2.56 was 

used to calculate wear in sphere-on-plane simulations, and the results were compared to 

experimental ones. The wear simulation results deviated from the experimental results 

within the limits of ±40-60%, due to the model simplifications. It was concluded that 

these FEA wear simulation results should be evaluated to compare different design 

options, rather than be used to the absolute wear life.

A tool wear prediction algorithm has been implemented into the finite element 

software ABAQUS in order to predict tool wear evolution during blanking/punching 

processes by Hambli [69].

V = 7Fns (2.57)

where V is the volume of the material removed, y  is the wear coefficient, Fn is the 

normal load applied and s is the sliding distance. Equation 2.57 was used to calculate 

wear and the wear coefficient was taken as 1.3x1 O'4 corresponding to a hard tool steel. 

A damage model was also used to describe crack initiation and propagation. The 

distribution of the tool wear on the tool profile was obtained by finite element simulations 

and compared to industrial observations. The meshing of the model was carried out by 

means of 1500 quadrilateral four node axisymmetric elements. The wear profiles 

obtained by FEM calculations and experiments are compared in Figure 2.31. Finite 

element simulations indicated that the punch initiates cracks at the cutting edges of the 

tools, and the cracks propagate in the same direction of the punch penetration.

Molinari et al. [70] modeled dry sliding wear of metals within a Lagrangian 

element formulation capable of accounting for large plastic deformations and history 

dependent material behaviour. An adaptive meshing was used to eliminate the 

deformation induced element distortion— minimizing the numerical error associated with 

distorted elements. They assumed that the wear rate obeyed Archard’s law 

(Equation 2.1). The model was calibrated and validated against the experimental 

observations of Lancaster [71], where the wear of a 60-40 brass pin set against a 

rotating high-strength steel disk was studied. A square, cross-section brass pin was
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moved at a velocity ranging from 0.2 to 20 m/s along the length of the steel plate. The 

applied contact pressure was 1.82x105 Pa and the friction coefficient was assumed to be 

0.3. Pressure was calculated to be higher at the leading edge of the brass pin than the 

average contact pressure, which resulted in higher wear rates and mass losses.

In summary, most of the published literature regarding finite element analyses of 

sliding contact used plane strain conditions in the finite element model to analyze sliding 

contact. To test and validate finite element models, the Hertz Theory was used for the 

normal contact cases, and Hamilton and Goodman’s analytical solutions were used for 

the sliding contact cases. Sliding contact is generally achieved by the imposition of a 

Hertzian normal pressure distribution and a tangential traction, which is calculated from 

the Hertzian normal pressure distributions. The imposition of tangential traction is 

assumed to have no effect on the normal pressure [53, 54, 58, 62-66], This is true only 

when the two bodies are smooth, or have the same elastic constants [49]. In addition, 

the utilization of a predetermined pressure distribution is questionable and may lead to 

significant errors [55-57], The material models used are generally simple in nature 

(elastic, elastic-perfectly plastic). Material models that incorporate plastic deformation of 

the contacting materials observed during sliding wear need to be implemented into the 

finite element models. Wear prediction equations are used in order to predict wear rates 

by finite element calculations; however, deviation from experimental results is extensive 

because of assumed linear wear laws.

2.3. CONSTITUTIVE EQUATIONS FOR ALUMINUM ALLOYS

Constitutive models are the equations that define the changes in flow stress of a 

material depending on the deformation conditions. In a finite element model, constitutive 

equations are used to simulate the material behaviour, and the success of the simulation 

depends on the accuracy of the chosen mathematical model used to describe the 

deformation of the material. Therefore, this section reviews some of the constitutive 

equations used for FEM analysis.
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(b) A representative single-asperity and the contact related nomenclature 

[67],
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Classical engineering description of the small strain behaviour of metals 

assumes dependence of the flow stress on only strain [72]:

(2.58)

where <jf  is the equivalent or flow stress and e is the equivalent strain. Two parabolic 

equations of this type are the Hollomon [73] and Ludwik [74] equations:

where K„ is the work hardening coefficient, n is the work hardening exponent and cr0 is

the initial yield stress. Equations 2.59 and 2.60 have been used in many technological 

applications giving sufficient accuracy for many materials [72]. However, infinite flow 

stress and work hardening are predicted for infinite strain, in contradiction with the 

behaviour of metals at large strain. Unlike the maximum uniform strain attainable in a 

tensile test, the total equivalent strain in many practical processes— including cold 

working and forming operations— is higher than unity. Sevillano et al. [72] reviewed the 

stress-strain behaviour of many metals and alloys at large strains, and presented a 

comprehensive study of the flow curves obtained from cold working processes, 

compression and torsion tests. They pointed out that the typical flow curve of a face 

centred cubic (fee) metal or alloy reflects a gradually decreasing work hardening rate at 

large strains. For a 99.99 % pure Al sample, a saturation flow stress of 375 MPa was 

observed at the equivalent strain of 3.2. Similarly, ETP Cu and 99.99 % Ag samples 

reached saturation at the equivalent strains of 4.7 and 3.0, respectively. They reported 

that alloying increases the work hardening rate and delays saturation of the flow stress 

until larger strains are applied by comparing the flow curves of some a-brasses. A 5 % 

Zn brass reached saturation at the flow stress of 425 MPa and at the equivalent strain

(2.59)

a f = a 0 + K ne n (2.60)
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1.5, while a 28 % Zn brass work hardened up to the stress of 800 MPa at the same level 

of strain without reaching saturation.

Attempts have been made to describe the whole process of stress-strain 

behaviour in a constitutive relationship. Voce proposed the following equation for large 

strain flow curves [75]:

which can be given alternatively as:

where a s is the saturation stress (the stress at which the work hardening rate becomes 

zero) and ec is a material constant. Voce showed that Equation 2.62 is applicable for 

many materials at large strains. Table 2.1 lists <x0, <j s and ec values for eight copper-

based alloys obtained by compression tests. He also showed that the relationship in 

Equation 2.62 is valid for tension test up to necking. The values obtained from a tensile 

test for an annealed steel is also given in Table 2.1.

Understanding of the deformation behaviour of materials at large strains is 

important for tribological applications, and large plastic deformation is strain, strain rate 

{£ )  and temperature (1) dependent:

The next sections summarize current literature data about the effects of the hydrostatic 

pressure, strain rate and temperature on the mechanical behaviour of aluminum alloys.

(2.62)

a f  = f { e , £ j ) (2.63)
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Table 2.1: Flow stress-plastic strain curve constants for different materials

represented by Equation 2.57 [75].

Material (MPa) <fs (MPa) £c

Copper (99.96 % Cu) 13.8 271.7 0.14

Gilding Metal (89.8 % Cu, 10.1 % Zn) 38.6 324.1 0.13

Cupro_Nickel (79.7 % Cu, 19.8 % Ni) 75.8 390.3 0.12

70:30 Brass (70.0 % Cu, 30.0 % Zn) 75.8 486.8 0.22

64:36 Brass (63.5 % Cu, 36.4 % Zn) 68.9 510.2 0.25

Nickel Silver (62.9 % Cu, 18.5 % Ni, 18.5 % Zn) 75.8 537.8 0.19

Aluminium Bronze (94.7 % Cu, 5.1 % Al) 55.2 579.2 0.29

Phosphor Bronze (94.4 % Cu -  5.3 % Sn) 110.3 586.1 0.29

Steel (0.95 % C) 330.9 728.1 0.09
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2.3.1. THE EFFECT OF HYDROSTATIC PRESSURE ON THE MECHANICAL 

PROPERTIES

The effects of hydrostatic pressure on the mechanical properties of metals have 

been extensively studied for many years. The first extensive study was carried out by 

Bridgman on a wide range of materials [76, 77], He observed an increase in the ductility 

of a commercial aluminum rod under pressure. The aluminum rod was fractured at 

atmospheric pressure, at a natural strain of 1.74. True stress at the maximum tensile 

load was 131 MPa. Under a hydrostatic pressure of 2827 MPa the same material was 

stretched to a natural strain of 2.87, without fracture. The tensile strength under pressure 

was 434 MPa. Pugh and Green [78] performed tension tests under hydrostatic pressure 

up to 827 MPa. To carry out tensile tests under pressure, a tensile testing apparatus was 

assembled in a high-pressure container (Figure 2.32). Figure 2.33 shows the effect of 

pressure on the ductility of a commercial purity aluminum alloy taken from their study. 

True strain at fracture was 0.4 for ambient conditions, but reached 5.0 with the 

application of a pressure of 552 MPa. Similarly, for the same pressure conditions, a 

reduction of the area was increased from 35% to almost 100%. They concluded that 

hydrostatic pressure inhibited the formation and spreading of voids or cracks in the neck 

area of the tensile test specimens.

2.3.2. STRAIN RATE SENSITIVITY OF ALUMINUM ALLOYS

Aluminum alloys have low strain rate sensitivity when compared with steel. 

Hauser [79] performed dynamic uniaxial compressive tests on a work hardened 

aluminum at various strain rates. Figure 2.34 presents the results of these tests, where 

low strain rate dependency can be observed for low strains. However, work hardened 

aluminum alloys show strain rate dependency for high strain values. Tsao and 

Campbell’s [80] dynamic shear test results are presented in Figure 2.35. Their 

experimental results showed some strain rate sensitivity for commercially pure 

aluminum. Ng et al. [81] examined the dynamic behaviour of thin-walled, tubular 

specimens of aluminum 6061-T6 and found important strain rate effects. Figure 2.36 

presents static and dynamic yield stresses for biaxial stress states in a cylindrical tube 

where the dynamic curve was evaluated for a strain rate of 40 s'1. Sevillano et al. [72] 

reported that at increasing strain rates, work hardening rate of 99.99 % Al increased and
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the saturation stress was delayed to larger strains at constant temperature plane strain 

compression tests.

Cowper and Symonds [82] suggested the following constitutive equation for 

strain rate sensitivity of materials:

<7 =  <7n 1 + (2.64)

where a  is the dynamic flow stress at a plastic strain rate o f f , Oq is the static flow 

stress, D  and q are constants for a particular material (determined as 6500 s"1 and 4 

respectively for aluminum alloys [83, 84]).

Johnson and Cook [85] used torsion tests over a wide range of strain rates (quasi 

static to 400 s"1) and dynamic Hopkinson bar tensile tests over a range of temperatures 

to define a constitutive relationship for several materials. They defined the following 

relationship for the strain rate sensitivity:

<7 =  <70 (1 + C ln f * )  (2.65)

where a  is the dynamic flow stress at a dimensionless plastic strain rate o ff*  defined

as f *  = ( f / f 0) ,  C is a material constant and fo  is the reference strain rate set to

1.0 s'1. Figure 2.37 shows the stress-strain curves for 2024-T351 and 7039 aluminum 

alloys obtained by torsion tests and dynamic Hopkinson bar tensile tests [85, 86].
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Figure 2.34: Dynamic uniaxial compressive tests on work hardened aluminum at

various constant strains (o: e=0.01, □: e=0.02 A : e=0.04, V : e=0.08, 

+  : e=0.16) [79],
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Figure 2.35: Dynamic shear stress-shear strain curves for commercially pure

aluminum at various strain rates (the nominal shear strain rates are given

by the following symbols:+: 7=2800 s'1; A: 7=2200 s'1; □: 7=1600 s'1; 

• :  7=1450 s'1; x: 7=800 s'1; V : 7=600 s'1; o: 7 =0.002 s'1, ) [80],
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□: static yield point) [81].
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Figure 2.37: Stress-strain relationships obtained by torsion tests and dynamic

Hopkinson bar tensile tests for (a) 2024-T351 Aluminum, (b) 7039 

Aluminum [85, 86],
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Many ductile metals display an enormous increase in yield stress for strain rates 

in excess of 103 s"1 [87, 88]. Strain rates of this magnitude are generally considered to 

be beyond the capability of the split-Hopkinson pressure bar tests. Flyer plate testing 

and Taylor impact testing are the alternatives. Rule and Jones [88] performed Taylor 

impact tests with four different materials, including a 7075-T6 aluminum alloy. They 

proposed a revised Johnson-Cook strength model where 1 . 6 x 1 0 3 t o 1 . 9 x 1 0 3 MPa 

flow stress was reported for the 7075-T6 aluminum alloy for strain rates between 

5 x 104s'1 and 1 x 106 s'1. Laser-driven shock waves were also used to measure the 

spall strength of aluminum alloys at strain rates up to 2 x 107 s'1 [89, 90]. Figure 2.38 

shows the spall strengths of 6061-T6 Al alloy and 99.0 % pure aluminum. A spall 

strength of 3.0 ± 0.2 GPa for pure aluminum is observed at a strain rate of (1.8 ± 0.9) x 

107 s'1.

2.3.3. THERMAL SOFTENING OF ALUMINUM ALLOYS

Johnson and Cook [85] also defined a relationship for the thermal softening of 

materials by using dynamic Hopkinson bar tensile tests over a range of temperatures.

^ ro o m 1 -
T - T

\m

T - T\  melt room J

(2 .66)

where oT is the flow stress at temperature T  (K), oroom is the flow stress at room 

temperature, Troom is the room temperature (K), Tmeit is the melting temperature (K) and 

m is the Johnson-Cook thermal material parameter (determined as 1.0 for 2024-T351 

and 7039 aluminum alloys [85]).

Change of the flow stress for some aluminum alloys with temperature is 

presented in Figure 2.39 [91, 92]. The thermal material parameter (m) in Equation 2.66 

can be calculated for different temperatures by using the flow stress data at room 

temperature as a base in Figure 2.39. The thermal material parameter (m) can be 

calculated by using the following mathematical operations:
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(<JT O'room )  -  1
room (2.67)

T - T
\  melt rroom J

T - T\ melt r
- l -  (<j , —<j  )V T room J (2 .68)

room J

mlog
T - T

V  melt r
= \ o g [ \ - { c r T - ( J room)\ (2.69)

room J

 log[l — (o'? — O'room ) ]m - -------------------7------------------------------------------- —

room

room J

(2.70)

Equation 2.70 was used to calculate the thermal material parameter m for the 

alloys whose flow stress is given as a function of temperature in Figure 2.39, and Figure 

2.40 was obtained. Figure 2.40 indicates that the thermal material parameter is not 

constant, but changes with temperature. However, an extrapolation of the curve for the 

A356 Al alloy shows that m is between 0.85-1.00 up to 150 °C.

When Johnson and Cook defined the constitutive relationships for the strain rate 

dependency and thermal softening effects, they assumed that the strain rate and thermal 

effects were not coupled. However, strain rate sensitivity is also dependent on the 

temperature. Blaz and Evangelista [93] studied the strain rate sensitivity of pure 

aluminum (99.99 % Al) and Al-Mg-Si alloy (Si 0.56 %, Mg 0.53 %, rest is Al) by 

performing hot compression tests. They found that the strain rate sensitivity depends on 

the temperature and the strain for the materials used in the experiments. Figure 2.41 

shows the strain and temperature dependency of the strain rate sensitivity presented in 

their study, where the strain rate sensitivity (nR) was calculated as follows:

d  log <7 

d lo g f
(2.71)
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where rr/s the flow stress and £ is the plastic strain rate. Similarly, Stuwe and Les [94] 

showed that the strain rate sensitivity of 99.99 % purity aluminum is strain dependent, 

and strain rate sensitivity measurements depend quite strongly on the interval of strain 

rates chosen.

Zerilli and Armstrong [95] took the experimental data of Johnson and Cook and 

derived a new constitutive relation based on the dislocation mechanics. They obtained 

two different constitutive equations for face centred cubic (fee) and body centred cubic 

(bcc) metals. The plastic flow stress (d) for fee materials is given by:

<T = A.<j 'g + c2£1/2 exp(~c3T + c4T In £) + kl - 1 / 2 (2.72)

For the bcc case;

<7 = A<jp + Cj exp(-c3r  + c4T \ne) + c5£ " + kl (2.73)

where AcrG is a stress constant, e is the plastic strain, £ is the strain rate, I is the 

average grain diameter, k  is the microstructural stress intensity, n is the strain hardening 

exponent and c1,c2,ci ,c4,c5 are material constants.

In this chapter, published literature on the sliding wear of ductile materials and 

the experimentally observed wear mechanisms is summarized. Specifically, the 

deformation and damage accumulation processes observed during the sliding wear of 

aluminum alloys is discussed and the missing elements in the current scientific and 

engineering knowledge are pointed. The numerical models developed in this study were 

built on guidance obtained from this critical literature review. In the next chapter, the 

objectives of this study are presented in the view of this literature summary.
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CHAPTER 3

SCOPE OF THE PRESENT RESEARCH

Subsurface deformation mechanics must be understood in order to achieve both 

wear control and prevention. While there is data available on the sliding wear behaviour 

of Al-Si alloys, further investigation is necessary to fully understand subsurface 

deformation and damage accumulation events, and their relationship to subsurface void 

growth. The delamination of subsurface layers--a process that produces plate-like wear 

debris--is initiated when the subsurface plastic deformation that occurs during sliding 

causes the nucleation of voids and cracks. The basic need in modeling the subsurface 

delamination processes is to define the depth at which cracks initiate and propagate to 

form plate-like wear debris. Ductile void growth theories may be used to study how a 

void grows under an imposed stress and strain field.

Ductile void growth theories provide insight into the damage processes observed 

in ductile materials during sliding wear. One element to consider is the competition 

between the hydrostatic pressure, which suppresses void growth, and the flow stress, 

which enhances it. In order to quantify the delamination processes, distributions of the 

subsurface stresses and strains must be determined. The subsurface deformation state, 

however, is difficult to determine experimentally. Analytical and theoretical solutions for 

the contact stress fields have limited applications in this area, due to the assumptions 

made to reach a solution. Numerical methods, on the other hand-like the finite element 

method-are capable of surmounting the shortcomings of the theoretical solutions. The 

literature available on the topic of finite element analyses of sliding contact has revealed 

that most of the published studies suffer from a number of problems, including the 

questionable determination of normal and tangential load distributions during sliding. 

Realistic elastic-plastic material models, which reflect the deformation processes 

observed during sliding wear, are another issue that must be addressed in the numerical 

investigations. Factors such as strain rate and deformation induced heating have to be 

considered in a model that aims to study sliding wear, because those factors can change 

the mechanical properties of the sliding surfaces. An analysis that couples thermal and 

structural approaches, including strain rate and thermal effects on the subsurface 

deformation, has not yet been provided.
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Therefore, the present study was carried out to investigate the subsurface 

deformation and damage accumulation events observed in the dry sliding wear of 

aluminum alloys. Although a particular aluminum alloy was chosen for this work, the 

general approach used for damage accumulation processes are applicable to the sliding 

wear of similar ductile materials. The explicit finite element program LS-DYNA was 

utilized in this numerically based investigation to model the deformation of an aluminum 

alloy (used in automotive applications). The analysis was carried out in several steps, 

beginning with the normal contact investigations. To investigate the multiple sliding 

contacts, cylindrical asperities were loaded and prescribed a constant sliding velocity 

over a three dimensional 356 Al structure. The finite element models were validated by 

comparing the numerical results with those of the normal and sliding contact 

experiments. The main objectives of this study were:

• To investigate the accumulation of the subsurface stresses and strains 

during the sliding contacts of aluminum alloys,

• To estimate the damage gradient below the contacting surfaces,

• To determine the distribution of the hydrostatic pressure, the strain rate 

and their effects on the formation of a damage gradient,

• To calculate temperature increase in sliding surfaces and its effects on 

the subsurface damage,

• To study the factors influencing the damage gradient (sliding velocity, 

normal load, friction and second phase particles).

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4

FINITE ELEMENT PROCEDURES

This chapter provides the details of the numerical models used to study the 

contact between a 356 Al alloy surface and an asperity. Finite element analysis basics 

are reviewed in Appendix A using a point of view that covers all the numerical 

approaches used in this study. Appendix A presents information about time integration 

methods, element formulations, contact algorithms and energy analysis.

4.1. ANALYSIS OF NORMAL CONTACT BETWEEN SOLIDS

This section presents the finite element models developed for normal contact 

analysis between a cylindrical asperity and an aluminum half-space surface. A sample 

finite element input file is summarized in Appendix B. Explicit dynamic and implicit static 

time integration schemes of the finite element (FE) software— LS-DYNA version 970 

release 3858 from Livermore Software Technology Corporation (LSTC) [96]—were used 

in the normal contact simulations.

4.1.1. FE MODEL GEOMETRY

A half-space of 30 p,m width and 100 jim length was defined and subjected to 

normal contact by a semi-cylindrical asperity with a radius of 10 pm. The third dimension 

of the half-space and the asperity was assumed to be infinitely long, and therefore a 

plane strain condition exists. The geometries of the considered finite element models are 

shown in Figure 4.1 (Models A and B) and Figure 4.2 (Models C to F).

4.1.2. ELEMENT FORMULATION AND PROPERTIES

The numerical models utilized 3D Lagrangian solid elements of plane strain 

formulation with single-point Gaussian quadrature were used for the models utilizing the 

explicit integration scheme. The simulations employing the implicit solution algorithm
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used four-point Gaussian quadrature. The largest element aspect ratio for all the models 

was 2.7; however, the aspect ratio of elements in the vicinity of the critical contact region 

was approximately one. The minimum element size utilized at the vicinity of the contact 

region was 0.1 pm for the finest discretized model, and 0.8 pm for the coarsest 

discretized model.

Mesh convergence was investigated for both explicit and implicit time integration 

schemes, then assessed by comparing the results of different mesh density models with 

each other and with the predictions of Hertz theory—the comparison details are 

presented in Chapter 6. Table 4.1 provides the characteristics for the finite element 

mesh, and geometry for all six models examined (Models A to F). The most highly 

discretizing model contained 8022 elements and 8245 nodes. To decrease processing 

time, the smallest sized elements were placed at a critical region of the half-space, while 

larger sized elements were placed further from the contact region (Figures 4.1 and 4.2).

In trial simulations, the high-stressed region of the subsurface was localized near 

the contact zone, and a reduction in the subsurface width to half the original dimension 

of 100 pm did not alter the numerical simulation findings (Model F). A comparison of the 

maximum shear stress, maximum hydrostatic pressure and principal stresses illustrated 

only a minor variation of less than 0.5 % for a reduction in the subsurface width. The 

decrease in subsurface width reduced computational time by approximately 50 %.

4.1.3. MATERIAL MODEL

The asperity was defined as an elastic deformable material, and an elastic 

material model of LS-DYNA [96] was used to characterize the material behaviour of the 

asperity. The Young’s modulus, Poisson’s ratio and mass density values assigned to the 

asperity were 400 GPa, 0.3 and 7800 kg/m3, respectively. The same material model was 

utilized for the 356 Al half-space under assumed elastic conditions. The Young’s 

Modulus, Poisson’s ratio and mass density of the 356 Al half-space were specified as 

72.4 GPa, 0.33 and 2669 kg/m3.
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4.1.4. LOADING AND BOUNDARY CONDITIONS

For the elastic indentation simulations, the asperity was loaded with a total force 

of 3.3 N per unit thickness in mm. The load was distributed equally on each node located 

at the top layer of the asperity. All nodes at the bottom of the half-space were 

constrained from motion (Figures 4.1 and 4.2). The load application curves for the 

explicit and the implicit time integration schemes are presented in Figure 4.3. For the 

simulations using the explicit dynamic approach, the load was linearly increased from 

zero to a maximum value of 3.3 N/mm in 3x1 O'4 s and then held constant for the 

remaining time (i.e. up to 1x1 O'3 s). The ramping to maximum load at times 2x10"4 s and 

5x10"4 s were investigated, and no difference in deformation response was observed. 

Thus, 3x1 O'4 s was selected as the duration for the load ramping time. For the 

simulations employing the implicit static time integration scheme, a step size of 0.01 was 

utilized and the total size of the analysis was 1.0. The applied load was ramped to its 

maximum prescribed value of 3.3 N/mm at the 0.3 step, then held constant for the rest of 

the simulation. Displacement convergence tolerance and energy convergence tolerance 

were set at 0.01 and 0.5, respectively. These tolerance values are unitless quantities 

since displacement and energy of the system is checked at each step as percentage for 

convergence.

4.1.5. CONTACT ALGORITHM

A penalty type, two-dimensional, two-way contact algorithm was used to simulate 

contact between the asperity and the 356 Al half-space where the penetration of slave 

nodes into the master segment is checked and prohibited [96]. Static and dynamic 

coefficients of friction were set to zero to study frictionless conditions. Due to the 

excessive nodal penetrations observed in initial trial simulations, the default value of the 

penalty scale factor was increased— by a factor of eight—for numerical models 

employing the explicit solution scheme, and by four orders of magnitude for models 

utilizing the implicit solution scheme.
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Figure 4.1: General view of the normal contact finite element models, loading

(F: distributed normal load) and boundary conditions (restriction of the 

bottom nodes from the motion): (a) Model A and (b) Model B.
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Figure 4.2:

I < 50 fim   ;
I »

(b)

General view of the normal contact finite element models, loading 

(F: distributed normal load) and boundary conditions (restriction of the 

bottom nodes from the motion): (a) Models C, D, E and (b) Model F.
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Table 4.1: Comparison of the different meshed elastic normal contact models.

Min. Element Total Number Total Number Mass Scaling
Model*

Size (pm) of Elements of Nodes (Times)

Explicit Time Integration Scheme

Model A 0.83 4470 4648 40.60

Model B 0.42 8952 9186 18.10

Model C 0.21 7864 8128 6.04

Model D 0.21 7864 8128 3.60

Implicit Time Integration Scheme

Model E 0.21 7864 8128 -

Model F 0.10 8022 8245 -

* Models A, B, C, D, and E: half-space dimensions 30pm x 100pm 

Model F: half-space dimensions 30pm x 50pm
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Normal load application curve for the simulations using: (a) the explicit 

solution scheme and (b) the implicit solution scheme.
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4.1.6. HOURGLASS MODES

Hourglass mode deformation is resisted automatically in LS-DYNA by a viscous 

control, which is a very CPU efficient method. However, it may not be very well effective 

to minimize the hourglassing modes. In preliminary simulations, hourglass modes were 

observed in solutions utilizing the explicit time integration scheme. Flanagan-Belytschko 

stiffness form hourglass mode control [96] was applied to the half-space and the 

asperity. Since this hourglass control added further processing overhead, it was applied 

only to a critical upper portion of the half-space where the hourglass modes were 

observed. For the rest of the half-space, only the viscous form hourglass mode control 

was applied. This approach was successful to minimize the hourglass modes and details 

of the energy balance discussion for the normal contact simulations are given in 

Section 6.1.1. Four-point Gaussian quadrature was used for the simulations employing 

the implicit method, and thus no hourglass modes were present.

4.1.7. MASS SCALING

The use of a highly discretized mesh resulted in excessively long processing 

times for the simulations employing explicit time integration. A number of ways to 

simulate a quasi-static situation exist using the explicit finite element method. One of the 

techniques, called mass scaling, increases the time step by adding mass to an element. 

Effectively, the mass density of the model is increased and, as a result, the total 

computational time is decreased. Mass scaling was applied to the models that were 

simulated using the explicit approach, in an effort to decrease CPU time. Test 

simulations proved that mass scaling did not significantly affect the results, because the 

variations in asperity penetration depths and subsurface stresses were only 1 % and 

4 %, respectively for up to 20 times mass scaling when compared with the simulations 

conducted without mass scaling.

4.2. ANALYSIS OF SLIDING CONTACT BETWEEN SOLIDS

This section presents the details of sliding contact investigations between a 356 

Al alloy surface and a steel asperity. A sample finite element input file is presented in
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Appendix C. Due to some element distortion problems observed in trial simulations, the 

Lagrangian elements that were utilized in the elastic normal contact problem (see 

Section 4.1) could not be used to model the large plastic strains observed during the 

sliding wear of the aluminum alloys. Hence, an Eulerian FE model was used to account 

for the high deformation of the aluminum alloy, and the finite element geometry was 

modified accordingly. The details of the Eulerian explicit dynamic sliding contact models 

are presented in the following sections.

4.2.1. FE MODEL GEOMETRY

An asperity contact model was considered in the finite element model because 

contact between two solid surfaces occurs at asperities, and these asperities are 

responsible for supporting the normal loads and tractions between the surfaces. The 

finite element model used in the sliding contact simulations consisted of three main 

parts: the 356 Al, the asperities and the airmesh. Since the airmesh did not initially 

contain any material, its material was defined as void. The sliding contact was modeled 

by pressing a cylindrically shaped steel asperity with a 2.0mm diameter and 0.5mm 

thickness onto a 356 Al surface (2.9mm x 13.3mm x 0.5mm), then sliding the steel 

asperity over the Al surface with a constant sliding velocity. Several asperities were 

passed, one after the other, to investigate the cumulative effect of multiple asperity 

sliding contacts. When a steel asperity completed its sliding motion, the subsequent one 

was designed to begin moving on the surface. A schematic view of the numerical set-up 

is shown in Figure 4.4. In an effort to minimize CPU time requirements, a dimensional 

analysis was applied and the defined geometry of both the asperity, and the 356 Al 

surface was chosen carefully. Appendix G records the details of the dimensional 

analysis for sliding contact models. The dimensional analysis proved that the results of 

the presented finite element model are applicable to asperity contacts of different sizes 

(i.e. asperity diameter), provided that the applied force is scaled by the square of the 

geometric scaling factor.

The 356 Al alloys, the airmesh and the asperities were all modeled as hexagonal 

elements. In order to obtain stress and strain data below the surface, the results from 

some elements in the 356 Al alloy were specifically recorded in the numerical output. 

The row of elements at the centre of the 356 Al mesh were chosen for this purpose.
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4.2.2. ELEMENT FORMULATION AND PROPERTIES

The numerical model only utilized solid elements, and Lagrangian solid elements 

were used for the asperities. An Eulerian solid element formulation with a 1-point 

integration with single material and void was chosen for the aluminum alloy. Because 

material is not constrained to the original mesh in the Eulerian formulation, a void air 

mesh was constructed to allow the 356 Al material to flow out of the mesh and deform 

throughout the simulation. The air mesh was modeled large enough to provide space 

around the 356 Al alloy for any possible material flow. The mesh was carefully 

discretized in the vicinity of the critical contact region with aspect ratios of approximately 

one. The minimum element size utilized at the vicinity of the contact region was 0.1mm, 

and the mesh generated is shown in Figure 4.5.

Each steel asperity was discretized with 1440 Lagrangian elements and 1908 

nodes. 11280 Eulerian elements and 14082 nodes were used in the discretization of the 

356 Al surface, and 11995 elements and 14546 nodes were used for the void air mesh. 

The Eulerian calculation control parameters were designed to perform an advection after 

every time cycle, using the second order Van Leer method.

4.2.3. MATERIAL MODEL

Tensile and compression test data are not well suited to represent the large 

plastic deformation characteristics experienced during sliding wear. Bulge tests simulate 

high stress-strain behaviour better than tensile tests for the metal forming processes, 

during which high strains occur [97-100]. Similarly, Raczy et al. [101] developed a finite 

element model for the orthogonal cutting of copper, where material data was obtained 

directly from cutting experiments. The material model used in the current finite element 

analysis of the sliding wear is based on the experimentally determined stress-strain 

curve of a 356 Al alloy. The stress-strain behaviour was obtained directly from an 

analysis of the deformation state of material layers located below the contact surface 

that was subjected to sliding wear [17].

Zhang and Alpas [17] performed dry sliding wear tests using a block-on-ring type 

wear machine, and tested a 356 Al alloy against a bearing steel. The plastic strains in 

the subsurface regions were determined by measuring the displacement of a 

metallographic marker that had been placed perpendicular to the contact surface before
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the sliding test. In order to estimate the flow strength of the deformed layers, 

microhardness measurements were taken at various sliding distances and loads. Low 

sliding speeds (0.2 m/s) and small normal loads (10 N and 45 N) were chosen so that 

any frictional temperature increase during sliding remained negligible. Experimental data 

indicated that the subsurface layers strain hardened steeply, but at equivalent plastic 

strains larger than 5, the stresses reached a plateau and remained constant. A 

regression analysis revealed that the flow stress ( o y ) and the equivalent plastic strains

(e) in the deformed zones obeyed an exponential work hardening law—expressed in the 

form of a Voce type equation [17]:

CTf  = <?s ~(<?s - 0 o ) exP ( - — ) 
£c .

(4.1)

where o y  is the flow stress (effective stress), e is the equivalent plastic strain, <r0( = 240

MPa) is the bulk flow strength and as (= 400 MPa) is the saturation stress (the stress at 

which the work hardening rate becomes zero). £c is a material constant, and was 

observed to be equal to 4.79 for the 356 Al material. Figure 4.6 presents the curve 

representing Equation 4.1 and the sixteen data points—obtained from the experimentally 

determined stress/strain behaviour and entered into LS-DYNA employing an elastic- 

plastic material type [102]—that were used to discretize the stress/strain relationship. 

The data points representing the stress/strain relationship of the 356 Al alloy are also 

listed in Table 4.2. The shear modulus and mass density of the 356 Al material were 

specified as 27.2 GPa and 2.669 Mg/m3, respectively [17, 91]. The asperities were 

assumed to be of a rigid material, made of steel with 207 GPa Young’s modulus, 0.3 

Poisson’s ratio and 7.8 Mg/m3 density.

When the amplitude of stress waves in a material exceeds the dynamic flow 

strength, the hydrostatic component of stress dominates [102]. Therefore, when a 

material model is used to model hydro materials or fluids, it must be accompanied by an 

equation of state to account for any resistance to hydrostatic stresses. Gruneisen 

equation of state (EOS) was employed to define the pressure-volume relationship of the 

356 Al material. In addition, a linear polynomial EOS was also used in initial trial
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simulations. A detailed analysis of the results indicated that the difference between two 

models using two different EOS was always less than 10% for the loading conditions 

studied and both EOS could be used in the simulations. The Gruneisen EOS was 

chosen to complete the simulations, since the constants for the full equation were 

available from literature (for a comprehensive discussion of the EOS and comparison of 

the results please refer to Appendix D). The Gruneisen EOS with cubic shock velocity- 

particle velocity defines pressure for compressed materials as [102]:

Poc o V
P =

2 2

' i - w - o r - s
j /  + l  (W + l)

+ (Yq +by/)E (4.2)

and for expended materials as:

P = p 0CQ2y/ + (y0 +bys)E  (4.3)

where E  is the energy per unit volume, /?0 is the initial density, C0 is the bulk sound

speed, y0 is the initial value of Gruneisen’s gamma, b is the coefficient of the volume

dependence of gamma and Si, S2 and S3 are the linear, quadratic and cubic coefficients, 

respectively, y/ is the compression defined as:

y/ = -P—  1 (4.4)
Po

where p  is the density of the material. In order to implement the Gruneisen EOS into 

the finite element model, the required parameters of C0, Si, S2 , S3 , y0 and b were
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(b) (c)

Figure 4.5: Mesh generated for the finite element model: (a) the complete mesh, (b)

the asperity and (c) part of the 356 Al structure closer to the contact 

surface.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



440

400
«

CLs
0) 360w
2
tr>

•  Finite Element Data Points<D
£  320
o
£

Equation 4.1
H I

280

240
0 10 20 30 40

Equivalent Plastic Strain (mm/mm)

Figure 4.6: Experimentally determined stress/strain behaviour of the 356 Al alloy and

the data points used to discreatize it in the finite element material model.

Table 4.2: Data points used to discreatize the experimentally determined

stress/strain relationship of the 356 Al alloy.

