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Abstract 

The purpose of this study was to examine if office workers were capable of using 

an online version of ROSA to accurately assess MSD risk factors in their own offices, 

and see if online training can reduce discomfort. Fifty-five participants completed a four 

week program where they assessed their own office simultaneously with a trained 

observer, and either received or did not receive feedback on their performance. A main 

effect for Assessment Type was seen for the ROSA final score, and mouse and keyboard 

section, with workers underestimating these risk factors on average. Worker and 

observer assessments of the chair, monitor and telephone were not significantly different 

but were significantly correlated. Worker-reported scores were more strongly correlated 

with discomfort than observer-reported scores. Feedback appeared to have a detrimental 

effect on worker-assessment accuracy, and the relationship between discomfort and 

ROSA scores. Mean discomfort decreased across the four weeks of the study, as did 

ROSA final scores. 
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Glossary 

The Rapid Office Strain Assessment (ROSA): A tool developed to quantify risk factors 
in the office environment by assigning scores to various equipment configurations and 
worker postures. 

Musculoskeletal Disorders (MSD): An umbrella term for a number of injuries and 
disorders of the muscles, tendons, nerves, and ligaments. Also known as Repetitive 
Strain Injuries (RSI), Cumulative Trauma Disorders (CTD), or Work-Related 
Musculoskeletal Disorders (WRMSD). 

Computer Workstation: An office workstation is defined as an individual or group 
workspace featuring a chair, computer monitor, keyboard, mouse, telephone, and any 
other computer peripherals required to complete computer-related work. 

De Quervain's Tendonitis: An inflammation of the extensor pollicis brevis and the 
abductor pollicis longus tendons of the thumb. 

Lateral Epicondylitis: Also known as "tennis elbow". A disorder caused by highly 
repetitive activities resulting in an inflammation of the tendons inserting onto the lateral 
epicondyle in the elbow. 

Carpal Tunnel Syndrome: A condition in which the median nerve is compressed in the 
wrist, leading to numbness and muscle weakness in the forearm and hand. 

Frame of Reference Training (FOR): A method of educating individuals to conduct 
evaluation, in which the criteria for evaluation are grouped into smaller and well defined 
"frames" (specific postures, behaviours, or achievements). 

Web-Based Training: A method of educating workers using the computer, where 
training information and feedback are provided through the internet. 

Canadian Standards Association (CSA) International: A not-for-profit membership-
based association that develops standards that enhance public safety and health. 

Adobe DreamWeaver CS4: Hyper-text mark-up language (HTML) software designed 
to assist in the development of dynamic standards-based websites and web-based 
applications. 

Observer: the individual conducting an ergonomic evaluation. This would be the 
individual recording the participant's working postures and workstation configuration 
using the Rapid Office Strain Assessment. 

Worker: The individual who occupies a computer workstation and completes some or 
all of their working tasks by using the computer. 
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Workstation: The computer, monitor and input devices, as well as seating arrangements 
and communication tools (telephones, etc.) that a worker interacts with in order to 
accomplish working tasks. 

xiv 



Chapter I 

1.0 Introduction 

Computer-based tasks have become an increasingly more prevalent part of the 

workplace in the past two decades. In 1989, 39% of workers reported using the computer 

as part of their required working tasks, with that number rising to 50% in 1994 (Lowe, 

1997). In 2000, 60% of Canadian workers reported that they used the computer as part of 

their job, with 80% of those workers requiring the computer on a daily basis (Lin & 

Popovic, 2003; Marshall, 2001). 

Though computer work is associated with lower levels of muscular exertion 

compared with manual material handling, the rate of musculoskeletal disorders (MSDs) 

has increased at a rate parallel to the increase of computer users in the workplace in the 

past two decades (Bayeh & Smith, 1999). It has been reported that anywhere between 

10% and 62% of computer workers experience the symptoms of MSDs as a result of their 

work (Wahlstrom, 2005). Risk factors related to the use of MSD onset in computer 

workers include the presence of sustained, non-neutral postures of the upper extremities 

(Keir et al., 1999; Village et al., 2005), as well as prolonged static seated tasks (Gerr et 

al., 2002). 

Postures that are associated with musculoskeletal disorders have been commonly 

assessed using ergonomic checklists, such as RULA - Rapid Upper Limb Assessment 

(McAtamney & Corlett, 1993), REBA - Rapid Entire Body Assessment (Hignett & 

McAtamney, 2000), and OWAS - Ovako Working Posture Assessment System (Karhu et 

al., 1977). The goal of these checklists is to classify jobs and job tasks into certain risk 

levels, and to guide the ergonomist's decision on how urgently workstation changes must 
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be made. These checklists were developed primarily for manual material handling tasks, 

and while loosely applicable to the office environment (Leuder, 1996), they do not 

account for all of the variables that can contribute to musculoskeletal disorders in this 

workplace. The Rapid Office Strain Assessment (Sonne et al., 2010) was developed to 

address these concerns and provide ergonomists with a quick method of identifying and 

quantifying risk factors in the office environment using a checklist. 

The Rapid Office Strain Assessment (ROSA) (Sonne et al., 2010) was developed 

to assign risk factors to the various components of an office workstation, as well as to 

quantify a level of risk associated with the workstation. This tool has been tested by 

comparing total body discomfort scores from the Cornell University (CU) discomfort 

questionnaire (Hedge et al., 1999) against ROSA final scores achieved by expert 

workstation assessments. ROSA final scores were shown to be moderately correlated 

with whole body discomfort (r=0.38) and inter- and intra-observer reliability were 

excellent ( ICO 0.91 and 0.88, respectively). Although methods like ROSA appear to be 

useful as screening tools when used by a trained professional in an office environment, 

performing an individual assessment of each employee in a workplace can still be quite 

time consuming and costly for an employer. 

ROSA may show promise in identifying risk factors within the office 

environment; however, research has indicated that there are challenges and concerns over 

how the risk factors can be eliminated. Preventative measures for reducing MSDs related 

to office work include training workers on the risk factors present and the use of methods 

to reduce their impact. The most effective method of training has been shown to be a 

training session followed by a participatory approach, where an ergonomist aids a worker 
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in setting up their furniture within their workstation (Bohr, 2002). However, this 

approach is also the most time consuming and one of the most costly, as ergonomic 

experts must be hired to perform the training and new furniture must be purchased. 

Furthermore, assigning specific departments within an organization to receive training 

over another department may not be based on quantified evidence of ergonomic risk 

factors, and the employees with the greatest needs may not receive the risk factor 

identification and furniture adjustment training they require. Amick and colleagues 

(2003) found that office ergonomic training alone was not effective in reducing symptom 

development throughout the course of a workday. This research indicates that the use of 

adjustable furniture and direct instruction on how to adjust the furniture is essential in 

preventing the onset and proliferation of MSD symptoms. To limit MSD symptom 

development, the furniture in an office must be selected carefully, and the training 

methods that are used must also consider the characteristics of the worker population 

being trained. 

Training protocols related to ergonomics and video-based online training can be 

categorized as belonging to one of three main approaches. Behaviour modelling 

(Bandura, 1982), frame of reference (Bernardin & Buckley, 1981), and tutorial 

approaches are most commonly used to deliver information to workers (Seidel et al., 

1978). These training methods can be tailored to suit the population being trained, and 

can also be adapted from a hands-on, in person style, to an online computer-based 

approach. One benefit of an online training approach is that it allows for the tracking of 

user responses, and can also be designed to allow for a dynamic training environment 

where the learner's input can shape how the remaining training is carried out. 
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Incorporating feedback and the ability for workers to self-pace and repeat their 

training at will serves to increase training effectiveness. The goal of external feedback in 

the learning process is to provide correction on errors in order to increase performance in 

the person who is learning (Schmidt & Lee, 2005). Feedback can be provided during 

training, immediately after training, or on a regularly scheduled timeline at set periods 

after the training has been completed. Additionally, feedback can be precise (as in, all 

errors, even marginal ones, are corrected), or given only if errors in performance exceed a 

specific window (Lee and Carnahan, 1990). While feedback can be used as an effective 

tool in increasing the effectiveness of learning, it does require additional human resources 

(in the form of an instructor who is observing training, then giving instructions on how to 

perform the training next time). For the purposes of this study, it is important to examine 

whether feedback is essential in learning to use the Rapid Office Strain Assessment 

effectively. 

A workplace assessment tool that incorporates the convenience of online delivery 

with self-guided video-based training and risk assessment would give workers a means 

by which they can learn about risk factor identification and MSD prevention, and an 

outlet for describing their perceptions of the demands of their work in a quantitative way. 

It also provides employers with a more cost-effective alternative to traditional 

ergonomics training. With an entire office presenting worker self-selected scores related 

to their workstation setup over a designated time period, more problematic workstations 

could be targeted quickly and with less cost, and priorities for equipment purchases 

and/or additional training could be established. 
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Therefore, the purposes of this study are to determine: 

1. if worker self-assessments of their office workstations using an online version of 

ROSA are comparable to those made by a trained observer. 

2. if workers can improve their self-assessment scores using ROSA online over the 

course of a one month training period. Directed expert feedback and the effect that it has 

in improving worker scores will be specifically evaluated. 

3. the relationships between the ROSA scores from workers and a trained observer and 

worker-reported discomfort scores. 

4. if training using ROSA online can help to reduce worker-reported discomfort. 

1.1 Research Questions 

1. Are ROSA subsection and final scores reported by office workers using the online 

version of the tool comparable to those determined by a trained observer for the same 

workstations? 

2. What is the impact of directed expert feedback and number of assessments on the 

agreement between trained observer- and worker-reported ROSA scores? 

3. What are the relationships between worker-reported and trained observer ROSA 

scores and worker-reported discomfort scores? 

4. Is an office ergonomic training protocol using ROSA online effective in reducing 

musculoskeletal discomfort in office workers? 
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1.2 Hypotheses 

1. Workers will be able to assess their own office workstation accurately using ROSA 

online. Specifically, worker-reported ROSA scores will not be significantly different 

from those obtained from a trained observer at any time during the four week 

protocol. It is expected that participants will be able to complete ROSA online with a 

high degree of accuracy because only gross postural assessments are required 

(Burdorf, 1995). 

2. An increase in the agreement between worker-reported and trained observer ROSA 

final and area scores is expected between weeks 1 and 4 of the study. Similar to the 

work of Frese et al. (1991), it is expected in this study that the group that receive 

directed expert feedback on their ROSA assessments will experience greater 

improvement, relative to trained observer assessments, compared to the group that did 

not receive feedback. This is also supported by Bohr (2000) and Mastronardi (2009), 

who saw greater training effectiveness when workers received feedback and actively 

participated in their training sessions. 

3. The correlations between worker-reported ROSA scores and worker-reported 

musculoskeletal discomfort will be higher than those between trained observer ROSA 

scores and worker-reported discomfort. Based on previous studies on self-reporting, 

it is expected that workers will over-report risk factors (Heinrich et al., 2004; 

Wiktorin et al., 1993). Additionally, the presence of pre-existing musculoskeletal 

discomfort has been shown to factor into over-reporting of ergonomic risk factors 

(Juul-Kristensen & Jensen, 2005; Mikkelsen et al., 2003). Sonne et al. (2010) found 

in many cases that high discomfort scores were being reported, although moderate (3-
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5) ROSA scores were being assessed at the workstation. This may influence the 

correlation between musculoskeletal discomfort and ROSA scores. 

4. Ergonomic assessment alone has not been proven to reduce musculoskeletal 

discomfort (Amick et al., 2003). However, decreased discomfort has been 

documented following the addition of adjustable furniture (Amick et al., 2003) and 

the use of a participatory approach to ergonomic training (Mastronardi, 2009). While 

no new products will be introduced to the workstations during the course of the 

proposed study, the knowledge of how to configure the office workstation using the 

existing furniture, and the ability to quantify the risk level of the office, will provide 

the workers with the feedback necessary to make and maintain useful changes to their 

workstation. As a result, it is expected that the repeated worker assessments and the 

information on making changes to the workstation will lead to decreases in reported 

discomfort over the span of the 1 month training period. 
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Chapter II 

Review of Literature 

2.1 Magnitude of Office Work 

The number of computer users in the workforce has been steadily increasing over 

the past two decades (Bayeh & Smith, 1999) from 33% of workers in 1989 to 60% in 

2003 (Lin & Popovic, 2003; Marshall, 2001). Of the 60% of workers that used the 

computer in 2000 to complete work tasks, 80% of them reported using the computer on a 

daily basis (Lin & Popovic, 2003). In 2001, 60% of female workers and 50% of male 

workers reported that they used a computer at work (Marshall, 2001). In 2004, computer 

workers in Canada reported having 9.9 years of computer experience on average (Wulff-

Pabilonia & Zoghi, 2004). 

Measures recorded from computer use tracking software have placed the average 

time of computer use per week at 12.4 hours for computer users in a multi-nation study 

(Taylor, 2007). These workers on average had a peak daily use of 4.9 hours per day, 

recording 37,000 mouse clicks and 23,800 keystrokes per week. The most common 

functions of computers in the workplace have been internet exploration, word processing 

and email (Lin & Popovic, 2003; Lowe, 1997). The most common characteristics of 

computer users up until 2003 have been that they were under 55 years of age, had high 

levels of education or income, worked full time and were in high skill or clerical 

positions (Lin & Popovic, 2003). 
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2.2 Musculoskeletal Disorders 

Musculoskeletal disorders (MSD) are injuries to the soft tissues of the body 

(nerves, muscles, tendons, ligaments, blood vessels, and spinal discs) that are a direct 

result of an individual's interaction with their workplace (OHSCO, 2008). 

Musculoskeletal disorders are associated with numerous risk factors. These risk factors 

include awkward postures, high force exertion, static postures, repetitious activities, and 

activities of long duration (Carter & Bannister, 1994; NIOSH, 1997). The issues that 

pertain most prominently to the office environment are those of static and awkward 

postures, duration and repetition (Village et al., 2005). 

MSDs heavily factor into the finances of businesses in Canada, and can mean the 

difference between profitability and expansion, and non-sustainability. Between 1996 

and 2004, MSDs resulted in over $12 billion in costs to Ontario employers (OHSCO, 

2008). The costs of MSDs can be divided into indirect and direct costs (Moore et al., 

1993). Direct costs include the resources responsible for labour, equipment, buildings 

and supplies. The indirect costs include the costs associated with worker rehabilitation, 

medication and social impact of the disorders (Coyte et al., 1998). Musculoskeletal 

disorders were also shown to contribute to 42% of all lost time claims and 50% of all lost 

time days in Ontario in 2007 (OHSCO, 2008). 

The symptoms associated with MSDs in the office workplace do not take long to 

manifest in workers once the risk factors are encountered. In the first month of a three 

year longitudinal study by Gerr et al. (2002), 46% of neck and shoulder musculoskeletal 

symptoms were reported by workers. In this same time frame, 32% of hand and arm 

musculoskeletal symptoms developed. The most common musculoskeletal disorders that 
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are associated with computer work have been identified as DeQuervain's tendonitis, 

lateral epicondylitis and carpal tunnel syndrome, all of which increased in prevalence by 

a factor of 2.2 when office work exceeded 20 hours per week (Blatter & Bongers, 2002; 

Village et al., 2005). These disorders were more prevalent in the female office worker 

population when compared to their male counterparts (Carter & Bannister, 1994). 

Complaints of musculoskeletal discomfort in the office workplace are common 

amongst computer users (Village et al., 2005), but the prevalence of discomfort has 

varied between several studies. Conservative numbers put the percentage of computer 

users who experience musculoskeletal symptoms between 25-35% (Carter & Banister, 

1994), but more recent studies have shown discomfort levels to be as high as 63% 

(Marcus et al., 2002; Wahlstrom, 2005). With respect to body region, greater than 35% 

of workers reported discomfort in the neck, 35% in the shoulder, and 17% and 8% in the 

wrist/hands and elbow, respectively (Borg & Burr, 1997). Discomfort in the neck was 

reported by Korhonen et al. (2003) to be present in 34.4% of office workers. 

Additionally, office workers may experience more musculoskeletal disorders than 

workers in other lines of employment, such as industrial or manufacturing work (Bendix 

et al., 1985; Leuder, 1986; Smith et al., 1981). 

The slow onset of disability seen with musculoskeletal symptoms associated with 

office work may lead to a seemingly low prevalence of musculoskeletal disorders in the 

workplace. This trend is illustrated by Gerr et al. (2002), who analyzed 632 new hires 

that completed 15 or more hours of computer work per week. In this study, the incidence 

of the onset of musculoskeletal symptoms in office workers was 58 cases per 100 person-

years of work. As rest appears to be the most effective method of alleviating the 
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symptoms of musculoskeletal disorders (McLean et al., 2001), disorders may never 

develop unless prolonged computer work occurs on a daily basis (Carter & Bannister, 

1994). However, the discomfort experienced by workers still directly influences their 

productivity in the workplace, and has been mentioned as a contributor to worker 

disability (Gerr et al., 1991). 

Specific characteristics of the workers themselves have also been linked to the 

risk of musculoskeletal disorders. For example, being female, over the age of 30 years, 

non-Caucasian, less than the 20th percentile in height, and having a previous history of 

neck and shoulder discomfort were all seen as risk factors for the onset of 

musculoskeletal symptoms and disorders (Demure et al., 2000; Gerr et al., 2002). 

In conclusion, there is a positive relationship between musculoskeletal disorders 

and computer work. Risk factors related to posture, work duration, equipment 

configuration and task demands will all be discussed in section 2.3, alongside specific 

risk factors related to the use of computer equipment and office chairs. 
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2.3 Office Ergonomics and Equipment Configuration 

2.3.1 The Chair 

The chair is the most frequently used component of the office workstation. 

Regardless of what task the user is performing (be it keying, mousing, reading, or using 

the telephone), the user will typically be sitting in a chair. Research conducted on 

computer intensive work has indicated that some users may spend up to 90% of their day 

sitting in an office chair (Dowell et al., 2001). Sitting in general poses a threat to back 

health for the computer user. When compared with a standing posture, there are 

significantly higher compressive forces on the spine when in a seated posture (Callaghan 

& McGill, 2001). Additionally, research has shown that prolonged sitting is positively 

associated with disc herniations (Wilder & Pope, 1996). 

Comfort while sitting is related to the fit of the chair to the body type of the 

person, the person's performance or behaviour when seated, and the person's assessment 

of their comfort while seated (Harrison et al., 1999). The behaviour of the chair user 

dramatically impacts the ability for the chair to aid in reducing musculoskeletal 

discomfort. Branton and Grayson (1967) examined sitting patterns in office workers, and 

found that less than 50% of the time spent sitting was in a posture that received full back 

support from the backrest. A slouching posture, where the user was only receiving partial 

support from the seat pan and armrests, was seen 23.4% of the time. An additional 3.3% 

of the time was spent receiving only minimal support from the seat pan itself, and 23.8% 

of the time was spent in other postures (such as leaning to one side or the other) (Branton 

& Grayson, 1967). To ensure that the worker is sitting in a position which encourages 
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full back support, it is important that the chair is adjusted properly, and that the rest of the 

workstation is configured correctly as well. 

The CSA standards on office ergonomics are a set of guidelines designed to 

optimize the design of office workstations for its workers. When these guidelines are 

met, the end result is expected to be healthy, efficient, effective, productive, comfortable 

and satisfied workers (CSA International, 2000). When examining the features of the 

chair, the CSA standards state that an office chair should not restrict circulation to the 

legs, and should allow the user to easily change and maintain postures, support the back 

and spine and provide a surface that will prevent sliding off the seat. When evaluating 

the properties of office ergonomic seating, the chair can be broken down into its main 

components - the seat pan, the backrest and the armrests. 

2.3.1.1 Seat Pan 

In regards to the seat pan, the height, width and depth, as well as the shape and 

density of the pan, must all be considered. The ideal height of a chair is considered to be 

the user's popliteal height plus the thickness of their footwear (CSA International, 2000). 

If the chair is too high, there will be excessive pressure on the underside of the thigh. 

This may impinge the blood vessels and nerves flowing to the legs, leading to pain and 

numbness in the extremities (Tichauer & Gage, 1978). Additionally, if the chair is too 

high, this may cause the worker to sit forward on the edge of the chair without back 

support, leading to increased muscle activity in the lower back and possible muscle 

fatigue (Harisinghani et al., 2004). If the chair is too low, there may be excessive 

pressure under the buttocks, as well as unnecessary spinal lean and pelvic rotation that 

compromises the lumbar spine curve (CSA International, 2000; Harrison et al., 1999). 
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The seat pan height should be adjustable to accommodate a large range of workers. The 

seat height variations should be adjustable between 380mm and 510mm, which will 

accommodate a range between the 5th percentile female and a 95th percentile male (CSA 

International, 2000). 

The depth of the seat pan also contributes to the worker's comfort. It is essential 

that the legs can be positioned so there is no compression or contact at the back of the 

knee. This will allow the individual to sit back into the backrest, reducing strain on the 

back muscles (Callaghan & McGill, 2001; CSA International, 2000). If the seat depth is 

too long, the back rest will not support the lower back, and the resulting rearward 

curvature of the spine will lead to discomfort (CSA International, 2000; Harrison et al., 

1999). Additionally, if the seat pan is too short, pressure will be placed on the back of 

the thigh, compressing blood vessels and nerves (Tichauer & Gage, 1978). The seat pan 

depth should be no greater than 432mm, or less than 420mm. If the seat pan is to be 

adjustable for depth, the adjustability should go from 432mm to 482mm (CSA 

International, 2000; Keegan, 1953). 

Other factors to consider for the seat pan are its width, shape and angle. The seat 

pan should be wide enough to ensure that people can easily get into and out of the chair, 

as well as provide them with the ability to adjust their posture. The chair width should be 

no less than 450mm (CSA International, 2000; Keegan, 1953). The seat pan should be 

curved behind the back of the knee, creating a "waterfall edge". This curved surface will 

reduce pressure points that could further contribute to compression of nerves and blood 

vessels under the thigh (Keegan, 1953; Tichauer & Gage, 1978). The seat pan should 

also feature a posterior inclination of 5 degrees, which has been shown to reduce lumbar 
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disc pressures and EMG readings while seated (Harrison et al., 1999). This posterior 

inclination can make it easier for a user to sit with their back against the backrest. The 

properties of the seat pan height and depth that are analyzed using the Rapid Office Strain 

Assessment (Sonne et al., 2010) can be found in Figure 1. 

Ktf*n 0 5*0* {1,1 'J'ofl4,*ft- - It™™ faaHlgll - )uwf Ma front C n a b z g urn, lilXStfiksWt %3C« 

Ange <?G' (2) Aa#s ^ O ' G J fee Ground 0} VaBsr Desfc •• Abfe- la 

Appf fflffiasKe? Se» ef Spare FM L « S - ls& T ta T « Iter! - Mw ? Thai 
Between Kmse a n i I d p of fcra of Spaca ^ 1 Sam of Spsre <2!« 

Seat (I.) 

Figure 1: Risk factors pertaining to the seat pan height and depth found in the Rapid 
Office Strain Assessment, along with the score for each risk factor 

(Sonne et al., 2010). 

2.3.1.2 Backrest 

Up to 85% of the population will report back pain at some point during their life 

(Andersson, 1999). Furthermore, it is estimated that half of all office workers will seek 

some sort of medical treatment for low back discomfort (Hart et al., 1995). As previously 

mentioned, there is greater pressure on the intervertebral discs when sitting compared to 

standing (Nachemson, 1966). The flattening of the lumbar spine and the increased strain 

on the ligaments, tendons and muscles of the lower back also contributes to the risks 

associated with working in a seated posture (Harrison et al., 1999). The backrest is 

essential in preventing kyphotic motion of the lower back and increased muscular 
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activity, thus creating a more comfortable sitting posture. The backrest properties can be 

broken down into the inclination of the rest, the shape and position of the lumbar support 

and the height of the backrest. 

The back support should provide support to all regions of the back. However, the 

most important area of support is in the lumbar region (CSA International, 2000; Keegan, 

1953). The addition of a lumbar support has been shown to decrease the amount of 

muscle activity and disc pressure in the lower back when the user is in a reclined position 

(Figure 2) (Andersson & Ortengren, 1974). The design of the lumbar support should be 

vertically convex and horizontally concave, and should feature an adjustability range of 

at least 50mm, between 150mm and 250mm above the seat pan height (CSA 

International, 2000). The main source of increased muscular activity and disc pressure in 

the lower back is the rearward rotation of the pelvis associated with the seated posture 

(Wu et al., 1998). Wu and colleagues (1998) found that the presence of a pelvic wedge 

prevented this rotation, thus decreasing the pressure on the lower back. The pelvic wedge 

was also a source of discomfort for some users. A compromise could be a combination 

of a lumbar and pelvic support (Dowell et al., 2003) combined with ideal sitting posture, 

as outlined in the CSA Standards (CSA International, 2000). The importance of limiting 

the movement of the pelvis during sitting has been a long standing consideration. 

