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"‘ABSTRACT

~This_study’15‘dir¢c£ed towérds'the déve]obment of méée]s and
. procedures for the econoﬁic design qf §lch§rts,r§lcharts with¢warning““
Jimits and cusum charts to control non—normaT brocess meéhs ‘The .
obaectlve of the des1gn is to deterane the optimal va]ues pf thé\
‘chart parameters by m1n1mizlq/,t expected loss-cost. Two alternat1ve
operat1ng policies are cons1dered\’ Under policy I, the process 1s ’
a]]owed to.continue in operat1on during the search for the s1ng1e
assignablie- cause + Under policy II, the process is shut-down 1mmed1ate]y
- after the'search for the assignable cause is initiated. ‘
. In déveloping‘thése models, the non-normal prﬁbabi1ity density
| .  ‘function of the proééss variable is éxpreéseq in‘te;ms of the first |
four terms of an Edgeworth series. The solution prdcedu%e for B
detenn1n1ng the design parameters of an x .chart consists of an explicit

El

equation for the sampling 1nterval, and an 1mp}sc1t equation in.sample " {

size and the control 1ipi coefficient An optimization a1gorithm based

.on Hooke and Je s pattem search technique is develpped and employed
* to minimize the loss-cost funct1on under both operat1ng po11c1es A
simplified scheme, which determines the design parameters by m1n1mizjng
the loss-cost function subject to a specified Tevel "of consumer's risk,
is also deve]oped for both operating policies. Through ﬁumerical
examp]es it ¥s concluded that the resulting s1mp11f1ed scheme is close
to the minimum control plane The sens1t1v1ty ana1ysxs of the model

iii

. e

b

Reproduced with permission of the copyrlght owner. Further reproduction prohibited without permission.



'operat1ng under po11qy IL 1nd1cates that the mode] is h1gh1y sens1t1ve -
to the sh1ft parameter and the rate of occurrence of the- ass1gnab1e

- _.cause, .moderately sens1t1ve to the: f1xed and var1ab1e sampllng costs,

and.relatively 1nsens1t1ve to the repair and search cost. The S1ng1e
assignable cause mod?l 1s then extended to treat mult1p1e aSS1gnab1e
causes. " The solution to the multiple Lause-model is foqnd to he close | T
to that of the 'matched' single cause mode] | S R
- The economic design of X- chart with warn1ng 11m1ts 1s cons1dered
under pol1cy II. In order to develop the loss-cost function, expressions ‘ 4
- for the average run Iengths when the;process is in contrpl_and when-it
"is out of contrél are derived. The optimaa values of.xﬁe désfgn N
' parameférs are obtained By using a tw;—stage optimizatiqn a1gorifhm
similar to that used for the etonomic design of x-chart. Numerical
exampies are provided and the éffects of the noﬁ~norma{1ty pgrampfersf
on loss-cost function and deéign parametefs are examin;d: Fukthenno;é,
a simplified scheme is devised subject to the condition that the -
'assigﬁablé cause is dete&ted after a specifiéd‘avefégé run length.
For the economic design of cusum charts, the average run ]ength;
"are der%ved by solving é system of linear equations. which approximate
the integra] equations for the Vrequired quantities. .Using the deéision
interval scheme, an iterative a]qgrithm'is deyéloped to determine tﬁg‘
optimal de§ign.paramef§rs. A simplifﬁéd ?ersibn of the algorithm is
also ﬁresénfed; From numerical studies it is obsefved:that the effect~"'° , ‘

of skewnéss is more marked than that of kurtosis.
iv °
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’.-.. R . N . LN l cow T . \/
. ) T‘.', . . A comparTSon of the performances of the three charts 1nd1cates
-~y
e that for the shift 1n the| process mean between 0.5¢ and 1. So the
N
. \'perfonmance of the, cusum chart is better than that of the X-chart

_— .. w1th~warn1ng 11m1ts However, the perfonnance of the Tatter is
- ".f bettek- han that of X- chaLt with only‘actlon 11m1ts. w1th the .
A\ '". ‘ sh1ft in the process mean above~1 50, the perfonmance of the x- ~chart.
. Is sTightly better than those of x~-chart w1th warning limits and
\ cusum charts.’ |
F1na11y, the effect of human errors on the model is studied,

and a simulation of the model behaviour under extreme cases of samp]e

d1str1but1on is carried- out
AU

-
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CHAPTER 1~ - -
 INTRODUCTION

-

1.1 General Introduction

v ©

3

Injany productidn process, some yarﬁétidns iﬂApfoduct quality
are unavqidab]e. These variations can be divided intg'fwo-categories;
(i) random variations and (ii) variations due to assignable causes.
- If the random variations exhibit a stable pattern, the process is said
L\//’//} to be operating under é stable system of chanﬁe-causes, or simply,A_
to be in a state of in-éontro].} Variations that are not w%thin the
‘stable pattern of chaqcé-caﬁ;gs are attributed to assignable causes.
and the process'is then gaid to be in the‘state of out-of-control. It
is desirable that, when there is evidence that assignable causes of
. variation are present, these causes be detected and removed‘from the
process and, hehce, the process be brought back to the in-control state.
This is facilitated by the use of quality control charts.
A statistical quality control chart is a dynamic device which,
on the basis of the process performance, determines operationa{ criteria
to distinguish between random and non—random‘variations in product
ﬁwb:} quality ahd thereby provides a basis for tak%ng action to eliminate
femovab]e causes of variations. Thus the two major uses of control
charts are to establish i operational criteria to bring a érocess under
control and to maintain the exist%hg state of control.
Nheﬁ the product gquality is ﬁeasured'on a continuous scale, commonly

used statistical quality control charts for controlling the proéess
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average are the x-chart and the cumulative sum {cusum) chart. To
. B . . * : . < 7 A.’~' *
use a control bﬁprt, the user must specify @ sample size, a sampling
‘ - ~ . . .

; v . - ot .
interval and the control limits or critical.region Yor the chart.

L

O ’ . .
-

Selectjon of these ggrametéFé"is %é]1éﬁ the.desjgn of the cohtrol’ chart.
« .The deéign of the contro]4chart with‘réspect to economic ;theria
hés beeh a subject of interest'duriné the Tast three decades.” The
objective of the design has been” either toAmjnimize'thé inspection
requirements or to méximize the gncome, i.e;;_to minimize the loss-
.,  cost. %he‘asgumption underlying the design-has been the normality ;*

of the process mean.

1.2 Statement of the Problem v

In:maqg_industrial processes, the process variables, which are the
outpuf; ofK@an~ﬁachine systems, do not always confbr@ with the normality
assumption. The measurable quality charactefistic, which describes the
product quality, is a‘random variable whose density -function depends
upon one or mare parémeters of the product quality and often has a non-
noémal distribution. In such cases, conventional ‘charts, which are baseé
on the normality assumption, cdu}d affect the probabilities associated with
the control Timits or critical regions and may wroﬁg]y indicate lack of

o

control or out-of-control. ’

Generally, there can be as many causes as one can imagine for a
prbcess to be non-normal in nature. For instance, a process may. have
been screened for out-of-tolerance parts, resulting in a truncated

distribution. The truncated distribution can also occur when the values
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of a-meésurea variable can bBe acchraté]fﬂreéorded only in a certain’

- : iﬂ%erQé]. This may be due to 1imitatiops {n'&easuring instruments,
-ooor to‘thé purely pracficé]xbonsfdgratioﬁs of easé and speed of
dbservation £Johnsop and Leéné,-197ﬁji1 o ' . ‘
“"fAnothér typeloffnon-ﬁgrmaﬁ_diSfr%but%Bn,known as mixt;re-distribgtion,
arises when.pkoducts from two or more‘séparatg sources are miiéd. If -
m'ﬁachines~are making‘the sgmé proqucé qnd a‘qhalit§ éharécteristﬁc X
is distributed‘hoerTWy'fdr the produht ffom any machine, but with mean =
and/or standd¥q‘deviaii0n Varxing ffom machine to machine, a mixture of
products ﬁrom'aTI_m machines will nét, in’geqeral, have a ﬁormal
ﬁistributiéﬁ:o% g-[dohnson and Leone, ]976]. _
 The powers and products of normal” variates have distributions,
‘ 'which are in genera]‘skewed to the riéhﬁ [Haldane, 1942]. There are

ciréumétances.in which skewness must.be regarded as.being typical of

L. -~

- a product variate [Morrison, 1?58].

-

In general, the distribution of a product characteristic is unknown.

Given a sample.of measurements of a product characteristic,.the general

I's

. objectives of analysis are to estimate the parameters of the distribution

1

. and to make inferences. Commomvanalyses consist of computing estimates of

mean, variance, skewness and kurtosis of the underlying distribution.

-

Judgements of normality or non—nonj?}ffy‘éag.be based on measures: of

skewness and® kurtos#s.

In setting the control limits or the critical regions for .
control charts, the assumption of normality is justified by the centra]h1imit
theoram. The theorem essentially states that, under certain conqitions,r

the distribution of fhe sample mean ‘will approach normality

\J ’ LY

4
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<

3

for large saﬁp]evéizés. But increasing the sample size increases the

samp11ng costs Decreasing the sample-size will increase the Iosses

. ¢

- resulting from deviations. of the mean frnm-ﬁ/;malrty The prob]em is to f1nd the
'~ optimum. .. Solutions are known for the case where’ the product varwable "

j ‘ considered is normally dwstr1buted However, there are ‘cases where ' -

: neithéﬁ EES;Ezggust’ﬁg;%able is normally distributed, nor the sampTe

size is large enough to apply the central 1imit theorem. In these
L 4

wo

situations, the question arises as to what effect nonrnormafity of }-
vaéio_us degrees will have upon the operatioﬁ of x-charts and cusum

- charts. The present study ‘is an attempt in answering this question.

1.3 ‘Objectives of the Study

J

The maJor objectives of the present study are to deve1op math-
ematical mode]s and procedures for the optimal design of control charts
to control non-normal process means based on economic criteria and to
investigate the effects of'nonﬂnormality on_thé design parameters and
on the iong run average loss-cost function deveioped in the models.

N The economic design of a control chart involves the optimal determination
of §gsign parameters so. that the averége loss-cost is minimum.
‘../ ' The investigation is cgn?ined'to the design of x-charts, x-charts
\ with'warnfng Timits and cusum charts for the control of the mean of'a
= process when there is a s1ngJe assignable cause " and when the
observat1ona1 variables are 1ndependent and non-normal ly dlstr1buted
Furthermore, the study is concemed with quality control tests involving

a single statistic, i.e., the sample mean,
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The loss-cost 1ncurred in ‘& productlon cyc]e is assumed to
cons1st of the search cost fo]lowlng a false alarm, the search and
a@justment costs f011owing a true alarm and the cost of mainygining
the control cha;t; | | |

In the case of x-charts, the loss cost function depends, on the .

. ) probab111t1es of Type I and Type II errors; express1ons for these
) probab1]1t1es are thus developed. ,
S1m1]ar1y, expres%lgzs for avgrage"ryn lengths when the process
is im control and'wﬁeq*it is out of control are developed fof the
economic design of iicharts with waming limits and of cusum charts.
It is also the objective of this study to investigate the
. effects of variations in the cost and shift parameters/7and in the rate
of occurrence of the assignable cause on the values of the design
parameters. Accordingly, the sensitivity of the model to errors in
Ehg estimation of these factors will be analyzed.
. The present research is further* concerned with the ﬁevelOpﬁent of
a simp]gfied stheme,.suitablé fpr practical application at a factory‘_
leve¥, for each of the underl?%ng control éﬁarts.
= Comparisons among the relative performances of these charts are
made through numerical examples™. -
Finally, the effects of human error on the propased moééls, as well
as a simulation of model  behaviour under extreme sample distribution,

» s

are discussed.

H
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1.4 Outiine of Prdposed Study

-

= '. After the 1ntroductory material of ChaptEr 1, the presentation -

S s patterned as fo]TowS'"'

In Chapter 2 the historical background of control charts is

presented, the literature on contr01 charts is surveyeq and the

mot1vat1on for the present study is descr1bed , '.‘___ﬂj;,<::::ji/_,,é//
Chapter 3 reviews the statistical propert1es and the design :

criteria of control charts

Chapter 4 is devoted to the development of mathematical mode]i\ .
for‘the economic design of ilchart§ under two operating policies.
Under policy I, the process is aliowed to continue in éber§tion A
during the search for the assignable cause. Under policy II, the
process is shut down during- the search for thé assignable causg. An
0pt1mlzat1on‘a]gor1thm based on Hooke and -Jeeve's pattern search
- technique,is employed to minimize the Ioss cost function urder both
operating po)icies~'and to obtain the respective optimal design
pafameters (i.e., sémp]é size, sampling interval and contro1.1imits
coefficient). ,A simplified scheme, which detérmines-the-design
'parameters by minimizing the loss-cost function subject to a specified
: Tevel of consumer's risk,is alsp developed. . TheAchapter alsc includes
a sensitivity analysis of the model undek‘operating po1icy II and
\ investigates the model behaviéur when there is a multiplicity of
assignable causes. o .

Chapter 5 describes tﬁe'model of the economic design of x-charts

with warning 1imits under policy II and details the formulation of
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the loss-cost function,:the determiqation of the average run ]eﬁgtp
when the process s in control and when it is out of controt-add a two-_
stage optimization algorithm to determine the pptimum design para-
meters. - It includes a simplified version of the algorithm as well.
The:ecénomic design’ of cusum;chaﬁts to control non-normal process

-

\ means under policy II is described in Chapter-ﬁj It contains the
formulation of the loss-cost. function; the determination of ayerage run’
lengths by a system o% Yinear algebraic equations and an iterative
algorithm to obtain the optimal values of the design parameters. -

Also presented is a semi-economic. scheme which allows the user to

specify the value 6f the average run IEngfh’at the %ejectable quality A
level. Finally, the Chapter eva]uétQS\the\re1ative performances.of:the
three control charts. deveioped in Shaptérs 4-6.

In Chapter 7, the effects of human error on the model and a ~ °
simulation of the model behaviour under extreme cases of sample

distributions are discussed.

A summary of the findings, conclusions, and recommendations for -

future -research. are-presented. - :

e
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" CHAPTER 2
'LITERATURE SURVEY AND MOTIVATION FOR PROPOSED STUDY

This Chapter rev%ews and classifies the existing literature on.
the subject of economic design of control charts. -The present survey
deals w1th the spec1f1c portion of the ava1lab1e 11terature which seems °
most re]evant to the scope of this research. Furthermore, it prov1des_

. the mot1vat1on for the development of ‘the mode]s described in later

* chapters.

2.1 Economic Design off%-Charts to Control Normal Means

Based on”the minimum cogt criterion Duncan [1956] prdhosed the
_s1ngle ass1gnab1e cause mode] for the economic design of the' x-chart to
contro] normal process means. He assumed that the occurrence time aof the
ass199ab1e ‘cause {s an exponehtia] random-variable. He developed
'an exéréésion for an apbroximate per hour less-cost function of the
process. In‘deve]oping this function, he considered relevant incomes
when thé_process is in control and when it is out-of-control, cost of
looking for an assignable cause whén it exists and when it does not
exist. and the cost of mainta1n1ng a controI chart. Baséd on several
numerwcal approx1mat1ons, Duncan deve]oped an iterative procedure to
find the near-optimum solutions of sample size n and control limit -
coefficient k. A closed form solution for s js given,using the optimal
\va]ués of n"and k. Duncan's model is simple and practica] in some

situations but not sufficiently general, as it does not allow the -

s
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process to be shutvdown‘when'a search for the\assignabTe cause is being
carried out and it does not include the time and cost of repairing the
. process if if is found eut-of-con;ro]. '
gowden [1957] developed an economic design of an x-chart and | l
defined .the total cost fﬁnction as the sum of the operating cos%,'
engineering cost and merchandising cost. His model assufmes that
every morning production starts in an unknown state. If a.ﬁoint on
the i}chart goes outside_fhe control limits, a search is made to look
for any trouble. If the trouble is detected, it is corrected immediately.
Once the process has been correctee, no more troubles eccuk during the
rest of the day. Cowden's model is not’suitable for the study of the‘
contro] cﬁart; as the.manufacturer may siﬁp1y examine -his process every
mornipg, correct the:troub1e if found ahd’then start the produeiion of
. the dey‘without Hsing any contrpl charts. .
Gibra .[1967] investigated %he optimal econoﬁic design of ar X-chart
useé to monitor a process idﬁg%ging too] wear, in which the mean of the
-quality characteristic exhibitx a ‘]ineer\ frend. Theﬂ optimal
conpro]‘procédure determines deeision rules for adjustment due to drift,
as well as for the occurrence of an’assignable cause. The control .rules
"minimize adjustment costs : and costs due to the production of defective
items. '
Goe],,etvai. [1968] developed an iterative optimization algorithm
to determine the exact<optimal so]utioﬁ for Duncan's modei. |

- Taylor [1968] developed a model which allows for process shut down

during the search for thé assignable,cause and which includes the time

B
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and cost of repairing the process when it is out of control. But he
omitted tée cost of samp]ing. |
- Gibra [1971] has proposed‘a single assignab1e cause model qf an

l;lchart. His ptfcéss model is similar to Duncan's model. In the

development of the cost model, he proposed the concept of worst cycle

qua]uty level {WCQL). The optjma1 values of the des1gn paramgters ‘

are obtained by minimizing the expected cost ??nction'subjecq to

constraints on the WCQL. t. . ‘ -

Baker [1971] has proposed two discréte-tihe models in which é
sample size n is taken at the end of égéh»period and a test statistic
is plotted on'the control chart with + ko limits. His first model -
assumed that the number of periods the p?bcesé remains in the contrgl
state fo]]ows a geometric ‘distribution,whi1e hi§ sggond model
as;umed that the number of périods the process remains in the
control state follows a Poisson distributioh. Furthermore, he pointed
out that the optimal economic control éhart design {s ré]ative]y

3

‘sens1t1ve to the choice of process failure mechanwsm Substantial’
cost pena11t1es may be 1ncurred if an 1nc0r;ect process fa1lure !
mechanism is assumed.
Chiu and Wetherill [1974] modified Duncan's and Taylor's models
and proposed a semi-economic: schehe for the design of an x-chart by
utilizing the concept of operat1ng character1st1c {0C) curves.
An assumption common to all the works cited above is that when
the process is disturbed by an assignable cause, only the mean changes ‘

s
I

'khhi1e the variance remains unchangéd. Krishnamorthi [1979] proposed
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a model under the assumptlon that the variance is a]so changed due to the
occurrence of the ass1qnab1e cause.
. ' Control charts thh warn1ng limits were f1rst 1ntroduced by
Page [1955]7 The chart includes warning limits wh1ch Ile inside the
éction Timits. A search for an aSSIgnabTe cause is undertaken if the
last sample mean is in the out-of-control state (falls outside of the
action limits) or if the last sample mean completes a run of length
Rc which is in between the wafning and action limits. Page []932]
modified his first model and measured the sensitivity of an §lchart
by developing the Mean Action Time of the chart using run theory.
Weindling et al. [1970] proposed a Mean Action Time of an ¥-chart
wifh waming Timits and &iscuésed the ef%écts on mean action time of an
x-chart of changes in the Tocation of the action and warning limits and
the critical run length. - \
Gordon andlMeindling [1975] developed a cost model for fﬁe ecanomic
~ design of a warning 1imit control chart. They considered a single .
assignable.cause model. The cosfs‘considered are those of inspection,
defective production and searching for and torrecting the assignable
| cause. The criterion is average cost per good produced. The process '
has anly one Qut-df—control state and shifts to this state are governed
by a Markov process. The model.of Gordon and Weindling allows ecoﬁomica11y-
optimal determination of the design parameters, kg (action limit con
eFficjent), Ky (warning 1iﬁit coefficient), n (sample size). and s

(samﬁiing interval).

r
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Chiu and Cheung [1977] extended the work of Gordon and Weindling
by considering the cost ‘of process shut-down. They made various
comparisons among the minimum ncosts designs.of x-charts with and w?EE-
out warning limits. TheyiaTso provided a simplified scheme for the
détermination of control parameters. R

Knappénberger and Grandage [1969] proposed a model for the
economic design of an X-chart when there are multiple assignable causes.
Théy minimized the expected cost per unit product. The§ assumed tbat
the cogts of in;éstigating both real and fdlse alarms are the §ame:
This'assumﬁtion is not practical.

Duncan‘[19}1] extended his single assignable cause médei to a
mulfiple assignable cause model. The accurrence tipes of assignable
causes are assumed to be independent exponentié] random variables.

He assumed that once the process shifts to an out-of-control state due

to the occurrence of an assignable cayse, it reméins in that out-of-
control sfate-and no erther assignable causes occur until the process

is brogght back fo the in-control state. This assumption is-quite.unreal-
istic. But Duncan also formulated the “double occurrence" model in the
same work, under the assumption that after an initial shift, a second
occurrence of the assignable cause is possible. He showed that this
modification in the ﬁode] has Tittle effect on the optimum solution of
the désign parameters, but produced some changes in the behaviour of

the cd&E\;;rface»\ Both Duncan [1971] and Knappenberger and Grandage

[1969] defined a "matched" single cause model and found that the
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- \‘\ ".
optimum control plan of the matched single cause model approx1mated

- well the true optimum contro] p1an for the original mu1t1p1e cause

model.

© 2.2 Economic Des1gn of .Cusum Charts to Control Normal Means

The econom1c design of the cusum chart has a shorter history
_ than the economic design of the x-chart. It was first investidated
by Taylor [1968] for normal processes. Tay]or's single assignable
cause model expressed the expected loss-cost per unit timé as.a
function of the sample size n, the sampling intervai s and the V-mask
design parameters d and half angle ¢. The model qiiows for pracess
shut-down during the search for the a;sigﬁable cause and includes the
time ‘and the cost of repairing the process when it is out-of-control.
However, the model assumes that n and s are specified and that the
effect of the assignable cause is a functioh of the sample size. The
cost of sampling is also omitted. |
Goel. and Wu [1973] deveioped a single assignable cause model for
the optimum economic design of a cusum control chart for controlling
normal process means. They utilized a cost model similar to Duncan's
single cause x-chart model and presented both V-mask and -decision
interval schemes to obtain the optimum values of the design parameters.
Under the assumption of normality of the process means and following
the general modeiling structure o% both Duncan's x-chart model and
Taylor‘s cusum chart model, Chiu []974]‘deve]oped a single cause economic

mode] for a cusum chart. He considered a one-sided decision interval

k3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

scheme in formulating the per hour loss-cost function and presented
both a numerical optimization method and.a simplified approximate
- -solution procedure to determine the optimal values of the design para-

meters.

2;3 Design of Control Charts for Non-Normal Processes

The design of control charts which are discussed in the above
sections and the comprehensive surveys of recent developments in _ »
control chart techniques by Gibra [1975] and Montgomery [1980], reveal
that a considerable amount of work has been undertaken for the economic |
design of control charts under the assumption that the process variab]es
are normally distributed. \It is common knowTedge that industrial
random variables do not always conform to the assumption o% nonnality.

In such cases conventional control charts, which are based on the
normality assumption, may wrdngiy jndicate that the process is out-of-

control when it is actually in the in-control state. Similarly, they

may wrongly indicate thatfipe process is in the in-control state whereas
it remains in the out—ofjﬁontro1 state.

Delaporte [1951] demanstrated the effect of non-normality on
control charts for sample means. Through numerical studies he has shown
that the values of upper and lower control limits obtained on the
assumption of a normal population, différed substaﬁtia]?y from the
respective values obtained by studying the actual distribution of means.

Gayen [1953] discussed the need for correcting the normal theory

control charts for measuring departures from normality .and .deseribed
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some methods for calculating cdﬁtrol 1imips for means and standam%
deviations in situations where their distrib;;ions depart significgntly:

. ‘ from the normal. One of his suggestedimethods was to express |
the non—ﬁbrmal prbbabil;;y déhsity function in terms of an Edgeworth
series, wHich provided a convenient alternative to thé4norm§1 density
function. |

Moore [1957] has shown how certain departures from the normality
assumptioﬁ coﬁld affect the probabilities associated with control
Timits ca]pulaéed by normal theory. Through numer%ca] studieé
he cautioned against the risk of rigidity éoncernljn'g‘thecnormamy assumption.

FgfreT [1958]~¢onsidered the case when the’%ﬁ%ﬁribution of the
quality characteristic is badly skewed and devise&;contro] charts for
a log-normal population.

Singh [1966] investigated the effect of non-normality of the
manufactured units on producer's and consumer's risks. He considered
only the effect of the peakedness parameter, Yo =8y - 3 and he faund
that in the case of platykurtic pépu]ations 6'2.< 0}, if the specification
limits are set near the mean, then both the producer's and consumer's
risks will be greater than their respective normal theory values and if
the specification 1imits are set far from the mean, both risks will be d/;,/”'
smalier than Fheir corresponding normal theory values;

Hahn [1971], Schilling and Nelson {19761, Heiks [1977] and Bruska

[1978] examined the conditions under which one might or might not expect

brocess variables to be normally distributed and indicated the procedures\‘
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which may be used to check the validity of the normality assumption.
They suggested some very important transfofmatioﬁs of the process

" variable to achieve a better method of approximation to-normality and
3 .

- made several comments on the consequences of incorrectly assuming

~ nofma]ity.

-

Following Duncan's work for normal processes, Nagendra and
" Rai [1971] déve]oped an economic model of an §lchar£ to control non-
normal process means. They used severa{_numeriﬁa1 approximations

to derive the per hour loss-cost function o% the model. Taking the

.ifirst partial derivatives of the Toss-cost functfon with respect to
'sampTé size n, sampling interval s and using some approximations, they
_bbtaineé ekprgssions for the design pérameters n and s for a spécifiéd.

value of control limit coefficient k. Since k is ﬁot treated as a

variable, the resulting plan may be far from optimal. .Moreover, the

study did not consider the cost of process shut-down and no attéwp{!

was made to study the effect of variations in the cost factors on the
solut%on vectors.

Raouf, et al. [1979] used a direct search technique 'totobt#irnan
optimal solution of the design parameters of an x-chart to control non-
normal process means and studied the effects of cost factors and non-
normality parameters on the solution vectors.

g Lashkari and Rahim [1979j developed an economic model of an x-control
chart to control non-normal process means,considering the)cost of process
shut-down. They also provided a simplified scheme to determine -the values

of desigﬁ parameters.
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Lashkari and Rah1m [1980] also developed an economic de51gn of
- cusum charts under the non-ngormality assumptlon S
Very recently,Rahim and Lashkari [19811 proposed an economic
model for the design of an x-chart with warn1ng Timits to control
non-normal process..eans.

.

2.4 Motivation for Proposed Study

The Titerature survey leads to the conclusion that tonsiderable
attention has been devoted to the economic design of control charts

under the assumption of normality of the process means. E? many

cases the -nprmaiity assumption is app11ed without knowing the: d1str1but1on

"o

of the process variable, or even when the process variable deviates from,
~ the normal-.distribution. '. ‘

The %heoretitaj justification for~tﬁeunormaIityuassumptionuis-based
on thé}centra1 1imit theorem, which states thaevunder very general, |
condjtions the distribution of the sum, and there?ore of the average,
of n independent observations will approﬁco.oorma1ity as the nomber of
observations increases.

The question of how large a sampie should be to apply the ceotral
1imit theorem wiil have a bearihg.on the~opérating cost d%‘a control
chart. The operation of-a control chart involves both fiked and
variable sampling costs. Sampling cost increases with increase of
sample size. Decreasing sample size will increase losses resulting |
from deviations from the mean. Therefore, it is desirable to find the

Balance the costs against the losses.

]

optimum sample size that would

L)
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.ThejSOIutioﬁ for opﬁimal deterinination of ihg sémp]e'size under the
normality assumption is known either for given values of probabilities
of Type I and Type II error [Knappenberger, 1966], or for given
values of control Timit coefficient and shift parameter [wei11er, I952].
The probability that the sample point falls outsfde the control
limits when the process is actualTy in the in-control state is known as the
probab111ty of Type I error,-whereas the probability that a point falls
inside the control limits when the process is in an out-of-control state
due to the occurrence of an(assfgnab]e»cause is known as ;he probability
of Type.II error. In the design of sampling plans, the pfobabi]ities
of Type I and Type iI errors are known as the producer's and the
consumer's risks, respectively. Here, thgn, the concern of the
quality control engineer is to achieve a compromise between-the values
of the producer's-and consumer's -risks. ‘ } |

In many app]ications: data will seldom fo]]ow‘a.normﬁl”distribution,
Ne-may also.be confrénted with an industr%a] situaiion where the
assumption of norma]1ty is neither achievable nor des1rab]e For
1nstance often the data may be so badly skewed that the skewness itself

. produces outages and indicates the presence of an assignable cause.of

. variation if the normality assumptien is made [Morrison, 1958]. In such
cases the skewness must be regarded as being typical of a variate.
Otherwise, probabilities assogiated with control Timits (probabilities
- of Type 1 and Type Il ertors) calculated by normal theory will provide

erroneous results.
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THEre.ére other situations where the proces§ is non-nbrma]
in nature. For example, a process may have been screened for odt—1
of-tolerance parts, resulting in a truncated distribution [Hald,

1952].

. In general, due to limitations in the me;suring instruments or -
due to purely practical‘considera?ions'of‘ease and speed of measure-
'meqtg the values ofﬁthé measured variable are recorded accurately only

-in a certain interval which; consequently,causes a truncated
distribution [Joﬁnson énd‘Lepné, 1976].

A mixture~distribution'[Johnéon‘andeeone; 19761 is another type
of non-normal distribution which arises when products from two or
more different sources are mixed. For egample, the quality -
characteristic of a product produced on any one of the m machines:

~ may be distributed nonﬁa11y, but if the mean of standard deviation
of the process varies-ffom machine to maéhihe, a mixture of products
from all m machinks wiil not, in general, yield a normal distribution. .

Also a process may be subject to tool wear [Duncan, 13741,
resulting in non-normai process characteri§tiés. Distributions of
powers and products 0% normal variates.are, in general, non-normal*
[Haldane, 1942]. Such situafions are encountered frequently in the .

.application of statistical control chart analysis to thermionic value
- test data [Morrison, 1958]. ,‘
Although many industrial processes are non-normal in nature and
despite the fact that -the assumption 6f normality is very crucial in

such circumstances, little attention has been paid to the economic

* ! ~ « :
- , - v ‘ ¥

S

?
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"
-

désign of'contro1 charts under the non-normalityuassumption. There is

need for a prdcedgre which will enable us to deal with non-normality

¢ of data, to design control charts accordingly. and to continué;oh;

search for the assignable causes of variation..

-

Re.produced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER . 3
OPERATING PROPERTIES AND DESIGN CRITERIA OF CONTROL CHARTS

Statistical properties and design criteria of control charts which
are relevant to the scope of this study are described in the following

. section. -

3.1 Statistical Propertieg'of Control Charts

It is current pract}ce to use stat1st1ca1 techn1ques to mon1tor the

var1ab111ty of the qua11ty of output of an 1ndustr1a1 proceSs The
\rat1ona1e for this procedure is the-classification of such var1abi1ityf )
into one of two types *variabilkty due to inherent random fluctuations

of the process, and variability due to chaﬁges. in the process parameters._
‘Process var1ab111ty is of concem to the quality control -engineer because
the product must meet certain performance standardsvspec1f1ed by the
des1gner. Usually these standards are given in the form of spec1f1cation
Timits Qiihin which a product's measurable characteristics must lie in o
order for the prpduct to be considered acceptable. The production
engineer must therefore attain and thereafter, maintain, the state of
controI.of the process in which variability is due only to inherent
random fluctuations. In other words, he must make tﬁe process behave as
if each measurable property of the product comes‘froh a single stafistical
population having staticnary parameters (i.e., constant with respect to

time). If these parametérs do vary with time, such variation must be

investigated and its cause must be discovered by the production engineer.

2t
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AN

. Any ‘feature.of tﬁe-production cycle whicﬁ causes a.Change in
ong or more of the ‘process parameters is called an as;ignable causey
The preseﬁce 6f such an assignable cause is to Seidetected by. the A/
¢ontro] chari ana removed from the systeﬁ by the quality .control
enéiﬁeer. The X-control chart and the cumulative sum {cusum) chart
are two we]1fkﬁown statistical teéhniques which have beeﬁ'used for
the last féQ'decades in detecting an assignable cause under the

*-i assumption that the quality characteristic§ of the product are.

4

horma11y distributed. ’
: In'an_ilcontkof chart, the control limits are set at + k standard

deviaﬁiong of the sample mean from the target value.. A sample of size
n i taken from the process every s hours and the sample mean is-plotted
on the x-chart. Fhé process is subject to the occurrence of an .
assignable cause of variation which takes the form of a shift in the
process‘mean from W to u + &g, where u, o and § are, respectively,
the process mean (target value), the process standard de§iation and

'the shift parameter. The occurrence of sample means outside the control
]imifs is regarded as an indication that the process is in an out-of-control
state.’ .
o On the other hand, in a cumulative sum control chart, a sample of
size n is taken at regular intervals of s hours. Successive values of

_ the sample mean are compared with a .predetermined reference value K. and L AT

the cumulative sum of deviations from this value is plotted or tabulated Y

ﬁn the cusum chart. If thjs sum exceeds a predetermined decision interval

h, the indication is that a change has occurred in the mean level of
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the variable. ‘?roperties of a cusum test are describéd'by a péir 4
of‘SVerage run lengths, Ro‘and‘Rl,'associéted with the state of the -
' 'process_inwconfr01 and oqthf-éoﬁfrols respectively.
\ ) _ The“e§¥iciéncy of both X-charts and cusum charts fn detectiné
A the Tack of contfo]‘depends upon "the va]ués of the design garameters

'n, s and k for an X-chart and n, s, h and K for a cusum chart.

i; 3.2 Quality Control Chart as a Test of Hypothesis

As mentioned above, thé function of a qua]ity ;ontro]hbrocedure
is to maintain a process in a staté of control. This function is ‘
' :accomp1ished by periodically testing the nﬁ?] hypothésis that the
procéss parametérs aré equal to the control values. The test is
conductéd'by measuring the qua}ity of a sample of the product produced—.
B by the process. .The'vélue of fhe test statistic is computed from she
1 N :
sample data. If this value falls in®the critical region (i.e., outside
the control limits), the null hyﬁothesis is rejected and thé process is
'-invesFigated to determine and correct the condition which caused the
process to-go out of control. If the value of the test statistic ié not
in.the critical region, the process is assumed to be in control a&d it
is allowed to continue. | .
As in any hypbthesfs testing prbcedpre, two types‘of error may -occur.
One type, genera™y called “Type I error", involves rejecting tﬁé null
‘hypothesis when the process is in control. The second type, generally

called "Type II errof", involves failure fo reject the null hypotheéis

when the process™is out of control. Type II error leads to costs
P :

3 -
\ . \

— ’ ‘ . -
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-aSSOCiateﬁ with an incfeéSe in fhé number %of defective products produced
b} an dz}-of;confrd1 process. .Costs of unnecessary investigation and
ioss of ﬁrodsction a;ise f;cm.TypeI'errdr. Both oF tQFse'éosts can be
decreased by increasing the sample sizé and Hécréas{ng the Samp1ing
interval; however,’fhis reduction in error cost is;acéompanied by an
increase in sampliﬁg~and testing coéts; Type 1 error costs can

also be decreased by decreasing thé critical region, thus increasing

o

N type IT error costs.

o

3.3 Criieria for the Desjgn'of Contro] Charté
- The desigh of control charts infolves the optimum se1ec}ion of
design parameters.»'SeTection criteria of these design parameters can
be classified in the fol]owiné categories and are discussed below:

) | \ 1. Power Function Criterion, |

2. Average Run Length Criterion,

%. 3.  Minimum Cost Criterion.