Equivalent Plastic Strain Effective Stress
(mm/mm) (MPa)

0.0 240.0
1.0 270.1
2.0 294.6
3.0 314.5
4.0 330.6
5.0 343.7
6.0 354.3
7.0 362.9
8.0 369.8
9.0 375.5
10.0 380.2
12.0 386.9
14.0 391.4
17.0 395.4
20.0 397.5
40.0 399.9
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obtained from Steinberg [103] for the 356 Al alloy. Table 4.3 lists the EOS parameters 

used in the numerical model.

4.2.4. LOADING AND BOUNDARY CONDITIONS

The steel asperity was indented on the 356 Al surface by applying a constant 

normal load in the Y direction. The applied normal load was distributed equally on each 

node located at the top layer of the asperity—as illustrated in Figure 4.7. In order to keep 

the 356 Al alloy stationary, all nodes at the bottom of the 356 Al structure were 

constrained in all degrees of freedom (DOF) (X translation, Y translation, Z translation, X 

rotation, Y rotation and Z rotation). A plane of X-Y symmetry (restricting Z translation, X 

rotation and Y rotation) was assigned to the nodes on the 356 Al surfaces parallel to the 

X-Y plane in order to provide a thicker modeling of the 356 Al structure. Figure 4.8 

shows the boundary conditions and the symmetry axes assigned in the numerical model.

Sliding velocities ranging from 0.5 m/s to 40 m/s were assigned to the asperities 

in the X direction. Loading was specified in such a way that the asperities were first 

loaded with a constant normal load, then translated with a constant sliding velocity over 

the 356 Al surface.

4.2.5. CONTACT ALGORITHM

Contact between the asperities, and the aluminum entity was numerically 

implemented using a penalty-type contact algorithm in LS-DYNA [102]. The asperities 

were designated as slave entities, while the 356 Al surface and the airmesh were 

defined as master entities for the numerical contact. Contact coupling was determined in 

the normal direction by using 4 x 4 x 4  coupling points distributed over each Lagrangian 

slave entity [102], Coupling points represent the nodes located at the Gauss points of 

the asperities, which were checked for penetration into the 356 Al structure. Due to the 

excessive nodal penetrations observed in initial trial simulations, the default value of the 

penalty scale factor was increased from 0.1, to 3.0 for the numerical models.

The coefficient of friction for contact between the asperities and the aluminum 

entity was initially specified as zero in the contact algorithm, assuming that the frictional 

effects were already included within the experimentally determined local stresses and
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strains used in the numerical material model. To investigate the effect of additional 

friction on the subsurface stresses and strains during multiple sliding contacts, several 

coefficients of friction (p) ranging from 0.0, to 0.8 were considered in the contact 

algorithm.

4.3. EFFECTS OF TEMPERATURE AND STRAIN RATE ON THE SUBSURFACE 

DAMAGE

Strain rate and thermal effects were considered in an analysis that coupled 

thermal and structural finite element analyses, and the temperature increase in sliding 

materials was investigated. This section presents a Lagrangian explicit dynamic 

numerical model that accounts for the strain hardening, thermal softening and the strain 

rate hardening of the aluminum alloy. The Eulerian finite element model provided in the 

previous section could not be used in the modeling of thermal and strain rate effects on 

the subsurface damage, since the thermal and structural solvers are not coupled in LS- 

DYNA for the Eulerian element formulation. Coupling the thermal and structural solutions 

for the Eulerian elements is a significant numerical challenge that had yet to be 

addressed in any of the commercial finite element analysis programs. Therefore, the 

developed finite element model was modified to use a Lagrangian element formulation 

for the 356 Al alloy. Appendix E contains a sample finite element input file for the 

coupled thermal and structural sliding contact analysis.

Table 4.3: EOS parameters for the 356 Al alloy obtained from Steinberg [103].

Parameter Value
Q 0.535 cm/ps

Si 1.338
s2 0.0
Ss 0.0

7o 1.97

b 0.48
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F: Distributed Normal Load

Figure 4.7: Distribution of the normal load equally on each node located at the top

layer of the asperity.

X-Y symmetry planes

All degrees of freedom restriction plane

Figure 4.8: Boundary conditions and symmetry axes.
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4.3.1. FE MODEL GEOMETRY

The finite element model used in the coupled thermo-mechanical analysis of the 

sliding contact consisted of two main parts: the Al-Si half-space, and the steel asperities. 

The geometry and the mesh of the model were similar to that used in the Eulerian model 

(Section 4.2). The sliding contact was modeled by pressing a rigid, cylindrically shaped 

steel surface—2.0mm diameter—against a 356 Al surface of 2.9 x 13.3 mm2 and then 

sliding the asperity over the half-space surface repeatedly at a constant sliding velocity. 

The third dimension of the model was assumed to be infinite (plane strain condition). A 

schematic view of the set-up is shown in Figure 4.9.

4.3.2. ELEMENT FORMULATION AND PROPERTIES

3D Lagrangian solid elements of the plane strain element formulation were used 

with four Gaussian integration points [102], Eight Gaussian points per element were 

specified for the thermal analysis calculations. Meshes at the contact region were 

carefully discretized with aspect ratios of unity. The minimum element size utilized in the 

vicinity of the contact region was 0.02mm. Each steel counterface was discretized with 

1530 elements and 1618 nodes. In the discretization of the 356 Al half-space, 10,825 

elements and 11,076 nodes were used.

4.3.3. MATERIAL MODEL

Strain rate and thermal effects were taken into account in the numerical material 

model using a special material type in LS-DYNA that allows the user to define an elastic- 

plastic stress-strain relationship that incorporates thermal and strain rate effects. 

Consequently, the stress-strain behaviour of the material below the contact surfaces can 

be modeled for conditions where the temperature and rate at which the layers deform 

(strain rate) are important. A constitutive equation— consisting of the experimentally 

defined Voce-type stress-strain relationship (Equation 4.1)— combined with a Cowper 

and Symond-type [82] strain rate equation and a Johnson-Cook-type [85] temperature 

equation, was proposed:
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where e p is the plastic strain rate in s'1 units, D (s'1) and q are the Cowper and Symond 

material parameters. T (K) is the temperature of the contacting material, Troom is the 

room temperature (K), Tme/t is the melting temperature (K) and m is the dimensionless 

Johnson-Cook thermal material parameter. In Equation 4.5, the expression in the first 

set of brackets represents the strain hardening behaviour under athermal conditions. 

The expressions in the second and third sets of brackets represent the strain rate 

hardening and the thermal softening effects on the flow stress (<7y). Different

constitutive equations were proposed in the literature for the strain rate sensitivity of 

materials. The Cowper and Symond constitutive equation is one of the most commonly 

used equations for large deformation type problems, especially when dealing with 

automotive applications [84], The material parameters in Equation 4.5—taken from the 

literature—were D = 500 s"1 and q = 4 for the 356 Al alloy [84], The temperature 

coefficients were taken from the work of Johnson and Cook [85] who used torsion and 

dynamic tensile Hopkinson bar tests to determine the dependence of the flow stress of 

materials to temperature. The thermal material parameter (m) was determined as 1 for 

different aluminum alloys. In addition, investigations in Section 2.3.3 indicated that the 

thermal material parameter is not constant, and changes with the temperature. However, 

it was also shown that m is between 0.85-1.00 up to 150 °C for the A356 Al alloy. 

Therefore, m was defined as 1.00 for the A356 Al alloy in this study’s numerical 

simulations. The initial room temperature and the melting temperature of the 356 Al were 

300 K and 828 K, respectively.

Figure 4.10 illustrates the relationships among stress, strain and temperature at 

various strain rates. A zero strain rate implies that during sliding, the material layers 

below the worn surfaces were not subjected to a strain rate that exceeded the 

experimentally applied strain rate. Thus, in Figure 4.10 the stress-strain curve at 300 K 

and e = 0 s"1 is identical to the experimental stress-strain curve of the 356 Al alloy’s 

worn surfaces in Figure 4.6.
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Young’s modulus (E), Poisson’s ratio (v) and mass density (p) of the 356 Al half

space were 72.4 GPa, 0.33 and 2.669 Mg/m3 [17, 91]. The steel asperities were 

modelled as rigid materials, and the properties of the asperities were E = 207 GPa, 

v = 0.3 and p = 7.8 Mg/m3.

During sliding contact of the solids, most of the plastic work done is converted 

into heat [104], The fraction of plastic work converted into heat can be estimated using 

calorimetric methods [105]. Mason et al. [106] used a Hopkinson pressure bar coupled 

with infrared detectors to examine the conversion rate of plastic work to heat. The work 

rate to heat rate conversion fraction values for steel and aluminum alloy samples were 

between 0.85 and 0.95. Here 0.95 of the mechanical work was assumed to be converted 

into heat. The thermal material properties of the 356 Al alloy were determined from the 

literature and defined in an isotropic thermal material model as follows; heat capacity: 

963 J/kg-K, thermal conductivity: 151 W/m-K and coefficient of thermal expansion: 

23.5 pm/m-K [91],

The temperature rise during sliding is calculated using the following equation 

[102, 104]:

a  ef

A T  =  (7f de  (4.6)

where T (= T (.'xut)) is temperature, x( (= xt (t)) are coordinates as a function of time, (3 is 

the work rate to heat rate conversion factor (defined as 0.95 in this study), p (=  p  (xt)) is 

the density and CP(= CP (xir T)) is the specific heat.

The flow stress in Equation 4.6 is calculated from Equation 4.5. In order to test 

the effects of the material model on the prediction of deformation, the following 

constitutive equations were also used:

/  \
(4.7)

v Cc
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13.3 mm

Figure 4.9: Geometry of the finite element model ((1) is the 356 Al half-space and (2)

is the steel counterface), loading (F: Distributed normal load, V: Sliding 

velocity) and boundary conditions (restriction of the bottom nodes from 

the motion).
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Figure 4.10: The relationship among stress, strain, strain rate and temperature

according to Equation 4.5.
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Deformation induced temperature calculated by equation 4.6 is conducted inside 

the aluminum alloy by the following heat conduction equation [102, 104]:

p C , ^  = ( isI \ ),,+!? (4.10)

where ky (= ky (xit T)) is the thermal conductivity and Q (= Q (xu T)) is internal heat 

generation rate per unit volume.

4.3.4. LOADING AND BOUNDARY CONDITIONS

The steel, semi-cylindrical asperity was pressed against the aluminum half-space 

with a constant normal load in the Y direction (Figure 4.9). Analyses were done for two 

normal load levels of 150 and 250 N per mm thickness. The applied normal load was 

distributed equally on each node located at the top layer of the asperity (Figure 4.9). All 

nodes at the bottom of the 356 Al half-space were constrained in all degrees of freedom 

(Figure 4.9).

Two sliding velocities of 5 m/s and 10 m/s in the X direction were assigned to the 

steel asperity motion. Loading was prescribed in such a way that during each contact 

cycle, the asperity was first loaded with a constant normal load, then translated with a 

constant sliding velocity over the half-space surface.

In initial trial simulations, heat convection and radiation to surroundings were 

considered. However, the results indicated that effect of those terms on the solution 

were negligible. Therefore, in order to decrease solution times, heat convection and 

radiation to the surroundings are neglected and adiabatic thermal boundary conditions
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were applied to the half-space. Both thermal and structural calculations were completed 

by doing a transient time dependent analysis [102], An explicit dynamic time integration 

approach was used for the structural analysis, and a fully implicit time integration 

scheme was utilized for the thermal analysis calculations [102], For every ten explicit 

structural time steps completed, a thermal implicit time step calculation was performed.

4.3.5. CONTACT ALGORITHM

Contact between the steel and the aluminum entities was modeled using a two- 

dimensional automatic type contact algorithm, with the thermal option [102], The 356 Al 

half-space was designated as the slave entity, while the steel counterfaces were defined 

as the master entities for the numerical contact. Due to the excessive nodal penetrations 

observed in initial trial simulations, the default value of the penalty scale factor was 

increased from 1.0 to 5.0 for the numerical models. In order to achieve a stable 

simulation, the time step was lowered by changing the time step scale factor from the 

default value of 0.9, to one of 0.8.

Initially, the coefficient of friction between the steel and aluminum entities was 

defined as zero in the contact algorithm. To investigate the effect of friction on the 

subsurface stresses and strains during multiple sliding contacts, 0.3 coefficient of friction 

(n) was also considered in the contact algorithm. Friction was modeled as a constant 

during the simulations by making the static and dynamic coefficients of friction identical.

4.4. EFFECTS OF SECONDARY HARD PARTICLES ON THE SUBSURFACE 
DAMAGE

Si particles of various sizes embedded below the 356 Al surface were studied in 

a Lagrangian finite element analysis that coupled structural and thermal elements in an 

attempt to investigate the influence of the hard particles on the distribution of subsurface 

stresses and strains in the aluminum matrix. This section presents the numerical setup 

details exploring the effects of secondary hard particles on subsurface damage. A 

detailed discussion of the developed model was presented in Section 4.3. The 

computation procedures were the same as the ones used in the previous section, with
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the exception of new features designed to consider Si particles—such as the addition of 

a new material model for the Si particles. Another important change was the reduction of 

the time step scale factor from 0.9, down to 0.5 with the purpose of obtaining a good 

energy distribution and stable simulations. In the following sections, only these added 

features will be presented. A sample finite element input file is summarized in 

Appendix F.

4.4.1. FE MODEL GEOMETRY

The numerical model consisted of three parts with the implementation of hard 

particles; the 356 Al half-space, the asperities and the Si particle. The dimensions of the 

356 Al half-space and asperities were the same as Section 4.3 presented. A typical 

microstructure of the 356 Al alloy after the heat treatment is shown in Figure 4.11 where 

the Al and Si phases can be observed. Two distinct Si particle morphologies are 

illustrated in Figure 4.11— one that is spherical equiaxed shaped, and one that is long 

and needle shaped. The aspect ratio of the needle-like particles could be approximately 

as large as five or six. In order to consider various Si particle morphologies, three 

different cross-sectional geometries were created in the finite element model: one 

square shaped with an aspect ratio of 0.75, one rectangular shaped with an aspect ratio 

of 2.25 and one circular equiaxed shaped with an aspect ratio of 1.0. All the Si particles 

in this study, despite different geometries, were placed at a constant depth below the 

surface. Schematic views of the numerical set-up for the hard particles are shown in 

Figures 4.12 and 4.13. The third dimension of the model was assumed to be infinite, and 

thus plane strain conditions were investigated.

4.4.2. ELEMENT FORMULATION AND PROPERTIES

The numerical model only utilized 2D solid elements. The Lagrangian plane 

strain element formulation was used, with four integration points, and eight Gaussian 

points were used for the thermal analysis calculations. The minimum element size was 

0.02mm for the models with rectangular and square shaped Si particles. The circular Si 

particle was discretized very finely to represent curved boundaries with a 0.004 mm
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minimum element size. The discretization properties of the models are listed in 

Table 4.4.

4.4.3. MATERIAL MODEL

The material model developed and discussed in Section 4.3 that accounts for 

strain hardening, strain rate hardening and thermal softening of the 356 Al Alloy was 

also used in this numerical analysis. The details of the material model’s characteristics 

for the 356 Al alloy and rigid asperities were presented in Section 4.3. The Si particles 

were modeled as elastic materials, and the elastic modulus, Poisson’s ratio and mass 

density of the Si particles were specified as 112.7 GPa, 0.28 and 2.33 Mg/m3, 

respectively [91, 107-109].

4.4.4. LOADING AND BOUNDARY CONDITIONS

A sliding velocity of 10 m/s and a normal load of 250 N/mm were applied to the 

asperities. The loading and boundary conditions— discussed in detail in Section 4.3—  

were adopted for the hard particle investigation models. Multiple investigations 

determined that the interface strengths of different matrix-particle systems range from 

1000 MPa to 3000 MPa [39-43], In addition, Gall et al. [110] studied the tensile 

debonding of an aluminum-silicon interface using modified embedded atom method 

atomistic simulations and identified the Al-Si interface strength to be 20 GPa. This high 

interface strength value was caused by their model’s assumptions— including defect and 

impurity-free interfaces—and by the limitations of the current atomistic modeling efforts. 

However, in the initial simulations of this study with Si particles, the stresses at the Al-Si 

interface and at the Si particles did not reach the strength levels given in the literature. 

Therefore, the interface between the Al matrix and the Si particle was assumed to be 

infinitely strong, and the nodes were merged at the interface of the two materials. By this 

way, evolution of local stress and strain distributions were aimed to be studied without 

implementation of any predetermined failure constraint on the model.
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Table 4.4: Total number of elements and nodes used in the discretization of the

finite element models.

Model Part # of Elements # of Nodes
Minimum Element 

Size (mm)

A, B, C Asperities 1,530 1,618 0.020

A 356 Al surface 10,816 11,072 0.025

A Square Si particle 9 16 0.025

B 356 Al surface 10,783 11,050 0.025

B Rectangular Si particle 42 60 0.025

C 356 Al surface 10,919 1,185 0.025

C Circular Si particle 260 281 0.004
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Figure 4.11: A typical microstructure observed in a 356 Al alloy after T6 heat

treatment.

*  13.3 mm  ^

Figure 4.12: General view of the finite element model developed for the investigation

of influence of the hard particles.
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Figure 4.13. Geometric details of the finite element model for the hard particles: 

(a) square shaped Si particle, (b) rectangular shaped Si particle and (c) 

circular shaped Si particle.
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CHAPTER 5

EXPERIMENTAL PROCEDURES

Despite the fact that the numerical models used in this study were built on an 

aluminum alloy’s stress-strain relationship—obtained from sliding wear tests—the 

accuracy of the finite element results were not assured. In order to test the accuracy of 

the numerical models, normal contact and sliding contact experiments were performed 

using similar geometry, and the experimental observations were compared with the 

predictions of the numerical models. This section presents the details of the 

experimental tests, performed for this purpose.

5.1. NORMAL AND SLIDING CONTACT EXPERIMENTS

5.1.1. SAMPLE MATERIALS

A 356 aluminum alloy with a composition 7.00 % Si, 0.35 % Mg, 0.11 % Fe, 0.20 

% Ti, 0.05 % Mn, 0.05 % Zn and the balance Al [91] was used in the experiments. The 

material was received in as-cast condition, solution treated at 813 K for 36 hours and 

aged to T6 condition at 428 K for 5 hours. Figure 5.1 provides optical microscopy images 

of 356 Al sample microstructures after several steps of the heat treatment. The long, 

planar-shaped secondary particles transformed, taking on a more equiaxed shape when 

subjected to increasing solution treatment time. The hardness of the heat-treated 356 Al 

samples was measured as 50.6 ± 2.0 by Rockwell hardness (HRB, 15kg, 1/16”, 

superficial) and 84.1 ± 1.5 by Vickers hardness (50 g). Cylindrical M2 tool steel samples 

with a diameter of 2 mm were utilized as counterface material against the 356 Al alloy. 

M2 tool steel samples were received in heat-treated condition with 60 to 63 HRC 

hardness.
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5.1.2. EXPERIMENTAL SET UP

M2 tool steels were pressed against the 356 Al samples at different loads that 

ranged from 306 to 390 N/mm, at which point the impressions left on the 356 Al were 

investigated. Figure 5.2 shows photographs of the samples that were subjected to 

normal contact. The 356 Al samples were polished before the indentation testing, and 

the deformation patterns created at the edge of the samples as a result of the tests were 

determined as an estimation of the plastic deformation. Figure 5.3 (a) illustrates the 

deformation zone on the edge of the 356 Al that was tested using a normal load of 

335.82 N/mm. The plastic deformation zone depth and width—determined in this way—  

were compared to the values predicted by numerical models of appropriate loading 

(Figure 5.3 (b)). A WYKO HD 3300 optical surface profilometer was used to inspect 

indentation impressions on the 356 Al surface. Figure 5.4 shows a sample surface 

profile with the contact length and depth clearly indicated. The measured contact length 

and depth were later compared to the numerical contact predictions. 8 to 10 

measurements were performed for each length and width measurement, with the 

average values presented in Chapter 6.

A reciprocating sliding wear machine was used to conduct the sliding 

experiments. Figure 5.5 displays a photograph of the reciprocating sliding machine in 

which specimen holders, load application and sliding direction is clearly indicated. To 

measure the subsurface sliding displacements of the 356 Al samples, a metallographic 

reference marker method was used [3, 4 and 17]. A marker machined from the same 

material as the test sample was introduced in a slit cut perpendicular to the contact 

surface [Figure 5.6 (a)]. M2 tool steels were subjected to uniaxial sliding contact up to 

seven times over the 356 Al samples of 70 mm length with a constant load of 250 N/mm 

and a sliding velocity of 0.15 m/s. After each sliding contact test, the forward 

displacements of the marker boundaries were measured and used to estimate the shear 

strain gradients, which were compared with the plastic strain predictions of the finite 

element model in Chapter 6. Figure 5.6 (b) is a micrograph of a 356 Al sample after four 

consecutive sliding tests at a sliding velocity of 0.15 m/s and a normal load of 250 N/mm.
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Figure 5.1: Microstructure of the 356 Al samples: (a) after a solution treatment of 12

hours at 813 K, (b) after a solution treatment of 24 hours at 813 K, (c) 

after a solution treatment of 36 hours at 813 K (35.0 ± 2.5 HRB, 74.5 ± 

6.0 Vickers hardness) and (d) after a solution treatment of 36 hours at 

813 K and an aging heat treatment of 5 hours at 428 K (50.6 ± 2.0 HRB, 

84.1 ±1 .5  Vickers hardness).
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Figure 5.2: Views of the normal contact samples: (a) 2mm diameter M2 tool steel

cylinder and (b) the 356 Al sample after several normal contacts 

(indentations).
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Figure 5.3: (a) Surface profile obtained by optical surface profilometer: Determination

of the plastic deformation characteristics (plastic deformation width and 

depth) from the experimental studies (Load: 335.8 N/mm),

(b) Determination of the plastic deformation characteristics (plastic 

deformation width and depth) from the numerical studies (Load: 335.82 

N/mm).
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(b)

Figure 5.4: (a) Surface profile obtained by optical surface profilometer: Determination

of the contact characteristics (contact length and depth) from the 

experimental studies (Load: 335.82 N/mm),

(b) Determination of the plastic deformation characteristics (contact length 

and depth) from the numerical studies (Load: 335.82 N/mm).
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Specimen Holder

Figure 5.5: Photograph of the reciprocating wear machine with its specimen holders

used in sliding contact experiments.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M2 Tool Steel 
'' Cylinder

356 Al Alloy

Markers

1st Contact 2nd Contact 3rd Contact 4th Contact

?• V • *■
(b)

Figure 5.6: (a) Schematic view of the sliding contact samples: the 356 Al, M2 tool

steel cylinders and markers.

(b) Subsurface micrograph showing displacement of the marker after 

multiple sliding contacts (sliding velocity: 0.15 m/s, normal load: 

300 N/mm).
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5.2. TEMPERATURE MEASUREMENT DURING SLIDING

Sliding contact experiments that included temperature measurements were 

completed in order to explore thermal softening constitutive equation, which was 

proposed in the numerical modeling of this work (Section 4.3), applicability to wear test 

conditions. The resulting experimental observations were compared with predictions of 

the thermal softening model. This section presents the experimental setup used for this 

purpose.

5.2.1. SAMPLE MATERIALS

Commercial purity 1100 Al samples were used in the wear experiments. Dry 

sliding wear tests were performed to test 1100 Al samples against SAE 52100 bearing 

steel rings (outer diameter = 38 mm, width = 12 mm). 1100 Al test samples were 

machined into 5 mm x 10 mm x 10 mm rectangular blocks and the samples and the 

rings were polished to 0.5 pm alumina, then cleaned ultrasonically with methanol before 

the wear tests.

5.2.2. EXPERIMENTAL SET UP

Dry wear tests were performed using a block-on-ring type wear machine. A 

schematic view of the block-on-ring wear test setup is shown in Figure 5.7. The 

specimens were tested in a controlled air atmosphere (20.5 % relative humidity) at a 

sliding speed of 1 m/s. 10 N and 30 N normal loads were applied, and the temperature 

of the contact surfaces was continuously measured during the tests using a 

thermocouple, then recorded with a data acquisition system.

A metallographic reference marker method was used to measure the 1100 Al 

samples’ subsurface sliding displacements [3, 4 and 17]. A marker machined from the 

same material as the test sample was introduced into a slit cut perpendicular to the 

contact surface. After wear tests, the forward displacements of the marker boundaries 

were measured and used to estimate the shear strain gradients. Figure 5.8 shows a 

micrograph of an 1100 Al sample after the wear test with a sliding velocity of 1 m/s and 

normal load of 30 N.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The hardness distributions under the worn surfaces were measured using a 

Vickers microhardness tester with a load of 10 g. Worn samples were sectioned at an 

angle of approximately 5.7° to the sliding direction, and microhardness measurements 

were taken from these tapered sections. The tapered sections were used to provide a 10 

times magnification of the sectioned subsurface zones compared to the normal cross 

sections.
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Figure 5.7: Schematic view of the block-on-ring wear test setup.
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Figure 5.8: Subsurface micrograph showing the deformation of the reference marker

along the direction of sliding (Test result with 1 m/s sliding velocity and 

30 N normal load).
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CHAPTER 6

VALIDATION OF NUMERICAL MODELS

This chapter summarizes the completed investigations to confirm the validity of 

the numerical simulations. First, the energy balance is discussed, and sample energy 

balance curves for the numerical models are presented. Second, time-history data 

samples are illustrated to discuss the force balance of simulations and interface forces 

during contacts. Next, the normal contact simulation results are compared with the Hertz 

theory predictions. Later, the experimental and numerical results are compared. Finally, 

applicability of the thermal softening constitutive equation, which was proposed in this 

work, was confirmed by the experimental findings.

6.1. ENERGY AND EXTERNAL WORK ANALYSIS FOR THE FINITE ELEMENT 

MODELS

In order to confirm the validity of a numerical simulation, a researcher must 

initially address the energy and external work analysis. If there is no energy formation 

process modeled in a finite element model, the total energy should be always equal the 

initial energy of the system. Detailed information about the energy and external work 

analysis is given in Appendix A.

6.1.1. ANALYSIS OF NORMAL CONTACT BETWEEN SOLIDS

Figure 6.1 illustrates the energies and external work associated with the normal 

contact models. The maximum energy values obtained from a typical normal contact 

simulation are also listed in Table 6.1. The external work was equal to the total energy, 

and the total energy was mainly composed of internal energy—stored in the deformed 

material (90 % of the total energy)—and kinetic energy (7 % of the total energy). This 

indicates that kinetic energy was insignificant when compared to the internal energy of 

the system and the quasi-static condition existed in the normal contact models. Sliding 

interface energy and hourglass energy contributed less than 3 % of the total energy, and
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applied hourglass control was successful in keeping hourglass energy at an acceptable 

level (see Appendix A for a discussion on the hourglass energy levels).

6.1.2. ANALYSIS OF SLIDING CONTACT BETWEEN SOLIDS

Figure 6.2 illustrates a typical energy and external work distribution as observed 

in the sliding simulations and Table 6.2 presents the maximum energies calculated. The 

analyses of energies and external work for the models indicate that the total energy of 

the system was composed mainly of internal energy stored during the deformation. 

Hourglass energy was less than 4 % of the total energy, and was therefore deemed 

acceptable (Appendix A). Sliding energy was negligible, indicating an insignificant 

amount of penetration. Kinetic energy appears as zero in Figure 6.2, since it only 

comprises 0.1 % of the total energy. Hence, near quasi-static conditions existed in these 

simulations. Ideally, the external work done should be completely converted into energy, 

and the amounts of external work and total energy should be equal. However, a 

difference between total energy and external work towards the end of the simulation was 

detected. Contact coupling was determined by using 4 x 4 x 4  coupling points distributed 

over each Lagrangian slave entity, and the penalty scale factor was increased from 0.1 

to 3.0 in the contact algorithm in order to obtain a good energy distribution and keep the 

difference between total energy and external work below 6 to 7 %— accepted as a 

tolerable level. Kinetic energy comprised less than 2 % of the internal energy and total 

energy (Figures 6.2, 6.3 and 6.4, pages 116 to 118).

6.1.3. EFFECTS OF TEMPERATURE AND STRAIN RATE ON THE 

SUBSURFACE DAMAGE

Figure 6.3 shows energies and external work observed in a coupled thermo

mechanical simulation. In addition, Table 6.3 lists the calculated maximum energies. 

99.6 % of the total energy was converted into internal energy stored during the 

deformation. Hourglass energy was zero, because under integration was not used. 

Sliding energy was negligible, indicating a good simulation (Appendix A). Kinetic energy 

only comprised 0.4 % of the total energy. Therefore, near quasi-static conditions also 

existed in these simulations. The difference between total energy and external work was
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lower than 2 to 3 % as a result of an increased scale factor for the penalty force 

stiffness— increased five times. In order to decrease time step size and obtain a stable 

simulation, the scale factor for the time step calculation was decreased from 0.9 to 0.8 

(see Appendix A for energy and external work analysis discussion and time step size 

calculations).

6.1.4. EFFECTS OF SECONDARY HARD PARTICLES ON THE 

SUBSURFACE DAMAGE

The energies and external work obtained in a typical simulation modeling the 

influence of hard particles, and the maximum energies observed are presented in Figure 

6.4 and Table 6.4, respectively. Energy comparisons indicate that the finite element 

simulations were acceptable in terms of an energy and external work analysis. The 

internal energy stored during the deformation comprised 99 % of the total energy. 

Hourglass energy did not contribute to the total energy, and sliding energy was 

negligible. Kinetic energy comprised only 1 % of the total energy, and the difference 

between total energy and external work was less than 2%.

6.2. TIME-HISTORY DATA

This section presents time-history data where the contact interface forces—  

specifically the frictional force and the normal contact force at the Al alloy/asperity 

interface—are given as a function of time. In addition, the variations in stress and strain 

for elements located at the center line of the Al alloy are illustrated as a function of time, 

and the transient and steady-state natures of the results are discussed.

6.2.1. ANALYSIS OF NORMAL CONTACT BETWEEN SOLIDS

Figure 6.5 shows the interface forces that were applied to the asperity in the 

normal contact simulations. Since these forces are contact interface forces, an equal 

amount of force was applied to the aluminum alloy in the opposite direction. Figure 6.5 

indicates that the force in the X direction was negligible during normal contact when
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compared to the force in the Y direction, which was the total force applied to push the 

asperity into the aluminum alloy. During normal contact simulations, the normal load 

applied in the Y direction was linearly increased from zero to a maximum value of 

3.3 N/mm in 3x10"4 s, then held constant for the remaining time. Figure 6.6 shows the 

variation of the von Mises stress at 0.2 pm depth. Dumping was not considered to 

minimize the inertial effects and fluctuations in the von Mises stress are prompted by the 

dynamic nature of the simulations (inertial forces).

6.2.2. ANALYSIS OF SLIDING CONTACT BETWEEN SOLIDS

Figure 6.7 illustrates the interface forces that were applied to the asperity in the 

Eulerian sliding contact simulations. The interface forces indicate that in order to move 

the asperities from their initial stationary conditions, a relatively higher load was required. 

The force in the X direction obtained a steady state value once the asperity had reached 

the predetermined constant sliding velocity, and dropped to zero after the completion of 

the sliding motion (Figure 6.7 (a)). It was observed that the inertia effects found in the Y 

direction were negligible (Figure 6.7 (b)), while the interface force in the Y direction was 

equal in magnitude to the total force applied to push the asperity into the aluminum alloy 

(300 N/mm). In addition, Figure 6.7 proves that the forces generated during the sliding 

contact do not drop to zero — implying that during sliding the sliding motion was 

continuous, with no asperity contact loss or lift-off. Figure 6.8 illustrates the accumulation 

of von Mises stress and plastic strain at a specific depth (200 pm) in the aluminum alloy. 

Changes in the stresses and strains can be observed after each asperity contact in the 

figure. The results indicated that the von Mises stress for a given element in the Al alloy 

was at a maximum when the vertical center line of the element coincided with the 

vertical center line of the asperity (peaks observed at each asperity contact, 

Figure 6.8 (a)). The maximum value of the von Mises stress increased after each 

asperity contacts due to strain hardening of the material. The plastic strain for a given 

element was at a maximum value when the corresponding element experienced the 

maximum von Mises stress (Figure 9.8 (b). For a given element, a continuous increase 

in the plastic strains was observed for additional asperity contacts.
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Figure 6.1: Typical energies and external work observed in the normal contact

simulations.

Table 6.1: Maximum values of energies obtained from a typical normal contact

simulation.

Energy Type Energy Values (J) (En. Type / Total En.)x100

Hourglass Energy 8.425 x 10'3 2.95

Sliding Energy 8.600 x 10’3 3.01

Kinetic Energy 1 .9 9 9 x 1 0‘2 7.00

Internal Energy 2.585 x 10‘1 90.56

Total Energy 2.855 X 1 0 1 100.00

External Work 2.889 x 10 '1 101.20
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Figure 6.2: Energies and external work typical of the sliding contact modeling

simulations (Eulerian model).

Table 6.2: Maximum values of energies obtained from a typical sliding contact

simulation (Eulerian model).

Energy Type Energy Values (J) (En. Type / Total En.) x 100

Hourglass Energy 7.746x1 O'2 3.6

Sliding Energy 6.924 x 10’5 0.003

Kinetic Energy 1.860x 1 O’3 0.088

Internal Energy 2.044 96.3

Total Energy 2.121 100.0

External Work 1.979 93.3
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Figure 6.3: Typical energies and external work observed in the sliding contact

simulations with Lagrangian thermo-mechanical model.

Table 6.3: Maximum values of energies obtained from a typical sliding contact

simulation using Lagrangian thermo-mechanical model.

Energy Type Energy Values (J) (En. Type / Total En.) x 100

Hourglass Energy 0.000 0.000

Sliding Energy 3.666 x 10'5 0.003

Kinetic Energy 4.378 x 10'3 0.414

Internal Energy 1.054 99.59

Total Energy 1.058 100.00

External Work 1.034 97.79
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Figure 6.4: Energies and external work typical of the sliding contact modeling

simulations with hard particles.

Table 6.4: Maximum values of energies obtained from a typical sliding contact

simulation with hard particles.

Energy Type Energy Values (J) (En. Type / Total En.) x 100

Hourglass Energy 0.000 0.00

Sliding Energy 4.830 x 10'5 0.01

Kinetic Energy 4.3736 x 10 3 0.91

Internal Energy 4.742 x 10‘1 99.09

Total Energy 4.785 x 10'1 100.00

External Work 4.866 x 10’1 101.67
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Figure 6.5: Interface forces applied to the asperity in the normal contact modeling

simulations: (a) Force in the X direction, (b) Force in the Y direction.
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6.2.3. EFFECTS OF TEMPERATURE AND STRAIN RATE ON THE 
SUBSURFACE DAMAGE

The interface forces applied to the asperities in the Lagrangian thermo

mechanical models are illustrated in Figure 6.9 for each asperity contact. Similar to the 

observations made with Eulerian sliding contact models, the asperities needed relatively 

high forces to start their motion. However, after the motion was initiated, forces reached 

a steady state value. The force distribution indicates that there was no loss of contact 

during the sliding motion. Figure 6.10 shows the change of the X direction forces with 

the normal load, while Figure 6.11 shows the variation of the same forces with the sliding 

velocity. Figure 6.10 indicates that the force in the X direction (needed to move the 

asperities with constant sliding velocity) increased in tandem with an increasing normal 

load. However, an opposite situation was observed with the increase of the sliding 

velocity. When the sliding velocity increased from 10 m/s to 40 m/s, the force in the X 

direction initially increased. However, after the asperity achieved steady state motion a 

reduction in the force in the X direction was observed, which is a dynamic effect.

Figure 6.12 shows the variation of the von Mises stress and the equivalent plastic 

strain in an element at a 25 pm depth. Oscillations in the von Mises stress are prompted 

by dynamic effects (Figure 6.12 (a)). A continuous increase in the plastic strain can be 

observed with seven asperity contacts in Figure 6.12 (b).

