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ABSTRACT 

Tests of Methods that Control 

Round-Off Error 

by 

Dale M. Rasmuson, Master oLScience 

Utah State University, 1968 

Thesis Director: Dr. Richard A. Hansen 
Major Professor: Dr. James D. Watson 
Department: Mathematics 

Methods of controlling round-off error -in -one-step methods in 

the numerical solution -of _ordinary differential equations are compared. 

A new Algorithm called theoretical cumulative rounding is formulated. 

Round-off error bounds are obtained for single precision, and theoretical 

cumulative rounding. Limits of these bounds are obtained as the step length 

approaches zero. It is shown that -the limit of the bound on the round-

off error is unbounded -for single precision and double precision, is 

cons tant for theoretical partial double precision, and is zero for 

theoretical _cumulative rounding. 

The limits of round-off bounds are not obtainable in actual 

practice. The round-off error increases for single precision, remains 

about constant for .partial double precision -and decreases for cumulative 

rounding .as the step length decreases. Several examples are included. 

(34 pages) 



INTRODUCTION 

Consider the initial value problem 

(0.1) y' = f (x,y) 

y(a) = C 

where f (x,y) satisfies conditions guaranteeing a unique solution on the 

interval ~' b], [3, pp . 15-25]. In this paper we will be concerned with 

methods for approximating solutions of (0.1) that are based on the prin

ciple of discretization. These methods make no attempt to approximate 

the exact solution y (x) of (0.1) over the continuous range [a, b] of the 

independent variable x, but approximate values are sought only on a dis

crete set of points {x
0

, x
1

, x
2

, .. . } that are contained in the interval 

~' b]. We shall be concerned only with the set of equidistant points 

x =a+ nh (n = 0, 1, 2, ... ) where his some predetermined constant 
n 

referred to as the step length and the points xn are called lattice points . 

In general, a discrete variable method for solving (0 . 1) consists 

of an algorithm which, corresponqing to each point x, gives a number 
n 

yn which is to be regarded as ari approximation to the value y (xn)' the 

exact solution at x . 
n 

The theoretical algorithms for one-step -met hods can be represented 

in general by the difference equation 

(0.2) Yo= c 

= y + h¢ (x, y ; h). n n n 



!'he function¢ (x, y; h) is called the increment function, and the product 
n n 

:1¢ (x, y; h) is called the increment. The sequence {y} which is the 
n n ----- n 

so lution of (0.2} -iS called the theoretical approximate solution of (0.1). 

We will assume that¢ (x, y; h) is Lipschitz in the variable y with 
n n 

Lipschitz constant L. 

There are .. two sources of error in solving a differe ~t ia l equation 

by a numerical .method. First, the number y calculated fyo m the algorithm 
n 

(0.2) will rarely agree ~ith the tbrresponding value of the t ~ue solution 

Y (x ). n 
The difference, e, where 

n 

is called the .theoretical .error. 

Algorithm . (0 .2} is said to be convergent if for any arbitrary 

initial value c and an .arbitrary x in [a, b], we have 

i.e., 

lim yn = y(x), 
h -+ 0 

X = X 
n 

the theoretical error e at x vanishes as .the steplength h approach
n 

es zero. In this paper we will assume that algorithm (0.2) is convergent. 

In most applications y . · cannot be calculated with unlimited - n . 

precision because of the limited capacity of the computing machinery. 

Therefore, numerical algorithms which contain a sequence of arithmetic 

operations prescribed by (0~2) will fall .within the limits of the com-

puting .machinery. We shall denote by y the value that is actually com
n 

puted in place of y . The difference, r , where 
n n 



will be called .the round~off error, and the sequence {y} is called the 
n 

numerical approximate solution of (0.2). 

The numerical approximate solution yn satisfies the difference 

equation 

0.3) Yn+·1 

where [h¢ (xn, yn; h)]S is the evaluation of then-th increment 

3 

h¢ (x, y; h) using a sequence S of .arithmetic and round-off operations . 
n n 

A final .addition of the increment to .yn is required to obtain yn+l · 

In the evaluation of the increment .on then-th iteration there 

are .a .certain number .of intermediate values generated that require 

rounding. We shall refer .to . these :Values .as round-off . variables and denote 

them by P . (j = M, M-1, 
J ,n 

., 0). After a round-off operation has 

I 

occurred, these variables are denoted by P~ 
J 'n 

In order to clarify the notation needed for the above mentioned 

round - off variables, we will consider three .particular .examples . First, 

2 
we consider .the increment function¢ (x, y; h) = y and the sequence S: 

i) squaring y, 
n 

ii) . truncating the square to single precision, 

iii) multiplying the truncated value by h, and 

iv) truncating this product to single precision. 