-

3.3.1 Power Function Criterion. Th( Sower Function criterion,
which is a méthod commonly employed for determining the barémeters n and
. k of an x-control chart, was first used by Knappenbérger [1966]. The
use of this ériterion is equivalent to defining a test of hypothesis
between two simple altematives: |
. Hy: L Mg o

. A . HT: u::po_-l:éc, § >0,

. where 8o is the shift in the process mean. The statistic x has a

=~
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'normal dxstr1but10n thh nean » and yar1ance o /n and the contro1
11m1ts of the x-chart are at + ka//n. For a given probability «

of Type I error, the values of n and k are-chosen S0 that'ihe powér
of the test, that is, the probability of regect1ng HO when H1

true, is some spec1f1ed value (1 --8). . )

The power funct}on approach is a straightforward and simple
criterion te use. But an arbitrar& choice of « and 8 does not reflsct
the cost and risk factors.associated with the process and does not
appear to be more 1og1ca] than an arb1trary se]ect1on of n and k.
Further, the sampl1ng interval, s, is not taken 1nto consideration.

©3.3.2 Average Run Length Criterion. Page [1954 ]_def1ned the
term "Average Run Length" (ARL) as the average number of articles inspe;ted
" between two successive occasions when soﬁe rectifying action is taken
and employed it as a criterion for the design of x—charts Page
showed thdt for a one-sided x-chart, the ARLs, R when the process -

0’
is in control, andf{l, when the process is out-of-eontrol are.

Rg = n/01 - ¢ (K)] BERD

and

i A ~e R.1 =n/l1 - ¢ (k - 5‘/1'7’)'], - » ‘ (3.2)

where ¢(x} is the ecumulative distribution function of the standardized
normal variate x. . 4
When both negative and positive déviations in the._process mean are

equally important, thé'ARLg,]{d andRry are '
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Ro .

and R1"

1]

n/2 [1 - ¢ (k)] | - . | (3.3)
n/ [(J_~ o gk - &vn) + 0 (- k'-s/m)]. - {3.4)

.

A
hY

The methods used to deéiqn';ﬁ x-chart are either to fix Ry and -
éhoosgin and k for a given value of & that will minimize Ry» or to
specify Ry and choose those values of n and k that will maxi@ize Ry

Weiler [1952]<ha§.sthn tht.the average'humber of articles
inspected before’ achange 1is given by’

A(R) = n/[T - o (k - o)1 o O (3.5)

-~

For given values of k and 8, he determined.a samplé-size n which
minimizes the function A(n). Weiler shawed tha? for a given control

.~ )imit coefficient k, the value of n that minimizes g(n) depends on
the amount 8o by which the poﬁulation mearr has changed.

‘ - Page [1954eﬂ\intr0ducéd the cumulative sum chgg; as an alternative
to the x-chart for controlling the mean of a normal process. The selection
criterion of the desigr parameters, based on ihe average run length
‘criterion, is as follows. ‘

The design parameters n, h, K and s are generally selected to
yield approximate ARLS R0 and R] at acceptable and rejectable quality
Tevels Hg and uT,'respectiver. Ideally, the ARL should.be large when}
thé ﬁrocess ié'operating at an acceptable quality level (AQL) and small

_'when the process is operating at a rejectable quality level (RQL).

" Page [1954b]‘$howed that the .cusum chaff scheme is equévalent to a

sequence of Wald-sequential tests with horizontal boundaries (0,h)

X . ¢
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~and initfal score zero. He derived the following éxpresg%Qn for the
ARL: - -
N ARL = N(0)/{1-P(0)3, ; . (3.6)

where P{0)} is the probability that the fest startsAon'the Tower:
boundary and ends on the Tower boundary. N(0) is the unconditional
average number of samplings of i€ test. For known values of N(0)
and P(0), the value of ARL can be found from the above expression.
However, it is quite éOmp]ifated to obtain the va]ue§ of P(0) and
N(0) from the integralﬂequations P{z) and N(z), respective]y.. The

expressions for ﬁ(z) and N(z) are as follows:

- h
P(z} = 1 : o(x} dx + £ P(x) ¢(x-z) dx (3.7)
. . ' 0 .
\ h
N{z) = 1+ 5 N(x) ¢{x-z) dx, ° (3.8)
0 :

where ¢(x) is the density functipﬁ of the process variable x,
distributed normally.
Kemp [1958] developed approximate solutions for P(z) and N(z).
for the case when x has a normal distribution. Ewan and Kemp [1960],
Goel and HWu []971], and Goel [1971] provided nomograms which can be
used for the selection of design parameters approximately satisfying
the requirements of Rd and R1 for-controlling the mean of normgl
processes. Ewan and Kemp [1960] suggested that the reference vaTue,.
K should be midway between the ARL and RQL. Kemp [1962] showed that thé§v-mask

scheme with 1ead distanceid and half angle 4 1is equivalent to a two-sided

interval scheme.

-t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



s

28

"3.3.3  Minimum Cost Criterion. - The powef}functioﬁ‘approach
~and: the average run 1engt@ approach dﬁscyssedmé%g;e are bofh‘
§tatisticél criteria. The design of coﬁtrol charts based on these
criteria does not take into consideratién the sahp]ing interval, the
cost and f{sk factors and various other parameters. related to the
procesé being controlled. F}Qm an industrfal quality-control
engineering point of Yiew, a'more realistic approach would be to use
a criterion that would include the income and the cost figures
associated with the process and the maintenance and operation of the
control hhart. However, to apply such decision critéria, tﬁe quality
control engineer must Know the characterfsfic of the product {measurable
or attributive). He should have @ knowledge of the state énd nature,

the failure mechanism , . operating policy and the income and cost

parameters of the production process.

3.4 Assumptions About Process Behaviour

In this section, the assumptions about the behavicur of the
productioﬁ process, which are required to formulate a model for the

‘ecaonomic design of control charts are described.

A .
3.4.1 The Production Process. A specified production process

is considered. It is assumed that the quality characteristic of the
. proéesé is a variable measurable on a continuocus scale. The process
variable is assumed to be non-normally distributed with probability
density function f(uO, 02, B], 62) with mean uc,variance 02, measyre

of skewness 8] and measure of kurtosis 8- The process starts in
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an in—coﬁtroi;sﬁate ‘and may be disturbec by the occurrence of an
assignab]e cause which sﬁifts the process mean -from g to g +.80,
+ . where & is the known shift parameter and o, By and B, are assumed .
to remain stable. The occurrence of the assignable cause is con51dered
as a_randoh shock acting on the system, that is, the probability of
the-processvshift within a small interval of time is dirécfly
proportional to the length of the interval.
| To determine the nature of the transitions between the ip-conirol
and out-of-control states, it is assumed that the aséignable cause
cccurs accord1ng to a Po1sson process with mean rate of occurrence .
That is, the Tength of time the process remains in the in-control:state
~is an exponential randgm variable dwstr1buted‘w1th‘mean 1/x hours.

Two different operating policies of the process are considered.

1)  Policy I, which assumes that the process is kept runn%ng.unti]

the assignable cause'is discovered. - | )
2) Policy II, which assumes that the process is shut down during
the search for the assignable cause. With the‘aid of these two policiés,
the manufacturer can decide upon the appropriate madels to be chasen
Yor minimization of the process loss-cost.

The various incomes and costs that are associated with the
operation of the process are: income when the process is in the in-
contcol state, income when the process is in the out-of-control state,
the cost of searching for an assignable cause when one exists, cost of search-
ing for an assignable .cause when none exists and the cost of main-

taining the control chart.

Y - . Y
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3.4.2 The Loss-ﬁost Functien. | A production cycle is
defined as the.éimé period from beginning of production (or édjustﬁéht)
to the detection or eltmination of an assignable cause. The production
cycle for the process models under operating policy I ;onsists of

four periods: 1) the in-control period, 2) the out-of-contrel period,

L

3) the time to take a sample and interpret the results, and 4) the time

to find ‘the assignable cause. Similarly, the production cycle ﬁnder
operating policy II also consists of four periods: 1} the in-control
period, 2) the out-of-control period, 3)'the;sear¢h périod” due to
false alarms, and 4) the search and repair period due to true

alarms.

. Considering the relevant incomé.and cost parameters associated
with each periéd of the production cycle, the expected cpst per
production cycle can.easily be derived. Hence, the expected cost per
unit\time is defined as the raéio of the expected value of total cost

incurred during the cycle to the expected length of the cycle.
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\\\ ' "+ . CHAPTER 4 ’ S

ECONOMIC DESIGN OF X-CHARTS TG CONTROL

NON-NORMAL PROCESS MEANS

In this Chapter Duncan's model is generalwved using the .Edgeworth
approx1mat1on to the normal d1str1but1on Coo-
. To 1nvesttgate the econom1c des1gn of Xx-charts, 1n1t1a11y a

basic s1ng]e assignable cause process madel under policy’ 1 is proposed

and its expected 10 s«cost function is deveioped. An analytical
solution to obtaiﬁ the opt%ﬁal value of the desiéﬁ parameters {i.e.,
sample size Q&,sam iﬁg interval s; control limits coefficient k) is
not possible. An optimization technique based 6n Hooke énd Jeeves -
patterm search ié de§e}oped to obtain'the optimal design parameter
values. '
The fundameﬁta] assumptions in ‘developing the procéss madel under
policy I are: (1) that Phe process is allowed'to continue in operation,
~ during the search for the assignable équse and (2) thaf the cost of -
eliminating the assignable cause is not charged agéinst'the net income
for the production cycle. . In many processes,.these restrictions are.
unrealistic and it would be of interest to formulate a cost model
[ based on different assumptions.. Hence, a single assignable cause model

for an x-chart under policy II is also proposed and an expected loss-

cost function is derived. The optimal design parameters are obtained by

4
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applying the same' optimization technique developed for the cost
mddel under policy I. A simp]ified scheme “is also proposed for each
of the cost models for sgjecting the design pafameter§ so that the
expected 1oés-cost is hinimal for a épeciffed.1eve1 of consumen's risk.
Th?ough numerical studies, a sensitivity analysis of tﬁe model,

under policy II;is perfoﬁ#ed.' Investigatipns are also made to examine
the effects of error§ in the estimation df data parameter§ on minimization
of the loss-cost function for the proposed control p]an

. Many. production processes are affected by several ass1qnab1e causes

) and, in such sxtuat10ns; a sxngle §§s1gnab1e cause model is not : ’/é
app]icab?gzj/The single ass%gnab]é cause model under policy II is _ |
extended to a multiple ‘assignable éausg model. With numericél illustrations,
it s . demonstrated that a "matched" single assignable cause model
can be proposed so that its opfima] control plan approximates the exact
optimum control plan for the original multiple assignable cause model |
obtained bya direct séarch technique. Hence, .a simplified scheme
such as that applied to the single assignable cause mo@el is suggested for

’

the "matched" single assignable cause model.

4.1 Characteristics of the Process Variable

{

To take into consideration the effects of non-nofma]ity on

control chart design, it is assumed that the first four terms of the
Edgeworth series expans1on provide an adequate representation of the
distribution of the qua11ty characteristic [Gayen, 1953]. Denotlng the -

quality characteristic by the random variable X, the probability density
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N ’ » X - po ’
function. (pdf) of the standard1zed variable x =- 0

L4

has the ¢

'fol1ow1ng form [Barton and Dennis, 1952 Kendall and Stuart 1969]: -

' (8,-3) S
£(x|ng) = o(x) - IO b2 Wy« 2By @y
~ - 24 - 72- - »
: K
Define Yy = E{x3} and Yy = E'{x4} - 3, Recalling that x = = 0, we have -
. ) )
Yy = ¢§} and‘yé = 82 - 3. Y1 is ca]ied the coefficient of skewness.

' Posftive §a1ues éf Y1 usUain corfespond to pdf's with dominant tails on the
T = r1ght s1de rnd negat1ve values to tails -on the Teft s1de yz is called the
coeff1c1ent of excess (or kurtos1s) .Ehr normal d1str1but1on both
and Y, are eqqa] to zero.  In this study, &1 and172 are to be used as
the measures of non-normality parameters. . The equation (4.1) can be -

represented in terms of v, and v, as follows

\.
Y Yo Y42 '
flxlng) = #(x) - o) + 2480y + 2L,y )
B . 6 24 y2 : Y
Utilizirig the well known relations [Gayen, 1953]
v o v,(x) o :
Y1(§)= and &(x)= »  the pdf of the standardized sample
n n : _
Y = 110
average y = ———— is given by
of /n

- Y Y - 2
g = (00 = 8l - L o3(y) + Z—Z—xp(”(y) +% o) (y) (4.3)
n n . n B

where ¢(x) is the pdf of the standardized normal variable x and
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) = ()T s

~

. Barton.anthennis.EIQSé] sfudied the values of Yq and 42,
through B]'= Y12 and By = Yo + 3, whicb make the Edgeﬁorth series non-
negative and unimodal. . A graph shdwiné the regions in which non-
‘negat1ve and. unimodal propert1es are true in the (81,82) plane was also
given by them. Berndt [1957] made a s1m11ar 1nvest1gat10n when on1y Yl
was used..
The conditions given by Barton and Dennis. on T and Y, regarding the
positive definiteness and unimodality of f(x) are assumed in the present
. study. ﬁu%th?r~if is a§sume§ that &, 3.5 + 8y- >

4.2 Single Assignable Cause Model - Policy I

Similar to Duncan's model for normal processes, a single assignable

. cause model for non-normal processes is presented in this section.

Considering a numerical exymple, optimal values of the design paraméfers :
- that are obtained using a dixect search technique are compared with the
-corresponding approximate values prgvided by Nééendra and ﬁai'[1971].
The_approximate-so]ution proceduré, used by Nagendra and Rai, has also
been improved. Fgrthennote, a‘simp1ified scheme is developed based on

a prescribed 90 or 95 percent probability that the defective items

found in a sample fall outside the‘ﬁontrol 1imits when the process is

out of control.

4.2.1 Formulation of Loss-Cost Function. In order to formulate the
loss-cost function for the economic design of an X-chart, the characteristics

that are to.be derived are as follows.

-
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%
' F 4
- . i) The density function of the occurrence of the assignable
T causé»is.given by ’ .
‘f‘T (t) = Ae-kt 3 A > 0: t i 0“ ° '
=0 otherwise

The average time required for the assignable cause to occur is-

CE(T) s st ORI | (4.4)

' Hence the process remains in an in-control state with an average

. length of time of 1/x* hours.

; i1)" If.the samples are taken at intervals of s hours, then, givep the
K gccurrence Qf the assignaﬁ]e cause in the interval between the jth and
j+ist samples or between js and (j+1)s.hdgrs: the average time of

occurrence of the assignable cause within an interval between samples

is given by (541)s . ‘ . .
| Moo T e (tegs) at
v = E[T |} = & - —,
: A - P(A)

where Tb denotes the mean time of occurrence within an intersample -

interval and A denotes the event that the assignable cause occurs in the

interval. Thus,
- (j+1)s
A xe At

/ (t-js) dt
N o s
(+1)s 4
i Xe dt
Js )
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“ Ly S _
_e)\’:jsf Ael

z
=
m
3
[97]
—
—_
[{}

t ="Js. Thus

-t

\
| - “_ +")\s)"he-ks | \\ |
t ('l _;3;')\5) ' T (4.5)

>

2 ' |
= 7- ?3*0(* ) S . (4.6)

i11) Under the assumption that the control limits are set at + k' standard
deviations of the samp]e mean from the target value the probability that the
assignable cause is detected when the process is in the out-of-control state is

j -ko//—

P=l-8= 7 7 f(X|ny) dx + ; fxlu) dx.,  (4.7)
' 0+ka/\/n_ ' ‘

o

where p]'is the pracess average when it is out of control and is equal

fo_uo + 80.  Integrating (4.7) , we abtain

P=1-g= @(-k;a/rT) SO @ smy ¢ T2 64)

6/ _ 24n
o5 oy 51 - 2)
72n ‘( /_)+ <1>(k8/—)+6/IT (k-8+n)
. - 3 (e s/‘) (5)(k sV (4.8)

_24n 72n

P 1s known as the probahility o%ftrue-alarm. g 1s known as the probability of a
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Type 11 erroj}, - Under the normality assumption, equation (4.8) is
reduced to ... - ‘ |
P=1-8=1-o(k-6vh) +-0(-k-6v1) . 3 - - (4.9
jv) When the assignable-cause has not occﬁrr‘e.d that is, when the
| process is in control, the probab1hty of a samphng pomt fa]hng
. ‘outs1de the control limit or the probability- of the false a]arm is
) . ] . u+k0’/)/_ _ } _' i .,‘ ‘ - A
TR Y - F(Xlng) dx S N4
. -ko//_ : ' _ .
. S Yy L i Yo - R 2T -
= 1= Lok - LB« 28« T2 )y,
6/, - 24n 72n
g .’ . . .
. , . L IV v v 2
{L | om0y LT
£ ' : 6vn 24n 72n
/ | (5) ()7 - - !
oV (k)] "
Y
=1 - [ ek - —1—=¢( )(k) e 2 (g L 10 (5)(k)
6 24n 72n
. . \ s S
* ok + 222 4B 2 T o 8) g3
) GVE- . g4n ] “7n .
o Y2 (3),,y  N1% :(5)
. =1 -e(k) - — ¢ (k) - — ¢ (k) + 1 - ¢(k)"

12n 36n

]

2 - 20(k) - ]—'—~[3YZ AR Y]Z SR
36n‘_ . .

: \/
' e
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AT : . 38
¥ . o . \
‘ : ' ‘ .
=0tk - 1= Loy, 6B+ vq? B (8.10)
R 36n " . . “e - - '
Y . A ) *A . -
a = e L . . .
' » = 2@(-1()»)— aC s i } ) . (4’].[)
. where o, = — [3v; ¢(3)(k) + Y12 ¢(5)(k)].
36n : .
e a” is the probabi]ity of a Type I error. Fofi%hé normal- case Z;{gisimp]y
-equal ‘to 2¢(-k). This.can also.be noted from équat%bn(4.]1)gtﬁaf as N> w, .
L > . 5~ A . - ’
&+ 20(-k). . _ © Ve
— ' v) #fter.the accurrence of the assigdéble cause, fhe probabi]ify that
v . ' . T : .
it will be deté;ted on the jth sample is (1-P)J'1P,.which is the ' "
* probability density function of the geometric distribution;
4 N “.\v - .
then 'the” expected number of samples taken before the assignable caise
is detected is” |
=t j(-p)Pp
J=1
=1 . L (4.12)
. P : ‘
'Thgrefbre, the ekpected time ﬁd; the process to be out of control
_ before a sample point fa1Ts outside the control limits is
. S (4.13)

vi) The time raquired td take samples and to'interpret their results

\

has an average length‘of‘en. o ' N o

’
/

» i/{
o

]
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vit) . ‘Let the time requ1red to- find the assignab1e cause have an average

]ength of D. ' L .

Then the f0110w1ng statements are true. v
v111)The expected length of time durjng whish the process is out of contro]

before the search for the assignable cause is concluded 1is given

by

C - tten+D T (4.18)

ix) Thé'expected production cycle length of in-control/out-of-
control is
.

E(C)'—'X-F——- + en + 0 . - (4.15)

vl

o~

Let VO be the per-hour income when the process is in contrd], Vl’ the
R N X
per-hour income when the process is out of control, b+cn the cost of

taking @ sample, V the expected cost of searching for the assignable cause

when none exists and W the expacted cost of searching for an assignable
¥

cause when it exists.

x)  The expected number .of false alarms per cycle before the process

goes out of control will be o times the expected number of samples taken

]

in the 'in-control' period. The expected number of false alarms per -

cycte will thus be

»  (Jt1)s
sa 1 J jre gt
50 Js :
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- S | ) 10
) 'k‘\,‘ ’ _I \<

« I 3 [e-gxs _ e—(3+1)xs]
J=0

Sea ) \

« [(é—xs _:e<2Xs) + 2(e~2xs - e-BAS) + 3(e-§xs _ e54xs)'+ ﬂ.)

a [e S + e~22s +'e'3§§ + s +o... ]

-}s T
a e : .

= ——~—— . . * (4.16) N

1 - e—)\S

~

"Then the expected net income derived from the production cycle is

v, , ‘ - \
Levy Gieren+0) -0 -V ae/0-e™) - (ren)EEL L (a17)

Hence, the average net income per hour is

[ = expression (4.17)
expression (4.15)

Defining L as L = VO - I,we get after suitable simplification,.

xUB] + VABO& AW (b+cn)

L = + ’ ' (4.]8)
- s
1 + AB]
where U = VO - Vl s
By=F-tten+D ; . (419)
and By = @ (1 - xt)/s (4.20)

The function L represents the loss-cost per hour for the present

model. The problem i{s to minimize the per-hour loss-cost function L

with respect to the'design parameters n, s and k.
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4.2.2 Determination of the Optimal Désign Parameters.  An explicit
solution of n, s and k is not possibje. _Howéver, for a specified value
of k,an approximate vélué of n can be obtained. A value of s can be
approximated using the values :;’n and” k. This can be accompiiShEd as .
‘fo1low5' '

For s%mplicityuweAassume ththﬁ >.0, Thus the terms containing

(-k-8) ‘may be- neglected in equation (4.8), reducing it to

Y]J

pe - a(keor) + b o @hkeam) - 20 o
, 6/n 24n
: 2 . N
A O ) P D | (4.21)
72n . ’

Letting k-6/0 = ¢,

P = a(z) + 2 o) (g) - 2 )
- 6/n 24n
i ?

RAIRGCF

z) - : - (4.22)
72n :

Moreover, X is a small quantity and hence XB] is small compared to unity.
There%ore, theAterm ABl can be omitted from the first denominator of £

equation (4.18). Thus we have

L= L' = AUB, + VB + M + {bren) . (4.23)
. : S. '

*Then L' is partia]]y-differentiated with respect to n and's and
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equating the derivatives to zero, gives the following equations.

/ al." 9B, "'v By  © . :
e — ==L v 0 s o ~
\ ow TN - .  (4.26)
Lt By 9B,  ben .
—_— = — sy 2 - =090, . . ,
3s 3s " 3s N 7 (4.25)
where
aB] S ab
—_— = - _+e
an 02 o
By w1 s |
an am s ns )
ap 8§ . 1 '
— = — )+ —[-12y; wn o)+ v B
o Vs ]44n£ 1 ( ¢ (T}

+ 3, (o o' () 2 6By v o O

+ 2 ¢(5)(§)}]

3B 1 1 As

B R

35 p 2 6

Bo. 2
as 52

From (4.24) and (4.25):
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s 8P . a c _
AU( - - —te)+V £ 4+ - =90 | o (4.26)
p on . ns s - _
‘ 1.1 ccV‘ b+cn Tl .
S b e S . (4.27)
- P2 s s
From (4.27)}“A | D -
s =[{aVtb+ cn)/{w&,('%“-;—)?] M2 | (4.28)

- o

Substituting this value of s in equation (4.26):
aV+h + en 3p '
acV-+ n(c- ST — —* Ale) = 0 (4.29)-
P ("i;-é‘) n - :

For a specﬁfied value of k, the value of n which satisfies equation
(4.29) can be taken as an approximate sample size. Substituting this
value of n in equation (4.28),an approximate value of s can be
evaluated.

Similar types of expressions for n and s have been derived‘by
Nagendra and Rai [1971]. However, in these derivations, tﬁe:term
alle in equation (4.29) was not accounted for. They took the partial
derivatives of L, instead of L', and performed much more complicated
computations than the procedure described above. Moreover, they
considered the derived vg]ues for n and s as‘ the optimum solutions for
the design parameters, thch.did not seem to be realistic. Preclusion
of the term AUe in equation (4.29) may have some serious effects on.

the apbroximate selutions of n and s. Inclusion of Ale in their
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“solution for n, could have improved the ﬁccuracy of the approximate
control plaﬁ Nevertheless, keep1ng one of the design variables
fixed, the optimum design of the control plan cannot be ach1eved

In the case of contro1]1ng the mean of a normal process, it
may be feasible for practical purposes to specify'the va]ue of k
so as to attain a certa1n level of probab111ty of Typé I error. The
reason behind th1s is that the express1on for the prohab111ty of .

‘ Type I error undef normality assumption is independent of sample size
n. But, uéder the non-normality assumption, the probability of Type I
error is dependent on bofh sample size n and control Timit coefficient
k. The probability of Type II error for controlling both normal and
non-normal means is a function of n and k.  Therefore, for a
specified value of k, the approximate value of the design parameters
will not provide an optimum control plan. Therefore, a direct
search technique is desirable to obtain thé exact optimum control p]én.
Through numerical i11ustratibn it will be shown later in this Chapter
how the approximate solutions are deviating from their corresponding
optimum solutions obtained by using the direct search technique. Howevef,
for a specified value of k, approximate values of n and s could be

used as a goad initjal point for a direct search.

Direct Search Solution ' x

The. pattern search technique of Hooke and Jeeves [1961] is

employed to minimize the expected per hour loss-cost associated with

the operation of an x-chart. Pattern search is a direct search
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technique for minimizing function-f, of a Véctor-valugd vériable X.
For the present case, f = L and x = {n,s,k) is a threefdiménsiona1
vector w%th the components of x equal to the design parame£ers.
« The searcﬁ starts,with a local exploration in small steps
around the starting poimt. If the exploration is a, success, i.e.,
if the loss-cost reguées during local exploration, the step size
grows; if the exploration is a fai]ufe, the step s%ze-is,reduéed.
If a change of direction.is‘necessary, théomethod‘starts over &gain
. with a new pattern.; The search is fenminated when the step size is
reduced to a specified value, or when the number of iterations equals
to a predetermined value, whichever occurs first. However, due to
the characteristics of function L, some modifications to the method
have toAbe made in order to account for the inherent constraints
on the sample éize, and on the prbbabil%pies of Type I and Type II
errors. These modifications are as follows. .
i) n must be an integer value,
if) the expressions for P and a, i.e., equation (4.8) and (4.11),
‘ are non-negative for given values of Y125 énd s.
The computer program 'PROdEQ? XBAR'.which incorporates these modifications
is given in Appendix 1.7
In the past, under the normality assumption, the value of k was chosen
to be either 2.5 or 3 in the cénventjona] design of i—charts [Shewhart, ‘
19313 ﬁudding and Jeﬁnétt, 1942]. One of these £w0 values .as an initial

value of k is chosen for the search. .The root of the equation {4.29) *

is then obtained utilizing external FUNCTION F1 and SUBROUTINE ZREALI.
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"‘"“'VA

-
-

Then this root is considered as an initial value of ﬁ. The initial value
of s.is then evaluated using equation (4.28). ~The optimﬁm vanas.of
‘\\Eﬁe\design parameters are then obtafnedAby the deve]bped modified )

pattern séarth.‘SUBROUTINE SUB'. During the search, the functional Vaiua _

_ is evaluated using SUBROUYINE COST.. | |

Numerical Examples

, .
To obta1n the optimal design parameters, the- search method assumes

that the obJect1ve function 1is convex. Since it is not poss1b1e to '

analytically investigate the convex%ﬁy of L, some analysis of its

around the optimal vaiue.

Examgle 4. 1 Cons1der a process hav1ng non- norma11ty parameters 71 =
-0.5 and Yo = 0. 5, the shift parameter 8 =1, .and the rate of
occurrence of the assignable cause X = 0.01. The cost parameters are
assumed as follows: VO = 150 ’V1 = 50 ¥ = 50 MW =25, b= 0.5, c = 0.1,

=2.0 and e = 0.05. The values of the loss-cost function L and the
design parameters in the nexghbourhood of the optimal p01nt are shown
in Table 4.1. The loss-cost function assumes a minimom 5aiue of
L* = 5.1953 at the following design parameter values:

. samp1e size n = 12

sampling interval s = 1.7147
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Table 4.1 Values of the Loss-Cost Function
and Design Parameters in the
Neighbourhood of Minimum Position

‘ J : | . (x=0.01, V0=]SO, VﬁSO, V=50, W=25,
’ b=0.5, c=0:1, e=0.05, 6=1.0,‘Y]=-0;5
Y,=-0.5 ,. D = 2.0) -

n s k L

10 1.6147 2.5648 5.2107
| 173 o 2.5675  5.1974

12 .77 | 2.633 |  5.1953

13 1.7058 “\ 2.6745 5.2138

14 1.932 | 2.6298 5.2377

15 1.9081 ©2.7491 ¢ | 5.2691

!

S
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control Timit coefficient k = 2.6336 .
Nitﬁ the éssumptjon of the convexity'of tﬁe objective function, the optimal
301u£ion for the design parameters was determined for a wi&e range of
non—normé]ity ﬁérpmeters Yq and Yoo and of the shift éargméter 8. Thg
cost parameters were fixed throughout thé'optimization procedure.
For numerical jllustrations, the optimal solutions for three sets of
data are shown in.TabTe 4;2. The values of s, Yy and Yo that are

assigned to the three sets are as follows:

Set 1: _6§=0.5 ¥1=-0.5 and v, = -0.5;
Set2: . 8= 1.0 v = 1.0- and vy, =-0.5;
1
Set 3: ) = 2.0 Y = 0.5‘ ’ and Yz = ,I-O.
‘ .] . Il ‘

The re]evant cost pérameters and Fhe va]ue'o% A associated with‘
Table 4.2 are the same as those in Table 4.1;_ ‘ '
The optimal solutions obtained using'direbt search techgiques

are compared with the 'improved approx{mate"so1utions compﬁted using
"equations (4.29) and (4.28). 1In addition,comparison is also shown
with the results obtained using the approximate procedure proposed
by Nagendra and Rai. | |

A Results in Table 4;2 show that in all cases the proposed search
optimization method yields lower loss-costs than both the 'approximate’
and 'improved épproximate' méthod§ whére k is considered as a fixed
quantity. ‘Moreover, in the optimal search method, no terms

are neglected for finding the solution. Therefore, it gives accurate

-and reliable optimum values for the désign parameters.
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Table 4.2 Comparison of Results by Approximate:Solution'énd Optimal Solution

Approximate Solution

Optimal So1utibn

Nagendra and Rai's  Proposed
SET 6 9 P Algorithm A{gorithm |
‘ n ’ 5 L n- s L n* | . s* k* L*
, 66 3.30 | 9.401 | 49" | 2.49 | 8.798 ,
1 0.5 | -0.5 | -0.5 | 50 3.01 | 8.389 | 36 2.24 | 7.909 {24 | 2.08| 2.15 | 7.542
| 42 3.33 18119 32 | 2.82 | 7.720 ||
19 [2.06 |5.488]| 16 [ 1.79 | 5.387 -
2 1.0} os5) 0.5 -16 2.18 | 5.384 | 13 1.95 | 5.2359| {12 | 1.80 | 2.59 | 5.225
14 2,78 | 5.742 | 12 2.65 | 5.645 ;
af
6 1.56 | 4.111 1.47 | 4.041 . , )
3 20| 05| 1.0 5 | 1.8 | 4.270 1.80 | 4.298 5 | 1.48] 3.10 ] 4.039
4 2.51 | a.853 2.49 | 4.867

‘uoissiwiad 1noypm panqiyosd uononpoidas Joyund “Jeumo WybBuAdoo ayj Jo uoissiwiad yim paonpolday
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4r2.3\fDevelopment of § Simp1if§ed Scheme.  The essential
cﬁaracteristjc nf this plan 1s to specify P, the probabillty of a

true alarm and 1ts detect1on to be at least at a given level (typ1ca1

values are .90 0

.95). -Th1s probab111ty corresponds to a po1pt on
the OC turves §pecifying the maxiﬁum level for the cbnsumer's risk
(typ1ca1 va]ue/ are 10 or .05). Thus, 5?#opt1ma1 values of design
parame ters could be obtawned by minimizing the 1ose cost funct10n

"ddeveloped in equatxon (4.18), prOV1ded that the: consumer s risk does
not exceed a maximum Tevel in order to attaxn a specified Ievel of
protection against deteriorated quality. From this point of v1ew,

~the ‘scheme that will be developed is,a’semi-economie sCheme; The
conéjtion P.= 0:90 or PT= 0.95 is intuitively reasonable because it
‘enables the maﬁufacturer to detect an assignable cause rather quickly,
on the average about 1. ] or 1.05 samp1es after its occurrence SO
as to reduce the loss due to pmlonged production of a 1arge
proport1on of defectwves. ' .

For the sake of mathematical s1mp11c1ty and pract1ca1 conven1ence,
some approximations in the minimization procedure are made. In
-practice, X is a very small quantTty, say A= 0 01, and ABI is small -
compared w1th unity. Therefore, AB] can be’ omltted from the first‘
denominator of equation (4.]5). Thus, the approximate 1ass-cost

function 1s

1. et Va . ben ’ .
L=t -AB]U+AN+S_+———S - (4.30)

where
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3 AN

K = 1—_.]_ .};s— ’ . ‘.' L A -
, B]' .(P _2+12) s..,+ en+ D - i .
Dgnotiné ‘ ) ‘ .
' okl - 0

'and ehmmatmg the w cont'amg -8/ - k in the expresswn for P

the equation (4 8) becomes

SENRIRIUNCIR. Y (3’(a) C2 )y @.32) 4

6/ 280 72n
From equation (4.31),

.) 2 ’ .< -. . < : *
. . + v . : o S
| , n=L—rLa k\ 5. o (4.33)

8

-

substituting n from equétio‘g (4.33) in equation (4.30) and no;cing
that P is a constant appearing in By, the optimum values of k and.s
are obtained by equating to zero the partial derivatives of L' with

y respect to k and s:

aL! 2B Vo . ' R
. — = U — + s — g 2clak) _ g ' - (4.34)
3k 3k~ - 7 ok sé
B_Liz;;u(‘_,_l)_i_m) = Q- ' - (4.35)
p 2 2 2 - ) .

as S S
. . ' ~

. Equations (4.38) and (4.35) yield the following

e el i)+ 2uE - g (4.39 °
1, 2 4 )
AU (— - E) s - aV-(btcn) =0 . (4.37)

-
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From equation (4.36):

2

- -2(atk) . &° V¥

I ™

ak
where
e

pK

—= -2 4k}

ctiles

da

ok

o

= 2 [o(k) + —2 1

Hence,

atk
aa
6(K) + o

let

atk
' 30&
olk)+ 75

. Thus,

A** = -
ct+iles

From equation (4.

= {{aV.+ b+ cn)yr UPT) - l)}}1/2

In equation (4 41), the term iles is 2 small quantity because e is

52V

23k

= AX¥

37):

87 .

52

(4.38)

(4.39).

(4.40)

> (4.41)

(4;42)

often small and thus could be omitted, a> Duncan []956] has suggested
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: But Goel, et al. [1968] havé“§hown that the effects of omitting this
term may be serious if e happens to be moderate]y large. '”The
presence of s in this term makes equations (4.41) and (4.42) intractable.
As suggested by Chiu and Wetherill [1974], AUes is replaced by AUs, Whiéh
is a poor approximation, but which turns out to be better than the

-~

comp]ete omission of the - term. Thus, equation (4.41) s N

rewr1tten as

..2
AX* = &y
¢ + Ale

- (4.43)

The values of n, s and k for the semi-economic plan are thus the:
soTutIOns of equations (4. 32) (4. 33) (4.42) and {(4.43). |
By varying the va]ues of k and n that satisfy equations (4.32) and
. v(4.33); one attains an acceptable Tevel for P. " Those values of k
and n wﬁiéh also satisfy equatfon (4.43) ére té’be‘seIected and used
in equation (4.42) to determine the corresponding value of s. K
For prabtica] app]iéation, a series of-t§b1es are constructed in
. which for-given values of 85 vy and Yoo the obtima] values of k and
n are listed corresponding to the value of A**. Also Tisted are the /
values of a and (—-- %J which are used for eva]uat1ng s from equation
(4.42). The app11cation_of such tabie; is demonstrated through the

following numerical example.

