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ABSTRACT 

The effects of retained austenite and other metallurgical parameters on the 

dimensional stability of carburized SAE 8620 steel have been investigated. The purpose 

is to find the optimum amount of retained austenite (RA) in SAE 8620 steel that is 

typically used in the carburized condition for powertrain applications in the automotive 

industry. 

A specially designed specimen, known as a Navy C-ring has been used for this 

study. The SAE 8620 steel was first normalized prior to machining the Navy C-ring 

specimens. The C-ring specimens were then heat treated by carburizing at one of two 

temperatures (6hrs at 1700°F & 4hrs at 1750°F) at four levels of carbon potential (0.9, 1.0, 

1.1, 1.2) followed by quenching and tempering at one of two temperatures (300°F & 

350°F). For every combination of heat treatment conditions, the distortion of the C-ring 

was evaluated by dimensional measurements of the ID, OD and gap width. XRD 

techniques were used to determine both the residual stress and the retained austenite. The 

retained austenite value for the as-carburized samples was also evaluated using an optical 

metallographic technique. Hardness profiles from the surface to the core were determined 

for the as-carburized samples using microhardness measurements. The carbon contents at 

the surface were measured using optical emission spectroscopy (OES). 

The amount of retained austenite and the residual stress increase with increasing 

carburizing temperature and carbon potential. The amount of retained austenite and the 

residual stress decrease with increasing tempering temperature. However, there is not a 
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large change when the tempering temperature is increased from 300°F to350°F. Distortion 

is influenced both by the amount of retained austenite and the magnitude of the residual 

stress. With increasing retained austenite / residual stress, the distortion becomes more 

serious. Based on the distortion data (OD, ID & Flatness) for the quenched and tempered 

specimens, the optimum amount of retained austenite was about 25%. 
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CHAPTER 1 INTRODUCTION 

Distortion issues where components exhibit geometric changes during heat 

treatment have been key issues leading to quality problems. In the automotive industry 

there is a need to improve gear precision for reduction of gear noise levels. In the bearing 

industry, efforts are being made to decrease the distortion in order to shorten the finish-

grinding times [1]. Furthermore, distortion has a large influence on the production costs. 

In Europe, these distortion-related costs have been quantified as being around 4% of total 

sales for the industry producing power engineering components (e.g. gears & rolling 

bearings). If this figure were applied to the world-wide production of bearings, the cost 

would be more than 1 billion USD per year [2]. 

Therefore, distortion issues are becoming increasingly important in today's 

automotive industry. An understanding of the preventive measures necessary to control 

distortion will allow for greater dimensional accuracy and precision, while reducing 

tolerance limits, which will then lead to a reduction in contact noise levels for 

components such as gears, and a considerable reduction in manufacturing costs. 

The effects of retained austenite and other metallurgical parameters on the 

distortion of carburized SAE 8620 steel have been investigated. The purpose is to find the 

optimum amount of retained austenite (RA) in SAE 8620 steel that is typically used in the 

carburized condition for powertrain applications in the automotive industry. 

A specially designed specimen, known as a Navy C-ring has been used for this 

study. The SAE 8620 steel was first normalized prior to machining the Navy C-ring 

specimens. The C-ring specimens were then heat treated by carburizing at one of two 
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temperatures (6 hours at 1700°F & 4 hours at 1750°F) at four levels of carbon potential 

(0.9, 1.0, 1.1, 1.2) followed by quenching and tempering at one of two temperatures 

(300°F & 350°F) for 1 hour. 

For every combination of heat treatment conditions, the distortion of the C-ring 

specimen was evaluated by dimensional measurements of the OD (outside diameter), gap 

width, flatness, thickness, ID (inside diameter), roundness and cylindricity using a 

PRISMO coordinate measuring machine (CMM). XRD techniques were used to 

determine both the residual stress and the retained austenite. The retained austenite value 

for the as-carburized samples was also evaluated using an optical metallographic 

technique. In the current study, the amount of retained austenite varied from 4.0% to 

43.5% and was associated with different heat treatment schedules. Hardness profiles 

(from the surface to the core) were determined for the as-carburized samples. Micro-

hardness testing system was used to obtain microhardness values which were converted to 

Rockwell C Hardness (HRC) values in all cases. The carbon contents at the surface were 

measured using optical emission spectroscopy (OES) in selected specimens. 

The relationships between the distortion, retained austenite and residual stress are 

complex. Higher levels of retained austenite generally lead to higher levels of residual 

stress but these higher levels of residual stress do not necessarily lead to a lower level of 

distortion in the as-carburized condition. 
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CHAPTER 2 LITERATURE REVIEW 

This literature review covers all aspects of the thesis topic: the effect of retained 

austenite on the distortion in carburized SAE 8620 steel. First some basic definitions, 

principles and measurement techniques are introduced relating to carburized SAE 8620 

steel, retained austenite, residual stress and distortion in heat treatment. Data are then 

presented on the profiles for retained austenite, residual stress and hardness for steels in 

the carburized condition. Finally the relationships between these three parameters and 

their influence on distortion are reviewed in detail. 

2.1 Carburized SAE 8620 Steel 

In general, the carburizing process is conducted on those low-carbon steels that 

rely on a surface layer, or case, of high hardness to provide a level of strength and wear 

resistance not obtainable from the core metal. The initial carbon content in most steels 

used for carburizing is the range of 0.10 to 0.30% [3]. In the automotive industry, 

carburized SAE 8620 steel is typically used for differential ring gears, camshafts and 

transmission gears for its excellent carburizing response with good hardenability for most 

section sizes [3, 4]. 

2.1.1 Carburizing 

Carburizing is a case-hardening process in which carbon is diffused into the 

surface layers of a steel part at a temperature below its melting point and above its A3 

critical temperature (Figure 2.1) [5], at which austenite, with its high solubility for carbon, 
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is the stable crystal structure. In Figure 2.1, the A] critical temperature is the temperature 

(1340°F / 727°C) at which the first phase change occurs on heating. At the A3 

temperature, the last of the proeutectoid ferrite has been absorbed into the austenite. At 

the Acm temperature all of the proeutectoid cementite has been dissolved and austenite of 

the same carbon content as the steel is formed [6]. Hardening is accomplished when the 

high-carbon surface layer is quenched to form martensite. The resulting gradient in 

carbon content from surface to core causes a gradient in hardness, producing a high-

carbon martensitic case on the material, usually a low-carbon steel with good wear and 

fatigue resistance, superimposed on a tough, low-carbon steel core [7, 8]. In gas 

carburizing, the source of carbon is a carbon-rich furnace atmosphere produced either 

from gaseous hydrocarbons, for example, methane (CH4), propane (C3H3), and butane 

(C4H10), or from vaporized hydrocarbon liquids [7, 8]. Steels for case hardening usually 

have base-carbon contents of about 0.2% [3, 7]. Compositions of some typical case-

hardening steels are given in Table 2.1 [3]. 

In general, two different terms are used to specify case depth for carburized parts. 

One is known as "case depth to 0.40% C", which means the distance from the surface at 

which a 0.40% C content is obtained. The other is called "effective case depth to 

Rockwell C 50", which means the distance from the surface providing a minimum 

hardness reading of Rockwell C 50 [9]. 

Harris [9] has developed a formula for the effects of time and temperature on case 

depth for normal carburizing: 

31.6-Jt 

10( Case depth D = — ^ 5 7 ^ Eq. 2.1 [9] 



where case depth is in inches; t is the time at temperature in hours; and T is the 

absolute temperature in degrees Rankine (°F + 460). 

For a specific carburizing temperature, the relationship becomes simply: 

Case depth = K-Jt Eq. 2.2 [9] 

= 0.025 VF fori700°F/927°C 

= 0.0214t for 1650 °F/899 °C 

- 0.018 VF forl600°F/871°C 
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Fig. 2.1 The lower left-hand part of the iron-iron carbide equilibrium diagram 
showing the Ai, A3 and Acm temperatures [5]. 
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Table 2.1 Compositions of case-hardening steels [3] 

Steel 

Carbon steels 

1010 
1012 mod 
1018 
1020 
1039 

C 

0.08-0.13 
0.10-0.15 
0.15-0.20 
0.17-0.23 
0.37-0.44 

Resnlfurized steels 

1113 
11,17 

Alloy steels 

3310 
4118 
4140 
4320 
4620 
8617 
8620 
8720 
8822 
9310 
AMS 6470(a) 
Nitralloy 125(b) 
Nitralloy1.35(b) 
Nitralloy N(b) 

Tool steel 

H13(c) 

Maraglng steel 

18% Ni 
(300CVM)(d) 

0.13 max 
0.14-0.20 

0.08-0.13 
0.18-0.23 
0.38-0.43 
0.17-0.22 
0.17-0.22 
0.15-0,20 
0.18-0.23 
0.18-0.23 
0.20-0.25 
0.08-0.13 
0.38-0.43 
0.20-0.30 
0.30-O.40 
0.20-O.27 

0.35 

0.03 max 

Mo 

0.30-0.60 
0.30-O.60 
0.6O-O.90 
0.30-0.60 
0.70-1.00 

0.70-1.00 
1.00-1.30 

0.45-0.60 
0.70-0.90 
0.75-1.00 
0.45-0.65 
0.45-0.65 
0.70-0.90 
6.70-0.90 
0.70-0.90 
0.75-1.00 
0.45-0.65 
0.50-0.70 
0.40-0.70 
0.40-0.70 
0.40-0.70 

0.10 max 

P 

0.040 max 
0.040 max 
0.040 max 
0.040 max 
0.040 max 

0.07-0.12 
0.040 max 

0.025 max 
0.035 max 
0.035 max 
0.035 max 
0.035 max 
0.035 max 
0.035 max 
0.035 max 
0.035 max 
0.025 max 
0.040 max 

O.OlOmax 

Composition, % 

S 

0.050 max 
0.050 max 
0.050 max 
0.050 max 
0.050 max 

0.24-0.33 
0.08-0.13 

0.025 max 
0.040 max 
0.040 max 
0.040 max 
0.040 max 
0.040 max 
0.040 max 
0.040 max 
0.040 max 
0.025 max 
0.040 max 

O.OlOmax 

SI 

0.20-0.35 
0.20-0.35 
0.20-0.35 
0.20-0.35 
0.20-0.35 
0.20-0.35 
0.20-0.35 
0.20-0.35 
0.20-0.35 
0.20-0.35 
0.20-0.40 
0.20-0.40 
050-0.40 
020-0.40 

0.10 max 

NI 

0.30 

3.25-3.75 

1.65-2.00 
1.65-2.00 
0.4O-O.70 
0.40-0.70 
0.40-0.70 
0.40-0.70 
3.00-3.50 

3.25-3.75 

18.5 

Cr 

0.30 

1.40-1.75 
0.40-0.60 
0.80-1.10 
0.40-0.60 

0.40-0.60 
0.40-0.60 
0.40-0.60 
0.40-0.60 
1.00-1.40 
1.40-1.80 
0.90-1.40 
0.90-1.40 
1.00-1.50 

5.0 ; 

Mo 

0.08-0.15 
0.15-0.25 
0.20-0.30 
0.20-0.30 
0.15-0.25 
0.15-0.25 
0.2O-O.30 
0.30-0.40 
0.08-0:15 
0.30-0.40 
0.15-0.25 
0.15-0.25 
0.20-0.30 

1.50 

4.8 

(a) AMS 6470 also contains 0.90 to 1.35% Al. (b) These steels also contain 0.8S to 1.20% Al. (c) H13 steel also contains 1.0* V. (d) This steel also 
contains 0.10% Al. 0.60% Ti, 9.0% Co, 0.003% B, 0.02% Zr, and 0.05% Ca. 

2.1.2 Properties & Applications 

From Table 2.1 we can see SAE 8620 steel is a hardenable low alloy steel which 

is usually used for carburizing to develop a case-hardened part [10]. In the automotive 

industry, carburized SAE 8620 steel is typically used for differential ring gears, camshafts 



and transmission gears which are usually moderate section sizes, requiring medium 

hardenability, strength and shock resistance [4]. 

Selection of the hardening treatment is mainly dependent upon the properties 

required in both the case and core [4]. For a SAE 8620 steel, the approximate critical 

temperatures are as follows; Ai (Figure 2.1): 1350°F / 732°C and A3 (Figure 2.1):1525°F 

829°C [10]. Usually, most carburizing treatments take place above the A3 temperature 

(Figure 2.1) where both absorption and diffusion are quite rapid and grain growth is not 

too severe. In practice, SAE 8620 steel is generally heated at 1700°F / 927°C in the 

carburizing process [7]. Sometimes, for certain deep-case requirements, the carburizing 

temperature can be raised to 1750°F / 954°C, or even 1800°F / 982°C. After carburizing, 

SAE 8620 steels are usually quenched directly from the carburizing temperature [9]. 

2.2 Retained Austenite 

High carbon and carburized low carbon steels such as carburized SAE 8620 steel 

always contain retained austenite to varying degrees in the as-hardened and also in the 

tempered microstructures [11]. 

2.2.1 Origin of retained austenite 

In hardenable steels, austenite is stable at temperatures above the A3 and Acm 

(Figure 2.1) phase boundaries, but is unstable below these temperatures. On quenching 

from the austenite-stable area, austenite transforms to martensite which usually forms at a 

characteristic temperature named Ms and continues to form with decreasing temperature 

until Mf, the temperature of 100% transformation is reached. However, in many 

hardenable steels such as plain carbon and low alloy steels with carbon contents more 
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than 0.5%, the Mf temperature is below room temperature, so that a considerable quantity 

of untransformed austenite may be retained at room temperature in these steels [12-22]. 

From the isothermal transformation diagram (I-T diagram) of SAE 8620 (Figure 

2.2), we can see the Ms (750°F/400°C), M50 (700°F /370°C) and M90 (670°F/350°C) 

temperatures for SAE 8620 steel [23]. These particular percentages of martensite (50 in 

M50 & 90 in M90) have no special meaning and are used only to convey some idea of the 

progress of transformation of austenite to martensite as cooling continues below Ms. 

Because measurement becomes increasingly less reliable with greater percentages of 

martensite, the temperature for 90% martensite is often chosen rather than that for some 

higher percentage. Although the Ms (750°F/400°C), M50 (700°F /370°C) and M90 

(670°F/350°C) temperatures are well above room temperature, the steel may retain an 

appreciable percentage of austenite after carburizing [11, 22]. The precise amount is 

dependent upon several complex factors (see section 2.2.2). 

Quenching is usually followed by tempering, which will generally reduce the 

amount of retained austenite (RA) [21, 24-28]. Tempering reduces the amount of RA in 

steels by promoting the following changes in the as-quenched microstructure: (1) From 

180°F / 82°C to 400°F / 204°C, the supersaturated carbon in a iron will be partially 

relieved and precipitated throughout the martensite with a loss of tetragonality: RA 

remains unchanged; (2) From 400°F / 204°C to 550°F / 288°C, RA transforms to bainite. 

The complete transformation is not accomplished unless the steel is held at the tempering 

temperature for sufficient time. The transformation of the austenite increases the hardness 

of the steel; (3) From 550°F / 288°C to 750°F /399°C, the very fine carbide particles 

congregate and form larger carbide particles. As a result, there is a pronounced softening 

of the steel which accompanies this change [7]. 
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Fig. 2.2 Isothermal diagram of SAE 8620 steel [23] 



2.2.2 Range of retained austenite 

The quantity of retained austenite depends on the austenitizing temperature, 

chemical composition, especially the carbon content, cooling rate and final temperature of 

the quenching process [21]. 

High carbon and carburized low carbon steels such as used for bearings, gears, 

and cold work tool steels always contain retained austenite in varying degrees in the as-

hardened and the tempered micro structures. Retained austenite exists in the as-hardened 

microstructures of all plain carbon and alloyed steels containing more than about 0.5% C 

[11,21]. 

As to the presence of retained austenite, Grosch and Schwarz [22] point out that 

the case-microstructure of carburized steels always consists of plate martensite and 

retained austenite for case-carbon contents higher than 0.6%. The amount of retained 

austenite is mainly determined by the carbon content: for steels of the same carbon 

content, the effect of the content of the other alloying elements is also noticeable [22]. 

The martensite finish temperature, Mf, of plain carbon and low alloy steels with 

carbon contents more than about 0.5%, is below room temperature. That is why austenite 

that contains more than 0.5% carbon in solid solution does not completely transform into 

martensite when quenched to room temperature [22]. 

2.2.3 Retained Austenite Profile and Hardness Profile in Carburized Condition 

Grosch and Schwarz [22] examined the retained austenite profiles of three 

carburized steels with different nickel contents (15CrNi6, 14NiCrl4, 14NiCrl8) in the as-

quenched condition and the results are shown in Figure 2.3. Using an enriching gas with 

nitrogen and methyl alcohol with propane, ground cylindrical specimens, 10mm long and 

10 



25mm diameter, were first control carburized to a case carbon content of 0.85%, and were 

then direct quenched into oil at 60°C. Half of the quenched specimens were tempered for 

1 hour at 180 °C in a muffle furnace. The final case-depth was between 0.95 and 1.1mm. 

From Figure 2.3, we can see that the highest values of retained austenite are present at a 

distance of 0.05-0.lmm from the surface. In the area beyond the carburizing depth, there 

was no measurable amount of retained austenite. Tempering (180 °C/lh) was found to 

have only a small effect on the retained austenite profiles. The effect of tempering on the 

maximum amount of retained austenite is shown in Figure 2.4 [22]. 

0,0 £ 0,4- -.0,8 0,8 
Distance 1mm syrfase 

1,0 mm 1*2 

Fig. 2.3 Retained austenite profiles in Cr-Ni steels, as-quenched into oil at 60°C [22] 
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Fig. 2.4 Maximum amount of retained austenite in as-quenched and 
quenched-and-tempered Cr-Ni steels [22] 

As well as amount of retained austenite, the hardness profiles were determined by 

Grosch and Schwarz [22]. The hardness profiles of the as-quenched microstructure are 

determined by the amount of both the harder martensitic, and the softer austenitic, phases. 

Typical hardness profiles obtained by Grosch and Schwarz are shown in Figure 2.5; HV1 

means Vickers hardness using lKg force load. The first hardness indentation could only 

be placed at a distance of about 50 u.m from the surface, i.e. in the area of the highest 

amount of retained austenite. This leads to the lower hardness values found in this area. 

With increasing distance from the surface, both the amount of the retained austenite and 

the carbon content become smaller, which explains the observed hardness maximum at a 

distance of about 0.4 mm (15CrNi6) to 0.5 mm (14NiCrl4 and 14NiCrl8) from the 

surface. For distances greater than about 0.8 mm from the surface, the amount of retained 
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austenite is very small, and the hardness profiles of the different steels become almost 

superimposed [22]. 