The round-off variables are P1 ,n . 
= (y ) 2 

n 
p 

O,n = h P*l • ,n 
This completes 

the evaluation of the increment . . The additional operation of adding the 

increment toy .may result in .a rounding error due to a shift operation. 
n 

This error can be included in .the rounding of P
0 

. ,n 

Secondly, we again consider the above increment function. We 

require y to be a double precision variable and .define S by: 
n 

i) truncating yn to single precision, 



ii) squaring the truncated value y~, 

iii) truncating .the squared value to single precision, and 

iv) - multiplying this .truncated product by h. 

- - 2 The round~-off variables are P
2 

= y , P
1 

= (y*) , and . ,n n ,n n P = h P* 
O,n 1,n 

We do not truncate P0 . since y is double precision, and we want the ,n n 

addition y + P
0 

to be a double precision variable. This technique 
n ,n 

is called partial .double .precision. Henrici [3, p. 94] defines 

. the algorithm of partial double precision 
. by 

-
Yn+l = Yn + h¢ (xn, y~; h), n = 0, 1, 2, .. . 

Here they are double precision numbers. The two im
portant feRtures of the ~algorithm are: 

i) the product h¢ is left unrounded, and is in 
its entirety ~dded to Yn; 

ii) the function¢ is .evaluated with the more 
significant portion of Yn on1y , Thus the 
time required for computing¢ is not in
creased in comparison with ordinary single 
precision operation. 

For our third example consider the increment function 

cp (x, y; h) 

i} 

ii) 

iii) 

iv) 

= xy and define the sequence Sas: 

multiplying x by y 
n n 

truncating the product to single precision, 

multi plying the . truncated .. product by h, and 

truncating the final product to single precision. 

The .round~off variables .are P
1

. = x y and P
0 

= h P*
1 

. ,n n n ,n ,n 

The successive approximations of the .increment function 

h¢ (xn' yn; h) given by the sequence Swill be denoted by 

4 



s 

For the first example above the .approximations are 

h"' (x , y · h) 
'*' n n' 

h p 
l ,n = 8 1 (xn, yn, pl,n; h)' 

h P* = P 
1,n O,n 

P* 
O,n 

Thus, we can see that 

where 

(0.4) 

M 

L 
m=O 

= h~ (x, y; h) -
n n 

0 m,n 

o = 0 (x y P* · h) 0 (x y , PM ; h) . m,n m n' n' M,n' - m n' n ,n 

'fhe variable o is the round-off error made in then-th evaluation 
m,n 

of the increment function due to the rounding off of the round-off 

variable PM . The rounding error o will also include an error 
,n o,n 



6 

resulting from a shift operation. 

If we subtract equation (0.3) from equation (0 . 2), we can see 

that the cumulative round-off error r satisfies the difference equation 
n 

(0 . 5) 

wher e 

and 

= (1 + h K ) 
n 

K = 0 if r = 0. 
n n 

M 

r + L 
n m=0 

cS m,n 

Theorem A of the Appendix shows that the solution of the difference 

equation (0.S) can be written as 

n-1 M n-1 n-1 
(0. 6) r = I .I: 

n i=0 m=0 
+ I 

j=l 
h K. I1 

Jq=j+l 
cS . 
m, 1 

and that the inequality 

n-1 
h K. I1 (0. 7) 

n-1 
1 + L 

j =1 J q=j+l 
(1 + h K ) 

q 

is true for all n > 1. 

j-1 M 
(1 + h K ) L L 

q i =0 m=0 

n-1 
< rr 

j=l 
(1 + h IK.I) 