Keegan's (1953) rules for chair design indicate that there must be a gap between the 

backrest and the seat pan to allow for the posterior projection of the sacrum. The amount 

of lower back support present in the backrest is paramount in ensuring low back comfort 

while sitting. However, the backrest is only as effective as the user's sitting posture and 

their adherence to contact with the back support during sitting. 
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Contact with the back support is influenced by the position of the backrest and the 

task requirements associated with the worker's job. Sitting postures can be broadly 

categorized as forward, upright or reclined. A reclined posture of approximately 110° 

relative to the seat pan has been associated with lower levels of activity in the erector 

spinae muscles (Boudrifa & Davies, 1985). As seen in Figure 2, when backrest angle 

increases, the amount of back muscle activity decreases (Anderssen & Ortengren, 1974). 
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Figure 2: Myoelectric amplitude reduces with increase in seat back inclination 
(Anderssen & Ortengren, 1974). 

As backrest angle increases, the view of the monitor is reduced and forward head 

postures with respect to the body begin to contribute to neck and upper back discomfort 

(Haughie et al., 1995). With this in mind, it is important to achieve an optimal level of 

backrest recline while interacting with the computer. It is recommended that the backrest 

angle be adjustable between 93-113° with respect to the seat pan (CSA International, 
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2000), which falls in line with earlier research indicating that the minimum amount of 

acceptable seat back recline (the degree to which the user leans backwards into the chair ) 

is 105° (Keegan, 1953). With backrest inclination angles of greater than 110°, increased 

lower back comfort can be expected in workers, up to a certain point. However, with 

higher amounts of backrest inclination, the amount of reach required to access computer 

peripherals will also increase, resulting in increased strain on the muscles of the upper 

back and shoulders. The value of 110° (Harrison et al., 1999) appears to be a level of 

recline acceptable to achieve worker comfort and minimize the amount of reaching and 

non-neutral head and neck postures. The properties of the backrest analyzed using the 

Rapid Office Strain Assessment (Sonne et al., 2010) can be found in Figure 3. 
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Figure 3: Risk factors pertaining to the backrest found in the Rapid Office Strain 
Assessment, along with the score for each risk factor (Sonne et al., 2010). 
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2.3.1.3 Armrests 

Armrests reduce intervertebral disc pressure and muscle activity in the upper back 

and shoulders (Brattgard, 1969; Hasegawa & Kumashiro, 1998). The presence of 

armrests on a chair has also been reported to increase comfort in users (Hasegawa & 

Kumashiro, 1998), and reduce the static loading on the shoulder and arm muscles during 

mousing (CSA International, 2000; Lueder & Allie, 1997). However, the mere presence 

of armrests does not ensure that the worker will be comfortable. It is important to have 

the armrests configured to fit the user. The CSA standards state that armrests should be 

height adjustable within 180mm-280mm, and the armrest should be at least 180mm long. 

The inside distance between armrests should be 450mm to allow users safe and easy 

entry and exit from the seat (CSA International, 2000). Additionally, the shape and 

composition of the armrest must also be considered. It is important that the armrest be 

free of sharp or hard edges, as this may cause pressure points leading to damage to the 

soft tissues in the forearms (Szabo & Gelberman, 1987). The risk factors related to the 

armrests that are analyzed using the Rapid Office Strain Assessment (Sonne et al., 2010) 

can be found in Figure 4. 
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Figure 4: Risk factors pertaining to the armrests found in the Rapid Office Strain 
Assessment, along with the score for each risk factor (Sonne et al., 2010). 
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Seated comfort is a multi-factorial challenge. As indicated in this section, chair 

design and adjustability, as well as the interaction of the user with the chair, all factor into 

whether or not a worker is comfortable in their workstation. A neutral sitting posture has 

been shown to be associated with lower levels of musculoskeletal discomfort (Genaidy & 

Karwowski, 1993). The ideal postures listed within the CSA standards on office 

ergonomics promote neutral positioning of the body in order to improve comfort. 

2.3.2 The Monitor 

The monitor position greatly affects how a worker interacts with their 

workstation. Heights and distances away from the worker can influence seated posture, 

as well as the interaction with other computer peripherals such as the mouse, keyboard 

and telephone (Burgess-Limerick et al., 1998). The height, angle and distance from the 

user all play a role in determining the optimal position of the monitor. 

The CSA standards indicate that the ideal height of the monitor should be where 

the top row of text on the screen is level with the worker's sitting eye height (CSA 

International, 2000). This monitor position is intended to allow the worker to view the 

screen with the head and neck in a neutral posture. There is research that contradicts the 

use of either a high and low monitor position. A high monitor position is associated with 

greater visual strain (Bergvist & Knave, 1994; Jaschinksi et al., 1998; Sommerich et al., 

2001; Sotoyama et al., 1996), and a low monitor position is associated with 

musculoskeletal stress of the head, neck and upper back (Figure 5) (de Wall et al., 1992; 

Grieco et al., 1982; Sommerich et al., 2001). 
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Figure 5: Monitor position and the trade-off between visual strain and musculoskeletal 
stress (Sommerich et al., 2001). 

A conflicting report has found that lower monitor positions have been associated 

with less muscle activity in the trapezius (Burgess-Limerick et al., 1998), as well as less 

reported user discomfort (Hill & Kroemer, 1986). However, a very low monitor position 

(40° below eye level) compared to a moderate monitor position (15° below the sitting eye 

level) was deemed to be less favourable by users (Turkville et al., 1998). Increased 

muscular activity in the neck and upper back has also been seen in high monitor positions 

(Straker et al., 2008). These conflicting reports on high and low monitor position can 

make it difficult to recommend where the monitor should be positioned for the end user, 

though lower to moderate monitor positions seem to provide the user with the optimal 

trade-off between musculoskeletal stress and visual strain (Figure 5). The risk factors 

pertaining to the monitor that are analyzed using the Rapid Office Strain Assessment 

(Sonne et al., 2010) can be found in Figure 6. 
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Figure 6: Risk factors pertaining to the monitor found in the Rapid Office Strain 
Assessment, along with score of each risk factor (Sonne et al., 2010). 

2.3.3 The Keyboard 

Using the keyboard has been compared with repetitive, upper limb intensive 

industrial work in terms of the amount of sustained non-neutral postures and rapid, 

repetitive motions that have been known to cause musculoskeletal disorders in the upper 

extremities (Serina et al., 1999). The CSA standards on office ergonomics (CSA 

International, 2000) indicate that the keyboard should be positioned with the worker's 

arms hanging relaxed from the shoulders, and elbows at approximately 90° to allow the 

wrists to be fairly straight while keying. Deviations from a straight wrist position and 

relaxed shoulders have been associated with discomfort (Fogelman & Lewis, 2002; 

Korhonen et al., 2003). To obtain an ideal keyboard height, two strategies can be used. 

An adjustable keyboard tray can be positioned to the proper height for the worker, or the 

worker can raise or lower their chair to keep the keyboard at the proper height. If the 

keyboard platform is too high, the user may have to shrug their shoulders, which may 

increase the stress on the upper back, neck and shoulder muscles (Lueder & Allie, 1997). 

If the keyboard is too low, excessive extension of the wrists can contribute to fatigue and 

possible injury in the extensors of the forearm (Szeto & Ng, 2000), as well as increased 

carpal tunnel pressure (Hedge et al., 1999). 
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A horizontal distance of greater than 12cm from the edge of the desk surface to 

the "J" key on the keyboard has been associated with a lower incidence of hand and arm 

disorders and discomfort (Marcus et al., 2002). Additionally, a "J" key height of greater 

than 3.5cm above the desk surface, and radial wrist deviation greater than 5° while 

mousing was associated with a greater risk of hand and arm disorders and symptoms. 

To combat non-neutral postures of the wrist during typing, alternative keyboard 

designs have been explored. Split keyboard designs attempt to position the wrists in a 

neutral position by separating the keyboard in half and increasing the opening angle (the 

degree that the front of the keyboard separates between the G and H keys), as well as the 

gable angle (the degree to which the middle of the keyboard elevates with respect to the 

outer edges of the keyboard) (Rempel et al., 2007). Research into the effects of split 

keyboards on discomfort has been unable to show significant results in terms of increased 

productivity or comfort (Swanson et al., 1997). However, from a muscle activation 

perspective, a split keyboard, such as the Microsoft Natural Ergonomic Keyboard 

(Microsoft Hardware Group, Redmond, Washington, USA), has been shown to reduce 

EMG activity in the muscles of the forearm when compared to standard keyboards (Szeto 

& Ng, 2000). Additionally, joint angles are closer to neutral when using a keyboard that 

has an opening angle of 12°, a gable angle of 14° and a slope (the degree to which the 

front of the keyboard is elevated with respect to the back of the keyboard) of 0°. This 

keyboard configuration was also rated to be the most preferred keyboard configuration by 

users in a study comparing standard keyboards and split keyboards (Rempel et al., 2007). 

Use of a split keyboard, combined with a proper keyboard height, was also associated 

with less ulnar deviation and forearm pronation (Rempel et al., 2009). The risk factors 
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pertaining to the keyboard that are analyzed using the Rapid Office Strain Assessment 

(Sonne et al., 2010) can be found in Figure 7. 
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Sbfwklcri Sdaxed (I.) Keyboard aa .PssiRtr Typefe*-!) 3^lsSIte«|*lti»sStou|ffi;*a 

An§fe C>]5* Wrist t*1) 
JLtfenslMj (J) 

Figure 7: Risk factors pertaining to the keyboard found in the Rapid Office Strain 
Assessment, along with the score for each risk factor (Sonne et al., 2010). 

2.3.4 The Mouse 

With modern computer graphic user interfaces, a majority of computer work 

involves the user moving a cursor on the screen by physically manipulating a mouse or 

trackball. Estimates of total average mouse use during the workday have been reported 

as approximately 60% of the total computer work (Fagarasanu & Kumar, 2003; Harvey 

& Peper, 1997). The typical mousing configuration for a right handed worker has them 

placing their mouse to the right side of the keyboard and using their right arm to control 

the cursor. In this scenario, the anterior and medial deltoid (Cook & Kothiyal, 1998), the 

right upper trapezius and rhomboids (Harvey & Peper, 1997) have shown increased 

muscular activation, as well as increased pressure in the carpal tunnel compared to 

neutral straight wrist postures (Keir et al., 1999) when compared to a scenario where the 

mouse is directly in line with the shoulder. 
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The risk factors associated with the mouse can be categorized based on the mouse 

type (traditional or otherwise) and the position of the mouse during use. The CSA 

guidelines on office ergonomics (CSA International, 2000) state that the mouse should be 

positioned to allow the hand to be at the same level as the elbow, with the wrist as 

straight as possible (Cook & Kothyial, 1998; McAtamney & Corlett, 1993). If the mouse 

is used for a long period of time, the palm or forearm should also be supported to 

minimize the static contractions of the shoulder muscles (CSA International, 2000; 

Lueder & Allie, 1997). A challenge associated with a standard configuration of the 

mouse and keyboard for a right handed user lies in the position of the numerical keypad 

on a standard keyboard. The numerical pad causes the user to extend the arm further to 

the right, which causes an increase in shoulder muscle activity (Cook & Kothiyal, 1998). 

The recommended course of action to eliminate this risk factor is to implement one of the 

following solutions: Use the mouse with the left hand on the left side of the keyboard, 

provide a keyboard without a numerical pad, or provide a slide over platform that will 

position the mouse on top of the numerical keypad (CSA International, 2000). 

Alternative mousing devices, such as the trackball, allow for a central position of 

the cursor control. This central position has been associated with decreased muscle 

activity when compared to the traditional right side mousing position (Harvey & Peper, 

1997). The trackball has been shown to be associated with lower levels of ulnar 

deviation in users, but has also been shown to increase the amount of wrist extension 

required to control the cursor (Fagaransanu & Kumar, 2003). Another alternative 

mousing solution has been shown to encourage neutral postures of the wrist and forearm 

while mousing. Aaras and colleagues (2002) tested the joystick style of mouse and found 
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significant decreases in worker discomfort in comparison to a traditional mouse over the 

course of a 1 year testing period. 

The style and position of the mouse depends on the task demands placed on the 

worker. An alternative input solution, such as a tablet for graphic design, is a prime 

example of a cursor control device that fits the needs of the task demands. Risk factors 

pertaining to the mouse that are analyzed using the Rapid Office Strain Assessment 

(Sonne et al., 2010) can be found in Figure 8. 
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Figure 8: Risk factors pertaining to the mouse found in the Rapid Office Strain 
Assessment, along with the score of each risk factor (Sonne et al., 2010). 

2.3.5 Duration of Exposure 

The duration of office work has been shown to increase the amount of discomfort 

that workers experience, as well as how rapidly the onset of discomfort occurs from the 

initiation of office work (Blatter & Bongers, 2002; Brandt et al., 2004; Fogelman & 

Lewis, 2002; Kryger et al., 2003; Marcus et al., 2002). The risk of musculoskeletal 

discomfort was greater for workers who used the keyboard for greater than 4 hours a day 

compared to workers who used the keyboard for less than 4 hours a day, as reflected by 

odds ratios of 1.46 and 1.05, respectively (Blatter & Bongers, 2002). The impact of 

computer work duration was different in both men and women, with a significant 

increase in the odds of experiencing musculoskeletal discomfort occurring at 6 hours of 
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work per day in male computer workers, and at 4 hours of work per day in female 

computer workers (Blatter & Bongers, 2002). The duration of computer work over the 

course of a week also influenced the risk of developing musculoskeletal disorders, as the 

risk of disorders increased significantly with greater than 20 hours of computer work 

(Village et al., 2005). 

Localized discomfort has also been shown to increase in workers who used the 

computer for long periods of time throughout the work day. Forearm pain risk increased 

with use of a mouse device for more than 30 hours per week, and with more than 15 

hours of keyboard use per week (Kryger et al., 2003). Right forearm pain also increased 

in a linear fashion with an increase in mouse use between 0-30 hours, and with increasing 

keyboard usage between 0-15 hours (Kryger et al, 2003; Lassen et al., 2004). Increases 

in discomfort and disorders of the neck and shoulder have been associated with 

prolonged computer work. The right shoulder pain prevalence ratio increased from 1.6 to 

2.5 in workers who worked greater than 30 hours per week at the computer, when 

compared to workers who performed less than 30 hours of computer work per week. The 

pain prevalence ratio increased for tension neck syndrome from 2.5 (for workers who 

worked between 25-29 hours at the computer) to 4.7 (for workers who spent more than 

30 hours a week at the computer) (Brandt et al., 2004). The 2004 study by Brandt and 

colleagues also saw the relative risk ratio for new neck pain increase from 1.8 for 15 

hours of computer work per week to 2.4 for greater than 30 hours per week. New neck 

and shoulder pain symptoms were also significantly correlated with greater than 20 hours 

of mouse work per week and keyboard use of greater than 15 hours per week, which was 
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close in magnitude to the amount of exposure to computer work that was associated with 

discomfort and disorders of the forearms (Kryger et al., 2003; Lassen et al., 2004). 

2.4 The Rapid Office Strain Assessment (ROSA) 

Ergonomic checklists have been used for the past 3 decades to quickly assess and 

prioritize factors related to the onset of musculoskeletal disorders. The Rapid Upper 

Limb Assessment (RULA) (McAtamney & Corlett, 1993), Rapid Entire Body 

Assessment (REBA) (Hignett & McAtamney, 2000) and Ovako Working Posture 

Analysis System (OWAS) (Karhu et al., 1977) use graphical depictions of postures that 

correspond with a risk score reflective of the overall likelihood of the posture causing a 

musculoskeletal disorder. These checklists all serve as a method of quickly screening a 

large pool of jobs to determine where intervention needs to occur, and how urgently that 

intervention should take place. However, RULA, REBA and OWAS are primarily used 

to screen jobs related to manual material handling tasks, and some of the information 

contained within each checklist is not applicable to an office workstation. 

Adaptations to RULA (McAtamney & Corlett, 1993) have allowed for general 

analysis of upper limb posture associated with computer work (Leuder, 1996). This 

adaptation can analyze computer-related working postures, but the tool does not account 

for factors related to specific office equipment (such as the chair, mouse and keyboard), 

and their contribution to musculoskeletal discomfort. Another office ergonomic risk 

checklist is the Office Ergonomic Assessment (OEA), developed by Robertson and 

colleagues (2009). The OEA allows for the systematic evaluation of all furniture and 

accessory positioning within the office. It also provides the user with a score reflecting 

how effective ergonomic training was, and how adjustable the furniture within a 
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workstation is. The scores produced from the OEA do not correspond with worker 

discomfort, however, and as such, it provides no information related to the impact of 

equipment positioning on worker musculoskeletal comfort. 

The Rapid Office Strain Assessment (ROSA) (Sonne et al., 2010) (Appendix F) is 

a tool that was developed to screen office workstations for risk factors related to the onset 

of musculoskeletal discomfort. To accomplish this, risk factors are grouped into the 

following categories: chair, monitor, telephone, mouse and keyboard. Each risk factor 

group is also influenced by a duration score, reflective of the exposure to each of the 

components of the workstation. The scores were derived from a review of literature 

related to risk factors in office and computer work. Ideal working postures were 

identified using the CSA Standards on Office Ergonomics - CSA Z412 (CSA 

International, 2000), and were assigned a score of 1. Equipment positions or working 

postures that deviated from ideal were assigned increasing scores of up to 3. Risk factors 

for each section of ROSA were identified as fixed factors (only one factor could be 

selected out of a choice of 2 or more factors) or additive factors (more than one factor 

could be added on to the fixed factor). Scoring charts were created similar to the grand 

score chart found in RULA and were used to compare two areas of the workstation 

against one another and produce a score reflective of the overall risk factors for the chair 

and the other workstation peripherals (monitor, telephone, mouse and keyboard). 

The scoring process begins with the chair subsection, where scores from the chair 

height and chair depth section are added together to form the vertical axis in the Section 

A scoring chart (Figure 9A). Scores from the chair back rest and armrests sections are 

added together to form the horizontal axis for the Section A scoring chart. With these 
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two scores, the intersecting cell is found, and the Section A score is received. To receive 

the final chair score, the duration value (-1. 0, or 1) is then added to the Section A score. 

The score for Section B (Figure 9B) is achieved by using the score from the 

monitor section (plus monitor duration factor) as a value on the horizontal axis, and the 

telephone section score (plus telephone duration factor) as a value on the vertical axis. 

The intersecting score is the Section B score, which then composes the vertical axis on 

the monitor and peripherals scoring chart. The Section C (Figure 9C) score is a product 

of the keyboard (and duration) score on the horizontal axis, and the mouse (and duration) 

score on the vertical axis. This score is then used as the horizontal axis for the Monitor 

and Peripherals score (Figure 9D). The score that is achieved from this scoring chart is 

then used as the horizontal axis in the ROSA final score chart (Figure 9E). 

The Section A chair score forms the vertical axis of the ROSA final score chart, 

and is used to determine the final risk score out of a scale of 1 to 10 (with 10 representing 

the highest possible risk). 
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Figure 9: ROSA scoring charts - A - Section A; B - Section B; C - Section C; 
D - Monitor and Peripherals; E - ROSA final score (Sonne et al., 2010) 
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From the values achieved from the peripherals and chair score, a ROSA final 

score on a scale of 1-10 is achieved, with 1 representing the minimum level of risk within 

the office, and 10 representing the maximum level of risk. Each risk factor in ROSA was 

represented on a one-page paper checklist in text and graphical depiction of each 

equipment configuration or posture. The risk factors analyzed within ROSA can be seen 

in Figures 1, 3, 4, 6, 7 and 8. 

ROSA final score and discomfort relationships were examined by Sonne et al. 

(2010) by comparing ROSA scores from 72 office assessments with discomfort 

questionnaire data collected from workers who used their workstations for greater than 

50% of their work week. A moderate significant correlation of r=0.38 was found 

between ROSA final scores and total body discomfort. An analysis of variance 

conducted on the mean discomfort levels for each ROSA final score level collected 

indicated a significant increase in discomfort between scores 3 and 5, as well as an 

overall increase in mean discomfort as ROSA final scores increased between 2 and 6. 

To assess the inter-rater reliability of ROSA scores, three trained observers 

simultaneously assessed 14 workstations (Sonne et al., 2010). Intra-rater reliability was 

assessed by having three trained observers assess three mocked up workstations once a 

week for four weeks. Inter- and intra-rater reliability was excellent, with reported intra-

class correlation coefficients of 0.88 and 0.91, respectively. 

The Rapid Office Strain Assessment tool can effectively and reliably evaluate 

workstations for risk factors related to musculoskeletal discomfort. However, 

assessments must still be completed by individuals trained in ergonomics. In a practical 
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application, conducting ergonomic workstation evaluations of every office within a 

facility would be a time consuming task for an ergonomist and expensive for a company. 

One of the purposes of this study is to examine how effectively workers can perform self-

assessments of their workstation using an online version of ROSA. If it is found that 

workers can accurately assess their own offices, then considerable time and costs savings 

could be realized. 

2.5 Worker Training 

Forms of computer training, such as tutorials and web-based courses, allow users 

to control the pace of learning and the schedule over which they complete their 

education. An effective computer-based training program must convey the learning 

material to the user in a method that is as effective, or more effective, than traditional 

classroom setting (with one instructor and multiple students) in order for the process to be 

beneficial to the user. This section aims to highlight various training approaches that can 

be used to deliver ergonomic information relevant to office workstations, as well as the 

advantages and disadvantages of computer training. The self-guided component of the 

training conducted centres around a worker viewing videos on their computer, then 

performing adjustments to their own workstations based on what they deem to be 

appropriate from the training material. Finally, the determinants of success or failure and 

the important components of a training program will be discussed. 

2.5.1 Training Approaches 

Two common approaches to computer-based training are tutorial-based and 

behaviour modelling (Gist et al., 1989). A third form of training, Frame-of-Reference 
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(FOR) training (Bemardin & Buckley, 1981), is also applicable to a computer training 

environment. In the tutorial approach, lessons are presented to the student in text-based 

examples during computer-based instruction, and students select appropriate responses in 

structured drills. The training then provides the students with responses and feedback on 

their performance. Tutorial training tends to be somewhat self-contained, with the 

students applying their learning directly back into the computer program in the form of 

answering questions (Seidel et al., 1978). The tutorial approach is advantageous, as it 

allows the students to control the pace of their lessons, to learn in private, and to gain 

rapid feedback (Gist et al., 1988). 

Behaviour modelling is a training approach where students view a live or video­

taped instructor who demonstrates the required behaviours for intended performance. 

The student then emulates the behaviour required to achieve the desired or correct end 

result. This method has been shown to increase user self-efficacy in the performance of 

tasks related to the computer (Gist et al., 1989). A video-taped presentation combined 

with an interactive computer program has also been shown to increase mastery of 

software-related tasks when compared against strictly tutorial-based approaches (Gist et 

al., 1988, 1989). Furthermore, a behaviour modelling approach associated with computer 

usage has shown to be correlated with positive work styles, less negative affect during 

training and greater satisfaction with training (Gist et al., 1989). 

Finally, Frame-of-Reference (FOR) training serves as a method to effectively 

increase rater accuracy compared to other types of training (Bernardin & Buckley, 1981; 

Schleicher et al., 2002). FOR training provides observers with strict guidelines for rating 

performance by providing definitions of each rating dimension, defining scale anchors, 
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allowing observers to practice their rating skills, and providing feedback on rating 

performance (Aguinis et al., 2009). FOR training imposes a categorization system on the 

observer, and helps in the observer's ability to define and interpret performances 

(Pulakos, 1984). One of the goals of FOR training is to help keep the rater's bias or 

personal experiences out of the evaluation of tasks as much as possible (Schleicher & 

Day, 1998). Research on FOR training has shown effectiveness in improving rater 

accuracy, reliability and validity because it reduces the information processing demands 

placed on observers and provides greater clarity to the dimension definitions (Schleicher 

et al., 2002). FOR training has also been shown to be applicable to a web-based 

application (Aguinis et al., 2009), leading to decreased biases in personality-based job 

analyses. 

However, one of the primary limitations of FOR training is the forced linearity of 

the evaluation process. As observers are forced to categorize performance into strict 

frames or bins (Sulsky & Day, 1992), any behaviours or performances that fall outside of 

these frames may go unrated. If the frames are not selected properly, the overall rated 

performance for a task may not be properly evaluated. 

2.5.2 Advantages of Computer-Based Training 

Computer-based training typically offers learners more control over their learning 

by increasing their practice time, time on task and their attention levels on tasks (Brown, 

2001). Computer-based training has been shown to increase student scores by an average 

of 0.30 standard deviations when compared to a traditional classroom setting (Kulik & 

Kulik, 1991). A meta-analysis conducted by Kulik and Kulik (1991) showed that 81% of 
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studies that examined computer-based instruction had better results than traditional 

instruction methods (such as lecture or textbook-based instruction). The meta-analysis 

also reported a general effect size of 0.30 for the improvements from a computer-based 

instruction class over a traditional instruction class. 

Computer-based instruction has also been shown to be a more cost-effective 

method of instruction compared to tutoring (Niemiec et al., 1986), and is more time-

effective than traditional instructional methods (Kulik et al., 1980; Orlansky & String, 

1979). Furthermore, students have indicated a preference towards computer-based 

instruction because of the level of control over the learning process (Katz, 2002) because 

they are able to access their material independently, and follow the path they choose 

through the lessons (Picoli et al., 2001). 

In summary, the advantages of a computer-based training approach are an 

increase in learner control over the teaching process, an increase in cost and time-

effectiveness, and that students prefer it over other approaches. A combination of the 

various teaching methods would allow for the best features of each training approach, and 

could lead to more effective delivery of training material. This study aims to provide a 

balanced approach by incorporating a Frame-of-Reference analysis of posture, and a 

comparison of worker posture against what is viewed on video during training. 