As shown in Figure 2.6 [9], for same steel, the hardness is higher at quenching 

condition than any of tempering condition. The hardness of a carburized case decrease as 

the tempering temperature increases. The hardness profiles for the four steels are similar: 

the peak hardness happens at the surface or a small distance from surface. After the peak 

hardness, hardness becomes smaller with the increase of distance from surface. The data 

in Figure 2.6 are from specimens carburized and quenched directly from 1700°F / 927°C. 

For the convenience of hardness comparisons of different steels or same steel at different 

distance from surface, Rockwell C hardness values shown were converted from Rockwell 

A for the surface hardness measurements and from Vickers for hardness traverses taken at 

the midlength of the sectioned specimen 3 in. long. Each plotted point is the average of 

two specimens. 

0-

* 15 CrNii 

• 14:Ni0f.14 
:» * 14WlGr .18 

o,4 m %z 
Distance from surfae© 

wt 1, 

Fig. 2.5 Hardness profiles of as-quenched Cr-Ni steels. Open symbols: as-quenched 
into oil at 60°C. Full symbols: deep cooled [22] 
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Fig. 2.6 Effect of tempering on hardness in carburized cases [9] 

Spice and Matlock [29] conducted similar work to Grosch & Schwarz [22] on 

retained austeoite profiles. They used an SAE 8620 steel in their study. A commercial 

carburizing process was used. Samples were carburized at 893°C (1640°F) for 380 

minutes with a carbon potential of 1.27 at the beginning and 1.14 during the soak. The 

samples were then oil quenched to 121°C (250°F) and then tempered at 149°C (300°F) for 

1 hour. The retained austenite profiles are shown in Figure 2.7. It can be readily seen that 

the retained austenite content is lower at the surface than at depths up to 0.25 mm from 

the surface [29]. 

Lee and Ho [30] also examined the profile of retained austenite in carburized SAE 

8620 steel. It was shown that the amount of retained austenite increased as the thickness 

of the hardened layer increased. 
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Fig 2.7 Retained austenite profiles of carburized SAE 8620 steel specimens [29]. 

2.2.4 Techniques for Measurement of Retained Austenite 

Many different techniques having been successfully applied to the measurement 

of the amount of retained austenite in martensitic and ferritic microstructures. 

If the austenite content is high (more than 15%), quantitative optical microscopy 

is generally considered to be a reliable and satisfactory method [31-36]. However, if the 

retained austenite content is below about 15%, optical microscopy becomes 

unsatisfactory in many steels due to etching and resolution difficulties [11], although 

instances of measurements as low as 2 percent have been reported [11]. 

Currently, an x-ray diffraction technique is considered to be the most accurate 

retained-austenite-measurement method. It is independent of external calibration and is 

reliable in measuring low austenite contents (>2%). In practice, accurate results can be 

obtained quickly using either recorded traces of the diffraction pattern or electronic scan-

counting of peak intensities obtained from the specimen [11]. 
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Other important techniques that have been used in the past for retained austenite 

measurement have included electrical resistivity [31, 37, 38], magnetic permeability [32, 

39], and thermal analysis [33]. However, all of these techniques were predominantly used 

for the measurement of the austenite present during transformation than that retained in 

the final microstructure. In conjunction with a calibration using x-ray or optical methods, 

several of these techniques can provide reliable measurements of the amount of retained 

austenite, but they are usually too cumbersome to use [11]. Figures 2.8 & 2.9 show a 

comparison of retained austenite measurements made by metallographic point counting, 

magnetic susceptibility measurements and an x-ray diffraction method [40]. It can be 

readily seen that there are differences in the measurements made using these three 

methods. 

40 

30 

* 

^ ? n 
< . • " • 

i 
X 

0 
( ) K ) a 

> tj/l 

. 

D a 3 4 
: 

D 50 
f»oim COUNT, v 

Fig. 2.8 Comparison of retained austenite measurements 
made by metallographic point counting and x-ray method [40] 
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Fig. 2.9 Comparison of retained austenite measurements 
made by magnetic susceptibility and x-ray method [40] 

(1) Principles of retained austenite measurement by x-ray diffraction 

The irradiation of x-rays on a crystalline substance produces a characteristic 

diffraction pattern which is determined by the crystal structure of all phases existing 

within that substance [35, 39, 41-50]. Peaks of varying height correspond to diffraction of 

the x-ray energy from various (hkl) planes in the crystal structure of each phase. Peaks are 

observed in the diffraction pattern at discete 20 angles. The specific 20 locations of the 

peaks are determined by the "d" spacings of the planes and the wavelength of the x-ray 

radiation used. Cr, Mo and Cu x-radiation are generally employed in x-ray measurements 

of retained austenite. More diffraction (hkl) peaks can be seen with the shorter 

wavelength Cu and Mo radiations than with the longer wavelength Cr radiation. This can 



be predicted from Braggs' Law, Equation 2.3, which detains the relationship between the 

x-ray wavelength (A.), the interplanar spacing (d) and the diffraction angle (6) [11]. 

nA = 2dsin0 Eq.2 .3[ l l ] 

The relative volume fractions of martensite and austenite can be quantitatively 

determined from x-ray diffraction charts because the x-ray intensity diffracted from each 

phase is proportional to the volume fraction of that phase. Furthermore if x-rays cannot 

pass through the sample due to its infinite thickness and the phase contains a completely 

random arrangement of crystals, the diffracted intensity from any single (hkl) plane 

within that phase is also proportional to the volume fraction of that phase. Thus in random 

specimens, diffracted intensity measurements can be conducted on only one austenite (A) 

and one martensite (M) diffraction peak (hkl) to accurately establish the volume fraction 

of each phase. However, if preferred orientation (P.O.) exists within the specimen, 

intensity measurements may have to be made on a number of austenite and martensite 

peaks so as to obtain an accurate result by averaging [51]. 

(2) Typical x-ray procedure for measurement of retained austenite 

In practice the procedure for measuring retained austenite by x-ray diffraction 

generally involves the following six steps (1) selection of the radiation, (2) running of the 

diffraction pattern, (3) selection of the optimum M and A peaks for comparison of the 

diffracted intensities, (4) actual measurement of the diffracted intensities under each 

selected peak, (5) a comparison of two austenite line or peak intensities to obtain the 

degree of preferred orientation (P.O.) or texture if present in the specimen, and (6) 

employment of the proper equations to convert the measured intensity values to volume 

fractions of austenite [11]. 
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For specimens with random or low P. O. (1.2-1.8), the following two equations, 

Equations 2.4 and 2.5, can be used to convert the measured intensity values to volume 

fractions of austenite. if , I™ and / " ' are integrated intensities measured for a single 

preselected austenite, martensite and carbide line respectively. The factors Rfl, R^' and 

Rf are theoretical intensity values for the same (hkl) planes. Vc is the carbide volume 

measured or estimated optically. 

rhkl I nhkl 

Volume Fraction = VA = AJ A ... , ,., Eq. 2.4 [ 11 ] 
rhkl / r> hkl , j hkl I r> hkl . j hkl / nhkl ^ L J 

JA lKA +IM lKM +1C lKC 

1-V 
Volume Fraction = VA = M1 , u,

c ... . ... Eq. 2.5 [ 111 

i+(Rr/RM7'f) 
Equations 2.4 and 2.5 above may be successfully used to measure retained 

austenite in hardened and in tempered steels because in either of these conditions the 

majority of steels do not show any appreciable amount of preferred orientation. Therefore, 

accurate results may be obtained easily from intensity measurements of only one austenite 

and one martensite reflection [11]. 

2.3 Residual Stress 

2.3.1 Origin of residual stress 

The residual stress may be defined as the self-equilibrating internal or locked-in 

stress remaining within a body with no applied (external) force, external constraint, or 

temperature gradient [52-54]. These residual stresses must be balanced near the surface or 



in the body of a material, i.e., negative (compressive) in one region and positive (tensile) 

in another [52]. Residual stresses may be generated by variations in stress, temperature, 

and chemical species within the body [52]. In heat-treated materials, residual stresses may 

be generated by a variation in temperature (thermal gradient) alone or a combination with 

a change in chemical species [52]. 

When a steel part is quenched from the austenitizing temperature to room 

temperature, residual stresses are produced due to a combination of a thermal gradient 

and a phase transformation-induced volume expansion: austenite transforms to martensite 

or other products [55]. Table 2.2 shows the changes in volume during transformation of 

austenite into different phases [56, 57]. 

Table 2.2 Changes in volume during the phase transformations of 
austenite into different phases (Source: Ref 57) 

Transformation 

Spheroidized pearlite -> austenite 

Austenite -> Martensite 

Austenite -^ lower bainite 

Austenite -> upper bainite 

Change in volume, %, 
as a function of 

carbon content (wt % C) 
-4.64 + 2.21 x (% C) 

4.64 - 0.53 x (% C) 

4.64-1.43 x(%C) 

4.64 - 2.21 x (% C) 

The stress generated by a thermal gradient alone during cooling can be calculated using 

Equation 2.6: 

(Tth=EATa Eq. 2.6 [52] 
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where oth is the thermal stress, E is the modulus of elastidity, and a is the thermal 

coefficient of expansion of the material [52]. 

As for the stress induced from the volume change, there is no general equation 

that can be used. 

2.3.2 Residua] stress pattern of carburized and quenched steel 

After carburizing and quenching, the microstructure of the core first transforms to 

ferrite and pearlite at a high temperature (1100°F / 593°C to 1300°F / 704°C) with an 

accompanying stress relaxation. Later, the microstructure of the case transforms to 

martensite at a lower temperature (less than 570°F / 299°C ) with an accompanying 

volume expansion but no stress relaxation. Therefore, a residual compressive stress is 

generated in the case and the stress at the surface is a maximum [52]. 

However, in actual practice, the maximum compressive stress happens at some 

distance away from the surface (Figure 2.10 & 2.11) due to the presence of the soft 

retained austenite at the surface [52, 58]. The peak compressive stress takes place at 50 to 

60% of the total case depth corresponding to about the 0.5 to 0.6% carbon level which 

produces both a low retained austenite content and a martensite hardness around the 

maximum [59]. The position of the peak for the compressive stress depends on the 

quenching parameters, the case depth, the steel hardenability [60, 61]. The compressive 

stress converts into a tensile stress at a position which is at, or near, the case-core 

interface [52]. 
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Fig. 2.10 Relationship between carbon content, retained austenite, and residual stress 
pattern. It shows the development of peak compressive stress some distance away from 

the surface [52] 

Spice and Matlock [29] measured the residual stress profiles in specimens made of 

SAE 8620 steel and the results are shown in Figure 2.12. In general, the surface layer 

shows a compressive residual tangential stress. With increasing of distance from surface, 

the compressive residual tangential stress increased to a maximum at a depth that 

corresponded approximately to the 0.50% carbon level. The compressive stress changed 

to a tensile stress in the uncarburized core [62]. 
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Fig. 2.11 Axial stress distribution (given in Mpa) 
in carburized gear during quenching [52]. 
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Fig. 2.12. Residual stress profiles in carburized SAE 8620 steel [29]. 



2.3.3 Residual stress measurement by x-ray diffraction 

Residual stress, like all other forms of stress, is determined by strain measurement. 

If a mechanical method is employed, strain is measured by electrical resistance strain 

gages, or by measuring changes in the geometry of the specimen. In the x-ray diffraction 

(XRD) method, the strain is determined by measuring the change of separation (d-spacing) 

between planes of atoms in the grains of the material [63, 64]. 

The most commonly used technique in XRD is to measure two strain vectors at 

different angles to the surface (Fig. 2.13b and c), and then calculate a third vector lying in 

the surface (Fig. 2.13a). In practice, the specimen is measured normally, and then titled 

away from this position, about the diffractometer axis. Then the d-spacing measurement 

is conducted in some grains at v|/ = 0 (Fig. 2.13b), and then the spacing of the same type 

of planes, but in other grains, at \\i 4- 0, eg 45° (Fig. 2.13c). 

If a change of d-spacing exists, the magnitude of the residual elastic strain (E) can 

be calculated from Equation 2.7 [64]. 

£=d±-d±=Ad_ Eq2J 
d0 d 

These elastic strains are usually converted to stresses using isotropic elastic theory, 

Equation 2.8 [64]. where o is the residual stress, E is Young's Modulus and v is Ratio. 

£ = — (l + v ) s i nV Eq.2.8 
E 

Equation 2.9 comes from Equation 2.7 and 2.8. 



= cr- - s i n 2 ^ Eq. 2.9 
d E 

Thus a plot of Ad/d vs. sin2 y/ will be a straight line with a slope cr(l + v)/E 

Alternatively, because 

Ad ^ n 2A6 _ „ , n 

= -cot<9A6> = Eq. 2.10 
d 2tan# 

by differentiating Equation 2.10, Equation 2.11 is obtained. Where, 2A# is the angular 

difference in Bragg angle. 

2A0 = [ 2 < 7 ^ - t a n 0 ] s i n V Eq. 2.11 
E 

and a plot of 26 vs. sin2 y/ will be a straight line with a slope [2cr(l + v) tan 61E], where 

9 is in radians. Provided that E and v are known, the stress can then be calculated [64]. 
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Fig. 2.13 (a) Direction of strain vectors in relation to specimen surface. A and B are two 
strain vectors at different angles to the surface, and C is the third vector lying in the 
surface; (b) and (c) orientation of specimen relative to the x-ray beam for measuring do(b) 
and dj(c). (Ns=normal to specimen surface; Np=normal to reflecting planes) [64]. 



2.4 Distortion in Heat Treatment 

Distortion is mostly attributed to the heat treatment. Generally, both size (volume) 

and shape distortion occur during a heat-treatment process cycle. In practice, the shape 

distortion in either water- or oil-hardening steels is usually more significant than the size 

distortion and is more noticeable due to its unpredictability [65]. 

2.4.1 Types of Distortion 

Distortion can be defined as an irreversible, and usually unpredictable, 

dimensional change in the component during processing from heat treatment and from 

temperature variations and loading in service. The term dimensional change is used to 

denote changes in both size and shape [66]. 

Reversible changes are produced by applying a stress in the elastic range, or by 

temperature variations which neither induce stresses above the elastic limit, nor cause 

changes in the metallurgical structure. Irreversible changes are generated by stresses in 

excess of the elastic limit or by changes in the metallurgical structure (for example, phase 

transformations). These dimensional changes sometimes can be corrected by heat 

treatment such as tempering, annealing or cold treatment. 

During heat - treatment operations, distortion can be classified into two types: size 

distortion and shape distortion. Size distortion is the net change in volume after heat 

treatment which is produced by a phase transformation. Shape distortion or warpage is a 

change in geometrical form and is revealed by changes such as curving, bending, twisting, 

and / or nonsymmetrical dimensional change without any volume change [67, 68]. 

Generally, both types of distortion occur during a heat-treatment process cycle. In 

27 



practice, shape distortion in water- or oil-hardening steels is usually more significant than 

size distortion and is more noticeable due to its unpredictability. 

2.4.2 Distortion Caused by Changes in Metallurgical Structure 

There are many factors which influence distortion. Of these factors, the ones 

resulting from transformation during heating and cooling generate internal stresses / 

strains which can lead to localized deformation and general part distortion [69-71]. 

(1) Austenitizing 

Austenitizing is the process of forming austenite by heating a ferrous alloy above 

the transformation range. In this process, thermal expansion occurs continuously until the 

temperature ACi is reached, where the steel contracts with the transformation of body-

centered cubic (bcc) ferrite to face-centered cubic (fee) austenite. The volume of 

contraction is related to the increased carbon content in the steel (Table 2.2) [52]. 

(2) Hardening 

When cooled from the austenitizing temperature, steels experience a 

transformation-induced expansion which depends on two factors: carbon content in the 

austenite and the phases to which austenite transforms. The magnitude of the expansion 

increases with a decrease in the carbon content in the austenite. The volume increase is a 

maximum if the austenite transforms to martensite, intermediate with lower bainite, and is 

minimum with upper bainite and pearlite (Table 2.2). During quenching, the steel 

contracts up to the Ms temperature, then expands during martensitic transformation. 

Finally, thermal contraction occurs with further cooling to room temperature [52]. 

28 



During such transformations at stresses lower than the yield stress for the phases 

present, plastic deformation (distortion) occurs [72]. The quenching operation (hardening) 

has a much greater influence on distortion than the heating process (austenitizing) (Table 

2.2). 

(3) Tempering 

The martensite formed in the quenching operation is exceedingly brittle, highly 

stressed and dimensionally unstable [7]. Consequently, cracking and distortion are likely 

to occur after quenching. Therefore, quenching is usually followed by tempering to 

relieve stresses and allow the arrested reaction of cementite precipitation. Tempering 

reduces the volume of martensite but not sufficiently to completely equalize the prior 

volume increase during the quenching process [52]. 

2.4.3 Factors That Influence Distortion of Carburized Parts 

There are many factors which influence the distortion of a carburized component. 

In general, they may be put into two categories: heat treat process-related variables 

(pretreatment, load arrangement, process selection and technique, quench considerations, 

and equipment design) and component-related variables (material chemistry, 

hardenability, part geometry, design considerations, and steel quality) [69, 71, 73, 74]. 

Of these factors, the ones resulting from transformation during heating and 

cooling generate internal stresses / strains which can lead to localized deformation and 

general part distortion [69-71]. 

Part geometry, steel production methods, and steel quality are important as well. 

The geometry of a part has a great influence on the post heat treatment distortion results. 

Steel production methods and steel quality also play a significant role [69]. Grain size has 
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some effect on the dimensional change of a part. During quenching, the volume increase 

of a fine-grained shallow-hardening steel is less than a coarse-grained deep-hardening 

steel of the same composition [52]. 

2.4.4 Control of Distortion of Carburized parts 

The following are some methods to minimize and /or control the amount and type 

of distortion and to make the dimensional and the metallurgical changes predictable [69]. 

(1) Normalizing Prior to Machining & Carburizing 

Normalizing is performed by heating a material above the upper critical 

temperature and then typically air cooling outside the furnace to relieve the residual 

stresses and to aid dimensional stability. In a normalized material, the areas of the 

microstructure that contain about 0.8 percent carbon are pearlitic, while the areas of low 

carbon are ferritic. After normalizing, the steel becomes very machinable and relieves any 

residual stresses present from the steel making and forging processes that could cause 

later distortion during carburizing [69]. 

Normalizing is a first step in the heat treatment process to present a homogenous 

microstructure to the carburizing process. To reduce overall part distortion, it is highly 

undesirable to normalize parts such as gears during the carburizing cycle because ferritic 

areas do not transform to the same hardness and stress levels as the pearlitic areas in this 

condition, which will result in serious distortion. 