6.2.4. EFFECTS OF SECONDARY HARD PARTICLES ON THE 
SUBSURFACE DAMAGE

The force balance observed in a simulation that models the influence of hard 

particles was the same as that observed in Lagrangian thermo-mechanical models. 

Therefore, force balance figures are not given separately.

6.3. HERTZ THEORY COMPARISONS

In this section, the finite element analysis results for normal contact between a 

cylindrical asperity and an aluminum half-space surface are compared with the 

predictions of the Hertz theory in an effort to test and validate the accuracy of the
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developed finite element models. Details of the normal contact models are given in 

Section 4.1.

The elastic numerical simulation results are summarized in Table 6.5, along with 

the Hertz theory predictions. The maximum shear stress— according to the Hertz 

theory— is 805.2 MPa at a depth of 0.61 pm for an applied load of 3.3 N/mm. All the 

numerical models provided acceptable predictions—comparing with the Hertz theory—  

for the semi-contact width. However, Model F—which utilizes the implicit time integration 

method and requires approximately 4 minutes of computation time— provided an 

excellent prediction of the maximum shear stress. Asperity penetration depths varied 

between 0.11 pm and 0.15 pm (Table 6.6). The large number of element edges on the 

contact line (18) for Model F indicated an acceptable level of discretization.

The pressure distribution predictions for the models—with a 3.3 N/mm load— are 

presented in Figure 6.13, and compared with the elliptical shape pressure distribution 

prediction of the Hertz theory. Due to symmetry, only half of the pressure distribution is 

plotted at zero depth (i.e., y=0). Numerical models showed that the area of contact was 

approximately elliptical in shape when a cylindrical asperity was loaded against a half

space.

Figure 6.14 illustrates the variation of stresses <Jx, cy and t  at the centerline of 

the half-space as a function of the normalized depth below the surface, as predicted by 

the Hertz theory and numerical models. A good agreement between theoretical and 

numerical observations is clearly evident.

6.4. COMPARISON OF THE EXPERIMENTAL AND NUMERICAL RESULTS

This section compares the finite element model results and the experimental 

observations—for validation purposes. The details of the finite element models and the 

experimental procedures are given in Section 4.2 and Section 5.1, respectively.
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Figure 6.7: Interface forces applied to the asperity in the sliding contact modeling

simulations using the Eulerian model: (a) Force in the X direction, (b) 

Force in the Y direction.
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Figure 6.8: (a) Variation of the von Mises stress at 200 pm depth, (b) Accumulation of

the plastic strain at 200 pm depth (Sliding velocity: 10 m/s, Normal load: 

300 N/mm, Eulerian model).
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Table 6.5: Comparison of the elastic normal contact model results and the Hertz

theory calculations for normal load of 3.3N/mm.

MODEL Tmax (MPa)
y  (&t Tmax)

(pm)
a (pm) %nax)l@

Model A 631.781 0 .83-1 .67 0.83-1 .67 0.50-1.00

Model B 936.718 0.42 - 0.83 0.83-1 .25 0.33-1.00

Model C 936.390 0.62 - 0.83 0.83-1 .04 0.60-1.00

Model D 900.263 0.62 - 0.83 0.83-1 .04 0.60-1.00

Model E 849.414 0.42 - 0.62 0.83-1 .04 0.40-0.75

Model F 803.246 0.62 - 0.73 0.83 - 0.94 0.67-0.87

Hertz Theory 805.155 0.61 0.78 0.78

Table 6.6: Comparison of penetration depths and element numbers in the 

line for elastic numerical models for normal load of 3.3N/mm.

MODEL
Penetration Depth, 

h (pm)
Number of Elements 

in Contact Line

Model A 0.135 3-4

Model B 0.152 5-6

Model C 0.131 9-10

Model D 0.132 9-10

Model E 0.114 9-10

Model F 0.117 17-18
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6.4.1. NORMAL CONTACT

Table 6.7 compares experimentally observed and numerically calculated 

indentation impression depths for different loading conditions during normal loading. 

Both the experimental and the numerical indentation contact depths varied between 30 

and 60 jxm for 306 to 390 N/mm loading. Table 6.7 shows that the numerical simulations 

could predict the experimental contact depths with a less than 10% difference.

In addition to the contact depth, the approximate experimental indentation 

contact lengths were also measured by surface profilometer, and the results were 

compared with the predictions of the finite element simulations (see Figure 5.4 for the 

definition of contact depth and length). Table 6.8 presents the results obtained for 

contact length in various loading setups. The results indicated that the contact length 

was between 0.4 and 0.6 mm for 306 to 390 N/mm loads. The highest deviation 

observed between the experimental and the numerical results was 11.09% for a 

330.88 N/mm load.

Tables 6.9 and 6.10 list the experimentally and numerically determined plastic 

zone depths and widths (see Figure 5.3 for the definition of plastic zone depth and 

width). The numerical predictions revealed a deviation of approximately 20% from the 

experimental observations of the plastic zone depth— perhaps due to the errors and 

assumptions made in the definition of the experimental values. Unlike the experimental 

observations, the numerical simulations predicted a slight decrease in the plastic region 

depth, with an increase in the normal load or contact length (Table 6.9). However, both 

the numerical and the experimental observations agreed with the trend of an increasing 

plastic zone width with an increasing normal load (Table 6.10). The difference between 

the experimental and the numerical plastic zone widths was less than 10%.

In summary, normal contact investigations showed that the developed finite 

element model could be used in the prediction of the deformation of a 356 Al alloy during 

normal loading.
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Table 6.7: Comparison of the experimentally and numerically determined indentation

contact depth on the 356 Al material.

Load/Thickness
(N/mm)

Experimental 
Contact Depth (pm)

Numerical Contact 
Depth (pm)

% difference3

306.12 30.77 34.38 -11.74
308.22 32.70 34.62 -5.87
326.09 37.20 36.94 0.71
330.88 38.33 39.62 -3.34
335.82 39.37 40.31 -2.38
343.51 45.77 43.68 4.57
346.15 47.43 44.98 5.16
362.90 48.07 47.09 2.04
387.93 58.87 55.17 6.28

a % difference= {( Experimental Value- Numerical Value) / Experimental Value}*100

Table 6.8: Comparison of the experimentally and numerically determined indentation

contact length on the 356 Al material.

Load/Thickness
(N/mm)

Experimental 
Contact Length (mm)

Numerical 
Contact Length (mm)

%
difference

306.12 0.41 0.42 -2.51
308.22 0.41 0.42 -1.14
326.09 0.45 0.41 7.99
330.88 0.49 0.43 11.09
335.82 0.49 0.46 6.74
343.51 0.49 0.48 2.66
346.15 0.51 0.50 3.28
362.90 0.54 0.52 4.44
387.93 0.58 0.60 -3.34
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6.4.2. SLIDING CONTACT

Figure 6.15 illustrates the position of the marker boundaries obtained after 

experimental sliding tests at a sliding velocity of 0.15 m/s and a normal load of 

300 N/mm. A regression analysis revealed that the position of the marker boundaries 

could be represented by the following exponential relation:

D  = A + B exp(-CZ) (6.1)

where D  is the position of the marker at a given depth Z  (in (im) below the sliding 

surface, and A, B and C are constants. A represents the distance of the marker to the 

origin, and (D-A) is the displacement of the marker along the sliding direction at a given 

depth. The values of A, B and C—obtained for the loading conditions considered— are 

given in Table 6.11.

The equivalent plastic strain (e) below the contact surface was determined from 

the deformation angle 6, which is the angle between the line drawn tangent to the 

marker boundary and the axis perpendicular to the contact surface (Figure 6.16) [3, 4,

Figure 6.17 shows the experimental subsurface plastic strain distributions 

obtained after four consecutive sliding contacts at a sliding velocity of 0.15 m/s and a

17]:

(6.2)
3

The slope of the tangent line was calculated from Equation 6.1:

(  d D \
ta n  6 —----------- = (BC) e x p ( - C Z )

\ d Z  )
(6.3)
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normal load of 300 N/mm—along with the corresponding numerical predictions. Only two 

sliding contacts could be completed with finite element simulations, due to high 

processing times with this low sliding velocity (approximately 5 months). Therefore, the 

numerical results after two sliding contacts are presented in Figure 6.17. The results 

indicated a good agreement between the experimental and numerical observations. 

After the first sliding contact, the extrapolated plastic strain at the surface was observed 

to be 2.1 for the experimental tests, and reached 3.7 after the second sliding contact. 

The numerical model predicted plastic strains within 5.0 to 20.0% deviation from the 

experimental observations for a given depth.

6.5. COMPARISON OF THE EXPERIMENTAL OBSERVATIONS AND THERMAL 

SOFTENING MODEL

In order to test the applicability of the thermal softening constitutive equation for 

the wear tests, sliding contact experiments were performed and the experimental 

observations were compared with the predictions of the considered thermal softening 

model. This section presents the investigations performed for this purpose.

Figure 6.18 illustrates the position of the marker boundaries obtained after 

experimental sliding wear tests with two different loads of 10 N and 30 N. A regression 

analysis revealed that the position of the marker boundaries could be represented by an 

exponential-type equation (Equation 6.1). The values of coefficients in Equation 6.1 (A, 

B and C) are given in Table 6.12 for the 1100 Al. The equivalent plastic strain (e) below 

the contact surface was determined from the deformation angle 6, whose detailed 

determination is given in Section 6.4. The subsurface plastic strain distribution curves 

obtained at 10 N and 30 N are shown in Figure 6.19. Both magnitude of the subsurface 

strains and depth of the plastic zone increased with the applied load.

The flow strength of the subsurface layers in Figure 6.20 was estimated from the 

microhardness values, using the following expression given by Bowden and Tabor [111]:

H
CH

(6.4)
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Table 6.9: Comparison of the experimentally and numerically determined plastic

zone depth

Load/Thickness Exp. Plastic Num. Plastic %
(N/mm) Region Depth (pm) Region Depth (pm) difference
335.82 801.00 909.70 -13.57
343.51 1019.00 906.32 11.06
362.90 1090.00 902.59 17.19
387.93 1108.00 894.93 19.23

Table 6.10: Comparison of the experimentally and numerically determined plastic

zone width

Load/Thickness Exp. Plastic Num. Plastic %
(N/mm) Region Width (pm) Region Width (pm) difference
335.82 835.00 928.13 -11.15
343.51 914.00 928.13 -1.55
362.90 1093.00 1030.21 5.75
387.93 1144.50 1030.21 9.99
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Figure 6.15: Marker position in the 356 Al alloy after four sliding tests with a sliding

velocity of 0.15 m/s and normal load of 300 N/mm.
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Table 6.11: Coefficients A, B and C in the Equation 6.1 for the 356 Al alloy (sliding

velocity: 0.15 m/s, normal load: 300 N/mm).

Sliding Number A  (pm) B  (pm) C (1/pm)

1 110.3 333.3 0.01108

2 253.9 417.5 0.01527

3 317.9 526.2 0.01617

4 336.1 691.4 0.01352

Sliding direction

Tangent line Line
perpendicular to 
the surface

Marker

Figure 6.16: Determination of the deformation angle (0) to calculate the equivalent

plastic strain below the contact surface.
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where Of is the flow stress, H  is the microhardness and Ch  is a constant with the value 

of 3.0.

A relationship between the flow stress and plastic strains was established by 

plotting the corresponding stress and strain values— determined at the same depth 

below the surface. The resulting relationships are shown in Figure 6.21 for two different 

loads. The 1100 Al material shows a rapid strain hardening up to strain values of 5. 

However, at higher strains, the material loses its ability to strain harden and a saturation 

stress is reached. For two different loading conditions, stress-strain behaviour follows 

two different paths with two different saturation stresses. A regression analysis showed 

that these curves could be represented in the form of a Voce-type exponential 

relationship, presented in Equation 4.1. Table 6.13 lists the constants in the Voce 

equations calculated for 10 N and 30 N loads.

Figure 6.22 shows the measured temperature increase during the tests. For the 

testing condition with the applied load of 10 N, the contact temperature was increased to
o

315 K at the beginning of the test, and remained constant at the same value. For the
o

load of 30 N, the temperature was increased up to 345 K. If the effect of strain rate

hardening is assumed to be the same for two different load tests (since the sliding 

velocity and sliding distance are the same), the change of the stress-strain behaviour in 

Figure 6.21 with the normal load would be explained by the thermal softening of the
o

material— caused by the temperature difference of 30 K between the two different 

loadings.

Variations of the Johnson-Cook thermal material parameters (m) dependant on 

the temperature are presented in Figure 2.40 for some aluminum alloys. Figure 2.40 

indicates that for the 1100 Al, m is equal to 0.75 for the temperature range observed in 

the wear tests. If the flow stress-strain relationship obtained for 10 N is accepted as a 

base relationship, the change in the stress-strain behaviour of the 1100 Al material for 

30 N can be predicted by using the thermal softening constitutive equation. Figure 6.23 

shows the results of such a calculation, where thermal softening of the 1100 Al material 

was predicted by using Equation 4.9 {m = 0.75), then compared with the experimental 

results. This comparison indicated that the calculated and measured flow stress-strain 

relationships for 30 N represent a good match for the prediction of the saturation stress. 

However, for the initial part of the curve, a deviation between the experimental and
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calculated curves can be observed— perhaps due to the fact that the temperatures 

observed in the wear experiments increased slowly, and were not constant at the 

beginning of the test for the application of a 30 N normal load (Figure 6.22). Therefore, 

the thermal softening constitutive equation considered in this study was deemed an 

acceptable tool for representing the influence of the thermal softening processes on the 

mechanical behaviour of the aluminum alloys observed during sliding wear.
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Figure 6.18: Marker position in the 1100 Al samples after wear tests with 10 N and

30 N normal loads and 1 m/s sliding velocity.

Table 6.12: Coefficients A, B and C in the Equation 6.1 for the 1100 Al.

Load

(N)

Sliding Distance 

(m)

Sliding Velocity 

(m/s)

A

(pm)

B

(Pm)

C

(1/pm)

10 1000 1.0 50.7 293.8 0.07423

30 1000 1.0 116.6 838.9 0.03789
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Figure 6.19: Equivalent plastic strain vs. depth below the worn surfaces at different

loads (sliding distance = 1000m, sliding velocity = 1 m/s).
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Figure 6.21: Cumulative flow stress-strain curve of the 1100 Al material for two

different loads.

Table 6.13: Flow stress-plastic strain curve constants of the 1100 Al material for two

different loads.

Load (N) OS (MPa) 0-0 (MPa) £c

10 171.6 93.2 2.52

30 151.6 92.4 1.35
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CHAPTER 7

RESULTS AND DISCUSSION

7.1. SLIDING CONTACT BETWEEN SOLIDS

This section presents the Eulerian FE model’s results on the accumulation of 

subsurface stresses and strains in the 356 Al alloy during sliding contacts. Details of the 

Eulerian finite element model can be found in Section 4.2, and all results are based on 

the moment when the asperity was at the mid-point of its sliding motion over the 356 Al 

alloy.

7.1.1. VARIATIONS OF STRESSES AND STRAINS WITH NUMBER OF 

SLIDING CONTACTS

The von Mises stress distribution in the 356 Al surface for a sliding velocity of 

10 m/s and a normal load of 300 N/mm is presented in Figure 7.1 as fringe plots for the 

results after the initial (first), the last (seventh) and an intermediate (fourth) sliding 

contacts. The position of the maximum von Mises stress was located on the surface for 

all sliding contacts— reading between 276 MPa and 331 MPa after the first contact, and 

between 331 MPa and 386 MPa after the seventh contact. In addition, the position of the 

maximum von Mises stress was not centred under the asperity, but rather observed at 

the leading edge and in front of the asperity. Equivalent plastic strain distributions in the 

356 Al surface after the initial, the last and the fourth sliding contacts are illustrated in 

Figure 7.2 as fringe plots. The maximum plastic strain was also observed at the contact 

surface, and calculated as 2.3, 5.7 and 8.0 after the first, fourth and seventh asperity 

contacts.

The fringe plots effectively display the overall results of a finite element analysis. 

However, they only provide a general understanding of the subsurface stress and strain 

distributions by averaging the results obtained from many elements. In order to gain 

more accurate stress and strain data along the depth of the mesh, the results from some 

elements in the 356 Al alloy were recorded in the numerical simulation— specifically the
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row of elements at the mid-point of the 356 Al mesh. Figures 7.3 and 7.4 illustrate the 

accumulation of subsurface stresses and strains at the mid-point of the 356 Al alloy after 

multiple sliding contact Cycles for a sliding velocity of 10 m/s and a normal load of 300 

N/mm. In these figures, the steel asperity is at the mid-point of the 356 Al half-space. In 

addition, in Figures 7.3 and 7.4, the depth below the 356 Al alloy surface was presented 

as a dimensionless parameter (z/a)—where z is the depth beneath the contact surface 

and a is the asperity diameter (-2  mm). The highest von Mises stress calculated after a 

sliding contact of the first asperity was 290 MPa at a normalized depth of 0.05, with a 

von Mises stress of 375 MPa at the same depth after the passage of the seventh 

asperity. The results indicated that subsurface stresses reached a steady state value, 

with a finite number of contacts. The accumulation of the stress between the first and the 

last asperities was approximately 29 %, while it was only 1.7 % between the sixth and 

the seventh asperities. Unlike the von Mises stress, the plastic strains continued to 

increase as the number of the sliding contacts increased. The maximum equivalent 

plastic strain was approximately 2 at a normalized depth of 0.05 after the passage of the 

first asperity, and reached a value of 7.6 after the passage of the last asperity. The 

numerical results indicated that there was no significant plastic strain below a normalized 

depth of 0.5 (z/a > 0.5) for the loading condition investigated.

7.1.2. VARIATIONS OF HYDROSTATIC PRESSURE WITH NUMBER OF 

SLIDING CONTACTS

The hydrostatic pressure distribution in the 356 Al alloy is presented in Figure 7.5 

as fringe plots. Figure 7.6 illustrates the variation of the subsurface hydrostatic pressure 

in the depth of material below the contact surface after each contact cycle. The resulting 

observations indicated that the hydrostatic pressure was much higher than the von 

Mises stress in the close vicinity of the contact region. The maximum hydrostatic 

pressure was 504 MPa, 637 MPa and 700 MPa after the first, fourth and seventh 

asperity contacts— approximately 75 to 90 % higher than the maximum von Mises 

stresses observed at the contact surface. Similar to the position of the maximum von 

Mises stress, the maximum hydrostatic pressure was also not distributed symmetrically 

under the asperity; but rather positioned at the leading edge.
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Figure 7.1: von Mises stress (in MPa units) distribution in the 356 Al alloy after

multiple sliding contacts: (a) after the first contact, (b) after the fourth 

contact and (c) after the seventh contact (Sliding velocity: 10 m/s, Normal 

load: 300 N/mm, Equation 4.1, Eulerian model).
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Figure 7.2: Equivalent plastic strain distribution in the 356 Al alloy after multiple

sliding contacts: (a) after the first contact, (b) after the fourth contact and 

(c) after the seventh contact (Sliding velocity: 10 m/s, Normal load: 

300 N/mm, Equation 4.1, Eulerian rpodel).
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Figure 7.5; Hydrostatic pressure (in MPa units) distribution in the 356 Al alloy after 

multiple sliding contacts: (a) after the first contact, (b) after the fourth 

contact and (c) after the seventh contact (Sliding velocity: 10 m/s, Normal 

load: 300 N/mm, Equation 4.1, Eulerian model).
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7.1.3. SUBSURFACE STRAIN RATE DISTRIBUTION

Figure 7.7 shows the subsurface strain rate distribution at the mid-point of the 

356 Al alloy after multiple asperity contacts (sliding velocity: 10 m/s and normal load: 

150 N/mm). At a normalized depth of 0.05, the strain rate ranged from 3.35 x 104 s'1 to 

5.27 x 104 s"1 between the first and last asperity contacts. However, the strain rate 

decreased quickly to zero at the normalized depth of 0.5.

7.1.4. EFFECT OF NORMAL LOAD

Loads of 200 N/mm and 300 N/mm were applied to the asperities to study the 

effect of the applied normal load on the distributions of subsurface stresses and strains. 

Up to 14 asperities were considered for 200 N/mm loading. Figures 7.8 and 7.9 show 

how the stresses and strains were affected by the change of the normal load. A 

decrease in the normal load from 300 N/mm to 200 N/mm caused a decrease in the von 

Mises stresses of approximately 10 %, and in the plastic strains by 50 % near the 

contact surface. In addition, the normalized depth of the plastically yielded region 

decreased from 0.5 to 0.3.

7.1.5. EFFECT OF FRICTION

Several coefficients of friction (p) ranging from 0.0 to 0.8 were considered in the 

contact algorithm to investigate the effect of friction on the subsurface stresses and 

strains. Figure 7.10 illustrates the subsurface maximum von Mises stress and equivalent 

plastic strain values observed after each contact cycle for different values of p. In 

comparison, the experimentally defined, stress/strain relationship is also included 

(solid line in Figure 7.10). The employment of the Eulerian finite element formulation 

for the 356 Al alloy revealed significantly high strains (eP>20) in the 356 Al alloy. With 

the implementation of friction, the subsurface stresses reached a saturation value of 400 

MPa.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



St
ra

in
 

Ra
te 

(1
/s

)

60000

50000

— 1st Asperity 
2nd Asperity 

—▼— 3rd Asperity 
— 4th Asperity 
—■— 5th Asperity 
—«— 6th Asperity 
—♦— 7th Asperity

40000

30000

20000

10000

1.40.8 1.0 1.20.4 0.60.0 0.2

z/a

Figure 7.7: Change of the strain rate with multiple sliding contacts at the mid-point of

the 356 Al alloy (Sliding velocity: 10 m/s, Normal load: 300 N/mm, 

Equation 4.1, Eulerian model).
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Figure 7.8. Effect of the normal load on the distribution of von Mises stress (Sliding 

velocity: 10 m/s, Equation 4.1, Eulerian model).
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velocity: 10 m/s, Equation 4.1, Eulerian model).
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Figure 7.11 presents the von Mises stress and the hydrostatic pressure 

distributions below the contact surface for coefficients of friction of 0.0 and 0.3, when the 

seventh asperity was at the mid-point of the 356 Al alloy. The magnitude of the 

hydrostatic pressure was approximately 700 MPa near the contact surface, compared to 

375 MPa for the von Mises stress at the same location for p=0.0. The hydrostatic 

pressure was much larger than the effective stress at the surface to suppress the 

damage. However, the magnitude of the hydrostatic pressure decreased significantly 

faster than the von Mises stress—the two curves intersecting at a normalized depth of 

approximately 0.35 below the contact surface. The state of stress at this depth is such 

that the effective stress may be large enough to initiate void growth, while the hydrostatic 

pressure may not be significant enough to suppress it. The combination of an increase in 

the von Mises stress and a reduction in the hydrostatic pressure with p=0.3 (Figure 7.11) 

resulted in the movement of the maximum damage accumulation depth towards the 

surface (z/a=0.25).

7.1.6. EFFECT OF SLIDING VELOCITY

Figure 7.12 shows the effect of the sliding velocity on the distribution of 

equivalent plastic strain in the layers adjacent to the surface of the 356 Al alloy after 

sliding contact with only one asperity. When the sliding velocity was decreased from 

40 m/s to 0.5 m/s, the maximum plastic strain at the surface increased approximately 

40 %. In addition, a decrease in the sliding velocity increased the normalized depth of 

the plastically yielded region from approximately 0.4 to 1.0, which is a dynamic effect. 

When the sliding velocity is decreased, the force applied to the asperities in the X 

direction also decreases during the steady state motion (see Section 6.2.3), prompting a 

decrease in the penetration of the asperities into the aluminum alloy, as well as a 

decrease in the overall deformation.

7.1.7. EFFECT OF DISTANCE BETWEEN ASPERITIES

In order to analyze the interactions between the stress and strain fields of 

consecutive asperities, the distance between the asperities was altered. In initial 

simulations, the distance between the asperities was 9 mm. Distances of 6 mm, 3 mm
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and 2 mm were also investigated. Figure 7.13 presents the accumulation of plastic strain 

at a specific depth (100 ym) with asperity contacts at different asperity distances. A 

dimensionless parameter was defined— namely d/<|>, where d represents the distance 

between the asperities and <|> is the asperity diameter. Figure 7.13 indicates that there 

was not a significant difference in the stress strain distribution for asperity distances of 9 

and 6 mm (d/<|>=4.5 and d/<j)=3, respectively). For lower values of d/<j>, plastic strain 

increased slightly.

In this section, the results of the accumulation of subsurface stresses and 

strains— including von Mises stress, equivalent plastic strain, strain rate and hydrostatic 

pressure— in the 356 Al alloy have been presented during sliding contacts. The Eulerian 

element formulation proved successful for modeling the extensive deformation of the 

356 Al material observed during sliding wear applications. Experimental findings show 

that the temperature increase in contacting solids might have an effect during high 

plastic deformation applications, possibly changing the deformation characteristics. In 

addition, this investigation’s numerical findings indicate that strain rates might also be 

high during sliding contacts—and therefore capable of changing the mechanical 

characteristics of the 356 Al alloy. The following section presents investigation results 

that explore the influences of thermal softening and strain rate hardening on the 

distribution of subsurface stresses and strains in the 356 Al alloy.

7.2. EFFECTS OF TEMPERATURE AND STRAIN RATE ON THE SUBSURFACE 
DAMAGE

This section presents the results of the Lagrangian coupled thermal and 

structural finite element model. Details of the finite element model can be found in 

Section 4.3.

7.2.1. VARIATIONS OF SUBSURFACE STRESSES AND STRAINS WITH 
NUMBER OF SLIDING CONTACTS

This section presents subsurface stress and strain predictions from a numerical 

model that considers strain hardening, strain rate and thermal effects for a sliding 

velocity of 10 m/s and a normal load of 150 N/mm.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vo
n 

Mi
se

s 
St

re
ss

, 
Hy

dr
os

ta
tic

 
Pr

es
su

re
 

(M
Pa

)

700

600

-o — Hydrostatic Pressure 
- a — von Mises Stress

•  ▲ = 0.0
•  a  n  =  0.3

500

400

300

200

100

1.501.00 1.250.00 0.25 0.50 0.75

z/a

Figure 7.11: The hydrostatic pressure and the von Mises stress distributions below the

surface of the 356 Al after passage of the seventh asperity for n=0.0 and 

p=0.3 (Sliding velocity: 10 m/s, Normal load: 300 N/mm, Equation 4.1, 

Eulerian model).
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Figure 7.14 illustrates the distribution of the von Mises stress in the 356 Al half

space after the initial (first), last (seventh) and an intermediate (fourth) sliding contacts 

as fringe plots. Variations in the subsurface von Mises stress with the depth of material 

below the contact surface after each contact cycle is shown in Figure 7.15, where the 

steel asperity is at the mid-point of the 356 Al half-space. The X-axis in Figure 7.15 is a 

dimensionless normalized depth (z/a), where z is the depth beneath the contact surface 

and a is the counterface diameter (= 2 mm). The von Mises stress at the contact surface 

was 513.6 MPa after the first contact, 585.5 MPa after the fourth and 506.9 MPa after 

the seventh. The von Mises stresses observed at the surface reached a steady state 

after the fourth contact, with a 14 % increase between the first and the fourth contacts, 

but only a 2 % increase after the fourth. The maximum von Mises stress was positioned 

just under the asperity, close to the leading edge. A plateau was observed in the 

distribution of the von Mises stress approximately at z/a = 0.15. This plateau was caused 

by dynamic effects resulting from the inertia of the system. A decrease in the plateau 

was observed with increasing asperity contacts, which is caused by the decrease in the 

strain rates (Figure 7.22) and increase in the temperature (Figure 7.21) with continues 

asperity contacts.

Figure 7.16 shows the equivalent plastic strains in the 356 Al half-space as fringe 

plots. Figure 7.17 displays the variation of plastic strains as a function of z/a at different 

contact cycles. The maximum value of plastic strain was found at the surface—  

specifically 0.19, 0.78 and 1.30 for the first, fourth and seventh contacts. The plastic 

strains were less than 0.01 in the subsurface material layers at z/a > 0.2.

7.2.2. VARIATION OF HYDROSTATIC PRESSURE WITH NUMBER OF 

SLIDING CONTACTS

Figure 7.18 presents the fringe plots of the hydrostatic pressure distribution, 

obtained after multiple asperity contacts at a sliding velocity of 10 m/s and a normal load 

of 150 N/mm. Figure 7.19 reveals the hydrostatic pressure distribution at the mid-point of 

the 356 Al alloy at different contact cycles. The value of the hydrostatic pressure at the 

contact surface did not change with increasing asperity contact numbers. It was 1150 ± 

100 MPa between the first and seventh contacts. The value of the hydrostatic pressure 

did however, decrease quickly with the z/a. At z/a > 0.1, it was less than the values of
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Figure 7.14: von Mises stress (MPa) distribution in the 356 Al half-space after multiple

sliding contacts: (a) after the first contact, (b) after the fourth contact and 

(c) after the seventh contact (Sliding velocity: 10 m/s, Normal load: 

150 N/mm, Equation 4.5, Lagrangian model).
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Figure 7.17: Accumulation of the subsurface equivalent plastic strains with increasing 

number of the sliding contacts at the mid-point of the 356 Al half-space 

(Sliding velocity: 10 m/s, Normal load: 150N/mm, Equation 4.5, 

Lagrangian model), (z is the depth beneath the contact surface and a is 

the asperity diameter).
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fourth contact and (c) after the seventh contact (Sliding velocity: 10 m/s, 

Normal load: 150 N/mm, Equation 4.5, Lagrangian model).
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10 m/s, Normal load: 150 N/mm, Equation 4.5, Lagrangian model).
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the von Mises stress. This distribution difference creates a damage gradient that will be 

discussed in later sections.

7.2.3. VARIATION OF THE DEFORMATION INDUCED SUBSURFACE 

TEMPERATURES WITH NUMBER OF SLIDING CONTACTS

Figure 7.20 illustrates the sliding-induced temperature variation under the 356 Al 

half-space surface with increasing number of sliding contacts. The maximum 

temperature, at the end of the first asperity contact cycle, was 323 K at z/a=0. The 

temperature at z/a=0 increased to 341 K after the fourth contact, and 346 K after the last 

contact. Figure 7.21 presents the subsurface temperature distribution with the contact 

cycles at the mid-point of the 356 Al half-space. There was a total temperature increase 

of 45 K at the surface after seven sliding contacts. The temperature dropped to 300 K at 

z/a=0.135, 0.425 and 0.595 after the first, fourth and seventh contacts. The surface 

temperature reached a steady state after the 5th sliding contact, with only 0,3% increase 

in the temperature afterwards.

7.2.4. SUBSURFACE STRAIN RATE DISTRIBUTION WITH THE INCREASE IN 

THE NUMBER OF SLIDING CONTACTS

Figure 7.22 presents the strain rates that the material at the mid-point of the 356 

Al half-space were subjected to. The strain rate ranged from 7.8 x 103s'1 to 9.8 x 103 s'1 

at z/a-0,0125. However, a rapid decrease was observed in the material layers at deeper 

locations—with the strain rate reading 1.8 x 103 s'1 at z/a=0.Q5 and 1.0 x 102 s‘1 at 

z/a=0.10, after the last contact. The predicted high values of strain rate in the close 

vicinity of the contact surface result in an unrealistically high hardening of the aluminum 

alloy, due to limitations of the equations used [82]. Therefore, the results for the close 

vicinity of the surface are not included in the discussion of the subsurface damage rate 

presented in Section 7.5. In addition, the results indicated that the distribution of strain 

rate was independent of the number of sliding contacts after the second contact—when 

the positions deeper than a normalized depth of 0.05 (z/a>0.05) were examined.
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Figure 7.20: Temperature (in Kelvin) distribution in the 356 Al half-space after multiple

sliding contacts: (a) after the first contact, (b) after the fourth contact and 

(c) after the seventh contact (Sliding velocity: 10 m/s, Normal load: 

150 N/mm, Equation 4.5, Lagrangian model).
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the mid-point of the 356 Al half-space (Sliding velocity: 10 m/s, Normal 

load: 150 N/mm, Equation 4.5, Lagrangian model).

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



St
ra

in
 

Ra
te 

(1
/s

)

10000

8000 1st Asperity 
2nd Asperity 
3rd Asperity 
4th Asperity 
5th Asperity 
6th Asperity 
7th Asperity

6000

4000

2000

0.300.10 0.15 0.20 0.250.00 0.05

z/a

Figure 7.22: Change of the strain rate with multiple sliding contacts at the mid-point of

the 356 Al half-space (Sliding velocity: 10 m/s, Normal load: 150 N/mm, 
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7.2.5. EFFECT OF MATERIAL MODEL ON THE PREDICTION OF 

SUBSURFACE DEFORMATION

Simulations using different material models were performed in an effort to 

explore the influence of the material model on the subsurface deformation prediction. 

The following material models were used, and the results were compared:

1- A strain hardening material model only (Equation 4.7),

2- A strain hardening material model with strain rate effects (Equation 4.8),

3- A strain hardening material model with thermal effects (Equation 4.9),

4- A strain hardening material model with thermal and strain rate effects 

(Equation 4.5).

Figure 7.23 presents a comparison of the material models’ effects on the 

prediction of subsurface plastic strains. Similarly, Figure 7.24 shows the effects of the 

material model on the prediction of subsurface temperature distribution in the 356 Al 

half-space after the seventh sliding contact. An equivalent plastic strain of 4.7 at a 

normalized depth of 0.0125 was observed when using the strain hardening material 

model (Equation 4.7). The predicted temperature increase at the normalized depth of 

0.0125 was 80 K with the strain hardening material model. When this temperature 

increase was considered in the constitutive equation, the thermal softening of the 356 Al 

material caused a 3 % increase in the predicted plastic strain. The numerical model with 

strain hardening and strain rate effects (Equation 4.8) predicted an equivalent plastic 

strain of 1.2 at the same depth—which corresponds to a 75 % decrease when compared 

with the strain hardening model’s prediction. This difference was due to the high strain 

rate (7950 s'1) observed at the surface. Considering strain rate in the material model 

caused a decrease in the plastic deformation, prompted by the strain rate hardening of 

the 356 Al alloy. When both strain rate and thermal effects were considered in the strain 

hardening material model (Equation 4.5), the plastic strain at the normalized depth of 

0.0125 was approximately 1.3— a 72 % decrease when compared to the prediction of 

the model using Equation 4.7. This difference in the plastic strain prediction reaches 

76 % at the normalized depths of 0.050 and 0.075 when the results obtained with 

Equations 4.5 and 4.7 are compared. In summary, Figure 7.23 indicates that strain rate 

effects were more dominant than thermal effects on the subsurface deformation of the 

356 Al half-space for the loading conditions investigated.
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A 45 % difference in the deformation-induced temperature was observed at the 

surface between the strain hardening model and the material model that accounts for 

strain hardening, strain rate hardening and thermal softening. The model considering 

only strain hardening predicted a temperature rise of 80 K at the surface, while the 

numerical model with strain hardening, thermal and strain rate effects indicated a 45 K 

increase (Figure 7.24).

7.2.6. EFFECT OF NORMAL LOAD

Figure 7.25 illustrates how the plastic strains were influenced by a change in the 

normal load. An increase of the load from 150 N/mm to 250 N/mm caused plastic strains 

to increase 100 %, according to Equation 4.5. In addition, the normalized depth of the 

plastically yielded region increased from 0.2, to 0.3. However, according to the strain- 

hardening model (Equation 4.7), this increase was only 50 %.