2.5.3 Disadvantages of Computer-based Training 

While there are a number of advantages of computer-based training, the 

drawbacks of this type of instruction also need to be addressed. In some situations, 

students that were given complete control over their computer learning experience chose 

36 



to terminate their learning experience before they mastered the task they were attempting 

to learn (Tennyson, 1980). When training is provided through a computer, there is also a 

tendency to reduce the personal touch that good instructors provide in a teaching and 

learning setting. There is no opportunity for the instructor to notice a struggling student, 

and as a result, change their teaching style or alter what information to deliver next 

(Cook, 2007). The success of the computer training process also relies on the user's 

ability to navigate the programs properly and make appropriate decisions (Brown, 2001). 

A second disadvantage is that structured computer-based training has distinct yes 

and no answers, with no middle ground or room for error. To allow for immediate 

feedback, multiple choice type quizzes are typically used to examine students. If the 

results are then displayed to the learner as a total score, without information on which 

answers were correct or incorrect, there can be a negative impact on the training process. 

Recognizing errors and providing feedback on how to correct them can serve an 

important role in the training process, increasing the satisfaction with the overall learning 

experience (Frese et al., 1991). When considering the design of a computer training 

program, the role of errors and error correction in the learning experience should be 

considered. 

Moreover, while computer learning has led to higher self-efficacy in users, 

participants may be less satisfied with the learning process when compared to the 

traditional instructional approach (Picoli et al, 2001). This may be due to a lack of 

mastery in the tasks, as reported in previous studies (Steinberg, 1989; Tennyson, 1980). 
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In summary, the disadvantages of computer training are a lack of mastery in self-

selected training approaches, a lack of feedback from errors in the educational process 

and less satisfaction in the learning process. To design a more effective computer-based 

training program, it is important to address these issues. 

2.5.4 Role of Feedback in Training 

Feedback in training typically occurs upon the completion of a task, and usually 

consists of information regarding one's performance given from the instructor to the 

trainee (Hattie & Timperly, 2007). The role of feedback on errors during training serves 

as a method of correcting mistakes and allowing for improved performance during the 

next completion of a task (Frese et al., 1991). Providing feedback has also been shown to 

increase performance in monitoring tasks during self-guided learning (Nietfied et al., 

2006). Feedback on performance is very important, as it helps a learner measure their 

progress, as well as correct their mistakes and improve their skills. There are three main 

goals to providing feedback. The first is to provide information to the trainee on how 

their existing performance has gone, and the second is to tell them what in their current 

performance is wrong. Finally, feedback should contain information on how to improve 

performance the next time the task is performed (Hattie & Timperly, 2007). 

The type of feedback (either negative or positive) can also have a role in the 

effectiveness of the training. Negative feedback has been shown to decrease participant 

motivation, and thus decrease the effectiveness of training, while positive feedback has 

the opposite effect (Van Dijk & Kluger, 2000). Additionally, feedback has to be detailed. 

In the example of academics, classrooms that only give grades have seen less 
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performance improvement then classrooms that provided grades alongside short 

comments on what areas were lacking in performance (Black & William, 1998). For the 

sake of this study, the values that were achieved in each training session were given to 

the participant, as well as specific comments on which areas were scored incorrectly and 

how they could be improved. 

There are specific dimensions to feedback given on task performance that are 

important to understand when guiding learners. These dimensions relate to the timing, 

scheduling, and type of feedback given to the learner. There are two types of broad 

feedback - inherent and augmented. Inherent feedback is feedback provided on a task 

that comes from the execution of a task (such as seeing the knees go to a 90 degree angle 

after adjusting a chair) (Schmidt & Lee, 2005). Augmented feedback is information 

provided supplementary to inherent feedback (such as an ergonomist telling a worker that 

their chair was still high after the adjustment had been made) (Schmidt & Lee, 2005). 

Augmented feedback is important to enhance the learning experience and ensure that 

learners are receiving accurate information in order to improve their performance. 

Augmented feedback can be provided immediately after an action, during an 

action, or after a specific period of time following the action. Additionally, feedback can 

be directed at the results (knowledge of results), or towards the performance (knowledge 

of performance) (Schmidt & Lee, 2005). Various combinations of these approaches can 

contribute differently to the overall outcome of the desired activities (such as 

immediately provided knowledge of results - where a person is told the results of their 

assessment immediately after their interview, as opposed to 1 week later in a written 

report). For the sake of the current study, participants will use inherent feedback when 
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they adjust their furniture in order to achieve a desired posture by looking at the changes 

in their own body before and after and adjustment, and will receive augmented feedback 

in the form of immediate knowledge of results. 

Finally, feedback is only effective if the training itself is completely understood. 

In situations where the interpretation of knowledge is not correct, providing feedback has 

been proven to be effective in correcting performance (Kulhavy, 1977). The online 

training module features a mock training screen that will help the participants understand 

the concept of ROSA training online, helping them focus on the actual method required 

to assess their own office. 

2.5.4 Determinants of Success in a Computer Training Program 

External and internal factors may determine the effectiveness of a computer 

training program. The individual differences of the students play an important role in 

which method of instruction is the most effective in introducing or enhancing concepts. 

The student's goal orientations, learning self-efficacy, age and education all factor into 

the effectiveness of the training (Brown, 2001). The student's computer experience also 

plays a critical role. As indicated by Brown (2001), the level of computer experience 

may factor into a student's choices and the amount of knowledge gained through 

computer-based training. Those students who have had more computer experience 

should be able to focus more of their time on performing the training, instead of on 

learning how to use the software (Brown, 2001). 

The influence of age on training effectiveness was also explored by Gist et al. 

(1988). Results from this study indicated that older students (greater than 40 years of 
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age) had lower training performance scores than younger students (less than 40 years of 

age) when learning computer-related skills. As this study was conducted in an era where 

only an estimated 30% of users were using computers at work (Lowe, 1997), a lack of 

experience with computers may have had more of an impact than it would today, due to 

the increased prevalence of computers in both education and the workplace. 

The method in which the computer training program is presented also affects how 

well students learn. Allowing a high degree of choice throughout the training program 

has been shown to increase student satisfaction with training (Mathieu et al., 1992). The 

employee's job involvement and career plans may also impact how effective work 

training is. Workers with low levels of control and a lack of career interest in the field 

they are being trained in may result in decreased effectiveness of a training program (Noe 

&Schmitt, 1986). 

Student computer experience, age, education, job involvement and job interest 

should all be accounted for in the development and targeting of an occupational training 

program. Targeting the right employees and using the most applicable training methods 

can lead to a more effective training program. The participants' age and experience at the 

current office job were balanced between all experimental groups in the present study. 

All participants in the study also spent at least 50% of their day on the computer, in an 

attempt to reduce the effect of computer experience amongst participants. 

2.5.5 Training in Ergonomics 

Introducing ergonomics training in a workplace has been shown to increase 

general interest in ergonomics, as well as decrease the number of risk factors and 
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complaints regarding the conditions of the workplace (Menozzi et al., 1999). Three 

common methods of implementing training on risk factors associated with office work 

are literature and lecture-based approaches, and a participatory approach (Johnson et al., 

1994). Conflicting reports have emerged regarding which of these methods is the most 

effective in reducing musculoskeletal disorder symptoms. Bohr (2000) found that a 

participatory approach, whereby workers actively made modifications to their own 

workstations, was more effective in reducing discomfort and pain, but in a later study 

found that there was no significant difference in training methods when it came to 

reducing musculoskeletal discomfort (Bohr, 2002). More recently, a training protocol 

that combined a participatory approach with literature and lecture was shown to be the 

most effective in reducing musculoskeletal disorder symptoms and improving the set up 

of office workstations (Mastronardi, 2009). In the majority of cases, intervention of any 

kind has been shown to reduce symptoms of musculoskeletal discomfort in office 

workers (Bayeh & Smith, 1999; Bohr, 2000, 2002). 

In summary, ergonomics training that gets workers to actively make 

modifications to their own workstations has shown improvement in workstation 

conditions, as well as overall worker comfort compared to lecture-based and literature-

based training methods. This study aims to provide active participation for the workers 

by having them perform their own office ergonomic assessment and make adjustments by 

watching educational videos and receiving feedback on their office configuration. 
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2.6 Self-Reporting 

Self-reporting is commonly used in ergonomics for quantifying postures 

(Wiktorin et al., 1993), work durations (Heinrich et al., 2004) and force estimations 

(Spieholz et al., 2001), and more specifically, office settings (Fogelman & Lewis, 2002; 

Gerr et al., 2003). Workers today are asked more regularly to report equipment position 

and the duration of their interaction with their office equipment for the purpose of 

identifying general hazards in epidemiological studies (Fogelman & Lewis, 2002, Jensen 

et al., 2002; Korhonen et al., 2003; Kryger et al., 2003, Marcus et al., 2002). Self-

reporting has its advantages and disadvantages, and its place in the field of ergonomics. 

This section aims to discuss how and when self-reports can be used by workers to report 

ergonomic hazards, as well as discomfort, pain and injury. 

2.6.1 Advantages of Self-Reporting 

Self-reporting is a fast and inexpensive method of collecting data on work 

composition, worker discomfort and the physical demands of a workplace (Andrews et 

al., 1997; Dane et al., 2002; David, 2005; Spieholz et al., 1999). Typically, self-reports 

are made on a questionnaire or in a diary that workers can complete during or after their 

tasks are completed. Self-report studies have been shown to allow for the possible 

identification of predictors for improved worker health (Juul-Kristensen & Jensen, 2005). 

Self-reporting does not typically interfere with the worker while they perform 

their job and generally requires little training in order for the reports to be completed 

properly. No equipment other than a pen and paper is required in order to gather an 

estimation of the risk of MSDs inherent to a job. Self-report questionnaires are very 
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beneficial due to their ease of use, savings in time and money, and their ability to be sent 

out to large samples of workers with little effort (Spielholz et al., 1999). 

2.6.2 Disadvantages of Self-Reports 

While self-reporting approaches are very easy and quick to use, research has 

shown they are only applicable when assessing gross postural activities such as sitting or 

standing, as well as the duration of work (Burdorf, 1995). Worker perceptions of 

exposure have been found to be imprecise and unreliable, and the challenges of worker 

literacy and comprehension of the questions play a role in the ease of implementation for 

a workforce (David, 2005). 

A common challenge associated with self-reporting has been the over-reporting of 

various measures. A study by Heinrich et al. (2004) showed that workers who used the 

computer for more than 3 hours a day over-reported the amount of computer work they 

actually engaged in by an average of 2 hours, compared to direct measurements. Over-

reporting also occurred for workers who spent less time on the computer (an average 

over-reporting of 0.4 hours for workers using the computer less than 3 hours a day). 

Similar results were also seen by Homan and Armstrong (2003), whereby workers over-

reported the amount of computer work they performed by a factor of 1.5. This 

overestimation increased to a factor of 4 when examining the amount of keying that 

occurred during the day (Homan & Armstrong, 2003). 

Self-reporting of exposure to ergonomic risk factors has been shown to be 

affected by the presence of musculoskeletal symptoms (Juul-Kristensen & Jensen, 2005; 

Mikkelsen et al., 2003). The influence of other factors outside of the task or the 
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workplace, such as psychosocial variables or pre-existing injuries and discomfort, has led 

to self-reported exposures exhibiting very low validity (Burdorf & Laan, 1991) and 

reliability (Wiktorin et al., 1993). 

2.6.3 Examples of Self-Reporting 

Self-reporting approaches can facilitate the collection of large amounts of data 

consistent with epidemiological studies on the development of musculoskeletal disorders, 

or measuring ergonomic exposure in intervention trials (Dane et al., 2002). Burdorf 

(1995) found that self-reports were only effective for examining gross activities, such as 

sitting and standing. This gross postural assessment is applicable in such epidemiological 

studies, as it allows for a broad classification of working posture for further analysis. 

Studies using self-reporting approaches have also shown that worker discomfort 

has a negative effect when it comes to interpreting workstation configurations. Coury 

(1998) found that when workers were given a self-directed training package, their self-

reports of discomfort actually increased after the training package was read. The 

explanation for this phenomenon was that increases in worker awareness lead them to 

believe that the inadequacies of their workstation were doing greater damage to their 

bodies than they had previously realized. The study went on to warn that programmes 

focused only on the subjects, and not their working environments, as well as programmes 

delivered through only one medium for intervention (i.e. workstation modification), 

should be closely monitored. This study serves as a cautionary example of how self-

reporting can lead to possible over-reporting and falsely positive identification of 

workstation-related risk factors. 
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Heinrich et al (2004) compared a questionnaire with observational and direct 

measurements to examine the differences in ergonomic hazard reporting in computer 

users. The questionnaire was shown to be an unreliable method to measure postures, as 

well as duration of computer use, leading the authors to state the research challenges in 

this field should focus on developing quick and inexpensive techniques for assessing 

exposure to non-neutral postures and computer use (Heinrich et al., 2004). 

Over-reporting of upper extremity risk factors (such as non-neutral postures, high 

repetition and extended durations) has also been seen in comparison to those determined 

via video analysis and direct measurement. Of these three methods, self-reports were the 

least precise assessment method, consistently over-estimating directly recorded 

measurements of exposure (Spielholz, et al., 2001). Self-reports of extreme posture 

duration, repetition, hand force and movement velocity were also shown to over-estimate 

actual values. 

While gross movements (such as sitting and standing) may be assessed accurately 

using questionnaires, it is recommended that more precise measurements be used when 

examining body positions such as trunk flexion and rotation (Burdorf, 1995). The Rapid 

Office Strain Assessment assesses gross postural categories without specific requirements 

for precise measurements, indicating that the limited demands inherent in the tool may 

lead to usefulness in self-assessment. 

2.6.4 Self-Report Studies Conducted in Ergonomics 

Burdorf and Laan (1991) looked at the applicability of worker assessments on 

postures of the back. Workers completed a questionnaire after each task, and a journal 

46 



was used to input their daily activities periodically throughout the course of a work day. 

Worker postures and work durations were compared against the values from the OWAS 

posture recording system (Karhu et al., 1977), which was completed by an expert in the 

same time frame as the workers completed their questionnaires. It was found that using 

exposure information based on self-reports of back postures was unreliable due to the 

high frequency of over-reported postures and work duration (Burdorf & Laan, 1991). 

These results were echoed by Wiktorin et al. (1993), whereby Swedish workers 

were asked to complete self-reports on their daily manual material handling requirements 

and their working postures. Compared against actual measurements taken from 

pedometers, posimeters and inclinometers, the self-reported results showed insufficient 

agreement for head rotation, postures with the hands above the shoulders, and carrying, 

pushing or pulling loads of 1kg to 5kg. Additionally, tasks with varied duration and 

frequency showed poor agreement for all tasks examined. Workers were only shown to 

have statistically significant similarities between their reporting of loads lifted and actual 

loads lifted between 1kg and 5kg, as well as their distance walked (Wiktorin et al., 1993). 

The overall conclusion from the study was that workers may be able to effectively report 

manual material handling loads in epidemiological studies requiring more gross 

evaluations of exposure, but not in studies where precise values are required. 

Self-reporting appears to be an effective method of retrieving job information in 

research that is dependent on larger sample sizes and gross postural analysis. Over-

reporting a range of variables (such as work duration) should be considered when 

interpreting data related to worker-reported outcomes. 
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2.7 Literature Review Summary 

Musculoskeletal disorders are the number one source of lost time injuries in 

Ontario (OHSCO, 2008), and contribute to over $12 billion in indirect and direct costs to 

Ontario employers per year. Risk factors related to musculoskeletal disorders in office 

work include sustained non-neutral postures of the upper limbs (Village et al., 2005), and 

prolonged static sitting while using the computer (Heinrich et al., 2004). These risk 

factors have a large effect on the number of musculoskeletal disorders reported every 

year, as over 60% of Canadian workers require the use of a computer to perform required 

tasks at their jobs (Marshall, 2001). 

Attempts to proactively control these risk factors in the office have primarily 

come in the form of training and ergonomic assessment (Amick et al., 2003). The most 

effective methods of office ergonomics training have involved the participant as an active 

member in the training, thereby allowing them to make their own workstation 

modifications (Bohr, 2000; Mastronardi, 2009). Training and additional assessment 

recommendations in ergonomics can be made by using initial risk factor screening tools, 

such as RULA (McAtamney & Corlett, 1993) and REBA (Hignett & McAtamney); 

however, these tools are primarily used in manual material handling tasks. The Rapid 

Office Strain Assessment (Sonne et al., 2010) is a checklist developed to quickly 

determine if an office workstation requires additional assessment or intervention. A 

limitation of ROSA is that experts are still required to complete the initial screening 

assessments, which is reflective of additional costs to the workplace through the hiring of 

ergonomic consultants. 
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If workers could be trained to perform their own ROSA assessments in an online 

training module, then the initial screening process would be much faster and inexpensive. 

This study aims to develop such an online method for using ROSA by building a worker-

reporting and online training protocol, then examine the accuracy of ROSA scores 

achieved through this method compared to those obtained from a trained observer. 
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Chapter III 

Methods 

3.1 Participants 

Participants were recruited from the administrative staff at a private construction 

company, a school board's administrative office, a University of Windsor office, and the 

regional office of a national not-for-profit organization. To be included in this study, 

workers had to use a computer workstation for at least 50% of the day, use the same 

computer workstation during every workday and have had no recent ergonomic training 

(within 1 year). Fifty-nine participants were recruited and distributed between groups 

(Table 1). During the course of the experiment, 4 participants dropped out due to 

vacations, illness or prior commitments. This left the final count of participants who 

completed all 4 weeks of the study at 55. Participants were asked to report their height, 

body mass, age, time at company, time at job, and initial level of discomfort. After each 

of the recruitment sessions were conducted through email, and prior to the start of data 

collection at each of the participating workplaces, participants were evenly assigned to 

one of the two groups. Participants were balanced across the two feedback groups (see 

below) on these four variables in order to control for possible effects these characteristics 

might have on assessment ability. Once participants were assigned to one of the two 

groups, the groups were checked for significant differences in biographic and 

demographic variables. If differences were found, participants were re-assigned until 

there were no statistical differences between groups. Finally, participants were asked to 

refrain from buying new office equipment throughout the course of the four weeks of the 

experiment. 

50 



3.2 Procedures 

The objectives of this study were to assess the accuracy of worker-reported scores 

using the ROSA online tool, the impact of feedback and online training on worker 

assessment accuracy, the relationship between worker-assessed and trained observer 

ROSA scores and reported discomfort, and the impact of online office ergonomics 

training program on musculoskeletal discomfort. 

Table 1: Summary of participant groups and training schedule. Note that for weeks 1 
through 4, all participants performed a worker-assessment using ROSA online, had their 
workstation assessed by a trained observer, and filled out a discomfort questionnaire 
online. 

W
ee

kO
 

W
ee

k 
1 

W
ee

k 
2 

Group 2 
(27 Participants) 

ROSA Online 
Application 

Training 

AS/DQ, FB 

AS/DQ, FB 

Group 1 
(28 Participants) 

ROSA Online 
Application 

Training 

AS/DQ, NoFB 

AS/DQ, NoFB 

en 
M u 

W
ee

k 
4 

AS/DQ, FB 

AS/DQ, FB 

AS/DQ, NoFB 

AS/DQ, NoFB 

FB = Feedback 
NoFB = No Feedback 

AS = Assessment 
DQ = Discomfort Questionnaire 

51 



For this study, the training was performed using an online version of the Rapid 

Office Strain Assessment (outlined in section 3.2.3.1). This training consisted of two 

primary components - an assessment module, and an adjustment module. The goal of 

this training was to give participants access to resources on how they can adjust their 

existing furniture, and allow them to make whatever adjustments they felt were necessary 

throughout the course of the experiment. 

With respect to examining training protocol effectiveness, previous work has 

collected data at intervals of one month, six months, one year and two years post 

intervention (Amick et al., 2003; Ketola et al., 2002; Robertson et al., 2009). In these 

training protocols, the primary objective was to determine the overall impact of training 

on worker knowledge. For the purpose of the current study, the primary goal was to 

determine how effectively workers could complete a rapid screening tool for the 

assessment of risk factors within their office workstation. With this in mind, a shorter 

training protocol of one month (as found in Mastronardi, 2009) was appropriate in order 

to determine if there was any effect of the proposed online training before going to the 

expense of a much longer design. 

An initial purpose of this study was to assess the use of feedback and open access 

to the ROSA online software. The first 19 participants recruited were purposely assigned 

to 4 different experimental groups (not 2, as described above). Two of these 

experimental groups were designed to assess the impact of additional assessments 

conducted by workers without the presence of an observer on self-reported scores. Of 

these 19 recruited participants, 2 dropped out, and 10 were assigned to an open access 

group. The remaining 7 participants were assigned to a restricted access group instructed 
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to complete assessments only at the time when the observer was in the office, and had 

their access to the software restricted between weeks. Upon reviewing the database of 

results from these participants, it was determined that the open access participants did not 

start, or complete any additional self-assessments, even though they were instructed that 

they had access to do so. Due to this, and the difficulty in recruiting participants that 

could complete the entire four week program over the busy summer months, the 

originally planned four groups were reduced to two groups: those receiving feedback, and 

those not receiving feedback. The access to the ROSA online application was restricted 

for these participants in between weekly assessments. A power analysis confirmed that 

the final population recruited (n=55) was sufficient for the two group design. 

Participants received an initial training session (week 0 in Table 1) where they 

were instructed on how to use the ROSA online application. This training was given in 

the form of a PowerPoint presentation in a meeting room at the participating companies. 

A mock assessment screen was created to familiarize workers with how the ROSA 

software worked, but did not contain actual assessment materials. This was to control the 

exposure to ROSA between week 0 and week 1. Participants then registered their 

username and account within the ROSA application, and completed an online form on 

background and biographical data (age, sex, height, weight, and years of experience). The 

two groups were differentiated as follows: 
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Group 1: This group of participants completed their first self-assessment in week one of 

the study. A trained observer also completed an assessment of the workstation at 

the same time. The participant and trained observer then completed an 

assessment of the workstation once a week for 3 more weeks. No feedback 

regarding how the participant performed the assessment was provided. After each 

assessment, participants completed an online Discomfort Questionnaire (as 

outlined in Section 3.1.6). 

Group 2: Similar to group 1, the second group of participants also performed an 

assessment once per week for four weeks. In contrast to group 1, a trained 

observer provided directed feedback on how each participant in group 2 

performed their own assessment. Feedback was given verbally from the 

researcher to the participant immediately following the completion of the online 

assessment. In addition to verbal feedback, the participant was shown pictures 

illustrating the condition they and the observer selected. The online discomfort 

questionnaire was completed after each assessment by the participant. 

3.2.3 Worker-Assessment 

The worker-assessments were conducted using the online ROSA application 

(Section 3.2.3.1). All participants completed a worker-assessment once per week. Times 

for the weekly assessments were set up either through interview onsite or through email, 

to allow the trained observer and participants to do their assessments at the same time. 
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3.2.3.1 ROSA Online Application 

The ROSA online application contains identical risk factor identification 

information to that found in the original ROSA tool (Sonne et al., 2010) (Appendix A). 

A sample screenshot of ROSA online is provided in Figure 10 for the subsection on chair 

height. For all workstation areas covered in ROSA, risk factors in the online version 

were presented as text, graphic and live action in video, with an audio narrative 

describing the risk factors. 

The ROSA online application was designed to allow participants to log in using a 

username and password of their choosing. This username was used to track results for 

assessments and discomfort questionnaires over the course of the study. Upon logging 

in, participants were able to access their user profile (containing work information, such 

as department, company and contact information) and their previous ROSA worker-

assessment scores. The participants were also able to start their next ROSA worker-

assessment from this screen. 

The ROSA online application was designed using Adobe Dreamweaver CS4 (San 

Jose, California, USA, 2010), and all of the data collection pages were written in the PHP 

hypertext pre-processing language. Forms located within the application interacted with 

a secure MySQL database via the PHP language. Participants were instructed to select 

postures and equipment positions one area at a time (chair height, chair depth, armrests, 

backrests, etc), as well as the corresponding duration values. Along the side of each 

form, a video was displayed indicating how to evaluate each component of the 

workstation (Figure 10). A tracking menu on the left side of the screen indicated where 
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the participant was in relation to completing the assessment. Screenshots of all sections 

can be found in Appendix C. 

The Rep id Office St rum Assessment - ROSA 

U ^ ' M 
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Figure 10: Screenshot for the ROSA online application - Chair Height section. Risk 
factors are presented as text, graphic and live action in video with an audio narrative 

describing the risk factors. The tracking menu is to the left of the risk factors, and allows 
the participant to view their progress through the assessment. 