A prior normalizing cycle removes the problems associated with pearlite and ferrite 

segregation and results in much less distortion. For gears, normalizing is usually 

conducted by holding the material "at temperature" for two hours minimum, or one hour 
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per inch of section thickness. The temperature used in normalizing should be the same or 

higher than the carburizing temperature that is used later [69]. 

(2) Quenching 

The quenching process plays a key role in control of distortion [69, 74, 75]. After 

carburizing, components can be directly quenched, or be slow cooled, reheated, and then 

quenched, to cause hardening to occur accompanied by a volume expansion (4.64% 

minus 0.53 times the percentage of carbon). In general, the method of direct quenching 

yields somewhat less distortion due to fewer phase changes taking place in the part [69, 

74]. 

Quenching severity also has a large influence on distortion: i.e. faster cooling rate 

will cause greater danger of distortion [52]. To control distortion, milder quenching such 

as oil quenching, polymer quenching and martempering are used instead of water 

quenching. Milder quenchants generate slower and more uniform cooling in the parts, 

which greatly decreases the potential distortion. Martempering is an interrupted quench 

from the austenitizing temperature of steels. Through delaying the cooling just above the 

martensitic transformation temperature for a period of time, the temperature of the piece 

equilibrates. Thus, martempering has the function of minimizing the distortion, cracking 

and residual stress [76] 

Oil quenching has been used for a long time for its unique ability to cool a part, 

and to be readily controlled. It is popular for its excellent performance results and 

stability over a broad range of operating conditions. In general, oil quenching is used 

when the hardenability of the steel is high enough to achieve the desired mechanical and 

metallurgical properties [69]. 
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2.5 The Effect of Residual Stress on Distortion 

It is well known that residual stresses are always accompanied by the changes in 

the shape and the size of parts, which greatly increases the tendency towards distortion. 

Another major effect of the residual stress is with respect to the resistance to crack 

initiation: a residual compressive stress is beneficial but a residual tensile stress is 

harmful [52]. 

Stress relieving is performed to avoid distortion in heat treatment and to avoid 

cracking caused by the combination of residual stress and the thermal stress. 

Quenching is usually followed by tempering which is generally considered 

effective in relieving stresses induced by quenching in addition to lowering hardness to 

within a specified range, or meeting certain mechanical property requirements. Table 2.3 

shows a summary of the maximum residual stresses in surface-treated steels [40]. From 

Table 2.3, we can see that tempering can significantly reduce the residual stress level. 

Usually, tempering is done by holding at a relatively low temperature (about 300°F / 

149°C) to retain 50 to 60% of the residual stress in the quenched condition. A higher 

tempering temperature (-1110°F / 600°C) is sometimes applied to mechanically 

deformed parts (such as hot-rolled bars) or components with tensile surface residual 

stresses. 
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Table 2.3 A Summary of the Maximum Residual Stresses 
in Surface Heat-Treated Steels [40] 

Steel 

832M13 

805 A20 

805 A20 

805A17 

805A17 

897M39 

905M39 Cold-
rolled steel 

Heat treatment 
Carburized at 970 °C (1780 °F) to 1 mm 
(0.04 in.) case with 0.8% surface carbon 
Direct-quenched 
Direct-quenched, -80 °C (-110 °F) 
subzero treatment 
Direct-quenched, -90 °C (-130 °F) 
subzero treatment, tempered 
Carburized and quenched 
Carburized to 1.1-1.5 mm (0.043-0.06 
in.) case at 920 C (1690 °F), direct oil 
quench, no temper 

Carburized to 1.1-1.5 mm (0.043-0.06 
in.) case at 920 °C (1690 °F), direct oil 
quench,tempered 150 °C (300 °F) 
Nitrided to case depth of about 0.5 mm 
(0.02 in.) 

Induction hardened, untempered 
Induction hardened, tempered 200 °C 
(390 °F) 
Induction hardened, tempered 300 °C 
(570 °F) 
Induction hardened, tempered 400 °C 
(750 °F) 

Residual stress 
(longitudinal) 

Mpa 

280 

340 

200 

240-340(a) 

190-230 

400 

150-200 

400-600 

800-1000 
1000 

650 

350 

170 

ksi 

40.5 

49 

29 

35.0-49.0 

27.5-33.5 

58 

22-29 

58.0-87.0 

116.0-145.0 
145 

94 

51 

24.5 

(a) Immediately sub-surface, that is, 0.05 mm (0.002 in.). Source: Ref 40 
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2.6 The Effect of Retained Austenite on Distortion and other Properties 

The influence of retained austenite can be positive or negative depending on 

which aspect / property is of concern. 

Some of the most significant positive effects are: 

1. It improves the contact fatigue life in carburized or uncarburized high carbon gears 

and bearings [8, 24, 77-87]. 

2. It improves the bending fatigue resistance of the same steels [88]. However, there is a 

maximum R.A. content above which the bending fatigue resistance decreases (e.g. for 

SAE 8620 steel, the maximum R. A. content is about 50%) [89]. 

3. It improves impact fatigue strength of carburized steels (e.g. Fe-0.18C-2Ni-0.78Mo-

0.33Mn-0.08Cr-0.04Si;Fe-0.2C-2.08Ni-0.82Mo-0.47Mn-0.03Si;Fe-0.18C-1.03Mo-

0.67Cr-0.37Mn-0.22Ni-0.032Nb-0.03Si;Fe-0.21C-1.01Mo-0.63Cr-0.46Mn-0.03Si, 

and JIS SCM420, SCr420, and SNCM420) [88, 90]. 

4. It improves ductility and fracture toughness at high strength levels in standard high 

strength steels [91-93]. 

5. It improves the corrosion resistance of tool steels [94]. 

The important negative effects of retained austenite in hardened microstructures 

are: 

1. It may cause an unwanted dimensional increase in finished gears, bearings and tools 

and gages during service if such items are subjected to temperatures at which the 

retained austenite can transform isothermally [14-20, 24, 95-97]. 

2. It increases the susceptibility to burning and heat checking in grinding operations [20]. 
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2.6.1 The Effect of Retained Austenite on Dimensional Stability 

As discussed, retained austenite can have a negative effect on dimensional 

stability [14-20, 24, 95-97]. The transformation of austenite is always associated with an 

increase in volume that is unacceptable for precision components. Grosch & Schwarz [22] 

have suggested that where accurate dimensions are required, the microstructure of 

carburized components should therefore contain as little retained austenite as possible 

[22]. Grosch and Schwarz also point out that microstructures with a high hardness and a 

low amount of retained austenite resulting in a high stability with respect to dimensional 

changes, can be produced by deep cooling even with high carbon and alloying contents 

[22]. In their tests, some carburized specimens were deep cooled in liguid nitrogen for 30 

minutes directly after quenching and stored at -40°C. McCarthy [98] found that the 

amount of retained austenite had a very significant effect on dimensional stability. Reitz 

and Pendray [99] in their research on cryoprocessing, which is the process of cooling a 

material to extremely low temperatures, found that it generated enhanced mechanical and 

physical properties. Their research showed that the improvements which occured in the 

dimensional stability and the hardness were due to a reduction in the amount of retained 

austenite [99]. Grinberg, Arkhangel'skij and Tikhonova [100] showed that the presence of 

30% retained austenite in the structure was the main reason for the dimensional instability 

of 25Khl7N2B-Sh steel parts after a finish heat treatment. Transformation of this retained 

austenite in the process of service, or long-time storage, can lead to considerable 

dimensional changes [100]; Vetters and Schissler [101] studied the effect of the amount 

of retained austenite on the machining parameters of austempered spheroidal cast-iron. 

They showed that under the influence of temperature and any externally applied loads, the 

unstable retained austenite with a lower carbon content transforms into martensite. Within 
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the retained austenite, tensile stresses were generated, which leads to local distortion 

[101]. 

The papers cited above [22, 98-101] focus on the relationship between retained 

austenite and dimensional stability; less retained austenite generally leads to better 

dimensional stability. An increase in the stability of the retained austenite with respect to 

the martensite transformation results in a smaller distortion in service. Therefore, the 

amount of the retained austenite should be minimized in these precision parts, especially 

if they are liable to be subjected to temperatures at which the retained austenite can 

transform isothermally to other phases. 

For some parts, however, the main concern is the relationship between the amount 

of retained austenite and the distortion immediately after heat treatment (quenching and 

tempering) instead of in later service. Fujio and Yamada have pointed out that the 

distortion of gears caused by through-hardening is related not only to the hardenability of 

the steel but also to the presence of retained austenite [102]. Prokhorov, Shabalina and 

Drizhkov found that the deformation of welded strips of ST3 steel is controlled both by 

the retained austenite transformation-induced expansion and the ageing of the ferrite 

[103]. According to Fujio and Yamada [102] and Prokhorov et al [103], retained austenite 

has a harmful effect on distortion or dimensional stability right after heat treatment, but 

there is little detailed data given in either paper. 

2.7 Summary of Relationships between Heat Treatment Processing Parameters, 
Retained Austenite, Residual Stresses and Distortion 

In the carburizing process, heat treatment parameters have a significant influence 

on retained austenite, residual stresses and distortion [21, 55, 69, 71, 73, 74]. Austenite 

induced-transformations generate internal stresses / strains induced by volumetric 
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changes and lead to localized deformation and general part distortion [69-71]. Therefore, 

retained austenite can have a negative effect on dimensional stability [14-20, 24, 95-97]. 

The relationships between heat treatment processing parameters, retained austenite, 

residual stress and distortion can be summarized as follows: 

1. The quantity of retained austenite is determined by the carburizing temperature, 

chemical composition, especially the carbon content, cooling rate and final 

temperature of quenching process [21]. Tempering generally reduces the amount 

of retained austenite by promoting austenitic transformations [7]. 

2. Residual stresses are produced due to a combination of a thermal gradient and a 

phase transformation-induced volume expansion: austenite transforms to 

martensite or other products [55]. 

3. There are many factors which influence the distortion of a carburized component. 

In general, they may be put into two categories: heat treatment process-related 

variables (pretreatment, load arrangement, process selection and technique, 

quench considerations, and equipment design) and component-related variables 

(material chemistry, hardenability, part geometry, design considerations, and steel 

quality) [69, 71, 73, 74]. 

4. Residual stresses are always accompanied by the changes in the shape and the size 

of parts, which greatly increases the tendency towards distortion [52]. Tempering 

is effective in relieving stresses induced by quenching [52]. 

5. As discussed in 2.6.1, there is no detailed data on the relationship between 

retained austenite and distortion right after carburizing. Therefore, the effect of 

retained austenite on the distortion immediately after quenching or quenching and 

tempering is still, to some extent, unknown. 
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CHAPTER 3 EXPERIMENTAL DETAILS 

In this study, the effects of retained austenite and other metallurgical parameters 

on distortion of carburized SAE8620 steel have been investigated through an 

experimental program. The purpose is to find the optimum amount of retained austenite 

(RA) to minimize distortion in a SAE 8620 steel that is typically used in the carburized 

condition for powertrain applications in the automotive industry. 

3.1 Material 

SAE 8620 steel was used in this study. This is a hardenable chromium, 

molybdenum, nickel low alloy steel often used for carburizing to develop a case-hardened 

part. This case-hardening will result in good wear characteristics. In the carburized 

condition this alloy is used for differential ring gears, camshafts and transmission gears in 

automotive industry. 

The steel was received in the form of a hot-rolled bar. The composition of the as-

received SAE 8620 steel used in the current study is given in Table 3.1. 

3.2 Pre-Heat Treatment, Carburizing and General Overview of Processing 

The as-received material was first normalized at 1750°F (954°C) for 4 hours, and 

then air cooled outside the furnace to minimize any induced stress present and to aid 

dimensional stability [69]. Figure 3.1 shows the microstructures of the SAE 8620 hot 

rolled bar both before and after normalizing: before normalizing, needle-like ferrite and 

pearlite with a somewhat non-uniform distribution of the phases, after normalizing, ferrite 
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and fine pearlite distributed uniformly. This homogeneous ferrite and pearlite 

microstructure after normalizing can help improve machinability and eliminate growth in 

parts during subsequent hardening, thus minimizing any finish grinding that may be 

required [69]. The normalized steel was then machined into Navy C-ring specimens, the 

dimensions of which are given in Figure 3.2. Four different measurements, the outer 

diameter, inner diameter, thickness, and the gap width were used to gauge the amount of 

distortion. Additional measurements of flatness, cylindricity and roundness were also 

made and were incorporated into the criteria for the relative distortion of the Navy C-ring 

test specimens. The distortion associated with the heat treatment is measured by the 

change in dimensions of these seven parameters after heat-treating and quenching. 

The C-ring specimens were then heat treated by carburizing at one of two 

temperatures (6hrs at 1700°F / 927 °C & 4hrs at 1750°F / 954 °C) at four levels of carbon 

potential (0.9, 1.0, 1.1, 1.2) followed by oil quenching or oil quenching and tempering at 

one of two temperatures (300°F /149 °C & 350°F /177 °C). For the convenience of this 

study, the heat treatment processes have been classified into 7 cycles, namely: (1) 

carburizing at 1700°F / 927 °C for 6 hours at 0.9% carbon potential (CI); (2) carburizing 

at 1700°F / 927 °C for 6 hours at 1.0% carbon potential (C2); (3) carburizing at 1700°F / 

927 °C for 6 hours at 1.1% carbon potential (C3); (4) carburizing at 1750°F / 954 °C for 4 

hours at 0.9% carbon potential (C4); (5) carburizing at 1750°F / 954 °C for 4 hours at 

1.0% carbon potential (C5); (6) carburizing at 1750°F / 954 °C for 4 hours at 1.1% carbon 

potential (C6); (7) carburizing at 1750°F / 954 °C for 4 hours at 1.2% carbon potential 

(C7). In each cycle, three samples were quenched and tempered at one of the two 

temperatures (300°F /149 °C & 350°F / 177 °C). The heat treatment schedules are given 

in Table 3.2. 
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All the carburizing treatments were performed in a 75 KW sealed quench furnace 

(Figure 3.3). An endothermic atmosphere was employed in this carburizing furnace. 

Carburizing was done using a propane-enriched gas under carbon potentials varying from 

0.9 to 1.2%. The carbon potential was monitored and controlled using an oxygen probe 

during the gas carburizing. Each carburizing schedule included two stages, namely a 

boost stage and a diffusion stage. In the boost stage, the specimens on the loading rack 

were exposed to propane-enriched gas. Then, in the diffusion stage, the carburizing 

chamber was exposed to nitrogen gas to allow the diffusion to occur. The boost and 

diffusion cycle was repeated during each carburizing period. 

For the oil quenching, the temperature of the oil was maintained at 156°F / 70°C 

while the cell pressure above the oil bath was maintained at 700 millibars. The duration of 

the oil quench was 15 minutes for all specimens. 

Table 3.1 Chemical composition of as-received SAE 8620 steel 

Composition 

C 

Cr 

Mn 

Mo 

Ni 

P 

Si 

S 

Cu 

Al 

Weight Percent (%) 

0.200 

0.500 

0.820 

0.200 

0.460 

0.008 

0.200 

0.200 

0.200 

0.270 
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f.: 

(b) 

Fig. 3.1 SAE 8620 hot rolled bar before and after normalizing, (a) As-received 
microstructure showing needle-like ferrite and pearlite; (b) Normalized at 
1750°F/4hrs microstructure showing ferrite and pearlite 
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Fig. 3.2 The dimensions of Navy C-ring specimen. 
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Table 3.2 SAE 8620 Navy C -Ring heat treatment matrix 

Normalizing Process 
(Temperature/Time) 

1750 °F/4 hours 
(954 °C/4 hours) 

Carburizing Process 
(Temperature/Time) 

1700 °F/6 hours 
(927 °C/6 hours) 

1750 °F/4 hours 
(954 °c/4 hours) 

Carbon 
Potential 

( % ) 

0.9 

1.0 

1.1 

0.9 

1.0 

1.1 

1.2 

Tempering Process 
(Temperature/Time) 

RT* 
300 °F/1 hour 

(149 °C/1 hour) 
350 °F/1 hour 

(177 °C/1 hour) 
RT 

300 °F/1 hour 
(149 °C/1 hour) 
350 °F/1 hour 

(177 °C/1 hour) 
RT 

300 °F/1 hour 
(149 °C/1 hour) 
350 °F/1 hour 

(177 °C/1 hour) 
RT 

300 °F/1 hour 
(149 °C/1 hour) 
350 °F/1 hour 

(177 °C/1 hour) 
RT 

300 °F/1 hour 
(149 °C/1 hour) 
350 °F/1 hour 

(177 °C/1 hour) 
RT 

300 °F/1 hour 
(149 °C/1 hour) 
350 °F/1 hour 

(177 °C/1 hour) 
RT 

300 °F/1 hour 
(149 °C/1 hour) 
350 °F/1 hour 

(177 °C/1 hour) 
: After carburizing, the samples were quenched to room temperature with no further tempering. 
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3.3 Material Characterization Techniques 

Metallographic preparation was conducted before the observation by scanning 

electron microscopy (SEM) and Optical Microscopy (OM). All specimens were sectioned, 

mounted, wet ground on silicon carbide papers of 240, 320, 400 and 600 grit followed by 

polishing on 1.0 micron and 0.5 micron alumina wheels, and then etched in 3% Nital. 

3.3.1 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) was used to characterize the microstructures 

of the 6 specimens carburized at 1.0% carbon potential at two different carburizing 

temperatures (1700°F(927 °C ) / 6hrs and 1750°F (954 °C ) / 4hrs) followed by quenching 

or tempering at two different temperatures (300°F (149 °C) / 1 hr and 350°F (177 °C) / 

lhr). 

After metallographic preparation, the six specimens were coated in POLAR ON 

SC502 Sputter Coater and then placed in the SEM for the microstructural observations. A 

JEOL - JSM - 5800 LV Scanning Electron Microscope was used at magnifications 

ranging from 50x to 300,000x. The accelerating voltage was 15KV and the images were 

recorded on 9.5x12.5cm sheet film at 5000x magnification. 

3.3.2 Optica] Microscopy 

After metallographic preparation, all specimens were placed under the optical 

microscope for the microstructural observations. A ZEISS AXIOVERT 25 optical 

microscope with EXWARE HAD digital color video camera attached was used at 

magnifications ranging from 50x to lOOOx. In the resultant black-and-white micrographs 
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with lOOOx magnification, retained austenite appears as a white phase and martensite as a 

dark phase. 

3.3.3 X-ray Diffraction 

X-ray diffraction techniques were used for both the retained austenite and the 

residual stress determinations. Measurements of the volume percent of retained austenite 

were made at the surface of each specimen. The residual stress that was measured was the 

hoop stress which is the stress tangent to the circumference also known as 

"circumferential stress" and "tangential stress [104]. 