J 

If we overestimate the absolute .value of the sums 

cS (j = 
m, i 

1, . . . , n) 

with 

cS . 
m, 1 



(0.8) B = 
n 

max 
j 

j-1 M 
[ - [ 

i=0 m=o 

7 

cS . 
m,1 

(j = l, 2, . . . n) 

and use ( 0 . 7) , we see that Ir [ is bounded, i . e . , 
n 

(0.9) 

i.e., 

we ha ve 

(0 . 10) 

n-1 

Ir I n 
< B II 
- n 

(1 + h IK.I). 
J j=l 

Since the Lipschitz constant L of¢ (x,y;h) bounds IK. I [2, p . 71], 
J 

I K. I < L (j = 1 , 2 , . . . , n) , 
J 

I I B (1 + h L)n-l _ 
rn 2- n 



THEORETICAL CUMULATIVE ROUNDING 

In this section we will assume that the sequence Sis defined 

so that an -approximation -of the .increment .function is obtained first 

and then multiplied by h to obtain .the incr:ement. - .We will .denote the 

approximations .of the n~th evaluation of .the increment .function by 

h P* 
1,n 

By defining a as 
m,n 

P
1 

, and 
,n 

= p 
O,n 

a = ¢ (x , y
0

, P* ; h) - ¢ (x , y
0

, P* ; h) 
m,n m n m,n m n m,n 

(m = 1, ... , M), 

8 



we see that o defined by (0.4) can be expressed 
m,n 

o = h a 
m,n m,n (m = 1, . • • , M) . 

Hence, B of (0.8) can be expressed as 
n 

( 1. 1) B = 
n 

max 
J 

o . + h 
0,1 

j-1 M 

L L 
i=l m=l 

a . 
m, 1 

(j = 

With B expressed in this way we .can see that for 
n 

9 

1, ... ,n) . 

sufficiently 

small h that the greatest .contribution to the bound on r given in (0.10) 
n 

will normally be a result of the rounding of the products h Pi . 
,1 

(i = 0, 1, ... ,n-1) . Thus, we see that if no round-off error occurs 

in the multiplication by hand the addition of this product toy, i.e., 
n 

o
0 

. is zero (i ~ 0, 1, ... , n-1), then the major portion of the 
,1 

round-off error bound can be eliminated. The above results of o
0 

. = 0 
,1 

(i = 0, 1, . .. , n-1) are normally not .obtainable in a practical ap

plication; however, if the method of partial double precision is utilized 

(see example 2 of the Introduction), then the o
0 

. are approximately zero. 
,1 

The above technique of assuming o
0 

. . = 0 will be called -. theoret ica l partial 
'1 

double precision . This technique is performed by requiring y to be the 
n 

(M + l)st round-off .variable .and then continuing the sequence Sas above . 

Thus B of (1.1) will be given by 
n 

(1. 2) B ·= h max 
n j 

j-1 M+l 
[ L 

i=0 m=l 
a . 
m, 1 

(j = 1, . . . , n). 

If we interchange the .finite sums in (1.2) .and let 

A m,n = 
max 

j 

j -1 

L 
i=0 

a . 
m, 1 

(j = 1, . . . , n) , 



we see from (1.2) that .B is bounded, i.e., 
n 

(1. 3) 

and 

B 
n 

M+l 
< h L -A • 

m=l m,n 

Now let .us .define some new terms. Let 

R = P* 
m,n m,n 

V = a /R if R f O, m,n m,n m,n m,n 

V = 0 if R f 0. m,n m,n 

In the second example of .the .Introduction, we would have V = 
1,n 

-* . - d 2 yn + .y since P1 = y an v0 = 1 because P
0 

= (y*) . n ,n n n ,n n 

10 

In our application we .are concerned with a fixed word length com-

puter. Let. .9, denote the .number of bits in the single precision word. We 

defineµ 
m n , 

-9-+e 
= 1 x b m,n where bis the base of .the .computer, and 

e is the exponent of the variable P 
m,n m,n For theoretical purposes we 

will assume that the .computer .is capable of handling an exponent as large 

or as small as we please . 

