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Abstract 

Abstract 

Traditional gravity pour down-sprue methods of filling moulds in the making of aluminum 

castings inherently lead to oxide and air bubble entrainment. The reason for this is found in 

the high velocities the metal flow experiences during the filling of a mould. The Nemak 

Windsor Aluminum Plant (WAP) produces 3.0L aluminum cylinder blocks using the low-

pressure Cosworth process, which includes low velocity up-hill filling of the sand mould. 

This doctrine is followed in all except one part of the process: the runner system. The nature 

of the resulting defect is generally bubbles known as Head Deck Porosity. A solution to this 

issue represents a substantial economic opportunity. 

The current research deals directly with the design of the running system and the speed at 

which it is filled. Runner samples were cast in open WAP 3.0L production runners at three 

different velocities, with the resulting quickly chilled castings analyzed using X-ray 

radioscopy, tensile testing and Scanning Electron Microscopy. Results reveal that the subject 

bubble porosity is indeed the result of air entrained during initial transient flow within the 

production runner system whose velocity is higher than the critical value of 0.5ms" . This 

theoretical value is corroborated by experimental results. In addition, a new "sessile" runner 

of optimized shape, filled at a velocity slower than the critical value, is proposed and 

analyzed using Magmasoft mould fill modelling software. This design can potentially 

replace the existing runner design, providing a casting fill system free of entrained air 

thereby reducing or possibly eliminating the quantity of scrap due to head deck porosity. 

in 
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Chapter 1, Introduction 

Chapter 1 

Introduction 

1.1 Head Deck Porosity 

The casting of the highest quality aluminum cylinder blocks in the world is currently 

the sole function of the Nemak Windsor Aluminum Plant (WAP) (Windsor, Ontario, 

Canada). The casting plant, its management and employees have established themselves as 

the gem in the worldwide business of automotive cylinder block casting facilities. It is 

important to note that the author does not use the word "foundry", because this plant is far 

different than the traditional concept one maintains of a foundry where metal is melted and 

poured into a mould to produce a casting. What separates this facility from the "normal" 

concept of the foundry is the high degree to which the latest technology has been applied. At 

the time of this writing the casting plant is 15 years old, and the equipment, individually 

considered, can no longer be called the most up to date, but the application of advanced 

automation as a whole to the business of making castings is still unsurpassed in the industry, 

and this is proven by the fact that all 4 cylinder blocks cast at the WAP achieved "Best in 

Class" status in 2004. 

Of all the technology that makes this plant a first class operation, the process by 

which the castings are made is the centrepiece. The Cosworth Precision Sand Process 

incorporates the best methodology in all casting processes to yield the highest quality sand 

castings found in the high volume automotive industry. The process as it is applied at WAP 

is not without its imperfections however, and the one with the greatest impact on the plant is 

a defect known as "Head Deck Porosity". This defect is of greatest concern because it is 
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responsible for the majority of the scrap parts (59.9%) detected at the customer's point of use. 

To put this scrap rate into perspective, it represents only 0.21% of the 600,000+ parts shipped 

to the customer in 2004, however the cost of the raw materials, labour and equipment use 

expended on the scrapped part results in a significant cost loss approaching one-half million 

dollars per year. 

Head Deck Porosity is the condition where one or more pores or bubbles have come 

to be frozen near the head deck surface of the cylinder block, at such a depth as to be exposed 

during the final machining of the part. The reason this presents a scrap condition is that the 

surface no longer presents a contiguous mate for the cylinder head gasket to rest against. In 

effect, the pore will become a leak path for hot exhaust gas to pass through causing eventual 

failure of the gasket that will subsequently worsen engine performance and increase 

emissions output. 

Since this problem represents significant lost revenue to the Windsor Aluminum 

Plant, reasonable efforts and expense to solve the problem are justified. With the aid of 

NSERC/Ford-Nemak/University of Windsor Industrial Research Chair in Light Metals 

Casting Technology (IRC) and the Auto 21 supported research program therein, the research 

at hand is an attempt to determine the root cause of head deck porosity via experimental 

methods using production moulds, and to propose a solution based on the application of the 

most current literature on the subject of aluminum casting technology. Chapter 4 will lead 

the reader through the experimental phases of this project and the results will be presented in 

Chapter 5. In Chapter 6 the data will be discussed, with conclusions drawn in Chapter 7. A 

solution to the problem and further recommendations will be presented in Chapter 8. 
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Chapter 2 

Research Objectives 

2.1 Experimental Discovery - Current Runner Design 

Hypothesis: The current 3.0L cylinder block mould runner design is flawed in that it 

facilitates the entrainment of air into the lead metal, which subsequently comes to rest and 

solidifies at or under the rear / head deck area of the casting - a defect known as "Head Deck 

Porosity". A new design in accordance with the latest research will reduce or eliminate this 

casting defect. 

The main objective of this body of work is to offer objective evidence that at least one cause 

of head deck porosity bubbles is the design of the runner system used in the 3.0L Duratec 

aluminum cylinder block casting currently in production at the Windsor Aluminum Plant. 

The project has two main thrusts of effort: 

a) To develop a procedure wherein aluminum is poured into the current runner design at 

various velocities. The procedure will be employed to quantitatively determine if a 

correlation exists between the velocity of the molten aluminum streaming along the 

runner, and the resulting bubble/oxide entrainment damage to the liquid melt, 

b) To design a running system based on current research that minimizes or even prevents 

the production of bubbles and thus presents a solution to the head deck porosity scrap 

issue. 

2.2 Proposed Runner Design 

This phase of the project was accomplished with the assistance of the Ford Motor Company 

Casting Division Simulation Team using casting simulation software to engineer a running 
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system fit for production that will yield the same quality cast component in all aspects except 

head deck porosity. As the engineering and purchasing of tooling to make castings for 

evaluation is beyond the scope of the current work, the proposed solution was designed and 

modelled in a simulation to explore metal velocities and mould fill characteristics. 

The work of Professor Campbell will be drawn on heavily as his is most directly applicable 

to the subject at hand, as he is the inventor of the Cosworth Precision Sand Process. To date, 

no running system being filled by the Cosworth Precision Sand Process has been studied in 

the manner undertaken herein, but there are several works that, while applied genetically to 

low pressure fill methods, nevertheless offer generic insight into the nature of aluminum 

behaviour while flowing down a long passage on its way to becoming the largest cast 

component in the automobile industry today - the cylinder block. 
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Chapter 3 

The State of the Science- Literature Review 

3.1 Prior Work - A Summary of In-House Problem Solving 

Problem solving efforts have been and continue to be one of the keys to the success of 

any business, whether the problems are technical, relational, or financial, and within the 

business of making complicated, high-volume automotive casting there are no shortage of 

issues to be remedied, each requiring the ingenuity and creativity of people devoted to the 

honourable task of making castings. Several problems have presented themselves at the 

Windsor Aluminium Plant, and each has been addressed with results that some have been 

solved, others mitigated, and yet others remaining at large. Among the opportunities posed 

by process and part issues at the plant have been the completion of several master's and 

doctoral degrees each focused on a specific troubling, or unknown aspect of the process. 

Many research papers and reports have been published by the Industrial Research Chair 

(IRC) at the University of Windsor in cooperation with the plant engineering staff, each 

adding depth of understanding the complex casting process. Subject matter ranging from the 

study of the metallurgical properties of the castings such as solidification and fatigue life [1, 

2] and insoluble titanium/aluminium/silicon crystals [3], to process capability studies 

entailing the design of artificial neural networks for the prediction of silicon modification 

levels [4], and production related issues such as the fading phenomenon seen in strontium 

modified melt [5] and electromagnetic pump clogging [6]. More specifically related to this 

thesis, various aspects of porosity have been studied since the plant started production, 

including the study of microporosity levels affected by copper, manganese and iron levels in 
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the melt, the study of hydrogen related porosity and subsequent development of a hydrogen 

content measurement system for the molten aluminium [7-9], and numerous reports aimed at 

characterizing porosity type defects found in daily production (i.e. bulkhead macro porosity 

[10]). 

The Head Deck Porosity defect is a unique category of "casting porosity", and is one of the 

unsolved issues affecting the castings. The issue has seen a great deal of study by the plant 

engineering staff (the author and colleagues) and leads to the point where this thesis begins. 

The results of thesis will be the first published data set with regard to Head Deck Porosity. 

The current research leaves off at an experiment in which tracers, placed in the runner 

before pouring, appear in the casting at precisely the same location as head deck porosity is 

seen in scrap blocks returned from the customer. The tracers were various types of debris -

loose crushed aluminum oxide, Part I liquid resin drops placed down the runner, crushed 

potato chips, and liquid boron nitride drops placed down the runner five minutes prior to 

casting. In all cases (11 castings) the tracers and associated gas bubbles (in the case of the 

liquids dripped into the runner) came to reside in the extreme rear of the casting, with some 

making their way to the ceiling of the mould - the head deck surface of the casting. The 

control sample (regular production condition) in this group did not have the same symptom. 

The conclusion reached from this work was that the first metal to flow down the runner 

system is the metal that contains the bubbles that are eventually found at the rear head deck 

area of the casting. Where the bubbles were being formed in their journey down the runner 

and into the rear of the casting is the subject of this thesis, however it must be brought to the 

reader's attention that accompanying this "first metal down the runner" discovery is another 

important piece of the puzzle. It was discovered by the author using moulds that had probes 
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installed at 80 locations, and confirmed by Ford Casting Division's CAE simulation group, 

that the molten aluminum was being pumped into the mould so fast that there was a plume 

created at the top of the rear risers (in-gates). This, according to all the literature was a 

condition favourable to the creation of bubbles, thus steps were taken to reduce the mass 

flow-rate of the molten aluminum at the point where the risers were nearly full. This action 

reduced head deck porosity scrap by roughly 50%. 

Now that the reader has some background understanding, the application of current research 

must be brought to bear on the subject. Although there is a great deal of literature published 

about filling/running systems, very little applies to the type of process used to produce the 

subject castings. Professor John Campbell's recent work "10 Rules of Castings" [15] details 

the casting process and design do's and don'ts for making castings, and when applied to the 

subject at hand, lead to the exploration of the runner system as one possible source of air 

entrainment resulting in head deck porosity. When combined with the prior WAP work the 

logical connection between runner design and head deck porosity materialized. 

For the reader to gain a broad enough understanding of the elements contributing to the 

problem at hand, some discussion on the basics of the aluminum behaviour and its interaction 

with the mould environment are discussed prior to any current runner-based research 

discussions. 

3.2 The Cosworth Casting Process (Precision Sand Casting Process) 

The making of castings has been referred to both as an art and a science. In the 

opinion of this author, the installation of the Cosworth Process at the Windsor Aluminum 

Plant brings the business of making castings as close to a science as exists in the industry 
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today. This is because, unlike any other process be it high pressure die casting, gravity 

casting or low pressure process, the WAP Cosworth Process employs methods that when 

added together, result in a very robust system for making quality castings. Generically these 

process characteristics may be defined as; handling of the melt in such a way as to provide 

clean metal to the mould, sand type, quiescent mould design, casting orientation, mould 

feeding system, mould inversion and full automation of the process including filling of the 

mould. 

3.2.1 Handling of the Melt 

Since aluminum alloys have the propensity to oxidize so readily to form many 

different oxides, care must be taken to avoid conditions leading to their creation. Since it is 

next to impossible to completely eliminate oxide formation in a melting operation there will 

always be oxides present in a bath of molten aluminum. The first unique feature of the 

Cosworth Process is known as "residence time". The rule of thumb is: any metal entering the 

pouring furnace must reside in that furnace for a minimum of 10 hours before being moved 

into the mould. In this way, the oxides of the melt that are more dense than the bulk density, 

such as oxides of Fe/Mn/Mg (sludge), will sink to the bottom and the lighter oxides such as 

aluminum oxide, magnesium & titanium oxide etc. will float to the surface leaving the 

"centre" of the bath relatively clean. It is from this "clean" zone that aluminum is drawn for 

injection into the mould. It has been shown however that this method of cleaning is not a 

catch-all, as it was found that strontium-chloride and other salts have survived the residence 

time and come to reside on the surface of the ceramic wall within the electromagnetic pump 

[11]. 
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3.2.2 Sand Type 

Another important distinguishing feature of this process is the type of sand used in 

making the moulds. Zircon sand has a coefficient of thermal expansion less than that of 

silica sand, which means that a core made of zircon sand will change shape less than one 

made of silica sand once surrounded by molten aluminum. This enables the casting of oil 

galleries and other small and delicate shapes into the part with high confidence that the core 

will not distort and wander during solidification causing thin walls within the casting. 

Additionally, since the coefficient of thermal conductivity of zircon sand is greater than that 

of silica sand, the zircon sand mould is able to absorb heat from the liquid casting faster than 

a mould made of silica. Thus the microstructure achieved in a part cast in zircon sand has a 

finer grain structure than the identical part cast in silica sand due to a faster cooling rate 

which yields higher mechanical properties. In addition to this benefit, individual sand grains 

are much less likely to crack and fragment upon contact with the hot molten aluminum 

(which would render them too fine to reuse), allowing repeated re-use of zircon sand. It must 

be mentioned here that cost is a severe penalty one must pay to purchase a specific quantity 

of zircon over silica, however because of the recyclability of Zircon, the cost is awash in the 

end. 

3.2.3 Mould Basics 

The interlocking sand mould is completely recyclable within the process. The mould 

consists of a series of eighteen phenolic urethane resin bonded zircon sand cores which when 

fitted together form a self contained recyclable mould, with the exception of the resin binder. 
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The whole assembly starts with a "base" core, onto which a "journal" core is placed to 

provide riser shape, followed by the crankcase, front, rear, sides, left and right cylinder 

bore/head deck banks, and seven more internal cores that form breathing, cooling and oil 

flow passages for lubrication. A clamp within the casting machine acts to hold the assembly 

together, ensuring the cores will not move during the casting process. All venting 

accommodations, casting shrink allowances and sand traps (spaces for rubbed sand to fall 

during assembly of cores) are all designed into the shape of the cores to allow a robust 

assembly process that yields a high success rate despite some acceptable mould-to-mould 

variance in the assembly process. The base core is the subject of this research, in that it 

provides the runner cavity shape which directs the aluminum to the gates, risers and 

eventually to the casting itself, and thus will be the focus of this research. Since the filling 

system (i.e. runner, gates and risers) and the metal flow therein is paramount to the 

discussion; the following section is dedicated to its description. 

3.2.4 Filling System 

The filling system is that part of the mould cavity responsible for directing the molten 

metal to the casting cavity - where the product is generated. In this study, the filling system 

consists of the runner - a channel that carries the aluminum the total length of the mould 

package, followed by the in-gates, which allow liquid to flow from the runner into each of 

the eight in-gates/risers, which then pass the aluminum on to the casting cavity. The speed or 

rate of metal movement is important, as is the degree of cooling while the metal is flowing. 

The shape of the different system components can be used to regulate the flow, which is an 

important parameter in the making of a casting, but the systematic analysis and discussion of 
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the initial stage of the pouring process have been rare [12, 13]. The "initial transient", is the 

event of the first metal meeting air within the runner. After the initial transient has occurred, 

the runner fills and achieves a steady state where it is passively guiding metal to the next 

cavity within the mould (risers). Isawa and Campbell [12] have performed work on reducing 

the impact of the runner on the quality degradation due to the initial transient, where they 

concluded that the rate of bubble removal, and the estimated time of complete disappearance 

of bubbles could be used to measure the optimization of the shape of the running system. 

These metrics proved useful in their work, which involved pouring the metal down a sprue, 

which in turn fed the rest of the system. The current work is aimed at the same goal, 

however the metrics will be the quantity of bubbles captured in a quickly chilled runner 

sample. 

The first of six requirements of a good runner design, according to the American Foundry 

Society publication Aluminum Casting Technology T141, reads as follows: 

"...flow through the gating system with the least amount of turbulence to 

prevent the aluminum oxide film from breaking and, thereby, allowing 

the entrapment of air; mould and core gasses; and inclusions such as 

dross, sand and other foreign materials". 

This is the same requirement put forth by Professor John Campbell as his 2nd rule of making 

good quality castings [15] as will be discussed in more detail in later sections of this review. 

It is important to note that just under half of this book by Professor Campbell is devoted to 

the subject of avoiding bubble entrainment in the gating system. It is also important to note 

that these two casting industry authorities recognize the gating system as a major source of 

air entrainment into the melt. 
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Another major consideration in examining the design of the running system is 

thermodynamics. Slow filling and high loss of heat result in misruns and cold-shuts within 

the casting. Rapid rates of filling can produce erosion of the gating system or even the mould 

cavity itself resulting in entrapped mould material (sand) within the casting. Simulations 

have been performed in various applications, (Sulaiman et al. modeled the runner system for 

the die casting process to determine the angle at which the gates are best attached to the 

runner with success), however the low pressure Cosworth process produces flow of an 

entirely different nature [13] and the running/gating systems have not been adequately 

studied. 

3.2.5 Mould Feeding System/Casting Orientation 

The next important strategy is the orientation of the runner, risers and casting with 

respect to each other, and to the world (i.e. gravity). In order of sequence, the molten 

aluminum entering the mould fills the runner system, which is the lowest point in the entire 

mould cavity. The runner then delivers the melt to the risers, then to the thicker sections of 

the casting, and finally to the thinner sections of the casting nearest the top of the mould. As 

the first metal into the mould is pushed further up into the cavity, it loses heat to the 

surrounding sand mould walls. While losing heat the metal is simultaneously being pushed 

further up into the mould cavity where the wall thickness is becoming smaller. In this way, 

once the mould is full, the coldest metal is at the top (thinnest walls) and as one examines the 

temperature of the metal further and further down into the casting and finally the risers, the 

temperature of the metal, being the last metal in, is higher. It is at this point that the mould is 
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inverted or turned upside down i.e. "rolled-over" which is the next point of importance in this 

process. 

3.2.6 Mould Inversion (roll-over) 

Once inverted the coldest metal is now at the bottom of the mould where the 

thickness of the cast sections are at a minimum, and the hottest metal is at the top of the 

mould (thickest sections). Directional solidification from cold (thin sections) to hot (thick 

sections) result in the last metal to solidify in the riser/feeder cavity as must be the case in all-

successful casting schemes. The inversion of the mould enhances the directional 

solidification by taking advantage of gravity and the temperature/density related physics 

presiding over the cooling melt as the hot liquid rises continually to where the casting most 

needs hot metal to feed the shrinking cooler sections. Additionally, the propensity for 

damaging convection loops to form within the solidifying casting is eliminated by the 

inversion of the mould as is discussed in Professor Campbell's 7th rule for making castings 

[15]. 

3.2.7 Electromagnetic Pump Mould Filling -Getting the Melt into the 

Mould 

Electrohydrodynamics embodies the physics behind the movement of the liquid 

aluminum into the mould, and will not be discussed herein, but the fact that the aluminum 

does move into the mould with a controlled velocity is critical to this discussion. From a 

casting process point of view, the freedom this equipment provides from the reliance on 

gravity to fill the mould is the feature of interest. The electromagnetic pump provides control 
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over the flow-rate of aluminum entering the mould according to the design of the casting 

engineer. As the pump is activated (i.e. voltage is applied), molten aluminum enters the 

mould via the runner. The "program" or desired flow rate as a function of either time or 

metal level within the mould is followed until the mould is full. A capacitive sensor outside 

the mould provides feedback to the controller regarding the height of aluminum within the 

package. This actual level is then compared to the programmed or desired level, and the 

proportional - integral - derivative (PID) control system then raises or lowers the voltage to 

the pump to bring the actual metal level closer to the desired - is a classical case of closed 

loop feedback control. Once the mould is full, the liquid metal is then held under mild 

pressure from the pump during the roll-over process [16]. Although the pump provides an 

improved method (compared to gravity) of moving molten aluminum into the mould, it 

cannot compensate for a) poor casting practices (i.e. mould design), b) inertial effects of the 

molten flow or c) the casting engineer's programming skills. The basic rules in making 

castings must be followed to take advantage of the unique capabilities that the 

electromagnetic pump offers. 