A Bruker D8 Discover X-Ray Diffraction System, Figure 3.4, was used in this 

study. This unit is enclosed in a lead radiation-protection cabinet. The XYZ stage could 

be fixed at the center for mapping or auto-change samples. 

Four peaks were examined to determine the percentage of retained austenite. The 

peaks evaluated are the (200) and (211) martensite peaks and the (220) and (311) 

austenite peaks. The set up for the XRD scan was over a range of 60° to 105° (20) with a 

step size of 0.025 degrees (20) and a 5 seconds time per step. A 1.54 j ^ CuKa radiation 

source was used with a generator voltage of 45KV and a generator current at 40A. The x-

ray beam size was 0.2mm diameter. 

The (211) martensite peak was examined to determine the value of residual stress 

of each specimen at four different \|/ values (0°, 10°, 20° and 30°) while 20 was fixed at 

o 

156 . A CrKa radiation source was used whose wave length was 2.23 j ^ . 
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3.3.4 Optical Metallography 

An optical metallographic technique was also used to determine the amount of 

retained austenite. In this method, a standard chart for estimating the amount of retained 

austenite is required and x-ray measurements are used as reference [11]. Through a 

process of comparing the optical photomicrographs to the standard chart [11], the amount 

of retained austenite was determined. 

3.3.5 Hardness Measurement 

The hardnesses were determined using a MT-90ASW Micro-hardness Tester 

(seen Figure 3.5) which was equipped with a square-based diamond pyramid (Vickers) 

indenter. The load is variable from 10 grams to 1,000 grams. In the present work, 1,000 

grams for 10 seconds was applied to all specimens. After the heat treatment cycle was 

finished, specimens were cross-sectioned, mounted, polished on 1.0 micron and 0.5 

micron alumina wheels. The Vickers / Diamond Pyramid hardness profile was measured 

across the carburized region into the core of each specimen. Hardness transverses were 

measured at three different locations of the cross sections, and the final hardness values 

represent an average from the three locations. The Vickers / Diamond Pyramid hardness 

value was then converted to a Rockwell C hardness (HRC) number by referring to Table 

3.3 [6] because the HRC value is the typical industry-standard for hardness measurement 

of carburized parts. 

The effective case depths were determined to be the depth at which the Rockwell 

hardness value was equivalent to 50HRC [9]. 
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3.3.6 Optical Emission Spectroscopy 

Among the various elemental analysis techniques for iron and steel, Optical 

Emission Spectroscopy (OES) is widely used because of its simplicity [105]. In this study, 

the surface elemental composition of selected C-ring specimens were measured using 

ARL (Applied Research Laboratories) Metal Analyzer 3460. 

3.4 Dimensional Measurements 

A PRISMO (Carl Zeiss IMT Company) coordinate measuring machine (CMM), 

Figure 3.6, was used to measure the distortion of the specimens to a precision of luxn. 

Contact scans of the C-ring surfaces were conducted to determine seven parameters for 

each specimen: flatness, cylindricity, roundness, outer diameter, inner diameter, thickness, 

and the gap width of each specimen. The dimensional measurements of each C-ring 

obtained from the CMM provide a set of points referred to as a point cloud in the 

computer. The analysis of C-ring features was determined with the "Imageware Surface" 

scanning software through calculating the deviation between the actual dimensions and 

nominal dimensions for the as-machined and the heat treated specimens. 

Figure 3.4 shows the measurement locations of each Navy C-ring specimen for 

the seven parameters. For each sample, before and after heat treatment, the flatness of the 

numbered surface was measured. About 2500 points were chosen on this surface and the 

flatness was the deviation between the highest point and the lowest point [106] (Figure 

3.8); OD was measured at one location; Cylindricity was measured at three different 

locations on which about 4000 points were scanned [107, 108] (Figure 3.9). Two 

locations (so called top and bottom) were chosen for the gap width measurements. Three 

different measurement locations (top, middle and bottom) were chosen when measuring 
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ID and thickness. The roundness of each ID was determined through scanning about 880 

points on each measured ID circle (Figure 3.10). Quantitatively, the degree of roundness 

was expressed by the dimension of out-of-roundness, that is, the deviation from the ideal 

form [109]. 

3.5 Summary of Experimental Procedures & Measurements 

This study involved the following experimental procedures: 3D measurements 

using a Coordinate Measuring Machine (CMM), heat treatment, Scanning Electron 

Microscopy (SEM), X-Ray Diffraction (XRD), micro-hardness, Optical Emission 

Spectroscopy (OES). Figure 3.11 is a schematic flowchart of all experimental procedures 

conducted in this study. 

Table 3.3 Hardness Conversion Numbers for Steel [6] 

Rockwell C 
Hardness Number 

68 
67 
66 
65 
64 
63 
62 
61 
60 
59 
58 
57 
56 
55 
54 
53 
52 
51 
50 

Vickers 
Hardness Number 

(Kg/mm2) 
940 
900 
865 
832 
800 
772 
746 
720 
697 
674 
653 
633 
613 
595 
577 
560 
544 
528 
513 

Rockwell C 
Hardness Number 

— 

49 
48 
47 
46 
45 
44 
43 
42 
41 
40 
39 
38 
37 
36 
35 

Vickers 
Hardness Number 

(Kg/mm2) 

— 

498 
484 
471 
458 
446 
434 
423 
412 
402 
392 
382 
372 
363 
354 
345 

49 



J^^rM^J^^^.^tm-^fi:} , 
-r-sr 

*i : , i-i . . . ' 

' ! V ?fe| 

mm^m^Hjimjj^ffn 

.$*' *«'.: 
**&•:&>> 

This unit is 
covered in the 
lead radiation 
protection 

XYZ stage 
can be fixed 
at center for 
mapping or 
auto change 
samples. 

?**!! 
* ** / ' , J^BI? 3 

Fig. 3.4 Brucker D8 Discover X-Ray Diffraction System 
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Fig. 3.5 Schematic diagram of MT-90ASW micro-hardness testing system 
and principle of operation. 
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Fig. 3.6 PRISMO Coordinate Measuring Machine (CMM) 



Measurement report shows: 
1. Flatness_Numbered Side (N surface flatness) 
2. Diameter_OD (Outside Diameter) 
3. Cylindricity_OD (Outside Cylindricity) 
4. Diameter_TD-l (Inside Diameter at M Surface) 
5. RoundnessJD-1 (Inside Roundness at M Surface) 
6. Diameter_ID-2 (Inside Diameter at K Surface) 
7. Roundness_ID-2 (Inside Roundness at K Surface) 
8. Diameter_ID-3 (Inside Diameter at N Surface) 
9. Roundness_ID-3 (Inside Roundness at N Surface) 
10. Thickness_l (Thickness between A Point to B Point) 
11. Thickness_2 (Thickness between C Line to D Line) 
12. Thickness_3 ( Thickness between E Point to F Point) 
13. Dis_Gap_Top ( Gap Between A-B Line to a-b Line) 
14. Dis_Gap_Middle (Gap Between G-H Line to g-h Line) 
15. Dis_Gap_Bottom (Gap Between I-J Line to i-j Line) 

Fig. 3.7 CMM measurement positions for each Navy C-ring specimen 
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^y 

2D.0um 

Fig. 3.8 Example plot of flatness measurements using CMM. The 'A' spot is the 
maximum deviation spot towards the surface '1234' and the 'B' spot is the maximum 
deviation spot away from the surface '1234'. 



Fig. 3.9 Example plot of cylindricity measurements using CMM. The 'A' spot is the 
maximum deviation spot towards the center of the three circles and the 'B' spot is the 
maximum deviation spot away from the centre of the three cycles. 
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Fig. 3.10 Example plot of roundness measurements using CMM. The 'A' and 'B' are the 
maximum deviation spots for ED-1 towards and away from the center of the circles. The 
' C and 'D' are the maximum deviation spots for ID-2 towards and away from the center 
of the circles. The 'E' and 'F' are the maximum deviation spots for ID-3 towards and 
away from the center of the circles. 
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CHAPTER 4 THE EFFECT OF RETAINED AUSTENITE ON OD, 
GAP AND FLATNESS DISTORTION OF SAE 8620 STEEL 

In this chapter, the correlations between the following four factors are discussed: 

heat treatment process parameters, retained austenite, residual stress and the distortion 

values for OD, gap width and flatness. The optimum retained austenite and residual stress 

for the reduction of the distortion for OD, gap width and flatness are discussed separately. 

Finally, the optimum retained austenite and residual stress for the reduction of the average 

distortion (combined distortion factor incorporating OD, gap width and flatness) are 

detailed. 

4.1 Distortion 

The distortion values for OD, gap width and flatness of C-ring samples are 

summarized in Table 4.1. Table 4.1 also lists the average distortion of OD, gap width and 

flatness which is based on their absolute values and calculated according to equation 4.1: 

Average Distortion (%) = [L (Absolute value of OD, Gap Width & Flatness distortion)] / 3 Eq.4.1 

Figure 4.1 (a) show example plots of the flatness distortion for three heat 

treatment conditions, i.e. as-machined, as-quenched (1750/1.2/RT) and as-quenched & 

tempered (1750/1.2/350). From Figure 4.1 (a) we can see that the highest spot and the 

lowest spot (the red small cycles in the figure) do not stay in same place after quenching. 

The carburizing and quenching process (1750/1.2/RT) creates both a new high spot and a 

new low spot which remain in place during tempering but undergo reductions in 

magnitude. However, this is not the usual behaviour. For most heat treatment processes, 

the high and low spots usually "walk" to different positions after tempering (see Figure 
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4.1 (b)). In very few instances in this study, do the positions of the high / low spots stay 

the same after tempering. 
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Fig. 4.1 (a) One example plot of flatness distortion at three conditions showing the 
high and low spots remaining in place during tempering: as-machined 
(top), as-quenched (1750/1.2/RT) (middle) and as-quenched & 
tempered (1750/1.2/350) (bottom). 
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Fig. 4.1 (b) One example plot of flatness distortion at three conditions showing the 
high and low spots walking during tempering: as-machined (top), as-
quenched (1700/1.1/RT) (middle) and as-quenched & tempered 
(1700/1.1/300) (bottom). 



The relationship between the OD distortion and process cycle is shown in Figure 

4.2. Figure 4.3 shows the gap width distortion vs. process cycle. Figure 4.4 shows the 

flatness distortion vs. process cycle. Figure 4.5 shows the average distortion vs. heat 

treatment process cycle. From Figs 4.2, 4.3, and 4.4, we can see that there is distortion 

after carburizing and quenching / tempering. The OD and gap are both enlarged. This is 

due to the phase, and associated volume, change from austenite to martensite. Also from 

Figs 4.2, 4.3, and 4.4, it can be seen that tempering can reduce the distortion to a 

significant degree. Tempering helps eliminate the elastic deformation through relieving 

the internal stresses that arise from retained austenite. It is also clear from Figs 4.3 and 

4.4 that the distortion becomes more significant with increasing carburizing temperature 

and carbon potential. From Figure 4.5 we can see the optimum heat treatment for reduced 

distortion is 1750/1.1/350, i.e. carburized at 1750°F for 4 hours at 1.1% carbon potential, 

oil quenched and then tempered at 350°F for 1 hour. 

4.2 Retained austenite and residual stress 

The results for retained austenite and residual stresses are given in Table 4.2. 

Based on the data in Table 4.2, we obtain Fig. 4.6 which shows the relationship between 

retained austenite, residual stresses and process cycle. 

From Fig. 4.6, we can see that an increase in carburizing temperature gives rise to 

an increase in the amount of retained austenite. Also, with increasing carbon potential, the 

amount of retained austenite increases. Compared to the quenched condition, the amount 

of retained austenite is reduced after tempering. With increased tempering temperature 

(300°F to 350°F), the amount of retained austenite is decreased but not significantly. 
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For residual stresses, the situation is very similar to that for retained austenite, i.e. 

with increasing carburizing temperature and carbon potential, the residual stress increases. 

Tempering reduces the residual stress. As the tempering temperature is increased from 

300°F to 350°F, the residual stress decreases but not significantly. 

The other general feature that can be seen in Fig. 4.6 is that an increase in retained 

austenite tends to give rise to an increase in residual stress. 

4.3 Distortion vs. retained austenite and residual stress 

Tables 4.3, 4.4 and 4.5 show the distortion of OD, gap width and flatness vs. 

retained austenite and residual stresses after quenching. The distortion values are ranked 

from low to high. From Tables 4.3, 4.4 and 4.5, we can see the lowest values of distortion 

of the OD, gap width and flatness all occur at 1700/0.9/RT, 8.5% retained austenite (X-

ray measurement) and -429.0 MPa residual stress. From Tables 4.4, 4.5 and Figure 4.7 (a) 

which is constructed based on the data in Table 4.4, we can also see that the distortion of 

gap width and flatness becomes increasingly serious with increasing values of retained 

austenite and residual stress. 

Tables 4.6, 4.7 and 4.8 show the distortion of OD, gap width and flatness vs. 

retained austenite and residual stresses after 300°F/lhr tempering. The distortion values 

are ranked from low to high. From Table 4.6, we can see the smallest OD distortion 

happens at 1750/1.1/300, 29.5% retained austenite (X-ray measurement) and -888.0 MPa 

residual stress. As for the gap distortion, the smallest distortion, Table 4.7, occurs for 

1700/0.9/300, 4.0% retained austenite, -370.0 MPa residual stress. Finally, the smallest 

flatness distortion, Table 4.8, occurs for 1750/0.9/300, 20.0% retained austenite and -

645.5 MPa residual stress. 
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Tables 4.9, 4.10 and 4.11 give the distortion values vs. retained austenite and 

residual stress after 350°F/lhr tempering. From Table 4.9, it can be found for OD 

distortion the lowest distortion is for 1750/0.9/350, 18.5% retained austenite and -620.5 

MPa residual stress. For the gap distortion, Table 4.10, the lowest distortion is for 

1700/0.9/350, 4.0% retained austenite and -360.0MPa residual stress. For flatness, Table 

4.11, the lowest distortion is for 1750/1.1/350, 26.0% retained austenite and -840.5 MPa 

residual stress. 

Based on the data in Tables 4.7 and 4.10, Figure 4.7 (b) is constructed showing 

the gap distortion generally becoming severe with increasing retained austenite after 

quenching and quenching and tempering at 300°F or 350°F for lhour. 

Table 4.12 summarizes the lowest distortion values for quenched and quenched 

and tempered (300°F and 350°F) samples. From Table 4.12 we can see the lowest OD 

distortion occurs for 1750/1.1/300 (carburized at 1750°F for 4 hours at 1.1% carbon 

potential, oil quenched and then quenched at 300°F for 1 hour), 29.5% retained austenite 

and -888.0Mpa residual stress. For the gap width distortion, the lowest distortion is for 

1700/0.9/300 (carburized at 1700°F for 6 hours at 0.9% carbon potential, oil quenched 

and then tempered at 300°F for 1 hour), 4.0% retained austenite and -370.0MPa residual 

stress; For the flatness distortion, the lowest distortion is for 1750/1.1/350 (carburized at 

1750°F for 4 hours at 1.1% carbon potential, oil quenched and tempered at 350°F for 1 

hour), 26.0% retained austenite and -840.5MPa residual stress. As discussed before, from 

Figure 4.5 it can been seen that the optimum heat treatment condition is 1750/1.1/350 

(carburized at 1750°F for 4 hours at 1.1% carbon potential, oil quenched and then 

tempered at 350°F for 1 hour), 26.0% retained austenite and -840.5MPa residual stress. 
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Table 4.1 Distortion values for Navy-C ring specimens 
subjected to various heat treatments. 

Cycle 
No. 

CI 

C2 

C3 

C4 

C5 

C6 

C7 

Carburizing Temp. (°F) 
/Carbon Potential (%) 

/Tempering Temp. (°F) 

1700/0.9/RT 

1700/0.9/300 

1700/0.9/350 

1700/1.0/RT 

1700/1.0/300 

1700/1.0/350 

1700/1.1/RT 

1700/1.1/300 

1700/1.1/350 

1750/0.9/RT 

1750/0.9/300 

1750/0.9/350 

1750/1.0/RT 

1750/1.0/300 

1750/1.0/350 

1750/1.1/RT 

1750/1.1/300 

1750/1.1/350 

1750/1.2/RT 

1750/1.2/300 

1750/1.2/350 

OD 
Distortion 

(%) 

0.071 

0.027 

0.019 

0.079 

0.033 

0.014 

0.146 

0.030 

0.015 

0.096 

0.027 

0.012 

0.123 

0.041 

0.013 

0.101 

0.010 

0.012 

0.102 

0.042 

0.018 

Gap Width Distortion (%) 

Top 

1.70 

0.13 

0.33 

1.99 

0.59 

0.57 

2.56 

0.65 

0.66 

2.23 

0.47 

0.43 

2.97 

0.60 

0.61 

3.11 

0.81 

0.85 

3.15 

0.88 

0.90 

Bottom 

1.79 

0.27 

0.37 

1.97 

0.63 

0.66 

2.51 

0.66 

0.68 

2.27 

0.46 

0.49 

2.99 

0.56 

0.64 

3.09 

0.77 

0.88 

3.08 

0.91 

0.93 

Average 

1.75 

0.20 

0.35 

1.98 

0.61 

0.62 

2.54 

0.66 

0.67 

2.25 

0.47 

0.46 

2.98 

0.58 

0.63 

3.10 

0.79 

0.87 

3.12 

0.90 

0.92 

Flatness 
Distortion 

(%)* 

20.5 

3.9 

2.3 

31.4 

2.2 

4.7 

42.3 

2.1 

4.8 

62.9 

1.1 

3.3 

110.1 

-8.3 

1.2 

125.2 

1.8 

-0.6 

188.5 

26.2 

10.3 

Average Distortion of 
OD,Gap Width & 

Flatness (%) ** 

7.44 

1.38 

0.89 

11.15 

0.95 

1.78 

14.99 

0.93 

1.83 

21.75 

0.53 

1.26 

37.73 

2.97 

0.61 

42.80 

0.87 

0.49 
63.91 

9.05 

3.74 

. „ , _ . ._. deviation(of flatness)after heat treatment- deviation (of flatness)beforeheat treatment ,„ ,_, 
*Flatness Distortion(%)= xl00% 

deviation(of flatness)beforeheat treatment 

Average Distortion of OD, Gap Width & Flatness (%) = [L (Absolute value of OD, Gap Width & Flatness distortion)] / 3 
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Fig. 4.2 OD distortion vs. heat treatment process cycle 
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Fig. 4.3 Gap width distortion vs. heat treatment process cycle. 
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Fig. 4.4 Flatness distortion vs. heat treatment process cycle. 
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Fig. 4.5 Average distortion of OD, gap width and flatness vs. heat treatment process cycle, 
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Table 4.2 Retained austenite and residual stresses in Navy C-ring specimens 
subjected to various heat treatment condition. 