We now formulate a .round-off procedure .called theoretical cumulative 

rounding_. 

word 

word 
n 

L 
i=O 

Algorithm 1. Add the double word length variable P to the double 
m,n n-1 

length variable . L 
i=O 

length variable P* 
m,n 

R . by adding p = m, i m,n 

R . .. • 
m, 1 

Then truncate the sum to obtain the single 

Calculate the accumulated .round-off error 
n-1 

P* to I R m, i · m,n 
i=O 
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In order . to indicate the num~rical . results ,of the above algorithm, 

it will be necessary to specify the single precision word length and 

base of. the machine. For example, 1et four . decimal digits represent the 

single precision word length~ the base is 10. Further, suppose 

P = 2.315 4553 m,n 

and 

n-1 

L 
i=O 

R . 
m, 1 

Then cumulative rounding can be performed by adding the double precision 
n-1 

P to the double precision L R . yielding 2,315 9445. The rounded 
m,n i=O m,1 

value of P is P* = 2.315 if the .machine truncates .and P* = 2,316 m,n m,n m,n 

if the machine symmetric .rounds in converting from double precision to 

single precision .variable. Continuing, we .compute 

n 

L 
i=O 

R . m,1 = 0 . 000 9445 

if truncation has occurred and 

n 

L 
i=O 

R . m, 1 
= -0.000 0555 

if symmetric rounding has occurred. For this case we have 

The value ofµ may change as the calculation .continues , Suppose 
m,n 



and 

then 

and 

P = .9862 3241 
m,n 

n-1 

I 
i=0 

R . 
m, 1 

= 0.000 3244 

µ = . 0001 .0000, m,n 

P* = . 9865, m,n 

n 

L 
i=0 

R . 
m,1 

It is easy to see that 

n 

.L 
1=0 

R . . < µ (i = 
m,1 - m,n 1, 2, . . . , n) . 

The use of .theoretical .cumulative rounding, as the following 

12 

theorem indicates, will -control .the .growth of each A - (m = ¢ , ... , M+l); m,n 

thus the growth of B . 
n 

(j -= 0, 

Theorem 1~ - . If .there .exists T .. such that V . = V + h T . 
m,J m,J m,j+l m,J 

, I»' ,. , . n-1) and if -the .variables P . . (j = O, 1, . . . , n-1) 
m, J 

are rounded .using Algorithm . !, then 

A < (N + (n - 1) h T ) µ m,n .- m,n m,n m 

where 



and 

N max I I 
m,n = j vm,n 'Tm,n 

max 
j IT . 1 m,J 

max 
µm = j µ . (j = 

m, J 
O, 1, . , . , n) , 

Proof: It is obvious that 

(1. 4) 
j-1 
[ 

i=O 

Since 

(1. 5) 
j-1 
L 

i=O 

R . . 
m, 1 

< µ 
- m 

V . R . = 
m,1 m,1 

(j = 

V . 
m,J 

1, , , . , n) , 

(
j-1 l j-1 LR . +h L 
i=O m,i q=O 

(see Lemma A of the Appendix), we see that 

j-1 

L 
i=O 

a . . 
m, 1 

< Iv -1 m, J 

j-1 

I 
i=O 

R . 
m,1 

The utilization of the inequality (1 , 4) yields 

j -1 

I 
i=O 

a . 
m, 1 ( 

j -1 ) 
< IV .1 + h L IT I µ 0 

m,J q=O m,q m 

T m,q 

q 

i~ 

An overestimation of V . and T . (j = 0, 1, , , , ,n) yields 
m,J m,J 

(1. 6) A < (N + (n - 1) h T ) µ . 
m,n - m,n m,n m 

Thus the theorem is proved. 

From (1.3) and (1.6) we can see that 

. (1. 7) B < h U 
n - n 

13 

R . 
m, 1 

R . , 
m, 1 
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where 
M+l 

(1.8) U = L (N + (n - 1) h T ) µ . 
n m=l m,n m,n m 

Now U is a finite .number since N , T µ, are all finite (m = 1, . 
n m,n m,n' m 

, M+l) . . Thus, from (0 ~7) and . (1.7) we have 

(1. 9) 

i.e., 

Ir J < h U . (1 + h L)n-l, 
n n 

r is .bounded by a term -of order O (h). 
n 
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ROUND-OFF ERROR LIMITS 

In this section we want .to investigate the limit of round-off error 

bounds ash .approaches zero .for .the .cases -single .precision, double precision, 

theoretical .partial .double precision, and theoretical cumulative .rounding . 