The scoring system from the original Rapid Office Strain Assessment developed 

by Sonne et al. (2010) featured two types of scores - fixed ROSA scores (those in which 

only one score comildi be crsosem; per area, such as eMk weight optimal,, chair height low, 

or chair height high), and additive scores (those postures or configurations that can be 

added to the fixed ROSA scores, such as chair non-adjustability or insufficient space 

under the desk surface). In the ROSA online application, the fixed scores were coded as 

radio buttons, preventing the participant from selecting more than one. The additive 

scores were coded as check boxes, allowing the scores to be added to the fixed scores and 

also allowing the participant to select more than one score per section (Figure 10). 
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3.2.4 Trained Observer Assessment 

The trained observer performed an assessment of the office workstation while the 

worker-assessment was performed. The two trained observers who performed 

assessments were graduate students in the field of ergonomics and biomechanics, and had 

previously provided ergonomic training and assessments in a consulting role to various 

private and public companies. Instead of using the online version of ROSA, the trained 

observers completed a paper or Microsoft Excel-based version of ROSA (Appendix A, 

detailed in Section 2.4). During the course of the study, 14 office workstations were 

assessed simultaneously by the two observers, and Intra-Class Correlation Coefficients 

(ICCs) were calculated to determine inter-rater reliability. ICCs of 0.69 (chair), 0.91 

(monitor and telephone), 0.87 (mouse and keyboard) and 0.87 (final score) were 

comparable to results found in Sonne et al., (2010), indicating that the use of the Rapid 

Office Strain Assessment by multiple observers was an appropriate method of conducting 

this research. 

The workstation assessment process that was used for this study differed from 

typical office ergonomic assessments, as interaction between the participant and the 

observer was purposely limited. Normally, risk factors would be recognized, and then 

immediate recommendations would be given to the worker on how to change their 

workstation. Since the focus of this study was on worker self-assessments of their office 

workstations, recommendations on the existing configuration were withheld until the 

study had concluded. During the course of each observer assessment, the trained 

observer asked the participant information on how long they sit, mouse, and key each 

day. Information on the chair, monitor, keyboard and mouse configuration and 
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positioning was collected through observation. This assessment procedure was repeated 

for each observer assessment conducted on the two groups over the four weeks of the 

experiment. 

3.2.5 Trained Observer Feedback 

For participants in Group 2 (Table 1), verbal feedback was given to them on the 

accuracy of their self-assessments by the trained observer based on their expert 

evaluation. The trained observer indicated which postures were assessed incorrectly, and 

what these postures or equipment configurations should have been scored as. This 

feedback occurred after the participant had completed their assessment, but before they 

completed their discomfort questionnaire. A script of the feedback language is included 

in Appendix D. To ensure that feedback was consistent, one of the trained observers was 

assigned to the feedback (FB) Group, while the other was assigned to the no feedback 

(NoFB) Group. 

3.2.6 Discomfort Questionnaire 

The Cornell University Discomfort Questionnaire contains self-report information 

on discomfort across 18 different body parts, which is further evaluated on the frequency 

of discomfort, the severity of discomfort, and the degree of work interference that the 

discomfort causes (Appendix B). To calculate scores for individual body parts, the 

scores for frequency experienced were coded as: 0 (never), 1.5 (1-2 times per week), 3.5 

(3-4 times per week), 5 (once every day), and 10 (several times per day). The severity of 

discomfort was scored as: 1 (slightly uncomfortable), 2 (moderately uncomfortable), and 

3 (very uncomfortable). Finally, the interference of work related to discomfort was 
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scored as: 1 (not at all), 2 (slightly interfered), and 3 (substantially interfered). To 

determine the score for each individual body part, the frequency, severity and 

interference scores were multiplied by one another, for a maximum possible score of 90. 

The discomfort scores from each body part were then added together to achieve a whole 

body discomfort score of 1620. 

The online adaptation of the discomfort questionnaire was completed by 

participants after they completed their worker-assessments each week. The questionnaire 

was coded using Adobe Dreamweaver CS4 (San Jose, California, USA, 2010), and each 

body part was coded as three separate groups of radio buttons. As previously mentioned, 

frequency of discomfort, intensity of discomfort and the degree of work interference 

associated with discomfort were all factored into the online adaptation of the 

questionnaire. Values from each of these areas were exported from the online database 

and values for full body and localized discomfort were calculated in Microsoft Excel 

2010 (Redmond, Washington, USA, 2010). This information was stored alongside 

ROSA scores in the database. 

Localized discomfort scores were calculated using the following methods. 

Isolated discomfort related to the chair was determined by combining localized 

discomfort scores for the lower and upper back, shoulders, hips and buttocks and thighs. 

Monitor and Telephone-related discomfort were calculated as a function of discomfort 

scores from the head and neck, and upper back. Finally, mouse and keyboard-related 

discomfort was calculated by combining localized discomfort scores from the shoulders, 

upper back, forearm, upper arm, and wrist and hands section. These methods of 

calculating localized discomfort were previously established in Sonne et al. (2010). 
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3.2.7 Workstation Modification Videos 

Workstation modification videos were filmed at a participating company before 

data collection at the other participating organizations. These videos were filmed in 

generic offices, and modifications that could be made without costing the company 

additional money to purchase new equipment (such as adding a rolled up towel to the 

back of a chair to add lumbar support), were emphasized. Upon completion of the 

discomfort questionnaire (Section 3.1.6) each week, all participants had access to the 

workstation modification videos and literature. This allowed participants to make 

changes to their workstation based on their online ROSA worker-assessment scores, and 

provided them with video on how changes could be made without the purchase of new 

equipment. Participants were asked to try and make changes to their workstation based 

on the deficiencies in their current setup (as indicated by conducting their assessment) 

and these videos. At the end of the study, feedback was given to all participants on how 

to adjust their workstations to optimally suit their work habits and body types. The 

workplace modification videos did not provide feedback to the participants on how 

accurately their assessment was completed, but did provide information on how their 

workstation could be adjusted. 
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3.3 Data Analysis 

3.3.1 Experimental Groups 

To ensure that the distribution of participants between groups was comparable for 

all anthropometric (height and body mass) and demographic information (time at 

company, time at job, initial level of discomfort), participants were purposefully assigned 

and a one-way ANOVA was used to assess Group differences (alpha set at 0.05). 

Participants were redistributed until all Group differences were not significant. 

3.3.2 Research Question #1 & #2 

1 - Are ROSA subsection and final scores reported by office workers using the online 

version of the tool comparable to those determined by a trained observer for the same 

workstations? 

2- What is the impact of directed expert feedback and number of assessments on the 

agreement between trained observer and worker-reported ROSA scores? 

To determine if worker-assessed ROSA scores differed from those determined by 

a trained observer, a 2 (Assessment Type: worker and observer) x 2 (Groups: FB, NoFB) 

x 4 (Time: week 1, 2, 3, 4) mixed ANOVA was performed on the dependent variables 

(ROSA chair, monitor and telephone, mouse and keyboard, and final scores) (Appendix 

E). The between-subject factor was Group and the two within-subject factors were 

Assessment Type and Time. Alpha was set at 0.05 for all comparisons. Pearson Product 

Moment Correlations were used to determine the relationship between worker and trained 

observer ROSA final scores. An r value of less than 0.1 was considered low, 0.3 to 0.5 
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was considered moderate, and greater than 0.5 was taken to be indicative of a strong 

positive relationship between variables (Cohen, 1988). Significant main effects of week 

were analyzed with pairwise comparisons and a Tukey's HSD post hoc test to determine 

during which weeks there were significant differences in ROSA scores. 

For the purposes of this study, validity was defined as "the degree to which scores 

on a test are related to some recognized standard or criterion (Thomas & Nelson, pp 215, 

1996)". The exploratory nature of this study seeks to establish validity of worker-

reported ROSA scores through the online ROSA assessment process. Validity of self-

assessments was deemed to have been established if mean worker- and observer-reported 

scores were not significantly different from one another, and if they were significantly 

correlated. Finally, in order to be considered valid, statistically significant positive 

correlations had to occur in 50% or more of the instances recorded for each evaluation 

(e.g. 4 out of the 8 possible instances (2 Groups x 4 Times)). 

3.3.3 Research Question #3 

3 - What are the relationships between worker-reported and trained observer ROSA 

scores and worker-reported discomfort scores? 

Pearson Product Moment Correlations were calculated to establish the 

relationships between worker-reported discomfort and both worker-reported and trained 

observer ROSA scores. Correlations between whole body and localized discomfort were 

made with both area and ROSA final scores. The localized discomfort scores related to 

the expected body parts that may incur discomfort or injury as a result of office work (the 

head and neck (Hagberg & Wegman, 1987; Korhonen et al., 2003), upper limbs (Gerr et 
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al., 2002) and back (Jensen et al., 2002)) were correlated with the ROSA final, chair, 

monitor and telephone, and mouse and keyboard scores. Alpha was set at 0.05 for all 

comparisons. This comparison was made within each experimental Group (FB, NoFB), 

during each week of the experiment. 

3.3.4 Research Question #4 

4 - Is an office ergonomic training protocol using ROSA online effective in reducing 

musculoskeletal discomfort in office workers? 

The effects of the two different training protocols on self-reported whole body 

musculoskeletal discomfort over the course of the four week experiment were assessed 

using a 4 (Time: weeks 1, 2, 3 and 4) x 2 (Groups: FB, NoFB) mixed ANOVA. The 

between-subject factor was Group, and the within-subject factor was Time. Alpha was 

set to 0.05 for all comparisons. Post hoc analysis was performed using Tukey's HSD 

test. 
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Chapter IV 

Results 

4.1 Distribution of Experimental Groups 

There were no significant differences in mean (SE) height, body mass, time at 

company, time at job, or initial level of discomfort between the two experimental Groups 

(p<0.05) (Table 2). As previously mentioned, 4 participants withdrew from the study for 

various reasons, and their data were excluded from the analyses. 

Table 2: Mean (SE), maximum and minimum anthropometric and demographic 
information for participants in the feedback (FB) and no feedback (NoFB) Groups. 

Age (years) 
Males (n) 
Females (n) 
Height (cm) 

Body Mass (kg) 
Years at company 
(years) 
Years at job 
(years) 

Initial whole body 
discomfort (/l 620) 
University of 
Windsor (n) 
Private Construction 
Company (n) 
School Board (n) 
Not-for-profit 
organization (n) 

Feec 
Mean 
(SE) 
37.7(2.1) 
6 
21 
166.0 
(0.8) 

71.3(8.7) 
9.7(1.8) 

8.8(2.1) 

57.9 
(13.5) 
11 

9 

4 
3 

back (n=27) 
Max 

55 

187.9 

118.2 
25 

25 

270 

Min 

23 

157.5 

50 
0.8 

0.8 

0 

No Feedback (n=28) 
Mean 

39.4(2.1) 
9 
19 
167.4 
(2.7) 

73.1 (4.3) 
9.8 (2.5) 

7.3(1.6) 

44.2 
(13.4) 
11 

11 

1 
5 

Max 

59 

188.0 

100.9 
43 

43 

265 

Min 

23 

150.0 

45.9 
0.5 

0.5 

0 

64 



4.2 Research Question #1 & #2 

Are ROSA final and subsection scores reported by office workers using the online version 

of the tool comparable to those determined by a trained observer for the same 

workstations? 

What is the impact of directed expert feedback and number of assessments on the 

agreement between trained observer and worker-reported ROSA scores? 

4.2.1 ROSA Final Scores 

A significant main effect of Assessment Type was found between observer-

reported (mean 3.75(standard error 0.11)) and worker-reported ROSA final scores 

(3.58(0.12)) [F(l,53)=6.03, p<0.05] (Figure 11). A significant main effect of Time was 

also observed [F(3,159)=l 1.38, p<0.05], with decreases in mean final ROSA scores seen 

during each week of the study (Figure 12). Tukey's HSD post hoc analysis revealed 

significant differences in ROSA final scores between weeks 1 (3.9(0.12)) and 4 

(3.5(0.17)) (Figure 12). 

With respect to Group, those who received feedback reported significantly lower 

ROSA final scores on average than those who did not receive feedback [F(l,53)=4.01, 

p<0.05] (Figure 13). The FB Group reported a mean ROSA final score of 2.57(0.18), and 

the NoFB Group reported a mean ROSA final score of 3.28 (0.17), averaged across the 4 

weeks of the study. 
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There was no significant interaction effect seen between Assessment Type and 

Time, indicating that the differences in worker- and observer-reported scores did not 

change as a result of increased use of the ROSA online assessment method over time 

(p>0.05). Additionally, there was no significant interaction effect seen between any other 

combination of Group, Assessment Type or Time. 

Worker Vs. Observer-Reported ROSA Final Scores 

Observer-Reported Worker-Reported 
Assessment Type 

Figure 11: Main effect of Assessment Type on mean (SE) ROSA final scores 
(*=statistically significant at p<0.05). 
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Figure 12: Main effect of Time on mean (SE) ROSA final scores through weeks 1-4 
(*=statistically significant at p<0.05). 
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Figure 13: Main effect of Group on mean (SE) ROSA final scores 
(*=statistically significant at p<0.05). 
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Nearly all correlations between worker- and observer-reported ROSA scores were 

significant (Table 3). Significant correlation values ranged in magnitude from moderate 

(r=0.35, week 3, FB) to large (r=0.76, week 4, NoFB) (p<0.05) (Cohen, 1988). 

Table 3: Correlation values (r) for ROSA scores between worker (W) and Observer (O) 
reported values throughout 4 weeks FB and NoFB Groups (*= statistically significant at 
p<0.05). 

Wk 
1 
2 
3 
4 

ROSA Final Score 

FB 
0.48* 
0.51* 
0.35* 
0.22 

NoFB 
0.43* 
0.46* 
0.61* 
0.76* 

Chair 

FB 
0.70* 
0.78* 
0.36* 
0.33 

NoFB 
0.45* 
0.35* 
0.23 
0.62* 

Monitor and 
Telephone 

FB 
0.44* 
0.38* 
0.44* 
0.30 

NoFB 
0.54* 
0.57* 
0.46* 
0.62* 

Mouse and 
Keyboard 

FB 
0.44* 
0.67* 
0.72* 
0.55* 

NoFB 
0.21 
0.54* 
0.66* 
0.76* 

4.2.2 ROSA Chair Scores 

There was a significant main effect of Time on ROSA chair scores 

[F(3,159)=10.18, p<0.05], with mean scores differing significantly between week 1 and 

3, and week 2 and 3 (Figure 14). There was a trend for ROSA chair scores to increase 

throughout the 4 week training program (week 1=3.05(0.11), week 4=3.23(0.09)). There 

was no significant main effect reported for Assessment Type (mean worker (3.02 (0.13)) 

and observer-reported ROSA chair scores (3.36(0.12)) (p>0.05)), or Group 

(FB=3.19(0.12), NoFB=3.20(0.12), p>0.05). 

There was no significant interaction seen between Assessment Type and Week, 

indicating no change in the difference between worker- and observer-reported ROSA 
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chair scores as a result of repeated exposures to ROSA online (p>0.05). There were no 

significant interactions between any combination of Assessment Type, Group, or Time. 

Figure 14: Main effect of Time on mean (SE) ROSA chair scores through weeks 1-4 
(*=statistically significant at p<0.05). 

ROSA worker- and observer-reported chair scores were significantly correlated 

throughout the 4 weeks of the study. Significant correlations between ROSA worker-

and observer-reported scores ranged from moderate (r=0.35, week 2, NoFB) to large 

(r=0.78, week 2, FB) (Cohen, 1988) (Table 3). Correlations were insignificant in week 4 

of the FB Group, and week 3 of the NoFB Group. 

4.2.3 ROSA Monitor and Telephone Scores 

A significant main effect of Time was seen for monitor and telephone scores 

[F(3,159)=10.18, p<0.05], with significant differences in ROSA scores between week 1 

and 3, and week 2 and 3 (Figure 15). ROSA monitor and telephone scores followed an 
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increasing trend between week 1 (2.75(0.12)) and week 4 (2.99(0.16)). There was no 

significant main effect of Assessment Type (worker=2.54(0.15), observer=2.74(0.16)) or 

Group (FB=2.58(0.15), NoFB=2.80(0.15), p>0.05) seen for ROSA monitor and 

telephone scores. 

No significant interaction was seen between Time and Assessment Type, 

indicating no significant change in the difference between worker- and observer-reported 

ROSA monitor and telephone scores. There were no significant interactions between any 

combination of Time, Assessment Type or Group. 

Nearly all worker and observer-reported ROSA scores for the monitor and 

telephone section were significantly correlated (except week 4 for the feedback group). 

Correlation values between worker- and observer-reported ROSA monitor and telephone 

scores ranged from low (r=0.38, week 2, FB) to moderate (r=0.62, week 4, NoFB) 

(Table 3). 
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Figure 15: Main effect of Time on mean (SE) ROSA monitor and telephone scores 
through weeks 1-4 (*=statistically significant at p<0.05). 

4.2.4 ROSA Mouse and Keyboard Scores 

There was a significant main effect of Assessment Type [F(l,53)=4.732, p<0.05] 

found in the mouse and keyboard scores (worker=2.73(0.17), observer=3.13 (0.18)) 

(Figure 16). A significant main effect of Group was also found [F(l,53)=8.50, p<0.05], 

with the FB Group reporting lower ROSA mouse and keyboard scores (Figure 17). 

Finally, a main effect of Time was seen, with significant differences in ROSA mouse and 

keyboard scores between week 1(3.13) and 4 (2.60) (Figure 18). There were no 

significant interactions seen between Assessment Type, Group, or Time for mouse and 

keyboard scores. This trend was maintained for all 4 weeks of the study. 
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All worker- and observer-reported mouse and keyboard scores were significantly 

correlated, except for week 1 in the NoFB Group. Correlations between worker- and 

observer-reported mouse and keyboard scores varied from moderate (r=0.44, week 1, 

FB) to large (r=0.76, week 4, NoFB) (Table 3) (Cohen, 1988). 
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Figure 16: Main effect of Assessment Type on mean (SE) ROSA mouse and keyboard 
scores (*=statistically significant at p<0.05). 
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ROSA Mouse and Keyboard Scores by Feedback Group 

NoFB 
Feedback Group 

Figure 17: Main effect of Group on mean (SE) ROSA mouse and keyboard scores 
(*=statistically significant at p<0.05). 

ROSA Mouse and Keyboard Scores Week 1-4 
* 

3.5 n 

Time: Week 

Figure 18: Main effect of Time on mean (SE) ROSA mouse and keyboard through 
weeks 1-4 (*=statistically significant atp<0.05). 

73 



4.3 Research Question #3 

What are the relationships between worker-reported and trained observer ROSA scores 

and worker-reported discomfort scores? 

4.3.1 ROSA Final Score 

Significant correlation values between worker-reported ROSA final scores and 

discomfort were generally higher (during weeks 1, 2, and 3) than those between observer-

reported ROSA scores and discomfort. The only exceptions to this were in week 4 for all 

discomfort measures, and week 3 for total discomfort without leg scores (r=0.36 

compared to r=0.35)(Table 4). There were no significant relationships between ROSA 

scores and worker-reported discomfort in the feedback Group, regardless of whether the 

scores were worker- or observer-reported. Correlation values were also higher between 

ROSA final scores and whole body-reported discomfort than when the leg scores were 

not considered. Significant correlations in the NoFB Group ranged between 0.36 and 

0.68 (week 3, observer score, and week 4, observer score, respectively, p<0.05). 

Table 4: Correlation values (r) between ROSA final scores for the worker (W) and 
observer (O) and total body discomfort (total body and total body minus leg discomfort) 
for both FB and NoFB Groups (*= statistically significant at p<0.05). 

Wk 

1 

2 

3 

4 

Total Discomfort 

FB 

W 

0.17 

-0.17 

-0.09 

-0.25 

O 

-0.23 

-0.10 

-0.21 

-0.20 

NoFB 

W 

0.22 

0.47* 

0.36* 

0.45* 

O 

0.01 

0.14 

-0.09 

0.68* 

Total Discomfort - No Leg Discomfort 

FB 

W 

0.19 

-0.15 

-0.09 

-0.26 

O 

-0.21 

-0.06 

-0.21 

-0.19 

NoFB 

W 

0.15 

0.43* 

0.35 

0.44* 

O 

0.03 

0.12 

0.36* 

0.67* 
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4.3.2 ROSA Chair Score 

Those correlations for the chair scores paralleled those for the final ROSA scores, 

with worker-reported ROSA chair scores more highly correlated with discomfort scores 

than observer-reported ROSA scores (except in week 4). There were no significant 

correlations found in the FB Group, but significant moderate correlations (Cohen, 1988) 

were found in the NoFB Group during weeks 2 and 4 (ranging from r=0.36 to r=0.48) 

(Table 5). 

Table 5: Correlation values (r) between ROSA chair scores for the worker (W) and 
observer (O) and chair related discomfort for both FB and NoFB Groups (*= statistically 
significant atp<0.05). 

Wk 
1 
2 
3 
4 

ROSA CI 
F 

W 
0.15 
-0.10 
-0.05 
-0.14 

B 
O 

-0.24 
-0.04 
-0.11 
-0.09 

lair Score 
NoFB 

W 
0.19 
0.41* 
0.20 
0.36* 

O 
0.03 
0.11 
0.02 
0.48* 

4.3.3 ROSA Monitor and Telephone Score 

Comparable to the results for the ROSA final and chair scores, worker-reported 

ROSA monitor and telephone scores had a stronger positive relationship with discomfort 

than observer-reported scores (Table 6). Significant correlations between the ROSA 

monitor and telephone score and associated discomfort varied in magnitude within the 

moderate range (Cohen, 1988), between r=0.35 (worker-reported score, week 3, NoFB) 

and r=0.39 (worker-reported score, week 1, FB). Overall, there were fewer significant 
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correlations between monitor and telephone scores and discomfort in this section than 

any of the other ROSA subsections. 

Table 6: Correlation values (r) between ROSA monitor and telephone scores for the 
worker (W) and observer (O) and monitor and telephone related discomfort for both FB 
and NoFB Groups (*=statistically significant at p<0.05). 

Wk 
1 
2 
3 
4 

ROSA Monitor & Telephone Score 
F 

W 
0.39* 
-0.36 
-0.27 
0.20 

B 
O 

0.26 
-0.36 
-0.15 
-0.26 

NoFB 
W 

0.10 
0.04 
0.35* 
0.36* 

O 
-0.03 
0.16 
0.27 
0.08 

4.3.4 ROSA Mouse and Keyboard Score 

There were as many significant correlations for worker-reported scores and 

discomfort as there were for observer-reported scores and discomfort in this subsection 

(Table 7). Significant correlations ranged from r=0.41 to r=0.44 for worker-reported 

scores, and from r=0.37 to r=0.57 for observer-reported ROSA scores. There were no 

significant correlations in the FB Group, comparable to all other subsections and ROSA 

final scores. As seen in Table 7, there was a trend for correlation values to increase from 

week 1 to week 4 in the NoFB Group. 
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Table 7: Correlation values (r) between ROSA mouse and keyboard scores for the 
worker (W) and observer (O) and mouse and keyboard related discomfort for both FB 
and NoFB Groups (*= statistically significant at p<0.05). 

Wk 

1 

2 

3 

4 

ROSA Mouse & Keyboard Score 

FB 

W 

-0.03 

0.19 

-0.08 

-0.19 

O 

-0.12 

-0.10 

-0.14 

-0.20 

NoFB 

W 

0.19 

0.41* 

0.29 

0.44* 

O 

0.06 

0.09 

0.37* 

0.57* 

4.3.5 Additional ROSA Score and Discomfort Relationships 

Sonne et al., (2010) found significant relationships between various combinations 

of ROSA final and subsection scores, and localized and total body discomfort measures. 

These relationships were also found in this study, and varied between r=0.38 (total body 

discomfort and mouse and keyboard score, NoFB, worker-reported ROSA score, week 3) 

and r=0.68 (chair-related discomfort, mouse and keyboard score, NoFB, observer-

reported ROSA score, week 4). However, there were very few significant correlations 

between these localized discomfort scores and subsection scores. The full range of 

correlations between final and subsection ROSA scores can be seen in Appendix F. 
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4.4 Research Question #4 

Is an office ergonomic training protocol using ROSA online effective in reducing 

musculoskeletal discomfort in office workers? 

All localized and total body discomfort measures trended to decrease from week 1 

to week 4. A main effect of Time on reported discomfort emerged for total discomfort 

[F(3,159)=5.64 p<0.05], total discomfort without leg scores [F(3,159)=4.83, p<0.05], 

mouse and keyboard-related discomfort[F(3,159)=3.51, p<0.05], and monitor and 

telephone related discomfort [F(3,159)=3.28 p<0.05] (Figure 19 A, B, D, and E). 

Significant changes in discomfort occurred between week 1 (43.23(8.63)) and week 4 

(49.88(6.75)), as well as week 1 and week 2 (22.88(5.02)) (Figure 19, A)). The greatest 

changes in mean discomfort collapsed across Groups were seen in the total body 

discomfort minus leg scores, with a 51.6% decrease in reported discomfort between 

weeks 1 and 2 of the analysis (Figure 19B). 

There was no significant main effect of Time reported for chair-related discomfort 

(Figure 19 C). There was no significant main effect of Group (FB or NoFB) in any of the 

discomfort categories (final or localized discomfort). Finally, there were no significant 

interactions found between Time and Group. 
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Figure 19: Main effects of Time on mean (SE) discomfort scores: total body discomfort 
(A), total body without leg discomfort (B), chair-related discomfort (C), monitor and 

telephone-related discomfort (D), and keyboard and mouse-related discomfort (E) 
(*= statistically significant at p<0.05). 
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Chapter V 

Discussion 

Worker scores were not significantly different than observer scores for the 

monitor and telephone, and chair subsections. Significant differences emerged for 

Assessment Type (worker or observer) and Group (feedback or no feedback) for ROSA 

final scores, and for the mouse and keyboard subsections. Worker and observer scores 

were significantly correlated during all but 2 weeks for all subsections and final scores. 