This research takes aim directly at the first metal to enter the mould, or the "initial transient" 

as it is referred to by Isawa and Campbell [12]. It is this metal that, when subjected to a 

poorly designed runner system, reaches uncontrolled velocities imparted by gravity. The 

speed of this metal is beyond the control of the electromagnetic pump, leaving it to be 

entrained with folded oxides and air bubbles, later to be carried to the rear head deck area of 

the casting. Before presenting any further conjecture however, the most recent casting and 

runner technology will be explored in order to set the stage for the logical progression from 

conjecture to fact. Figure 3.1 depicts the current runner system used to make cylinder block 
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castings, and though this design has been used to make nearly five million castings with only 

0.21% (~ 11,000) scrapped due to head deck porosity, there is room for significant 

improvement. 

Mould base Runner In-gate 
4 540mm > 

Figure 3.1: Cross section of the current mould (sectioned through runner, in-gates and risers). 

3.2.8 Current Runner & Gating Methods 

There is only one way to get liquid metal to flow into a mould, and that is to induce flow by 

applying a force - either pushing or pulling the metal into the cavity, or both. The source of 

this force varies according to the casting "process" one is using. The "Gravity Pour" system 

allows gravity to cause the liquid metal to seek an equilibrium elevation between the metal 

within the mould cavity with that in the sprue (Figure 3.2a). The "Low-Pressure" system 

utilizes some sort of "push" to force the liquid metal into the mould against the ever-present 

force of gravity (Figure 3.2b). Aluminium castings are made using both Gravity and Low-

Pressure Processes, each rendering a different effect on the cost and quality of the part. The 

nature of the part being cast is also a large factor in determining which process is best suited 
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for use. In either process, the velocity and associated turbulence of the flow must be 

controlled so that excess oxide formation and air entrainment is avoided. 

a) 

casting 

Ingate 

Runner 

b) 

Figure 3.2: Cross section of a simple mould filled by a) gravity, b) low pressure. 

Regardless of the method of introducing liquid metal into the mould, the gating system is 

responsible to direct the liquid into the casting cavity. There are two types of gating systems: 

pressurized and non-pressurized. The difference between these two types of gating systems 

lies in where the choke is placed. The choke is the smallest cross sectional area of the system 

and sets the rate of flow of the molten metal into the casting cavity [17] (at least in a Gravity 

Pour system). The choke in the pressurized gating system is normally the in-gates (the 

passages leading directly to the casting or the risers prior to the casting) hence the runner 

system is "pressurized" due to the downstream flow restriction. The characteristic advantage 

of the pressurized system is improved yield (since the runner will hold less metal in total), 

however a disadvantage is that the liquid metal is subjected to higher velocities than in a non-
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pressurized system, which results in more turbulence and hence oxide formation and air 

entrainment. The choke in a non-pressurized system is upstream of the in-gates, usually at 

the beginning of the runner, and is designed as such to facilitate quick filling of the sprue, 

and slow, quiescent filling of the runner. The runner itself can be set in the drag or in the 

cope with the ingates being set in the opposite part of the mould depending again upon the 

application and economics of the situation. There are a large number of metal flow-path 

design options available to the casting engineer to allow her or him to achieve the highest 

quality part at the lowest cost, and the common thread linking all of them is velocity and 

turbulence of the liquid. This parameter is of extreme importance. The runner has been and 

continues to be an item depended on to solve several types of casting defects such as gas 

porosity, shrink porosity, bubbles, oxide discontinuities, cold-shuts and laminations. The 

runner can contain filters to reduce flow velocity and act like a choke while straining out 

large oxides, it can be extended past the last ingate to allow the "first pour" or "initial 

transient" to pass all the ingates and carry its bubbles and oxide films into a dead end, there 

to solidify harmlessly. The runner can be shaped to reduce turbulence; it can be sloped, 

tapered or necked down after each ingate to maintain equal pressure at the entrance of each 

ingate to ensure equal flow-rate into each ingate. In short, the runner design is critical in the 

delivery of unharmed liquid metal to the casting cavity. In the Low Pressure Process the 

runner is usually a pressurized system, which partially allows the low-pressure source to 

control the rate of runner fill. Provided the controls are sufficiently robust and the design of 

the runner is sound, the runner of each mould will be filled identically and quiescently 

resulting in few entrained oxides or bubbles. The runner design being studied in this thesis is 

a pressurized runner system filled by a Low Pressure Process, and is also one that is 
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associated with castings that suffer from bubbles near the head deck surface. With this in 

mind the direction of study will turn to examine the characteristics of flow within the runner, 

its velocity, turbulence and propensity to form oxides. 

3.3 The State of the Industry in Casting Technology 

3.3.1 The 10 Rules of Castings 

Professor John Campbell (University of Birmingham U.K. 2004) has published work 

[15] that outlines 10 rules to be followed by the casting engineer, each of which plays a 

critical role in the creation of a sound casting. 

1. Achieve a good quality melt 

2. Avoid turbulent entrainment (the critical velocity requirement) 

3. Avoid laminar entrainment of the surface film (the non-stopping non-reversing condition) 

4. Avoid bubble damage 

5. Avoid core blows 

6. Avoid shrinkage damage 

7. Avoid convection damage 

8. Reduce segregation damage 

9. Reduce residual Stress (the 'no water quench' requirement) 

10. Provide location points 

The two rules that most apply to the current research are Rule 2 (Avoid turbulent 

entrainment) and Rule 4 (Avoid bubble damage). Each is elaborated upon in the following 

two sections. 
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3.3.2 Rule 2: Avoid Turbulent Entrainment (the critical velocity 
requirement) 

"The avoidance of surface turbulence is probably the most complex and difficult rule to 

fulfill when dealing with gravity pouring systems" [15]. Since at least "80% of all casting 

defects are directly caused by turbulence" [15]. This statement is derived from the fact that 

molten aluminum, upon flowing along at speeds of greater than 0.5 ms"1 or falling from a 

distance greater than the sessile height (-12.5 mm) [15] may have the surface oxide film 

disrupted arid included into the bulk liquid. "The surface film is not harmful while it 

continues to be a surface film. In fact, in the case of the oxide on liquid aluminum in air, it is 

doing a valuable service in protecting the melt from catastrophic oxidation" [16]. Equipped 

with this information, the casting engineer must strive to see the mould filled without 

achieving a flow front velocity of greater than 0.5 ms"1 to avoid casting defects such as 

entrained bubbles and oxide films. This concept is the most critical to the study at hand and 

will be discussed at length in future sections of this thesis. Rule 4 also deserves to be treated 

as another major player in the formation of bubbles, bubbles that end up within the casting, 

especially at the head deck of the cylinder block casting. 

3.3.3 Rule 4: Avoid Bubble Damage 

"Entrainment defects are caused by the folding action of the (oxidized) liquid surface" 

[15, 16]. As the oxide surface film is disrupted (broken) by surface turbulence, a piece may 

be folded over onto itself, dry side to dry side [18-20], encapsulating the atmosphere (air) 

between two oxide layers as depicted in Figure 3.3. Since the non-wetted or dry surface of 

each of the oxides is rough, the sandwiching of these two surfaces entraps air on both a 

19 



Chapter Three, The State of the Science ~ Literature Review 

macro and a micro scale, depending on the roughness of the surface and the magnitude of the 

fold event. 

• New oxide (thin) 

Old oxide (thick) 

Tear in oxide film at high stress area, 
and subsequent formation of new 
thin oxide film 

Air about to be entrained by 
encapsulation between two oxide films. 

Figure 3.3: Schematic of a splash of molten aluminum showing the formation of a folded 
(double) oxide film, which might consist of old thick film, new thin film, or both, all likely 
to occlude air in the folds. After Campbell 1991. 

Since the liquid flow is encapsulated beneath the film of oxide, it may become 

turbulent without having any additional liquid aluminum or its alloying agents exposed to the 

air above the film. This protection will last only up to the point where the strength of the 

surface oxide film can withstand the forces put on it not only by the turbulent liquid beneath 

beating, pushing and otherwise causing the film to bulge and distort, but also by movement 

of the flow along the mould passage. 

The Reynolds number (Re) can quantify the turbulence beneath the oxide film 

covered surface: 

Re =Vpd/n (1) 

where V is the velocity of the liquid, g is the density of the liquid, d is a characteristic linear 
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dimension of the geometry of the flow path, and n is the viscosity. The Re number is the 

result of a comparison between inertial pressures V2p/2Cd2 (where Cd is the drag coefficient) 

and viscous pressures nV/d. The inertial pressures related to the mass and velocity of the 

liquid flow "own" a momentum that will exert certain distorting forces on the constraining 

surfaces of the flow (oxide surface, mould wall), while the viscous pressures are the result of 

drag from the walls of the passages and film surface containing the flow. For values of Re 

below 2000, viscous forces prevail, while above this the flow "degenerates into a chaos of 

unpredictable swirling patterns" [16] all of which take place beneath the covering oxide film. 

The flow near the boundary will still be laminar in nature, but decreasingly so as the Re 

increases beyond 2000, hence the oxide layer forming the boundary is protected from the 

bulk of the turbulence. Above 20,000 the flow is completely turbulent [16]. This "bulk" 

turbulence then only applies to the liquid beneath the film, and has little bearing on the 

surface oxide layer. The concept of surface turbulence is the real mechanism by which the 

surface film finds itself submerged and incorporated into the bulk of the melt [16]. This 

effect is better represented by the Weber number than the Reynolds number, which describes 

bulk turbulence beneath the surface. Surface turbulence is generated by poor handling of the 

melt at any of the venues in which it is moved or disturbed (i.e. moving molten aluminum 

from the holding furnace to the ladle, from ladle to casting furnace, or in the case of the 

Cosworth Process, from pump to mould, and so on). Of key interest, in fact the reason for 

this work, is the study of the movement of the melt down the runner system of the mould. 

o 

Here the aluminum first enters the mould and immediately flows down a 19 grade ramp 

which induces such high speed that the surface becomes turbulent, tossing, folding and 

braking up the oxide film with such energy that creation and subsequent entrainment of air 
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generates bubbles. As Nyahumwa states, "this failure to control the filling process results in 

the advancing liquid front becoming unstable and entraining folded oxide-to-oxide film into 

the liquid" [21]. These bubbles are then carried along in the flow, finally to come to rest (in 

solidification) within the casting. In Figure 3.4, it can be seen that the head deck porosity 

bubbles mostly come to freeze in the rear of the casting, near the head deck surface. 

Figure 3.4: Concentration Diagram of the Ford 3.0L Duratec cylinder block for 
location of head deck porosity. 

As stated at the outset of this chapter, the earlier work conducted by the author and one of his 

colleagues Dr. G. Byczynski, has shown that the first metal to run down the runner in fact 

comes to be the metal residing in the rear of the casting which includes the head deck 

surface. Rule 2 is being broken in the making of the castings that contain head deck porosity, 

and it is the intent of this thesis to examine the role of the runner in this rule-breaking 

activity. 

The entrainment of folded oxide films into the bulk of the liquid metal occurs for a number 

of reasons: 1) meniscus damage as a result of surface turbulence during filling. 2) bubble 
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damage due to priming of a running system where air bubbles and attached oxides are 

entrained into the liquid metal and 3) temporary arrest of an advancing liquid metal meniscus 

during horizontal and downward flow of liquid metal when it is submerged by the melt [16]. 

There are as yet no universal design rules for gravity filling systems that are able to guarantee 

defect-free aluminum alloy castings, even though it is known that different running systems 

have different propensities to entrain folded oxide films in the castings. Mould filling 

systems are known to be the primary source of oxide film defects into aluminum alloy 

castings [16]. 

Further discussion is required of the surface oxide and its role in the process of making 

quality castings. 

3.3.4 Surface Oxides 

The oxide of pure aluminum is known as aluminum oxide AI2O3. This oxide is formed as 

atoms of aluminum are exposed to oxygen. Freshly exposed aluminum liquid will 

immediately grow an aluminum oxide covering, film or skin. In the case of an alloy of 

aluminum containing Magnesium as a predominant example, the oxide will be a combination 

of MgO and AI2O3, or spinel (MgO.Al203). The film growth takes place "atom by atom, as 

each metal atom combines with newly arriving atoms or molecules of the surrounding gas", 

the gas in our case being air [16]. In the case of pure aluminum, the initial stage of film 

growth is thought to start with the rapid formation of an amorphous alumina layer. This 

amorphous [22-24] structure then becomes crystalline in structure known as gamma (y) 

alumina, a cubic spinel [25] which is has little or no plasticity, and inhibits further oxidation 

of the liquid below. The film then changes in nature to become alpha (a) alumina or 

23 



Chapter Three, The State of the Science - Literature Review 

corundum which is a rhombohedralin structure [25, 26]. The volume of the oxide decreases 

by 24% but oxidation is able to occur at a faster rate through this covering because the 

shrinkage effect has broken the brittle surface exposing the liquid below [20, 25]. It has been 

suggested that oxide films fall under two broad categories; new and old [16]. New films are 

formed during pouring of the molten aluminum and their formation can be observed on the 

liquid stream as the melt is poured. New oxide films can also form in the runner system and 

mould cavity due to surface turbulence and the interaction with air. New oxide films are 

characteristically thin and folded when seen on a fracture surface [21]. Old films form on the 

surface of molten aluminum held in a furnace or ladle. These films are thick, often extensive 

in area and able to retain their size and shape due to their strength. Table 3.1 shows one 

concept of oxide categorization by age. 

Table 3.1: Forms of oxide in liquid aluminum alloys. After Divandari & Campbell [20]. 

Growth Time 
0.01-ls 
10s to 1 min 
10 min -1 hr 
10 hr -10 days 

Thickness 
1 urn 
10 nm 
100 urn 
1000 urn 

Oxide Type 
New 
Oldl 
Old 2 
Old 3 

Description 
Confetti-like fragments 
Flexible, extensive films 
Thicker films, less flexible 
Rigid lumps and plate 

Possible Source 
Pour and mould fill 
Transfer ladles 
Melting furnace 
Holding furnace 

For the intent and purpose of this research it can be assumed that for the case of aluminum 

flowing down a runner, newly exposed aluminum surfaces form skins instantly [25]. The 

tensile strength of this film, or skin, as depicted in Figure 3.5, is quite extraordinary, as a film 

less than 30 seconds old will withstand a steel probe pushed to a depth of roughly 6mm while 

o 

remaining intact (319 alloy at 760 C, air atmosphere). When pushed beyond this depth the 

oxide film tears and surprisingly the depression does not fill with liquid. The oxide film 

seems to reform so quickly that it is able to hold the surface liquid at bay even while the 

probe is pushed further into the bath - the depression is maintained up to 6 mm below the 
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rest of the bath. This highlights how quickly the oxide forms on the surface, faster than the 

time it takes for the head pressure to push the liquid back into the depression. Thusly 

stressed, the young 0.1 nm thick oxide layer maintains integrity until breaking stress at 

approximately 148 MN/m2 (MPa) [25]. 

Steel probe (7mm dia.) 

y— Young oxide film 

Liquid Al 760 C 

y^~ point of maximum stress 

Figure 3.5: Probe being pressed into the film of aluminum oxide on the surface 
of molten aluminum - demonstrating the capability of the film to withstand 

tensile loading. 

Because the film has such strength, it can "contain" a column of liquid aluminum poured 

onto a flat horizontal surface. As described in Section 3.3.3, if the action of the liquid, in a 

flow for example, is turbulent enough to overcome the film strength, the film will tear. If, on 

the other hand, the liquid is not in the dynamic or flowing state, but is still or quiescent as the 

case would be while sitting on a flat steel plate, the only danger to the film becomes the head 

height of the aluminum applying its weight to push against its captor (the film), while the 

film itself acts to try to keep the aluminum together in a puddle. An analogy can be drawn 

from the beads of water forming during a rainstorm on the nicely waxed roof of the family 

car. Depending on the strength of the surface film (i.e. the surface tension of the outermost 

molecules of water of the droplet), the vertical size (depth) of the drop is supported to a 

certain value before the film tears, the system breaks down and the bead spreads out to lower 

the depth of the liquid droplet - in effect lowering the head height. As more liquid is added, 

6.3mm 
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the height again increases until the maximum is again reached, and so on. So it is with an 

aluminum alloy, in this case 319, the maximum depth of the "droplet" being approximately 

12.5 mm [16]. Figure 3.6 shows a typical pour of a small (0.1 kg) amount of aluminum onto 

a steel surface. The same pour was repeated onto different surfaces, ceramic & concrete, and 

in each case the depth of the droplet remained approximately the same 12.5 mm as can be 

seen in Figure 3.7. This same approach was used by A. Halvaee and J. Campbell to 

determine the critical velocity of Aluminum Bronze Cu-lOAl alloy, and a very close 

correlation was found for the theoretical value of Vcrjticai derived from the measured sessile 

height [27]. 

Figure 3.6: A typical self-supported column of 319 aluminum: the sessile height of 12.5 mm would 
have been maintained even if the poured volume of liquid in making the sample above was 
doubled or quadrupled. (Part of the author's experiments) 

3.3.5 Critical Velocity Requirement 

Rules 2 and 4 can both be satisfied if the velocity of the advancing liquid wave front 

can be kept below the value of 0.5 ms"1 (Vcriticai)- The value for Vcriticai can be derived as 

follows; 

Suppose that a disturbance within a volume of liquid aluminum caused a force to be applied 

up against the oxide film surface. The surface will deform subject to the inertial pressure of 
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the disturbance, to form the beginnings of a wave. The value of the inertial pressure is 

Figure 3.7: Sessile drops formed from different volumes poured onto different substrates at different 
temperatures; a) 73(fC on Iron plate, b) 760 C on iron plate, c) 764 C on zircon sand, d) 730 C on iron 
plate, e) andf) at 764 C on zircon sand core. All samples measured between 12 and 12.5 mm in height. 

approximately p (density of the liquid) x V2 (velocity of the disturbance). Under ideal 

conditions, the wave will take the shape of a droplet of radius r, but its formation is restrained 

by the surface tension T in Figure 3.8. 

a) b) 

PV2 

=lnertial pressure -Restraining pressure 

Figure 3.8: Inertial pressure vs. restraining pressure at the surface of the molten film 
forming metal (advancement of time- a to b). 

The ratio of the inertial pressure to disturb the surface to the restraining pressure affected by 
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the surface tension is known as the Weber number We. If we assume We=l, then balance 

exists, or pV2 = (2 T)/r, which yields 

Vcritical = (2T/rp),/2 (2) 

For aluminum, the value of T is approximately 1 Nm"1; p is 2500 kgm"3, and r is between 2.5 

to 5 mm in diameter. Substituting, the result is Vcriticai
 = 0.4 to 0.6 ms"1 [28]. Once this 

velocity is exceeded, the surface of the metal will behave in a turbulent manner leading to the 

break-up, folding and entrainment of folded oxide and potentially bubbles. 

Another parameter that is useful to assess the possible break-up of the surface is the Froude 

number Fr [28]. The Froude number is the ratio of the inertial pressure to disturb the surface, 

to the restraining pressure effected by gravity. Since Fr=pV2/pgh, and at balance Fr=l, then 

pV2=pgh, or 

V2 = gh (3) 

Using equation (3) we find that for a wave h=12.5 mm high (sessile height), Vesical = 0.35 

ms"1. The predictions made by these two calculations (Fr and We numbers) are nearly the 

same, both predicting a critical velocity somewhere between 0.35 and 0.6 ms"1. 

If the concept of surface oxide breakup and entrainment occurring at and above some critical 

velocity is true, then plans must be made to prevent such a condition during the filling of a 

casting. 

To gain an appreciation of the conditions under which this velocity can be obtained, consider 

a stream of metal, free falling in a mould cavity. By the time the stream has fallen height Ah, 

the potential energy Eg = mgAh has become kinetic energy Ek= Vz mV [29]. Solving for V 

we obtain 

V = (2 g Ah)1/2 (4) 
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Where g is the acceleration due to gravity. Substituting Vcrjtjcai from (2) into (3) yields the 

critical drop height, or the height fallen at which V becomes critical (0.5 ms"1) 

Ahcriticai = VcritiCai /2g = 12.7 mm (5) 

The liquid metal only needs to free fall 12.7 mm before it has reached the velocity that will 

lead to surface turbulence enough to damage the oxide layer. Note that this value is nearly 

the same as the sessile height referred to in the last section found by> pouring molten 

aluminum onto a flat surface and allowing only the surface tension of the oxide skin to 

determine the depth of the droplet. 

o 

In dealing with an inclined surface, say the entrance of a runner, whose slope is 19 , where 

the molten aluminum is allowed to accelerate under the influence of gravity, the Ah becomes 

Ahcriticai = Vcriticai2/[2g sin( 19)] = 39.2 mm (6) 

Figure 3.9: Ahcriticai & dcri,icaifor a flow down a ramp 

As shown in Figure 3.9 above, the aluminum flowing down the slope will reach Vcriticai in 

only 120.4 mm of travel assuming that the initial velocity of the liquid at the top of the ramp 

was zero. The runner under study in this thesis is represented in Figure 3.10. It is similar to 

the runner depicted in Figure 8 except d = 142 mm and Ah =50.2 mm. With these 

dimensions, the velocity of the flow upon reaching the bottom of the ramp is 0.56 ms" , 
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which is already above Vcriticai without accounting for any initial velocity at the top of the 

ramp! Add to this figure an initial mould entry velocity of .20 ms"1 (an estimate drawn from 

experience) and one ends up with a velocity at the bottom of approximately 0.76 ms"1. 