It .is difficult, . in general, to get an exact form for the error rn; 

therefore, .we will investigate .the limit .of -the error bounds (0 . 10) and 

( 1 , 9) ash .approaches zero .. Since x =a+ nh, where n is a positive integer, 

requires h divide x - a, we will restrict ourselves to the set H = {h I h 

divides x - a} . 

and 

Let us define 

r (x,h) = 

B (x,h) = B ' n 

U (x,h) = U where n = (x - a)/h . 
n 

Let us first consider the case of single precision . The round

.off error bound .for this case is given by equation (0 , 10), or in the 

notation of this . section, 

(2.1) I . n-1 
Ir (x, .h) < B. (x,h) (1 + h L) 

and 

B (x,h) = 
max 

j 

j-1 M 

I I 
i=0 m=0 

0 . 
m, 1 

(j = 1, . . . , n) 



where n = (x - a)/h. 

(2.3) 

M 
If the sum L 

m=O 
o . is bounded by some constant k, we have 
m, 1 

B (x,h) < m~x 
- J 

j-1 
I: k 

i=O 

Thus we see that 

(2.4) \r (x,h)\ < n k · (1 + h L)n-l. 

Replacing n by (x - a)/h in (2 .4) and taking the limit ash approaches 

zero, we have 

lim \r (x,h) \ < lim (x ~ a) k (l + h L) ((x - a)/h)-1 
h-+O - h-rO 

< k eL{x - a) lim h-+O (x - a) /h 

16 

Thus, the bound on the round-off error for single precision beco mes un

bounded ash approaches zero. We should note that the bound on the round

off error for double precision or higher order precisions also becomes 

unbounded ash approaches .zero . 

The bound on the round-off error r (x,h) for theoretical partial 

double .precision is given in (2 . 1) where 

If the sum 

B (x, h) 

M+l 

z 
m=l 

a . 
m, 1 

= h max 
j 

j-1 M+l 
[ Z 

i=O m=l 
a . 

m, 1 
(j = 1, 2, . . . , n) . 



is bounded by a constant .C, .it follows that 

(2.5) 

Replacing n with (x - a}/h in (2.5~ we have 

lim Ir (x,h) I < lim h (x - a) C (l + h L) ((x - a)/h)-1 
h+O - h+O h 

< C (x _ a) lim (l + h L) ((x - a)/h)-1 
h+O 

< (x - a) C e(x - a)L 

Hencer the round-off error . is bounded ash .approaches zero for 

theoretical partial double precision. 

17 

The bound for the round-off error in theoretical cumulative 

rounding is given by (1.9), i . e., Ir (x,h) I.::_ h U (x,h)(l + h L) (n-l) 

where n = (x - a)/h. If the hypotheses of Theorem 1 are satisfied, then 

the variable U (x,h) is bounded, i.e., U (x,h) < D. We then have 

(2.6) Ir (x,h) I < h D (1 + h L)n-l. 

