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•ABSTRACT . '

This study is directed towards the development o f models and

procedures for the economic design qf x-charts, 3T-charts with warning,.*
/  1 '

.lim its  and cusum charts to control non-normal process means. The *

objective of the design is to determine the optimal values pf the^

chart parameters by minimizinj^thk^xpected loss-cost. Two alternative

operating policies are consideredy Under policy I ,  the process is  '

allowed to.continue in operation during the search fo r the single

assignable-cause..* Un.der policy I I ,  the process is shut-down immediately

a fte r  the ’search fo r the assignable cause is in it ia te d .

In developing thbse models, the non-normal probability  density 
/  ■

function o f the process variable is  expressed in terms of the f i r s t
< t '

four terms of an Edgeworth series. The solution procedure fo r

determining the.design parameters o f an x-chart consi-sts of an e x p lic it

equation fo r the sampling in te rv a l, and an im p lic it equation in.sample

size and the control lirjpdf^coefficient. An optimization algorithm based

.on Hooke and Je^ve^s pattern search technique is develpped and,employed

’ to minimize the loss-cost function under both operating po lic ies. A

s im plified  scheme, which determines the design parameters by minimizing
9 ‘

the loss-cost function subject to a specified le v e l’of consumer's r is k ,
*

is also developed fo r both operating polic ies. Through numerical

examples i t  is concluded that the resulting sim plified  scheme is close

to the minimum control plan^ The s en s itiv ity  analyses o f the model 
♦ m *

i i i
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operating under policy IL  indicates that the model is highly sensitive .
1 t

to  the s h if t  parameter'and-the rate o f occurrence of the-assighable
* *. * >

cause, .moderately .sensitive to the- fixed arid-Vciri able sampling c o s ts ,, 

arid .re la tiye ly  insensitive to the repair and search cost. The single' 

assignable cause rood^l.is then extended to trea t m ultiple assignable 

causes. The solution to the m ultiple cause model is found to he close 

to  that o f the 'matched' single, cause model.

The economic design of x-chart with warning lim its  is considered 

under policy I I .  In 'order to  develop the loss-cost function, expressions 

fo r the average run lengths when the process is  in control and when-it 

is  out o f control are derived. The optimal values o f .the design
< _ N

parameters are obtained by using a two-stage optimization algorithm

sim ilar to that used.for the economic design of x-chart. Numerical

examples are provided and the effects of the non-normality parameters
** **

on loss-cost function and design parameters are examined". Furthermore,

a s im plified  scheme is devised subject to the condition that the • 

assignable cause is detected a fte r  a specified average run length.

For the economic design o f cusum charts, the average run lengths 

are derived by solving a system of lin e a r equations.which approximate 

the in tegral equations fo r  the required quantities. -vUsing.the decision 

in terva l scheme, an ite ra tiv e  algorithm is developed to determine the
m -

optimal design parameters. ■ A s im plified  version of the algorithm is 

also presented. From numerical studies i t  is  observed: that the e ffec t  

o f skewness is more marked than that of kurtosis.

iv *
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A comparison d f the performances of the three charts' indicates
- ' ' • • ■ I . ' * '  * - •  •

th a t , 'fo r  the s h if t  in the/process mean between 0.5c and 1.5a the 

' performance o f the cusum chart is  be tte r than that of the x-chart 

. with warning-lim its. However, the performance o f the la t te r  is
V ; / , • V. . >

*  •  r  I  ’  *

.■ bettepJthan that o f x-chart with only action lim its . With the

^ ‘ s h ift  in the process-mean above 1.5a, the performance of the x-chart
« '  ‘ /  ‘

■ . is  s Tightly better than those o f x-chart with warning- lim its  and

cusum c h a rts .. . ‘ ’ * ■

F in a lly , the e ffe c t o f human errors on the model is studied,
* . *<» » . *

and a simulation o f the model behaviour under extreme cases o f sampl

distribution is  carried out.
'  V .

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To My-Parents and wi/e Bilkis

V I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



'ACKNOWUEDGEMENTS "

‘ , '■ ;
The author wishes to ackndwledge with deepest gratitude

* •

Dr. R.S. Lashkari, without whose, able guidance'this dissertation

would not have been possible.

■ The a u t h o r . i - j s  indebted to Dr. A. Raouf, who f i r s t  in itia te d

the author's in teres t toward'the problem studied here.

' The author also fis h e s  to express his most sincere gratitude to
v

Professor N. Shklov fo r  the countless hours he spent reading the, •’ 

en tire  manuscript and fo r hi^ worthy comments and interesting suggestions.

Special thanks are given to Dr. T .J. Gallwey fo r his suggestions and 

fo r supplying the l ite ra tu re , from time to time, required fo r th is  study.

Due appreciation is  extended to both Dr. J.B. Kennedy and Dr. D.S.-Tracy
\  * ! fo r th e ir  encouragement and support. r '

. The author wishes to express his sincere thanks to Mr. Kazuo Tsuchiya,

f<fr his assistance in debugging and improving the effic iency o.f some of
> w 

the computer programs, and to Mrs. Marion Campeau, who carefu lly  typed

the manuscript o f th is  dissertation as well as the manuscripts o f other

publications which resulted^from this study.

The author g ra te fu lly  acknowledges the inspiration and encouragement

of his w ife , B ilk is , who knows by now what cusum stands for.
-•v 4

F in a lly , the author extends his appreciation to the National Research 

Council o f Canada for providing financial support fo r this research.

f
v ii :

«

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS .. ' a> . '
i . » t

*

ABSTRACT ..................................................................................................... . . . ’.............. i i ii * < s

• DEDICATION ................................ . . . . . . . .v..............................1............. ! ..........,  . v i '

ACKNOWLEDGEMENTS. .............      ‘ ........................: ..................... '.............v ii
V

LIST OF TABLES   .........................................! .....................'..............   xi " '

LIST OF FIGURES ..................   ' . ...................................... •................... ! . . . .  x i i i
\

NOMENCLATURE ........ ..........................................................................................;. v. . .  .• xv

CHAPTER' I .  INTRODUCTION..............................-..................................................■ 1

1 .1 ■ General Introduction ................................     1
1.2 Statement’o f the“Problem...........................................  2
T.3 Objectives of the Study ..........  4

' 1 .4  Outline o f Proposed Study  ...................................... 6

 ̂ CHAPTER I I .  LITERATURE SURVEY AND MOTIVATION FOR PROPOSED.STUDY . . .  8

2.1 Economic Design of x-Charts to Control
Normal Means'.............................................................................. 8

2.2 Economic Design.of Cusum Charts to Control
Normal Means . . \ . .....................................................  13

2 .3  Design of Control' Charts for Non-Normal
Processes ............................................   14

2.4 Motivation fo r Proposed Study .......................    17
> V *

QHAPTER I I I . '  OPERATING PROPERTIES AND DESIGN CRITERIA OF
CONTROL CHARTS,............................................    21
3.1 S ta tis tic a l Properties of Control Charts ................  21
3.2 Quality Control Chart as. a Test of Hypothesis ___ 23
3.3 C r ite r ia -fo r  the Design of Control Charts  .........   24

3.-3.V Power Function Criterion .................•................. 24^
3 .3 .2  Average. Run Length, Criterion ____ •___ : .......  25
3 .3 .3  Minimum Cost Criterion ....................................... 28

't

^  vi i i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4 Assumptions About Process Behaviour ......................... 28.A* .

• ... * 3.4.1 The Production'Process.. .................................  28 '
' * 3 .4.2 The Loss-Cost Function................................ . 30

■CHAPTER IV. ECONOMIC DESIGN OF X-CHARTS TO CONTROL NON-NORMAL-
PROCESS MEANS................   31
4.1 Characteristics of the Process Variable .................. 32

«

. ‘ 4.2 Single Assignable Cause Model -  Policy I  ........ .] 34
4.2 .1- Formulation o f Loss-Cost Funct.ion ............. ‘•x_34
4 .2 .2  Determination of the Optimal Design

Parameters ...............................................................  41
'.4 ..2 .3 - Development o f a Simplified Scheme . . . . ! . .  50

413 Single.Assignable Cause Model -  Policy I I  ................... S6

4.3.1 Formulation of.LossvCost Function fo r
t Policy I I   ......................*.........................   56'

■> 4 .3 .2  An Exact A lgorithm ............................................  58
-< 4 .3 .3  - Development of. a Sim plified Scheme fo r

- Policy I I   ........................ . . . .........................   58 ■
4.4 Efficiency o f the Control Plan . . v   ........................  63

 M ultiple Assignable Cause Model .................................  77

4.5.1 Formulation o f’ Loss-Cost Function ............... 78

4.5.2 Application of the Sim plified Scheme ........  80

CHAPTER V. AN ECONOMIC DESIGN OF X-CHARTS WITH WARNING LIMITS TO
CONTROL NON-NORMAL PROCESS MEANS........................................... 85»

5.1 Formulation of Loss-Cost Function ............................. 85
5.2 Effect o f Non-Normality'on Loss-Cost Function*;.. 90
5.3 Determination o f the Optimal Design Parameters . .  91

■ 5.4 A Sim plified Scheme .'........................ : ............................  97

CHAPTER V I. AN ECONOMIC DESIGN OF CUMULATIVE SUM CHARTS TO ■
CONTROL NON-NORMAL PROCESS MEANS ........................   102
6.1 The Assumption of the Process Model .........................  103
6.2 Formulation o f Loss-Cost Function ..........   103

6.3  Determination of the.Control Parameters ................. 105
■6.3.1 Determination of Reference Value K .____ . . .  105

%

i x ’ r
/

with permission of the copyright owner. Further reproduction prohibited without permission.



f

\ • v \  .
« € '■ . .

6.3 .2  Determination jof the A.RL by a System
' of Linear Algebraic Equations .......... : .......... 1054 *

6,. 3.3 Determination'of s .............................................  109-
\ 6 .3 .4  The A lgorithm  ...............................................110

6.4 Numerical Illu s tra tio n  ............................     . 1 1 2
» • ’ *6.5 A Sim plified Scheme  .................... * . . . ................  125

6 . 6  Application o f S im plified Scheme to Two-Si'ded-
Charts  ...........................................................................  129

'' > *
6.7  'A R elative Comparison-Among the Economic Design 

of x-Chart, x-Chart with Warning Limits and
Cusum Charts  ............ 1...............................  130

* -
CHAPTER V II'.__  MODEL BEHAVIOUR UNDER HUMAN-ERROR AND EXTREME

SAMPLE DISTRIBUTIONS. . . ' ............................    136

7.1 The Effects o f Human Errors ...........    135
i. »

‘ 7.2 Application of the Model to the Simulated
D is tr ib u tio n s .. ............................................................. 141

• CHAPTER V I I I .  CONCLUSIONS AND RECOMMENDATIONS'...........................   155

8.1 Conclusions .’................................... V .......... •..................... 155
8.2 Recommendations . .......................................... ........... . . .  150

APPENDICES
• ♦

I  * PROGRAM XBAR ................. ‘.................... '................................   I 63-
I I  PROGRAM SEMIXBAR..................................’ ............   .-.............  171

I ,111  PROGRAM WARNING ................... '................................   173
IV PROGRAM SEMIWARN .................................•.......................................  180
V . PROGRAM CUSUM........................................................................   183

VI. PROGRAM CUSUMSEML................... •...................................: ................ 192

4

REFERENCES ..................................................   197
, «, 4

VITA AUCTORIS ........................................................    . . . .  204

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I

LIST OF TABLES .

No. . _ Page
' *' * \

4.1 Values o f the ioss-Cost Function and Design 47
Parameters in the Neighbourhood of Minimum 
Position. . ' . .
(A=0.01, V =150, Vt =50, W=25, b=0..5, c=0.1, 
e±0.05, 6 = 1 . 0 ,  t ^ = - 0 . 5 ,  y 2 = - 0 . 5 ,  D=2.0)

4.2 Comparison, o f Results by Approximate Solution 49
and Optimal Solution.  ̂ • *

4.3 Sim plified Scheme fo r Determination of_Control 55
Parameters fo r the Economic Design of x-Chart

- J  ta_Control Non-Nonnal Means for'Whicb P > 0.95.
(6=2.0, y-|=0 .5 , andY2 =1.0) "

4.4 Sim plified Scheme fo r Determination of_Control 60
Parameters fo r  the Economic Design of x-Chart 
to Control Non-Normal Means -for Which 0.90 < P < 0.95
' 5=1(6=z% y- j~1 . 0 ,  a n d Y 2=2.0)

4.5 Sim plified Scheme fo r the Determination of Control 62
Parameters fo r  the Economic Design of x-Chart to 
Control Non-Normal Means for Which 0.90 _< P.£  0.95. 
(5=2, Yi=Q~Q, andY2 “0.0)

416 . Effect o f X on the Control Plan and Effect of Errors 66
in the Estimated values of X .'

4.7 . A T rip le  Cause Model. • 82

4.8 Sim plified Scheme for the Determination o f Control 84
Parameters for the Economic Design of x-Charts to 
Control Non-Normal Means for which P > 0.95.
(6=1.75, y-j=1 • 0, and '(2 =2 . 0 )

5.1 Optimal Design fo r Example 5 .1 . • 94

5.2 Optimal Values of the Design Parameters_and Loss- 96
Cost Function of an Economic Design of x-Chart With 
Warning Limits.

a
5.3 Semi Economic Scheme for Design o f x-Chart with 100

Warning Limits to Control Non-Normal Process Means.

6.1 Values o f the Loss-Cost Function and Design 113
Parameters in the Neighbourhood o f Minimum Position.-

V

XI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6. 2

6.3

'6.4

7.2

7.3

7.4

7.5

Values o f the Design Parameters and Loss-Cost ■*^16
Function o f an Economic Design o f Cusum Chart 
to Control Non-Normal Process Mearrs.
(A=0.05, Vn= l50, ■V.=50, 20, k =10, t  =0.2 ,
t s=0.1 , b -0 .5 , c=6.1). 5 .

Sim plified Scheme fo r Determination of Control 128
Parameters.

Comparison of Three Minimum-Cost. Control : 133
Procedures.
(A=0.05, y -,=0.5, y«=l .0 , Vn=l50, V-,=50, k =20, 
ks=1 0 , T^-0 . 2 , Tg—0 . 1 , b=u.5 , c= o !l). r

Sample Distribution o f a Simulated Double Exponential 145
Population with Mean 0 and Unit Standard Deviation.

Average Run Length R-| When a Process is Double 148
Exponentially Distributed.

Sample D istribution of a Simulated Rectangular 150
Population with Mean 0 and-Unit Standard Deviation.

Average Run Length R, When a Process is Rectangularly 152
Distributed. t

Comparison o f the Economic Design o f x-Chart fo r 154
Normal and Non-Normal Processes.
(X=0.05,- 5=2, Vn=150, V,=50, t  =0.2 , t =0.1,' 
kr=20, ks=10, .6=0.5, c -0 .1). r  s

x ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



« LIST OF FIGURES

'No.

4.1 Effect o f X on the Design Parameters an\l the
Loss-Cost Function, and Effect o f Errors in the 
Estimated Values of X.

4.2 Effect o f S on the Design Parameters and the Loss-
Cost Function, and Effect of Errors in the
Estimated^alues o f s.

4.3 Effect of b on the Design Parameters and the Loss-
Cost Function, and Effect o f Errors in the 
Estimated Values of b:

4 .4 Effect of c on the Design Parameters and the Loss-
Cost Function, and the Effect of Errors in the 
Estimated Values o f c.

4.5 E ffect o f k on the Design Parameters and the Loss-i
Cost Function, and Effect o f Errors in the 
Estimated-Values of kr -

4.6 E ffect o f k on the Design Parameters and the Loss-
Cost Function, and Effect o f Errors in tpe
Estimated Values o f kg.

4.7 Effect o f x on the Design Parameters and the Loss-
• Cost Function, and Effect o f Errors in the

Estimated Values of -r .

4.8 Effect o f on-the Design Parameters and the Loss-
Cost Function, and Effect of Errors in the 
Estimated Values o f t  .

5.1 Diagrammatic Representation of In-Control and Out-of-
Control State of the Process.

6.1 Loss-Cost Function and Design Parameter in the 
Neighbourhood of Minimum Position.

6.2 Effect o f 6 fo r  Given Values of y . andy? on L,
Rq and R-j. 1 c

x i i i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Page

67'

69

71

72

73

74

75

76
z*v

87

1T4

121



6.3  Effect of 6 fo r Given Values of y , andy„
on Design Parameters. :

6.4 Effect of Y j fo r Given (y2> 5) on Design
Parameters ,ARLs and Loss-cost Function.

6.5 Effect 'of fo r g iv e h .fr , ,  6 ) on Design
Parameters, ARLs and Loss-Cost.Function.

6 . 6  Loss-Cost vs.- 6a for x-Ghart, x-Chart with
Warning Limits and Cusum Chart.

7.1 Frequency Curve of the Simulated Double
Exponential Sample D istribution.

7.2 Frequence Curve o f the Simulated Rectangular
Sample D istribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I

A .

V NOMENCLATURE

A .,kth Gaussian co e ffic ien t - .
k < - • •

ct Probability of searching Ton an assignable cause

. when i t  does not ex is t

b , . fixed  sampling.cost
♦ j

6 Probability of not searching fo r an assignable
cause when i t  exists

Measure of skewness • ^

32 Measure of kurtosis

d Lead distance o f a V-mask measured on a vertica l
scale

D Average time taken to find an assignable cause
for an x"-chart under policy I

6 S h ift parameter
-vj

e Efficiency o f a control plan

e Delay factor fo r an x-chart under policy I :

E(c) ■ Expected production cycle length

y -j Equal to ,

Y2 Equal to B2 -  3

h - Decision interval for one-sided cusum' chart

H Standardized decision in terval fo r one-sided

cusum chart

I Expected net income per-hour

k ' Control l im it  coeffic ien t fo r an x-chart

ka Action lim it  coeffic ien t for an iT-chart with
warning lim its

xv
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



k '  Warning lim it  coeffic ien tw
K Reference value of. one-sided cusum-charts

k • Expected repair cost ■ > „ • .

^«ks Expected search, cost
♦ * k

L 1 Per-hour loss-cost

* R^;e o f occurrence o f an assignable cause

m Number o f Gaussian points

.Pq s Process mean when in -co n tro l, acceptable, quality
level*

y-j % ---------Pfocess mean when o u t-o f-co n tro l, rejectable quality
level

n Sample size

N(z) Unconditional average sample number o f Wald sequential
te s t

P "• Probability o f true alarm

P‘ Probability that a point fa lls  below the warning
lim it  _

P(z) /  Probability that a Wald te s t which starts at a
distance 2 from the lower boundary ends oh .or below 

i t

H alf angle of the V-mask

<Kx) ' Probability density function of a standardized
normal variate x

3>(x) Cumulative d istribution function of a standardized
normal variate x '

q ‘ The probability that a point fa lls  between the warning
and action lim its  ^

Rg Average run length of a chart when the process is at
acceptable quality  level yg

xvi

*
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R-j • \  Average run length of a chart when the
process is  at rejectable level

’■-.Rc . •_ C ritic a l run length in between the warning
/  . ' and action lim its-

*
s Sampiing interval

. o Process standard deviation

Tr  Expected repair time

t  1 Expected search time •

6 * Magnitude o f variation in mean in a cusum chart

U Loss rate ' >

V y  Expected cost o f searching fo r an assignable cause when
th^ process is in control

, Vq Per-hour income when the process is in control

Vi Per-hour income when the process is out of control

W Expected cost of searching fo r an assignable cause when
i t  exists

kth Gaussian point

xvn

♦
*
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CHAPTER 1~ 

INTRODUCTION

1.1 General Introduction

In any production process, some variations in product quality  

are unavoidable. These variations can be divided into two categories,

( i )  random.variations and ( i i )  variations due to assignable causes.

I f  the random variations exh ib it a stable pattern , the process is  said 

to be operating under a stable pystem o f chance-causes, or simply, 

to be in a state o f in -co ntro l. Variations that are not within the 

'stable pattern o f chance-causes are attributed to assignable causes, 

and the process is  then said to be in the state of ou t-o f-contro l. I t  

is desirable th a t, when there is  evidence that assignable causes of 

variation are present, these causes be detected and removed from the 

process and, hence, the process.be brought back to the in-control state. 

This is fa c ilita te d  by the use of quality  control charts.

A s ta tis tic a l quality  control chart is a dynamic device which,

on the basis of the process performance, determines operational c r ite r ia

to distinguish between random and non-random variations in product

quality  and thereby provides a basis for taking action to eliminate

removable causes o f variations. Thus the two major uses o f control

charts are to establish i operational c r ite r ia  to bring a process under
*

control and to maintain the existing state of control.

When the product quality  is  measured on a continuous scale, commonly 

used s ta tis tic a l qu ality  control charts for controlling the process
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average are the x-chart and the cumulative sum (cusum) chart. To

use a'control cfiart, the user must specify-a sample s ize , a sampling

•interval and the control lim its  or c r it ic a l .region 'for the chart.

Selection o f these parameters'*is called the design o f the ctihtroV chart.

^  • The design o f the control-chart with respect to economic c r ite r ia

has been a subject o f in terest during the la s t three’ decades. The

objective o f the design has been' e ith er to minimize 'the inspection
\ *requirements or to maximize the income, i . e . ,  to minimize the loss- 

cost. The assumption underlying the design- has been the normality 

of the^process mean.

1.2 Statement o f the Problem

In many industria l processes, the process variables, which are the
i *

outputs ofWn-machine systems, do not .always conform with the normality 

assumption. The measurable qu ality  characteris tic , which describes the 

product q u a lity , is a random variable whose density .function depends 

upon one or more parameters of the product quality  and often has a non

normal d is trib u tio n . In such cases, conventional 'charts, which are based 

on the normality assumption, could a ffec t the probabilities associated with 

* the control lim its  or c r it ic a l regions and may wrongly indicate lack of 

control or o u t-o f-c o n tro l.,

Generally, there can be as many causes as one can imagine for a 
*

process to be non-normal in nature. For instance, a process may.have 

been screened fo r out-of-tolerance parts, resulting in a truncated 

d is trib u tio n . The truncated d istribution can also occur when the values
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of a- measured variable can- be accurately recorded only in a certain
\ . • 

in te rva l. This may be due to lim itations in measuring instruments,

•< ' • or to the purely practical considerations of ease and speed of
* .> .

observation .[Johnson and Leone, -19761:* .
1 . ' '  JJ »-

Another type' o f non-normal d istribution, known as m ixture-distribution, 

arises when products from two or more'separate sources are mixed. I f  '
V •  •  p *

m machines-are making the same product and a 'q u a lity  characteristic  x 

is distributed normally fo r the product from any machine, but with mean" 

and/or standa'rd. deviation varying from machine to machine, a mixture of

products from a l l  m machines w ill not, in general, have a normal
/!» * ' 1

distribution -of x [Johnson and Leone, 1976].
/  *  '

( - ' .
The powers and products of normal variates have d istributions,

s  - -

which are in general skewed to the rig h t [Haldane, 1942]. There are

circumstances în which skewness must.be regarded as being typical o f

- a  product variate  [Morrison, 1958]. ’ .

- In general, the d istribution o f a product-characteristic is unknown.

v- Given a’ sample-of measurements o f a p.roduct characteris tic ,, the general

. objectives o f analysis are to estimate the parameters of the d istribution
(•

. and to make inferences. ConrnorKanalyses consist of computing estimates of 

, mean, variance, skewness and kurtosis of the underlying d istrib u tio n . 

Judgements o f normality or non-norm^lft]rhs^n_ be based on measures of 

skewness and’ kurtosis.

In setting  the Control lim its  or the c r it ic a l regions fo r . 

control charts, the assumption of normality .is ju s tif ie d  by the central lim it  

theorem. The theorem essentia lly  states tha t, under certain conditions, 

the distribution of the sample mean "will approach normality

a

nJ  '
«

\  '
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for large sample sizes. But increasing the sample size increases the 

sampling costs; Decreasing the sample-si.ze w ill increase the losses

resulting from deviations .of the mean frd»-tiorm ality. The problenris- to find the
! ^  ' . • -S * •
! '  optimum. -. Solutions are known for the calse where the-product variable

i. considered is  normally distributed. However, there are cases where

neither t he prod^ja^variable is. normally d istrib u ted , nor the sampTe

size is large enough to apply the central lim it  theorem. In these
*

situations, the question arises as to what e ffec t nonrnormality of 

various degrees w ill have upon the operation o f >T-charts and cusum 

• charts. The present study is an attempt in answering this question.

1.3 Objectives o f the Study
J

The major objectives of the present study are to develop math

ematical models and procedures fo r the optimal design of control charts

- to control non-normal process means based on economic cri'te ria  and to 

investigate the effects  of non-‘normality on .the design parameters and 

on the long run average loss-cost function developed in the models.

The economic design of a control chart involves the optimal determination 

of design parameters so-that the average loss-cost is minimum.

. ^ The investigation is  confined to the design of x-charts, x-charts

, with'warning lim its  and cusum charts fo r the control of the mean of a 

process when there is  a single assignable cause " and when the 

observational variables are independent and non-normally d istributed .. 

Furthermore, the study is concerned with qu ality  control tests involving 

a single s ta tis t ic , i . e . ,  the sample wean,
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The loss-cost incurred in a production cycle is assumed'to 

consist of the search cost following a false alarm, the* search and
, r >

adjustment costs following a true alarm and the cost o f maintaining 

the control chart. ' .

In the case o f x-charts, the loss cost function depends.on the . 

probabilities of Type I and Type I I  errors; expressions- for these 

probabilities  are thus developed.

S im ilarly , expressions fo r average run lengths when the process 

is  in’ control and when . i t  is out of control are developed fo r the 

economic design of x-charts with warning lim its  and of cusum charts. ,

I t  is  also the objective of this study to investigate the 

effects of variations in the cost and s h ift  parameters''and in the rate 

o f occurrence o f the assignable cause on the values o f the design 

parameters. Accordingly, the sen s itiv ity  o f the model to errors in 

the estimation o f these factors w ill be analyzed.

.The present research- is further*concerned with the development o f 

a sim plified scheme, suitable for practical application at a factory
' •  A
r •

le v e f, fo r each of the underlying control charts.

*  Comparisons among the relative" performances of these charts are 

made through numerical exam ple^ •
t

F in a lly , the effects  o f human error on the proposed models, as well 

as a simulation o f model behaviour under extreme sample d istrib u tio n , 

are discussed. *

i
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1.4 Outline o f Proposed Study
/
A fter the introductory material of Chapter 1, the presentation

* • u

is  patterned as folTows: . . .

In Chapter 2 the h isto rica l background o f control charts is

"presented, the lite ra tu re  on control charts is surveyed and the

motivation fo r the present study is  described.

Chapter 3 reviews the s ta tis tic a l properties and the desTgn

c r ite r ia  o f control charts. \. \
Chapter 4 is devoted to the development o f mathematical model s\ *

V
fo r the economic design o f x-charts under two operating po lic ies .

Under pol-icy I ,  the process is  allowed to continue in operation 

durin-g the search for the assignable cause. Under policy I I ,  the 

process is  shut down during-the search'for the assignable caus^An

optimization algorithm,based on Hooke and-Jeeve's pattern search
1 ‘ 

technique,is employed to minimize the loss-cost function under both

operating policies •-and to obtain the respective optimal design

parameters ( i . e . ,  sample s ize , sampling in terval and control lim its

c o e ffic ie n t). A sim plified scheme, which determines-the design

parameters by .minimizing the loss-cost function subject to a specified

level of consumer's r is k ,is  also develo*ped. 'The chapter also includes

a s e n s itiv ity  analysis of the model under operating policy I I  and

investigates the model behaviour when there is a m u ltip lic ity  o f

assignable causes.

Chapter 5 describes the model of the economic design of x-charts

with .warning lim its  under policy I I  and deta ijs  the formulation of
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j
the loss-cost function, the determination o f the average run length 

when the process is in controT and when ivt  is out of control- arid -a -two-
S'

stage optimization algorithm to determine the optimum’ design para

meters. - I t  includes a sim plified version of the algorithm as w ell.

The economic design1 o f cusum charts to control non-normal, process 

 ̂ means under policy I I  is described in Chapter 6 . I t  contains the 

formulation of the. loss-cost function-, the determination of average run

lengths'by a system of lin ea r algebraic equations and an ite ra tiv e  

algorithm to obtain the optimal values o f the design parameters.

Also presented is a semi-economic, scheme, which allows the uservto
p

specify the value o f the average run length’a t the rejectable quality  

leve l. F in a lly , the Chapter evaluates the re la tiv e  performanceseOf:the

three control charts.developed in Chapters 4-6.
\

In Chapter 7, the effects o f human error on the model and a ' ‘ 

simulation o f the model behaviour under extreme cases of sample 

distributions are discussed.

A summary of the findings, conclusions, and recommendations for  

future research, are- presented.

%
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CHAPTER 2

LITERATURE .SURVEY AND MOTIVATION FOR PROPOSED STUDY

This Chapter reviews and c lassifies the existing lite ra tu re  on 

the subject of economic design of control charts. The present survey 

deals with the specific  portion of the available lite ra tu re  which seems 

most relevant to the scope of this' research. Furthermore, i t  provides 

the motivation fo r the development of the models described in la te r  

chapters.

2.1 Economic Design of*x-Charts to Control Normal Means

Based on*the minimum cost c r ite rio n , Duncan [1956] proposed the 

single assignable cause model fo r the economic design of the 5T-chart to 

control normal process means. He assumed that the occurrence time of the 

assignable cause is an exponential random-variable. He developed 

an expression fo r an approximate per hour loss-cost function o f the 

process. In developing this function, he considered relevant incomes 

when the.process is  in control and when i t  is out-o f-contro l, cost of 

looking fo r an assignable cause when i t  exists and when i t  does not 

exist ,  and the cost o f maintaining a control chart. Based on several 

numerical approximations, Duncan developed'an ite ra tiv e  procedure to 

find  the near-optimum solutions of sample size n and control lim it  ' 

c o e ffic ie n tk . A closed form solution for s is  given,using the optimal 

.values o f n and k. Duncan's model is simple and practical in some 

situations but not s u ffic ie n tly  general, as i t  does not allow the ■

8

»
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process to be shut down'when a search fo r the assignable cause is.being  

carried out and i t  does not include the time and cost of repairing the 

. process i f  i t  is found out-of-control.

Cowden [1957] developed an economic design of an x-chart and 1
•  *

defined-the to ta l cost function as the sum of the operating cost,

engineering cost and merchandising cost. His model assumes that 

every morning production starts in an unknown state. I f  a point on 

the x-chart goes outside the control lim fts , a search/is made to look 

for any trouble. I f  the trouble is detected,' i t  is  corrected immediately. 

Once the process has been corrected, no more troubles occur during the 

rest o f the day. Cowden's model is not^suitable fo r the study o f the 

control chart, as the.manufacturer simply examine his process every 

morning, correct the-trouble i f  found and'then s ta rt the production of
* t

. the day without Rising any control charts. ' r
! *  , —

Gibra.[1967] investigated the optimal economic design of ah x-chart

used to monitor a process irtS^ying tool wear, in which the mean of the

quality characteristic  exhibits^ a lin ear^  trend. The optimal

control procedure determines decision rules for adjustment due to d r i f t ,
^  ,

as well as for the occurrence of an*assignable cause. The control rules 

* minimize adjustment costs '• and costs due to the production of defective 

i terns.

Goel, e t a l. [1968] developed an ite ra tiv e  optimization algorithm  

to determine the exact''optimal solution fo r Duncan's model.

■ Taylor [1968] developed a model which allows for process shut down 

during the search'for thd assignable,cause and which includes the time
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and cost o f repairing the process when i t  is out o f control. But he

omitted the 'cost of sampling.

Gibra [19-71] has proposed a single assignable cause model of an

.x-chart. J^is process model is s im ilar to Duncan's model. In the

development o f the cost model, he proposed the concept of worst cycle

quality  level (WCQL). The optimal values o f the design parameters

are obtained by minimizing the expected cost 'function'subject to
•«

constraints on the WCQL. ' : ,

Baker [1971] has proposed two discrete-time models in which a 

sample size.n is taken at the end o f each period and'a tes t s ta tis tic - 

is plotted on‘ the control chart with + ko lim its . His f i r s t  model 

assumed that the number o f periods the process remains in the contrpl

state follows a geometric d istribution,w hile  his second model

assumed that the number of periods the process remains in the

control state follows a Poisson d istribution . Furthermore, he pointed 

out that the optimal economic control chart design is re la tiv e ly

sensitive to the choice of process fa ilu re  mechanism. Substantial •
" . ■ t

cost penalities may be in cu rred -if an incorrect process fa ilu re
\

mechanism is assumed.

Chiu and W etherill [1974] modified Duncan's and Taylor's models 

and proposed a semi-economic: scheme for the design of an x-chart by 

u tiliz in g  the concept of operating characteristic  (OC) curves.

An assumption common to a ll the works cited above is tha t, when • 

the process is disturbed by an assignable cause, only the mean changes
. w  • -  /  '

while the variance remains unchanged. Krishnamorthi [1979] proposed
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a model under the assumption that the variance is also changed due to the

occurrence of the assignable cause. ' '

Control charts with warning lim its  were f i r s t  introduced by

Page [19553. The chart, includes warning lim its  which l ie  inside the

action lim its . A search fo r an assignable cause is undertaken i f  the 
*

last sample mean is in the out-of-control state ( fa l ls  outside of the 

action lim its ) or i f  the la s t sample mean completes a run of length 

Rc which is in between the warning and action lim its . Page [1962] 

modified his f i r s t  model and measured the s e n s itiv ity  of an x-chart 

by developing the Mean Action Time o f the chart using run theory.

Weindling, e t a l. [1970] proposed a Mean Action Time of an Jf~chart 

with warning lim its  and discussed the effects on mean action time of an 

x-chart o f changes in the location of the action and warning-lim its and 

the c r it ic a l run length. *
\

Gordon and Weindling [1975] developed a cost model fo r the economic

design of a warning lim it  control chart. They considered a single

assignable cause model. The costs considered are those o f inspection,

defective production and searching for and correcting the assignable

cause. The crite rion  is average cost per good produced. The process
*

has only one out-of-control state and sh ifts  to this state are governed 

by a Markov process. The model.of Gordon and Weindling allows economically- 

optimal determination of the design parameters, |< (action lim it  co

e f f ic ie n t ) ,  (warning l im it  c o e ffic ie n t), n (sample s ize ), and s 

(sampling in te rv a l). '
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Chiu and Cheung [1977] extended the work of Gordon and Weindling 

by considering the cost 'of process shut-down. They made various 

comparisons among the minimum -ncosts designs.of x-charts with and with-
s

out warning lin iits . They also provided a sim plified scheme fo r the 

determination o f control parameters. ■ *

Knappenberger and Grandage [1969] proposed a model fo r the 

economic design of an x-chart when there are,m ultip le assignable.causes. 

They minimized the expected cost per unit product. They assumed that 

the costs o f investigating both real and fdlse alarms are the same.

This assumption is not practical.
r

Duncan [19.71] extended his single assignable cause model to a 

multiple assignable cause model. The occurrence times of assignable 

causes are assumed to be independent exponential random variables.

He assumed th a t once the process sh ifts  to an out-of-control state due 

to the occurrence o f an assignable cayse, i t  remains in that ou t-o f

control state-and no further assignable causes occur un til the process 

is brought back to the in-control state . This assumption i s ‘quite unreal - 

is t ic . But Duncan also formulated the "double occurrence" model in the 

same work, under the assumption that a fte r  an in i t ia l  s h if t ,  a second 

occurrence of the assignable cause is  possible. He showed that this  

modification in the model has l i t t l e  e ffec t on the optimum solution of 

the design parameters, but produced some changes in the behaviour o f 

the coVt surface-*^ Both Duncan [1971] and Knappenberger and Grandage 

[1969] defined a "matched" single cause model and found that the
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optimum control plan o f the matched single cause'model approximated 

well the true optimum control plan fo r the orig inal multiple cause 

model.

2.2 Economic Design of.Cusum Charts to Control Normal Means

The economic design of the cusum chart has a shorter history  

than the economic design of the x-chart. I t  was f i r s t  investigated  

by Taylor [1968] for normal processes. Taylor's single assignable 

cause model expressed the expected loss-cost per un it time as a 

function o f the sample size n, the sampling in terval s and the V-mask 

design parameters d and h a lf angle $ . the model allows fo r process 

shut-down during the search fo r the assignable cause and includes the 

time and the cost o f repairing the process when i t  is out-of-controT. 

However, the model assumes that n and s are specified and that the 

e ffe c t o f the assignable cause is a function o f the sample size. The 

cost of sampling is also omitted.

Goel and Wu [1973] developed a single assignable chuse model fo r  

the optimum economic design o f a cusum control chart for controlling  

normal process means. They u tilize d  a cost model s im ilar to Duncan's 

single cause x-chart model and presented both V-mask and-decision 

in terval schemes to obtain the optimum values of the design parameters.

Under the assumption of normality of the process means and following  

the general modelling structure o f both Duncan's >T-chart' model and 

Taylor's cusum chart model, Chiu [1974] developed a single cause economic 

model for a-cusum chart. He considered a one-sided decision interval
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scheme in formulating the per hour loss-cost function and presented 

both a numerical optimization method and a sim plified approximate 

solution procedure, to determine the optimal values of the design para

meters.
v

2.3  Design of Control Charts fo r Non-Normal Processes

The design o f control charts which are discussed in the above 

sections and the comprehensive surveys o f recent developments in 

control chart techniques by Gibra [1975] and Montgomery [1980], reveal 

that a considerable amount of work has been undertaken for the economic 

design o f control charts under the assumption that the process variables 

are normally distributed. I t  is common knowledge that industrial 

random variables do not always conform to the assumption of normality.

In such cases conventional control charts, which are based on the 

normality assumption, may wrongly indicate that the process is out-o f

control when i t  is  actually  in the in-control state. S im ilarly , they

may wrongly indicate that the process is in the in-control state whereas
r - ;t

i t  remains in the out-of-control state.

Delaporte [1951] demonstrated the e ffe c t o f non-normality on 

control charts fo r sample means. Through numerical studies he has shown 

that the values of upper and lower control lim its, obtained on the 

assumption of a normal population, differed substantially  from the 

respective values obtained by studying the actual d istribution  of means.

Gayen [1953] discussed the need for correcting the normal theory 

control charts fo r measuring departures from normality'and described
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some methods fo r calculating control lim its  fo r means and standard.\\'
deviations in situations where th e ir  distributions depart s ig n ifican tly  - 

from the normal. One of his suggested ..methods was to express 

the non-normal probability  density function in terms o f an Edgeworth 

series, which provided a convenient a lternative  to the normal density 

function.

Moore [1957] has shown how certain departures from the normality

assumption could a ffec t the probab ilities associated with control
\

lim its  calculated by normal theory. Through numerical studies

he cautioned against the risk of r ig id ity  concerning,the.:normality assumption.

Ferre! [1958] considered the case when the d is tr ib u tio n  o f the
. Y

qu ality  characteristic is  badly skewed and devised control charts for 

a log-normal population.

Singh [1966] investigated the e ffe c t of non-normality of the 

manufactured units on producer's and consumer's risks. He considered 

only the e ffe c t of the peakedness parameter, y 2 = B2 -  3 and he faund 

that in the case of p latykurtic  populations < 0 } ,  i f  the specification  

lim its  are set near the mean, then both the producer's and consumer's 

risks w ill be greater than th e ir  respective normal theory values and i f  

the specification lim its  are set fa r  from the mean, both risks w ill be 

smaller than th e ir  corresponding normal theory values.

Hahn [1971], Schilling and Nelson [1976], Heiks [1977] and Gruska 

[1978] examined the conditions under which one might or might not expect 

process variables to be normally distributed and indicated the procedures^
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which may be used to check the v a lid ity  of the normality assumption.

They suggested some very important transformations of the process 

variable to achieve a better method of approximation to normality and 

made several comments on the consequences of incorrectly  assuming
4

normality.

Following Duncan's work for normal processes, Nagendra and 

Rai [1971] developed an economic model o f an x-chart to control non- 

normal process means. They used several numerical approximations 

to derive the per hour loss-cost function o f the model. Taking the 

'..- f irs t p a rtia l derivatives of the loss-cost function with respect to 

■sample size n, sampling in terval s and using some approximations, they 

obtained expressions for the design parameters n and s fo r a specified, - 

value o f control lim it  coeffic ien t k. Since k is  not treated as a 

variable, the resulting plan may be fa r from optimal. Moreover, the 

study did not consider the cost o f process shut-down and no attempt, 

was made to study the e ffec t of variations in the cost factors on the 

solution vectors.

Raouf, e t a l. [1979] used a d irect search technique't0t-obt8ir?nan 

optimal solution of the design parameters of an x-chart to control non

normal process means and studied the effects  o f cost factors and non- 

normality parameters on the solution vectors.
A _

Lashkari and Rahim [1979] deveToped an economic model of an x-control

chart to control non-normal process means,considering the cost o f process
>

shut-down. They also provided a sim plified scheme to determine-the values 

of design parameters.
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Lashkari and Rahim [1980] also developed an economic design of 

cusum charts under the nonmormality assumption.
t

' Very recently,Rahim and Lashkari [1981] proposed an economic .

model fo r the,-design of an .x-chart with warning-lim its to control

non-normal process,jpeans,
** *

2.4 Motivation fo r Proposed Study • •• •*

The lite ra tu re  survey leads to the conclusion that considerable 

attention has been devoted to the economic design of control charts 

under the assumption o f normality o f the process means- I j  many 

cases the-normality assumption is applied without knowing the distribution  

of the process variab le , or even when the process variable deviates from, 

the normal-^distribution.

the theoretical ju s tif ic a tio n  for-the-.normal ity  ̂ assumption.-is based
i

on the'central l im it  theorem, which states that under very general, 

conditions the d is trib u tio n 'o f the sum, and therefore o f the average, 

of n independent observations w ill approach normality as the number o f  

observations increases.

The question of how large a sample should be to apply the central 

l im it  theorem w ill have a bearing.on the-operating cost o f  a control 

chart. The operation of-a control chart involves both fixed and 

variable sampling costs. Sampling cost increases with increase of 

sample size. Decreasing sample size w il l  increase losses resulting  

from deviations from the mean. Therefore, i t  is  desirable to find the 

optimum sample size that would balance the costs against the losses.
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‘ *
The solution fo r optimal deterfaination o f the sample size under the 

normality assumption is known e ith e r fo r given values o f probabilities  

o f Type I  and Type I I  error [Knappenberger, 1966], or fo r given 

values o f control l im it  coeffic ien t and s h ift  parameter [W e ille r, ,1952]. 

The probability  that the sample point fa lls  outside the control 

lim its  when the process is  actually in the in-control state is  known as the 

probability  o f Type I error,.whereas the probability  that a point fa lls  

inside the control lim its  when the process is in an out-of-control state  

due to the occurrence of an assignable cause is known as the probability  

of Type I I  e rro r. In the design of sampling plans, the probabilities  

o f Type I  and Type I I  errors are known as the producer's and the 

consumer's risks, respectively. Here, then, the concern o f the 

quality  control engineer is  to achieve a compromise between the values 

of the producer's and consumer's risks. ;t
i

In many applications, data w ill seldom follow,a-normal "distributioa: 

We may also be confronted with an industria l s ituation where the 

assumption of normality is  neither achievable nor desirable. For 

instance, often the data may be so badly skewed that the skewness i t s e l f  

produces outages and indicates the presence o f an assignable cause.of 

variation i f  the normality assumption is made [Morrison, 1958]. In such 

cases the skewness must be regarded as being typical o f a variate. 