Cycle 
No. 

CI 

C2 

C3 

C4 

C5 

C6 

C7 

Carburizing Temperature(°F) 
/Carbon Potential (%) 

/Tempering Temperature (°F) 
1700/0.9/RT 
1700/0.9/300 
1700/0.9/350 
1700/1.0/RT 
1700/1.0/300 
1700/1.0/350 
1700/1.1/RT 
1700/1.1/300 
1700/1.1/350 
1750/0.9/RT 
1750/0.9/300 
1750/0.9/350 
1750/1.0/RT 
1750/1.0/300 
1750/1.0/350 
1750/1.1/RT 
1750/1.1/300 
1750/1.1/350 
1750/1.2/RT 
1750/1.2/300 
1750/1.2/350 

RAM* 
(%) 

10 
5 
5 
15 
10 
10 
20 
15 
15 
20 
15 
15 
25 
20 
20 
30 
25 
25 
40 
40 
35 

RA-X* 
(%) 

8.5 
4.0 
4.0 
17.5 
12.5 
10.0 
22.5 
20.1 
17.5 
21.4 
20.0 
18.5 
28.6 
25.0 
23.2 
33.5 
29.5 
26.0 
43.5 
40.0 
36.5 

RS-X* 
(MPa) 

-429.0 
-370.0 
-360.0 
-625.5 
-559.5 
-542.3 
-700.5 
-645.5 
-633.5 
-650.5 
-645.5 
-620.5 
-822.5 
-800.5 
-816.5 
-901.0 
-888.0 
-840.5 
-900.5 
-874.5 
-866.3 

RA-M: restained austenite is measured using an optical metallographic 
technique. 
RA-X: retained austenite is measured using a X-ray diffraction 
technique. 
RS-X: residual stresses are measured by a X-ray diffraction technique. 
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Fig. 4.6 Retained austenite vs. residual stresses, (a) the relationships between retained 
austenite, residual stress and carburizing temperature and carbon potential, (b) the 
relationship between retained austenite and residual stress after quenching, quenching and 
tempering at 300°F or 350°F for lhour. 



Table 4.3 OD distortion vs. retained austenite and residual stress after quenching 

OD Distortion 
(%) 

Value 

0.071 

0.079 

0.096 

0.101 

0.102 

0.123 

0.146 

Rank 

1 

2 

3 

4 

5 

6 

7 

Heat 
Treatment 

1700/0.9/RT 

1700/1.0/RT 

1750/0.9/RT 

1750/1.1/RT 

1750/1.2/RT 

1750/1.0/RT 

1700/1.1/RT 

RA-M (%) 

Value 

10 

15 

20 

30 

40 

25 

20 

Rank 

. 

. . 

. . . 

. . . . 

— 

RA-X (%) 

Value 

8.5 

17.5 

21.4 

33.5 

43.5 

28.6 

22.5 

Rank 

-

» 
. . . 

— -

RS-X (MPa) 

Value 

-429.0 

-625.5 

-650.5 

-901.0 

-900.5 

-822.5 

-700.5 

Rank 

. 

« 

. . . 

. — 

Table 4.4 Gap width distortion vs. retained austenite and residual stress after quenching 

Gap 
Distortion (%) 

Value 

1.75 

1.98 

2.25 

2.54 

2.98 

3.10 

3.12 

Rank 

1 

2 

3 

4 

5 

6 

7 

Heat 
Treatment 

1700/0.9/RT 

1700/1.0/RT 

1750/0.9/RT 

1700/1.1/RT 

1750/1.0/RT 

1750/1.1/RT 

1750/1.2/RT 

RA-M (%) 

Value 

10 

15 

20 

20 

25 

30 

40 

Rank 

. 

. . 

. . . 

. . . 

. . . . 

RA-X (%) 

Value 

8.5 

17.5 

21.4 

22.5 

28.6 

33.5 

43.5 

Rank 

. 

. . 

. . . 

. . . . 

RS-X (MPa) 

Value 

-429.0 

-625.5 

-650.5 

-700.5 

-822.5 

-901.0 

-900.5 

Rank 

. 

. . 

. . . 

. . . . 

Table 4.5 Flatness distortion vs. retained austenite and residual stress after quenching 

Flatness 
Distortion (%) 

Value 

20.5 

31.4 

42.3 

62.9 

110.1 

125.2 

188.5 

Rank 

1 

2 

3 

4 

5 

6 

7 

Heat 
Treatment 

1700/0.9/RT 

1700/1.0/RT 

1700/1.1/RT 

1750/0.9/RT 

1750/1.0/RT 

1750/1.1/RT 

1750/1.2/RT 

RA-M (%) 

Value 

10 

15 

20 

20 

25 

30 

40 

Rank 

. 

. . 

. . . 

. . . 

. . . . 

. . . . . 

RA-X (%) 

Value 

8.5 

17.5 

22.5 

21.4 

28.6 

33.5 

43.5 

Rank 

. 

. . 

. . . . 

. . . 

RS-X (MPa) 

Value 

-429.0 

-625.5 

-700.5 

-650.5 

-822.5 

-901.0 

-900.5 

Rank 

. 

. . 

. . . . 

. . . 



Table 4.6 OD distortion vs. retained austenite and residual stress 
after 300°F/lhr tempering. 

(a) Retained austenite is measured using an optical metallographic technique. 

OD Distortion (%) 

Value 

0.010 

0.027 

0.027 

0.030 

0.033 

0.041 

0.042 

Rank 

1 

2 

2 

3 

4 

5 

6 

Heat 
Treatment 

1750/1.1/300 

1700/0.9/300 

1750/0.9/300 

1700/1.1/300 

1700/1.0/300 

1750/1.0/300 

1750/1.2/300 

RA-M (%) 

Value 

25 

5 

15 

15 

10 

20 

40 

Rank 

_ 

H — 

» M 

M B 

mmmm 

RS-X (MPa) 

Value 

-888.0 

-370.0 

-645.5 

-645.5 

-559.5 

-800.5 

-874.5 

Rank 

B 

M M 

» _ 
_ _ 

H M -

(b) Retained austenite is measured using a x-ray diffraction technique. 

OD Distortion (%) 

Value 

0.010 

0.027 

0.027 

0.030 

0.033 

0.041 

0.042 

Rank 

1 

2 

2 

3 

4 

5 

6 

Heat 
Treatment 

1750/1.1/300 

1700/0.9/300 

1750/0.9/300 

1700/1.1/300 

1700/1.0/300 

1750/1.0/300 

1750/1.2/300 

RA-X (%) 

Value 

29.5 

4.0 

20.0 

20.1 

12.5 

25.0 

40.0 

Rank 

mm 

« -

M M M B 

H H | 

RS-X (MPa) 

Value 

-888.0 

-370.0 

-645.5 

-645.5 

-559.5 

-800.5 

-874.5 

Rank 

H 

M M 

H H M 

_ _ 

„.. 



Table 4.7 Gap width distortion vs. retained austenite and residual stress 
after 300°F/lhr tempering. 

(a) Retained austenite is measured using an optical metallographic technique. 

Gap Distortion 
(%) 

Value 

0.20 

0.47 

0.58 

0.61 

0.66 

0.79 

0.90 

Rank 

1 

2 

3 

4 

5 

6 

7 

Heat 
Treatment 

1700/0.9/300 

1750/0.9/300 

1750/1.0/300 

1700/1.0/300 

1700/1.1/300 

1750/1.1/300 

1750/1.2/300 

RA-M (%) 

Value 

5 

15 

20 

10 

15 

25 

40 

Rank 

_ 

- H 

» H 

B H 

_ H 

RS-X (MPa) 

Value 

-370.0 

-645.5 

-800.5 

-559.5 

-645.5 

-888.0 

-874.5 

Rank 

_ 

« -

H H 

H H 

M M 

(b) Retained austenite is measured using a x-ray diffraction technique. 

Gap Distortion 
(%) 

Value 

0.20 

0.47 

0.58 

0.61 

0.66 

0.79 

0.90 

Rank 

1 

2 

3 

4 

5 

6 

7 

Heat 
Treatment 

1700/0.9/300 

1750/0.9/300 

1750/1.0/300 

1700/1.0/300 

1700/1.1/300 

1750/1.1/300 

1750/1.2/300 

RA-X (%) 

Value 

4.0 

20.0 

25.0 

12.5 

20.1 

29.5 

40.0 

Rank 

_ 

« M 

H H 

M M H 

RS-X (MPa) 

Value 

-370.0 

-645.5 

-800.5 

-559.5 

-645.5 

-888.0 

-874.5 

Rank 

_ 

H -

M M M 

H H 

H B 
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Table 4.8 Flatness distortion vs. retained austenite and residual stress 
after 300°F/lhr tempering. 

(a) Retained austenite is measured using an optical metallographic technique. 

Flatness 
Distortion (%) 

Value 

1.1 

1.8 

2.1 

2.2 

3.9 

-8.3 

26.2 

Rank 

1 

2 

3 

4 

5 

6 

7 

Heat 
Treatment 

1750/0.9/300 

1750/1.1/300 

1700/1.1/300 

1700/1.0/300 

1700/0.9/300 

1750/1.0/300 

1750/1.2/300 

RA-M (%) 

Value 

15 

25 

15 

10 

5 

20 

40 

Rank 

M M 

M M 

_ _ 

_ 

M M M 

RS-X (MPa) 

Value 

-645.5 

-888.0 

-645.5 

-559.5 

-370.0 

-800.5 

-874.5 

Rank 

M M 

M M 

mmm 

•H 

M M M 

(b) Retained austenite is measured using a x-ray diffraction technique. 

Flatness 
Distortion (%) 

Value 

1.1 

1.8 

2.1 

2.2 

3.9 

-8.3 

26.2 

Rank 

1 

2 

3 

4 

5 

6 

7 

Heat 
Treatment 

1750/0.9/300 

1750/1.1/300 

1700/1.1/300 

1700/1.0/300 

1700/0.9/300 

1750/1.0/300 

1750/1.2/300 

RA-X (%) 

Value 

20.0 

29.5 

20.1 

12.5 

4.0 

25.0 

40.0 

Rank 

M M 

M M M 

• M 

H 

RS-X (MPa) 

Value 

-645.5 

-888.0 

-645.5 

-559.5 

-370.0 

-800.5 

-874.5 

Rank 

M H H 

M M 

m 

m 

M M 



Table 4.9 OD distortion vs. retained austenite and residual stress 
after 350°F/lhr tempering. 

(a) Retained austenite is measured using an optical metallographic technique. 

OD Distortion (%) 

Value 

0.012 

0.012 

0.013 

0.014 

0.015 

0.018 

0.019 

Rank 

1 

1 

2 

3 

4 

5 

6 

Heat 
Treatment 

1750/0.9/350 

1750/1.1/350 

1750/1.0/350 

1700/1.0/350 

1700/1.1/350 

1750/1.2/350 

1700/0.9/350 

RA-M*(%) 

Value 

15 

25 

20 

10 

15 

35 

5 

Rank 

B « 

M H 

M M 

H M 

• 

RS-X* (MPa) 

Value 

-620.5 

-840.5 

-816.5 

-542.3 

-633.5 

-866.3 

-360.0 

Rank 

M H 

M M 

M H 

• 

(b) Retained austenite is measured using a x-ray diffraction technique. 

OD Distortion (%) 

Value 

0.012 

0.012 

0.013 

0.014 

0.015 

0.018 

0.019 

Rank 

1 

1 

2 

3 

4 

5 

6 

Heat 
Treatment 

1750/0.9/350 

1750/1.1/350 

1750/1.0/350 

1700/1.0/350 

1700/1.1/350 

1750/1.2/350 

1700/0.9/350 

. RA-X*(%) 

Value 

18.5 

26.0 

23.2 

10.0 

17.5 

36.5 

4.0 

Rank 

H « 

M M 

- H 

• 

RS-X* (MPa) 

Value 

-620.5 

-840.5 

-816.5 

-542.3 

-633.5 

-866.3 

-360.0 

Rank 

• M H 

M M 

• • M M 

• 



Table 4.10 Gap width distortion vs. retained austenite and residual stress 
after 350°F/lhr tempering. 

(a) Retained austenite is measured using an optical metallographic technique. 

Gap Distortion 
(%) 

Value 

0.35 

0.46 

0.62 

0.63 

0.67 

0.87 

0.92 

Rank 

1 

2 

3 

4 

5 

6 

7 

heat 
treatment 

1700/0.9/350 

1750/0.9/350 

1700/1.0/350 

1750/1.0/350 

1700/1.1/350 

1750/1.1/350 

1750/1.2/350 

RA-M*(%) 

Value 

5 

15 

10 

20 

15 

25 

35 

Rank 

H 

M M 

H 

• M B M 

• • • » 

RS-X* (MPa) 

Value 

-360.0 

-620.5 

-542.3 

-816.5 

-633.5 

-840.5 

-866.3 

Rank 

H 

- H 

• « 

m B B 

(b) Retained austenite is measured using a x-ray diffraction technique. 

Gap Distortion 
(%) 

Value 

0.35 

0.46 

0.62 

0.63 

0.67 

0.87 

0.92 

Rank 

1 

2 

3 

4 

5 

6 

7 

heat 
treatment 

1700/0.9/350 

1750/0.9/350 

1700/1.0/350 

1750/1.0/350 

1700/1.1/350 

1750/1.1/350 

1750/1.2/350 

RA-X*(%) 

Value 

4.0 

18.5 

10.0 

23.2 

17.5 

26.0 

36.5 

Rank 

_ 

• • • I B M 

• M 

• • M 

RS-X* (MPa) 

Value 

-360.0 

-620.5 

-542.3 

-816.5 

-633.5 

-840.5 

-866.3 

Rank 

_ 

• • • « 
• M 

• • • • 
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Table 4.11 Flatness distortion vs. retained austenite and residual stress 
after 350°F/lhr tempering. 

(a) Retained austenite is measured using an optical metallographic technique. 

Flatness 
Distortion (%) 

Value 

-0.6 

1.2 

2.3 

3.3 

4.7 

4.8 

10.3 

Rank 

1 

2 

3 

4 

5 

6 

7 

heat 
treatment 

1750/1.1/350 

1750/1.0/350 

1700/0.9/350 

1750/0.9/350 

1700/1.0/350 

1700/1.1/350 

1750/1.2/350 

RA-M*(%) 

Value 

25 

20 

5 

15 

10 

15 

35 

Rank 

B M H 

• 

• H i 

_ _ 

_ « 

RS-X* (MPa) 

Value 

-840.5 

-816.5 

-360.0 

-620.5 

-542.3 

-633.5 

-866.3 

Rank 

_ 

« H 

_ . 

H H M 

(b) Retained austenite is measured using a x-ray diffraction technique. 

Flatness 
Distortion (%) 

Value 

-0.6 

1.2 

2.3 

3.3 

4.7 

4.8 

10.3 

Rank 

1 

2 

3 

4 

5 

6 

7 

heat 
treatment 

1750/1.1/350 

1750/1.0/350 

1700/0.9/350 

1750/0.9/350 

1700/1.0/350 

1700/1.1/350 

1750/1.2/350 

RA-X*(%) 

Value 

26.0 

23.2 

4.0 

18.5 

10.0 

17.5 

36.5 

Rank 

_ 

. . . . 

_ _ 

_ H 

RS-X* (MPa) 

Value 

-840.5 

-816.5 

-360.0 

-620.5 

-542.3 

-633.5 

-866.3 

Rank 

tm 
• u 

_ _ 

M B H 
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Fig. 4.7 Gap Distortion vs. Retained Austenite after quenching (a) and after 
quenching and tempering at 300°F or 350°F for 1 hour (b). 
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Table 4.12 The lowest distortion vs. retained austenite and residual stress after quenching, 
quenching followed by 300°F/lhr tempering or 350°F/lhr tempering 

Measuring 
Parameter 

OD 

Gap Width 

Flatness 

Distortion 
Absolute 

Value 

0.071 

0.010 

0.012 

0.012 

1.75 

0.200 

0.350 

20.5 

1.100 

0.600 

Heat 
Treatment 

1700/0.9/RT 

1750/1.1/300 

1750/0.9/350 

1750/1.1/350 

1700/0.9/RT 

1700/0.9/300 

1700/0.9/350 

1700/0.9/RT 

1750/0.9/300 

1750/1.1/350 

RA-M (%) 

10 

25 

15 

25 

10 

5 

5 

10 

15 

25 

RA-X (%) 

8.5 

29.5 

18.5 

26.0 

8.5' 

4.0 

4.0 

8.5 

20.0 

26.0 

RS-X 
(MPa) 

-429.0 

-888.0 

-620.5 

-840.5 

-429.0 

-370.0 

-360.0 

-429.0 

-645.5 

-840.5 

4.4 Microstructure 

Figs.4.8 (a) to 4.8 (u) shows optical photomicrographs of SAE 8620 C-ring 

specimens at all heat treated conditions. The dark material is martensite, while the 

surrounding light-colored material is austenite. 

In all cases, the microstructure after 300°F tempering is not much different from 

the microstructure after 350°F tempering. Thus, changing the tempering temperature from 

300°F to 350°F had little effect on the measured values for distortion, retained austenite 

and residual stress. 

Figs. 4.9 (a) to 4.9 (1) are SEM photos of the Navy C-ring specimens carburized at 

the 1.0% carbon potential. For each specimen, two SEM photos are shown: one shows the 

microstructure of the case, the other shows the microstructure of the core area. The plate­

like martensite is more readily seen in the core microstructure. 
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(c) 1700/1.1/RT. RA-M: 20; RA-X: 22.5. (d) 1750/0.9/RT. RA-M: 20; RA-X: 21.4. 

Fig. 4.8 Photomicrographs of SAE 8620 C-ring specimens for all heat treatment 
conditions. The dark material is martensite, while the surrounding light-coloured material 
is austenite. (a) carburized at 1700°F for 6 hours at 0.9% carbon potential, quenched; (b) 
carburized at 1700T for 6 hours at 1.0% carbon potential, quenched; (c) carburized at 
1700°F for 6 hours at 1.1% carbon potential, quenched; (d) carburized at 1750°F for 4 
hours at 0.9% carbon potential, quenched. 
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(e) 1750/l.O/RT. RA-M: 25; RA-X: 28.6. (f) 1750/1.1/RT. RA-M: 30; RA-X: 33.5. 
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(g) 1700/0.9/300. RA-M: 5; RA-X: 4.0. (h) 1700/1.0/300. RA-M: 10; RA-X: 12.5. 