There were significant relationships between discomfort and ROSA scores for groups 

that did not receive feedback, but not for groups who did receive feedback. Finally, there 

was a significant main effect of Time on worker-reported discomfort, indicating that 

discomfort decreased over the course of the four week protocol. 

5.1 Research Question #1 

Worker and observer scores were significantly different in the final score and the 

mouse and keyboard subsections, suggesting that self-reported ROSA scores for these 

sections are not accurate. As the ROSA final score is dependent on each area's 

subsection score, it is important to ensure that the scores from these subsections are 

accurate when comparing worker and observer-reported ROSA scores. The differences 

in ROSA final scores will be discussed after each of the subsections are addressed. 
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5.1.1 Chair 

There was no statistically significant difference between observer- and worker-

reported ROSA scores for the chair section (comprised of the chair height, depth, armrest 

and backrest subsections), and worker and observer-reported scores were significantly 

correlated. Assessments of the chair and seated posture generally required workers to 

evaluate postures of their legs and trunk; body postures for which self-assessment has 

been shown to be moderately accurate when compared to observer assessments in 

previous studies (Burdorf, 1995; Wiktorin, 1995). The non-significant difference 

between worker and observer scores, and 75% of the correlations between these scores 

registering as significant (Table 4; Figure 20), support the hypothesis that using ROSA 

for self-assessment of the chair appears to be a valid method of assessing risk factors 

related to this type of office furniture (validity defined in Section 3.3.2). 

Relationship Between Worker and Observer-Reported ROSA 
Scores 

f 
MA 

NoFB 
Monitor and 
Telephone 

# 

I 
f 
I 1 

m 

i 
FB J NoFB 

Mouse and 
Keyboard 

• Week 1 

: ii Week 2 

». Week 3 

• Week 4 

Figure 20: Correlation values (r) between worker and observer assessment ROSA scores 
for FB and NoFB Groups, during weeks 1-4. 
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5.1.2 Monitor and Telephone 

Mean worker-reported monitor and telephone scores were not significantly 

different than those reported by the observers. In the monitor and telephone subsection 

of ROSA, postures of the neck and head are assessed, with one risk factor related to 

reaching to the phone. Previous research on head and neck posture self-assessment has 

achieved less than desired accuracy when compared to observer assessments (Heinrich et 

al., 2004). However, the posture results from ROSA may arise from the differences in 

the actual assessment methodologies. The setup of pictures, text and video in ROSA may 

have provided enough additional information to workers to enable them to successfully 

model their assessment responses for these body parts properly, compared to other 

approaches. 

There was a tendency for ROSA scores to increase between weeks 1 and 4 for this 

subsection, as well as the chair subsection. The office is composed of many pieces of 

furniture, and in most cases all furniture can be adjusted. The increases in subsection 

scores may have come as a result of equipment from one area being adjusted, and making 

an impact on the equipment from another subsection. For example, if the chair was too 

high, but the monitor was at the ideal height, an adjustment to the proper height for the 

chair might lead to the monitor now being too high. None of the scores in week 4 for any 

subsections were significantly higher than the scores in week 1, indicating that any 

incorrect changes that possibly occurred in the middle weeks of the study may have been 

identified by the worker, re-assessed and re-adjusted in subsequent assessments. 
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The lack of significant difference between observer-reported and worker-reported 

ROSA scores for the monitor and telephone section, as well as having 87.5% of 

correlations between these measures registering as significant supports the hypothesis 

that this may be a valid method of assessing this aspect of the office workstation. 

5.1.3 Mouse and Keyboard 

There was a significant difference between observer- and worker-reported ROSA 

mouse and keyboard scores, with worker-reported scores being lower than observer-

reported scores. However, there were large correlations between worker and observer 

scores in this subsection (r=0.43 to r=0.76). Self-assessments have previously shown to 

be effective in providing an accurate evaluation of keyboard and mouse working posture 

(Heinrich et al., 2004). The reason for this difference between worker- and observer-

reported scores may be a result of the ROSA tool itself. In the evaluation of the shoulder 

position while using the mouse, there is a fixed option to select an abducted shoulder 

posture, as well as an additive option to indicate an abducted shoulder posture as a result 

of a different surface for the keyboard and the mouse. Both of these risk factors have a 

value of 2, and if one was consistently missed by individuals during self-assessments, this 

could result in the discrepancy between observer-assessment and worker-assessment 

scores observed in the present study. These were the only risk factors in ROSA that 

represented a similar body position that could be selected concurrently, therefore 

allowing an error of this nature. 

While there were significant correlations seen between worker- and observer-

reported ROSA scores in the mouse and keyboard section (87.5% of all cases), the 
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significant difference between these scores does not fit the definition of validity stated in 

Section 3.3.2. Therefore, worker-reported mouse and keyboard scores cannot be 

considered a valid measure of risk factors related to this equipment in the office. 

5.1.4 ROSA Final Score 

As previously mentioned (Section 5.1), the ROSA final score is determined from 

the scores achieved from the chair, monitor, telephone, keyboard and mouse subsections 

(see Section 2.4). The ROSA final score is achieved using scoring charts (Figure 9), and 

is highly reflective of the subsection where the highest score lies. Because there was a 

significant difference between observer- and worker-assessments in the mouse and 

keyboard subsection, this would have a marked influence on any assessment in which the 

mouse and keyboard score was the highest score of the three subsections. 

Worker-reported ROSA final scores were generally lower than the observer-

reported ROSA scores (Figure 11), which contradicts previous research regarding self-

reporting. Other research has reported a tendency for users to over-report when 

identifying risk factors related to musculoskeletal disorders (Andrews et al., 1997; 

Wiktorin et al., 1993). The nature of these previous studies focused on industrial work 

(in manufacturing or automotive industries), and not computer work. While Heinrich and 

colleagues (2004) also indicated that there was a tendency to over-report exposure to risk 

factors in the office environment, this was confined to the issue of the duration of 

computer use. 

While existing literature on self-reporting has indicated an over-reporting 

tendency, it is entirely possible that risk factor reporting related to office and computer 
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work could be predisposed to under-evaluation. One explanation for the under-reporting 

of worker scores is related to the current economic climate in the city where the study 

was conducted, along with the industries that participated in the study. While Windsor 

has the highest unemployment rate in Canada at approximately 14% (Hall, 2009), the 

majority of workers who participated in this study worked in the public service, which is 

regarded as one of the most secure industries (Clark & Vinay, 2009). Job security is a 

key component in job satisfaction (Blanchflower & Oswald, 2000; Heaney et al., 1994). 

Research has indicated that workers with higher levels of job satisfaction are less likely to 

report risk factors and discomfort in the workplace, which may have had an impact on the 

results of this study (Bigos, 1991; Demure et al., 2000). 

The ROSA final score has an important practical application when considering 

the implementation of an online training protocol into a business. Like other ergonomic 

risk checklists, final evaluation on whether a job requires additional assessment or 

attention is based on one number that falls within specific intervention guidelines 

(Hignett & McAtamney, 2000; McAtamney & Corlett, 1993). Sonne and colleagues 

(2010) found that ROSA final scores of greater than 5 were associated with significant 

increases in discomfort, thus recommending that this value of 5 be used to determine 

when an office should receive a more in depth evaluation into the risk factors present. 

The goal of this cut-off point associated with the ROSA final score is to allow for an 

administrator to select which workers require additional training or even office furniture, 

without having extensive knowledge of ergonomics. Once the ROSA final score has 

been used to establish which offices should receive additional attention, the administrator 
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can then look to see which subsection is most heavily contributing to the high final score, 

and appropriate intervention can be sought. 

In summary, the use of self-assessments performed by office workers of their own 

workstation using ROSA online appears to be a valid method of assessing risk factors 

related to the chair, monitor and telephone in an office environment. It was hypothesized 

that workers would be able to assess their workstations with reasonable accuracy 

compared to observer-assessments. This was confirmed for the chair, monitor and 

telephone subsections by a non-significant difference in worker and observer-reported 

scores, as well as several significant, large magnitude correlations between these scores. 

The ROSA scores for the mouse and keyboard section were significantly different 

between workers and observers; however, they were significantly correlated. The ROSA 

final, mouse and keyboard worker-reported scores cannot be considered valid measures 

of risk factors, but future work to increase the ease of identification of risk factors in 

these subsections could be performed in order to try to increase worker assessment 

accuracy. 

5.2 Research Question #2 

There was no significant interaction between Assessment Type (worker or 

observer) and Time for the ROSA final score, or any of the subsection scores, indicating 

that there was no change in the difference between either Assessment Type throughout 

the course of the four weeks of the study. There were no interaction effects between 

Assessment Type, Time or Group either, indicating that feedback had no role in 

increasing or decreasing the accuracy of worker-reported scores either. This result is 
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promising for the chair and monitor and telephone subsections, as a significant difference 

between worker- and observer-reported ROSA scores was not observed at any point 

during the four weeks of the study. However, it is concerning that workers did not 

improve in terms of being able to assess the mouse and keyboard position over the course 

of the month during which the study took place. The significant difference of 

Assessment Type could be a result of participants not taking their time and fully 

completing the assessment process (i.e. watching the videos each time they went through 

the assessment module). Previous research has indicated that workers tend to terminate 

their learning experience early when using computers in the realm of education and 

training (Tennyson, 1980), and when they receive negative feedback on their 

performance (Van Dijk & Kluger, 2000). 

While careful consideration was given to the development of the online software, 

this was the first attempt to create such a training program. Research has indicated that 

issues such as posture bin size (van Wyk et al., 2009) and boundary definition (Andrews 

et al., 2008), as well as the salience of images within the tool (Fiedler, 2010) all need to 

be accounted for in order to optimize performance. The overall objective of this research 

was to examine if self-assessments in the office were a feasible method of conducting 

ergonomic assessments. While it is encouraging that worker-reported chair and monitor 

and telephone subsection scores showed promising validity, future research should focus 

on increasing the accuracy of the tool by modifying images and increasing the distinction 

of each individual risk factor. 

Correlation values between worker and observer-reported ROSA scores tended to 

increase between weeks 1 and 4 for all scores in the no feedback Group. However, there 
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was a trend for r values to peak prior to the fourth week of the study for all scores in the 

feedback Group (Figure 20). It appears that once participants have had a chance to use 

the ROSA online application once, they became familiar enough to perform a more 

accurate assessment the second time they log in. After this point, it is possible that 

workers who were receiving feedback may not have performed their assessments with the 

diligence that they did in the first two weeks, and correlation values dropped off. This 

may be a result of the participants losing interest in the training, as they were completing 

the same assessment repeatedly. Repeated work can lead to decreased focus and reduced 

performance as a result of boredom (Fisher, 1993). If workers receive feedback on their 

performance, it appears that the second self-assessment is the most effective in producing 

valid ROSA scores. Those who do not receive feedback on their ROSA scores appear 

to produce the most accurate assessment results during the 4l week of the study. 

The nature of the feedback given may have played a role in the lack of 

improvements in the validity of worker-reported ROSA scores. Lee and Carnahan (1990) 

found that when providing feedback on performance, exact performance feedback was 

not as effective in improving results as providing feedback that allowed for a margin of 

error both above and below the desired target (also known as bandwidth). Essentially, 

allowing workers to have a window of error that was deemed to be acceptable was seen 

to increase retention over a period of time as opposed to correcting every single error. 

Workers were corrected on every error they made in the current study, which may have 

resulted in an overwhelming amount of information to process, and would have reduced 

the participant's retention of information for their next assessment. 
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It was hypothesized that worker assessments would become more accurate with 

respect to observer assessments over the course of the 4 week training protocol. Based 

on the results of the study, this hypothesis is not supported, as there was no change in the 

accuracy of the worker assessments over time, even though correlations tended to 

increase between weeks 1 and 4. 

5.3 Research Question #3 

Significant correlations of a similar magnitude to those found by Sonne et al. 

(2010) emerged between discomfort and ROSA scores. Whole body discomfort and 

ROSA final score correlations varied between r=0.40 and r=0.70, which were slightly 

higher than values previously reported (Sonne et al., 2010). Total body discomfort scores 

were more highly correlated with ROSA scores than discomfort scores that did not 

include leg discomfort (Table 3), which is contrary to the discomfort relationships found 

originally (Sonne et al., 2010). Office workers tend to sit for long periods of time 

throughout the day, a risk factor for the development of lumbar disc herniation 

(Callaghan & McGill, 2001). A symptom of disc herniation is sciatica (pain resulting 

from irritation of the sciatic nerve, leading to shooting pain into the leg (Shiel, 2010)). 

Sciatica has been reported in up to 23% of all office workers (Tuomi et al., 1991). With 

this in mind, it is important to include leg discomfort in the analysis, as it could be a 

result of referred pain from a lower back injury. 

The changes in the relationship between discomfort and ROSA scores may be a 

result of the different factors introduced in this study. Sonne et al. (2010) conducted 

assessments in a fairly traditional manner, with workers being observed and then 
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completing a paper version of the discomfort questionnaire. The introduction of 

feedback to the assessment could have impacted how workers reported discomfort for a 

variety of reasons. The majority of the feedback that was provided during the course of 

this study was negative in nature. Typically, feedback was given to inform workers that 

they had scored their assessment incorrectly, and that they needed to do something 

differently the next time. Van Dijk and Kluger (2000) concluded that in cases of negative 

feedback, trainees may lose motivation and could possibly terminate their learning 

experience early. Because the observer's assessment was treated as the gold standard in 

this study, all differences in worker assessment scores were treated as wrong answers. 

Furthermore, the quantity of feedback that was provided may have acted against workers 

actually learning from their errors. Stefanidis and colleagues (2007) found that when 

attempting to learn new techniques, limited feedback accompanied by video tutorials was 

more effective in improving performance than intense feedback sessions. As feedback 

was given for every risk factor that was not scored the same as the observer, there was a 

large quantity of information given to the worker after the assessment. The impact of 

feedback may have caused the training to be negatively affected, and caused the workers 

to not complete their assessment correctly or discomfort questionnaire truthfully. This 

could have prevented significant correlations between worker-reported ROSA scores and 

discomfort. 

Feedback may also contribute to the appearance of a more traditional training 

program. While workers were not pressured for time during the course of their 

assessments, the fact remained that they were going to receive evaluation on how they 

performed after they completed them. This increases the structure of the training 
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program, and more closely represents a less effective, more lecture-based training 

program compared to an open access tutorial approach (Gist et al., 1988). 

It was hypothesized that worker-reported discomfort would be more highly 

correlated to worker scores than observer-reported scores. There were more and stronger 

significant correlations with worker-reported ROSA scores, which supports this 

hypothesis. 

5.4 Research Question #4 

Decreases in discomfort over the 4 week period occurred across both feedback 

groups (Figure 19), and appeared for both total body discomfort as well as localized 

discomfort related to the monitor, telephone, mouse and keyboard. A previous study of 

the effectiveness of ergonomic training on the relief of discomfort has shown that all 

types of ergonomic intervention can lead to reduced worker-reported discomfort (Bayeh 

& Smith, 1999). Bohr (2000) showed that a participatory approach to ergonomics, where 

workers were instructed on how to make adjustments, followed by ergonomists helping 

the workers to make these changes, was the most effective in reducing symptoms of 

musculoskeletal disorders. The video-based training incorporated into ROSA appears to 

serve a similar purpose of educating workers on how to adjust office furniture with 

comparable results to these previous studies. 

Discomfort and ROSA final scores showed similar decreasing trends over the 

course of the study (Figure 12, Figure 19A). Decreasing ROSA scores may be reflective 

of risk factors being removed from the office. This indicates that the changes made to 
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offices based on the videos, literature and assessment structure in the ROSA online 

application may have been effective in reducing discomfort. 

What is promising about the changes to both office conditions and discomfort is 

that no new furniture purchases were made during the course of the study. Any changes 

made to the offices were a result of adjusting existing furniture and equipment, or using 

existing materials to improve the setup of the offices. Menozzi et al. (1999) found 

similar findings in office ergonomics research, with all forms of ergonomics training 

proving to be effective in reducing risk factors in the office environment. Amick et al. 

(2003) found that office ergonomic interventions were most successful when new 

furniture was brought in (primarily a new chair), and then workers were trained on 

adjustments. While there is no quantified evidence of the adjustments made by workers 

in the present study, the experimenter observed nearly all workers performing 

adjustments to their furniture throughout the assessment process. Using ROSA online 

appears to be an effective method of getting workers to adjust their furniture, which is a 

less expensive method of improving the office than making office-wide furniture 

purchases without assessing the need. 

Similar decreases were seen with risk factors (as reflected in a decrease in ROSA 

scores) as well as worker-reported discomfort. While there was no control group to allow 

for confirmation of self-guided training being more effective than the training used in this 

study, self-reported discomfort did decrease in a manner similar to other studies 

(Mastronardi, 2009; Menozzi, 1999). With this in mind, the hypothesis of a self-reported 

training program being effective in reducing discomfort is not fully supported, but results 

are promising. 
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Chapter VI 

Limitations 

6.1 Rapid Office Strain Assessment Scoring System 

A concern with the Rapid Office Strain Assessment research conducted to date 

(Sonne et al., 2010) was a lack of ROSA final scores recorded in the very low (1-2) and 

very high (7-10) range. Consequently, no relationships between discomfort and ROSA 

final score could be determined at these levels. The lack of very high scores in the 

previous and current study was due to the presence of adjustable office furniture, and 

relatively sound workstations in the facility where the research was conducted (Sonne et 

al., 2010). The reason for the lack of very low scores was related to the recruitment 

requirements for this study. Participants were required to spend at least 50% of their 

workday at their computer, which fulfilled the criteria for a +1 duration factor for most 

ROSA sections. As a result, the minimum score that could be achieved for each 

subsection was a score of 2, and any additional risk factors that exceeded neutral would 

lead to a score of 3 or higher. Due to a lack of previous ergonomic training within the 

workplaces, additional risk factors were present, which resulted in an increase in scores 

out of the lowest range of scores (ie., 1-2). 

6.2 Recruitment and Training 

Research question #4 aimed to examine the use of an online training program on 

worker-reported discomfort, as well as the identification and removal of risk factors in 

the office environment. A true self-guided program allows workers to access training 

materials whenever they choose, and complete tasks at their own pace (Gist et al., 1989). 

Originally, the intention of this study was to allow for two open access groups (with and 
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without feedback) that would have unfettered access to ROSA online, giving them a 

chance to review training materials and the self-assessment process at their own pace. 

During the course of the four weeks of the study with a group of 17 workers, no workers 

from these open access experimental groups conducted additional assessments of their 

office. As a result, the access groups were eliminated. A power analysis confirmed that 

the population recruited (n=55) was still sufficient to conduct the mixed models repeated 

measures AN OVA (recommended n=37) required to answer research questions 1, 2 and 

4. 

6.3 Feedback Administration 

Feedback was provided after every trial over the course of the 4 week training 

protocol to those participants in the FB Group. As a result, participants may have used 

the feedback as a method of conducting their assessments, instead of using it as a learning 

tool for increasing the accuracy of their own assessments. Previous research has found 

that when feedback on results from a task is given too frequently, the learners may come 

to rely on it too heavily (Schmidt & Lee, 2005). For future research into the effectiveness 

of feedback in improving the validity of worker-reported ROSA scores, guiding 

instructions should be given at different set intervals to determine the optimal frequency 

in which to give feedback on performance. 

Studying the use of feedback as a method of increasing the effectiveness of 

training is a beneficial aspect of this study, but may not be completely applicable in a 

real-world setting. As the primary goal of using ROSA in a large office is to quickly 

screen for risk factors, having to employee an individual to watch every person complete 
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their training, then give them feedback on their assessment, is not a time effective 

approach. In future research, an emphasis on creating methods of providing feedback 

(such as photographs of the workstation and the worker) without requiring additional 

observer interaction, would be desirable. 

6.4 Feedback Recording 

While the ineffectiveness of assessing the office seen in the FB Groups could be a 

result of decreased worker diligence over time, this cannot be confirmed, as the number 

of feedback items given was not recorded during each assessment. Diligence (or a 

decrease in diligence) could be confirmed if the same feedback points were given in 

multiple weeks, or if the total number of feedback points increased between weeks. As 

mentioned previously, extensive feedback can become a crutch for learners (Schmidt & 

Lee, 2005), and can lead to tasks not being fully learned. Additionally, frequent 

augmented feedback can cause degradation of the learning process through blocking 

long-term learning using short-term corrections (Schmidt, 1991). For future research, 

feedback should be conducted using the principles of bandwidth knowledge of results, as 

to not overload the participants with information. Working within an error rate of 5-10% 

(actual performance compared to ideal performance) has shown to increase retention in 

participants when compared to those who did not receive feedback, or received exact 

feedback over the course of a multi-week training program (Wright et al., 1997). 

The goal of providing feedback to the participants was to increase the accuracy of 

worker-reported ROSA scores with respect to observer-reported scores. This feedback 

was provided on every error that was committed by the participants. Providing feedback 
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to the participants does somewhat limit the practical application of the ROSA online 

software. The goal of ROSA online is to provide a quick screen of an entire office for 

risk factors related to musculoskeletal disorders. To have an ergonomist monitor every 

worker's screening assessment would be very ineffective from a time and cost 

perspective. For future research, feedback could be provided by request from the 

participants. 

6.5 Workplace Factors 

Each office environment is slightly different in both its physical properties (desks, 

chairs, computers, etc.,), and its psychosocial atmosphere (workplace stress, job 

satisfaction, job security, etc). Research has shown that psychosocial variables can play a 

large role in reporting discomfort, which could have had a substantial impact on the 

results of this study. However, the participants from this study were purposely 

distributed by company between both experimental groups with this in mind. For 

example, workers from the same company that worked in an open concept office area 

(with more than 2 participants separated by only a cubicle wall), were grouped together 

so that a member of the no feedback group would not receive secondary feedback 

resulting from an assessment of a worker in the feedback group that was working close 

by. 

6.6 Control Group 

No control group was included in the study, so it cannot be stated without some 

uncertainty that the general decrease in discomfort seen over the month of training was 

solely a result of the changes made to the office, and not due to the presence of an 
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observer. The presence of the observer might have led to lower discomfort reporting. 

However, previous research (Menozzi et al., 1999) has indicated that any type of 

ergonomics training has proven effective in lowering discomfort in office workers. 

Additionally, Amick and colleagues (2003) proved that the use of ergonomics training in 

office workers was effective in reducing risk factors related to musculoskeletal disorders 

and discomfort. As ROSA final scores were significantly correlated to discomfort, and 

ROSA final scores decreased throughout the course of the study, it does appear as if this 

training method was effective in reducing discomfort in the workers assessed. 

6.7 Definition of Validity 

This study was an exploratory venture into determining the validity of worker-

reported scores. As a result, there needed to be a clear-cut criterion for when a measure 

becomes valid. This was done through examining the statistical procedures used, and 

setting cut-off points for each of the tests. These cut-off points were set in order to draw 

a yes or no answer on whether a measure was valid or not, but were not justified based on 

any previous work or definition for validity (such as the presence of a satisfactory 

relationship between two variables, as per Thomas & Nelson, 2001). Future work needs 

to address this issue, using the current work as a baseline. 
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Chapter VII 

Future Directions 

7.1 Risk Factor Identification Images 

Existing research has shown that during video-based postural analysis, boundary 

definitions must be properly set (Andrews et al., 2008; van Wyk et al., 2009), and proper 

images must be used to allow for users to appropriately select the correct images. 

Additionally, the images must also be distinct enough to allow workers to differentiate 

between different conditions (Fiedler, 2010). These factors were not considered in great 

detail during the creation of ROSA online, due to the nature of this project. The 

researcher's intentions were to examine the existing ROSA checklist (Sonne et al., 2010), 

so the same images were used. From a modelling perspective, these animated graphics 

may have been difficult for the workers to relate to, and pictures of actual workers may 

have been more appropriate to promote more accurate selections of risk factors. 

7.2 ROSA Scoring Ranges and Open Access to Training 

A limitation in this and the previous study on ROSA was the lack of scoring in the 

very high (7-10), and very low range (1-2). Several reasons were given as to why the 

current range of scores existed (Section 6.1), including a lack of scores from workers that 

perform limited computer work in a day. A full scale study of a large office with no 

restrictions on the duration of computer use could contribute to a larger range of ROSA 

scores, from low to high (i.e. 1 to 10). Because ethical concerns would prevent 

researchers from exposing workers to known musculoskeletal disorder risk factors in the 

office environment, lab-based studies using techniques to measure muscle activity and 
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body posture could also be used to evaluate the strain on the worker during the very high 

range. 

Another advantage of a long-term, large-scale study would be the confirmation of 

discomfort decreases as a result of using a truly self-guided training protocol. With a 

larger sample of workers, a control group could be implemented to confirm that decreases 

in discomfort are a result of changes made to the office workstation, and not just to the 

presence of the experimenter. Furthermore, the open access experimental groups that 

were originally proposed in this study could be used to determine the impact of a truly 

self-guided training program on discomfort and risk factor reduction. 

7.3 Identification Through Photographs 

ROSA final scores and discomfort decreased throughout the 4 weeks of the study, 

which may be a result of a decrease in risk factors. Changes to workstations by workers 

were observed by the experimenters, but their maintenance over 4 weeks cannot be 

confirmed. In future studies, photographs could be taken at the beginning and the end of 

the experimental protocol and evaluated for risk factors. A tool such as the Office 

Ergonomics Assessment checklist (Robertson et al., 2009) could be used to evaluate if 

the training actually was effective in adjusting furniture. 