Otherwise, probab ilities assopiated with control' lim its  (probab ilities  

of Type I and Type H e rh o rs ) calculated by normal theory w ill provide 

erroneous results.
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There are other situations where the “process is  non-normal 

in nature. For example, a process may have been screened for out- 

of-tolerance parts , resulting in a truncated d istribution  [Hald,

In general, due to lim itations in the measuring instruments or ■ 

due to purely practical'considerations o f ease and speed of measure- 

ment, the values of--the measured'variable are recorded accurately only 

• in  a certain in terval which* consequently,causes a truncated 

distribution [Johnson and Lepne, 1976].

A m ixture-distribution [Johnson, and Leone, 19763 is another type 

of non-normal d istribution which arises when products from two or 

more d iffe re n t sources are mixed. For example, the quality  - - . 

characteristic  o f a product produced on any one o f the m machines: 

may be distributed normally, but i f  the mean or standard deviation 

o f the process varies from machine to machine, a mixture of products
afrom a ll m machines w ill not, in general, y ie ld  a normal d istribu tion .

Also a process may be subject to tool wear [Duncan, 197 4 ] ,  

resulting in non-normal process characteristics. Distributions of 

powers and products of normal variates are, in general, non-normaV’ 

[Haldane, 1942]. Such situations are encountered frequently in the 

■application o f s ta tis t ic a l control chart analysis to thermionic value 

te s t data [Morrison, 1958].

Although many industria l processes are non-normal in nature and 

despite the fact that -the assumption of normality is very crucial in 

such circumstances, l i t t l e  attention has been paid to the economic

1952].
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design o f control charts under the non-normalityuassumptioh. There is 

need fo r a procedure which w ill enable us to deal with non-normality 

f o f data, to design control charts accordingly, and to continue^ur 

search fo r  the assignable causes of variation ..

4
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CHAPTER 3 ..•  * *

OPERATING PROPERTIES AND DESIGN CRITERIA OF CONTROL 'CHARTS .

S ta tis tic a l properties and design c r ite r ia  o f control charts which 

are relevant to the scope of this stucly are’ described in the following

section. -
> ,

' V *

3.1 S ta tis tic a l Properties o f Control Charts

I t  is current practice to use-s ta tis tica l techniques to monitor the 
« v * •

v a ria b ility  o f the quality  o f output o f an industria l process. The 

rationale fo r th is  procedure is the c lass ifica tion  o f such v a r ia b ility  

into one o f two types -v a r ia b il i ty  due to inherent random fluctuations  

,o f  the process, and v a r ia b ility  due to changes, in the process parameters. 

Process v a r ia b ility  is o f concern to the quality  control engineer because
' v

the product must meet certain performance standards specified by the

designer. Usually these standards are given in the" form o f specification  
* *

lim its  within which a product's measurable characteristics must l ie  in 

order for the product to be considered acceptable. The production 

engineer must therefore a tta in  and thereafter, maintain, the state of 

control o f the process'in which v a r ia b ility  is due only to inherent 

random fluctuations. In other words, he must make the process behave as 

i f  each measurable property o f the product comes from a single s ta tis t ic a l  

population having stationary parameters ( i . e . ,  constant with respect to 

tim e). I f  these parameters do vary with time, such variation must be 

investigated and its  cause must be discovered by the production engineer.

21
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, Any-feature , of the-production cycle which causes a change in

one or more o f the process parameters is  called an assignable cause^

The presence o f such an assignable cause is  to be detected by the ./
*

control chart and removed from the system by the quality  .control 

engineer. The x-cohtrol chart and the cumulative sum (cusum) chart 

are two well-known s ta tis tic a l techniques which have been used for 

the la s t few decades in detecting an assignable cause under the 

-  t  assumption that the quality  characteristics of the product
f

normally d istributed.

• In‘ an x-control chart, the control’ 1imits are set a t + k standard 

deviations o f the sample mean from the target value... A sample o f size 

n is  taken from the process every s hours and the sample mean is -p lo tted  

on the x-chart. The process i.s subject to the occurrence of an 

assignable cause o f variation which takes the form o f a s h ift in the 

process mean from u to y + 6 a, where u, a and 6 are, respectively, 

the process mean (target value), the process standard deviation and 

the s h ift  parameter. The occurrence of sample means outside the control 

lim its  is  regarded as an indication that the process is in an out-of-control 

state.

On the. other hand, in a cumulative sum control chart, a sample of 

size n is taken at regular intervals o f s hours. Successive values o f 

the sample mean are compared with a .predetermined reference value K. and 

the cumulative sum of deviations from this value is plotted or tabulated 

on the cusUm chart. I f  th is  sum exceeds a predetermined decision in terval

h, the indication is  that a change has occurred in the mean level of
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< V.* .

the variable. Properties o f  a cusum tes t are described by a pa ir  

of average run lengths, RQ andR^, associated with’ the state of the ’ 

process in^control and out-o f-c6n tro l, respectively. ,

The.efficiency of both x-charts and cusum charts in detecting 

the lack o f control depends upon the values o f the design parameters 

n, s and k fo r an x-chart and n, s , h and K fo r a cusum chart.

t * '
^  3.2 Quality Control. Chart as a Test of Hypothesis

As mentioned above, the function o f a quality  control procedure

i's to maintain a process in a state of control. This function is

accomplished by period ically  testing the null hypothesis that the

process parameters are equal to the control values. The tes t is

conducted by measuring the quality  o f a sample of-the product produced

by the process. The value o f the test s ta t is t ic  is  computed from the
v _ _    .  ’ $  '

sample data. I f  th is  value fa lls  in*the c r it ic a l region { i . e . ,  outside

the control l im its ) ,  the null hypothesis is rejected and the process is

■investigated to determine and correct the condition which caused the

process to go out o f control. I f  the value of the tes t s ta t is t ic  is  not

in the c r itic a l"  region,.the process is assumed to be in control and i t

is allowed to continue.

As in any hypothesis testing procedure, two types of error ,may,.:occur.

One type, generally called “Type I e rro r" , involves rejecting the null

hypothesis when the process is in control. The second type, generally

called "Type I I  e rro r" , involves fa ilu re  to re ject the null hypothesis

when the processes out of control. Type I I  error leads to costs

►

\  *
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associated with an increase in the number ?of defective products produced
•V

by an out-of-control process. .Costs of unnecessary investigation and 
. • \  '• A ■ 

loss of production arise from Type I error. Both o f these costs can be
t x

decreased by increasing the sample size and decreasing the sampling 

in te rv a l; however, th is  reduction in error cost is  accompanied by an 

increase in sampling and testing costs. Type I error costs can

also be decreased by decreasing the c r it ic a l region, thus increasing 

s type I I  error costs. \  ■ LV -

3.3 C rite r ia  for the Design o f Control Charts

The design of control charts involves the optimum selection of 

design parameters. Selection c r ite r ia  of these design parameters can 

be c lassified  in the following categories and are discussed below:

'f 1. Power Function C rite rio n , • '

2. Average Run Length C rite rio n , • .

% - 3 .  Minimum Cost C riterion.

3.3.1 Power Function C riterion . The-^ower Function c rite rio n , 

which is a method commonly employed fo r determining the parameters n and 

k of an x-control chart, was f i r s t  used by Knappenberger [1966]. The 

use of this crite rio n  is equivalent to defining a te s t o f hypothesis • 

between two simple alternatives:

H0 : u . .

H.j: y = Uq ±  6a, 6 > 0 ,

. where 6 c is the s h ift  in the process mean. The s ta t is t ic  x has a
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2normal d istribution  with mean ji and variance a /n • and the control
' . •

t  . ^

lim its  o f the x-chart are at + ka/Jfi. For a given' probab ility  a 

of Type I e rro r, the values of n and k are chosen so’ that the power 

of the te s t, that is , the probab ility  o f rejecting Hq when is 

true , is  some specified value (1 - & ) .  . >

The power function approach is  a straightforward and simple 

crite rio n  to use. But an arb itra ry  choice of a and 8 does not re fle c t  

the cost and “risk factors.associated with the process and does not 

appear to be more logical than an arb itra ry  selection of n and k.

Further, the sampling in te rv a l, s , is  not taken into consideration.

3.3.2 Average Run Length'Criterion. Page [1954 ] defined the 

term "Average Run Length"'(ARL) as the average number o f a rtic les  inspected 

between two successive occasions when some rectify ing  action is  taken 

and employed i t  as a c rite rion  fo r the design of x-charts. Page 

showed that fo r a one-sided x-chart, the ARLs ,Rq , when the process - 

is in control, andR^, when the process is out-of-eontrol are.

R0 = n / [ l  -  * (k )]  .  ' . - ( 3 .1 )

and , .

R'l -  Ji/[1 - * (k - Sv'rr)], - . (3 .2)

where <l>(x) is the cumulative d istribution function o f the standardized
i

normal variate x._ . '

When both negative and positive deviations in the.process mean are 

equally important, the ARLs,R.q andR-j1 are
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\

Rq' = n/ 2  [1  -  » (k ) ]  ( 3 . 3 )

and & '■= n/ [(.1  -  $ (k -  fii'n) + $ ( -  k“-  s/’n )] . ( 3 . 4 )
* * •

' " - \

The methods used to  design’an x-chart are e ith er to f ix  Rg and •.

choose n and k fo r a given value of <5 that w ill minimize R.|, or to

specify R-j and choose those values o*f n and k that w il l  maximize RQ.
\ '

Weiler [1952]. has shown t^ jit the average number o f a rtic les

inspected before* a change is given by  . .

A(n) = n /[V  -  4> (k -  <5/n)] • . (3 .5)
* '

~\

For given values of k and <5, he determined a sample size n which 

minimizes the function A(n). Weiler showed that for a given control 

l im it  coeffic ien t k, the value o f n that minimizes A(n) depends on 

the amount 5o by which the population mean has changed.

• Page [1954a] introduced the cumulative sum chart as an a lternative  

to the x-chart for controlling the mean of a normal process. The selection 

criterion  o f the design parameters, based on the average run length 

c rite rio n , is as follows-

The design parameters n, h, K and s are generally selected to 

y ie ld  approximate ARLs Rg and R-j a t acceptable and rejectable quality  

levels jig and , respectively. Id ea lly , the ARL should.be large when  ̂

the process is operating at an acceptable quality  level (AQL) and small 

when the process is operating at a rejectable quality  level (RQL).

Page [1954b] showed that the cusum chart scheme is equivalent to a 

sequence of Wald-sequential tests \&ith horizontal boundaries (0 ,h )

y  • -

* f '
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n fo r the 

ARL:

ARL = N (0 )/{1 -P (0 )} , (3 .5 )

where P,(0) is the probability  that the tes t starts  on the lower 

boundary and ends on the lower boundary. N(0) is  the unconditional 

average number o f samplings o f Jtfe te s t. For known values of N(0) 

and P (0), the value o f ARL can be found from the above expression.

However, i t  is quite complicated to obtain .the values o f P(0) and 

N(0) from the integral equations P(z) and N (z ), respectively. The 

expressions fo r P(z) and N(z) are as follows:

-z  h
P(z) = /  ${x} dx + /  P(x) (jj(x-z) dx (3 .7)

0

 ̂ h
N(z) = 1 + /  N(x) ^(x-z) dx, ‘ (3 .8)

0
*i ^

where <{>(x) is the density function o f the process variable x, 

distributed normally.

Kemp [1958] developed approximate solutions for P(z) and N(z). 

for the case when x has a normal d istribu tion . Ewan and Kemp [1960],

Goel and Wu [1971], and Goel [1971] provided nomograms which can be 

used for the selection o f design parameters approximately satisfying  

the rqquirements of Rg and fo r - controlling the mean of normal 

processes. Ewan and Kemp [1960] suggested that the reference value,
*

^should be midway between the ARL and RQL. Kemp [1962] showed that thevV-mask 

scheme with lead distance d and h a lf angTe $ is- equivalent to a two-sided 

in terval scheme.

and in i t ia l  score zero. He derived the following expresstb
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3 .3 .3  Minimum Cost C riterion . The power function approach, -s*
and'the average run length approach discyssed above are both 

s ta tis t ic a l c r ite r ia . The design o f control charts based on these 

c r ite r ia  does not take into consideration the sampling in te rv a l, the 

cost and risk factors and various other parameters, related to the 

process being controlled. From an industrial quality-control ' 

engineering point o f view, a more re a lis tic  approach would be to useI
a c rite rio n  that would include .the income and the cost figures 

associated with the process and the maintenance and operation o f the 

control chart. However, to apply such decision c r ite r ia ,  the quality  

control engineer must know the characteristic o f the product (measurable 

or a ttr ib u tiv e ). He should have a knowledge o f the state and nature, 

the fa ilu re  mechanism , . operating policy and the income and cost 

parameters o f the production process.

3.4 Assumptions About Process Behaviour

In this section, the assumptions about the behaviour of the

production process, which are required to formulate a model for the

'economic design o f control charts are described.
\

3.4.1 The Production Process. A specified production process 

is considered. I t  is assumed that the quality  characteristic  of the 

. process is a variable measurable on a continuous scale. The process

variable is assumed to be non-normally distributed with probability
2 2 

density function f(nQ> a ,  8 -j, ^  W1̂  mean Uq,variance a  , measure

of skewness B-j and measure o f kurtosis 6 2 * The process starts in
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an in-control~state and may be disturbed by the occurrence of an 

assignable cause which sh ifts  the process mean from uQ to +.So, 

where 5. is the known s h if t  parameter and o, and are assumed 

to remain stable. The occurrence o f the assignable cause is considered 

as a random shock acting on the system, that is ,  the probability  o f 

the process s h ift  within a small in terval o f time is d irec tly  

proportional to the length o f the in terva l.

To determine the nature o f the transitions between the in-control

and out-of-control states, i t  is  assumed that the assignable cause

occurs according to a Poisson process with mean rate o f occurrence A.

That is , the length o f time the process remains'in the in-controlsstate  

is an exponential r a n d o m  variable distributed with mean 1 /A hours.

Two d iffe ren t operating policies o f the process are considered.

1) Policy I ,  which assumes that the process is kept running.until

the assignable cause is  discovered.

2) Policy I I ,  which assumes that the process is  shut down during

the search for the assignable cause, with the aid o f these two polic ies, 

the manufacturer can decide upon the appropriate models to be chosen 

Jor minimization of the process loss-cost.

The various incomes and costs that are associated with the 

operation o f the process are: income when the process is in the in - :

control s ta te , income when the process is in the out-of-control state , 

the cost o f searching fo r an assignable cause when one ex is ts , cost of search

ing fo r an assignable .cause when none exists and the cost o f main

taining the control chart.

%
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3.4 .2  The Loss-Cost Function. A production cycle is

defined as the time period from beginning o f production (or adjusiJSeht)

to the detection or elim ination o f an assignable cause. The production

cycle fo r the process models under operating policy I consists of

four periods: 1 } the in-control period-, 2 ) the out-of-control period,
%

3) the time to take a sample and in terp ret the results, and 4) the time, 

to find the assignable cause. S im ila rly , the production cycle under 

operating policy I I  also consists o f four periods: 1} the in-corvtrol

period, 2) the out-of-control period, 3) the'search period'’ due to 

false alarms, and 4) the search and repair period due to true
«

al arms.

Considering the relevant income and cost parameters associated 

with each period o f the production cycle, the expected cost per

production cycle can easily  be derived. Hence, the expected cost per
\

unit time is  defined as the ra tio  o f the expected value of to ta l cost 

incurred during the cycle to the expected length of the cycle.
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CHAPTER 4

ECONOMIC DESIGN OF X-CHARTS TO CONTROL 

NON-NORMAL PROCESS MEANS

In th is  Chapter Duncan's model is  generalized using the-Edgeworth 

approximation to the normal d istrib u tio n . '

, To investigate the economic design o f x-charts, in i t ia l ly  a 

basic single assignable cause process model under policy I is  proposed 

.and its  expected loks-^cos-t function is  developed. An analytical

• solution to obtainftne’'optimal value o f the design parameters { i . e . ,  

sample size nj^sampling in terval s, control lim its  coeffic ien t k) is 

not possible. An optimization technique based on Hooke and Jeevels 

pattern search is developed to obtain the optimal design parameter 

values. '

• ■ The fundamental assumptions in developing the process model under

policy I are: (1} that the process is allowed'to continue in operation,

^ during the search fo r the assignable cause and (2 ) that the cost o f '

elim inating the assignable cause is not charged against, the net income 

fo r the production cycle. . In many processes, these restrictions are- 

unrealistic  and i t  would be o f in teres t to formulate a cost model 

I based on d iffe re n t assumptions. Hence, a single assignable cause model 

fo r an x-chart under policy I I  is also proposed and an expected loss- 

cost function is derived. The optimal design parameters are obtained by

31
S, \

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

applying the same optimization technique developed fo r the cost

mddel under policy I .  A sim plified schemecis also proposed .for each

of the cost models fo r selecting the design parameters so that the

expected loss-cost is minimal fo r a specified level of consumer's risk .
*

Through numerical studies, a sen s itiv ity  analysis of the model, 

under policy I I ,  is performed. - investigations are also made to examine 

the qffects o f errors in the estimation of data parameters on minimization 

of the loss-cost function fo r the proposed control plan.

Many, production processes are affected by several assignable causes
'  Jand, in such situations,- a single assignable cause model is not 

applipable.^/The single assignable cause model under policy I I  is 

extended to a m ultiple Assignable cause model; With numerical il lu s tra tio n s ,  

i t  is  . demonstrated that a "matched" single assignable cause model 

can be proposed so that its  optimal control plan ap p m i mates the exact 

optimum control plan fo r  the original multiple assignable cause model 

obtained by a d irect search technique. Hence, .a sim plified scheme

such as that applied to the single assignable cause model is suggested for
*  '

the "matched" single assignable cause model.

4.1 Characteristics o f the Process Variable

To take into consideration the effects' of non-normality on

control chart design, i t  is assumed that, the f i r s t  four terms of the

Edgeworth series expansion provide an adequate representation o f the
*  ̂ r

distribution of the quality  characteristic [Gayen, 1953]. Denoting the ' 

quality  characteristic  by the random variable X, the probability density
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\

X -  pq
function-; (pdf) of the standardized variable x = •--------  has the r

' ' a - '  
following form [Barton and Dennis, 1952; Kendall and Stuart, 1969}:

f ( x | lO  = 4<x) - i + t 3 1 (x) + ^ ^ - * (4 ) Cx) + ^ -  * (6 ) (x) (4 .1 ) •'
■ 6 24 72-

r ' ‘  ̂ -  ^*0 
Define y^ = E{x3} and y 2 = E {x4} - 3. Recalling that x = — 2-, we have

Y-j = and Y2 = 82 -  3. y-j is called the co e ffic ien t of skewness.

Positive values o j y-| usually correspond to pdf’ s with dominant ta i ls  on the 

righ t side and negative values to ta ils -on  the l e f t  s'ide. y2 is called the
*• '* « ** i * ' *

coeffic ient of excess (or k’urtos is ). -For normal d istribution both y-] 

and y2 are equal to zero. In this study, y-| and-Y2, are to -be used as 

the measures of non-normality parameters. . The equation (4 .1) can be • 

represented in' terms of y-j and y2 as follows

f(x |p 0) = 4(x) -  TL * ( 3 ) (x) + 4( 4 ) (x) + 4(6 ) (x ) (4 .2) •
u . 6 24 72

U tiliz in g  the well known relations [Gayen, 1953]

  Y -I ( x) „_____ Y ■
Y - i ( x ) =  ——  and Yo(x)= -------- , the pdf o f the standardized sample

Jn n
X -  u0

average y = ----------—  is given by1
cr/vfi’

f (x |„ 0 ) = f  (y) = * (y ) - T L * ( 3 )(y ) + YJ _ * ( 6 ) (y ) (4 .3)
" Sv'n 24n 72n

where <f»(x) is the pdf of the standardized normal variable x and
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♦ cr * c x } = > 0 0 .

Barton and Dennis [1952] studied the values of y-j and y^,
2

through B-j' = y-j and b2 = ^  + raâ e ^he Edgeworth series non

negative and unimodal. . A graph showing the regions in which non

negative and-unimodal properties are true in the (B-|,B2) plane was also

given by them. Berndt [1957] made a sim ilar investigation when only y,
** *

was used..

The conditions given by Barton and Dennis on y-j and y2 regarding the 

positive definiteness and unimodality o f f(x ) are assumed in the present 

study. Further it' is assumed that 32 ^  1 + .B-j. J
*

4.2 Single Assignable Cause Model -  Policy I

S im ilar to Duncan's model fo r normal processes, a single assignable 

. cause model fo r non-normal processes is presented in this section.

Considering a numerical exWpte, optimal values of the design parameters * 

that are obtained using a d irect search technique are compared with the 

■corresponding approximate values provided by Nagendra and Rai [1971].

The approximate-solution procedure, used by Nagendra and. Rai, has also 

been improved. Furthermore, a sim plified scheme is developed .based on 

a prescribed 90 or 95 percent probability  that the defective items 

found in a sample fa l l  outside the control lim its  when the process is  

out of contro l.

4.2.1 Formulation of Loss-Cost Function. In order to formulate the

loss-cost function for the economic design of an x -chart, the characteristics

that are to be derived are as follows.

f
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. i )  The density function of the occurrence of the assignable 

cause is .given by-

' f T ( t )  -  Ae“Xt • A > 0 , ‘t  _> 0 - ■ ‘
a

= 0 otherwise.

The average time required fo r the assignable cause to occur is-

oo
' E(T ) = /  t  Ae~Xt = 1A. . (4 .4 )

0 . . - . • •
Hence the process remains in an in-control state with an average 

. length o f time of X / \ "  hours. ■

- i i ) *  If . th e  samples are taken a t in tervals of s hours, then, givWi the 

occurrence of the assignable cause in the interval between the jrh  and

j+ ls t  samples or between js  and ( j+ l)s  hogrs, the average time of

occurrence o f the assignable cause wfthin an in terval between samples

is given by (j+1 )j. . ,
X  • /  

t  = E[Tb |A] = 4 -J i-
^  • /  Ae-Xt ( t - js )  dt

P(A} '

where T  ̂ denotes the mean time of occurrence within an intersample

interval and A denotes the event that the assignable cause occurs in the

i n terval. Thus,
•. ( j+ l)s
* . xe ( t - js )  dt

X =  - ^ r
( j+ l)s  

f  Ae dt
js
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where = t  - ' j s .  Thus

> l - ( l  + A s ) V Xs

x d  - 4 ' Xs)
(4 .5 )

. 2'
-  s Xs + n f- 2" 12”  + 0 U  s ) (4 .6 )

i l l )  Under the assumption that the control lim its  are set at + .k standard 

deviations of the sample mean from the target value, the probability that the 

assignable cause is  detected when the process is in the out-of-control state is

Pg-ko/t^T

P = 1 -  6 = f
—co

f(x  1 u-j) dx + f  f U l i i j )  dx. , (4 .7 )
Ug+ka/vfi"

where p1 is the process average when i t  is out o f control and is equal 

to Ug + 5a. Integrating (4 .7 ) , we obtain

P = 1 - 3 = <i>{-k-S/n") _• l L  (j)(2 ) (_ k_6v̂ ) + YJ _ ^ f3 ) ( _k_6 /^
6 ^  . 24n

' y  ^
. . ■ + - L  ^( 5 ) {-k-sv?T) + 1 -  4»(k-5*^D + - L  ^ Z ) {k-6Sn)

72n 6 ^

24n 72n
(4 .8)

P ts. know as the probability  of"true alarm. 0 is  known as the probability  of a
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1

’  '  -  - 3 7

t

Type I I  error. Under the normality assumption, equation (4 .8 ) is 

reduced to

P = 1 -  B = 1 -4>(k-S>fi) + •4>(-k-6»^r) . - . • (4 .9 )
t

iv ) When the assignable-cause has not occurred, that is ,  when the

process is in control, the probability o f a„ sampling point fa llin g
* *

. 'outside the control lim it  or the probab ility"df the fa lse alarm is
•'r i

y+k of fn _  _  ’ _' . \
0 = 1 - / :  • f(x[.yn) dx ' \ J

y -ko/vfi"

= V -  [ * (k ) 'V 2 ^{k) + Y-^-<i>^^(k) + —  , ^ 5\ k )
6*4T. • 24n 72n

w  .  ■ f  -

k  ' . . .  , ♦ ( - «  - Y- W 3 ) (-k ) - Y- i i  •
i 6 VrT 24n 72ni

1 -  t  ®(k) -  -*^2 ) (k) + —  / 3 ' ( k )  + / 5 ' ( k )  -  (1 -  * ( k ) )
6^T 24n 72n

+ i>(2 ) (k ) + —  l>( 3 ) {k) + —  <f-(5 ) (k )] ■ .
6 vti • 24n 72n .

'  * r

1 -  * (k ) -  —  <j>( 3 ) {k) -  —  ^ 5 ) (k) + 1 -  <j>(k) • .
12n 36n

2 -  2* ( k) _ { >  ^ 3 ) (k) + 2 4>(5 ) (k )-j *
36n d •’
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= 2<t>(-k) -  ~—  C3r? ^ 3 ) Ck) + y , 2 * (5 ) (k ) ]  (4.10)
•t . 36n c ' ' . ..............

, >  '  -  -  ■ .

'= 2 * ( -k ) . '- ‘ a , ' i ' . - (4.11) -
>

t  '  •

where a = -—  [3 r2 <f>^(k) + y -,2 < j>^(k}].
c 36n c * 1 _

.T>

a' is the probability  o f a Type I e rro r. For the normal-case a.iV: simply

equal to 2 $ (-k ). This.can also.be noted from equation (4.1 iV th a t  as n < 
a ■* 2 $ (-k ). .

t
v) After the occurrence of the assignable cause, the probability  that 

§ *
i t  w ill  be detected on the j th  sample is (1-P )j "1p , which is the 

»

probability density function o f the geometric d istribu tion;
*

then -the'expected number of samples taken before the assignable cause 

is detected is" *

= E j  (1-P )J"_1P
j=l.

I  

P
(4 .12)

Therefore, the expected time fldr the process to be out of control 

before a sample point fa lls  outside the control lim its  is

§ --  t . . • • ' . r\  (4.13)

v i) The time; required to take samples and to in te rp re t th e ir  results 

has an average length o f en. '
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v^ )  • Let the time required to find the asstcjnahle cause have an average 

length of D. - ■ *

Then the following statements are true.

v iii)T h e  expected length o f time during whitsh the process Is out of control

before the search fo r the assignable cause is concluded is given 

by

p- -  x + en-+ D. ' (4.14)

ix ) The expected production cycle length of in -co n tro l/o u t-o f

control is

E(C) = j + p - - T + e n  + D .  - (4.15-)

Let Vq be the per-hour income when the "process is in control, , the 

per-hour income when the process is out of contro l, b+cn the cost of 

taking a sample, V the expected cost of searching fo r the assignable cause 

when none exists and W the expected cost o f searching fo r  an assignable 

cause when i t  exists.

x) The expected number o f false alarms per cycle before the process

goes out o f control w il l  be a times the expected number of samples taken

in the ‘ in -co ntro l1 period. The expected number of fa lse alarms per

cycle w ill thus be
(j+ l)s

= a £ f  jAe dt
j =0 js ■
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= a E j  [e“jXS -  e- (j+-l)XS] 
j=Q

-Xs ■ -2Xs> , , , , - 2 X5 -3AS\ . 3Xs -4 X s \'a C(e~ -.'e • A:>) + 2(e -  e~OAn  + 3(e_<3Ab -  e"HAS) + . . ]

r -As , -2Xs , -3As , -4Xs . n= a |_e + e  + e .... + e . + . . . .  j

-Xs
= °  e ~ •  ̂ (4 .16)

1 -  e~Xs
r

Then the expected net income derived from the production cycle is

V
jf- + V1 ( f  A x + en + D) - W -  V a e~Xs/ ( l - e " As) -  (b + c n )4 ^ - . (4.17)

Hence, the average net income per hour is

r _ expression (4.17) 
expression (4.15)

Defining.L as L = Vg - I,w e get a fte r  suitable s im plification ,.

XUB. + V.Bn + AW (b+cn)
L = ----- 1---------- ---------- + ----------  , (4.18)

1 + XBj s

where U = Vg -  ,

B1 = -  x + en + D ; . ' (4.19)

and bq = a (1 -  Ax)/s (4.20)

The function L represents the loss-cost per hour fo r the present 

model. The problem is to minimize the per-hour loss-cost function L 

with respect to the design parameters n, s and'k.
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4.2 .2  Determination o f the Optimal Design Parameters. An e x p lic it

solution of n, s and k is not possible. However, for a specified value

of k,an approximate value o f n can be obtained. A value of s can be
X

approximated using the values of n an.d'k. This can be accomplished as - 

follows-

For s im plic ity  we- assume that <5 >. 0.. Thus the terms' containing 

(-k-<Svfi") ..may be-neglected in equation (4 .8 ) ,  reducing i t  to

P = 1 -  <p(k-<5*^ + ^ -  <j>(2 \k-Sv/n) -  y—  <f>^(k-!SVn)
24n

v  , 5 > 0 ■ (4.21)
72n

Letting k-Sv̂ fT

p = ! » -  * ( c )  + L L ^ 2 ' ( i )
24n

l

- YA ( 5 ) (C) • • (4.22)
72n

Moreover, X is a small quantity and hence XB-j is  small compared to unity. 

Therefore, the term XB-j can be omitted from the f i r s t  denominator o f * 

equation (4 .18 ). Thus we have

L = L' -  XUB. + VBq + XW + . (4.23)
s

• Then L1 is p a r t ia lly  d iffe ren tia ted  with respect to n and’ s and
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equating the derivatives to zero, gives the following equations.

, 3L' ' 3B- 3B- ■ c
A   = AU — -  + V - 2 -  + -  = 0x\ 3n 3n 3n

3L1 3B, 3Bn b+cn
  = xu — -  +V — — -  = 0 , ^
3S 3S 3S S

where

3B, S 3p
— -  = -  - £  —  + e
3n p 3n

3Bn 3a 1 a 0 K    _ _c
r

Bn 9 n s  ns

3p 6 r 1
—  s —  * ( 0  + ------- [ - 1 2  y , { 6n +W ,U ) + S  ^
3n 2^n 144n2

+ 3 ^  {<5^" + 2 <J>^(s)>  + r - j 2 {5>/n~ 4 > ^ ( C)

+ 2 * <5 ) ( c ) } ]

3B, 1 1 As
— L ~ ----------+ __
3s p 2 6

? * J L
3S s2 

From {4.24} and (4.25):
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S 9 P . a C
AU( -  - k  —  + e ) +V -^  + -  = 0 (4.26)

p 3n ns s

XU “ 0
P 2

From (4 .27):

s = [(ctV + b + cn}/{A U-I ^  -  i ) ! ]  1 / 2  " J \  /  (4.28)
' r vs v

Substituting th.i's value of s in equation (4 .26 ):

i *
aV + b + cn 3p

a V + n ( c - t  —  + XUe) “ 0 (4.29)
P2 ( l - ? >  3n - •

For a specified value of k, the value of n which sa tis fies  equation 

(4.29) can be taken as an approximate sample size. Substituting this 

value of n in equation (4 .2 8 ) ,an approximate value o f s can be 

evaluated.

Sim ilar types o f expressions for n and s have been derived by

Nagendra and Rai [1971]. However, in these derivations, the term

XUe in equation (4. 29) was not accounted for. They took the partia l 

derivatives o f L, instead of L‘ , and performed much more complicated 

computations than the procedure described above. Moreover, they 

considered the derived values fo r n and s as' the optimum solutions for  

the design parameters, which- did not seem to be re a lis t ic . Preclusion 

of the term XUe in equation (4 .29) may have some serious effects bn. 

the approximate solutions of n.and s. Inclusion of XUe in th e ir
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solution fo r n, could have improved the accuracy of the approximate 

control plan. Nevertheless, keeping one of the design variables 

fixed , the optimum design of the control plan cannot be achieved.

In the' case of controlling the mean o f a .normal process, i t  

may be feasible fo r practical purposes to specify the value of k, 

so as to a tta in  a certain level o f probability  of Typd I e rro r. The 

reason behind this is that the expression for the probab ility  of 

Type I e rro r under normality assumption is independent o f sample size 

n. But, under the non-normality assumption, the probability  of Type I 

error is dependent on both sample size n and control l im it  coeffic ien t 

k. The probab ility  o f Type I I  error fo r controlling both normal and

non-normal means is a function of n and k. Therefore, for a

specified value o f k, the approximate value o f the design parameters 

w ill not provide an optimum control plan. Therefore, a d irect ^

search technique is desirable to obtain the exact optimum control plan.

Through numerical illu s tra tio n  i t  w il l  be shown la te r  in this Ghapter 

how the approximate solutions are deviating from th e ir  corresponding 

optimum solutions obtained by using the direct search technique. However, 

for a specified value o f k, approximate values o f n and s could be 

used as a good in i t ia l  point fo r a d irect search.

Direct Search Solution E

The. pattern search technique of Hooke and Jeeves [1961] is 

employed to minimize the expected per hour loss-cost associated with 

the operation of an x-chart. Pattern .search is a d irect search
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technique fo r minimizing function f ,  o f a vector-valued variable x.

For the present case, f  = L and x = (n ,s ,k ) is a three-dimensional 

vector with the components of equal to the design parameters.
t

* The search starts  with a local exploration- in small steps 

around the starting  point. I f  the exploration is a,, success, i . e . ,  

i f  the loss-cost reduces during local exploration, the step size  

grows; i f  the exploration is a fa ilu re , the step size is  reduced.

I f  a change o f direction is  necessary, the method starts over again 

with a new pattern. The search is terminated when the step size is 

reduced to a specified value, or when the number of iterations equals 

to a predetermined value, whichever occurs f i r s t .  However, due to 

the characteristics of function L, some modifications to the method 

have to be made in order to account fo r the inherent constraints 

on the sample s ize, and on the probabilities o f Type I and Type I I  

errors. These modifications are as follows,

i )  n must be an integer value>

i i )  the expressions fo r P and a, i . e . ,  equation (4 .8 ) and (4.11) ,

are non-negative for given values of Y-|vY2 anc* <s- ^

The computer program 1 

is given in Appendix !

In the past, under the normality assumption, the value of k was chosen 

to be e ither 2-.5 or 3 in the conventional design of x-charts [Shewhart, 

1931; Dudding and Jennett, 1942]. One of these two values-as an in i t ia l  

value of k is chosen fo r the search. .The root of the equation (4.29) ‘ 

is then obta ined 'u tiliz ing  external FUNCTION FI and SUBROUTINE ZREALI.

PRO-AM XBAR1-which incorporates these modifications
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Then this root is considered as an in it ia l  value of n. The in i t ia l  value

of s is then evaluated using equatioh (4 .2 8 ). The optimum values, of 
\  »

tf^design  parameters are then obtained by the developed modified 

pattern search-'SUBROUTINE SUB'. During the search, the functional vqTue 

is evaluated using SUBROUTINE COST.-

Numerical Examples .

To obtain the optimal design parameters, the-search method assjumes

that the objective function is convex". Since i t  is not possible to ■ -

ana ly tica lly  investigate the convexity o f L, some anaTys îs of its  

behaviour was conducted through numerical studies/: ^  '

One such study is presented in TabTe 4.1 -off Example 4".li This 

indicates that the surface o f L is approximately conyexMh thV^refrjon 

around the optimal value. ' /

Example 4.1 Consider a process having non-normality parameters- y-j = •

-0..5 and = -0 .5 , the s h ift  parameter & = 1 , -and the .rate of’

occurrence o f the assignable cause A = 0.01.- The cost parameters are

assumed as follows: VQ = 150,' V-j = 50, -V = 5 0 ,.W = 25, b '= 0 .5 , c = 0 .1 ,

D = 2.0 and e = 0.05. The values o f the loss-cost function L and the

design parameters in the neighbourhood of the optimal point are shown
£ *

in Table 4 .1 . The loss-cost function assumes a minimum value of

L* = 5.1953 at the following design parameter values:

sample size n = 12

sampling in terval s = 1.7147
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Table 4.1

n s k L

10 1.6147 2.5648 .5.2107

: 11 1.7345 •, 2.5675 5.1974

12 1.7147 2.6336' 5.1953

13 1.7058 ' 2.6745 5.2136

14 1.9342 2.6298 5.2377

15 1.9081 2.7491 ' « 5.2691

n

■ J

Values o f the LossTCost Function 
and Design Parameters in the 

Neighbourhood of Minimum Position

(*=0 . 0 1 , Vq=150, V^SO, V=50, W=25, 
b=0.5, c= 0 ;l, e=0.05, 6=1.0, y ^ -0 .5  
Y2 =-0.5 D = 2.0)

'47
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control l im it  co effic ien t k = 2.6336 .

With the assumption of the convexity o f the objective function, the optimal 

solution fo r  the design parameters was determined fo r a wide range of 

non-normality parameters y-j andy2 , and of the s h if t  parameter <5. The 

cost parameters were fixed throughout the optimization procedure.

For numerical illu s tra tio n s , the optimal solutions fo r three sets o f 

data are shown in Table 4 .2 . Th.e values of 5, and y 2 that are 

assigned to the three sets are as follows:

Set 1: _ 6 = 0.5 y-j = -0 .5  and y 2 = -0 .5 ;

■Set 2: .<5 = 1.0 Y  = 1 .0 - and y 0 = ■ 0 .5 ;
1 d 

Set 3: <5 ^ 2.0 y = 0.5- ' and = ,1 .0 .
1 '  '  . *

The relevant cost parameters and the value'of x associated with 

Table 4.2 are the same as those in Table 4.1 . . -

The optimal solutions obtained using d irect search techniques 

are compared with the 'improved approximate’ solutions computed using 

equations (4 .29) and (4.2.8). In addition,comparison is also shown 

with the results obtained using the approximate procedure proposed 

by Nagendra and Rai.

Results in Table 4.2 show that in a ll cases the proposed search 

optimiza’tion method yields lower loss-costs than both the 'approximate' 

and 'improved approximate' methods where k is considered as a fixed

quantity. Moreover, in the optimal search method, no terms 

are neglected fo r finding the solution. Therefore, i t  gives accurate 

'-and re liab le  optimum values for the design parameters.
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Table 4.'2 Comparison of Results by Approximate Solution and Optimal Solution

Approxima^f2 Solution Optima 1 Sol uti on

SET k 6 •
Y 1 y 2

Nagendra and 
A1 gori thm

n * s

Rai's 

L

Proposed
Algorithm

n ' s L n* s* k* L*

1

3.0 

2.5 '
2 . 0

0.5 -0 .5 -0 .5
66

50

42

3.30
3.01
3.33

9.401
8.389
8.119

49'
36
32 ‘

2.49
2.24
2.82

8.798
7.909
7.720

*

24 2.08 2.15 7.542

2

3.0 

2.5
2 . 0

1 . 0 0.5 0.5
19

-16
14

2.06 

2.18 

2.78 '

5.488
5.384
5.742

16
13
12

1.79
1.95
2.65

5.387
5.2359
5.645

i ^

1.80 2.59 5.225

mt

3
3.0 

2.5
2 . 0

2 . 0 0.5 1 . 0

6

5-
4

1.56
1.82
2.51

4.111
4.270
.4.853

5
5
4

1.47
1.80
2.49

4.041
4.298
4.867

5 1.48

*

3 j o 4.039



4 .2 .3  ^Development o f ^ Sim plified Scheme. The essential

characteristic  o f this plan is 'to  specify P, the probability, o f a

true alarm and its  detection to be at least at a given level (typical

values are .90 0P y 9 5 ) .  This probability corresponds to a point on

the 0C curves,/specifying the maximum level fo r the consumer's risk

(typical values are '.10 or .0 5 ). Thus,tfj^optimal values of design

parameters could be^obtained by minimizing the loss-cost function

developed in equation (4 .1 8 ), provided that the consumer's risk does

not exceed a maximum level in order to a tta in  a specified level of

protection against deteriorated quality . From this point o f view,
; . )

.the Scheme that w ill  be developed is ,a  semi-economic scheme. The

condition P.= 0:90 or P .= 0.95 is in tu it iv e ly  reasonable because i t

enables the manufacturer to detect an assignable cause rather quickly,

on the average about 1.1 or 1.05 samples a fte r  its  occurrence, so
1 ' * *

as to peduce the loss due to prolonged production o f a large 

proportion o f defectives.. - -

■ For the sake#o f mathematical s im plic ity  and practical convenience, 

some approximations in the minimization procedure are made. In 

-practice, A is a very small quantity, say A = 0 .01 , and AB̂  is small - 

compared with unity. Therefore, AB, can be" omitted from the f i r s t
* i

denominator o f equation (4 .1 8 ). Thus, the approximate loss-cost 

function is

L = V  = AB,'U + AW + V—  + ■ • (4.30)
1 s - s

where • ^
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Denoting

6 Jn -  k = a (4.31)

•and elim inating the confraing -si^T -  k in the expression fo r f»,

the equation (4 .8 ) becomes

P = * (a ) + Y- U  4>(2 ) (a) + —  ,<|>^(a) + — <j»(5 j (a ). (4.32)
Sv'rf ' 24n ’ . 72n*

T _ * ■ ^
From equation (4 .3 1 ), • • •

n = (a. ± * L  _  '  - * ' “ (4 . 3 3 )

substituting n from equation (4.33) in equation (4.30) and noting 

that P is a constant appearing in B-j, the optimum values o f k and.s 

are obtained by equating to zero the p a rtia l derivatives of L' with 

respect to k and s:

f  r  ,■

3L' 8B1 V 3“ 2 c(a+k) • * -   xU —  + -  —  + = Q , ( 4  M )
3k ak* 3k s<5

# . ‘ *

—  -XU (1. 1) 4 - ^ .  = >  (4.35)
35 >  2 '  , S 2 s 2

i

Equations ( 4 . 3 4 )  and ( 4 . 3 5 )  y ie ld  the following

2(c + AeUs)(a + k) + S2 v | |  = 0 » (4..36)

AU (p- -  1) s2 -  a V-(b+cn) = 0  • ( 4 . 3 7 )
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From equation (4 .36 ):

-2(a+k) s 62 V 

| | r  c+AUes

where
a.

'3a 3d
—  = - 2  * (k ) -  
?k 3k

3a

C

■= -2 [*(10 + —  3
23k

Hence,

(a+k) = j T V
3a„ C+AUes

(j>(k) +

2 U *5

c
23k 

Let

j(a + k ]_
3a

*<k>U 2 5 f
Thus,

(4.38)

(4.39)

= A** \  (4.40)

V - -A* *  = — °__i— ► > -(4 .4 1 )
c+AUes 

From equation (4 .37 ):

s = { {a V .+  b + cn)/{A U(P-1 -  jr) } } 1 / 2   ̂ (4 .42)

In equation (4 .4 1 ), the term AUes is a. small quantity because e is 

often small and thus could be omitted, a^ Duncan [1956] has suggested.
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But Goel, et a l . £1968] have shown that the effects  o f omitting this  

term may be’ serious i f  e happens to be moderately large. ' The 

presence'of s iri this term makes equations (4.41) and (4.42) in tractable. 

As suggested by Chiu and W etherill 0 9 7 4 ], AUes is replaced by AUe, which

is a poor approximation, but which turns out to be better than the

complete omission of the-term. Thus, equation (4.41) is 

rewritten as • ’ ' . .

% 2  «
A** *    ( 4 .4 3 )

c + Alle • ’ '

The values of n, s and k fo r the semi-economic plan are thus the*

^olutioiis o f equations (4 .3 2 ), (4 .3 3 ), (4.42) and (4 .4 3 ).