Taking the limit ash approaches zero on both sides of (2.6), we have 

~~~ Ir (x,h) I = 0. 

Therefore, in theoretical .cumulative rounding, we see that the round-off 

error vanishes ash approaches zero. It should be .mentioned that the above 

results are not .obtainable in actual practice. 
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THEORETICAL PARTIAL CUMULATIVE ROUNDING 

Let¢ (x, y; h) be an increment function which can be written in 

the form 

(3. 1) ¢ (x, y; h) = <Ii1 (x, y; h) + h¢ 2 (x, y; h); 

and let the sequence S be .redefined in such a way that arithmetic operations 

in the evaluation of ¢2 (x, y; h) uses single precision, and the evalua-
n n 

tion of ¢1 (xn, yn; h) uses theoretical cumulative .rounding. Let S denote 
n 

the accumulated round-off error encountered in then-th evaluation of 

¢2 (x . , y; h) and y the .accumulated round-off error in then-th evaluation n n n 

of ¢1 (xn, yn; h). 

From the equation (0.10) we see that 

< B (1 + h L)n-l, 
n 

and from the equation (1.9) we have 

I I < h U (1 + h L)n-l yn n 

where U is expressed by (1.7) 
n 

We can now see that 

Ir I < h U (1 + h L)n-l + h2 B (1 + h L)n-l 
n n n 

OT 

Ir I < h (U + h B ) ( 1 + h L) n- l. 
n n n 



If B is bounded by G, we have 
n 

I I n-1 r < h (U + h G) (1 + h L) . 
n n 

Using the fact that n = (x - a)/h and expressing r as r (x,h) and U 
n n 

as U (x,h), we have 

19 

lim I lim ( (x- a)/h)-1 
r (x,h) I < h (U (x,h) + h G) (1 + h L) h+O - h+O 

is equal to zero. 

Let us summarize the above as follows: 

Algorithm 2 ~. (Theoretical .Partial Cumulativ:e Rounding) . If the 

increment function ¢ (x, y; .h) can be written in the form (3.1), we can 

perform all arithmetic operations in the evaluation of ¢2 (x, y; h) in 

single precision .and then use cumulative rounding (Algorithm 1) in the 

remainder of the evaluations. 
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IMPLEMENTATION AND EXAMPLES 

Partial double precision is performed by evaluating the incremen t 

function in single .precision, i.e., y is the only double precision 
n 

variable. There is .no way to .guarantee that the round-off error -associated 

with .tha .above -addition~f .the increment to -~ . is zero; only that it is 
n 

nearly zero. Therefore, the remarks about round-off error limits should be 

modified by saying that the limit of the round-off error is nearly constant 

as the step length approaches some H > 0 where h depends upon (0.1), (0.2), 

and the .individual computer . [1, p. 249]. 

Implementation of .the cumu1ative rounding is easy . We want to per

form all additions and -subtractions in doub l e precision and al l multi

plicati ons and divisions in single precision . Moreover, we want to rou nd 

off using Algorithm 1. This is best illustrated by an example. Consider 

2 the initial value problem y' = y, y (0) = 1 using Euler's method . A 

typical FORTRAN program follows: 

DOUBLE PRECISION YN,YS,YTT,YSTT,HH,Rl,R2 
1 READ 20,H,K 
2 HH=H 

X=O.O 
YN=l.DO 
Rl=O.DO 
R2=0.DO 
DO 10 I =l, K 
X=X+H 
YT=YN+R2 
R2=(YN+R2)-YT 

3 YTT=YT 
4 YS=YTT*YTT 

YST=YS+Rl 
Rl=(YS+Rl)-YST 

5 YN=YN+HH*YST 
PRINT 25,I,X,Y N 

10 CONTINUE 
GO TO 1 

20 FORMAT (FlS . 8,IlO) 
25 FORMAT (5X,IS,SX,Fl5 . 8,SX,D25.16) 

END 
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The above program should work on most computers that have the 

FORTRAN IV option. If a computer handles a statemen t similar to Y=YN+X*Z, 

where Y and YN are .double precision variables, and X and Z are single 

precision, by converting X and Z to double precision before performing 

the multiplication as .a standard .machine operation; then in the above 

prog ram statements 2 and 3 may be omit t ed, and statements 4 and 5 changed 

to 

4 YS=YT*YT 
5 YN=YN+H*YST. 

The remarks about round-off error limits should also be modified 

for cumulative rounding. Due to the limited capacity of the computer, the 