Example 4.2 Consider the situation where sample means are non-

N

normally distributed with non-normality parameters Y1 and Yo Suppase

. that the process is kept running uniil an assignable cause is discovered;
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then the 1bss:cost functfgn isAﬁiyen by equation (4.18). The values
) : ' . e .

of §, X and cost parameters are given as follows:

§=2, A=001, V.=150, V,=50," V=50, =25 b=05, D0=2.0,
c=0.1 and-e = 0.05. v
To determine the economic p]dn with P > 0.95, Table 4.3will be
applicable. |
Procedure
-~ - 5%y
1. Calculate A**, Here A**> ——— = 1333 -
¢ + Ale '

2. Determine k and n. From Table 4.3, we find that the closest
- value to A** = 1333, is A¥* = 1295, and the corrésponding

value of k is 3.1 and n is 6. . .
3. Evaluate s. We observe fhat e = 0.003 and (% - %J = 0,531,

-

172

.‘Thus; s = {{(aV+ b+ cn)/[kuf% - %JJ}

= 1.5342

_ (1. as
4. .Eva1uate B]. B1 = (1;— >t 12)5 +en + D

n

(0.531 4 0.00127) x 1.5342 + 0.30 + 2
3.1166

5. Evaluate L. Equation (4.18) can be well approximated by -
XUB] '*’GV/S'*'}\N . b.{.cn

1 + AB1 S

1}

4.076
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Tab1e 4.3 Simplified Scheme for Determ1nat1on of Control

T

"Parameters for the Econemic Design of X-Chart to

Control Non-Normal Means for Which P > 0.95

(8=2, Y] =0.5,and Y2‘1 0)

v

§ =2 "Y1 =0.5 Y2 =1.0
k| n\ o, (1/P=-1/2) Ak k
1.0 2 ‘N.30219 0.523 ° 11
RS O 2. 0.257n¢ n.531 . 13
1.2 2 0.21716 a.540 14
1.3 2 0,1R218 N.552 16 .
1.4 3. 0,15509 0.511 23
1.5 3 0.12847 0.517 27
1.6 3. 0.10577 0523 32
1.7 -] 0.08659 - n.530 38
1.8 3 0 0,07054. i‘ N.540 46
1.9 3 0.05722 it N.551 56
2.0 4 N.N4606 : n.517 78
7.1 4 N.N3I6RB9 N.522 96
2.2 4 . 0.02945 nN.529 119
2.3 4 0.02344 0.538 149
2.4 4 0.01861 0.548 188
2.5 5 0.N1428 N.519 262
2.6 5 n,01120 N.525 3134
2.7 5 N.608764 n,.532 426
2.8 5 N.00684 N.541 545
2.9 '3 N.00506 N.518 773
3.0 A n.00390 - nN.s523 94949
3.1 f n.003n0 0.531 1295
3.2 f 0.00230 N.530 1682
3.1 A . 0.00175 0.550 2189,
3.4 7 N.0N0124 0.524 3195
3.5 7 n.0n093 0.5132 4206

- Note:

-

-¥

A** in this Table is as defined by equation (4.43).
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LR} t .

The exact solution to th1s problem is obta1ned through the direct
search techn1que which yields n = 5, s = = 1.48, k = 3.10 and L = 4.0390.
The variation is only O. 92percent 1n the loss-cost funct1on It i§A
1nterest1ng to note that a s1mp11f1ed scheme provwdes less cost
- than the cost obta1ned/by the approximate solution method according to
Nagendra and Rai. »
To compute the value of A** and COrrespondiﬁg value of n,'a and
"'Q% - %),.a computer program 'SEMIXBAR' is developed and is presented :

~

in Appendix II.

4.3 Single Assignable Cause Model - Policy II

~4.3.1 Formulation of Loss-Cth Function fo; Policy II. In practice,
in same production processes; the machine has to be shut down duriﬁg the
search for tﬁe;assignab1e cause;  the repair cost is charged against
the net income from the process, and the time to repair the process
is taken fnto‘consideration. In order to develop the loss-cost functions, the °
fb]iowing additional terms, in conjunction ._'wft; the .terms
defined in sections 4.2.1 and 4.2.2, are used. Let the expected
length of search time" be T hours, and the expected .-
search cost bé ks' If the assignable cause does ’ not
exisF,production.is resumed after the seérch. If.the assignable cause
attua11y exists, it can always be detected and e]iéinated, but it takes
a further expected repair time of Ty hours and a further expected repair
cost of kr to restore the process- in-control state. The process_sfarts

. afresh in-control after-the repavation. It is assumed that the time

-~
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| for taking samples is negligible. .
Then it 1s stra%ghtfbrward to see that ‘the average length of a
)

production c&c]e consists of four parts:

1}  The in-control period, with an avéxgge length 'of 1/x hours, .
2)  The out-of-control period, with an average length of

—— T,

p
. 3) The search time due to a false alamm,"
1
cn:s( o t)/s,

4)  The search and, repair times due to_the true alarm, Tt T

Thus the expetted length of & broduction cycle under operating palicy

IT is
]—-*-.(i- 1) + ot (l— t)/s + T_ + 1 | (¢.44)
A P S8 A : s r - A

A

Similarly, the expected incomé from a production cycle fis:

>

v

0 s - 1 ‘ Ly
e + V1 (—I‘)" ‘l‘) - akSA(I - T)/S - (kS + kY‘) . (445)
Hence the expected net income per hour is . .
1 - Expression (4.45) .

" Expression (4.44)
Defining L = VO-- I and after suitable simplification, the loss-cost
function for Policy II is given as

_ABI U_+ AW+ VBO + (b+cn5(1 + AB])/s 1~'
)

L = " (4.46)

1+ J\B] + TSBO + k(rr*‘ T

-
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\

where U = Vo - Vys V= kg + Voo, W=kt kg # Vpln, + 7o)
(B.I=—S-—r and
P .
By A-‘-,a('l - At)/s -

% ¢, aand Ppare defined in equatidns.(4.5}, (4.11) and {4.21) respectively.
\ The function L represents the loss-cost ber haur for the present
model and is'a’function of the three design va}iab]es n, s and k.- As in thé
economic design for the con£r01 plan under #olicy I, the problem of
an economic design for control plan undervPo]icy Il is the determiqation

of the values of n, s and k for which L is minimum.

4.3.2 An Exact Algorithm. In order to determine the gptimum -values
. of the design parameters"by minimizing the loss-cost function L, tué
. algorithm that has been proposed in sectioﬁ'4.2.2 for Policy I s

&
also recommended for Policy I1.

4.3.3 Development of-a Simp]ifjed Scheme for Policy iI. " A comparison
between equations (4.18) and (4.46)'shows that they have a similar
mathematical fbfm and that {4.18) appears. to be a particular casé.of
(4.46) when .= 3 = 0. Thus,fo]]owing‘the same arguments of sgction
4.2.3 for the development of a simplified schemeifor‘the present moﬂe1,
the fé]lowing two equations can be derived as follgws.

Fﬁ) Ignore ABy from the mumerator and XEB] tr ) 4 1. By from the
denominator in equation {4.46).

(b) Differentiate the resulting expression with respect to s and k; and

equate to zero. Thus, R \
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- - 2 ' oy
o : s = {(a v+ b+ on)/pT - ) (4'47?\;.\:1".

2
‘ 2 , _ RESS
A¥* = ié! ‘ ‘ _ (4,48).:_;

»'Qhere the.term A%+ is defined by'equation (4,81). Hence,
the tab]es whxch are constructed for a simplified scheme under P011cy
I, are also apphcab]e for the present model. Application of one
of such tables to the semi-economic design. of an X-chart to control
non-normal process means under Policy II is shown through the

_/él1ow1ng numerical example.

Examg]e.43: Consider the case where the sample means are non-

normally dist¥ibuﬁee with parameters Yy = T[O»and-yz = é.d. Suppose
that the process is shut-down during the search for fhe assignable
cause; the Toss-cost fuﬁct%én is then given by equation (4.46). The
vé1ues of the shift paramefer, the rate éf occurrence of the assignable

\ .
cause and the cost parameters are given as follows’

—‘ ‘ = = “'.:_ Il\ = =
§=2, »=0.01, Vj=100, Vy;=-100, k.=20, ¥ =10,

1 =0.2, r, = 0.1, b=0.5andc=0.1.

‘To determine the economic plan with P> 0.90, Table 4.4 s applicable.

Procedure:

——— - - ——

To make use of Table 4.4, »'first obtain the quantities that are

needed for the loss-cost function, equation (4.46). These are as follaws:

4

§ =20, U=200, 2a=0.01, V=20, W=60.

-
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Table 4. 4 ‘Simplified Scheme for Determ1nat1on of Contwol

| Parameters for the Economic Design-of X-Chart -to

» . Control Non-Normal Means- for Nh1ch 0.90 < P <0.95
(8=2, y1=1.0, ,_and y=2.0)

§ =2 Y1 =1.0 Y2:2.0.

k n a (1/p-1/2). ARk
1.2 .2 0.23014 0.555 " 15
1.5 K N.11490 0.571 S I21
1.6 2 N.09312 0.596 26
2.0 3 0.03650 . 0,558 S A
2.1 3 0.03471 0,571 - 99
2.2 3 0.02R58 0.594 117
2.6 4 . N.01316 0,568 321
2.7 4 0.011013 0.589 394
3.0 5 n0.00s80 . 0.558 {18
3.1 5 N.N0480 nN.576 asg
3.2 b 0.0N396 Nn,598K 1128
3.4 3 0.00231 0.556 1917
1.5,’5( 3 0.00185 0n.573 2314

1

Note: A** in this Table is as defined by equation (4.48).
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1. Calculate A** A% &Y _ 80 .- g | . -
c O.T

2. Determine k and n. From Table-4.4} we find that the closest value
to A" 800, is A"t 818, which corresponds to k = 3. Further, we find

that n = 5 and « = 0.00580.

3. Evaluate s. Observe that P -

2
s = {(aV+b+en)/IMEP - D2 <10

4. Estimate the average loss-cost. From equation (4.46), we compute
the loss-cost for this plan  to be L = 2.8162. The exact .
solution tq this problem, obtained by a direct search method, yields

@

k=2.89, n=5,5s=1.03 >« = 0.0075.and L- 2.8078.

Example 4.4: Suppose, in Example 4.3, the non-normality of the process

is ignored. According]y;.the values of the parameters ?] and v, are
equal to zero. Using Table 4.5 and following the standard procedure
of Example 4.3, one arrives at the following plan with no difficulty;
n=5, k=3.0, s=0.933, and L = 2.7329.

However,vif the process is, in fact, regarded as non-normal, the:
plan results in an actual hou%ly loss-cost of L = 2.8162, as noted in

example 4.3. Thus, the use of conventional control plans with normality

assumption, even though the production process is markedly non-

normal, . will result in misleading values of loss-cost. This would

eventualiy amount to substantial losses over a long period of operation._'

/-/
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Table 4.5 - Simplified Scheme for Determination of Contro]:

: Parameters for the Economic Design of X-Chart to
Control Non-Normal Means for Which 0.90 < P < 0.95

(s=2, ¥,=0.0, and~y2=0.0); Lo T

’ 8§ =2 ) : Y‘l =0,0 Y2 =N,0
k n T (17P=177) AKX
. 1.2 2 0.23014 C0.555 : 15
A 1.3 2 n.19360 0.567 17
1.4 2 0.16151 0.583 19
1.5 2 0.13362 0.601 22 -
1.9 3 0.05743 0.563 53
2.0 3 0.04550 / 0.577 f&
2.1 3 0.035713° 0 394 79
2.4 4 n.N1R40 0,558 174
2.5 4 0,01242 N.572 « 278
2.6 4 0.00932 ND.588 294
2.7 4 n.006 93 n.607 R4
2.9 5 n.00373 N.562 ‘5 751
3.0 5 0.00270 0.576 1009
3.1 5 0.00194 0.593 . 1369
3.3 3 n.nonay n,558 2844
1.4 3 0.NN067 0,572 3976
. 3.5 6 0.00047 . D.5R8 5613

Note: A** in this Table is as défined-by'equétion (4.48)..

| ) h

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



N . ‘ 4.4 Effic1edpy of the Contro1 P]an

In order to des1gn an economica]ly opt1mum x-chart control plan,
atl the re]evant data parameters must be estImated before the
loss-cost function can be -m1n1mlzed? Unfortunate1y, 1ittle
attention has bgen pﬁid to the effgct, on- the optima]ity, of errors
in;estimatingigosﬁ and data parameters.- The manufacturer can use an
economic approach with sufficient confidence only if he has pgior
knowledge of optimum data parameters. 'Dependiﬁg on the inﬁividu31 .
circumstancés, and the.ﬁature of the prbduct,'error§ in estimation =
may occur in varying degrees It is %heréfore desirable to %nvéstigate
to what extent these €rrors affect the opt1mal1ty or the economic
design of x-charts. ‘ “

Recall the loss-cost funétion developed in‘sectioh‘Q.B.], which

after simplification, may be written as

) x(v -V, )8, +(k ot Byl tk Y (Tt )}+(b+cn)(1+x81)/s

]'+AB’I **'tsBO*‘R(TS'*‘Tr) * (4.49) -

‘e

2
~N e

The formulation of the loss-cost function invo}bes the following
data parameters:

8§, A, VO’ v]a TS.’ Trs kS’ k]’" b, ¢, Y]’ Y2-

To measure the efficiency of a non-optimum plan,the method of
Hald [1964] is adopted in the present study. Hald's measure of
efficiency has the advantage of be1ng 1nvar1ant to the choice of or1g1n

and the scale of losses, and of 1y1ng between 0 and 1. Consider the

‘»./\’

- -
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expression of L in equation‘(4 49)'which.repbesents the loss-cost
borme by the manufacturer when he uses a particuiar controi p]an

" w(n, h, k). This L has an unav01dabie, minimum part, L, which

v

corresponds to an imaginary, perfect, control procedufé thatdsfects
the assignable .cause as soon as it occurs w1thout any sampling
inspection and unnecessary ha]ting of the production. It is clear

that - S ' B e

= O+t Vgleg + 1 IVO #arg £ 1) T @50

We may then define. the efficiency of a general control plan « .0

to be

relative to the optimum control plan 4
e (mmg) = {L{mg) - L3/{L(w) - L} L(x) > Ling) (4.51)
e (mymg) = (n) = L M AL(ny) - Lt T L(w) < L(ng) (4.52)

This efficiency, €, is clearly invariant to the‘origiﬁ and the scale /
-  of losses, and it lies between 0 and 1. The better the control plan, .
@ the eioser to unity the value of €, and vice versa. ~ The quantity
iQO(iée) expresses the saving in percent of the.sampling costs and -
other losses for the control plan = by using m instead of m. Using '
‘AHa]d's cfiterion for measuring the effi%iency of a control pien,,a
sensitivity anaiysis of the model under Poiicy IT is performed. Also,'
the attention of the user is drawn to the effects of errors in the
estimation of the critical data parameter, on which a reliable optimum

control plan is Jargely dependent. ' .
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- Sensitivity Analysis B

-

Effectof X. - The average number of assignable causes per hour is

denoted by A and an 1ncrease in A is equ1valent to a decrease in the

. average time forthe ass1gnab1e cause to occur. To study the effect

: of ‘this increase 1n Aon the opinmum des1gn the fo1low1ng data

4
_ set-is consxdered

fl

= 150, V. = 50,. k_= 20, kg = 10,
Sy

TS 0.2,._ T, = Q..’I, Yy = 0.;5_, Yy = ]'.0_

- and § = 2.0, B

- .
-
A

The numerical values assigned to x-are 0.005, 0.008, 0.01, 0.05, 0.08,

andfh1. éﬁppose‘the trae value of A =‘ﬁ.60§ . For thiS} the exact
| optjmum.cdnt}ol plan g = {n;s,k) =16, 2.11, '.07).and‘tﬁe values )
“of L_= 0.3744 and L = 1.4765.
. Let the other values of 1 be 1ncorrect1y estimated. AThus the

errqr faccor for these-cases w111 be = estimated A/ true-A." The

effects of X on ‘the design carameters‘and on the.iossrcost'function,>‘

and che relative efficiencies (measuked as 100e) are obtained using
- ) equation;(4.51) and (Q;SZf coftespohding to A. ‘These are ‘ _
‘ ‘given in Table’4.$ and depicted in ‘éig.é.li :3 In Fig.4;1; graphs are
' 3 R drawn on di‘ffe"rent scales ta acccnnmdate-o‘che relevant va"l ues of ~the.
- variabies. ) ‘ ,
',%? S ) I't is observed that.the only signfficant,effecc of_an increase: in X is on
i . design-paﬁamete; S. For‘examb]e, if 1 incredses. from 0.005 to 0.01, o

NP . Lot

i.e., if the average time for theﬁgssignable cause to occur. reduces from

f TN ¢ ‘ ’ . . .
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Table 4.6 Effect of

&2
S

s

o
|

2L

X on the €ontrol Plan and

Effect 'of Errors in:the Estimated .
Values of A. '

P .
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7. ™
‘Optimal design Error ’
A - | .
n s ke L; Lm factqr 100e
0.005 | 6 2.1 [3.07]1.4765 | 0.3744 100
0.008 [ 6 | 1.67 | 3.11 | 1.9924 | 1.6 | 68.11
. 0.01 | 6 | 1-50 | 3.08 | 2.3052 | ‘2.0 | "s7.07
0.05 | 6 | o0.68 [3.11 ] 7.0788 0.0 | 16.43
.. 4 - : :
0.08 | 6 | 0.5¢| 3.12 {10.0464 176.0. | 11.39
R -b ‘
0.1 | 6 | o0.50]| 3.10 |11.8952 20.0 9.57
<
) ¢
\ -
< ( P '
o ; -
b 3 x

v



S §4=2.0 Vo = 150.0 Vi = 50.0
kr=20‘0 ke = 10.0 rr=0.2

= 0.1 Y = 0.5. =-1.0 -

S

= c P é ‘th.S ¢ =11
6 r 532.50100 ¢
vl 23
—y <.
:i*'.
5. 4 $+10.+-80 }
A\
3
4 + 317.5+60
3 F 2F5.0r40
~
2 -1 L2.5} 20 }
‘ \
] 1 1 1 ‘ 1 1 1 L X L L]
et 0 0 o0 0.03 0.05 3.08 0.1
‘ by
Fig. 4.1 Effect of % on the Design Parameters
and the lLoss-Cost Function, and Effect
of Erfors in the Estimated Values of 1,
~—— « 5\
\
“ \ - '
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b\
\
B}

200 hours to 100 hours, thé.samp]ing interval changes from 2,11 to 1.50. o~

The sample size n remains the same ‘and there is a slightly effect on the

*

control 1imit coefficient, k. However, with the increase of A, the

\

loss-cost function increases significantly and over-estimates of 2

result in low efficiencies of the control plan. Thus X is a critical

data paraméter. . - | _t):

Effect of 8. Thé shift parameter & is re]ate& to the change in the

process mean by an amount &a An error in estimating & results in an
“ incorrect estimate of.the effect of the assignable cause. {sa) assuming
| that the estihaie of o is accurate. Congequently, the profit derived
' from the put:of~contro1 state, V] is also incorrectly estimatéd; The
éffect df § on the design variables and Toss-cost function, and the
consequences of incofrect estimation of §, are-shown in Fig. 4.2. As .‘
3 fncreases the value of sample size and sampling interval decreases, .
but the value of coﬁ%?b] 1imit coefficient k increases. The value of
the loss-cost functfon decreases gradually with the incréases of 3.
The correct‘value of § is assumed to be 0.5 in each case. The measure
a of efficiency: 100e is low or very low despite the relatively small
sizes of assumed error in the estimation (over estimation) of s.

This leads to the conclusion that § is also a critical parameter.

Effect of Cost Factors b and c. The cost factors b and ¢ determine

the cost of mafntaining the control chart, which is equal.to (b+cn)ﬂ
per sample, where b is the cost of sampling and cn is the cost of

plotting and computation. The effect of b on the design paraméter
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Fig. 4.2 Effect af 6 on the Design Parameters -
. and the Loss-Cost Function, and
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and on the loss-cost function, and the effects of errors 1n the
estimated values of b are shown 1in Flg. 4 3. ThIS 1nd1cates that
as b 1ncreases samp]e Size and samp11ng 1nterva1 increase, but
~ the effect of b on control 11m1t coeff1c1ent is insignificant.
The effect of c is depicted in Fig. a. 4 which shows .that -
samp]e size decreases and sampling 1nterva1 increases w1th the

increase of c. . T . : (~‘\

Effects of k_and k..  Figures 4.5 and 4.6 indicate that the

effects of. kr and ksvon design paramefers are insigniffcaﬁt. However,
the Tossjcost increases with the increase of both kr and ks. It may”
be noted that cost factor kr'was not considered by Duncan [1956].

However, no explanation was given for the omission of this factor
~ t

in his model.

Effects of T and Tge Effects of and T are significant on the

loss-cost but insignifi;ant an the'design parameter k as seen in
Figs. 4.7 and 4.8. Their effects on the sampling interval and sample
size n, are moderate.
Based on the abgve fesults, the following conclusions about
%he sensitivity of the model with respect to A, § and to the cost

factors may be drawn:

The optimum design 1is:
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A = 0.0

§ =2 Y] = 0.5

vy = 150.0 V=500 1 = 0.5 t w03

c= 0.
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Fig. 4.3 €Effect of b on the Design Parameters
and the Loss-Cost Function, and Effect
of Errors, in the Estimated Values of b,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Y " 1.0

§ s

-



72

A=0.05 8220 y =05 vy, -+ 1.0

Vo= 150.0 V=50 ¢ = 0.5 1 =0.3
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Fig 4.4 Effect of ¢ on the Design Parameters
. and the Loss-Cost Function, and
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BT : Fig. 4.5 Effect of k, on ‘the Design Parameters
e and the Loss-Cost Function, and Effect
- of Errors in the Estimated Values of kr‘
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~  highly sensitive to errors in estimating the shift
¢ “ _
parameter &, and the rate of occurrence of the assignable

» cause A

- moderately sensitive” to"the fixed cost and variable

/\ . samph’ng\costs;

- relatively insensitive to ‘the repair and search costs.

1

The‘discussionLabout the effects of the non-normality pa}ameters
on the desjgn variables and on the loss-cost function will .be presented

later in Chapter 6. . . f

ye

4.5 Multiple Assignable Cause Mdde]

'The -fundamental assumption of the process model studied in previous
sectians is that there exists a single assignable cause.whiéh shifts

the proceS; mean by an amount So. In practi;e.th}s assumption may not be |
satisfied, ;slit often occurs that a multiplicity 6f assignable causes
may operate on,tﬁe.process. | o, % -
Nad Theﬁyroduct?on processes considered in this section have an in-

control state, and may jump to one of the several out-of-control states,
each with an associated assignabTe cauig;//lhe process is assumed to
start in the state of control with mean n. It could be-disturbed by

the occurrence of an assidgab]e cause Aj (i = 1,2,..,n) which $roduces
a.shift in the process mean of éjb, where o is the process standard

\ " ~ :
¥ devﬁsfion. It is assumed that when the process has been disturbed
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by a given assignable cause it is free from the occurence of other
| . ]

éssignable causes. °In other words this. 1s equ1va]ent ‘to Duncan's

Model I for normal cases [Duncan ]971]

4.5.1 EFormﬁ]ation of Loss-Cost Function. Following the'assumptiohs“ =

. regard1ng the operating cond1t1ons of the process stated above let:

2]

. v profit when the process 1s in control.

0

Vj = profit when the process is in cut-of-coptrol state due to
ass1ghab1e cause A

T = expected time to search for an ass1gnable cause. -

- ks = expected per hour searth cost.
. Ty = expected repa1r time, if the process is d1sturbed by the

ass1gnab1e cause AJ .

kj = expected per hour repair cost,. if the ﬁ%oCéss is disturbed g

< +

y ' by the assignable cause,Aj. 8

In a production cycle ‘the time .at which the process goes out of

control is distributed as the minimum of n independent exponentially
1L and thus has
Ay A X, .

1 "2 J ’

distributed random variables with means

an exponential distribution with mean %—where A= Exj. "This means, that

. . R
duration of the in-control state is, on the average, X—hours.

-

Let, . @‘ . ¢
- o - probaﬁi1ity of a fa1sé alarm, : .

Pj - probab111ty of a true alarm when ass1gnab1e cause A
tﬁ‘~
operating. f\ .

Each false alamm has a search time of Tg ; thus, the total t1me spent

.

¢
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on the search = tB,, where ° 3

By = alexp -~ asly {1 - exp(-1s)}.

-
-

When ‘the assignable cause occurs, it may occur at any time between two
samples. The average occurrence time in the interval between: two

. samples is.

4

t3= [n- '(‘l:+. Ajs) exp (;—Ajs)]’/.lij - kj e'xp (-xjs)] | ’ (4.'53).

The time before a true a]_érm is signalled is

Following this alarm, a further expected time T is required for

detecting and eliminating the assignable cause Aj.' Now, since thefé
may’only be one assignable cause present; jn each prbduc_tion .cycle
qnd since the frequency of the assignable caﬁse AJ.' is AJ./A, R

‘""the expec‘fsed time the process is out of control, counting fron; the

occurrence of the assi‘gna’ble cause to the completion of the c&c]e, is

1

. (B. + <. ) ) .
L A (BJ | rJ)/A : , (47;55)
Thus the expected length of a production cycle is

.l - N ~

The expected net income per cycle is:

-
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L B, i~ VB, - - 4.57
3 f [z ijJBj; VBy - L A W (btcn)(1 + & Aij)/s]/A (4.57)

<

Analogous to- the single assignable cause model, the loss*

cost function for the multiple assignable cause model -is.derived as follows -

.Z A.U.B. + +z .Wl'+ h + 3. (bt

. - U;Bs + VB, A ‘1 z AJBJ)(b cn)/s ’ (4.58)

) + 1 A,B, + + 3T, > i
1 b XJ 5 TSBO T RJ:[’J ] ‘

Ed

where VY

- ks ¥ VOts ’
.= k. # . 3
NJ kJ VOTJ | ,
a!:ld .= ‘.... . ‘ C .
‘ . UJ VO VJ : . 4

-

For an exact optimum design, the .search method of section 4.2.2 can be
used with suitable modifications. The initial position for the search

can be given by the method éxpTained in an example later. : .

4.5.2" Application of the Simplified Scheme. In this section a matched
[Buncan, 1971] single assignable cause model is proposed so that its

™
semi-economic plan.will approximate the true optimum contfol plan for the .

original multiple cause model. “

The proposed matched single éauée model is defined as follows .
1. The shift Gs produced by the single assignable cause is equal
to the weighted mean for the mu]t%p]e cause shifts; so thaﬁv ’

§_ = I A.8. .59
< AJSJ/X (é 59)
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;? 2. The-rate of occurrence of the siggle assignab]e‘éause is the

sum of the rates of occurrences. of the indib%dua]'assignabTe causes
) in the multiple cause model: v
L AgEas z_xj . CoL T . ’;- \ (4.60)

3. The hourly phofit induced by the occurrence of the single .
assignable cause (V yro,

. ‘

Vg = BAN sothatU =V - v o (461)

4. Average time taken to e11m1nate the(a_ng4e ass1gnab1e cause 15

¢ 4‘*\ ~
defined as. - .
) ‘ o \ ‘ »
) . z )t-'l'. :“ . ] . .
T T N . ' " . (4.62)
rs X " S ' L

-

5. Average cost for the detection and elminatferf of the single

assignable cause for true alarm is then,

T Ak, - . .
=—3J . (4.63)

/Qf,\ | krs AN ‘ X . ®
' 6.° The average cost of searching fora single assignable ‘cause when it

exists is thus,

g o= krs * VO.Trs .. , (4.62)

‘To determine an approximately optimum plan by the simplified scheme

of sectton 4.3.3, an example is considered below.

Example 4.5 * Consider a nen-normal ultiple cause model defined by

>

the‘quantities given in Taﬁlé 4.7. v

4
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Table 4.7 A Triple Cause Model

Rj 63’ Vj ) kj '- T
0.005 1.2 262 42 .0.20
0.004. 2.0 S5 30 0.15
0.001 3.5 -110. 20 0.10 -
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TR AT T

Other par&metgrs values are assumed as follows. _ :
» . V0.= 350, k_s = 2?, TS =_0,'|5, b = 2.0’ c = 03’ Y'] = ].0 and
Yo = 2.0

" Determine an approximate plan for the-triple cause mode]'with P 3_0.95.

" For the matched model,

i,

Ag = 0.01, 8 A].?S, V]S = 150, krs = 35, Tpg = 0.17

so that
Us =-V0 - V]é = 200, VS = kS + VOTS = 20 +_52.50 = 72.50
W = 94.5. ‘ ’

.S

7

_Table 4.81s applicable. Following the simplied scheme of section 4.3.3
Ist step: A¥*= 370

2nd step: Table 4.8 gives n = 6 and k = '2.7. |
' 1 1

3rd step: Evaluate s. From Table 4.8 « = 0.00967 and P - 7 = 0.544.
. -1 _ L1372 '
Thus, s = {{aV¥  + b + »cn)/D\SUS(P - Ire -
= 2.03 ‘
. ' 4th step: Using equation (4.46), L = 5.3254.

‘For comparison purposes, the worked-out exact plan for the original triple

cause model is given as:

n=7,s=1.86,k =2.8 and L = 5.3659.
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: Table 4.8 Simplified Scheme for Determination of Control
S e = Parameters fpr the Economic Design of X-Chart to
“Control Nen-Normal Means fdr Which P> 0.95

ST (6=1.75,Y.|=1.0, andY2=2.0
. & =1.75 Yist.o Y2 =2.0
k n " (1/7-172) Akk
1.2 2 N.23014 0.555 . 'ﬁi
1.0 2 0.29715 0.544 " .
5 . 1.1 3 0.25719 0,508 13
1.2 "3 0.21571 0.514 14
1.3 3 0.17936 0.521 16
1.4 | 3 1. -0,14793 KR K 1o IR 19 |
—17S 3 0.12114, 0.543 22+
T 1.6 4 0.10136 0.513 31
1.7 4 0.08224. n.s19 . 37
1.8 4 N.06647 0.527 46
1.9 4 n 05362 0.538 56
' 2.0 4 0.04325° . N.s51 70
2.1 5 0.03512 0 520 97
2.2 5 n.02827 0.528 . 123
2.3 5 n.N2283 0,539 157
2.4 5° 0.01853 0.552 - 201
2.5 6 0.01466 0.524 | 274
2.6 -6 0.01188 0.532 350
2.7 "6 ‘0,00947 0.544 446
2.8 7 0.00749 "0.522 604
2.9 7 0.00607 0.530 76%
3.0 7 0.00492 0.540 960
3.1 7 0.00398 | 0.553 1197
i 3.2 8 0.00299 0.529 1622
3.3 8 0.00239 0.539 . 2018
. . 3.4 R 0.00190 0.551 2503
3.5 9 0.00139 0.530 3440

Note: A** in this Table is as defined by-equation {4.48).
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CHAPTER 5

AN ECONOMIC DESIGN OF X-CHARTS WITH WARNING LIMITS
TO CONTROL NON-NORMAL PROCESS MEANS

In this chapter, an expected cost model for a“production process’
under the>survei11ance of an X-chart wi?h‘warning 1im1ts.fbr controlling
the non-horma1 process mean is devé]oped. It is assumed that the
process is subject to tﬁe occurréncelbf'a singie asSignab]e cause
and is operating.under’the policy II. The design parémeters of a
general control chart with warniﬁg Timits are the sample size, the -
sampling interval,.the actién limit coefficient, the warning limit co-
efficient, aﬁd the critical run length, To develop the expected loss-
cost function, expressions for thg average ﬁun-lengths, when the proces§

~is in control, and when the process is out of control, are derived. .A
direct sgarch‘technique is employed to obtain the opfima1 values of the
design parameters. Numerical examples are provided, and the effects
of the non-normality parameters on the lass-cost function and on the “
deéign parameters are di;cusséd; Conclusions aré drawn about the~.
relatiVé efficiencies of the economic design of X-charts with and without
warmning Timits. A simplified form of the algorithm is also dgyised which

could be useful for practical application at the workshop level.

5.1 Formulation of Loss-Cost Functiqn

A production process which has two states, in-cofitrol and out-of-
control, is considered. The process is assumed to start in a state of
in-control. The quality characteristic of the prbcess variable is

< - \

85

TN
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N QLT
méasgrahle on a continuous scale and s non-noymal 1y distributed with
the same-density function. as descriﬁedf}ﬁ"séction 4.1
- ‘The prdggss is assumed to be_shut-down duringitﬁe search for the’
assignable cause. A sample of fixed size n is taken at regu]ar:
- 1nterva1s of time and .the - sample mean is pTotted on’ a one s1ded x~chart
aw1th waming 1;@1333 The upper action limit is set at “0 *+ ky o//_ .
where k is the upper control 11m1t coeff1c1ent The upper warn1ng
11m1t is set at ugy + k. of where 0 <k, < k A.search for the
a551gnab1e cause is undertaken if the last samp]e mean fa]]s outs1de
. the ac;1on Timit, or if the last sample mean completeg a critical
run 1ength‘R"whiéh is in:between the warning’ and action limits."

Fo]]ow1ng the. genera] out]1nes of the works of Duncan-[1956]) and,
Ch1u and Cheung [1977] the Ioss cost function.of the process under

_ the surveillance of .an ilchart with warning limits for control]ing'
the non-norma1 process means can be formulated as follows.

Lét T, be the random time during which the process oberates under .
the state of control. By assumption, Ta‘has an exponential diStribytibn
with E(Ta) = 1/x. Let M be the number of samples takeﬁ before the‘process
goes out of control, and G the number of samples taken after the ﬁth
samplé and up-to the moment the chart signals lack of control. Let N
be the number of false a]afms occu;ring among the first M éamp1es. 'Then

it s stra%ghtforward to see that the expected 1ength of the_prodhctiéﬁ

cycle consists of four parts: (a) the in-control period, (b) the search

times due to falge alarms, (t) the out of control périod, and (d) the

"\ gt -

search and repair times due to true alarms.

ot
N
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Using the sameterm1no]ogy as defined in sect1on 4.3, the

expected length of a production cycle is . -

SE(M) + T E(N) + 46) + TR T | " (5.1)

and the expected income from a produgtion cycle is

v

y ‘ ' ' S .
°‘+ v, E(Ms+Gs-T ) - E(N)kg - (b+en)E(MG) - k. -k, -~ (5.2)

Hence, the average net income per hour is

Expre551on (5.2) . ' o\
I Expression (5.1) o _ (5.3)

1]
The assignable cause occurs somewhere between thé Mth and the (M+1)st
samples, in the cycle. Then the average length of the time of the
occurrence within this interval, measured from the beginning of the

interval, is:

E(t1) = E(Ta-Ms) = {1 -'(1+As)exp(~xs)}/{A-Aexp(-xs)} =‘§-~ %E%SZ
(5.4)

Thus from equation (5.4):
E(M) = 1/2s - T+ 2s/12. (5.5)

To determine the expected number of false alarms during the first M
samples, we have for fixed M [Chiu, 1974]:_

Ve

E(N[M) = M/R,

N,
——— ~

where Ry is .the average run Tength {ARL) of x-chart with warning limit
at the acceptable quality level wy. Thus, from equation (5.5):

N

~
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EN) = EMI/Ry = {13s - 2+ +2s/12y/Ry  (5.5)
Tade? [1968] has shown, by computér simulation, that the

dependence of E(G) on M is negligible, and that it could be .

written as o

E(G) = R'] o ) . (5.7) -.. -

where R.I is the ARL of the chart at the rejectable quality 1éve1,.