Fig. 4.8 Photomicrographs of SAE 8620 C-ring specimens for all heat treatment 
conditions. The dark material is martensite, while the surrounding light-coloured material 
is austenite. (e) carburized at 1750°F for 4 hours at 1.0% carbon potential, quenched; (f) 
carburized at 1750T for 4 hours at 1.1% carbon potential, quenched; (g) carburized at 
1700°F for 6 hours at 0.9% carbon potential, tempered at 300°F for 1 hour; (h) carburized 
at 1700°F for 6 hours at 1.0% carbon potential, tempered at 300°F for 1 hour. 



(i) 1700/1.1/300. RA-M: 15; RA-X: 20.1. 

_—-
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(k) 1750/1.0/300. RA-M: 20; RA-X: 25.0. 

(j) 1750/0.9/300. RA-M: 15; RA-X: 20.0. 
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(1) 1750/1.1/300. RA-M: 25; RA-X: 29.5. 

Fig. 4.8 Photomicrographs of SAE 8620 C-ring specimens for all heat treatment 
conditions. The dark material is martensite, while the surrounding light-coloured material 
is austenite. (i) carburized at 1700°F for 6 hours at 1.1% carbon potential, tempered at 
300°F for 1 hour; (j) carburized at 1750°F for 4 hours at 0.9% carbon potential, tempered 
at 300°F for 1 hour; (k) carburized at 1750°F for 4 hours at 1.0% carbon potential, 
tempered at 300°F for 1 hour; (1) carburized at 1750°F for 4 hours at 1.1% carbon 
potential, tempered at 300°F for 1 hour. 



(o) 1700/1.1/350. RA-M: 15; RA-X: 17.5. (p) 1750/0.9/350. RA-M: 15; RA-X: 18.5. 

Fig. 4.8 Photomicrographs of SAE 8620 C-ring specimens for all heat treatment 
conditions. The dark material is martensite, while the surrounding light-coloured material 
is austenite. (m) carburized at 1700°F for 6 hours at 0.9% carbon potential, tempered at 
350°F for 1 hour; (n) carburized at 1700°F for 6 hours at 1.0% carbon potential, tempered 
at 350°F for 1 hour; (o) carburized at 1700°F for 6 hours at 1.1% carbon potential, 
tempered at 350°F for 1 hour; (p) carburized at 1750°F for 4 hours at 0.9% carbon 
potential, tempered at 350°F for 1 hour. 
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(q) 1750/1.0/350. RA-M: 20; RA-X: 23.2. 

(s) 1750/1.2/RT. RA-M: 40; RA-X: 43.5. 

( r ) 1750/1.1/350. RA-M: 25; RA-X: 26.0. 

( t ) 1750/1.2/300. RA-M: 40; RA-X: 40.0. 
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(u) 1750/1.2/350. RA-M: 35; RA-X: 36.5. 

Fig. 4.8 Photomicrographs of SAE 8620 C-ring specimens for all heat treatment 
conditions. The dark material is martensite, while the surrounding light-coloured material 
is austenite. (q) carburized at 1750T for 4 hours at 1.0% carbon potential, tempered at 
350°F for 1 hour; (r) carburized at 1750°F for 4 hours at 1.1% carbon potential, tempered 
at 350°F for 1 hour; (s) carburized at 1750°F for 4 hours at 1.2% carbon potential, 
quenched; (t) carburized at 1750°F for 4 hours at 1.2% carbon potential, tempered at 
300°F for 1 hour; (u) carburized at 1750°F for 4 hours at 1.2% carbon potential, tempered 
at 350°F for 1 hour. 
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Fig. 4.9 SEM Micrographs of selected SAE 8620 C-ring specimens. All carburized at 
1.0% carbon potential, (a) / (b) case / core micrograph of the specimen carburized at 
1700°F for 6 hours, oil quenched; (c) / (d) case / core micrograph of the specimen 
carburized at 1700°F for 6 hours, oil quenched and tempered at 300°F for 1 hour. 



Fig. 4.9 SEM Micrographs of selected SAE 8620 C-ring specimens. All carburized at 
1.0% carbon potential, (e) / (f) case / core micrograph of the specimen carburized at 
1700°F for 6 hours, oil quenched and tempered at 350°F for 1 hour; (g) / (h) case / core 
micrograph of the specimen carburized at 1750°F for 4 hours, oil quenched. 
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Fig. 4.9 SEM Micrographs of selected SAE 8620 C-ring specimens. All carburized at 
1.0% carbon potential, (i) / (j) case / core micrograph of the specimen carburized at 
1750°F for 4 hours, oil quenched and tempered at 300°F for 1 hour; (k) / (1) case / core 
micrograph of the specimen carburized at 1750°F for 4 hours, oil quenched and tempered 
at 350°F for 1 hour. 
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CHAPTER 5 THE EFFECT OF RETAINED AUSTENITE ON ID, 
THICKNESS, CYLINDRICITY AND ROUNDNESS DISTORTION 
OF SAE 8620 STEEL 

In this chapter, the relationships between the heat treatment process parameters 

and the distortion parameters for ID, thickness, cylindricity and roundness are discussed. 

The optimum retained austenite and residual stress for the reduction of these four 

distortion parameters are detailed. 

The distortion values for ID, thickness, cylindricity and roundness of the C-ring 

samples are summarized in Tables 5.1, 5.2, 5.3 and 5.4 respectively. The relationship 

between the ID distortion and process cycle is shown in Figure 5.1. Figure 5.2 shows the 

thickness distortion vs. process cycle. Figure 5.3 shows the cylindricity distortion vs. 

process cycle and Figure 5.4 shows the roundness distortion vs. process cycle. 

From Figs 5.1, 5.2, 5.3 and 5.4, we can see that there is distortion as measured by 

these four parameters after carburizing and quenching / tempering. The ID, Fig. 5.1 and 

the thickness, Fig. 5.2, both increase. This is also due to the phase, and associated volume, 

change from austenite to martensite. From Figs 5.1, 5.2, 5.3 and 5.4, it can be seen that, in 

general, tempering reduces the distortion problem to some degree. Through relieving the 

internal stresses within the retained austenite, tempering helps eliminate the elastic 

deformation. 

From Fig. 5.1 we can see the optimum heat treatment condition to reduce the ID 

distortion is 1750/1.2/300, i.e. carburized at 1750°F for 4 hours at 1.2% carbon potential, 

oil quenched and then tempered at 300°F for 1 hour. In this situation, the retained 

austenite content is 36.5%, Table 4.2, and the residual stress is -866.3MPa, Table 4.2. For 

the thickness distortion, Fig. 5.2, the optimum heat treatment condition is 1750/1.1/350, 

86 



i.e. carburized at 1750°F for 4 hours at 1.1% carbon potential, oil quenched and then 

tempered at 350°F for 1 hour. The retained austenite is 26.0%, Table 4.2, and the residual 

stress is -840.5MPa, Table 4.2. For the cylindricity distortion, Fig. 5.3, and the roundness 

distortion, Fig. 5.4, the optimum heat treatment condition is 1700/0.9/300, i.e. carburized 

at 1700°F for 6 hours at 0.9% carbon potential, oil quenched and then tempered at 300°F 

for 1 hour. The retained austenite is 4.0%, Table 4.2, and the residual stress is -370.0MPa, 

Table 4.2. 

Figs. 5.5 and 5.6 are example plots for cylindricity and roundness, respectively. 

From Fig. 5.5 we can see that the deviation points (for cylindricity) for three inside cycles 

change their positions on quenching but then remain at the same location after tempering. 

As for the flatness distortion, the locations of largest deviation in the cylindricity 

measurements do not, in general, remain in the same location after tempering. From Fig. 

5.6 we can see that the behaviour for roundness is similar to that for cylindricity, in that in 

most cases the positions of highest deviation from roundness change their positions 

during tempering. 
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Table 5.1 ID Distortion values of Navy-C ring specimens 
induced by heat treatments. 

Cycle No. 

CI 

C2 

C3 

C4 

C5 

C6 

C7 

Carburizing Temperature(°F) 
/Carbon Potential (%) 

/Tempering Temperature (°F) 

1700/0.9/RT 
1700/0.9/300 
1700/0.9/350 
1700/1.0/RT 
1700/1.0/300 
1700/1.0/350 
1700/1.1/RT 
1700/1.1/300 
1700/1.1/350 
1750/0.9/RT 
1750/0.9/300 
1750/0.9/350 
1750/1.0/RT 
1750/1.0/300 
1750/1.0/350 
1750/1.1/RT 
1750/1.1/300 
1750/1.1/350 
1750/1.2/RT 
1750/1.2/300 
1750/1.2/350 

ID Distortion 

ID-1 

0.0701 
0.0862 
0.0793 
0.2156 
0.2210 
0.1416 
0.1502 
0.0934 
0.1316 
0.1221 
0.0852 
0.1071 
0.1145 
0.1123 
0.1039 
0.0536 
0.0697 
0.1053 
0.1715 
0.0846 
0.1781 

ID-2 

-0.0206 
-0.0794 
-0.0152 
0.0984 
0.1041 
0.0104 

-0.0256 
-0.0629 
-0.0379 
0.0133 

-0.0462 
0.0177 

-0.0051 
-0.0564 
-0.0525 
-0.1175 
-0.0934 
-0.0298 
0.0095 

-0.0804 
0.0174 

ID-3 

0.0620 
0.0535 
0.0670 
0.1452 
0.1556 
0.0784 
0.0554 

-0.0111 
0.0199 
0.1059 
0.0083 
0.1218 
0.0101 

-0.0003 
0.0098 

-0.0694 
-0.0344 
0.0554 
0.0888 

-0.0136 
0.0945 

Average 

0.0372 
0.0201 
0.0437 
0.1531 
0.1602 
0.0768 
0.0600 
0.0065 
0.0379 
0.0804 
0.0158 
0.0822 
0.0398 
0.0185 
0.0204 

-0.0444 
-0.0194 
0.0436 
0.0899 

-0.0031 
0.0967 
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Table 5.2 Thickness Distortion values of Navy-C ring specimens 
induced by heat treatments. 

Cycle No. 

CI 

C2 

C3 

C4 

C5 

C6 

C7 

Carburizing Temperature(°F) 
/Carbon Potential (%) 

/Tempering Temperature (°F) 

1700/0.9/RT 
1700/0.9/300 
1700/0.9/350 
1700/1.0/RT 
1700/1.0/300 
1700/1.0/350 
1700/1.1/RT 
1700/1.1/300 
1700/1.1/350 
1750/0.9/RT 
1750/0.9/300 
1750/0.9/350 
1750/1.0/RT 
1750/1.0/300 
1750/1.0/350 
1750/1.1/RT 
1750/1.1/300 
1750/1.1/350 
1750/1.2/RT 
1750/1.2/300 
1750/1.2/350 

Thickness Distortion 

Thick-1 

0.2117 
0.1517 
0.2049 
0.3353 
0.1100 
0.1630 
0.1931 
0.1116 
0.1965 
0.1861 
0.1688 
0.1988 
0.3878 
0.2390 
0.1856 
0.3065 
0.2410 
0.1271 
0.1607 
0.1367 
0.1776 

Thick-2 

0.1897 
0.1950 
0.1813 
0.2755 
0.1850 
0.2011 
0.2135 
0.1870 
0.2217 
0.2882 
0.2656 
0.2354 
0.4258 
0.2383 
0.2393 
0.3202 
0.2666 
0.1902 
0.2671 
0.2423 
0.1962 

Thick-3 

0.1955 
0.1180 
0.1908 
0.1784 
0.1823 
0.1362 
0.2140 
0.2205 
0.2177 
0.2569 
0.2249 
0.1534 
0.3690 
0.1602 
0.1691 
0.2731 
0.2181 
0.0558 
0.2404 
0.1861 
0.1270 

Average 

0.1990 
0.1549 
0.1923 
0.2631 
0.1591 
0.1668 
0.2069 
0.1730 
0.2120 
0.2437 
0.2198 
0.1959 
0.3942 
0.2125 
0.1980 
0.2999 
0.2419 
0.1244 
0.2227 
0.1884 
0.1669 
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Table 5.3 Cylindricity Distortion values of Navy-C ring specimens 
induced by heat treatments. 

Cycle No. 

CI 

C2 

C3 

C4 

C5 

C6 

C7 

Carburizing Temperature(°F) 
/Carbon Potential (%) 

/Tempering Temperature (°F) 

1700/0.9/RT 
1700/0.9/300 
1700/0.9/350 
1700/1.0/RT 
1700/1.0/300 
1700/1.0/350 
1700/1.1/RT 
1700/1.1/300 
1700/1.1/350 
1750/0.9/RT 
1750/0.9/300 
1750/0.9/350 
1750/1.0/RT 
1750/1.0/300 
1750/1.0/350 
1750/1.1/RT 
1750/1.1/300 
1750/1.1/350 
1750/1.2/RT 
1750/1.2/300 
1750/1.2/350 

Cylindricity 

0.0600 
0.0030 
0.0564 
0.0593 
0.0273 
0.0594 
0.0331 
0.0313 
0.0287 
0.0536 
0.0526 
0.0184 
0.0975 
0.0963 
0.0342 
0.0246 
0.0212 
0.0233 
0.0348 
0.0229 
0.0352 
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Table 5.4 Roundness Distortion values of Navy-C ring specimens 
induced by heat treatments. 

Cycle No. 

CI 

C2 

C3 

C4 

C5 

C6 

C7 

Carburizing Temperature(°F) 
/Carbon Potential (%) 

/Tempering Temperature (°F) 

1700/0.9/RT 
1700/0.9/300 
1700/0.9/350 
1700/1.0/RT 
1700/1.0/300 
1700/1.0/350 
1700/1.1/RT 
1700/1.1/300 
1700/1.1/350 
1750/0.9/RT 
1750/0.9/300 
1750/0.9/350 
1750/1.0/RT 
1750/1.0/300 
1750/1.0/350 
1750/1.1/RT 
1750/1.1/300 
1750/1.1/350 
1750/1.2/RT 
1750/1.2/300 
1750/1.2/350 

Roundness 

RD-1 

-0.0003 
0.0080 
0.0000 

-0.0007 
0.0009 

-0.0014 
0.0141 
0.0121 
0.0028 

-0.0047 
-0.0046 
0.0012 
0.0501 
0.0183 

-0.0020 
0.0128 

-0.0015 
0.0126 

-0.0293 
0.0103 

-0.0309 

RD-2 

0.0264 
0.0115 
0.0258 
0.0102 
0.0088 
0.0078 
0.0172 
0.0161 
0.0162 
0.0101 
0.0117 
0.0083 
0.0278 
0.0271 
0.0050 
0.0299 
0.0161 
0.0305 

-0.0007 
0.0132 

-0.0009 

RD-3 

0.0205 
-0.0199 
0.0196 

-0.0184 
-0.0043 
-0.0176 
0.0093 
0.0077 
0.0039 
0.0033 
0.0034 

-0.0036 
0.0513 
0.0217 

-0.0052 
0.0159 
0.0016 
0.0157 

-0.0027 
0.0040 

-0.0019 

Average 

0.0155 
-0.0001 
0.0151 

-0.0030 
0.0018 

-0.0037 
0.0135 
0.0120 
0.0076 
0.0029 
0.0035 
0.0020 
0.0431 
0.0224 

-0.0007 
0.0195 
0.0054 
0.0196 

-0.0109 
0.0092 

-0.0112 
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CHAPTER 6 HARDNESS PROFILES AND CARBON CONTENT 

6.1 Hardness Profiles 

Table 6.1, Figure 6.1 and Figure 6.2 (a) to (g) show the measured hardness profile 

results from the surface to the core in all of the as-quenched samples, i.e. not tempered. 

Figs 6.2 (a) to (g) are the individual profiles. From Figs 6.1 and 6.2(a) to (g) we can see 

that all the quenched C-ring samples have very similar hardness profiles. The peak 

hardness occurs at a distance from the surface of 0 ~ 0.01 inches. When the first 

indentation was placed at the harder martensite, the hardness was highest at the surface, 

as in the following specimens: 1700/0.9/RT, 1700/1.1/RT, 1750/0.9/RT, 1750/1.0/RT and 

1750/1.1/RT. When the first indentation was placed at the softer retained austenite, or at 

the interface of the martensite and the retained austenite, the surface hardness was not the 

highest hardness, as in the following specimens: 1700/1.0/RT and 1750/1.2/RT. With 

increasing distance from the surface the amount of both retained austenite and carbon 

becomes smaller. Thus, the measured hardness reaches a maximum at a distance of about 

0 to 0.01 inches from the surface and then decreases with increasing distance from the 

surface. 

The effective case depths to HRC 50 of all quenched specimens are given in Table 

6.2. The effective case depth varied between 0.051 to 0.060 inches. For the same carbon 

potential, the effective case depth increased slightly with increasing carburizing 

temperature. 

Table 6.3 and Figure 6.3 show the surface hardness values for each heat treatment 

condition. It can be seen that tempering the as-quenched specimens decreases the 
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hardness at the surface. However, changing the tempering temperature from 300°F to 

350°F has little effect on surface hardness. 

6.2 Carbon Contents and Other Elemental Analysis as determined by OES 

The elemental analyses at the surface as determined by OES are given in Table 

6.4 for selected samples. 

It is readily seen that the carbon content at the surface increases with increasing 

carburizing temperature and carbon potential. Since the amount of retained austenite also 

increases with the increasing carburizing temperature and carbon potential, it appears that, 

as expected, the amount of retained austenite increases with increasing carbon content. 

Based on the data in Tables 6.2 and 6.4, Figure 6.4 has been constructed, showing 

the carbon content at the surface vs. effective case depth to HRC 50 for heat treatment 

processes, 1700/0.9/RT, 1700/1.0/RT and 1700/1.1/RT. From Fig. 6.4 we can see that 

there is no systematic relationship between the carbon content at the surface and the 

effective case depth to HRC 50. 

Based on the data in Tables 6.3 and 6.4, Figure 6.5 has been constructed to show 

the relationship between carbon content at the surface and hardness at the surface. For the 

1700F/6h carburized condition we can see that hardness at the surface increases with 

increasing carbon content at the surface. However, for the 1750F/4h carburized condition, 

the hardness at the surface decreases with increasing carbon content at the surface. It is 

well known that increasing the carbon content produces a harder martensite but it also 

increases the amount of the softer retained austenite. The hardness at surface will be a 

balance between that of the harder martensite and the softer retained austenite. For the 

1700F/6h carburized condition, the effect of the harder martensite that is produced, more 

than compensates for the softer retained austenite. Thus, the hardness increases with the 
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increasing carbon content. For the 1750/4h carburized condition, the larger amount of the 

softer retained austenite more than offsets the effects of the harder martensite, and the 

hardness decreases with increasing carbon content. 