Another use of photographs could be to further evaluate workstations after they 

have been screened by the worker. A simple set of photos of the worker's activities 

could be used to conduct an evaluation of the office using ROSA, which could confirm 

the presence of risk factors. If assessing offices using photographs is a reliable approach 

for assessing risk factors, then travel and co-ordination issues would no longer be an 
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issue for the ergonomist. This would save time and money in the risk factor assessment 

process. 

7.4 Establishing Worker-reported ROSA Score Cut-off Levels 

Sonne et al. (2010) established a cut-off value of 5 for ROSA final score as the 

point above which significant increases in discomfort would be reported by workers. It 

was concluded that further analysis and training for those workstations above 5 should be 

considered in order to reduce worker discomfort and musculoskeletal disorder risk. The 

current study has shown that worker-reported ROSA final scores are significantly 

correlated with discomfort, and a significant difference existed between worker- and 

observer-reported ROSA final scores. A cut-off level for worker-reported scores should 

be established in order to help direct further assessments, training and equipment 

purchases within a company if needed. 

7.5 Disadvantages of Using a Discomfort Questionnaire 

As previously mentioned, the Cornell University Discomfort Questionnaire 

(Hedge et al., 1999) profiles discomfort in 18 different body parts, for frequency, 

intensity and degree of work interference related to discomfort. The large number of 

parts of this questionnaire, combined with a tendency for workers to over-report 

discomfort (Demure et al., 2000), may have led to some unwanted effects related to 

discomfort reporting in the current study. The decrease in discomfort could be a result of 

workers taking a few times to precisely identify their level of discomfort and use the 

questionnaire properly, or workers reporting significantly less discomfort because they 

were satisfied that changes had been made to their workstation. With these items 
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considered, a more accurate way to assess workstation impact on demands would be 

through research on muscle activation and various configurations of office furniture. 

Examining different office configurations and their corresponding ROSA scores would 

allow for a more clear-cut picture on the demands related to postures in the office. 

Additionally, while discomfort has been shown to negatively impact productivity 

(Hagberg et al., 2002), the long term consequences of being exposed to risk factors in the 

office are musculoskeletal injuries. These can lead to lost time and expensive health care 

costs. Further validation of ROSA should be examined in a longitudinal study comparing 

ROSA scores against injury claims. 
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Chapter VIII 

Conclusions 

The results from this study can be summarized as follows: 

1. Workers were able to validly assess the risk factors associated with the chair, monitor 

and telephone, but not with the mouse and keyboard or the ROSA final scores. 

2. The trend of worker-reported ROSA final scores to decrease over 4 weeks was 

similar to those of the observer-reported ROSA final scores. In other words, there 

was no interaction effect of assessment type and time. 

3. Providing augmented feedback to the worker on their performance negatively 

affected their reported scores. 

4. There was a stronger significant relationship between worker-reported ROSA final 

scores and total body discomfort than between observer-reported scores and 

discomfort. 

5. Worker-reported discomfort decreased throughout the 4 weeks of the study. 

Self-reported scores were significantly different in the mouse and keyboard 

subsection, as well as the ROSA final score. As the final score is used to make final 

judgments on if a workstation requires additional assessment, self-reported scores cannot 

be considered valid at this point in time. Using the online version of ROSA allowed for 

the completion of over 200 assessments in a one-month time period. The demonstrated 

speed and ease with which access to online ergonomics training and assessments can be 

made warrants further research into how to increase the accuracy of worker-assessments 

using the ROSA online tool. 
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Appendix A: The Rapid Office Strain Assessment (Sonne et al., 2010). 
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Appendix C: Screenshots from ROSA Online 
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2. Informed Consent 
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4. Chair Depth 
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6. Backrest 
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8. Telephone 
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10. Keyboard 

The Rapid Qffise Strain Assessment - RDSA 
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11. Adjustment Videos 
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Appendix D: Feedback Script 

The chair 
height you 
selected 
was: 

Too low 

Too high 

No foot 
contact 

Insufficient 
space under 
desk 
Non-adjustable 

The chair 
height I 
selected 
was: 

Too low 

Too high 

No foot 
contact 

Insufficient 
space under 
desk 
Non-adjustable 

This 
was 
because: 

The angle of the knee is less 
than 90 degrees. The seam of 
your pants can be used to 
determine your knee angle. 
The angle of the knee is greater 
than 90 degrees. The seam of 
your pants can be used to 
determine your knee angle. 
When turning in the chair, you 
can only touch your toes to the 
ground, and your feet dangle 
off of the edge of the chair. 
There is not sufficient room for 
you to cross your lower legs 
under the desk surface. 
There is no height adjustment 
mechanism under your chair. 

The seat 
pan depth 
you 
selected 
was: 

Ideal 
(approximately 
8cm of space 
between seat 
pan edge and 
the back of the 
knee) 
Too long (less 
than 8cm of 
space) 

Too short 
(more than 
8cm of space) 

Non-adjustable 

The seat 
pan depth 
I selected 
was: 

Ideal 
(approximately 
8cm of space 
between seat 
pan edge and 
the back of the 
knee) 
Too long (less 
than 8 cm of 
space) 

Too short 
(more than 
8cm of space) 

Non-adjustable 

This 
was 
because: 

There was enough space to fit 
your fist between the edge of 
the seat pan and the back of 
your knee. 

There was not enough space for 
you to fit your fist between the 
edge of the seat pan and the 
back of your knee. 
There was more than a "fist" of 
space between the edge of the 
seat pan and the back of the 
knee. 
There was no seat pan depth 
mechanism. 
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The armrest 
position 
you 
selected 
was: 

Elbows 
supported in 
line with the 
shoulder, 
shoulders 
relaxed 
Armrests too 
high 
(shoulders 
shrugged) 
Armrests too 
low (arms 
unsupported) 

No arm 
support 

Hard or 
damaged 
armrest 
surface 

Too wide 

Non-adjustable 

The 
armrest 
position I 
selected 
was: 

Elbows 
supported in 
line with the 
shoulder, 
shoulders 
relaxed 
Armrests too 
high 
(shoulders 
shrugged) 
Armrests too 
low (arms 
unsupported) 

No arm 
support 

Hard or 
damaged 
armrest 
surface 

Too wide 

Non-adjustable 

This 
was 
because: 

The shoulders were relaxed and 
the elbows were supported at 90 
degrees when sitting. 

The shoulders were shrugged 
when the arms were on the 
armrests. 

The elbow angle was greater 
than 90 degrees, and the 
forearms are not in full contact 
with the armrests while sitting. 
There were no arm supports on 
the chair, or the armrests were 
positioned so low that there was 
no contact with the armrests. 
The armrests surface has 
damage on it, or the armrest 
surface is made of a hard 
material that creates a pressure 
point on the forearm. 
The elbows and forearms are 
rested on the armrest, but the 
upper arm is not straight in line 
with the armrest. 
There are no adjustment 
mechanisms to change the 
positioning of the armrests. 

The 
backrest 
position 
you 
selected 
was: 

Adequate 
lumbar support 
and backrest 
recline 
between 95-
110 degrees 
No lumbar 
support, or 
lumbar support 
not positioned 
in the small of 
the back 
Chair angled 
too far back, or 
too far forward 

No back 
support 
(leaning 
forward) 

The 
backrest 
position I 
selected 
was: 

Adequate 
lumbar support 
and backrest 
recline 
between 95-
110 degrees 
No lumbar 
support, or 
lumbar support 
not positioned 
in the small of 
the back 
Chair angled 
too far back, or 
too far forward 

No back 
support 
(leaning 
forward) 

This 
was 
because: 

The lumbar support was 
positioned in the small of the 
back, and you were slightly 
reclined while sitting. 

The lumbar support was not 
positioned in the small of the 
back OR there was no lumbar 
support on the seat back. 

The recline of the chair was set 
too far back, and you were 
having to reach too far to things 
on the desk surface OR you 
were sitting so that you were 
leaning forward when reaching 
to items on the desk surface. 
There is no back support on the 
chair OR you were leaning 
forward and not making contact 
with the backrest while sitting. 

128 



Work surface 
is too high -
shoulders 
shrugged 
Back rest non-
adjustable 

Work surface 
is too high -
shoulders 
shrugged 
Back rest non-
adjustable 

when putting your arms on the 
desk surface to write, or use the 
mouse and keyboard. 

The lumbar support or the 
backrest angle was not 
adjustable. 

The 
monitor 
position 
you 
selected 
was: 

An arm's 
length 
distance, with 
the top of the 
screen at eye 
level 
Too low 

Too far 

Too high 

Neck twisted 

Glare on 
screen 

Documents -
no holder 

The 
monitor 
position I 
selected 
was: 

An arm's 
length 
distance, with 
the top of the 
screen at eye 
level 
Too low 

Too far 

Too high 

Neck twisted 

Glare on 
screen 

Documents -
no holder 

This 
was 
because: 

The top of the viewing area of 
the screen was level with your 
sitting eye height, and the 
monitor was an arm's length 
away from you. 

The top of the monitor was 
below your sitting eye height, 
causing your head to be tilted 
forward while looking at the 
computer. 
The monitor was positioned 
outside of an arm's length away 
from you. 
The top of the monitor was 
above your sitting eye height, 
causing your neck to be 
extended while sitting and 
viewing the screen. 
The monitor was not in a direct 
line with you and your 
keyboard while typing. As a 
result, you had to twist your 
neck to the right/left to view the 
screen. 
Artificial/natural light is falling 
on the screen, and it can lead to 
eye fatigue because of the strain 
associated with attempting to 
focus around the glare. 
You are referring to paper 
documents, which are currently 
positioned on the desk surface 
to the right/left of the screen 
and cause your neck to be 
twisted and flexed. 
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The 
telephone 
position 
you 
selected 
was: 

Headset / one 
hand on phone 
and neutral 
neck posture 

Too far of a 
reach 

Neck and 
shoulder hold 

No hands free 
options 

The 
telephone 
position I 
selected 
was: 

Headset / one 
hand on phone 
and neutral 
neck posture 

Too far of a 
reach 

Neck and 
shoulder hold 

No hands free 
options 

This 
was 
because: 

You use a wired or wireless 
headset, allowing you to type 
with the head in a neutral 
posture. 

The telephone was positioned 
outside of an arm's length away 
from you where you sit. 
The phone is cradled between 
your neck and shoulder while 
you talk on the phone and use 
the computer or write 
simultaneously 
There is no speaker 
phone/speaker phone is not an 
option, and there is not way to 
keep the head/neck in a neutral 
posture while typing while 
using the phone. 

The mouse 
position 
you 
selected 
was: 

Mouse in line 
with the 
shoulder 

Reaching to 
the mouse 

Mouse and 
keyboard on 
different 
surfaces 

Pinch grip on 
the mouse 

Palmrest in 
front of the 
mouse 

The 
mouse 
position I 
selected 
was: 

Mouse in line 
with the 
shoulder 

Reaching to 
the mouse 

Mouse and 
keyboard on 
different 
surfaces 

Pinch grip on 
the mouse 

Palmrest in 
front of the 
mouse 

This 
was 
because: 

The mouse was positioned in 
line with the shoulder, with no 
reaching. 

The mouse was positioned wide 
of the keyboard, and the arm 
had to be abducted in order to 
reach to the mouse. 
The mouse was on a different 
surface than the keyboard, 
making it impossible to move 
the mouse close to the keyboard 
and reduce strain on the 
shoulder while mousing. 
The mouse was too small to 
support the width of the hand 
and the palm while mousing. 
A palmrest is positioned in 
front of the mouse, causing 
pressure on the wrist which 
may contribute to symptoms of 
wrist discomfort. 
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The 
keyboard 
position 
you 
selected 
was: 

Wrists 
straight, 
shoulders 
relaxed 

Wrists 
extended / 
keyboard on a 
positive angle 

Deviation 
while typing 

Keyboard 
tray/surface 
too high 

Platform non 
adjustable 

The 
keyboard 
position I 
selected 
was: 

Wrists 
straight, 
shoulders 
relaxed 

Wrists 
extended / 
keyboard on a 
positive angle 

Deviation 
while typing 

Keyboard 
tray/surface 
too high 

Platform non 
adjustable 

This 
was 
because: 

The wrists were straight while 
typing, and the keyboard 
platform was at a height that 
allowed the shoulders to be 
relaxed. 
The legs on the back of the 
keyboard were extended/ the 
keyboard tray was on a positive 
angle, causing the wrists to be 
bent back while typing, and 
contributing to increased 
forearm muscle activity. 
The keyboard was too small 
and caused the wrists to be bent 
to the side during typing. 
The platform where the 
keyboard was located was too 
high, and as a result the 
shoulders were shrugged while 
typing. 
The platform was non 
adjustable, and as a result it 
wasn't possible to get into a 
proper typing height 
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Appendix E: ANOVA Tables 

Tests of Within-Subjects Effects 

ROSA Final Scores 
Source 

Time 

Time * Group 

Error(Time) 

AssessmentType 

AssessmentType * Group 

Error(AssessmentType) 

week * AssessmentType 

week * AssessmentType* Group 

Error(week*AssessmentType) 

Type III 
Sum of 
Squares 

34.490 

2.162 

156.497 

2.935 

.025 

25.779 

3.262 

.244 

75.751 

df 
3 

3 

159 

1 

1 

53 

3 

3 

159 

Mean 
Square 
11.497 

.721 

.984 

2.935 

.025 

.486 

1.087 

.081 

.476 

F 
11.680 

.732 

6.033 

.052 

2.283 

.171 

Sig. 
.000 

.534 

.017 

.820 

.081 

.916 

Partial 
Eta 

Squared 
.181 

.014 

.102 

.001 

.041 

.003 

Source 

Intercept 

Group 

Error 

Type III Sum of 

Squares 

5905.603 

21.239 

281.065 

Tests of Between-Subjects Effects 

df 

1 

1 

53 

Mean Square 

5905.603 

21.239 

5.303 

F 

1113.609 

4.005 

Siq. 

.000 

.050 

Partial Eta 

Squared 

.955 

.070 
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Tests of Within-Subjects Effects 

ROSA Chair Scores 
Source 

Time 

Time * Group 

Error(Time) 

AssessmentType 

AssessmentType * Group 

Error(AssessmentType) 

week * AssessmentType 

week * AssessmentType* Group 

Error(week*AssessmentType) 

Type III 
Sum of 
Squares 

16.111 

.830 

83.884 

.749 

.158 

28.856 

3.084 

.221 

65.948 

df 
3 

3 

159 

1 

1 

53 

3 

3 

159 

Mean 
Square 

5.370 

.277 

.528 

.749 

.158 

.544 

1.028 

.074 

.415 

F 
10.180 

.524 

1.375 

.290 

2.479 

.177 

Sig. 
.000 

.666 

.246 

.593 

.063 

.912 

Partial 
Eta 

Squared 
.161 

.010 

.025 

.005 

.045 

.003 

Tests of Between-Subjects Effects 

Source 

Intercept 

Group 

Error 

Type III Sum of 

Squares 

4478.501 

.001 

170.213 

df 

1 

1 

53 

Mean Square 

4478.501 

.001 

3.212 

F 

1394.490 

.000 

Sig. 

.000 

.990 

Partial Eta 

Squared 

.963 

.000 
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Tests of Within-Subjects Effects 

ROSA Monitor and Telephone Scores 
Source 

Time 

Time * Group 

Error(Time) 

AssessmentType 

AssessmentType * Group 

Error(AssessmentType) 

week * AssessmentType 

week * AssessmentType* Group 

Error(week*AssessmentType) 

Type III 
Sum of 
Squares 

17.546 

5.128 

129.958 

3.448 

.012 

46.656 

2.600 

1.019 

84.768 

df 
3 

3 

159 

1 

1 

53 

3 

3 

159 

Mean 
Square 

5.849 

1.709 

.817 

3.448 

.012 

.880 

.867 

.340 

.533 

F 
7.156 

2.091 

3.917 

.014 

1.626 

.637 

Sig. 
.000 

.103 

.056 

.908 

.186 

.592 

Partial 
Eta 

Squared 
.119 

.038 

.069 

.000 

.030 

.012 

Tests of Between-Subjects Effects 

Source 

Intercept 

Group 

Error 

Type III Sum of 

Squares 

3185.720 

5.120 

249.085 

df 

1 

1 

53 

Mean Square 

3185.720 

5.120 

4.700 

F 

677.854 

1.089 

Sig. 

.000 

.301 

Partial Eta 

Squared 

.927 

.020 
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Tests of Within-Subjects Effects 

ROSA Mouse and Keyboard Scores 
Source 

Time 

Time * Group 

Error(Time) 

AssessmentType 

AssessmentType * Group 

Error(AssessmentType) 

week * AssessmentType 

week * AssessmentType* Group 

Error(week*AssessmentType) 

Type III 
Sum of 
Squares 

23.738 

1.538 

155.889 

2.719 

1.137 

30.454 

3.042 

.115 

83.949 

df 
3 

3 

159 

1 

1 

53 

3 

3 

159 

Mean 
Square 

7.913 

.513 

.980 

2.719 

1.137 

.575 

1.014 

.038 

.528 

LL. 

8.071 

.523 

4.732 

1.979 

1.921 

.072 

Sig. 
.000 

.667 

.034 

.165 

.128 

.975 

Partial 
Eta 

Squared 
.132 

.010 

.082 

.036 

.035 

.001 

Source 

Intercept 

Group 

Error 

Type III Sum of 

Squares 

3758.169 

56.442 

351.749 

Tests of 

df 

1 

1 

53 

Between-Subjects Effects 

Mean Square 

3758.169 

56.442 

6.637 

F 

566.265 

8.504 

Sig. 

.000 

.005 

Partial Eta 

Squared 

.914 

.138 
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Tests of Within-Subjects Effects 

Total Body Discomfort 
Source 

Time 

Week * Group 

Error(Time) 

Type III Sum 
of Squares 

16675.75 

768.84 

156791.58 

df 
3.00 

3.00 

159.00 

Mean 
Square 

5558.58 

256.28 

986.11 

F 
5.64 

.26 

Sig. 
.00 

.85 

Partial Eta 
Squared 

.10 

.00 

Tests of Between-Subjects Effects 

Source 

Intercept 

Group 

Error 

Type III Sum 
of Squares 

177294.29 

177.11 

462203.07 

df 
1.00 

1.00 

53.00 

Mean 
Square 
177294.29 

177.11 

8720.81 

F 
20.33 

.02 

Sig. 
.00 

.89 

Partial Eta 
Squared 

.28 

.00 

Tests of Within-Subjects Effects 

Total Body Discomfort - No Leg Scores 
Source 

Time 

Week * Group 

Error(Time) 

Type III Sum 
of Squares 

12585.98 

657.47 

137982.69 

df 
3.00 

3.00 

159.00 

Mean Square 
4195.33 

219.16 

867.82 

F 
4.83 

.25 

Sig. 
.00 

.86 

Partial Eta 
Squared 

.08 

.00 

Tests of Between-Subjects Effects 

Source 

Intercept 

Group 

Error 

Type III Sum 
of Squares 

148292.90 

251.22 

419864.49 

df 
1.00 

1.00 

53.00 

Mean Square 
148292.90 

251.22 

7921.97 

F 
18.72 

.03 

Sig. 
.00 

.86 

Partial Eta 
Squared 

.26 

.00 
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Tests of Within-Subjects Effects 

Chair-related Discomfort 
Source 

Time 

Week * Group 

Error(Time) 

Type III Sum 
of Squares 

2200.43 

492.26 

47829.21 

df 
3.00 

3.00 

159.00 

Mean 
Square 

733.48 

164.09 

300.81 

F 
2.44 

.55 

Sig. 
.07 

.65 

Partial Eta 
Squared 

.04 

.01 

Tests of Between-Subjects Effects 

Source 

Intercept 

Group 

Error 

Type III Sum 
of Squares 

49587.33 

120.08 

134099.73 

df 
1.00 

1.00 

53.00 

Mean 
Square 
49587.33 

120.08 

2530.18 

F 
19.60 

.05 

Sig. 
.00 

.83 

Partial Eta 
Squared 

.27 

.00 

Tests of Within-Subjects Effects 

Monitor and Telephone-Related Discomfort 
Source 

Time 

Week * Group 

Error(Time) 

Type III 
Sum of 
Squares 

1432.62 

284.26 

23177.77 

df 
3.00 

3.00 

159.00 

Mean 
Square 

477.54 

94.75 

145.77 

F 
3.28 

.65 

Sig. 
.02 

.58 

Partial Eta 
Squared 

.06 

.01 

Tests of Between-Subjects Effects 

Source 

Intercept 

Group 

Error 

Type III 
Sum of 
Squares 
11251.71 

2.28 

52434.59 

df 
1.00 

1.00 

53.00 

Mean 
Square 
11251.71 

2.28 

989.33 

F 
11.37 

.00 

Sig. 
.00 

.96 

Partial Eta 
Squared 

.18 

.00 
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Tests of Within-Subjects Effects 

Mouse and Keyboard Related-Discomfort 
Source 

Time 

Week * Group 

Error(Time) 

Type III Sum 
of Squares 

6343.74 

401.18 

96186.26 

df 
3.00 

3.00 

159.00 

Mean 
Square 

2114.58 

133.73 

604.95 

F 
3.50 

.22 

Sig. 
.02 

.88 

Partial Eta 
Squared 

.06 

.00 

Tests of Between-Subjects Effects 

Source 

Intercept 

Group 

Error 

Type III Sum 
of Squares 

61340.25 

1078.56 

211403.92 

df 
1.00 

1.00 

53.00 

Mean 
Square 
61340.25 

1078.56 

3988.75 

F 
15.38 

.27 

Sig. 
.00 

.61 

Partial Eta 
Squared 

.22 

.01 
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Appendix F: Correlation Tables 

MonTel - Monitor and Telephone 
MouKey - Mouse and Keyboard 
Final - ROSA Final Score 
Worker - Worker Reported Scores 
Observer - Observer Reported Scores 
*= statistically significant at p<0.05. 