By varying the values of k arid n that satis fy  equations (4.32) and

(4 .3 3 ), one attains an acceptable level fo r P. ' Those values o f k

and n which also satis fy  equation (4.43) are to be selected and used

in equation (4.42) to determine the corresponding value of s. >

For practical application, a series of tables are constructed in

. which fo r given values of 6 , y-j and yg, the optimal values o f k and

n are lis te d  corresponding to the value of A*^. Also lis te d  are th e J

values of a and (^  -  -̂) whjch are used for evaluating s from equation
*  * *

(4 .4 2 ). The application o f such tables is demonstrated through the 

following numerical example.

Example 4.2 Consider the situation where sample means are non-
\

normally distributed with non-normality parameters y-j and y^. Suppose 

that the process is kept running un til an assignable cause is discovered;
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then the loss^cost function is giyen by equation (4 .18 ). The values
> . * ■ 

of 5, A and cost parameters are given as follows:

• <S = 2, A = .0 .01 , VQ.= 150, V1 = 50, V =  50, w =25, b = 0 .5 ,  D=2,0,

c = 0.1 and*e = 0.05. '

To determine the economic plan with P :> 0 .95 , Table 4 .3 w il l  be 

applicable.

Procedure .
2 ‘

1. Calculate A * * .  Here A**= -----  = 1333 *
c + AUe , 4,

2. Determine k and n. From Table 4 .3 , we find that the closest 

value to A * *  = 1333, is A * *  = 1295, and the corresponding

/  , value o f k is 3.1 and n is 6 . >

3. Evaluate s. We observe that a = 0.003 and (-p - = 0.531.

• ' . i , 1 / 2
..Thus, s = ' { (a V +  b + cn)/[AU(-~- £ ) ] }

= 1.5342

4. Evaluate B-j. = (p  -  ~  + j|-)s  + en^+ D

= (0.531 *  0.00127) x 1.5342 + 0.30 + 2 

= 3.1166

5. Evaluate L. Equation (4.18) can be well approximated by -

AUB, + a V /s  + AW b + cn
L = ------- '------------------------------  + ------ --------------------

1 + AB1 s

= 4.076
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Table 4.3 Sim plified Scheme fo r Determination of_Control 
‘Parameters for the'Economic Design of 'XrChart to 
Control Non-Normal Means fo r Which P > 0.95

V

*
5 - 2 • ' Y 1 " 0 . 5 '  ^2  = 1 . 0

. k \ n\ a . ( l / P - 1 / 2 ) 4 * *

i . n 2 0 . 3 0 2 1 0  ’ 0 . 5 2 3 ' 1 1'
. 1 - 1 2 0. -2 570  0 0 . 5 3 1  . 13
' 1 . 2 2 0 . 2 1 7 1 6 0 .  540 . 14

1 . 3 2 0 . 1 8  218 . 0 . 5  52 16 -
1 .  4 3 • - 0 . 1 5 5 0 0 0 . 5 1 3  T 2 3
1.  5 3 0 . 1 2 3 4 7 0 . 5 1 7 27
l . f i 3̂ 0 . 1 0 3 7 7  . Ov 523 3 2 .
1 . 7 0 . 0 8 6 5 0  ' 0 .  530 38
1 . 8 3 ' 0 . 0 7 0 5 4 -  ' " 0 . 5  40 46
1 . Q 3 „ 0-. 0 57 22 0 . 5 5 1 56
2 . 0 4. 0 . 0 4 6 0 6 0 . 5 1 7 78
2 . 1 4 0 . 0 3 6 8 0 0 . 5 2 2 06
2 . 2 4 0 . 0  2.04 5 0 . 5 2  0 1 1 0
2 . 3 4 0 . 0 2 3 4 4 0 . 5 3 8 14 0
2 . 4 4 0 . 0 1 8  fi’l 0 . 5 4 8 188
2 . 3 3 0 . 0 1 4 2 3 ' 0 . 5 1 0 262
2 . 6 3 0 . 0 1 1 2 0 0 . 5 2 5 334
2 . 7 3 0 . 0 0 8 7 6 0 . 5 3 2 4 26
2 . 3 3 0 . 0 0 6 8 4 0 .  541 545
2 . 0 fi ’ 0 . 0 0 5 0 6 0 . 5 1 8 77 3
3 . 0 fi 0 . 0 0 3  on < 0 . 5 2 3 0 0 0
3 . 1 fi 0 . 0 0 3 0 0 0 . 5 3 1 ' 1 2 0 5
3 . 2  - fi 0 . 0 0 2 3 0 0 . 5 3 0 168 2
3 . 3 fi • 0 . 0 0 1 7 5 0 . 5 5 0 218  0.
3 . 4 7 0 . 0 0 1 2 4 0 . 5 2 4 3 1 0 5
3 . 3 7 0 . 0 0 0 0 3 0 . 5 3 2 4 2.06

Note: A** in this Table is as defined by equation (4 .43 ).
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*  .

•> » . '•

The exact solution to this problem is obtained through the direct 

search technique .which yields n = 5, s = 1.48, k = 3.10 and L (= 4.0390.

The. variation ,is only 0.92 percent in the loss-cost function. I t  is  

in teresting to note that a simplified" scheme provides less cost 

than the cost obtained-by the approximate solution method according to

Nagendra and Rai.
1 ■ •», , •

To compute the value o f A** and corresponding value o f n, a and 

fp* " j-)* a computer program 'SEMIXBAR' is developed and is presented - 

in Appendix I I .

4 .3  Single Assignable Cause Model. -  Policy I I

4.3.1 Formulation of Loss-CoJt Function for Policy I I .  In practice,

in same production processes, the machine has to be shut down during the

search fo r the- assignable cause; the repair cost is charged against

the net încome from the process, and the -time to repair the process

is taken into consideration. In order to develop the loss-cost functions, the

following additional terms, in conjunction .’ with the terms

defined in sections 4.2.1 and 4 .2 .2 , are used. Let the expected

length of search .time' be hours, and the expected -•

search cost be kg. I f  the assignable cause does not

exist,production is resumed .after the search. I f  the assignable cause
♦

actually ex ists, i t  can always be detected and elim inated, but i t  takes 

a further expected repair time of hours and a further expected repair

cost o f kr  to restore the process in-contcol state . The process starts  

afresh in-control a fte r-th e  reparation. I t  is assumed that the time
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for. taking samples is  neg lig ib le .

Then i t  is straightforward to see that'the  average length o f a
J

production cycle consists o f four parts:

• 1} The in-control .period, with an average length of 1/A hours,

2) The out-of-control period, with an average length o f

. 3) The search time due to a false alarm,'

aTs( I  ~ t ) / s ’
4} The search and, repair times due to .the  true alarm, ts + x^.

Thus the expected length o f a production cycle under operating policy

I I  is

+ (jr " T) + aTs (y  - T ) /s + Ts *  Tr  • (4.44)

S im ila rly , the expected income from a production cycle is :

✓

y  + V1 ( ^ -  x) -  aks ( \  -  T)/s -  (ks + kr ) . (4.45)

Hence the expected net income per hour is , .

j _ Expression (4 .45) .
Expression (4.44J

Defining L = VQ- - I and a fte r  suitable s im p lifica tio n , the loss-cost

function for Policy I I  is given as

XB, U + XW + VBn + (b+cnj(1 + AB,)/s , '
L =■— !— =-----------------y--------------------------- 1---------  (4.46)

1 + ARj + t sBq + A(xr  + xs )

*
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* • .
\

where U = VQ - V = kg + V ^ ,  U = kp- + k$ + VQ(x r + xs). *

B, = — -  x and
1 P *

Bq  =  o ( l  -  A x ) / s  • . . .

"■ x,. a and pare defined in equations. (4 .5 ) ,  (4.11) and (4.21) respectively.
*

The function L represents the loss-cost per hour fo r the present

model and is a function of the three design variables n, s and k. As in the

economic design fo r the control plan under Policy I ,  the problem of

an economic design fo r cantrdl plan under Policy I I  is the determination

of the values o f n, s and k fo r which L is minimum.

4.3 .2  An Exact Algorithm. In order to determine the optimum values

. o f the design parameters by minimizing the loss-cost function L, tjjg

algorithm that has been proposed in section 4 .2 .2  for Policy I is
j -

also recommended for Policy I I .

4 .3 .3  Development of a Sim plified Scheme fo r Policy I I .  ” A comparison 

between equations (4.18) and (4.46) shows that they have a s im ilar 

mathematical form and that (4.18) appears, to be a particu la r case .of 

(4.46) when xr = xs = 0. . Thus^following the same arguments of section

4 .2 .3  fo r the development of a sim plified scheme-.for the present model, 

the following two equations can be derived as follows.

(a) Ignore xB-j from the-numerator and x(Bj + xr + xg) + xs from the 
j*  ^
denominator in equation (4 .4 6 ). ■ - - •

(b) D iffe ren tia te  the resulting expression with respect to s and k; and

equate to zero. Thus, \
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i i V z ,s = {(a  V + b + cn)/XU(p -  2")} (4.47)

(4.48)

where the^terra A ** 'is  defined by equation (4 ,41 ). Hence, 

the tables which are constructed fo r a sim plified scheme under Policy 

I ,  are also applicable fo r the present model. Application o f one 

of such tables to the semi-economic design, o f an )T-chart to control 

non-normal process means under Policy I I  is shown through the 

j^ llow ing  numerical example.

Example 4 3 : Consider the case where the sample means are non-

normally distributed with parameters y-] = l . ’O andy2 = 2 -° - Suppose 

that the process is shut-down during the search fo r the assignable 

cause; the loss-cost function is then given by equation (4 .4 6 ). The 

values o f the s h ift  parameter, the rate o f occurrence o f the assignable

To determine the economic plan with P ^ 0 .9 0 , Table 4.4 is applicable. 

Procedure:

To make use o f Table 4.4, ‘ f i r s t  obtain the quantities that are

cause and the cost parameters are given as follows

6 = 2 , A = 0 .01, VQ = 100, V1 = -100, 'kr = 20, \  = 10, 

t s = 0 .2 , t s = 0 .1 , b = 0.5 and c = 0 .1 .

needed fo r the loss-cost function, equation (4 .46 ). These are as follows 

6 = 2 . 0 ,  U = 200, A = 0 .0 1 ,  V = 20, W = 60.

txa*
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Table 4.4 Sim plified Scheme fo r Determination of Contiaol
Parameters fo r  the Economic Design-of I-C hart to 

. Control Non-Normal Means-for Which 0.90 < P < 0.95'

6 - 2 Y 1 = 1 . 0 Y2 "2 . 0

k n ct ( 1 / P - 1 / 2 ) . \ * *

1 . 2 . ? 0 . 2 3 0 1 4 ' 0 .  555  • 1 5
1 . *5 2 0 . 1 1 4 0 0 0 . 5 7  1 . :?. i_
1 . 6  • 2 0 . 0 0 3 1 2 0 .  5 06 -■ 2 6 '
2 . 0 3 0 . 0 3 6 3 0 . O'. 5 56 7.7
2 . 1 3 0 . 0 3 4 7 1 '  0 .  571-  - no 2
2 . 2 3 0 . 026 . 58 0 . 5 0 4  . 117
2 . 6 4 . 0 . 0 1 3 1 6 0 . 5 6 6 321
2 . 7 4 0 . 0 H 0 3 0 . 5  6 0 3 04
3 . 0 5 0 . 0 0  560  . 0 . 5 5 6 8 1 6
3 . 1 3 0 . 0 0 4 6 0 0 . 5 7 6 04 6
3 . 2 3 0 . 0 0 3 0 6 0 . 5 06 112 5
3 . 4 6 0 . 0 0 2 3 1 0 . 5 5 6 1 0 1 7
3 . 5 6 0 . 0 0 1 6 5 0 . 5 7 3 2 3 1 4

Note: A** in this'Table is as defined'by equation (4 .48 ).
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1. Calculate At* A*= = —  •= 800
c 0 . 1

2. Determine k and n. Trom Table'4 

to A = 800, is A*̂ = 818, which corresponds to k = 3. Further, we find  

that n = 5 and a = 0.00580.

3. Evaluate s. Observe that P"̂  -  = 0.558. Thus,

s =' {(«  V + b + cn)/[XM(p_1 -  ^ ) ] } 1 / 2  * l . o l

4. Estimate the average loss-cost. From equation (4 .4 6 ), we compute 

the loss-cost fo r this plan to be L = 2.8162. The exact 

solution to this problem, obtained by a d irec t search method, yields  

k = 2.89, n = 5, s = 1.032 = 0.0075-and L - 2.8078. ‘ *

Example 4 .4 :  Suppose,in Example 4 .3 , the non-normality o f the process

is ignored. Accordingly, . the values o f the parameters and are 

equal to zero. Using Table 4 .5  and following the standard procedure 

of Example 4 .3 , one arrives at the following plan with no d if f ic u lty ;  

n = 5, k = 3 .0 , s = 0 .9 3 3 ,-and L = 2.7329.

However, i f  the process is , in fa c t, regarded as non-normal, the 

plan results in an actual hourly loss-cost o f L = 2.8162, as noted in 

example 4 .3 . Thus, the use of conventional control plans with normality 

assumption, even though the production process is markedly non-
*

normal, w ill resu lt in misleading values of loss-cost. This would 

eventually amount to substantial losses over a long period of operation.

.4 ; we find  that the closest value
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Table 4.5 -S im p lified  Scheme fo r Determination of_Contro]' 
'Parameters fo r the Economic Design o f x-Chartto  
Control Non-Normal"Means fo r Which 0.90 < P < 0 . 9 5  
(6=2, Y-pO.O, andy2=0.0) ,

6 “ 2 T 1 - 0 . 0 Y2 = 0 . 0

k n OC . (1 A ^ - l / 2 ) 4 * *

1 . 2 2 0 . 7 3 0 1 4 0 . 5 5 5 15
1 .  3 2 0 . 1 4 3 6 0 0 . 5 6 7 ' 17
1 .  4 2 0 . 1  61.5 1 0 .  5 R 3 1'4
1 . 5 2 0 . 1 3 3 6 2 0 . 601 7.2
1 . 0 .3 0 . 0  67 43 0 . 5 6 3 53
2 . 0 3 ' • 0 . 0 4 5 6 0  ^ 0 .  577 64
2 . 1 3 0 . 0 3 5 7 3 * 0 544 7 4
2 . 4 4 0 . 0 1 6 4 0 0 . 5 58 1 7 4
2 .  5 4 0 . 0 1 2 4 2 0 . 5 7 7 2 2 8
2 . 6 4 0 . 0 0 4 3 2 0 . 5 8 8 2.44
2 . 7 4 0 , 0 0 6  43 0 . 6 0 7 384
2 . 4 5 0 . 0 0 3 7 3 0 . 5  62 J 7 51
3 . 0 5 0 . 0 0 2 7 0 0 . 5 7 6 1 0 0 4
3 . 1 5 0 . 0 0 1 4 4 0 .  543 - 136 4
3 .3 6 0 . 0 0 0 4 7 0 .  558 2 8 4 4
3 . 4 6 0 . 0 0 0 6 7 0 ;_5 7 2 3 476
3 .5 6 0 . 0 0 0 4 7 0 r*5 3 8 5613

Note: A** in this Table is as defined by equation (4 .48 ).,
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4.4 Efficiency o f the Control Plan - „ • '

In order to design an economically optimum-x-chart control plan, 

a ll the relevjirtt.data parameters must be estimated before the 

loss-cost ^function can b'e minimized:. Unfortunately, 1.11 tie  - 

attention has been paid to the e ffe c t, on- the o p tim ality , o f errors 

in»estimating cost arid data parameters.- The manufacturer can use an 

economic approach- with s u ffic ie n t confidence only i f  he has prio r • 

knowledge of optimum data parameters. Depending on the individual 

circumstances, and the nature of the product,-errors) in estimation ' 

may occur in varying degrees. I t  is therefore desirable to investigate  

to what extent these e'rrors a ffec t the optim ality or the economic 

design of x-charts.

Recall the loss-cost function developed in' section 4 .3 .1 , which 

a fte r  s im p lifica tio n , may be written as

" _ X{V0 -V1 )B1+(ks+V0 Ts)B0+X{ks+kf>+V0 (Ts-+Tr )}+ (b +cn )(ln B 1)/s

l+XB1+xsB0 +X{Ts+xr ) ' .(4.49)

•  '

The formulation o f the loss-cost function involves the following 

data parameters: • • ■

^5 Vq, V-|> t s , xr , ks , kr , b, c, y -j, y

To measure the effic iency o f a non-optimum plan,the method o f
*

Hald [1964] is  adopted in the present study. Hald*s measure of 

effic iency has the advantage of being invariant to the choice o f origin  

and the scale o f losses, and of lying between 0 and 1. Consider the

r •

s
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expression o f L in equation (4.49) which represents the'loss-cost

borne by the manufacturer when he uses a p articu la r control plan :
' ■}

ir(n, h» k ). This L has an unavoidable, minimum p art, Lm, which
v

corresponds to an imaginary, perfect, control procedure thatc^tects

the assignable .cause as-soon as i t  occurs without any sampling, \  ̂ * * *

inspection and unnecessary halting of the production. I t  1s clear 

that - . •; • '

Lm = I^ [ks + kr  + Vq ( ts + xr ) ] } / { l  + x( ts + r r )}-. (4 .50)

.  ■ "S .

We may then define the e ffic iency o f a general control plan tt

re la tiv e  to the optimum control plan ttq to be

e ( ir f ir0) = {L(ir0) -  Lm}/{L('Tr) -  l y .  ’ L(tt) > L ^ )  ,  (4 .51)'

e(ir,Tr0 ) = {L(rr) -  Lm>/{L(ir0 )' -  y .  ' . L(n) < 1 {*Q) (4 .52)

This e ffic ien cy , e , is c learly  invariant to the orig in and the scale ( 

of losses, and i t  lie s  between 0 and 1 . The bette r the control plan? 

the closer to unity the value o f e ,  and vice versa. ' The quantity 

1 0 0 ( 1 - £) expresses 'the saving in percent o f the^sampling costs and 

other losses for the control plan tt by using tt̂  instead of tt. Using 

Hald's c riterion  fo r measuring the e ffic iency of a control plan, a
t

s e n s itiv ity  analysis of the model under Policy I I  is performed. Also, 

the attention o f the user is drawn to the effects  o f errors in the 

estimation of the c r it ic a l data parameter, oh which a re liab le , optimum 

control plan is largely  dependent.
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S ensitiv ity  Analysis ’

Effect of X. The average number o f assignable causes per hour is

denoted by X and an increase in -X is equivalent to a decrease in the
I  *  * *

average time fo r the assignable ca'use to opcur. To study the e ffe c t

of this increase in X on the optimum design', the following data;

se t-is  considered. . • • • .
i  I •

VQ = 150, V1 = 50',. kr  = 20, ks = 10, 

t r  = 0 .2 , Tg = 0 .1 , y-| .= 0.-5, y 2 = 1.0
4

.and 6 = 2 . 0 . '
1 i » ,

* *
The numerical values assigned to X-are 0.005, 0.008, 0 .01 , 0 .05 , 0 .08 ,

" s . - , ' *

and 0 .1 . Suppose'the true value o f x = 0.005 . fo’r  this , the exact 

optimum control plan •= (n is ,k ) = ’’(6 , 2 .11^3 .07} and the values 

'o f  Lm = 0-.3744 and L = 1.4765. (

Let-the-other values'of X tie incorrectly  estimated. Thus, the 

errqr factor fo r these-cases w ill be = estimated X/  true-x. The 

effects of X on 'the design parameters ‘and on the. loss-cost' function, 

and the re la tive  e ffic ienc ies  (measured as lOOe) are obtained usiqg 

equation.' (4. 51) and (4.-52) corresponding to X. 'These are 

given in Table '4.6 and depicted in f i g . 4 .1 . *  In F ig .4 .1 , graphs are
o ’ !  ■drawn on d iffe re n t scales to accommodate- the relevant values of--the 

variables.

' Tt is observed th a t the only s ig n ific a n t,e ffe c t of an increase-in X' is on 

design-parameter s. For example, i f  X increa'ses' from 0.005 to 0 .01 , 

i . e . ,  i f  the average time for the \ssignable ’cause to occur, reduces from

&
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Table 4.6 Effect p f A on the Control Plan and 

Effect -o f Errors in-the Estimated . 
Values’ o f A.

A
. Optimal de; 

n s ' *

sign

k L Lm

Error
factor IGOe

0.005 6 2 .1 1 3.07 1.4765 0.3744 100

0.008 6 1.67 3.11 1.9924 1 .6 6 8 .1 1

0 .0 1 ' 6 ’ I 1.50>.
3.08 2.3052 * ‘ 2 .0 '57 .07

0.05 6 ,0 . 6 8 i 3.11 7.0784' 1 0 .0 16.43

0.08 6 0.54 3.12 10.0464 '16.0 . 11.39

0 .1 6 .0 .50 3.10 11.8952 2 0 .0 9.'57
t
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0 * 2 .0  VQ » 150 .0  

kr =■ 20.0 ks 3 10.0

5 0 .0

r r  3 0.2

c  In

5

t s *  0.1 y -j 3 0 .5 .

b 3 0 .5  c 3 0 .1

V2 3 ’1 .0 .

-10. -8 0

3 -7 .5  • 60

-5 .0  - 40

-2 .5  - 20

100 E
\

0.01 0 .03 0 .05 0 .0 8 0.1

F ig . 4-1 E f fe c t  o f  x on the Design Parameters
and the Loss-Cost F u n ction , and E f fe c t  
o f  Errors in the  Estim ated Values o f  x.
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200 hours to 100 hours, the .sampling interval changes from 2,11 to 1.50.

The sample size n remains the same'and there is a s lig h tly  e ffec t on the 
♦

control lim it  co e ffic ien t, k.. However, with the increase o f A, the 

loss-cost function increases s ig n ifican tly  and over-estimates of a 

result in low effic ienc ies  of the control plan. Thus A is a c r it ic a l  

data parameter. ^j-.

Effect o f 5. The s h ift  parameter S is  related to the change in the

- process mean by an amount Sa An error in estimating <5 results in an .

v. incorrect estimate o f-th e 'e ffe c t of the assignable cause (Sa)  assuming

that the estimate of a is accurate. Consequently, the p ro fit  derived

from the out-of-control s ta te , V-j is also incorrectly estimated.' The 

effect o f 5 on the,design variables and loss-cost function, and the 

consequences of incorrect estimation of <5, are shown in Fig. 4 .2 . As 

5 increases the value of sample size and sampling in terval decreases, . 

but the value of control lim it  coeffic ien t k increases. The value of 

the loss-cost function decreases gradually with the increases of 5.

The correct value of 6 is assumed to be 0.5 in each case. The measure 

of effic iency lOOe is low or very low despite the re la tiv e ly  small 

sizes o f assumed error in the estimation (over estimation) of <5.

This leads to the conclusion that <5 is also a .c ritica l parameter.

Effect of Cost Factors b and c. The cost factors b and c determine 

the cost of maintaining the control chart', which is equal to (b+cn) 

per sample, where b' is the cost o f sampling and cn is the cost of 

plotting and computation. The effec£ of b on the design parameter
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A ■ .01 Vq *  150 .0  V1 -  5 0 .0  kr

k *  10.0 t « 0.2 T'  ■ 0.1 b
. ■ r ' s

c *  0 .1  Y/j^* 0 .5  “ 1 ■ &

50 r  3 .s - 4 .5 r 100

40 3 .0 -4 .0  - 80

2 .5 .3 .530

20 - 2 .0 - 3 .0  - 40
100*

10 1 .5 -2 .5

0 1.0 2.0 0 1 .50-.5 1 .0 2.0 2.5

6

F ig . 4.2 E f fe c t  o f  <5 on the Design Parameters 
and the Loss-Cost Function , and 
E ffe c t  o f  E rro rs  in the  Estimated  
Values o f  S.
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and on the loss-cost function, and the. effects  of errors in the
< »

estimated values of b are shown in Fig. 4 ,3. This indicates that* t

as b increases,'sample size and sampling interval increase, but 

the e ffec t of b on control l im it  coeffic ien t is in s ign ifican t.

The e ffec t of c is depicted in Fig. 4.4 which shows.that 

sample size decreases and sampling interval increases with the , )

increase of c. .

Effects of kr and kg. Figures 4.5 and 4.6 indicate that .the

effects o f kp and kg on design parameters are in s ign ifican t. However,

the loss-cost increases with the increase of both k and k . I t  may/
*

be noted that cost factor k^ was not considered by Duncan [1956]. 

However, no explanation Was given for the omission of this factor
V  t

in his model.

Effects of t and t . Effects ofN: and t are sign ificant on the I s ^
loss-cost but in s ign ificant on the design parameter k as seen in 

Figs. 4.7 and 4.8. Their effects  on the sampling interval and sample 

size n, are moderate.

Based on the above resu lts , the following conclusions about 

the sen s itiv ity  of the model with respect to X, 6 and to the cost 

factors may be drawn:

The optimum design is :
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Yg -  1 . 0X ■ 0 .05  5 - 2  Y] “ 0 .5

V'Q « 150.0  V .,-50 .0  xr  « 0 .5  t s «o .3

c ■ 0.1 ic .  ?n n v •  io,okr  -  2 0 .0  ks

rzs rioo10

8 -20 * 80

6

4 -10

2

1.0 5 .0 10.0
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highly sensitive to errors in estimating the s h ift
♦ r .

parameter <5, and the rate o f occurrence of the assignable 

* cause '.*•' ' . ' .
'  i

moderately sensitive’ to 'th e 'fix e d  cost and variable  

s amp 1 in ghosts.

re la tiv e ly  insensitive to the repair and search costs.

The discussion^about the effects of the non-normality parameters 

on the design variables and on the loss-cost function w ill.b e  presented 

la te r  in Chapter 6 . v

4.5 Multiple Assignable Cause Model

'The-fundamental assumption of the process model 'studied in previous

sections is that there exists a single assignable cause which shifts

the process mean by an amount 5o. In practice.th is  assumption may not be 
* ( ,

s a tis fie d , as i t  often occurs that a m u ltip lic ity  o f assignable causes 

may operate on,the process.  ̂ ^ '

s '  The production processes considered in this section have an in 

control s ta te , and may jump to one*of the several out-of-control s tates, 

each with an associated assignable cause .^ Jhe process is assumed to  

s ta rt in the state of control with mean y. I t  could be disturbed by 

the occurrence o f an assignable cause A. ( j  = l , 2 , . . , n )  which.produces

a .s h ift  in the process mean of <5.a, where a .is  the process standard
\

deviation. I t  is assumed that when the process has been disturbed

\
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by a given assignable cause i t  is  free from thfe occurence of other
! . 7  . ■ * *

assignable causes. In other words, th is . is  equivalent to Duncan's 

Model I  fo r normal cases [Duncan, ,19713.

4-5.1 i Formulation of Loss-Cost Function. Following the assumptions '1
»

regarding the operating conditions of the process stated above, le t:

.  ̂ Vq = p ro fit  when the process is  in control.

Vj = p ro fit  when the process is in out-of-coptrol state due to
. assignable cause A..

• J ,

ts =•expected time to search fo r an assignable cause. ~ 

kg = expected per hour search cost.

t . = expected repair time, i f  the process is  disturbed by the 
. assignable cause A-.

J •
kj = expected per hour repair cost,, i f  the profess is disturbed ^  

by the assignable cause A-. $ ,

In a production cycle the time -at which the process goes out of
* ‘

control is distributed as the minimum of n independent exponentially 

distributed random variab les ’with means ]—, and thus has
j A2 n *

an exponential d istribu tion  with mean where X = e x .. 'This means, that 

duration o f the in-control state is , on the average, Y tlours-

L et> a ,  • f
> ® ^  a -  probability  of a false alarm,

P- -  probability  o f  a true.alarm when assignable cause A. is- 
, .  /v  s.*

operating. I ■

Each false alarm has a search time o f t  ; thus, the to ta \ time spent
S ' .  . j
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* *
* *

on the search = Y o ’ where *

Bq = a(expf- XsW  {1 -  exp(-As)}. ' • -

a > *

When the assignable pause occurs, i t  may occur at any time between two 

samples. The average occurrence'time in the in terval between two 

samples is .

tj.r= [1 -  (1-+. AjS) exp ( -A jS jM A j -  A. exp (-A .s )] (4 .53)
. t

The time before a true, alarm is signalled is

Bj  = " V  . '

Following this alarm, a further expected time t . is required for
f

detecting and elim inating the assignable cause A -.' Now, since thereJ
may only be one assignable cause present in each- production cycle 

and since the frequency- of the assignable cause A- is  A-/A,
J J *

‘ the expected time the process is out of control, counting from the

occurrence o f the assignable cause to the completion o f the cycle, is  
«

E xj  (Bj  + Tj )/X ' (4 5̂5)

Thus the expected length of a production cycle is

A C1 + Z Xj Bj  + TsB0 + z Y j )  (4-56)
>*

The expected net income per cycle is : *
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Vn .
[ e X.V-B. i-  VBn -  L A . W . -  (b+cn)(l + €  M J /s J /X  (4.57)

* *  0  J  J ^  J  J  J  J

*

Analogous to the single assignable cause model, the loes-

cost function fo r the m ultiple assignable cause model is .derived as follows

-E A.U.B. + VBn + E A.W. + (1 + E X.B,)(b+cn)/s
L = -------1 - U ---------y----------U ----- --------------U ------------------ (4.58) ..

1 + E A . B .  + T B n + E X . T .J 0 . S 0 3 j  •

where V = k„ + Vat > s O s

W V j  ■

« d  U j . V ' - V j  .

For an exact optimum design, the .search, meth.od of section 4 .2 .2  can be 

used with suitable modifications. The in i t ia l  position fo r the search 

can be given by the method explained in an example la te r .

4 .5.2 Application of the Sim plified Scheme. In th is section a matched 

[Duncan, 1971] single assignable cause model is proposed so that its  

semi-economic pi an .w ill approximate the true optimum control plan fo r the 

original m ultiple cause model.

The proposed matched single cause model is defined as follows .

1. The s h ift  <$s produced by the single assignable cause is equal 

to the weighted mean fo r the m ultiple cause sh ifts ; so that

Ss = e X . S ^ / X  " (4.59)
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2. The-rate o f occurrence of the single assignable cause is the 

sum of the rates o f occurrences o f ‘ the individual assignable causes 

in thg m ultiple cause-model: ^  "

.% .= A = z. . ' " - \  ■ (4 .60)
. . .

3. The hourly p ro fit  induced by the occurrence o f  the single
JO ■

assignable cause (V ) ’• ^

’ . Vs = s .X jV ./x ; so tha t Us = V0 -  Vs' • ' (4 .61)

4. Average time taken to elim inate theCing4e assignable cause.is 
* * * \
•defined as

. E X .t
X = — - X  J-£p . . (4.62)

I b x. f ■ . -

5. Average cost fo r  the detection and elimination o f the single 

assignable cause for true alarm is then,

(c = L h h . . ' * (4 .63)
. rS '  A

/  6 -' The average cost of'searching fo ra  single assignable 'cause when i t
\ .  ;

exists is thus,'

. Ws *  krs + V0  Trs .. U -64 )

To determine an approximately optimum plan by the sim plified scheme

of section 4 .3 .3 , an example is considered below.
*

Example 4.5 v Consider a non-normal m ultiple cause model defined by 

the quantities given in Table 4 .7 . -
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-3?

Table 4.7 A T rip le  Cause Model

A.
0

/ •
6 .
J ■ V3

k.
3

T .
3

0.005 1 .2 262 42 . 0 .2 0

0.004. • 2 -0 •' 75 30 0.15
0 .0 0 1 3.5 - 1 1 0 , 20 0 .1 0

4
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Other4 parameters values are assumed as follows,.
Vq = 350, kg = 20, t s = 0 .15 , b = 2 .0 , c = 0 .3 , = 1 .0  and

Y 2 = 2 - ° * .

Determine an approximate plan for th e -tr ip le  cause model with P >_0.9S.

For the matched model,

Xs = 0 .01 , 5s = 1.75, Vls = 150, krs = 35, xrs = 0.17
4

so that

Us = V0 -  Vls = 200, Vs = ks + V0, s = 20 ♦ 52.50 = 72.50 

W • 94.5.
4 O'

/ ’

Table 4 .8 is  applicable. Following the simplied scheme of section 4 .3 .3

1st step: A**= 370

2nd step: Table 4.8 gives n = 6  and k = 2 .7 .

3rd step: Evaluate s. From Table 4 .8  a = 0.00957 and P-  ̂ ~ \  = 0.544.

Thus, s = { (aV + b + cn )/[x  U (P_1 -
S S S C

= 2.03

4t.h step: Using equation (4 .4 6 ) , L = 5.3254.

For,comparison purposes, the worked-out exact plan fo r the original tr ip le  

cause model is given as:

n = 7, s = 1.86, k = 2.89 and L = 5.3659.

t.

x
*
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Table 4.8 Sim plified Scheme for Determination of_Control
Parameters fo r the Economic Design of X-Chart to 

. Control Non-Normal Means fd r Which P >  0.95
• (6=1.75, y ^ I .O ,  andY2=2-o|

•
<5̂ =1.75 Y l . - 1 .0 Y2 = 2 .0

■ k n * a ( l / P - 1 / 2 ) \ * *

l . ? 2 0.23014 0.555 V1 .0 2 0.29715 0 .5 44 . 3 ,
l . i 3 0 .2 571 9 0.50R 13
1.2 ' 3 0 .21571 0.514 14
1 .3 3 0 .17936 0.521 16 .
1 .4 3__ _ 0 .1 47  93 .■ 0 .530 19

— 1T5 3 0.12114, 0.543 22'
‘ 1 .6 4 0 .10136  _ 0.513 31

.1.7 4 O.OR224 0 .5 1 9 . 37
l . R 4 0.06647 0.527 46
1 . 9 4 0 0.5362 0.53R 56
2 . 0 4 0 ) 0 4 3 2 5 ' . 0 .551 70
2.1 5 0.03512 0 520 97
2 .2 5 0.02R27 0.  52R' . . 123
2 .3 5 0.02.2R3 0 .539 157
2 .4 5 ' 0.01R53 0.552 201
2 .5 6 0.01466 0.524 274
2 .6 - 6 0.011RR 0.532 350
2 .7 ’ 6 •0.00967 0.544 446
2 .6 7 0 .00749 0.522 604
2 . 9 7 0.00607 0.530 76'4
3 .0 ’ 7 0.00492 0 .540 960
3.1 7 0.0039R , 0 .553 1197
3.2 R 0 .00299 0 .5 2 9 1622
3.3 R 0 .00239 0 .5 39 201R
3 .4 R 0.00190 0.551 2503
3 .5 0 0.0013 9 0 .5 30 3440

Note: A** in this Table is as defined by equation (4 .48 ).
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CHAPTER 5 • .

AN ECONOMIC DESIGN OF X-CHARTS WITH WARNING LIMITS

TO CONTROL NON-NORMAL PROCESS MEANS 
*

In th is  chapter, an expected cost model for a production process' 

under the surveillance o f an x-chart with warning lim its  for controlling  

the non-normal process mean is  developed. I t  is- assumed that the 

process is subject to the occurrence of a single assignable cause 

and is  operating under the policy I I .  The design parameters o f a 

general control chart with warning lim its  are the sample s ize, the 

sampling in t e r v a l t h e  action lim it  c o e ffic ien t, the warning lim it  co

e f f ic ie n t , and the c-ritical run length. To develop the expected loss- 

cost function, expressions for the average run lengths, when the process 

is in control, and when the process is out o f control, are derived. A 

direct search technique is employed to obtain the optimal values o f the 

design parameters. Numerical examples are provided, and the effects

of the non-normality parameters on the loss-cost function and on the
* 1 '

design parameters are discussed. Conclusions are drawn about the. 

re la tive  e ffic ienc ies  of the economic design o f’ x-charts "with and without 

warning lim its . A sim plified form of the algorithm is also devised which 

could.be useful for practical application at the workshop le ve l.

5.1 Formulation o f Loss-Cost Function

A production process which has two states, in-cofitrol and out-of

control, is considered. The process is assumed to s ta rt in a state of 

in -contro l. The quality  characteristic of the process variable is

N?
✓

I
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measurable o.n a continuous scale and . 1a non-porma’l ly  d istributed with

the same-density function, as described'ifi section 4 .1; .
* ' * >

* . 'The process is assumed to be shut-down during the search fo r the

assignable cause. A sample of fixed size n is taken at regular „

intervals o f time and.the-sample mean is plotted on a one-sided x’-chart 
* • »  ̂ - ,

with warning li jn its j The'upper action lim it, is set at + ka a /Jn, 

where kg is the ufctper control lim it  co e ffic ien t. The upper warning 

l im it  is set at pQ + k^. g/tff- where 0 < 1̂  < kg. A-search for. the 

assignable, cause is undertaken i f  the la s t sample mean fa lls  outside 

the action lim i.t, or i f  the las t sample mean completes a c r it ic a l,  

run length Rc ‘which is  in:between the warning' and action lim its . '

Following the-general outlines o f the works o f Duncan-[1956]'and",

Chiu and Cheung [1977], the loss-cost function.of the process under
_ - 

the surveillance o f .an x-chart with warning lim its  fo r controlling
-V-

the non-normal process means can be formulated as follows.

Let T be the random time during which the process operates under i :O
the state o f control. By assumption, T has an exponential d istribution

a<
with E(T ) = 1/x. Let H be the number of samples taken, before the process 

goes out of control, and G the number o f samples taken after'.the Mth 

sample and up to the moment the chart signals lack o f control. Let N 

be the number of fa lse alarms occurring among the .f-irst M samples. Then
f

t  -  -

i t  is  straightforward to see that the expected length o f the production

cycle consists of four parts: (a) the in-control period, (b) the search

times due to fal^e alarms, (c) the out o f control period, and (d) the

search and repair times due to true alarms.
\ *

s
** - V

✓ T»/
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Using the same terminologyj as defined in section 4 .3 , the 

exp.ected length.of a production cycle is

' sE(M) + t ECM) + sE^G) + t + t , (8 .1 )5'  ̂ i

*

and the expected income from a production cycle is 

V
-2-'+ V, E(Ms+Gs-Tj -  E(N)k -  (b+cn)E(M+G) -  k - 'k  . ' (5 .2 ) ̂ i ci s s r

Hence,the average net income per hour is

t -  Expression (5 .2 ) , - j
Expression (5 .1 ) .

The assignable cause occurs somewhere between the' Mth and the (M+l)st 

samples, in the cycle. Then the average length o f the time of the 

occurrence within this in te rv a l, measured from the beginning of the 

in te rv a l, is :

E(t-j) = E(Ta~Ms) = {1 -  (1+Xs)exp(-Xs)}/{X-Xexp(-Xs)} ~ j  ~ ■j^s2

' (5 .4 )

Thus from equation (5 .4 ):

E(M) = 1/Xs -  1 +  Xs/12 (5 .5)

To determine the expected number of false alarms during the f i r s t  M 

samples, we have fo r fixed M [Chiu, 1974]

! E(N[H) = M/Rq

where Rq is .the average run Tfength (ARL) o f x-chart with warning lim it  

at the acceptable qu ality  level Ug. Thus, from equation (5 .5 ):
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E(N) = E(M)/RQ = {1/Xs -  i+ ^ X s /12}/R 0

v *

Taylor [1968] has shown, by computer simulation, that the

dependence of E(G) on M is n eg lig ib le , and that i t  could be 

written as

E(G) -  R-, '

where R-j is the ARL o f the chart at the rejectable quality  le v e l: 

y-j' = yg + 6 a. Thus ,

E(Ms+Gs-TQ) ' = R̂- s -  |--s •+ Xs^r

and̂

E(H+G) = ±  -  L + j j 'x s  + R, .

Substituting equations (5 .6 ) -  (5 .9 ) into equation (5 .3 ) and ... 

defining

U = V0 - V, ;

V = k s + V v
W = kr .+ ^  + VQ(xr + t$) ;

V < r - ? +Trn* V
*•

B1 (R 1 " 2 + 1 2 )s; 
L = V Ql - I ; X

thus, L becomes a fte r  some sim plification ,

XUB-j +.VB0 + XW + (b+cn)(l t-X B ^ /s

1 + XB1 + t sBq + x ( t r  + t s)

(5.6)

(5 .7)

(5 .8 )

(5 .9 )

(5.10)

(5.11)
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where L represents the average long-run per-hour loss-cost o f the

process. *

• *•
5.2 E ffect o f Non-Normal,ity on Loss-Cost Function

Before' minimizing equation (5.11) to obtain the optimum design
j *

parameters of the x-chart with warning lim its , i t  is noted that the .

values of the average run lengths Rq and are dependent on the
.  * *

probability  density function o f the process variable, which, by our 

assumption, is non-normal.-

The average run length, fo r a one-sided x-chart wi\h warning lim its

for controlling a normal process mean, as given by Page [1962] is

R  R

ARL = (1 -  q-C) / [ l  -  q -  P1 (1 -q c) ]  > (5.12)

where Rc i s ‘the c r it ic a l run length , P’is the probability  that a point 

fa lls  below the warning l im it ,  and q is  the probability  that a point 

fa lls  between the warning and action lim its . For controlling non-normal 

process means, when the process is  out o f control, the following 

expressions fo r p‘ and q- are derived using equation ( 4 . 2 1 ) given in 

secti on 4'. 2.

f =  $(k - 6^n) -  —  V 2 ) (k -&Sn) + —  4>(3 ) (k -6*40 + —  (k -Sv'n)
w 6 Vn w 24n w 72n w

and
(5.13a)

q =  *<(ka-<5»fi) -  l>(kw-5*4i) -  U ^ ( k a-5yfi) - / 2 h k w-6 .f0 ]
. 2

+ gffi-E ^ 3 ) (ka~ 6y ^  -  * ( 3 ) (kw-6 .^ )3  + ^ - U ( 5 } (ka- s ^ )

-  <j,( 5 } (kw-5^n)] ' (5.13b)
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where $ denotes .the'd istribution function of the-un it normal variate .

Thus, R-j ‘is obtained by substituting^equations (5.13a,b) into equation

(5 .12 ). S im ila rly , le ttin g  6 = 0 in equations (5.13a,b) and substituting

the resulting p' *nd q into equation (5.12) Rq is obtained. These

expressions w ill  be used in equation (5.11), fo r locating the minimum

position of l /  * '
« v

5.3 Determination o f the Optimal Design Parameters

In order to obtain the optimum control plan, the objective 

function L given by equation(5 .1 l) is  minimized with respect to the 

design variables, i .e .- ,  the sample in terval s , the coefficients* of 

action and warning lim its  ka and,kw, and the c r it ic a l run length,

The dependence of L on three parameters, ka , kw, and R , through equations
t

(5.12) and (5.13a,b) precludes the use o f any analytical optimization 

method. .Rather, the d irect search method of Hooke and Jeeves [1961] 

is employed to minimize L with respect to the vector o f variables (n, 

s > k , ,  * 0 -  However, due to the characteristics o f function'L,d W C

some modifications to the method have to be made in order to account 

fo r the inherent constraints on some of the design variables. These 

1 modifications are as follows.

( i )  n and Rc assume integer values;

( i i )  kfl and maintain the relationship such that 0 < < k-a ;

( i i i )  the expressions fo r R-j and Rq are non-negative fo r given values
\

of y-j , y2> and 6 .

On the basis o f these modifications, the computer program 'WARNING1 is
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developed in order to minimize the loss-cost function and is  given.. *
*

in Appendix^lH.

From the past studies on the design o f iT-charts with warning 

lim its. [Chiu and Cheung, 1977] under the normality assumption, i t  - 

has been found that the value o f th e 'c r it ic a l run length Rc 15 

e ith er 1 or 2. Therefore, in the process o f optim ization, the range 

o f values for Rc is  from 1 to 4. In the conventional 

design of x-charts with warning lim it -  kg = 3 and

= 2 have been considered ; [Chiu and £heungr-T9?7]. Thus,- - -  

the re la tion  = j  l<a is used to specify the in i t ia l  - values 

of these two parameters. • .