Figure 7.26 illustrates the influence of the normal load on the accumulation of the 

stresses, strains and temperature when the number of contacts is increased. A higher 

normal load caused higher plastic deformation in the 356 Al half-space, as expected, but 

the von Mises stress calculated after the seventh contact at a normal load of 250 N/mm 

was lower than that for a 150 N/mm load. This is attributed to the softening of the 

material prompted by the temperature increase at the contact surfaces. The temperature 

increase at the surface was approximately 45 K with a 150 N/mm load, and increased to 

130Kat 250 N/mm.

7.2.7. EFFECT OF FRICTION

Figure 7.27 presents the effects of friction on the accumulation of the subsurface 

stresses, strain and temperatures in the 356 Al half-space after the third contact. The 

changes in the subsurface values against depth and position of the surface are also 

indicated in Figure 7.27. With p=0.0, the von Mises stress, plastic strain and temperature 

at the surface were observed to be 550 MPa, 0.55 and 330 K, respectively. With the 

application of friction (ja=0.3), those values reached 700 MPa, 3.3 and 370 K at the 

surface. In addition, Figure 7.27 indicates that the deformation was similar—regardless 

of the friction condition—"when the locations distant from the surface were examined.
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7.2.8. EFFECT OF SLIDING VELOCITY

Figure 7.28 shows the effects of the sliding velocity on the accumulation of 

subsurface stresses, strains and temperature in the 356 Al half-space after the last 

contact cycle. When the sliding velocity was decreased, the equivalent plastic strain at 

the surface increased 15 % while the von Mises stress and the temperature stayed 

approximately constant at 595 MPa and 345 K. Therefore, the increase in the plastic 

deformation can be attributed to the decrease in the strain rate. The strain rate at the 

surface was 7.9 x 103 s'1 for a sliding velocity of 10 m/s, and 6.4 x 103 s'1 for 5 m/s. A 

decrease in the sliding velocity causes a decrease in the strain rate— resulting in a lower 

strain rate hardening that permits more plastic deformation. In addition, the von Mises 

stress, plastic strain and temperature observations were similar—regardless of the 

sliding velocity when locations that were distant from the surface were examined. This 

suggests that the results were not affected by the chosen geometry of the 356 Al half

space, and that the depth of the material considered in the finite element model was 

large enough to minimize the unrealistic response of the material at the ends of the 

mesh.

In summary, this section presents the results of the sliding contact investigation 

using a Lagrangian coupled thermo-mechanical model. The influence of thermal 

softening and strain rate on subsurface stress and strain accumulation was also 

explored. In the next section, the results of the Eulerian and Lagrangian sliding contact 

models will be compared.

7.3. COMPARISON OF EULERIAN AND LAGRANGIAN SLIDING MODELS

The results of the two sliding contact models presented in Sections 7.1 and 7.2 

cannot be compared directly, because the models had both similar and dissimilar 

features. The main difference between the proposed models was the element 

formulation. The Eulerian element formulation successfully modeled the high 

deformation observed in the aluminum alloys under the application of high normal loads 

when a solution couldn’t be obtained with a Lagrangian element formulation— because 

of the excessive element distortion. However, the Eulerian model was not successful 

when applied to a coupled thermal and mechanical analysis. The FE model utilizing
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Lagrangian elements proved a successful alternative for addressing the coupled thermo

mechanical analysis. In addition, the geometries of the models were similar, but not the 

same. The models had the same asperity diameter and aluminum alloy length, and 

width, but the Eulerian model had a finite third dimension while the Lagrangian model 

used a plane strain element formulation and its third dimension was assumed as infinite.

Despite the fact that the overall dimensions were different, the deformation 

predictions of both models can be compared in terms of unit thickness. Figure 7.29 

shows the Eulerian and Lagrangian equivalent plastic strain predictions for different 

normal loads obtained with strain hardening material models (Equations 4.1 and 4.7). 

The plastic strain results, when extrapolated to the surface, show that maximum plastic 

strain was 7, 8, 10 and 17 for the normal loads of 150, 200, 250 and 300 N/mm, 

respectively. The models made similar predictions for the distribution of plastic strain 

below the surface, and the results from the Eulerian and Lagrangian models were 

compatible. However, the plastic strain predictions of the two models were the same for 

two different loads (200 and 250 N/mm) below the normalized depth of 0.075. Similarly, 

distributions of the von Mises stress at the mid-point of the 356 Al after the seventh 

sliding contact—obtained with the Eulerian and Lagrangian models—are presented in 

Figure 7.30. The maximum von Mises stress predicted at the surface was between 363 

and 395 MPa for the loads of 150 to 300 N/mm.

Figure 7.31 illustrates the subsurface maximum stress and strain values 

observed after the passage of the first and last asperities for different normal loads. For 

comparison, the experimentally defined stress/strain relationship was also included 

(solid line in Figure 7.31). Figure 7.31 indicates that with an increasing normal load, 

subsurface stresses reach saturation (400 MPa) while subsurface plastic strains 

continue to increase. The increase in the plastic deformation at the surface of the 

356 Al alloy after the passage of the last asperity was 15 % when the normal load 

was increased from 150 N/mm to 200 N/mm. The increase in the plastic deformation 

was 25 % and 70 % when the normal loads were increased from 200 N/mm to 

250 N/mm and from 250 N/mm to 300 N/mm, respectively. This implies that the 

increase in the plastic deformation becomes more severe with higher normal loads. 

Figure 7.31 also proves that the developed Eulerian and Lagrangian models were 

consistent.
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Figure 7.29: Distribution of the equivalent plastic strain at the center of the 356 Al after

seventh sliding contact (Sliding velocity: 10 m/s, obtained with strain 

hardening material model (Equations 4.1 and 4.7)).
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7.4. EFFECTS OF SECONDARY HARD PARTICLES ON THE SUBSURFACE 

DAMAGE

This section presents the results of the Lagrangian coupled thermal and 

structural finite element model, investigating the influence of the Si particles on 

subsurface damage. Details of the finite element model can be found in Section 4.4.

Figures 7.32 to 7.35 illustrate the von Mises stress distribution observed in the 

356 Al half-space after the seventh sliding contact— obtained with the original model (no 

Si particle), as well as the models that considered Si particles—with different shapes for 

a sliding velocity of 10 m/s and a normal load of 250 N/mm. The maximum von Mises 

stress was observed at the surface in the original model, but the implementation of Si 

particles moved the position of the maximum von Mises stress to subsurface regions 

where Si particles were embedded. Interestingly, the maximum stress position was 

inside the Si particle, below the interface between the particle and the 356 Al matrix. 

Figure 7.32 suggests that before the implementation of Si particles inside the 356 Al 

half-space, the maximum von Mises stress was observed to be 575 MPa. With the 

consideration of square shaped Si particles, the maximum von Mises stress increased 

approximately 35 % to 775 MPa. A 36.5 % increase in the maximum von Mises stress 

was observed with the implementation of a higher aspect ratio rectangular Si particle. 

When the observations of square and circular shaped Si particles were compared where 

the subsurface positions and the aspect rqtios of the particles were approximately the 

same, the results indicated that the shape of the Si particle did not influence the stress 

distribution inside the 356 Al alloy. However, the stresses inside the Si particles did 

appear to be influenced by the shape of the Si particles. The von Mises stress ranged 

between 600 MPa and 775 MPa in the square shaped Si particle, and ranged between 

600 and 800 MPa for a circular shaped Si particle.

Figure 7.36 shows the distribution of the von Mises stress at the mid-point of the 

356 Al half-space and Si particles against a normalized depth— a parameter defined as 

the ratio of depth below the surface and the asperity diameter. Figure 7.36 indicates that 

the implementation of subsurface Si particles causes a decrease in the von Mises stress 

at the subsurface positions above the Si particle. Due to elasticity, an increase in the von 

Mises stress inside the Si particles is observed. In addition, for higher aspect ratios of Si 

particle, the increase in the von Mises stress inside the Si particle is higher.
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Figure 7.32: von Mises stress (MPa) distribution in the 356 Al half-space after seventh

sliding contact (Sliding velocity: 10 m/s, Normal load: 250 N/mm, 

Equation 4.5).
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Figure 7.33: von Mises stress (MPa) distribution in the 356 Al half-space after seventh

sliding contact with the implementation of a square shaped Si particle 

(Sliding velocity: 10 m/s, Normal load: 250 N/mm, Equation 4.5).
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Figure 7.34: von Mises stress (MPa) distribution in the 356 Al half-space after seventh

sliding contact with the implementation of a rectangular shaped Si particle 

(Sliding velocity: 10 m/s, Normal load: 250 N/mm, Equation 4.5).
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Figure 7.35: von Mises stress (MPa) distribution in the 356 Al half-space after seventh

sliding contact with the implementation of a circular shaped Si particle 

(Sliding velocity: 10 m/s, Normal load: 250 N/mm, Equation 4.5).
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Figures 7.37. and 7.38 present the distribution of the equivalent plastic strain 

below the surface for models both with and without Si particles. The results indicate that 

the Si particles resisted penetration of the plastic deformation to the subsurface layers 

that are located below them, as expected. However, for the subsurface positions in close 

vicinity to the contact surface— specifically above the Si particles— an increase in the 

plastic deformation was observed. Figure 7.39 shows the distribution of subsurface 

plastic strain at the mid-point of the 356 Al half-space with a circular shaped Si particle. 

Figure 7.39 indicates that at a normalized depth of 0.0375 there is, approximately, a 4 % 

increase in the plastic strain with the implementation of a Si particle. Below a normalized 

depth of 0.0375 there was up to a 9% decrease in the plastic strain when the results 

were compared with the original model, which did not consider a Si particle. The results 

suggest that there was a 3.0 to 20.1 % decrease in the plastic strain in the positions 

below the Si particle.

Figure 7.40 displays the change in the distribution of subsurface hydrostatic 

pressure at the mid-point of the 356 Al half-space with a square shaped Si particle after 

the seventh asperity contact at a sliding velocity of 10 m/s and a normal load of 

250 N/mm. Hydrostatic pressure was increased to 25 % and 19 % at the subsurface 

positions just before, and after the Si particle. The subsurface positions that 

corresponded to the Si particle showed a decrease in the hydrostatic pressure ranging 

between 17.5 to 26.5 % when results were compared with the predictions of the model 

that did not implement an Si particle.

The presence of elastic Si particles inside the 356 Al half-space caused a 

decrease in the predicted temperature. Figure 7.41 illustrates the change in the 

subsurface temperature distribution at the mid-point of the 356 Al half-space with the 

implementation of a Si particle below the surface at a sliding velocity of 10 m/s and a 

normal load of 250 N/mm. A 4 % decrease in the temperature at the surface was 

observed after the implementation of a square shaped Si particle, due to a decrease in 

the total plastic deformation.

In an effort to investigate the change of subsurface stresses and strains after the 

implementation of a Si particle below the surface of the 356 Al half-space, the 

subsurface regions surrounding the Si particle were categorized into nine regions and 

the subsurface characteristic predictions were compared with the original model that did 

not consider a Si particle. The subsurface regions adjacent to the square shaped Si
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particle are illustrated in Figure 7.42. The subsurface positions over the Si particle were 

designated as regions above the Si particle (Regions 1, 2 and 3), and will be referred to 

accordingly. Similarly, the regions lower than the Si particles were defined as regions 

below the Si particle (Regions 7, 8 and 9). The regions at the same subsurface positions 

as the Si particles were identified as back (Region 4) and front (Region 6) edges. Region 

5 represents the Si particles, themselves.

Distributions of the von Mises stress, hydrostatic pressure, equivalent plastic 

strain, strain rate and temperature were determined, both inside the Si particles and in 

the surrounding regions— up to three elements away from the Si particles—for seven 

sliding contacts. Changes in the subsurface distributions with the implementation of a Si 

particle are summarized as percentages for different shaped Si particles in Tables 7.1, 

7.2 and 7.3. The values for these were taken when the asperities were at the top of the 

Si particle. Trends observed after the implementation of a Si particle were similar in all 

regions for the square and rectangular shaped Si particles. However, consideration of a 

higher aspect ratio of Si particle caused a higher decrease or increase in the subsurface 

values. Trends in the subsurface values followed a similar drift with the implementation 

of a circular shaped Si particle, or square shaped Si particle in some regions (Regions 1, 

2, 4, 5, 7 and 8). However, there were significant differences in the trends observed for 

the other regions.

The results suggested that the implementation of an elastic Si particle caused a 

decrease in the predicted temperature in all subsurface regions surrounding the Si 

particle. This was an expected result since the temperature increase is calculated from 

the plastic deformations (Equation 4.6). When a Si particle was introduced into a 356 Al 

matrix, it prompted an increase in the von Mises stress, and a decrease in the 

hydrostatic pressure inside the Si particles (Region 5). The von Mises stress increase in 

Region 5 ranged between 53.0 % and 82.0 % for the square and circular shaped Si 

particles. However, up to 18.2 % decrease in hydrostatic pressure was observed for the 

circular shaped Si particle, while the reduction of hydrostatic pressure was 

approximately 26.5 % for the square shaped Si particle. As expected, there was no 

plastic deformation or corresponding strain rates in the elastic Si particles. The 

introduction of a Si particle prompted an increase in the von Mises stresses in the 

diagonal regions (Regions 1, 3, 7 and 9) and Region 8 (just below the Si particle).
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Figure 7.37: Equivalent plastic strain distribution in the 356 Al half-space after seventh

sliding contact (Sliding velocity: 10 m/s, Normal load: 250 N/mm, 

Equation 4.5): (a) the model not considering a Si particle and (b) the 

model with square shaped Si particle.
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Figure 7.38: Equivalent plastic strain distribution in the 356 Al half-space after seventh

sliding contact (Sliding velocity: 10 m/s, Normal load: 250 N/mm, 

Equation 4.5): (a) the model with rectangular shaped Si particle and (b) 

the model with circular shaped Si particle.
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Figure 7.39: Equivalent plastic strain distribution at the mid-point of the 356 Al half

space after seventh sliding contact with and without the implementation of 

a Si particle (Sliding velocity: 10 m/s, Normal load: 250 N/mm, 

Equation 4.5).
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Figure 7.40: Hydrostatic pressure (in MPa units) distribution at the mid-point of the 356

Al half-space after seventh sliding contact with and without the 

implementation of a Si particle (Sliding velocity: 10 m/s, Normal load: 

250 N/mm, Equation 4.5).
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Figure 7.41: Change in the subsurface temperature distribution at the mid-point of the 

356 Al half-space with the implementation of a Si particle below the 

surface (Sliding velocity: 10 m/s, Normal load: 250 N/mm, Equation 4.5).
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Table 7.1: Change in the subsurface characteristics with the implementation of a square shaped Si particle in the 356 Al matrix

for a sliding velocity of 10 m/s and normal load of 250 N/mm (It: increase, ft: decrease).

Subsurface
Position

von Mises 

Stress
Hydrostatic

Pressure
Equiv. Plastic 

Strain

Strain
Rate

Temperature

Region 1 up to 8.5 % ft 2.2-21.8%  ft 0.4 -12.3 % ft 11.0 -38.0%  ft 1.6-2.6%  ft

Above Si 
particle

Region 2 0.4 — 11.8% ft 7.5-25.0%  ft 4.8-12.7%  ft 0.7 -  3.8 % ft 2 .3-3 .8%  ft

Region 3 2.5 -11.5%  ft 1.5-12.3% ft 4.8-9.2%  ft up to 29.3 % ft 3.0 -  3.9 % ft

Back edge Region 4 4.1 -  5.7 % ft 2.0 -  2.8 % ft 18.7-44.5% ft 29.6 -  37.1 % ft 1.8-2.1 %ft

Si particle Region 5 54.0-81.7% ft 17.5-26.5% ft - - 1.9-2.7%  ft

Front edge Region 6 up to 3.7 % ft 4.4-14.9%  ft 5.5-16.3%  ft 8.7-20.2%  ft 2.3-2 .6%  ft

Region 7 3.9 -  7.7 % ft 1.9-2.5%  ft 2.7-24.4%  ft 29.4-68.2% ft 1.7-2.0%  ft

Below Si 
particle

Region 8 4.8 -5 .6%  ft 16.8-19.2% ft 1.4-2.4%  ft up to 5.9 % ft 2.1 -2 .4%  ft

Region 9 2.7-10.1 %ft 3.7-9.2%  ft 2.2 -  3.9 % ft 29.1 -68.1 %ft 1.9-2.3%  ft
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Table 7.2: Change in the subsurface characteristics with the implementation of a rectangular shaped Si particle in the 356 Al

matrix for a sliding velocity of 10 m/s and normal load of 250 N/mm (It: increase, ft: decrease).

Subsurface
Position

von Mises 

Stress
Hydrostatic

Pressure
Equiv. Plastic 

Strain
Strain
Rate

Temperature

Region 1 1.3-9.3% ft 7.0-15.7% ft 0.9-12.8% ft 13.0-31.9% ft 0.6-1.2% ft

Above Si 
particle

Region 2 up to 7.2 % ft 4.5-25.4% ft 1.2-14.4% ft 1.9-6.6% ft 1.3-2.2% ft

Region 3 1.5-24.2% ft 3.0 -  39.0 % ft 0.4-8.6% ft up to 24.4 % ft 2.5-3.6% ft

Back edge Region 4 0.6 -  7.3 % ft 3.0-8.8% ft 10.8-52.5% ft 12.0-48.0% ft 1.5-1.8% ft

Si particle Region 5 26.7-101.3% ft 0.7-32.0% ft - - 1.2 -1.9 % ft

Front edge Region 6 up to 3.0 % ft 2.3 -18.7% ft 2.2 -  12.8 % ft 3.3-16.3% ft 1.9-2.0% ft

Below Si 
particle

Region 8 6.6-25.9% ft 7.0-11.2% ft up to 2.5% ft up to 7.0 % ft 1.3-1.7% ft
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Table 7.3: Change in the subsurface characteristics with the implementation of a circular shaped Si particle in the 356 Al matrix

for a sliding velocity of 10 m/s and normal load of 250 N/mm (fl: increase, ft: decrease).

Subsurface
Position

von Mises 
Stress

Hydrostatic
Pressure

Equiv. Plastic 
Strain

Strain
Rate

Temperature

Region 1 2.1-8.4%  ft 9.8-18.7%  ft 3.2 -  9.9 % ft 12.7-28.6% ft 1.7-2.2%  ft
Above Si 

particle
Region 2 3.1 -  11.6 % II 2.7 -  3.2 % ft 1.0-9.7%  ft 1.8-7.7%  ft 2.2-2.8%  ft

Region 3 0.5-3.4%  ft 0.2-13.6%  ft up to 1.0% ft 10.2-17.5% ft 2.8-2.9%  ft

Back edge Region 4 3.1 -  3.3 % ft 2.4-19.4%  ft 14.8-38.6% ft 4.6-34.1%  ft 1.9-2.4%  ft

Si particle Region 5 52.3 -  80.7% ft 12.4 -  18.2 % ft - - 2.0-2.6%  ft

Front edge Region 6 3.0-19.2%  ft 5.4-21.3%  ft 6.3-22.4%  ft 7.3-64.5%  ft 2.4-2.8%  ft

Region 7 0.6-3.9%  ft 1.5-7.7%  ft 9.3-16.6%  ft 2.3-42.3%  ft 1.7-2.3%  ft

Below Si 

particle
Region 8 2.6-6.3%  ft 0.8-23.9%  ft 3.1-20.1%  ft 4.5-15.6%  ft 0 .9-1 .9%  ft

Region 9 1.5-8.7%  ft 6.5 -  20.4 % ft 3.3-25.5%  ft 37.8 -  64.3% ft 1.8-2.5%  ft
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Regions 2, 4 and 6 observed a decrease in the von Mises stresses with the 

implementation of square and rectangular shaped Si particles. An increase in the von 

Mises stress was observed at the front edge of the circular Si particle (Region 6). Trends 

in hydrostatic pressure changes were the same for all shapes of Si particles-—with an 

increase in the hydrostatic pressure at the locations above and below the Si particles 

(Regions 1 to 3 and 7 to 9), and a decrease in the edge positions (Regions 4 and 6). 

Interestingly, considering a Si particle did not decrease the observed plastic deformation 

in all of the surrounding regions. There was an increase in the plastic strains at the back 

edge diagonal positions— 13 % for Region 1 and 25 % for Region 7—with the 

consideration of square and rectangular shaped Si particles. The presence of a circular 

shaped Si particle prompted an increase in the plastic strains in all diagonal regions 

(Regions 1, 3, 7 and 9) and in the front edge region (Region 6). The highest increase in 

the equivalent plastic strain was observed in Region 9, reaching a 25.5 % increase with 

the circular shaped Si particle.

In summary, considering subsurface Si particles in the numerical model indicated 

that hard secondary particles help to resist the penetration of deformation below the 

surface of the 356 Al matrix, as expected. However, an increase in the stresses and 

plastic strains were observed in some locations adjacent the Si particles.

In the next section, a numerical investigation on a void growth model will be 

presented in an attempt to determine a damage gradient and a critical depth at which 

delamination cracks might initiate and propagate in an aluminum alloy during sliding 

contacts. The findings of the presented finite element models for subsurface distribution 

of stresses and strains will be used in the damage gradient analysis.

7.5. ANALYSIS OF SUBSURFACE DAMAGE ACCUMULATION PROCESS

7.5.1. NUMERICAL SUBSURFACE DAMAGE

This section proposes a model that examines void growth rate as a function of 

the number for the sliding contacts, in order to analyze the subsurface damage rate and 

predict the location of delamination cracks. In this model, the voids that nucleated at 

impurities and second phase particles were assumed to be present in the aluminum. It 

was assumed that the damage process progressed via the growth of voids that
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coalesced and formed subsurface cracks parallel to the contact surface. The variation of 

the void growth rate beneath the contact surface— under the influence of stress 

gradients—was evaluated with respect to the subsurface depth, using Equation 1.1.

Non-linear regression analyses revealed that the variations in hydrostatic 

pressure { a H ), plastic strain (£•), strain rate (s )  and temperature (T )  as a function of 

depth (z)— obtained by the coupled thermo-mechanical model— can be represented by 

the exponential relationships of the following forms (Figures 7.19, 7.17, 7.22 and 7.21);

crH = + [k2 e x p ( -^ z ) ]  (7.1)

s -  ml exp( -m2z) (7.2)

£  -  Mj exp(-w2z) (7.3)

T = Px + iP i  exp (-p3z)j (7.4)

where z has the units of mm. The coefficients in Equations 7.1 to 7.4 obtained for each 

sliding contact cycle are listed in Table 7.4 for a sliding velocity of 10 m/s and a normal 

load of 150 N/mm.

The flow strength of the aluminum as a function of the depth (z) was obtained by 

substituting Equations 7.2, 7.3 and 7.4 into Equation 4.5 as follows:

a f  = <*S -  (<?s -o ^ e x p
mx exp(-m2z) \~ r

i+
K V

», exp(-«2z)_ _

' {Pi +LPi exp(-/>3z ) ] } - T roo„ 
T - Tmelt room

(7.5)

Then equations representing the hydrostatic pressure (Equation 7.1), flow stress 

(Equation 7.5) and strain rate (Equation 7.3) as a function of the depth were inserted into
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Equation 1.1 to determine the void growth rate ( R )— normalized with respect to the 

initial radius of the void (R):

R
R

5 + V3 

3 + 2

[k, + \k2 exp(-£3z)]]

a s ~(<rs - ° " o  ) exP
mi exp(~m2z)

1 4
/ «1e xp (-n 2z )^ 1/<?

D

1 - {Pi + [P 2 e x p (-p 3z )]} r̂oon

T - Tmelt room

[«, e xp (-« 2z)] (7.6)

Figure 7.43 illustrates how the change in damage rate acts as a function of 

normalized depth (z/a)—obtained using Equation 7.6 for a sliding velocity of 10 m/s and 

a normal load of 150 N/mm. The subsurface damage gradient remained constant after a 

finite number of sliding contacts. The maximum value of the normalized void growth rate 

( R / R ) was calculated as 8 x 102 s'1 after the first sliding contact, and 5 x 102 s'1 for the 

subsequent contacts. Figure 7.43 indicates that the location of the material layer where 

the maximum rate of damage accumulation occurred was at z/a = 0.06. The existing 

voids at this critical depth (zc) below the surface corresponding to the maximum R/R  

value will propagate faster than the voids at other subsurface positions, prompting 

subsurface fractures to occui' at this depth. The R / R at the close vicinity of the surface 

(z/a < 0.03) was negative. However, the predicted values for those subsurface regions 

might have no realistic foundation, due to the high strain rates discussed in 

Section 7.2.4.

In the proposed material model, the thermal softening and strain rate hardening 

effects were considered together, in addition to the strain hardening. However, an 

analysis of the changes in damage rate that considers each effect separately might 

provide a better understanding of the proposed model’s ability to capture the influence of 

different material effects. The material model’s influence on predicting the damage rate
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below the contact surface after the seventh sliding contact is presented in Figure 7.44. 

For a strain hardening material model (Equation 4.7), the maximum rate of damage 

accumulation was calculated at a normalized depth of 0.10 (i.e. if the effects of surface 

heating and strain rate are ignored). When thermal softening of the material was 

considered with strain hardening (Equation 4.9), the position of the maximum rate of 

damage moved deeper, to a normalized depth of 0.13. In addition, the maximum R/R  

value also decreased in magnitude. This result indicates that if the material softens 

during sliding contact because of a temperature increase, the void growth rate and 

possibility of producing or propagating a crack will decrease. This result is expected, 

since crack propagation will be slower in a ductile matrix. If the strain rate effects are 

considered in addition to the strain hardening (Equation 4.8), the results suggest that the 

hardening will prompt the maximum of the damage rate to move toward the surface (to 

z/a = 0.05), and the normalized void growth rate will increase. This result is also 

expected, because increasing strain rate will make material more brittle. When the 

thermal condition of the material is considered together with the strain and strain rate 

hardening (Equation 4.5), the position of the maximum rate of damage was at z/a = 0.06. 

These results indicate that the developed finite element model accurately captured the 

subsurface deformation characteristics of the 356 Al alloy, with changes in the material 

properties. In summary, Figure 7.44 shows the significance of the used material model in 

the prediction of subsurface damage in the 356 Al alloy.

Figure 7.45 illustrates the effects of load and sliding velocity on the damage rate 

below the contact surface. An increase in the applied load from 150 N/mm to 250 N/mm 

shifted the position of the maximum damage rate to a deeper location (i.e. from 

z/a = 0.060 to 0.085). The maximum normalized void growth rate value {R /R )  

increased simultaneously. When a high sliding velocity of 10 m/s was issued— compared 

to 5 m/s—the critical material depth where the damage rate reached its maximum 

increased from z/a = 0.050 to 0.060. Meanwhile, the value of the maximum normalized 

damage rate almost doubled.

Considering excessive friction in the sliding contact completely changed the 

distribution of the subsurface damage rate. The damage rate below the surface of the 

356 Al half-space is presented in Figure 7.46 for the frictionless condition (p=0.0), and 

the high friction condition (p=0.3). The maximum growth rate was observed at the 

surface with p=0.3 and the magnitude of the normalized growth rate increased more
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Table 7.4: Pre-exponential and exponential coefficients in Equations 7.1 to 7.4

(Sliding velocity: 10 m/s, Normal load: 150 N/mm).

Contact
Cycle

Coefficients
kj (MPa) mi (mm/mm) 0/ (1/s) Pi(  K) k2 (MPa)

1st asperity 28.56 0.29 1.3 x104 299.99 1257.07
2nd asperity 36.49 0.62 1.6 x1Q4 300.33 1359.12
3rd asperity 29.37 0.94 1.7 x 104 300.62 1194.46
4th asperity 40.06 1.24 1.6 x104 300.78 1329.27
5th asperity 43.06 1.54 1.6 x 104 300.91 1289.70
6th asperity 47.78 1.82 1.5 x104 301.17 1381.05
7th asperity 43.06 2.08 1.5 x104 301.00 1220.65

Contact
Cycle

Coefficients
702(1/mm) 0.2(1 /mm) P2( K) £3(1/mm) Pi(1/mm)

1st asperity 15.66 17.20 24.32 7.09 6.12
2nd asperity 16.74 20.44 29.84 6.97 4.60
3rd asperity 17.01 20.55 33.74 5.91 3.73
4th asperity 17.00 20.06 35.76 6.87 3.08
5th asperity 16.98 20.29 37.52 6.95 2.65
6th asperity 16.93 20.00 40.25 7.50 2.42
7th asperity 16.73 18.29 41.53 6.54 2.10
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Figure 7.43: Change in the damage rate with the depth below the contact surface with 

increasing number of sliding contacts (Sliding velocity: 10 m/s and Normal 

load: 150 N/mm).
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Figure 7.44: Effect of the material model on the damage rate below the contact

surface after seventh sliding contact (Sliding velocity: 10 m/s and Normal 

load: 150 N/mm).
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Figure 7.45: Effect of the normal load and the sliding velocity on the damage rate

below the contact surface after seventh sliding contact obtained with 

Equation 4.5.
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obtained with Equation 4.5).
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than six times. This change in the damage gradient was prompted by the overall effect of 

the changes in variables in Equation 7.6. The plastic strains, the strain rate and the flow 

stress increased with the friction between the 356 Al half-space and the asperities. 

However, the increase in the contact area due to friction forces resulted in a small 

decrease in the hydrostatic pressure. The overall effect of these variables is an increase 

in the normalized damage rate calculated by Equation 7.6, with the maximum R /R  

value moving to the surface.

7.5.2. INFLUENCE OF Si PARTICLES ON SUBSURFACE DAMAGE 

GRADIENT

In Section 7.4, the change in the subsurface deformation characteristics in the 

356 Al alloy with the implementation of a Si particle was investigated. This section 

explores the influence of the Si particles on the subsurface damage rate. The subsurface 

damage rate at the mid-point of the 356 Al half-space was calculated by using 

Equation 7.6, after the consideration of differently shaped Si particles. In addition, 

subsurface damage rate was also investigated along the lines that pass through the 

sides of the Si particles (back and front edges). Figure 7.47 illustrates the subsurface 

lines used for the investigation of the damage rate for the square shaped Si particle. 

Since the Si/AI interface was assumed to be infinitely strong in the finite element model, 

and the ductile void growth equation proposed by Rice and Tracey is applicable to the 

hardening materials, the void growth rate was not calculated for the subsurface positions 

where the Al/Si interface and the elastic Si particles were present. Void growth rate 

analysis was completed only for the regions surrounding the Si particles.

Figure 7.48 shows the change in the subsurface damage rate at the mid-point of 

the 356 Al half-space with the implementation of differently shaped Si particles at a 

sliding velocity of 10 m/s and a normal load of 250 N/mm after the seventh sliding 

contact. In Figure 7.48, the subsurface damage rate distribution for the model that did 

not consider a Si particle is also included, for comparison purposes. The maximum value 

of the normalized void growth rate for the original model that does not consider the hard 

particles was approximately 950 s'1 at the normalized depth of 0.085, after seven sliding 

contacts. The results indicate that the implementation of Si particles below the surface of 

the 356 Al alloy decreased the damage rate for the Subsurface positions below the Si
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particles—for all considered Si shapes. However, an increase in the growth rate was 

observed for the positions above the hard particles. The highest increase in the 

normalized growth rate was found in the model with circular shaped Si particles reaching 

to 1820 s'1 at the normalized depth of 0.045, which corresponds to half the distance 

between the surface and the Si particle. Similarly, for the square shaped Si particle, the 

maximum normalized growth rate was at a normalized depth of 0.0375 with a value of 

200 s'1. For the rectangular shaped Si particle, the position of the highest growth rate 

was observed to be at the surface. The void growth rate at the upper interface, between 

the Si particle and the 356 Al alloy, was calculated as negative values for all Si shapes.

Figure 7.49 illustrates the changes in the subsurface damage rate at the back 

edge of the Si particle. Discontinuous points in the damage rate curves correspond to 

the interfaces between different regions: Regions 1 and 4, and Regions 4 and 7 (for the 

subsurface regions surrounding the Si particles, please refer to Figure 7.42). The 

implementation of the square and rectangular shaped Si particles decreased the 

damage rate in Regions 4 and 7, but the void growth rate increased in Region 1. The 

maximum growth rate was at the interface between Regions 1 and 4, which corresponds 

to the subsurface level next to the upper boundary of the Si particle. Interestingly, 

circular shaped Si particles revealed a different effect on the damage rate at the back 

edge of the Si particle than those with square and rectangular shapes. An increase of 

approximately three times was observed in the maximum damage rate of Region 4 with 

the implementation of a circular shaped Si particle.

Figure 7.50 shows the change in the subsurface damage rate at the front edge of 

the Si particle for a sliding velocity of 10 m/s and a normal load of 250 N/mm. With 

consideration of the square and rectangular shaped Si particles, the maximum damage 

rate moved to the interface between Regions 3 and 6, which correspond to the positions 

next to the upper boundary of the Si particle. The maximum growth rate was observed in 

Region 6 with the circular shaped Si particle. In addition, there was an increase in the 

growth rate observed in Region 3 for the circular shaped Si particle.

In summary, the results indicate that Si particles placed below the surface help to 

protect the subsurface layers of the 356 Al alloy positioned below the Si particles. 

Although the Si particles resist the penetration of plastic deformation below the surface 

of the 356 Al, they create a reverse effect for the subsurface layers above the hard 

particles. For the same amount of loading, deformation concentrates between the
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Figure 7.47: Position of the subsurface lines used for the damage rate calculations

the 356 Al half-space.
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Figure 7.48: Change in the subsurface damage rate at the mid-point of the 356 Al half

space with the implementation of Si particles (Sliding velocity: 10 m/s, 

Normal load: 250 N/mm, Results after seventh sliding contact).

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3000

Model with no Si particle 
Model with square shaped Si particle 
Model with rectangular shaped Si particle 
Model with circular shaped Si particle

2000  *

R /R
1000 -

-1000
0.0 0.2 0.4 0.50.1 0.3

z/a

Figure 7.49: Change in the subsurface damage rate at the back edge of the Si particle

(Sliding velocity: 10 m/s, Normal load: 250 N/mm, Results after seventh 

sliding contact).
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Figure 7.50: Change in the subsurface damage rate at the front edge of the Si particle

(Sliding velocity: 10 m/s, Normal load: 250 N/mm, Results after seventh 

sliding contact).

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



surface and the Si particle, causing the damage rate to increase in those regions. This 

means that the layers above the Si particles will wear quickly, until the subsurface Si 

particles reach the surface and carry the loads.

7.5.3. EXPERIMENTAL SUBSURFACE CRACK GROWTH OBSERVATIONS 

AND COMPARISON WITH NUMERICAL DAMAGE GRADIENT

Sliding contact tests were performed with 356 Al alloy samples and M2 tool 

steels and details of the experimental sliding tests, utilizing a reciprocating sliding wear 

machine, are covered in Chapter 5. This section presents the results of the 

metallographic observations— used to gain experimental insight into the proposed 

subsurface damage model.

A metallographic investigation was performed on the longitudinal sections after 

the sliding contact tests (i.e. on a plane normal to the sliding wear surface and parallel to 

the sliding direction of the Al samples) using a scanning electron microscope (SEM). 

These SEM investigations revealed that the delamination of the subsurface layers 

contributes to the wear of the 356 Al alloy. Evidence of subsurface crack growth (i.e. 

cracks approximately 140 to 200 urn long) was found at subsurface depths of 5 to 

20 pm. Figures 7.51 to 7.55 show subsurface crack propagation in the 356 Al alloy after 

seven sliding contact cycles with an M2 tool steel. In Figure 7.51, particle fracture and 

interface decohesion events, as well as subsurface crack propagation, are observed. 