Week 1 - Feedback 

Chair Worker 

MonTel 
Worker 
MouKey 
Worker 
Worker Final 

Chair Observer 

MonTel 
Observer 
MouKey 
Observer 
ObserverFinal 

Total Body 
Discomfort 

0.20 

0.20 

0.08 

0.17 

-0.18 

0.12 

-0.11 

-0.23 

Total Body (No 
Leg) 

0.20 

0.21 

0.11 

0.18 

-0.19 

0.13 

-0.10 

-0.21 

Chair 
Discomfort 

0.15 

0.13 

-0.01 

0.13 

-0.24 

0.09 

-0.26 

-0.29 

Monitor and 
Telephone 
Discomfort 

0.30 

0.39* 

0.36 

0.38 

-0.08 

0.26 

0.04 

-0.10 

Mouse and 
Keyboard 
Discomfort 

.13 

.12 

-.03 

.08 

-.22 

.00 

-.12 

-.24 

Week 1 - No Feedback 

Chair Worker 

MonTel 
Worker 
MouKey 
Worker 
Worker Final 

Chair Observer 

MonTel 
Observer 
MouKey 
Observer 
ObserverFinal 

Total Body 
Discomfort 

0.28 

0.21 

0.25 

0.23 

0.06 

-0.12 

0.11 

0.01 

Total Body (No 
Leg) 

0.27 

0.18 

0.18 

0.16 

0.06 

-0.13 

0.15 

0.03 

Chair 
Discomfort 

0.19 

0.07 

-0.03 

-0.02 

0.03 

-0.12 

0.04 

-0.01 

Monitor and 
Telephone 
Discomfort 

0.19 

0.10 

-0.07 

-0.03 

-0.07 

-0.03 

0.14 

0.14 

Mouse and 
Keyboard 
Discomfort 

0.29 

0.17 

0.19 

0.19 

0.08 

-0.10 

0.06 

-0.03 
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Week 2 - Feedback 

Chair Worker 

MonTel 
Worker 
MouKey 
Worker 
Worker Final 

Chair Observer 

MonTel 
Observer 
MouKey 
Observer 
ObserverFinal 

Total Body 
Discomfort 

-0.06 

-0.34 

0.06 

-0.17 

0.05 

-0.34 

-0.02 

-0.10 

Total Body (No 
Leg) 

-0.01 

-0.31 

0.12 

-0.13 

0.09 

-0.34 

-0.03 

-0.07 

Chair 
Discomfort 

-0.10 

-0.43* 

-0.04 

-0.21 

-0.04 

-0.38 

-0.12 

-0.16 

Monitor and 
Telephone 
Discomfort 

0.05 

-0.21 

0.12 

-0.01 

0.02 

-0.36 

0.00 

-0.13 

Mouse and 
Keyboard 
Discomfort 

0.10 

-0.24 

0.19 

-0.04 

0.18 

-0.44* 

-0.10 

-0.04 

Week 2 - No Feedback 

Chair Worker 

MonTel 
Worker 
MouKey 
Worker 
Worker Final 

Chair Observer 

MonTel 
Observer 
MouKey 
Observer 
ObserverFinal 

Total Body 
Discomfort 

0.51* 

0.23 

0.52* 

0.47* 

0.18 

0.20 

0.19 

0.15 

Total Body (No 
Leg) 

0.52* 

0.22 

0.46* 

0.43* 

0.17 

0.17 

0.14 

0.12 

Chair 
Discomfort 

0.41* 

0.19 

0.23 

0.31 

0.11 

0.13 

0.09 

0.05 

Monitor and 
Telephone 
Discomfort 

0.33 

0.04 

0.39* 

0.35* 

0.09 

0.16 

0.24 

0.15 

Mouse and 
Keyboard 
Discomfort 

0.47* 

0.20 

0.41* 

0.43* 

0.22 

0.18 

0.09 

0.12 

140 



Week 3 - Feedback 

Chair Worker 

MonTel 
Worker 
MouKey 
Worker 
Worker Final 

Chair Observer 

MonTel 
Observer 
MouKey 
Observer 
ObserverFinal 

Total Body 
Discomfort 

-0.03 

-0.27 

-0.06 

-0.09 

-0.12 

-0.18 

-0.18 

-0.19 

Total Body (No 
Leg) 

-0.03 

-0.29 

-0.07 

-0.09 

-0.12 

-0.19 

-0.17 

-0.19 

Chair 
Discomfort 

-0.05 

-0.30 

-0.05 

-0.10 

-0.11 

-0.21 

-0.15 

-0.18 

Monitor and 
Telephone 
Discomfort 

-0.03 

-0.27 

-0.07 

-0.08 

-0.09 

-0.15 

-0.19 

-0.14 

Mouse and 
Keyboard 
Discomfort 

-0.01 

-0.32 

-0.08 

-0.09 

-0.13 

-0.19 

-0.14 

-0.21 

Week 3 -No Feedback 

Chair Worker 

MonTel 
Worker 
MouKey 
Worker 
Worker Final 

Chair Observer 

MonTel 
Observer 
MouKey 
Observer 
ObserverFinal 

Total Body 
Discomfort 

0.30 

0.34 

0.38* 

0.36* 

0.00 

0.21 

0.45* 

0.39* 

Total Body (No 
Leg) 

0.29 

0.33 

0.36 

0.35 

-0.01 

0.20 

0.41* 

0.36* 

Chair 
Discomfort 

0.20 

0.06 

0.32 

0.25 

0.02 

0.03 

0.33 

0.18 

Monitor and 
Telephone 
Discomfort 

0.28 

0.35 

0.37 

0.33 

0.06 

0.27 

0.45* 

0.43* 

Mouse and 
Keyboard 
Discomfort 

0.27 

0.27 

0.29 

0.28 

-0.04 

0.20 

0.37 

0.33 
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Week 4 - Feedback 

Chair 
Worker 
MonTel 
Worker 
MouKey 
Worker 
Worker 
Final 
Chair 
Observer 
MonTel 
Observer 
MouKey 
Observer 
ObserverFi 
nal 

Total Body 
Discomfort 

-0.14 

0.22 

-0.16 

-0.25 

-0.07 

-0.34 

-0.23 

-0.18 

Total Body 
(No Leq) 

-0.15 

0.21 

-0.16 

-0.26 

-0.07 

-0.35 

-0.22 

-0.18 

Chair 
Discomfort 

-0.14 

0.20 

-0.21 

-0.25 

-0.09 

-0.35 

-0.21 

-0.18 

Monitor and 
Telephone Discomfort 

-0.14 

0.20 

-0.12 

-0.19 

-0.06 

-0.26 

-0.18 

-0.12 

Mouse and Keyboard 
Discomfort 

-0.15 

0.26 

-0.19 

-0.31 

-0.03 

-0.34 

-0.20 

-0.15 

Week 4 - No Feedback 

Chair 
Worker 
MonTel 
Worker 
MouKey 
Worker 
Worker 
Final 
Chair 
Observer 
MonTel 
Observer 
MouKey 
Observer 
ObserverFi 
nal 

Total Body 
Discomfort 

0.33 

0.34 

0.47* 

0.46* 

0.33 

0.06 

0.61* 

0.70* 

Total Body 
(No Leg) 

0.33 

0.33 

0.45* 

0.44* 

0.33 

0.04 

0.59* 

0.69* 

Chair 
Discomfort 

0.36* 

0.25 

0.35 

0.42 

0.48 

0.07 

0.50* 

0.68* 

Monitor and 
Telephone Discomfort 

0.23 

0.36* 

0.42* 

0.40* 

0.19 

0.08 

0.59* 

0.65* 

Mouse and Keyboard 
Discomfort 

0.35 

0.31 

0.44* 

0.44* 

0.34 

0.03 

0.57* 

0.67* 
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Appendix G: Development and Evaluation of an Office Ergonomic Checklist: ROSA -
Rapid Office Strain Assessment (Sonne et al., 2010). 

Michael Sonne12, Dino L. Villalta2, and David M. Andrews1* 

iDepartment of Kinesiology, University of Windsor, Windsor, Ontario, Canada 
2LeadErgonomics, Tecumseh, Ontario, Canada 

* Address for correspondence: 

David M. Andrews, Associate Professor, Department of Kinesiology 
University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada, N9B 3P4 
Telephone: 519-253-3000, ext. 2433 
Fax:519-973-7056 
Email: dandrews@uwindsor.ca 

Abstract: The Rapid Office Strain Assessment (ROSA) was designed to quickly quantify 
risks associated with computer work and to establish an action level for change based on 
reports of worker discomfort. Computer use risk factors were identified in previous 
research and standards on office design for the chair, monitor, telephone, keyboard and 
mouse. The risk factors were diagrammed and coded as increasing scores from 1-3. 
ROSA final scores ranged in magnitude from 1 to 10, with each successive score 
representing an increased presence of risk factors. Total body discomfort and ROSA final 
scores for 72 office workstations were significantly correlated (R=0.384). ROSA final 
scores exhibited high inter- and intra-observer reliability (ICCs of 0.88 and 0.91, 
respectively). Mean discomfort increased with increasing ROSA scores, with a 
significant difference occurring between scores of 3 and 5 (out of 10). A ROSA final 
score of 5 might therefore be useful as an action level indicating when immediate change 
is necessary. ROSA proved to be an effective and reliable method for identifying 
computer use risk factors related to discomfort. 

Keywords: 
Office ergonomics; Checklists; Risk Assessment 
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1.0 Introduction 

The amount of computer work has dramatically increased in the past 20 years. In 

2000, 60% of workers were required to use a computer as part of their job duties, with 

80% of those workers reporting that they used a computer on a daily basis (Marshall, 

2001; Lin and Popovic, 2003). This number is up from 50% in 1994, and 39% in 1989 

(Lowe, 1997). This increasing trend in computer usage in the workplace has not come 

without a cost to the wellbeing of workers. In a review by Wahlstrom (2005), the 

prevalence of musculoskeletal disorders was reported to be between 10 and 62% for all 

computer workers. Furthermore, since the inception of occupational computer use, there 

has been a similar increase in the number of musculoskeletal disorders reported (Bayeh 

and Smith, 1999; Wahlstrom, 2005). 

Musculoskeletal disorders associated with occupational computer use are 

primarily linked to the upper limbs (Gerr et al., 2002), head and neck (Korhonen et al., 

2003; Hagberg and Wegman, 1987), and back (Jensen et al., 2002). Repetitive motion of 

the fingers, hands and wrists, sustained awkward postures of the wrist and forearm, and 

contact pressures in the wrist have been proposed as possible mechanisms of injury 

related to the use of the keyboard and mouse (Village et al., 2005). Elevated pressure in 

the tissues surrounding nerves in the upper extremities have been shown to increase with 

sustained non-neutral postures, which may lead to further discomfort and injury (Keir et 

al., 1999). Mechanisms of injury and discomfort for the back while computing include 

muscle fatigue, which results from increased levels of erector spinae activation when 

sitting as compared to standing (Callaghan and McGill, 2001), as well as improper sitting 
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posture contributing to a lack of support while sitting (Keegan, 1953; Harrison et al., 

1999). 

Graphics-based checklists are commonly used to perform ergonomic analyses, 

specifically in jobs that feature low intensity, repetitive work, or require workers to 

perform awkward postures (McAtamney and Corlett, 1993; Hignett and McAtamney, 

2000; Karhu et al, 1977). The Rapid Upper Limb Assessment (RULA) tool has 

previously been used to examine worker interactions with a computer in an office 

environment (McAtamney and Corlett, 1993; Lueder, 1996; Roberston et al., 2009). 

Hazardous postures, such as wrist extension or radial or ulnar deviation (Serina et al., 

1999) can be directly attributable to the use of improper office equipment and equipment 

setup. However, the direct influence of office equipment (e.g. chair, telephone and 

monitor) on the worker is not necessarily identified using RULA. The Office Ergonomic 

Assessment tool (OEA) (Robertson et al., 2009) offers an alternative approach for 

assessing the office using a checklist format. While the OEA is as an excellent method 

for measuring workstation adjustability and worker training outcomes, it doesn't result in 

outcomes that have been directly correlated with worker discomfort, nor are there scoring 

or action levels like in RULA that indicate when further intervention is required. 

Traditional approaches to office ergonomic risk management, training and 

assessment have come in the following forms: literature, ergonomic redesign, individual 

assessment and group training (Bohr, 2002). Ideally, an ergonomic redesign of the entire 

workspace is the most effective method of intervention if the goal is to completely 

eliminate risk factors in the office environment instead of just control them. However, 

this approach is very costly and time intensive. With respect to cost, the next best 
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approach is to provide training to workers, and then allow them to actively make 

adjustments to their workspace (Bohr, 2002). However, in certain situations, workers 

may not be able to make adjustments (due to non-adjustable furniture, space constraints 

or a lack of equipment). Consequently, ergonomic redesign or equipment purchase may 

be the only option to eliminate hazards from the workstation. Traditional ergonomic 

assessments may highlight risk factors, and possible solutions, but do not provide a clear 

picture of how to prioritize the risks and allow for the most effective solutions to be 

purchased or implemented. This problem is amplified as the number of employees and 

workstations in a given office environment that would benefit from new products 

increases. A combined approach of workers receiving adjustable furniture, followed by 

training to use the furniture, appears to be the most effective method of reducing 

musculoskeletal disorder symptoms (Amick et al., 2003). In order to prioritize risks in 

the office to identify who should receive furniture or other equipment first, a quantifiable 

method must be used to indicate which problem areas pose the greatest risk, and how 

urgently these risks need to be addressed. 

Therefore, the purpose of this study was to develop and evaluate a new office risk 

assessment tool, the Rapid Office Strain Assessment (ROSA), that can quickly quantify 

hazards associated with each component of a typical office workstation, and provide 

information to the user regarding the need for change based on reports of discomfort 

related to office work. 
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2.0 Methods 

2.1 Tool development 

The Rapid Office Strain Assessment (ROSA) was created using postures that 

were described in the CSA Z412 guidelines for office ergonomics (Canadian Standards 

Association (CSA), 2000) and on the Canadian Centre for Occupational Health and 

Safety website (Canadian Centre for Occupational Health and Safety (CCOHS), 2005). 

All postures that were described as ideal or neutral in the CSA standards were given a 

score of 1 and became the minimum score for each area within the sub-sections of the 

tool (see below). Deviations from the neutral postures were scored in a linearly 

increasing manner from values of 1 to 3. Certain factors that could be used concurrently 

with base risk factors (for example, chair height and chair height adjustability) were 

given scores of+1. These scores can be added to the base section scores. Risk factors 

were grouped into the following areas: chair, monitor, telephone, keyboard and mouse. 

In each of these areas, the maximum score that can reasonably be achieved is tallied and 

set as the highest possible value on the developed scoring charts (Figure 1). 
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Fig. 1. Scoring charts for sub-sections (A, B and C), monitor and peripherals score, and 
ROSA final score. 

The scoring charts were developed by matching two office sub-sections against 

each other in order to get a complete score for that area. These sub-sections were seat 

pan height and seat pan depth, backrest and arm supports, monitor and telephone, and 

keyboard and mouse. The maximum scores from each of the sections were used as the 

horizontal and vertical axes for the sub-section scores (which were subsequently used to 

create the ROSA final score). The scores from the monitor and telephone, and keyboard 

and mouse are then compared in another chart to receive the peripheral score. The ROSA 

final score is derived by comparing the peripheral chart against the chair score (Section 

2.2). 

A draft of the completed ROSA tool was given to 5 expert reviewers that worked 

as professional ergonomists, and conducted regular office ergonomic analyses and 

training. The experts were given a training package that outlined how ROSA was to be 

used and detailed breakdowns of each of the scoring sections and scoring charts. The 

ergonomists were told to use the tool and provide feedback on or report any issues with 
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the images selected in the tool, the individual posture scores, or any of the scores within 

the charts. The feedback from the individual reviewers was then collated, and changes 

were made to the tool via consensus. 

2.2 Creation of scoring charts 

The design of the section A, B, C, peripheral and final score charts in ROSA 

(Figure 1) is reflective of the increasing values (related to risk level) found within the 

head/trunk/neck and grand score charts in RULA (McAtamney and Corlett, 1993). The 

scores used to select values along the axes in these scoring charts are achieved by 

summing the values associated with the individual risk factors in the specific sub-sections 

(chair components, monitor, telephone, mouse and keyboard) (Figure 2). The maximum 

possible score that can be achieved for the sub-sections is reflective of the presence of all 

possible risk factors, as well as the maximum duration of use value (Section 2.3.7 below). 

Within the chair scoring chart and the peripherals scoring chart, the highest possible score 

that can be achieved is a score of 10. This is also the case in the final score chart. The 

value of 10 was chosen to provide users with an easy to understand 1-10 scoring system 

that would reflect the amount of risk that was present in the workstation. 
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Fig. 2. Scores and diagrams for the risk factors associated with seat pan height (A), seat 
pan depth (B), arm rest (C) and back support (D). 

2.3 Individual posture and equipment scores 

The scores for each risk factor were modelled after deviations from the neutral 

posture, as cited by the CSA standards on office ergonomics (CSA International, 2000). 

The deviations are also supported as risk factors for the onset of musculoskeletal 

disorders based on supporting literature, as well as information contained within the CSA 

standards. 
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2.3.1 Office chair scores 

As indicated in CSA standard Z412 (CSA International, 2000), the neutral seated 

posture for an individual is to have the knees bent at approximately 90° with the feet flat 

on the floor. The lumbar support should be adjusted to fit in the small of the back in 

order to maintain the natural curve of the lumbar spine. The worker should be sitting 

reclined at approximately 95-110°. The armrests should be positioned so the elbows are 

at 90° and the shoulders are in a relaxed position. 

The chair section was partitioned into 4 smaller sub-sections: the seat pan height, 

the seat pan depth, the armrest position and the back support position. The risk factors 

and associated scores and diagrams for each of these sub-sections are outlined in Table 1 

and Figure 2. 
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Table 1. Risk factors (including references) and scores associated with seat pan height, 
seat pan depth, arm rests, and back support. The risk factors and scores correspond to the 
diagrams in Figure 2. 

Risk Factor (Reference) Score 
Seat Pan Height 
• Knees bent to approximately 90° (CSA International, 2000). (1) 
• Seat too low - knee angle less than 90° (CSA International, 2000). (2) 
• Seat too high — knee angle greater than 90° (Tichauer and Gage, 1978). (2) 
• No foot contact with ground (Tichauer and Gage, 1978). (3) 
• Insufficient space for legs beneath the desk surface (CSA International, 2000). (+1) 
• Seat pan height is non-adjustable (CSA International, 2000). (+1) 

Seat Pan Depth 
• Approximately 3" of space between the edge of the chair and the back of the knee (1) 

(CSA International, 2000). 
• Seat pan length too long (less than 3" of space between the edge of chair and the back (2) 

of the knee (Tichauer and Gage, 1978; CSA International, 2000). 
• Seat pan too short (more than 3" of space between the edge of the chair and the back (2) 

of the knee (Tichauer and Gage, 1978). 
• Seat pan depth is non-adjustable (CSA International, 2000). (+1) 

Arm Rests 
• Elbows are supported at 90°, shoulders are relaxed (CSA International, 2000) (1) 
• Armrests are too high (shoulders are shrugged) (Leuder and Allie, 1997) (2) 
• Armrests are too low (elbows are not supported) (CSA International, 2000). (2) 
• Armrests are too wide (elbows are not supported, or arms are abducted while using the (+1) 

armrests (Hasegawa and Kumashiro, 1998). 
• The armrests have a hard or damaged surface - creating a pressure point on the (+1) 

forearm (Szabo and Gelberman, 1987). 
• There is no arm support (Hasegawa and Kumashiro, 1998). (2) 
• Armrests or arm support is non adjustable (CSA International, 2000). (+1) 

Back Support 
• Proper back support - lumbar support and chair is reclined between 95 and 110 0) 

(CSA International, 2000) 
• No lumbar support (Harrison, et al., 1999). (2) 
• Back support is reclined too far (greater than 110°) (Harrison et al., 1999). (2) 
• No back support (ie., stool or improper sitting posture) (Harrison et al., 1999). (2) 
» Back support is non-adjustable (CSA International, 2000). (+1) 

2.3.2 Monitor scores 

According to the CSA Standards, the monitor should be positioned between 40 

cm and 75 cm from the user. The most effective method to determine the proper viewing 

distance for workers is to instruct them to position the monitor at an arm's length. The 

user should be able to view the screen while sitting back in the chair. The height of the 
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screen should be positioned at eye level, or just below the worker's seated eye height. 

The bottom of the screen should be at no greater than 30° below the worker's eye level. 

The risk factors and scores for the monitor are found in Table 2, and the corresponding 

diagrams associated with the monitor in the ROSA checklist are shown in Figure 3A. 

Table 2. Risk factors (including references) and scores associated with monitor, 
telephone, mouse, and keyboard. The risk factors and scores correspond to the diagrams 
in Figure 3. 

Risk Factor (Reference) Score 
Monitor 
• Screen at arm's length / Screen positioned at eye level (CSA International, 2000) (1) 
• Screen too low (causing neck flexion to view screen) (Burgess-Limerick et al., 1998). (2) 
• Screen too high (causing neck extension to view screen) (Burgess-Limerick et al., (3) 

1998). 
• User required to twist neck in order to view screen (Tittiranonda et al., 1999). (+1) 
• Screen too far (outside of arm's length (75cm)) (CSA International, 2000) (+1) 
• Document holder not present to hold documents (CSA International, 2000). (+1) 

Telephone 
• Headset used / One hand on telephone and neck in a neutral posture, telephone (1) 

positioned within 300 mm (CSA International, 2000). 
• Telephone positioned outside of 300mm (Tittiranonda et al., 1999). (2) 
• Neck and shoulder hold used (CSA International, 2000). (+2) 
• No hands free options (CSA International, 2000). (+1) 

Mouse 
• Mouse in line with the shoulder (CSA International, 2000). (1) 
• Reach to mouse/mouse not in line with the shoulder (Cook and Kothyial, 1998). (2) 
• Pinch grip required to use mouse/mouse too small (CSA International, 2000). (+1) 
• Mouse/keyboard on different surfaces (Cook and Kothyial, 1998). (+2) 
• Hard palm rest/pressure point while typing (CSA International, 2000; McMillan, (+1) 

1999). 

Keyboard 
• Wrists are straight, shoulders are relaxed (CSA International, 2000). (1) 
• Wrists are extended beyond 15° of extension (Fagarasanu and Kumar, 2003). (2) 
• Wrists are deviated while typing (Gerr et al., 2006; Khan et al., 2009). (+1) 
• Keyboard tray too high - shoulders are shrugged (Leuder and Allie, 1997). (+1) 
• Keyboard platform is non-adjustable (CSA International, 2000). (+1) 
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Fig. 3. Scores and diagrams for the risk factors associated with the monitor (A), 
telephone (B), mouse (C) and keyboard (D). 

2.3.3 I'elephone scares 

The risk factors and scores for the telephone and the corresponding diagrams in 

ROSA are provided in Table 2 and Figure 3B, respectively. As shown, the telephone 

should be positioned within 300 mm of the worker in order to eliminate extensive 

reaching (CSA International, 2000). Additionally, it is recommended that using a static 

contraction to hold the telephone headset between the neck and shoulder should be 

avoided. To accomplish this, it is recommended that the worker use a hands free device, 

such as speaker phone or a headset. 
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2.3.4 Mouse scores 

The mouse should be positioned so it is in a direct line with the shoulder. It 

should also not cause the worker to extend or deviate the wrist while moving the mouse. 

The mouse should be positioned on the same level as the keyboard in order to keep the 

shoulder relaxed. The mouse itself should accommodate the size of the worker's hand, 

not creating a pinch grip or pressure points. Mouse-related risk factors and diagrams are 

shown in Table 2 and Figure 3C. 

2.3.5 Keyboard scores 

The keyboard placement should allow the worker to use the keyboard with the 

elbows bent at approximately 90° and the shoulders in a relaxed position. The wrists 

should also be straight. The majority of the risk factors associated with keyboard use are 

a result of the posture of the wrist, which is similar to the wrist-related risk factors of 

wrist extension (Fagarasanu and Kumar, 2003) and wrist deviation (Serina et al., 1999) 

found in RULA (McAtamney and Corlett, 1993). Additionally, there should be no hard 

surfaces that can cause a pressure point on the carpal tunnel, as this may lead to carpal 

tunnel syndrome (CCOHS, 2005). Table 2 and Figure 3D depict the risk factors and 

ROSA checklist diagrams for the keyboard. 

2.3.6 Other workstation scores 

Other risk factors that did not have their own section were included in specific 

sub-sections of ROSA based on their mechanical relationships. These were: (1) 

Reaching to overhead items (+1) was located in the keyboard section (Figure 3), as it is 

predominantly an upper limb movement (Tittiranonda et al., 1999); (2) Work surface is 

too high (+1) was located in the back support section (chair) (Figure 2) as a work surface 
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that is too high would affect the shoulders and upper back. This risk factor is similar to 

that of an improper back support that causes a worker to sit forward on the chair. A work 

surface that is too high may also cause the worker to sit in the chair without back support 

(Leuder and Allie, 1997). 

2.3.7 Duration of use scores 

For each section of ROSA, the area score is influenced by a duration score. A 

significant increase in the prevalence of musculoskeletal disorders in workers that use the 

computer for greater than 4 hours per day has been reported (Blatter and Bongers, 2002). 

Other studies have indicated that signs of muscle fatigue in the upper extremities may 

occur within an hour as a result of static contractions under 10% of maximum voluntary 

contraction (Jorgensen et al., 1988). Office work has been shown to cause workers to 

exert between 7% and 15% of their maximum voluntary contraction (MVC) in the 

trapezius muscles (Hagberg and Sundelin, 1986). 

After scores are calculated for the chair, monitor, telephone, keyboard and mouse 

sections, they are modified by a duration score. If a worker uses a piece of equipment for 

more than 1 hour continuously or 4 hours per day, the duration score is assigned a value 

of+1. If the worker uses the equipment for between 30 minutes and 1 hour continuously 

or between 1 and 4 hours per day, then the duration score will be given a value of zero. 

For less than 30 minutes of continuous work or 1 hour of total work per day, the duration 

score is given a value of-1. 
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2.4 Tool use instructions 

When using the ROSA, an observer selects the appropriate scores based on the 

posture of the worker as they are observed at their computer workstation. A brief 

interview with the worker should also be conducted to understand their work 

composition. The scores for the seat pan height and pan depth are added together to 

compose the vertical axis of the "Section A" scoring chart, and the scores for the armrest 

and back support are combined to compose the horizontal axis of "Scoring Chart A" 

(Figure 1). The score from the chair scoring chart is then modified based on the duration 

score (1, 0, or-1). 

The monitor score is achieved by observing the interactions of the user with the 

monitor and any associated documents. This area score is then modified based on the 

duration score for monitor use, and the final score for the monitor is used to form the 

horizontal axis on the "Section B" scoring chart. The telephone interaction score is 

recorded and modified by the duration value to produce the score along the vertical axis 

of the "Section B" scoring chart. 

Mouse usage is also observed, and the corresponding score recorded based on the 

user's equipment and work techniques with their cursor control device. The score from 

the mouse area is also modified based on the duration value for mouse use, and forms the 

horizontal axis for "Scoring Chart C". Keyboard usage is similarly observed and recorded 

and modified by the duration value for keyboard use. This score forms the vertical axis 

for "Scoring Chart C". 
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The monitor and peripherals scoring chart is used to compare the risk level 

between the chair and the user's computer input and office peripheral devices. To obtain 

the monitor and peripherals score, the observer uses the score received in "Section B" as 

the value for the horizontal axis, and the score received in "Section C" as the value for 

the vertical axis. This area score is then used as the value on the horizontal axis for the 

ROSA final score scoring chart (Figure 1). 

To receive the final risk factor score for ROSA, the value from Chart A (the chair) 

- is used as the vertical axis score on the final score chart, and the value from the monitor 

and peripherals scoring chart is used as the horizontal axis. This score is a reflection of 

the overall risk level in the office environment, similar to the grand score presented in 

RULA (McAtamney and Corlett, 1993). 

3.0 Experimental Design 

3.1 Assessing discomfort relationships in ROSA 

Seventy two office ergonomic assessments (7 males, 65 females) were conducted 

to examine the relationship between the ROSA area and final scores and the workers' 

reported levels of discomfort. Subjects were recruited from the administrative support 

staff at a hospital, and fit the inclusion criterion of spending at least 50% of their workday 

at the computer. Subjects were informed of the experimental procedure (which was 

approved by the University of Windsor and Hotel-Dieu Grace Hospital Research Ethics 

Boards), and signed an informed consent form. 