'u.["= ud +'§0. Thus ,
E(Ms+Gs-T_)' = R; s - 1-s>’+ 1 sl : - (5.8)
. U T A : -
and. ) -
Egmg) = Lo Lg J—‘)\s + R ' | (5.9)
, - 2 T2 e ’
Substituting equations'(s,ﬁ) - (5.9) into equation (5.3) and
defining
U= VO - VI;
Vo= ko + Vs i
W= kr"+ ks + VO(T‘,\ + TS); ‘ (5..]0)
1 2, a2 * |
= (L _A42s Y
B0 (s 2 ¥ 1 )/RO’ 1
- 1S
Byi= (Ry -3+ 3)ss
- ‘_
L il VO I ; § .
thus, L becomes after some simplification,
AUBy + VBy + MW + {btcn)(1 +.AB])/5)/ :
L= _ F (5.11)
1+ 2By + TSBO + k(rr + rs)

- N
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-where.L#representé the average long-run per-hour loss-cost of the
process. : ‘ T

. . 1 L ] )
5.2 Effect of Non-Normality on Loss-Cost Function

Before minimizing equation (5.11) to obtain the optimum design

+ parameters of the x-chart with warning limits, it is noted that the.
values of the average run 1engths R0 and‘R] are dependent on the ’
probability dens1ty function of the process var1ab1e, which, by our

assumption, 15 non—normal:

) . . -

The average run 1ength for a ope- s1ded x-chart with warn1ng 1imits

" for controIIIng a norma1 process mean, as given by Page [19627 is
: ' . RC " ¢ ',A_..._....._,, Rc V ' V
LR ARL= (1 q )/ - =P (1g 91 (5.12)

\ Py where RC is ‘the criticglirun length , P'is the probability tha£ a'point

| ( " falls below the warmning limit, and q is the probability that a point |
falls between the waming and action 1imits; Fbr contro11iqg non-normal
process means, when the process is out of coétro], the following

expressions for p'and q are derived using equation (4.21) given in

section 4.2.

v,
pr= ok, am oL@ iy + 2B ~6VR) +__¢( (K, ~5YR)
6vn 24n 72n

(5.13a)
and ) , :
o 19 :
q = o(k -6/n) - ofk -s/n) - ‘6—}5 [qs(z)(ka-avﬁ) -¢(2)(kw-mn
2
+Y2—‘25[ ¢(3)A(ka~s/ﬁ) - ¢(3)(_kw—6/ﬁ)] +T7—;,; [¢(5)(ka-6/ﬁ)
o (e v (5.13b)
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. .
“where ¢ denotes Iheidistribution function of the.unit normal variate.-‘
Thus, R1‘is obfaingd by sub§t&tutin§«equat1éns.(5.13a,b) into equ&tion
:'(5.12); Simi]érly, letting & = 0 in equétfons ks.iSa,b) and substituting
the resulting p'4nd g into eﬁuation (S.jé) Ry is obtained. These
.}expressions will be usea ih equation (5,11);f9r locating the minfmum

position of L.

5.3 Determination of the Optimal Design Parameters

In order to obtain the optimum control plan, the oéjective
function L givén by equation(5.1f)is minimized with respect to-tﬁe
design variables, i.e., the saﬁﬁie interval s, the coefficients of
A | - action and warning limits k_ and k., an& the critical run Tength, R_. '
 The dependence of L on three parameter;, ka’ kw’ and RC, £hf0ugh equations

(5.12) and (5.13a;5) préclude§ the use of any anaTytiba{ optimization
_method.  Rather, the direct search method of Hooke and Jeeves [1961]

is employed to minimize L with respect t6 the vector of variables (n,

ss kg ks Rc); However, due to the cHaracteristics of function’L,

some_modificatiohs to the method have to be made in order to account

for the'inherent‘constraints on some of the des?gn variables. These-

modifications are as follows.

&i) n and R assume integer values: o

(i) ’ka and k  maintain the re]atﬁonship such that 0 < k, <k

(ii1) .the expressions for R, and R0 are non-negative for given values

of';l, Yoo and §.

' On the basis of these modifications, the computer program 'WARNING' is
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developed in order éo miﬁimizeithé~1bss-co§t function and is given, . .
in APRENding}PI- ‘ | '
Ffom the péStAstudies on thé-design of X-charts with warning’
Iimfts,[Chiu and Cheung, 1977] under the normality essumption, it .
has been found tha? the vélue of the ‘critical run length Rc is
either 1 or 2. Therefore, in the process of optimization, the range
. of values for R. is from 1 to 4. In{‘tﬁe conventibnal |
design of X-charts with warning Timit - k, = 3 and N
Ky = 2 have ‘been considered: Eqpiu and~Cheung;~48V7]. " Thus , T
the relation k = %—ka is used to ‘'spécify the initial.- values
of these twd pgyﬁmgters.

.Finally, an iﬁi%ial value for s is determined as fo]]gws.‘ In ‘ ,52'
: pfactice, the values qf X and ]/R0 are very small. ﬁenpe,the - )
quantity By + T By + A(rr + rs) in the denominator of eﬁuation (5.11)
is very small Qompared with unity, and therefore it can be omitted;
similarly, in the numerator, the term AB1 is'very small compared to
unity and thus it can also be omitted. Consequently, equation §§.11) ;

becomes

L= ABy + VB, + A + (bten)/s - . (5.14)

0

By differéntiating equation (5.14) with respEct to s and setting the

2 and XZ/RO,,the following

results equal to zero, and omitting the.terms X
eghation is obtained
1/2

s =.{(%—-+ b+gn)/[AU(R] - %J]} - A (5.15)
N 0" .

which will be used to determine an initial value for s after choosing

\
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the initial values of n, k, and k. |
. N\
NUMERICAL EXAMPLES 4
To 6btain the obtima] design parameters, the search method
assumes that the objective function is convex. Since it is not possible
to ana]yt1ca]1y 1nvest1gate the convexity of L, some ana]ys1s of its

behavmour,was conducted through numerical studies, which. indicated that

the surface of L 1s approximately convex in the region around the optimal

va]ue.

~

With the assumpt1on of convex1ty of the obJect1ve funﬁt1on,
optimal p]ans were detennined for a wide range of the non- normallty
parameters, A& and ; ¥ps and of the shift parameter, §; the cost parameters

were fixed throughout the optimzation process.

.Example 5.1. Coﬁsider a process having non’—hormality‘parameters;y1 = 0.5
and Yo = 1.0, the shift parameter § = 2, and the rate of the‘occurrence
of thé(assignab]e cause A = 0.01. The cost parameters are assumed as
follows: 'VO = 150, V] = 50, kr = 20, ks'= 10,_rr = 0.2, t. = 0.1, b = 0.5,
aad ¢ = 0.1. The results of the op{imizafion, presented in-Table 5.1,

. “ indicate that the optima} plan is abtained et Ro=2,n=5,5=.1.428

hours, k, = 2.9062, k = 2.5034, and the objective function value is

L =978955,
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Table 5.1 Optimal Design ijr Example 5.1

Ry | n s ‘ka k, - L

I 5 [.43] | 3:2953 2.8917 2.2963
2 5 1.428 | 2.9062 2.5034 2.2955
3 5.1 .1.430 2.8914 2.308] 2.2962
4 5 |.430 1.4291 (- 2.1425 | .2.2963
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To study the effects of non-normality pqrameters on the loss-cost
function and the design parameters, Tab]é 5.2 is prepared. The relevant
cost parameters, the shift parameters and the value’of X assoc1ated
w1th Table 5. 2 are the same as those in Table 5. 1 Hoyever, parameter

::YI is varied from -0.5 to 1.0 with increments of 0.5, and parameter Y Yo ’
is yar1ed from -0.5 to 2.0 with increments of Q.S. For given values of

:f1 and-yz, the Table presents the optimal design paramete}é (n,s,ka,kw
and-R.), and the optimal value of L.

It is evident from Table 5.2; that the effect of skewness is more
marked than that of kuftosis. For'given-yz, the values of S’ka’kw and ﬁ
ingrea;e as YT-increases. The same is trﬁe.for L. However, the critical
fun length Rc remains unchanged, and the sémple size n does not show
marked changes. _

From a non-economic point of viéw; Roberts [1966] and Néind]ing;et
al. [1970] used the Average Run Length.KARL) criterion to compare the
efficiencies of the econémic designs of X-chart with and without warﬁiﬁg
limits. They assuned the same ARL (Ry)» when the process is in control
for both charts. The ARL (RI) values when the process is out of control
are then compared for various shifts, 8o, in the process mean. They have
reached the following conc1h§ion; for a small shift, the X-chart with
warning limits has a shorter R] than the x-chart with only action limits.
From the manufacturer's point of view, the loss-cost value is more useful
for assessing the effectiveﬁess of a control chart as opposed to average. run

]engfhs. Thus, a minimum cost criterion is used to measure the relative perform-

ances of these charts in this study; the results are pﬁesented in section

6.7. N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE 5.2 Optimal Valuss of the Design Parameters and
Loat~Cost _Function of an Economic Design of'X~chart with
Warning Liﬁ{t( .

(2=0.01,vy «l50,4 -so,kr-zo,ks-lo,rc-o.z, w=0.1,b=0.5,c=0.1)

8
2.0
Yz -0.5 0.0 . 0.5 +«+ 1.0
- p 4
. . 4 "~>SV 5 5 n
1.2782 1.4039  1.4240 1.4557 s
-0.5 2.5125 2.7734 2.8%00 2.R797 ka
2.1698 2.3643 2,.4831 2.5112 Wy
2 2 S 2 2 Re
* 2.2032 2.2531 2.2761 2.2941 L
4 S S ) 5 n
1.2875.. 1.4077 1.4270 1.4540 s
¢.0 2.5250 2.7906 2.8687 2.8976 kg
2.1690 2.3706 2.4800 2.5159 ke
2 . p 2 "2 R,
2.2160 2.2609 2.2828 2.3003 L
- 4 5 ] 6 n
1.2992 1.4076 11,4284 1.5170 s
0.5 2.5359 2.8132 2.8844 3.1187 k,
2.1675 2.3721 2.4847 2.7331 ke,
2 2 2 . 2 Re
2.2286 2.2685 2.28B93 2.3044 L
& 5 S 8 n
1.3062 1.4099 1.4283 11,5153 s
1.0 2.5516 2.8328 2.9062 3.1320 Ky
2.1691 2.3768 2.5034 2.7276 ky
2 2 2 2 R,
2.2408 2.2758 2.2955 2.3081 L
& S 5 6 n
1.3162 1.4122 1.4282 1.5136 s
1.5 2.5656 2.8547 2,.9250 13.1S5S4 ka
2.1675 2.4362 2.5112 2.7448 kg
2 2 2 2 Re
2.2528 2.2827 2.3014& 2.3117 L
S 5 5 L n
1.4075 1.4121 1.4265 1.5126 s
2.0 2.7320 2.8R12 2.9484 1.1A61 ka
2.3073 2.4612 2.517S 2.7A20 ky,
2 2 2 2 Re
2,26835 2.2893 2.3070  2.31S1 L
-
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IQ However, 1t would be 1nterest1ng to note that when the process is
in contr01 a 1arge Average Run Length (R ) corresponds to a sma]l Type

I error, and when the process is out of contro1 a sma]T Average

Run Length (R ), corresponds to smp]T Type II error. Thus, following

similar arguments that have been used in section 4.3.3 for developing

‘s1mp11ffed scheme “for an economxc deswgn of an x-chart, a simplified scheme

for. an.x_chart_wsth warning limits is proposed in the_fo]lowwng section.

*'5.4 A Simplified Scheme

In this section a sem1—econom1c scheme is presented wh1ch a]]ows the
user to spec1fy_the value'of ARL at the rejectable quality 1eve1 R], so that

a desired level of protection against the deteriorated quality could be

Pbtained. It is interestfng to note that in Table 5.2, the ratio of the

warming Timit coefficient kw to the action 1imit coefficient ka lies

between 0.80 and 0.90. Under the normality assumption, similar results were

obtained by Chiu and Cheung [1977]. For the development of a simplified

scheme, an average value of this ratio, i.e., kw/ka = 0.85 is considered..

Thus, for a given value of R],R0 may.be'treated as a function of ka only.

Letting &vn - k, = 3, so that,

2
a+k :
n =(*-‘—2—'§2‘ (5-]6)
8 .
substituting this value of n in equation (5.14), L becomes
‘ lar k) (5.17)
b o= )\UB-[ + VBO +AW+ (b + —6?-—‘—)/5 . .
The near optimum value of k, is obtained from:
. 3B 2c{a + k) . A
Y et -0 (5.18)
a a §°s
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LT
. N
substituting BO: )
v e laelpt g itk |
v — 5 o 4 . = 0.  (5.19)
RO : ‘ aka §5 |
*Thét-is, 5ppro£imate1y v
(a + kaj Bsz oy . ¥ ‘
= . (5.20) -..
pﬂb 2¢ ‘ ‘
, N s
L Defining ) -
(a * kIR, 2
A* = , {5.21)

3%

For various values of'ka,’one can find the corresponding values of A*,
knowing the values of §, ¥ and \ by the following procedure:

Step 1:  Choose a setof values for k_ , say (k;q» K ps...k ), such that

am)

k >k; > 1 for all i,

. aitl ai ,

- Step 2:  For each value of k . find ny for which R1 R]* by using
equation (5.12), where R1* is the set value of R, at the
desired level of protection. Now compute ROi using equation
{5.12) for given value of R]i'

Step 3: Having set va?ues of RO s (i.e., ROJ’ RUZ"’;'ROm) corresponding

e
to ka s {i.e., k

al? kaz,...,kam), compute the vector qf derivatives
dR.,; R aR
(——QJ, 02 3 seans Om ) using numerical differentiation.
ak 3k ok -
al a2 i am
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Hence,calcuIate the correspond1ng values of

Ax's Cp e., A] N N

~

?;>The values of k » N, lh and A* are thus tabu]ated using the computer

program 'SEMIWARN' given 1n Append1x IV It is noted that
such a table corresponds to spec1f1c values of R], 837, and: Yy A

series of such tab]es are thus prepared for a w1de range of non—'

_normality parameters Y, and yz, the shift parameter §, and for a

specified value of.R] The app11cat1on of one of these tanEi_1s

now demonstrated through a riumerical example. , . \\\}
4 S S ‘ .
An Example. . ST

Consider the same example.as in section 5.3, for which Yy = 0,

Y, = 0.5 and § = 2.0, Table 5.3 is prepared for this example. The

computations are perfarmed in the following steps:

A - . . . 2

_ '
Step 1: Calculate A*: A*¥ = — = 500"

C2¢c

Step 2: Determine ka’ n and %J: From Tab]e.5.3, it is fqund‘ka = 2.80,

=5 and RU = 328.8.

Step 3: Calculate s: Using equation (5.15) s

140

]

i

. . ° 2
. . 1 X, hS
Step 4: Calculate BO. B0 (§'“ Z+ T2“J/R0

0.002159
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Table 5.3 Semi-economic Scheme for Design of X-chart
with Wamning-1imits to Contro1 Non-Norma1
Process Means. ’
‘R =1.05 - 0§ =2 ¥y =0 Yo =0.5
k n RO . . A*
1.1 2 7.5 . 13.6
, 1.2 3 8.8 o L18.4
v 1.3 3 10.4 21.0
1 1.4 3 12.% 24,1
v 1.5 3 “15.0 - . 27.9
. 1.6 3 18.1 32.6
L C1.7 3 ¢ 22.1 ‘IT'\ 38.5
1.8 3 - 27.2 : 45.7
1.9 4 33.7 62.6 .
2.0 4 42.1 75.7 .
. 2.1 4 52.9 92.2
. 2.2 A 67 0 113.1
2.3 4 85.5 139.8
2.4 5 “111.5 196.0
N 2.5 5 144.7 246.7
2.6 5 188.9 312.9
2.7 5 248.4 399.9
' 2.8 .5 328.8 514.6
2.9 6 451.1 746.1
3.0 6 608.0 *T 978.5
3.1 6 825.1 1292.9
3.2 6 1127.7 1721.0
3.3 7 1608.2 ©2566.9 .
3.47% 7 2238.4 3482.9
3.5 7 3138.9 4762.4

Note:

N

A* in this Table is as defined by equation (5.20}.
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Step 5: Calculate 31:.-81 = (R, - %— )s N %
v .’\

0. 7709

v
fl

. . AUBI + VBO + AW + (btcn) (1428
Step 6: Calculate L: L
. -1;+ AB, + T8y * x(rr+rs)

1M/s

2.2705

Therfore, the semi-economic control plan specifies the parameter values as

n=5, s=1.40, k =2.80,‘kw=0.85*k =2.38 with the lo;s-cost function-value
o a "t a ;
- . - of 2.2705, which is only 0.09 percent above the exact loss-cost value

. of 2.2685, given.in Table 5.2.

s 1
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CHAPTER 6

. - AN ECONONIC DESIGN OF CUMULATIVE SUM. CHARTS
' " TO CONTROL NON-NORMAL PROCESS MEANS

P 3

~

~ Even tﬁ%ugh x-charts have‘been popularly used for over fifty

years, the increasing compl x1ty of industrial processes have

necessitated a search for more efficient and econom1ca1 means of

imprgving“quality.coﬁtro1. An important development in;phis direction

was the introduction‘of Cusum charts by Page't1954a] wh%cblhave gained wide

app11cat1on ever since. The major application of cumu]ative sum charts

is in industrial quality control, where the results from testing and _

inspecting the product are réceived in sequence and a prompt decision

is required when the process starts malfunctioning. In this Chapter,

a'sing]e assignéb]e cause médel under opera£ing policy I} for an .

economic design of cusum cﬁépts is considered. The economic design of the
- cusum cﬁarts involves the detgﬁnination of the design parameters that

.minimize a relevant cost function. The design parameters are the

sample size n, sémp]ing interval s, the reference value K,and the - G

decision interval h. Approximating the non-normal probability density
function 4f the process by an Edgeworth series, and deriving the average
run lengths in cusum control schemesbby the use}of a system of linear
a1gebfaic equations, an expression for the expected loss-cost function

for the process is defined. Using the decision interval scheme, an

102 S
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“iterative algorithm is developed and used for near-optimal determjnafion

of désign parametgrs. A simplified yersion of the algorithm is also

-

devised. Finally, comparisoﬁs are made among the felatiye,performances TN
- ’ - ) 13 { . '3 . + ) - ’
of economic design of X-charts with and without warning™limits and cusum .

)
charts.

6.1 The Assumption of the Process Model

The assumptions regarding the state, nature, aqd operatfng
conditions of the process are the same'as.described in section.5.1. The
operation of a cusum chart for controlling the mean of a process
invalves taking samples of size n at regular intervals of s hours and
p]oiting tﬁe cuﬁuTapiveﬂﬁums Sr = j£1 (E&-K) versus sample number r,
where §3 is the sample meaﬁ of the jth sample, and K is the prespecified
reference value. If the cumulative Sum_exceeds the decision interval h,

(. 1t is concluded that an upward shift in the process mean has occurred.

| Thus the sampte size n, sampling interval s, reference value K, and the
decision interval h are the pérametgrs required for designing one-sided
cusym charts. To coﬁtrol bgth positive and negative deviations from the

‘process mean a V-mask with lead distance d aﬁd half angle ¢, or two one-

sided cusum charts with reference values K], K2 (K] > KZ) and with respective

decision intervals h and -h may be utilized [Goel and Wu, 1973].

6.2 Formulation of L6§S-Co§t Function

Following the same procedure ,as described in section 5.2, for the
development of loss-cast function for X-chart with warning

limits the Tloss-cost function of the process uqder @ cusum

L‘ - . . - . .
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control chart can be defined as follaws

-»

AUB, + VB, + AW + (btcn)(J#AB.)/s . - o, & 3
L=—1— 0 — LT 6
1"*'”)\.8] + ’F'sBo +-A(rr + TS)A. -

. oo . ‘ g
where - . \/, el -~
I 1 A A%y,

L 28 2L B S

1 S . |
1Tz TRs : | (6.3)

B0 and Bl are calculated as in section 5.1 qsing the.cqfresponding
values of Ry and R] from_the cusum chart. -

The objective is‘to minimizé the per—houn\Ioss-COSt.function L
with respect to the.désign §arameters é, h, n and K. Ho&ever,tit is
noted that the function L also depends on RO’ and R]iwhich are in turn,
functiqns of h, n and K. Also the basic integral equationé for
eva]uéting Ro‘énd R]~invo1ve the non-normal distribution of the quality ‘
characteristic of the product. Thus an\gnélytical solution for the
design parameters seems difficult. In fﬁe‘following section,'an
iterative optimization'algdrithm is proposed which minimizes the loss=~ ;
cost function L, and converges to near-optimaﬁ values of the design .
parameters. A simplified scheme to determine the design pggameters is
also presented, which is less complicated and therefore is more applicable

at the shop level.
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6.3 Determination of the'éqntrol Parameters

R |- R A .
As_noted before, the loss-costfunction L depends on the ARL

) whose‘determﬁnation is one of the major difficulties in the design of

-

- eusum charté; In the past, a number of methods fbr obtaining the ARL
ﬁave;been-réported which utilize either apqggximate expressions or

- numerical techniques [Barrac]éugh and Page, TQSQ;'Van Dobben De Bruyn,
1968; Kemp, 1958;_Page{ 1954b;_Goe],~i971; Gée] and Wu, 197]}. In the present
study the bagic integral equatioﬁsvare approximated by a system of {_.'

linear algebraic equations [Goel and Wu, 1973%3<and solved numerically

to obtain the ARL of the cusum charts for non-normal process means.

6.3.1 Determination of Reference Value K.~ There is strong numerical

‘and theoretical evidence [Ewan and Kemp, 1960] that for given R, ,the

]&
value of R0 approaches its maximum when K, the reference value, is
, _

“chosen midway between the AQL and RQL. fhus,

g + ;—60 . (6.4)

'6.3.2 Determination -of the ARL by a Systém of Linear Algebréic Equations.
Following the work of Page [1954a],vﬁhe ARL of a one-sided cusum chart
for controlling non-novmal process means, with horizontal boundaries

at (0,H) is defined as

= N0 ‘ ) .
ARL = Tt ~ {6.5)

where P(0) and N(0O} are special cases at z=0 of P(z) and N{z), which

i are defined as follows. - /_
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L -z ~ H e \
P(z) = g](x)dx-_%% 5 P(x) . 91(x-z)dx, 0szsH, (6.6)"
. 0 .=

-

“and ‘ " . R

' N(z) = 1+ 7 N(x) . gl(x-z)dx, 0<z<H,: _(6.7)
0 L ' .
\ ‘ . ‘ . ‘ ' ' Xk
' where 91 (x) is the pdf of the standardxzed mcrements —_— fn the
g/

cumulahze sum, for the non—norma] process with mean
I ~ ' .

8 = and-with non-normality parameters 1, and Yo and H is
o//n : N

‘ the standardized decision interval defined as

’ ’ H = ;h : ) ) . ' - ’
' o/ /n

A

Substituting equation (4.3) into equation (6.6) obtain

2 2 v (3) (4) vz (8) -
P(z) =/ [—. “1/2(x-0)"_ 4 -8) + 2 ) -8) + —1—¢ -8} 1d
?) oo .[/ZTr ) : #ﬁ¢ ' x ") 24n (x=8) 72n (x-8) Jox
« H 2 3 p
+ f [—1— e—1/2(x‘-e-z) -% ¢( )(x-e z) . +2— ‘?)(x-e z)
0 Br 6 24n
Y12 (6) "
+—— ¢ (x-8-z)}] P(x)dx
72n . ;-
or, o
(2) (3) 2 (5) L=
P(z) = 0(-z-0) - o (<z-0) + By (-z-8) + g (-z-8) '
6vn | 24n 7en
Ho 2 (3) oy, (8 =
1 _-1/2(x=6-2)¢ Y1 2
+ f [—— 3 ; o -g-z) + 5 -9~ '
~0~[/27Fe s,/n‘qs G-zl f24n¢ Grro-2)
Y]z (6) : . .
+ ¢ (x-8-z)] P(x)dx ‘ (6.8)
72n : , ys

B
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where ®(x) is the curulative distribution function of the‘gtandardfzed
normal variate X. Equation (6.8) is a Fredholm intégra] equation of
the second.kﬁnd, which may be reduced as follows, using the method
given 6& Kantorovich and Krylov [1958].

(2)

. ‘ ¥y : ¥, (3) v{2 (5)
P(z) = ¢(-z-8) - — ¢ (-z-8) + =—¢ (-z-8) + — ¢ (-z-8)
6/ . 24n 72n
+ 1 A [ —1/2(zj-9_2)2m1 ¢(3)( o-z) + 2 ‘(4)( 8-2)
s [—— e - — Z.-6-Z _— ~0-Z
=1 3 Var 6/n J 24n M I
t—19 (Zj"e—Z)] p(ZJ). ) - (6.9)

72n

In the above expression, z; are the Gaussianwgpints kthe roots
of the legendre polynomials), Aj are the Gaussian coefficients (weights)
for the ihterval (0,H), and m is the number of Gaussian points. To
determine the values of,é(éj), m 1iné§r algebraic equations are

developed as follows. Since

T E=
—

Aj'= upper 1imit - lower 1imit = H - 0 = H,
o J )

-

-

and defining,

. Yy (3)( _) '
K(zj,zi) = ¢(Zj'e"zi) - g;%;¢ 2;-6-2;
(4) 2 (8)
Y2 Y1
+ Z.-g-2.) t — 4. 19-7.
oo} ( 8 ]2n-¢ ‘(zJ 0 21)- _ (6.10)
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Ty @ Y, &
K(z.,8) -={ ¢(-2,-8) - — 9) + —2—p 4 (- —9)
(z;,0) / (8) 5/59 2y 24n | (Z
2 (5) .
+T-]—¢ )‘(-zi—e) o (6.11)

72n .

‘we have the. following system of linear equations.

L]

P(zy)-A k(2220 P2 ) -AyK(25,2, P(2,) . <A K(z 2 P(2,)

13

K(z],e)

Plzp)-AK(z, 52))P(2))-AsK(z, 2, )P(2,). . -A K(z ,2,)P (z.) = K(z,,0)

Pz,)-A,K(zy 52, P2y )-ApK(Z,,2,)P(2,) . -A Kz 2, P (2,) = K(z08)

The above system can be written in a compact form by using the matrix

notation. Llet

a - A1K(z],?])} {-AZK(ZZ,Z])} . {—AmK(zm,z1)}

{ - A1K(z],22)} {1-A2K(22,22)}... {ﬁAmK(zm,zz)}
A= . :
{ - A1K(z],zm)} {-AZK(zz,zm)} e {1'AMK(Zm’Zm)}
P = [P(zy) Plz,) ... P(z)]"
Y. = [K(zy.8) K(z;,8) ... K(z;.8)]"
Hénce,
AP=Y |
or p=aly. S (6.12)

provided A is not singular.
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Simiiar1y.f0r equation (6.7) we obtain

. L. Wbz vy (3) Y, (&)
N{z) =1+[ z Ay ——e b oo Ly (z.-6-2) + ¢  (z.-8-2)
=1 3 Jm 6/n 3 24n J
Y'lz (6 ~ .. o B
+— ¢ (z;-8-2)] N(z.) (6.13)
72n J J o :
which nqiults in
n=AT L | | (6.14)
wheré P
M= [N(z) N(zp) oo N(z)T

1= 1 T ... o1

The calculations of ﬁ(z) and N{z) are easily performed on a.d%gita1
computer. The number of Gaussian boints, m, is chosen to achieve the
desired accuracy for a given pfob]em. To obtain the ARL, z is set egqual to
zero in equations (6.9) and (6.13), and the values of 5(0) and N{0)

are® then substituted for P(0) and N(0), respectively, in gquation (6.5),
with H and 0 =6/n/2 for Ry, and H and ¢ = _s+h/2 for Ry
£.3.3 Detetmination of s. The optimal value of s is obtained by

setting _g%—= 0 for given values of n, h and K. This yields

2 3B,
t - As {U+rSBOU+AU(Tr+TS)—BOV-AN} (gﬂ)

{\.(-i-AB1 V‘i‘XV(Trj’TS)—)\TSBIU—ATSH} (g—)
—(b+cn)[{1+AB tr 8 +k(r +1 )}(I+AB )

+1 s(1428,) (3 06 As{z By(r e )}( H1=0 | (6.15)
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where
2B . -
0 1 1 .2
—= = {- + —2A%)}/R
55 2 12 0
BB ~ .
1,1
— =Ry -+ = A
5s 1 2 6 °7s

Equation {6.15) is a quadratic equation in s, which can be éo]ved B
on a computer with ‘an-initial root derived below. In practice the
values of A and 1/R0 are very small. Hence the quantit}
ABI+zSBO+x(rr+rS) in the denominator of equation (6.1} is very small
compared with unity, and\therefofe it can be omitted. Similarly, in‘

the numerator, the term AB] i5 very sma11'cohpared with unity and thus

{.
ft can be omitted. Consequently,

~

(6.16)

L= =~AUB] + VBO + M+ {btcn)/s | «

The equation %%-= 0 is then an approximation to (6.15). Solving for
2

s, and omittihg the terms A" .and AZ/RO, one obtains:

s = [(§E-+ bren) /OU(R; - 31712 (6.17)
which serves as an initial root for the numerical evaluation of equation
' (6.15). |
We are now in a position to outline the iterative optimization
algorithm to find the design parameters of the cusum chart for non-
normal processes.
6.3.4 The Algorithm.

(1} Set the initial value of sample size nys i.e., n]=1
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(2)

(a)
(5)
(6)

(7)

(8)

(9)

(10)

m
Set the initial value of the standardized decision interval ij( '
i.e., H] >0

Evaluate R, and R; from equation (6.5)
Evaluate s from equation (6.15)

Evaluate the toss-cost function L} from equation {6.1)

Increment the standardized decision interval by aH:

"He,y = Hy + A
fjog = Hy

J+ , .
Repeat ‘steps (3) through {6) until, for scme value of the index,
J such as J, the following po]ds .

P
Lam ™ Ly < Ly

Let L*(n,) = LE.__Thus, L*(ny) s the minimum loss-cost function
correspondiﬂg to the sample size ny-

Increment the sample size by 1:

Negp =My F 1 ’ |

Repeat steps (2) through (8) until, for some value of the

index 1, such as I, the following holds

L(ngyp) > Ling) < Lrng )

Let L** = L*(nI). Thus [** is the overall minimum value of the
loss-cost function, and the valuesof Ry» R], s and H corresponding
to ** are the near-optimal values of the design paraméters.

The decision interval h is obtained from h = Ho/v/n, and the
reference value K from:

_ ) 1
K~—p0+-é-60.

The computer program 'CUSUM' for the above algorithm is developed and

listed in Appendix V .
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6.4 ‘Numerical ITlustration | -

T In this sectioﬁ, the aﬁblication of the algorithm is demonstrated
via a numerical example. Also the properties of theAOptiﬁaT solution
of the coﬁtro] chart pdfameters, obtai?ed over a wide range of the
values of the non-normality parameters vy, and Yo and the shift para-

meter &, are discussed.

A .Numerical Example

A non-normal process‘with mean u, = 25, variance 02 = 1.2 and °
”non-norma1ity parameters Yy < 0.5 and Yy = 1.0 is considered. -Other

parameters are assumed as follows: X = 0.05, S =<a1"60 = 150, V, = 50,

1
T - kr = 20, ks =10, T, =0.2, T, = 0.1, b=0.5and.c =0.1.
The valugs of the loss-cost function L and the de§ign parameters
in the neighbourhood of the optimal point are shown in Table 6.1 and )
depicted in Fig. 6.1. The loss-cost function assumes a minimum value of
L* = 7.0268
at the .following design parametef values:
sample sizen =5

sampling interval s = 0.648 hours

standardized decision interval K = (.70

ARL at acceptable quality levei R, = 288.48

ARL at rejectable quality level R, = 1.056
Therefore, the decision interval h is

h = H —2=,(0.70)(/T.2)/¥5 = 0.34 ,

hy
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. Table 6.1  Values of the Loss-Cost Function
and Design Parameters in the
Reighbourhood of Minimum Position.

n s H Ry R.[ L
3 0.596 { -+ .8.75 T 80.30 .z | 7.3666
. . 0.581 - 0.80 89.21 1.186 7.3592
o 0.566 0.85 99.35 1.203 7.3559
. ‘ 0.552 0.90 110.96 1.220 7.3565
0.539 0:95 124.28 1.238 7.3609
8 - 0.633 0.65 130.86 1.083 7.1030
0.621 0.70 147.77 1.092° | 7.0966
0.611 0.75 167.47 1.102 7.0941
0.600 0.80 190.54 s 7.0954

i 0.590 0.85 217.76 1.124 " 7.1005
5 . 0.662 0.60 219.50 1.044 7.0309
0.655 0.65 251.10- 1.050 7.0273
0.648 0.70 288.48 1.056 ° 7.0268
—_—
) 0.641 0.75 332.99 1.063 | 7.0294
0.633 0.80 386.47 1.070 7.0350
6 0.693 . 0.55 347.41 ©1,023 " 7.0549
0.688 0.60 "400.41 | 7.0523
0.684 0.65 463.44 0% 7.0521
0.679 0.70 538.88 1.034 7.0543
0.674 0.75 629.88 1.038 7.0586
X
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H= 0,85 : . . _ )
Ra= 99.35 -
Ry= 1.203
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s L s = 0.111
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7 Rp= 1102 s = 0.684
] . H = 0.65
s=0.648 Ry 463.44
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3 “ 5 T .

sample size, n

Fig. 6.1 Loss-Cost Function and Design Parameter in the
Neighbourhood of Minimum é%sition

»
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and the reference value is
K=p0+%mé25«%@xﬁmf=%J,

>

Properties of the Optimum Solution

The near-optimal values of the control chart pé}ameters are
obtained over a wide range of non-normality parameters Y4 and Yo and*
the shift parameter 5, as shown in Table 6.2. The rate of occurrence
of the aséignable causéﬁk, and the relevant cost parameters associated
with Table 6.2-are the safe as those in Table 6.1. The numerical
valueﬁ_assigned to-y] are -0.5, 0.0, 0.5 and those assigned tO'Yz are
-0.5, 0.0, 0.5, 1.0, 1.5 and 2.0. The shift paramgz¢r & is assumeé to
vary from 0.5 to 2.2§ with iﬁﬁrements of 0.25. For specitic values of
Y yé, and §, the optimal sample size n, the standardized decision
interval H, the sampling interval s, and the ARLs, R, and R, are obtained
by minimizing the per hgur loss-cost function L using the algorithm
described in section 6.3.4.

Based on the optimization results, biven_iq Table 6.2, the following
.observationé regarding the properties of the optima1‘so]ﬁtions may be
made.