Debris formation in the 356 Al alloy is illustrated in Figures 7.52 and 7.53, where 15- 

20 jim thick debris formation can be seen. Figure 7.55 displays the details of a damaged 

subsurface region— characterized by a series of cracks extending parallel to each other, 

although the main damage appears to occur at 20 pm below the surface.

The findings of the void growth model are consistent with the SEM observations 

of the cross-sections below the contact surface. Specifically, the propagation of 

subsurface cracks should occur at a critical depth (Figures 7.51 to 7.55). Moreover, 

according to Figure 7.43, there exists a damage gradient below the surface; hence there 

should be secondary cracks below and above the critical depth. Figures 7.52 to 7.55 

confirm the presence of the secondary cracks above and below the main crack. The 

minor length of the secondary cracks correlates with a slower growth rate.
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Figure 7.56 shows the experimental and numerical maximum damage depths 

(zc) normalized by the counterface diameter for different sliding velocities and for a 

normal load of 250 N/mm. The experimental maximum damage depth observations 

(Figure 7.51 to 7.55) are given as a range. The numerical maximum damage depth 

given for a sliding velocity of 0.15 m/s was calculated after only two sliding cycles (due to 

long processing times). The results indicate that the relationship between the maximum 

damage depth and the sliding velocity is not linear. In summary, the damage rate 

calculations, according to the proposed model, provide a good estimation of the 

subsurface crack propagation depth.
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Figure 7.51: Subsurface crack propagation in the 356 Al alloy after seven sliding contacts with a M2 tool steel (Sliding velocity:

0.15 m/s and Normal load: 250 N/mm) (SEM Back-Scattered Electron Image (BEI)).
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Figure 7.52: Plate-like wear debris formation in the 356 Al alloy after seven sliding contacts with a M2 tool steel (Sliding velocity:

0.15 m/s and Normal load: 250 N/mm) (SEM BEI).

225
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Figure 7.53: Debris formation in the 356 Al alloy after seven sliding contacts with a M2 tool

steel (Sliding velocity: 0.15 m/s and Normal load: 250 N/mm) (SEM Secondary 

Electron Image (SEI)).
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Figure 7.54: Propagation of a subsurface crack in the 356 Al alloy parallel to the surface

(Sliding velocity: 0.15 m/s and Normal load: 250 N/mm) (SEM SEI).
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Figure 7.55: Propagation and joining of surface cracks in the 356 Al alloy (Sliding velocity:

0.15 m/s and Normal load: 250 N/mm) (SEM SEI).
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CHAPTER 8 

SUMMARY AND CONCLUSIONS

The purpose of this study was to identify and interpret the subsurface 

deformation and damage accumulation events that are observed in aluminum alloys 

during sliding contact. The investigations were initiated by normal contact analysis, and 

directed to include more complex sliding contact conditions. Finite element analysis tools 

were used to model the deformation of an aluminum alloy during sliding contact, utilizing 

the stress-strain behavior of the 356 Al alloy—determined directly from analyzing the 

deformation state of subsurfaces generated during sliding wear tests. Strain rate and 

thermal softening effects were taken into account in a constitutive equation where the 

Voce-type exponential stress-strain equation was combined with a Cowper-Symonds- 

type strain rate, and Johnson-Cook-type temperature equations. The main results and 

conclusions of this study can be summarized as follows:

1. In order to simulate the large deformation behaviour of the 356 Al alloy in 

sliding wear conditions, an Eulerian model— capable of accounting for large strain 

accumulation during asperity contacts—was developed. The Eulerian element 

formulation successfully modeled the high deformation observed in the aluminum alloys 

under the application of high normal loads when a solution could not be obtained with a 

Lagrangian element formulation, due to excessive element distortion. The Eulerian 

element formulation identified large plastic strains (sp=20) in the 356 Al structure, but the 

Eulerian model was not successful in an investigation that coupled thermal and 

mechanical analyses. The FE model utilizing Lagrangian elements was an acceptable 

alternative for the thermo-mechanical analysis.

2. The finite element model developed for this study was tested and validated by 

comparing the numerical results with normal contact and sliding contact experiments. 

The finite element model predicted the plastic zone depth and width with an accuracy of 

20%, and the contact depth and length with ah accuracy of 10% during normal contacts. 

A comparison of experimental and numerical results for sliding contacts showed that the 

finite element model successfully captured the distribution of subsurface plastic strains in
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the 356 Al alloy. The difference between the experimental and numerical plastic strains 

for a specific depth was less than 20%.

3. Subsurface strains and stresses initially revealed rapid increases when the 

number of contact cycles was increased. At that point the stresses reached a constant 

value after a finite number of sliding contacts. The von Mises stress and the equivalent 

plastic strain at the contact surface were 514 MPa and 0.19, respectively after the first 

contact cycle for a sliding velocity of 10 m/s and a normal load of 150 N/mm. After the 

fourth cycle, the stress at the contact surface increased to 586 MPa and the strain to

0.78. Only a 2% increase occurred in the stress between the fourth and seventh (last) 

cycles, while the plastic strain continued to increase to 1.3.

4. The subsurface distribution of hydrostatic pressure, strain rate and 

temperature—all of which are difficult to characterize experimentally or theoretically for 

work hardening materials— was determined for different loading conditions during sliding 

contacts. The hydrostatic pressure at the contact surface was 1150 ± 100 MPa between 

the first and seventh contacts for a sliding velocity of 10 m/s and a normal load of 

150 N/mm. A 45 K temperature increase was observed at the surface after seven sliding 

contacts.

5. Regression analyses showed that exponential curves of type 

A = q  + [c2 exp(-c3z)] represent the distributions of hydrostatic pressure, strain rate 

and temperature as a function of depth z below the surface.

6. A model of the subsurface damage accumulation process was presented. The 

model revealed the presence of a damage gradient that reached a maximum value at a 

critical depth where the voids propagated at the highest rate. The predictions of the 

proposed damage model confirmed the presence of the critical crack growth depth, and 

were consistent with the metallographic observations.

7. The position of the highest damage was calculated to be at a normalized depth 

of 0.060 for a sliding velocity of 10 m/s and a normal load of 150 N/mm. The effects of 

the contact characteristics and loading conditions on the damage gradient were 

determined. An increase in the sliding velocity and normal load prompted an increase in 

the maximum damage rate, in turn causing the location of the maximum damage to sink 

deeper—further away from the contact surface. When the normal load was increased 

from 150 N/mm to 250 N/mm, the position of the maximum damage rate shifted from a
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normalized depth of 0.060 to 0.085, leading to the formation of thicker debris. High 

friction (coefficient of friction £ 0.3) changed the subsurface damage gradient 

completely, moving the location of the maximum damage rate to the surface.

8. A stepwise comparison of the effects of the material properties on the 

subsurface damage accumulation revealed that significant differences in the prediction 

of the subsurface damage might be observed if strain rate and thermal softening effects 

are not considered in the material model. When thermal softening of the material was 

considered along with strain hardening, the void growth rate and the possibility of 

producing or propagating a crack decreased. While the strain rate effects were 

considered with the strain hardening, the maximum damage rate moved toward the 

surface, due to material hardening, and the void growth rate increased in a relatively 

more brittle matrix.

9. The effects of hard particles on the distribution of subsurface stresses, strains 

and the damage gradient were also investigated. Si particles embedded in the aluminum 

matrix helped to resist the penetration of deformation below the surface of the 356 Al 

alloy. However, an increase in the stresses and plastic strains were observed in some 

locations adjacent the Si particles. As a result, the presence of Si particles below the 

surface of the aluminum matrix moved the maximum damage rate to the layers 

positioned above the Si particles.
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CHAPTER 9 

SUGGESTIONS FOR FUTURE WORK

This investigation’s shortcomings originate in two areas: numerical limitations, 

and experimental causes. The main numerical weakness is the lack of thermal- 

mechanical coupling for the Eulerian element formulation. The Eulerian element 

formulation has proven that it has great potential in the modeling of large deformation 

processes. However, experimental findings show that the temperature increase 

observed in contacting solids might be significant during high plastic deformation 

applications— possibly changing the deformation characteristics. The FE model utilizing 

Lagrangian elements was an acceptable alternative for the thermo-mechanical analysis, 

despite the excessive element distortion, which restricted the Lagrangian element 

formulation’s ability to model the high deformation observed in aluminum alloys.

The material model used by the current sliding wear analysis is based on the 

experimentally determined stress-strain curve of a 356 Al alloy. The stress-strain 

behaviour was obtained directly from an analysis of the deformation state of the material 

layers below the contact surface that was subjected to sliding wear. Additionally, 

temperature and strain rate effects were taken into account, using a constitutive 

equation based on published literature. The experimental findings of this research 

indicated that the thermal softening equation based on the work of Johnson and Cook 

was acceptable for representing the influence of the thermal softening processes on the 

mechanical behaviour of the aluminum alloys, as observed during sliding wear. 

However, measuring the real strain rates during sliding wear conditions is a challenge 

that has yet to be addressed, and the issue of “how well the strain rate constitutive 

equations given in the literature reflect the deformation characteristics of the sliding wear 

conditions” is still open for investigation.

The influence of the hard particles on the distribution of subsurface stresses and 

strains in the aluminum matrix was also investigated in this study, by modeling different 

sized Si particles embedded below the 356 Al surface. Due to computational and time 

constraints, only a single Si particle below the surface was considered, although the 

interaction of many Si particles should also be studied. In addition, the interface between
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the aluminum matrix and the Si particles was assumed to be infinitely strong, due to the 

limitations in the current engineering knowledge. Interface failure and particle fracture 

events should also be considered in future in order to model subsurface deformation 

completely.
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APPENDIX A

FINITE ELEMENT ANALYSIS BASICS

In this appendix section fundamentals of finite element analysis (FEA) method 

will be presented. The aim of this section is not to explain or discuss the FEA method 

completely, but give a very short summary from a point of view that it covers the 

numerical approaches used in this study. A detailed information and discussion about 

the FEA method can be found in the following references: [96, 102, 112-121].

Finite element method (FEM) can be described as a general discreatization 

procedure of continuum problems posed by mathematically defined statements [112]. 

The FEM is a computational technique for obtaining solutions to the partial differential 

equations that arise in scientific and engineering applications [113]. This method can be 

used to obtain solutions to a large class of steady, transient, linear or nonlinear problems 

involving stress analysis, heat transfer, fluid flow and electromagnetism [114], The FEM 

utilizes a variational problem that involves an integral of the differential equation over the 

problem domain. This domain is divided into a finite number of subdomains called finite 

elements which are connected to each other at junction points called nodes. The 

solution of the partial differential equation is approximated by a simpler polynomial 

function (shape function) on each element. Then, these polynomials are collected 

together and the variational integral is evaluated as a sum of contributions from each 

finite element [113].

There are three basic steps involved in every finite element analysis [113,114]:

1- Preprocessing

A. Create and discretize the problem domain into finite number of

elements or subdivide the problem domain into nodes and elements.

B. Assume a shape function to represent the physical behaviour of an

element.

C. Develop differential equations for an element.

D. Assemble the elements to construct the global matrices.

E. Apply loading, boundary and initial conditions.
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2- Processing

F. Solve the equations to obtain nodal results, such as displacements or 

temperatures.

3- Postprocessing

G. Obtain needed information; principal stresses, strains, heat flux, etc.

Steps C, D and F are generally covered by commercially available finite element 

codes and the users only follow the steps A, B, E and G,

A.1. TIME INTEGRATION METHODS

After the spatial discreatization has been performed in a FEA, the general form of 

the discrete equations of motion or the governing equation of motion is given by:

[M lu }  + [ c lu }  + [K lu }  = {Fexternal} (A.1)

where [M\ is the mass matrix, {u} is the nodal accelerations vector, [C] is the damping

matrix, {«} is the nodal velocities vector, [X] is the stiffness matrix, {u} is the nodal

displacements vector and {Fextemal} is the force vector including all forces, pressures,

and body loads acting upon the finite element mesh.

There are two distinct methods for the solution of the Equation A.1 in a FEA; 

explicit and implicit time integration methods (schemes). In the FEA of time dependent 

problems, the central difference scheme is mostly applied in the explicit method, while 

the Newmark’s method is used in the implicit scheme.

In the central difference algorithm [115, 116], the nodal velocities ( u ) and 

accelerations (u )  are approximated by
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(A. 2)

_  u n+\ n w« -1Un — ^
At2

(A. 3)

where the subscript notation n represents the present time step, rt-1 and n+1 represent 

the previous and next time steps respectively. At is the duration of the time step 

interval. When Equations A.2 and A.3 are substituted into the governing equation of 

motion (Equation A.1), the following expression is obtained:

Equation A.4 indicates that in order to solve for w„+1 , the mass matrix and damping

matrix must be inverted, or their transpose must be calculated. By lumping the mass and 

damping matrices, and assuming the rigid body accelerations and velocities, the 

matrices become diagonal and simple to invert. In the explicit time integration method, 

there is a condition of stability that the time step should not be larger than the time it 

takes an elastic wave to travel through the smallest element, or:

where Atc is the critical time step, S is the safety factor (0.9 by default in LS-DYNA), lc is 

the smallest finite element length and c is the wave propagation velocity defined as a 

function of material density (p), Young’s Modulus(£) and Poisson’s ratio (v) by the 

following equations:

f ( [ M \ [ C \ [ K \ { u n \ { Un - x W n l  * ) (A.4)

(A.5)
c
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\E
c =  — for 1-D truss elements (A.6)

V P

c = I— —— r- for 2-D shell elements (A. 7)
] j p (  1 - v ) 2

c -  I-----^ —Yl  for 3_d solid elements (A.8)
) l p (  1 +  v ) ( 1 - 2 v )

In the Newmark’s method, the nodal displacements (u )  and velocities (u )  are 

approximated by the following equations:

Ufi+\ — + A t Ufi~t" A t*
r \ '  
- - P

v2
un + p u n+1 (A.9)

U n+1 =  U n + k t ( l - y ) u n+ r un+l (A. 10)

where (3 and y  are the empirical coefficients with 0 < /? < 0.5 and 0 < y <  1.0. The 

governing equation of the implicit scheme (Equation A.11) is obtained once the 

equations A.9 and A. 10 are substituted into the equation of motion (Equation A.1):

AP At :«*+i = / [ M \ [ c l  [K ]  {un },{un}, {Un}, {Fn+1}, At (A.11)

The explicit time integration method is easy to implement, since the solution at 

time t„+i depends only upon known variables at time t„ (Equation A.4). This method is 

extremely efficient when the mass and the damping matrices are approximated by 

lumped diagonal matrices. The explicit time integration technique has the benefit over
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the implicit method that a solution is guaranteed if a critical time step is selected. The 

main disadvantage behind the use of the explicit scheme is the size of the critical time 

step, which is generally very small, compared to the time step used in the implicit 

approach. This generally results in long processing times. The implicit time integration 

scheme approximates time derivatives by quantities which also depend upon the last 

time step t„ and upon the still unknown values at time t„+i (Equation A.11). The implicit 

method requires a solution of a nonlinear equation at each time step. The obtained 

displacements are tested to verify that they satisfy the governing equations of motion. If 

equilibrium is not satisfied, an iterative procedure is applied until the equilibrium is 

achieved. Successful convergence of these iterations is not guaranteed and can be very 

difficult in practice. However, the implicit approach can be applied with a far bigger time 

step than explicit approach. Hence the total computational time can be very much 

smaller than that of an explicit simulation. Another disadvantage of the implicit approach 

is that the stiffness matrix must be inverted in addition to the mass and damping 

matrices. Since the stiffness matrix is not diagonal finding the transpose of it can be a 

time consuming process [115-118].

In this study, LS-DYNA FE software program developed by Livermore Software 

TechnQlogy Corporation (LSTC) was used. Both the implicit and explicit time integration 

methods were used in the modeling of quasi-static normal contacts, while only the 

explicit scheme was employed for the sliding contact studies.

A.2. ELEMENT FORMULATIONS

Two element types, Lagrangian and Eulerian elements, were utilized in this 

study. The Lagrangian finite element formulation uses a computational mesh that follows 

the material boundaries and moves with the material deformations. This approach is 

computationally efficient and accurate for moderate deformation problems. When the 

elements are distorted, they will have low accuracy and their stable time step size will be 

reduced. In the Eulerian finite element method, the mesh is fixed in space and the 

materials flow through the mesh. Since the mesh is fixed in space, the numerical 

difficulties associated with the distortion of the elements are eliminated [119].
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Lagrangian time integration method was presented in the previous section 

(Section A.1). Eulerian elements have two main time steps: the Lagrangian step and the 

Eulerian advection step. The Lagrangian step, performed first, advances the solution in 

time, while the Eulerian step accounts for the transport between the elements. The 

Lagrangian step in the Eulerian element formulation is very similar to the explicit time 

step in Lagrangian element formulations. There are two main algorithmic differences 

between the Lagrangian step in an Eulerian calculation and the time step in a 

Lagrangian calculation:

1- Absence of contact algorithms in the Eulerian formulation.

2- The interactions between adjacent materials are handled by the mixture 

theory. The mixture theory distributes the strain increment of an element among the 

materials in an element and calculates the element stress from the stresses in the 

materials.

After the Lagrangian step, the mesh is remapped to its original spatial 

coordinates, referred as advection step or the Eulerian step. Since the mesh is brought 

back to the original position, in postprocessing it appears stationary. However, the 

material is not remapped to the original position and it moves throughout the mesh. 

Therefore, a void air mesh must surround the original mesh to provide space for the flow 

of deformed material.

A.3. CONTACT ALGORITHMS

Contact algorithms prevent surfaces from interpenetrating. Contact occurs when 

two or more surfaces come together and their interaction must be computed. Contact 

algorithms can be categorized by their 1) contact search strategy, 2) contact and release 

conditions and 3) contact force calculation. The contact search is a significant cost for 

the most contact algorithms [118].

There are a large number of contact types in LS-DYNA and they can be grouped 

in to the following categories: penalty based contacts, tied contacts and constrained 

based contacts. The penalty based contact method has proven to be the most versatile 

and robust method for contact with separation and slip in LS-DYNA [118]. In LS-DYNA, 

a contact is defined by identifying (via parts, part sets, segment sets and/or node sets)
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what locations are checked for potential penetration of a slave node through a master 

segment [120]. When a penetration is found, in the penalty method linear tension-only 

springs are added to the model between penetrating nodes and contact surfaces, with a 

stiffness based on geometric and material properties of the contacting entities. The 

contact spring stiffness is defined as the product of the user defined penalty factor and a 

stiffness determined from the master segment, or the slave node [122]:

k = c  .K .------------------  for shell elements (A. 12)
max( A ,  A )

A 1
k = Cuser .K. —  for solid (brick) elements (A. 13)

where Cuser is the user defined scale factor, K  is the bulk modulus equal t o ------------- , A
3(1 -  2v)

is the face area of the element in contact, V is the volume of the element and D i and L>2 

are the shell element diagonals. With tension only springs, a force ( / )  proportional to 

the penetration depth ip) is applied to resist, and ultimately eliminate the penetration:

Ideally the contact spring stiffness should be very high in order to prevent penetrations 

and add realism to the simulation. However, in reality the value of k is limited by the 

stability condition for the contact spring. Contact springs with stiffness is attributed for 

part of the mass of slave node and master segment and time step size for the springs 

Atsc is calculated by the following equation:

A
Amm„

k(ms +m m)
(A. 15)
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where ms and mm are the mass of slave node and master segment, respectively. To 

guarantee stability the user must ensure that Atsc is larger than the critical time step of 

the simulation:

A.4. ENERGIES AND EXTERNAL WORK

In order to confirm the validity of a numerical simulation, the energy and external 

work analysis is the first criterion that a researcher should refer. If there is no energy 

formation process modeled in a finite element model, the total energy should be always 

equal to the initial energy of the system. Types of energies that contribute to the total 

energy of the system are: internal energy, kinetic energy, sliding interface energy, 

hourglass energy, external work, etc. These energy types incorporated in the energy 

analysis of a system should be monitored carefully.

Usage of elements with under integration (single point Gaussian quadrature) in a 

simulation may lead zero energy modes of deformation (hourglassing), which refers to 

the deformation of elements in a finite element analysis without production of strain 

energy. So, this type of energy should be monitored and kept under 10 % of the total 

energy [121]. In addition, hourglass control might be used to eliminate this type of 

energy modes. When hourglass control is activated, artificial forces are placed on the 

nodes to eliminate deformation associated with this type of energy modes.

Another type of energy that contributes to the total energy of the system is sliding 

interface energy which is a result of the contact between the master and slave entities. 

During contact kinetic energy of the impacting body is typically converted in deformation 

energy of both colliding objects. This energy is numerically buffered in the linear contact 

springs that have potential energy:

(A. 16)

springs springs

(A. 17)
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This non-physical energy is called sliding interface energy (Esie) and should ideally 

remain very small compared to the physical energies in the system during normal 

contacts and frictionless contacts [122]. Therefore, sliding interface energy should also 

be monitored and kept under 10 % of the total energy of the system [121]. Friction will 

cause an increase in the interface forces and may result in positive sliding interface 

energy which is acceptable. Negative sliding interface energy indicates penetration and 

should be avoided [102].
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APPENDIX B

SAMPLE NORMAL CONTACT ANALYSIS INPUT FILE

-+------2-----
(1)

-+------2-----

*KEYWORD
+ 1 -

$
$~~-+---- 1-
*TITLE
MODELD
$— + 1----- +------ 2-----
$ (2)

* CONTROL_TERMINATION 
$ ENDTIM ENDCYC

.100E-02 0
*CONTROL_TIMESTEP 
$ DTINIT SOFT

.000 .900
*CONTROL_HOURGLASS 
$ IHQ QH

1 .100
*CONTROL_BULK__VISCOSITY 
$ Q2 Q1

1.500 .060
*CONTROL_SHELL 
$ WRPANG ITRIST

2 0 . 0 0 0 2
* CONTROL_CONTACT
$ SLSFAC RWPNAL

.100
$ USRSTR USRFAC

0 0
*CONTROL_ENERGY 
$ HGEN RWEN

2 2
*CONTROL_DAMPING 
$ NRCYCK DRTOL

250 .001
* CONTROL_OUT PUT
$ NPOPT NEECHO

0 0
$— +--- 1---- +---- 2---
$ (3)
$----+------ 1----- +------2-----
*DATABASE_HISTORY_SHELL_ 
$ ID1 ID2

2

$ (4)
$— + 1------ + 2-----
* DATABASE_ELOt3T

. 100E-05
* DATABAS E_GLSTAT

. 100E-05
* DATABAS E_MAT S UM

.100E-05
* DATABAS E_RC FORC

.100E-05
* DATABASE_SLEOUT

.100E-05 
$___+ 1 + 2---

_j ,3--------1-------- 4-
TITLE CARD.

+---- 3— r— +----4-

___+----- 5------ +------ g-----+------7-

 5------+------ 6----- +-— 7-

+*---3-— ----- 4-
CONTROL CARDS.

+--- 3---- +---- 4-

DTMIN
.000

ISDO
0

ENDNEG
.000

TSLIMT

 +----5—

— +----5 —

ENDMAS
.000

DT2MS
-0.90E-10

__+ 6-

— + 6-

LCTM

-+----7-

-+----7-

ERODE

IRNXK 
-1

ISLCHK

NSBCS 
10

SLNTEN 
1

DRFCTR 
.995

NREFOP 
0

■+---- 3----+--- 4-
DATABASE CONTROL

+---- 3----+--- 4-
SET

ID3 ID4

+---- 3----+--- 4-
DATABASE CONTROL 

+---- 3----+--- 4-

ISTUPD
0

SHLTHK

INTERM
0

RYLEN
1

DRTERM

IACCOP
0

THEORY
2

PENOPT

XPENE
4.000

TSSFDR

BWC
2

THKCHG

MITER
1

ORIEN

IRELAL EDTTL

OPIFS IPNINT IKEDIT
.000 0 100

CARDS - ASCII HISTORY FILE 
— *-+----5----+---- 6----+---- 7-

ID5 ID6 ID7

— +----5----+----6----+---- 7-
CARDS FOR ASCII FILE

+----3----+----4----+---- 5- -6 +- —7___
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-+ 8

-+ 8

-+ 8

MS 1ST

IDRFLG

-+ 8

-+ 8

ID8

-+ 8

■-+ 8



$ (5) DATABASE CONTROL CARDS FOR BINARY FILE

*DATABASEJ3INARY_D3PL0T 
$ DT/CYCL LCDT NOBEAM

.500E-04
* DATABASE J3INARY_D3THDT
$ DT/CYCL LCDT NOBEAM

. 500E-04
$---+--- 1----+----2— — v-----3---+-----4---+-----5---+----6---- +----7--- +---- 8
* DATABAS E_EXTENT_BINARY

0 0 3 0 1 1 . 1  1
0 0 0 0 0 0

$ (6 ) DEFINE PARTS CARDS

*PART
$HEADING
PART PID = 1 PART NAME :BODY

$ PID SID MID EOSID HGID GRAV ADPOPT TMID
1 1 1

*PART
SHEADING
PART PID = 2 PART NAME :ASPERITY

$ PID SID MID EOSID HGID GRAV ADPOPT TMID
2 1 2  1

*PART
SHEADING
PART PID = 3 PART NAME :HRGLASS

$ PID SID MID EOSID HGID GRAV ADPOPT TMID
3 1 1  1

$— +---- 1--- +--- 2-----+---3— — +---- 4---- +----5--- +~--- 6---+----7----+---- 8
$ (7) HOURGLASS CONTROL
$— +--- 1 ----h---- - 2 ----+---- 3---+---- 4----+---- 5--- +---- 6— — +— — 7---+-----8
*HOURGLASS
$ HGID I HQ QM IBQ

1 4 0.05
$-- +-----1--- +--- 2-----+---3---- +----4---- +----5----+----6---+----7----+-----8
$ (8 ) MATERIAL CARDS

 1 ----+--- 2-----+---3---- + — *.4---- +----5----+----6---+----7----+-----8
*MATJELASTIC 
$MATERIAL NAME:A356
$ MID RO E PR DA DB

1 2.669E-06 7.240E+07 3.300E-01 0.000E+00 O.OOOE+OO 
*MAT_ELASTIC
$MATERIAL NAME:RIGID ST
$ MID RO E PR DA DB

2 7.800E-06 4.000E+08 3.000E-01 O.OOOE+OO O.OOOE+OO
$— +---- 1--- +---- 2---+— 3-----+---4— — +-----5--- +---- 6---+-— 7----+-----8
$ (9) SECTION CARDS
$___+---- x--- +---- 2---+—---3----'+---4— — +-----5--- +---- 6---+---- 7--- +-----8
*SECTION_SHELL 
$PROPERTY NAME:SHELL
$ SID ELFORM SHRF NIP PROPT QR/IRID ICOMP SETYP

1 13 .100E+01 2 .000E+00 .OOQE+OO 0 1
$ T1 T2 T3 T4 NLOC

.100E+01 ,100E+01 .100E+01 .100E+01 .000E+00
-H— -““1— ~-+— -— 2---- +-- ‘-3-— --4---- 4— — l---- 5----— 7 ----------------- j. 8

$ (10) NODAL POINT CARDS
$-— +---- 1----+— --2---+---- 3---- +---4---- +---- 5--- +---- 6---+---- 7--- +-----8
*NODE
$ NODE X Y Z TC RC

1 .OOQOOOOOOE+OO .941666800E-01 .000000000E+00
2 .000000000E+00 .933333500E-01 .000000000E+00
3 .833333500E-03 .933333500E-01 .OOOOOOOOOE+OO

... (cont'd)
8126 .575000000E-01 .954166800E-01 .OOOOOOOOOE+OO
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8127 .570833300E-01
8128 .579166600E-01

$ — + 1 +
$
$  j-------------1 ----------— 4

*ELEMENT SHELL

. 954166800E-01 

. 954166800E-01
 +~-- 3----+----4---- +
(11) SHELL ELEMENT CARDS

.OOOOOOOOOE+OO 

.OOOOOOOOOE+OO 
__+--- 5---- +__ -7--- +-

-7----+-

$ EID PID N1 N2 N3 N4
1 1 1 2 3 4
2 1 2 5 6 3
3 1 5 7 8 6

... (cont'd)
7862 3 (54 64 6850 6845 6462
7863 3 15845 6848 6463 6462
7864 3 i5848 6847 8095 6463

$— +----1----
$ j____O. (1 2 ) DEFINEO SET CARDS

. 1 ______  A _  .____ j_______ c___ __I____ 6—— _j__-_R______y______ \ _____ —
*SET NODE LIST

T----Z -r---------------- -1 0 — — 1 — o

$ SID DAI DA2 DA3 DA4
1

$ NIDI NID2 NID3 NID4 NID5 NID6 NID7 NID8
3631 3632 3673 3694 3715 3736 3757 3778
3799 3820 3841 3862 3883 3904 3925 3946
3967 3988 4009 4030 4051 4912 4913 4952
4972 4992 5012 5032 5052 5072 5092 5112
5132 5152 5172 5192 5212 5232 5252 5272
5292 5312 5332 5352 5372 5392 5412 5432
5452 5472 5492 5512 5532 5552 5572 5592
5612 5632 5652 5672 5692 5712 5732 5752
5772 5792 5812 5832 5852 5872 5892 5912
5932 5952 5972 5992 6012 6032 6052 6072
6092

+----1---- +----2 - ---3- +-----------5— — + -----------6— — + ----7 — _ + -----------8

$ (13) LOADING1 CONDITIONS
$— -+----1---- +----2 - ---3- +----5— — +--- 6— -+----8
*LOAD NODE SET
$ NSID DOF LCID SF CID Ml M2 M3

1 2 2 1
*DEFINE CURVE
$ LCID SI DR SFA SFO OFFA OFFO DATTYP

2 0 1.0 -1.0 0 . 0 0 . 0 0
$ A1(TIME) 01(FORCE)

0.0 0.0
0.0003 0 .407E+02

& _____ i_______ 1 _______
0 . 0 0 1

______9 .
0 .407E+02

__i___.____A_______ j ___ ,___C___ _  j _ _ _____Q^ ----------,-------------x --------------,-------------

*SET SHELL LIST
*3 -T 1--- —  o — _ __ !__

$ SID NUM DAI DA2 DA3 DA4
2 48

$ EIDS EID2 EID3 EID4 EID5 EID5 EID7 EID8
7135 7136 7138 7139 7151 7152 7154 7155
7167 7168 7170 7171 7180 7181 7781 6641
6640 7835 6240 1712 1713 1714 1715 1716
1717 1718 1719 1720 1721 1722 1723 1724
1725 1726 1727 1728 1729 1730 1731 1732
1733 1734 1735 1736 1737 1738 1739 1740

+ ~ —  1-----------

$
j _______ o .