In each office assessment, subjects were first asked to complete the Cornell 

University Discomfort Questionnaire (Hedge et al., 1999). The Cornell University 
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discomfort questionnaire (Hedge et al., 1999) examines the frequency and intensity of 

discomfort that a worker experiences and the effects that this discomfort has on workers' 

productivity. The frequency of discomfort was coded as - never (0), 1-2 times weekly 

(1.5), 3-4 times weekly (3.5), once every day (5) and several times daily (10). This score 

was multiplied by the intensity of the discomfort, which was coded as slightly 

uncomfortable (1), moderately uncomfortable (2) and severely uncomfortable (3). 

Finally, the impact on productivity was used as a final multiplier, and was coded as not at 

all (1), slightly interfered (2), and substantially interfered (3). Therefore, each body part 

could receive a maximum score of 90. Subjects also reported their age (mean=45.4 years 

(SD=9.1 years), gender (65 females, 7 males), height (mean= 165cm (SD=7.0cm)), body 

mass (mean=71.3kg (SD=14.2kg)), years of experience in their specific job (mean=8.2 

years (SD=8.3years) and years of service to the hospital (mean=16.6 years 

(SD=10.9years)). 

To examine the effects of discomfort on areas that are known to become injured 

during office work, such as the head and neck (Gerr et al., 2002; Korhonen et al, 2003; 

Hagberg and Wegman, 1987), shoulder (Borg and Burr, 1997), hands and wrists (Jensen 

et al., 2002) and lower back (Burdorf et al., 1993; Wilder and Pope, 1996), a discomfort 

total was created without the leg discomfort scores factored in. 

Participants were then allowed to work at their own workstation for 

approximately 15 minutes while postures and interactions with equipment were observed. 

The ROSA scores for the workstation components were recorded on paper, and were later 

input into a spreadsheet that calculated the ROSA final score. Subjects were asked 

questions related to how long they would use each piece of equipment continuously and 
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during the entire work day. Assistance was then given to each subject on how to better 

set up their workstation. 

Pearson product moment correlations were calculated to determine the 

relationship between the various ROSA scores and reported discomfort scores. The 

cumulative scores for the upper back, shoulders, lower back, thigh and buttocks were 

correlated independently with the ROSA chair score. The cumulative head/neck and 

upper back scores were examined in relation to the ROSA monitor and telephone scores. 

The combined shoulder, upper arm, lower arm and hand/wrist discomfort scores were 

correlated against the mouse and keyboard ROSA score. Finally, the ROSA final score 

was correlated against total body discomfort (with and without the leg discomfort 

included). 

3.2 Action levels 

Action levels found in the Rapid Upper Limb Assessment (McAtamney and 

Corlett, 1993) classify the risk associated with a task into one of four categories: posture 

is acceptable; further investigation is needed and change may be required; investigation 

and changes are required soon; and investigation and changes are required immediately. 

To identify which final score values in ROSA are associated with a need to perform 

immediate change, the mean discomfort scores at each level across the range of ROSA 

scores were compared using a one -way ANOVA with a Tukey's HSD post hoc test. 

Significant increases in discomfort from one ROSA score to another might indicate a 

change in risk. Such changes in risk could be used as action levels for decision makers 

based on what office configurations are acceptable and which ones require additional 
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assessment. A sensitivity and specificity analysis was also performed (as per Chu, 1999) 

to examine positive and negative predictive values with respect to mean discomfort levels 

at corresponding ROSA final score levels. 

3.3 ROSA reliability 

To assess inter-observer reliability of ROSA, three trained observers completed 

evaluations of 14 workstations simultaneously in the participating organization. The 

observers were all experienced graduate students in ergonomics who had performed 

office workplace assessments in the past 6 months. Each observer was given a 30 minute 

training presentation that outlined how ROSA was used, and how to identify commonly 

occurring risk factors. To assess intra-observer reliability, a workstation in a vacant 

office at the University of Windsor was mocked-up such that each of the three trained 

observers evaluated it in three different configurations once per week for four weeks. 

The final scores and the chair, monitor, telephone, mouse and keyboard scores from each 

observer were examined using the intra-class coefficient (ICC), with two-way random 

analysis for absolute agreement. Intra-observer reliability was examined using a two-way 

random analysis ICC for each observer, and average values were reported. 

4.0 Results 

4.1 ROSA scores 

The mean ROSA final score for the 72 offices analyzed was 4.13 (out of 10). The 

mean (SD) section scores for the chair, monitor and telephone, and mouse and keyboard 

were 3.08 (1.02), 2.58 (1.21), 3.65 (1.28) and 4.13 (1.14), respectively. 
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4.2 Relationships between discomfort and ROSA scores 

The body parts reported to have the most significant levels of discomfort were the 

neck and head (mean 17.7 (SD 24.7), lower back (mean 11.7 (SD 22.7)) and right 

shoulder (mean 10.7 (SD 18.8)) The areas with the lowest reported discomfort were the 

left forearm (mean 1.28 (SD 3.9), left thigh (mean 1.1 (SD 4.3)) and left upper arm (mean 

1.6 (SD 6.13)). The mean discomfort scores for each body part can be found in table 3. 

Table 3. Discomfort profiles for all body parts collected using the Cornell University 
Discomfort Questionnaire (Hedge et al., 1999). 

Mean Discomfort /90 (SD) 
Neck/Head 
Right Shoulder 
Left Shoulder 
Upper Back 
Right Upper Arm 
Left Upper Arm 
Lower Back 
Right Forearm 
Left Forearm 

17.72(24.46) 
10.74(18.68) 
7.52(16.64) 
8.42(15.62) 
3.76 (10.28) 
1.64(6.13) 

11.70(22.71) 
4.09(12.97) 
1.28(3.91) 

Right Hand/Wrist 
Left Hand/Wrist 
Hips/Buttocks 
Right Thigh 
Left Thigh 
Right Knee 
Left Knee 
Right Leg 
Left Leg 

7.85(20.12) 
4.26(16.18) 
8.83(21.06) 
3.15(13.22) 
1.13(4.28) 

5.08(13.89) 
3.93 (12.99) 
3.08(15.53) 
3.63 (16.47) 

All correlations between ROSA scores and discomfort were significant (p<0.05), 

except between chair and chair discomfort, and mouse and keyboard ROSA score and 

chair discomfort (Table 4). The highest correlation was between total body discomfort 

(without leg discomfort) and the monitor and phone ROSA score (R=0.432). The total 

body discomfort (without leg discomfort) and ROSA final score were moderately 

correlated (R=0.384) (as per Cohen, 1988). 
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Table 4. Correlations between total and area discomfort scores (Cornell University 
discomfort questionnaire: Hedge et al. (1999)) and ROSA final and area scores. 

Total Discomfort Area Discomfort 
Monitor and Mouse and 

ROSA Score With Legs Without Legs Chair Telephone Keyboard 
0.341 

Final 0.363* 0.384* * 0.357* 0.394* 
Chair 0.245* 0.281* 0.230 0.300* 0.248* 

0.247 
Monitor and Telephone 0.408* 0.432* * 0.321* 0.417* 
Mouse and Keyboard 0.245* 0.281* 0.228 0.320* 0.366* 
* Significant at p<0.05 

Mean reported total discomfort scores (without leg discomfort) generally 

increased between ROSA final scores of 2 and 5. The mean discomfort score at a ROSA 

final score 5 was significantly more than at a ROSA final score 3, with the largest 

increase in mean discomfort occurring between levels 4 and 5 of the ROSA final scores 

(Figure 4A). A similar trend was seen for the individual areas of chair (Figure 4B), 

monitor and telephone (Figure 4C), and mouse and keyboard (Figure 4D). 

The sensitivity at a ROSA score of 5 was 76%, with specificity measured at 68%. 

Positive and negative likelihood ratios were measured to be 2.39 (CI: 1.49-3.84) and 0.34 

(CI: 0.12-0.93), respectively. The sensitivity increased to 84% at ROSA final score 4, 

however specificity dropped to 45%, and the positive likelihood ratio decreased to 1.56 

(CI: 1.14-2.13). The negative likelihood ratio remained was comparable between score 4 

and 5 at 0.34 (CI: 0.13-0.88). 
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Fig. 4. Localized mean (SE) discomfort scores vs. corresponding ROSA scores: 
(A) Total Discomfort Score (without legs) and ROSA final score; (B) Chair discomfort 
and ROSA score; (C) Monitor/telephone discomfort and Monitor/telephone ROSA score; 
(D) Mouse/keyboard discomfort and Mouse/keyboard ROSA score. 

4.3 Reliability of ROSA 

Inter-observer reliability was found to be strong in general, with ICCs ranging 

from good (0.74) for the monitor and telephone ROSA score, to excellent (0.83 and 0.91) 

for the mouse and keyboard ROSA score and the final ROSA score, respectively (Portney 

and Watkins, 2000). Moderate inter-observer reliability was seen for the chair ROSA 

score, with an ICC of 0.51. Intra-observer reliability was also found to be excellent with 

ICCs of 0.80 for the chair, 0.88 for the final score, 0.89 for the mouse and keyboard and 

0.95 for the monitor and telephone. 
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5.0 Discussion 

The goals of developing the Rapid Office Strain Assessment tool were to provide 

the health and safety professional or ergonomist with a way of quantifying ergonomic 

risks in the office environment, and provide action levels based on worker discomfort that 

can serve as screening points between workstations that require further assessment and 

those that do not. These goals were achieved by establishing significant positive 

correlations between discomfort and ROSA scores, as well as a proposed action level of 

5. 

5.1 Relationships between discomfort and ROSA scores 

Significant positive correlations were found between the ROSA area and total 

scores and total discomfort, indicating that increasing ROSA scores are reflective of 

increasing musculoskeletal discomfort. Correlations between total body pain and 

increasing RULA scores were also seen in an office environment in a study conducted by 

Dalkilinic and colleagues in 2002. Mean discomfort scores were found to generally 

increase across all levels of the ROSA final score collected, with a significant increase in 

discomfort scores between level 3 and 5. In other words, a ROSA final score of 5 or 

greater was found to be associated with a significant increase in worker discomfort, and 

may indicate an increased potential for injury. The value of 5 as an action level is further 

supported by balanced sensitivity (77%) and specificity (68%) values when compared to 

values at ROSA final scores of 4 (85% sensitivity and 46% specificity) and 6 (100% 

sensitivity and 9.8% specificity). The balance between sensitivity and specificity is 

important to achieve, as it indicates that the tool will be more effective in distinguishing 

between false positives and negatives (Chu, 1999). The likelihood ratio for a score of 5 
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(2.4) was also higher than at scores of 4 (1.6) and 6 (1.1). A likelihood ratio of greater 

than 2 has been associated with a significant probability of musculoskeletal discomfort, 

whereas a ratio of less than 2 is not associated with a significant ability to predict 

discomfort or outcome (Jaeschke et al., 1994). 

Having a discomfort-based action level is important, as it aids in the decision 

making process for the individual interpreting the ROSA scores. Similar to the action 

levels found in RULA (McAtamney and Corlett, 1993), the ROSA final score of 5 and 

greater should be used as the score that indicates an office workstation requires further 

assessment, and that changes should be considered immediately. 

5.2 Reliability of ROSA 

Inter-observer reliability was found to be good (ICO0.5) for the ROSA final and 

keyboard scores and excellent (>0.75 (Portney and Watkins, 2000) for the mouse and 

keyboard scores. Low inter- and intra-observer reliability (ICC<0.5) was seen for the 

chair scores, perhaps indicating that a redesign of the images that identified specific 

postures and equipment conditions should be further investigated. The reliability 

measures found in the study are similar to those presented for other posture-based tools 

that have been used to investigate office ergonomic issues (e.g. RULA grand score ICCs 

between 0.65 and 0.85 (McAtamney and Corlett, 1993); OEA ICCs of 0.91 (Robertson et 

al., 2009)). The relatively high reliability values found in this study indicate that, with a 

small amount of training, observers with ergonomic expertise can reliably identify risk 

factors in the office environment using the ROSA checklist. 
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5.3 Limitations 

5.3.1 ROSA values found during assessment 

A full range of ROSA final scores were not observed in this study for several 

reasons. The low number of scores in the low end of the range (scores 1 and 2) was due 

primarily to the lack of optimally designed workstations in the workplace evaluated. 

However, most workstations featured adjustable chairs, and surfaces that varied in height 

between 66cm and 81 cm; standard working heights as indicated by CSA standard Z412 

(CSA International, 2000). The adjustability of the workstations prevented any ROSA 

final scores from rising above a level of 7 on the 10 point scale. Although the 

workstations evaluated in this study did not have enough risk factors present to result in 

ROSA final scores above 6, scores greater than this are not difficult to obtain. For 

example, a ROSA final score of 8 would result if the following common conditions were 

present: chair pan too high so worker could not touch their feet to the ground; there was 

interference under the desk with the worker's legs; the chair height was non-adjustable; 

the seat pan length was too long and non-adjustable and the user worked on the computer 

for 1.5 hours consecutively. This scenario is realistic for any worker that is shorter than 

average and who sits on a non-adjustable chair. Therefore, the limited range of ROSA 

final scores in this study was directly related to the overall conditions in the particular 

workplace that was evaluated, and is therefore not a critical limitation of the tool itself. 

5.3.2 Reporting of discomfort related to the workstation 

Workers were asked to report the discomfort they had while at work over the last 

week, regardless of what they believed the source to be. This may have led to higher 

discomfort scores than were directly associated with the workstation components alone. 
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Furthermore, self-reports of working posture, musculoskeletal discomfort and office 

work duration have been shown to be overestimated by workers (Wiktorin et al., 1993; 

Homan and Armstrong, 2003; Heinrich et al., 2004). While the discomfort scores 

reported may have been exaggerated, the ease of collecting discomfort data through the 

use of questionnaires made this method appropriate for this study. Additionally, the 

practice of using self-reported discomfort questionnaires is consistent with other research 

conducted in the field of office ergonomics (Hedge et al., 1991; Blatter and Bongers, 

2002; Diepenmaat et al., 2004). 

6.0 Conclusions 

The Rapid Office Strain Assessment proved to be an effective method of 

assessing office workstations for risk factors related to discomfort in the office 

environment. This initial evaluation has shown high levels of inter and intra-observer 

reliability using the ROSA, and a moderate correlation between total body discomfort 

and ROSA final scores. Further research needs to be conducted with a wider range of 

ROSA final scores in order to determine if more precise action levels can be established. 

Determining the relationship between ROSA scores and other outcome measures such as 

injury incidence may also provide new information that will help establish additional 

action levels in the tool. 

Acknowledgements: 

Thanks to CRE-MSD for funding, to Hotel-Dieu Grace for their in-kind support and to 
Michael Angelidis, Timothy Burkhart, and Alison Schinkel-Ivy for their assistance with 
data collection. 

168 



References 

Amick III, B.C., Robertson, M.M., DeRango, K., Bazzani, L., Moore, A., Rooney, T., 
Harrist, R., 2003. Effect of office ergonomics intervention on reducing 
musculoskeletal symptoms. Spine. 28(24), 2706-2711. 

Bayeh, A.D., Smith, M.J., 1999. Effect of physical ergonomics on VDT worker's health: 
A longitudinal field study in a service organization. Int J Hum-Comput Int. 11, 
109-135. 

Blatter, B.M., Bongers, P.M., 2002. Duration of computer use and mouse use in relation 
to musculoskeletal disorders of the neck or upper limb. Int. J. Ind. Ergon. 30, 295-
306. 

Bohr, P.C., 2002. Office ergonomics education: A comparison of traditional and 
participatory methods. Work. 19,185-191. 

Borg, R., Burr, H., 1997. Danish employees working environment and health study 
1990-1995. National Institute of Occupational Health. Report. 

Burdorf, A., Naaktgeboren, B., de Groot, H.C.W.M., 1993. Occupational risk factors for 
low back pain among sedentary workers. Occup. Environ. Med. 35(12), 1213-
1220. 

Burgess-Limerick, R., Plooy, A., Ankrum, D.R., 1998. The effect of imposed and self-
selected computer monitor height on posture and gaze angle. Clin. Biomech. 13, 
584-592. 

Callaghan, J.P., McGill, S.M., 2001. Low back joint loading and kinematics during 
standing and unsupported sitting. Ergonomics. 44, 280-294. 

Canadian Centre for Occupational Health and Safety (CCOHS), 2005. Office 
Ergonomics. Retrieved March 8, 2010 from 
http://www.ccohs.ca/oshanswers/ergonomics/office/ 

Canadian Standards Association (CSA) International, 2000. CSA-Z412: Guideline on 
office ergonomics. CSA, Toronto. 

Chu, K., 1999. An introduction to sensitivity, specificity, predictive values and 
likelihood ratios. Emerg. Med. 11,175-181. 

Cohen, J., 1988. Statistical power analysis for the behavioural sciences (2nd ed.). New 
Jersey: Lawrence Erlbaum. 

Cook, C.J., Kothiyal, K., 1998. Influence of mouse position on muscular activity in the 
neck, shoulder and arm in computer users. Appl. Ergon. 29(6), 439-443. 

Dalkilinic, M., Bumin, G., Kayihan, H., 2002. The effects of ergonomic training and 
preventive physiotherapy in musculo-skeletal pain. The Pain Clinic. 14(1), 75-
79. 

169 

http://www.ccohs.ca/oshanswers/ergonomics/office/


Diepenmaat, A.C.M., van der Wal, M.F., de Vet, H.C.W., Hirasing, R.A., 2004. 
Neck/shoulder, low back, and arm pain in relation to computer use, physical 
activity, stress and depression among Dutch adolescents. Pediatrics. 117(2), 412-
416. 

Fagarasanu, M, Kumar, S., 2003. Carpal tunnel syndrome due to keyboarding and 
mouse tasks: a review. Int. J. Ind. Ergon. 31, 119-136. 

Gerr, F., Marcus, M., Ensor, C, Kleinbaum, D., Cohen, S., Edwards, A., Gentry, E., 
Ortiz., Monteilh, C, 2002. A prospective study of computer users: I. Study 
design and incidence of musculoskeletal symptoms and disorders. Am. J. Ind. 
Med. 41, 221-235. 

Gerr, F., Monteilh, C.P., Marcus, M., 2006. Keyboard use and musculoskeletal 
outcomes among computer users. J. Occup. Rehabil. 16,256-277. 

Hagberg, M., Sundelin, G., 1986. Discomfort and load on the upper trapezius muscle 
when operating a word processor. Ergonomics. 29,1637-1645. 

Hagberg, M., Wegman, D.H., 1987. Prevalence rates and odds ratios of shoulder-neck 
diseases in different occupational groups. Br. J. Ind. Med. 44, 602-610. 

Harrison, D.D., Harrison, S.O., Croft, A.C., Harrison, D.E., Troyanovich, S.J., 1999. 
Sitting biomechanics part 1: Review of the literature. J. Manipulative. Physiol. 
Ther. 22(9), 594-609. 

Hasegawa, T., Kumashiro, M., 1998. Effects of armrests on workload with ten-key 
operation. J. Physiol. Anthropol. 17(4), 123-129. 

Hedge, A., Morimoto, S., McCrobie, D., 1999. Effects of keyboard tray geometry on 
upper body posture and comfort. Ergonomics. 42, 1333-1349. 

Heinrich, J., Blatter, B.M., Bongers, P.M., 2004. A comparison of methods for the 
assessment of postural load and duration of computer use. Occup. Environ. Med. 
61,1027-1031. 

Hignett, S., McAtamney, L., 2000. Rapid entire body assessment (REBA). Appl. Ergon. 
31,201-205. 

Homan, M.M., Armstrong, T.J., 2003. Evaluation of three methodologies for assessing 
work activity during computer use. Am. Ind. Hyg. Assoc. J. 64,48-55. 

Jaeschke, R., Guyatt, G.H., Sacket, D.L., 1994. User's guide to the medical literature. 
III. How to use an article about a diagnostic test: B. What are the results and will 
they help me in caring for patients? J. Am. Med. Assoc. 271, 703-707. 

Jensen, C, Finsen, L., S0gaard, K., Christensen, H., 2002. Musculoskeletal symptoms 
and duration of computer and mouse use. Int. J. Ind. Ergon. 30,265-275. 

170 



Jorgensen, K., Fallentin, N., Krogh-Lund, C , Jensen, B., 1988. Electromyography and 
fatigue during prolonged, low-level static contractions. Eur. J. Appl. Physiol. 57, 
316-321. 

Karhu, O., Kansi, P., Kuorinka, I., 1977. Correcting working postures in industry: A 
practical method for analysis. Appl. Ergon. 8, 199-201. 

Keir, P.J., Bach, J.M., Rempel, D., 1999. Effects of computer mouse design and task on 
carpal tunnel pressure. Ergonomics. 42,1350-1360. 

Keegan, J.J., 1953. Alteration of the lumbar curve related to posture and seating. J. 
Bone Joint Surg. 35, 589-603. 

Khan, A.A., O'Sullivan, L., Gallwey, T.J., 2009. Effects of combined wrist deviation 
and forearm rotation on discomfort score. Ergonomics. 52(3), 345-361. 

Korhonen, T., Ketola, R., Toivonen, R., Luukkonen, R., Hakkanen, M , Viikari-Juntura, 
E., 2003. Work related and individual predictors for incident neck pain among 
office employees working with video display units. Occup. Environ. Med. 60, 
475-482. 

Lueder, R., 1996. A proposed RULA for computer users. Proceedings of the 
Ergonomics Summer Workshop, UC Berkley Center for Occupation and 
Environmental Health Continuing Education Program, San Francisco, August 8-9, 
1996. 

Lueder, R., Allie, P., 1997. Ergonomics Review: Armrest design and use. An 
ergonomics review of the literature for Steelcase Furniture. Retrieved September 
8, 2009 from www.humanics-es.com/armrest-ergonomics.htm 

Lin, Z., Popovic, A., 2003. Working with computers in Canada: An empirical analysis of 
incidence, frequency and purpose. Final Report: Human Resources Development 
Canada. Catalog: RH63-1/574-05-03E. 

Lowe, G., 1997. Computers in the workplace. Statistics Canada: Perspectives. Catalog: 
75-001-XPE, 29-36. 

Marshall, K., 2001. Working with computers. Statistics Canada: Perspectives. Catalog: 
75-001,9-15. 

McAtamney, L., Corlett, E.N., 1993. RULA: a survey method for the investigation of 
work-related upper limb disorders. Appl. Ergon. 24, 45-57. 

Portney, L.G., Watkins, M.P. 2000. Foundation of clinical research applications to 
practice. Prentice Hall, Inc. New Jersey. 

Robertson, M., Amick III, B.C., DeRango, K., Rooney, T., Bazzani, L., Harrist, R., 
Moore, A., 2009. The effects of an office ergonomics training and chair 
intervention on worker knowledge, behaviour and musculoskeletal risk. Appl. 
Ergon. 40, 124-135. 

171 

http://www.humanics-es.com/armrest-ergonomics.htm


Serina, E.R., Tal, R., and Rempel, D. 1999. Wrist and forearm posture and motions 
during typing. Ergonomics. 42(7), 938-951. 

Szabo, R.M. Gelberman, R.H., 1987. The pathology of nerve entrapment syndromes. J 
Hand Surg. Am. 12(5), 880 to 884. 

Tichauer, E.R., Gage, H., 1978. The biomechanical basis of ergonomics. John Wiley & 
Sons. New York. 

Tittiranonda, P., Burastero, S., Rempel, D., 1999. Risk factors for musculoskeletal 
disorders among computer users. Occup. Med. (Chic 111). 14, 17-38. 

Village, J., Rempel, D., Teschke, K., 2005. Musculoskeletal disorders of the upper 
extremity associated with computer work: A systematic review. Occup. Erg. 5, 
205-218. 

Wahlstrom, J., 2005. Ergonomics, musculoskeletal disorders and computer work. 
Occup. Med. (Chic 111). 55, 168-176. 

Wiktorin, C , Karlqvist, L., Winkel, J., 1993. Validity of self-reported exposures to work 
postures and manual materials handling. Scand. J. Work. Environ. Health. 19, 
208-214. 

Wilder, D.G., and Pope, M.H. 1996. Epidemiological and aetiological aspects of low 
back pain in vibration environments - an update. Clin. Biomech. 11(2), 61-73. 

172 



VITA AUCTORIS 

Name: Michael Wesley Leyland Sonne 

Place of Birth: Toronto, Ontario, Canada 

Date of Birth: September 14, 1983 

Education: 

1997-2002 Belle River District High School 
Belle River, Ontario, Canada 
High School 

2002-2007 University of Windsor 
Windsor, Ontario, Canada 
Bachelors of Human Kinetics, Co-op 

2008-2010 University of Windsor 
Windsor, Ontario, Canada 
Masters of Human Kinetics 

Further Development: 

2007-2008 Ergonomics Consultant, specializing in office ergonomics 
Ottawa, Ontario, Canada 

2008-Present Ergonomics Consultant, physical demands analyses, software 
development and office ergonomics 
Windsor, Ontario, Canada 

173 


	The Rapid Office Strain Assessment (ROSA): Validity of online worker self-assessments and the relationship to worker discomfort.
	Recommended Citation

	ProQuest Dissertations