- - | For the pair of‘vglués of Y1 énd\YZ, the;1§s$~cost function L
decreases with the increase of § in all cases;' As & increases, the sample
éize n decréases which results in the decrease'o% variable cbst associated:l

with sample inspection. The Samp1ing‘interva1 also decreases as § increases,

which will increasé<the sampling cost. But with an increase in &, the average

-
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Table 6.2 Values of the Dés*lgn Parameters and Loss-Cost Function of

(A=.05, Vy=150{ v =50, k =20, k=10, ;x0.2, 3s=o:1. b=0.5, c=0.1) -

’

-

an Economic Design of Cusum Chart to Contrgl Non-Mormal
Process Means,

-

i
0.50 - 0.75
72 . i Y] . ‘
-0.5 0.0 0.5 -0.5 0.0 0.5
28 .29 .29 17 18 19 n.
- 211 1.186 1.186° 1.149 1.142  1.129 Ry .
24,42 21.8&6 20.47 57.32  47.72 44.37 Rg
-0.5 0,400 0.350 0.350 0.500 -0.450 0,450 H
1.154 1,205} 1.213 0,924 0,976 1,006 &
11.0521 11.1057 [11.,1533 9.3290. $.4007 9.4543 L.
28 29 29 17 18 - 1% fn
1.210  1.186 1,188 1.169  1.142 1.128 Ry
. . © 24,63 21.87 20.48 56.87 47.43  44.08 Rg
0.0 0.400 0.350 0,350 0.500 0.450 0.450 H
1.155 1.205 1.213 0.925 0.977 1.007 s
11.0491 11,1028 11,1505 9.3294 9.4012 9.4571 L
a8 29 29 17 18 19 n
1.210  1.185 1,185 1,148 ° 1.141 1,128 Ry
. 24.464 21.88 20,69 56.42 47,13 ° 45.79 Rg
0.5 0.400 0,350 0.350 0.500 0.450 0.450 H
1.1S5 1.205 1.214 0.926 0.978  1.008 s,
11.04462 11.1000 11,1478 9.3298 9.4017 9.4579 L
27 29 29 17 18 19 n
1.218 1.185 1.185 1.147  r.130 1,127 Ry
. 23.37 21.89 20,70 55.99  44.84 45.51 R
1.0 0.400 0.350 ©0.350 0.500 0.450  0.450 A
1,142 1.206 1.214 0.9270 Q.979 1.008 s
X 11.042% 11,0971 11,1447 9,33027 9.4022 9.4587 L
27 29 29 | 17 18 19 n
1.217 1.18S 1.185 o 11486 1.140 1.127 R]
23.38 21.90 20.7t - 55.56 46.56 45,23 Rg
1.5 0.400 0.350 0350 0.500 0.450 0.4S0 H
1.143 1.20& .14 0.928 0.980 1.009 s
- 11,0394 11,0943 11.1419 92.3306 ©.4028 9.45%9¢6 L
27 29 29 17 18 19 n
1,217 1,184 . 1.184 1.1486 1.139 1,127 R
- 23.39 21.91 20.72 S5.13  46.28 44.96 R
2.0 0.400 0.350 0.3%0 0.500 0.450 0.450 g .
1,143 1.206 1.215 0,929 . 0.981 1.010 3
11,0363 11.0914°11.13%90 9.3310 9.4033 9.4604 L
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Table 6.2 Continued...
3
! 1.00 1.25
Ya Y1
_ -0.5 0.0 0.5 -0.5 0.0 0.5
12 13 13 8 9 10 n
1.123 1.104 1.101 1,127 1.100 1.077 K
106.08 94.15 75.30 159.19 133.73 128.02 Ry
-0.5. 0.500 0,500 0.500 0,550 0.550 0,550 H
0.817 0.857 0.873 0.706 . 0.752_. 0.79% s
8.3754 8.4540 8.5122 7.7747 7.8611 7.9182 L
12 12 13 8 4 10 n
1.122 (.'1.130 1,100 1.126 1.099  1.076 Ry
103.35 B6.61 73.99 150.00 127.92 123.41 Ro
N 0.0 0.500 0.550 . 0.500 0.5%50 0.550 0.550 H
. 0.819 0.824 0.875 0.708 0.755 0.795 s
8.3798 8.4401 8.5143 7.7B58 7.8490 7.9251 L
.12 12 13 . 8 9 10 n
1.121 1.129 1.100 t1.124 1.098 1.07% Ry
/,/' 100.75 84.74 72.71 | - 141.81 122,60 119.11 Rg
: 0.5 0.500 0.550 0.500 ‘0,550 0.S550 0.550 H
0.821 0.826 0.876 0.711 0,757 0.7%7 s
. 8.384%F 08,4443 8.5204 7.7948 7.8749 7.9319 L
12 12 13 8 4 10 n
1.121 i.128 1.099 1.133 1,098 1.074 Ry
g 98.27 B82.94 71.48 134.46 117.70 -115.11% a&
1.0 0.500 0.550 . 0.500 0.550 0.550 0.550
0.823 0.828 0.878 0.714 0.760 0.799 3
. 8.3885 8.4485 8.5244 7.8038 7.8848 7.9387 L
12 12 13 8 9 10 n
1.120 1,128 1.099 1.122 1.097 1.075 Ry
. $5.92 81.24 70.28 127.84 113.48 111.37 q%
1.5° 0.500 0.550 o.ﬂ%o . 0,550 .0.550 0.550
0.824 0.829 0.879 .717 0.762 0.801 s
. 8.3928 8.4726 B8.5265 7.8127 7.8926 ?7.9455 L
12 12 13 g @ 10 n
1.119 1.127 1.098 1,092 1.094 1.075 R1
93.47 79.40 69.14 142.98 108.99 107.8& R%
2.0 0.500 0.550 0.500 0.500  0.550 0.550
0.824 0,831 0.881 0.754 0.764 0.803 5
8.3972 B.4767. 8.532% 7.8212 7.9003 7.93523. L
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- 'Table 6.2 Continued... -
: 3
1.5Q 1.75
Y2 8}
-0.5 0.0 0.5 - -0.5 0.0 0.5 -
& 7 8 s & é n
* : 113" 1.081 1.055 1.092 1.058 1,057 R
. 242,81 188,09 1682.17 519,86 314.54 212,10 R%
-0.5 0,550 0.550 0.550 0.550 0.550 0,400 .
0,647 0.700 0.743 0.4614 0.671 0.4682 s
7.3702 7.4582 7.5155 7.0727 7.1714 7.2229 L
L 1 — "
. et . & 7 . 8 5 & & n
oy 1.112 1,080 '1.054 1.091 1.058 1.057 Ry
215.88 174.46 ;. .171.98 397.85 279.11 195.45 R%
- 0.651 0,703 0.74é 0.619 0.474 +0.48S s
7.3BA9  7.4499 7.5247 7.0922 7.185%1 7.2353 L
- 7 7. -8 -8 é é n
. 1.078 1.079 1.054 1.090 1.057 . 1,057 Ry
282,08  142.67 142.88 321.96 249,40 181.2 R%
. 0.5 0.500 0.550 0.550 0.550 0.550 0.400
. Q4692  0.70& 0.74B 0,424 0.677 0.488 s
: . 7.3992 7.4815 7,.5339 7.1115 7.1987 7.2475 L
7 7 8 5 6 é n
1,077 1.087 - 1.060 1,089  1.063  1.063 | 'R
235.69 172.97 173.86 270.48 257.09 189.47 Ro
1.0 0,500 0.400 0,800 0.550 0.400 0.450 H
0,495  0.499  0.741 0.628 0.673  0.682 s
: 7.4118 7.4925 7.5427 7.1305 - 7.2122 7.2591 L
i ,
7 7 8 5 & 6 n
1.077 1.0B6 1.060 1.088 1,063  1.062 Ry
214.12 1461.75 145.01 233.20 333,05 176.79 R
1.5 0.500 0,400 0.400 0.550 0.400 0,650 ﬂ
: 0,698 0.702 0.743 0.433 0.476 0.685 s
7.4243 7.S034 7.5511 7.1495 .2247  7.2702 L
7 7 8 5 6 é n
1.076 1.085 1.040 1.087 1.062  1.062. Ry
194.17 151.90 157.01 204.95° 213.12 165.70 R
2.0 0.500 '0.400 0.600 0.550 0.400 0.850 8
0,701 0.705 0.744 0.638 0.479 0.488 5
7.4368 7.5142 7.5595 ¢ 7.1482 .2372  7.28B13 L
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1 . H
. - = - "Table 6.2 -Continued... .
. -. _' -‘ N . )
2,00 2,25
2 N )
, =0.5., 0.0 0.5 -0.5 0.0 0.5
4 M- 5 3 4 4 n
1.078  1.047 1,045 1.096 1.046 1,048 R
736.48 446.65 265.20 316.41 494,98 304.18 R
-0.5 0.500 0,550 . 0.400 0.550 0.550 0.450 ?
~. ‘ 0.586 .0.640 0.453 0.538 0.408  0.417 s
{/ 46.8497 4.9570 7.0048 6.4805 4.7869 6.8417 L
. 4 s s 3 T4 4 n
1,077 1.047 1,051 1.094 1,044 1.048 Ry
474,38 3I70.96 269.73 703.S5 387.40 264.49 Ro
0.0 0.500 ° 0.550 0.450 0.550 0.550 0.450 H
~ 0.592  0.644  0.449 0.547 0.4612 0.620 s
- 4.8768 4.9732 7.0194 4.7189 6.8081 6.85%0 L
P .
4 5 5 4 4 4 n
: 1.084 1,047 1.0%0 ° 1.040 1.051 1.054 Ry
426.82 317.19 243,43 447.99 385,26 263.57 RQ
0.5 0.550 0.550 . 0.450 0,400 0.600 0.700 H
0.591 . 0.447  0.4652 0.407 0.611 0.617 s
. . 46,9030 46.9894 7.0326 6.7525 6.8278 4.8758 L
4 S S 4 4 S n
- 1.083 1,052 1,050 |~ 1.044 1,056 1.025 Ry
. 326.56 3I15.54 321,80 S30.06 348,27 440.93 R
1.0 0,550 0.400 0,450 0.450 0.650 0.450 ﬁ.
0,597 0.445 .0,456 0.608 0.40% _ 0.654 s
. 56,9284 7.0045 7.0458 4.7773 6.8470 6.8908 L
s
. 4 5 5 4 4 s n
1,082 15052  1.056 1,049 1,055 ° 1.028 Ry
264,45 277.97 228.02 452,02 297.51 449.66 R
1.5 0.550 0.600 0.700 0.500 0.450 ©0.700 B
0.403  0.448 0.451 0.408 0.413  0.651 s
6.,9534 7.0193 77,0583 6.8016 6.8445 6.9001 L
4 S S 4 4 5 n
1,087 1.057 1.055 11,049 1,060 1.029 Ry
P 249.79 279.47 210.17 356.14 291.37 408.25 Rg
2.0 0.400 0,450 0.700 ] 0.500 0.700 0.700 H
. 0.402 .0.645  0.654 0.613  0.611  0.653 s
. 6.9779 7.0333 7.0700 6.8245 6.86812 6.9087 L
- ”\ t \
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L ~run 1eﬁgtb R0 ihcreases' This results in a decrease in the B
expected number of false alarms. Hence, the searen cost is reduced

-

and an 1ncrease in sampling cost is compensated. Gnaquél increases in .
the decision inferval with 1ncreas1ng §, is obvious. ~ These results are-
depicted in Figs. 6. 2 and 6.3. )
_ _ For g1ven va]ues of 3 and Yoo the optlmum ‘values of samp]e size
‘»QFand sampling interval. 1ncrease w1th increasing Y]v A large ﬁi"
sampling 1nterva] should decrease the total f1xed cost of samp]1ng
Moreover, the average . run Tength at the rejectable qua11ty 1evel
. R], decreases with increasing Yy which resu1/ in reduc1ng
Athe loss-cost due to extended duration of off target product But, it
appears from Table 6.2 that the 1ossfcost function is increasing wifh_‘
the increase on'T The reason’ is thafjes 8! inbfeases,' the average -
run length, RO at the acceptab1e qua11ty level decreases, resulting in a'
large number of false alarms and thusa h1gher loss-cost function value.
One such case is depicted in F1g.’6.4. It is observed that var1at1pns
in loss-cost function and in the design parameter due to variation: of"
Yo, are coﬁsistent in the range of -0.5 to 0.5 and 1.0 %o 2.0, but its
effects on R, is quite remarkable as shewn in Fig. 6.5.
In the economic design of control charts, smaller probabilitigs
of Type ;i error are desiraﬁ&e, since they result in smaller ARL Va]ues at
.the rejectable qual1ty Tevel, ] For example, for a probability of
Type 11 error equal to 0.05, the probability of true alarm is 0.95 which

cerresponds to an R1 value of41/0.96 = 1.05. This indicates that the

]
—
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\ . . .' b
assignable cause can be detectedfdhring‘a“lbﬁath of time equal,
on the average, to 1.05 times the Famp1ing intervals. The quick
detection of the assignable cause tends to reduce the loss-cost due

to prolonged production of off-target product.

6.5 A Simplified Scheme

In this section a semi-econom{c scheme is presented whi;h allows
the user to specify the value of the ARL at thé rejectable quality
level Rl’ so.that a desired level of protection against the deteriorated
" quality could be obtained. Theréfore,'for a given R]’ R0 may be tfeated
as a function of e\only.
Considering the definition of e:
(yg - K)

- | | (6.18)
a/vn .

and substituting the value of K from equation (6.4}, we obtain

6= - ;- S ' (6.19)
Thus;

T -

n=d8 ' (6.20)

Substituting this value of n in equation (6.16), we obtain
. 2 -

L'= AUB, + VB + AW + (b+c . 22 y/s . (6.21)
1+ V8 2 .

Applying the same approximation used in deriving equation (6.17), the

near-optimal value of 8 is obtained from:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T . : . B -1

L' 3B | |
=y L2480 g | (6.22)
. 0 98 §"s _ .

Substituting.so from equation {6.2):

1 1 1 .2
: ‘(E'- IR R s) My ges _
v 5 ) +5==0
Ry 36 8¢s
That is,
3R, 2
(Roze)/( RO)” 10 (6.23)
38 B¢
Define
- (Rgze) .
D= {6.24)
3R -
._Jl)
308

For various values of &, one can easily compute the corresponding values

of D, knowing the values of G,.y] ang Yo by the following Bkocedure:

Step 1:  Choose é set of values for @, say‘(e],ez,..,em), suéh that
8:47 > &8s and 8, > 0, for all i.

S%ep 2:  For each value of 8, find fhe corresﬁondingiva1ue of n,
using equation {6.20).

Step 3:  For each pair of (ni, ei) va}ués, find Hi’ using the algorithm
described‘in section 5.3.4 for which Rliiz R]*'where R]* is

the set value of R] at the desired level of protection. ROi

is now computed for the given value of Rli'
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| Step 4:  Having set the values of Ry's (1.e.,}R01, ROZ”"ROm)
corresponding to 8's (i.e., 8. 82,...,Qm), compute the
» 5R.. R 3R
vector of derivatives (: 0} , ~—gg-, cee s —vgﬂﬁnumerica11y.
384 38, 8

Hence calculate the corresponding values of D's (i.e.,

. DT’ DZ""’bm)'

Based .on this algorithm'a computer program *CUSUM SEMI' 1is developed
and is listed in Appendix VI . The values of ﬁ,‘e; H, and §0 thhs(

- obtained are tabulated for later use. It is noted that such a table
corresponds to specific vazues of Ry 8, Y1s ahd Yo. A series of
such tables are thu§'prepared for .a wide rénge of non-normality
parameters Yy and Yos the shift pa}ameter §, and for specified values

of Ry. The apptication of these tables is now demonstrated through

a numerical example.

An Example

Consider the same example as in section 6:5, for which Mg = 25

& = t.2;Y, =0.5,v, =1.0 and § = 2.0. Table 6.3 is prepared for

this example, in which R] = 1.05 by a;sumption.' The computations are

performed in the following steps:
- yg®
8c

Step 1: Calculate D: = 125.

Step 2: Determine n:  From Table 6.3, find an initial value of 6 = 2.35
A L 2
corresponding to D = 125. Hence n = HZ3H)T 5.52; since n

must be integer, let n = 6, fof which 8 = 2.45 from equation (6.20).
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.

Table-6.3 Simp-'lified Scheme for Determination -
of Control -Parameters

¢

RI=1.05 6=2.00 ¥,=-50 -~ ¥p,=1.000
D 8 - H %) -
. - » B
16 .34 1.70 0.297 24.17
17.50 1.75 St 0.350 - : 27.60
19.23 |.80 * 0.402 ’ 31.79
21.32 1.85 0.454 N 37.05
23.94 |~ .1.90 0.505 43.70.
‘ : 27.19 1.95 0.555 . 52.21
. ' ' 31.08 2.00 0.604 63.25
' 35.90 2.05 0.653 - 77.96
42,46 2.10 " 0.702 ' 97.97
' 50.85 2.15 0.750 125.43
61.77 ©2.20 0.798 164.48
76.52 2.25 0.846 221.79
97.92 . 2.30 0.894 . 309.12
125.78 2.35 0.941 446.23
169.52 2.40 0.989 . 681.15
© 229.66 2.45 1.036 - 1103.08
335.45 2.50 ! 084 1979.23
490.91 . 2.55 1. 131 4022..55
929.65 : 2.60 1.179 18384.39
4761 .11 2.65 1.227 . 34180.96

-

Note: 'D in this Table is as defined by equation (6.23).

.-

N\
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. Step 3:  For 8 = 2,45, find H = 1.036, Ry = 1103.08. Hence h =
© L0%opRs 0.5 : |
Step 4: = Calculate s from equat1on (6.17): [(1103 % + 0.5 + 0.6}/.
| (5x0.55)11/2 =.q. 64 hours |
Step 5:  Calculate B, from equation (6.2): B (1.5625 - 0.0250 + 0. 0001)/
1103.08 = 0.00139 " q |
Step 6:  Calculdte B, from e'quat_ién (6.3): B,= (1.0 - 0.5 +0.00267) x

0.64 = 0.35371

1

_Step 7:  Calculate the loss-cost funttioh frdm.equation (6.1)

1.7686 + 0.03475 + 3.76 + 1.749]
L = 7 ¥0.017686 + 0.000739 ¥ 0.015 - 7.0708

Step 8:  Calculate K = 25 + + (2)(/T:2) =26.1

'It is sean that the loss-cost for the sehi~e€$homic control plan
. is only 0.62 percent above the ]oss-cogt value of 7.0268 given in Table
6.2
This simplified scheme can be easily hand]éd by the worksh;p
supervisor. Iy may also provide a good initial position for direct search

for an exact optimum b]an.

6.6 Application of Simplified Scheme to Two-Sided Chabts

In this section we ‘discuss how the above simplified scheme can
. be easily applied to a‘cusum chart with two;sided decision interval.’
Consider a cusum chart which has an upper standardized decision

interval H with central reference value K, and a lower standardized
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. dec1s1on interva] -H with a centra] reference value -K. "Then it is well,

v

ffknown that ARL's. for the cbart are -
, C1 .
RO 7 Ro .at AQL

-and .
Ry

R1 at R h

R0 and R.l are the correspond1ng ARL's for the one-sided cusum chart spec1f1ed:
‘by Hand & = (pO-K}/U//— ’It is clear that if Ry is rep1aced by -
R0 in equat1on (6. 5) (6.23), a s1mp]1fed scheme can be der1ved
for the two s1ded case, ana]ogous to the one- s1ded case deVe]oped in section ‘
- 6.5. The mod1f1ed procedure for applying Table 6.3to the present case,
. therefore, is | / ' .

2
Equate D to L .

4c

Obtain 8, H, n, and k by tﬁe prdcedure,of the examplé of section 6.5.

For the purpose of calculating s, use the formula:

¢

= [(%%-+ b + cn)/{§U(R] _‘%3}11/2..

Translate H and 6 into h and K by the same method used in sectioh ’

6.5.

-

ﬁ% 6.7 A Relative Comparison Among the EconomiciDesign of X-chart, x-
a chart with Warning Limits and Cusum Chart '

~ Because of its simplicity and ease of operation, - the-x-chart with
action limits has been in use for about fifty years. The X-chart with
waming 1imits has become  popular duriﬁg the.recent years since it

is generally believed that it is more efficient than the X-chart
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fof.&ete;ting tQ:_shifts in the prdcess mean. But,theré are certain
‘ hisadvaniages in tﬂe dpération.of the Z}chari with warning limits. .
The u;éi of warning limits, in a@dition to the control 1imits, fﬁb]ieélthat
a Certaiﬁ number, Rc, of successﬁve me;n;mqst fall betwéen thﬁ wa;i$hg _
and contrel limits to take action. If, for example
R. = 3,.then two @oints'in..ﬁhis area, fo]lawed by a third mean
betweén the centre Tne and the waming limit, wou1d~caﬁse no action..

. Even anbther-point.between_the‘same warning limit and contrb] 1imft
. . : would not constitute convincing evi@encéwof a‘;hift in the process
mean.. In(other words, therekis no cumulative effect of the mean
points that deviate from the expegted‘valuéwdnless R. number of
’points (Rc = 3 for tﬁfs.examp]e) succeésively apbear in between
the waming and the cantrol Timits. Now it is certainly possible <
- | that a shift could occur in ihe processAmean and remain uqdetected
for a substantial period. .
In coﬁfrast, the cusum chart is based on all sample points rather
than the 1last few samples. The chart deals with retrospective
- examination of- the past samples .to detect the-occurrence of significant
changes in the process mean.
The ‘purpose of this Section_is to make a comprehehsive‘cbmparison of
the performancesof the X-chart, fﬁe x-chart wit@ warniﬁg 1imits and the cusum
chart at various degrees ofshift in the process leve¥. In the past, using .
the average run‘length criterion under the normality assumption, many authors
[Goldsmith and Whitfield, 1961; Roberts, 1966; Goel, 19687 have studied the

the performance characteristics of X- and cusum charts.’ They compared

their relative éfficiencfes'in-detecting lack of control. In this section,

3 -

-+
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under non-normality assumptibn the’ minimum loss cost

crtter1on is employed for each chart as a méasure of ts performance
Q - The cost factors assocxated with each chart are assumed to be
o equa] All the three charts are considered to be one-sided.
]/’ Conswder a process operating under Policy II. The shift
parameter &, mean po, var1ance 02, and non—norma11ty parameters \
. trlgrz) of the process along with the re]evant cost factors are
known. The optimum des1gn.parameters and less~cost_funct1on of .the X-
| ehart, ilchert witﬁ warning T%mits and cqeﬁm chart are obtained by
,'fge.metﬁeds given.in‘seéfions 4.3, 5.3 and 6.3, respectively. The
1pss;cos{s for these ch ts_heGe beenrcompared in Table'6.4 for
various shifts in the pi:EZée mean. '
| In addition to .the opt1mum design parameters, and loss-cost
for each of the cofitrol charts at various 1evels of sh1f§ parameter
3§, the corresponding average run lengths R0 and R1 are also shown.

The rate of occurrence of the assignable cause A, mean Mg variance

o

bz, the non—norma]ity pafameteré YA?YZ and the cost factors, associated

with Table 6.4 are

= 0.05, uy = 0.0, # < 1.0, Y

i

0.5, Yo = 0.5, VO = 150.0, V

k. =20, kS =10, T = 0.2, Ty f 0.1, b=0.5and c f 0.1.

1790

r
It can be seen from Table 6.4 and Fig. 6.6 that for the shifts
in_@he process mean between -0.50 and 1.5¢ the loss-cost for the cusum

chart is slightly less than that of .the x-chart with waming limits.

However,.the loss-cost due to the X-chart with warning 1imits is lower
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Table 6.4 Comparison of Three Minimum-Cost Control Procedures '
(3=0.05, v4=0.5, Y,=1.0, ¥;=150; V,=50, k=20, k=10, . Lt
1,50.2, 1.=0.1, b=3.5, c-0.1)' :
x-Charts x-Charts With = Cusum Charts
s ' : Warming Limits . .
n s Ro R] L n s R'o,. Ry L n s & R] L.
0.50 | 30 1.26 20 1.17 11,1462 | 3@ 1.24 20 1.17 11,1443 29 1.21 21 1.19 11,1447
0.75 19 1.01 43 1.12 9.4623 19 1.0 '44.1.12 9,4593 19 1,01 46 1.13 9.4587 |
.00 1 13 0.88 70 1.10 B.5272 13 0.88 73 1.10 8.5250 13 0.88 72 1.10 B8.5244
1.25 Tﬂr 0.80 1M 1,07 7.9397 ‘{10 0.80 114 1.07 7.9391 10 6.8 115 -1.08 7‘9387_
1.50 | 8 0.76 161 1.06 7.5742- | 8 0.74 165 1.06 7.5426 | 8 0.78 174 1.06 7.5227
1.75 % 0.69 175 1.06 7.25%0 6 0.68 18 1.06 7.2692 | 6 0.68 190 1.06 7.2591
2.00 5 0.66 222 1.05 7,0449 5 '0.65-230 1.05 7.0458 5 0.66 222 1.05 7.0458
2.25 5 0.66 434 1.83 6.888‘.§ 4 0.62~ 238 105 6.8915 ) 5 0,65 441 1,03 6.8908
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thap that of the iichart with action limits. But when the shift in the
process meaﬁ is aboye 1.5¢, the loss-cost for the X-chart is sTightly less
‘ than that of the i—chart'wifh warming 1imit and cusum charts. .Iﬁ is é]so'

observed from Table 6. 4 that, for each of these arts, the refative1y E

‘ Targe, samp]e size and large sampling interval are more: econom1ca1 for a»gﬁa1]
R ~ shift in the process mean. However, for thg‘sh1f€§ greater thanl/

1. 50, smal] samp1e s1ze and frequent- samp11ng are desirable. o

~

;ﬁ A profe351ona1 quality control engineer is always concerned with

-

the 0pt1ma1 se]ection of producer s and consumer's risks which are, respect1ve1y,

--ana]ogous to the probab111t1es of Type I~and Type II errors for an

Q 1

x—chart. The des1rab111ty of small or optmmal values of the Type I
and Type 11 errors for an x-chart can be trans]ated into the des1rab111ty
-of g 1arge average run length RO’ when the proces§/1s in control and
a short average rury ]ength R1, when the process is out of control,
respectively, for an x-chart with warning limits and for a cusum

1 4

chart. Extensive numerical studies based on Table 6.4 reveal that there are

o appreciable differences in the average run length Ry among these

three charts. _ .

S
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CHAPTER 7 . -

MODEL BEHAVIOUR UNDER’HUMAN ERROR AND

<&

- .

~ EXTREME SAMPLE DISTRIBUTIONS
This thapter addresses the effects of human errors on the
mode]s developed for the economic ‘design of control charts in the
present study. It also includes the discussions on a simulation of

the model behaviour under extreme. cases of sample distributAons.

t

7.1 The Effects of Human Errors
It has been mentioned earlier in this dfssertatibh that the

industrjal products are thé‘outputs of man-machine systems. In

. developing the mathematicai models.for the economic dgsign‘of control-
charts in chapters‘4—6, the presence of inspection or mea§urement errors
Was. not considered. The assumption was that these errors did not occur
or, if‘they did,their‘frequency was 1dw encugh that they had.no
practical importance in the models., In practice, there may be some
situagions where the inspéction tésks or measurements ?re not error
‘free. In such situations, thé presence of inspection or measurement
errors may seriously affect the level of protection afforded by a .
statistical quality control procedure [Dorris and Foote, 1979]: For
these reasons, errors should not be ignored. Such ervors not
only severely distort quality objectives but . also. increase

the Toss-costs. However, once it is known that inspection error

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137

P

or measurement error 15 present the qua11ty gontrol engIneer may
use rev1sed training procedures or introduce new equ1pment to reduce
 the inaccuracies in the measurements. But these act1ons alone will
-not erase them completely [Jacobson, 1952]. Therefore, in order to make
thé quality control procedure more accuéately representative, one
should incorporate these errors in designing the underlying . control
plan. . o ) :

~f Since the impaét of human factors are ever-increasing in the
. prééent industrial environment, it would be fair to present the
following discussion on the work done in this area which has not been
included in the literature survey in chapter 2. |

Effects of human errors on various aspects of attributés acceptange

.sampling‘p]ans have been considered in detéil By several authors
[Ayoub, et al., 1970 a,b; Biegel, 1974, Case, et al., 1975; Collins,
et'a]!,‘1973,1978; Collins and Case, 1976; Dorris and Foote, 1978,1979;
Drury, 1978; etc.]. Two types 6f inspection errors are possibie in
attribute sampling plans. These are: an item which is good may be
classified as a defective (Type I error) or an item which is defective
may- be élassified as good (Type II error). The performance measures.;
such as probability of acceptance, average outgoing quality (A0Q), lot
tolerénce percent defective {LTPD), total cost per lots and others have

been extensively treated in the above mentioned works.

The effects of measurement errors on variables acceptance

sampling - plans have also. been widely studied. Among them - were

N
Pel
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the work of ‘0101pey- and Pavid [1963]; and Mgi,.ét al.,

[1975] are noteworthy. There are twoAtypes.ﬁf errof‘invo]ved in

variable measurement. These are bias and imprécision.

Bias: Bia? is considered as the'differencé between the true \
measurement(of a product and ﬁhe long run average of repeated measure;
ments made on the product.. Mathéﬁatical]y, bias may be~expressed

| as: Mg = E(ﬁo) - Mg where qU represents an observed
measurement and;uo isvthe true measurement of a specified unit.

Imprecision: When the measuring procedure is sufficiently sensitive,

repeated readings on the same unit of product will show a certain

amount of scatter, whether or not there is a bias or ca]ibratfgn error.
This second type of er;ﬁr can be assumed to be normally distribyted and to be,
at least approximately,independent of‘the true value of the product.
The standard deviation of these scattered points is known'as the imprecision
error. The usual, well-~known remedies of these errorg are [Juran,
19511: ‘

1. use more precise measuring equipment;

2. institute an extensive operator—measuriné-training program;

3. use average rather than single measurements.

Div%ney and David []963j preseﬁted the rélatiodships that exfst
between measurement error and variable acceptance, and demonstrated a
corrective procedure which effectively minimized unnecessary rejeétion in“
the variable acceptance plan. Bias, imprecision, and tpeir combined

effects on the operating-characteristic curve are examined in detail by

Mei, ‘et al., [1975]). They presented a method which is explicitly designed

-
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\

N for‘compensat{hg measurement error and-provides the desiréd_operating
curve. .-" -
Only two published works on the contr&l charts under errors are
available in the current quality control literature. Both of these
'papers assume that the measured variables are normally
distributed. One of. these, the P control chart under inspection .J‘%;’
error, was presented by Cage [i980] and the other one by ’ . ._5
Abraham []977] covering X, R and cu§um charts under the . .. s
éésUmptioh‘ of imperfecf inspection. Under the assumption of
the normality of the measured variables X and measurement
' error e, Abraham computed the ARL at “the " acceptable quality
level for both x-charts and cusum charts. Theig results
were 'theq comparéd with the corresponding values of ARL obtained
when there was no méaSurement error. The effects of measurement error
on the economic design of cbntrof charts under the assumption of non-novmality
of measured variables have not been stﬁdied‘yet.
The fo]iowing a§sumptions are made to incorporate measurement errors
- in tﬁé economic model of the control charts for controlling non-normal
process means.
1.~ The measured variables are non-normally distributed with mean
ng» variance 02, measure of skewﬂess 81, and measure of
kurtosis 8,. | V
2. Each measurement involves some deviation from the true value.
This deviation, éharacterized by bias and impfecision, is the

random variable normally distributed with mean 0 and variance
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. 2,
G » 1.8, N(O,qe ).

. 3. .The lot distribufion'and_the measurement error distribution |

are independent.

RN . L4
~

AN

«
B “
T

‘Let-the observed measured variable be denoted by:

Xy = X * X, o k o T | (7.1)
where X is the true value and,xe'is'the“héanrémént grror. Then the
probability distribution of the observed value is the convolution
of the Tot distribution and the measurement error distribution.
That is, .

= * .
flxg) = f{x) * f,(x,) ' (7.2)

where * denotes convolution, f](x) is the probability distribution of
true value and fé(xe) is the probability distribution of measurement '
error. The mean,standard deviation, the measure of skewness, and the

4 measure of kurtosis of the observed-x, are as follows:

A
H

Xg = X ¥ Xy

E(XO) ="'E‘(x4+ xe) =0 ; (7.3)
V(xg) = V(X) + V(x,) | |

I - - (7.4) -
P3(X0) = U3(xy : ‘ (7-5)
u‘i(xo) = u4(x) + 6.02 0e2 + 30e4 (7.6)
B, (xp) = nf(x)/ (& ¥ 0.0)
) _ n4(X0) - )
B2{xg) (1o 0ez“)z'

where B denotes the yth corrected moments.

[N
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. Therefore the non-normality parameters-yj(xo) and Yz(ko) of the

observed values are:

oy = 1 . ' “
el T Ue2/0?_)1"/& ' | (7.7)

oy e ) vo(x) ) _
YalXal = - .0 : .
2¥0! Ty cee/cz)r , o

'Substituting Y](xo) and yz(xo) in equations (4.10 & 4.22) for-y](x) and
, Yz(x) respectively and, thus compensating for measurement errors, one.could
easily proceed with the analysis of economic design of X-charts for

controlling non-riormal process means.

7.2 Application of the Model to the Simulated Distributions

In this sectién, the application of one of the models S 1"?-

develaped ' in  chapters 4-6 is illustrated through two simulated

non—norma1 dis;ributions. These distributions are members of the

following non-normal family of distributions [Box and Tiao, 1962]:

f(X; U, 0, R) = we 2 [ y !

where n is a "measure of non-normality”, and
R 0+ L (el
w =I‘{]+2—(]+n)}2 2 o

(‘m <xXx<®, f<og<w, ~@<y<wo, =1<p<l).

\
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In partibular, when n = 0, the parent dfstribution becomés\normaf;

whennﬁ =1, the\parent-diStribution becomgb double exponential; and
_ when n 3 -1, the parent distribution tends to uniform

This non-norma1 family of d1str1but1ons however, haé

the following 11m1tat1ons In using n as above, the paren{

di§tribution considers only non-zero fourth moments and assuhés

a symmetric distribution. With the kno§iedge of the non-normality

parameters of the 51mulated distribution, the average run length

RI’ is obta1ned at d1fferent levels of samp]e size n.  If the resu]t
- of R] for g1ven sample size n is in  good agreement with the

corresponding result obtained from the ana1§tica1 solution, one can

justify the validity of the underlying model proposed in this sfudy.

These are accomplished as follows:

v

I.  Consider a twd-parameter double exponential distribut&on

- with probabilfty density function

- ) . x
Flxs we o) =4 @XM La oy e

e
Q

The cumulative distribution is given by

F(x) = L e{xwm)/o

n
>
[A
=

o~(x-u)/a -

Flx) =1 - 5

The double exponential random variate x can easily be generated by
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- means of the following Stgpsiv , S L
»w
; (i) ~ generate uniformly random numbers u in the.intervai

[o,1]

(i1)  if u is'ﬁeséuthan_or_équal to 0.5, set u = F(x) = %-e(x'“)/o g

so that x =.u + ¢ log (2u) ,

(ii1) ~if u is greater than 0.5, set u =1 - %-e"(x'“)/U .

B

so that x = » - o Tog {2(1-u)}.

t

. Having generated the random variates Xes (1= 7,...,N) one can find
tﬁe-valdes of the non-normatity paramﬁ%ers y1.and Yo- Substftuting
these Qaiues of Yy and~y2 in equation (§i22) for a given value of
control limit coefficient k, and shift parareter 5, the' values of
h at different levels of P could be determined; hence when the
process is out of control, the corresponding average run lengths
of Ry = %— can be found. - For given values of n, k and &, thes
values of P considering {he actual distribution [i.e.;ndoubie

exponential in this case] of the process also can be obtained

from:
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UO-_ko/-/— T ' C
\ p="y f(x,n],O/f)dX’ff' f(x,ﬂw/ﬂdx
= _ *kolf_ '
. -k-8vn’ : .
= f " f(z 0 ,1) dz + f f(z; 0,1) dz (7.9)
—e ) k—s/n‘ .

Numer1ca1 I1lustration

Consider a double exponent1a1 population with mean of 0 and unit

(R

standard deviation. A samp]e distribution of this populat1on is genera;ed,‘
and it is tabulated in Table 7.1, and dépicted in Figure 7.].' Therefore;
the values of the noﬁ-normality parameters Yy =.0 05 and Yo = 2. 19 are
obfained Subst1tut1ng the values of-y1 andy2 in equation (4. 22)
the values of P and the correspondiny R are obtained for d1fferent
sample sizes, as shown in Table 7.2. It is assumed that the values of
the control Timit coefficient k and the shift parameter 6 are Tixed.
When k = 3', 6‘= 2andn = 5,' from fable 7.2, the average rui length R.l

= 1.07. This value of R, is considered to be the model value.

The value of R] can also be obtained analytically using equation

(7.9).

p=te ¥y %—e'lzl dz , s

-1.47

~nN

0.003 + 1 - ;—e“"”

0.888

(]

Hence, the analytical result of R] = 1.12.
It is interesting to note that the value of P can also be

calculated from cotum 5 of Table 7.1; it is equal to (1 - 0.109) = 0.881,
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Table 7.1 Sample Distribution of a Simulated Double

Exponential Population with -Mean O and
-~ Undt Standard Deviation.