.F in a lly , an in i t ia l  value fo r  s is determined as follows. In
(;

practice, the values o f A and 1/Rq are very small. Hence, the 

quantity ;AB̂  + tsBq + A(-rr  + ts) in the denominator o f equation (5.11) 

is very small compared with un ity , and therefore i t  can be omitted*, 

s im ila r ly , in the numerator, the term AB-j is very small compared to 

unity and thus i t  can also be omitted. Consequently, equation (5.11) 

becomes

L ~ AUBi + VBQ +- AW + (b+cn)/s (5.14)

By d iffe ren tia tin g  equation (5.14) with respect to s and setting the
2 2results equal to zero, and omitting the.-terms A and A /Rq , the following  

pjspliation is obtained

V T  1/2s = . { ( { - +  b+cn)/[AU(R, - 1 ) ] }  (5.15)
V  ‘ 1 2

which w ill be used to determine an in i t ia l  value fo r s a fte r choosing
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the in i t ia l  values o f n , ka anS 1̂ .

\
NUMERICAL EXAMPLES 

To obtain the optimal design parameters, the search method 

assumes that the objective function is convex. Since i t  is not possible 

to a n a ly tica lly  investigate the convexity of L, some analysis o f its
•j • ♦’ • '£

behaviour .was conducted through numerical studies, which indicated that 

the surface o f L is approximately convex in the region around the optimal 

value. .

With the assumption o f convexity of the objective function, 

optimal plans were determined fo r a wide range of the non-normality 

parameters, y-j a n d ^ *  and o f the, s h ift  parameter, 6 ; the cost parameters 

were fixed throughout the optimzation process.

Example 5.1 . Consider a process having non-normal i ty  "parameters, y-j = 0.5  

and y2  = the s h ift  parameter 6 = 2 , and the rate o f the occurrence
t

of the assignable cause X = 0.01. The cost parameters are assumed as 

follows: ' VQ = 150, V1 = 50, kr  = 20-, k$ = 10, xr  = 0 .2 , t s = 0 .1 , b = 0 .5 , 

aad c = 0 .1 . The results o f the optim ization, presented in-Table 5 .1 , 

indicate that the optimal plan is obtained a t Rc = 2 , n = 5 , s = .1.428 

hours, k = 2.9062, k , = 2.5034, and the objective function value isu W
L ^ r ? 9 5 5 .
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Table 5.1 Optimal Design fo r  Example 5.1

Rc n ■ s ■' ka k . w L

i 5 1.431 3 .'2953 ’ 2.8917 2.2963
2 5 1.428 2.9062 2.5034 2.2955
3 • 5 • . 1.430 2.8914 2.3081 2.2962
4 5 1.430 1.4291 ; 2.1425 ■2.2963

u ' '
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To study the effects  o f non-normality parameters on the loss-cost
*

function and the design parameters, Table 5.2 is prepared. The relevant

cost parameters-, the s h ift  parameters, and the value’o f A associated
• ■

with-Table 5*2 are the same as those in Table 5.1 . However, parameter 

.-Y-j is varied from -0 .5  to 1.0 with increments q f (L5, and parameter y2 

is yaried from -0 .5 , to 2.0 with increments o f 0 .5 . For given values o f
-  • 1 •

Y i and y 2 » the Table presents the optimal design parameters (n ,s ,k a ,kw

and Rc) ,  and the optimal value o f L.

I t  is evident from Table 5 .2 , that the e ffec t o f skewness is more

marked than that o f kuftosis. For given y 7 , the values o f s,k ,k and n
w 9 w

increase as y-j' increases. The same is  true fo r L. However, the c r it ic a l  

run length Rc remains unchanged, and the sample size n does not show 

marked changes.

From a non-economic point o f view, Roberts [1966] and Weindling>-et 

a l. [1970] used the Average Run Length (ARL) criterion  to compare the 

effic iencies  of the economic designs o f x-chart with and without warning 

lim its . They assumed the same ARL (RqK  when the process is in control 

for both charts. The ARL (R^) values when the process is out of control 

are then compared fo r various s h ifts , <So, in the process mean. They have 

reached the following conclusion; fo r a small s h if t ,  the x-chart with 

warning lim its  has a shorter R-j than the x-chart with only action lim its .

From the manufacturer's point o f view, the loss-cost value is  more useful 

fo r assessing the effectiveness o f a control chart as opposed to average.run 

lengths. Thus, a minimum cost c riterion  is  used to measure the re la tiv e  perform

ances of these charts in this stud# the results are presented in section

6 .7 . \
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TABLE 5.2 Optimal Values of che Design Parameters and 
Loac-Cost Function of an Economic Design o f ‘3J-chart with 
Warning Limit.'
( X - 0 . D 1 , V Q - l j . 5 0 , ^  - 5 O , k r - 2 O , k s - l 0 , t r - O . 2 ,  t s - 0  . 1 , b - 0  . 5 , c - 0  . 1 )

2 . 0

6
-

Y 2
- 0 . 5  '

F" 
.

Oc

. 0 . 5 1 . 0

A 5 5
• »  
n

1 . 2 7 8 2 1 . 4 0 3 9 1 . 4 2 4 0 1 . 4 5 5 7 s
- 0 .  5 2 . 5 1 2 5 2 . 7 7 3 4 2 . 8 5 0 0 2 . 8 7 9 7 ka

2 . 1 6 9 8 2 . 3 6 4 3 2 . 4 8 3 1 2 . 5 1 1 2 Hf
2 2 2 2 Rc

2 . 2 0 3 2 2 . 2 5 3 1 2 . 2 7 6 1 2 . 2  941 L

4 5 • 5 5 n
1 . 2 8 7 5 . 1 . 4 0 7 7 1 . 4 2 7 0 1 . 4 5 4 0 s

0 . 0 2 . 5 2 5 0 2 . 7  906 2 . 8 6 8 7 2 . 8 9 7 6 ka
2 . 1 6 9 0 2 . 3 7 0 6 2 . 4 8 0 0 2 . 5 1 5 9 kw

2 2 2 ' 2 Rc
2 . 2 1 6 0 2 . 2 6 0 9 2 . 2 8 2 8 2 . 3 0 0 3 L

4 5 5 6 n
1 . 2 9 9 2 1 . 4 0 7 6 1 . 4 2 8 4 1 . 5 1 7 0 s

0 . 5 2 . 5 3 5 9 2 . 8 1 3 2 2 . 8 8 4 4 3.  1187 ka
2 . 1 6 7 5 2 . 3 7 2 1 2 . 4 8 4 7 2 . 7 3 3 1 k«

2 2 2 2 Rc
2 . 2 2 8 6 2 . 2 6 8 5 2 . 2 8 9 3 2 . 3 0 4 4 L

4 5 5 6 n
1 . 3 0 6 2 1 . 4 0 9 9 1 . 4 2 8 3 1 . 5 1 5 3 s

1.  0 2 . 5 5 1 6 2 .  8328 2 . 9 0 6 2 3 . 1 3 2 0 k*
2 .  1691 2.  3768 2 . 5 0 3 4 2 . 7 2 7 6 k«

2 2 2 2 Rc
2 . 2 4 0 8 2.  2758 2 . 2 9 5 5 2 . 3 0 8 1 L

4 5 5 6 n
1 . 3 1 6 2 1 . 4 1 2 2 1 . 4 2 8 2 1 . 5 1 3 6 s

1 . 5 2 . 5 6 5 6 2 . 8 5 4 7 2 . 9 2 5 0 3 . 1 5 5 4 ka
2 . 1 6 7 5 2 . 4 3 6 2 2 . 5 1 1 2 2 . 7 4 4 8 kv

2 2 2 2 Rc
2 . 2 5 2 8 2 . 2 8 2 7 2 . 3 0 1 4 2 . 3 1 1 7 L

5 5 5 6 n
1 . 4 0 7 5 1 . 4 1 2 1 1 . 4 2 6 5 1 . 5 1 2 6 s

2 . 0 2 . 7 3 2 0 2 . 8 8 1 2 2 . 9 4 8 4 3 . 1 6 6 3 ka
2 . 3 0 7 3 2 . 4 6 1 2 2 . 5 1 7 5 2 . 7 6 2 0 kv

2 2 2 2 8C
2 . 2635 2 . 2 8 9 3 2 . 3 0 7 0 2 . 3 1 5 1 L

>  .
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However, i t  would be in teresting to note th a t, when the process is 

in control, a large Average Run Length (Rq) corresponds to a small Type 

I  e rro r, and when the process is  out of control, a small Average; . * .1

Run Length (R^), corresponds to s ip ll Type I I  e rro r. Thus, following

sim ilar arguments that have been used in section 4 .3 .3 |fo r  developing

sim plified  scheme fo r  an economic design of an x -ch art, a sim plified scheme

for. an -x7chart.w ith warning lim its  is proposed in the following section.
*• . *

5 .4  A Simplified' Scheme , .

In th is  section a semi-economic scheme is  presented which allows the 

user to specify-the value’o f ARL at the rejectable quality"level R^, so that 

a desired leve l o f protection against the deteriorated quality  could be 

obtained. I t  is in teresting to note that in Table 5 .2 , the ra tio  o f the 

warning lim it  coeffic ien t 1̂  to the action lim it  coeffic ien t kQ lies  

between 0.80 and 0.90. Under the normality assumption, s im ilar results were 

obtained by Chiu and Cheung [1977]. For the development of a sim plified  

scheme, an average value o f this ra tio , i . e . ,  = 0.85 is considered.-

Thus, fo r  a given value o f R-j »Rq may.be treated as a function o f only.

Letting avrT -  k =• a, so th a t,O
(a + k ) 2

n = — ( 5. 16)
6 . '

substituting this value o f n in equation (5 .1 4 ), L becomes

c(a + k ) 2
L’ = AUB-j + VBq +AW+ (b + ------ g-2— )/s  • (5.17)

5

The near optimum value of ka is  obtained from:

, 3B 2 c(a + k )

l r - = v w -  *  - 2— - = 0 5 (5 -18’a a 6 s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



substituting Bq :
h

. . s ' * , .  '  2 c (-a + ka!
V ----------- ;— =-----------------  —^  + -------7------- = 0  (5.19)

R 0 3ka s 5

-  w* >

That is , approximately '

' (a + kâ  %Z _ 1 *

2c

■ 3ka •

Defining " ,

(a + k _ )R f l 2
A*‘ = ---------- 1— -  X5.21)

^  -

(5.20)

9ka

For various values o f ka , ’ one can find the corresponding values of A*, 

knowing the values of 6 , y-j and y^  by the following procedure:

Step 1: Choose a set of values for ka, say (ka-j, k 2 »- • »kam) ’ suc^

kai+l > ka1 i  1 for a11 1

Step 2: For each value o f kai- find  n̂ . for which = R-j* by using

equation (5.-12), where R-j* is the set value o f R-j at the

desired level o f protection. Now compute R^. using equation

(5.12) for given value of R^..

Step 3: Having set values o f Rq ' s ( i . e . ,  R^ , Rq2’ ’ ' ‘ corresP°nding

to k 's ( i . e . ,  k , ,  k k ) ,  compute the vector of derivatia a i a<i am

3Rqi 3Rq2 9 0̂m
(gjr-  » —  » ----- , a]T~  ̂ u s i n 9 numerical d iffe ren tia tio n .

al a2 am
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Hence,calculate the corresponding values of 

fl* 's  Ctf.e., A ^ , r . . •
4

^ T h e  values o f ka , n , and A* are thus tabulated, using the computer

program 'SEMIWARN' given in Appendix IV.' I t  is  noted that
« ' *

such a table corresponds to specific  values of R j 6 ; y-j a n d ^ .  A " 

series o f such tables are thus prepared fo r a wide range o f non- 

normality parameters y^ and the s h ift  parameter 6 , and fo r a •' 

specified value of. R-j. . The application of one o f these tatiles^ is 

now demonstrated through a riufnerical example. • n J

- t  ' *
An Example. ■***

Consider the same example.as in section 5 .3 , fo r which y-j = 0,

Y2 = 0.5 and 6 = 2 /0 . Table 5.3 is  prepared for this example. The

computations are performed in the following ste^s:

. . .  o
■ VS

Step 1: Calculate A*: A* = -----  = 500'
2c

Step 2: Determine ka> n and From Table 5 .3 , i t  is found'ka = 2 .80, .

4 n = 5 and = 328.8.

. Step 3: Calculate s: Using-equation ,(5.15} s = C(^“ + b+cn)/{XU(‘R|- |- )} ]
1/2

0 -

= 140

i , ,2
Step 4: Calculate BQ: BQ = ( I  -  h. + ^ ) / R q

= 0.002159
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Table 5.3 Semi-economic Scheme for Design' o f X-chart " 
with Warning-limits to Control Non-Normal 
Process Means. • 8

■ “ “ ■ 1 I* ■
' ^  - 1 . 0 5 6 * 2  . .T| - 0  Y2  ^ 0 .  5

k n Ro ■ ; A*

l . l 2 - 7 . 5 1 3 . 6
1 1 . 2  ' 3 8 . 8 . 1 8 . 4  '

1 . 3 3 10 . 4 2 1 . 0
1 . 4 3 12.-4 2 4 . 1
1 . 5 3 1 5 . 0  ' 2 7 . 9
1 . 6 3 1 8 . 1  ^ ■v 32 . 6

. 1 . 7 3 2 2 . 1 . 1 3 8 . 5
1 . 8 3 - 2 7 . 2 4 5 . 7
1 . 9 4 3 3 . 7 6 2 . 6  .
2 . 0 4 42 . 1 7 5 . 7
2 .1 4 . 5 2 . 9 92.  2
2 . 2 -4 ’ 67 0 1 1 3 . 1  .
2 .'3 4 8 5 . 5 1 39 . 8
2 . 4 5 - 1 1 1 . 5 1 9 6 . 0
2 . 5 5 144 . 7 2 4 6 . 7
2 . 6 5 188. 9 312 .  9
2 . 7 5 2 4 8 . 4 399 .  9
2 . 8 5 3 2 8 . 8 5 1 4 . 6
2 . 9 6 4 51 . 1 746 .  1
3 . 0 6 6 0 8 . 0 "  9 78 . 5
3 .1 6 825.  1 1 2 9 2 . 9
3 . 2 6 1127 . 7 1 7 2 1 . 0
3 ..3 7 160 8 . 2 2 5 6 6 . 9  .
3 . .4 > '- 7 2 2 3 8 . 4 3482 .  9
3 . 5 7 3 1 3 8 . 9 4 7 6 2 . 4

Note: A* in this Table is as defined by equation (5 .2 0 ).

• 0
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Step 5: Calculate B-j: .■ B1 = (Rj -  1 +  ^|-)s

AUB '
Step 6 : Calculate L: L =

= 0.7709\
 ̂ + VBq + AW + (b+cn)(1+AB^)/s

■1 -f A81 + t sBq +  A (xr +Ts )

= 2.2705

Therfore, the semi-economic control plan specifies the parameter values as

n=5, s=1.40, k=2.80 ," k, =0.85*k =2.38 with the loss-cost function" value ©  a w a
of 2.2705, winch is  only 0.09 percent above the exact loss-cost value 

of 2.2685, given in Table 5.2. ,

"4 .
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CHAPTER 6

AN ECONOMIC DESIGN OF CUMULATIVE SUM CHARTS 

‘ TO CONTROL NON-NORMAL PROCESS MEANS
t  •»

4 .

Even tffcugh x-charts have been popularly used fo r over f i f t y

years, the increasing compl(xity o f . industria l processes.have

.necessitated a search fo r more e ff ic ie n t and economical means o f

improving-quality control. An important development in this direction
* .

was the introduction o f Cusum charts by Page [1954a] which have gained wide

application ever since. The major application o f cumulative sum charts

is in industrial quality  control, where the results from testing and

irtspecting the product are received in sequence and a prompt decision

is required when the process starts malfunctioning. In this Chapter,

a single assignable cause model under operating policy I I  for an
>

economic design of cusum charts is considered. The economic design of the

„ cusum charts involves the determination o f the design parameters that

. minimize a relevant cost function. The design parameters are the

sample size n, sampling in terval s, the reference value K,and the ®
*

decision interval h. Approximating the non-normal probability  density 

function 6 f  the process by an Edgeworth series, and deriving the average 

run lengths in cusum control schemes by the use o f a system o f linear  

algebraic equations, an expression fo r the expected loss-cost function 

for the process is defined. Using the decision in terval scheme, an

'■102
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- ite ra tiv e  algorithm is  developed and used fo r near-optimal determination 

of design parameters. A sim plified  version o f the algorithm is  also 

devised. F in a lly , comparisons are made among the relative.performances > 

o f economic design o f x-charts with and without warning"!imits and cusum .
t . • • '

charts. * ■ . _

6.1 The Assumption of the Process Model

The assumptions regarding the s ta te , nature, and operating

conditions o f the procesis are the same’as described in sectionv5.lv The

operation of a cusum chart fo r controlling the mean of a process

involves taking samples o f size n at regular intervals o f s hours and 
■ ... r  _

p lo tting the cumulative sums S -  E (x.-K ) versus sample number r ,
■ . r  j= l J

where x . is the sample mean o f the jth  sample, and K is  the prespecified
J

reference value. I f  the cumulative sum exceeds the decision interval h,

[ ' i t  is  concluded that an upward s h ift  in the process mean has occurred.

Thus the sample size n, sampling in terval s, reference value K, ahd the 

decision interval h are the parameters required for designing one-sided 

cusum charts. To control both positive and negative deviations from the

process mean a V-mask with lead distance d and h a lf angle or two one-
4

sided cusum charts wfth reference values K-j, (K̂  > «2 ) and with respective 

decision intervals h and -h may be u tilize d  [Goel and Wu, 1973].
v

6.2 Formulation of Loss-Cost Function

Following the same procedure ,as described in section 5 .2 , fo r the 

development o f loss-cast function fo r x-chart with warning 

lim its  the loss-cost function of the process under a cusum
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control chart can be defined'as follows

■AUB, + VBn + AW + (b+cn)(l+AB,)/s
('6.1.)

1 + AB-j + t sBq + A (tr  + Tg)

‘ and

(6.2)

(6 .3)

/

J

Bq and B-j are calculated as in section 5.1 using the corresponding

The objective is to minimize the per-hour loss-cost function L 

with respect to the design parameters s , h, n and K- However,, i t  is 

noted that the function L also depends on Rq , and R-j which are in turn, 

functions o f h, n and K. Also the basic integral equations fo r  

evaluating Rq and R-j involve the non-normal d istribution o f the quality  

characteristic o f the product- Thus an analytical solution fo r the 

design parameters seems d if f ic u lt .  In the following section, an 

ite ra tiv e  optimization algorithm is proposed which minimizes the loss- 

cost function L, and converges to near-optimal values of the design 

parameters. A sim plified scheme to determine the design parameters is 

also presented, which is less complicated and therefore is more applicabl 

at the shop leve l.

values of Rq and R̂  from the cusum chart.
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6 .3  Determination of the Control Parameters
' ' I ‘ . ■ ‘ ’ ' »

As.noted before, the loss-cost-function L depends on the ARL 

whose determination is  one of the major d iff ic u lt ie s ' in the design of 

cusum charts. In the past, a number of methods fo r obtaining the ARL

have been reported which u t i l iz e  e ith er approximate expressions or
* «

-  numerical techniques [Barraclough and Page, 1959; Van Dobben De Bruyn,

1968; Kemp, 1958;_Page, 1954b; .Gael, 1971; Goel and Wu, 1971]. In the present 

study the basic integral equations are approximated by a system o f , 

lin ear algebraic equations [Goel and Wu, 1973]-?'and solved numerically 

to obtain the ARL of the cusum charts fo r non-normal process means.

6.3.1 Determination o f Reference Value K. There is strong numerical 

and theoretical evidence [Ewan and Kemp, 1960] that fo r given R^jthe 

value o f Rq approaches i ts  maximum when K, the reference value, is 

chosen midway between the AQL and.RQL. Thus,

K « vQ + ^  6o -(6.4)

6 .3 .2  Determination o f the ARL by a System of Linear Algebraic Equations.
» .

Following the wo.rk of Page [1954a], .the ARL of a one-sided cusum chart 

fo r controlling non-normal process means, with horizontal boundaries 

at (0,H) is defined as

AM- = T ^ r n  ' (6-5)

where P(0) and N(0) are special cases at z=0 of P(z) and N (z), which 

are defined as follows. • /
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-z H
P(z) *  /  g,(x)dx + /  P(x) . g .(x -z )d x , 0 < 'z < H , ( 6 .6 )'“

1 0 1 ~  . -
and

H
N(z) = 1 + /  N(x) . g ,(x -z )d x , 0 < z < H , (6 .7)

0 . . . .

x - -  K •.
where g ,(x ) is  the pdf of the standardized increments ------»- fn the

c/7rT".

cumulative sum, fo r the'non-normal process with mean 
uQ- K ' ‘ >
— — and-with non-normality, parameters .-w and and H i: 
cf/>m * , » * s '

the standardized decision in terval defined as

9 =

H =
o / fc

S u b s t i tu t in g  equation  ( 4 . 3 )  in to  equation  ( 6 . 6 )  o b ta in

P (z )  = /  [ — e — If -  <|) ( x - e )  + ---------- <j> ( x - 8 )  + — - <j> (x-
- ”  . ^  6 ^  ’ 24n 72n

;  ,H C_L. e- V 2 ( x - e - z ) 2 . . %  * ! 3 ) ( j( . 6 . 2) ,+ I L

0 6 $ r  ' . • 24n

Y -,2 '(6 .)
+ ------ 4> ( x - 6 - z ) ]  P (x )d x

72n

o r ,

Y 1 (2 )  Yo (3 )  y , 2  (5 )
P (z )  = < i> ( - z -e ) ------ ^  ( - Z - 9 )  + — <j> ( - Z - 9 )  +. —  4> ( - z - e )

6>4T 24n 72n

r 1 - 1 / 2 ( x - e - z )  ^1  ̂  ̂  ̂2 ^
+ /  [ — : e ' < ------------$ ( x - e - z ) ,  + ------ <j> ( x - 8 - z )
' 0 • 6Jn ^4n

Y-|2 ( 6 )
+  ij) ( x - e - z ) ]  P (x )d x

72n
(6 .8)
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where 4>(x) js the cumulative d istribution function of the standardized 

normal variate x. Equation (6 . 8 ) is  a Fredholm integral equation of ■ 

the second kind, which may be reduced as follows, using the method
v

given by Kantorovich and Krylov [1958].

- . Y-I (2) ' y p (3) Y t2 (5)
P(z) = * ( - Z - f l )  tj> C-Z-6 ) + -----  4* (-Z-8) +  —  <j> ( -Z -8 )

6v7 • 24n 72n

m * , - l / 2 ( z . - 0 - z ) 2 Y-, (3) y ? (4)
+ z A. [— e J ----- -<j> ( z . - 0-z ) + ------ 4>' ( z - e - z )

j= l J f i x  6Jn J 24n J

Y -|2 ( 6 )
+ —1— <j, ( z , - 0 -z ) ]  P (z .) . - (6 .9 )

72n - J J

In the above expression, z . are the Gaussian, points (the roots
* J

o f the Legendre polynomials), A. are the Gaussian coefficients (weights)

fo r the in terval (0 ,H ), and m is the number o f Gaussian points. To

determine the values o f P( z - ) ,  m linear algebraic equations area j
developed as follows. Since 

1 m
e A,. = upper l im it  -  lower l im it  = H -  0 = H,

. j= l J

and defining,

Y, (3)
K (z .,z .)  = <j)(z . - 0- z . ) ----------<j> ( z —0 - z . )

Y? ^  . Y ] 2  (6 )
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' T t C2) Y2 (.3)
K (z . ,e )= U ( - z . -9 )  -  —  i> ( -z .-e )  + —  "i C -z.-e)

1 " 6^  
Y -|2 (5)

24n

72n
* '(-z^ -8 ) (6. 11)

we have the. following system of linear equations.

P(z-| )-A 1 K(z1 ,z 1 )P (z1 ) -A^KCz^,z1 )P(z2 ) . . -AmK(zm,z 1 )P(zm) -  K(z1 ,e) 

PCz^-A-jKCz-j 5z2 )P (z 1 )-A 2K(z2 >z2 )P (z2 ) . . - A tnK(zni,z2 )P (zm) = K(z2 ,e )

P(zm>-All<(zl'zm)f(2l)-A2l<(zin’z2)f(z2>--V(z«,*2m)p(zn,) = K<V6)
The above system can be'w ritten in a compact form by using the matrix 

notation. Let

{1 -  A^z- j  .z-j}} {-A2K(z2,z1)> . . .  {-AmK(zm,z1)>

A =

Hence,

or

{ -  A1K(z1 ,z2 ) }  { l - A ^ z ^ z ^ } . . .  { -AmK(zm, z 2 )}

{ -  A1K(z1 ,zni)> {-A2K(z2 , zm)}  . . .  { l - A mK{zm,zm)}

P = [P(z-,) P(z2) . . .  P i z J V  

V, = [K(z-j ,e) K(z2 , 0 ) . . .  K(zm»8)3'

A P. = ¥

P *  A" 1 Y. (6 . 12)

provided is not singular.
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S im ila rly -fo r equation (6 .7 ) we obtain

m . - l / 2 ( z . - 0 - z } 2 Y-, (3) Yp (4)
N(z) = 1 + [  i  A. 4 =  e 3 -  -  - i -  $ (z .-e -z )  + —  <f» (z - 0-z )

j= l  3 6Vn 3 24n 3

. Y i 2 (6 )
+ —  * ( z . -9 -z ) ]  N (z .) (6.13) .

72rr 3 3 ’

which insults in

N = A" 1 I  (6.14)

where

N_ = [ N C z ^ ) N ( z 2 ) ... N ( z m )] 1 

1 = [ 1. 1 ' . . .  1 ] '

The' calculations of P(z) and N(z) are easily  performed on a .d ig ita l 

computer. The number o f Gaussian points, m, is  chosen to achieve the 

desired accuracy fo r a given problem. To obtain the ARL, z is set equal to 

zero in equations (6 .9 ) and (6 .1 3 ), and the values of P(0) and N(0) 

are'then substituted fo r P(0 ) and N (0), respectively, in equation (6 .5 ) ,  

with H and e =$^n/2 fo r R-j, and H and 0 = -&j/n/2 fo r Rq.

6 .3 .3  Determination of s. The optimal value of s is obtained by 
31-setting —  = 0 for given values o f n, h and K. This yields• cS

? 3Bi
{U+TsB0U+AU(Tr+Ts}-B0V-AW} (g ^ )

2 3Bn+s {V+AB1V+XV(Trt i s)-ATsB1U-AxsW} ( J )

-  (b+cn) [ { l+ *B-j+TsBg+x(.Tr+Ts) y (1+^B-j)
3B gg

+Tss(l+XB1 )(g i ^[-Xs{TsB0+X(Tr+Ts)}(g i l ) ]  = 0 (6.15)
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9

where

Equation (6.15) is  a quadratic equation in s, which can be solved 

on a computer with a n -in it ia l root derived below. In practice the 

values o f X and 1/Rg are very small. Hence the quantity 

AB.j+TsBg+x{Tr+Ts) in the denominator o f equation (6 . 1 ) is very small 

compared with u n ity , and therefore i t  can be omitted. S im ilarly , in
N

the numerator, the term XB-j is very small compared with unity and thus

algorithm to find the design parameters of the cusum chart for non

normal processes.

6 .3 .4  The Algorithm.

(1) Set the in i t ia l  value o f sample size n-j, i . e . ,  n ^ l

i t  can be omitted. Consequently,

L e 'L' =-XUB1 + VBQ + AW + (b+cn)/s ' (6

3L1The equation r - =  0 is then an approximation to (6 .15 ). Solving for

(6.16)

2 2s, and omittihg the terms X .and X /Rg, one obtains:

U J -  + b+cn)/{AU(R1' -  ^ )} ] (6.17)

which serves as an in i t ia l  root for the numerical evaluation of equation 

(6 .15).

We are now in a position to outline the ite ra tiv e  .optimization
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(2) Set the in i t ia l  value of the standardized decision in terval H .j
J

i . e . ,  H1 > 0

(3) Evaluate Rq and from equation (6 .5 )
• v * ,

(4) Evaluate s from equation (6.15)

(5) Evaluate the loss-cost function L1. from equation ( 6 . 1 )

( 6 ) Increment the standardized decision in terval by aH:

' V i  = Hj + SH
(7) Repeat steps (3) through (6 ) u n t i l ,  fo r some value of the index,

j  such' as J , the following holds

L1 -  L1 < 0  LJ+1 \J  LJ-1

Let L*(n..) = L^. Thus, L*(n^) is the minimum loss-cost function 

corresponding to the sample size n ..

( 8 ) Increment the sample size by 1:

" H I “ "1  + 1

(9) Repeat steps (2) through (8 ) u n til, for some value of the 

index i ,  such as I ,  the following holds

L*(n I+1) > L *(n j) < L*(n];_-,)

Let L** = L * (n j). Thus L** is the overall minimum value of the 

loss-cost function, and the values of R^, R^, s and H corresponding 

to L** are the near-optimal values of the design parameters.

(10) The decision in terval h is obtained from h = Ho/v'rT, and the 

reference value K from:

K = Ug + ^Scr.

The computer program 'CUSUM1 for the above algorithm is developed and 

lis te d  in Appendix V .
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6.4  Numerical Illu s tra tio n

In th is  section, the application of the algorithm is  demonstrated 

via a numerical example. Also the properties o f the optimal solution 

of the control chart parameters, obtained over a wide range o f the 

values o f the non-normality parameters y-j and y2> and the s h ift  para

meter <S, are discussed.

A-Numerical Example
2A non-normal process with mean Pq = 25, variance o = 1 . 2  and 

non-normality parameters y-j = 0.5 and y2 = 1.0 is  considered. Other 

parameters are'assumed as follows: X = 0 .05, 5 =^3, = 150, = 50,

- kr  = 20, ks = 10, xr  = 0 .2 , t = .0.1, b = 0.5 and.c = 0.1 .

The values o f the loss-cost function L and the design parameters

in the neighbourhood o f the optimal point are shown in Table 6.1 and 

depicted in Fig. 6 .1 . The loss-cost function assumes a minimum value of 

L* = 7.0268 

at the .following design parameter values: 

sample size n = 5 

sampling interval s = 0.648 hours 

standardized decision in terval H = 0.70 

ARL at acceptable qu a lity  level Rq = 288.48

ARL at rejectable quality  level R-j = 1.056

Therefore, the decision in terval h is

h = H —  = /(0 .70) (/T72)/»/5 = 0.34 
Jn j  ■
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Table 6.1  Values o f  the Loss-Cost Function  

and Design Parameters in  the  

Neighbourhood o f Minimum P o s itio n .

n s H *0 R1 L

3 0.596 • .,0.75 80.30 1.117 7.3666

0.581 0.80 89.21 1.186 7.3592
0.566 0.85 99.35 1.203 7.3559

0.552 0.90 110.96 1.220 7.3565

0.539 0;95 124.28 1.238 7.3609

4 0.633 0.65 130.86 1.083 7.1030
0.621 0.70 147.77 1.092 7.0965

0.611 0.75 167.47 1.102 7.0941

0.600 0.80 190.54 1.(13 7.0954

0.590 0.85 217.76 1.124 7.1005

5 0.662 0.60 219.50 .1.044 7i0339

0.655 0.65 251.10- 1.050 7.0273
0.648 0.70 288.48 1.056 ' 7.0268
0.641 0.75 332.99 1.063 7.0294

. - *"V
0.633 0.80 386.47 1.070 ' 7.0350

6 0.693 0.55 •347.41 1X123 7.0549
0.688 0.60 ‘400.41 7.0523
0.684 0.65 463.44 7.052!

0.679 0.70 538.88 1.034 7.0543
0.674 0.75 629.88 1.038 7.0586

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



114

,.s = 0.566 
H = 0.85 . 
Rq= 99.35

R-j= 1.203

L = 7.3559.

7.35

.3

7.25

2

-  V  
7.15

Rn= 167.47

s = 0.684

s = 0.648

Rn= 288.48
7.05

3 5

sample s ize, n

Fig. 6.1 Loss-Cost Function and Design Parameter In the 

Neighbourhood of Minimum Position
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and the reference value is  ,

K = jiQ + \  (So = 25 + ' i  C2)C>/n i )  -  26.1
r> *

Properties o f the Optimum Solution

The near-optimal values o f the control chart parameters are 

•obtained over a wide range of'non-normality parameters y-j and y^,  and* 

the s h ift  parameter 5, as shown in Table 6.2.  The rate of occurrence 

of the assignable cause X, and the relevant cost parameters associated 

with Table 6 .2 'are the same as those in Table 6 .1 . The numerical 

values assigned toy-]  are -0 .5 , 0 .0 , 0.5 and those assigned t oy g  are 

- 0.5,  0 .0 , 0 .5 ,  1.0,  1.5 and 2 .0 . The s h ift  param^t^r 6 is assumed to 

vary from 0.5 to 2.25 with increments o f 0.25. For specific values of 

y - j j Y 2 » and 6 , the optimal sample size n, the standardized decision 

in terval H., the sampling in terval s, and the ARLs, Rg and R-j, are obtained 

by minimizing the per hbur loss-cost function L using the algorithm  

described in section 6 .3 .4 .
\

Based on the optimization resu lts , given.in Table 6.2,  the following  

•observations regarding the properties o f the optimal solutions may be 

made.

For the p a ir o f values o f and Y the loss-cost function L 

decreases with the increase o f & in a l l  cases. '  As increases, the sample 

size n decreases which results in the decrease o f variable cost associated’
*

with sample inspection. The sampling in terval also decreases as 5 increases, 

which w ill increase the sampling cost. But with an increase in 6 , the average

1
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Table 6 .2  Values o f  the Design Parameters and Loss-Cost Function o f  
an Economic Design o f Cusiim Chart to  Control Non-Normal 
Process Means. ,

C X -.05, VQ«150f V ^ O ,  kr “20 , ks*1 0 , r r - 0 . Z t x - 0 . 1 ,  b -0 .5 ,  c -0 .1 )

*2

0 . 5 0

. . 6

- 0 . 7 5

- 0 . 5 0 . 0
Y1

0 . 5  - 0 . 5

o♦o i
0 . 5

28 29 29 17 IB 19 n
* 1 .2 1 1 1 . 1 8 6 1 .1 8 6  ' 1 .1 6 9 1 .1 4 2 1 .1 2 9 Rl .

2 4 . 6 2 2 1 . 8 6 2 0 .6 7 5 7 . 3 2 4 7 . 7 2 4 6 .3 7 Ro
- 0 . 5 0 . 4 0 0 0 . 3 5 0 0 .3 5 0 0 . 5 0 0 - 0 . 4 5 0 0 .4 5 0 H

1 .1 5 4 1 .2 0 5 1 1 .2 1 3 0 . 9 2 4 0 . 9 7 6 1 .0 0 6 s
1 1 .0 5 2 1 11 .1057- 111. 1533 9 .3 2 9 0 . 9 .4 0 0 7 9 .4 5 6 3 L-

28 29 29 17 18 19 n
1 .2 1 0 1 .1 8 6 1 .1 8 6 1 .1 6 9 1 .1 4 2 1 .1 2 8 R1

' 2 4 . 6 3 2 1 . 8 7 2 0 .6 8 5 6 . 8 7 4 7 . 4 3 4 6 .0 8 R0

o o 0 . 4 0 0 0 . 3 5 0 0 ,3 5 0 0 . 5 0 0 0 . 4 5 0 O’. 450 H
1 .1 5 5 1 .2 0 5 1 .213 . 0 . 9 2 5 0 . 9 7 7 1 .0 0 7 s

1 1 .0 4 9 1 1 1 .1 0 2 8 1 1 .1 5 0 5 • 9 .3 2 9 4 9 .4 0 1 2 9 .4 5 7 1 I

28 29 29 17 18 19 n

1 .2 1 0 1 . 1 8 5 1 .1 8 5 • 1 .1 6 8  ' 1 .1 4 1 1 ,1 2 8 Rl •
2 4 .6 4 2 1 . 8 8 2 0 .6 9 5 6 . 4 2 . 4 7 . 1 3  ' 4 5 .7 9 Ro

o.s 0 . 4 0 0 0 . 3 5 0 0 . 3 5 0 0 . 5 0 0 0 . 4 5 0 0 .4 5 0 R
1 .1 5 5 1 .2 0 5 1 .2 1 4 0 . 9 2 6 0 . 9 7 8 1 .0 0 8 s.

1 1 .0 4 6 2 1 1 .1 0 0 0 1 1 . 147& 9 .3 2 9 8 9 . 4 0 1 7 9 .4 5 7 9 L

27 29 29 17 18 1? n
1 .2 1 8 1 .1 8 5 1 .1 8 5 1 .1 6 7 £ .1 4 0 1 . 127 R12 3 . 3 7 2 1 . 8 9 2 0 .7 0 5 5 . 9 9 4 6 .8 4 4 5 .5 1

1 .0 0 .4 0 0 0 . 3 5 0 0 .3 5 0 0 . 5 0 0 0 . 4 5 0 0 .4 5 0 R
1 .1 4 2 1 .2 0 6 1 .2 1 4 0 . 9 2 7 0 . 9 7 9 1 .0 0 8 s

1 1 .0 4 2 9 1 1 .0 9 7 1 J 1 .1 4 4 7 ; 9 .3 3 0 2 " ‘ 9 . 4 0 2 2 9 .4 5 8 7 L

27 29 29 17 18 19 n
1 .2 1 7 1 .1 8 5 1 .1 8 5 „ 1 .1 6 6 1. 140 1 .1 2 7 R1
2 3 .3 8 2 1 . 9 0 2 0 .7 1 ■ 5 5 .5 6 4 6 .5 6 4 5 .2 3 Rc

1 .5 0 .4 0 0 0 . 3 5 0 0 .3 5 0 0 . 5 0 0 0 . 4 5 0 0 .  450 H
1 .1 4 3 1 .2 0 6 1 .214 0 . 9 2 8 0 . 9 8 0 1 .0 0 9 s

' 1 1 .0 3 9 6 1 1 .0 9 4 3 1 1 .1 4 1 9 9 .3 3 0 6 9 .4 0 2 8 9 .4 5 9 6 L

27 29 29 17 18 19 n
1 .2 1 7 1 . 184 1 .1 8 4 1. 166 1 .1 3 9 1 .1 2 7 R1
2 3 . 3 9 21 .91 2 0 .7 2 5 5 . 1 3 4 6 .2 8 4 4 .9 6 R0

2 . 0 0 .4 0 0 0 . 3 5 0 0 . 3 5 0 0 . 5 0 0 0 . 4 5 0 0 .4 5 0 H .
1. 143 1 .2 0 6 1 .2 1 5 0 . 9 2 9 0 .9 8 1 1 .010 s

1 1 .0 3 6 3 11 .0 9 1 4 1 1 .1 3 9 0 9 .3 3 1 0 9 .4 0 3 3 9 . ‘4604 L
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Table 6.2 Continued.