"runner ramp- l ^ i m m 

Afrunner ramp 

= 58.2mm 

Figure 3.10: Sketch of the runner ramp under study. Dimensions result 
in velocities in excess of Vcriticai. 

This simple design flaw can account for not only film defects in the cast part, but more 

severe defects such as bubbles, or bubbles accompanied by long bubble trails - essentially 

cracks - in the casting [16]. 

While in the dynamic state, as in filling a mould, liquid aluminum flows through an 

infinite variety of shapes, twists and turns in filling the cavity. As depicted in Figure 3.11, 

during the filling of a riser, as an example, there is a certain velocity of the advancing front 

above which the liquid column is provided enough energy to exceed the sessile height and 

result in the liquid falling back down to the height which can be supported by the film 

strength - the sessile height. Upon falling, the film enveloping the whole plume of liquid will 

be chaotically broken, folded and submerged as it settles back down into the liquid below 

creating not only double oxides, but enclosing air to form bubbles. At the critical velocity 

the liquid can advance with a speed (and therefore momentum) that will not exceed the 
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sessile height, but will allow the flow to spread out into the horizontal floor of the cavity 

[27]. During this event, there is much activity at the front of the advancing drop. As the 

front advances the oxide film must be continually ripped and re-formed in order to expand 

the volume enshrouded by the once contiguous film. 

Figure 3.11: At the extremes of liquid front velocity entering a cavity within the mould; a) 
zero, b) critical and c) high. After Campbell 1991 [16]. 

Thus, the film will tear at the newest, thinnest/weakest location, which happens to be more 

flexible amorphous oxide, leaving an opening for the advancing liquid to escape from while 

the film sheet remains attached and intact with the older stronger portion of the film further 

behind the advancing front. In this scenario, as illustrated in Figure 3.12, the newly broken 

film now floating on the top surface is in effect extended or grown by the new film forming 

on the newly exposed aluminum just rushing out from under this older film. Likewise, the 

newly broken film that was on the lower side of the break (toward the mould surface) is freed 

to lie down beneath the advancing front, only to be replaced by newly formed film. It has 

been submitted (in Section 3.3.4) that by pouring the molten metal out onto a flat plate and 

measuring the resulting height of the pour, one can obtain an indirect measurement of the 
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critical velocity [27]. The two, height, and calculated VCnticai, indeed coincide nicely. 

a) Liquid flow encapsulated in an oxide skin 

Assume weakest film location 
as more liquid is pushed into 
the "envelope" created by the 
oxide film. 

Top is anchored to the rest of the 
film's espanse. 

Bottom of film is pinned to mold by 
weight of overhead liquid (friction). 

b) Tear allowing expansion of the liquid flow accompanied by immediate oxide re
formation 

c 
c) Further expansion of the liquid flow requires the new oxide film to be torn. 

Figure 3.12: Liquid aluminum enveloped in an oxide film a) time zero, thick (dark) oxide 
film encapsulates the liquid, b) A later moment where the film has been stressed enough to 
tear allowing liquid to escape and thin new film forms (purple), c) the process is repeated 
at still a later moment with the oxide layer aging and thickening as it is pushed away from 
the region of tearing. Note how the original (thick dark) film has not moved with the flow, 
but is being pushed both to lie on top of and below the flow while new younger and thinner 
lighter purple oxide extends the layer. The actual location of the tear is unknown and is 
not the subject of this paper, however the concept applies equally regardless of the tear 
location. 

The velocity of this advancing front again must remain at or below the critical 

velocity so that the film can be broken/re-grown in a laminar fashion without being subjected 

to such a degree of surface turbulence that would chaotically break, fold, and draw these 

pieces of film into the bulk liquid creating even more double films [16]. During the filling of 

a vertical section, the same sequence of events will occur -oxide tear -liquid emerge - oxide 
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formation - oxide thicken -oxide tear etc. As long as the critical velocity of 0.5 ms is not 

exceeded, the film will be captured against the walls of the mould to become the surface of 

the casting where it is harmless, as opposed to being broken into fragments, folded to entrap 

air then being entrained into the liquid resulting in casting defects [30]. Note that the surface 

oxide always entrains as a double oxide, folded dry side to dry side. Oxide films can only be 

introduced into the melt in this state, even if a film is pushed into the melt to try to create a 

single immersed film, it will be surrounded by two new non-wetting surfaces [31]. Figure 

3.13 depicts the process of quiescent filling resulting in surface oxide being placed against 

the walls of the mould. 

Figure 3.13: Quiescent filling of a vertical passage within a mould, a) The oxide layer atop 
the liquid (red) is forced to rip open and is then pushed toward the mould wall to 
accommodate the rising fluid. The freshly exposed aluminum quickly oxidizes to form a new 
film (bluejwhich then rips as shown in b), is then is pushed toward the wall while new film 
(black) is formed, and so on as the process is repeated in c). 

3.3.6 Managing the Oxide; Key Role of the Runner 

Combining the above quiescent filling phenomenon and the sessile height 

characteristic leads to the to the heart of this research. A runner designed with the sessile 

height in mind, (i.e. with a ceiling at the natural height), may be able to avoid oxide 
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disruption by surface turbulence and thus avoid the air entrainment that accompanies such 

activity. This would happen because of two supporting factors: 1) The aluminum front 

speeding down the runner will at all times touch the ceiling of the runner which will preclude 

surface turbulence from being able to disturb and entrain the oxide film and air associated 

with it, and 2) Any surface turbulence that may be present just beneath the film would not 

have any effect on an oxide layer that is "supported" by or even "stuck" to the ceiling. 

Professor John Campbell presents this concept in his Castings book series; however the 

method of filling the runners proposed therein uses gravity. The shape of the sprue and 

runner are the controls over flow velocity which is already well above the critical velocity 

due to the falling of the metal down the sprue [15]. Figure 3.14 presents the idea of the 

sessile runner as applied to the Cosworth Process of filling a mould. Since the aluminum 

velocity is largely controlled by the electromagnetic pump, the runner need not control the 

velocity, but only deliver the aluminum unharmed to the in-gates leading to the risers. 

\ \ I 1 12.5mm 
Mould ^Runner ^-In-gate (Sessile height) 

Figure 3.14: Cross-section of a sessile runner. 

Fuoco and Correa's work [32] approaches the same problem, that is, bubbles in the casting 
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due to oxide films being disrupted, folded and drawn into the melt along with the air bubbles 

they encapsulate. They propose different designs of runners as seen in Figure 3.15 to control 

velocity and thus avoid the entrainment problem. This practice works, as shown in their case 

histories, wherein the symptom of bubbles disappears with the application of the "thin 

tapered runner". Again the casting process associated with this work is gravity pour in which 

the melt purity is already somewhat destroyed by the initial filling of the sprue. The 

installation of the filter is seen to help remove these newly formed oxides, but more 

importantly, to slow the flow to below the critical velocity. 

Figure 3.15: Runner designs used by Fuoco and Correa; a) tapered thin and wide sprue associated to 
thin and wide runner -designed to maximize the effect offrictional forces and to reduce the metal flow 
velocity, b) cross section of runner, and c) schematic of gating system with foam filter with cross 
section designed to keep the metal flow velocity lower than 50cms~'. After Fuoco and Correa 2001. 

The filter works because of the liquid aluminum's inherent resistance to penetration of the 

pores of the filter by the action of surface tension, delaying the entry into the filter until the 

sprue has at least partially filled [16]. Fuoco and Correa [32] achieved success with and 

without the use of a filter, but always with a thin runner to "control the meniscus" as it is 
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phrased. Rezvani, Yang and Campbell [33] applied a thin "one-pass" runner to a gravity 

poured casting series and found the design that most minimized surface turbulence and air 

entrainment resulting in reduced bubble damage, yielded the strongest castings (i.e. higher 

mean tensile strength) (300 Mpa) compared to the castings made with traditional 

running/gating systems (230 Mpa) wherein bubble damage was abundant. The "one-pass" 

terminology is drawn from the idea that the runner height is low enough to prevent the initial 

wave of liquid metal from running the length of the passage and reflecting off the end wall to 

form a returning wave. This phenomenon results in the liquid passing the in-gates twice, 

once on the way down, and once on the way back. This practice forms relatively huge 

quantities of double oxide film, all poised & ready to be flushed up into the casting cavity. 

The "thin runner" concept Rezvani used agrees with the sessile height concept, but at 7 mm 

high, it is almost half the sessile height of 12.5 mm. The suppression of surface turbulence 

all the way into the mould cavity was the main purpose of the study, and proved to work. 

Whether the runner ceiling is the sessile height or a lesser height is irrelevant since the 

surface turbulence is suppressed [34], surface oxide is trapped, therefore controlled in either 

case. The drawback is that the thin configuration allows more heat to be withdrawn from the 

flow than is otherwise necessary. Ideally, the ratio of the area of flow (cross section) to the 

surface area should be at a maximum in order to avoid chilling the metal more than necessary 

while on the way to the mould, thus avoiding cold-shut defects. Again we see gravity being 

used as the vehicle by which the liquid metal is propelled into the mould, where the design of 

the runner and in-gates is critical in controlling the velocity - hence the need to make use of 

the larger frictional flow restriction obtained using a thinner runner. 

The current work is again distinguished from prior work in that the liquid is 
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introduced into the mould by the Cosworth Pump in a much more quiescent manner, control 

of velocity under the control of the pump rather than gravity, with the exception of the 

section of the runner that ramps downward. This thesis is firstly a study to establish whether 

or not there is a relationship between liquid flow velocity down the runner of the current 

WAP production mould and the quantity of bubbles in the cast sample, and secondly an 

attempt at correcting a flaw in an otherwise robust casting process. 

3.4 Methods of Quantification 

3.4.1 Weibull Analysis 

"The identification of good systems has also been based on sounder experimental 

techniques, particularly the use of Weibull statistics" [34]. In this statement, J. Campbell is 

referring to "systems" as the runners, in-gates, sprue design, mould filling methods etc., in 

short every component of the system used in making a casting. There are many variables 

involved simultaneously during casting, resulting in limited control over the flow of metal in 

a mould from one casting to the "identically" poured next. The turbulent nature of flow 

within the casting has given rise to variable mechanical property test results, even in 

"identically" cast samples, so that the predicted failure is not according to a standard 

distribution. Failure in ductile materials is best described by a Gamma distribution, whereas 

for brittle materials it has been found that the Weibull distribution is a more accurate model. 

The Weibull distribution (named after Waloddi Weibull) is a continuous probability 

distribution with the probability density function 

F(x) = (k/X)(x/Xf-%<x,X)k (7) 

for x>0, where k>0 is the shape parameter, and \>0 is the scale parameter of the distribution 
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[35, 36]. 

Since in brittle materials the strengths are determined by a random distribution of defects 

within the material, one piece of a material may contain only a small defect, while another 

sample of the same material may contain a significantly larger defect, or quantity of defects, 

which result in a large reduction in strength. The failure of an individual element of the 

material is assumed to result in the failure of the entire sample. Therefore a larger specimen 

of a material is more likely to contain a large flaw (or large numbers of flaws) and therefore 

is expected to have lower strength. In ductile materials, this is not the case, since the crack 

blunting process can occur. 

Weibull defined a probability of survival, which is skewed, as are many strength and fatigue 

life distributions. The cumulative density function is given by the expression 

FG)=l-exp[-(x-fi)/a)x] forx>0 (8) 

where F(j) is the cumulative fraction of failures up to a given strength value of x (in this case 

UTS), a is a position parameter where 1-1/e of the samples survive (approx 37%), ^is a 

lower strength boundary below which no specimen fails and X. is a width or shape parameter, 

referred to as the Weibull modulus. The greater the value of X the more narrow the range of 

strengths for that population, hence, by inference, the more consistently the samples of that 

population contain a like quantity and nature of defects causing failure to occur at or near the 

same load. 

The probability of a specimen surviving until a given stress is l-F(x). Setting the lower 

boundary to 0, the equation becomes 

FG)=l-exp[(x/a)x] (9) 

To reduce this to a straight-line plot, eliminate the minus sign in the exponential term, 

38 



Chapter Three, The State of the Science — Literature Review 

l/(l-FG)) = exp[(x/a)x] (10) 

Next take natural logarithms twice to obtain 

ln{ln[l/(l-F(j))]}= X ln(x) - X ln(a) (11) 

The expression on the left hand side can be plotted against the natural logarithm of x. A 

regressed line through this data yields a slope X (Weibull modulus), and intercept - X ln(a). 

The method of probability plotting described above will be used in dealing with 

results gained from the present research, as it is most applicable to brittle tensile failure data. 

This methodology can be applied to compare the Weibull modulus of tensile specimens cast 

under different casting conditions with confidence that an accurate model in each case 

encompasses the distribution of failure probability [35]. 

A Weibull modulus of 11 is approximately that of an engineering ceramic while a 

modulus of 50 is similar to that of an aerospace forging [37]. 

3.4.2 Radiography (X-ray) Image Analysis 

Radiograph images can be used as a means of "seeing" into a casting to determine not 

only the magnitude of the defect, but the quantity as well. Discontinuities within a casting 

can be counted, and rated in size according to published standards [38, 39]. Radioscopy, or 

real-time x-ray allows the technician to manipulate the part being examined to yield the 

optimal angle of view to accommodate for part shape. Radioscopy can also be applied to a 

dynamic process such as the filling of a casting, to allow the casting engineer to view the 

flow of liquid metal within the mould. This technique has been used to much advantage in 

understanding the relationship between sprue/runner/ingate designs and air bubbles within 

the liquid flow of the filling mould [40, 41]. The use of such an instrument presents major 
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advantages to the casting engineer in the diagnosing of mould filling/casting problems. 

3.4.3 Scanning Electron Microscopy (SEM) 

Detection/quantification of oxide content in the sample can be performed after 

samples have been cryogenically fractured to expose the internal structure with negligible 

deformation involved. The SEM sample location is determined by the x-ray imaging 

technique for the location of the bubble(s). The sample can then be frozen in liquid nitrogen 

and fractured at the bubble location. Observation of the fractured surface enables structure 

characterization including quantification of oxide content, and the nature of the oxide 

(thickness, new/old etc.) surrounding, attached to or adjacent to the bubble. 

3.4.4 Other Quantification Techniques 

Eddy current and ultrasonic inspection techniques are also non-destructive and have 

applicability to the detection of bubbles within a casting, and indeed even within a liquid 

metal flow. Due to the more complicated nature of the mould design to accommodate on

line ultrasonic monitoring, this technique was not used. Although both inspection techniques 

were available on site, it was determined that x-ray and SEM analysis of samples was 

sufficient in producing the necessary data. 

3.5 Mechanical Properties 

It has been shown that mechanical properties, especially fatigue life, suffer as the casting is 

filled in a more turbulent manner. Castings whose liquid metal was handled in such a way 

as to generate and include oxides typically possess tensile properties of Weibull 11, which is 
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the equivalent of a ceramic. The more the melt remains quiescent as it flows into the casting, 

the higher the Weibull modulus becomes until that of an aerospace forging is reached, the 

reason being as less and less oxides are present, fewer defect sites reside within the casting 

lending themselves to be initiate sites for failure. Fatigue studies revealed that cracks indeed 

initiate at the site of new or old oxides or entrained pores. In turbulently filled castings it was 

found that cracks initiate at these 3 characteristic sites. In quiescently filled castings, the 

new oxide and related pores were absent leaving only the old oxide films as initiation sites 

[21]. A mould may be designed such that all the cavity shapes promote quiescent fill and 

non-arresting surface movement and directional solidification characteristics, but with 

aluminum exposed to an improperly designed runner within the first second of mould fill, the 

damage is done even before the metal enters the casting chamber. 

3.6 Computer Simulation of Mould Filling 

Much work is being done currently to develop software that can predict many varieties of 

casting defects. The advantage of being able to predict a casting defect before any physical 

tooling or facilities are manufactured is incalculable. Currently, computational fluid 

dynamics is the term used by the trade in describing the software's method of determining 

flow characteristics within the mould, to enable prediction of flow velocity, flow path, 

trapped gas pockets and lapping. The software also incorporates the necessary heat transfer 

(conduction, convection & radiation) algorithms to allow the successful prediction of cold-

shuts and shrink defects [42-44]. 

The ability to predict flow generated (entrained) bubbles is not, as of the time of this writing, 

within the capabilities of casting simulation software [45]. The modellers state that this 
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functionality is needed by industry, desired by casting engineers and under development 

within software houses, yet does not currently provide reliable results [46]. 

3.7 Application of the Theory to a Real Process 

The data generated, and subsequent analysis performed within this thesis effort will be used 

to guide the future of mould design within the Nemak Corporation. 

3.8 Novel Approach to this Field 

This work is different from other runner related work, in that the existing runner system has 

never been studied scientifically for the contribution it may make to the formation of 

bubbles. Only generic "rule of thumb" knowledge has been applied to this runner, and that 

was performed during its design in 1989 [47]. The combination of the electromagnetic pump 

filling a sessile runner has not appeared anywhere in the literature leaving this the first study 

of its kind. 

3.9 Advancing the Science 

The available literature on this topic covers a wide range of running systems, none 

specifically focused on the WAP design or on any particular design for that matter, and 

certainly none on cylinder block head deck porosity. Runner work published to date by 

researchers such as J. Campbell, J. Runyouro, S. Boutorabi, Divandari, T. Isawa N. Green, S. 

Sulaiman, T. Keen, M. Masoumi, H. Hu, R. Fuoco and E. Correa lay a foundation for 

understanding runner systems that is needed as a platform to launch next steps, and so is 
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necessarily generic in nature, allowing it to act as a resource, tool, or idea with which the 

casting engineer can develop an application to his or her own specific case. The work of J. 

Campbell lays out all the fundamentals with respect to aluminum flow behaviour (oxide skin, 

flow-ability, runner design etc.) and is also necessarily generic (i.e. "the 10 rules of 

castings") in nature. No direct applications of all the aforementioned development work has 

been published to date and so the current work is novel in this respect. This thesis is really 

the application of Rules 2 and 4 by J. Campbell to the 3.0L zircon sand mould at WAP. This 

work is advancing the engineering knowledge in this area of study by developing an 

application to be used in academia and in the production environment, that is a manifestation 

of Rules 2 and 4. This work adds to the credibility of the rules, for the casting engineer's 

use, and provides a valuable example that can be genetically applied to any mould filled 

using a low pressure process (not necessarily using an electromagnetic pump) to induce flow. 

This work is applicable to any mould filled by a low-pressure process, or any process 

whereby a film-forming alloy must travel horizontally to begin its ascent into a mould. 
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Chapter 4 

Experimental Methods 

The experimental work of this project was divided into two streams, the first of which was to 

determine, using the production tooling from WAP to make "base cores", whether the flow 

within the runner system of the sand base core was a source of bubble generation. The link 

had already been established between the initial transient portion of the flow and the location 

of head deck porosity bubbles, so the scope of this thesis work was to determine the source of 

the bubbles. 

The second stream of research involved developing a runner shape that would avoid 

generation of bubbles in the initial transient flow of aluminum through the runner by 

adhering to the principles of Vcritical 0.5 ms"1 and sessile flow. This work was performed in 

collaboration with the Engineering Simulation Department Staff of Ford Motor Company's 

Casting Division. This process will be discussed in further detail later in this thesis. 