, 3

"X -FREQUENCY CUM FREQ PERCENT CUM PERCENT
-9.9 1 1 0.100 . 0.100
-3 2 3 « 200 0.300
-4.2 1 4 0.100 0.400
-4 1 5 0,100 0,500
. -3.9 1 6 0.100 0.4600
-3.7 2 8 . + 200 0.800
-3.5 2 10 0.200 " 1,000
~=3.4 4 14 0.400 1.400
~3.3 é 20 - 0.600 2,000
~3,9 3 26 ) 0.300 2.600
-2.8 4 30 0.400 3.000
-2,7 2 32 «200 3.200
—2.6 4 5 36 0.400 3.600
-2.5 3 41 - 0.500 4,100
-2.,4 é 47 0.600 4,700
=23 4 51 T 0.400 . 5.100
—-2.2 7 o8 ,0.700 5.800
‘—.'.01 S 63 00500 ) & 60300
-2 6 69 0,400 Y 6,900
-1.9 3 74 0.300 7.400
~1.5 12 109 1.200 10.900
-1.4 11 120 1.100 12.000
-1,3 11 . 131, 1.100 13.100
~-1.2 12 143 1.200 14,300
-1 13 ¢ 167 1.300 16,700
-0.9 25 : 192 2.3500 19.200
-0.8 30 222 3.000 22,200
0.7 28 250 2.800 25.000
-0.6 26 274 - 24600 . 27.600
~0.9 30 304 3.000 30.400
-0.4 . 30 336 3.000 33.600
-0.3 35 371 . 3.500 37.100
-0.2 38 . 409 3.800 40,900
0.1 38 . 44‘7\‘»"7‘?:‘ - 3.800 44,700

]

Ly

- ’ ~?
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Cont. Table 7.1 >
0 48 495 4,800 49,500
0.1 51 544 5.100 - 54,600+
: 0.2 . 39 585 . 3.900 . 58,500
0.3 46 631 4,600 63,100
0.4 32 663 3.200 66,300
0.5 35 698 3.500 69 .800 )
0.6 21 719 , 2,100 - 71.900
0.7 22 741 2.200 74.100
! 0.8 24 765 2.400 76.500
0.9 17 782 1.700 78,200
1 14 796 1.400 79,600
. 1.1 28" . 824 © 2,800 82.400
1.2 iS 839 . 1.500 83.900
1.3 15 854 : 1,500 - B5.400
- 1.4 19 873 1.900 ... 87,300 -
1.5 10 . - 883 1,000 . 88,300
1.6 13 896 1.300 89,600 |
1.7 ° 8 ‘ 904 0.800 90,4007 |
1.8 11 215 1,100 91.500 7|
2 7. 928 0.700 92,800 .
2.1 4 932 " 0,400 93.200 K
2.2 '3 938 . 0,600 ' 93.800
- 2.3 4 P44 . T 0:600 94,400
- 2.4 3 947 " 0.300 94,700
2,5 "8 955 0.800 95,500
. 2.6 11 P66 1.100 96,600
2.7 2 948 0.200 94.800
2. 1 2469 0.100 94,900
2.9 4 973 0.400 97.300
. 3 4 977 0.400 - 97,700
3.1 .- 3 980 0.300 98,000 .
3.2 2 982 0.200 98.200
3,3 4 9864 04400 28,600
3.5 2 988 0.200 98.800
3.4 1 1989 0.100 98.900
3.7 1 . 990 0:100 | 99.000
3.9 1 T 991 0.100 99,100 .
4,1 1 T 992 0.100 99,208
4,3 1 993 0.100 - 99.300 .
S - 1 994 0.100 99.400
5.1 2 994 0.200 99,4600
5.2 1 997 ° 0.100 ‘99,700
S.4 1 998 0.100 A 99.800
b4 2 1000 <200 100.000 °
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Table. 7.2 ~Avérage Run Length RI When a Process. is ‘

.o ‘ * Double Exponentially Distributed
Y, =005 y,=2.19 §=2 k=3
Sample Size Power of the Average~Run°
) Test Length .
.n P R
1
) 1 . 0.1 g.01
, L 201 0.42 2.39 .
3 0.69 1.45
4 0.85 1.18
ws 5 0.93 1.07
6 0.97 1.03
v 7 0.98 1.02
8 0.99 1.01
N
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S

which f*esu]ts in. R];_= J.14. This ‘indicates that the analytical result
. of the average run :length. Ry is ver;y close to both the simulated result

and the result obtained from equation {4.22) used in the underlying.

model. °* N ' -

II. Consider a réc"canguhr.pc'pmatfon with density function

'f(x)E—}E _ - ‘R§X_<_'B'

1]
a w

otherwise -

-

The cumu1ative_distribljfion is given by:

% %
F(X) _ dx = x-A . % "

Assuming A.= <100 and B =100 and fongiﬁng a similar procedure as appﬁ_‘ed.
to the ‘cﬁo-pafameter{ double expo_nent‘ia] distribution, the unifoifm» .
random variates are generated and the sample distribution of these .generated_
random variates are shown in Table 7.3, and de;?::ted in Fig. 7.2.-The va1ue.s of
| the non-normality parameter arje_y} = -0.5 arzd Yo = -1.27. Substituting
these in equation {4.22), the average run length of the procesé under the rect-
angular dist’ribut.ion f‘or different sample sizes is.evaluated and
shown in Table 7.4. It 'ivs assumed that k = 3, § = 2.
From Table 7.4, fo;r n-= 5, the average run Tength R1 = 1.08
- the corresponding value obtained from the analytical solution is 1.03.
Therefore, since the values of R, for various sample si;zes of both-of these
unéeﬂying ' simu]atbfi process distributions dolh‘ not differ significantly

from the corr‘espdnding analytical valugj,vaiidationvof the models

developed in this study is quite just¥fiable.
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Table 7.3 Sample D1str1but10n of a S1mu1ated s o
: Rectangu]ar Population iwith Mean 0. St

\ i ,and ‘Unit Standard Deviation. - ™
. X "FREQUENCY  ::CUM FREQ. ~.PERCENT .CUM PERCENT
=1.7 23 .23 2,300 2,300
~1.6 .28 51 2,800 . 5.100-
-1.5 24.. ' 75 2,400 - 7500
~1.4 24 99 2,400 2,900
~1.3 30 129 - 3,000 12,900
.-1,2 21 - 150 2.100 15,000
~1,1 20 170 2,000 ‘ 17.000
-1 37 207 3.700. 20,700
C=0.9 37 - ‘244 - 3.700 24,400
-0.8 28 272 2,800 27.200
-0.7 30 T 302 3.000 30.200
0.6 26 328 2.400 32,800
0.5 © 31 359 .3.100 35,900
. | ,0.4 22 381 2,200 38.100
1 -0.3 27 . 408 2,700 40,800
-0.2 19 " 427 . 1.900 42,700
: -0.1 32 i 459 . 3.200 45.900
] o 27. w486 2,700 48,400
1. 0w 30 7 516 3.000 51,400
0.2 S 31 . 547 3,100 54,700
0.3 32 : 579 3:200 57.900
0.4 29 4608 2,900 ¢ 60.800 |
0.5 30 638 e 3,000 63.800
0.6 - 33 671- 3,300 67,100
0.7 32 703 - 3,200 70, 300
' - 0.8 19 722 1.900 72,20
0.9 32 754 3.200 75. 400
1 24 , 778 2,400 77.800
1.1 272 805 2,700 80.500
1.2 41 846 4.100 84.600
1.3 32 878 - 3,200 87.800
1.4 35 913 ° 3,500 91,300
1.5 25 . 938 - 2.500 . 93,800
1.6 39 977 3.900 . 97,700
\ 1.7 23 T 1000 24300 100.000

/\

AN
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Table 7.4 Average Run Lehgth RT When a Process is’

Rectangularly Distributed

o vy = -0.05 Yo = -1.21 =2 k =3
Sampie Size = Power of the Average Run
Test Length
. n p R
1
N 1 0.18 5.56
2 0.43 2.33
3 0.67 1.49
- 4 0.83 1.20
5 0.92 1.08
6 0.97 1.03
7 0.98 1.02
8 0.99 1.01
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fdrtherﬁore, the optimum des{gns under these distributions are
obtainedkfor a given set of cost factors, fatefof”occurrence-df thé’
assignable cause k; and sﬁ;ft parameter'ﬁ. fﬁe_corresponding design -
under the normality assumpﬁion j§,a1so obtainedAfor the purpose of
Acomparison. These are shown in Table 7.5. The results indicate
that under -these two extréme sample distributions, only optima]v
‘va]ues of the averaée run length R0 deviate significantly from the w
, &onreéponding va1de obtained under the normality assumption. .Although
Ehe difference in per—hbur loss-cost function under normal and non-

, normal distributions is not significant, over a long period of operation

- the difference in total Toss-cast may become quite considerable.
o ¥ , PO
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Compar1son of the Economic Design of x-chart for '
Normal and” Non-Normal Processes.

(x=0.05, &=2, VO =150, V1 =50, T}—Q.2,15=0.ﬂ,'Kr=20,'
Ks=10, b=0.5, ¢=0.1) »

‘Table 7.5

‘uolssiwiad noyum pagiyosd uononpoidal Jayung 1aumo ybuAdoo ayj Jo uoissiwiad yum paonpoiday

-

procéss | ‘Y1 ¥y n s k P Ry @ Ry L
Double- L S o . 1
exponential 0.05 2.19 | .5 0:65' ;] 2.87 .0.947 1.06 0.9039 251 7.0415 .
Normal 0.0 0.0 5 0.65 2.77 0.955 | - 1.05 0.0028 387 ©6.9719
Rectangular "]-0.05 -i;21$ 5 0.63 2.73 0.959 1.04 0.0018 588 6.9245

bsL -



CHAPTER 8 : . ' .
CONCLUSIONS AND RECOMMENDATIONS

The contributions of the present research may be summarized as .

. follows. . ‘ ) A

Do _
The research presents economic models for the design of X-charts,

a

of X-charts with wafning limits, and of cusum charts to éontro1-non— -
normal process ﬁeaﬁs. _Approﬁriate search optimization algorithms are
deQiSed and ‘are éﬁpioyed on the loss-cost functfon, der%ved.for the
relevant control chart, to obtain the optimal va]ue§ of the design}
parameters. In addition, a simplified scheme; applicable at the #
workshop level, is developed for éach of ﬁhe cﬁntro] gharts. A
sensitivity analysis is carried out to demonstrate the effect on the
optfmal solution of varying the.modél parameters and cos£ fagfors.
Subsequently, the effect of non-normality on the design_bficontrof

charts is studied. Relative performances of the three charts are
éompared. Furthermoré; model behaviour under human efror is investigated.
Finally, va]idatjoﬁ'of the maodel is justified uging simulated non-normal

distributions.

781 CONCLUSIONS

Findings of this research bring forth a number of conclusions,

which are described beiow. \

155
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1. . .'ECOIIOHI‘I'C Design O‘F x-Charts. ~ A process with a single . .

- eass1gnab1e cause of var1§iﬁon is cons1dered The loss-cost fuhcf}ég-.
for the process is developed under two operat1ng policies. PoTicinf‘
' assumes:that the process is not 311owed to continue in operation‘duéfng
the; search for an éssignab]e cause. Policy II assumes that the process
s allowed to géntinue in 6peration‘dUring the search. An optimization .
a]gorithm, baseé‘bn Hooke'and Jeeve's patterh search technique, is
developed and emp]oyed to minimize the loss-cost function under'
both operat1ng po]1c1es and thus the corresponding optimal values of
the design’ parameters are obtained. The search techn1que assumes that
the objective function is convex. Since it is very difficult, if not
impossib]e,‘to verify a;éIyti§a1ly_that the objective function is
‘COnvex, sbme‘ana1ysis of its Behaviour'is conducted through numerical
studies and it is found that .the surfage of the objective function is
approximately convex in the region around the optima] values. A]though
the above search scheme results in the most economic de51gn, it”
requires a good knogledg; of mathematics, statistics and computer
programﬁing. fheréfore there is clearly avneed for a simple and concise
R method that would be applicable at the workshop level. The simplified
scheme developed here would serve this purposé. The tables provided
for the simplified scheme can be used to determine the design parameters
which minimize loss-cost for a specified level of consumer's risk (typical
values are 0.1 or 0.05). Specifying the cqnsumer‘s risk poi?t to be

0.1 or 0.05, enables the manufacturer to detect the, assignable cause

about 1.1 or 1.05 samples, on the average, after its occurrence.

S
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ﬁumericaT stﬁd{es show that the rg5u1tin§ simp]i%ied scﬁedé is close

to the miﬁimﬁm‘contno1 plan. In addition to the optimal and simplified
schemes, an approximate solution procedure is also presenied. However,
this solution procedure considers the value of the control limit
éoéfficient as.a fixed factor. Moreover, it does not take into

account the average time ﬁequired to discover, and the cost of searching

fof the assignable cadée, khen it exists. Neverthel 5, it ou{d,bé
used as a ggpd initial poinf of the suggested bptimum search;éﬁg;rithm

vand.it will reduce computational time by a considerab}¢ amount. '

A sensifivity analysis of the modei reveals that the model is

highly sensitive to the shift parameter and the rate of occurrence
of the assignable cause, moderately sensitive to.fixed-and variable -
sampiing costs, and relatively insensitive to repair and search costs.
Analysis of the results showed that smaller samples shoufd be taken
more frequently to det;ct large - shifts 1in the process means and
large samples should be taken less frequently for smaller shifts. The
solutions to the'multipie assignable cause model are found very close
to those of the 'matched' single assignable cause model. This widens
the applicability of thg proposed simplifed scheme.

2. Economic Design of X-Charts with Warning Limits. An optimum

X-chart design with waming limits under Policy II is obtained for some
sets of data. It is found that the most economic céoice of cmitical
run length Rc is equal to 2. It is also noticed that. the effect of
skewness is more marked than that of kurtosis. It is observed from

the analysis that the ratio of warning 1imit coefficient K, to action -
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Timit coefficieﬁ% ka'Ties‘betweeﬁ 0.80 and 0.90. Acc@rdingly, thé‘

average value of this ratio, i.e., 0.85, iS”considéred and a i

simplffied scheme is dévéioped underlthe restriction that the

assignable cause.is detected, on the average, 1.1 or 1.05.samp1esfil
| aftc;r its occurrence. | | |

3. Economic Design of Cusum Charts. The design of cusum charts

involves much more mathematfcal comp]exiﬂ?es than the X-chart with

and Qithout warning Ifmits. Optimal values of the controi chart
parameters are obtained err a wide range_of non-normality and shift
parameters. The optimization algorithm enables one to locate the minimum
where the cost surface is eifhe} strictl& convex or re]atiﬁely_flat :
around. the optimum. .The foI]owinQ observations regarding propertieg'

of the optimal solution may'be made. For pairs of values of*;]

{measure of skewness).and'y2 {measure of kurtosis), the loss-cost
function L, samp}g size n and sampling interval s decrease with an
increase of §.- By iﬁcreasing 8§, the average run length R0 increa;?s,
which sgbéequent1y‘decreases the number of false alarms. ﬁue to )
decreases in s, the expected sampling cost increases, but this increased
cost trades off with the reduced search cost. For given values of §
and-yz, the optimum values of sample size, sampling interval and Toss-
cost inéreases with increasing Y1 But average run length, RO’ decreases
with increasing Y- The variations in loss-cost function and in design
parameters due to variation ip Y, are not remarkab]e.v The simplified .
stheme develaoped here can be easily haﬁd]ed by a quality control practitioner.

It may' provide a good initial point for the proposed search algorfthm
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n
-

andumay reduce cbmputational comp]ekities by a considerable amount.
A comparison of fﬁe pérfoﬁnénces of the three charts indica£es that,

- for a shift in fﬁe proéess mean bethen .50 and 1.50, the performance
of the cusum chart is better than that of the §lchart'w{£h warning
1imits: However, the performance of the latter is better than thatx
of the X-chart with only action Timits. With the shift in the
process mean above 1.5u, the herﬁgrmanceiof the ilChart %s $Tigntly
better than that of the ilcharﬁ with warning 1imits«and of the cusum
cﬁar;.' .

+
v

Human Factors. Industrial products are the outputs of man-

] maching, systems.. In praétice, there'may be some situ;}ions where’
inspectijon tasks OK measurements are not error-free. In such ‘
situations, these errors may seriod§1y affect thé level of pratection
afforded by the;guality control procedure. In ordér to incorparaté
these errors in the models, developed in this research, the required
expressions for mean, variance, measure of skewness and measure of
kurtosis are derived. Under measurement errors, it is noticed that' .
the non-normality parameters decrease;with increasing oez/c2 (ratio
of measurement™€¥for variance to process variance).

-

5. Application of the Models. Validation of the model is

justified by the use of two non-normal simulated distributions {viz. -
. double exponential and rectangular distributions) encountered in |

industry. The optimum designs under these two diétributions are

obtained for a giveﬁ set of cost factors, rate‘of~occurrence of the

assignable cause A, and shift parameter §. The results indicate that
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uﬁder these two extreme sahp]e distributions only optimal values

‘.of the average rqn'igngth ROAdeviate sjﬁﬁ{ficant1y from the
corresponding value obtained under the normality aSEUmption. Although,
the differencés-ig per-hour Toss-cost function under normal and |
non-normal distributions is not significéﬁt,‘over a long period of
opératioﬁ fhe differeﬁce in total 1oss-cosf may become quite

[ <

considerable.

8.2 RECOMMENDATIONS

‘As a result of this 1nvest1gat10n several additional research
top1cs may be proposed. e |
1. The assumption that the ac;urrence time of an assignéble cause
follows an exponentiaf diétribution tould 5e re]axed If the
probability of a process shift w1th1n a small 1nterva1 of time is
directly propertional to the 1ength of the interval, then this
assumption is4appropriate. However, if the assignable cause occurs
as a resu]t of the cumulative effects of heat v1brat1on ,shack and
other s1m1]ar phenomena, or as a result of improper set-up or excessive
stress during the pracess start up, then use of the exponential
distribution in the model may not be qbpropriate [Montgomery, 19807,
and serious economic consequences mgy‘fesu]t.from‘this model assumption
[Baker, 1971]. Investigation of this aspect is suggested.
2.  The models developed in thé present investigation require . that a
shift in process mean be specified. Tt could be of considerable interest

. to investigate the sénsitivjty of the model by assuming § as a random
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varifable NTth a known probab1lity deﬁs1ty functxon A

3./ It s assumed in th1s study that when the process TS dwsturbed
by an ass1gnab1e cause, only the mean chanées while  the variance and
non-nonna]1ty parameters rema1n unchanged It m1ght be 1nteresting
to 1nvest1gate how the x-chart and c-chart perform together ds a
composite un1t and to determ1ne how optxma]_they are under gyfférent
conditions of changed mean and standard dev1a£10n v :

4, A 1nvest1gat1on can be carried out of the Jo1nt econom1c des1gn
of the X-chart and R-chart for non ~normal processes“ Th]s could be
done. using the present study and the works of San1ga [1977] and Slngh
[1970]

5. The s1mu1taneous control of two or more re]ated measurab]e
var1ab1es is of cons1derab]e importance in the field of statistical
quality control when a function of the‘product depends .on the joint
effect’ of these variabjes, rather than on the_separaté éffe;ts of esch.

.Under the normal}ty assqmpéion the.problem has béen‘considered by
Jackson7[]gsg],’§n& Montgomery and Ka]attA[1§72]. Analogous to v,
these, an gttemp{;éou]d be made to extend the presént work into a

o - o)
multicharacteristic control chart.

AN RN
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AFFENDIX I.%t~ " .

e , - . s

FROGRAM XEAR ) -

-FROGRAM DESCRIPTION
***********************X*************************************
i This prodram is used for findindg the ortimal desidgn

iparameters of an x=chart by minimizing the loss-cost
ifunction L. The erodgram con51sts of.two stades of search .
4In the first stagéxit Prov1des an srrproximate solutiori of
‘the design rarameters. This aPPro\xmate solution is used
185 an initial rpoint for the second stBSe search, These are
.aceompllshed as follows.,
1 - First stade! s
i An aepproximate solutlon of the samrle size is obtained
isolvindg ecusation (4.29) for a srpecified value of 3 control
ilimit coefficient. Function F1 sresents the eauation
" i74.29) and its root is evaluted through IMSL(International.
iMathematical & Statssticsl Librariesl routine ZREAL1L. N
) .. iAn aprroximate value of samrling interval conditioned uron
. ithe sample size and control limit coefficient 15 evaluted
tusing ecuation (4,28)..

13
]
]
L}
!
)
’
I
3
1
3
3
1
H
1
L]
t
]
3
1]
1
T
1
1
[
{
!
i Second stade? !
~ i- In the second stade ythe Pr‘bsxram starts search for ortimal|
. ldesign rarameters by Hook and Jeeve’s rattern search. :
'DUPlnS the searchr the functional value is evalusted using !

H

t

1

1

L]

t

1]

]

H

i

]

1

1

]

r

I

:

H

'

)

!

t

]

1

]

1

,subroutxne COST. : . - R '
] o .
A : NDMENCLATURE : . !
VU -
! Médel Parametrs ‘Nescrirtions e
! ALPRA N Ture I error "
! R Fixed samlidd costr b
™~ i C Uariable samrling costr o -
s S AVeradge time required to find an assidn
H ! 8ble cause after 8 true alarm under
g ' 5(. rolicy I | . ’
! TELTA . Shift rarameter .
L i E : ‘ Time reauired to take -and insrect a3
L samrle for the model OPEPBtlﬁS under
H roliecy I * PR
o i LAMIIA ' Rate of .occurrence of 8551snable cause
. KR ; g Averde repa}r cost rKr under rolicy II
1 KS Averade search cost +Ks under solicy II!
> ' )
.o . . . - . )
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.

' \R1 o Measure of skewness '
i R2 : . Measure of Kurtosis !
i TR - Averadger time to rerairsTr :
1 TS . Avenage time to search »Ts H
L o g Probah;llts of true slarm :
v u : Loss rate i
Nfi RV ) Averasa cost of looklns for an assign |
’ P . ' vable\cause o
i VO N i~ Income per hour when Frocess is in -
} o T ‘control . - H
HER VS| Sfthb A ' Income per hour when the erocess is H
i : Sein out of control :
LY . . Averade cost of looking for an 3551sn i
: . . > able when none exists . !
. i Variable Name AR ‘ o :
~ .+ First stade . . T ) X . H
- . i X1 Initial value of samrle size sn i
i X3 ‘ Initial value of control limit sk -
i X1 ) Current value of samrle size -
FoXey .~ Current value of sampling intervalss }
X3 \ © Current value of control limit coeffi- |
i T . cient : i
! Second stasde !
i XO0(C(I) . Location of initial base rointsy,I=1y3 |
XM ‘ Location of current. base rointss I=1,3pi
i XTI Location of temrorary base rointsrI=1,3.
i FXR Functional value at initial hase point !
! FXE - . 3 Functional value 3t .current base roint !
. v FXT ' ) Functional value a3t temrorary hase roint!
i -ICMAX < Maximum number of iterations :
* 1 IC. ‘Number of itervations . !
1 Fl * 1
| I . ]
H OUTPUT DESCRIPTION ' d J
T I me I IR T AT I e R e }
POXMcLY - Samrle sizer n < i
PXMO2) : Samrlindg intervalsy s !
¥EOXMO3D Control limit coefficientr k :
H S Frobabhility of true alarms P H
! ALFHA" Frobasbility of false alarms Alrha i
KK 3K 3K oK K 3K K 3K K K KK K K K K 3 K KK K 3K 3K 3 3K K K K 3K K K 3K 3K 3K 2K K K K 3K 3K 3K 3K 3K 3K 3K 3K KK K K KK K K K KK KK K

PROGRAM LEXSTING :
X******************************************************X*****
¥ THE ECONOMIC DESIGN OF X-CHARTS TO CONTROL NON-NORMAL <X
XFROCESS MEANS . THE PRORAM IS MEANT FOR EOTH OPERATING X

¥FOLICIES., THE NUMERICAL VALUES ASSIGNEDIN TO R1 ARE ~0.5y0.0, X
¥0.5y 1.0 AND TO R2 ARE -0.5+0.0-0.551.,0,1.5 AND 2,0 + THE X
*SHIFT PARAMETER DELTA ASSUMEDR TO 0.5 TO 2.25 WITH INCREMENTSX
*OF Oohdo *
**************X**************************************** X****
EXTERNAL F1

ooooonoaoon

~
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INTEGER NSIGsITMAXyLL»IER»NN

REAL LAMDA»KSyKRsF1,EPSYEPS2yRTAX4(1)
DIMENSION X(3)yX0(3)yXM(3)yTARLE(Br4+6+6) yDEL(3)

COMMON I‘lELTA’LAMﬁAyRI’R rVsCr TSy Wy TRYERs Dy EyALPHYFP DKy Url\RMS
x******xxx*****x**x*x******x*x***x****xx**x***xx******x*x**xx*
X SET. MODEL FARAMETERS: b 3
*x***x**xxxx****x*x*x**x******x*x**x****x****x***x*xx*x*x**xx*
LAMDA=0,05
. V0=150,0
- V1=50.00
"KR=20.,0 S - ~ .

KS=10.0 - - . .) N

TR=0.2 . , . .
T8=0.1 . - ' ' o
. U=KS+VOXTS |, ‘ ~ - :
S W=KR+KS+VOX(TR+TS) : ' T

u=vo~v1 . SR

onoo

s

IR1=1 . ) °
300 CONTINUE oo
' .WR2=~0.5 :
UIR2=1 -
200 CONTINUE

C **x*x**x**xx***x**x*******x***********x*******x****x***
C X i FIRST STAGE SEARCH X
c KKK K KRR KKK K 3K KKK KK KK 3K K K 3K 3K K 3K 3K 3K 0K KK KK K K 3K 3K 3K 3K 3K KK KK KK oK 3K K K K K
IF(DELTA.ER.0.5) X1=45.0.
IF(DELTAJER.0.75) X1=35.0
IF(DELTAEQ.1.0) X1=25.0
IF(DELTA.EQ.1.25) X1=15.,0
IF(DELTA.GE.1.5) X1=5.0 e
IF(DELTALLE.1.5) X3=2.50 )
IF (DELTALGT.1.50) X3=3.0 '\ A
DR=X3 "~ L
X4(1)=X1’ ;
C *****xx**x**xx**xxx*x*x*****xxx*x*x*x*xx**xx*xxx**x*****x
C X COMPUTE THE ROOT OF EQUATION (4.29) USING IMSL ROUTINEX
C ¥ ZREAL1. ARGUMENT REFRESENT!: F1-A FUNCTION SUBFROGRAM X
C ¥ WRITTEN BY. USERy EPS —FIRST STOFFING CRITERION,EFS2- X
C X SPREAD CRITERIA FOR MULTIFLE ROOTSs NSIG-2NI STOFFING X
c X CRITERIONs ITMAX~MAXIMUM NUMRER OF ITERATIONS,LL-NO. X
C X OF ROOTS TQ EE FOUNDs, IER-ERROR PARAMETERyX4~ROOT X
c X

. ****X***X***********X*X*X*(********************X*********

A . +
N n,; . v
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- EFS=1.,0E~5 . o ST '
. ‘ EFS2=1,0E-S .
.o ~ RTA=1,0E-3 .7
-NSIG=5 ‘ '
ITMAX=1000 ‘ o .
LL=1 ’ .
CALL ZREAL1(F1iy EPS;EPSQ:BTA:NSIG;LL;X4rITMAXyIER) L
, NN1=X4(1)+0.5 "
. X1 Y=NN1
) = . §(°) SGRT((ALPH*T+B+C*X(1))/(LANDA*U*FP)) .
v COR(3Y=XB
‘% C *****x********x**xx*x**x*x*x*x*********x**********x***x**x
C X SECOND STAGE SEARCH X
c ****x***x****x*****x*******x*xxx***xxx*x*xx**x****x**x**x*
X0¢1)=X(1)
i X0(2)=X(2) : :
R XD(3)=X(3) _ .
. DEL(1)=1.0 : .
: DEL(23=0.5
L) DEL(3)=0.5
- oo NN=3
‘ CALL SUB(DELyNN;XTyXOyXM;FXB,PyALPHA)
' : TARLE(IDELTA»IR1sIR2y1)=XM(1)
TABLE(JIDELTAIR1,IR2y2)=XM(2) KR
TARLE(IDELTA» IR1»IR2y3)=XM(3)
TARLE(IDELTAy IR1sIR2y4)=F
- TARLEC(ITELTAs IR1»IR2y5)=ALFAH ‘
v ‘ TARLE(IDELTAYIR1yIR2s&)=FXR ‘
_ S50  R2=R2+0.5 : T '
" IR2=IR2+1 , //’
. ~ IF(R2.6T.2.0) GO TO 600
GO TO 200 .
600 ° R1=R140.5 « ’ 4
IR1=IR1+1
IF(R1.GT.1.0) GD T0 700 -
GO TO 300 )
700  DELTA=DELTA+0.25 .
» INELTA=IDELTA+1
IF(NELTA.GT.2.25) GO TO 800 - . ,
G0 TO 400

800 FRINT 1;LAMDA:UO:U1rl\va\SvTRyTSyByCyDvE
IM=1

IN=2 *
FRINT 2
N0 1100 IJd=1s4

R DELTA1=0.25%XIN
L NELTA2=DELTAL1+0.25
FRINT_3sDELTAL,DELTA2
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PRINT‘4
2=-0,5 | :
no 1000 IR2=1+6° - -
- PRINT 11y C(TABLECIDELTA»IR1,IR2,1)sIRI=1s4), IDELTA=S IM;IN)
PRINT 12y ((TARLE(IDELTA»IR1sIR2,2) rnIR1=174)y IDELTA=IM»IN)
PRINT 13»R2y(¢(TABLE(IDELTA»IR:»IR2y3),IR1=1,4),IDELTA=IN,rIN)
FRINT 14> ((TARLE(IDELTAyIR1,IR2,4)»IR1=1,4)yIDELTA=IMyIN)
FRINT 15y ((TABLE(IDELTArIRi1YIR2,5)yIR1=1,4)IDELTA=IMsIN)
- PRINT 16y ((TABLE(IDELTAsIR1sIR2y6)yIR1= 1,4>,ImELTA IMyIN)
IF (IR2.,EQ.4) GO TO 1000
PRINT 4 : e :
. R2=R2+40.5 : . ' S '
1000  CONTINUE \ : ’ .
IM=IM+2 C
CIN=INA2
R2=-0.5 .
PRINT 2
1100  CONTINUE | _ - L . "
~ STOP s
1- FORMATC/17/7//7777 LAMLIA= rF4.~12Xs’PO-'rF6 192Xr "P1=73F6s 192Xy
X'RR=sFS541y2Xy 'KS=/yF5e 12Xy ‘TR='sF4 .2y 2Xy 'TS=" yF3. 172Xy /B=" s
XF4,2,2XyC= 2 F4.2,2Xy ‘0I=",F3, 12Xy 'E="/F3.1)

2 FORMATC(/ +/+80( ~7)y’4+7).

3 FORMATC( | 17274Xy 717/ ¢ ‘ . : :
X’ ) 1 7231Xy 'DELTA’ 38Xy "1 7/ et . - s
X7 | :7714X!F4o~v30X7F4.M7~2X7"’/ -

o b S d 2(30¢( - ’)y4§: DR L t
b S :'174X!"’/ \ A :
X’ | R2 l'r33Xv’R1'y39X!'\b\ N : .
X7} . 207 0.5 0 0. ’ 1.0 “Jy :
X’ A ) ' .
b S P24 ——~f“* )y ’)r' R

4 FORMAT(’ —=—=—=— 1/ y2(4(/ =—mmm M R B I el i)

S FORMAT(L" /77777777 +7+80C ="’ 4+7*)

11 FORMAT(’ |} ., 1732(AF8.0ys’ 1’)s" N 1)

2 FORMAT(/ | 17 92C4F8.297 1)y’ s 1)

13 FORMAT(’ ,F4.1,' 1792(4FB.257 17)y7 K 1)

14 FORMAT (4 ! 17 92C4AFB.4y 7 17)y " Pt

15 - FORMAT(’ | L/92(4F8.457 1/)y’ ALFHA!)

16 FORMAT(’ 1792(4F8.457 7Yy’ F 1%

- END - ) )

c **x****x*******xx*xx***xx**x**x**x*x**************x*xx*

c X ‘ . HOOK AND JEEVES SEARCH ROUTINE : %

C 3K KK HOK 3 KKK KR KOK KK K K K 3K K 3 3K KKK KK KK 3K 3K 2K K 3K 3K 3K 3K 3K K oK K oK 3K K 3K K K K KK K KK XK
SURROQUTINE SUR(DELsNNsXTsXO0rXMyFXEyFrALPHA) ‘ d
"DIMENSION XX1¢3)yXT(3)sXD(3)»XM(3)yDEL(3) . .
ICMAX=1000

XM(1)=X0(1) ' ‘ .
XM(2)=X0(2) :
XM(3)=XD(3)
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o . XM1=XM(1) . N : : -
. D XMR=XM2) B ; . o C
XM3=XM(3) i -
¥ CALL COST(XMIvXMQyXM3rPrALPHAyFXB)
\ oo Ic=0 , o
S $21 KK=0 ‘ S o ) A
- 7.7 DD 11 I=1,NN 'f', RS ‘ : ‘
' TEMP=XM( 1) e
‘ Ca LXMDY = XM(I)+DEL(f) T
A XMi=xXmc1y . .. 0”7
XM2=XM(2) ’ :
. XM3=XM(3) -
. - CaLL COST (XML s XM2rXM3sF » ALFHA s FXE) _
1 © IFC(FXEJ/LT.FXR).AND,(F.GT.0.0), ANDL, (ALPHA.
XGE.0.0)) GO TO 12

XM(I)=TEMF. R | T

XM(I)=XM(I)=DEL(I) ‘ . :
XM1=XM(1) , 1 ‘
XM2=XM(2) -
XM3=XM(3)
CALL COST(XMiyXMQ;XM3yPyALPHAyFXE)
"IF C(FXELT4FXR) «ANI (Fo6T40.0) ¢ ANDL. (ALFHA.,
XGE.0.0)) GO TO 12
. XM(1)=TEMNF
’ ’ GO TO 11 : .
: 12 FXB=FXE . . ' o

T "KK=1 . .- o ) |

R 11 CONTINUE SR ! -
IF(KK.EQ.0)GO TO ‘18 . .- ,
! N0 16 I=1,NN L

16 XX1(I)=XM(I)

[0 13 I=1,NN L .

13 XT(I)=2,KXX1(I)-X0(T) ' .
XT1=XT(1) : -
XT2=XT(2) ‘ o Vo
XT3=XT(3) ;o .

CALL COST(XT1sXT2sXT3sFsALPHA,FXT) ’
IO 14 I=1,NN -

. ' 14 XOCI)=XX1(I) . -

€3y IF CCFXToLT.FXB) . ANE, (F.GT.0.0), AND.(ALPHA.

o

. XGE<0.0)) GO TOQ 15
GO TO 21 ’
15 FXB=FXT.

DO 17 I=1.NNy
17 XM(I)=XT(I)
IC=IC+1
~ YIF(IC.GE.ICMAX) GO TO 19
. ‘ GO TO, 21 -
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18 DD 28 I=2,NN . a .
"+ IFC(DEL(I).GT.0.001) GO TO 30 '
.. GO TO 29 :

, 30  -DEL(I)=DEL(I)/2.0 X
29 - DEL{I)=DEL(I :
28 CONTINUE
d IF CC(DEL(2) ., LE.0.001),
60 TO.21
19. CONTINUE

RETURN
(s
- ; (o *********************** *******************************
- I S X A SUEBRDUTINE FOR COMPUTING LOSS~COST FUNCTION X
Cc *******************************************************
x SURROQUTINE COST(XI?XQ!X37F79LPHA;F)
. -  REAL LANDAvhS:hR i Y
COMMON DELTA»LQMBQ!RI7R~JVyC!TSvw!TRyBrnvErﬁLPHyFFthrUykR KS
ALPHA=ALPH
IF((X1.LE.C.0) . DR.(X9'LE.O.O).OR,(X3.LE.O.O)oOR.@hLPHA«EEo
X0.,0)) GOQ TO 84 IS :
Y1=X3- DELTA*SGRT(XI) .
CALL EDGW(Y1sX1yH2XyH3IXsHAXyHSXsHEXyFIXsPsR1,R2)
- : R TT=C(1,0-(1.0+LAMDAXX2) XKEXP (~X2%XLAMDA)Y )/ :
‘ T 1(LAMDA-LAMDAXEXF (~LAMDAXX2)Y)
i - Bi X2/P~- TT+E*X1+D .
Y3=X3 -
CALL" EDGU(Y37X1rH”th3h1H4hrH5th6h HIXDPrerR")
. . ALPHAL=DIX .
Fl=(H2KXR13}/(6.0%5QRT(X1) )~ (H3h*R”)/(°4 0*X1) HSN*(RI*RI
1Y/7(72.0%X1)
ALPHAZ= =F1, :
-ALFPHA=ALFPHA1+ALFHAR _
BO=ALFHAX(1.0-LAMDAXTT) /X2 . .
UL=LAMDAXRIXU+LAMDAXWS TXRO+ (R+CXX1)% (1, 0+LAMDAXRE)I/X2"
U2=(1, O+LAMDA*BI+TS*BO+LAMDQ*(TR+TS))
F=U1/U2 .
84 RETURN _ : »
. ‘ END I T
v “ REAL FUNCTION F1(X4) - 2
. REAL. X4 :
- . REAL LAMDAsKRYKS -
COMMON DELTArLAMIA, erﬁ?!UvC!TSrU TRyRyDrEyALFHyFFsIKsUrKR»RS
IF(X4.LE.0.,0) GO TQ 86 - .
X2=LK
CALL EDGW(Y1yX4sH2XyHIXsHAXsHEX HOXsFIXsPrR1sR2)
> IF(P.GT.0.0) GO TO 85 .
GO TO 86
Yi= X°—HELTQ*SQRT(X4)
B85 FF=1/FP~0.5
Y3=X2 ) '
CALL EDBw(Y39X4rH°k’H3h7H4h!HSh!Héh DIX!F!RI!R”)

Y ¢
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»
ALPHA1=DIX ~ B
. C P4=(H2KXR1) /(6. O*SGRT(X4))—(H3k*R")/(”4 O%X4 ) - (H5KKR1%R1
N : 1)/(72,0%X4). ‘
: . ALPHA2=F4 .