*2

oo*

3
1 .2 5

- 0 . 5 0 . 0 0 . 5 - 0 . 5 0 . 0 0 . 5

12 13 13 8 9 10 n
1 .1 2 3 1 .1 0 4 1 .1 0 1 1 .1 2 7 1 .1 0 0 1 .0 7 7 R1

1 0 6 .0 8 9 4 . 1 5 7 5 . 3 0 1 5 9 .1 9 1 3 3 .7 3 1 2 8 .0 2 Ro
- o . s 0 . 5 0 0 0 .5 0 0 0 . 5 0 0 0 .5 5 0 0 .5 5 0 0 .5 5 0 H

0 .8 1 7 0 . 8 5 7 0 . 8 7 3 0 .7 0 6 0 .7 5 2 0 .7 9 3 s
8 .3 7 5 4 8 . 4 5 6 0 8 .5 1 2 2 7 .7 7 6 7 7 .8 6 1 1 ' 7". 9182 L

12 12 13 B 9 10 n
1 .1 2 2 1 .1 3 0 1 .1 0 0 1 .1 2 6 1 .0 9 9 1 .0 7 6 R1

1 0 3 .3 5 8 6 .6 1 7 3 . 9 9 1 5 0 .0 0 1 2 7 .9 2 1 2 3 .4 1 Ro
0 . 0 0 .5 0 0 0 . 5 5 0 . 0 . 5 0 0 0 .5 5 0 0 .5 5 0 0..550 H

0 . 8 1 9 0 . 8 2 4 0 . 8 7 5 0 .7 0 8 0 .7 5 5 0 .7 9 5 s
8 .3 7 9 8 8 .4 6 0 1 8 . 5 1 6 3 7 .7 8 5 8 7 .8 6 9 0 7 .9 2 5 1 L

. ‘ 12 12 13 8 9 10 n
1 .1 2 1 1 .1 2 9 1 .1 0 0 1 .1 2 4 1 .0 9 8 1 .0 7 6 R1

1 0 0 .7 5 8 4 .7 4 7 2 .7 1 • 14 1 .81 1 2 2 .6 0 1 1 9 .1 1 Ro
0 . 5 0 .5 0 0 0 . 5 5 0 0 . 5 0 0 0 .5 5 0 0 .5 5 0 0 .5 5 0 H

0 ,8 2 1 0 . 8 2 6 0 . 8 7 6 0 .7 1 1 . 0 . 7 5 7 0 .7 9 7
8.3841- 8 .4 6 4 3 8 .5 2 0 4 7 .7 9 4 8 7 .8 7 6 9 7 .9 3 1 9 L

12 12 13 8 9 10 n
1 .1 2 1 1 .1 2 8 1 .0 9 9 1 .1 2 3 1 .0 9 8 1 .0 7 6 Rl
9 8 . 2 7 8 2 . 9 6 7 1 . 4 8 1 3 4 .4 6 1 1 7 .7 0 -115. 11 Rq

1 . 0 0 .5 0 0 0 .5 5 0 . 0 . 5 0 0 0 .5 5 0 0 .5 5 0 0 .5 5 0 ft
0 .8 2 3 0 . 8 2 8 0 . 8 7 8 0 .7 1 4 0 .7 6 0 0 . 7 9 9 9

8 .3 8 8 5 8 .4 6 8 5 8 .5 2 4 4 7 .8 0 3 8 7 .8 8 4 8 7 .9 3 8 7 L

12 12 •13 8 9 10 n
1 .12 0 1 .1 2 8 1 .0 9 9 1 .1 2 2 1 . 0 f 7 1 .0 7 5 Rl

• 9 5 .9 2 8 1 .2 4 7 0 . 2 ? 1 2 7 .8 4 1 1 3 .1 8 1 1 1 .3 7 Rn
1 . 5 ' 0 .5 0 0 0 . 5 5 0 0 . 3 8 0 . 0 .5 5 0 - 0 . 5 5 0 0 .5 5 0 Yt

0 .8 2 4 0 .8 2 9 0 . 8 7 9 0 .7 1 7 0 .7 6 2 0 .8 0 1 s
8 .3 9 2 8 8 .4 7 2 6 8 .5 2 0 5 7 .8 1 2 7 7 .8 9 2 6 7 .9 4 5 5 L

12 12 13 9' 9 10 n
1 .119 1 .1 2 7 1 .0 9 8 1 .0 9 2 1 .0 9 6 1 .0 7 5 Rl
9 3 .6 7 7 9 .6 0 6 9 .  14 14 2 .9 8 1 0 8 .9 9 1 0 7 .8 6 Rq

2 . 0 0 .5 0 0 0 .5 5 0 0 . 5 0 0 0 .5 0 0 0 .5 5 0 0 . 5 5 0 Tt
0 .8 2 6 0 .8 3 1 0 .8 8 1 0 .7 5 4 0 .7 6 4 0 . 8 0 3 $

8 .3 9 7 2 9 .4 767 . 8 .5 3 2 6 7 .8 2 1 2 7 .9 0 0 3 7 . 9 5 2 3 . L
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Table 6.2 Continued.

i

1 .  5Q 1 .7 5

*2.
^•0.5 0 . 0

. . .  . 7 

0 . 5
)

- 0 . 5 0 . 0 0 . 5  '

'

- 0 . 5

6

2 4 2 .8 1  
0^ 550  
0 . 6 4 7  

7 . 3 7 0 2

7
1 .0 8 1  

1 8 8 .0 9  
0 . 5 5 0  
0 . 7 0 0  

7 .4 5 8 2

8
1 .0 5 5

1 8 2 .1 7
0 .5 5 0
0 .7 4 3

7 .5 1 5 5

5
1 . 0 9 2

5 1 9 . 8 6
0 . 5 5 0
0 . 6 1 4

7 .0 7 2 7

6'
1 .0 5 8

3 1 6 .5 4
0 ;5 5 0
0 .6 7 1

7 .1 7 1 4

6
1 .0 5 7  

2 1 2 .1 0  
0 . 6 0 0  
0 . 6 8 2  

7 .2 2 2 9

n
Rl

%  • 
s 
L

. *‘:T

0 . 0

6
1 . 1 1 2

2 1 5 . 8 8
0 . 5 5 0
0 . 6 5 1

7 . 3 8 4 9

7 » 8 
1 . 0 8 0  1 .0 5 4  

1 7 4 .4 6  , , .1 7 1 .9 8  
0 . 5 5 0  0 . 5 5 0  
0 . 7 0 3  0 . 7 4 6  

7 .4 6 9 9  7 . 5 2 4 7

5
1 .0 9 1

3 9 7 . 6 5
0 . 5 5 0
0 . 6 1 9

7 . 0 9 2 2

6
1 .0 5 8  

2 7 9 .1 1  
0 .5 5 0  
0 .6 7 4  

7 .1 8 5 1

6-
1 .0 5 7

1 9 5 .4 5
0 . 6 0 0

■ 0 .68 5
7 .2 3 5 3

n

&  ’ 
"ft

s
L

• 0 . 5

7
1 . 0 7 8  

2 6 2 .0 8  
0 . 5 0 0  

X I .  6 9 2  

7 . 3 9 9 2

7
1 .0 7 9

1 6 2 .6 7
0 . 5 5 0
0 .7 0 6

7 .4 8 1 5

' 8 
1 .0 5 4  

1 6 2 .8 8  
0 . 5 5 0  
0 . 7 4 8  

7 .5 3 3 9

5
1 .0 9 0  

3 2 1 . 9 6  
0 . 5 5 0  
0 . 6 2 4  

7 .1 1 1 5

6
1 .0 5 7

2 4 9 ,6 0
0 .5 5 0
0 .6 7 7

7 .1 9 8 7

6
v 1 .0 5 7  

1 8 1 .2 3  
0 . 6 0 0  
0 . 6 8 8  

7 .2 4 7 5

n

&
%  *

s
L

i .o

7
1 .0 7 7  

2 3 5 .6 9  
0 . 5 0 0  
0 . 6 9 5  

7 .4 1 1 8

7
1 .0 8 7

1 7 2 .9 7
0 . 6 0 0
0 .6 9 9

7 .4 9 2 5

8
1 .0 6 0

1 7 3 .8 6
0 . 6 0 0
0 .7 4 1

7 .5 4 2 7

5
1 . 0 8 9

2 7 0 .4 8
0 . 5 5 0
0 . 6 2 8

7 .1 3 0 5

6
1 .0 6 3

2 5 7 .0 9
0 .6 0 0
0 .6 7 3

7 .2 1 2 2

6
1 .0 6 3  

1 8 9 .4 7  
0 . 6 5 0  
0 .6 8 2  

7 .2 5 9 1

n

. Ro
- H 1 

s 
L

1 .5

7
1 .0 7 7  

2 1 4 .1 2  
0 . 5 0 0  
0 . 6 9 8  

7 .4 2 4 3

7
1 .0 8 6  

1 6 1 .7 5  
0 .6 0 0  
0 . 7 0 2  

7 .5 0 3 4

s'
1 .0 6 0

1 6 5 .0 1
0 .6 0 0
0 .7 4 3

7 .5 5 1 1

5
1 .0 8 8  

2 3 3 .2 0  
0 . 5 5 0  
0 . 6 3 3  

7 .1 4 9 5

6
1 .0 6 3

2 3 3 .0 5
0 .6 0 0
0 .6 7 6

7 .2 2 4 7

6
1 .0 6 2  

1 7 6 .7 9  
0 . 6 5 0  
0 .6 8 5  

7 .2 7 0 2

n

R1
ft
s
L

2 . 0

7
1 .0 7 6  

1 9 6 .1 7  
0 . 5 0 0  
0 .7 0 1  

7 .4 3 6 8

7
1 .0 8 5  

1 5 1 .9 0  
0 .6 0 0  
0 .7 0 5  

7 .5 1 4 2

8
1 .0 6 0  

1 5 7 .0 1  
0 .6 0 0  
0 .7 4 6  

7 .5 5 9 5

5
1 . 0 8 7  

2 0 4 . 9 5 -  
0 . 5 5 0  
0 . 6 3 8  

7 . 1 6 8 2

6
1 .0 6 2  

2 1 3 .1 2  
0 .6 0 0  
0 .6 7 9  

7 .2 3 7 2

6
1 .0 6 2 .

1 6 5 .7 0
0 .6 5 0
0 .6 8 8

7 ,2 8 1 3

n
Ri

Rs
s
L
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' Table'6'.2 -Continued...

Yz

2 . 0 0
» -

2 . 2 5

- 0 . 5 ^

oo . Y1
0 . 5  - 0 . 5 0 . 0 0 . 5

4 ' 5 5 3 4 4 n
1 .0 7 0 1 . 0 4 7 1 .0 4 5 1 .0 9 6 1 .0 4 6 1 .0 4 8 R1

7 3 6 .4 0 4 4 6 . 6 5 2 6 5 .2 0 3 1 6 .4 1 4 9 4 .9 8 3 0 4 .1 8 Rq
- 0 . 5 0 . 5 0 0 0 . 5 5 0 . 0 . 6 0 0 0 . 5 5 0 0 . 5 5 0 0 .6 5 0 R

0 . 5 8 6 0 . 6 4 0 0 . 6 5 3 0 . 5 3 8 0 . 6 0 8 0 .6 1 7 s
6 .8 4 9 7 6 . 9 5 7 0 7 .0 0 4 S 6 .6 8 0 5 6 .7 8 6 9 6 .8 4 1 7 ll

4 ‘ ‘ 5
<

5 3 4 4 n
1 .0 7 7 1 . 0 4 7 1 .0 5 1 1 .0 9 4 1 .0 4 6 1 .0 4 8 R1

4 7 6 .2 8 3 7 0 . 9 6 2 6 9 .7 3 7 0 3 .5 5 3 8 7 • 4 0 2 6 4 .6 9 Ro

O o 0 . 5 0 0 0 . 5 5 0 0 .6 5 0 0 iS 5 0 0 . 5 5 0 0 .6 5 0 H
0 . 5 9 2 0 . 6 4 4 0 . 6 4 9 0 .5 4 7 0 . 6 1 2 0 .6 2 0 s

6 .8 7 6 0 6 . 9 7 3 2 7 .0 1 9 4 6 .7 1 8 9 6 .8 0 8 1 6 .8 5 9 0 L

4 5 5 4 4 4 n
1 .0 8 4 1 .0 4 7 1 .0 5 0 1 .0 4 0 1 .0 5 1 1 .0 5 4 Rl

4 2 6 .8 2 3 1 7 . 1 9 2 4 3 .4 3 6 4 7 .9 9 3 6 5 .2 6 2 6 3 .5 7 RO
0 . 5 0 . 5 5 0 0 . 5 5 0 0 . 6 5 0 0 . 4 0 0 0 . 6 0 0 0 .7 0 0 H

0 .5 9 1 . 0 . 6 4 7 0 .6 5 2 0 .6 0 7 0 .6 1 1 0 .6 1 7 s
6 .9 0 3 0 6 . 9 8 9 4 7 .0 3 2 6 6 .7 5 2 5 6 .8 2 7 8 6 .8 7 5 8 L

4 5 5 4 4 5 n
' 1 .0 6 3 ‘ 1 .0 5 2 1 .0 5 0 '  1 .0 4 4 1 .0 5 6 1 .0 2 5 R13 2 6 .5 6 3 1 5 .5 6 2 2 1 .8 0 5 3 0 .0 6 3 4 8 .2 7 4 4 0 .9 3 Rn

1 . 0 0 . 5 5 0 0 . 6 0 0 0 . 6 5 0 0 .4 5 0 0 .6 5 0 0 .6 5 0 R .
0 . 5 9 7 0 . 6 4 5 - 0 . 6 5 6 0 . 6 0 8 0 .6 0 9 0 .6 5 4 s

6 .9 2 8 4 7 . 0 0 4 5 7 .0 4 5 8 6 .7 7 7 3 6 .8 4 7 0 6 .8 9 0 8 L

4 5 5 4 4 5 n
1 .0 8 2 1 .-052 1 .0 5 6 1 .0 4 9 1 .0 5 5 • 1 .0 2 8 R1

2 6 4 ,4 5 2 7 7 . 9 7 2 2 8 .0 2 4 5 2 .0 2 2 9 7 .5 1 4 4 9 .6 6 R01 . 5 0 . 5 5 0 0 . 6 0 0 0 .7 0 0 0 .5 0 0 0 . 6 5 0 0 .7 0 0 R
0 . 6 0 3 0 . 6 4 8 0 .6 5 1 0 .6 0 8 0 . 6 1 3 0 .6 5 1 s

6 .9 5 3 4 7 .0 1 9 3 7 .0 5 8 3 6 .8 0 1 6 6 .8 6 4 5 6 .9 0 0 1 L

4 5 5 4 4 5 n
1 .0 8 7 1 .0 5 7 1 .0 5 5 - 1 .0 4 9 1 .0 6 0 1 .029 R1

2 4 9 .7 9 2 7 9 .4 7 2 1 0 .1 7 3 5 6 .1 4 2 9 1 .3 7 4 0 8 .2 5 Ro
2 . 0 0 .6 0 0 0 . 6 5 0 0 .7 0 0 0 .5 0 0 0 .  700 0 .  700 H

0 . 6 0 2 0 . 6 4 5 0 . 6 5 4 0 .6 1 3 0 .6 1 1 0 .6 5 3 s
6 .9 7 7 9 7 .0 3 3 3 7 .0 7 0 0 6 .8 2 4 5 6 .8 8 1 2 6 .9 0 8 7 t
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run length Rq increases. This results in a decrease in the * 

expected number of false alarms. Hence, the search cost is reduced 

and an increase in sampling cost is  compensated. Gradual increases in 

the decision in terval with increasing is obvious. These results are- 

depicted in Figs. 6.2 and 6 .3 .

For given values o f 6 and y2-» the optimum values o f sample size  

and sampling in terval increase with increasing y-j* A large V " 

sampling in terval should decrease the to ta l fixed cost o f sampling. 

Moreover, the average run length at the rejectable quality  level 

. R-]', decreases with increasing y -j .  which results in reducing 

the loss-cost du'e to extended duration o f o ff-ta rg e t product. But, i t  

appears from Table 6.2 that the loss-cost function is  increasing with .. 

the increase o f Y^ .  The reason1 is that' as y -j increases, the average ' 

run length, Rq at the acceptable quality  level decreases, resulting in a

large number of false alarms and thus<a higher loss-cost function value".
f  ...

One such case is  depicted in Fig. 6.4.  I t  is observed that variations  

in loss-cost function and in the design parameter due to variation: of
i

y 2» are consistent in the range of -0 .5  to 0.5 and 1.0 to 2.0,  but its  

effects on Rq is  quite remarkable as shown in Fig. 6.5.

In the economic design o f control charts, sm aller.probabili-ti§s  

of Type I I  erro r are desirable, since they result in smaller ARL values at 

the rejectable quality  level ,  R-j. For example, fo r  a probability  6 f  

Type I I  error equal to 0 .05 , the probability  o f true alarm is 0.95 which 

corresponds to an Rj value of 1/0.96 ~ 1.05. This indicates that the
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ARLs and Loss-Cost Function ■ ■»
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assignable cause can be detected-during a length of time equal, 

on the average, to 1.05 times the sampling in terva ls . The quick 

detection o f the assignable cause tends to reduce the loss-cost due 

to prolonged production of o 'ff-target product.

6.5 A Sim plified Scheme
*

In this section a semi-economic scheme is presented which allows 

the user to specify the value o f the ARL at the rejectable quality  

level , so that a desired level o f protection against the deteriorated  

’ quality  could be obtained. Therefore, fo r a given R-|, Rq may be treated  

as a function of e only.

Considering the defin itio n  o f 8 :

<»0 -  >o
8 = - U— - (6.18)

o/^n

and substituting the value o f K from equation {6 .4 } , we obtain

e = - 1 ( 6 . 1 9 )

Thus; '
46^

n = 2 -sr • (6 .2 0 )
iT

Substituting this value o f n in equation (6 .1 6 ), we obtain
2 ■

L'= XUB-j + VBq + AW + (b+c . ^  ]/s  • {6.21}

Applying the same approximation used in deriving equation (6 .1 7 ), the

near-optimal value of e is  obtained from:
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X '  s m

3L '  3Bn o «
 = V — — + = 0 (6.22)

, 30 36 5 s

Substituting Bq from equation (6 .2 ):

■ . , 4  - f  1 + T2 %  , See n
V -----------------------x----------------------   .  +  —=---- U

Rq . 30 5 S

That  i s ,

(RQ2 e ) / ( ~ ) a —  - (6.23)
u 30 8 c

Define:

A {RQ20) 'D = — —  • "(6.24)
3Rn

( - * )
30 - '

For various values o f e, one can easily compute the corresponding values 

of D, knowing the values o f <5, y -j and by the following procedure:

Step 1: Choose a set o f values for 0 , say (0^ jB g ,.. ,0  ) ,  such that

6 : . > s . ,  and e. > 0 , for a ll i .
v 1 I 1 1 --

Step 2: For each value o f 0 , find the corresponding .value of n,

using equation (6 . 2 0 ).

Step 3: For each pair o f (n^, 0 ^) values, find H -, using the algorithm

described in section 6 .3 .4  for which R-j- = R^* where R-j* is

the set value o f at the desired level o f protection. Rq . 

is now computed fo r the given value of R^..
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Step 4: Having set the values o f Rq's ( I . e . ,  , RQ2 »’ * ’ Rom)

corresponding to e's ( i . e . ,  6^, 92 » -.-» 8m)* compute the

R̂n? 3Rn
vector of derivatives (---------,-------- , . . .  , — ^ n u m e ric a lly .

3 8 ,  3 0 o  3 9? i £i m
Hence calculate the corresponding values of D’ s ( i . e . ,

. Dr  52 , . . . ' , 5 m).

Based .on this algorithm a computer program 'CUSUM SEMI' is developed 

and is lis te d  in Appendix VI . The values o f D, 0 ,- H, and Rq thus 

obtained are tabulated fo r la te r  use. I t  is noted that such a table  

corresponds to specific values o f R^, <S, y-j, andy2. A series o f 

such tables are thus prepared for.a. wide range of non-normality 

parameters y^ and y2 , the s h ift  parameter 5, and for specified values 

of R-j. The application of these tables is now demonstrated through 

a numerical example.

An Example

Consider the same example as in section 6 :5 , fo r which Uq = 25,

= 1 .2 , Y.j = 0 .5 , Y2 = 1.0 and 6 = 2 .0 . Table 6.3 is prepared.for

this example, in which R̂  = 1.05 by assumption. The computations are

performed in the following steps:
2

Step 1: Calculate D: D = —  = 125.
8 c

Step 2: Determine n: From Table 6 .3 , find an in i t ia l  value of 6 = 2.35

corresponding to D -  125. Hence n = ^ ^ 5 ) ^  _ 5 . 5 2 ; since n - 

must be in teger, le t  n -  6 , for which 0 = 2.45 from equation (6.20)
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Table' 6 .3 Sim plified Scheme fo r  Determination 

of Control -Parameters

rE t
Rj = l .05 6=2.00 Y 1=-50 Y 2 = l .00

A
D 0 H

> ■
-

1
16.34 1 .70 0 .2 9 7 2 4 .1 7
17.50 1.75 0 .3 5 0 2 7 .6 0
19.23 1 .80 0 .4 0 2 3 1. 79
21 .32 1 .85 0 .454 3 7 .0 5
23 .94 .1 .9 0 0 .5 05 43.70-
2 7 .1 9 1 .95 0 .5 55 52.21
3 1 .0 8 2 .00 0 .6 04 6 3 . 2 5
3 5 .9 0 2 .05 0 . 6 5 3 7 7 .9 6
42.. 46 2 .10 0.-702 9 7 . 9 7

'  5 0 .8 5 2.  15 0 .7 5 0 125.43
6 1 . 7 7 2 .2 0 0 . 7 9 8  . 164.48
7 6 . 5 2 2 .2 5 0 .8 4 6 22 1 .7 9
9 7 . 9 2 . 2 .3 0 0 .8 9 4 30 9 .1 2  .

125.78 2 .3 5 0.941 4 4 6 .2 3
169.52 2 .4 0 0 . 9 8 9 6 8 1 .1 5
229 .66 2 .4 5 1 .036 1103.08'
335 .45 2 . 5 0 1 *084 1979.23
490.91 2 .5 5 I .131 4022 .5 5
9 2 9 .6 5 2 .6 0 1,179 10384.39

4761.11 2 .6 5 1.227 ... 34180 .96

a  %

Note: 'D in this Table is as defined by equation (6 .2 3 ).
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Step 3: For e = 2 .45, find H = 1.036, Rq = 1103.08. Hence h = ' ' ’

1 .036o /jfi>  0.46 . =
.pn

Step 4: Calculate s from equation £6.17): s = [ C^Qg qq + 0.5 + 0.6}/,.

( 5 x 0 .5 5 ) ]^  = 0.64 hours 

Step 5: Calculate BQ from equation (6 .2 ):  BQ= (1.5625 -  0.0250 + 0.0001)/

1103.08 = 0 .00139/

Step 6 : Calculate B. from equation (6 .3 ):  B.= (1.05 - 0.5 + 0.00267) x
\  w

0.64 = 0.35371

Step 7: Calculate the loss-cost function from,equation (6 .1 )
*•

■ _ 1.7686 + 0.03475 + 3.75 + 1.7491 = ‘ n7n.
1 + 0.017686 + 0.000139 + 0.015

Step 8 : Calculate K = 25 + 1  (2 ) (/TT2l  =26.1

I t  is seen that the loss-cost for the semi-economic, control plan 

is only 0.62 percent above the loss-cost value of 7.0268 given in Table 

6 .2

This sim plified  scheme can be easily  handled by the workshop 

supervisor. I t  may also provide a good in i t ia l  position for d irect search 

for an exact optimum plan.

6 . 6  Application o f Sim plified Scheme to «Two-Sided ChaHs -

In this section we discuss how the above sim plified scheme can 

be easily  applied to a cusum chart with two-sided decision in te rv a l.’ 

Consider a cusum chart which has an upper standardized decision

interval H with central reference value K, and a lower’ standardized
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decision in terval -H w ith a central reference value -K. Then i t  is well,
* v  ■

known that ARL's fo r the cbart are

Rq’ = 1  RQ .a t AQL . - ;

and . ‘ .
R] ' = R1 at RQ.L

' ‘ .Rq and R̂  are the corresponding ARL's fo.r the one-sided cusum chart specified
*

by H and 0 = (yQ-K)/a/y^T . ' I t  is clear that i f  Rq is replaced by 

j  Rq in equation (6 .5 ) ,  (6 .2 3 ), a simplifed scheme can be derived 

fo r  the two-sided case, analogous to the one-sided case developed in section 

6 .5 . The modified procedure fo r applying Table 6 .3 to  the present case, 

/th e re fo re , is /  • ’
VS*-

Equate D to ------  . •
4c

Obtain 0 , H, n , and k by the procedure o f the exampld of section 6.5.

For the purpose of calculating s, use the formula:
4 . \

s = [ ( i r - + b + aO/ULKR, -  j - ] } ] 1 / 2  .
0

Translate H and e into h and K by the same method used in section * •

6.5.. . .

^  6.7 A Relative Comparison Among the Economic,Design of x~-chart, x-
chart with Warning Limits and Cusum Chart

Because of its  s im plic ity  and ease o f.operation, • the-'x-chart with

action lim its  has been in use for about f i f t y  years. The >T-chart with 

warning lim its  has become popular during the recent years since i t

is generally believed that i t  is  more e ff ic ie n t than the iT-chart
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• tc

* —
' ' fo r detecting the shifts, in the process mean. But, ther$ are certain

' . ' \  • * _  . ' 
disadvantages in the operation of the x-chart with warning l im i ts . ’ ^

The use '-o f warning lim its , in addition to the control l im its ,  /mplies that

a certain number, Rc , o f successive means must fa l l  between the warning

and' control lim its  to take action. I f ,  fo r example

, Rc = 3 , then two points in th is  area, followed by a th ird  mean

between the centre Tine and the warning l im it ,  would cause no action.. .

Even another point between the same warning lim it  and control lim it

would not constitute convincing evidence of a s h if t  in the process

mean.. In other words, there is no cumulative e ffec t of the mean

points that deviate from the expected value-uni ess Rc number of 
*• _ "
points (Rc = 3 fo r this example) successively appear in between 

the warning and the control lim its . Now i t  is certa in ly  possible 'r’-r 

that a s h if t  could occur in the process mean and remain undetected 

fo r  a substantial period. %
In contrast, the cusum chart is based on a ll sample points rather 

than the las t few samples. The chart deals with retrospective 

examination of* the past samples -to detect the-occurrence of s ign ificant 

changes in the process mean.

The'purpose of th is  section is  to make a comprehensive comparison of 

the performances of the x -chart, the x-chart with warning lim its  and the cusum 

chart a t various degrees o f.sh ift in the process leveT. In the past, using

the average run length crite rion  under the normality assumption, .many authors 

[Goldsmith and W hitfie ld , 1961; Roberts, 1966; Goel, 1968] have studied the 

the performance characteristics of x- and cusum charts.' They compared 

th e ir  re la tive  e ffic iencies  in detecting lack of control. In this section,

*

j
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■*>if

under non-normality assumption the'minimum loss cost

c rite rio n  is  employed fo r each chart as a measure of its  performance.

• The cost factors associated with each chart are assumed to be
* t

^  equal. AIT the three charts are considered to be one-sided.

/  Consider a process operating under Policy t l .  The s h ift
’ 2•parameter fi, mean jig, variance o , and non-normality parameters. ^

' c J foe process elong with the relevant cost factors are
.  f „

known. The optimum design .parameters and loss-cost function of .the x-

chart, .x-chart with warning lim its  and cusiim chart are obtained by 
- ** *

( 'the methods given in sections 4 .3 , 5.3 and 6 . 3 , respectively. The

4 for

In addition to the optimum design parameters, and loss-cost

fo r each of the corftrol charts at various levels o f shift: parameter

<5, the corresponding averag"e run lengths Rg and are also shown.

The rate of occurrence of' the assignable cause A* mean yg» variance 

2 * •
a , the non-normality parameters Y - j ^  anc* the cost factors, associated 

with Table 6 .4  are

A = 0 .05 , yQ = 0 .0 , c2 = 1 .0 , y-| = 0 .5 , y2 = 0 -5 , VQ = 150.0, V-j = 50,

k = 20, k = 10, t = 0 .2 , t = 0 .1 , b = 0.5 and c = 0.1.
i ^  r  s

I t  can be seen from Table 6.4 and F ig .' 6 . 6  that for the sh ifts

in the process mean between -0.50 and 1.5a the loss-cost for the cusum

chart is s lig h tly  less than that o f .the x-chart with warning lim its . 

However,the loss-cost due to the x-chart with warning lim its  is lower ..

Ipss-cosis fo r these charts have been .̂compared in Table: 6 . 

various sh ifts  in the' process mean.
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Table 6 ,4  Comparison o f  Three Minimum-Cost .Control Procedures'

,

( *= 0 .0 5 ,

t r - o . z .

T l= 0 -5 ,  Y,2 

Ts= 0 .1 ,  b= X3
 

11 v0“ 150 

c » 0 .1 )

,  V^O, icr =»20 10,
•> ""

&

x-C harts
i

x-C harts  With 

W amjng U n i t s
Cusun "Charts

n s ’ R0 «1 L n s Ro , L n s «o R1
L •

0 .5 0 30 1.26 20 1 .17 11.1468? 30 1 .24 20 1.17 11.1443 29 1.21 21 1.19 11.1447

0 .75 19 1.01 43 1.12 9 .4623 19 1.01 44 . 1.12 9 .4593 19 1.01 46 1 .13 9 .4587

1.00 13 0 .8 8 70 1 .10 8.5272 13 0 .8 8 73 1.10 8 .5250 13 0 .8 8 72 1 .10 8.5244

1.25 10 0 .80 111 1 .07 7.9397 10 0 .8 0 114 1 .07 7.9391 10 0 .8 0 115 -1 .0 8 7.9387

1.50 8 0 .7 6 161 1.06 7.5742 . B 0 .7 4 165 1.06 7.5426 8 0 ,74 174 1.06 7.5227

1.75 8 0 .69 175 1.06 7.2590 6 0 .6 8 182 1.06 7.2592 . 6 0 .6B 190 1 .0 6 7.2591

2 .00 5 0 .6 6 222 1 .05 . 7,0449 5 0 .65 230 1.05 7.0458 5 0 .6 6 222 1.05 7 .0458

2 .25 5 0 .6 6 434 1.83 6 .8885 4 0.62 238 h 0 5 6.8915 5 0 .65 441 1.03 6.8908

•s.

\

’ 
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than that o f the x-chart with action lim its . But when the s h ift  in the 

process mean is  above 1.5a, the loss-cost fo r the x-chart is  s lig h tly  less 

than th a t o f the x-chart'w ith  warning lim it  and cusum charts. I t  is also 

observed from Table 6.4 th a t, fo r each of these {jparts, the re la tiv e ly  

large, sample size and large sampling in terval are mom economical fo r  a^.frnall 

s h ift  in the process mean. However, fo r th e ,sh ifts  greater than J  

1.5a, small sample size and frequent sampling are desirable. f  

A professional quality  control engineer is always concerned with 

the optimal selection o f producer's and consumer's risks which a re , respectively 

analogous to the probab ilities o f Type-I^and Type I I  errors fo r an
a ’ ’ 1

x-chart. The d e s ira b ility  o f small or optimal values of the Type I  

and Type I I  errors fo r an x-chart can be translated into the d e s ira b ility

of a large average run length Rg, when the process/is' in control and 

a short average runr length R1 , when the process is  out o f control , 

respectively, fo r an x-chart with warning lim its  and fo r a cusum 

chart. Extensive numerical studies based on Table 6.4  reveal that there ‘are
i

no appreciable differences in the average run length R-j among these 

three charts. - • *
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x-chart w ith warning l im it
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' Sh1‘f t  1rt the process mean, a o

1.50 2.25

Fig. 6 .6 Loss-Cost vs So fo r x -chart, x-chart with Warning 

Lim its and Cusum Chart
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__ . CHAPTER 7

MODEL BEHAVIOUR UNDER’HUMAN ERROR AND 

EXTREME SAMPLE DISTRIBUTIONS

This chapter addresses, the effects  of human errors on the

models developed for the economic 'design of control charts in the
* ’

present study. I t  also includes the discussions on a simulation of 

the model behaviour under extreme, cases o f sample d istributions.

7.1 The Effects o f Human Errors /

I t  has been mentioned e a r lie r  in this dissertation that the 

industria l products are the outputs o f man-machine systems. In 

developing the mathematical models fo r the economic design of control 

charts in chapters 4 -6 , the presence of inspection or measurement errors 

was. not considered. The assumption was that these errors did not occur 

or, i f  they d id ,th e ir  frequency was low enough that they had-no 

practical importance in the models. f  In practice, there may be some 

situations where the inspection tasks or measurements |re  not error 

free. In such situations, the presence of inspection or measurement 

errors may seriously a ffec t the level of protection afforded by a 

s ta tis tic a l quality  control procedure [Dorris and Foote, 1979]. For 

these reasons, errors should not be ignored^ Such errors not 

only severely d is to rt qu ality  objectives but also- increase 

the loss-costs. However, once i t  is known that inspection error

136
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N *** 
or measurement e rro r 'is  present, the qu ality  pontrol engineer may ;

V. -
use revised tra in in g  procedures or introduce new equipment to reduce

\
the inaccuracies in the measurements. But the$e actions alone w ill  

-not erase them completely [Jacobson, 1952]. Therefore, in order to make
4

the quality  control procedure more accurately representative, one 

should incorporate these errors in designing the underlying . control 

plan.

- Since the impact o f human factors are ever-increasing in the 

present industria l environment, i t  would be f a ir  to present the 

following discussion on the work done in this area which has not been 

included in the lite ra tu re  purvey in chapter 2 .

Effects o f human errors on various aspects of attributes acceptance
4

sampling' plans have been considered in deta il by several authors 

[Ayoub, et a l . ,  1970 a,b; B i e g e l 1974, Case, et a ! . ,  1975; C ollins, 

et a l . ,  1973,1978; Collins and Case, 1975; Dorris and Foote, 1978,1979; 

Drury, 1978; e tc .] .  Two types of inspection errors'are possible in 

attribu te  sampling plans. These are: an item which is good may be 

classified  as a defective (Type I error) or an item which is defective 

may-be c lass ified  as good (Type I I  e rro r). The performance measures 

such as probability  o f acceptance, average outgoing quality  (AOQ), lo t  

tolerance percent defective (L T P D )to ta l cost per lots and others have
9

been extensively treated in the above mentioned works.

The effects  of measurement errors on variables acceptance 

sampling plans have also been widely studied. Among them - were
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the work of Diviney and David [1963]; and Kei, e t a l . ,
« '

[1975] are noteworthy. There are two types.of erro r involved in 

variable measurement. These are bias and imprecision.

Bias: Bias is .considered as the difference between the true
I ‘

measurement of a product and the long run average o f repeated measure

ments made on the product. Mathematically, bias may be expressed 

as: ye = E(tfg) -  Uq > where ^  represents an observed
, vf

measurement and.yQ is the true measurement of a specified un it.

Imprecision: When the measuring procedure is s u ffic ie n tly  sensitive,

repeated readings on the same unit of product w ill  show a certain

amount of scatte r, whether or not there is a bias or calibration erro r.

This second type o f erro r can be assumed to be normally distributed and to be, 

at least approximately.independent o f the true value of the product.

The standard deviation of these scattered points is known as the imprecision 

error. The usual, well-known remedies o f these errors are [Juran,

1951]: .

1 . use more precise measuring equipment;

2 . in s titu te  an extensive operator-measuring-training program;

‘3. use average rather than single measurements.

Diviney and David [1963] presented the relationships that ex is t 

between measurement error and variable acceptance, and demonstrated a 

corrective procedure which e ffec tiv e ly  minimized unnecessary rejection i n u 

the.variable acceptance plan. .Bias, imprecision, and th e ir combined 

effects on the operating characteristic  curve are examined in deta il by 

Mei, e t a l : ,  [1975]. They presented a method which is e x p lic it ly  designed
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• \

fo r compensating measurement error and-provides the desired operating

curve. ■ ' ~ ■

Only two published works on the control charts under errors are

available in the current qu ality  control lite ra tu re . Both of these

papers assume that the measured variables . are normally

distributed. One o f .  these, the P control chart under inspection .
•• - .■) 

e rro r, was presented by Case [1980] and the other one by

Abraham [1977] covering x, R and cusum charts under the

assumption' of imperfect inspection. Under the assumption of

the normality of. the measured variables and measurement

error e • , Abrahaifi computed the ARL a t 7the acceptable qualityI I
level fo r both x-charts and cusum charts. These results*

were then compared with the corresponding values of ARL obtained 

when there was no measurement erro r. The'effects of measurement erro r  

. on the economic design o f control charts under the assumption of'non-normality 

of measured variables have not been studied yet.

The following assumptions are made to incorporate measurement errors '

- in the economic model of the control charts fo r controlling non-normal 

process means.

1. ' The measured variables are non-normally d istributed with mean
2jjq, variance a , measure of skewness b-j , and measure of 

kurtosis 0£. •

2. Each measurement involves some deviation from the true value.

This deviation, characterized by bias and imprecision, is the 

random variable normally distributed with mean 0 and variance
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oe2 > i . e . ,  N(0,oe2).

3. The lo t d istribution and the measurement e rro r d istribution |

are independent. . ‘
* «.

Let.-the observed measured variable be denoted by:

= x + xe - ‘ (7 .1 )

where x is the true value and X is 'th e  measurement e rro r. Then the
v

probab ility  d istribution of, the observed value is  the convolution 

of the lo t d istribution and the measurement error d istrib u tio n .

That is ,  •

H x 0) = f ^ x )  *  f 2 (xe) . (7 .2)

where *  denotes convolution, f-j(x) is the probability  d istribution of

true value and P ^ a b i l i t y  d istribution of measurement ’

erro r. The mean,standard deviation, the measure, o f skewness, and the

measure of kurtosis o f the observed Xq are as follows:
! / > •

X „ = X + X 
0 e

E(Xq) « E(x^+ xg) = u . (7 .3 )

V(x0 ) = V(x) + V(xe )

= o2 + aQ2  ̂ (7 .4 )

^ (X q ) = n3 (x)' (7 .5)

n^Cxg) = n^(x) + 6.a2 ag 2 + 3ae 4 (7 .6 )

&1 (Xq) = n32(x)/ (a2 4- ag2 )3

8 (x ) = l‘4(x0 )2 Q) (a2 + ae2)2 . . . ‘
where yr  denotes the yth corrected moments.
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Therefore the non-normality parameters y-j(xQ) and y 2 (Xq) o f the 

observed values are:

t  \ T-[Cx) , •

Y l (Xo)  = ( T T T W P 7 5  ' { 7 - 7)

:\ y2 (x)
y 2^x0  ̂ = 7 7 7  &7"2.2 ■ ' (7 *8}

(1 + °e /a  )

Substituting y 1 (xQ) and Y2 (*q) inequations (4.10 & 4.22) fo r y ^ x )  and 

Y2 (x) respectively and, thus compensating for measurement errors, one,could 

easily  proceed with the analysis o f economic design of >T-charts for 

controlling non-normal process means.

7.2 Application of the Model to the Simulated Distributions

Tn th is section, the application of one of the models

developed in chapters 4r-6 is illu s tra te d  through two simulated

non-normal d istributions. These distributions are members of the

following non-normal family o f distributions [Box and Tiao, 1962]:

1 ( 1X1 1 2 / ( 1^ ! ,
\ '2  1 v ' 1f(x ; p, a, n) = w e 

where n is a "measure of non-normality", and

o f1 = r {1 + -̂ ( 1+n)} 2 {1 + 2 ^ + n ^ } 0

J

■ \
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In p a rticu la r, when n = 0, the parent distribution becomes normal; 

when n = T, the parent d istribution becomes double exponential; and 

when n - 1 , the parent d istribution  -tends to uniform.!

This non-normal family of d is trib u tio ns , however, has 

the following lim itations. In using r> as above, the parent 

distribution considers only non-zero fourth moments and assumes 

a synwetric d istribution . VJith the knowledge of*the rvon-normality 

parameters of the simulated dis-tribution, the average run length
V.

R-j, is obtained at d iffe ren t levels o f sample size n. I f  the result 

of R-j fo r given sample size n is in good agreement with the 

corresponding result obtained from the analytical solution, one can 

ju s t ify  the v a lid ity  of the underlying model proposed in this study.

These are accomplished as follows:

\

I .  Consider a two-parameter double exponential d istribution  

with probability  density function

f(x ;  y , ° )  = jra e x̂ y “ 5. x S ™ •••

The cumulative d istribution is given by
i

F(x) = y  e^x~y^ °  x <  p

t

F^x) = 1 -  i * e ~ ^ X"y^ °  x > y

The double exponential random variate x can easily  be generated by
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weans of the following steps: .. ' >

*

( i )  generate uniformly random numbers u in the in terval

[ 0 , 1 ] .

( i i )  i f  u is less tharj or equal to 0 .5 , set u = F(x) => £-e^x“y V

so that x =.y + a log (2 u)

«.

( i i i )  i f  u is greater than 0 .5 , set u = 1 -  1  e " ^ x “ u ^ / 0 ■>

so that x = u -  a log {2 ( l-u )> .
*

Having generated the random variates x . , ( i  = 1 , . . .  ,N) one can find  

the values of the non-normality parameters y^ a n d y g . Substituting  

these values of y  ̂ and in equation ($ .2 2 ) fo r a given value of

control l im it  coeffic ien t !$, and s h ift  parameter 5, the values'of

rt at d iffe re n t levels of P’ could be determined; hence when the

process is out o f contro l, the corresponding average run lengths
*[ * * 

of R-j = p- can be found. For given values o f n, k and 6 , tfie r

values o f  P considering the actual d istribution ' [ i . e . ,  double
V1  ̂

exponential in this case] of the process also can be obtained

from:
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V kc/̂T ^  „

■n P = /  * fCx; o(Jx\\ dx + /  f ( x ;  j i , ,  c/j/n\ dx . . .
- 00 Pg+ka/^

. -k-fîrT “ •
= /  f ( z ;  0 ,1) dz + /  f ( z ;  0 ,1 ) dz (7 .9 )-» ! k-fiVrT

Numerical Il lu s tra tio n  ' .

Consider a double exponential population with mean of 0 and unit

standard deviation. A sample d istribution of th is  population is generated,

and i t  is tabulated in Table 7 .1 , and depicted in Figure 7.1. Therefore,

the values o f the non-normality parameters y-j = 0.05 and y2 = 2.19 are

obtained. Substituting the values o f y-j and y 2 i n equation (4.22)

the values o f P and the corresponding R are obtained fo r d iffe ren t

sample sizes, as shown in Table 7.2. I t  is  assumed that the values of

the control l im it  coeffic ien t k and the s h ift  parameter 6 are fixed.
*

When k = 3, 6 = 2 and n = 5 , from Table 7 .2 , the average run length 

= 1.07. This value of R̂  is considered to be the model value.

The value of R-j can also be obtained a n a ly tica lly  using equation 

(7 .9 ) .

n _ 1 -7 .47  . “ 1 - \ z \  .P = y  e + /  ^ - e l , dz
L -1 .47 Z

= 0.003 + 1 -  e- 1 - 47

=  0.888

Hence, the analytical resu lt of R̂  = 1.12.

I t  is in teresting to note that the value o f P can also be 

calculated from column 5 of Table 7.1 ; i t  is  equal to (1 -  0.109) = 0.881,
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Table 7.1 Sample D istribution of a Simulated Double 
Exponential Population with Mean 0  and 

- Unit Standard Deviation.

 '  ^
■ X FREQUENCY CUM FREQ PERCENT CUM PERCENT

- 5 , 9 1 1 0 , 1 0 0 0 . 1 0 0
- 5 n

A m 3 0 . 2 0 0 0 . 3 0 0
- 4 . 2 1 . 4 0 . 1 0 0 0 , 4 0 0
- 4 1 5 0 . 1 0 0 0 . 5 0 0
—3 ♦ 9 1 6 0 . 1 0 0 0 . 6 0 0
- 3 . 7 O 8 0 . 2 0 0 0 . 8 0 0
- 3 . 5 2 ' 10 0 . 2 0 0 1 . 0 0 0

'  - 3 . 4 4 14 0 . 4 0 0 1 . 4 0 0
- 3 . 3 6 2 0 0 . 6 0 0 2 . 0 0 0

. - 3 . 2 3 2 3 0 . 3 0 0 2 . 3 0 0
- 2 , 9 3 2 6 0 . 3 0 0 2 . 6 0 0
- 2 . 8 4 3 0 0 . 4 0 0 3 , 0 0 0
- 2 . 7 3 2 0 . 2 0 0 3 . 2 0 0
- 2 . 6 4 3 6 0 . 4 0 0 3 , 6 0 0
- 2 . 5 5 41 0 . 5 0 0 4 . 1 0 0
- 2 . 4 6 4 7 0 . 6 0 0 4 . 7 0 0
- 2 . 3 4 51 ‘ 0 . 4 0 0  • 5 . 1 0 0
- 2 . 2 7 5 8 , 0 . 7 0 0 5 . 8 0 0
- 2 . 1 5 6 3 0 . 5 0 0 g 6 , 3 0 0
_ 2 6 6 9 0 . 6 0 0 6 , 9 0 0
- 1 , 9 5 74 0 . 5 0 0 7 . 4 0 0
- 1 . 8 4 7 8 0 . 4 0 0 7 . 8 0 0
- 1 . 7 10 8 8 1 . 0 0 0 8 . 8 0 0
- 1 . 6 .9 9 7 0 . 9 0 0 9 . 7 0 0
- 1 , 5 12 1 0 9 1 . 2 0 0 1 0 . 9 0 0
- 1 . 4 11 1 2 0 1 . 1 0 0 1 2 . 0 0 0
- 1 . 3 11 1 3 1  , 1 . 1 0 0 1 3 . 1 0 0
- 1 . 2 12 1 4 3 1 . 2 0 0 1 4 . . 3 0 0
- 1 . 1 11 1 5 4 1 . 1 0 0 1 5 . 4 0 0
- 1 1 3  ‘ 1 6 7 1 . 3 0 0 1 6 . 7 0 0
- 0 . 9 2 5 1 9 2 2 . 5 0 0 1 9 . 2 0 0
- 0 . 8 3 0 2 2 2 3 . 0 0 0 2 2 . 2 0 0
- 0 , 7 2 8 2 5 0 2 . 8 0 0 2 5 . 0 0 0
- 0 . 6 2 6 2 7 6 2 . 6 0 0 2 7 . 6 0 0
- 0 . 5 3 0 3 0 6 3 . 0 0 0 3 0 . 6 0 0
- 0 . 4 3 0 3 3 6 3 . 0 0 0 3 3 . 6 0 0
- 0 . 3 3 5 3 7 1 3 . 5 0 0 3 7 . 1 0 0
- 0 . 2 3 8 . 4 0 9 3 . 8 0 0 4 0 . 9 0 0
- 0 . 1 3 8 4 4 7 ' V  ' 3 . 8 0 0 4 4 . 7 0 0
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Cont. Table 7.1

0 48 495 4..800 4 9 . 5 0 0
0 . 1 51 546 5 . 1 0 0 5 4 . 6 0 0 -
0 . 2 , 39 585 3 . 9 0 0 5 8 . 5 0 0
0 . 3 46 631 4 . 6 0 0 6 3 ♦ 10Q
0.4 . 32 663 3 . 2 0 0 6 6 . 3 0 0
0 . 5 35 698 3 . 5 0 0 69.80X)
0 . 6 21 719 2 . 1 0 0 7 1 . 9 0 0
0 . 7 .Am *M 741 2 . 2 0 0 7 4 . 1 0 0
0 . 8 24 765 2 . 4 0 0 7 6 , 5 0 0
0 . 9 17 782 1 . 7 0 0 7 8 . 2 0 0
1 14 796 1 . 4 0 0 7 9 , 6 0 0 .
1 .1 28 : 824 2 . 8 0 0 8 2 . 4 0 0
f . 2 15 839 1 . 5 0 0 8 3 . 9 0 0
1 . 3 15 . 854 1 . 5 0 0 8 5 . 4 0 0
1 . 4 19 873 1 . 9 0 0  . , 8 7 . 3 0 0  *,
1 . 5 10 883 1 . 0 0 0 8 8 . 3 0 0
1 . 6 13 896 1 . 3 0 0 8 9 . 6 0 0
1 . 7  ' 8 904 0 . 8 0 0 90 . 4 0 0  '
1 . 8 11 915 1 . 1 0 0 9 1 . 5 0 0  ■ '
1 . 9  • 6 921 0 . 6 0 0 • 9 2 . 1 0 0
*7 7 928 0 . 7 0 0 9 2 . 8 0 0
2 . 1 4 932 0 . 4 0 0 9 3 . 2 0 0
*? 6 938 , 0 . 6 0 0 9 3 . 8 0 0

-r ’1 w 6 944 0 . 6 0 0 9 4 . 4 0 0
2 . 4 3 947 0 . 3 0 0 9 4 . 7 0 0
2 . 5 ' 8 955 0 . 8 0 0 9 5 . 5 0 0
2 . 6  . 11 966 1 . 1 0 0 9 6 .6 0 0 '
2 . 7 2 968 0 . 2 0 0 9 6 . 8 0 0
2 . 8 1 969 0 . 1 0 0 9 6 . 9 0 0
2 . 9 4 973 0 . 4 0 0 9 7 . 3 0 0
3 4 977 0 . 4 0 0 9 7 . 7 0 0
3 . 1 . 3 980 0 . 3 0 0 9 8 . 0 0 0
3 . 2 2 982 0 . 2 0 0 9 8 . 2 0 0
3 . 3 4 986 0 . 4 0 0 9 8 . 6 0 0
3 . 5 *3 988 0 . 2 0 0 9 8 . 8 0 0
3 . 6 '9 8 9 0 . 1 0 0 9 8 . 9 0 0
3 . 7  , 990 0 . 1 0 0  1 9 9 . 0 0 0
3 . 9 1 " 991 0 . 1 0 0 9 9 . 1 0 0  .
4 . 1 1 992 0 . 1 0 0 99.2QT81
4 . 3 1 993 0 . 1 0 0  ■ 9 9 . 3 0 0
5 ' ‘1 994 0 . 1 0 0 9 9 . 4 0 0 ‘
5 . 1 2 996 0 i 2 0 0 9 9 . 6 0 0
5 . 2 1 997 ' 0 . 1 0 0 • 9 9 . 7 0 0
5 . 4 998 0 . 1 0 0 9 9 . 8 0 0
6 . 4 2 1000 0 . 2 0 0 100 .00 0 ,  ’
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Table. 7.2 Average Run Length When a Process-is
Double Exponentially. D istributed  ✓

y-j = 0.05 Y£ = 2.19 5 = 2 k = 3. ^

Sample Size Powerof the Average Run
Test Length .

n P
R1

0 .1 1 9.01
Z j i 0.42 2.39 .