step length h will have a . lower bound o Therefore, we cannot consider th e 

limit of the round-off error ash approaches zero, but the limit ash 

approaches some constant H > 0 where H depends upon (Ool), (0.2), and the 

individual computer o Hence, the limit of the round-off error will be 

approximately zero as the step length approaches Ho 

sizes 

Several problems have been run on the IBM 7040 computer using step 

-6 
2 ' e • • J 

-16 . 2 using double precision, partial double 

precision, and partial cumulative roundingo In each case the error was 

calculated by the relationship (y (x) - y )/y (x ) , The same problems 
n n n 

were also run on an IBM 360/44 and an UNIVAC 1108 computer with com-

parable .results o The results in Figure 1 are typical , 

In conclusion, we .may say that Fi gure 1 represents .the general 

curve of the errors for double precision, .partial double precision, 

and partial cumulative rounding . 
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APPENDIX 

The following theorem is a proof of (0 06) and (Oo7) o It is tak en 

from Hansen [2, pp. 7-8] and is included for completeness o 

Theorem A. If h, a, b, (n = O, 1, 2, o o o ), are real numbers, 
n n 

then the solution of the difference equation 

(A .1) 

= r (1 +ha) + b 
n n n 

is given by 

n-1 
(A. 2) r = L n i=O 

and the inequality 

n-1 
1 + L 

j=l 

is true for all n > 1. 

n-1 

(h 

n-1 
b . + IT a . IT 

l j=l J k=j+l 

n-1 
h a . I1 ( 1 + h ak) 

J k=j+l 

(1 + h ak)) 
j -1 
L b., 

i=O l 

n-1 
< rr 

j =1 
c1 + h I a. I) 

J 

Proof: First, (A. 2) is true for n = Oo Therefore, the boundary 

condition is satisfiedo Secondly, (Ao2) and (A.3 ) are true for n = 1 

since b
0 

= b
0 

and 1 = 1. Now let 9., be any integer such that (A.2 ) and 

(A.3) are true, that is, 

(A.4) b . + 
l 

9.,-1 

L 
j == 1 

( 
9.,-1 ) j-1 

ha. I1 (1 + h ak) l.;_Q bi 
J k=j+l 



and 

(A. 5) 
9,- 1 

1 + z 
j =1 

9,-1 
h a. 'rr ( 1 + h ak) 

J k=j+l 

9,-1 
< rr 

j=l 
c1 + h I a. I) , 

J 

For Q, + 1 we have from the difference equation that 

and 
9--1 9,-1 

= bQ, + (1 + h aQ,) L bi + (1 + h aQ,) L 
i=O j=l 

( 

9,-1 ) u-1 
h a . rr c 1 + h ak) z b . 

J k=j+l j-1 l 
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Q, Q,-1 9--1 

(h 

Q, 

+ h ak)) = [ b . + h aQ, z b . + z d. . rr (1 
i=O 

l 
i=O 

l 
j=l J k=j+l 

j-1 

z b . 
i==o 

l 

Hence, (A.2) is true for all n > 0 . 

Now 
Q, 

1 + z 
j=l 

Q, 

h a . rr ( 1 + h ak) 
J k=j+l 

Q, 

h a . IT ( 1 + h ak) 
J k=j +1 



.Q,-1 .Q, -1 
< 1 + h\a.Q,\ + L, \ha. IT (1 + h ak) \) (1 + h \a.Q,]) 

j=l J k=j+l 

< c1 + h I a.Q, I) [ 1 + ~f 1 
J=l 

.Q,-1 ] 
ha . IT (1 + h ak) 

J k= j + 1 

.Q, 

< rr 
j=l 

c1 + h \a. \). 
J 

Thus (A.3) is true for all n .::_ 1. 

The following Lemma is a proof of equation (1.5) 

Lemma A. If there exists T . such the V . V . = V h T . 
m,J m,j+l m,J m,J m,J 

(j = 0, 1, 2, . . . , n-1), then 

j-1 
(A. 6) L 

i=O 
V . R . 

m, 1 m,1 
= V . 

m, J 

j- 1 

L 
i=O 

R . + h 
m, 1 

(j = 1, . . . , n) . 

j-1 

L 
q=O 

T m,q 

q 

L 
i=O 

R . 
m, 1 
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Proof: Let n > 1 be any integer , For j = 1 we have V - V m,O m,1 

+ h T o· Thus m, 

Assume (A. 6) is 

(A. 7) 

Now 

V R m,O m,O 

true for j 

k-1 

L V R 
i=O m, i 

= V R + h T R 0 . m,1 m,O m,O m, 

= k, i.e.' 

k-1 k-1 q 
V L R + h r 

T L R = L m, i · m,i m,k i=O m, i q=O 
m,q i=O 
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(A.8) V = V + h T i mplie s m,k m,k+ l m,k 

(A . 9) V R m,k m,k = V k R k + h 1 R k . m, +l m, m,k m, 

Adding (A,7) and (A.9), we have 

k-1 k-1 
'[V . R . +VkRk i=O m,1 m,1 m, m, == Vm,k i~O Rm,i 

k-1 q 
+ h L T r, R . + V R + h T k R k . 

q=O m,q i~O m,1 m,k+l m,k m, m, 

Using (A.8) and collecting terms, we have 

(A. 10) 
k 
r, 

i=O 
V . R . m,1 m,i 

k k 

= vm,k+l i~O Rm,i + h q~OTm,q 

q 

i~ 
R . • 
m, 1 

Thus, (A. 6) is true for j < n . 
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