ALFH=ALPHA1+ALFHA2 , i | .
IF (ALFH.LE.0) BGD TO 864 :
- . DFN1=(DELTA)/{2,0XSART (X4) Y XZX .
R DPN2=~12, OXRI¥ (DELTAXX4XHIX+SART (X4 ) XH2X)
' © © DPN3=3.0XR2X(DELTAXSART (X4) XHAX+2, 0XH3X)
- DPN4=R1%R1X (DELTAXSART (X4) KH&EX+2 . OXHSX)
DFNS=(DPN2+DPNI+IFNA) / (144 . 0XX4XX4)
DPN=DPN1+D0FNS
- F1=ALFHA2XT+X4%(C~ BPN*(ALPH*T+B+C*X4)/(P**"*FP)+LAMDA*U*E)
86 RETURN ’
| ENI
*x******************************x**x**x***x******xx***x
¥ COMPUTE- THE FIRST FOUR TERMS OF AN EDGEWORTH SERIES X
% AND PROBABLITY OF TYFE I ERROR - X
KAKKAAK KKK IRK KK KKK KKK KK KKK K FK KKK KK KKK AAKK KKK K KKKKKKKK
- SURROURTINE- ENGW(Y1sX1 s H2Xr H3XyHAX s HSXyH6X r FIXyFsR1sR2)
‘ IF(Y1.EQ.0.0) GD TO 89
L ZX=043989422BXEXP (~(Y1KY1)/2.0)
- 60 TO 91 . \

o000

89 ZX=0,398%4228
91 H2X=(Y1XY1l~1.0)%ZX :
- H3X==(Y1%X%X3-3.0%XY1r%zZX . ’

) H4X=(Y1XX4¢4., 0XY1XX2+3.0)%XZX .
R ' HSX=-(Y1XX5-10,0XY1¥¥3+15. OXY1)%ZX -

H6X=(Y1XX6~15, 0XY1¥%4+45,0XY1XX2~15, 0)%XZX
X***********X********************X******************X*****
X COMFUTE THE AREA UNDER NORMAL CURVE USING IMSL ROUTINE X
X MSMRAT(Y1yRMsIER). ARGUMENT REFRESENT: Y1-VARIATEr RM- X
X THE RATIO OF THE ORDNINATE TO THE UPPER TAIL AREA sIER- X
X ERROR FPARAMETER X
***XX************************X************X***************
CALL MSMRAT(Y1sRM»IER)
FIX=ZX/RM
F=FIX+H2X%XR1/(&. OXSGRT(XI)) H3X*R°/(”4 O%X1)3~ HSX*(Ri*RI
1)/(72.0*X1)
RETURN
~ ENI

oo

r

P
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100

hS

~

AN

, " AFPENDIX II
 PROGRAM SEMIXEAR

FPROGRAM DESCRIPTION
KKK K K 3K KK K 3K 2K 3K K K 3K KK 3K K K K 3K K K 3K KK K K 3K K K K 3K K 3K 3K K 3K R K K 3R 3K K K K 3K 3K K 3K K K K K ok ok ok ok
i This eprodram is used for. dgenerating user’s ‘manual to
idetermine the desidgn rarameters for an M-chart to control
iboth normal and non—normal means. The fundqﬂbntal ohb.ective
iof this rlan is to detect the assidnasble cduserwhen 1t

;occursr with probability of 0.920 Or 0.95.

}

}

3
: ;
! NOMENCLATURE :
) [)
[} ]
! “Variable name ' - Nescrirtion \ i
i NN . " Maximum sample sizer n ’ :
N DK . Control 1limit coeff1c1entrk H
1™  DELTA ' Shift rarasmeter :
H R1 Measure of skewness . !
: R2 Measure of Kurtosis '
: X1 _ Srecified value of true zlarm’ !
i BUTFUT ® A . »’ H
H oK © Control limit coeffiecienty k :
H I Samrle size r N : . :
! PCI) Probability of true alsrm havin ;
H ' sample size I H
H ALFPHACI) | Frobahility of tyre I error H
: . ~ caonditioned uron the irue--zlarm P(I) |
! ACT) Fresents eauation (4,40) :
X*****X*****************************************************X*

FROGRAM LISTING
EXTERNAL ALFH"
DIMENSION ALFHA(125)sA(125)sALPHA4(125) yF(125) :
****X****X*************************************************
X $ET MOREL PARAMETERS R1,R2,DELTA AND MAXIMUM ALLOWABLE X
X SAMPLE SIZE NN X
******X****************************************X***********
NN=125
DELTA=1.75
R1=1.,0
R2=2,0
DK=1.,0
DO 300 I=1sNN
RI=I"
X=NELTAXSART(RI) - Bh '
CALL EDWOR(XyZXsH2XyH3IXyHAX HSXyHEX FIX»RI R2)

P(I)=1,0-FIX+H2XXR1/(6,0XSART (EI))+HIXKR2/ (24, 0XBI) +HSXK(R1XR1)
17 (72, 0XEI)
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X1=0,95 . ,

IF(P(I).BGE.X1) GO TO 200

GO TO 300. ’
200  PP=1,0/P(I)>=0.5

CALL ALPH(DELTArDKsIsR1sR2rALFHA»ALPHA4)

ACI)=(DELTAXSRRT (RI))/ALPHAA(I)

PRINT 101s DKs I ALPHACI)yPPy ACI)

101 FORMAT(’ “ySXrF3.1¢85X2I3:8XsF8.5¢5XyF8. 3v5X;F8 0)
- ‘ GO TO 400 ~ .
. 300 - CONTINUE
400  DK=DK+0.1
‘ IF(DK.GT.3.5) GO TO 900 ».
GO TO 100
900 STOP
END
XK KKK KKK KKK KKK KK KKK KK KKK KK K KKK oK K KK Kk Kok ok ok ok ok ok
X SURROUTINE FOR CALCULATING EQUATION (4.40) X
KKK K 3K KoK oK KK KK KKK KKK K KKK K K 3R KKK KK K A kK KKK KKK KKK
SUBRROUTINE ALFH(RELTA»DK:IsR1,R2yALPHArALFHA4)
DIMENSION ALFPHAC125)rALPHA4(125)
"RI=I ) - ,
X=DK i
CALL EDWOR(XyZKyH2KyH3KrHAKy HSK yHOK s FIXyR1 yR2)
ALPHA1=2,0%XFIX
ALPHA2= (3« OXR2XHIK+R1XR1KHSK) / (36, OXBI)
AA=DELTAXSART(RI)
2 ALPHA3= (3. OXR2XHAKFR1XR1XHEK ) XAA
ALPHAS=-2, X (3, OXR“*H3N+R1*R}*HSN)
¢ : -~ ALPHA6=(ALPHA3-ALFHAS)/72. '
- "ALFHAZ= (DELTA*DELTA)*ALPHAé/(AA*ﬁQ*QA) , "
ALFHA (1) =ALPHA1-ALFHAR ‘
ALPHA4 (1) =ZN+ALFPHA7 : 7,/
RETURN _ _
END “
SUBROUTINE EDWOR(X»ZXrH2XrH3XsHAXrH5XrHEXrFIXsR17R2)
IF(X.EQ.0) GO TO 85
ZX=0,39894228XEXF (~(X*X)/2.0)
GO TO 864 o .
85 ZX=0,39894228
* 86 H1X=XXZX L
H2X=(X¥X~1 .0 )%kZX
H3x=n(xx*32?ao%X)xzx
HAX=( Xkk4—&o OXXKXR2+3,0)XZX
HS5X== ¢ Xk%5-10 . 0kXKKI+15,0%XX) %XZX
HEX=(XXk6—15 . OXXKXK4+45 ., OXkXkKk2)RZX
CALL MSMRAT(XsRMyIER)
FIX=ZX/RM
RETURN
END

-

OOO)
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AFFENDIX IIT

PROGRAM - WARNING

FROGRAM DESCRIFTION
**********************************X*X***X********************
. ! This prodram is used for finding the ortimal desidn
) irarameters of an x~chart with warnind limits by minimizing
i ’ tthe lass-~ cost function. The prodgram consists of two stades.
'In the first stade it calculates an arproximate
isclution of sampling interval for diven value of sample
isizescontrol limit poefficient and warning limit coeffici-
tent. In second stadge the eprodram starts search for ortimal
idesidgn parameters thraugh four dimensiondl Hook and Jeeves’
isearch technique. ’

NOMENCLATURE

048 M s S ot Sy Tt U S et . ey

The nomenclsture for the model rarameters is the same as
that of AFFENDIX I.

o aa -

QUTPUT DESCRIPTION

S ok o 408 ot . AL . o T Y0t St

L]
i Variable Name o 1
! First stade .
PoX1 ) Initial value of sample size rn
10 X3 - Initial value of control limit shka
i X4 Initial value of warnindg limitshkw
X2 . Samrlind interval »s
e i Second stade . v
PoXoen y Location of initial base rointsy I=14
T XMCOID ; Loecstion of current base rpointsy I=1,4
P XTI Location of temrorary hsse rointsrI=1,4
§ ¢ FXB Functional value 3t initial base roint
i FXE * . . Functional value at current base point
i FXT . '~ Functional 'value at temeorary hase soint
i ICMAX ‘ Maximum number of iterations
i IC Number of iterations
X N
]

- m mEm EE e e e e mE T e Be e e WE S ey Me e W S WS me e e e S M e e S e e o gy M A e e

: PXM(L) . Samele sizer NP
i XM(2) - Samrling intervaly s
T XM((3) Control limit ‘coefficients ks
P XM(4) Warnindg limit coefficient skuw
i ARLO C . Averade run lendgth when rrocess is in
H controlsy»RO
! ARL1 Averade run lengh when rrocess is in
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.
\ - . . : o

- H - out of controlyR1

!—FXB ‘hoss—cost function » L : ’

*****X******X************************************************
FPROGRAM LISTING .

***************************************X*********************

X THE ECONOMIC DESIGN QF X-CHARTS WITH WARNING LIMIT TO ‘ X

-+ X TONTROL NON-NORMAL PROCESS MEANS UNHER’PQLICY Ir . - X

>X THE NUMERICAL VALUES ASSIGNED -TO R1 ARE -0.5+0.0r 0.5y 1.0sX

XAND TO R2.ARE ~0.550.020.5-1.071.5 AND 2,0 . THE X

XSHIFT PARQMETER DELTA ASSUMED TO 0. 5 T0 2.h5 WITH INCREMENTSX

XOF 0,25, < X

***X************X************************X********************

REAL LAMDArkSth .

DIMENSION X0(4)yXT(4)yXM(4)yDEL(4)vTABLE(8v47677)

COMMON LAMDADELTAYTRyTS+VyUrWyRyCrR1IyR2sKR?KS

*X**********************X*************************************

X SET MODEL PARAMETERS X

***************X************X*********************************

LAMBA=0,01

VO0=150.,0

UVi=50.0

KR=20..00

KS=10.0

TR=0.2

TSx034d

U= kS UOXTS

W= hR+hS$UO*(TR+TS)

U U=yo-vu1 ¥ :

. . R=0.5 ) ‘
€=0.1 '

JDELTA=0.5 . /O
IDELTA=1 - -~

400 CONTINUE )
Ria""pos e

. IR1=1 ;

300 CONTINUE - .
R2=-0.95 - ’
IR2=1 ‘

200 CONTINUE
***********************************
X FIRST STAGE X
******************X****************
IF(DELTA.EQ.0.5) X1=35,
IF(DELTA.EQ.0.75) Xi=2%.
IF(DELTAWGE.1.35) :X1=5,0
IF(DELTALEQ.0.3) X8=2.0
IF(DELTA.EQ.0.75) X3=2,25
IF(OELTA.EQ.1.0) X3=2.5" ’
IF(DELTA.GE,1.25) X3=3.0 . o

—

-~
~

EvRzizivizizizizis
Ed

coo

OO0
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3

x4 0.66%XX3 S ST ‘ .o .
- Y1=X3- DELTA*SQRT(XI)
Y2=X4-DELTAXSART(X1)
Y3=X3
Y4=X4 -
CALL RUY(XI!ererR"rPI)
CALL AUY(X1,Y2,R1,R2,P2)
- CaAll. AUY(X1sY3sR1syR2,P3) ;
CALL AUY<X1vY4,R1.R2,b4) :
PO=F1-P2 o N
FP=P3-P4. 4 -
ARL1=(1.0-FPOXX2)/(1.0-F0O- P”*(l.—PO**”))
- ARLO=(1.,0-PPX%2)/(1.0-PP-P4X(1.-FPXX2))-
H1=U/ARLO+B+CXX 1 X .
- H2=LAMDAXUX (ARL1-0,5) : -
H3=H1/H2°®
‘ X2=SART(H3) ‘
. C xxxxxx******xxxxx********x*xxxx***xx*x**xx***
C “(/: _ . = SECOND STAGE X
C **xxxxx******x*xx**x***x*xxx***x**x*x*x*x*****
X0(1)=X1 ’ .
Xa{2)=X2
X0(3)=X3 , .- )
_ X0(4)=X4 LeTe . -
. NN:=4 . .
: . * DEL(1)=1.0 ‘ a -~
v ' DEL(2)=0.5 , N
DEL(3)=0.5 - ‘
DEL(4)=0.5
caLL - SUB(DELvNN:XTaXO»XM;FXB ARLO;ARLi) ‘
TABLE(IDELTArIR1,IR2,1)=XM(1) o :
TABRLE(IDELTA» IR1»IR2,2)=XM(2)
TABLE(IRELTAsIR1,IR2,3)=XM(3)
TABLE(IDELTArIR1,IR2,4)=XM(4)
TABLE(IDELTAsIR1yIR2,5)=ARLO
TABLE(IDELTArIR1yIR2y4)=ARL1
TABLE(IDELTA+sIR1,IR2,7)=FXR -
550 R2=R2+0.5 -
IR2=1R2+1 * . S '
_IF(R2.6T.2.0) GO TO 600 g
¢ " G0 TB 200 . .
600 R1=R140.5 ) '
IR1=IR1+1 '
IF(R1.GT.1.0) GO TO 700 !
‘G0 TO 300 :
700  DELTA=DELTA+0.25
IDELTA=IDELTA+1 . _
IF(DELTA.GT.2.25) GO TO 800 y <
GO TO-400 : ‘
- BOO  WRITE(&»1)LAMDAsVO» U1sKRsKSyTRsTSsRyC

8
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IM=1 . T

IN=2 “ ' :

WRITE(&72) ) .
DO 1100 IJ=1,4 ' L0 . ‘
XIN=IN _ . _ ’

~ DELTA1=0.25%XIN ‘ _ :

" DELTAR2=DELTA1+0.,25 .o ‘ S
WRITE(6»3) DELTAL,DELTA2 : ¢
WRITE(6v4) - . - -

- R2=-0,5 _ ‘ , -

N0 1000 IR2=1s6 '

"WRITE(&r11) ((TABLE(IDELTA;IRIrIRQ;i)yIRi 174):IDELTA IMy IND
WRITE(SHy12) ((TABLEC(IDELTAYyIR1»IR2y2)»IR1=1+4) y IDELTA=IM»IN)
WRITE(6s13)((TABLE(IDELTA»IR1yIR2y3)»IR1=1+4)IDELTA=IMsIN)
WRITE(6r14)R2y ((TARLE(IDRELTAYIRL1sIR2,4)yIR1=1+4)yIDELTA=IMyIN)
WRITE(6515) ((TARLE(IDELTArIR1+IR2sS)rIRI=1+4) s IDELTA=IMsIN)
“WRITE(6v16) (CTABRLE(IDELTA»IR1»IR2y4)sIR1=1y4)»IDELTA=IMsIN)
WRITE(6217) ({TARLEC(IDELTA»IRLsIR2¥7)»IR1=1v4) »IDELTA=IMyIN)

IF (((IJ.NE.2).OR.(IJ/NE.4)) .AND. (IR2.NE.6)) GO TO 900 '
WRITE(6s2) | e

———— e IF(IJJEQ.2) GO TG 1000

WRITE(S77) '
GO TO 1000 g S -
900 WRITE(&r4)
R2=R2+0.,5 ~ -
1000 CONTINUE
: IM=IM+2
IN=IN+2
R2=-0 D
IF(IJONE.2) GO TG 1100 :
WRITE(&95) ‘ .
WRITE(422) )
1100 CONTINUE
' STOF
1 FORMAT( 1/ ySXy ' LAMDA=/yF4.2y2Xy ‘PO=/yF&. 172Xy ‘Pl='sF6.152X>
X KR=’yF5.192Xy’KS="yF5,1¢2Xs 'TR="sF4.2y2Xs ' TS=" yF3,1s2X» 'E=",
XkFA,292Xy’C="+F4.2)

2 FORMAT(’ +7+80(’'=")y"+")
3 FORMAT(? 974Xy
b S 17931Xs “DELTA’ y38Xs 1 7/
b S 1/914XsF4.29y30XrF4.29223Xy7 17/
® SO H y2(30C7—=")r4(7 7))y’ v/
L SO 19974Xy 01/ )
X/ ¢+ R2  1/933Xs’R1‘939Xs7 1/
X7 T 722¢7 -0.5 0.0 0.5 1.0 X
X L/
: 3 ! Y RIS T P
4 FORMAT(’ {—-———— Pr204(/ e D e I B e A
7 FORMATC(71+7+80(/=*)s’4+")

11 FORMATC” i {792(4F8.0 7 }’)7'_ N )

-
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12 FORMAT(
13 FORMAT(’
14 FORMAT (.

13 1

] . t

i r2CAFB 2y %)’ KA i
v 15 FORMAT(’

‘)
) Yy .
A ”(4F8¢hgf 17)y’ KW 1)
“92¢4F8.0y7 1)’ ARLO 1) ’
7y2(4F8.2y7 17)y’ ARLL 17D
‘y2CAFB.4y 7 )y’ L ‘)

16 FORMAT(
17 FORMAT (
END

c T RORORNOK KA OK KKK KK KKK K K K KKK KK KK KK K K K K K KK )

c ¥ SUBROUTINE FOR FATTERN SEARCH x .

c KKK A KK KKK KKK KA KK KKKAK KKK KKK KKK KK

- ' SUBROUTINE SUB(DELvNNyXT!XOyXﬁvFXByARLOvQRLis

DIMENSION XX1(4)rXT(4)yXU(4)yXM(4)yDEL(4)
ICMAX=500 oo :
XM(1)=X0(1) Id
XM(2y=X0(2) —_— _ ’ | S
XM(3)=X0(3) =
XM(4)=X0(4)
XM1i=XM(1)
XM2=XM(2) '

— XM3=XM(3) . T
XMA4=XM(4) :
CALL COST(XMIyXMﬁyXN3vXM4rPOrPPrQRLOvQRLlyFXB)

- IC=0
21 KK=0 ‘ *

DO 11 I=1+¢NN
TEMP=XM(I)
XM(I)=XM(I)+DEL(I)
IF(XM(3).6T.XM(4)) 60 TO 22

XM (4)=0.BSKXM(I) .
XM1=XM(1) - .
XM2=XM(2) :

XMI=XM(3)
XM4=XM(4)
CALL COST(XM1yXM2yXM3yXM4yFOsFFyARLOsARL1 yFXE)
IF ( (FXE.LT.FXB).AND (FP.GT.0.0) JAND. (FO.GT,0.0)) GO TO 12
XM(I)=TEMF
XM(I)=XM(I)~DEL(I) . \
IF(XM(3).6T.XM(4)) GQ TO 25 4 ' .
XM(4)=0.85%XM(3) :
CXM1=XM(1)
XM2=XM(2) -
XMI=XM(3)
XMA=XM(4) |
CALL COST(XM1»XM2yXM3yXMArPOyPFyARLOyARL1 »FXE)
IF ¢ (FXE.LT.FXE) .AND. (FF.BT.0.0) AN, (FO.GT.0.0)) 60 TO 12
XM(I)=TEMP o
/GO TO 11 . / _ - ' |
12 FXB=FXE - : . ’ -
~ KK=1 ‘ , .
. 11 CONTINUE :

rJ
r3

r3
4
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IF(KK.EQ.0)G0 TO 18 S
DO 16 I=1sNN - . L , - )
16 XX1(I)=XM(I) , : . :
. D0 13 I=1sNN'
13 XTCI)=2,%XX1(I)=-XD(I)
IF(XT(3) BT.XT¢4)) GO TO 24 .
, XT(4)=0.85%XT(3) .
26 XT1=XT (1) Lo Joe s .
XT2=XT{(2) : ' e ) ; - -
XT3=XT(3) S . ) BT
XT4=XT(4) ~ : -
. CALL COST(XTi,XT°yXT3,x74,Po,PP;ARLo ARL1»FXT)
. DD 14 I=1,NN ‘ ‘
14 XO(I)=XX1(I) - .
_ IF((EXT LT FXR) +AND. (FF.6T.0.0) JAND. (FO.GT.0.0)) GO TO 15
L 4 GO TO 21 A
.+ . 15 FXB=FXT
[0 17 I=1sNN
17 XM(IDI=XT(I)
IC=1C+1 7
IF(IC.GE.TEMAX) GO TO 19
.- GO TO 21 4 . S
18 DO 27 I=2sNN- - o
© . IF(DEL(I).GT.0.001) GO TO ”8
GO TO 29
28 DEL(I)=DEL(I)/2,0
29 DEL(I)=DEL(I>
27 CONTINUE .
IF((NEL(2) . LE++001) .AND, (DEL(3) . LE.001)
X.ANIt. (DEL(4) ,LE.0.,001)) GO TO 19
GO TO 21
19 CONTINUE
RETURN
ENI
KRKKKK KKK KKK IR KKK I KKK KK KKK KK KKK KIKKKKK KKK KK KKK KK
X SUBROUTINE FOR CALCULATING LOSS-COST FUNCTION X
KKK AR KKK KKK KA KK KKK KKK KoK KK KKK KK KK KKK KKK KK KK oK ok
SUBROUTINE COST(X1sX2yX3sX4sPOsFFyARLOsARLLSF) o
REAL LAMDAsKRsKS R
COMMON LAMDA;UELTQ!TR;TSrUvU!w737CyRI7R29I\R!f\8
IF((X1.,LE.0) OR.(X2,LE.0).OR: (X3,LE.O),OR.(X4.LE.0)) GO TO 86
Y1=X3-DELTAXSQRT(X1)
CALL AUY(X1rY1sR1sR2,F1)
Y2=X4-DELTAXSART(X1)
CALL AUY(X1,Y2yR1sR2yF2)
FO=P1-P2
T2=FO+P2X% (1.,0~-POXX2)
48 ARL1=(1,0-FOXX2)/(1.,0-T2)
Y3=X3
CALL AUY(X15Y3sR1yR2yP3)

aoaon

~
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o Y4=X4 ,
‘ : CALL AUY (X1, Y4rR1sR2/F4) o
PFP=F3-F4
TL=FFHPAK (1, ~PPKX2)
49 ARLO=(1,0-PP¥%2)/(1,~T1)
. H1=U/ARLO+B+C*X1
. RO=(1.0/X2-0.5XLAMDA+1. /12»*(LAMDQ**“)*X”)/QRLO :
B1=(ARL1-0,5+1,/12%(LAMIAKX2) ) kX2 - :
U1=LAMOIAXUKEL+UKBO+LAMDAKU CRHCKX 1)K (1, 0+LAMIAKEL) /X2
U2=1,0+LAMDAKRL+TSXBO+LAMDAX (TS+TR)
F=U1/U2
86 RETURN
END
****xx#*****x**xxx*********x*xxx***x********x*x*
% SURROUTINE FOR CALCULATING THE PROBABRILITIES X
¥ ASSOCIATED WITH AVERAGE RUN LENGTHS .k
KKKAKARKKRKKAARKAAAK A KKK FRK KKK K AAKAKIKAKKK IR KK KKK
SUBROUTINE AUY(X1sYsR1sR2,F)
- ZY=0.39894228XEXF (-YXY/2,0)
T OH2Y=(YXY-1,0)%ZY
H3Y=~(Yk%3-3,0XY)%ZY v - '
HAY=(YXX4-6 . OKYXk243,0)XZY T
H5Y=-C(YXX5-10,0XYKX3+15,0XY)kZY
HEY=(Y¥X6-15.0%Y*%4+45, OXYXK2-15,0)XZY
CALL MSMRAT(YyRM»IER)
FIX=ZY/RM ‘
P=1,0-FIX~(H2YXR1)/(6.0XSART(X1))+(H3YKR2)/(24.,0%X1)+(HSYXRIXR1)
1/(72,0%X1)
RETURN
END

oo
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APFENDIX IV

FROGRAM SEMIWARN

PROGRAM DESCRIFTION
****X*****************************X***************************
! “This prodram is used for denerating tables hased on semi~
ieconomic scheme useful at the workshor level to determine
ithe desidgn rarameters of an s-chart with warning limits -,
iThe essential charascteristic of the semi-~economic scheme
iis that the assignable cause is detectedron the averader

il.1 or 1.05 samrle after its occurrence.

3
:
:
:
)
. . .
NOMENCLATURE : . i
[}
[]
[]

;

!

iy y A

i Variasble name _ Rescrirtion

} DN Samerle size .y n

: DK Action limit coefficients ka

: DELTA Shift eparameter

: R1 4' Measure of skewness

: R2 < Measure of Kurtosis

} ARLO - Averade Run lerndth when erocess is

i in control

! ARL1 " Averade Run lendgth when rrocess is :

! ' in out of control

: SARL Srecified value of Averade Run t

: Lengths ARL1 H

t OUTPRPUT i

: I 4 Number of action limit coefficients ‘i

H DRC(I) Ith action limit coefficient H

i DNC(I) Samrle size corresronding to ith H

H ) action limit ceoefficient . H

: BARLO(I) ARLO corresronds to ith action limit |

! AK(I) Equal to DELTAXSART(DON(I))-DK(I) :

! DLCI) Nerivatives of ARLO(I) with resrect |

H ) to OK(I) }

! AA(TI) Rerresents ecquation (3.21) : :

KKK K OK K 3K K K K 3K K 3K K 2K K 5K 3K 3 3K XK 3K K 3K 2K K 3 5K 3K XK K 3K K 3K KK K 3K K K 3K 3K 3K 3K ok 3K 3K 2K 3K 3K K 3K K K K 3K 5K K K K
C FROGRAM LISTING

DIMENSION Dh(3“)yDN(3“)yBARLO(3”)vAA(3“),DL(3”)yAh(3°)
COMMON DELTA»R1R2

KK KKK KK KK KKFRAKKKAARK AR KKK KIK KA KA KKK FKKK KK KK KKK AKKKK KKK
X SET MODEL FPARAMETERS R1,R2,DELTA AND MAXIMUM ALLOWABLE X
¥ ACTION LIMIT COEFFICIENTS X
KKK K K K K 2K KK K K oK KK K 3K 3K 3K 3K 3K oK K 3K K K 3K K KK 3K oK K K 3K K 3K K K KK KKK KK KKK Kk KK Kk

oooo
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115

119

DIELTA=2,0

R1=0.,0 . ) i

R2=0.0 ’ T
D0 119 I=1,32 ’
X1=0.0

X1=X141,0 ‘

X2=1,0+I%0.1

X3=0.,89%X2

.CaL:L SUBS(YiniyXQvX3vFO;PPyARLOrARL1)

SARL=1,05"

IF (ARL1.LT.SARL) GO TO 115 -
GO TO 116 o
DK (I)=X2

DN(I)=X1

RARLO ( I)=ARLO

AK(I)=DELTAXSORT (X1)

CONTINUE \ Lo
NDIM=32 - :
CALL DGT3(DK»RARLOw Ly NDIMy IER) '
DO 113 I=1,32

T 5@(1)_Yéh(T?/DL(Il)*BARLO(I)*BARLO(I)

120
113

COoOOO0oOOO0O000

)

3 ;K W K AH AR W X K

PRINT120»OKCI) »DNCI Xy BARLOCI) yAACT) i
FORMAT(’ “+y5XsFS5.2y10XrF5.0710XyFB.1y10XsF8.1)
CONTINUE :

STOP

END

181

***X******************X*****************************X***

SURROUTINE FOR COMPUTING A, VECTOR OF DERIVATIVE
VALUES FOR GIVEN VECTOR OF ARGUMENT VALUES AND -
CORRESFONDING FUNCTIONAL VALUES. FOR REFERENCE SEE

yMCGRAW-HILL » NEW YORKy 1956,

VALUES CORRESFONDING TCQ Xy Z-RESULTING VECTOR OF
DERIVATIVE VALUES

X
X
X

F.B. HILDEBRANED, INTRODUCTION TO NUMERICAL ANALYSIS X

X

DESCRIFTION OF ARGUMENTS! X- GIVEN VECTOR OF ARGUMENT*
VALUES(DIMENSION NRIM)» Y-GIVEN VECTOR OF FUNCTIONAL X

X
X

******X***********************************X*************

SURROUTINE INGT3(XyYrZyNDIMyIER)

DIMENSION X(NDIM) s YONIIM) »Z(NDIM)

IER=~1

IF(NDIM-3) 8y1y1 )

A=X (1)

B=Y (1)

I=2"
DY2=X(2)-A
IFC(RYR) 299,52
DY2=(Y(2)~R)/DY2

DO & I=3yNDIM . e

. A=X(I)-A

IFC(A) 39993

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e

3 . A=(Y(I)-B)/A - *
R=X(I)=X(I~1) -
IF(R) 4,954
4 DYi=DY2
IY2=(Y(I)~-Y (I~ 1))/B
DY3=4
A=X(I-1)
BR=Y{I-1)
IF(I-3) S5¢596
5 Z(1)=IYi+DY3-DY2 . . -
6 Z(I-1)=DY14+DY2- DY3 - -
IER=0 ‘ -
. I=NDIM : e
7 Z(I)Y=DY24DY3-DY1
8 RETURN
4 IER=I
. T=I~1 .
IF(I~-2) 8s8,7
END
3K 3K KK 3K 3K K K KKK 3K 3K K K 3K K 3K 3K K 3K 3K K K K K K K KKK K K K oK K K KK K K K K sk ok
X SUBROUTINE FOR CALCULATING AVERAGE RUN LLENGTHS X
3K K KKK KK 3K KK 3K K 3 K 3K K K K K K K K 3K KKK K 3K 3K 3K 3K K K K 30K KK KK K KK 3Kk K
”“SUBRDUTINE‘SUBS4¥J4X1;XALX3rPOrPPrARLOyARLi)
COMMON DELTAsR1,sR2
IFC(XL.LE.0)+OR(X2.LE.0Q) .OR. (X3 LE., 0)) GO TO 86
Y1=X2-DELTAXSGRT (X1)
CALL AUY(X1yY1»R1sR2rF1)
Y2=X3-DELTAXSQRT(X1)
CALL AUY{(X1sY2yR1sR2+P2
FO=F1-P2
. T2=PO+P2X (1. 0~-POXX2) -
48 ARL1=(1,0~FOXX%X2)/(1.0~T2)

Y3=X2 '
CALL AUY(XL1sY3sR1sR2sF3)
Y4=X3

CALL AUY(X1yY4sR1,R2sF4) v
' PP=P3-F4 -
T1=PP+F4X (1. ~PFXX2) :
49 ARLO=(1.,0-PPX%2)/(1,~T1)
86 RETURN \
END ‘ .

aOan0n

te
(

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SO | 183

L : ., .. AFPENDIX V. U

PROGRAM ™ CUSUM

W PROGRAM DESCRIPTION
¢ ************************X**X*******************X*************‘
: ! PURPOSE OF THE PROGRAM:!

T

i THE MAIN PURFOSES OF THIS FROGRAM ARE AS FOLLOWS:

t1, TO MINIMIZE THE ORJECTIVE FUNCTION REFRESENTED RY FO(THE
{EXFECTER PER HOUR COST .ASSOCIATED WITH THE OFERATION OF

tA CUSUM- CHART TO CONTROL NON-~NORMAL FROCESS MEANS) AND TO
{FIND' THE OPTIMUN i_VALUES QF THE RESIGN VARIABLES. THE PROGRAM
118 BLE O LOCATE THE MIMIMA WHERE THE COST SURFACE IS
tEITHER STRICTLY CONVEX: OR RELATIVELY FLAT AROUND THE °
iOPTIMUM.

'2, TD DETERMINE AVYERAGE RUN LENGTH(ARL) OF A CUSUM CHART TO
{CONTROL NON-NDRMAL FROCESS MEANS BY SOLVING A SYSTEM OF
{LINEAR ALGEEBRAIC EQUATIONS.THE SETS OF EQUATIONS USED FOR
ICALCULATING P(Z)yNC(Z) AND L(Z) ARE GIVEN RBRY EQUATIONS(6.8)r
1 (6413)yAND (4.5) ,CALCULATION OF ARL FOR THE CUSUM CHART IS
iA SPECIAL CASE WITH Z=0. AVERAGE RUN LENGTH WHEN THE
IFROCESS IS IN CONTROL» DENOTEDR' BY ARLO» IS CALCULATED FROM
{STANDARDRIZED DECISION INTERVAL H AND THETA=-DELTAXSQRT(N)
1%0.5y AND AVERAGE RUN LENGTH WHEN THE RROCESS IS OUT OF
{CONTROL.» ARL1, IS CALCULATED FROM H AND THETA=DELTA%SQRT

1
1
1
1
t
+
1
b3
I
t
(]
[}
1
)
1
1
1
3
l
'
)
Hl
)
)
(]
[}
]
1
1
1
3
1
1
1
1
1
1
1
'
[}
13 : ]
1 (NIX0.5 :
1
1
1
1
t
1
]
3
)
)
1
]
T
1
t
1
1
1
1
1
(]
]
1
[}
1
)
1
1
1
1
t
'
)
]
1
1
]
1
t
13

e e o —— 410 4000 A0 STTS (it S WO POV FYEY VY TS o et et St T

.

i3. TO ASSESS THE EFFECTS OF NON-NORMALITY PARAMETERS AND

« - 1SHIFT- FPARAMETER ON THE LOSS~COST AND ON THE DESIGN VARIAEL-
1ES AT VARIOUS LEVELS, FDR A GIVEN SET OF COST AND RISK
‘FACTDRS. :

SUBROUTLNES NEEDED . - v

D iy L S v e

——————

THE PROGRAM USES THE FOLLOWING SUBROUTINES AND FU&CTIONS:

1. FUNCTION F: CALCULATES THE SAMPLING INTERVAL

2. SUBROUTINE -AUX: COMPUTES FIRST FOUR TERMS OF THE EDG-
EWDRTH SERIES. )

3. SURROUTINE LEQT2F! SOLVES A SET OF LINEAR ERUATIONS |
4, SUBROUTINE ZREAL1: FINDS THE REAL ROOTS OF A REAL FUN-
CTION. . - .

5. SUBROUTINE MSMRAT: COMPUTES THE AREA UNDER NORMAL CUR-
VE. o :

SUBROUTINES #3, #4y AND #5 ARE IMSL (INTERNATIONAL MATHE-
MATHEMATICAL AND STATISTICAL LIBRARIES ) ROUTINES. FOR
DETAILS SEE REFERENCE MANNUAL IMSL LIRRARY-2,REVISED ERI-

ODOMOoo0000000N0O000N000000000000000oNDoO0NN0R00!