^  3 0.69 - 1.45
4 0.85 1.18

. -5 0.93 1.07
6 0.97 1.03
7 0.98 1 . 0 2
8 0.99 1 .01
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which results in Ru = .1.14. This indicates that the analytical result 

* . o f the average run length R-j, is  very close to both the simulated resu lt

and the resu lt obtained from equation .{4.22) used in the underlying,

model.

I I .  Consider a rectangular population with density function 

f (x )  = ■ ' A < x <_ B

. = 0 otherwise •

The cumulative d istribution .is given by:

F fv l -  /  dx -  X~A ^
' “ £ B̂ A ~ *

Assuming A ■= -100 and B = 100 and following a sim ilar <procedure as applied

to the cwo-parameter double exponential d is trib u tio n , the uniform • 

random variates are generated and the sample d istribution of these generated 

random variates are -shown in Table 7.3 , and depicted in Fig. 7.2. The values of 

the non-normality parameter are, y-j = -0 .5  and Yg = -T -21. Substituting

.these in equation (4 .2 2 ) ,- the average run length of the process under the rect-
<

angular d istribution fo r d iffe re n t sample sizes is evaluated and 

shown in  Table 7.4. I t  is assumed that k = 3, 6 = 2.

From Table 7 .4 , for n = 5, the average run length R-j = 1.08 

the corresponding value obtained from the analytical solution is 1.03. .

Therefore, since the values of fo r various sample sizes of both-o f  these 

underlying simulated process distributions do . not d if fe r  si-gnificantly  

from the corresponding analytical values, validation o f the models 

developed in this study is quite ju s tif ia b le .
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Table 7.3 Sample Distribution of a Simulated 
Rectangular Population'.lWi±h Me’arvO- ■ 

\  and :Unit Standard Deviation.

X 'FREQUENCY ::CUM FREQ. 'PERCENT .CUM PERCENT

- 1  ♦ 7 23 23 2 . 3 0 0 2 . 3 0 0
- 1 . 6 28 51 „ 2 . 8 0 0 5 . 1 0 0 -
- 1 . 5 24 ■ 75 2 . 4 0 0 7 . 5 0 0
- 1 . 4 24 99 2 . 4 0 0 9 . 9 0 0
- 1 . 3 30 129 3 . 0 0 0 1 2 . 9 0 0

- - 1 . 2 21 150 2 . 1 0 0 1 5 . 0 0 0
- l - . i 20 170 2 . 0 0 0 1 7 . 0 0 0
-1 37 207 3 . 7 0 0 . 2 0 . 7 0 0

* - 0 . 9 37 • ■244 3 . 7 0 0 2 4 . 4 0 0
- 0 . 8 28 272 2 . 8 0 0 2 7 . 2 0 0
- 0 . 7 30 302 3 . 0 0 0 3 0 . 2 0 0
- 0 . 6 26 328 2 . 6 0 0 3 2 . 8 0 0
- 0 . 5 31 359 . 3 . 1 0 0 3 5 . 9 0 0

^ - 0 . 4 22 3 d l 2 . 2 0 0 3 8 . 1 0 0
- 0 . 3 27 . 408 2 . 7 0 0 4 0 . 8 0 0
- 0 . 2 19 427 1 . 9 0 0 4 2 . 7 0 0
- 0 . 1 32 459 3 . 2 0 0 45.9 .00

0 27- 486 2 . 7 0 0 4 8 . 6 0 0
, 0,vi 30 516 3 . 0 0 0 5 1 . 6 0 0

0 . 2 31 547 3 . 1 0 0 ' 5 4 . 7 0 0
0 . 3 32 579 3.-200 5 7 . 9 0 0
0 . 4 29 608 2 . 9 0 0 6 0 . 8 0 0  , 

6 3 . 8 0 00 . 5 30 638 3 . 0 0 0
0 . 6 33 671- 3 . 3 0 0 6 7 . 1 0 0
0 . 7 32 703 3 . 2 0 0 7 0 . 3 0 0
0 . 8 19 722 1 . 9 0 0 7 2 . 2 0 0
0 . 9 32 754 3 . 2 0 0 7 5 . 4 0 0
■1 24 778 2 . 4 0 0 7 7 . 8 0 0
1 .1 27 805 2 . 7 0 0 8 0 . 5 0 0
1 . 2 41 846 4 . 1 0 0 8 4 . 6 0 0
1 . 3 32 878 3 . 2 0 0 8 7 . 8 0 0
1 . 4 35 913 ‘ ' 3 . 5 0 0 9 1 . 3 0 0
1 . 5 25 938 2 . 5 0 0  . 9 3 . 8 0 0  '
1 .6, 39 977 3 . 9 0 0 9 7 . 7 0 0
1 . 7 23 1000 2 . 3 0 0 1 0 0 .0 0 0

‘ v
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Table 7.4 Average Run Length R-j When a Process is
Rectangularly Distributed  

« *

Y-j = -0.05 Y2 = ‘ - 1.21  6 = 2 k = 3

Sample Size Power o f the Average Run
Test Length

n P ■
R1

„ ' 1 0.18 5.56
2 0.43 2.33
3 0.67 1.49
4 0.83 1 . 2 0
5 0.92 1.08
6 0.97 1 ;03
7 0.98 1 . 0 2
8 0.99 1.01

\
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furthermore, the optimum designs under these distributions are
9

obtained for a given set of cost factors, rate- o f occurrence of the 

assignable cause X, and s h if t  parameter 6 . The corresponding design ' 

under the normality assumption is  also obtained fo r the purpose of 

comparison. These are shoWri in Table 7.5. The results indicate 

that under'these two extreme sample d istributions, only optimal 

values o f the average run length Rq deviate s ig n ifican tly  from the 

corresponding value obtained under the normality assumption. .Although 

the difference in per-hour loss-cost function under normal and non

normal distributions is not s ig n ifican t, over a long period of operation
\

the difference in to ta l loss-cost may become quite considerable.
O  *  -  ■
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Table 7.5 Compar'ison^of the Economic Design of x-chart fo r ' 
Normal and*Non-Normal Processes.
{ A=0.05', 6=2, Vq=150, V ^ O , T'r= 0 .2 , t  “0 .1 , Kr=20, .
K =10, b=.0.5 , c=0.1)

j  *

Procdss ’ ■’ ' V  h n s k ' P
R1

a
*0

L
'c.

Double-
exponential 0.05 2.19 .5 0 ;6 5 \, 2 .8  7 0.947 1.06 0.0039« 251

/
7.0415 ■

Normal 0 . 0  0 . 0 5 0.65 2,77 0.955 1.05 0.0028 357 • 6.9719

Rectangular -0.05 -1.-21 5 0.63 2.73 0.959 1.04 0.0018 588 6.9245



CHAPTER 8 ’
V

CONCLUSIONS AND RECOMMENDATIONS

*  •

v
• *

The contributions o f the present research may be summarized as

follow s.- , \
; _

The research presents economic models fo r the design of x-charts,

o f x-charts with warning lim its , and of cusum charts to control non-

normal process means. Appropriate search optimization algorithms are

devised and 'are employed on the loss-cost function, derived fo r the

relevant control chart, to obtain the optimal values o f the design
J

parameters. In addition, a s im plified scheme,- applicable a t the

workshop le v e l, is developed fo r each of the control charts. A

se n s itiv ity  analysis is carried out to demonstrate the e ffe c t on the

optimal solution o f varying the model parameters and cost factors.

Subsequently, the e ffec t o f non-normality on the design of control

charts is  studied. Relative performances o f ,the three charts are

compared. Furthermore', model behaviour under human erro r is investigated.
♦

F in a lly , validation o f the model is ju s tif ie d  using simulated non-normal 

distributions. %

4.1 CONCLUSIONS

Findings o f this research bring forth a number o f conclusions, 

which are described below. \

155
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I '

0  *

1. Economic Design o f x-Charts. - A process with a single  

■ «> assignable cause o f v a ri^ fp n  is  considered. The loss-cost function . 

for the process is developed under two operating po lic ies . Policy I  

assumes-that the process is  not Allowed to continue in operation during 

the/search fo r an assignable cause. Policy I I  assumes that the process 

is allowed to continue in operation during the search. An optimization . 

algorithm, based ;pn Hooke and Jeeve's pattern search technique, is 

developed and employed to minimize the loss-cost function under 

both operating policies and thus the corresponding optimal values of 

the design parameters are obtained. The search technique assumes that 

the objective function is convex. Since i t  is very d i f f ic u l t ,  i f  not - 

impossible, to verify  an a ly tica lly  that the objective function is 

'convex, some analysis o f i ts  behaviour is conducted through numerical 

studies and i t  is found that the surface of the objective function is 

approximately convex in the region around the optimal values. Although
«  t .

the above search scheme results in the most economic design, it '*  

requires a good knowledge of mathematics, s ta tis tic s  and computer 

programming. Therefore there is c learly  a need for a simple and concise 

method that would be applicable a t the workshop leve l. The sim plified  

scheme developed here would serve th is  purpose. The tables provided 

fo r the s im plified  scheme can be used to determine the design parameters 

which minimize loss-cost fo r  a specified level of consumer’ s risk (typical

values are 0.1 Or 0 .05 ). Specifying the consumer's risk point to be
/

0.1 or 0 .05 , .enables the manufacturer to detect the.assignable cause 

about 1.1 or 1.05 samples, on the average, a fte r  its  occurrence.
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Numerical studies show that the resulting sim plified scheme is close - 

to the minimum control plan. In addition to the optimal and sim plified  

schemes, an approximate solution procedure is  also presented. However, 

th is solution procedure considers the value of the control l im it  

co effic ien t as a fixed factor. Moreover, i t  does not take into  

account the average time required to discover, and the.cost of searching 

fo r the assignable cause, when i t  exists. N everthe leS sT it\ou ld . be 

used as a good in i t ia l  point of the suggested optimum search/al.gorithm 

and i t  w ill  reduce computational time by a considerable amount.

A s e n s itiv ity  analysis o f the model reveals that the model is 

highly sensitive to the s h if t  parameter and the rate of occurrence 

of the assignable cause, moderately sensitive to .fixed  and variable  

sampling costs, and re la tiv e ly  insensitive to repair and search costs. 

Analysis of the results showed that smaller samples should be taken 

more frequently to detect large sh ifts  in the process means and 

large samples should be taken less frequently for smaller sh ifts . The 

solutions to the m ultip le assignable cause model are found very close , 

to those o f the 'matched' single assignable cause model. This widens 

the a p p licab ility  of the proposed simplifed scheme.

2. Economic Design o f x-Charts with Warning Limits. An optimum 

x-chart design with warning lim its  under Policy IT  is obtained fo r some 

sets o f data. I t  is  found that the most economic choice of c r it ic a l  

run length R£ is  equal to 2 . i t  is  also noticed th a t.th e  e ffe c t o f  

skewness is  more marked than that of kurtosis. I t  is observed from 

the analysis th a t the ra tio  o f warning lim it  coeffic ien t Kw to action ■
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l im it  coeffic ien t k lie s  between 0.80 and 0.90. Accordingly, the 

average value o f th is  ra t io , i . e . ,  0 .85 , is  considered and a 

sim plified scheme is developed under the re s tric tio n  that the 

assignable cause.is detected, on the average, 1.1 or 1.05 samples' 

a fte r  its  occurrence.

3. Economic Design of Cusum Charts.. The design of eusum charts 

involves much more mathematical complexiles than the 3T-chart with 

and without warning lim its . Optimal values o f the control chart 

parameters are obtained over a wide range.of non-normality and s h ift 

parameters. The optimization algorithm enables one to locate the minimum 

where the cost surface is e ith e r s t r ic t ly  convex or re la tiv e ly  f la t  

around.the optimum. .The following observations regarding properties 

o f the optimal solution may be made. For pairs of values of y -|

(measure of skewness) and y 2 (measure of kurtos is ), the loss-cost 

function L, sample size n and sampling in terval s decrease with an
s

increase o f s.- By increasing S, the average run length Rq increases, 

which subsequently decreases the number o f false alarms. Due to  

decreases in s, the expected sampling cost increases, but this increased 

cost trades o f f  with the reduced search cost. For given values of 6 

andY2 > the optimum values of sample s ize , sampling interval and loss- 

cost increases w ith.increasing y-|• But average run length, RQ, decreases 

with increasing y-j- The variations in loss-cost function and in design 

parameters due to variation in are.not remarkable. The sim plified  

scheme developed here can be easily handled by a quality  control p ractitioner. 

I t  may'provide a good in i t ia l  point fo r the proposed search algorithm
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and .may reduce computational complexities by a considerable amount.

A comparison o f the performances o f the three charts indicates tha t, 

fo r a s h if t  in the process mean between ,5a and 1.5o', the performance 

of the cusum chart is better than that of the x-chart with warning 

lim its . However, the performance of the la t te r  is better than that 

of the x -chart with only action lim its . With the s h ift  in the 

process mean above 1.5a, the performance o f the x-chart is s lig h tly  

better than tha t o f the x-chart With warning lim its  and of the cusum 

chart. ,

4J Human Factors. Industrial products are the outputs of man-

machink systems., In p ractice, there'may be some s itu ^ io n s  where

inspection tasks or, measurements are not e rro r-free . In such

situations, these errors may seriously a ffec t the level of protection

afforded by the^quality control procedure. In order to incorporate

these errors in the models, developed in th is research, the required

expressions- fo r mean, variance, measure of skewness and measure of

kurtosis are derived. Under measurement errors, i t  is noticed that ^
2 2the non-normality parameters decrease with increasing a£ /a  (ra tio  

o f measuremenlTer'for variance to process variance).

5. Application o f the Models. Validation of the model is 

ju s tif ie d  by the use of two non-normal simulated distributions (v iz . 

double exponential and rectangular distributions) encountered in 

industry. The optimum designs under these two distributions are 

obtained fo r a given s*et o f cos.t factors, rate of occurrence of the 

assignable cause X, and s h if t  parameter 6. The results indicate that
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under these two extreme sample distributions only optimal values 

of the average run'length Rq deviate s ig n ifican tly  from the 

corresponding value obtained under the normality assumption. Although, 

the differences-in per-hour loss-cost function under normal and 

non-normal d istributions is not s ig n ific a n t, over a long period of 

operation the difference in to ta l loss-cost may become quite
I *

considerable.

8.2 RECOMMENDATIONS

As a resu lt o f this investigation, several additional research 

topics may be proposed.

1. The assumption that the occurrence time of an assignable cause 

follows an exponential d istribution  could be relaxed. I f  the 

probability  o f a process s h ift  within a small in terval of time is 

d irec tly  proportional to the length of the in te rv a l, then this  

assumption is  appropriate. However, i f  the assignable cause occurs 

as a resu lt of the cumulative effects .of heat, v ib ra tion , shock and
• 'S '.  ■ *

other similat* phenomena, or as a resu lt of improper set-up or excessive 

stress during the process s ta rt up, then use of the exponential 

distribution in the model'may not be appropriate [Montgomery, 1980], 

and serious economic consequences may resu lt-from 'th is  model assumption 

[Baker, 1971]. Investigation o f this aspect is  suggested.

2 . The models developed in the present investigation require that a 

s h ift  in process mean be specified. I t  could be of considerable in terest 

to investigate the se n s itiv ity  of the model by assuming 6 as a random
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vari/able with a known probability  derisity fu n ctio n ., '

3 . /  I t  is  assumed in th is  study that when the process is.disturbed  

by\an assignable cause, only the mean changes while"the variance and

non-normality parameters remaip unchanged.. I t  might be interesting
\  ’  '

to investigate how the x-chart and a-chcirt perform together as a 

composite un it and to determine how optimal they are under d iffe re n t  

conditions o f changed mean and standard d ev ia tio n .- “

4. An investigation can be carried out of the jo in t  economic design 

o f the x-chart and R-chart fo r  non-normal.processes. This could be 

donê  using the present study and the works o f Saniga*[1977] and Singh 

[1970]. ‘ ,

5. The simultaneous control o f two or more re la ted , measurable 

variables is of considerable importance™ the f ie ld  o f s ta tis tic a l  

qu ality  control when a function of the product depends .on the {joint 

e ffec t of these variab les, rather than on the separate effects o f each.

•Under the normality assumption the problem has been considered by
"V , «

Jackson [ 1959], and Montgomery and Kalatt [1972]. Analogous to
1 ' V - r

these, an attem ptcould be made to extend the present work into a 

m ulticharacteristic  control chart.

\
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APPENDIX 1.*^"

PROGRAM XB'AR

PROGRAM DESCRIPTION

Thi.s program is used for finding the optimal desidn 
parameters of an x-chart by minimizing the loss-cost 
function L. The pr'odram consists o f .two stades of search ♦ \ 
In the first staSe^lt* provides® an approximate solutioh of 
the desidn parameters* This approximate solution' is used 
as an initial point for the second stade search. These are 
accomplished as Tollowst.

First stadet ■ .
An approximate solution of the sample size is'obtained 

solvind eouation (4.29) for a specified value of a control 
limit coefficient. Function FI presents the eouation 
14.29) and its root is evaluted throudh IMSL< International. 
Mathematical & Statistical Libraries! routine ZREAL1.
An approximate value of sampl'ind interval conditioned upon 
the sample size and control limit coefficient is evaluted 
usind eouation (4',28).

Second sta^et
- In the second stade ,»the program starts search for optimal 
desidn parameters by Hook and Jeev.e's pattern search.
Durind the search f the functional value is evaluated usind 
subroutine C O S T .  ̂ -

NOMENCLATURE

Model Parametrs
ALPH.A
B
C
D t

4

D^LTA^
E

LAMDA
KR
KS

• Descriptions ?.

Type I error
Fixed sampKLirtd costn b *
Variable.samplind costf c ■
AVerade time reouired to find an assidn 
able cause after a true alarm under 
policy I ,
Shift parameter *
Time reouired to take -and inspect a 
sample for the model operatind under 
policy I '
Rate of occurrence of assidnable cause 
Av.erde repair cost rKr under policy II 
Av&rade search cost f K s  under policy II
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%

f

m
R2
TR
TS
P
U
V

VO
<*V, ' ^

V I  J... 

w

Variable Name
First stade
XI
X3
X(l)
X (2 )
X (3) \
Second stade 
XO(I>
XM (I)
XT < I)
FXB 
FXE '
FXT ‘
-ICMAX
IC.

Measure of skewness 
Measure of Kurtosis 
AVerade’ time to repaireTr 
Avejsajde time to search eTs 
Probability of true alarm 4

Loss rate
Average cost of lookind for an assidn 

'^able, cause
Income per hbur when process is in 
'contfpl
Income per hour when the process is 
in out of control
Averade cost of lookind for an assidn 
able when none exists

Initial value of sample size »n 
Initial value of control limit ek 
Current value of sample size 
Current value of samplind intervales 
Current-value of control limit coeffi
cient

. Location of initial base pointse *, 1 = 1 e 3 
Location of current, base pointse. I=ie3& 
Location of temporary base pointseI~le3 
Functional value at initial base point 
Functional value at .current base point 
Functional value at temporary base point! 
Maximum number of iterations 
'Number of iterations

OUTPUT DESCRIPTION 4
XM(1) 
XM(2) 
XM (3) 
P
ALPHA

Sample sizee n ^
Samplind intervale s 
Control limit coefficiente k 
Probability of true alarme P 
Probability of false alarme Alpha

^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  kL ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂  ^  ^  ̂  ̂  ̂  ̂  ̂  k̂  ̂  ̂  ̂  kN tb ̂ b^  ^  ̂  ̂  q\ ̂  ^  ̂  ^  ̂  (p ^  ̂  ̂  ̂  ̂  ^  (p ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂

PROGRAM L5STING
^  ^  ^  ^  ^  ^  ^  ^  k L  k ^  ^  ^  ^  ^  ^  ^  ^  k l k  ^  ^ b  ^  ^  ^  ^  k b  k b  ^  ^  k b  ^  ^  ^  k b  ^  ^  ^  ^  ^  ^  ^  ^  k b  k b  ^  ^  ^  k b  k b  ^  k i k  ^  k b  ^  ^ b  ^  ^  ^ b  k b  k b^ ̂  ̂  ̂  ̂  ̂  ̂  ^ A ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ip ̂  ̂  ̂  ̂  ^ ^ ̂  ^ ̂  ̂
* THE ECONOMIC DESIGN OF X-CHARTS TO CONTROL NON-NORMAL ■ *
^PROCESS MEANS . THE PRORAM IS MEANT FOR BOTH OPERATING *
^POLICIES. THE NUMERICAL VALUES ASSIGNED TO R1 ARE -0.5e0.0e * 
*0.5e 1.0 AND TO R2 ARE -0.5e0.0e0.5e1.0e1.5 AND 2.0 . THE * 
*SHIFT PARAMETER DELTA ASSUMED TO 0.5 TO 2.25 WITH INCREMENTS* 
*0F 0.25. 8 *
^  Ue Ue Ue ̂  ̂  ̂  ̂  ̂  ̂  d/ ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂ b ̂  ̂  ̂^ ̂  ^ ̂  * <p<p *  ̂  ̂  4* 4» *  * 4»̂  <p̂  ̂  ̂  ̂  4> ̂ ^^ ip̂  ̂  4* *  ̂ ^ ^ ̂  ̂  ̂  ̂ ^^^ ̂  ̂  ̂  ̂ ^ ̂  ̂  ̂ ^^ ̂  ^ ̂  ̂  ̂
EXTERNAL FI
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INTEGER NSIG,ITMAX,.LL,IER,NN
REAL LAMDA,KS,KR,F1,EPS,EPS2,BTA,X4(1>
DIMENSION X<3),X0(3),XM(3>,TABLE(8,4,6,6),DEL(3)
COMMON DELTA, LAMDA,R1,R2,V,C,TS,U,TR,B,D,E,ALPH,FP,BK,U,KFMS

\  O ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  «L ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂J (,/ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
C * . • SET. MODEL PARAMETERS' *

^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  l b  ^  ^  ^  ^  ^  ^  ^  ^  ^ U  ^  ^  ^  ^  ^  ^  ^  l b  ^  ^  ^  ^  l b  « b  ^  ^  ^  ^  ^  i b  l b  i b  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^ ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ® ̂  ^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ® ̂ p ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
LAMDA=0.05 
00=150,0 
01=50.00 
KR=20.0 
KS=10♦0 
TR=0.,2 
TS = 0 .1 
U=KS+U0*TS ,
W=KR+KS+V0*(TR+TS)
U=00-01 

 ̂ B.=0;5
C= 0 .1 
D= 0 .0 
E = 0 «0 
DELTA=0.5 
IDELTA=1 

400 CONTINUE 
R l = - 0 .5 
IR1 = 1 

300 CONTINUE 
, ,R2=-0.5 
’ ' IR2=1 *

200 CONTINUE ,
C y ,  ^  ^  ^  J ,  d j  d >  ^  ^  d /  ^  d /  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^ U  > b  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  i b  ^  ^  ^  ^  ^  i b<T ̂  ̂  ̂  4» ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
C * _ FIRST STAGE SEARCH *

^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  « b  ^  ^  ^  ^  ^ b  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^ b  l i t  ^  ^  l l «  ^  ^  ^  d ^  ^  d ^  ^  a b  l b  i t #  t b  ^  ^  ^^ 4> * ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  f  ̂
IF (DELTA.EQ.0,5) Xl=45.0- 
IF(D E LTA,E Q .0.75) Xl=35.0
IF(DELTA;Ea.l.O) Xl=25.0 " -
IF(DELTA.EQ.1,25) Xl=15.0
IF(DELTA.GE,1.5) Xl=5.0 —  --- -
IF(DELTA.LE.1.5) X3=2.50
IF(DELTA'vGT. 1.50) X3=3.0 * A •*
DK=X3 •■;- i’
X 4 (1)=X1 v •

C * COMPUTE THE ROOT OF EQUATION (4.29) USING IMSL ROUTINE*
C * ZREAL1. ARGUMENT REPRESENT? Fl-A .FUNCTION SUBPROGRAM *
C * WRITTEN BY- USER, EPS -FIRST STOPPING CRITERION,EPS2- *
C * SPREAD CRITERIA FOR MULTIPLE ROOTS, NSIG-2ND STOPPING *
C . * CRITERION, ITMAX-MAXIMUM NUMBER OF ITERATIONS,L L-NO. *
C * OF ROOTS TO BE FOUND, IER-ERROR PARAMETER,X4-R0QT , ■*

^  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  d» ̂  ̂  ̂ ̂̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  <P ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂

/   ̂  ̂ ’ • •
'L . . . . . . .
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EjPS=l«OE-5 . ’
EPS2=I,0E~5 . . .
BTA=1.0E-3 . 7 '
•NSIG=5 '*
ITMAX=1000 .
LL=1 '
CALL'• ZREAL1 < F I  r EPS» E P S 2 »F T A »N S I G »LL tX4 f I T H A X r  I E R )
NN1=X4(1)+0♦5
X<1)=NN1 • .
X<2)=SQRT<<ALPH*T+B+C*X<1>>/<LAMDA*U*FP>>
X (3) =X3‘ . -

^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  l b  ^  ^  ^  ^  t b  ^  ^  ^  ^  > b  ^  ^  ^  ^  ^  > L  ^  ^  ^  ^  ^  ^  > b  ^  ^^ ̂  ^ ̂  ̂  ^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ^ ̂  ^  ̂ /p ^
C * . SECOND STAGE SEARCH *
C ^ b  ^  ^  l b  ^  ^  ^  ^  ^  ^  l b  l b  ^  ^  ^  ^  l b  l b  ^  ^  ^  l b  l b  ^  l b  ^  ^  ^  ^  ^  ^  l b  ^  ^  ^  ^  ^  ^  l b  f b  i b  f b  i b  i b  ^ b  i b  ^ b  ^ b  i b  i b  i b  l b  t b  ^ b  l b  l b  i b  i b^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  f  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂

x o ( i > = x < i >
XO < 2)=X(2)
XO < 3)=X(3)
DEL <1> =1. 0
DEL(2)=0.5 .
NN=3
CALL SUBCDELf N N fX T fXO fXMf' f X B f 
TA B LE( XDELTA f I R i  f I R 2  f 1 >=XM( 1 )  
T A B LE (J D E L T A  f I R 1 f I R 2  f 2  > = X M ( 2 )  
TABLE <ID E L T A  f I R i  f I R 2  f 3 ) = X M ( 3 )  
T A B L E ( I D E L T A f I R I f I R 2 f4 ) = P  
T A B L E ( ID E L T A  f I R i  f I R 2  f 5 ) =ALPAH

=FXB

GO TO 200 .
600 ' Rl=Rl-fO.5

IR1=IR1+1 ' ' ■
IF(R1.GT.1.0) GO TO 700 
GO TO 300 

700 DELTA=DELTA+0,25 
IDELTA=IDELTA+1 
IF(DELTA♦G T .2.25) GO TO 800 
GO TO 400

800 PRINT I fL A MDA fO O fO I fK R fK S fT R fT S fB fC fD fE 
IM=1 
IN=2 
PRINT 2
r . n  ^ a «  _

D EL(3)=0 »5

'SEX^TTNE n o  
XIN=IN \ 
DELTA1=0.25DELTA 1=0 ♦ 2o*XIN 
DELTA2=DELTAl+0.25 
PRINT 3 fDELTA1 fDELTA2 '

PRINT 5
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ak.

- p >

1000

1100 

1 -

3

PRINT 4 •
R2=-0.5 ' 1 \
DO 1000 IR2=1 * 6

PRINT .Ilf < (TABLE(IDELTAf IRI r IR2r 1) * IRI = 1 »4>»IxDELtA=IM r IN)
PRINT 12r ( ( TABLE( ID E L T A rIR I»IR2» 2 ) ib IR l» i ? 4 )« IDELTA=IM» IN )
PRINT 13rR2»(<*TABLE<IDEL»TA»IRtf IR2r3) »IRl = lf4> f IDELiTA^iM/lN) 
PRINT 1'41 ((TABLE (IDELTA > IRI»I"R2» 4 >»IR1=1»4)* IDELTA=IM *IN)
PRINT 15i> ( (TABLE (I DELTA r IR1VIR2»3>VIR1 = 1»4) r IDELTA=iM» IN) . 
PRINT lA'f ((TABLE(IDELTA-fIRlfIR2fA)fIRl = lf4’>»I,DELTA=IMfIN)
IF (IR2,E Q * 6 )  00 TO 1000 .
PRINT 4 . -
R2=R2+0.5 • • 1 .
CONTINUE 

IM=IM+2 
IN=IN+2 

’ R2=-0.5 .
PRINT 2 >
CONTINUE 

STOP .
FORMAT ( . ' 1 ' / / / / / / / / 7 LAMDA= '  , F 4 .  2? 2 X , '  P 0 =  7 r F6  ♦ 1 »2X f 7 P I  = 7 i  F 6 . 1  » 2X /  

* 7K R = 7 r F 5 . 1 r 2 X >  7K S = 7 r F 5 . 1 >2Xr  7T R - 7 , F4  . 2  > 2 X f 7 T S = 7 t  F 3 . 1 1 2 X » •' B ~ 7 ,  
* F 4  . 2  f 2X  t 7 C= '^tF4 ; 2 r 2 X » ' D= ' t F 3  ♦ 1 r2 X  r  7 E= '  r F3,» 1 )
FORMAT(7 + '  r80(7- 7) , ' +  ' )■
FORMAT(7 

* 7 ;
* 7 
* 7 
* 7 
* '

* 7 
* 7

! 7 r31Xi -  7 D E L T A 7> 3 8 X > ' ! ' /
I v »1 4 X f F 4 . 2 f 3 0 X r F 4 . 2 f 2 2 X f  7 ! 7 
! 7 r 2 ( 3 0 < > , 4 < 7 ' ) ) r '

/
! ' / ■

R2 ! 7 ,3 3 X > 7 R 17 r3 9X r
- 0 , 5

/
0 \ 0 0 . 5 1.0

! ( 4  (
4 FORMAT( 7 --------- . / , 2 ( 4 ( 7---------------- )  , ' - l  7  )  f  7 -------------------------------J 7  )

5 FORMAT( 71' / / / / / / / / 7 + '  r 8 0 ( 7  —7) f + '  )
11 FORMAT( 7 ! 7 * 2 ( 4 F 8 . O f 7  i 7) N ! 7 )
f2 FORMAT( 7 i  7  f 2 ( 4 F 8 . 2 f 7 '  ! 7 ) 7 S i 7 >
13 FORMAT( 7 7  f F 4 ♦ 1 f  7  ! f » 2 ( 4 F 8 . 2 f 7 1 7  )  f  7  ■> K !  7 )

■14 FORMAT( 7 ■ !  7  r  2 ( 4F8 , 4 1> 7  ! 7 ) 7 . P ! 7 )
15 FORMAT( 7 ! 7  f  2 ( 4 F 8 ♦ 4 f  7  ! 7  ) 7, ALPHA! 7 )
16 FORMAT( 7 i 7 f  2 ( 4 F 8 ♦4 r 7 17 > F i 7 )

- END , 1 i*
C ^  ^  ^  ^  ^  ̂  ^  ^  ^  ^  ^  ^  ^  ^  ^  tb ̂  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  \h ^ ̂  ̂  ^ ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
c * HOOK AND JEEUES SEARCH ROUTINE • *
c ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ib ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂   ̂̂  ̂  ̂  >b ̂  ib ̂ ^ ̂  n* * ̂  ̂  ^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  f  ̂  ̂  ̂  ̂  f  ^ f

SUBROUTINE SUB( DELfNN»XT r XOrXM f F X B f P f ALPHA)
•DIMENSION XX1(‘3) > X T ( 3 ) fX0(3 )  »XM(3) »DEL(3)  
ICMAX-1000 
XM( 1 ) =X0(1 )
XM( 2 ) =XQ( 2 )
XM( 3 ) =X0( 3 )
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XM1=XM(1) M . :
■ , ’ • . XM2=XM(2) . I , - . ‘

XM3=XM<3>
. ■ CALL §OST <XMl’, X M 2 ,XM3V P , ALPHA , FXB')

’ . . IC=©
•21 KK=0 

' ' .* DO 11 1*1,NN \
TEMP=XM <I )
• XM <I ) =XM (I ) +DEL ( f ) x ’

, x m i - x m ( i ) - ;  ■ - •
XM2=XM (2) ■
XM3=XM(3) .
CfiLL COST<XMl,XM2,XM3,P,ALPHA,FXE)

• IFC(FXE.'LT.FXB5.AND.(P.GT.O.O>.AND.(ALPHA. 
>KGE .0.0)') GO TO 12 
XM < I )=TEMP.. -
XM <I )- XM(I)- D E L (I ) • ‘

• • - XM1=XM(1) ’ ‘ .
XM2=XM(2) ' • - '
XM3=XMC3>
CALL C0ST(XM1,XM2,XM3',P,ALPHA,FXE)
-IF ( (FXE.LT.FXB) ♦ AND * CP.GT.O..O) ♦ A N D . (ALPHA. 

,*GE »Q.0)t) GO TO 12 , ' %
XM <I )=TEMP 

1 1  GO TO 11 '
12 FXB=FXE . „ '■ ’

• ■ ' KK=1 • * ■ .. .
c il CONTINUE * ' - -

IF(KK.EQ.O)GO TO '18 /
: DO 16 1 = 1, NN "

16 X X I (I )=XM(I)
DO 13 1=1,NN ■ . •

- ' 13 X T (I )=2.*XX1(I )- X O(I) '
XT1=XT(1)
XT2=:Xf (2) ' . ' V  -•
XT3=XT(3) , :
CALL COST(X T 1 ,X T 2 ,XT3,P,ALPHA,F X T )
DO 14 1=1,NN

14 XO(‘I)=XXl(I) '■
IF < (FXT.LT..FXB) .AND. (P .'GT. 0.0) . A N D . (ALPHA . 

*GE.-0.0)) GO TO' 15 
GO TO 21

15 FXB=FXT.
DO 17 1=1,NN.

17 X M (I )= X T (I ) X ' ,
IC=IC+1

‘IF(IC.GE.ICMAX) GO TO 19 
t GO TO, 21 •
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18 DO 28 I~2fNN •
' v IF(DEL(I).GT*0* 001) GO T030

GO TO 29 
30 -DEL(I)=DEL<I)/2a O *
29 ■ DEL(I)*DEL(t
28 CONTINUE

IF< <DEL<2)♦LE*0»001)»/^JD*<DEL(3)♦LE»0«001)> GO TO 19 
GO TO.21 

' 19, CONTINUE

s RETURN / \
END '

C J ^  ̂  ̂  ̂  U/ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂  tL ̂  ̂  ib ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  \U ̂  ̂  ̂  ̂  yl> a, a, ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
^  ^  ^  ^  O '  ^  “  T *  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  f  ^  ^

c *  A SUBROUTINE FOR COMPUTING LOSS-COST FUNCTION *
C ^lf ^  {(̂  ̂  ^  Uf U/ ̂  ^  sit si* ̂  ̂  ̂  ̂  ̂  U< ̂  ̂  slf ̂  ̂  ̂  ̂  ̂  ̂  ^  "It ̂  W ̂  ̂  ̂  ̂  ̂  «X> ̂  ̂  ̂  ̂  ̂  ̂  ̂ b ̂  ̂^ n* t* ̂  *  n> ̂  ̂  ̂  *  “ *  “ “ ̂  *  <T» ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  <t> ̂  ̂  <p ̂  ̂  ̂  ^ ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ip

SUBROUTINE COST(XIrX2fX3fF>ALPHAfF)
*. ■ REAL LAMDA>KB,KR ' '

COMMON DELtft>LAMDAfRlir'R2^V»C»TSrW»TRFB»D»ErALPH»FP»DKfU>KRrKS 
ALPHA=ALPH
IF( (Xl.LEiOiO) , DR, (X2,LE,0.0) »0R> <X3.LE.0«0) .OR. toLPHA-CE. 