The relationship between amount of retained austenite and the (surface) carbon 

content is shown in Figure 6.6, which is based on the data in Tables 4.2 and 6.4. We can 

readily see that the amount of retained austenite increases with increasing (surface) 

carbon content for both carburizing temperatures. 

Table 6.1 Hardness profile of all quenched C-ring specimens (not tempered) 

Distance from 
surface (inch) 

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

0.035 

0.040 

0.045 

0.050 

0.055 

0.060 

0.065 

0.070 

0.075 

0.080 

0.085 

0.090 

0.095 

0.100 

(700/0.9/RT 1700/1.0/RT 1700/1.1/RT 1750/0.9/RT 1750/1.0/RT 1750/1.1/RT 1750/1.2/RT 
Hardness (HRC) (converted from micro) 

63.5 

63.0 

62.5 

61.0 

60.0 

59.5 

59.0 

56.0 

54.0 

53.0 

52.0 

49.0 

47.5 

47.0 

47.0 

46.5 

46.0 

45.0 

45.5 

43.5 

42.0 

65.2 

65.4 

65.2 

63.7 

61.6 

60.2 

58.7 

56.6 

54.1 

52.1 

50.2 

49.4 

49.1 

48.6 

48.6 

48.2 

47.8 

46.5 

45.2 

43.2 

41.0 

65.0 

64.0 

63.0 

63.0 

62.0 

61.0 

61.0 

59.0 

56.0 

54.0 

52.0 

50.0 

49.0 

48.0 

47.0 

47.0 

47.0 

46.0 

45.0 

44.0 

42.0 

65.5 

65.0 

65.0 

65.0 

64.0 

63.0 

62.0 

60.0 

57.0 

55.0 

52.0 

51.0 

50.0 

49.0 

48.0 

46.0 

46.0 

45.0 

45.0 

45.5 

43.0 

66.0 

65.8 

65.6 

65.0 

64.1 

62.4 

60.5 

57.9 

55.2 

53.4 

52.3 

49.9 

49.0 

48.2 

48.0 

47.2 

47.9 

47.6 

47.4 

47.8 

47.2 

65.5 

65.0 

65.5 

62.7 

61.9 

62.8 

61.6 

58.9 

55.7 

53.7 

51.5 

50.1 

48.6 

47.8 

47.8 

47.3 

47.3 

48.0 

47.1 

46.9 

47.1 

65.2 

65.6 

65.2 

65.3 

64.1 

63.8 

62.5 

59.3 

58.0 

55.3 

52.9 

51.5 

50.0 

49.9 

49.3 

48.2 

48.0 

47.9 

46.8 

45.2 

44.3 
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Table 6.2 Heat treatment process vs. effective case depth to HRC 50 

Cycle No. 

CI 

C2 

C3 

C4 

C5 

C6 

CI 

Carburizing Temp. (°F) 
/Carbon Potential (%) 
/Tempering Temp. (°F) 

1700/0.9/RT 

1700/1.0/RT 

1700/1.1/RT 

1750/0.9/RT 

1750/1.0/RT 

1750/1.1/RT 

1750/1.2/RT 

Effective Case Depth to HRC 50 
(inch) 

0.0533 

0.0513 

0.0550 

0.0600 

0.0548 

0.0554 

0.0600 

Table 6.3 The surface hardness (HRC) of C-ring specimens 
at all heat treatment conditions. 

Cycle 
CI 
C2 
C3 
C4 
C5 
C6 
C7 

Quenched 
64.0 
65.0 
66.0 
65.0 
65.0 
64.0 
64.0 

300 °F 
63.0 
63.5 
64.0 
63.0 
63.0 
63.0 
63.0 

350 °F 
60.5 
62.0 
62.0 
61.5 
61.5 
61.5 
61.0 
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Fig. 6.1 Hardness profile of all quenched C-ring specimens. 
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Fig.6.2 Hardness profiles of C-ring sample, (a) Carburized at 1700°F for 6 hours at 0.9% 
carbon potential and then oil quenched, (b) Carburized at 1700°F for 6 hours at 
1.0% carbon potential and then oil quenched. 
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Fig.6.2 Hardness profiles of C-ring sample, (c) Carburized at 1700°F for 6 hours at 
1.1% carbon potential and then oil quenched, (d) Carburized at 1750°F for 4 hours 
at 0.9% carbon potential and then oil quenched. 
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Fig.6.2 Hardness profiles of C-ring sample, (e) Carburized at 1750°F for 4 hours at 1.0% 
carbon potential and then oil quenched, (f) Carburized at 1750°F for 4 hours at 
1.1% carbon potential and then oil quenched. 
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Fig.6.2 Hardness profiles of C-ring sample, (g) carburized at 1750°F for 4 hours at 
1.2% carbon potential and then oil quenched. 
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Fig. 6.3 Surface hardness of C-ring samples vs. heat treatment process cycle. 
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Table 6.4 Carbon contents at the surface of C-ring samples after heat treatment. 

Element 

c 
Mn 

P 

S 

Si 

Cr 

Ni 

Mo 

Cu 

Al 

V 

Cb 

Ti 

Zr 

Co 

Sn 

B 

Pb 

Ca 

W 

Carburizing Temperature(°F) / Carbon Potential (%) /Tempering Temperature (°F) 

1700/0.9/RT 

0.6700 
0.7900 

0.0140 

0.0260 

0.2100 

0.4700 

0.5100 

0.1800 

0.2000 

0.0250 

0.0040 

ND 

0.0030 

ND 

0.0100 

0.0100 

0.0001 

ND 

0.0014 

ND 

1700/1.0/RT 

0.8200 
0.7300 

0.0180 

0.0210 

0.2000 

0.4300 

0.5000 

0.1800 

0.2000 

0.0250 

0.0030 

ND 

0.0030 

ND 

0.0100 

0.0100 

0.0001 

ND 

0.0011 

ND 

1700/1.1/RT 

0.8600 
0.6900 

0.0160 

0.0200 

0.2000 

0.3900 

0.5000 

0.1800 

0.2000 

0.0250 

0.0030 

ND 

0.0030 

ND 

0.0100 

0.0100 

0.0001 

ND 

0.0012 

ND 

1750/0.9/RT 

0.7700 
0.7000 

0.0150 

0.0200 

0.2000 

0.4000 

0.5000 

0.1800 

0.2000 

0.0250 

0.0030 

ND 

0.0030 

ND 

0.0100 

0.0100 

0.0001 

ND 

0.0014 

ND 

1750/1.0/300 

0.8400 
0.8300 

0.0140 

0.0250 

0.2100 

0.4800 

0.5000 

0.1800 

0.2000 

0.0250 

0.0040 

ND 

0.0030 

ND 

0.0100 

0.0100 

0.0001 

ND 

0.0011 

ND 

1750/1.1/300 

0.8700 
0.8400 

0.0150 

0.0280 

0.2200 

0.4900 

0.5000 

0.1800 

0.2100 

0.0250 

0.0040 

ND 

0.0030 

ND 

0.0100 

0.0100 

0.0001 

ND 

0.0012 

ND 

1750/1.2/350 

1,0000 
0.7800 

0.0160 

0.0230 

0.2100 

0.4500 

0.5000 

0.1800 

0.2000 

0.0250 

0.0040 

ND 

0.0030 

ND 

0.0100 

0.0100 

0.0001 
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 
FOR FUTURE WORK 

7.1 Conclusions 

This study has examined the effects of retained austenite, residual stress and other 

metallurgical parameters on the distortion of a carburized SAE 8620 steel. The 

dimensional changes of specially designed Navy C-ring specimens were investigated after 

heat treatment at a series of 21 different heat treatment conditions. 

Based on the distortion measurements for 3 key parameters, namely, OD (outside 

diameter), gap width and flatness, the main conclusions are as follows: 

1. The amount of retained austenite and the residual stress increase with increasing 

carburizing temperature and carbon potential. For heat treatment process cycles CI, 

C2, C3, i.e. specimens that were carburized at 1700F/6h, both the amount of retained 

austenite and the residual stress increase with increasing carbon potential from 0.9% 

to 1.1%. The same behaviour was found for heat treatment process cycles C4, C5, C6 

and C7, i.e. specimens that were carburized at 1750F/4h. The amount of retained 

austenite increases with increasing carbon content. For the same carbon potential, the 

amount of retained austenite and level of residual stress at the 1750°F carburizing 

temperature are higher than for the 1700°F carburizing temperature. This observation 

reflects the effect of austenitizing temperature on the amount of retained austenite 

and the residual stress level. 

2. The amount of retained austenite and the level of residual stress both decrease with 

increasing tempering temperature from 300 to 350F. However, the changes are not 

large. 
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Distortion is influenced both by the amount of retained austenite and the magnitude 

of the residual stress. After quenching, the distortion as measured by changes in gap 

width and flatness, becomes more severe with increasing levels of retained austenite / 

residual stress. A combination of 8.5% austenite and -429.0MPa residual stress, 

produces the lowest values for distortion. The distortion increases with the increasing 

amount of retained austenite and level of residual stress, reaching a maximum for the 

sample with 43.5% retained austenite and -900.5MPa residual stress. The OD 

distortion shows similar, but not identical behaviour to the gap width and flatness 

distortion. 

After tempering, the relationship between the retained austenite / residual stress 

levels and the distortion of the OD, gap width and flatness is not as well defined as 

for the quenched specimens. The lowest OD distortion occurs for the specimen 

1750/1.1/300 (carburized at 1750°F for 4 hours at 1.1% carbon potential, oil 

quenched and then quenched at 300°F for 1 hour), which contains 29.5% retained 

austenite and a -888.0MPa residual stress. For the gap width distortion the lowest 

distortion is for the 1700/0.9/300 specimen (carburized at 1700°F for 6 hours at 0.9% 

carbon potential, oil quenched and then tempered at 300°F for 1 hour), with only 

4.0% retained austenite and a -370.0MPa residual stress. For the flatness distortion, 

the lowest distortion is for the 1750/1.1/350 specimen (carburized at 1750°F for 4 

hours at 1.1% carbon potential, oil quenched and tempered at 350°F for 1 hour), with 

26.0% retained austenite and a -840.5MPa residual stress. Therefore, it is necessary 

to know which distortion parameter(s) is the most important in the actual application 

so as to design the proper heat treatment process to produce the desired retained 

austenite and residual stress levels. 



Based on the average distortion data (OD, ID & Flatness) for the tempered specimens, 

which is the condition in which this steel is typically used, the optimum amount of 

retained austenite was about 25% (25% using optical metallographic technique; 26% 

using X-ray diffraction technique). The heat treatment condition was 1750/1.1/350 

(carburized at 1750°F for 4 hours at 1.1% carbon potential, oil quenched and then 

tempered at 350°F for 1 hour) where the residual stress value was -840.5 MPa. 

However, as with conclusion 4, it should be emphasised that in any practical 

industrial application, there would be a need to consider the type of distortion that we 

were attempting to minimize, size (OD, ID, Thickness or Gap Width) or shape 

(flatness, roundness or cylindricity). The "optimum" retained austenite content of 

25% is based on minimizing the average distortion, as measured by a combination of 

size and shape distortion parameters, for the limited number (21) of heat treatment 

process cycles examined in this study. 

Quenched C-ring specimens all have very similar hardness profiles: the peak 

hardness occurs at a distance from the surface of 0 ~ 0.01 inches. With increasing 

distance from the surface, the hardness decreases, reflecting the balance between the 

harder martensite and the softer retained austenite. The effective case depths to HRC 

50 are in the range of 0.05 to 0.06 inches. After tempering, the hardness at the surface 

decreases. However, changing the tempering temperature from 300°F to 350°F has 

little effect on hardness. 

The carbon content at the surface increases with increasing carburizing temperature 

and carbon potential. Since the amount of retained austenite also increases with the 

increasing carburizing temperature and carbon potential, it appears that the amount of 

retained austenite increases with increasing carbon content at the surface. 
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8. In all cases, the microstructure after 300°F tempering is not obviously different from 

the microstructure after 350°F tempering. Thus, changing the tempering temperature 

from 300°F to 350°F has a little effect on the values of distortion, retained austenite 

and residual stress. On average, 350F tempering produces a 1.5 to 2.5 HRC reduction 

in hardness compared to 300F tempering. 

Based on the distortion of ID (inside diameter), thickness, roundness and 

cylindricity the main results are as the follows: 

1. After carburizing and quenching / tempering, there is distortion of all four parameters. 

The ID and thickness increase because the transformation of the retained austenite to 

martensite is associated with a volume expansion. Generally, tempering reduces the 

level of distortion of ID, thickness, cylindricity and roundness, but to a lesser degree 

than the distortion of OD, gap width and flatness. 

2. The optimum heat treatment condition for reduction of ID distortion is 1750/1.2/300, 

i.e. carburized at 1750°F for 4 hours at 1.2% carbon potential, oil quenched and then 

tempered at 300°F for 1 hour. For this heat treatment condition, the amount of 

retained austenite is 36.5%, and the residual stress is -866.3MPa. For the thickness 

distortion, the optimum heat treatment condition to reduce distortion is 1750/1.1/350, 

i.e. carburized at 1750°F for 4 hours at 1.1% carbon potential, oil quenched and then 

tempered at 350°F for 1 hour. The amount of retained austenite is 26.0%, and the 

residual stress is -840.5MPa. For both the cylindricity and roundness distortions, the 

optimum heat treatment condition is 1700/0.9/300, i.e. carburized at 1700°F for 6 

hours at 0.9% carbon potential, oil quenched and then tempered at 300°F for 1 hour. 

The amount of retained austenite is 4.0%, and the residual stress is -370.0MPa. 

Again, it must be emphasised that these "optimum" heat treatment conditions are 

110 



defined based on both minimizing the distortion for an individual distortion 

parameter and the limited number of heat treatment process cycles examined. 

7.2 Recommendations For Future Work 

1. In this study the amount of retained austenite and the residual stress were only 

measured at the specimen surface. The distribution of the retained austenite and the 

residual stress through the thickness should be measured. This will give greater 

insights into the changes in the various distortion parameters. 

2. In this study the quenching position of all specimens was horizontal. In future work, 

different quenching positions such as vertical-gap down, vertical-gap up and vertical 

-gap side should be investigated. The different start positions for quenching in the 

nonuniform-wall thickness specimens will lead to different cooling rates in different 

directions, which will influence the severity and direction of distortion. 

3. The Navy-C ring specimen can provide information on two types of distortion 

parameters, namely, size distortion and shape distortion. In the production of 

automotive components with varying geometries, these two types of distortion 

parameters (size and shape) have varying influences on the final distortion of the 

component due to heat treatment. A factorial design series of experiments should be 

carried out to investigate the effect of various process and metallurgical parameters 

on particular size, or shape, distortion parameters. 

4. Use a Finite Element Analysis (FEA) technique to simulate the microstructural 

distribution from the surface to the core. Based on the microstructural distribution, 

FEA can also be used to predict the hardness and residual stress distributions from 

the surface to the core. 
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APPENDIX 

EXAMPLES OF THE CALCULATION OF DISTORTION 
USING DATA FROM CMM 

The calculation processes for distortion are given in this Appendix. The original data 

were taken from the Navy C-ring Specimen 3D Measurement Report (Data File) of the 

PRISMO Coordinate Measuring Machine (CMM). 

The distortion (%) can be determined using the following methods. 

1. Distortion due to carburizing and quenching is equal to: 
[(actual dimension after carburizing and quenching - as-received actual dimension) 
x 100%] / (as-received actual dimension) 

2. Distortion due to tempering is equal to: 
[(actual dimension after tempering -actual dimension after carburizing and 
quenching) x 100%] / (actual dimension after carburizing) 

3. Distortion due to carburizing and tempering is equal to: 
[(actual dimension after tempering - as-received actual dimension) x 100%] / (as-
received actual dimension) 

For flatness, cylindricity and roundness, the distortion was also evaluated using an 
absolute value and the following equations. 

A. Distortion due to carburizing is equal to: 
[(actual dimension after carburizing - as-received actual dimension)] 

B. Distortion due to tempering is equal to: 
[(actual dimension after tempering -actual dimension after carburizing)] 

C. Distortion due to carburizing and tempering is equal to: 

[(actual dimension after tempering - as-received actual dimension)] 

The following three Figures (Figure A.l, A.2 & A.3) show distortion profiles of flatness, 

cylindricity & roundness of three Navy C-ring specimens carburized at 1750°F for 4 

hours at 1.1% carbon potential followed by quenching and tempering at each of two 
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tempering temperatures (300°F and 350°F) for 1 hour. Tables A.l, A.2 and A.3 show 

distortion calculations for these three specimens. 

Figure A.l (a) Flatness profile of specimen 1750/1.1/RT 
before and after heat treatment. 
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Figure A.l (b) Cylindricity and roundness profiles of specimen 1750/1.1/RT 
before and after heat treatment. 
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Table A.l Distortion calculations for specimen 1750/1.1/RT 

Condition 

as 
received 

carburized 

as 
received 

carburized 

as 
received 

carburized 

Actual Nominal Upper 
Tol. 

Lower 
Tol. Deviation 

Flatness_N umbered 
Side 

0.0111 0.0000 0.0000 0.0111 
Flatness Numbered 
Side 

0.025 0.0000 0.0000 0.025 

Cylindricity_OD 0.0131 

0.0131 0.0000 0.0000 0.0131 

Cylindricity_OD 0.0242 

0.0242 0.0000 0.0000 0.0242 

Diameter_OD 

50.7451 50.7500 0.1000 -0.1000 -0.0049 

Diameter_OD 

50.7963 50.7500 0.1000 -0.1000 0.0463 

Distortion due 
to carburizing 

-

125.2% 

-

0.0111 

-

0.1009% 

RoundnessJD-1 

as 
received 

carburized 

Roundness_ID-l 0.1447 

0.1447 0.0000 0.0000 0.1447 

Roundness_ID-l 0.1490 

0.1490 0.0000 0.0000 0.1490 

-

0.0043 

Roundness_ID-2 

as 
received 

carburized 

Roundness_ID-2 0.1187 

0.1187 0.0000 0.0000 0.1187 

Roiundness_ID-2 0.1299 

0.1299 0.0000 0.0000 0.1299 

-

0.0112 

Roundness_ID-3 

as 
received 

carburized 

Roundness_ID-3 0.3232 

0.3232 0.0000 0.0000 0.3232 

Roundness_ID-3 0.3181 

0.3181 0.0000 0.0000 0.3181 

-

-0.0051 
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Table A.l Distortion calculations for specimen 1750/1.1/RT (Continued) 

Condition Actual Nominal Upper 
Tol. 

Lower 
Tol. 