(14) BOUNDARY__O____ L
CONDITIONI CARDS__ _ C___I____ c ___ ____ p___j____^____

*BOUNDARY SPC_
T

NODE
T-*-- — -------1---- D ------ __ _______________ 1 o

$ NID/NSID CID DOFX DOFY DOFZ DOFRX DOFRY DOFRZ
59 0 1 1 1 1 1 1
60 0 1 1 1 1 1 1
90 0 1 1 1 1 1 1

... (cont'd)
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6109 0 1 0 1 1 1
6110 0 1 0 1 1 1
6111 0 1 0 1 1 1

(15) DEFINE SET CARDS

SET PART_LIST
SID

1
PID1 PID2

3 1
SET PART LIST

SID
2

PID1
2

(16) DEFINE CONTACT SURFACE

CONTACT 2D AUTOMATIC NODE TO SURFACE
PSIDS PS I DM SFACT FREQ FS FD DC MEMB

1 2 8.0 50 0.000E- 01 0 .. OOOE-Ol 0.0
$ TBIRTH TDEATH SOS SOM NDS NDM IPF/COF INIT

0.0 1.000E+20 1.0 1.0 0 0 1 0
$ --------------- 1 ^ -------------P —~-2----------- 1-'-------' - 3 ------------- i---------------4 — ~  -— 5 ------— - —  6 --------------------- r~~"--------7 “ — ‘ ” H------------8

*END
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APPENDIX C

SAMPLE SLIDING CONTACT ANALYSIS INPUT FILE

*KEYWORD
$— .+--- 1 ---- +----2----+----3----+----4----+----
$
$ NOTE THE FOLLOWING SET OF UNITS: MM,KG,SEC,
$ ALL OTHER UNITS ARE DERIVED FROM THIS BASE SET 
$

$
 1------ +-----2-

*TITLE
7ASF.SLG.CON

 1------ +-----2-
$
$— +------ 1------+-----2-
*CONTROL_TERMINATION 
$ ENDTIM ENDCYC

8.40E-03 0
*CONTROL_TIMESTEP 
$ DTINIT SCFT

,000 .900
*CONTROL_ENERGY 
$ RGEN RWEN

2 2
* CONTROL__ALE 
$ DCT NADV

2 1
$ START END

(1) TITLE CARD.
 3-------+--------4 + 5 +_ -6----+----7 —

(2) CONTROL CARDS. 
 3 - -------- + ------------ 4 -

DTMIN
.000

ISDO
0

SLNTEN
1

METH
2

AAFAC

ENDNEG
.000

TSLIMT

RYLEN
1

AFAC
-1

VFACT

-+----5-

-+----5-

ENDMAS
. 000

DTMS

-+---- 6--- +---- 7-

-+---- 6--- +--- -7-

LCTM ERODE

-+ 8

-+ 8

MS 1ST

BFAC

VLIMIT

CFAC

EBC

DFAC EFAC

ID8

$_— +---- x--- +----2— >— +----3----- +---4---- +---5-----+--- 6---- +--- 7 —
$ (3) DATABASE CONTROL CARDS - ASCII HISTORY FILE

 !----+---- 2 ----+— ^3----- +---4---- +---5-----+----6— — +--- 7 —
$ * DATABASE_HISTORY_OPTION
$ ID1 ID2 ID3 ID4 IDS ID6 ID7
$
$OPTION : BEAM BEAM_SET NODE NODE_SET
$ SHELL SHELLJ3ET SOLID SOLID_SET
$ TSHELL TSHELL_jSET
$~— I-----1----)---— 2----~ 3~~“— l— — 4--------- 1---5------1---- 6— "— l-------7-1---•-
$ (4) DATABASE CONTROL CARDS FOR ASCII FILE

§---+ _ _ — i ----+----2----+----3---- +-'-- 4----+---- 5-
* DATABAS E_HISTORY_SOLID_SET
$ ID1 ID2 ID3 ID4 ID5

8
*DATABASE_ELOUT

1.00E-05
* DATABAS E_GL S TAT

1.00E-Q5
* DATABAS E_MAT S UM

1.00E-05
* DATABAS E_RC FORC

1.00E-05
* DATABASE_SLEOUT

1.00E-05 
*DATABASE_FSI 

1.00E-05 
$ DBFSI_ID SID SIDTYPE

1 2  1

-7--
-7--

ID6 ID7

-+ 8

ID8
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$ (5) DATABASE CONTROL CARDS FOR

* DATABASE_BINARY_D3 PLOT
$ DT/CYCL LCDT NOBEAM

1.00E-04
* DATABAS E_BINARY_D3THDT
$ DT/CYCL LCDT NOBEAM

1.00E-04

*DATABASE_EXTENT BINARY
0 ~ 0 3 0 1
0 0 0 0 0

BINARY FILE

$
$— +------1-
*PART 
$HEADING 
PART PID = 

$ PID
1

*PART 
$HEADING 
PART PID = 

$ PID
2

*PART 
SHEADING 
PART PID = 

$ PID
3

*PART 
SHEADING 
PART PID = 

$ PID
4

*PART 
SHEADING 
PART PID = 

$ PID
5

*PART 
SHEADING 
PART PID = 

$ PID
6

*PART 
SHEADING 
PART PID = 

$ PID
7

*PART 
SHEADING 
PART PID = 

$ PID
8

*PART 
SHEADING 
PART PID = 

$ PID
9

(6 ) DEFINE PARTS CARDS 
-2--- +----3----+----4---

1 PART NAME :SOLID 
SID MID EOSID

1 1 1

2 PART NAME :ASP 
SID MID EOSID

2 2

3 PART NAME :AIRMESH 
SID MID EOSID

3 1 1

4 PART NAME :ASP2 
SID MID EOSID

2 2

5 PART NAME :ASP3 
SID MID EOSID

2 2

6 PART NAME :ASP4
SID

2
MID

2
EOSID

7 PART NAME :ASP5 
SID MID EOSID

2 2

8 PART NAME :ASP6 
SID MID EOSID

2 2

9 PART NAME :ASP7 
SID MID EOSID

2 2

HGID

HGID

HGID

HGID

HGID

HGID

HGID

HGID

HGID

GRAV

GRAV

GRAV

GRAV

GRAV

GRAV

GRAV

GRAV

GRAV

ADPOPT

ADPOPT

ADPOPT

ADPOPT

ADPOPT

ADPOPT

ADPOPT

ADPOPT

ADPOPT

TMID

TMID

TMID

TMID

TMID

TMID

TMID

TMID

TMID
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$---+---- 1--- +----2----+----3----+----4---- +----5-
$ (7) INITIAL VOID DEFINITIONS

*INITIAL_VOID_PART 
$ PID

3

$ (8 ) MATERIAL CARDS

*MAT_ELASTIC_PLASTIC_HYDRO 
$MATERIAL NAME:A356

 + g +----- 7------+------8

$ MID RO G SIGY EH PC FS
1 2.669E-06 2.720E+07 2.400E+05

$ EPS1 EPS2 EPS3 EPS4 EPS5 EPS6 EPS7 EPS8
0.00E+00 0.10E+01 0.20E+01 0.30E+01 0.40E+01 0.50E+01 0.60E+01 0.70E+01

$ EPS 9 EPS10 EPS11 EPS12 EPS13 EPS14 EPS15 EPS16
0.80E+01 0.90E+01 0.10E+02 0.12E+02 0.14E+02 0.17E+02 0.20E+02 0.40E+02

$ ESI ES2 ES3 ES4 ES5 ES6 ES7 ES8
2 .400E+05 2.701E+05 2.946E+05 3.145E+05 3.306E+05 3.437E+05 3.543E+05 3.629E+05

$ ES9 ES10 ES11 ES12 ES13 ES14 ES15 ES16
3 . 698E+05 3.755E+05 3.802E+05 3.869E+05 3.914E+05 3.954E+05 3.975E+05 3.999E+05

$-— +----1---- +----2 ---- +-----3----.-t-—--“4---- +----5---- +----6---- +----7---- — ■— 8
*MAT_RIGID
$MATERIAL NAME:RIGID ST

MID RO PR
2 7,800E-06 2 .070E+08 3.000E-01 

CMO CON1 CON2
1.0 3 7

OPTIONAL BLANK CARD

N
0.0

COUPLE ALIAS

S3
0.0

GAMM0
1.97

A
0.48

-5----+----6----+--- 7-

- S---- +---- 6----+--- 7-

+--- 1----+-----2----+----3--- +---- 4--- +-
*EOS_GRUNEISEN
$ EOSID C SI S2

1 0.535E+07 1.338 0.0
$ V0

1
$--+----1----+-----2----+----3--- +---- 4--- +-
$ (9) SECTION CARDS
$--+----1----+----- 2----+----3--- +---- 4--- +-
*SECTION_SOLID 
$PROPERTY NAME:SOLID1 
$ SID ELFORM AET

1 12
*SECTION_SOLID 
$PROPERTY NAME:SOLID3 
$ SID ELFORM AET

3 12
*SECTION_SOLID 
$PROPERTY NAME:SOLID2 
$ SID ELFORM AET

2 1

$ (10) EULERIAN/LAGRANGIAN CONTACT COUPLING
$___+----1 — ,— +-- 2 ----- +----3----+----4----+----5----+---- 6---
*CONSTRAINED LAGRANGE IN SOLID

E0
0

-+ £

-+ 8

SLAVE
2

START

CQ

MASTER
1

END

HMIN

*SET_PART_LIST 
$ PSID

2
$ PID1

2
*SET PART LIST

PID2
4

SSTYP
0

PFAC
3.0

HMAX

PID3
5

MSTYP
0

FRIC
0.0

NQUAD
4

FROMIN

CTYPE
5

NORM

DIREC
2

MCOUP

PID3
6

PID5
7

PID6 PID7
9
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$ PSID 
1

$ PID1 PID2
1 3

$ (11) NODAL POINT CARDS
$— +----1----+---- 2---- +---3---- +------- 4-+----5----+----6----+----7— — +---- 8
*NODE
$ NODE X Y Z TC RC

1 - .833295700E-02 .680000000E+01 .540000000E+01
2 -.416666400E+00 .679999900E+01 .540000100E+01
3 -.416666400E+00 .639999800E+01 .540000100E+01

... (cont'd)
41992 .235410200E+00 .963748900E+01 .550000100E+01
41993 .235410200E+00 .957499000E+01 .550000100E+01
41994 .235410800E+00 .951248900E+01 .550000100E+01

-1- — 2 --- 3 — — +----4- -6- — 7 — -+----8
(1 2 ) SOLID :ELEMENT (SARDS

-1- — 2 --- 3 — — +----4- -5- -6- -- 7--- _+----8
ELEMENT_ SOLID

e id" PID N1 N2 N3 N4 N5 N 6 N7 N8
1 1 1 2 3 4 5 6 7 8
2 1 3 2 9 10 7 6 11 12
3 1 13 14 15 16 17 18 19 20

(cont' d)

33353 9 41992 41840 41841 41993 41674 41522 41523 41675
33354 9 41993 41841 41842 41994 41675 41523 41524 41676
33355 9 41994 41842 41726 41885 41676 41524 41408 41567

>1- — 2 --- 3— — +----4- -5- -6- -- 7--- -+----8
-- +--- -1--- +—— 2--- +■--- 3 — — +----4----- (.--- -5----+— ---6'--- +- -- 7--- -+--- 8

$ (13) BOUNDARY CONDITION CARDS

BOUNDARY_S PC_NODE 
NID/NSID ~ CID DOFX DOFY DOFZ DOFRX DOFRY DOFRZ

5 0 0 0 1 1 1 0
6 0 0 0 1 1 1 0
7 0 0 0 1 1 1 0

30544
(cont'd)

0 0 0 1 1 1 0
30545 0 0 0 1 1 1 0
30546 0 0 0 1 1 1 0

$-- +----x----+----2----+----3----+----4----+----5----+----6----+----7----+---- 8
$ (14) DEFINE SET CARDS
$— -+--- 1---- — +----3— — +--- 5— — +--- 6— --- 7-- --+--- 8
*SET NODE LIST
$ SID 

1
DAI DA2 DA3 DA4

1
$ NIDI NID2 NID3 NID4 NID5 NID6 NID7 NID8

14195 14196 14201 14205 14209 14213 14290 14306
14322 14338 14354 14370 14386 14402 14515 14518
14522 14526 14530 14534 14609 14625 14641 14657
14673 14689 14705 14191 14192 14199 14203 14207
14211 14288 14304 14320 14336 14352 14368 14384
14400 14511 14514 14520 14524 14528 14532 14607
14623 14639 14655 14671 14687 14703 14773 14774
14777 14779 14781 14783 14822 14830 14838 14846
14854 14862 14870 14878 14933 14936 14938 14940
14942 14944 14981 14989 14997 15005 15013 15021
15029 15091 15092 15095 15097 15099 15101 15140
15148 15156 15164 15172 15180 15188 15196 15251
15254 15256 15258 15260 15262 15299 15307 15315
15323 15331 15339 15347 15409 15410 15413 15415
15417 15419 15458 15466 15474 15482 15490 15498
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*<
/><

/><
/>

15506 15514 15569 15572 15574 15576 15578 15580
15617 15625 15633 15641 15649 15657 15665 15727
15728 15731 15733 15735 15737 15776 15784 15792
15800 15808 15816 15824 15832 15887 15890 15892
15894
15975

15896
15983

15898 15935 15943 15951 15959 15967

(15) LOADING CONDITIONS
---+----1---- +----2---- +----3--- — +--- 5--- -+--- 6- — +--- 8
LOAD NODE SET

NSID
1

DOF
2

LCID
1

SF
1

CID M1 M2 M3

DEFINE CURVE
LCID SI DR SFA SFO OFFA OFFO DATTYP

1 0 1.0 -1 .0 
A1(TIME) 01( 

0 . 0 0 0 . 0  
0.0002 0.092593E+04 
0.0011 0.092593E+04 
0 . 0 0 1 2 0 . 0  
0.0084 0.0

0.0
FORCE)

0.0 0

+--- 2- 3_ — -H---- 4 ~--- 1---- 5--- -+--- 6- --- h--- 7- — + — -8
SET NODE LIST
: SIDo DA1 DA2 DA3 DA4

i NIDI NID2 NID3 NID4 NID5 NID6 NID7 NID8
30655 30656 30659 30660 30663 30665 30667 30669
30671 30673 30675 30677 30752 30754 30768 30770
30784 30786 30800 30802 30816 30818 30832 30834
30848 30850 30864 30866 30975 30978 30979 30982
30984 30986 30988 30990 30992 30994 30996 30998
31071 31073 31087 31089 31103 31105 31119 31121
31135 31137 31151 31153 31167 31169 31237 31238
31241 31243 31245 31247 31286 31294 31302 31310
31318 31326 31334 31342 31397 31400 31402 31404
31406 31408 31445 31453 31461 31469 31477 31485
31493 31555 31556 31559 31561 31563 31565 31604
31612 31620 31628 31636 31644 31652 31660 31715
31718 31720 31722 31724 31726 31763 31771 31779
31787 31795 31803 31811 31873 31874 31877 31879
31881 31883 31922 31930 31938 31946 31954 31962
31970 31978 32033 32036 32038 32040 32042 32044
32081 32089 32097 32105 32113 32121 32129 32191
32192 32195 32197 32199 32201 32240 32248 32256
32264 32272 32280 32288 32296 32351 32354 32356
32358
32439

32360
32447

32362 32399 32407 32415 32423 32431
;-- +----1 ----'+*-1-- 2 -

(15) LOADING
-H---- 4----+----5---
CONDITIONS

-+--- 6- + 7-— +----8

i — ■+--- 1----
rLOAD_NODE_SET

•+----2 -
I

. + 3— .-+--- 4-.. + 5 - -+--- 6- ___+ 7-— +----8

: NSID 
2

DOF
2

LCID
2

SF
1

CID Ml M2 M3

DEFINE CURVE
: LCID SIDE SFA SFO OFFA OFFO DATTYP

2 0 1 . 0 -1.0 
A1(TIME) 01 ( 

0 . 0 0 0 . 0  
0 . 0 0 1 2 0.0 
0.0014 0.092593E+04 
0.0023 0.092593E+04 
0.0024 0.0 
0.0084 0.0

0 . 0
FORCE)

0 . 0 0

:SET NODE LIST 
: SID 

3

■+----2 -

DAI DA2

-+----4-

DA3 DA4

-+--- 6- — +----8
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$ NIDI NID2 NID3 NID4 NID5 NID6 NID7 NID8
32563 32564 32567 32568 32571 32573 32575 32577
32579 32581 32583 32585 32660 32662 32676 32678
32692 32694 32708 32710 32724 32726 32740 32742
32756 32758 32772 32774 32883 32886 32887 32890
32892 32894 32896 32898 32900 32902 32904 32906
32979 32981 32995 32997 33011 33013 33027 33029
33043 33045 33059 33061 33075 33077 33145 33146
33149 33151 33153 33155 33194 33202 33210 33218
33226 33234 33242 33250 33305 33308 33310 33312
33314 33316 33353 33361 33369 33377 33385 33393
33401 33463 33464 33467 33469 33471 33473 33512
33520 33528 33536 33544 33552 33560 33568 33623
33626 33628 33630 33632 33634 33671 33679 33687
33695 33703 33711 33719 33781 33782 33785 33787
33789 33791 33830 33838 33846 33854 33862 33870
33878 33886 33941 33944 33946 33948 33950 33952
33989 33997 34005 34013 34021 34029 34037 34099
34100 34103 34105 34107 34109 34148 34156 34164
34172 34180 34188 34196 34204 34259 34262 34264
34266 34268 34270 34307 34315 34323 34331 34339
34347 34355

$■
$ (15) LOADING CONDITIONS
$•— ■+----1----■+----2 ---- +----3--- -+----4---- r--- 5— - + --- 6— — +--- 7 — — +----8
*■LOAD NODE SET
$ NSID DOF LCID SF CID Ml M2 M3

3 2 3 1
*'DEFINE CURVE
$ LCID SI DR SFA SFO OFFA OFFO DATTYP

3 0 1.0 -1.0 0 . 0 0.0 0
$ A1(TIME) 01(FORCE)

0 . 0 0 0 . 0
0 . 0 0 1 2 0 . 0
0.0024 0 . 0
0.0026 0.092593E+04
0.0035 0.092593E+04
0.0036 0 . 0
0.0084 0 . 0

*SET NODE LIST
$ S ID

A
DAI DA2 DA3 DA4

$ N I D I NID2 N ID3 NID4 N ID 5 N ID 6 NID7 NID8
34471 34472 34475 34476 3 4479 34481 34483 34485
34487 34489 34491 34493 34568 34570 34584 3 4586
34600 34602 34616 34618 34632 34634 34648 3 4 6 50
34664 34666 3 4 6 80 34682 34791 34794 34795 34798
34800 34802 34804 3 4806 34808 34810 34812 34814
34887 34889 3 4903 34905 3 4919 34921 34935 34937
34951 34953 34967 3 4969 3 4983 34985 35053 35054
35057 35059 35061 35063 35102 35110 35118 35126
35134 35142 35150 35158 35213 35216 35218 3 5220
35222 35224 35261 35269 35277 35285 35293 35301
3 5309 35371 35372 35375 35377 35379 35381 3 5420
35428 35436 35444 35452 35460 35468 3 5476 35531
35534 35536 35538 35540 35542 35579 35587 3 5595
35603 3 5611 3 5619 35627 3 5689 35690 35693 35695
35697 3 5699 35738 3 5 7 46 35754 35762 35770 35778
3 5786 35794 35849 35852 35854 35856 35858 3 5860
35897 3 5905 3 5913 35921 3 5929 35937 3 5945 36007
36008 36011 3 6013 3 6015 36017 36056 ■ 36064 36072
36080 36088 36096 36104 36112 36167 36170 36172
36174 3 6176 36178 36215 36223 36231 3 6239 36247
3 6255

6,___ i_____ i
36263

___l____ —2 —____ ^ _____2 —___ j.____ C ___ ___L____ __L___Q^ -------h-------- i ----
$ (15 )  LOADING

. + _ ________

CONDITIONS
T--- — — O’— —— — T—•—---“ O —T — ——O
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$—-+— 1-
*LOAD_NODE_SET 
$ NSID

4
*DEFINE_CURVE 
$ LCID

4

$-—+------1-
* SET_NODE_LIST 
$ SID

5
$ NIDI

36379 
36395 
36508 
36572 
36708 
36795 
36859 
36965 
37042 
37130 
37217 
37336 
37442 
37511 
37605 
37694 
37805 
37916 
37988 
38082 
38163 
 1-

DOF LCID SF CID Ml M2
2 4 1

SIDR SFA SFO OFFA OFFO DATTYP
0 1.0 -1.0 0.0 0.0 0

A1(TIME) 01(FORCE)
0. 0 0 0.0

0 . 0 0 1 2 0.0
0.0024 0 . 0
0.0036 0.0
0.0038 0.092593E+04
0.0047 0.092593E+04
0.0048 0.0
0.0084 0.0
•+--- 2 ---- +----3---- +----4- — +--- 5— — +--- 6— — +-— -7-

DA1 DA2 DA3 DA4

NID2 NID3 NID4 NID5 NID6 NID7
36380 36383 36384 36387 36389 36391
36397 36399 36401 36476 36478 36492
36510 36524 36526 36540 36542 36556
36574 36588 36590 36699 36702 36703
3671Q 36712 36714 36716 36718 36720
36797 36811 36813 36827 36829 36843
36861 36875 36877 36891 36893 36961
36967 36969 36971 37010 37018 37026
37050 37058 37066 37121 37124 37126
37132 37169 37177 37185 37193 37201
37279 37280 37283 37285 37287 37289
37344 37352 37360 37368 37376 37384
37444 37446 37448 37450 37487 37495
37519 37527 37535 37597 37598 37601
37607 37646 37654 37662 37670 37678
37702 37757 37760 37762 37764 37766
37813 37821 37829 37837 37845 37853
37919 37921 37923 37925 37964 37972
37996 38004 38012 38020 38075 38078
38084 38086 38123 38131 38139 38147

M3

NID8
36393
36494
36558
36706
36722
36845
36962
37034
37128
37209
37328
37439
37503
37603
37686
37768
37915
37980
38080
38155

$— +
$
$ +— — 1------
*LOAD_NODE_SET 
$ NSID

5
*DEFINE_CURVE 
$ LCID

5

38171 
(- 2-  3------ +------4------+------5------ +-----(.

(15) LOADING CONDITIONS 
 +----3---- +----4----+----5---- +--- i

-+----7

. + ------------7

M2

DATTYP
0

+ 2-

DOF 
2

LCID
5

SF
1

CID

$—-+—■— 1-----
*SET_NODE_LIST 
$ SID

6
$ NIDI

38287

SIDR
0

A1(TIME) 
0.00 

0.0012 
0.0024 
0.0036 
0.0048 
0.0050 
0.0059 
0.0060 
0.0084 
+ 2 +~

SFA SFO OFFA
1.0 - 1.0 0.0

01(FORCE)
0.0
0.0
0.0
0.0
0.0

0.092593E+04 
0.092593E+04 

0.0 
0.0

— 3----+----4----+---- 5-

M1

OFFO
0.0

M3

DAI

NID2
38288

DA2

NID3
38291

DA3

NID4
38292

DA4

NID5
38295

NID6
38297

NID7
38299

NID8
38301
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38303 38305 38307 38309 38384 38386 38400 38402
38416 38418 38432 38434 38448 38450 38464 38466
38480 38482 38496 38498 38607 38610 38611 38614
38616 38618 38620 38622 38624 38626 38628 38630
38703 38705 38719 38721 38735 38737 38751 38753
38767 38769 38783 38785 38799 38801 38869 38870
38873 38875 38877 38879 38918 38926 38934 38942
38950 38958 38966 38974 39029 39032 39034 39036
39038 39040 39077 39085 39093 39101 39109 39117
39125 39187 39188 39191 39193 39195 39197 39236
39244 39252 39260 39268 39276 39284 39292 39347
39350 39352 39354 39356 39358 39395 39403 39411
39419 39427 39435 39443 39505 39506 39509 39511
39513 39515 39554 39562 39570 39578 39586 39594
39602 39610 39665 39668 39670 39672 39674 39676
39713 39721 39729 39737 39745 39753 39761 39823
39824 39827 39829 39831 39833 39872 39880 39888
39896 39904 39912 39920 39928 39983 39986 39988
39990
40071

39992
40079

39994 40031 40039 40047 40055 40063

(15) LOADING CONDITIONS
----1----
)__NODE_SET

.+,--- 2-. +_ ■+----4-. +_ __+_ 6__ — +----8

NSID
6

:ne curve

DOF
2

LCID
6

SF
1

CID Ml M2 M3

LCID SIDR SFA SFO OFFA OFFO DATTYP
6 0

A1
0 . 0 0

0 . 0 0 1 2
0.0024
0.0036
0.0048
0.0060

1.0
(TIME)

-1.0
01

0.0
0.0
0 . 0
0.0
0.0
0.0

0.0
(FORCE)

0.0 0

0.0062
0.0071

0.092593E+04 
0.092593E+04

$-—+

---- 1_

0.0072 
0.0084 

— +--- 2-

0 . 0  
0.0 

— +--- 4 — — +----5— --+--- 6— -+----8
_NODE_LIST

SID DAI 
7

NIDI NID2

DA2

NID3

DA3

NID4

DA4

NID5 NID6 NID7 NID8
40195 40196 40199 40200 40203 40205 40207 40209
40211 40213 40215 40217 40292 ■ 40294 40308 40310
40324 40326 40340 40342 40356 40358 40372 40374
40388 40390 40404 40406 40515 40518 40519 40522
40524 40526 40528 40530 40532 40534 40536 40538
40611 40613 40627 40629 40643 40645 40659 40661
40675 40677 40691 40693 40707 40709 40777 40778
40781 40783 40785 40787 40826 40834 40842 40850
40858 40866 40874 40882 40937 40940 40942 40944
40946 40948 40985 40993 41001 41009 41017 41025
41033 41095 41096 41099 41101 41103 41105 41144
41152 41160 41168 41176 41184 41192 41200 41255
41258 41260 41262 41264 41266 41303 41311 41319
41327 41335 41343 41351 41413 41414 41417 41419
41421 41423 41462 41470 41478 41486 41494 41502
41510 41518 41573 41576 41578 41580 41582 41584
41621 41629 41637 41645 41653 41661 41669 41731
41732 41735 41737 41739 41741 41780 41788 41796
41804 41812 41820 41828 41836 41891 41894 41896
41898 41900 41902 41939 41947 41955 41963 41971
41979 
---- 1-

41987 __ +____3__ -- 4-“ — +----5— — +--1— 6— __+___ ?___ -+----8
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*LOAD NODE SET
$ NSID DOF LCID SF

7 2 7 1
*DEFINE_CURVE
$ LCID SIDR SFA SFO

7 0 1.0 -1.0
$ A1(TIME) 01

0 . 0 0 0 . 0
0 . 0 0 1 2 0 . 0
0.0024 0 . 0
0.0036 0 . 0
0.0048 0 . 0
0.0060 0.0
0.0072 0 . 0

CID

OFFA
0.0

Ml M2 M3

OFFO DATTYP
0.0 0

0.0074
0.0083
0.0084

0.092593E+04 
0.092593E+04 

0.0
$— ■+— 1— -- 3— „ _ +----4----+— ■— 5--- --- 6— — +--- 7-
* BOUNDARY PRESCRIBED MOTION RIGID
$ PARTID DOF VAD LCID SF VID DEATH

2 1 0 8 1.0 0 l.E+28
*DEFINE CURVE
$ LCID SIDR SFA SFO OFFA OFFO DATTYP

8 0 1.0 1 . 0 0 . 0 0 . 0 0
$ A1(TIME) 01(VELOCITY)

0 0 . 0
0 . 0 0 0 2 0 . 0
0.0003 10.0E+03
0 . 0 0 1 1 10.0E+03
0 . 0 0 1 2 10.0E+03

__i____ i __ 0.0084_J____ O____ L___
10.0E+03
___ 1____ A____ 1____ C___ — 4--—  -6— —_-| “7 ■V ' X- 1 A. T 1 -1 -

*BOUNDARY PRESCRIBED MOTION RIGID
T

$ PARTID DOF VAD LCID SF VID DEATH
4 1 0 9 1.0 0 l.E+28

*DEFINE_CURVE
$ LCID SIDR SFA SFO OFFA OFFO DATTYP

9 0 1.0 1 . 0 0.0 0 . 0 0
$ A1(TIME) 01(VELOCITY)

0 0 . 0
0.0014 0.0
0.0015 10.0E+03
0.0023 10.0E+03
0.0024 10.0E+03

& i .... 1
0.0084
. i ^ i 10.0E+03. I A i . . C _ x

*BOUNDARY PRESCRIBED MOTION RIGID
-r___6 —~ __1__——7 •

$ PARTID DOF VAD LCID SF VID DEATH
5 1 0 10 1.0 0 l.E+28

*DEFINE CURVE
$ LCID SIDR SFA SFO OFFA OFFO DATTYP

10 0 1 .0 1 . 0 0 . 0 0.0 0
$ A1(TIME) 01(VELOCITY)

0 0 . 0
0.0026 0 . 0
0.0027 10.0E+03
0.0035 10.0E+03
0.0036 10.0E+03

6.___l____ 1___ 0.0084__i____ O ____ i___ 10.0E+03__l____ A_____l____ C.___ _ 1___ 6—— __.j____-y.^--- r—-- x---- 1---- ----- 1---- J---- »---- *±----t-- --sj---
*BOUNDARY PRESCRIBED MOTION RIGID

-T

$ PARTID DOF VAD LCID SF VID DEATH
6 1 0 11 1.0 0 l.E+28

*DEFINE CURVE
$ LCID SIDR SFA SFO OFFA OFFO DATTYP

11 0 1.0 1 . 0 0 . 0 0.0 l
$ A1(TIME) 01(VELOCITY)

BIRTH
0.0

BIRTH
0.0

BIRTH
0.0

BIRTH
0.0
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0 0.0
0.0038 0.0
0.0039 10.0E+03
0.0047 10.0E+03
0.0048 10.0E+03
0.0084 10.0E+03

*BOUNDARY PRESCRIBED MOTION RIGID
$ PARTID DOF VAD LCID SF VID DEATH BIRTH

7
*DEFINE CURVE

1 0 12 1.0 0 l.E+28 0 . 0

$ LCID SIDR SFA SFO OFFA OFFO DATTYP
12

$
0

A1(TIME) 
0

0.0050
0.0051
0.0059
0.0060
0.0084

1.0 1 . 0 0 . 0  
01(VELOCITY) 

0 . 0  
0 . 0  

10.0E+03 
10.0E+03 
10.QE+03 
10.0E+03

0.0 0

$— +----1 ----+----2----+----3----+----4---
* BOUNDARY PRESCRIBED MOTION RIGID

-+--- 5--- -+--- 6— -— +--- 7 — --+--- 8

$ PARTID DOF VAD LCID SF VID DEATH BIRTH
8

*DEFINE CURVE
1 0 13 1.0 0 l.E+28 0 . 0

$ LCID SIDR SFA SFO OFFA OFFO DATTYP
13

$
0

A1 (TIME)
1.0 1 . 0 0 . 0  

01(VELOCITY)
0.0 0

0 0.0
0.0062 0 . 0
0.0063 10.0E+03
0.0071 10.0E+03
0.0072 10.0E+03
0.0084 10.0E+03

*BOUNDARY PRESCRIBED MOTION RIGID
$ PARTID DOF VAD LCID SF VID DEATH BIRTH

9
*DEFINE CURVE

1 0 14 1.0 0 l.E+28 0 . 0

$ LCID SIDR SFA SFO OFFA OFFO DATTYP
14

$
0 1.0 

A1(TIME)
0

0.0074
0.0075
0.0083
0.0084

1 . 0 0 . 0  
01(VELOCITY) 

0 . 0  
0 . 0  

10.0E+03 
10.0E+03 
10.0E+03

0 . 0 0

$— -+----1---
*SET SOLID 
$ SID 

8

-+----2 —

NUM
90

— +----3- — +--- 5— — +--- 6— —H--- — 8

$ K1 K2 K3 K4 K5 K6 K7 K8
10679 10684 1655 1660 1661 1663 1664 1700
1701 1703 1704 1712 1713 1715 1716 1764
1765 1891 3911 3916 3917 3919 3920 3956
3957 3959 3960 3968 3969 3971 3972 4020
4021 4147 6167 6172 6173 6175 6176 6212
6213 6215 6216 6224 6225 6227 6228 6276
6277 6403 8423 8428 8429 8431 8432 8468
8469 8471 8472 8480 8481 8483 8484 8532
8533 8659 10685 10687 10688 10724 10725 10727

1072S 10736 10737 10739 10740 10788 10789 10915
1939
8731

4195
10987

6451 8707 10963 1963 4219 6475

$-- +----1---
*END
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APPENDIX D

EOS ANALYSIS

In order to simulate the large deformation behaviour of the 356 Al alloy in sliding 

wear conditions, an Eulerian model— capable of accounting for large strain accumulation 

during asperity contacts—was developed and the details of the Eulerian sliding contact 

models are presented in Section 4.2. The material model prepared for the Eulerian 

sliding contact analysis must be accompanied by an equation of state (EOS) to account 

for any resistance to hydrostatic stresses. Two different EOS — named Gruneisen EOS 

and Linear Polynomial EOS—were employed to define the pressure-volume relationship 

of the 356 Al material. Details of the Gruneisen EOS are presented in Section 4.2.3. In 

this appendix, details of the Linear Polynomial EOS are presented and then the results 

of two simulations using two different EOS are compared.

The Linear Polynomial EOS is linear in internal energy [102]. The pressure ( P ) is 

given by:

P *  C0 + Cx\f/ + C2y/2 + C3̂ 3 + (C4 + C,W + C > 2 )E  (D-1)

where E  is the energy per unit volume, C0 toC6 are the polynomial equation coefficients. 

y/ is the compression defined as:

yr = - £ — 1 (D-2)
Po

where p  is the density of the material and p 0 is the initial density. When the 1st 

polynomial equation coefficient, Cx, is used by itself and the rest of the coefficients are
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set to zero, it corresponds to the elastic bulk modulus of the material. However, the 

equation cannot be used in this shape for deformation beyond the elastic regime.

Figure D.1 illustrates pressure predictions of the Gruneisen EOS and Linear 

Polynomial EOS with changing compression (y/). Figure D.1 indicates that pressure 

prediction of the two OES shouldn’t differ more than 10 % for the low values of yr . 

Figure D.2 compares the results of two simulations using two different EOS for the 356 

Al material used in this study. Figure D.2 reveals that the difference between two models 

using two different EOS was always less than 10% for the loading conditions studied 

and both EOS could be used in the simulations. The Gruneisen EOS was chosen to 

complete the simulations, since it is a full equation and the constants for the full equation 

are available from literature.
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Figure D.1: (a) Pressure prediction by the Gruneisen EOS and Linear Polynomial

EOS, (b) Pressure prediction difference between the Gruneisen EOS and 

Linear Polynomial EOS as percentage.
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Comparison of the predictions two simulations using two different EOS for 

the 356 Al material: (a) hydrostatic pressure, (b) von Mises stress and (c) 

equivalent plastic strain (Sliding velocity: 10 m/s, Normal load: 

300 N/mm).
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APPENDIX E

SAMPLE COUPLED THERMAL AND MECHANICAL SLIDING CONTACT 

ANALYSIS INPUT FILE

*KEYWORD

NOTE THE FOLLOWING SET OF UNITS: MM,KG,SEC,K 
ALL OTHER UNITS ARE DERIVED FROM THIS BASE SET

 1---- +----2 ----+---3— — +-----4---- +--- 5----+----6--- +---- 7----+----8
(1) TITLE CARD.