T S ]
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A *

TION »JANUARY 1978. IMSLySIXTH FLOOR»GNR BUIL"I"HNG:?SOO

c . !
c ! BELLAIRE ROULEVARI, HOUSTONs TEXAS 77036,
. C ! EQUIVALENT SUBROUTINES TO #3, #4,AND 5 IN THE IBM SYSTEH/
C ! 340 SCIENTIFIC SUEROUTINE FACKAGE AREs RESPECTIVELY,
c '~SUBROUTINE SIMQ: SOLUTION OF SIMULTANEOUS. LINEAR ALGERRAJIC
C ! EQUATION.
C {=SUBRROUTINE RTNI OR DRTNI ¢ ESTIMATING THE ROOT OF A FUNCT-
C . ! TION BY NEWTON’S ITERATION.
C ! ~SUBROUTINE NDTR ! FOR NORMAL DISTRIRUTION FUNCTION.
C ! FOR DETAILS SEE REFERENCE IRM SYSTEM/340 MANUALy IBM COR-
c ! PORATION, TECHNICAL FPUBLICATIONS DEFARTMENT, 112 EAST FOST
c ! ROAD, WHITE FLAINSyNEW YORK 10601, .
C i
C
C !
C ! NOMENCLATURE .
c { _______________ b .
I ! VARIAELE NAME ) v DESCRIFPTIGN
oo NORD s NUMBER OF GAUSSIAN FIONTS
C : ZK _ _ GAUSSIAN POINTS
C ! AR GAUSSIAN COEFFICENTS
C ! . LAMDA _ RATE OF OCCURRENCE OF ASSIGN-
C ! . ABLE CAUSE’
C ! Yo ‘ INCOME WHEN IN~CONTROL
' C ' Vi INCOME WHEN OUT-OF-CONTROL °
C ' KR REFAIR COST PER HOUR -
C ! KS - ) SEARCH COST PER HOUR
C. ! TR N AVERAGE-TIME TO REPAIR
C : TS AVERAGE-TIME TO SEARCH
C ! RR FIXED SAMPLING COST
c ! cC ' - VARIAELE SAMFLING COST -
C i DELTA _ " SHIFT PARAMETER '
C v Ri : MEASURE OF SKEWNESS
C { R2 : " MEASURE OF KURTOSIS
C ; THETA . MAGNITUDRE OF VARIATION IN MEAN
C ! H STANDARDIZED' DECISION INTERVAL
~ - C ! NH MAX. NO. OF DECISION INTERVALS
C ! NI _ ) MAXIMUM SAMFLE SIZE
C ! <
C ! INFUT DATA CARDS
c 0
C P . :
. .C ! ORDER OF CARDS FORMAT VARIARLE NAME
» ' 1 (8F10.5) - ZK
C ! 2 j (8F10,5) AK .
C : 3 (PF8.2) LAMDA VO, V1 KR
C ! KS»TR»TS»BRYCC
C !
C ! DUTPUT DESCRIPTION
C e TR

¢

;)
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ER S 1

C ! S ' s : . :
(» ! VARIAELE NAME DESCRIPTION }
IS C H T o ' !
C ' PZ1 , A . , “P(Z) 1
C ¥ 8NZ1 - . N(Z) !
. S P PZO | o PR, !
C : SNZO T - ¢ - ONCO)Y .
c . ! NI - , . N H
C ! ARLZRC , - : : ARLO H
. ! ARLONC ' ) ARL1 « .
) C ! HC .- ) H A
c ! GGC , . . g - 1.
C 't FFC : L 3
. C ****x*xxxx**x****x*****x*x***x*******xy****x**x*x*******x&****
c . FROGRAM LISTING
C ROKKOK K KKK 3K 3K KK 30K 3K K KK K 3K K 3K 3K 5K 3K K 3K K K KK XK K 3K 3K K KKK K K 3K oK K KK KK 3K KK K KKK
C X THE ECONDMIC DESIGN OF CUSUM CHARTS TO CONTROL NON- °° X
C. ¥ NORMAL PROCESS MEANS. X
S o ****xx*xx***x***x***x********x**x********x*******xx**x****
Yo EXTERNAL F .
INTEGER Ny NN;IA;IDGT:IER:M;R;NSIG;ITMAX;LL;hhyJJ
INTEGER khthMvNI;NHyNORByIIvIII;JJJ:IMIN:IFLAG»IIII
REAL FrEPSyERS2,RTA»G(2)
REAL LAMDArKRYKS: :
REAL C(3y3)yB(Byi)waAREA(30)ySN(3y1)yD(3v3)
‘COMMON- LAMDA»ARLO,ARLI»U»Vs TRy TS»WyBRRyCCrRIsKR?KS .
DIMENSION ZK(3)rAK(3)¢rZ(3)yA(Z) ' : T
DIMENSION X(3+3)yQ(353)sFT(3+3) . ‘
DIMENSION XX(3r1),Q1(¢3,1),FT1(3s1)
DIMENSION X1(¢(3r1)yQ2(31)sFT2(3s1) -
OIMENSION X2¢1r1)yQ3C¢1s1)yFT3(1v1)
DIMENSION zx1(3,3),ZX°<3,3>;2x4(3,3>,zx5<3,3),zxs<3,3)
DIMENSION ETA(2)»H(30)»FF(30) »ARLZR(30) yARLON(30Y
DIMENSION GG(30)sFFC(30) rHC(30) yGGC(30) »TARLE(8>3v4164)
DIMENSION ARLONC(30)yARLZRC(30)
IFLAG=0 -
NORD=3 . .- _ . .
NI=30 . o :
NH=164 ¢ o
K=NORD
C x****x*****x**************x*x*****x****xx***xx***x*x*******x*x
1 C X READ GAUSSIAN POINTS(ROOTS OF LEGENIER’S_ POLYNOMIALS) AND %
C X GAUSSIAN COEFFICENTS IN THE INTERVAL -1 TO-+1 »COST AND K
C X RISK FACTORS FROM THE DATA CARIS. X
C *x**xx*x*******xx*x*x*x**xx********x*x*x***x***x*xx*******x***

READ(Ss20) (ZK(II)sII=1,K)
‘ " READ(S5%20) (AK(II),II= 1:?\)
20 ° FORMAT(3F10.5)
REAR(S,101) LAMIIQ;UOin9[\R‘yl\SrTRyTS;BB:CC
101 FORMAT(PFB.2) ) ~

. . ., .

5

-
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000

401

300

60
65
75

80

" 186

DELTA=0,5 © . - | SR

IDELTA=1 . . — SR . .
CONTINUE .- R :
Ri==0 0_5- - < ‘ . *
IR1=1 . : _ ‘
CONTINUE - - S
R2=-0.9 ; . ' . .
IR2=1 ) B ‘ v T .
CONTINUE . j _ : :
ETA(1)=0.SOXDELTA |

ETA(2)=-0,50XDELTA
DO 1000 I=1,NI
RI=I. ‘

DO 290 KK=1sNH |
H(KK)=0,154+0.05%KK
DO 900 J=1,2
ATA=ETA(D)
THETA=ATAXSART (BI)
KKK KKK KK KK IK KKK K KKK K KKK ***********x****x**x**xxx**x**x*

X CALCULATE THE GAUSSIAN CPEFFICENTS AND GAUSSIAN FOINTS X

% FOR THE INTERVAL O TO STANDARDIZED DECISION INTERVAL H.%
x*****x**x*x***x****kﬁxx*x**x**x**********x****xxx***x*x*k o
DD 25 III=1,K ~ :
ZCITT)=(ZK(ITT)+1,0)kHC(KKI 0,5

ACIT =AK(IIIYKH(KK)IX0.5 ‘ ' .
HRKKAKK K KKK KKK KKK K K KoK 3K oK 3K K KKK KK 3K 3K 3K 3K K KKK 3K oK 3K 3K KK K KKK K3 K KKK K XK 3K ok 3k 3k Kk
XCALCULATE THE ELEMENTS OF THE MATRIX ‘A’ USED IN EQUATION(&.12)X
**x**x*x*****xxx**xx*xx*xx**x**x*****x*xxx*x*x**xxx*****x**x*****
CONTINUE B _

DO 75 II=1,K . _ . . »

D0 75 JJd=1yK ‘ -

XCIT dJ)=Z(II)- Z(JJ) -THETA

CALL AUX(XsR1yR2sQsFTsRIyITyJJ) _ .
IFCIILEQ.JJ) GO TO &40 - ' .
CCITr»JdIy=—ACII)XQ(IT»JdJ) -

GO TO 65 . _
C(II,JJ)=(1,0- Q(II:JJ)*A(II))
DCIIyIT)=CAET,J0) |

ﬂ!.i

i
!

CONTINUE 4 '
xx*x***x***x*mx*x******* 3K KK 3K 3K 3K KKK 5K KKK K 3K KKK K 3K KK K 3K KK KK KK K K 3k K oK
XCALCULATE THE ELEMENTS QE.THE MATRIX ‘Y’ IN EQUATION (6.12)%
x*xx***x**x**xx*xx**x***x**x**x*xx**x***xx**x*x*x***x****xx**
N0 80 II=1,K v "

]
XX(IIsy1)=-Z(II)-THETA

i

-Jdd=1

CALL AUX(XXyR1sR2yQ1sFT1yBI»I1rJJ)

B(IIs1)=FTi(II»1)

CONTINUE ’
NN=3 ' . . .

M=1

o .
L
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IA=3 ,

IDGT=4 ) .
*******X*****************************X*************************;
XCALCULATE INVERSE OF MATRIX ‘A’ USING IMSL SUBROUTINE LEQT2F X
'*AND\TO OBTAIN MATRIX ‘P’ IN ERUATION (6,12) X
*xx********x********x*xkﬁ’%&***x**********xx***xxx****x**xx****

4

0OD0

: _ CALL’ LEGT”F(D!N!NN;IA;B!IDGTrUhAREArIER) ~ )

: ' © - _SUM=Q.0 ‘ . K >

: ‘D0 120 II=1yN . .- ' - ~
Xi(IIs1)=Z(II)~-THETA
JJ=1. o .

: * CALL AUX(X1sR1,R2»Q2yFT2yRI,II,»JJd) s
420 SUM= SUM+G°(II!1)*B(II 1)*A(II) y .
' X2¢1s1)= “THETQ . . . . ’ -

II=1 . ’ ¢ . -

) JJ=1 ' : ’ ,
CALL AUX(XQ;RI,R27031FT373I!IIvJJ) : ‘ .
FZ1=SUM+FT3(1,1) \- . . . . ’

' DO 130 II=1,K-
—_ SN(IIsli=1.0 |

130 GONTINUE . =~
CcaLL LEQT”F(D!M!NN:IA!SN!IDGTyNhAREA!IER)
SUM1=0.0

- [ *************X*********************xx*********
C ‘% CALCULATE MATRIX N(Z) USING EQUATION (6.14)X - TN
C ********************************************** '

-N0 400 II=1,K
400 SUM1=SUM1+SNCIIy1)KQR2(ITr1)XACIT)

) o C AAOKR KKK A K KK KK K KK K KKK KKK 3K K K KKK KK KK KOK KKK KK KKK KK Kok KKK
. e . X% CALCULATE FC0)sN(O)sARLO AND ARL1 L 3
C **X****************************X*********************

SNZ1=1,0+SUM1
IF(FZ1.6E.1.0) PZ1=0.999 °
ARL=8NZ1/(1.0-PZ1) '
IF(ATA.EQ.ETA(2)) GO TO 600 _
ARL1=ARL R .
SNZ1=5NZ1 . '
PZ1=PZ1
60 TO 900 -
600  ARLO=ARL 3 {
SNZ0=SNZ1 : Cie
FZO=FZg
900  CONTINUE
- U=vo-vi
U=KS+VOXTS N
W=KR+KS+VOX(TR+TS) ‘ :
GA= SGRT((U/ARLO+BB+CC*BI)/(LAMDA*U*(ARLI 0. 5))) : :
G(1)= GQ ' /) A
G(2)= : ' 2

EPS=1.0E~3
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EPS2=1,0-3 A S Co
BTA=1,0E-2; , S I
NSIG=5 .o o
¢ ITMAX=100-
LL=2 [
c **x****xmx*xx*x****x**x******xx*x***x***xx***************xx
C . XCALCULATE SAMFLING.INTERVAL DENOTED! HERE BY G USING - X
C XEQUATION(6.15) AND SOLVEDR BY USING IMSL SUBRDUTINE ZREAL1X
C XFOR GIVEN VALUE OF. SAMPLE SIZE.CALCULATE BOyB1 AND L=FO % -
C XREPRESENTING EQUATIONS (6.2)r(6,3) AND(6.1) RESPECTIVELY X -
C KKKRAKKRKKKKKKKKAAKK KKK KRR KIRK KA KKK AR IR IR KKK KKK KKK KKKK
. CALL ZREAL1(FsEPSyEFS2sBTAsNSIGsLL Gy ITMAX,IER) -
R=G(1)
RO=(1,0/R~0,SOKLAMDA+L,0/13 ., OXLAMDAKK2XR ) /ARLO
. B1=(ARL1-0.5+1.0/12,0XLAMDAXR) %R
FO=(LAMDAXUXB1+VUXROYLAMDAKW (BR+COKRI K (1, 0+LAMDA*BI)/R)/
1¢1, 0+LAMDA*81+TS*BO+LAMBA*(TR+TS))
H(KK)=H(KK) . A v ‘ - s
FF(KK)=F0 ' :
* ARLZR(KK)=ARLO o
=\ ARLON(KK)>=ARL1 - S
GG(KKY=R =~~~ "
IF(KK.GT.3) GO TO 989 . : : ‘
‘50 TO 990 .
989  KKi=KK-1 - .
' KK2=KK-2
IFCCFF(KKL) +GT FF(KK2)). ann AFF (RK1) . GT.FF(RK))) 50 TO 990
IMIN=KK-1 _
GO TO 1101 /
990, CONTINUE ,
XMIN=1000.0 - T
DO 1100 JJJ=1sNH. -
IFCFF(JIIVVETS XNIN) G0 -T0.1100 :
XMIN=FF (JJJ) -
IMIN=JJJ
1100 CONTINUE
C x*x*xxx**x*x***x*x*x****xxx**********x********x*xx*x***xx*
C XCALCULATE OVERALL OFTIMUM SAMPLE SIZE,»SAMFLING INTERVAL X
C XARLOYARL1 AND STANDARDIZED DECISION INTERVAL Hs» AND PER X
C "% HOUR LOSS-COST. ) X
t KRKKIAAIAORKKAKARKKK KKK KIKKK KK IR K AR KK KKK AR KA KKK AKKK K
1101  FFCC(I)SFF(IMIN)

.

HC(I)=H(IMIN)

66C(I)=GG(IMIN) |

ARLONC (1) =ARLON ( IMIN)

ARLZRC (1)=ARLZR ( IMIN)

IF(I.GT.3) GO TO 1102

. GD TO 1000 -

1102 IF((FFC(I-1).GT.FFC(I~2)) . AND. (FFC(I~1).GT.FFE(I))) GO TO 1000

IFLAG=1 .
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<~ IIII=I-1 . . : ”
.. 60 TO 1300~ = - L.
- 1000 'CONTINUE . .
C XMIN=1000,0 - ~ 5 - 4 X
DO 1200 KKK=1,NI . -

XMIN= FFC(RKR)

| 1:}=m\-' S
1200 CO)
1300

0 \ I=IIIX - , . - . ¢
yIR1yIR2y1)=1 ' . ‘

LECIDELTA»IR1IR2y2)=ARLONC(I)

BLE(IDELTA;IRIrIR273)xARLZRC(I)

R (IﬂELTAyIRl;IR2v4)=HC(I);

(IDELTA»IR1»IR2yS5)=G6GBC(I) . .

(IDELTA:IRirIRQré) FFC(I) . T -

3+0.5 - - e . L

R2+1 g : ,‘ A ,;}?J\%‘M %
B6T.2.0) GO TO 401 - | - o S

AARD
TABL
TARL

.. 401  REER140,5 0 ¢ i
IRI=IR1+1 ' A
IF(R1.GT.0.5) GO To 750 !
GO TO 300 . : :

750  DELTA=DELTA+0.25 2-
IDELTA=IDELTA+1 L
. IF(DELTA.GT.2,25) GO TGO 800-
GO TO 401 § \
800  PRINT 1 ’ !
PRINT 1005.Laﬁnn,voﬂu1,hR,uS,TRyTS,BB,Cc ]
1025 FORMATC’ “y10Xy LAMDA='rF3.2+2Xy V0=’ 1ES+152Xs 'VUi=’yF5.1,2Xy
1’KR=’yF35.2y2Xy /KG= rFS.QrQXv'TR"!FS 372Xy'TS“'vF402y2Xv’B—
2yF4.292X7C="9yF4.2) )
FRINT 2 :
FRINT 3
* PRINT 4 _ :
R2=-0.5 ' TN
00 100 IR2=1s6 - ) : I
PRINT 11y ((TABLECINELTAsIRIsIR2,1),IR1=1y3),I0ELTA=1s4)
FRINT 125 ((TABLE(IDELTAsIR1,IR2+2)»IR1=153)»IDELTA=1y4)
PRINT 13 ((TARLE(IDELTA»IR1»yIR2s3)»IR1=153)yIDELTA=1,4)
PRINT 14yR2y ((TABLE(IDELTAsIR1,IR2,4)yIR1=1,3)yIDELTA=1,4)
PRINT 15y ({(TABLE(IDELTAsIR1sIR2»5)»IR1=1+3),IDELTA=1,4)
FRINT 16y ({(TABRLEC(IDELTAsIRLsIR2r46)»IR1=153),»IDELTA=1s4)
P IF (IR2,EQ.6) GO TO 100
R2=R240.5
FRINT 4
100  CONTINUE
PRINT 2
PRINT 10

AN

1
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PRINT .2 . A :
PRINT 5 ' : o e .
FRINT 4 ' ‘ '
R2=-0,5
DO 110 IR2=1s6
PRINT 11;((TABLE(IDELTA;IRI,IR°yL;;IR1 =1r3) y IDELTA=5,8)

' "~ PRINT 12y((TABLE(IDELTAsIR1sIR2,2)7IR1=1,3)sIDELTA=5,8)

h PRINT 13y ((TABRLEC(IRELTAsIR1,IR2,d%;IR1=1+3),IDELTA=5,8)

PRINT 1 TABLE(IDELTA;IRi:IR2r4)vIR1x1y3)rIDELTA=5v8)

PRINT 15, ((TABDE(IDELTArIR1,IR2,5)»IR1=1,3)INELTA=5,8)

PRINT 16y ((TRBLENIDELTAsIR1yIR2,4)yIRL= 1r3) y IDELTA=5,8)

7 IF (IRR.ERQ.4) 0-110 : N S

: R2=R24+0.,5 S K o 2

: PRINT 4 ° o ‘
110 EONTINUE C a
PRINT2 A
FORMAT(¢’1/ ///////////' PROBLEM - v94Xr'PAGE 1y C e
FORMAT (4 o o e e e e e R

.1:*'

a~

™
&2

F

N

) . FORMAT (
.- L SO

N -

. 19 110Xs it/ 7 . ) .
y49Xy ‘DELTA »56Xy’ 17/ . ‘ .
7¢y11Xr4HO.S07#22Xs4H0. 7552 Xy4ﬂi.90122X)4H1325117X)'I'/

1
- S !
X’ ! 179 A(/ e Yy, L0/
L SO 1/ y110XKs 7 0
X/ ! R2 1/yS1Xy’R1/+57Xy’ 1’7/
K b7 94(26H ~0.5 L : . b/
R SO T Y N 1 - ' ’ )
P SO 17y 110Xy # \\ o : '
4 FORMAT(/ " e
S FORMAT(’ | )
SO T 49Xy ’
X’ ! [y 1IXV4HL .50, 22X 401,75, 22Xy 4H2. 00, 22X s 4H2, 254 17Xr * V' */
v Xt Y Y & - “Yy? Ly
X’ ! 1/y110Xy 17/ R
X%l R2 . SIXy‘R17yS7Xs 0/ : , :
I S I 7 q4(24H -0.5 0.0 0.5 ~ )y’ -1/
X’ ! '§§<§£;4~ ————— BT RS WA it/
X’ ! Py 110Xy 1Y) :

10 FORMAT(“17/////77/7/7/7° FROBLEM

» 94Xy 'PAGE 277/)
i1 FORMATC(’ 1§ - 17 r4(3F8.3r7 1)y

N D ’
‘P4(3FB.35 0 1)s7 L1

1

12 FORMAT(’ | H D]
13 FORMAT(’, | . Vv A(3F8.297 1)y Lo %) ) .
14 FORMAT(” 17sF4419’ 1/94(3F8.357 173" H %) .
15 FORMAT( | V794(3F8.3r7 1702’ S 17y
146 FORMAT(‘ | !'y4(3F8‘477 D N L.t

STOP ) '

END \

SUBROUTINE AUX(X!RlyRQrG,FT BIyIs D)
C *************************X************************************
c % CALCULATION OF FIRST FOUR TERM.OF aN ENGEWORTH SERIES X

. MW Ea

-
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X AND THE ELEMENTS OF EQUATION (6.10) AND (6.11).IMSL SUBRROU-%
XTINE . MSMRAT -IS USED TO CALCULATE THE AREA OF NORMAL CURVE. X
ARRRRKRRRKKKKRRKRRORKRRRRRK ORI RRRRKKRKRKKRKKK KKK
DIMENSION X(3r3)»Q(3r3)rFT(373)»Y(3s3) ,
"IF(X(I+J)+EQ.0.0) GO TO 85

ZX1=0,39894228XEXP (- X(IrJ)*X(I;J)/Q.O)

GO TO 86

. ZX1=0,39894228
Y(IrJ)=ABRS(X(IFI)) :
ZX2=CY (T SUSKK I~ 0) XZX1 : -

 ZX3m= (X Oy SIRKI -3, OKXL Ty ) IKZXL

ZXA=(Y(Ir JIKK4-6,0KY (T r J)%K2+3,0)%ZX1

ZXS=— (XTSI KKS=10 OXX (X y JIKKIH15, 0KX (I y ) IKZX1

ZXE=Y (T y JYXKE=1T,0KY (I y.J) XK4+45,0XY (IyJ)X%X2-15)%ZX1

RCT»J)=ZX1~- R1/(6.0*SGRT(BI))*ZX3+R”/(°4 0*BI)*ZX4+(R1*R1)/(7 + OXRI
1)%ZXé

Z=X(IsJ) e

CAlLK NSﬁRAT(Z!RMyIER) o /’ :

FIX=ZX1/RM -

FTC(I»J)=1,0~- FIX-R1/ (b O*SGRT(BI))*ZX°+R°/(“4 0*BI)*ZX3+(R1*R1)/(7“
1, 0%BIYXZXS .

RETURN

END

REAL FUNCTION. FQG)
***********************************ﬁ***********************.

% EXTERNAL RPUTINE FOR CALCULATION OF SAMFLING INTERVAL ASX

X A ROOT OF THE EQUATION «4.15). X
*************ﬁ*********************************************
REAL Gr.LAMDAyKRsKS oo
_ COMMON LAMDAARLOsARL1,UyVsTRyTSyWsBRyCCrBIYKRsRS
RO=(1,/6~0,XLAMDA+1./12,. XLAMDAXX2%XG) /ARLO

Rl1=(ARL1-0.5+1.. /712 . XLAMDAXG)'XG )
DBO=-(1,/(GXG)*1./12,XLAMDAXX2) /ARLO

DR1=ARL1~0.5+1./6.XLAMDAXG

Ti= LﬁMDA*G**”*(U+TS*BO*U+LAﬁDA*U*(TR+TS) BOXV-LAMDAXW ) XDE1

T2=GXX2X (V+LAMDAXR1IXV+LAMDAXVK(TR+TS Y ~LAMDAXTSXR1XU-LAMDAXTSXW) X
1DRO

T3=(1. 0+LAMDA*BI+TS*BO+LAMDA*(TR+TS))*(1 O+LAMIAXB1L ) X (BR+CCXBI)
T4= TSf&&i} 0+LAMDA*81)*DBO*(BB+CC*BI)

T5= (BB+CC*BI)*LAMDA*G*(TS*HO+LANDA*(TR+TS))*DBI

.- F=T14T2-T3-T447TS - ‘ . ' -

IATA

RETURN
END

4
~0.7746 - 0.0000- 0.7746
0.5956 0.8889 0.5556

0.05 -~ 150.0 . 20.0 20,0 © 10,0 o 0.2 0.1 . 0.8 0.1
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APPENDIX VI -~

FROGRAM CUSUMSEMI

\

FROGRAM DESCRIPTIDN
*********************************************X***************:
i FURPOSE OF THE PROGRAM!®

] e e et e e

i THE MAIN FURPOSE OF THIS FROGRAM IS TO PROVIDE

{TARLES FOR THE SIMPLIFIED SCHEME FOR AN ECONOMIC DESIGN
{OF. CUSUM CHART.TO CONTROL NON-NORMAL PROCESS MEANSy UNIER
'A SFECIFIED VALUE OF ARL1 AT THE REJECTABLE QUALITY LEVEL.

3 - (3F10.5) NELTA»R1sR2

! NOMENCLATURE - :
- } _______________ N 1
! UARIARLE NAME ‘ o DESCRIETION_. ?
f NORD . . NUMBER.OF GAUSSIAN FIONTS '
: K . .. BAUSSIAN FOINTS . 4
! AK - GAUSSIAN COEFFICENTS, !
' DELTA ' A . "SHIFT FARAMETER !
' R1 - , MEASURE OF SKEWNESS" '
i R2 ‘ ) s MEASURE OF KURTQOSIS !
» L THETA .. : _ MAGNITUDE OF VARIATION IN MEAN !
! H - STANDARDIIZEDR DECISION INTERVAL | -
! gﬁ/ . MAX. NO. OF DECISION. INTERVALS !
. ! I SAMPLE SIZE !
! X1 - : SPECIFIED VALUE OF ARL1=1.05 !
' X2 : _ SPECIFIED VALUE OF ARL1=1.1 !
{ INPUT DATA CARDS ' L
! ORDER OF CARDS FORMAT VARIABLE NAME !
H 1 ' ‘ . (8F10.5) ZK !
! 2 : o (8F10.5) aK H

o o B s 000 Ghte e ot See b . G4 b e St Ty P00 b e

OO0 OOOO0COOoOo0OoOooOoO000o0No0COOO00oO000000000ca00n

I
1
1
]
1
1
)
[}
(]
t
I
]
[}
3
!
I
t
1
1
4
t
1
1
1
)
T
t
'

i VARIARLE NAME- . . DESCRIFTION .

h ) . )

H BH(I) . ITH DECISION INTERVAL.

: BTHEtA(I) VALUE OF THETA CORRESFONDS

} TO THE ITH DECISION INTERVAL.
H BARLOC(CI) ' VALUE OF ARLO CORRESFONIS

H TO ITH VALUE OF THETA.

OLCID - ) RERIVATIVES (0F BARLO(I)
) oo WITH RESFECT TO RTHETA(I).

s

-
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800

899

201
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© Ink=( (RARLO (T )k%2) KTHETA) / ;
. DELIY. , !
ROGRAM LISTING : :

: RKXRR KK E KK KKK KKK KAKKAK KA KKK KK AR K KA KT KHK KKK KKK K
.%X A SIMFLIFIED ECONOMIC SCHEME FOR THE DESIGN OF CUSUM X
%X CHARTS TO CONTROL NON-NORMAL FROCESS MEANS. X
KRKRKKKKKKKKKKKIKKIRKKKIKAAKRKKKKKRKKKKKKKKKKKKKKIKKIKKKKKKK
DIMENSION BTHETA(”B);BARLO(”B)rBH(”B)yDL(”B)rTéBLE(°8v4r2)

. INTEGER KyNDIMyIER

COMMON R1sR2 yZh(3)'Ah(3)rBI

NORD=3

K=NORDR

NH=28

I=NH
****************X*********************************************
X READ GAUSSIAN FOINTS (ROOTS OF LEGENDER‘S FOLYNOMIAL) AND X
X GAUSSIAN COEFFICENTS IN THE INTERVAL -1 TO +1y NO- NORMALITY*
% PARAMETERS AND DELTA. X
**************************************************************
READ(S:EO) (ZK(II)s II=1,K)

READ(S,20) (AR(II)y II=1sK)

REAN(Sy21) R1yR2,DELTA

FORMAT(3F10.5)

FORMAT(3F10.3)
***********************************************************

% SPECIFICATION OF DESIRED LEVEL OF ARL1 (TYFICAL VALUES X

X ARE 1.05 OR 1.1), X
***********************************************************
X1=1.08

X2=1.,1 : .
THETA=1.65 )

H=0.,032

X=X1

IFLAG=1

DO 904 I=1yNH

THETA=THETA+0.05

,JX**************************************X**********************

X CALCULATE SAMPLE SIZE USING EQUATION (6.20) FOR. GIVEN THETA.
3K KSR K 3K KK K K K 3 3K oK 3K 3K oK 3K 3K 3K 3K 3K 3K 3K 8 R KK KK KOKOR KKK K 3K0K KK KK K0R ROR KRR KKK AR KK
BI=(4%X(THETAXTHETA) )/ (DELTAXDRELTA)

CONTINUE

CALL SUB(THETAsHsARL)

IF(ARL.GE.X) GO TO 901

H=H+0.001

GO TO 899

THETA=-THETA

3K KK KKK 5K K KK KKK KK K 3K K KOk K KKK K KK XK KKK K AR K K oKk K ok ok Kok kK Kok ok kokokok K
X CALCULATE ARLO AND H UNDER THE CONDITION THAT ARL1=1. 05 X
X OR 1.1 FOR A GIVEN THETA. X

oK 3K KKK K 3Kk 3K K 3K 3k 3k 3k 3 K 3k 3K 3K K K oK K K K K K 3k ok 3K K K K 3k 5K ok ok 3K K Kok KK K0k K sk ok okokokok Kok sk k ok
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CALL SUB(THETArHsARL)

THETA=~THETA

BTHETA(I)=THRTA .

BH(I)=H - oy

RARLO(I)=ARL

CONTINUE ‘
******************************X*************************
X FIND THE DERIVATIVES OF ARLO’S WITH RESFECT TOQ THE X

% CORRESFONDING VALUE OF THETA. . o X

**x*********xx*xx******x*******x**x*x***x*x****xx*******
NDIM=NH
CALL DGT3(BTHETA;BARLO;DLrNDIMvIER)

DO 911 I=1sNH
TARLECIy1yIFLAG)= ((BQRLO(I)**”)*BTHETA(I))/DL(I) ‘

" TARLE(I»2yIFLAG)=RTHETAC(I). .o
TABLECI»3¢IFLAG)=RH(I) ’ ¢
TARLE(Is4yIFLAG)=RARLO(I)

CONTINUE

"IF (IFLAG.EQ.2) GO TO 915 ,J/’

IFLAG=2

THETA=1.35

X=X2 ‘ : ' -

H=0.03& _ . : ’ v
GO TO 800 ‘ .

“PRINT 1sDELTAYR1rR2yX1,X2
DO 920 I=1rNH
"PRINT 2
'PRINT 32 ((TABLE(Ts»IIyIII)sII=1s4) III= 1r2)
CONTINUE
PRINT 2
FRINT 4
sTOP
FORMAT( 1/ 926X»82¢ ' ~")/

X26Xy ’ :',aox,"'/ <.

714X!7ﬂELTQ"7F4‘~914Xr’Ri_'vF4.~v14X1 R2=’3yFA4.2+914Xy’ 1"/

X26Xy ¢ |

X26Xy 2 Y5 BOXs T 17/ .
X26Xy ! 17980 =")y 17/

26Xy © 920717 939C K)y )/

X26Xy! 19 2C7 116Xy ‘L1=/ yFA.2916K9 717/

X26Xs 7 19207179390 )10/ -
X26Xs 7 192071939 =)y 1)/

X26Xs / 1;('?'111Xy'§'y7Xy’f’97Xr’f’vile':’)/
X26X9 7 92(7 1} nx i THETA | H { . ARLO AV
s 11X 71 7)Y/

FORMAT(/ “s28Xs2C 1 911Xy 1 97Xs 717 97Xe’ 1 7911Xs’17))

FORMAT(’ “926Xs2( 17 9F10.19’ 173F6.297 173F6.397 175F10.1s7 7))
-FORMAT(’ ’926Xs82(7=")) _ . . .
ENIt

***x*x*x*********xx*x*x***xx**x*x**x****xx***x***xxx***
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BRI o . o
- C X SUBROUTINE FOR® CALCULATION OF AVERAGE RUN LENGTH ARLX% -

.C **x***xxt********x**x**x***xx*****x******************x*
: SUBROUTINE SUR(THETAsHrARL) -
 REAL RyEPSyEPS2sBTA : Lo
~. REAL C(3;3)rB(371)ywhﬁREA(30)rSN(371 PR3y
INTEGE NrNNyIérIBGTrIERrMﬂ\!NSIB!ITNQXrLrI\I\vIIyIIIvJJJ!IﬁIN
' DIMENSIGON Z(3)rA(3) Y . ;
eniE “TDIMENSION X(3¢3)rQ(3y3)yFT(3y3) = -~ :
- . DIMENSION XX(3s1)y81(3,1)sFT1(3s1) " A
DIMENSION X1¢3»1)»Q2¢(3+1)sFT2(3y1) e
‘DIMENSION X2(1r1)yQ3(1s1)sFT3(1r1) ‘
A DIMENSION ZX1(3s3)sZX2(3,3)rZX4(3+3) »ZX5(3,3) yZX6(3+3)
L .COMMON R1sR2 ,Zh(s),aw<3),31 : »
* t\ 3 ‘- ‘ .
C g no 25' III=1,K
. .o CZCIITY=(ZKCITIN4140)%HX0.S
4 ACITI)=AK(IIT)KHXO.S - 7‘
“\ 25 - CONTINUE : o
: v D 75 II=1yK - . ' >
10 75-JJ=1+K s
XCITpJd)=Z(TI)=Z(JJ)~ THETA ‘ - b
: CALL AUX(XyR1yR2yQsFT¢RIyITyJJ) s
P IFXIILER.JJ), -GO TO 40
i CC(IRedd)==ACIIIXQCIIy J)
- GO TO 65
60 CCITrd)I=(1.0~QCITyJIIKACII)) (
45 D(JJrII)= C(II;JJ)
75 CONTINUE
DD 80 II=1sK
XX(IIy 1)=-Z(II)-THETA
JJ=1 ‘
¢ .+ CALL AUX(XXrR1»R2yQ1sFTL1sRI+IIrJd) o
. BC¢ITy1%=FT1(IIs1) _ ,
B0  CONTINUE , J
NN=3 '
M=1 :
1A=3 . '
IDGT=4
CALL LEQT2F (DM NN;IArBrIDBTrthREA;IER)
SUM=0.0 :
00 120 II=1sK ‘ o,
e © - .- X1(IIy1)=Z(II)-THETA
JJ=1
CALL AUX(X1+R1sR2sQ2yFT2sEI»IIsJJ)
120  SUM=SUM+R2(IIs1)XB(IIr1)XA(II)
X2(1y1)==THETA - o
II=1 - .
Ju=1 ‘
CALL AUX(X2sR1yR2,QR3sFT3yBIsIIyJJ)
PZ1=SUMFT3(1s1)
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DO 130 II=1,K L -
O OSNCIIVI)=L.0

, 130 CONTFINUE '

: cAaLL LEGT"F(U!N}NN;IA!SN!IDGT!UKQREA:IER)-‘
. dUM1=0,0
. © no 400 II 1sK
& 400 SUM1= SUMI+SN(II:1)*G”(II)I)*A(II)

‘ SNZ1=1,0+5UM1 ‘ o
ARL=SNZ1/(1,0~PZ1) :

RETURN - ,
: - END . o
- DATA - . {,
=0.7746 , 0.0000 0.7746 .
0.955956 0.8889 ) 0.3556 ‘ B - ' . o
0.5 . 1,0 2,0 ¢ ‘ . | ‘
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