*0.,0>) GO TO 84 - -
Y1=X3-DELTA*SQRT(XI)
CALL EDGW(Yl»XlyH2XrH3XfH4XfH5XfH6XrFIXfPfRlfR2)
TT = <1i0-(1,0+LAMBA*X2>* E X P <-X2*LAMDA))/

1(LAMDA-LAMDA#EXP(-LAMDA*X2))
. B1-X2/P—TT+E*X1+D

Y3=X3 " -
CALL' EDGW<Y3»Xl»H2K»H3K»H4K»H5KfH6K»DIXrP-rRl»R2)
ALPHA1=DIX .
P l = ( H 2 K * R i ) / < 6 , 0 * S Q R T ( X i >  > -  < H 3 t \ * R 2 ) / <  24  , 0 * X 1  >- H 5 K *  ( R 1 *R 1  

1 )  /  ( 7 2  ♦ O/fcXl)
ALPHA2'=Pla
-ALPHA=ALPHA1+ALPHA2 
B0=ALPHA*(1,0-LAMDA*TT)/X2
y'l=LAMDAXcBi*U+LAMDA*W.+T>KBO'+(B+C*Xl)*Cl ,0TLAMDA*Bl)yX2V 
U2=(1.0+LAMDA*Bl+TS*BO+LAMDA*(TR+TS))
F=U1/U2

84 Re t u r n  „
e n d  • •
REAL FUNCTION F1(X4) r>
REAL. X4
REAL LAMDA i-KRfKS •
COMMON DELTA»LAMDA»Rl»R2fV»C»TSrW»TR»BfBrEfALPH»FP»DK»U»KR»KS 
IF(X4«LE,0,0) GO TO 86 '
X2=DK,
CALL E D G W (Y1r X4 »H 2 X »H 3 X ?H 4 X rH5X rH6X*FIX»P*RlfR2)
IF(P.GT.OiO) GO TO 85
GO TO 86 -
Y 1=X2-DELTAfcSQRT < X 4 )

85 FP=l/P-0.5 ’ •
Y3=X2 ‘
CALL EDGlft Y3 >X4 rH2KrH3KrH4K»H 5 K »H6K f B I X »P »R 1»R 2 )
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'  . 1 7 0 '

*

ALPHA-i=DlX ' ■ '
. . P4=(H2K*R1)/<6.0*SGRT<X4) )-<H3K*R2>/(24i0*X4)-<H5K*Rl*Ri

k 1)/<72.0*X4> '
ALPHA2=P4 *
ALPH=ALPHAi+ALPHA2
IF(ALPH.LE.O) GO TO 86 • ' .
DPN1=(DELTA>/<2.0*SQRT(X4>>*ZX 

■•I DPN2=-12♦ 0#R1#(DELT A#X4#H3X+SQRT < X 4 ) # H 2 X )
DPN3=3 ♦ 0*R2* (DELTA*SGRT <X 4 ) *H4X+2. 0 * H3X> 
DPN4=Rl*Rl*(DELTA*SGRT(X4)*H6X+2iO*H5X>
D P N 5 = (DPN2+DPN3+DPN4> / <144♦0*X4#X4)
DPN=DPNi+DPN5
FI =ALPHA2*T+X4* (C-DPN* < Al-PH*T+B+C*X4) / (P**2*FP) +LAMDA*U*E )

‘ r e t u r n  ■
END _ ‘
^  ^  ^  l b  l b  ^  ^  l b  ^  ^  ^  ^  ^  l b  ^  ^  ^  ^  ^  ^  *  | b  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  l b  ^  > b  ^  ^  ^  ^  ^  ^  l b  i b  l b  ^ b  ^  > b  ^  ^  ^ b  ^  ^  ^ b^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  n» ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂
* COMPUTE-THE FIRST FOUR TERMS OF AN EDGEWORTH SERIES *
* AND PROBABLITY OF TYPE I ERROR *
^  ^ b  l b  l b  i b  i b  i l l  l b  ^ b  i b  i b i b  ^  ^  ^  i b  i b  i b  i b  i b  i b  i b  ^  ^ b  ^  ^  ^  ^  ^  ^  ^  ^  ^ b  ^  i b  l b  i b  i b  i ^ ^  l b  l b  ^  l b  ^  ^  l b  ^  l b  l b  ^  ^  ^  ^
^  ^  ^  ^  ^  ^  A  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  I p  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^

SUBROURTINE- EDGW < Yi >Xi»H2X * H3X »H4Xi> H5X r H6X rFIX»P»Rli»R2) 
IF(Yl.EQiO.O) GO TO 89 
ZX=0 ♦ 39894228#EXP (- (Y1*Y 1) /2 ♦ 0)
GO TO 91 . _\ ‘ ■
ZX=0,39894228 
H2X=(Y1*Y1-1.0)*ZX 
H3X=~ <Yl**3-3 ♦ 0*Y1 **ZX 
H4X= (Yl**4r6 .0*Yl**2+3. 0 > *ZX 
H5X=-(Yi**5-10i0*Yl**3+15.0*Yl>*ZX -
H6X= (Yl**6~15i 0*Yi**4+45 ♦ 0*Y1**2-15.0 )*ZX

U /  ^  ^  ^  ^  ^  ^  O .  U >  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  t b  ^  ^  ^

* COMPUTE THE AREA UNDER NORMAL CURVE USING IMSL ROUTINE * .
* MSMRAT(Yi»RM,IER>. ARGUMENT REPRESENT? Yl-VARIATE* RM- *
* THE RATIO OF THE ORDINATE TO THE UPPER TAIL AREA »IER- *
* ERROR PARAMETER \ *
^  ^  ^  ^ b  ^  ^ b  i b  ^  ^  ^  ^  ^  ^  ^ b  i l l  ^ b  ^  ^ i  i l l  ^ b  i l l  k b  ^  ^  ^  ^  ^  ^  ^  l b  ^  ^  ^  ^ b  ^  ^ b  ^  ^  ^  i b  i b  ^  i b  ^  ^  ^  ^  ^  ^  i b  i b  ^^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂   ̂̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  4» ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
CALL MSMRAT(Y1»RMYIER) “
FIX=ZX/RM . "
P=FIX+H2X*Rl/<6. 0*saRT (X I ) ) -H3X*R2/ < 24 ♦ 0*X1 >-H5X* (R1*R1 
)/(72♦0 *X1)
RETURN - •
END .

r  •
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APPENDIX II 

PROGRAM SEMIXBAR

1 0 0

PROGRAM DESCRIPTION \
^  ̂  ̂  ^  ^  Uf ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  A ̂  ̂  ^  Ul ̂  ̂  ̂  ̂  ̂  tO ̂  ̂  ̂  ̂  >L ̂  iL ̂  **  * *  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  A ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂

This prodram is used f o r .deneratind user's 'manual to 
determine the desidn parameters for an x-chart to control 
both normal and non-normal means. The fundamental objective 
of this plan is to detect the assignable c^userwhen it 
occurs? with probability of 0.90 Or 0.95.
NOMENCLATURE

Variable na

DELTA

Description 
Maximum sample size? n ‘ •' 
Control limit coefficientJk 
Shift parameter 
Measure of skewness _■ ^
Measure of Nurtosis 
Specified value of true alarm

OUTPUT ' 
BK 
I
P(I)

kcoeffiecient * 
t n
of true alarm havinjs
I
of type I error
upon the true-alarm P(I)

Control limit 
Sample size 
Probabi1ity 
sample size 

ALPHA(I) , Probability
conditioned 

A<I) Presents eouation <4.;40)
* * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

PROGRAM LISTING
EXTERNAL ALPH
DIMENSION A L P H A (125)» A (125)»A L PHA4(125)f P (125)
^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  t b  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  k b  ^  ^  ^  ^  ^ b^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  /ft ̂  f  ̂  ̂  ̂  ̂
* SET MODEL PARAMETERS R I fR2 ?DELTA AND MAXIMUM ALLOWABLE *
* SAMPLE SIZE NN *
^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  k b  k b  k b  k b  k b  ^  ^  ^  ^  ^  k b
T »  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂
NN=125 
DELTA=1.75 
R l=l,0 
R2=2,0 
D K-1«0
DO 300 1=1 fNN 
BI = I •
X=DELTA*SGRT(BI)-BK
CALL EDW0R(X fZ X fH 2 X fH 3 X fH 4 X fH 5 X fH 6 X fF I X fR 1 fR2)
P<I>=1.0-FIX+H2X*R1/<6.0*SQRT<BI))+H3X*R2/<24.0 *B I >+H5X*(R1*R1> 

1-/<72,0*BI>
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Xl=0«95
IF(P(I).GE.X1) GO TO 200 
GO TO 300- 
PP=1»0/P(I>-0.5
CALL ALPH (DELTA fDK'f IrRl fR2fALPHAfALPHA4)
A d  ) = <DELTA*SQRT <B I ))/ A L P H A 4 d )
PRINT 101f DKf If ALPH A C D f P P f  A(I)
FORMAT(' 7 f5XrF3*1 f5XfI3f5XfF8.5f5XfF8*3f5XfF8«0>
GO TO 400 '
CONTINUE 
DK=DK+0»1
IF(DK»GT*3«5) GO TO 900 if.
GO TO 100 
STOP 
END
^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  k K  k L p  ^  k ^  ^  ^  v * ,  | L |  k ^  k ^  k l k  k ^  k ^  k ^  k ^  k ^  k ^  ^  ^  ^  ^  k W  k L  ^  k ^  ^ ̂̂  ̂  ̂  ̂  ^ ̂  ̂  *  4* ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
* SUBROUTINE FOR CALCULATING EQUATION (4.40) *
^  ^  k L  k b  ^  ^  ^  k b  k b  ^  ^  k b  ^  ^  k b  ^  ^  k b  k b  k b  ^  k b  k b  ^  k b  ^  ^  k b  k b  k b  k b  k b  ^  k b  k b  k b  k b  k b  k b  ^  k b  k b  k b  ^  ^  ^ b  ^
^  ^  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  A  A  A  A  A  A  A

SUBROUTINE ALPH < DELTA fDK»If Rlr R2 rALPHAfALPHA4) 
DIMENSION A L P H A <125)rALPHA4(125)

‘ BI=I 
X=DK
CALL EDU0R(XfZKfH2KfH3KfH4KfH5KfH6KfFIXfRlfR2) 
ALPHA1=2*0*FIX
ALPHA2=(3»0*R2*H3K+R1*R1*H5K)/(36♦0 *BI) 
AA=DELTA*S0RT(BI)

«L ALPHA3=<3kO*R2*H4K+Rl*Rl*H6K)*AA 
ALPHA5=-2'.*(3k0*R2*H3K+Rl*Rl*H5K>

- ALPHA6=(ALPHA3-ALPHA5) /72« ."
■ * ALPHA7=(DELTA*DELTA)*ALPHA6/(AA*AA*AA )

ALPHA(I)=ALPHA1-ALPHA2
ALPHA4 CI)=ZK+ALPHA7 ^

RETURN
END
SUBROUTINE EDldOR(XfZXfH2XfH3X tH 4 X rH5XfH6XfFIXfRl ,R 2 )
IF(X.EQ.O) GO TO 85
Z X = 0 « 3 9 8 9 4 2 2 8 * E X P ( “ C X * X ) / 2 k 0 )
GO TO 86 ‘

85 ZX=0.39894228
' 86 H1X=X*ZX 1  ̂' '

H2X=(X*X-lkO>CZX 
H3X=" < X**3-3\ 0'*X ) *ZX 
H4X= ( X**4-(C 0*X**2+3 ♦ 0 ) *ZX 
H5X=-< X**5~i0.0*X**3+15.0 * X )*ZX 
,H6X= < X**6-15. 0*X**4+45♦ 0*X**2) *ZX 
CALL MSMRAT(XfRMfIER)
FIX=ZX/RM
RETURN
END

>00

101

300
400

900

c
c . 
c

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



173

APPENDIX I I I

PROGRAM - WARNING

PROGRAM DESCRIPTION

This program is used for finding the optimal design ' 
parameters of an x-chart with warning limits by minimizing 
the loss-cost function. The program consists of two stages* 
In the first stage it calculates an approximate 
solution of sampling interval for given value of sample 
size»control limit coefficient and warning limit coeffici
ent. In second stage the program starts search for optimal 
design parameters through four dimensional Hook and Jeeves' 
search technioue. ' .

NOMENCLATURE .

The nomenclature
that of APPENDIX
Variable Name
First stage
XI
X3
X4
X2
Second stage 
X O tt )
XM< I >
XT < I )
FXB
FXE
FXT
ICMAX
IC

for the model parameters is the same as 
I.

Initial value of sample size rn 
Initial value of control limit »ka* 
Initial value of warning limit»kw 
Sampling interval ts

S'
Location of initial base points* 1-1*4 
Location of current base points* I=:l*4 
Location of temporary base points*I=l*4 
Functional value at initial base point 
Functional value at current base point 
Functional’ value at temporary base Point 
Maximum number of iterations 
Number of iterations

OUTPUT DESCRIPTION

XM < 1)
XM<2)
XM (3)
XM(4)
ARLO

ARL1

Sample size* n
Sampling interval* s
Control limit 'coefficient* ka
Warning limit coefficient *kw
Average run length when process is in
control*R0
Average run lensh when process is in
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i • out o f  c o n t r o l ,R l  . ‘
i-F-XB Loss-cost fu n c t io n  , L !

U /  t b  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  > b  ^  ^  ^  k b  ^  ^  ^  > b  k b  ^ k b  k b  k b  ^  k b k b  k b  ^  k b  ^  ^  ^^ ^ ̂  ̂  ^ ̂  ̂  ^ ̂  ̂  ̂  ̂  ® ̂  ̂  ® ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂V ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
PROGRAM LISTING . '

^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  k b  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  k b  ^  k b  k b  k b  > b  ^  k b  k b  ^  ^  ^  k b  k b  k b  k b  k b  ^  ^ ^ k b  ^  ^  k b^
*  THE ECONOMIC DESIGN QF X-CHARTS WITH WARNING L I M l t  TO ’ *

» .. *  "CONTROL NON-NORMAL PROCESS MEANS UNDER POLICY I I  ♦ *
' *  THE NUMERICAL VALUES ASSIGNED -T.0 Rl ARE - 0 . 5 , 0 . 0 ,  0 .5 ,  1 . 0 , *  

*AND TO R2.ARE - 0 . 5 , 0 . 0 , 0 . 5 , 1 . 0 , 1 . 5  AND 2 .0  ♦ THE *
*  SHIFT PARAMETER DELTA ASSUMED TO 0 .5  ,TO 2 .2 5  WITH INCREMENTS* 

• *0F 0 .2 5 .  '• ■ ■ . - *
4C )|( )jc # )J( 4C ♦ )j( )|( )|( 4C 4C 4C )j( )j( 4< )|( )j( )|( )|( )|( )|( )j( )j( )J( 4C $ 4C )j( )|( )|( )jc )j( )|[ 4C )J( )|( )|( )j( )|( )|( )|( )|c )|( )|( 4c )|c *  )|( )|c )f( 4C 4C )f! )|t 4c sjc 4c )|c 4 4c 4c 
REAL LAMDA.,KS,KR ‘ . k
DIMENSION X0(4 )  , XT( 4 ) , XM( 4 ) , DEL( 4 > , TABLE< 8 , 4 , 6 , 7 )
COMMON LAMDA,DELTA,TR,TS,V,U,W,B,C,R1,R2,KR,KS
^  ^  ^  k b  ^  ^  ^  k b  k b  ^  ^  ^  ^  ^  k b  ^  ^  k b  k b  k b  k b  k b  k b  ^  ^  ^  ^  ^  ^ b  k b  k b  k b  k b  k b  k b  ^  k b  k b  k b  k b  k ^  k b  k b  k b  k b  k b  k b  k b  k b  > b  k b  k b  k b  k b  k b  k b  k b  k b  k b  ^ b  k b  > b*  *  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
*  . " SET MODEL PARAMETERS *
^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  k b  ^  k b  ^  ^  k b  ^  d .  k b  ^  ^ k b  k b  k b  ^  ^  k b  k b  ^  ^  k b ^  ^  ^  k b  ^  ^  k b  k b  k b  k b  ^  k b  ^  ^  k b  k b  ^  k b  k b  ^  ^^ *  4* 4* *  ̂  ^ ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  4» * ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
LAMDA=0.01
y o = i50 .o  • ,
01=50.0
KR=20.» 00
1\S=10»0
TR=0♦2
TS?0*A
v=ks$vo*TS
W=KR+KS+V0*( TR+TS)
U=V0-V1
B=0»5 ' ■
C=0.1

«DELTA=0.5  
IDELTA=1 

400 CONTINUE
R l = - 0 ♦5 J
IR1 = 1 

300 CONTINUE 
R2=-0.5  ’
IR2=1 

200 CONTINUE
^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  k b  ^  k b  k b  ^ b  k b  k b  k b  k b  k b  k b  ^ b  k b  ^  ^  k b  k b  ^ b  k b  ^  ^ b^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  4* ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  4̂ ̂
*  FIRST STAGE • *
^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  k b  k b  k b  ^  d k  d k  k b  ^  ^  d k  k b  d f  ^ b  ^  k b  d k  k b  ^* *  ̂  ̂  4* * *  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
I F <DELTA.EQ.0 .5 )  X l=35.
I F <DELTA. EQ. 0 . 7 5 )  X l=25.

' I F ( DELTA.EQ.1 .0 )  X l=15.
I F <DELTA♦GE. 1 . 2 5 )  X l= 5 .0  
I F <DELTA.EQ.0 .5 )  X3=2.0  
I F ( DELTA♦EQ. 0 . 7 5 )  X3=2.25  
IF(DELTA. EQ.1 . 0 )  X3=2.5  
I F <DELTA♦GE.1♦25) X3=3.0
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X4=0.66*X3
Y1=X3-DELTA*SGRT<X1)
Y2=X4-DELTA*SQRT(X1> ,
Y3=X3 ’
Y4=X4 '
CALL" AUY(X1 fY 1 fR 1 fR 2 fP1)
CALL AUY<X1 fY 2 fR 1 fR 2 fP2>
CALL A U Y (XI f Y 3 fR 1 fR 2 fP3 >
CALL AUY(X1 fY 4 fR1 fR 2 f’1P4)
P0=P1-P2 ,
PP=P3-P4 8
ARL1 = (1.0-P0**2)/<1»0-P0-P2*<1.‘-P0**2) )- 
ARLO=(1.0-PP**2)/(1.0-PP-P4*(1.-PP**2)) - 
H1=0/ARLO+B+C*X1 
-H2=LAMDA*U*(ARLl-0.5>
H3=H1/H2 ‘
X2=SQRT(H3)

C a*#********#********#**#********#****#*#*##***
C J *  r . - SECOND ST^GE *
C *##**####*#####**##*##*##***##*##****##**#***#

XO(l)=Xl
X0(2)=X2
X0(3)=X3 , . . .
X O (4)=X4
NN=4 - -

. - DEL (1) =1.0 i -v ■
* DEL(2)=0.5 ’ ‘ '

DEL<3>=0.5 ' , '
D EL(4)=0.5

- CALL S U B (D E L » NN f XT f XO f XM fF X B fARLO fARLi )
TABLE<IDELTAfIRIfIR2»1)= X M <1)
TABLE<IDELTA f I RI f IR2 r2)= X M ( 2)
TABLE<IDELTAf1Ri t IR 2 f 3 ) =XM(3)
TABLE <IDELTA f IRI f IR2 f4)= X M (4>
TABLE<IDELTAf IR I  f IR 2 f5 ) =ARLO 
TABLE<IDELTAfI R I r IR 2 f6 ) =ARL1 
TABLE( IDELTAf I R I »IR 2 f7)=FXB ■

550 R2=R2+0.5
IR2=IR2+1 %
IF(R2.G T .2,0) GO TO 600 Q  

Q ' GO TO 200
® 600 Rl=Ri+0.5

IR1=IR1+1
IF(R1.GT.1*0) GO TO 700 ’ '
GO TO 300 

700 BELTA=DELTA+0.25 
IDELTA=IDELTA+1 
IF<DELTA«GT .2«25) GO TO 800 
GO T O -400

800 URITE(6f1)LAMDAfU0fV1fKRfKSfTRfTSfBfC
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IN=2
WRITE(4 k2) '
DQ 1100 IJ=1»4 , ' •
XIN=IN

' BELTA1=0.25*XIN . ' '
' DELTA2=DELTAl+0.25 .
WRITE(6 k3)' DELTA1 kDELTA2 
WRITE(6 k4)

■ R2--0»5 '
DO 1000-IR2=1 k  6 •
WRITE(6 k11) < (TABLE( IDELTAkIRIkIR2k1)kIR1~1k4)kIDELTA=IMkIN)  
WRITE(6k 12) ( (TABLE ( IDELTA k IR I  k IR2 k 2 > kIR1=1k4) k IDELTA=IMk IN.) 
WRITE(6k13>((TABLE(IDELTAkIR1kIR2k3> kIR1=1k4>kIDELTA=IMkIN) 
WRITE(6k14)R2k( ( TABLE( IDELTA k IR Ik IR2 k 4 ) kIR1 = 1k 4 ) kIDELTA=IM kIN 
WRITE (6 k15) ( ( TABLE ( I  DELTA»IR1kIR2k5) »IR’1=1»4) rIDELTA^IMk IN)

■WRITE(6 k 16) ((TABLE(IDELTA»I R 1 k IR2 k6 ) k IR1-1 k4 ) kIDELTA=IM k IN) 
WRITE(6 k 17)((TABLE(IDELTA k IR 1 kIR 2 k7 ) kIR1=1 k4 ) k IBELTA=IM kIN)
IF (. ( (I-J ♦ NE. 2) ♦ OR ♦ (IJ . N E . 4) ) .AND. (IR2.N E .6)) GO TO 900
WRITE(6*2)  —

___ _ IF(IJ« E Q ♦2) GO TO 1000 
WRTTEX677)
GO TO iooo 

900 WRITE(6*4)
R2=R2+0.5 • -

1000 CONTINUE '
IM=IM+2 •
IN=IN+2 ' .■
R2--0«5
I F (IJ.NE.2) GO TO 1100 
WRITE(6 k5)
WRITE(6 k2)

- 1100 CONTINUE 
SJOP

1 F OR MA T ( 71 ' k5 X k ' L A M D A = ' kF 4 . 2 k2 X k ' P 0 = 7 kF 6 . 1 k2 X , ' P l = 7 , F 6 . 1 k2 X ,
* ' K R = 7 k F 5 . I k  2X k 7'KS=7 k F 5 . 1 k 2 X k 7T R - 'kF 4 . 2 k 2 X k 7TS = 7 k F 3 . 1 k 2 X k 7B = 7k 
* F 4 . 2 k 2 X k 7C = 7 k F 4 . 2 )

2 FORMAT(7 + 7 k8 0 ( ) k '+')
3 F0RMAT(7 5 !7k7 4 X k 7 !7/

* ' ! i 7 k 31Xk 7DE L T A 7 k’3 8 X k 7 ! 7 /
* '  i ! 7 k 1 4 X k F 4 . 2 k 3 0 X k F 4 . 2 k 2 2 X k 7 i V
* '  ! ! '  k 2 ( 3 0 (  7- 7 ) k 4 (  7 ' ) ) t '  I V
* 7 ! ! 7 k7 4 X k 7 ! 7/
* 7 ! R2 f7k33Xk'Rl"k39Xk 7 ! ' /

* '  \ - ! 7 k2( 7 -0.5 0.0 0.5 1.0
* 7 ! V
* '  I i 7 k2 ( 4 , (  7 ------------------ ' ) k 7 7 ) k 7 ! '  )

4 FORMAT ( 7 !------ ! 7 k 2 ( 4 ( 7----------7) k 7- , , 7) k 7-------- !7)
7 FORMAT(71 + 7 k  8 0 ( 7- 7 ) k 7+ 7)
11 FORMAT ( 7 I ., 7 k2 ( 4 F 8 . 0 k 7 N !')
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12 FORMAT(' !' 12 (4F8♦ 21' !')>' S : '>
13 FORMAT<' I't2(4F8.2t' i')t' KA ! ')
14 FORMAT(' 'tF4.lt' {'t2(4F8.2^.' !') t ' KW
15 FORMAT(' ! ' t2(4F8.0t' !')>' ARLO :
16 FORMAT <' ! ' 12 < 4 F 8 . 2 1 '  ! ' >  t ' ARL1 ! ')
17 FORMAT( ' * ' t 2 ( 4 F 8 . 4 t '  ! ' >  t ' L : ')

END
^  ̂  ̂  ̂  lb  ̂  lb  ̂  ̂  ̂  ib  ib  ̂  ib  ̂  ib  ib  ib  ib  ib  ib  ib  ̂  ib  ̂  ib  ib  ib  ̂  ib  ^  ib  ib ^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂

C * SUBROUTINE FOR PATTERN SEARCH * . .
C *  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂  ib  ib  ̂  ib  ib  its ib^  ^  ̂  ̂  ̂  q i ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂  _

SUBROUTINE SUB<DELtNNtXT tXOtXMtFXBtARLOtARLlv 
DIMENSION X X I (4)t X T (4)t X O (4)tXM<4> tDEL<4>
ICMAX-500 ^ .
XM(l)»XO(l) /
XM(2)=X0<2>
XM(3)=X0<3)
XM C 4)= X O (4)
XM1=XM<1)
XM2=XM(2)

  XM3-XM(3) • - •
XM4=XM(4)
CALL C O S T < XMl t XM2t XM3r XM4r PO r PPt ARLO r ARL1»F X B )
IC=0

21 KK=0 “
DO 11 I=lrNN 
TEMP=XM(I)
X M (I )= X M (I )+DEL <I )
IF(XM(3)iGT.X M (4)) GO TO 22 
XM<4)=0.85*XM(

22 XM1=XM(1)
XM2=XM(2)
XM3=XM(3)
XM4-XM(4)
CALL COST < XMltXM2tXM3tXM4 1PO rPPtARLO tARL1t F X E )
I F ( C F X E i L T ♦F X B ) ♦A N D ♦ ( P P . G T . O . O ) i A N D * ( P O . G T . Q . O ) ) GO TO 12  

' XM( I ) =TEMP -
XM( I ) = XM( I ) - D E L  <I ) • >
IF(XM(3)iGT.XM(4)) GO TO 25 * '
XM<4)=0.85*XM<3) ' ■ ,

25 -XMl-XM(1)
XM2=XM < 2)
XM3=XM(3)
XM4-XM(4) .
CALL COST(XMltXM2tXM3tXM4tP0tPPtARLOtARLltFXE)
IF<(FXE.LT.FXB).AND.(PP.GT.O.O).AND.<PO.GT.O.O)> GO TO 12 
X M (I )-TEMP 

' GO TO 11 /
12 FXB=FXE • ' ‘ ' • '

KK=1 
• 11 CONTINUE
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IF(KK *EQ♦0>GQ TO 18 '
• DO 16 1=1 i-NN
16 XXI(I )=XM <I ) 1
• DO 13 1=1?NN * - ’ , • .

13 XT (I) =2 ♦ #XX1 (I )’-XO (I ) ’ • •
IF(XT(3> «GT»XT<-4) ) GO TO 26 .. ‘
XT<4)=0.85*XT<3> : '

26 XT1=XT (1) ‘
XT2=XT(2) ‘ i
XT3=XT(3) .
XT4=XT(4)
CALL COST < XTli> XT2?XT3> XT4 ? PO ?PP ? ARLO*? ARL1?FXT) 
no 14 1=1,? NN > ■

14 XO<I)=XX3.(n
IF((FXT♦LT.FXB).ANn.(PP♦G T » 0.0).ANn.(PO.GT »0* 0 >) GO TO 15 
GO TO 21 .

■ 15 FXB=FXT
HO 17 1 = 1 ?NN •'

17 XM(I)=XT(I )
IC=lC+i - * '

• IF<IC.GE/TtpAX). GO TO 19 
GO TO 21

18 no 27 1=2? NN i - '
IF (nEL( I ) «GT. 0 ♦ 001) GO -TO'28 . •-
GO TO 29' • » •

28 nEL(I)=BEL(I>/2.0
29 DEL(I)=BEL(I>
27 CONTINUE

IF((DEL(2).LE».001).ANn.(BEL(3).LE.001)
*.ANn.(OEL(4 >.LE.0.001)) GO TO 19 
GO TO 21 

19 CONTINUE
RETURN • •
END ' '

^  ^  ̂  ̂  ll* ^  ̂  ^  ̂  ̂  ̂  ^  kb ̂  kb kb ̂  ̂  ̂  kb ̂  ̂  ̂ b ̂b ̂  ̂  kb ̂  ̂  kb ̂b ̂  kb ̂  ̂  kb kb kb kb ̂  ̂  kb kb•* ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
C * SUBROUTINE FOR CALCULATING LOSS-COST FUNCTION *
C ^ b  ^  ^  ^ b  ^ b  ^  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ b  ^ k  ^ b  ^ k  ^ b  ^ b  * *p ^ ^ ̂  ̂  ̂  ^ ̂  ̂  *** v ̂  ^ ̂  ̂  ̂  ̂  ̂  ^ ̂   ̂̂  ̂ k ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  A ̂  ̂

SUBROUTINE COST < XI? X2» X3 ? X4 ? PO ? PP ? ARLO ? ARL1»F )
REAL LAMBA?KR?KS
COMMON LAMBA ? BELTA ? TR ? TS ? V ? U ? W ? B‘? C ? Rl ? R2 ? KR ? KS
IF(<X1«LE« 0 ) .OR* (X2,LE♦0)♦O R ♦(X3.LE.0),OR.(X4♦LE.0)) GO T O  86‘
Y1=X3-0ELTA*SQRT(X1)
CALL AUY(XI?Y1?Rl?R2?PI)
Y2=X4-BELTA*SGRT(X1)
CALL AUY(XI?Y2?Ri ?R2?P2)

■ ‘ F'0=P1-P2
T2=P0+P2* < 1. 0-P,0**2 )

48 ARL1=(1.0-P0**2)/(1.0-T2>
Y3=)«C3
CALL AUY(X1»Y3?R1»R2?P3>
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«3

V 4= X 4
CACL AUY<Xl>Y4rRi»R2rP4) * ' ' * -
PP=P3~P4 .
T1=PP+P4*<1.--PP**2>

49 ARLO-<1.0-PP#*2 >/<1♦-T1)
Hl=V/ARLO+B+C*Xl
B0=(la0/X2-0.5*LAMDA+i./12.*<LAMnA**2>*X2)/ARL0 
Bl=(ARLl-0,5+ia/I2*<LAMDA*X2>)*X2 ** .
Ul=LAMDA*U*B:L+V*B0+LAMDA*W+(B+C*Xl>*(la0+LAMDA*Bl>/X2 ’ 
U2=la0+LAMDA*B1+TS*B0+LAMDA*(TS+TR)
F-U1/U2 

86 RETURN
END

^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  f  ̂  ̂  ^ ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂
' * SUBROUTINE FOR CALCULATING THE PROBABILITIES *

* ASSOCIATED WITH AVERAGE RUN LENGTHS _ *
a b  a b  ^  ^  a b  a b  a b  a L »  ^  ^  a b  a b  a b  ^  a b  ^  ^ b  a b  ^  ^  ^  ^  ^  t b  ^  t b  a b  ^  ^  a b  ^  t b  a b  ^  a b  ^  ^  ^  ^  ^  ^  ^  ^  ^^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  *fk ̂  ̂

SUBROUTINE AUY(XlrY»RlrR2rP>
ZY=0»39894228*EXP(-Y*Y/2.0)

’ H2Y=(Y*Y-i.0)*ZY
H3Y=-(Y**3-3a0*Y)*ZY
H4Y=(Y**4-6.0*Y**2+3.0)*ZY - ~~~---—
H5Y=-(Y**5-10.0*Y**3+15a0*Y)*ZY 
H6Y= ( Y**6~15.0*Y**4+45. 0*Y**2-15♦ 0) *ZY 
CALL HSMRAT(YrRMrlER)
FIX=ZY/RM

' P=l,O-FIX-<H2Y*R1)/<6.0*SGRT<XI)>+<H3Y*R2>/<24.0*Xi>+(H5Y*Rl*Rl> 
1/C72.0*X1>
RETURN 
END

4
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AP PEN D IX  IV

PROGRAM SEMIWARN

PROGRAM DESCRIPTION
d f d /  d^ d> d> d /d /  d> d f d f d^ d /  d / d^ d^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  df ̂  ̂  ^  ̂  ̂  ̂  ̂  tL  tb  tb  tb  ̂  d / ̂  ̂  tb  >b ̂  ̂  >b tb  tb  tb  tb  ̂  tb  ̂  ̂  tb  tb  tb*  'r *  “ t* ̂  ̂  n» ̂  ^ <1* ̂  ^ ^ ̂  ̂  ̂  ̂V ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂

-This program is used for generating tables based on semi- 
economic scheme useful at the workshop level to determine 
the desidn parameters of an x-chart with warning limits .
The essential characteristic of the semi-economic scheme 
is -that the assidnable cause is detected*on the average*
1.1 or 1*05 sample after its occurrence.

NOMENCLATURE
/

Variable name 
DN 
BK
DELTA
Rl
R2
ARLO

ARL1

SARL

Description 
Sample size.* n 
Action limit coefficient* ka 
Shift parameter 
Measure of skewness 
Measure of Kurtosis
Average Run lendth when process is 
in control
Average Run lendth when process is 
in out of control 
Specified value of Averade Run 
Lendth* ARL1

OUTPUT
I
DK (I ) 
DN (I)

Number of action limit coefficients 
Ith action limit coefficient 
Sample size corresponding to ith 
action limit coefficient 

BARLO(I) ARLO corresponds to ith action limit
AK<I) Eaual to BELTASSORT(DN <I ))- D K (I )
BL(I) Derivatives of ARLO(I) with respect

to D K (I )
AA.< I ) Represents eouation (5.21)

^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^ b  ^  ^ b  ^  ^  ^ b  a b  l b  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  « b  l b  ^  ^  k b  ^  ^  ^ b  ^ b  ^  ^  ^  k b  k b  ^  k b  k b  ^  k b  ^  k b  ^  k b  k b  ^  ^  ^  ^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  q\ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
PROGRAM LISTING 

DIMENSION DK < 32)* D N (32)*B ARLO(32)*A A <32)*D L (32)*A K <32)
COMMON DELTA*R1*R2
^  d *  d ^  ^  d *  ^  ^  ^  d j  ^  ^  ^  d ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  d *  d *  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  d *  ^  ^  ^  ^  ^  ^  ^  ^  d >  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^^ ^ ̂  ̂  ̂  ̂  ̂  q* ̂  ̂  ^ ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
* SET MODEL PARAMETERS R1,R2,delta and maximum allowable *
* ACTION LIMIT COEFFICIENTS *
^  d *  d *  ^  d *  ^  ^  ^  ^  ^  d p  d /  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  t b  ^  ^  ^  ^  ^  ^  ^  ^  ^  i b  d *  ^“ ̂   ̂̂  ̂  ̂  ̂ ^ ̂  ̂  ̂ ^ ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂ ^  ̂̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ^ ̂  ̂  ̂ ^ ̂  ̂  ̂  ̂
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115

119

1 2 0
113

1
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D E L T A - 2 . 0  

R l - 0 ♦ 0

R 2 = 0 .0 ' '
DO 119 1=1*32 
X1=0.0
X1=X1+1.0 * .. .
X2=1.0+I*0.1 
X 3 - 0 .85*X2
.CALL S UBS(Y 1 * XI * X 2 »X3 > P O >PP *ARLO r A RL1) 
SARL=1.05
I F (ARL1 . \ T . S A R D  GO TO 115
GO TO 116
DK(I)=X2
D N C D - X l
BARLO(I)=ARLO
A K <I )=DELTA*SQRT<X 1)
CONTINUE . .
NDIM=32 •
CALL DGT3 (DK r BARLO>» DL * N D I M »IER)
DO 113 1=1r32
TffiT1T= (ARTT~>/DL< I JP.gBftRLO (I ) *BARLO (I )
PRINT120 1DK <I )* D N (I >»BARLO<I )rAA(I >
FORMAT (' />5X»F5.2t10X»F5.0»10X>F8.1»10X>F8»1)
CONTINUE
STOP
END . .
^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  u. ̂  ^  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂^ ̂  ^ ̂  ̂  ̂  ̂  ̂  ^ ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
* SUBROUTINE FOR COMPUTING A. VECTOR OF DERIVATIVE *
* VALUES FOR GIVEN VECTOR OF ARGUMENT VALUES AND ’ * 
•* CORRESPONDING FUNCTIONAL VALUES. FOR REFERENCE SEE *
* F.B. HILDEBRAND t INTRODUCTION TO NUMERICAL ANALYSIS *
* * MCGRAW-HILL * NEW YORK * 1956. *
* DESCRIPTION OF ARGUMENTSt X- GIVEN VECTOR OF ARGUMENT*
* VALUES (Ell MENS I ON NDIM) r Y-GlVEN VECTOR OF FUNCTIONAL *
* VALUES CORRESPONDING TO Xr Z-RESULTING VECTOR OF *
* DERIVATIVE VALUES - *
^  ^  ̂  U/ ^  ̂  ̂  ^  ̂  ^  ̂  ̂  ̂  ^  ̂  yAf ̂  ^  ^  1  ̂̂  lb  ^  d l |b  ̂  yl/ lb  ̂  ^  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  >b ̂  >N ^  ̂  ^  ̂  ^  ̂  ^

SUBROUTINE D G T 3 < X » Y r  Z »NDIM»IER)
DIMENSION X(NDIM)rY(NDIM)rZ(NDIM)
IER=-1
IF(NDIM-3) 8rl»l 
A = X (1)
B = Y (1>
1 =2 " '
DY2=X(2)-A
IF <B Y 2 ) 2>9»2 ' . •
DY 2 = (Y (2)”B )/DY2 ^
DO 6 1=3»NDIM . ^
A = X (I)-A 
I F (A) 3 f 9> 3
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3 A=(Y(I)-B)/A *
B = X (I)-X<1-1)
IF(B) 4»9»4

4 DY1=DY2 t 
DY2“ (Y (I)~Y(I-1>)/B 
DY3=A
A=rX<I-l>
B=Y < 1-1)
I F ( 1 - 3 )  5  r 5 r 6

5 Z < 1)=DY1+DY3-DY2
6 Z(I-1)=DY1+DY2-DY3 

IER^O
I = N D I M

7 Z ( I ) = B Y 2 + D Y 3 “ DY1
8 RETURN 

9 I E R - I
1 = 1 - 1  ' •
I F (1-2) 8,8,7 
END

^  ̂  ̂  ̂  ̂  ̂  ̂  y l f  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ^  tb ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  tb ̂  ̂  ^  ̂^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ^ ̂  ̂  ̂  ^ ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
C *  SUBROUTINE FOR CALCULATING AVERAGE RUN LENGTHS *

^ ^  ̂  ^  ̂  ^  ̂  ̂  ̂  ̂  tb »b «b ̂  ̂  ̂  kb kb hb kb ̂k ̂  ̂  kb ̂  kb kb kb ̂  kb kb kb ̂  ̂  ̂  kb kb kb kb ̂  kb ̂  ̂  ̂  ̂  kb^ ̂  tS ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  <p ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ^ ̂  T* ̂  ̂  ̂V ̂   ̂̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  (p ̂  ̂  ̂  ̂  ̂
-  SUBROUTT-NE—SUBS-(-Y1-ji-X1 ,  X2 , X3  > FO , PP , ARLO , A R L 1 )

COMMON D E L T A , R 1 » R 2
I F < ( X l . L E k O ) k O R . ( X 2 . L E . 0 ) . O R , < X 3 . L E » 0 ) ) GO TO 8 6  
Y 1 = X 2 - D E L T A * S Q R T ( X 1 >
CALL AUY<XlrYl,Ri,R2,Pl)
Y 2 = X 3 -D E L T A ) fc S Q R T (X I )
CALL AUY (Xi»Y2rRi, R2 * P2 )
P0=P1-P2
T2=P0+P2* <1«0-P0**2)

48 ARLl=(1.0-P0**2)/<lkO-T2)
Y 3 = X 2
CALL AUY<Xl,Y3,Rl,R2rP3>
Y 4 = X 3
CALL AUY ( X 1 » Y 4 , R 1 ,  R 2 1 P4 )
P P - P 3 - P 4
T 1 = P P + P 4 * < 1 . - P P * * 2 )

4 9  ARCo = ( 1 . 0 - P P * * 2 ) / < 1 , - T 1 >
8 6  RETURN

END

•4.
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k APPENDIX V-. v  

PROGRÂ I ‘ GUSUM

 ___?  -C PROGRAM D E S C R IP T IO N
^  ^  ^  ^  i b  i b  i b  ^  ^  i b  i b  i b  ^  ^  ^  i b  t b  ^  i b  i b  ^  ^  ^  ^  ^  ^  ^  i b  i b  i b  ^  ^  ^  ^  i b  i b  i b  i b  i b  ^  ^  ^  ^  ^  ^  i b  ̂  ^  ^  ^  i b t b  ^  ^  ^  l bM ^  ̂̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  f  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂

'” i PURPOSE OF THE PROGRAM:'
V _________ _  — _________

' !  THE M A IN  PURPOSES OF T H IS  PROGRAM ARE AS FOLLOWS:
5 1 .  TO M I N IM IZ E  THE O B JE C T IV E  FUNCTION REPRESENTED BY FO (THE  
[EXPECTED PER HOUR COST .ASSOCIATED WITH THE OPERATION OF 
! A CUSUM-CHART TO CONTROL NON-NORMAL PROCESS MEANS) AND TO 
[ F IN D - T H E  0PTIMILM__V&UJ.E3_PF THE DESIG N  V A R IA B L E S . THE PROGRAM 
! I S  ABLE sTO LOCATE THE M IM IM A  WHERE THE COST SURFACE IS  
[E IT H E R  S T R IC T L Y  CONVEX' OR R E L A T IV E L Y  FLAT AROUND THE ' 
[O P T IM U M .
12• TO DETERMINE AVERAGE RUN LE N G TH (A R L ) OF A CUSUM CHART TO 
[CONTROL NON-NORMAL PROCESS MEANS BY SO LVING  A SYSTEM OF 
[L IN E A R  ALGEBRAIC E Q U A T IO N S ♦THE SETS OF EQUATIONS USED FOR 
[CA LC ULATING  P ( Z ) * N ( Z )  AND L ( Z )  ARE G IV E N  BY E G U A T I 0 N S < 6 . 8 ) *

. ! ( 6 . 1 3 ) * AND ( 6 . 5 ) .C A LC U LA T IO N  OF ARL FOR THE CUSUM CHART I S
:a s p e c ia l  case w ith  z =o . average run length when the
[PROCESS I S  I N  CONTROL* DENOTED BY ARLO* I S  CALCULATED FROM 

’ [STA N DA RD IZED D E C IS IO N  IN T E R V A L  H AND T H E T A = -D E L T A *S G R T (N )  
! * 0 . 5 *  AND AVERAGE RUN LENGTH WHEN THE PROCESS I S  OUT OF 
[CONTROL* A R L 1 * I S  CALCULATED FROM H AND THETA-DELTASSORT  
i ( N ) * 0 . 5

‘ ! 3 .  TO ASSESS THE EFFECTS OF NON-NORM ALITY PARAMETERS AND 
• ■ [ S H IF T *  PARAMETER ON THE LO SS-C O ST AND ON THE DESIG N  VA R IA B L 

E S  AT VARIOUS LEV E L S * FOR A G IV E N  SET OF COST AND R IS K  
[FACTORS.
I »I
! SUBROUTINES NEEDED - '
I ____ ______ ___________ ___ _ _  
! THE PROGRAM USES THE FOLLOWING SUBROUTINES AND FU N C TIO N S:
I1
! 1 .  FU N CTIO N F :  CALCULATES THE SAMPLING IN TER VA L
[ 2 .  SUBROUTINE AUX: COMPUTES F IR S T  FOUR TERMS OF THE ED G -
[ EWORTH S E R IE S .
! 3 .  SUBROUTINE L E Q T 2 F : SOLVES A SET OF L IN E A R  EQUATIONS .
! 4 .  SUBROUTINE Z R E A L 1 : F IN D S  THE REAL ROOTS OF A REAL F U N -
} C T IO N . ■ .
! 5 .  SUBROUTINE MSMRAT: COMPUTES THE AREA UNDER NORMAL CUR-
i V E .
1 SUBROUTINES * 3 *  * 4 *  AND * 5  ARE IM S L < IN T E R N A T IO N A L . MATHE-  
! MATHEMATICAL AND S T A T IS T IC A L  L IB R A R IE S  ) R O U T IN E S . FOR 
! D E IA IL S  SEE REFERENCE MANNUAL IM SL L IB R A R Y -2 * R E V IS E D  E D I -
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%

! TION *JANUARY 1978. IMSL*SIXTH FLOOR»GNB .BUILDING*7500 ““
! BELLAIRE BOULEVARD* HOUSTON* TEXAS 77036*
! EQUIVALENT SUBROUTINES TO *3* *4*AND *5 IN THE IBM SYSTEM/ 
! 360 SCIENTIFIC SUBROUTINE PACKAGE ARE* RESPECTIVELY*
!-SUBROUTINE SIMQJ SOLUTION OF SIMULTANEOUS. LINEAR ALGEBRAIC 
I EQUATION*
i-SUBROUTINE RTNI OR DRTNI J ESTIMATING THE ROOT OF A FUNCT- 

. ! TION BY NEWTON'S ITERATION.
' !-SUBROUTINE NDTR J FOR NORMAL DISTRIBUTION FUNCTION*

! FOR DETAILS SEE REFERENCE iBM SYSTEM/360 MANUAL* IBM COR- 
i PORATION* TECHNICAL PUBLICATIONS DEPARTMENT* 112 FAST POST 
! ROAD* WHITE PLAINS*NEW YORK 10601* ' .

NOMENCLATURE

VARIABLE NAME 
NORD 
ZK 
AK
LAMDA

VO
VI
KR
KS
TR x •
TS
BB
CC
DELTA
Ri
R2
THETA
H
NH
NI

INPUT DATA CARDS

VARIABLE NAME 
ZK 
AK

LAMDA * VO * V I »KR 
KS,TR*TS*BB,CC

ORDER OF CARDS FORMAT
1 (8F10.5)
2 i (8 F 1 0 ,5)
3 (9F8.2)

QUTPUt DESCRIPTION

DESCRIPTION i
NUMBER OF GAUSSIAN PIONTS . i 
GAUSSIAN POINTS
'GAUSSIAN COEFFICENTS !
RATE OF OCCURRENCE OF ASSIGN- J 
ABLE CAUSE' !
INCOME WHEN IN-CONTROL !
INCOME WHEN OUT-OF-CONTROL * !
REPAIR COST PER HOUR ‘ !
SEARCH COST PER HOUR ' i
AVERAGE-TIME TO REPAIR 
AVERAGE-TIME TO SEARCH 
FIXED SAMPLING COST !
VARIABLE SAMPLING COST - !
SHIFT PARAMETER ' - !
MEASURE OF SKEWNESS i
MEASURE OF KURTOSIS 1
MAGNITUDE OF VARIATION IN MEAN ? 
STANDARDIZED DECISION INTERVAL. ! 
MAX. NO. OF DECISION INTERVALS i 
MAXIMUM SAMPLE SIZE !
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C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
4 C

c
c
c

VARIABLE NAME DESCRIPTION
PZ1 « P(Z)
SNZ1 N(Z)
PZO . ' P(0>.
SNZO * !sf(0) .