 1---- +----2 ----+---3---- +---- 4---- +--- 5----+----6--- +---- 7----+----8
TITLE

7ASP.LAG.SLG,V:10M/S,FOR:150N/mm
$-— +----x~---+-----2--- +— — 3----+---- 4--- +----5----+----6----+----7----+---- 8
$ (2) CONTROL CARDS.
$_— +----x---- +----2----+---3---- +---- 4---- +■--- 5----+----6--- +---- 7----+----8
*CONTROL_TERMINATION
$ ENDTIM ENDCYC DTMIN ENDNEG ENDMAS

0.0084 0 .000 .000 .000
* CONTROL_TIMESTE P
$ DTINIT SCFT ISDO TSLIMT DTMS LCTM ERODE MS1ST

. 000 .800 0
* CONTROL_SOLUTION 
$ SOLN

2
*CONTROL_THERMAL_SOLVER
$ ATYPE PTYPE SOLVER CGTOL GPT EQHEAT FWORK SBC

1 1 3  1.0E-04 8 1 0.95
*CONTROL_THEKMALJTIMESTEP
$ TS TIP ITS TMIN TMAX DTEMP TSCP

0 1.0 1.0E-04 0.0 0.0 0.0 0.5
*CONTROL_ENERGY
$ HGEN ' RWEN SLNTEN RYLEN

2 2 1 1
$— +----1----+----2----+----3---- +---- 4----+-— 5--- +----6— -+---- 7----+---- 8
$ (3} DATABASE CONTROL CARDS - ASCII HISTORY FILE

* DATABASEJHISTORY_SHELL_SET
$ ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8

8 9 10 11
$-- +--- x +---- 2---- +----3----+----4----+----5----+---- 6--- +---- 7---- +--- 8
$ (4) DATABASE CONTROL CARDS FOR ASCII FILE
$___+--- x +---- 2---- +----3----+----4----+----5----+----6--- +---- 7---- +----8

 x— ■— +---- 2— --+----3----+----4----+----5----+---- 6--- +---- 7---- +--- 8
* DATABAS E_RB DOUT

1.00E-05 
*DATABASE_SECFORC 

1.00E-05
* DATABASEJTPRINT

1.00E-05
* DATABASE_ELOUT

1.00E-05
* DATABASE_GLSTAT

1.00E-05
* DATABASE_MATSUM

1.00E-05 
*DATABASE_RCFORC 

1.00E-05 
*DATABASE SLEOUT
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1.00E-05
$-- +--- 1----+----2---- +-----3---+----4 — — +---- 5---+----- 6---+-— 7-----+--- 8
$ (5) DATABASE CONTROL CARDS FOR BINARY FILE
$___+--- 1----+----2— — +-----3---+----4---- +-----5---+----- 6---+----7-----+--- 8
* DATABASE_BINARY_D3 PLOT
$ DT/CYCL LCDT NOBEAM

1.00E-04
* DATABASE_BINARY_D3THDT
$ DT/CYCL LCDT NOBEAM

1.00E-04
 1----+---- 2 ----+----3---+-----4--- +---- 5--- +---- 6---+-----7----+--- 8

*DATABASE_EXTENT_BINARY
0 0 3 0 1 1 1 1  
0 0 0 0 0 0

$— +---- x--- +---- 2 ----+----3---+-----4--- +---- 5--- +---- 6---+-----7----+--- 8
$ (6 ) DEFINE PARTS CARDS
$---»•---- 1--- +---- 2----+----3---+-----4--- +---- 5--- +---- 6---+-----7----+--- 8
*PART
SHEADING
PART PID = 1 PART NAME :SOLID

$ PID SID MID EOSID HGID GRAV ADPOPT TMID
1 1 1  1

*PART
SHEADING
PART PID = 2 PART NAME :ASP

$ PID SID MID EOSID HGID GRAV ADPOPT TMID
2 2 2 2

*PART
SHEADING
PART PID * 3 PART NAME :ASP2

$ PID SID MID EOSID HGID GRAV ADPOPT TMID
3 2 2 3

*PART
SHEADING
PART PID = 4 PART NAME :ASP3

$ PID SID MID EOSID HGID GRAV ADPOPT TMID
4 2 2 4

*PART
SHEADING
PART PID = 5 PART NAME :ASP4

$ PID SID MID EOSID HGID GRAV ADPOPT TMID
5 2 2 5

*PART
SHEADING
PART PID = 6 PART NAME :ASP5
$ PID SID MID EOSID HGID GRAV ADPOPT TMID

6 2 2 6
*PART
SHEADING
PART PID = 7 PART NAME :ASP6

$ PID SID MID EOSID HGID GRAV ADPOPT TMID
7 2 2 7

*PART
SHEADING
PART PID = 8 PART NAME :ASP7
$ PID SID MID EOSID HGID GRAV ADPOPT TMID

8 2 2 8
$-- + x +----2----+----3----+---- 4--- +---- 5--- +---- 6--- +---- 7--- +----8
$ (7) MATERIAL CARDS

*MAT_ELASTIC_VISCOPLASTIC_THERMAL 
$MATERIAL NAME:A356
$ MID RO E PR SIGY ALPHA LCSS

1 2.669E-06 7.24E+07 0.33 2.400E+05 23.5E-06 1
$ QR1 CR1 QR2 CR2 QX1 CXI QX2 CX2

$ C P LCE LCPR LCSIGY LCR LCX LCALPH
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6500 
$ LCC

4
LCP

10

5 + 1-----+------ 2 +-
*DEFINE_CURVE 
$ STRESS/STRAIN DATA FROM 
$ LCID SIDR

1 0
$ STRAIN

0 . 0  
1.0 
2.0
3.0
4.0
5.0
6.0
7.0
8 . 0
9.0

10.0 
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0 
21.0
25.0
30.0
40.0

$-—+ 1------+ 2 -+-
*DEFINE_CURVE 
$ TEMP/STRESS SCALE 
$ LCID

10
SIDR

0
TEMP(K)
300.0
320.0
330.0
340.0
350.0
360.0
370.0
380.0
390.0
400.0
410.0
420.0
430.0
440.0
450.0
460.0
470.0
480.0
490.0
500.0
550.0
600.0
650.0
700.0
750.0
800.0 

-+ 2 —

FROM VOCE EQUATION 
SFA SFO OFFA
1 . 0 1 .0 0 . 0

STRESS 
2.40E+05 

2.7015E+05 
2.9461E+05 
3.1447E+05 
3.3059E+05 
3.4366E+05 
3.5429E+05 
3.6289E+05 
3.6988E+05 
3.7555E+05 
3.8016E+05 
3.8390E+05 
3.8693E+05 
3.8939E+05 
3.9139E+05 
3.9302E+05 
3.9433E+05 
3.9539E+05 
3.9627E+05 
3.9697E+05 
3.9754E+05 
3.9800E+05 
3.9838E+05 
3.9969E+05 
3.9996E+05

SFA SFO OFFA
1.0  1.0 0.0
STRESS SCALE

1.0
0.962121212 
0.943181818 
0.924242424 
0.905303030 
0.886363636 
0.867424242 
0.848484848 
0.829545455 
0.810606061 
0.791666667 
0.772727273 
0.753787879 
0.734848485 
0.715909091 
0.696969697 
0.678030303 
0.659090909 
0.640151515 
0.621212121 
0.526515152 
0.431818182 
0.337121212 
0.242424242 
0.147727273 
0.053030303 

 3----+----4-— +---- 5-

OFFO
0.0

OFFO
0.0
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*MAT_RIGID
$MATERIAL NAME:RIGID ST 
$ MID RO

2 7
$ CMO CON1

1.0 3
$ OPTIONAL- BLANK CARD

800E-06 2.070E+08 3 
CON2 

7

PR
, 000E-01

N
0.0

COUPLE ALIAS

 +~ 2-~~
*MAT_THERMAL_ISOTROPIC 
$ TMID TRO

1 0.0 
$ HC TC

9.63E+08 1.51E+05

TGRLC
0.0

TGMULT
0.0

-+----5-
*MAT_THERMAL__ISOTROPIC 
$ TMID TRO

2 0 . 0  
$ HC TC

9.63E+08 1.51E+05
 1 + 2-—

TGRLC
0.0

TGMULT
0.0

*MATJTHERMAL_ISOTROPIC 
$ TMID TRO

3 0.0
$ HC TC

9.63E+08 1.51E+05

TGRLC
0.0

TGMULT
0.0

*MAT_THERMAL_ISOTROPIC 
$ TMID TRO

4 0.0
$ HC TC

9.63E+08 1.51E+05

TGRLC
0.0

TGMULT
0.0

*MAT_THERMAL_ISOTROPIC 
$ TMID TRO

5 0.0
$ HC TC

9.63E+08 1.51E+05

TGRLC
0.0

TGMULT
0.0

*MAT_THERMAL_ISOTROPIC 
$ TMID TRO

6 0 . 0  
$ HC TC

9.63E+08 1.51E+05

TGRLC
0.0

TGMULT
0.0

*MAT_THERMAL_ISOTROPIC 
$ TMID TRO

7 0.0
$ HC TC

9.63E+08 1.51E+05

TGRLC
0.0

TGMULT
0.0

*MAT_THERMAL__ISOTROPIC 
$ TMID TRO

8 0 . 0  
$ HC TC

9.63E+08 1.51E+05
$„_+------ 1-----+------ 2---
$
$___+------ ]_-----+------2-
*SECTION_SHELL 
$PROPERTY NAME:SHELL

TGRLC
0.0

TGMULT
0.0

._+--- 3-— +---- 4-
i) SECTION CARDS 

 3 ----------- + ------------ 4 -
(

$ SID ELFORM SHRF NIP PROPT QR/IRID ICOMP
1 13 1.0 4 0.0 0 . 0 0

$ T1 T2 T3 T4 NLOC
1.0 1.0 1.0 1.0 0 . 0

SETYP
1

*SECTION_SHELL 
$PROPERTY NAME:SHELL

275

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



$ SID ELFORM SHRF NIP PROPT QR/IRID ICOMP SETYP
2 13 1.0 4 0.0 0.0 0 1

$ T1 T2 T3 T4 NLOC
1 . 0  1 . 0  1 . 0  1 . 0  0 . 0

$— +----!--- +---- 2---- +--- 3---- +--- 4---- +----5----+---- 6----+--- 7---- +--- 8
$ (9) INITIAL DEFINITIONS
$___+----1--- +---- 2---- +--- 3---- +--- 4---- +----5----+---- 6----+--- 7---- +--- 8
*INITIAL_TEMPERATURE_SET

0 300.0
$-- +---- 1--- + 2 — — +----3— — +--- 4---- +----5----+---- 6----+--- 7---- +--- 8
* CQNTACT_2D_AUTOMATIC_NODE_TO_SURFACE_THERMAL
$ PSIDS PSIDM SFACT FREQ FS FD DC MEMBS

1 ' 2 5.0 50 0.0 0.0 0.0 6
$ TBIRTH TDEATH SOS SOM NDS NDM IPF/COF INIT

0.0 1.OOOE+20 1.0 1.0 0 0 1 0
$ CF FRAD HTC GCRIT GMAX CD_FACT

* SET_PART_LIST 
$ PSID

1
$ PID1

1
* S ET_PART_L1ST 
$ PSID

2
$ PID1

2
$-—+------1-------t

PSID
3

—--2-

PSID
4

 3-

PSID
5

 4- -+•

PSID
6

 5-

PSID
7

PSID PSID

$ (10) NODAL POINT CARDS

*NODE
$ NODE X Y

1 -.5857568OOE+OO
2 -.618965100E+00
3 -.6189694OOE+OO

— +--- 7----+---- 8

.889999900E+01 

.890000000E+01 

.887499700E+01

.580000200E+01 

. 580000200E+01 

. 580000300E+01

TC RC

22400
22401
22402
+ 1

$

(cont'd)
. 7 44 450600E+00 
.744450500E+00 
.744450600E+00 
 + 2

. 952998400E+01 

. 949665100E+01 

.946331800E+01

. 580000200E+01 

. 580000200E+01 

. 580000300E+01

(11) SHELL ELEMENT CARDS
-6—

S-- +----!_ --•+-— — 2— — r—^— 3-- 4 — — +--- 5
*ELEMENT SHELL
$ EID PID N1 N2 N3 N4

1 1 1 2 3 4
2 1 4  3 5 6
3 1 6  5 7 8

21533
(cont'd)

8 22141 22167 22169 22160
21534 8 22169 22183 22180 22160
21535 8 22183 22182 22189 22180

$— +----1- --- 1---- 2---- 1---- 3--- -+--- 4 — — +--- 5
$ (12) BOUNDARY CONDITION CARDS
$— +----1- --- 2----+----3— - -+----4 — — +--- 5'
*BOUNDARY SPC_NODE 
$ NID/NSID CID DOFX DOFY DOFZ

9791 0 1 1 1
9792 0 1 1 1
9845 0 1 1 1

10969
(cont'd)

0 1 1 1
1 1 0 2 2 0 1 1 1
11076 0 1 1 1

$-- +----1- — +----2----+----3 — -+----4 — — +----5'

—+------7----- +-

_ _ + ------------ 7 ----------- + _

 + 6-

DOFRX
1
1
1

1
1
1

-+ 6-

-+----7

-+----7

DOFRY
1
1
1

DOFRS?
1
1
1

1
1
1

-+----7

1 
1 
1

 + 8
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$ (13) DEFINE SET CARDS

SET_NODE_LIST
SID*1 DAI DA2 DA3 DA4

1
NIDI NID2 NID3 NID4 NID5 NID6 NID7 NID8
11656 11657 11658 11659 11660 11661 11662 11663
11670 11671 11672 11673 11674 11675 11676 11705
11720 11735 11750 11765 11780 11795 11810 11825
11840 11855 11870 11885 12466 12467 12468 12469
12470 12471 12472 12473 12480 12481 12482 12483
12484 12486 12501 12516 12531 12546 12561 12576
12591 12606 12621 12636 12651 12666 12681

(14) LOADING CONDITIONS

LOAD NODE SET
NSID DOF LCID SF CID Ml M2 M3

1 2 100 1
DEFINE CURVE

LCID SIDR SFA SFO OFFA OFFO DATTYP
100 0 1.0 -1.0 0.0 0.0 0

Al(TIME) 01(FORCE)
0 . 0 0 0 . 0

0 . 0 0 0 2 0.272725E+04
0 . 0 0 1 1 0.272725E+04
0 . 0 0 1 2 0 . 0
0.0084 0.0

*SET NODE LIST
$ SIDo DAI DA2 DA3 DA4

$ NIDI NID2 NID3 NID4 NID5 NID6 NID7 NID8
13274 13275 13276 13277 13278 13279 13280 13281
13288 13289 13290 13291 13292 13293 13294 13323
13338 13353 13368 13383 13398 13413 13428 13443
13458 13473 13488 13503 14084 14085 14086 14087
14088 14089 14090 14091 14098 14099 14100 14101
14102 14104 14119 14134 14149 14164 14179 14194
14209 14224 14239 14254 14269 14284 14299

$- — +----2 — — +----3— --+--- 6— - + --- 8
$ (14) LOADING CONDITIONS

*LOAD NODE SET
$ NSID 

2
*DEFINE CURVE

DOF
2

LCID
200

SF
1

CID Ml M2 M3

$ LCID SIDR SFA SFO OFFA OFFO DATTYP
2 0 0

$
0 1 . 0 -1 . 0 0.0 

Al(TIME) 01(FORCE) 
0 . 0 0 0 .0 

0 . 0 0 1 2 0 . 0  
0.0014 0.272725E+04 
0.0023 0.272725E+04 
0.0024 0.0 
0.0084 0.0

0 . 0 0

$ _ _ _+----x----+----2-
*SET NODE LIST 
$ SID DAI

--- +----3-

DA2 DA3 DA4

— +--- 8

$ NIDI NID2 NID3 NID4 NID5 NID6 NID7 NID8
14892 14893 14894 14895 14896 14897 14898 14899
14906 14907 14908 14909 14910 14911 14912 14941
14956 14971 14986 15001 15016 15031 15046 15061
15076 15091 15106 15121 15702 15703 15704 15705
15706 15707 15708 15709 15716 15717 15718 15719
15720 15722 15737 15752 15767 15782 15797 15812
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* 
</> 

<J>

15827 15842 15857 15872 15887 15902 15917
$___+----- 1---+----2 ----+----3---+-----4--- +---- 5--- +---- 6--- +-----7---+ - — 8
$ (14) LOADING CONDITIONS

+----- x ---+----2----+----3---+-----4--- +---- 5--- +---- 6--- +-----7---+---- 8
*LOAD_NODE__SET
$ NSID DOF LCID SF CID Ml M2 M3

3 2 300 1
*DEFINE_CURVE
$ LCID SIDR SFA SFO OFFA OFFO DATTYP

300 0 1.0 -1.0 0.0 0.0 0
$ Al(TIME) 01(FORCE)

0 . 0 0  0 . 0
0.0012  0.0
0.0024 0.0
0.0026 0.272725E+04
0.0035 0.272725E+04
0.0036 
0.0084 

$-- +----1----+----2 -

0 . 0
0.0

+--- 5— -+--- 6— __+________ -+--- 8
*SET NODE LIST 
$ SID DAI 

4
$ NIDI NID2

DA2 DA3 

NID3 NID4

DA4

NID5 NID6 NID7 NID8
16510 16511 16512 16513 16514 16515 16516 16517
16524 16525 16526 16527 16528 16529 16530 16559
16574 16589 16604 16619 16634 16649 16664 16679
16694 16709 16724 16739 17320 17321 17322 17323
17324 17325 17326 17327 17334 17335 17336 17337
17338 17340 17355 17370 17385 17400 17415 17430
17445 17460 17475 17490 17505 17520 17535

$— +----1----+----2----+----3---_+----4---- +--- 5--- -+--- 6— -- 1---- 7 --- -+----8
$
$--- 1---- 1----- t---- 2-

(14) LOADING CONDITIONS
+--- 5— -+--- 6— __+____7 ___ -+----8

*LOAD NODE SET 
$ NSID DOF LCID SF CID Ml M2 M3

4 2 400 1
*DEFINE_CURVE
$ LCID SIDR SFA SFO OFFA OFFO DATTYP

400 0 1.0 -1.0 0.0 0.0 0
$ Al(TIME) 01(FORCE)

0 . 0 0  0 . 0
0.0012 0.0
0.0024 0.0
0.0036 0.0
0.0038 0.272725E+04
0.0047 0.272725E+04
0.0048 
0.0084 

$--- 1----------1---- 2—

0 . 0
0 . 0

+--- 5— — +--- 6— -+--- .8
*SET NODE LIST 
$ SID DAI 

5
$ NIDI NID2

DA2 DA3 

NID3 NID4

DA4

NID5 NID6 NID7 NID8
18128 18129 18130 18131 18132 18133 18134 18135
18142 18143 18144 18145 18146 18147 18148 18177
18192 18207 18222 18237 18252 18267 18282 18297
18312 18327 18342 18357 18938 18939 18940 18941
18942 18943 18944 18945 18952 18953 18954 18955
18956 18958 18973 18988 19003 19018 19033 19048
19063 19078 19093 19108 19123 19138 19153

$-- +----1----+----2--— H— -— 3 —  ---- 4---- +----5— — i---- 6-- — +--- 7--- -+----8
$
$___+----1----+----2 -

(14) LOADING CONDITIONS
+--- 5— — +--- 6— __+___ 7__ -+----8

*LOAD NODE SET 
$ NSID DOF LCID SF CID Ml M2 M3

5 2 500 1
*DEFINE_CURVE
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LCID
500

SIDR
0

Al(TIME) 
0 . 0 0  

0.0012 
0.0024 
0.0036 
0.0048 
0.0050 
0.0059

SFA SFO OFFA
1.0 - 1.0 0.0

01(FORCE)
0 . 0
0 . 0
0.0
0 . 0
0.0

0.272725E+04 
0.272725E+04

OFFO
0 . 0

DATTYP
0

0.0060 0.0
0.0084 0.0

$ — +— 1—
♦SET NODE LIST
$ SID 

£
DAI DA2 DA3 DA4

V
$ NIDI NID2 NID3 NID4 NID5 NID6 NID7 NID8

19746 19747 19748 19749 19750 19751 19752 19753
19760 19761 19762 19763 19764 19765 19766 19795
19810 19825 19840 19855 19870 19885 19900 19915
19930 19945 19960 19975 20556 20557 20558 20559
20560 20561 20562 20563 20570 20571 20572 20573
20574 20576 20591 20606 20621 20636 20651 20666
20681 20696 20711 20726 20741 20756 20771

$ (14) LOADING CONDITIONS
$— + --------1 --------
♦LOAD NODE SET
$ NSID DOF LCID SF CID Ml M2 M3

6 2 600 1
♦DEFINE CURVE
$ LCID SIDR SFA SFO OFFA OFFO DATTYP

600 0 1.0 -1.0 0 . 0 0 . 0 0
$ A l (TIME) 0 1 (FORCE)

0 . 0 0 0.0
0 . 0 0 1 2 0.0
0.0024 0 . 0
0.0036 0.0
0.0048 0 . 0
0.0060 0.0
0.0062 0.272725E+04
0.0071 0.272725E+04
0.0072 0 . 0

£ • __ i_____ 1 ___ _
0.0084
,_i__ _____ I_____ O____

0 . 0  
__i______A _____ _j____C __ ___ (_____ ___ g^ ----- + -------- ----------

♦SET NODE LIST
1

i
> J 1-----— 4 — T O

$ SID
n

DAI DA2 DA3 DA4
i

$ NIDI NID2 NID3 NID4 NID5 NID6 NID7 NID8
21364 21365 21366 21367 21368 21369 21370 21371
21378 21379 21380 21381 21382 21383 21384 21413
21428 21443 21458 21473 21488 21503 21518 21533
21548 21563 21578 21593 22174 22175 22176 22177
22178 22179 22180 22181 22188 22189 22190 22191
22192 22194 22209 22224 22239 22254 22269 22284
22299 22314 22329 22344 22359 22374 22389

$ — - + --------1 --------
? (14) LOADING CONDITIONS
$ - — +--------1 --------■+----2 -------- + -------- 3 ------- -+--- 4---- +--- 5- — +--- 6- — +--------8

♦LOADJSIODEJSET 
$ NSID

7
*DEFINE_CURVE 
$ LCID

700

DOF 
2

SIDR
0

Al(TIME) 
0 . 0 0

LCID
700

SFA
1.0

SF
1

CID

SFO OFFA
- 1 . 0  0 . 0
01(FORCE)

0 . 0

Ml

OFFO
0 . 0

M2

DATTYP
0

M3
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0.0012 0.0
0.0024 0.0
0.0036 0.0
0.0048 0.0
0.0060 0.0
0.0072 0.0
0.0074 0.272725E+04
0.0083 0.272725E+04
0.0084 0.0

$ - — + — 1 —
♦BOUNDARY PRESCRIBED MOTION RIGID
$ PARTID DOF VAD LCID SF VID DEATH

2 1 0 20 1.0 0 l.E+28
* DEFINE_CURVE
$ LCID SIDR SFA SFO . OFFA OFFO DATTYP

20 0 1.0 1.0 0.0 0.0 0
$ Al(TIME) 01(VELOCITY)

0 0.0
0.0002 0.0
0.0003 10.0E+03
0.0011 10.0E+03
0.0012 10.0E+03
0.0084 10.0E+03

$ — ■+--- 1 ---
♦BOUNDARY PRESCRIBED MOTION RIGID
$ PARTID DOF VAD LCID SF VID DEATH

3 1 0 21 1.0 0 l.E+28
♦DEFINE_CURVE
$ LCID SIDR SFA SFO OFFA OFFO DATTYP

21 0 1.0 1.0 0.0 0.0 0
$ Al(TIME) 01 (VELOCITY)

0 0.0
0.0014 0.0
0.0015 10.0E+03
0.0023 10.0E+03
0.0024 10.0E+03
0.0084 10.0E+03

$— •+----1-— -- 3- -- +----4---- +----5— — +--- 6— — + ---------- 7 -

♦BOUNDARY PRESCRIBED MOTION RIGID
$ PARTID DOF VAD LCID SF VID DEATH

4 1 0 22 1.0 0 l.E+28
♦DEFINE CURVE
$ LCID SIDR SFA SFO OFFA OFFO DATTYP

22 0 1.0 1.0 0.0 0.0 0
$ Al(TIME) 01(VELOCITY)

0 0.0
0.0026 0.0
0.0027 10.0E+03
0.0035 10.0E+03
0.0036 10.0E+03

i . 1 . ..
0.0084

.... 7
10.0E+03

_____ L___A . ______ |_______Cj___ ___ 1_______c ___ ____l________7.-- 1---- - ±- i--— C----->--- ---  ̂O---- 1---- **•
♦BOUNDARY PRESCRIBED MOTION RIGID

■ 1-- ~-”0 — "

$ PARTID DOF VAD LCID SF VID DEATH
5 1 0 23 1.0 0 l.E+28

♦DEFINE CURVE
$ LCID SIDR SFA SFO OFFA OFFO DATTYP

23 0 1.0 1.0 0.0 0.0 0
$ Al(TIME) 01(VELOCITY)

0 0.0
0.0038 0.0
0.0039 10.0E+03
0.0047 10.0E+03
0.0048 10.0E+03
0.0084 10.0E+03

$ — + ----1— -

BIRTH
0 . 0

BIRTH
0 . 0

BIRTH
0 . 0

BIRTH
0 . 0

*BOUNDARY PRESCRIBED MOTION RIGID
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$ PARTID 
6

♦DEFINE_CURVE 
$ LCID 

24

DOF VAD LCID SF VID DEATH
1 0 24 1.0 0 l.E+28

SIDR SFA SFO OFFA OFFO DATTYP
0 1 .0 1.0 0.0 0.0 0

Al(TIME) 01(VELOCITY)
0 0.0

0.0050 0.0
0.0051 10.0E+03
0.0059 10.0E+03
0.0060 10.0E+03
0.0084 10.0E+03

BIRTH
0 . 0

$— “+----1— --+----2---—+~ -- 3- -- +---+ 4---- +----5----H---- 6--- -+----7'
♦BOUNDARY PRESCRIBED MOTION RIGID
$ PARTID DOF VAD LCID SF VID DEATH

7 1 0 25 1 .0 0 l.E+28
♦DEFINE CURVE
$ LCID SIDR SFA SFO OFFA OFFO DATTYP

25 0 1.0 1.0 0 .0 0.0 0
$ Al(TIME) 01(VELOCITY)

0 0 . 0
0.0062 0 . 0
0.0063 10.0E+03
0.0071 10.0E+03
0.0072 10.0E+03
0.0084 10.0E+03

$- -1 -

BIRTH
0 . 0

*BOUNDARY PRESCRIBED MOTION RIGID
$ PARTID DOF VAD LCID SF VID DEATH BIRTH

8 1 0 26 1.0 0 l.E+28 0.0
♦DEFINE CURVE
$ LCID SIDR SFA SFO OFFA OFFO DATTYP

26 0 1.0 1.0 0 . 0 0 . 0 0
$ Al(TIME) 01(VELOCITY)

0 0 . 0
0 .0074 0.0
0 .0075 10.0E+03
0 .0083 10.0E+03
0 .0084 10.0E+03

$-— +----1-
♦SET_SHELL_JLIST
$ SID NUM DAI DA2 DA3 DA4

9 39
$ EIDS EID2 EID3 EID4 EID5 EID5 EID7 EID8

1181 1182 1183 1184 1185 1186 1187 1188
1189 1190 1191 1192 1193 1194 1195 1196
1197 1198 1199 1359 1360 1361 1362 1363
1364 1365 1366 1397 9515 9516 9517 9518
9560 9569 9561 9562 9571 9564 9565

$— -+--- 1-
♦SET SHELL _LIST
$ S ID * NUM DAI DA2 DA3 DA4

8 39
$ EIDS EID2 EID3 EID4 EID5 EID5 EID7 EID8

10135 10134 10141 10131 10132 10138 1 0 1 2 2 10099
1 0 1 0 0 1 0 1 0 1 1 0 1 0 2 10127 5144 5145 5146 5147
5148 5149 5150 5143 5053 5054 5055 5056
5057 5058 5059 5060 5061 5062 5063 5064
5065 5066 5067 5068 5069 5070 5151

$-— +----1 - --- +----3- — +----4' +----5— ~ +--- 6--
♦SET SHELL JLIST
$ sid" NUM DA1 DA2 DA3 DA4

10 38
$ EIDS EID2 EID3 EID4 EID5 EID5 EID7 EID8

9849 9850 9856 9846 9847 9854 2748 2749
2750 2751 2752 9800 9801 9802 9803 9845
2745 2746 2747 2481 2482 2483 2484 2485
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2486 2487 2488 2489 2490 2491 2492 2493
2494

6  ____I_____ 1 _ 2495
_____I_____ 2 __

2496 2497 
_____ |_____ ^ _

2498
____ j_____ £__

2813
___ i_____g_ ,____|_____ 7___ _I_____ p9 -------1--------- -L

*SET SHELL L IS T

__ ^____ --1--—----- o

$ S ID _ NUM DAI DA2 DA3 DA4
11 38

$ EIDS E ID 2 E ID 3 EID4 E ID 5 E ID 5 E ID 7 E ID 8
10420 10419 1 0426 1 0416 10417 10424 6509 6510

6511 6512 10370 10371 10372 10373 10415 6505
6506 6507 6508 6241 6242 6243 6244 6245
6246 6247 6248 6249 6250 6251 6252 6253
6254 6255 6256 6257 6258 6573

$ _ _ _ + --------1-------- + --------2 -------- + -------- 3 ---------+ -------- 4 ---------+ -------- 5 -------- + -------- 6-------- + -------- 7 -------- + ---------8
*END
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APPENDIX F 

SAMPLE INPUT FILE FOR MODELING THE INFULENCE OF SECONDARY 

HARD PARTICLES

*KEYWORD 

$
$ NOTE THE FOLLOWING SET OF UNITS: MM,KG,SEC,K 
$ ALL OTHER UNITS ARE DERIVED FROM THIS BASE SET

$ (1) TITLE CARD.

*TITLE
7 ASP.LAG.SLG,V:10M/S,FOR:2 50N/mm

—  6- 

—  6-

-+----7-

-+----7-

— ■+----8

-4- -+----7-

-+----7-

ERODE

CONTROL CARDS.
+--- 3----+---- 4-

$ (2 )
$_— + 1---- + 2 ---
*CONTROL_TERMINATION
$ ENDTIM ENDCYC DTMIN ENDNEG

0.0084 0 .000 .000
* CONTROL_TIME S TE P
$ DTINIT SOFT ISDO TSLIMT

.000 .500 0
* CONTROL_SOLUTION 
$ SOLN

2
*CONTROL_THERMAL_SOLVER
$ ATYPE PTYPE SOLVER CGTOL

1 1 3 1.0E-04
*CONTROL_THERMAL_TIMESTEP
$ TS TIP ITS TMIN

0 1.0 1.0E-04 0.0
*CONTROL_ENERGY
$ HGEN RWEN SLNTEN RYLEN

2 2 1 1

$ (3) DATABASE CONTROL

— +- --5----+—

ENDMAS
.000

DTMS LCTM MSlST

GPT

TMAX
0.0

EQHEAT
1

DTEMP
0.0

CARDS - ASCII HISTORY
 1---- 5---- 1---- g---

FWORK
0.95

TSCP
0.5

+ --------------- 7 -

FILE 
+----7-

SBC

-+ £

*DATABASE_HISTORY_SHELL_SET 
$ ID1 ID2 ID3 ID4

8 9 10 11

$ (4) DATABASE CONTROL

* DATABAS E_RB DOUT
1.00E-05

* DATABASE_SECFORC
1.00E-05

*DATABASE_TPRINT
1.00E-05

* DATABASE_ELOUT
1.00E-05

* DATABASE_GLSTAT
1.00E-05

* DATABASE_MAT SUM
1.00E-05

* DATABASE_RCFORC
1.00E-05

* DATABASE_SLEOUT
1.00E-05

ID5 ID6 ID7 ID8
12

CARDS FOR ASCII FILE
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-2--- +----3-----+---4---- +----5----+--- 6----
(5) DATABASE CONTROL CARDS FOR BINARY FILE

+-------- 7-

+----7-
* DATABAS E_BINARY_D3 PLOT
$ DT/CYCL LCDT NOBEAM

0.50E-04
* DATABASE_BINARY_D3T HDT
$ DT/CYCL LCDT NOBEAM

0.50E-04

* DATABAS E_EXTENT_BINARY
0 0 3
0 0 0

-+----7-

1

-+----7-

-+----7-
$
$ — + --------------- 1 -

*PART 
$HEADING 
PART PID = 

$ PID
1

*PART 
SHEADING 
PART PID = 

$ PID
2

*PART 
SHEADING 
PART PID = 

$ PID
3

*PART 
SHEADING 
PART PID = 

$ PID
4

*PART 
SHEADING 
PART PID = 

$ PID
5

* PART 
SHEADING 
PART PID = 

$ PID
6

*PART 
SHEADING 
PART PID = 

$ PID
7

*PART 
SHEADING 
PART PID = 

$ PID
8

*PART 
SHEADING 
PART PID = 

$ PID

( 6 ) DEFINE PARTS CARDS 
 3----+----4---

1 PART NAME :SOLID 
SID MID EOSID

1 1

2 PART NAME :ASP 
SID MID EOSID

2 2

3 PART NAME 
SID MID

2 2

4 PART NAME 
SID MID

2 2

5 PART NAME 
SID MID

2 2

6 PART NAME 
SID MID

2 2

: ASP2
EOSID

: ASP3
EOSID

: ASP4
EOSID

: ASP5
EOSID

7 PART NAME :ASP6 
SID MID EOSID

2 2

8 PART NAME :ASP7 
SID MID EOSID

2 2

9 PART NAME :HARDPAR 
SID MID EOSID

2 3

HGID

HGID

HGID

HGID

HGID

HGID

HGID

HGID

HGID

 5-

 5-

GRAV

GRAV

GRAV

GRAV

GRAV

GRAV

GRAV

GRAV

GRAV

- +  6 -

- +  6 -

ADPOPT

ADPOPT

ADPOPT

ADPOPT

ADPOPT

ADPOPT

ADPOPT

ADPOPT

ADPOPT

-+----7-

-+----7-

TMID
1

TMID
2

TMID
3

TMID
4

TMID
5

TMID
6

TMID
7

TMID

TMID
9

s (7) MATERIAL CARDS
$— _+ x +--- 2----+----3----+---- 4-
*MAT_ELASTIC_VISCOPLASTIC_THERMAL 
$MATERIAL NAME:A356
$ MID RO E PR SIGY ALPHA LCSS
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1 2.669E-06 7.24E+07 0.33 2.400E+05 23.5E-06
$ QR1 CRl QR2 CR2 QX1 CXI QX2

$ C P LCE LCPR LCSIGY LCR LCX
6500 4 10

$ LCC LCP

$- 1 I + 1 1 1 1 H1 1 I t t + t -- 2 — — +--- 3- t t 1 + i i i 1 >£> 1 1 1 i + 1 1 i t Cn 1 1 i 1 + 1 1 1 1 O'! 1 1 t t + 1 ---- 7
*DEFINE_CURVE 
$ STRESS/STRAIN DATA FROM 
$ LCID SIDR

1 0 
$ STRAIN

0 . 0  
1.0 
2 . 0
3.0
4.0
5.0
6 . 0
7.0
8 . 0  
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
2 0 . 0  
2 1 . 0
25.0
30.0
40.0

$---+---- 1--- +--- 2---- +-
* DEFINE_CURVE 
$ TEMP/STRESS SCALE 
$ LCID

10

FROM VOCE EQUATION 
SFA SFO
1.0 1.0

STRESS 
2.40E+05 

2.7015E+05 
2.94 61E+05 
3.1447E+05 
3.3059E+05 
3.4366E+05 
3.5429E+05 
3.6289E+05 
3. 6988E+05 
3.7555E+05 
3.8016E+05 
3.8390E+05 
3.8693E+05 
3.8939E+05 
3.9139E+05 
3.9302E+05 
3.9433E+05 
3.9539E+05 
3.9627E+05 
3.9697E+05 
3.9754E+05 
3.9800E+05 
3.9838E+05 
3.9969E+05 
3.9996E+05

OFFA
0 . 0

OFFO
0 . 0

DATTYP

SIDR SFA SFO
0 1.0 1.0

TEMP(K) STRESS SCALE
300.0 1.0
320.0 0.962121212
330.0 0.943181818
340.0 0.924242424
350.0 0.905303030
360.0 0.886363636
370.0 0.867424242
380.0 0.848484848
390.0 0.829545455
400.0 0.810606061
410.0 0.791666667
420.0 0.772727273
430.0 0.753787879
440.0 0.734848485
450.0 0.715909091
4 60.0 0.696969697
470.0 0.678030303
480.0 0.659090909
490.0 0.640151515
500.0 0.621212121
550.0 0.526515152
600.0 0.431818182
650.0 0.337121212

OFFA
0 . 0

OFFO
0 . 0

DATTYP
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700.0
750.0
800.0

*MAT_RIGID
$MATERIAL NAME:RIGID ST 
$ MID RO

2 7 .800E-06 2 
$ CMO CON1

1.0 3
$ OPTIONAL BLANK CARD

0.242424242 
0.147727273 
0.053030303 
-3--- +---- 4-

■ E PR
070E+08 3.000E-01 

CON2 
7

- + --------5 -------- + ---------6-

N COUPLE 
0.0

-+ --------7 ---------+ -------- E

M ALIAS

$— +----1— _ +--------2--
*MAT ELASTIC
$MATERIAL NAME:HARD Si
$ MID RO

3 2. 330E-06 1
_J____„o______[__ _ _ _ ̂___

*MAT_THERMAL_
—Y — — — — ^ — —
ISOTROPIC

$ TMID TRO
1 0.0

$ HC TC
9.63E+08 1•51E+05

$-— +--- 1 — -+--- 2 —
*MAT THERMAL ISOTROPIC
$ TMID TRO

2 0.0
$ HC TC

9.63E+08 1.51E+05
$— +----1 — — v--- 2 —
*MAT_THERMAL ISOTROPIC
$ TMID TRO

3 0.0
$ HC TC

9.63E+08 1
i;___!____ ____

.51E+05
__j_____ 2 ___

*MAT THERMAL ISOTROPIC
$ TMID TRO

4 0.0
$ HC TC

9.63E+08 1 
____|_____ 1___ .51E+05

_i_____ 2__^--- 1 -j_---
*MAT_THERMAL_ISOTROPIC
$ TMID TRO

5 0.0
$ HC TC

9.63E+08 1 
<*__|__ _ _ — — —

.51E+05
_I_____ o__

*MAT_THERMAL_
---1---- ^ —
ISOTROPIC

$ TMID TRO
6 0.0

$ HC TC
9.63E+08 1.51E+05 

_I____ 2_____ _____

*MAT THERMAL ISOTROPIC
$ TMID TRO

7 0 .0
$ HC TC

9.63E+08 1.51E+05
$— +----1 —
*MAT THERMAL ISOTROPIC
$ TMID TRO

8 0.0
$ HC TC

9.63E+08 1.51E+05
<£____ j________ _

*MAT THERMAL
__i____2 ___

ISOTROPIC

. _ + --------------- 3 -

127E+08 2 
- + ----3 —

TGRLC
0.0

-+--- 4---

PR DA DB
.800E-01 0.000E+00 0.000E+00 
. _ + -------------- 4 --------------- + --------------- 5 --------------- +  g -

TGMULT
0.0

-+--- 7---- +-

TGRLC
0 . 0

TGMULT
0.0

-+--- 7---- +-

TGRLC
0 .0

TGMULT
0 . 0

-+----3---- +- -4---- 1---- 5---- 1---- 6-

TGRLC
0 . 0

TGMULT
0 . 0

TGRLC
0 . 0

r 3-

TGRLC
0 . 0

TGMULT
0 . 0

— +----4-

TGMULT
0.0

-+----5— -6----+----7----+---- £

— +--- 3---- +— -4----+---- 5- — + --------------- 6 - -+--- 7----+---- £

TGRLC
0.0

TGMULT
0.0

TGRLC
0.0

TGMULT
0 . 0

 3 -------------- + ----------------4  — - - —  5----+---- 6 — -+--- 7----+---- £
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TMID
9