Casting experiments conducted in this thesis were designed to be a representation of the 

production process at the Windsor Aluminum Plant, not a reproduction of the process. Using 

the electromagnetic pump to make the subject test castings was not feasible. In lieu of the 

EM pump, a gravity pour system was developed. Though this method of getting molten 

aluminum into the mould is more prone to entraining air, oxides and the like, care was taken 

to minimize the distance from the ladle to the mould to minimize this effect. The effect of 

initial transient velocity down the ramp and throughout the runner length, and not the initial 

fall from ladle, was to be the controlling variable, and so long as the ladle to mould 

relationship was held constant for each experiment, the outcomes would be relatively 

comparable to one another. Since the production process conditions were not duplicated, an 
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absolute comparison of metrics i.e. mechanical properties, x-ray results etc., would not have 

been appropriate; however the comparison of casting properties subjected to different initial 

transient velocities within the experiment could be used as an indication of direction that 

could later be applied to the production process. 

4.1 Experimental Procedures 

Ideally, the plant production tools (core boxes) and electromagnetic pump pouring process 

would have been used for these experiments so that all the real metal flow conditions would 

apply themselves to the experimental casting process. Since this option was not feasible due 

to the demands of business, the parameter under study (initial transient velocity and its role in 

the formation of head deck porosity) was measured in the production casting-making process 

so that it could be duplicated/studied in an off-line experimental setting. 

4.1.1 Establishing Baseline Conditions 

The runner cavity is designed into the base core used in the 3.0L core package. One 

production 3.0L core package was instrumented with wire "probes" and cast in the 

production environment at WAP in order to establish the baseline values for the velocity of 

the initial transient down the runner. Figure 4.1 shows the test core package, or "timer" 

package instrumented with wire probes. Each wire, when touched with the aluminum 

flowing into the cavity, becomes part of a closed electrical circuit. Once this circuit is 

complete, the time at which the circuit was completed was recorded with an accuracy of +/-

0.1s. In this way, the location of the initial transient was known at discrete times, and thus 
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its speed could be calculated. In order to capture this information during the casting of a 

saleable production casting, special conditions had to be imposed on the process. As 

described in section 3.2.7, a capacitive sensor feeds level information to the casting 

controller. The presence of copper probe wires within the mould affects the sensor, altering 

the feedback signal, and therefore the filling scheme. The solution was to program the 

controller to provide identical-to-production voltage to the pump without the feedback signal. 

Two hundred and thirty eight recent casting records were averaged to yield the voltage curve 

that would be applied to the pump during the timer package casting. Figure 4.2 shows the 

Figure 4.1: Timer Package 
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Production Casting Records 

Time (s) 

Figure 4.2: Production casting voltage records averaged (heavy line) to yield a timer package 
voltage profile for casting the timer package without feedback. 

result of averaging these casting records. By doing this, the presence of the probe wires had 

no effect on the filling of the casting, producing the same metal flow in the ""timer" package 

as in a production casting. Figure 4.3 shows the data-recording instrument developed by the 

author and colleagues Dr. Glenn Byczynski and Danielle. Roberge, was used to capture all 

data during the pouring of the test bar castings. 

Figure 4.3: Data recorder 
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Within the package, the runner was outfitted with probes as can be seen in Figure 4.4. The 

probes were situated at the top of the ramp, bottom of the ramp, and three more probes 

spanning the remaining distance to the end of the runner. The data collected during casting 

was sufficient to establish the production casting process baseline initial transient velocity 

down the runner. 

Figure 4.4: a) Base core with probes installed in runner; b) close-up of wire probes near the end of the 
runner. 

To explore the theory that an initial transient whose velocity is less than 0.5 ms"1 will result 

in less bubbles formed within the WAP base core runner system, identical castings were 

made at both lower and higher velocities within each of the three phases of the experimental 

setup. 

4.1.2 Experimental Runner Castings (Test Bars) 

Each phase of the experiment was designed to have a different initial transient velocity down 

the runner. To accomplish this, the adjustable fixture shown in Figure 4.5 was used to hold 

the base core during the pouring activity. The fixture enabled the base core to be tilted at any 

o 

angle from horizontal to 35 . 
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Figure 4.5: Adjustable fixture used to support base core during 
pouring operation. 

Both the rate of metal pour, and the angle of tilt of the base core itself were adjusted until the 

desired experimental initial transient velocity was obtained. An ABB 5-axis Foundry robot 

(Figure 4.6) equipped with a ceramic ladle (Pyrotek #CC002192 - 3 lb capacity as seen in 

Figure 4.7) affixed to the tooling plate was used to handle the molten metal. 

49 



Chapter Four, Experimental Method 
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Figure 4.6: ABB robot used to pour test bar castings, shown with a 
large ladle used in casting cylinder aluminum heads. 

!a) 1;b) 

Figure 4.7: 3.5lb capacity ceramic ladle used to pour test bar castings, 
a) side view, b) front view. 

The ladle motion was optimized to half fill the ladle by dipping it into the bath of a 15,000 lb 

electric holding furnace (Figure 4.8), move to the mould and pour the metal into the base 

core to produce a "test bar" casting. 
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Figure 4.8: Pouring robot and electric holding furnace. 

This arrangement was ideal in reducing process variation from sample to sample due to the 

repeatability of the robot in both filling the ladle the same amount each time, and pouring the 

sample identically each time. 

Phase I testing consisted of pouring twenty test bar samples whose initial transient velocity 

down the runner was as close to the same as production as could be achieved. This was 

accomplished by trial and error with the robot tilting the ladle at different rates to pour metal 

into base core moulds instrumented with probes in the same manner as the timer package was 

instrumented. Eventually an acceptable rate of ladle tilt was achieved combined with the 

o 

mold tilt of 0 , so that the velocity of the initial transient of the flow was approximately the 

same as that in the production poured timer package. 

At this point the test bar casting was poured into the open mould, which had the potential to 

let any bubbles generated in the pour, rise to the surface and possibly disappear. Since the 

51 



Chapter Four, Experimental Method 

defect must remain in the interior of the cast section to have an effect on mechanical 

properties [28] or indeed to be found in x-ray at all, a copper block (25 mm x 25 mm x 178 

mm) was placed over the end of the runner cavity to act as a chill, as seen in Figure 4.9, to 

immediately freeze the surface, trapping any oxides and bubbles in the initial transient metal. 

I 

K 
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< 

Figure 4.9: Copperplate in place ready for pouring 

Subsequent to each pour, the copper plate was submerged in room temperature water to 

extract the heat gained during the chilling process. By cooling the chill after each use the 

plates were not only easier to handle, but reduced the effect of the chill plate temperature as 

an experimental variable. 

As the metal poured into the runner behind the initial transient, the liquid elevation rose high 

enough to overflow the runner channel. This was a favourable condition to apply slight 

pressure to the metal beneath the copper chill preventing waves or movement of the surface 

oxide layer and ensuring a full "casting cavity" which would result in a more uniform surface 

finish on the sample for the benefit of x-ray contrast. 
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Figure 4.10 shows a typical cast sample. The "test bar" end of the sample shown in Figure 

4.11 contained the initial transient of the pour and was sectioned from the rest of the casting 

for analysis. 

Figure 4.10: Typical cast of the runner system. The outline of the copperplate is outlined. A plan 
view of the casting is shown in the upper picture, with excess metal overflowing to each side of the 
runner channel. Sand remaining on the cast surface of the test bar can be seen in the lower picture. 

Figure 4.11: Test bar sectioned from the rest of the runner casting. 
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Phase II started again with experimentation of the tilt of the base core to different angles 

while keeping the ladle tilt motion identical to Phase I - again to reduce variation in process 

parameters between Phase I and Phase II results. Through extensive experimentation, an 

o 

angle of 18 tilt of the base core was found to yield a 60% increase in the initial transient 

velocity down the runner from the baseline velocity. This velocity was chosen based on 

observations, since a velocity any higher resulted in such obvious turbulence that it would 

have surely been outside any reasonable process parameters. Twenty runner bar castings 

were made under Phase II conditions. 

Phase III samples were made at an initial transient velocity slower than the baseline. The tilt 

o 

of the base core was approximately 5 and the rate of rotation of the ladle was slowed 

somewhat compared with Phases I or n. This new combination was required to completely 

fill the runner cavity beneath the copper block. Twenty samples were poured under Phase HI 

conditions. 

4.1.3 Other Process parameters 

4.1.3.1 Hydrogen Gas Content in the Melt 

The RPT (Reduced Pressure Test) system seen in Figure 4.12 was used to semi-quantitatively 

determine the amount of hydrogen in solution with the melt. Unfortunately there are no 

techniques or methods that can predict the degree of porosity in cast components [48] so the 

RPT system was used as is currently done in most casting foundries throughout the world. 

The Industrial Research Chair at the University of Windsor is engaged in a large project 

aimed at bringing a device to market that is capable of predicting porosity in castings based 

on a liquid sample from the furnace. The data from this work shows that there is a higher 
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accuracy for quantifying percent porosity in a casting when using the proposed Enviro-

A1TAP unit with reduced pressure (6 kPa) as opposed to a technique allowing ambient 

pressure (101 kPa) solidification of the test sample. The solubility limit of hydrogen in the 

melt is approximately 0.15 ml tk/lOOg Al when the sample is subjected to reduced pressure 

where the same limit is approximately 0.2 ml H2/100g Al when the sample is left to solidify 

at ambient pressure. These results show the "magnification" effect that RPT has on the 

quantification of porosity within a sample [48]. In the RPT procedure, a small sample of the 

melt is poured into a thin walled steel cup and placed into a vacuum chamber. The pressure 

is reduced to approximately 50 mm Hg (6 kPa) absolute pressure while the sample solidifies 

[49, 50]. As the sample loses temperature, the hydrogen comes out of solution to form 

bubbles. This process is enhanced by the low pressure to facilitate a more reliable visual 

comparison between a) the sample under examination Figure 4.13, and b) a standard set of 

pictures [14] as seen in Figure 4.14. Though the standards were made with a different 

sample shape, the comparison process is valid when comparing on a relative basis. Absolute 

numbers for hydrogen content within the melt are not used in production once the process is 

established with reference to the standards chart. To enable comparison levels of hydrogen 

with production, RPT testing was performed on the experimental furnace bath immediately 

before each of the casting phases, with two samples taken for each test. In each case, a rating 

of "1" was obtained, comparable to the standard sample number 1 in Figure 4.14. This same 

gas rating is seen as the norm for the production process at WAP. Identical results were 

obtained in each test. 
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Figure 4.12: Reduced Pressure Test (RPT) equipment for 
detecting gas in molten aluminum alloys. (AFS1998) 

Figure 4.13. Cross-section of the Reduced Pressure Test sample 

4.1.3.2 Chemical Composition Measurement 

The chemical composition of the melt was tested twice prior to each casting run phase, to 

ensure the melt conformed to the same material specification as the production castings at 

WAP. Differences in the levels of silicon or iron for example, could make a difference in the 

fluidity of the melt, and therefore its behaviour while flowing. The chemistry was analyzed 
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using the ARL (Applied Research Laboratories) Model 4460 Spark Emission Spectrometer at 

WAP. 

4.1.3.3 Temperature Measurement 

The temperature of the furnace bath was checked before and after each casting run to ensure 

this parameter did not play the role of a variable in the experimentation (i.e. fluidity of the 

o 

liquid). In each test, the temperature was 760 C as indicated by the Honeywell Temperature 

controller, which has an accuracy of+/- 2% (Certified March 10, 2004). 

4.1.4 Sample Testing 

4.1.4.1 Sample Preparation 

After casting, each sample was separated from the sand mould (base core). The initial 

transient portion of the casting ("test bar") was cut from the rest of the runner and numbered 

for identification. The top and bottom surfaces of each sample were lightly ground using #80 

followed by #120 grit paper and water to remove the surface sand. By removing any sand, 

and the rough aluminum surface that accompanies it, the x-ray images were freed of the 

artifacts (white specs) seen when sand is present (often mistaken for small bubbles in the 

aluminum). Care was taken to avoid grinding away the parent material surface, which may 

contain defects of interest. 
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Figure 4.14: Comparison standards of cast A356.0 poured under 100mm pressure, which 
can be used for porosity quality control. For example, No. 1 above may be specified as the 
standard for high quality castings, and No. 3 for general commercial quality. The centre 
number for each indicates percent surface area porosity, the bottom number the density. 
Stahl Co. 

4.1.4.2 X-ray Radioscopy 

Each of the sixty test bars were subjected to x-ray radioscopy. The images were captured 

digitally using a Fuji AC3 digital acquisition unit with Starview software by Virtual media 

Integration Inc. The images were rated for defects according to ASTM Standard E155 [38]. 
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Each rating consisted of the size and quantity of round voids (bubbles), areas of gas porosity 

and shrink porosity, and any other special cause defects i.e. differences in density within the 

sample due to sand, large oxide particles etc. 

4.1.4.3 Tensile Testing 

After being subject to the x-ray testing, one half of the test bars (ten) in each phase of the 

experiment underwent machining to produce tensile samples. The remaining ten test bars 

were subjected to SEM examination to establish the morphology of the bubble defects seen 

in the x-ray image. 

Each test bar was of sufficient length to allow machining of two round tensile specimens per 

ASTM Standard E 8-00 [51], each sample located end to end within the sample as depicted 

in Figure 4.15. 
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Figure 4.15: Test bar i) plan view, ii) side view, showing tensile specimen locations within. 
Sample A is 1.4 in. gauge length, 0.350 in. diameter; sample B is 1 in. gauge length, 
0.250 in. diameter. 

The testing was performed using the United Testing Machine at the Nemak Engineering 

Centre (calibrated June, 2004). The data was evaluated, and the Weibull modulus was 
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calculated to determine if the ultimate tensile strength could be used as a descriptor of the 

integrity of the sample 

4.1.4.4 SEMExamination 

After radiography, four of the remaining ten test bars were examined by scanning electron 

microscopy at the University of Windsor. Each of these test bars was compared with the 

corresponding x-ray to determine the location of an internal defect. The sample was notched 

at that location and fractured after being cooled in liquid nitrogen. In this way, the fracture 

surface was likely to contain a sample of the characteristic oxide defect for analysis - to 

assure that what the x-ray indicated was a bubble defect was interpreted correctly. 
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Chapter 5 

Experimental Results 

5.1 Initial Transient Velocity Results 

Table 5.1 contains probe locations measured from the top of the ramp, and the calculated 

average velocities during each phase of test bar casting respectively. 

Table 5.1: Table of probe locations and Vn results. 

Table of Probe Locations and the Respective Velocites Obtained in Testing 

Phase 

Baseline 

1 

II 

III 

Probe no. & Location as Measured from Probe at Top of the Ramp (m) 
1 

Top of ramp 

0.000 

0.000 

0.000 

0.000 

2 
Bottom of ramp 

0.148 

0.145 

0.147 

0.126 

3 

0.262 

0.263 

0.284 

0.254 

4 

0.368 

0.369 

n/a 

n/a 

5 

0.507 

0.468 

0.412 

0.395 

6 
End of runner 

0.551 

0.541 

0.533 

0.523 

Phase 

Baseline 

1 

II 

III 

V|T at Respective Probe Locations (ms'1) 

1 
Top of ramp 

0.0 

0.0 

0.0 

0.0 

2 
Bottom of ramp 

0.7 

0.7 

0.7 

0.4 

3 

0.7 

0.7 

0.9 

0.4 

4 

0.7 

0.7 

n/a 

n/a 

5 

0.7 

0.7 

1.0 

0.4 

6 
End of runner 

0.7 

0.7 

1.1 

0.3 

A schematic of the runner is given in Figure 5.1 to assist the reader in relating the data to the 

real event of runner initial transient. A graphical representation of the initial transient data in 

Table 5.1 is presented in Figures 5.2 through 5.5. Note that the values represent the average 

velocity, or the total distance traveled by the frontal surface of the pour, divided by the time 

taken to reach the respective destination probe. The setup was tested until the desired 

velocity profiles were reached, then one confirmation pour was done to verify the values. 
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Since there were limited numbers of pours with instrumented runners, no statistical data (i.e. 

standard deviations) can be realized for average velocities reached at each of the probe 

locations. 

0.51 0.55 

Distance along runner surface (m) 

Figure 5.1: Cross-sectional schematic of runner 

0.20 0.25 0.30 0.35 

Distance along runner (m) 

Figure 5.2: Baseline production initial transient velocity results. 
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Figure 5.3: Phase I Runner Velocity Results (V!T1) 

1.20 

Figure 5.4: Phase II Runner Velocity Results (VITI1). 

63 



Chapter 5, Experimental Results 

1.0 

0.9 

0.8 

0.7 

r 
8 0.6 

Average Velocity to 
Probe (ms-1) 

0.5 

0.2 

.&-&A-

0.0 if&Q , , , , , , , , , 1 , 
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 

Distance along runner (m) 

Figure 5.5: Phase III Runner Velocity Results (VITW). 

5.2 X-ray Radiographic Results 

The purpose of the radiographic analysis was two-fold: a) to enable the author to quantify the 

number and size of bubbles generated within the initial transient under different conditions of 

velocity, and b) to facilitate fracture sample at the location of a defect for SEM analysis. 

Table 5.2 contains quantity and size of bubbles entrained within the flow and then frozen 

within the test bar casting at the end of the runner. 

Figure 5.6 displays a histogram of Table 5.2 data showing the quantity and size of bubbles 

generated in each phase of the experimentation. 
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Table 5.2: Bubble count results per x-ray examination. 

Table of Radiographic Results 

Gas (G1-G8) ratings are according to ASTM E-155 standard (G1 =small and G8 =large bubble sizes). 
Numbers represent the quantities of bubbles found in the test bar at the respective rating. 

Sample no. 
1 
2 
3 
4 
5 
6 
7 
8 
g 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Total bubbles/size 

Total bubble count 

Overall average Initial 

Transient velocity (ms l) 

Phase I 
G1 
2 

2 
1 

3 

1 
1 

1 

2 
0 

13 

G2 

1 

1 

1 

1 
1 

5 

G3 

2 
2 

1 

5 

G4 

1 

1 

2 

G5 

0 

G6 

0 

G7 

0 

G8 

0 

25 

0.68 

Phase II 

t\ 
4 
1 
3 
1 
1 
1 
1 
3 
8 
3 
4 
4 
4 
1 
2 
1 
5 
7 
1 
2 

57 

G2 
1 
1 

1 
1 
1 
1 
4 
2 
3 
1 
3 
1 
1 
3 
1 
2 
1 
2 

30 

G3 
2 

2 
2 
3 
3 
1 

1 
1 
1 
3 
1 
6 
1 

1 
2 
2 

32 

G4 
3 

4 
2 

1 
2 
2 
1 
1 

1 

17 

G5 
1 

1 

1 
1 
2 

1 

2 
1 
1 
1 

12 

G6 

1 

1 

1 
1 

1 

1 
1 

7 

G7 

1 

1 

1 
1 

4 

G8 

1 

1 

2 

161 

1.07 

Phase III 
G1 

0 

G2 

0 

G3 

0 

G4 

0 

G5 

0 

G6 

0 

G7 

0 

G8 

0 

0 

0.33 

G1 G2 G3 G4 G5 G6 G7 G8 
Bubble (Size) Rating 

Figure 5.6: Bubble count results per x-ray examination. 
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Figure 5.7 displays a plot of the quantity of bubbles generated to the average velocity for the 

pour. Note that the velocity used to plot the data is that of overall average velocity from the 

top of ramp to the end of runner (i.e. each value in Table 5.1 is calculated by dividing the 

distance [from the probe at the top of the ramp to the subject probe], by the time taken for the 

aluminum to flow between the same two probes, and so the overall average velocity is the 

same calculation between the probe at the top of the ramp and the probe at the very end of 

the runner). 
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Figure 5.7: Quantity of entrained bubbles as related to runner velocity. 
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5.3 Tensile Strength Test Results 

To test the hypothesis that the ultimate tensile strength of the sample is sensitive to the 

number of bubbles within a sample, two sample test bars were machined from each casting 

from each phase, and destructively tested in tension mode. Results are summarized in Table 

5.3. 

Table 5.3: Ultimate Tensile Strength Test Results. 