• NI ' N
ARLZRC * - ARLO
ARLONC ARL1
HC H
GGC . ‘ .. S '
FFC _ L

^  ^  ^  ^  ^  U /  ^  ^  ^  U /  U i  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  t b  t b  ^  t b  ^  t b  ^  i b  ^  ^  ^  k b*  * ^ ̂  ̂  n> *  *  ̂  ̂  ̂  ̂  ̂  ̂  ̂   ̂̂  ^ ̂  ̂  ̂  ^ ̂  ^ ̂  ̂  ^ ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂
PROGRAM LISTING

^  ^  ^  ^  ^  ^  ^  * ^ U  ^  ^  ^  ^  ^  ^  ^  ^  ^  k b  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  k b  k b  k ^  ^  k l ^  ^  ^  ^  k b  ^ b  ^ b  ^  t b  ^  ^  ^  ^ b  ^  ^  k i t  ^  t b  t b  ^  ^  t b  t i t  ^ ̂  ̂  ̂  ̂  ̂  ^ ̂  ^ ̂  ^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ^ ̂
* THE ECONOMIC DESIGN OF CUSUM CHARTS TO CONTROL NON- •’ *
* NORMAL PROCESS MEANS. ' *
k b  k b  k b  k b  ^  ^  k b  ^  k b  t b  ^  k b  ^  t b  ^  t b  t b  t b  J t  k b  t b  t b  t b  ^  ^  ^  t b  ^  ^  t b  ^  ^  t b  t b  t b  t b  ^  k b  ^  ^ b  ^ b  ^  t b  i b  ^  t b  t i t  k b  ^  k b  t b  t b  t b  k b  ^  t b  t bfl* «I» ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  n* *  ̂  ̂  ̂  ̂ k ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  q» n* ̂  ̂  ̂  A ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
EXTERNAL F • .
INTEGER N f N N f I A f I D G T f I E R f M f K f . N S I G f I T M A X f L L f K K f J J  
INTEGER K K K f MM f N I f N H f N O R D f I I f I I I f J J J f I M I N f I F L A G f IIII - 
REAL F f E P S f E P S 2 f J E I T A f G ( 2 )
REAL LAMDA f-KRfKS •
REAL C ( 3 f 3 > f B ( 3 f ! ) fWKAREA(30) f S N ( 3 f 1 ) f D ( 3 f 3 )

COMMON-LAMDA fA R L O fARLI fU fV fT R fT S fU fB B fC C fB I fK R fKS
DIMENSION Z K ( 3 ) f A K ( 3 ) f Z ( 3 ) f A ( 3 ) t

DIMENSION X (3 f  3 )  tQ (3  f 3 )fF T ( 3 f 3 )
DIMENSION XX (3 f 1) fQ 1 ( 3 f 1 ) fF T 1 ( 3 f 1)
DIMENSION X I (3 f 1) fQ 2 ( 3 f 1 ) fF T 2 ( 3 f 1) -

DIMENSION X 2 (1 f 1) f 0 3 (If1 ) f F T 3 ( 1 f 1) t

DIMENSION Z X 1 (3 f 3 ) f Z X 2 ( 3 f 3 ) f Z X 4 (3 f 3) tZ X 5 (3 f 3 ) f Z X 6 (3 f3 )
DIMENSION E T A (2)fH ( 30)fF F (30),ARLZR( 30) f A R L 0 N (3 0 ) ‘
DIMENSION G G (30)rFFC (30 ) fH C ( 3 0 ) fGGC (3 0 ) f T A B L E ( 8 f3 f 6 f 6)
DIMENSION a r l o n c j :3 0 ) fARLZRC(30)
IFLAG=0 - *

NDRD-3
NI=30 «

NH=16 <•

■K-NORD „

20

101

kb ̂  ̂  b  ̂  ̂  ^  k̂ | ̂  ̂  ̂ 1 ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂ b ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂^ t' IT̂ ̂  ̂  *  nk ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ f  ifv
* READ GAUSSIAN P0INTS(R00TS OF LEGENDER'S.POLYNOMIALS) AND *
* GAUSSIAN COEFFICENTS IN THE INTERVAL -1 TO-+1 fCOST AND *
* RISK FACTORS FROM THE DATA CARDS. , *
U f  ^  ^  U f  > | f  k b  k b  > b  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  \ 1 >  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  d |  | b  ^  ^  ^  ^  ^  ^  ^  ^  | b  ^  ^  k b  k l f  U >  \ b  k b
< i '  M *  *  ' v  “  *  'T *  n *  ' p  n '  ^  n *  ^  *  *  iT >  T >  ^  ^  ^  ^  ^  ^  i p  ^  i p  ^  ^  i p  i p  q »  ^  ^  i p  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^

READ(5 f20) (ZK(II) f II-l fK)
R EAD(5 f 20) (AK(II) fII=1 fK)
FORMAT(3F1.0.5)
R E A D ( 5 f 1 0 1 )  L A M D A f V O f V I f K R f K S f T R f T S f B B f C C  
FORMAT C9F8.2) ' ■_

fr . •
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BELTA=0i5 
IDEL'TA='l 

- 401 CONTINUE *
Rl=-0 *5
i r i =1

300 CONTINUE ■
R2=-0.5 
IR2=1 

200 CONTINUE .
ET A d ) = 0 . 5 0 * B E L T A  
ETA < 2 > =-0♦ 50*BELT A 
DO 1000 1=1»NI 

^ BI = I .
DO 990 KtC=l i NH 
H(KK>=Oil5+0.05*KK 
DO 900 J = 1 >2 

. ATA=ETA(J)
THETA=ATA*SQRT<BI>

^  ^  O/ ̂  ̂  ^  ̂  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ib ̂  ̂  ̂  lb ib ̂  ̂  ib ̂  ̂  ib lb ̂^ 4* <r ̂  ̂  t' ̂  ̂  ^ ^ ^ ̂  ̂  n* *  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  f  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^
C * CALCULATE THE GAUSSIAN uOEFFICENTS AND GAUSSIAN POINTS *
C/» * FOR THE INTERVAL 0 TO STANDARpTZED DECISION INTERVAL Hi*
P  U/ Of O' Of Of O  Of Of Of Of Of O  Of Of O  O  O  0 1 ^0  O  O  ^  ^  O  Of Of Of O  Of O  ̂  O  Of ̂  ^  0» ^  Of 0> ib  ̂ b ^  ̂  ^  ib  ̂  ib  ^  Of ib  ̂  ̂  ib  ̂  A 1 *

no 25 111 = 1 f K
Z<III)=(ZK(III)+1.0)*H(KK)*0.5 
A <1 11)=AK d I I )* H (K K )*0♦5

C ^ t O  Of Qf ̂  Of O  Of O  Of O  ̂  Qf Qf ̂  Qf ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  Qf ̂  ̂  ijf ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  o»  ̂  *%. ̂  «b ab ̂ b *  ̂  ̂  ^ ̂  4* ̂  ̂  ̂  «p ̂  ^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂
C *CALCULATE THE ELEMENTS OF THE MATRIX 'A' USED IN EQUATION(6«12 ).*

^  ̂  ̂  O ̂  ̂  ̂  O ̂  O ̂  O ̂  O ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  Of ̂  Of ̂  ̂  Of lb ̂  ̂  Of ̂  O ̂  ̂  ̂ b ̂  Of Of ̂  Oi ̂  ̂  ̂  Q« ib ibOl ̂  ̂  lb ̂  ̂  ̂  ̂  ̂  lb ̂b ̂ a ̂
^  4* *  ^  ̂  ̂  ^  ^  ̂  ^  ̂  ̂  ^  ^  ^  ̂  ^  ^  ^  ̂  ^S ̂  ̂  ̂  ̂  ^  ̂  ̂  ^  ^  ̂  ̂  ^  ^  ^  ̂  ^  ̂  ̂  ̂  ^  ̂  ^  ̂  ^  ^  ^  ^  ^  ̂  ^  f  ^  ^  /p

'. 25 CONTINUE
DO 75 11=1fK ■ •
no 7 5  J J = 1 > K  • -
X d l *  JJ)=ZdI)-Z(JJ)-THETA
CAtL AUX(X»RlfR2fQfFTfBI»II»JJ) '.
I F d l i E Q . ^ j )  G£ TO 60 -
C d l f  JJ)'=-A(II)*Q(nf JJ)
GO TO 65 . . - ■ • ■ ■ .

60 C(IIf JJ) = d . O - Q d I r J J ) * A d I )  )
65 D<JJ»II)=C<I-IfJJ) , . ' .
75 CONTINUE . /

C ****'**********#*********#************************>|C***********
C C A L C U L A T E  THE ELEMENTS THE MATRIX 'Y' IN EQUATION (6.12)*

C Uf Uf Of  ̂  ̂  Of ̂  Uf Of ̂  Uf Of Of ̂  ̂  ̂  ^  ̂  ill— ill- ̂  ̂  ̂  ̂  ̂  Of Of O  ̂  ̂  ^  ̂  Of ̂  ̂  ib O  Of ̂  Of O  ̂  ^  O. ̂  ̂  O  Of ̂  Of O  Of ̂ b ̂  Of Of ̂
^  4* 4* *  ^  ̂  ^  ̂  ̂  ̂  4* v  4^ ̂  ^  ^  4* ̂  ^  ^  ^  ^  ♦  4 ^  ^  ̂  4* 4 ^*^  *  ^  ̂  ̂  ̂  ̂  ^  ̂  ^  ^  ^  ^  ^  ^  ̂  ̂  ̂  ̂  ^  ̂  ^  ̂  ̂  ^  ^  ^  4^

DO 80 11=1 »K " ■/ ’ ' i -
X X d J f  1)=-Z(II)-THETA .
JJ=1 ‘.
CALL AUX<XX»Rl»R2rQl»FTl»BIfII»JJ)
B (11r1)=FT1 (IIf 1)

80 CONTINUE
NN=3 * '
M=1 . , '

* »  • - • .

i
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IA=3 . , ‘
IDGT=4 . .' • < ; .

C * ^CALCULATE INVERSE OF MATRIX 'A' USING IMSL SUBROUTINE LEQT2F 
C *AND \T0 OBTAIN MATRIX ' ? ' I'N EQUATION C6.12.)
C ^ U  ^  ^  t b  t b  t b  t b  t b  k b  ^  t b  i b  t b t b  ^ U  ^ U  t b  ^ b  t b ^ b  ^ t b  ^  l b  t b  i b  ^  t b  k b ^  t b >  t b  ^  ^  ^  t b  t b  t b  t U  t b  t b  t i t  t i t  t b  t ^  t b  t b  i b  t b  t ^  t b  t b  t ^  t b  J t

*  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  4 *  4 »  ^  ^  t p ^ t  ^  ^  ^  ^  ^  q t  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  q t  q t  ^  ^  4 *  ^  ^  ^  ^  ^

C A L L ‘LEQT2F(n»MiNNfIA iB i IDGTiWKAREArIER)
SUM=Q.O * . *“

’ 'DO 120 11=1»K . . .  .
XI < 111> l‘)=Z< II)-THETA 
JJ=1.

■ CALL ,AUX(XliRliR2rQ2rFT2iBIrII.iJJ) ./'’ ■ '
*120 SUM=SUM+Q2(IIil)#B(IIrl)*A<II) ;

’ X2 01r1 )=~THETA ■ .
1 1 = 1  ' * • . '
JJ=1 ' • '
CALL AUX(X2»RlfR2rQ3fFT3rBI»IIiJJ)

‘ PZ1=SUM+FT3<1»1) t . > ,
DO 130 11 = 1 rK • .-'
sn<iiii)=i . 0 ; •

130 gontinue ; • .
CALL LEQT2F<Di>MiNN» IA iS N i IDGT iWKAREA i IER)
SUMl-OtO . . .

( j  j j t  jjc 3̂C 5)C 3jC 3̂C ) j(  sjc jjc 3j( jjc  5j(CtC 5jC5jC Ĵ C 5|C ! j(  3̂C SjC 3j{ 5jC JjC) ) ( JjC 3)( ! j t  ) j(  5|C 3jC 3jt 3(1 J|t ) |f ! ( f  ! | l  !|( 3jC JjC 3(v ) j t  ) j(  5jC )̂ C

C *. CALCULATE MATRIX NTZ) USING EQUATION (6.14)* ' x
^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  > U  ^  ^  ^  y b  ^ b  ^ b  ^ b  ^  ^  i b  i b  ^  ^  ^  ^  ^  ^  ^  ^  i b  ^  ^^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂ i ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂

-DO 400 11=1 t K  
400 SUMl=SUMl+SN<II*l>*Q2k<IIrl)*A<II>
C ^ b  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  d f  ^  ^  ^  i b  ^  t b  ^  t b  ^  ^  ^  ^ b  ^  t  t b  ^  ^  t b  ^  ^  ^  ^  ^  t b  ^  ^  ^  ^  ^  t b  t b  ^  ^  t b  ^ t  ^  ^  t b  ^ b  ^^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  f  ̂  f  ̂  f  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
C * CALCULATE P<0) »N<0) iARLO AND ARL1 - *
C t l.  tb  ̂  ̂  Ut ̂  ̂  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ^  ̂  ̂  ̂ b ^b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b ^b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b ̂ b -] ‘ -t - ̂ b ̂ b ̂ b ̂ b T ̂  ̂  ̂  T T ^ T T T ̂  ^ ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  f  ̂  ̂  ̂  ̂  f  f  ̂  f  f  f  ̂  ̂  ̂  ̂

SNZ1=1tO+SUMl ' '
IF < P Z 1 ♦GE 11 10) PZ1=01 999 ' '
ARL=SNZ1/<1.0-PZ1>
IF<ATA«EQtETA(2)) GO TO 600
ARL1=ARL v
SNZ1=SNZ1
P2;i =p z i
GO TO 900 

600 ARL0=ARL 
SNZ0=SNZ1 
PZ0=PZU 

900 CONTINUE 
U=V0-V1 
V=KS+V0*TS 
U=KR+KS+V0*(TR+TS)
GA=SQRT< <V/ARL0+BB+CC*BI)/(LAMDA*U*(ARLl-0.5)))
G(1 )=GA 
G<2 ) = 2 1 0 
,EPS=11OE-3
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A -  1 8 8

*

EPS2=1 *0-3 ‘ *
BTA=1.0E-2. . ..
NSIG=5 • . •
ITMAX=100
LL=2 / • ... •

C 4 f  l l f  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  l b  ^  ^  ^  l b  ^  l b  l b  l b  ^  i b  ^ l b  l b  ^  A  ^  ^  ^  i b  i b  t b  t b  t b  ^  ^ b  i b  ^  ^  i b  i b^ ̂  ̂  ^ ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂
C . ̂ CALCULATE SAMPLING INTERVAL DENOTED HERE BY G USING *
C ^EQUATION(6*15) AND SOLVED BY USING IMSL SUBROUTINE ZREAL1*
C #FOR GIVEN VALUE OF. SAMPLE S I Z E ♦CALCULATE B0»B1 AND L=FO *
C ^REPRESENTING EQUATIONS <6.2>r(6,3> AND(6*1) RESPECTIVELY*#

^ ̂  ^ ̂  ^ ^ ^ ^ ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  /p ̂  ̂  ̂  ̂  ̂  ̂  ̂  f  ^ ^ f  f  ̂  ̂  ̂  ^ ̂  ̂
CALI, ZREAL1 (F?EPSrEPS2f BTA»NSIGi>LLf G» ITMAk» IER)
R=G(1> . . .
B 0=(1♦O / R-O«50*LAMDA+1.0/12.0*LAMDA**2*R)/ARLO 

. Bl=(ARLl-0.5+1.0/12.0*LAMDA*R)*R .
F0= (LAMDA#U*B1 +V*BO'+LAMDA#U+ CBB+CC*BI> * < 1.0+LAMDA*Bl) /R ) /

1(1* 0+LAMBA*B1+TS*B0+LAMDA* < TR+TS))
H(KN)=H(KK) ' •»■ • „ ’
FF(KN)=FO

' ARLZR (K N ) =ARLO V  •'
' \  ARLON(K K )=ARL1

J  GG(KN)=R ' '
\lF<NK.GT.3> GO TO 989 1
»G0 TO 990

989 KK1=KK-1 
KK2=NK-2
IF<<FF<KK1).GT.FF<KK2>).AND*(FF(KKl),GT.FF<KK>)> GO TO 990 
IMIN=KK-1 ' ■
GO TO 1101

990 . CONTINUE ,
XMIN=iOOO.O ,
DO 1100 JJJ=1 r NH. -'
IF(FF (JUjT. GT~. XMIN) GO -TO ̂ 1100 
XMIN=FF<JJJ) '
IMIN=JJJ

1100 CONTINUE
^ ^ ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂   ̂̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂

C *CAUCULATE OVERALL OPTIMUM SAMPLE SIZE * SAMPLING INTERVAL *
C *ARL0>$RL1 AND STANDARDIZED DECISION INTERVAL H> AND PER *
C ’* HOUR LOSS-COST. , *

• C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
1101 FFC<I)=FF(IMIN)

HC<I)~H<IMIN) '
G GC< I ) = G G <IMIN) . ..
ARLONC(I )=ARLON<IMIN)
ARLZRC<I)=ARLZR<IMIN)
I F (I .G T ♦3) GO TO 1102 ‘
GO TO 1000

1102 I F ((F F C <I— 1>.G T ♦FFC<1-2))♦A N D .(FFC(I-l).GT.FFC<I ))) GO TO 1000 
IFLAG=1 .
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IR1=IR1+1 . i
I F (R 1 .G T .0.5) GO’TO 750 
GO TO 300 -

750 DELT A=DELT A+0 *25 \
IDELTA=IDELTA+1
I F (DELTA »G T ♦2.25) GO TO 800
GO TO 401 \

800 PRINT 1
PR INT 1025,LAMDA , 00 fU 1 ,NR,KS,TR,TS,BB, CC 

1025. FORMAT< ' ',10X, 7 LAMDA=7 , F3 ♦ 2,2X , 7 00= 7 , F6 .1, 2X , 7V 1 « 7 »F5‘.1,2X» 
l'KR=7,F5.2,2X,'KS=dF5.2,2X,'TR=',F5.3,2X,7TS=',F4.2,2X,'B^ 

; 2 if F 4 »2, 2X , ' C = 7 » F4 ♦ 2) i , , • ' '
PRINT 2 
PRINT 3 

• PRINT 4 ' '•
R2=-0 ♦ 5 ' r\
DO 100 IR2=1,6 -

PRINT 11, ( (TABLE(IDELTA, IR1,IR2,1> ,IR1=1,3> ,IDELTA=1,4>
PRINT 12, ((TABLE(IDELTA, rRl,IR2,2),IRl=l,3)»IDELTA=1,4)
PRINT 13,( (TABLE(IpELTA,IR1,IR2,3),IR1 = 1,3),IDELTA"1,4)
PRINT 14, R2, ( (TABLE (I DELTA, IR1,IR2,4),IR1=1,3) ,IDELTA=1,4> 
PRINT 15,< <TABLE(IDELTA,IR1,IR2,5),IR1 = 1,3),IDELTA=1,4)
PRINT 16,((TABLE(IDELTA,IR1,IR2,6),IR1=1,3),IDELTA=1,4)

■J  IF (IR2♦E Q . 6 ) GO TO 100
R2=R2+0«5
PRINT 4 .

100 CONTINUE
PRINT 2 ' •
PRINT 10

\

1000

1200
1300

K

i i i i = i - i
GO TO 1300 ~ ‘
CONTINUE 
XMIN=1000.0 
DO 1200 KKK=1»NI 
IF(FFC(KKK).GT*XMIN) GO/TD 1200 
XMIN=FFC(NKK\>'

\
CONTINUE x .
IF(IFLAG*EW.l\) I=IIII 
T A B L E (IDELTA,IR1,I R2,1)=1 
ABLE CIDELTA,I R1,IR2,2)=ARLONC(I ) 

T A B L E (IDELTA,I R1,IR2,3)=ARLZRC(I ) 
:(II^LTA, IR1,IR2,4) =HC( I ) .

TABLI <IDELTA,IR1,TR2,5)~GGC(I)
TABLE! < IDELTA, IR1, IR2,6) =FFC (I ) 
R2-R3

601

+0.5 
IR2=]R2+1 
IF(R2.GT.2.0> 

rO 200  
:i+o.5

G0\ TO 601
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4
5

C
C

P R IN T  .2 • ' ’
P R I N T  5 •
P R IN T  A  
R 2 - - 0 ♦5
DO 1 1 0  I R 2 = 1 * 6
P R IN T  1 1 ,  ( <T A B L E ( I D E L T A >I R 1  * - IR 2 r  & £ l R i  = l  »3> » I D E L T A = 5 r 8 )

12»<  <T A B L E ( ID E L T A  i I R 1 » I R 2 , 2£>  I R i = l * 3 ) t I D E L T A = 5 , Q ) . 
1'3» < < TABLE < I  D E L T A » I R 1 » I R 2 » 3 ? f  I R 1  = 1 » 3 )  > I D E L T A = 5 , 8 >  
1 4 r R 2 » ' « X A B L E < I D E L T A f I R l » I R 2 r 4 >  » I R 1 * I > 3 ) r I D E L T A = 5 » 8 >  
1 5 » ( ( T A B C E ( I D E L T A »I R 1 » I R 2 » 5 >  » I R l = l r 3 >  » I D E L T A = 5 r 8 )

P R IN T
P R IN T
P R IN T
P R IN T
P R IN T

110
1
n

1 6 ,  ( (
I F  < I R 2 » E Q « 6 )
R 2 = R 2 + 0  »5 
P R I N T  b  '
CONTINUE
P R IN T 2
FORMAT ( ' 1 ' / / / / / / / / / / /  
FORMAT < '  + — ---------------------

I D E L T A f  I R 1 » I R 2 f  6 )  i> IR l  = l » 3 )  i » ID E L T A = 5 » 8 )  
0 110

I
.A"*

f a
PROBLEM

:<*!■
' r 9 4 X * 'PAGE 1 ' ) '

FORMAT( '

* '
* '

* '
* '
* '
* '

* '
FORMAT< 
FORMAT< 

* '

i ' r l l O X r '  ! ' /

R2

7 , A ? X ,  ' D E L T A '  , 5 6 X ,  '  ! ' /  ‘ - ' f \
'  » l l X r 4 H O <5 0 f ' * 2 2 X » 4 H 0 . 7 5 » 2 2 X , 4 f i l <0 0 » 2 2 X » 4 H 1 . 2 5 » 1 7 X »  ' S ' /
V 4 <  '
' , 1 1 0 % , ' f " /
'  , 5 1 X , ' R l ' , 5 7 X , ' ! ' /  

'  , 4 ( 26H  ~0,»5
V 4 < 3 ( '  —

/

’ /

)

* '

y ( i 3 C ' ----- i—
, 1 l O X r '  ! ' /  -

» 4 9 X » / D E L T A ' r 5 6 X * ' ! ' /
! ' r l i X / 4 H l »  5 0  , 2 2 X  > 4 H l ♦ 7 5  r 2 2 X , 4 H 2 . 00»  2 2 X  ,  4 H 2 «25  * 17X f ' I ' /

' /-------------------------------------------------------------------------------- --------------------------

*' \ ' , 1 1 0 X , ' \ ' /
R2 . i ' f S I X f ' R I ' f 5 7 X , ' \ ' /

* *'
*'
*'

! ' * 4 ( 2 6 H  - 0 , 5  0 , 0
! ' , * ------------- ' ) , '  ' )
i '  » 1 1 0 X t '  ! '  >

0 .
» ' -

5 ’ ) , ' 
I ' /

10 FORMAT < ' I V / / / / / / / / / / '  PROBLEM ' , 9 4 X , 'PAGE 2 ' / )
11 FORMAT( ' ! . ! ' f 4 ( 3 F 8 , 3 , '  I ' ) , ' N ! ' )
1 2  • FORMAT< ' I S ' j r 4 ( 3 F 8 , 3 »  ' } ■ ' ) , ' L I ! ')
13 FORMATC' ! '  r 4  ( 3 F 8 »2 r '  I ' ) , ' LO ! ' > I
14 FORMAT( ' ! ' » F 4 ♦ 1 » '  1 ' » 4 ( 3 F 8 . 3 » '  ! H ! ' )
15 FORMAT( ' ! ! V 4 < 3 F 8 . 3 f  '  I ' ) , ' S ! ' )
16 FORMAT < ' \ ' , 4 i  3 F 8 . 4  ,'j \ ' L .  1 ' )

STOP 1
END
SUBROUTINE A U X C X , R l r R 2 fQ»g T » B I » I  * J )
* * * * * * * # * * * * > * * # # * * * # * # * # # * * * * * # # * * * # * * * * * # * # * * # * * * * * * # * * * * * * *
*  CALCULATION OF F I R S T  FOUR TERM.. OF AN EDGEWORTH S E R I E S  *

■*r\T:
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C * AND THE ELEMENTS OF EQUATION (6.10) AND <6.11>.IMSL SUBROU-*
C KTINE . MSMRAT IS USED TO CALCULATE THE AREA OF NORMAL CURVE. *

^  ^  t U  ^  v L »  ^  ^  ^  ^  ^  ^  ^  t U  . U  k U  ^  l b  i b  ^  l b  ^  l b  ^  l b  l b  i b  ^  i b  i b  ^  l b  l b  ^  ^ b  i b  i b  ^  l b  i b  ^  ^  ^ l b  l b  l b  l b  l b  ^  ^  ^  ^  l b  ^  i b^ ^ ̂  ̂  ̂  ̂  ̂  ^ ^ ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂
DIMENSION X<3»3)rQ<3>3>rFT<3,3)*Y<3r3> . ' ' '
•IF<X(IfJ).EQ.0.0) GO TO 85
Z X1=0.39894228*EXP(- X (IrJ>*X<I ,J )/ 2 .0)
GO TO 86 ■

85 ZX1=0.39894228
86 Y (I »J ) =ABS < &J ) )

ZX2=<Y<I^X)Jc^-.?l,,0)*ZXi ' '
ZX3=-<X<l/J$**3-3..0*X.U»J> >*ZX1 
Z X 4 = (Y (I ;J )**4-6.0 * Y (I rJ)**2+3,0)*ZX1 
'ZX5=“ (X(Ir.J)**5-10.0*X(Ir J)**3+1-5.0*X tl >J) >*ZX1 
ZX6=<Y(Ir J)**6-15.0*Y(,Ir J)**4+45.0 * Y (I »J)**2~15>*ZX1 
Ct(Ir J)=ZXl-Rl/<6.0*SQRT(Bj:> >*ZX3+R2/<24♦0 * B I >*ZX4+<R1*R1>/<72.0*BI 

i)*ZX6 '
Z=X<IrJ) . . .
CALfe, MSMRAT(Z»RM,IER) : . ' .
FIX=ZX1/RM
FT<I> J>=1.0-FIX-Ri/(6.c6j<SaRT<Bi:) )*ZX2+R2/(24.0*BI)*ZX3+<Ri*Ri)/C72 

1 .0*BI33(ZX5 
RETURN 
END
REAL FUNCTION-F<.G)

^  ^  ^  ^  l b  ^  ^ 1 /  ^  ^  ^  ^  ^  l b  l b  k b  l b  ^ 1  k b  k b  ^  ^  l b  l b  ^  1 ^  k b  ^  ^  i b  ^  ^  ^ k  k b  k b  ^  ^  ^  k b  l b  k b  k b  i ^  l b  l b  l b  l b  i b  l b  ^ b  l b^ ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  qi ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂1 ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  1̂ ̂1 ̂  ̂
C * EXTERNAL ROUTINE FOR CALCULATION OF SAMPLING INTERVAL AS*
C * A ROOT OF tHE EQUATION -<6.15) , *

REAL Gi LAMDA rKRi>KS
COMMON LAMDA ? ARLO »A RL1 r U r V rT R »TS > U rBB rCC rB I rK R ,KS 
B0=(i,/G~0'.5*LAMBA+l./i2.*LAMDA**2*G)/ARL0 
Bl=<ARLl-0.€+l-./12.*LAMDA*G)‘*G 
DBO=-(1 ./(G*G)v-l ♦ / 1 2 ♦ *LAMDA**2)/ ARLO 
DB1-ARL1--0.5+1 ./6.*LAMDA*G
-T1=LAMDA*G**2* < U+TS*B0*U+LAMBA*U*(TR+TS)-BO*V-LAMDA*W)*DB1 
T2=G**2*<V+LAMDA*B1*V+LAMDA*V*(TR+TS)-LAMBA*TS*Bl*U-LAMDA*TS*W)* 

1DB0
T3= < 1.0+LAMBA*Bl+TS*B0+t_AMDA*<TR+TS) )*< 1.0+LAMDA*Bl >*<BB+CC*BI > 
T4=TS*S!jca .0+LAMDA*Bl)*DB0*<BB+CC*BI)
T 5 = < BB+CC*BI)*LAMBA*G*<TS*BO+LAMDA* < TR+TS))*DB1 

! • F=T1+T2-T3-T4+T5 - ‘ .
RETURN
END

DATA

-0.7746 ' 0.0000 0.7746
0.5556 0.8889 0.5556

0.05 ■ 150.0 50.0 20.0 ‘ 10.0 0.2 0.1 . 0 . 5  0.1
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APPENDIX VI 

PROGRAM CUSUMSEMI

PROGRAM DESCRIPTION 

PURPOSE OF THE PROGRAM.*

THE MAIN PURPOSE OF THIS PROGRAM IS TO PROVIDE 
TABLES FOR THE SIMPLIFIED SCHEME FOR AN ECONOMIC DESIGN 
Op.. CUSUM C ^ A R T . TO CONTROL NON-NORMAL PROCESS'MEANS, UNDER 
A SPECIFIED VALUE OF ARL1 AT THE REJECTABLE QUALITY LEVEL. 
NOMENCLATURE •

VARIABLE NAME 
NORD 
ZK 
AK
DELTA 
Rl 

, R2 
THETA

*

INPUT DATA CARDS

ORDER OF CARDS 
1 
o

OUTPUT DESCRIPTION

VARIABLE NAME-

BH Cl)
BTHETA(I)tf

BARLO(I)

DL(I)

DESCRIPTION - 
NUMBER.OF GAUSSIAN PlONTS 
GAUSSIAN POINTS 
GAUSSIAN COEFFICENTS 

,v SHIfT PARAMETER
MEASURE OF SKEWNESS'
MEASURE OF KURTOSIS 
MAGNITUDE OF VARIATION IN MEAN 
STANDARDIZED DECISION INTERVAL 

. MAX. NO, OF DECISION. INTERVALS 
SAMPLE SIZE
SPECIFIED VALUE OF ARL1=1.05 
SPECIFIED VALUE OF ARL1=1.1

FORMAT
C8F10.5)
(8F10.5)
(3F10.5)

VARIABLE NAME 
ZK 
AK

DELTA,Rl,R2

DESCRIPTION ■

ITH DECISION INTERVAL.
VALUE OF THETA CORRESPONDS 
TO THE ITH DECISION INTERVAL. 
VALUE OF ARLO CORRESPONDS 
TO ITH VALUE OF THETA. 
DERIVATIVES OF BARLO(I)
WITH RESPECT TO BTHETA(I).
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D*=((BARL0(I)**2)*THETA>/ !
DEL(I). ' - , :

)GRAM LISTING 4 ’
t  ^  ^  ^  d j ^  >b Uf ̂  tb  tb  ̂  tb  tb-tb  ̂  tb  tb  tb  tb  ib  tb  ̂  ̂  ̂  ̂  >b ̂  ̂  ^  ̂  ̂  tb  ^  tb  ̂  tb  ̂  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂> ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ^ ̂  ^

fPLIFIED ECONOMIC SCHEME FOR THE DESIGN OF CUSUM *
* CHARTS TO CONTROL NON-NORMAL PROCESS-5 MEANS* *

^  >1/ ̂  tb  tb  tb  tb  ̂  ̂  ^  ̂  ib  ib  tO ib  ib  ̂  ib  ̂  tb  ̂  ^  ^  ^  ̂  ̂  ib  lb  ̂  ib  tb ^  ̂  »l> tb  ib  ^  ib  ib  tb  tl* ̂  ib  ib  ^  ^  t^  tb  tb  ib  tb  ̂  ib  «L>^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂ \ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
DIMENSION BTHETA(28)»BARL0(28)rBH(28)>DL(28)rTABLE(28»4f2)
INTEGER K fN D I M f IER

' COMMON Rl»R2 fZK(3)rAK(3)rBI
N0RD=3 . ,
K=NORD
NH=28
I=NH ;

C **************************************************************
C * READ GAUSSIAN POINTS (ROOTS OF LEGENDER'S POLYNOMIAL) AND *
C * GAUSSIAN COEFFICENTS IN THE INTERVAL -1 TO +1» NO-NORMALITY*
C • * PARAMETERS AND DELTA. , . *

tb  ib  tb  ̂  ̂  ̂  ̂  ̂  ̂  ^  ^  ̂  ib  ib  ib  ̂  ̂  ̂  ̂  ^  ̂  ̂  tb  ^  ^  ̂  tb  ̂  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  tb  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  U/ Uf ̂  ̂  O/ Uf
^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  4» ̂  ̂  ^  q* qt ̂  ̂  ̂  ̂  ̂  ^  ̂  ̂  ^  ̂  <p ̂  ^  q» ̂  ^  q* ̂  ̂  <p “  <p *  <p

READ (5^20) (ZK(II) f II=1»K)
READ(5»20) (AK( II ) f II = 1»-K)
READ(5f21) Rl>R2»DELTA

20 FORMAT(3F10.5)
21 FORMAT(3F10.5) • '

^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂  ̂  ̂  q» ̂  ip q» ̂  ̂  ̂  ̂  ̂  qt ̂  ̂  ̂  ̂  ̂  ̂  q» *  ̂  q* *  ̂  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ^  ̂  q» ̂

C * SPECIFICATION OF DESIRED LEVEL OF ARL1 (TYPICAL VALUES *
C * ARE- 1.05 OR 1.1). *

Xl=l.05 
X2=i♦1 
THET A = 1 .65 
H = 0 .032 
X=X1 
IFLAG=1 

800 DO 904 I = i»-NH
THETA=THETA+0.05

C * ^  ̂  ̂  ^1 ̂ b ̂  ̂  d t d i ^  ̂  d . ^b ̂  d f ti» ^b ib  d b b  ̂ b d f ^  tb  ̂  ̂  ^  ^  ^  ^  ^  d> ̂  ̂  ^  tb  ̂  ^  ̂  ̂  ̂  ̂  ̂  ^  tb  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂  ^  ̂  ̂  ^  tb 
^ ^  ̂  ̂  ̂  ̂  ̂  ip ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂ «P ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂p (p <p *  ̂  ̂  ̂  ̂  ̂  ̂  <p ̂  <p ̂p ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂  ̂  p  qi ̂  ̂  ̂  rfp ̂

C ""* CALCULATE SAMPLE SIZE USING EQUATION (6.20)- FOR GIVEN THETA.
C ^b ̂  tb  d / tb  ̂  ̂  ̂  ̂  t^  ̂  ̂  ̂  ̂  ̂  ̂  ^  tb  ̂  ̂  ̂  1*1 ̂  ^  ^  ̂  ^  ̂  ̂  ̂  ^  ̂  ̂  ̂  dr ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ^  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  

^  ̂  ̂  ̂  ̂  ̂  ip ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  A  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  q\ ̂  ̂  ̂  ̂  ̂  qV <p ̂  ̂  ̂  ̂  ̂  ̂  qt *  4p ̂  <p <p <p ̂  ̂  ̂  ̂  <p ̂  qS ̂  qt ̂p ̂  ̂  ̂

B I = (4*(THETA*THETA))/(DELTA*DELTA)
899 CONTINUE

CALL S U B (THETA fH rA R L )
IF(ARL.GE.X) GO TO ?01 
H=H+0♦001 
GO TO 899 

901 THETA--THETA
C o , ̂  ̂  ̂  ̂  ^  ^  dr ̂  ^  ̂  t±, ̂  tb  ̂  tb  ^  ̂  ̂  ̂  ̂  tb  *1* ̂  ̂  ̂  ̂  dr dr ̂  ̂  ̂  ̂  ̂  ^  ^  ̂  b  ̂  ^  ̂  ̂  ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^  ̂ U ̂

^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  î  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂p  4̂  *  ̂  ̂

C * CALCULATE ARLO AND H UNDER THE CONDITION THAT ARL1=1.05 *
C * OR 1.1 FOR A GIVEN THETA. * •
f]r ]̂ t /̂C )|( % )|( )|( )ft *  ̂  )K )|( )|( )J( )|( )|C )|( )|( *  *  *  )|( )|( )j( *  ̂  )jc )j( )jc )j( )|( )J( 5j( ̂  !̂ ( )J( ̂  )j( % )ft )f[ *  *  )ft )|( )|( )|c )|c )|t )fl )|( )|( )|(
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CALL SUB C THETA f H r A R L )
THETA=~THETA ' b

* B T H E T A d  )=THE»TA 
BH<I)=H 
BARLO(I)=ARL 

904 CONTINUE
^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  > L  ^  ^  4L  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  k b  ^  ^  k b  ^  k b  k b  v L k  k b  ^  ^  k b  k b  ^  k b  ^*1* *  ̂  ̂  ̂  ^ ̂  ̂  ̂  q' ̂  ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂

C * FIND THE DERIVATIVES OF A RL07S WITH RESPECT TO THE ' *
C •*" CORRESPONDING VALUE OF THETA. *
C ^ t  ^  ^  U /  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^ U  ^  ^  ^  ^  ^  ^  ^  ^  k b  ^  ^  ^  ^  k b  ^  k b  ^  k b  k b  ^  k b  ^  ^  ^^ v^^ ̂ t»^n* *  *  ̂ ^^^^ 4\  ̂ ^ ̂  ̂ ^^ ̂  ̂ ^ ̂ ^ ̂  ̂  ̂ ^^ ̂  ̂ ^^^ ̂  ̂ ^ ^ ^ ^ ^ ^ ^ ^

NDIM=NH '■ ' ' . .
CALL DGT3(BTHETA fB A RL0 fD L fN BIM f IER)
DO 911 1=1 fNH
T ABLE<I f1 rIFLAG)=<<B ARLO<I )**2)*BTHETA<I )>/ D L (I )
T A B L E d  f 2 f IFLAG) =BTHETA d  > * •
TABLE<I ?3 1IFLAG)= B H < I ) «
TABLE d  f 4 f IFLAG ) =BARL0 (I )

911 CONTINUE
IF dFLAG.EQ.2) GO TO 915 
IFLAG=2 
THETA=1.35 
X=X2 
H = 0 »03jf 
GO TO 800 

915 'PRINT 1 rDELTA»R1rR2 f X I f X2 
DO 920 1=1fNH 
PRINT 2
PRINT 3*(<TABLE(Irllrlll)rl1 = 1 f4 ) f11I = l>2)

920 CONTINUE . '
PRINT 2 
PRINT 4 
STOP

1 FORMAT( 71 7 f  26X f  82( 7 - 7 )  /

o

*2 6 X f 7 ! 7 fSOX r 7 : • / *
*26X  f 7 ! 7 f14Xf-OJELTA = 7 f F4 ♦ 2f14X  f 7R1= 7 fF 4 .2 f 14Xf 7R2=7 fF 4 .2 f 14Xf
*26X f ' wf 7 fSOXfT ! ' /
* 2 6 X t 7 i 7 18 0 ( 7 —7) f 7 i 7 /

\ v

*26X f 7 7 f 2 < 7 7 f39< 7 7 ) » 7 : 7 > /
*2 6 X f'7 7 f 2 < 7 7 f16X f 7L l = 7 fF 4 .2 t l 6 X r ' i 7 ) /
*2 6 X f 7 7 f 2 ( 7 7 f 3 9 < 7 7 ) f 7 : 7 ) / -
* 2 6 X f 7 7 12 ( 7 7 f 39 ( 7 - 7 ) F 7 17) /
*2 6X f 7 7 f 2 < 7 7 f H X f  7 ! 7 r 7 X f 7 i 7 F 7X F 7 f 7 f H X f  7 ! ' ) /
*2 6X f 7 7 f ’2  ( 7 D* I THETA i H J . ARLO I ' ) /
*2 6X f 7 7 F 2 ( f 7 f H X f  7 i 7 f 7Xf  7 : 7 f 7X f 7 ! 7 f 1 1 x f 7 : 7 ) /
*2 6 X f 7 7 f 2 < 7 7> 11  < 7 - 7 ) F 7 ! 7 f7 ( 7- 7 ) F 7 J 7 F 7 < 7 -  7 ) r 7 ! 7 f 1 1 < 7- 7 ) f 7 ! 7 ) )

FORMAT ( '  7f 2 6 X f 2 ( 7 ! 7 F 1 1 X F 7 i 7 f 7X f 7 ! 7 f 7Xf  7 i 7 f H X f  7 ! 7 ) )

'  /

3  FORMAT < 7 7 f 2 6 X f 2 < 7 ! 7 f F I O . I f 7  ! 7 f F 6 . 2 f ‘7  ! ' f F 6 k 3 f '  ! 7 , F 1 0 . 1 f 7  ! 7 ) )

4 FORMAT( 7 7 f 2 6 X f 8 2 < 7 - 7 ) )  ,

END
^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  V ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  f  ̂  ̂
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< ^  . . .  ' - <e>
c ‘ * SUBROUTINE FOR'CALCULATION OF AVERAGE RUN LENGTH ARL*

^  ^  ^  ^  ^  k b  k b  k b  ^  ^  k b  k b  k b  ^  ^  ^  ^  k b  ^  ^  ^  k b  ^  ^  ^  k b  ^  ^  ^  ^  ^  ^  k b  k b  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  ^f  f  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂
SUBROUTINE SUB < THETA f'W t ARL >
REAL FrEPSrEPS2*BTA ,
REAL C(3»3)rB(3rl)rWKAREA(30)fSN(3»l)fB<3r3)
INTEGER^ NfNNf IA* IDGT r IER rMi»Ki>NSIG f ITMAXfL » KKf 11 f I IT* JJJ» IMIN 
DIMENSION Z(3)fA(3) ' .

• - " T U M E N S I D N  X ( 3 f 3 > f G ( 3 f 3 > f F T ( 3 f 3 )  ’

DIMENSION X X ( 3 f 1 )  f & 1 ( 3 f 1 )  f F T 1 ( 3 f 1 >

DIMENSION X I ( 3 f 1) fQ 2 ( 3 f 1 ) fFT2(3 f 1)
•DIMENSION X 2 ( 1 f 1 > f Q 3 ( 1 f 1 > f F T 3 ( 1 f 1 >

DIMENSION Z X 1 (3 f 3) fZX2(3 f3) f ZX4 ( 3 f 3) fZX5(3 f3 ) fZX6(3 f 3)
A  -COMMON R 1 f R 2 f Z K ( 3 )  f A K ' ( 3 >  fBI • *

K=3 .'
DO 25 III=I fK
Z (III)=(ZK(III) ♦ 0 ) *H*0.5 
A (III)=AK(I II)*H*0.5 ' y  

* r y 35 • CONTINUE ’

(0 75 II=lrK •' . *,
60 75 * J J=1 r K '<
'Xaif J J > =Z( II )~Z.(JJ>-THETA 1 1 ■
CALL AUX(XrRl»R2fQ»FTfBI»H»JJ) ,

• J . IF<II . EQ« JJ). -GO TO 60
. C<lWCl>=-A(ii)*0(II»JJ)

GO TO 65 .
60 C(II f JJ) = (1.0-:a<II» JJ)*A(II) )
65 D (JJ fII)=C(IIfJJ)

. 75 CONTINUE
DO 80 11=1 fK
XX (11 f 1)=-Z(II)-THETA 
JJ=1 '

$ • CALL AUX(XX fR 1 fR 2 fQ 1 fF T 1 fB I f II fJJ)
B(II f 1X=FT1(II f 1)

80 CONTINUE J
NN=3 *
M=1 ,
IA=3 
IDGT=4
CALL LE0T2F(D fM fN N fI A fB f IDGT fW KAREA f IER)
SUM=0.0 
DO 120 11=1 fK 

/•<* • - - X1(IIf1)=Z(II) -THETA
JJ=1'
CALL AUX (XI fR 1 fR 2 fQ 2 fF T 2 fB I f II fJJ)

120 SUM=SUM+Q2(II f1 ) * B ( H f 1)*A(II-)
X2(1 f 1 )=C-THETA 
11=1 
JJ=1
CALL AUX(X2 fRIfR2 f 0 3 1FT3» BlfIIf J J )
PZ1=SUM+FT3(1»1)

T
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SNCII/I > = 1.0 
, 130 CONTINUE

CALL; LEQT2F(DrMrNNrlAr’SNrIDOT tWKAREA >IER) '
SSUMl- 0  »0
DO 400 I1=1rK -

t  400 SUMi=SUMi+SN(II,i>#a2(H>l)*A<II>
SNZ1=1.0+SUM1 
ARL=SNZ1/<1.0“PZ1>
RETURN 
END

DATA
-0.7746- , 0,0000
0.5556 0.8889
0.5 1,0

0.7746 
0.5556 
2 10  '
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