HC
6.78E+08

TRO
0 . 0
TC

0.837E+05

TGRLC
0 . 0

TGMULT
0 . 0

$ —
$ (

*SECTION_SHELL 
$PROPERTY NAME:SHELL 
$ SID ELFORM

1 13
$ T1 T2

1.0 1.0
*SECTION_SHELL 
$PROPERTY NAME:SHELL 
$ SID ELFORM

2 13
$ T1 T2

1.0 1.0
$ + 1 ----+ 2 —
$  (

(8 ) SECTION CARDS 
_ _ _ + ---------------3 --------------- + -------------- 4 --------------

SHRF
1.0
T3

1.0

NIP
4

T4
1 .0

—  5 -

+----5-

PROPT
0 . 0

NLOC
0 . 0

QR/IRID
0 . 0

SHRF NIP PROPT QR/IRID
1.0 4 0.0 0.0
T3 T4 NLOC

1.0 1.0  0.0
— +--- 3----+----4-----+--- 5
)) INITIAL DEFINITIONS

I COMP 
0

I COMP 
0

 1---- g---- 1---- 7 ---

•h 6---- 1----7---
*INITIAL_TEMPERATURE_SET 

0 300.0

* CONTACT 2D AUTOMATIC NODE TO SURFACE THERMAL
 5 --------+ -------- 6 ---------+ — -7---

PSIDS
1

TBIRTH
0 . 0
CF

PS I DM 
2

TDEATH 
.000E+20 

FRAD

SFACT
5.0 
SOS
1.0 
HTC

FREQ
50

SOM
1.0

GCRIT

FS
0 . 0
NDS

0
GMAX

FD
0 . 0
NDM

0
CD FACT

DC
0 . 0

IPF/COF
1

*SET_PART_LIST 
$ PSID

1
$ PID1

1
*SET_PART_LIST 
$ PSID

2
$ PID1

2
PSID

3

$ NODE X
1 -. 585756800E+00
2 -.618965100E+00
3 -.618969400E+00

PSID
6

 5-

PSID PSID
4 5

$ (10) NODAL POINT CARDS

*NODE
Y

. 889999900E+01 

. 890000000E+01 

.887499700E+01

PSID
7

— + ---------------6-

PSID

. 580000200E+01 

. 580000200E+01 

.580000300E+01

—  6--- +----7 —

TC RC

. . . (cont'd)
22400 .7 44450600E+00
22401 .744450500E+00
22402 .744450600E+00

$— +--- !-----+--- 2----+
$$ +--- 1-----+--- 2
*ELEMENT_SHELL 
$

.952998400E+01 .580000200E+01

.949665100E+01 .580000200E+01

.946331800E+01 .580000300E+01

11) SHELL ELEMENT CARDS
-— +----7-

— +----7-

EID PID N1 N2 N3 N4
1 1 1 2 3 4
2 1 4 3 5 6
3 1 6 

(cont'd)

5 7 8

21533 8 22141 22167 22169 22160
21534 8 22169 22183 22180 22160
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+  8

■ +  8

SETYP
1

SETYP
1

+  8

+ 8

+  8

MEMBS
6

INIT
0

PSID

+  8

■ +  8

+ -------- 8

+ -------- 8
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21535 8 22183 22182 22189 22180
$ -i----2.----1-----2------1--- 3---- 1---- 4---- 1-----5-----1----6-----1----7----- 1--- 8
$ (12) BOUNDARY CONDITION CARDS
$ — +--- 1----+----2 -----+--- 3----+----4----+---- 5----+----6----+----7---- +--- 8
*BOUNDARY SPC NODE
$ NID/NSID CID DOFX DOFY DOFZ DOFRX DOFRY DOFRZ

9791 0 1 1 1 1 1 1
9792 0 1 1 1 1 1 1
9845 0 1 

. . . (cont' d)

1 1 1 1 1

10969 0 1 1 1 1 1 1
1 1 0 2 2 0 1 1 1 1 1 1
11076 0 1 1 1 1 1 1

$— +--- 1----
$ (13) DEFINE

-+----4----+----5—
SET CARDS

— +--- 6— — + 7 — — +--- 8

$— +----1----
*SET NODE LIST 
$ SID 

1

1— -- 2---- 1---- 3---

DAI DA2

-+----4-

DA3 DA4

— +--- 6— — +--- 8

±
$ NIDI NID2 NID3 NID4 NID5 NID6 NID7 NID8

11656 11657 11658 11659 11660 11661 11662 11663
11670 11671 11672 11673 11674 11675 11676 11705
11720 11735 11750 11765 11780 11795 11810 11825
11840 11855 11870 11885 12466 12467 12468 12469
12470 12471 12472 12473 12480 12481 12482 12483
12484 12486 12501 12516 12531 12546 12561 12576
12591 12606 12621 12636 12651 12666 12681

<$___+--- 1----
$

+----2----+----3 —
(14) LOADING

-+--- 4----+----5 —
CONDITIONS

— +--- 6— _ _ +  7__— +--- 8

$— +--- 1----
*LOAD_NODE_SET

-+----4- +- 5 - — +--- 6— — +----8

$ NSID 
1

*DEFINE CURVE

DOF LCID 
2 1 00

SF
1

CID Ml M2 M3

$ LCID SIDR SFA SFO OFFA OFFO DATTYP
100

$
0 1 .0 -1.0 0.0 

A1(TIME) 01(FORCE) 
0 . 0 0 0.0 

0.0002 0.454545E+04 
0.0011 0.454545E+04 
0 . 0 0 1 2 0.0 
0.0084 0.0

0 . 0 0

$— +----1----
♦SET NODE LIST 
$ SIDO

+--- 2----+----3—

DAI DA2

-+----4-

DA3 DA4

— +--- 8

Z
$ NIDI NID2 NID3 NID4 NID5 NID6 NID7 NID8

13274 13275 13276 13277 13278 13279 13280 13281
13288 13289 13290 13291 13292 13293 13294 13323
13338 13353 13368 13383 13398 13413 13428 13443
13458 13473 13488 13503 14084 14085 14086 14087
14088 14089 14090 14091 14098 14099 14100 14101
14102 14104 14119 14134 14149 14164 14179 14194
14209 14224 14239 14254 14269 14284 14299

$— ■+--- 1 ----
$ (14) LOADING

-+--- 4----+----5—
CONDITIONS

— +----7 — — +----8

♦LOAD NODE SET
-+----4----+----5— --h--- 6 — ----- g

$ NSID 
2

♦DEFINE CURVE

DOF LCID 
2 2 00

SF
1

CID Ml M2 M3

$ LCID SIDR SFA SFO OFFA OFFO DATTYP
2 0 0

$
0 1.0 

A1(TIME)
0. 0 0

0 . 0 0 1 2

-1.0 
01 ( 

0.0 
0 . 0

0 .0
FORCE)

0.0 0
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0.0014
0.0023
0.0024
0.0084

0.454545E+04 
0.454545E+04 

0 . 0  
0 . 0

$ _ — +--------1 -------- + -------- 2- —i— ———3-------- + --------4 - -------1---------5——— +--------6 - ------+ -------- 7 .

*SET NODE L IS T
$ S ID  DAI

O
DA2 DA3 DA4

$ N I D I  N ID2 N ID3 NID4 NID5 N ID 6 NID7
14892  14893 14894 14895 14896 14897 14898
14906  14907 14908 1 4909 14910 14911 14912
14 9 56  14971 14986 15001 15016 15031 15046
15 0 76  15091 15106 15121 15702 15703 15704
15706  15707 15708 15709 15716 15717 15718
15720  15722 15737 15752 15767 15782 15797
15827  15842 15857 15872

_ i..... .....A _
15887

____ i_____ C_
15902 15917

___|_____ -J .___|_____ ^ ______|_____ 2 ■

$
* ____ |_____ 1______|_____ o.

____ „_|_____ ^ ____

(14)  LOADING
--1--------- i- i----------1--------- , j----

CONDITIONS
_1_____ A ______I___ __C__

___|_____

— —-{--—----^ —9-------1--------- -L t — “ “ Z.
*LOAD NODE SET
$ NSID  DOF L C ID SF CID M l M2

3 2 300 1
*DEFINE_CURVE
$ L C ID  SIDR SFA SFO OFFA OFFO DATTYP

300 0 1.0 - 1.0 0.0 0.0 0
$ A 1 (T IM E ) 0 1 (FORCE)

0.00 0.0
0.0012 0.0
0 .0 0 2 4 0.0
0 . 0 0 2 6 0 . 454545E +04
0 .0 0 3 5 0 . 454545E +04
0 . 0 0 3 6 0.0
0 .0 0 8 4

____ _|_____ ^ ___
0.0 

_ j_____ A — ____1_____ 5__ ___l_____ g_ ____ |_____ 'J  ,£____ |_____ y ______j_____ 2 -

*SET NODE L IS T
--1--------- 4

$ S ID  DAI
A

DA2 DA3 DA4
H

$ N I D I  N ID2 NID3 NID4 N ID5 N ID 6 NID7
16510  16511 16512 16513 16514 16515 16516
16524 16525 16526 16527 16528 16529 16530
16574 16589 16604 16619 16634 16649 16664
16694 16709 16724 1 6739 17320 17321 17322
17324 17325 17326 17327 17334 17335 17336
17338  17340 17355 17370 17385 17400 17415
1 7445  17460 17475 1 7490

.i . A .

17505
. _____ C__

17520 17535
____ ^ ____ -J ,<*_______ ________ |_____ 2-

$

_________- — 3__
(14 )  LOADING

— i --------- ------------ r —------o ----
CONDITIONS

_ j_____ A ______i_____ C.__

___I_____

___i_____ ----—-| 'J^ ____ I_____ ^ ______|__ ——2 -

*LOAD_NODE_SET

____I_____ ^ ___ --1-------- - — — D

$ N SID  DOF LC ID SF C ID M l M2
4 2 400 1

*DEFINE_CURVE
$ L C ID  SIDR SFA SFO OFFA OFFO DATTYP

400 0 1.0 - 1.0 0.0 0.0 0
$ A 1 (T IM E ) 01 ( FORCE)

0.00 0.0
0.0012 0.0
0 .0 0 2 4 0.0
0 . 0 0 3 6 0.0
0 .0 0 3 8 0 . 454545E +04
0 .0 0 4 7 0 . 454545E +04
0 .0 0 4 8 0.0
0 .0 0 8 4 0.0

$ — + --------1-------- + -------- 2---------+ -------- 3 — ------ + -------- 5 — — + --------6-
*SET_NODE_LIST
$ S ID  DAI 

5
DA2 DA3 DA4

289

- +  8

NID8
14899
14941
15061
15705
15719
15812

- +  8

. _ +  8

M3

- +  8

NID8
16517
16559
16679
17323
17337
17430

- +  8

- +  8

M3
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NIDI NID2 NID3 NID4 NID5 NID6 NID7 NID8
18128 18129 18130 18131 18132 18133 18134 18135
18142 18143 18144 18145 18146 18147 18148 18177
18192 18207 18222 18237 18252 18267 18282 18297
18312 18327 18342 18357 18938 18939 18940 18941
18942 18943 18944 18945 18952 18953 18954 18955
18956 18958 18973 18988 19003 19018 19033 19048
19063 19078 19093 19108 19123 19138 19153
---- 1 — — +--- 2 — — +--- 3 — — +--- 4--- -+--- 5 — — +--- 6— — +--- 7--- -+----8

+ — 1-

SET*LOAD_NODE_
$ NSID

5
*DEFINE_CURVE 
$ LCID

500
$

— 2 -

DOF
2

(14) 
------+ .

LOADING CONDITIONS

SI DR 
0

A1(TIME) 
0 . 0 0  

0.0012 
0.0024 
0.0036 
0.0048 
0.0050 
0.0059 
0.0060 
0.0084

LCID
500

SFA
1.0

SF
1

CID

SFO
- 1.0

OFFA 
0 . 0  

01 (FORCE)
0 . 0

Ml

OFFO
0 . 0

M2

DATTYP
0

M3

0 . 0
0 . 0
0 . 0
0 . 0

0.454545E+04 
0.454545E+04 

0 . 0  
0 . 0

— +--- 1---- r--- 2 — — +----3— — +--- 5— ._+--- 6— — +--- 7 — — +----8
SET NODE LIST

SID
£

DAI DA2 DA3 DA4
O

NIDI NID2 NID3 NID4 NID5 NID6 NID7 NID8
19746 19747 19748 19749 19750 19751 19752 19753
19760 19761 19762 19763 19764 19765 19766 197 95
19810 19825 19840 19855 19870 19885 19900 19915
19930 19945 19960 19975 20556 20557 20558 20559
20560 20561 20562 20563 20570 20571 20572 20573
20574 20576 20591 20606 20621 20636 20651 20666
20681 20696 20711 20726 20741 20756 20771

_ _ _ +--- 1 ------ r--- 2— — +--- 3 — — +--- 5 — — +--- 6— — +--- 8
(14) LOADING CONDITIONS

$— +--- 1---- 1+fI1ICM1111+ —  3--- +----4----+----5-
*LOAD NODE SET
$ NSID DOF LCID SF CID

6 2 600 1
*DEFINE CURVE
$ LCID SI DR SFA SFO OFFA

600 0 1 . 0 -1.0 0.0
$ A1(TIME) 0 1 ( FORCE)

0 . 0 0 0.0
0 . 0 0 1 2 0.0
0.0024 0.0
0.0036 0.0
0.0048 0.0
0.0060 0 . 0
0.0062 0.454545E+04
0.0071 0.454545E+04
0.0072 0.0
0.0084 0.0

$ — +----1----•+--- 2----+- -- 3---- j---- 4_---+----5-

- +  6 -

M1

OFFO
0 . 0

-+----7-

M2

DATTYP
0

M3

 +  6 -

*SET_NODE_LIST 
$

$

SID
7

NIDI
21364
21378
21428

DAI DA2 DA3 DA4

NID2
21365
21379
21443

NID3
21366
21380
21458

NID4
21367
21381
21473

NID5
21368
21382
21488

NID6
21369
21383
21503

NID7
21370
21384
21518

NID8
21371
21413
21533
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21548 21563
22178 22179
22192 22194
22299 22314

$_ — +---------! -------- + --------2-

$
$ +---- 1----+----2-
*LOAD NODE SET

21578 
22180 
22209 
22329 

— +----3-

21593 22174
22181 22188
22224 22239
22344 22359

-+--- 4----+---- 5-

22175 
22189 
22254 
22374 

- +  6 -

22176 
22190 
22269 
22389 

-+----7-
(14) LOADING CONDITIONS

. _ +  g  + . — 7 -

$ NSID DOF LCID SF CID Ml M2
7 2 700 1

*DEFINE CURVE
$ LCID SI DR SFA SFO OFFA OFFO DATTYP

700 0 1.0 -1.0 0 .0 0.0 0
$ A1(TIME) 01(FORCE)

0 . 0 0 0.0
0 . 0 0 1 2 0 . 0
0.0024 0.0
0.0036 0.0
0.0048 0.0
0.0060 0.0
0.0072 0.0
0.0074 0 .454545E+04
0.0083 0 .454545E+04
0.0084 0.0

22177
22191
22284

- +  8

M3

+BOUNDARY PRESCRIBED MOTION RIGID
- 6  + - -7--- +---- 6

$ PARTID DOF VAD LCID SF VID DEATH BIRTH
2

*DEFINE CURVE
1 0 20 1.0 0 l.E+28 0.0

$ LCID SI DR SFA SFO OFFA OFFO DATTYP
20

$
0

A1(TIME) 
0

0 . 0 0 0 2
0.0003
0 . 0 0 1 1
0 . 0 0 1 2
0.0084

1.0 1 . 0 0.0 
01(VELOCITY) 

0 .0 
0 . 0  

10.0E+03 
10.0E+03 
10.0E+03 
10.0E+03

0 . 0 0

*BOUNDARY PRESCRIBED MOTION RIGID
6 _  + — +----8

$ PARTID DOF VAD LCID SF VID DEATH BIRTH
3

*DEFINE CURVE
1 0 21 1.0 0 l.E+28 0.0

$ LCID SI DR SFA SFO OFFA OFFO DATTYP
21

$
0

A1 (TIME) 
0

0.0014
0.0015
0.0023
0.0024
0.0084

1.0 1.0 0.0 
01(VELOCITY) 

0.0 
0.0 

10.0E+03 
10.0E+03 
10.0E+03 
10.0E+03

0 . 0 0

*BOUNDARY PRESCRIBED MOTION RIGID
— +--- 6— -+--- 7 — --+--- 8

$ PARTID DOF VAD LCID SF VID DEATH BIRTH
4

* DEFINE CURVE
1 0 22 1.0 0 l.E+28 0 . 0

$ LCID SI DR SFA SFO OFFA OFFO DATTYP
22

$
0

A1(TIME) 
0

0.0026
0.0027
0.0035
0.0036
0.0084

1.0 1 . 0 0.0 
01(VELOCITY) 

0 . 0  
0.0 

10.0E+03 
10.0E+03 
10.0E+03 
10.0E+03

0.0 0

$— ■+----1 -— -+----2 ----+- -- 3- -- +----4----+----5 — — +--- 6--- -+--- 7 — — +----8
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+— 1— --+--- 2 ---- +----3--- +----4 - 1 1 1 4- 1 1 \ 1 Cn 1 \ 1 -+--- 6--- I + 1 1 1 1 -J 1 t 1-+--- 8
*BOUNDARY PRESCRIBED MOTION RIGID
$ PARTID DOF VAD LCID SF VID DEATH BIRTH

5 1 0 23 1.0 0 l.E+28 0.0
*DEFINE CURVE
$ LCID SI DR SFA SFO OFFA OFFO DATTYP

23 0 1.0 1.0 0.0 0 . 0 0
$ A1(TIME) 01(VELOCITY)

0 0.0
0.0038 0.0
0.0039 10.0E+03
0.0047 10.0E+03
0.0048 10.0E+03

£___<____ 1___
0.0084
-J____ o._____ i____

10.0E+03
___ i____ A . ----( ---5 “_4_____ 6 ____ I 8y-- -r----X----  ^

*BOUNDARY PRESCRIBED MOTION RIGID
i O

$ PARTID DOF VAD LCID SF VID DEATH BIRTH
6 1 0 24 1.0 0 l.E+28 0.0

*DEFINE CURVE
$ LCID SI DR SFA SFO OFFA OFFO DATTYP

24 0 1.0 1.0 0.0 0.0 0
$ A1(TIME) 01(VELOCITY)

0 0 . 0
0.0050 0.0
0.0051 10.0E+03
0.0059 10.0E+03
0.0060 10.0E+03

£ l 1 . .
0.0084
. A___ O.___ _1_ . Q ..

10.0E+03
__i____ A . _ J____ rC___ — f-—-- 7--- _ +____ D9--- 1---- X---- 1---—

*BOUNDARY PRESCRIBED MOTION RIGID
—f- — — — -*o i o

$ PARTID DOF VAD LCID SF VID DEATH BIRTH
7 1 0 25 1.0 0 l.E+28 0.0

*DEFINE CURVE
$ LCID SI DR SFA SFO OFFA OFFO DATTYP

25 0 1.0 1.0 0.0 0.0 0
$ A1(TIME) 01(VELOCITY)

0 0.0
0.0062 0 . 0
0.0063 10.0E+03
0.0071 10.0E+03
0.0072 10.0E+03
0.0084 10.0E+03

$— +----1 -— -+----2---- +----3- -- +----4---- +----5— -+--- 6— -+--- 8
*BOUNDARY PRESCRIBED MOTION RIGID
$ PARTID DOF VAD LCID SF VID DEATH BIRTH

8 1 0 26 1.0 0 l.E+28 0.0
* DEFINE_CURVE
$ LCID SI DR SFA SFO OFFA OFFO DATTYP

26 0 1.0 1.0 0.0 0.0 0
$ A1(TIME) 0 1 (VELOCITY)

0 0.0
0.0074 0.0
0.0075 10.0E+03
0.0083 10.0E+03

£•___i___ 1__
0.0084

_i___ o.
10.0E+03 

-----1 —  4' i | __--) *  ̂ — . — -J-— QV-------1------ x------i —
*SET SHELL LIST
$ SID NUM DAI DA2 DA3 DA4

9 39
$ EIDS EID2 EID3 EID4 EID5 EID5 EID7 EID8

1181 1182 1183 1184 1185 1186 1187 1188
1189 1190 1191 1192 1193 1194 1195 1196
1197 1198 1199 1359 1360 1361 1362 1363
1364 1365 1366 1397 9515 9516 9517 9518
9560 9569

i ..O
9561 9562

____ j_____ ^ ,
9571

_____ 1_____ 5__ 9564
__j_____ g__

9565 
—I---------7— —__1_____ Q9 -------1--------- x ----------1---------

*SET SHELL LIST
„ ____ i_____ 3.. *r ~ O
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$ SID 
8

NUM
15

DAI DA2

$ EIDS EID2 EID3 EID4
10135 10134 10141 10131
1 0 1 0 0 1 0 1 0 1 1 0 1 0 2 10127

$-- + ----1----+ --- 2 --- -+--- 3- 1111+1I1

*SET SHELL LIST
$ SID 

10
NUM
38

DA1 DA2

$ EIDS EID2 EID3 EID4
9849 9850 9856 9846
2750 2751 2752 9800
2745 2746 2747 2481
2486 2487 2488 2489
2494 2495 2496 2497

$-- +----1 ----+----2--- iCO1111+1 — +--- 4'
*SET SHELL LIST
$ SID 

11
NUM
38

DAI DA2

$ EIDS EID2 EID3 EID4
10420 10419 10426 10416
6511 6512 10370 10371
6506 6507 6508 6241
6246 6247 6248 6249
6254 6255 6256 6257

$-- +----1----+--- 2 --- -+----3- J1t1+111
*SET SHELL LIST
$ SID 

12
NUM
420

DA1 DA2

$ EIDS EID2 EID3 EID4
4886 4887 4888 4889
4894 4895 4896 4897
4902 4903 4905 4906
4911 4912 4913 4914
4919 4920 4921 4922
4927 4928 4929 4930
4935 4936 4937 4938
4943 4944 4945 4946
4951 4952 4953 4954
4960 4961 4962 4963
4968 4969 4970 4971
4976 4977 4979 4980
4985 4986 4987 4988
4993 4994 4995 4996
5001 5002 5003 5004
5009 5010 5011 5012
5017 5018 5019 5020
5025 5026 5027 5028
4249 4250 4251 4252
4257 4258 4259 4260
4268 4269 4270 4271
4276 4277 4278 4279
4287 4288 4289 4290
4295 4296 4297 4298
4305 4306 4307 4308
4313 4314 4315 4316
4323 4324 4325 4326
4331 4332 4333 4334
4342 4343 4344 4345
4350 4351 4352 4353
4361 4362 4363 4364
4369 4370 4371 4372
4379 4380 4381 4382
4387 4388 4389 4390
4231 4232 4233 4234
4239 4240 4241 4242
4247 4248 4265 4266

DA3

EID5

DA4

EID5 EID7 EID8
10132 10138 1 0 1 2 2 10099
5148 5149 5150

— +--- 5— _ _ + --------- 6 _ _ — +--- 7- — +----8

DA3

EID5

DA4

EID5 EID7 EID8
9847 9854 2748 2749
9801 9802 9803 9845
2482 2483 2484 2485
2490 2491 2492 2493
2498 

— +--- 5 —
2813 

— +--- 6— — +----7- — +----8

DA3

EID5

DA4

EID5 EID7 EID8
10417 10424 6509 6510
10372 10373 10415 6505
6242 6243 6244 6245
6250 6251 6252 6253
6258 

— +--- 5—
6573 

— +--- 6— — +--- 7- — +--- 8

DA3

EID5

DA4

EID5 EID7 EID8
4890 4891 4892 4893
4898 4899 4900 4901
4907 4908 4909 4910
4915 4916 4917 4918
4923 4924 4925 4926
4931 4932 4933 4934
4939 4940 4941 4942
4947 4948 4949 4950
4955 4956 4957 4958
4964 4965 4966 4967
4972 4973 4974 4975
4981 4982 4983 4984
4989 4990 4991 4992
4997 4998 4999 5000
5005 5006 5007 5008
5013 5014 5015 5016
5021 5022 5023 5024
5029 5030 5031 5032
4253 4254 4255 4256
4261 4262 4263 4264
4272 4273 4274 4275
4280 4281 4282 4283
4291 4292 4293 4294
4299 4300 4301 4302
4309 4310 4311 4312
4317 4318 4319 4320
4327 4328 4329 4330
4335 4336 4337 4338
4346 4347 4348 4349
4354 4355 4356 4357
4365 4366 4367 4368
4373 4374 4375 4376
4383 4384 4385 4386
4391 4392 4393 4394
4235 4236 4237 4238
4243 4244 4245 4246
4267 4284 4285 4286
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4303 4304 4321 4322 4339 4340 4341 4358
4359 4360 4377 4378 4395 4396 4692 4693
4694 4695 4696 4697 4698 4699 4700 4904
4959 4978 5033 5034 5035 5036 5037 5038
5039 5040 5041 5042 5043 5044 5045 5046
5047 5048 5049 5050 5051 5052 5053 5054
5055 5056 5057 5058 5059 5060 5061 5062
5063 5064 5065 5066 5067 5068 5069 5070
5151 5152 5153 5154 5155 5156 5157 5158
5159 5160 4601 4602 4603 4604 4605 4609
4610 4611 4612 4613 4617 4618 4619 4 620
4621 4625 4626 4627 4628 4629 4633 4634
4635 4636 4637 5111 5112 5113 5114 5115
5119 5120 5121 5122 5123 5127 5128 5129
5130 5131 5135 5136 5137 5138 5139 5143
5144 5145 5146 5147

^-- +----1----+----2----+----3----+----4----+----5----+----6----+----7----+---- 8
*END
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APPENDIX G

DIMENSIONAL ANALYSIS

The main objective of this study was to build a finite element model to analyze 

subsurface deformation that occurs in the aluminum alloys subjected to sliding contact. 

In the course of the project, sliding contact of an asperity and an aluminum alloy was 

planned to be investigated by using explicit finite element program LS-DYNA. However, 

because of the CPU requirements and costs, the asperity diameter and the size of the 

finite element model geometry had to be increased. A dimensional analysis was applied 

to choose the most appropriate the finite element geometry with minimum CPU costs. In 

this discussion, dimensional analysis will be used to show the possibility of application of 

the current finite element model results to different sized asperity contacts. Initially 

dimensional analysis and Buckingham % theorem will be introduced and briefly explained 

before discussion of the application to the sliding contact.

G.1. INTRODUCTION TO DIMENSIONAL ANALYSIS AND BUCKINGHAM n  

THEOREM

Dimensional analysis is a mathematical tool often applied in science and 

engineering to simplify a problem by reducing the number of variables to the smallest 

number of essential parameters. Systems which share these parameters are called 

similar and do not have to be studied separately. Dimensional analysis has broad 

applications. It plays an essential role for experimentalists from design of experiments to 

data analysis. It helps to establish equations and yield solutions to modelers [123]. 

Frequently researchers need small scale models to investigate complex structural 

systems which are difficult to analyze theoretically and numerically or experimentally. 

The dynamic response of underground structures, impact of nuclear fuel capsules, 

missile impact of nuclear power installations and collision protection of ships are several 

areas which have been studied with the aid of small scale models. Instead of full scale 

models of the system of interest, geometrically similar small scale prototypes are used in
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the tests in order to obtain the response characteristics. This procedure known as 

scaling is governed by certain principles [84].

The dimension of a physical quantity is the type of unit needed to express it. For 

instance, the dimension of a speed is distance/time and the dimension of a force is 

(mass x distance / time2). In mechanics, every dimension can be expressed in terms of 

distance (which physicists often call "length"), time, and mass, or alternatively in terms of 

force, length and mass. Depending on the problem, it may be advantageous to choose 

one or the other set of fundamental units. Every unit is a product of (possibly fractional) 

powers of the fundamental units, and the units form a group under multiplication [123, 

124].

In the most primitive form, dimensional analysis is used to check the correctness 

of algebraic derivations: in every physically meaningful expression, only quantities of the 

same dimension can be added or subtracted. The two sides of any equation must have 

the same dimensions. Furthermore, the arguments to exponential, trigonometric and 

logarithmic functions must be dimensionless numbers, which is often achieved by 

multiplying a certain physical quantity by a suitable constant of the inverse dimension.

The Buckingham n  theorem is a key theorem in dimensional analysis. The 

theorem states that the functional dependence between a certain number (e.g.: n) of 

variables can be reduced by the number (e.g. k) of independent dimensions occurring in 

those variables to give a set of p  = n -  k  independent, dimensionless numbers. For the 

purposes of the experimenter, different systems which share the same description by 

dimensionless numbers are equivalent. Most importantly, it provides a method for 

computing sets of dimensionless parameters from the given variables, even if the form of 

the equation is still unknown. However, the choice of dimensionless parameters is not 

unique: Buckingham's theorem only provides a way of generating sets of dimensionless 

parameters, and will not choose the most physically meaningful [124-131], Two systems 

for which these parameters coincide are called similar; they are equivalent for the 

purposes of the equation, and the experimentalist who wants to determine the form of 

the equation can choose the most convenient one.

A typical application example of dimensional analysis can be given in fluid 

dynamics. If a moving fluid meets an object, it exerts a force on the object, according to 

a complicated (and not completely understood) law. The variables involved are: the 

speed, density and viscosity of the fluid, the size of the body (expressed in terms of its
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frontal area A), and the force. Using the algorithm of the n  theorem, one can reduce 

these five variables to two dimensionless parameters: the drag coefficient and the 

Reynolds number [132-134].

f ( F , u ,A , p , v )  = 0 (G-1)

where /  is a function that takes five arguments. There are many ways of combining the 

five arguments o f /to  form dimensionless groups, but the Buckingham’s theorem states 

that there will be two such groups. The most appropriate are the Reynolds number, 

given by:

Re uJ a

v
(G-2)

and the drag coefficient, given by:

F_ 

pA u‘
Cd  ~ — ~  (G-3)

Thus the original law involving a function of five variables may be replaced by 

one involving only two:

/ l ^ . ,  (G-4)
pAu v

where /  is a function of two arguments. The original law is then reduced to a law 

involving only these two numbers. Because the only unknown in the above equation is F, 

it is possible to express it as following:
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(G-5)

or

F  = p A u 2f {  Re) (G-6)

Dimensional analysis thus makes a complex problem (trying to determine the 

behaviour of a function of five variables) a very much simpler one: the determination of a 

function of one variable, the Reynolds number. The analysis also gives other 

information. The drag force will be proportional to the frontal area of the body and to the 

density of the fluid. This kind of information often proves to be extremely valuable, 

especially in the early stages of a research project. To empirically determine the 

Reynolds number dependence, instead of experimenting on huge bodies with fast 

flowing fluids (such as real-size airplanes in wind-tunnels), one may just as well 

experiment on small models with slow flowing, more viscous fluids, because these two 

systems are similar.

G.2. SLIDING OF AN ASPERITY OVER A DEFORMABLE MATERIAL

Before applying dimensional analysis to the developed finite element model, 

geometric scale factor must be defined. The geometric scale factor c is the ratio of a 

length unit of a scaled model to that of the original finite element model:

where L s is the length unit in the scaled model and L 0 refers to the length unit in the 

original model.

(G-7)
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In Chapter 4.2, the contact between a rigid cylindrical asperity of diameter 2R 

and thickness W  and a three-dimensional 356 Al surface was investigated. The steel 

asperity was indented on the 356 Al surface by applying a constant normal load of F. A 

constant sliding velocity V  was assigned to the asperity to translate it over the 356 Al 

surface.

In summary, the input parameters consist of three principle types: geometrical 

characteristics (R and W), material properties (o 0, os, sc) and external loads (F  and V). 

Output parameters are strain (£) and stress {of).

To apply dimensional analysis, the recipe of dimensional analysis given by 

Cheng and Cheng £123] will be followed:

1- List independent variables and parameters:

F, O 0 , < T S , Sc, V ,R ,,W ,t

2- List dependent variables and parameters: 

fffor o f

3- Identify independent variables and parameters with independent dimensions:

ob, R, t

4- Form dimensionless quantities rc terms:

Til = F /(R .W . (T0)
712— Os / Oo 
713= SC  

714= (V.t)/R  
715= W/R
7toi~ £■

s = f ( F ,  oo, os, sc , V, R, W, t)

7Ta TCa (rt 1, 7t2, 713, 714, 7C5)
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If input parameters are scaled geometrically so that 7t terms are identical for the 

original finite element model and the scaled models, then the dimensionless response is 

also identical [84]. Let’s examine the physical requirements associated with each of 

these 7i terms when they are made equal for the original and scaled finite element 

models:

7ij: applied force must be scaled by the square of the geometric scale factor c, c2 times.

n2 : stress constant to bulk flow strength ratio must be the same, this condition is 

satisfied when the same material is used in the original and scaled models.

7i3: material constants in the original model and scaled model must be the same.

tc4 : to satisfy this term, ratio of sliding velocity times sliding time divided by characteristic 

length must be kept constant. If sliding velocity is constant, sliding time (t) must be 

increased c times since the characteristic length R increases c times with geometric 

scaling.

7t5 : in a geometrically similar scaling this condition is already satisfied.

7t(I: strains (or stresses) are identical in the original model and scaled model at scaled 

locations for scaled times.

To investigate the correctness of the above dimensional analysis, all dimensions 

of the original finite element model described in Chapter 4.2 were scaled up an order of 

magnitude (c=10). Accordingly, the asperity diameter was increased from 2 mm to 20 

mm and the width was increased from 0.5 mm to 5 mm. According to the requirement of 

Tti applied normal load was increased from 150 N to 15 kN (c2 times, 100 times). The 

sliding velocity was kept constant and to satisfy requirement of 7t4 sliding time was 

increased 10 times since asperity radius (R) increases 10 times with scaling. The 

comparison of the results revealed that the stress and strain predictions did not differ 

more than 2-3% (Figure G.1), which might be attributed to the numerical errors and 

noise.
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Similar reasoning, the developed finite element model may be applied to smaller 

asperity dimensions. As a result of this, all the predictions of the study presented in 

Chapters 4.2 and 5.1 might be assumed to be valid for 0.2 mm and/or 20 p.m asperity 

diameters with the normal loads of 1.5 N and/or 15 mN, respectively.

G.3. STRAIN RATE AND THERMAL SOFTENING EFFECTS

Strain rate and thermal softening effects were taken in the consideration by using 

a Lagrangian coupled thermal and structural finite element model. In literature it has 

been shown that temperature and thermal effects can be scalable since temperature 

distribution is calculated from the deformation within the material [84, 125, 126]. 

However, strain rate sensitivity and strain rate effects will be different for the original 

model and the scaled models [84,125, 126].

7th,

6th

5th. 
4 th _

c
2
4 -i
(0
o
*5
(0
to

3rd

E  4 - Original model
2ndco

75>
‘5cr
Ui

★ Scaled model

1st.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Depth I Asperity Diameter

Figure G.1: The change of plastic strain against depth at the mid point of the finite

element model.

301

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA AUCTORIS

NAME:

PLACE OF BIRTH: 

YEAR OF BIRTH: 

EDUCATION:

Semsettin Subutay Akarca

Besiri, Turkey

1974

University of Windsor, Windsor, ON
Department of Mechanical, Automotive and Materials Engineering 
Ph.D., 2001-2005

Middle East Technical University, Ankara, TURKEY 
Department of Metallurgical and Materials Engineering 
M.Sc., 1997-2000

Middle East Technical University, Ankara, TURKEY 
Department of Metallurgical and Materials Engineering 
B.Sc., 1993-1997

302

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Modeling of subsurface deformation and damage in an aluminum -silicon alloy subjected to sliding contact.
	Recommended Citation

	tmp.1507664919.pdf.kvvrd