Tensile Specimen 'A' Results 

Phase 1 

Tensile 
Sample ID 

11-21a 
11-5a 
11-8a 
11-2a 

11-20a 
11-16a 
11-14a 
11-4a 
11-22a 
11-1a 
11-13a 
11-7a 
U-I9a 
11-9a 

11-11a 

Phase/ 
Sample 
Location 

HA 
IIA 
HA 
IIA 
IIA 
IIA 
IIA 
IIA 
IIA 
IIA 
IIA 
IIA 
IIA 
IIA 
IIA 

UTS 
(MPa) 

152.3 
192.2 
235.2 
235.4 
237.0 
238.9 
243.9 
244.3 
248.9 
251.5 
252.4 
252.5 
254.2 
254.7 
262.2 

Phase I 

Tensile 
Sample ID 

1-16a 
1-15a 
l-20a 
1-12a 
1-la 

1-19a 
1-13a 
1-15a 
1-2a 

1-14a 
l-3a 
1-8a 
1-5a 
1-7a 
1-18a 

Phase/ 
Sample 
Location 

1A 
1A 
1A 
1A 
1A 
1A 
1A 
1A 
1A 
1A 
1A 
1A 
1A 
1A 
1A 

UTS 
(MPa) 

260.7 
266.5 
264.8 
265.0 
249.5 
272.4 
255.9 
236.3 
255.2 
263.9 
243.9 
270.3 
257.3 
261.4 
271.3 

Tensile 
Sample ID 

111-8a 
111-6a 
m-11a 
111-133 
111-10a 
111-17a 
111-16a 
111-19a 
111-13 

m - l 8 a 
m - l 2 a 
1H-3a 
1H-2a 
111-73 

11l-20a 
H1-4a 

Phase III 
Phase/ 
Sample 
Location 

IIIA 
IIIA 
IIIA 
IIIA 
IIIA 
IIIA 
IIIA 
IIIA 
IIIA 
IIIA 
IIIA 
IIIA 
IIIA 
IIIA 
IIIA 
IIIA 

UTS 
(MPa) 

208.2 
209.9 
214.2 
216.0 
217.4 
217.9 
218.2 
218.6 
220.0 
220.4 
223.1 
225.5 
226.8 
227.5 
237.7 
238.2 

Tensile Specimen 'B' Results 

Tensile 
Sample ID 

11-7b 
11-21b 
11-2b 
11-13b 
11-17b 
11-16b 
11-14b 
11-11b 
11-9b 
11-22b 
11-19b 
11-6b 
11-5b 
11-1b 
11-8b 

Phase/ 
Sample 
Location 

IIB 
IIB 
IIB 
IIB 
IIB 
IIB 
IIB 
IIB 
IIB 
IIB 
IIB 
IIB 
IIB 
IIB 
IIB 

UTS 
(MPa) 

186.2 
225.2 
238.5 
248.1 
250.1 
251.6 
252.4 
256.1 
257.2 
258.5 
259.9 
260.0 
262.0 
265.0 
268.9 

Tensile 
Sample ID 

111-11b 
111-6b 

111-13b 
111-18b 
111-20b 
111-17b 
111-1b 
111-2b 
111 -8b 
111-16b 
111-19b 
111-4b 
111-7b 
111-10b 
111-3b 
111-12b 

Phase/ 
Sample 
Location 

IIIB 
1MB 
IIIB 
IIIB 
IIIB 
IIIB 
IIIB 
IIIB 
IIIB 
IIIB 
IIIB 
IIIB 
IIIB 
IIIB 
IIIB 
IIIB 

UTS 
(MPa) 

222.5 
225.9 
233.0 
233.8 
234.0 
234.2 
234.3 
234.3 
238.6 
238.9 
239.9 
240.6 
240.6 
245.4 
263.8 
274.4 

Tensile 
Sample ID 

1-3b 
1-8b 
1-5b 

1-14b 
1-16b 
1-2b 
1-1b 

1-13b 
1-19b 
1-12b 
1-7b 

Phase/ 
Sample 
Location 

1B 
1B 
1B 
1B 
1B 
1B 
1B 
1B 
1B 
1B 
1B 

UTS 
(MPa) 

284.7 
271.6 
236.6 
268.9 
260.3 
269.4 
273.8 
273.4 
265.0 
276.7 
278.0 
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Table 5.4 contains a summary of tensile testing on both the 'A' and 'B' portions of the test 

bars. 

In addition, to test the hypothesis that the Weibull modulus of each tensile sample's ultimate 

tensile strength (UTS) is related to the number of bubbles within a sample, the calculations 

were performed, plotted and analyzed. Results are found in Section 6.4. 

Table 5.4: Summary of tensile testing results. 

Summary of Tensile Testing Results - UTS (Mpa) 

Phase 1 
'A' Tensile Samples 

Statistic 
Min 

Max 
Std. Deviation 

Average 

Value 
236.3 
272.4 
10.3 

259.6 

'B' Tensile Samples 
Min 
Max 

Std. Deviation 
Average 

236.6 
284.7 
11.6 

269.3 

Average (A & B) 

Overall Avg.V,T(ms"1) 

264.5 

0.7 

Phase II 
'A' Tensile Samples 

Statistic 
Min 

Max 
Std. Deviation 

Average 

Value 
152.3 
262.2 
28.5 

237.0 

'B' Tensile Samples 
Min 

Max 
Std. Deviation 

Average 

186.2 
268.9 
20.5 

249.3 

Average (A & B) 

Overall Avg.ViT(ms"1) 

243.2 

1.1 

Phase III 
'A' Tensile Samples 

Statistic 
Min 

Max 
Std. Deviation 

Average 

Value 
208.2 
238.2 
8.4 

221.2 

'B' Tensile Samples 
Min 

Max 
Std. Deviation 

Average 

222.5 
274.4 
12.9 

239.6 

Average (A & B) 

Overall Avg. VlT(ms'1) 

230.4 

0.3 

Figure 5.8 displays the tensile results found in Table 5.4 graphically. 

Phase I I Phase II • Phase III 

Sample A 

269.3 

239.6 
f 

Sample B 

Sample From Test Bar 

Figure 5.8: Ultimate tensile strength test results for each phase of testing, and each of the 
two test bars A &B taken from each cast sample. 

68 



Chapter 5, Experimental Results 

5.4 SEM Observations 

Several test bars were analyzed by x-ray to determine the location of an internal bubble. The 

location was marked on the bar, and steps were then taken to fracture the bar through the 

bubble defect. Figure 5.9 shows a typical cryogenic fracture surface studied using scanning 

electron microscopy. The nature of each bubble was examined and all bubbles observed 

were found to be lined with thin (new) wrinkled films of oxide, indicating that the bubble 

was formed by inclusion of air during mould fill. Figures 5.10 and 5.11 represent typical 

SEM observations of the morphology of the inside of a bubble within the test bar. This oxide 

morphology is typical of an entrained bubble of air. The morphology of the interior of the 

cavity was smooth and wrinkly, with some dendrite tips poking into the cavity. 

Figure 5.9: Test sample fractured for SEM study. 
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* • . \ * 

* 

' j « $ i e 

Figure 5.10: Phase I Sample 6-Smooth oxide film lining the inside of a 
bubble. 

Figure 5.11: Phase I Sample 6-Slightly wrinkled oxide fit 
of a bubble. 

Im lining the inside 

5.5 Test Bar Micro-structural Observations 

Tables 5.5 and 5.6 contain results of secondary dendrite-arm spacing (SDAS) measurements 

and the standard deviations thereof respectively, taken at five locations across the cross 

section of a Phase II test bar, and a Phase III test bar. The measurements taken at location 1 

are taken near the surface of each test bar that was in contact with the copper chill plate. 
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Location 5 measurements are taken nearest the surfaces in contact with the sand of the runner 

mould (refer to Figures 5.12 & 5.13). 

Table 5.5: SDAS Measurements on sectioned test bars (100X magnification). 

Phase 11 Sample SDAS Measurements (urn) (Sampiesizeofi) 

Location 

Sample 11-7, Surface 1 

Sample II-7, Surface 2 

Average II 

1 
Top of sample 
(against Cu) 

13.9 

12.9 

13.4 

2 

16.7 

14.0 

15.4 

3 

20.2 

18.1 

19.2 

4 

21.4 

19.5 

20.5 

5 
Bottom of sample 

(against sand) 

19.4 

19.7 

19.6 

Average 

18.3 

16.8 

17.6 

Phase III SDAS Measurements ((am) (Sample size of 1) 
Sample III-5, Surface 1 

Sample III-5, Surface 2 

Average III 

16.1 

17.6 

16.9 

18.0 

21.4 

19.7 

19.7 

22.3 

21.0 

23.2 

26.4 

24.8 

25.2 

26.6 

25.9 

20.4 

22.9 

21.7 

Table 5.6: Standard deviation of SDAS measurement data. 

Std. Deviation of SDAS measurements (LUTI) 

Sample III-5, Surface 1 

Sample II-7, Surface 1 

Sample III-5, Surface 2 

Sample II-7, Surface 2 

1 
Top of sample 
(against Cu) 

1.9 

1.9 

2.1 

1.6 

2 

2.2 

3.3 

3.0 

2.4 

3 

3.5 

2.3 

1.9 

3.0 

4 

3.9 

3.6 

4.1 

2.3 

5 
Bottom of sample 

(against sand) 

3.8 

4.5 

4.3 

3.2 

In addition to the above measurements, metallographic observations (200X magnification) 

made on each sample revealed the percent porosity to be zero in each case. 

Figure 5.15 is a plot of the SDAS data in Table 5.6. 
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Sample extracted for metallurgical evaluation 

POLISHED 
SIDE 2 

POLISHED 
SIDE1 

• a s a ?:&.,-•"»••-

r • :""\v *»i'i w * l,j!Ef-r 20 mm 

i * - - • " - . : 

"Top" of bar (in contact with the copper chill) Initial transient metal 

Figure 5.12: Typical test bar cut for DAS micro-structural evaluation. 

SDAS test location nearest bottom of bar 
(in contact with sand mould) 

SDAS test location nearest top of bar 
(in contact with copper chill) 

Sample surface #1 
(Surface 2 opposite face) 

Figure 5.13: Extracted test bar sample for metallurgical evaluation (shown here upside down). 
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AVGERAGE: 194 |im 
STD DEV.: 43 

AVGERAGE : 214 urn 
SID DEV. 4.1 

AVGERAGE. 
STD DEV 

AVGERAGE: 
STD DEV. 

• 

202 pm 
19 

„ 

K5 7(un 
3X1 

I (i»(m 

Figure 5.14: SDAS measurements and micrographs. 

20 

I 
<T5 

D Sample 111-5, Surface 1 

a Sample II-7, Surface 1 

D Sample III-5, Surface 2 

a Sample II-7, Surface 2 

Top of sample 
(against Cu) 

I 

Measurement Location 

Bottom ofsample 
(against sand) 

Figure 5.15: SDAS measurement results from five locations (Top—Nearest the surface touching 
the copper chill, Bottom^ nearest the surface touching sand) within each of two sections 

(surfaces 1 &2) of test bars from Phases II and HI. 
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5.6 Fill Simulation of Current and Sessile Runner Designs 

Figures 5.16, 5.17 and 5.18 show the highest velocity events during fill in the Magma 

simulation of the current production runner design. 

Figure 5.16: MA GMA 3. OL cylinder block fill simulation-current runner@ 3.2 seconds; Initial Transient (IT) is 
only halfway down the ramp and V!T is already nearly 0.7 ms'1. 
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Figure 5.17: MA GMA 3. OL cylinder block fill simulation-current runner@ 3.2 seconds; IT is more than half 
way down the runner's length. VIT remains at approx. 0.7 ms~''. Note the higher velocity nearest the bottom of 

the ramp during a time when the aluminum in the runner is exposed to air (white). 
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Figure 5. J 8: MAGMA 3.0L cylinder block fill simulation-current runner@ 4.0 seconds; IT is nearingthe end of 
the runner. VIT remains at approx. 0.7 ms~ . 
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Figure 5.19 is an image of the sessile runner designed for the 3.0L core package. 

! Project: WAP 301 
Version: V02 

J Numberof elements: 13294068 
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Figure 5.19: Solid Model of Sessile Runner Design (view from beneath). 
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Figures 5.20, 5.21 and 5.22 show the highest velocity events during fill in the Magma 

simulation of the sessile runner design. 
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Figure 5.20: MAGMA 3.0L cylinder block fill simulation-sessile runner@ 5.7 seconds; V!T < Vc critical 
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Figure 5.21: MAGMA 3.0L cylinder block/ill simulation-sessile runner@ 6.0 seconds; VIT < Vcrilicai 
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Figure 5.22: MAGMA 3.0L cylinder block fill simulation-sessile runner@ 6.5 seconds; VlT < Vcritical 
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Chapter 6 

Discussion of Results 

6.1 Initial Transient Velocity (ViT) 

The velocities of the initial transients produced in these experiments were purposely designed 

to be; a) same as production (Phase I), b) faster than production (Phase II), and c) slower than 

production (Phase III) initial transient velocity. The corresponding velocities down the ramp, 

and overall average velocities were measured and recorded for each probe along the runner's 

length. The instantaneous velocities were not calculable, as the necessary additional probes 

were not installed, nor would the sampling rate have been able to capture the data generated 

by such an arrangement. 

Figure 5.2 shows the velocities in the timer package poured during a production casting 

cycle. This data set became the baseline to which all-subsequent experimental casting runs 

were compared. In each case, the velocity stated is the average velocity, or the distance from 

the probe at the start of the runner (top of the ramp) to the subject probe, divided by the time 

taken for the aluminum to travel between the same two probes. For the baseline (production 

condition), the average velocity of the initial transient running down the ramp was 0.74 ms"1. 

Beyond this point, the average velocity remained relatively constant at approximately 0.69 

ms"1. 

The VIT generated in Phases I, II and III are graphically presented in Figures 5.3, 5.4 and 5.5. 

Phase I samples were poured with the resulting average velocities as seen in Figure 5.3. The 

tilt of the ladle achieved a pour whose average velocity in the ramp portion of the runner was 

0.73 ms"1, almost identical to the baseline production speed. Downstream of the ramp, the 

velocity of the initial transient remained relatively steady at an overall average of 0.68 ms"1, 
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very similar to the baseline case, and note that this velocity is 36% higher that Vcriticai of 0.50 

ms"1. 

Phase II velocities are shown in Figure 5.4. The average velocity down the ramp was 

0.73ms"1; increasing up to 1.07 ms"1 by, the time the metal came to the end of the runner. 

Again all velocities in this phase exceeded Vcriticai, this time by more than 100%. 

In Phase III, pours were slowed, intended to be below Vcrjticai as seen in Figure 5.5. The 

value for Vavg down the ramp was 0.41 ms"1 with the downstream Vavg remaining below 

VCriticai for the remainder of the runner fill. 

Recall that the calculated predicted velocity for the initial transient at the bottom of the ramp 

was 0.76 ms"1 in section 3.3.5. This derived number matches the Vrr for the ramp portion of 

the mould for conditions in Phases I and II, but not for Phase III. The Phase III pour Vrr was 

slower than the predicted value by 46%. In reviewing the nature of the pouring process, it 

can be seen that the mass flow-rate of Phase I and II pours was substantially higher than that 

of the Phase III pour. Since the calculations for the predicted Vrr do not account for surface 

tension, it may be that in a small flow-rate situations such as in the Phase III pour, the 

integrity of the oxide film is being maintained because of a lack of turbulence, and is thus 

restraining the flow from proceeding down the ramp. If by increasing the mass of the flow 

inertial energy is increased, and turbulence is increased tending to damage the integrity of the 

film, the ability of the surface film to retard flow is reduced and is negligible in retarding the 

initial transient. There may be some threshold value for mass flow-rate below which the 

surface film can have a significant mitigating effect on VIT. 

As for the phase I and II pours, the fact that these Vrr numbers match predictions supports 

the theory that the bubbles found in production castings are generated in the ramp region of 
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the mould, since both Phase I and II ramp Vrr generate bubbles (as does production Vu) and 

Phase III ramp Vrr does not. 

6.2 Discussion of Initial Transient Velocity vs. Bubble Count 

Figure 5.6 shows data relating distribution of bubble count and bubble size to the velocity of 

the flow. The graph indicates; a) for the current runner design, both larger bubble size, and a 

larger quantity of bubbles were produced as the overall average initial transient velocity 

increased, and b) no bubbles are produced at or below 0.43 ms"1 (below the Vcritical of 0.5 

ms"1). These two results are consistent with the literature on this subject. 

It is evident from x-ray data that as Vrr increased, the number of bubbles generated 

increased. In Phase III, the relatively low Vrr (Vn-ramp = 0.42 ms"1, Vir-end of runner = 

0.33 ms"1) produced no bubbles, whereas both the increased Vrr in Phases I and II (Phase I: 

ViT-ramp = 0.73 ms"1, Vn-end of runner = 0.68 ms"1, and Phase II Vrr-ramp = 0.73 ms"1, Vrr-

end of runner = 1.07 ms"1) produced bubbles within the test bars. 

These results are consistent with the literature citing the 0.5 ms"1 critical velocity 

requirement. 

By summing the number of bubbles found in all x-rays of each respective runner velocity 

trial (Phase I, II and III), it can be seen in Figure 5.7 that a polynomial curve drawn through 

the data points intersects the abscissa at approximately 0.5 ms"1, again as predicted in the 

literature on this subject. 

6.3 Discussion of Tensile Test Results 

Examination of Figures 5.8 and 6.1 show the highest average ultimate tensile strength is 
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consistently achieved in the Phase I samples, (i.e. those poured with initial transient velocity 

closest to the production condition). Samples made at the slowest initial transient velocity 

(Phase III) tested lower in ultimate strength compared with the Phase I and Phase II samples. 

I 
! 

I 

270 

260 

250 

240 

230 

220 

210 

200 

Figure 6.1: Averaged UTS data for each set of test bars (A +B)for each Phase of Vj IT. 

Though unexpected, this result is logical because the Phase I & II test bars were identically 

poured with the exception of the Vrr beyond the bottom of the ramp (i.e. the average Vrr 

down the ramp was identical, and both castings had enough head pressure to fill the mould 

and press the aluminum against the sand mould and the copper chill), while Phase III samples 

cooled differently (more slowly) and also contained no bubbles. An explanation for the low 

Phase III UTS may be found in that the SDAS is 23% larger (Table 6.1) than Phase I samples 

(and by inference, Phase II samples) because of the lower rate of cooling. The evidence for 

this is seen in Figure 6.2 where pictures of test bars reveal that the top corner edges of the 

Phase III castings did not achieve contact with the copper chill, preventing the chill from 

drawing heat out of the sample at the same rate that Phase I and II samples experienced. The 
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slow pour rate of the Phase III samples would also have resulted in a casting that filled the 

mould at a slightly lower temperature than Phase I or II samples. It can also be the case 

whereupon during solidification, the contraction of the sample away from the heat sink 

(copper chill plate) would have reduced the total heat flux [16] resulting in an even lower rate 

of cooling exacerbating the case for slower cooling rate. The phenomenon is noted, but not 

considered important here, as the focus of this experiment is bubbles, not solidification 

structure. 

Table 6.1: SDAS comparison (Phase II vs. Phase III) 

SDAS Measurement Comparison Phases II 

Location 
1 

Top of sample 
(against Cu) 

2 3 

Average II-Average III 3.45 4.3 1.8 

% Difference 25.7% 27.9% 9.4% 

VS. Il l (Lim) (Sample size = 
4 5 

Bottom of sample 
(against sand) 

4.3 6.3 

21.0% 32.1% 

1) 

Average 

4.03 

22.9% 

It was thought that sample A data may behave differently than sample B data since the 

sample A test bar is located further away from the leading portion of the initial transient for 

all Phases I, II and III. To examine this possibility, the Anderson-Darling normality test was 

performed (using pooled standard deviation due to unequal sample sizes) to determine 

normality of each UTS data set followed by a test for equal variances, followed by the Mood 

Median Test. Results are found in Tables 6.2 through 6.5. 

Since the UTS populations were not distributed normally, before testing for population 

equality the variance required comparison as per Tables 6.3 and 6.4. 

Since the P-Value for Levene's test was above 0.05 for all tests, the null hypothesis must be 

rejected, that is, the variance of each compared population was the same. Once this was 

established, the UTS populations were compared using the Mood Median Test (Mood's 
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Figure 6.2: Picture of two test bars after being cut from the runner casting. 
Left: Picture of a Phase III test bar revealing incomplete contact with the copper 
chill at the edges of the casting (rounded edges). Right: Phase I test bar with 
sharp edges and even a small amount of flash due to overpressure achieved in 
the mould cavity upon reaching full condition. 