Deviation Distortion due 
to carburizing 

Diameter_ID-l 

as 
received 

carburized 

Diameter_ID-l 

31.4739 

Diameter_ID-l 

31.4847 

31.6000 

31.6000 

0.1500 

0.1500 

-0.1500 

-0.1500 

-0.1261 

-0.1153 

-

0.0343% 

Diameter_ID-2 

as 
received 

carburized 

Diameter_ID-2 

31.6053 

Diameter_ID-2 

31.5920 

31.6000 

31.6000 

0.1500 

0.1500 

-0.1500 

-0.1500 

0.0053 

-0.0080 

-

-0.0421% 

Diameter_ID-3 

as 
received 

carburized 

Diameter_ID-3 

31.3501 

Diameter_ID-3 

31.3622 

31.6000 

31.6000 

0.1500 

0.1500 

-0.1500 

-0.1500 

-0.0999 

-0.2499 

-0.0878 

-0.2378 

-

0.0386% 

Thickness_l 
as 
received 

carburized 

Thickness_l 

18.4851 

Thickness_l 

18.5378 

18.8000 

18.8000 

0.1000 

0.1000 

-0.1000 

-0.1000 

-0.2149 

-0.3149 

-0.1622 

-0.2622 

-

0.2851% 

Thickness_2 

as 
received 

carburized 

Thickness_2 

19.0449 

Thickness_2 

19.0937 

18.8000 

18.8000 

0.1000 

0.1000 

-0.1000 

-0.1000 

0.1449 

0.2449 

0.1937 

0.2937 

-

0.2562% 

Thickness_3 

as 
received 

carburized 

Thickness_3 

19.1833 

Thickness_3 

19.2167 

18.8000 

18.8000 

0.1000 

0.1000 

-0.1000 

-0.1000 

0.2833 

0.3833 

0.3167 

0.4167 

-

0.1741% 

Dis_Gap_Top 
as 
received 

carburized 

Dis_Gap_Top 

6.9438 

Dis_Gap_Top 

7.1596 

7.0000 

7.0000 

0.1000 

0.1000 

-0.1000 

-0.1000 

-0.0562 

0.1596 

-

3.11% 

Dis_Gap_Bottom 
as 
received 

carburized 

Dis_Gap_Bottom 

6.9342 

Dis_Gap_Bottom 

7.1486 

7.0000 

7.0000 

0.1000 

0.1000 

-0.1000 

-0.1000 

-0.0658 

0.1486 

-

3.09% 
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Figure A.2 (a) Flatness profile of specimen 1750/1.1/300 
before and after heat treatment. 
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Figure A.2 (b) Cylindricity profile of specimen 1750/1.1/300 
before and after heat treatment. 
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Figure A.2 (c) Roundness profile of specimen 1750/1.1/300 
before and after heat treatment. 
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Table A.2 Distortion calculations for specimen 1750/1.1/300 

Condition 

as 
received 

carburized 

tempered 

as 
received 

carburized 

tempered 

as 
received 

carburized 

tempered 

Actual Nominal 
Upper 

Tol. 
Lower 

Tol. Deviation 

Flatness_ 
Numbered 0.0111 
Side 

0.0111 0.0000 0.0000 0.0111 

Flatness_ 
Numbered 0.025 
Side 

0.025 0.0000 0.0000 0.025 

Flatness_ 
Numbered 0.0113 
Side 

0.0113 0.0000 0.0000 0.0113 

Cylindricit 
y_OD 

0.0177 0.0000 0.0000 0.0177 

Cylindricit 
y_OD 

0.0412 0.0000 0.0000 0.0412 

C y " ^ 0.0389 
y_OD 

0.0389 0.0000 0.0000 0.0389 

Diameter_ 
OD 

50.7451 50.7500 0.1000 -0.1000 -0.0049 

Diameter_ 
OD 

50.7963 50.7500 0.1000 -0.1000 0.0463 

Diameter_ 
OD 

50.7504 50.7500 0.1000 -0.1000 0.0004 

Distortion 
due to 

carburizing 

-

125.2% 

-

-

0.0235 

-

-

0.101% 

-

Distortion 
due to 

tempering 

-

-

-54.8% 

-

-

-0.0023 

-

-

-0.090% 

Distortion 
due to 

carburizing 
& 

tempering 

-

-

1.8% 

-

-

0.0212 

-

-

0.010% 
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Table A.2 Distortion calculations for specimen 1750/1.1/300 (Continued) 

Condition Actual Nominal Upper 
Tol. 

Lower 
Tol. 

Deviation 
Distortion 

due to 
carburizing 

Distortion 
due to 

tempering 

Distortion 
due to 

carburizing 
& 

tempering 
Roundness_ID-1 

as 
received 

carburized 

tempered 

R ™ d n e s s 0.0706 

0.0706 0.0000 0.0000 0.0706 

Roundness _ __,_. 
Tr) 1 U.O/to 

0.0765 0.0000 0.0000 0.0765 

Roundness . rt,_. 
ID-1 0 0 6 9 1 

0.0691 0.0000 0.0000 0.0691 

-

0.0059 

-

-

-

-0.0074 

-

-

-0.0015 

Roundness_ID-2 

as 
received 

carburized 

tempered 

Roundness 
_ID-2 

0.0920 0.0000 0.0000 0.0920 

Roundness 
_ID-2 

0.1127 0.0000 0.0000 0.1127 

Roundness . . . . . 
_ID-2 ° 1 0 8 1 

0.1081 0.0000 0.0000 0.1081 

-

0.0207 

-

-

-

-0.0046 

-

-

0.0161 

Roundness_ID-3 

as 
received 

carburized 

tempered 

Roundness Q ^ 

0.1084 0.0000 0.0000 0.1084 

Roundness „ . 1 „ , 
JD-3 0 l l % 

0.H96 0.0000 0.0000 0.H96 

Roundness n 11 on 
_ID-3 U.11UU 

0.1100 0.0000 0.0000 0.1100 

-

0.0112 

-

-

-

-0.0096 

-

-

0.0016 
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Table A.2 Distortion calculations for specimen 1750/1.1/300 (Continued) 

Condition Actual Nominal Upper 
Tol. 

Lower 
Tol. Deviation 

Distortion 
due to 

carburizing 

Distortion 
due to 

tempering 

Distortion 
due to 

carburizing 
& 

tempering 
Diameter_ID-l 

as 
received 

carburized 

tempered 

Diameter 
ID-1 

31.5423 

Diameter_ 
ID-1 

31.5592 

Diameter_ 
ID-1 

31.5643 

31.6000 

31.6000 

31.6000 

0.1500 

0.1500 

0.1500 

-0.1500 

-0.1500 

-0.1500 

-0.0577 

-0.0408 

-0.0357 

-

0.0536% 

_ 

-

_ 

0.0162% 

-

0.0697% 

Diameter_ID-2 

as 
received 

carburized 

tempered 

Diameter 
ID-2 

31.5688 

Diameter_ 
ID-2 

31.5317 

Diameter_ 
ID-2 

31.5393 

31.6000 

31.6000 

31.6000 

0.1500 

0.1500 

0.1500 

-0.1500 

-0.1500 

-0.1500 

-0.0312 

-0.0683 

-0.0607 

-

-0.1175% 

_ 

-

_ 

0.0241% 

-

_ 

-0.0934% 

Diameter_ID-3 

as 
received 

carburized 

tempered 

Diameter_ 
ID-3 

31.4290 

Diameter_ 
ID-3 

31.4072 

Diameter_ 
ID-3 

31.4182 

31.6000 

31.6000 

31.6000 

0.1500 

0.1500 

0.1500 

-0.1500 

-0.1500 

-0.1500 

-0.0210 

-0.1710 

-0.0428 

-0.1928 

-0.0318 

-0.1818 

-0.0694% 

0.0350% -0.0344% 
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Table A.2 Distortion calculations for specimen 1750/1.1/300 (Continued) 

Condition Actual Nominal Upper 
Tol. 

Lower 
Tol. Deviation 

Distortion 
due to 

carburizing 

Distortion 
due to 

tempering 

Distortion 
due to 

carburizing 
& 

tempering 
Thickness_l 

as 
received 

carburized 

tempered 

Thickness Q ^ 

18.9244 18.8000 0.1000 -0.1000 0.1244 

Thickness QQm 

18.9824 18.8000 0.1000 -0.1000 0.1824 

Thickness Q(yjQ0 

18.9700 18.8000 0.1000 -0.1000 0.1700 

-

0.3065% 

-

-

-

-0.0653% 

-

-

0.2410% 

Thickness_2 

as 
received 

carburized 

tempered 

Thickness Q ng2 

19.0192 18.8000 0.1000 -0.1000 0.2192 

Thickness Q { m 

19.0801 18.8000 0.1000 -0.1000 0.2801 

Thickness Q m g 

19.0699 18.8000 0.1000 -0.1000 0.2699 

-

0.3202% 

-

-

-

-0.0535% 

-

-

0.2666% 

Thickness_3 

as 
received 

carburized 

tempered 

Thickness 
_3 

18.8911 18.8000 0.1000 -0.1000 0.0911 

Thickness Q ^ 

18.9427 18.8000 0.1000 -0.1000 0.1427 

T
3

h i c k n e S S 0.0323 

18.9323 18.8000 0.1000 -0.1000 0.1323 

-

0.2731% 

-

-

-

-0.0549% 

-

-

0.2181% 
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Table A.2 Distortion calculations for specimen 1750/1.1/300 (Continued) 

Condition Actual Nominal 
Upper 

Tol. 
Lower 

Tol. 
Deviation 

Distortion 
due to 

carburizing 

Distortion 
due to 

tempering 

Distortion 
due to 

carburizing 
& 

tempering 
Dis_Gap_Top 

as 
received 

carburized 

tempered 

Dis_Gap_ 
Top 

6.9438 7.0000 0.1000 -0.1000 -0.0562 

Dis_Gap_ 
Top 

7.1596 7.0000 0.1000 -0.1000 0.1596 

Dis_Gap_ 
Top 

7.0002 7.0000 0.1000 -0.1000 0.0002 

-

3.11% 

-

-

-

-2.23% 

-

-

0.81% 

Dis_Gap_Bottom 

as 
received 

carburized 

tempered 

Dis_Gap_ 
Bottom 

6.9342 7.0000 0.1000 -0.1000 -0.0658 

Dis_Gap_ 
Bottom 

7.1486 7.0000 0.1000 -0.1000 0.1486 

Dis_Gap_ 
Bottom 

6.9876 7.0000 0.1000 -0.1000 -0.0124 

-

3.09% 

-

-

-

-2.25% 

-

-

0.77% 
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Figure A 3 (a) Flatness profile of specimen 1750/1.1/350 
before and after heat treatment. 
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Figure A.3 (b) Cylindricity profile of specimen 1750/1.1/350 
before and after heat treatment. 



Figure A.3 (c) Roundness profile of specimen 1750/1.1/350 
before and after heat treatment. 
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Table A 3 Distortion calculations for specimen 1750/1.1/350 

Condition 

as 
received 

carburized 

tempered 

as 
received 

carburized 

tempered 

as 
received 

carburized 

tempered 

Actual Nomina 
1 

Upper 
Tol. 

Lower 
Tol. Deviation 

Flatness_ 
Numbered 0.0166 
Side 

0.0166 0.0000 0.0000 0.0166 

Flatness_ 
Numbered 0.0385 
Side 

0.0385 0.0000 0.0000 0.0385 

Flatness_ 
Numbered 0.0165 
Side 

0.0165 0.0000 0.0000 0.0165 

C y " " d n d t 0.0163 
y_OD 

0.0163 0.0000 0.0000 0.0163 

Cylindricit 
y_OD 

0.0409 0.0000 0.0000 0.0409 

Cylindricit 0 0 3 % 

y_OD 

0.0396 0.0000 0.0000 0.0396 

Diameter_ 
OD 

50.7451 50.7500 0.1000 -0.1000 -0.0049 

Diameter_ 
OD 

50.8029 50.7500 0.1000 -0.1000 0.0529 

Diameter_ 
OD 

50.7514 50.7500 0.1000 -0.1000 0.0014 

Distortion 
due to 

carburizing 

-

131.9% 

-

-

0.0246 

- • 

-

0.114% 

-

Distortion 
due to 

tempering 

-

-

-57.1% 

-

-

-0.0013 

-

-

-0.101% 

Distortion 
due to 

carburizing 
& 

tempering 

-

-

-0.6% 

-

-

0.0233 

-

-

0.012% 
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Table A.3 Distortion calculations for specimen 1750/1.1/350 (Continued) 

Condition Actual Nomina 
1 

Upper 
Tol. 

Lower 
Tol. Deviation 

Distortion 
due to 

carburizing 

Distortion 
due to 

tempering 

Distortion 
due to 

carburizing 
& 

tempering 
Roundness_ID-1 

as 
received 

carburized 

tempered 

Roundnes „ , 
s_ID-l ° 0 7 6 2 

0.0762 0.0000 0.0000 0.0762 

R o"nf e s 0.0890 s_ID-l 

0.0890 0.0000 0.0000 0.0890 

R°™ (Jn e S 0.0888 s_ID-l 

0.0888 0.0000 0.0000 0.0888 

-

0.0128 

-

-

-

-0.0002 

-

-

0.0126 

Roundness_ID-2 

as 
received 

carburized 

tempered 

Roundnes 
s ID-2 U W 

0.0919 0.0000 0.0000 0.0919 

Roundnes „ , » , „ 
s_ID-2 ° - 1 2 1 8 

0.1218 0.0000 0.0000 0.1218 

R ° " n d " e S 0.1224 s_ID-2 

0.1224 0.0000 0.0000 0.1224 

-

0.0299 

-

-

-

0.0006 

-

-

0.0305 

Roundness_ID-3 

as 
received 

carburized 

tempered 

Roundnes 
s_ID-3 

0.0951 0.0000 0.0000 0.0951 

Roundnes n111n 
s_ID-3 

0.1110 0.0000 0.0000 0.1110 

Roundnes . , , „ . 
s_ID-3 ° 1 1 0 8 

0.1108 0.0000 0.0000 0.1108 

-

0.0159 

-

-

-

-0.0002 

-

-

0.0157 
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Table A.3 Distortion calculations for specimen 1750/1.1/350 (Continued) 

Condition Actual Nomina 
1 

Upper 
Tol. 

Lower 
Tol. Deviation 

Distortion 
due to 

carburizing 

Distortion 
due to 

tempering 

Distortion 
due to 

carburizing 
& 

tempering 
Diameter_ID-l 

as 
received 

carburized 

tempered 

Diameter_ 
ID-1 

31.5141 31.6000 0.1500 -0.1500 -0.0859 

Diameter_ 
ID-1 

31.5433 31.6000 0.1500 -0.1500 -0.0567 

Diameter_ 
ID-1 

31.5473 31.6000 0.1500 -0.1500 -0.0527 

-

0.0927% 

-

-

-

0.0127% 

-

-

0.1053% 

Diameter_ID-2 

as 
received 

carburized 

tempered 

Diameter 
_ID-2 

31.5613 31.6000 0.1500 -0.1500 -0.0387 

Diameter 
_ID-2 

31.5488 31.6000 0.1500 -0.1500 -0.0512 

Diameter 
_ID-2 

31.5519 31.6000 0.1500 -0.1500 -0.0481 

-

-0.0396% 

-

-

-

0.0098% 

-

-

-0.0298% 

Diameter_ID-3 

as 
received 

carburized 

tempered 

D ^ m
3

e t e r -0.0560 

31.3940 31.6000 0.1500 -0.1500 -0.2060 

D ^ m
3

e t e r -0.0407 

31.4093 31.6000 0.1500 -0.1500 -0.1907 

D ^ m
3

e t e r -0.0386 

31.4114 31.6000 0.1500 -0.1500 -0.1886 

-

0.0487% 

-

-

-

0.0067% 

-

-

0.0554% 
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Table A.3 Distortion calculations for specimen 1750/1.1/350 (Continued) 

Condition Actual Nomina 
1 

Upper 
Tol. 

Lower 
Tol. 

Deviation 
Distortion 

due to 
carburizing 

Distortion 
due to 

tempering 

Distortion 
due to 

carburizing 
& 

tempering 
Thickness_l 

as 
received 

carburized 

tempered 

Thickness 
_1 

18.7281 18.8000 0.1000 -0.1000 -0.0719 

Thickness 
_1 

18.7849 18.8000 0.1000 -0.1000 -0.0151 

Thickness 
_1 

18.7519 18.8000 0.1000 -0.1000 -0.0481 

-

0.3033% 

-

-

-

-0.1757% 

-

-

0.1271% 

Thickness__2 

as 
received 

carburized 

tempered 

Thickness 
_2 

18.7127 18.8000 0.1000 -0.1000 -0.0873 

Thickness 
_2 

18.7820 18.8000 0.1000 -0.1000 -0.0180 

Thickness 
_2 

18.7483 18.8000 0.1000 -0.1000 -0.0517 

-

0.3703% 

-

-

-

-0.1794% 

-

-

0.1902% 

Thickness_3 

as 
received 

carburized 

tempered 

Thickness 
_3 

18.8149 18.8000 0.1000 -0.1000 0.0149 

Thickness 
_3 

18.8572 18.8000 0.1000 -0.1000 0.0572 

Thickness 
_3 

18.8254 18.8000 0.1000 -0.1000 0.0254 

-

0.2248% 

-

-

-

-0.1686% 

-

-

0.0558% 
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Table A.3 Distortion calculations for specimen 1750/1.1/350 (Continued) 

Condition Actual 
Nomina 

1 
Upper 

Tol. 
Lower 

Tol. 
Deviation 

Distortion 
due to 

carburizing 

Distortion 
due to 

tempering 

Distortion 
due to 

carburizing 
& 

tempering 
Dis_Gap_Top 

as 
received 

carburized 

tempered 

Dis_Gap_ 
Top 

7.0107 7.0000 0.1000 -0.1000 0.0107 

Dis_Gap_ 
Top 

7.2305 7.0000 0.1000 -0.1000 0.2305 

Dis_Gap_ 
Top 

7.0704 7.0000 0.1000 -0.1000 0.0704 

-

3.14% 

-

-

-

-2.21% 

-

-

0.85% 

Dis_Gap_Bottom 

as 
received 

carburized 

tempered 

Dis_Gap_ 
Bottom 

6.7707 7.0000 0.1000 -0.1000 -0.2293 

Dis_Gap_ 
Bottom 

6.9801 7.0000 0.1000 -0.1000 -0.0199 

Dis_Gap_ 
Bottom 

6.8302 7.0000 0.1000 -0.1000 -0.1698 

-

3.09% 

-

-

-

-2.15% 

-

-

0.88% 
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