Table 6.2: Test for normal distribution. 

Test for Normality of Distribution (UTS Data). 

Tensile Sample 

A Data 

B Data 

A+B Data Combined 

Phase 1 

Normal 

Not Normal 

Normal 

Phase II 

Not Normal 

Not Normal 

Not Normal 

Phase III 

Not Normal 

Normal 

Not Normal 

Table 6.3: Results ofLevene's Test for Equal Variance between A &B samples within Phases. 

P-Value of Levene's Test for Equal Variance 

Tensile 
Samples 

Phase 1 A 

Phase II A 

Phase III A 

Tensile Samples 

Phase 1B 

0.961 

Phase II B 

0.599 

Phase III B 

0.515 

Median Test accommodates data whose distribution is non-normal with equal variance of 
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Table 6.4: Results ofLevene's Test for Equal Variance across Phases. 

P-Value of Levene's Test for Equal Variance 

Tensile 
Samples 

A 

B 

A+B 

Phases Being Compared 

1 vs. II 

0.207 

0.498 

0.938 

II vs. Ill 

0.123 

0.468 

0.580 

I vs. Ill 

0.508 

0.944 

0.370 

compared populations). The population means could not be compared due to the non-

normality of the distribution of UTS values. Results of the Mood Median test are found in 

Table 6.5. Although not strictly applicable, 2 Sample T-Test was applied to the same data to 

compare the population means as a rough correlation check (the 2 Sample T-Test prefers 

normally distributed data for most reliable results). 

The criteria for determining if a difference exists lies in the P-Value of the Mood's test. If 

this value lies below 0.05, then there is a difference in the median values of the two 

populations being compared, by the amount given in the confidence interval. 

Examining the comparisons between UTS of tensile specimen A vs. B, there exists a slight to 

mild difference in the Phase I and II test data and a slightly larger difference in the Phase III 

data. 

Examining the comparisons between UTS of tensile specimens A across Phases, and then B 

across Phases, the same trend is seen, that is, there is a larger difference between Phase I or II 

and Phase III data than between Phase I and II data. 

Again examining the comparisons between pooled A+B tensile bar UTS data across Phases, 

it can be seen that the greatest difference in strength is between Phase II samples and the rest. 
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Table 6.5: Results of Mood's Median Test, and 2 sample T-Test. 

Compared Populations 
Phase/Tensile Specimen 

1 A vs. 1 B 

II A vs. II B 

III A vs. NIB 

1 A vs. II A 

1 A vs. Ill A 

IIA vs. Ill A 

1 B vs. II B 

1 B vs. Ill B 

II B vs. Ill B 

1 (A+B) vs. II (A+B) 

1 (A+B) vs. Ill (A+B) 

II (A+B) vs. Ill (A+B) 

Mood Median Test 

P-Value 

0.020 

0.068 

0.000 

0.001 

0.000 

0.000 

0.000 

0.000 

0.001 

0.001 

0.000 

0.000 

95% 
Confidence 

Interval 
(MPa) 

2.8, 18.0 

2.3, 22.9 

10.6, 22.2 

3.5, 28.0 

32.4, 47.2 

13.5, 34.6 

8.6, 23.7 

25.1,42.5 

10.1,25.7 

4.2, 17.8 

27.1,44.4 

17.4,31.8 

Result 

Different 

Same 

Different 

Different 

Different 

Different 

Different 

Different 

Different 

Different 

Different 

Different 

Comment 

Mild 
Difference 

No 
Difference 

Mild 
Difference 

Mild 
Difference 

Strong 
Difference 

Different 

Mild 
Difference 

Strong 
Difference 

Mild 
Difference 

Mild 
Difference 

Strong 
Difference 

Strong 
Difference 

2 Sample T-Test 

T-Value 

2.08 

1.35 

4.77 

2.89 

11.41 

2.13 

2.80 

5.85 

1.58 

3.05 

9.44 

4.75 

P-Value 

0.048 

0.187 

0.000 

0.007 

0.000 

0.042 

0.010 

0.000 

0.125 

0.004 

0.000 

0.000 

95% 
Confidence 

Interval 
(MPa) 

.08, 18.5 

6.3, 30.8 

10.5, 26.3 

6.5, 38.6 

31.5,45.3 

0.6,31.0 

5.2, 34.1 

19.0,39.6 

2.8, 22.2 

4.4,21.3 

26.1,40.2 

11.7,28.9 

Estimate for 
Difference 

(MPa) 

9.3 

12.3 

18.4 

22.6 

38.4 

15.8 

19.6 

29.3 

9.7 

12.8 

33.1 

20.3 

Result 

Different 

Same 

Different 

Different 

Different 

Different 

Different 

Different 

Same 

Different 

Different 

Different 

Comment 

Slight 
Difference 

No 
difference 

Mild 
Difference 

Different 

Strong 
difference 

Slight 
Difference 

Different 

Strong 
difference 

No 
Difference 

Different 

Strong 
difference 

Strong 
difference 

There are two trends seen in the data: 1) There is only a marginal difference in UTS 

populations between tensile samples A and B (in any Phase), and 2) The difference in the 

average UTS values as presented in Figure 5.8 are only marginally true as far as median 

testing can substantiate, due to the large variation and small sample size of the UTS data 

collected. 

Based on these results, the hypothesis that UTS is an accurate predictor/descriptor of the 

velocity at which the initial transient traveled to fill the mould must be rejected. 

One method of adding robustness to the tensile testing procedure would be to increase the 

diameter of the tensile bar to increase possibility of the bar containing a defect, and/or use 

cycle fatigue tests that is more sensitive to the presence of pores. 
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6.4 Weibull Modulus vs. Velocity A & B Tensile Specimens 

The Weibull Moduli were plotted for each set of UTS values for test bars A and B. Figure 

6.3 is a plot of the Weibull Modulus data found in Table 6.6, and it shows how the Weibull 

modulus varies with the velocity of the initial transient down the runner. Phase III data for 

test bar B (lowest velocity, and the tensile bar location is closest to the end of the runner per 

Figure 4.15) yields the highest Weibull modulus. This indicates that the tensile strength of 

the B samples reflected the low probability of defects occurring within the sample structure 

(i.e. homogeneous nature of the cast section -no bubbles and less oxide inclusions). This is 

graphically illustrated in Figure 6.4. 

The same trend is seen in the A Sample data illustrated in Figure 6.5, however to a lesser 

extent. The Weibull modulus for the Phase IIA samples is actually larger than the Phase IA 

samples in this same Figure, and can only be explained by the random placement of bubbles 

and oxides within the structure of the samples cast at velocities higher than 0.5 ms'1. 

As expected, the Weibull modulus for each of the Phase III samples was highest, however 

the modulus for the Phase II results was higher than the Phase I samples which does not 

follow logic since the higher velocity Phase II pours resulted in more entrained bubbles. 

More entrained bubbles set the stage for inconsistent sample properties, so the expected 

Weibull modulus was that of a low value (shallow slope). This is not the case for either A 

samples, nor B samples. Due to the inability of the Weibull moduli to coincide with bubble 

count data, the hypothesis must be rejected, that is, the Weibull modulus has not been found 

to be a good descriptor of bubble count within the parameters of testing involved herein. 
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o Sample A Modulus 

• Sample B Modulus 

Phase 
l results 

Phase 
II results 

0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 

Flow Velocity Along Runner, (ms'1) 

Figure 6.3: Weibull modulus of UTS as a function of velocity of initial transient. 

Table 6.6: Weibull modulus of UTS as a function of velocity of initial transient. 

Table of Weibull Modulus (k) Results 

UTS 

Condition 

Phase I 
Phase II 

Phase III 

Overall Average 
Runner Velocity 

(ms-1' 

0.68 

1.07 
0.33 

Sample A 

Modulus 

34.40 

43.10 

46.70 

Sample B 

Modulus 

59.20 

76.20 

91.70 
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1.00 • 

• UTS Phase I A samples (Modulus =34.4) 

• UTS Phase II A samples (Modulus =43.1) 

A UTS Phase III A samples (Modulus =47.7) 

~ -1.00 -

237.19 

FT = 0.876 
-4.00 -

y = 46.705x- 252.35 

R2 = 0.971 

5.60 

In(UTS) 

Figure 6.4: Plot ofln(UTS) vs. Weibull density function for A sample data only. 

2.00 -
• UTS Phase I B samples (Modulus =59.2) 

• UTS Phase II B samples (Modulus =76.2) 

A UTS Phase III B samples (Modulus =91.7) 

~ -LOO

S' -2.00 -
y = 59,257x-333.09 

• R2 = 0.7324 

y = 76.209x-423.1 

R2 = 0.8014 
-4.00 -

y = 91.749x-502.15 

R2 = 0.8218 

5.50 

In(UTS) 

Figure 6.5: Plot ofln(UTS) vs. Weibull density function for B sample data only. 
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6.5 Sim ulation Results Discussion 

The magma fill simulation for the baseline condition yielded Vrr (for the ramp portion of the 

mould) of between 0.6 ms"1 and 0.9 ms"1, values matching what was actually found during 

baseline (0.74 ms"1), Phase I (0.74 ms"1) and Phase II (0.74 ms"1) experiments. This success 

validates the Magma model's ability to predict the flow velocity in this application, and thus 

lends validity to results obtained for the sessile runner velocity prediction. The maximum 

runner velocity simulated for the sessile runner was between 0.40 ms"1 and 0.50 ms"1 which 

satisfies the Vcriticai requirement, and thus will not form a flow entrained with air bubbles as is 

reinforced in Figures 5.20, 5.21 and 5.22. 

Simulation Software MAGMAsoft version 4.2 software equipped with the Cosworth Module 

(a special module developed by MAGMA GmbH., Aachen, Germany for the Ford Motor 

Company) was used to simulate the complete filling of the mould in the current design. 

Before the start of this research project, the author collaborated with a team of simulation 

experts from the Ford Motor Company Casting Division to work on "calibrating" the mould 

filling simulation for the 3.0L casting at WAP. This calibration consisted of defining the 

input to the simulation model in terms of a series of pump curves, which in turn defined the 

mass flow rate into the mould package at any given level of fill. The timer package 

described in Chapter 4 was used for this purpose, combined with a map of the area within the 

casting cavity at any given height above the bottom of the runner. In this way, the 

cumulative volume of metal and the time it took to fill that volume was known in absolute 

terms, so that a mass flow-rate could be plotted for the entire filling sequence. The results 

were incorporated into what MAGMA has named the "Cosworth Module", and have resulted 

in a more accurate modeling of the Cosworth Process of production mould fill. 
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Of interest for this simulation was the velocity of the initial transient down the runner. 

6.5.1 Current Runner Design Fill Simulation 

Figures 5.16, 5.17 and 5.18 show a series of snapshots during the current runner design fill 

section of the simulation, where the velocity of the initial transient (VIT) is between 0.6 ms"1 

and 0.9 ms"1. Note that the 0.76 ms"1 prediction of VIT at the bottom of the ramp section of 

the runner in section 3.3.5, and the 0.74 ms"1 as measured at the bottom of the ramp in the 

baseline, Phase I and II data are within 2.7% of each other. 

6.5.2 Sessile Runner Design Fill Simulation 

In developing a sessile runner, the rules of design, developed over generations by casting 

engineers, were followed with the addition of one; that the distance from the floor of the 

runner to the ceiling was to be the same as the sessile height of 12.5 mm. All other 

shapes/dimensions were guided by the traditional runner/gating system knowledge base 

gathered over time in this industry [52, 53]. 

The criterion set forth for the sessile design were as follows: 

The sessile runner was to have no detrimental affect on the quality of the casting (shrink, 

porosity, gas). The time required to fill the mould was to be approximately the same as 

currently in production (18-22 seconds). VIT must be equal to or below Vcritical (0.5 ms"1) 

during not only runner fill, but during the entire casting cavity fill sequence. 

The result in design is seen in Figure 5.19, where the runner is shown from the left 

bottom/side view. Figures 5.20 through 5.22 show the runner velocities below or near the 

critical value of 0.5 ms"1, yet facilitate a full casting in only slightly longer time than the 
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current model. According to the MAGMA solidification prediction using this design, the 

runner facilitates flow into the casting cavity that meet the criteria outlined above, and the 

software predicts not only that the casting has no areas of concern regarding shrink or 

porosity. This result has yet to be seen in a casting, but the groundwork has been laid. The 

software as mentioned cannot predict the generation of bubbles earlier, but Vrr remains 

below Vcnticai, which is the first step in controlling bubble generation and entrainment. 

6.6 Discussion of Experimental Setup 

The experimental setup used to produce results for this thesis was successful, though leaves 

room for improvement. A number of changes must be made to this methodology to yield a 

more accurate exploration of this topic. These improvements are described below: 

1) The method of getting aluminum into the runner. The use of gravity necessitates a free 

fall of some distance before the aluminum contacts the mould and starts its progression along 

the runner. Although this distance was painstakingly kept to an absolute minimum, there 

was, nevertheless a fall involved. The results for all three phases of the experiment were all 

influenced to the same degree by this fall, which mitigates the effect relatively speaking, 

however it is the absolute presence or absence of bubbles which were being measured and 

which determine an acceptable casting vs. a scrap casting. 

2) The data recorder used to capture times of aluminum flow contact with the probes was 

only capable of a 100 millisecond sampling rate (0.1 s) which is an order of magnitude too 

slow. More accurate velocity results must be obtained in order to more precisely characterize 

the flow. Due to this relatively slow sampling rate, the velocity pin to pin was not accurately 

represented. More useful was the average velocity of the flow measured over the entire 
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length of the runner, measured over a longer period of time thus increasing the accuracy of 

measurement. 

3) The experiment was performed for three different average velocities (Phases I, II & III). 

This produced results for bubble counts that successfully fit all literature reviewed, however 

a higher degree of confidence and clarity would have been achieved with five or more 

different phases of testing. 

4) The velocity of the baseline package poured in production was not accurately reproduced 

using the robot/ladle pouring procedure for Phase I. Although the same average velocity was 

achieved down the ramp portion of the mould, beyond this the velocity could not be matched. 

Although this result was not optimal, the difference in velocities between each of the phases 

was comparable and did result in the predicted outcome. 

6.7 Discussion of Hypothesis 

The hypothesis put forward earlier in this work was that the runner was responsible for 

generating and entraining air bubbles which then would go on to become frozen within the 

casting. Experimentation has provided objective evidence that as the velocity down the 

runner increases, bubble quantity and size increase. Also, as the velocity is reduced, in fact 

to below 0.5 ms"1, the generation of bubbles stops. One solution to head deck porosity, then, 

would be to reduce the velocity of the initial transient during the filling of a production 

casting. This solution, though simple but expensive to implement, would result in a 

relatively low temperature initial transient which may lead to cold-shut defects within the 

casting or poor lay-up or knitting of liquid fronts around the cast iron cylinder bore liners in 
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the outboard areas of the casting. This statement is supported by the fact that the test bars 

poured at the slower velocity did not completely fill the corners of the mould. 

The solution, then, falls to a runner design that not only facilitates high volume flow but 

initial transient velocities that are below Vcrjticai, i-e. the sessile runner. 
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Chapter 7 

Summary and Conclusions 
As a result of this study of generation and entrainment of bubbles during various initial 

transient velocities, 3 conclusions are arrived at. 

• Using X-ray sampling, bubble counting was found to be a good descriptor of 

quantifying the characteristics of initial transient velocity. This is due to the 

correlation obtained between theoretical value and the frequency of bubbles found. 

Also, the fact that bubbles are not present below the Vcrjticai value, and bubbles were 

present above this value (per figure 5.7) supports this conclusion. 

• The UTS of test bars was not an adequate descriptor of the number or size of bubbles 

contained within the test bar castings. 

• In order to eliminate the runner as a source of bubbles within the studied casting, one 

has only to ensure that the initial transient velocity remains below 0.5 ms"1 during the 

filling of the runner. 

• An initial transient velocity of 0.5 ms"1 or below is not possible with the current runner 

o 

design, as the 19 downgrade ramp at the entrance of the runner induces higher velocity 

than requested by the fill program. The liquid metal, introduced with the necessary mass 

flow rate to fill the casting with the required speed, would flow down the existing ramp at 

a minimum speed of 0.56 ms"1. Add to this an in-rush velocity of even 0.20 ms"1 (a 

realistic value based on experience), and the velocity at the bottom of the ramp becomes 

0.76 ms"1 and higher -a condition prone to generate bubbles. Recall that the calculated 

predicted velocity for the initial transient at the bottom of the ramp was 0.76 ms"1, this 

number matches the Vrr for the ramp portion of the mould for each of the test conditions 
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that would be used to fill a production casting; that is, with enough flow rate that cold-

shut will not occur in the runner. The fact that these numbers match supports the 

conjecture that the bubbles found in production castings are indeed being generated in the 

ramp region of the mould, since both Phase I and II ramp Vrr generate bubbles (as does 

production Vrr) and Phase HI ramp Vrr does not. 

• A sessile runner design will, according to simulation technology, yield the same flow 

rate but with the initial transient velocity at or below the critical value of 0.5 ms"1. 

In summary, objective evidence has been generated that supports the hypothesis that the 

current 3.0L cylinder block mould runner design is flawed in that it is facilitating the 

entrainment of air into the lead metal, or initial transient. Adoption of the sessile runner is 

shown via simulation to reduce the velocity of the initial transient to below 0.5 ms"1. The 

data indicates that no bubbles would be generated during the runner fill event, in which case 

there would be no bubbles to come to rest and solidify at or under the rear / head deck area of 

the casting thus eliminating, or at least reducing the defect known as "Head Deck Porosity". 
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Chapter 8 

Recommendations 
The following points outline the recommended actions that will further the current work: 

• Pending successful trials with this design, it is the recommendation of the author that 

the sessile runner design be adopted for use in all future casting programs at Nemak, and 

indeed for any low pressure filled mould within the casting industry 

• A repeat of the test bar castings using the sessile runner is necessary. The theory and 

simulations all agree that the runner will yield favourable results in reducing or 

eliminating entrained bubbles, and evidence is needed to support/refute this. 

• Further testing with a flat, non-sessile runner filled at different velocities (as opposed to 

the more complex runner shape used within this study) will add fundamental 

understanding to the propensity of a flow to include air bubbles. 

• The study of ingate velocity (from runner into risers) versus bubble entrainment would 

serve to complement the current study. 

• The study of temperature loss in different runner designs, especially sessile, is a critical 

body of knowledge that needs development. 

• Lastly, it is recommended that the ability of the surface film to impede flow be studied 

not only for a large section modulus runner shape, but most especially for the 4.0 to 

4.5mm thick cavity chambers all throughout a typical aluminum cylinder block casting. 

There are defects whose origins lie in the interrupted flow of aluminum during mould-fill 

[16], and the relationship between the film's ability to inhibit flow and the defect will 

advance the science of casting-making for the benefit of all. 
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Appendix B, Runner Velocity Measurements 

Appendix B 
Runner Velocity Measurements 

Connector No 
PL-0 
PL-1 
PL-2 
PL-3 
PL-4 
PL-5 

Baseline (Production) Runner Velocity 

Dist between 
probes 

(m) 
0.000 
0.148 
0.114 
0.106 
0.138 
0.045 

Dist to probe 
fromO 

(m) 
0.000 
0.148 
0.262 
0.368 
0.507 
0.551 

Time made 
2.30 
2.50 
2.70 
2.80 
3.00 
3.10 

Time between 
probes (s) 

0.00 
0.20 
0.40 
0.50 
0.70 
0.80 

(Vavg.=0.7 

Cumulative time 
to probe 

(s) 
0.00 
0.20 
0.40 
0.50 
0.70 
0.80 

ms-1) 

Velocity 
between probes 

(ms-1) 
0.00 
0.738 
0.286 
0.213 
0.198 
0.056 

Average Velocity to 
Probe (ms-1) 

0.00 
0.74 
0.65 
0.74 
0.72 
0.69 

Vavg = 0.7 ms'1 

0.20 0.25 0.30 0.35 

Distance along runner (m) 

0.60 

Figure A1: Baseline Runner Velocity Measurements and Plot. 
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Appendix B, Runner Velocity Measurements 

Phase 1 - 0° (Horizontal) to Match Baseline Production Condition (Vavg.=0.7ms-1) 

Connector No 
PL-0 
PL-1 
PL-2 
PL-3 
PL-4 
PL-5 

Dist between 
probes 

(m) 
0.000 
0.145 
0.117 
0.106 
0.098 
0.073 

Dist to probe 
fromO 

<m> 
0.000 
0.145 
0.263 
0.369 
0.468 
0.541 

Time made 
39.0 
39.2 
39.4 
39.5 
39.7 
39.8 

Time between 
probes (s) 

0.0 
0.2 
0.2 
0.1 
0.2 
0.1 

Cumulative time 
to probe 

(s) 
0.0 
0.2 
0.4 
0.5 
0.7 
0.8 

Ph IV between 
probes (ms-1) 

0.0 
0.7 
0.6 
1.1 
0.5 
0.7 

Average Velocity 
to Probe (ms-1) 

0.0 
0.7 
0.7 
0.7 
0.7 
0.7 

Vavg = 0.7 ms'1 

0.150 0.200 0.250 0.300 0.350 

Distance along runner (m) 

Figure A2: Phase I Runner Velocity Measurements and Plot. 
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Appendix B, Runner Velocity Measurements 

Phase 11-18° Slope With Same Pour Rate as 

Connector No 
PL-1 
PL-2 
PL-3 
PL-4 
PL-5 

Dist between 
probes 

(m) 
0.000 
0.147 
0.138 
0.127 
0.121 

Dist to probe 
fromO 

(m) 
0.000 
0.147 
0.284 
0.412 
0.533 

Time made 
35.4 
35.6 
35.7 
35.8 
35.9 

Time between 
probes (s) 

0.0 
0.2 
0.1 
0.1 
0.1 

3hase I (Vavg.=1.1ms 

Cumulative time 
to probe 

(s) 
0.0 
0.2 
0.3 
0.4 
0.5 

Ph I IV between 
probes (ms-1) 

0.0 
0.7 
1.4 
1.3 
1.2 

) 

Average 
Velocity to 

Probe (ms-1) 
0.0 
0.7 
0.9 
1.0 
1.1 

Vavg = 1.1 ms"1 

0.20 0.25 0.30 0.35 

Distance along runner (m) 

0.60 

Figure A3: Phase II Runner Velocity Measurements and Plot. 
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Appendix B, Runner Velocity Measurements 

Connector No 
PL-0 
PL-1 
PL-2 
PL-3 
PL-4 

Phase III-5° Slope with S 

Dist between 
probes 

(m) 
0.000 
0.126 
0.128 
0.141 
0.128 

Dist to probe 
fromO 

(m) 
0.000 
0.126 
0.254 
0.395 
0.523 

Time made 
13.0 
13.3 
13.6 
14.1 
14.6 

ow Pour (Vavg. = 0.3ms"1) 

Time between 
probes (ms-1) 

0.0 
0.3 
0.3 
0.5 
0.5 

Cumulative time 
to probe 

(s) 
0.0 
0.3 
0.6 
1.1 
1.6 

Ph III V between 
probes (ms-1) 

0.0 
0.4 
0.4 
0.3 
0.3 

Average 
Velocity to 

Probe (ms1) 
0.0 
0.4 
0.4 
0.4 
0.3 

Vavg = 0.3 ms"1 

1.0 

0.9 
-®— Average Velocity to 

Probe (ms-1) 

o.o <y o.o 
o.oo 0.20 0.25 0.30 0.35 

Distance along runner (m) 

Figure A4: Phase III Runner Velocity Measurements and Plot. 
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Appendix C, Aluminum Alloy Specification 

Appendix C 
Aluminum Alloy Specification 

All test bars were cast from a hybrid of 319 aluminum, whose chemistry is specified in Table 

A2. 

Table A2: Alloy Specification. 

ELEMENT 

SILICON 

COPPER 

IRON 

MAGNESIUM 

MANGANESE 

ZINC 

TITANIUM 

STRONTIUM 

NICKEL 

TIN 

LEAD 

SODIUM 

CALCIUM 

CHROMIUM 

PHOSPHOROUS 

LITHIUM 

BISMUTH 

BORON 

GALLIUM 

ANTIMONY 

ARSENIC 

Others Each 

Others Total 

SYMBOL 

Si 

Cu 

Fe 

Mg 

Mn 

Zn 

Ti 

Sr 

Ni 

Sn 

Pb 

Na 

Ca 

Cr 

P 

Li 

Bi 

B 

Ga 

Sb 

As 

Nominal (%) 

7.5 

3.5 

0.40 max 

0.30 

0.25 

0.25 max 

0.12 

0.002 max 

0.10 max 

0.008 max 

0.10 max 

0.002 max 

0.002 max 

0.1 max 

0.01 max 

0.0008 max 

0.010 max 

0.01 max 

0.01 max 

0.01 max 

0.01 max 

0.05 max 

0.5 max 
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Appendix D, Chemistry Sampling Data 

Appendix D 
Chemistry Sampling Data (Spectrometer Analysis) 

The data Table A3 was obtained on aluminum samples taken from the furnace well within 
ten minutes of pouring each runner series. 

Table A3: Spectrometer Analysis for Phase I Chemistry Checks^ 

Sample 1 
Try 

1 
2 
3 

Avg 

Si 
7.72 
7.65 
7.62 
7.66 

(Phase I) 
Cu 

3.48 
3.45 
3.43 
3.45 

Fe 
0.44 
0.43 
0.43 
0.44 

Mg 
0.27 
0.26 
0.26 
0.26 

Mn 
0.27 
0.27 
0.27 
0.27 

Zn 
0.20 
0.20 
0.20 
0.20 

Ti 
0.12 
0.12 
0.12 
0.12 

Sr 
0.0028 
0.0028 
0.0028 
0.0028 

Ni 
0.035 
0.034 
0.034 
0.034 

Sn 
0.0032 
0.0030 
0.0031 
0.0031 

Pb 
0.011 
0.010 
0.010 
0.010: 

Out of specification: Fe (.44) Sr (.0028) 
Try 

1 
2 
3 

Avg 

Na 
0.0001 
0.0001 
0.0001 
0.0001 

Ca 
0.0005 
0.0005 
0.0005 
0.0005 

Cr 
0.061 
0.060 
0.060 
0.060 

P , 
0.002 
0.002 * 
0.002 
0.002 

Li 
0.0001 
0.0001 
0.0001 
0.0001 

B 
0. 
0: 
0 
0 

Sb 
0.001 
0.001 
0.001 
0.001 

Be 
0 
0 
0 
0 

Bi 
0.0015 
0.0014 
0.0020 
0.0014 

Cd 
0 
0 
0 
0 

V 
0.01 
0.01 
0.01 
0.01 

Zr 
0.003 

: 0.003 
0.003 
0.003 

Al 
87.36 
87.49 
87.53 
87.46 

Sample 2 
Try 

1 
2 
3 

Avg 

Si 
7.68 
7.65 
7.61 
7.65 

(Phase I) 
Cu 

3.46 
3.46 
3.44 
3.45 

Fe 
0.45 
0.44 
0.43 
0.44 

MS 

0.26 
0.27 
0.26 
0.26 

Mn 
0.28 
0.27 
0.27 
0.27 

Zn 
0.20 
0.22 
0.20 
0.20 

Ti 
0.12 
0.12 
0.12 
0.12 

Sr 
0.0028 
0.0028 
0.0027 
0.0028 

Ni 
0.035 
0.035 
0.034 
0.034 

Sn 
0.0031 
0.0032 
0.0030 
0.0031 

Pb 
0.010 
0.010 
0.010 
0.010 

Out of specification: Fe (.45) Sr (.0028) 
Try 

1 
2 
3 

Avg 

Na 
0.0001 
0.0001 
0.0001 
0.0001 

Ca 
0.0005 
0.0005 
0.0005 
0.0005 

Cr 
0.061 
0.060 
0.060 
0.060 

P 
0.002 
0.002 
0.001 
0.002 

Li 
0.0001 
0.0001 
0.0001 
0.0001 

B 
0 
0 
0 
0 

Sb 
0.001 
0.001 
0.001 
0.001 

Be 
0 
0 
0 
0 

Bi 
0.0015 
0.0014 
0.0013 
0.0014 

Cd 
0 
0 
0 
0 

V 
0.01 
0.01 
0.01 
0.01 

Zr 
0.0030 
0.0003 
0.0003 
0.003 

Al 
87.42 
87.46 
87.54 
87.48 

Sample 3 (Phase I) 
Try 

1 
2 
3 

Avg 

Si 
7.61 
7.65 
7.56 
7.61 

Cu 
-. 3.45 

3.39 
3.38 
3.41 

Fe 
0.44: 

• 0.44 
: 0.43 

0.44 

Mg 
0.22 
0.22 
0.22 
0.22 

Mn 
0.27 
0.27 
0.26 
0.27 

Zn 
0.20 
0.20 
0.20 
0.20 

Ti 
: 0.12 

0.12 
0.12 
0.12 

Sr 
0.0023 
0.0023 
0.0023 
0.0023 

• Ni 
0.034 
0.034 
0.034 
0.034 

Sn 
0.0032 
0.0030 
0.0030 
0.0031 

Pb 
0.010 
0.010 
0.010 
0.010 

Out of specification: Fe (.44) Mg 
Try 

1 
2 
3 

Avg 

Na 
0.0001 
0.0001 
0.0001 
0.0001 

Ca 
0.0006 
0.0006 
0.0006 
0.0006 

Cr 
0.060 
0.060 
0.059 
0.060 

(.22) Sr(.0023) 
P 

0.002 
0.002 
0.002 
0.002 

Li 
0.0001 
0.0001 
0:0001 
0.0001 

B 
0 
0 
0 
0. 

Sb 
0.001 
0.001 
0.001 
0.001 

Be 
0 
0 
0 
0 

Bi 
0.0015 
0.0014 
0.0013 
0.0014 

Cd 
0 
0 
0 
0 

V 
0.01 
0.01 
0.01 
0.01 

Zr 
0.0003 
0.003 
0.003 
0.003 

Al 
87.55 
87.58 
87.69 
87.61 
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Appendix D, Chemistry Sampling Data 

Table A4: Spectrometer Analysis for Phase 11 Chemistry Checks. 

SampleL 

Try 
1 
2 
3 

Avg 

Si 
; 7.56 

7.67 
7.65 
7.63 

(Phase H) 
Cu 

3.54 
3.37 
3.36 
3.42 

Fe 
0.45 
0.44 
0.44 
0.44 

Mg 
0.23 
0.22 
0.22 
0.22 

Mn 
0.27 
0.27 
0.27 
0.27 

Zn 
0.20 

• 0.20 
0.20 
0.20 

Ti 
0.12 
0.12 
0.12 
0.12 

Sr 
0.0023 
0.0023 
0:0023 
0.0023 

Ni 
0.035 
0.034 
0.034 
0.034 

Sn 
0.0032 
0.0030 
0.0029 
0.0031 

Pb 
0.011 
0.010 
0.010 

• 0.010 
Out of specification: Fe (.44) Mg 
Try 

1 
2 
3 

Avg 

- Na. 
0.0001 
o.ooor 
0.0001 
0.0001 

Ca 
0.0007 
0.0006 
0.0006 
0.0006 

Cr 
0.061 
0.060 
0.060 
0.060 

(.22) Sr (.0023) 
P 

0.001. 
0.002 
0.002 
0.002 

Li 
0.0001 
0.0001 
0.0001 
0.0001 

B 
0 
Or-
0 
0 

Sb 
0.001 
0.001 
0.001 
0.001 

Be 
0 
0 
0 
0 

Bi 
0.0015 
0.0014 
0.0013' 
0.0014 

Cd 
0 
0 
0 
0 

' V 
0.01 
0.01 
0.01 
0.01 

Zr 
0.003 
0.003 
0.003: 
0.003 

: Al 
87.49 

. 87.59 
87.63 
87.57 

Sample 5 (Phase H) 
Try 

1 
2 
3 

Avg 

Si 
7.56 
7.61 
7.69 
7.62 

Cu 
3.50 

'3.42 
3.33 
3.42 

Fe 
0.45 
0.44 
0.43 
0.44 

' 
Mg 
0.22 
0.21 
0.21 
0.22 

Mn 
0.27 
0.27 
0.26 

: 0.27 

Zn 
0.20 
0.20 
0.20 
0.20 

Ti 
0.12 
0.12 
0.12 
0.12 

Sr 
0.0023 
0.0022 
0.0022 
0.0023 

Ni 
0.035. 
0.034 
0.034 
0.034 

Sn 
0.0032 
0.0032 
0.0030 
0.0032 

Pb 
0.011 
0.010 
0:010 
0.010 

Out of specification: Fe (M 
Try 

1 
2 
3 

Avg 

Na 
o.ooor 
0.0001 
0.0001 
0.0001 

Ca 
0.0007 
0.0006 
0.0006 
0.0006 

1) Mg(.22) Sr(.0023) 
Cr 

0.061 
0.060 
0.059 
0.060 

P 
0.002 
0.002 
0.002 
0.002 

Li 
0.0001 
0.0001 
0.0001 
0.0001 

B 
0; 
0 
0 
0 

Sb 
0.001 
0:001 
0.001 
0.0Q1 

Be 
0 
0 
0 
0 

Bi 
0.0016 
0.0014 
0.0013 
0.0014 

Cd 
0 
0 
0 
0 

V 
0.01 
0.01 
0.01 
0.01 

Zr 
0.003 
0.003 
0.003 
0.003 

Al 
: 87.54 

87.60 
87.62 
87.59 
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Appendix D, Chemistry Sampling Data 

Table A5: Spectrometer Analysis for Phase HI Chemistry Checks. 

Sample 6 (Phase H 
Try 

1 
2 
3 

Avg 

Si 
7.68 
7.64 
7.53 
7.61 

Cu 
3.47 
3.44, 
3.39 
3.43 

Fe 
0.44 
0.44-
0.43 
0.44 

) 
Mg 
0.23 
0.23 
0.23 
0.23 

Mn 
0.27 
0.27' 
0.26 
0.27 

Zn 
0.20 
0.20 
0.20 
0.20 

Ti 
, 0.12 

0.12 
0.12 
0.12 

Sr 
0.0024 
0.0024 
0.0024 
0.0024 

Ni 
0.035 
0.034 
0.034 
0:034 

Sn 
0.0032 
0.0032 
0.0031 
0.0032 

Pb 
0.011 
0.010 
0.010 
0.100 

•Out of specification: Fe (.44) Mg (.22) Sr (.0024) 
Try 

1 
2 
3: 

Avg 

." Na 
0.0001 
0.001 

. 0.0001:, 
0.0001 

Ca 
0.0006 
0.0006 
0.0006 
0.0006 

Cr 
0.060 
0.060 
0.059 
0.060 

. P 
0.002 
0.002 
0.002 
0.002 

Li 
0.0001 
0.0001 
0.0001 
0.0001 

B 
0 
0"; 
0 
0 

Sb 
0.001 
0.001 
0.001 
0.001 

Be 
0 
0 
0 
0 

Bi 
. 0.0015 
, 0.0014 

0.0013 
0.0014 

Cd 
0 
0 
0 
0 

V 
0.01 
0.01 
0.01 
0.01 

Zr 
0.003 
0.003: 
0.003 
0.003 

Al 
87.45 
87.54 

. 87.72 
87.57 

Sample 7 (Phase m 
Try 

1 
2 . 
3 

Avg. 

. Si 
7.63 
7.62 
7.52 
7.59 

Cu 
3.42 

, 3.34 
3.46 
3.41 

Fe 
0.45 
0.44 
0.44 
0.44 

> 
Mg 
0.23 
0.22 
0.23 
0.23 

Mn 
0.27 
0.26 
0.27 
0.27 

Zn 
0.20 
0.20 
0.20 
0.20 

Ti 
0.12 
0.12 
0.12 
0.12 

Sr 
0.0024 
0.0024 
0.0024 
0.0024 

Ni 
0.034 
0.034 
0.035 
0.034 

Sn 
0.0.032 
0.0030 
0.0031 
0.0031 

Pb 
0.010 
0.010 
0.011 
0.010 

Gut of specification: Fe (.44). Mg (.23) Sr (.0024) 
Try 

1 
2 
3 

Avg 

Na 
0.0001 
0.0001 
0.0001 
0.0001 

Ca 
0.0006 
0.0006 
0.0006 
0.0006 

Cr 
0.061 
0.060 
0.060 
0.060 

P 
0.001 
0.002; 

0.002 
0.002 

Li 
0.0001 
0.0001 
0.0001 
0.0001 

B 
0 
0 
0 
0 

Sb 
0.001 
0.001 
0.001 
0.001 

Be 
0 
0 
0 
0 

Bi 
0.0016 
0.0015 
0.0014 
0.0015 

Cd 
0 
0 
0 
0 

V 
0.01 
0.01 
0.01 
0.01 

Zr 
0.003 
0.003 
0.003 
0.003 

Al 
8755 
87.67 
87.63 
87.62 
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Appendix E, Radiographic Results 

Appendix E 
Radiographic Results 

Table A6: Table of Radiographic Results. 

Gas (G1-G8) ratings are according to ASTM E-155 standard (G1 =small and G8 =large bubble sizes). 
Numbers represent the quantities of bubbles found in the test bar at the respective rating. 

Sample no. 
1 
2 
3 
4 
5 
6 
7 
8 
S 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Total bubbles/size 

Total bubble count 

Overall average Initial 

Transient velocity (ms'1) 

Phase 1 

"BT 
2 

2 
1 

3 

1 
1 

1 

2 
0 

13 

G2 

1 

1 

1 

1 
1 

5 

G3 

2 
2 

1 

5 

G4 

1 

1 

2 

G5 

0 

G6 

0 

G7 

0 

G3 

0 

26 

0.68 

Phase II 
G1 
4 
1 
3 
1 
1 
1 
1 
3 
8 
3 
4 
4 
4 
1 
2 
1 
5 
7 
1 
2 

57 

G2 
1 
1 

1 
1 
1 
1 
4 
2 
3 
1 
3 
1 
1 
3 
1 
2 
1 
2 

30 

G3 
2 

2 
2 
3 
3 
1 

1 
1 
1 
3 
1 
6 
1 

1 
2 
2 

32 

G4 
3 

4 
2 

1 
2 
2 
1 
1 

1 

17 

G5 
1 

1 

1 
1 
2 

1 

2 
1 
1 
1 

12 

G6 

1 

1 

1 
1 

1 

1 
1 

7 

G7 

1 

1 

1 
1 

4 

G8 

1 

1 

2 

161 

1.07 

Phase III 

"BT 

0 

G2 

0 

G4 

0 

G4 

0 

G5 

0 

G6 

0 

G7 

0 

5B 

0 

0 

0.33 
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Appendix E, Radiographic Results 

Radiographs of test bars 1-6, Phase I 

Figure A5: Radiographs of Phase I Test Bars 1 to 6. 
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Appendix E, Radiographic Results 

Radiographs of test bars 7-13, Phase I 

Figure A6: Radiographs of Phase I Test Bars 7 to 13. 
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Appendix E, Radiographic Results 

Radiographs of test bars 14-20, Phase I 

Figure Al: Radiographs of Phase I Test Bars 14 to 20. 
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Appendix E, Radiographic Results 

Radiographs of test bars 1-6, Phase II 

Figure A8: Radiographs of Phase II Test Bars 1 to 6. 
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Appendix E, Radiographic Results 

Radiographs of test bars 7-12, Phase II 

Figure A9: Radiographs of Phase II Test Bars 7 to 12. 
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Appendix E, Radiographic Results 

Radiographs of test bars 13-18, Phase II 

Figure A10: Radiographs of Phase II Test Bars 13 to 18. 
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Appendix E, Radiographic Results 

Radiographs of test bars 1-4, Phase III 

Figure All: Radiographs of Phase III Test Bars 1 to 4. 
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Appendix E, Radiographic Results 

Radiographs of test bars 5-8, Phase III 

Figure Al 2: Radiographs of Phase III Test Bars 5 to 8. 
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Appendix E, Radiographic Results 

Radiographs of test bars 9-12, Phase III 

Figure Al 3: Radiographs of Phase III Test Bars 9 to 12. 
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Appendix E, Radiographic Results 

Radiographs of test bars 13-16, Phase III 

Figure Al 4: Radiographs of Phase III Test Bars 13 to 16. 
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Appendix E, Radiographic Results 

Radiographs of test bars 17-20, Phase III 

Figure A15: Radiographs of Phase III Test Bars 17 to 20. 
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Appendix F, Tensile Test Data 

Appendix F 
Production Casting Tensile Testing Data 

Table A7: Mechanical Properties of Production Castings (non-aged). 

Sample Location within 
production casting 

Bulkhead properties 
(average) for samples in 

solution treated, non aged 
condition. 

Yield Strength -2% offset 
(MPa) 

192 

Ultimate Tensile Strength 
(MPa) 

229 
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Appendix G, SEMAnalysis 

Appendix G 
SEM Results 

Figure Al 6: SEM Micrograph of Sample 1-4 location I (120x magnification). 

Figure A17: SEM Micrograph of Sample 1-4 location 1 (45 Ox magnification). 
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Appendix G, SEMAnalysis 

2b 

2a 

Figure A18: SEM Micrograph of Sample 1-4 location 2 (WOx magnification). 
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Figure A19: SEM Micrograph of Sample 1-4 location 2a (450x magnification). 
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Appendix G, SEMAnalysis 
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Figure A20: SEM Micrograph of Sample 1-4 location 2b (450x magnification). 
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Figure A21: SEM Micrograph of Sample 11-6 (50x magnification). 
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Appendix G, SEMAnalysis 
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Figure A22: SEM Micrograph of Sample II-6 location 1 (80x magnification). 
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Figure A23: SEM Micrograph of Sample I 1-6 location 2 (500x magnification). 
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Appendix H, MagmaSoft Simulation Results 

Appendix H 
MagmaSoft Simulation Results 
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Figure A24: MAGMA 3.0L cylinder block fill simulation-current runner^ 
halfway down the ramp; VIT is approx 0.7 ms'. 

I 3.2 seconds; Initial Transient is 
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Appendix H, MagmaSoft Simulation Results 
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k.'* . ^ ' *'VES! 

Figure A25: MAGMA 3.0L cylinder block Jill simulation-current runner@ 3.2 seconds; Initial Transient is 
more than halfway down the runner's length. VIT remains at approx. 0.7 ms~. Note the higher velocity nearest 

the bottom of the ramp during a time when the aluminum in the runner is exposed to air (white). 
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Appendix H, MagmaSoft Simulation Results 
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Figure A26: MAGMA 3.0L cylinder block fill simulation-current runner@ 4.0 seconds; Initial Transient is 
nearing the end of the runner. VIT remains at approx. 0.7 ms~ . 
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Appendix H, MagmaSoft Simulation Results 
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Figure A27: MAGMA 3.0L cylinder block fill simulation-current runner@ 5.8seconds; Simulation of riser fill. 
VJT is now well below Vcriticai 
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Appendix H, MagmaSoft Simulation Results 
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Figure A28: MAGMA 3.0L cylinder block fill simulation-current runner@ 9.6 seconds; risers nearingfull. 
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Appendix H, MagmaSoft Simulation Results 
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Figure A29: MAGMA 3.0L cylinder block fill simulation-current runner@ 10.9 seconds; fountain effect from 
one riser contributes to bubbles and oxides within the casting. 
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Figure A30: MAGMA 3.0L cylinder block fill simulation-current runner@ 12.2 seconds; Further evidence of 
fountain effect. 
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Figure A31: MAGMA 3.0L cylinder block fill simulation-current runner@ 17.8 seconds; complete casting. 
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Appendix H, MagmaSoft Simulation Results 
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Figure A3 2: Solid Model of Sessile Runner Design. 
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Figure A33: Sessile runner -view of bottom/right side. 
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Figure A34: Sessile runner -view of top & right side. 
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Figure A35: MAGMA 3.0L cylinder block fill simulation -sessile runner@ 5.7 seconds; V1T < Vcritical. 
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Figure A36: MAGMA 3.0L cylinder block fill simulation -sessile runner@ 6.0 seconds; VlT < Vcriticai. 
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Figure A37: MAGMA 3.0L cylinder block/ill simulation -sessile runner@ 6.5 seconds; VIT < Vcmca\. 
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Figure A38: MAGMA 3.0L cylinder block fill simulation -sessile runner@ 7.0 seconds; VIT < VcrMcai. 
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Figure A39: MAGMA 3.0L cylinder block fill simulation -sessile runner@ 12.2 seconds. 
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Figure A40: MAGMA 3.0L cylinder block fill simulation -sessile runner@ 13.9 seconds -No fountain effect. 
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Figure A41: MAGMA 3.0L cylinder block fill simulation -sessile runner@ 15.6 seconds. 
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Figure A42: MAGMA 3.0L cylinder block fill simulation -sessile runner@ 17.2 seconds. 
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Figure A43: MAGMA 3.0L cylinder block fill simulation -sessile runner@ 22.8 seconds; Fill complete. 
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Appendix I 
Weibull Modulus Calculations 

Table A8: Weibull Modulus Calculations (A+B Samples). 
UTS Phase 1 A+B sail 

j 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

1-1a 
1-2a 
1-3a 
1-5a 
1-7a 
1-8a 

1-12a 
1-13a 
1-14a 
1-16a 
1-18a 
1-19a 
1-20a 
1-1b 
1-2b 
1-3b 
1-5b 
1-7b 
1-8b 

1-12b 
1-14b 
1-16b 
1-19b 

UTS 
249.5 
255.2 
243.9 
257.3 
261.4 
270.3 
265.0 
255.9 
263.9 
260.7 
271.3 
272.4 
264.8 
273.8 
269.4 
284.7 
236.6 
278.0 
271.6 
276.7 
268.9 
260.3 
265.0 

ncles (Modi 
Ranked 
236.6 
243.9 
249.5 
255.2 
255.9 
257.3 
260.3 
260.7 
261.4 
263.9 
264.8 
265.0 
265.0 
268.9 
269.4 
270.3 
271.3 
271.6 
272.4 
273.8 
276.7 
278.0 
284.7 

lus =28.9) 23 samples 
F(i) = (I-0.5VN 

0.0217 
0.0652 
0.1087 
0.1522 
0.1957 
0.2391 
0.2826 
0.3261 
0.3696 
0.4130 
0.4565 
0.5000 
0.5435 
0.5870 
0.6304 
0.6739 
0.7174 
0.7609 
0.8043 
0.8478 
0.8913 
0.9348 
0.9783 

In(x) 
5.4664 
5.4968 
5.5195 
5.5420 
5.5448 
5.5502 
5.5618 
5.5634 
5.5661 
5.5756 
5.5790 
5.5797 
5.5797 
5.5943 
5.5962 
5.5995 
5.6032 
5.6043 
5.6073 
5.6124 
5.6229 
5.6276 
5.6514 

ln(ln(1/(1-F(i)))) 
-3.8177 
-2.6965 
-2.1622 
-1.8013 
-1.5245 
-1.2972 
-1.1022 
-0.9297 
-0.7736 
-0.6296 
-0.4947 
-0.3665 
-0.2432 
-0.1231 
-0.0046 
0.1139 
0.2340 
0.3582 
0.4894 
0.6327 
0.7971 
1.0043 
1 .U425 

UTS Phas< 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

17 

11-4a 
11-5a 
11-7a 
11-8a 
11-9a 

11-11a 
11-13a 
11-14a 
11-16a 
11-1b 
11-2b 
11-5b 
11-6b 
11-7b 
11-8b 
11-9b 

11-11b 

> II A+B sa 
UTS 

244.3 
192.2 
252.5 
235.2 
2547 
262.2 
252.4 
243.9 
2389 
265.0 
2385 
262.0 
260.0 
186.2 
268.9 
257.2 
256.1 

TiDles (Modulus =35.4) 17 samples 
Ranked 
235.2 
235.4 
238.5 
238.9 
243.9 
244.3 
248.1 
251.5 
251.6 
252.4 
252.4 
252.5 
254.7 
256.1 
257.2 
260.0 
262.0 

F(i) = (i-0.5)/N 
0.0294 
00882 
0.1471 
0.2059 
0.2647 
0.3235 
0.3824 
0.4412 
0.5000 
0.5588 
0.6176 
0.6765 
0.7353 
0.7941 
0.8529 
0.9118 

0.9706 

ln(x) 
5.4604 
S.4613 
5.4744 
5.4760 
5.4968 
5.4984 
5.5138 
5.5274 
5.5278 
5.5310 
5.5310 
5.5314 
5.5401 
5.5456 
5.5499 
5.5607 

5.5683 

ln(ln(1/(1-F(i)))) 
-3.5115 
-2.3819 
-1.8384 
-1.4674 
-1.1793 
-0.9394 
-0.7301 
-0.5414 
-0.3665 
-0.2005 
-0.0394 
0.1209 
0.2845 
0.4577 
0.6507 
0.8870 

1.2603 

UTS Phase 

i 
\ 
2 
3 
4 
5 
6 
7 
8 
9 

ib 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

111-1a 
111-2a 
111-3a 
111-4a 
111-6a 
111-7a 
111-8a 

111-10a 
111-11a 
111-12a 
111-13a 
111-16a 
111-17a 
111-18a 
111-19a 
111-20a 
111-1b 
111-2b 
111 -3b 
111 -4b 
111 -6b 
111-7b 
111 -8b 

111-10b 
111-11b 
111-12b 
111-13b 
111-16b 
111-17b 

' III A+B samDles (Mod 
UTS 

220.0 
226.8 
225.5 
238.2 
209.9 
227.5 
208.2 
217.4 
214.2 
223.1 
216.0 
218.2 
217.9 
220.4 
218.6 
237.7 
234.3 
234.3 
263.8 
240.6 
225.9 
240.6 
238.6 
245.4 
222.5 
274.4 
233.0 
238.9 
234.2 

Ranked 
208.2 
209.9 
214.2 
216.0 
217.4 
217.9 
218.2 
218.6 
220.0 
220.4 
222 5 
223.1 
225.5 
225.9 
226.8 
227.5 
233.0 
233.8 
234.0 
2342 
234.3 
234.3 
237.7 
2382 
238.6 
238.9 
239.9 
240.6 
240.6 

ulus =27.7][ 29 samples 
F(i) = (i-0.5VN 

0.0172 
0.0517 
0.0862 
0.1207 
0.1552 
0.1897 
0.2241 
0.2586 
0.2931 
0.3276 
0.3621 
0.3966 
0.4310 
0.4655 
0.5000 
0.5345 
0.5690 
0.6034 
0.6379 
0.6724 
0.7069 
0.7414 
0.7759 
0.8103 
0.8448 
0.8793 
0.9138 
0.9483 
0.9828 

ln(x) 
5.3385 
5.3466 
5.3669 
5.3753 
5.3817 
5.3840 
5.3854 
5.3872 
5.3936 
5.3954 
5.4049 
5.4076 
5.4183 
5.4201 
5.4241 
5.4272 
5.4510 
5.4545 
5.4553 
5.4562 
5.4566 
5.4566 
5.4710 
5.4731 
5.4748 
5.4760 
5.4802 
5.4831 
5.4831 

ln(ln(1/(1-F(l)))) 
-4.0518 
-2.9354 
-2.4063 
-2.0509 
-1.7801 
-1.5592 
-1.3713 
-1.2065 
-1.0588 
-0.9241 
-0.7996 
-0.6830 
-0.5728 
-0.4677 
-0.3665 
-0.2684 
-0.1725 
-0.0780 
0.0158 
0.1098 
0.2048 
0.3019 
0.4025 
0.5084 
0.6223 
0.7488 
0.8965 
1.0858 
1.4013 

151 



Appendix I, Weibull Modulus Calculations 

Table A9: Weibull Modulus Calculations (A Samples). 

UTS Phase 1 A samoles (Modulus =34.4) 13 samples 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

1-1a 
1-2a 
1-3a 
1-5a 
1-7a 
1-8a 

1-12a 
1-13a 
1-14a 
1-16a 
1-18a 
1-19a 
1-20a 

UTS Phas( 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 

11-4a 
11-5a 
11-7a 
11-8a 
11-9a 

11-11a 
11-13a 
11-14a 
11-16a 

UTS Phase 

„i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

15 
14 
15 
16 

111-1a 
111-2a 
111-3a 
111-4a 
111-6a 
111-7a 
111-8a 

111-10a 
111-11a 
111-12a 
111-13a 
111-16a 
111-17a 
111-18a 
111-19a 
111-20a 

UTS 
249.5 
255.2 
243.9 
257.3 
261.4 
270.3 
265.0 
255.9 
263.9 
260.7 
271.3 
272.4 
264.8 

H^arrro 
UTS 

244.3 
192.2 
252.5 
235.2 
254.7 
262.2 
252.4 
2439 
238.9 

Ranked 
236.6 
243.9 
249.5 
255.2 
255.9 
257.3 
260.3 
260.7 
261.4 
263.9 
264.8 
265.0 
265.0 

es (Modulu 
Ranked 
235.2 
235.4 
238.5 
238.9 
243.9 
244.3 
248.1 
251.5 
251.6 

Flit = (i-0.5VN 
0.0385 
0.1154 
0.1923 
0.2692 
0.3462 
0.4231 
0.5000 
0.5769 
0.6538 
0.7308 
0.8077 
0.8846 
0.9615 

ln(x) 
5.4664 
5.4968 
5.5195 
5.5420 
5.5448 
5.5S02 
5.5618 
5.5634 
5.5661 
5.5756 
5.5790 
5.5797 
5.5797 

ln(ln(1/(1-F(im) 
-3.2386 
-2.0988 
-1.5438 
-1.1595 
-0.8559 

-o.ssys 
-0.3665 
-0.1506 
0.0591 
0.2717 
0.5000 
0.7699 
1.1811 

s =43.1) 9 samDles 
F(i> = (i-0.5VN 

0.0556 
0.1667 
0.2778 
0.3889 
0.5000 
0.6111 
0.7222 
0.8333 
0.9444 

IfHxl 
5.4604 
5.4613 
5.4744 
5.4760 
5.4968 
5.4984 
5.5138 
5.5274 
5.5278 

ln(ln(1/(1-F(i)M 
-2.8619 
-1.7020 
-1.1226 
-0.7083 
-0.3665 
-0.0571 
0.2476 
0.5832 
1.0614 

: III A samples (Modulus =47.7) 16 samples 
UTS 

2200 
226.8 
225.5 
238.2 
209.9 
227.5 
208.2 
217.4 
214.2 
223.1 
216.0 
218.2 
217.9 
220.4 
218.6 
237.7 

Ranked 
208.2 
209.9 
214.2 
216.0 
217.4 
217.9 
218.2 
218.6 
220.0 
220.4 
222.5 
223.1 
225.5 
225.9 
226.8 
227.5 

F(i) = (i-0.5VN 
0.0313 
0.0938 
0.1563 
0.2188 
0.2813 
0.3438 
0.4063 
0.4688 
0.5313 
05938 
0.6563 
0.7188 
0.7813 
0.8438 
0.9063 
0.9688 

In(x) 
5.3385 
5.3466 
5.3669 
5.3753 
5.3817 
5.3840 
5.3854 
5.3872 
5.3936 
5.3954 
5.4049 
5.4076 
S.4183 
5.4201 
5.4241 
5.4272 

ln(ln(1/(1-F(i))» 
-3.4499 
-2.3183 
-1.7726 
-1.3989 
-1.1079 
-0.8646 
-0.6514 
-0.4580 
-0.2775 
-0.1045 
0.0656 
0.2378 
04186 
0.6186 
0.8617 
1.2429 
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Appendix I, Weibull Modulus Calculations 

Table AW: Weibull Modulus Calculations (B Samples). 

UTS Phase 1 B samples (Modulus =59.2) 10 samples 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1-1b 
1-2b 
1-3b 
1-5b 
1-7b 
1-8b 

1-12b 
1-14b 
1-16b 
1-19b 

UTS 
273.8 
269.4 
284.7 
236.6 
278.0 
271.6 
276.7 
268.9 
260.3 
265.0 

Ranked 
268.9 
269.4 
270.3 
271.3 
271.6 
272.4 
273.8 
276.7 
278.0 
284.7 

Ri) = (I-0.5VN 
0.0500 
0.1500 
0.2500 
0.3500 
0.4500 
0.5500 
0.6500 
0.7500 
0.8500 
0.9500 

ln(x) 
5.5943 
5.5962 
5.5995 
5.6032 
5.6043 
5.6073 
5.6124 
5.6229 
5.6276 
5.6514 

ln(ln(1/(1-F(i)))) 
-2.9702 
-1.8170 
-1.2459 
-0.8422 
-0.5144 
-0.2250 
0.0486 
0.3266 
0.6403 
1.0972 

UTS Phase II B samples (Modulus =76.2) 8 samples 

i 
1 
2 
3 
4 
5 
6 
7 
8 

1 M b 
11-2b 
11-5b 
11-6b 
11-7b 
11-8b 
11-9b 

11-1 l b 

UTS 
265.0 
238.5 
262.0 
260.0 
186.2 
268.9 
257.2 
256.1 

Ranked 
252.4 
252.4 
252.5 
254.7 
256.1 
257.2 
260.0 
262.0 

Ri) = (I-0.5VN 
0.0625 
0.1375 
0.3125 
0.4375 
0.5625 
0.6875 
0.8125 
0.9375 

ln(x) 
5.5310 
5.5310 
5.5314 
5.5401 
5.5456 
5.5499 
5.5607 
5.5683 

ln(ln(1/(1-F(i)))) 
-2.7405 
-1.5720 
-0.9816 
-0.5528 
-0.1903 
0.1511 
0.5152 
1.0198 

UTS Phase III B samples (Modulus =91.7) 13 samples 

I 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

111-1b 
111-2b 
111 -3b 
111-4b 
111 -6b 
111 -7b 
111 -8b 

111-10b 
111-11b 
111-12b 
111-13b 
111-16b 
111-17b 

UTS 
234.3 
234.3 
263.8 
240.6 
225.9 
240.6 
238.6 
245.4 
222.5 
274.4 
233.0 
238.9 
234.2 

Ranked 
233.0 
233.8 
234.0 
234.2 
234.3 
234.3 
237.7 
238.2 
238.6 
238.9 
239.9 
240.6 
240.6 

Ri) = (i-0.5)/N 
0.0385 
0.1154 
0.1923 
0.2692 
0.3462 
0.4231 
0.5000 
0.5769 
0.6538 
0.7308 
0.8077 
0.8846 
0.9615 

ln(x) 
5.4510 
5.4545 
5.4553 
5.4562 
5.4566 
5.4566 
5.4710 
5.4731 
5.4748 
5.4760 
5.4802 
5.4831 
5.4831 

ln(ln(1/(1-Ri)))) 
-3.2386 
-2.0988 
-1.5438 
-1.1595 
-0.8559 
-0.5978 
-0.3665 
-0.1506 
0.0591 
0.2717 
0.5000 
0.7699 
1.1811 
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Appendix I, Weibull Modulus Calculations 

Appendix J 
Uncertainty Analysis 

Table Al 1: Analysis of Uncertainty in Velocity Calculations. 

Uncertainty Analysis for V|T 

Precision of distance measuremet = +/- 0.5mm = +/-.0005m 

Precision of time measurement = +/-.05s 

Phase 1 Measurement 1 
Phase I Measurement 2 
Phase I Measurement 3 
Phase I Measurement 4 
Phase I Measurement 5 
Phase I Measurement 6 

Dist to probe 
from 0 

(m) 
0.000 
0.145 
0.263 
0.369 
0.468 
0.541 

Cumulative time 
to probe 

(s) 
0.0 
0.2 
0.4 
0.5 
0.7 
0.8 

Average 
Velocity to 

Probe (ms-1) 
0.0 
0.7 
0.7 
0.7 
0.7 
0.7 

Distance 
Measurement 

Error (m) 
0.000000 
0.000012 
0.000004 
0.000002 
0.000001 
0.000001 

Time 
Measurement 

Error(s) 
0.000000 
0.062500 
0.015625 
0.010000 
0.005102 
0.003906 

Measurement 
Error 
(ms1) 
0.000 
0.182 
0.082 
0.074 
0.048 
0.042 

Percent 
Error in 
Velocity 

0.0% 
25.0% 
12.5% 
10.0% 
7.1% 
6.3% 

Phase I Measurement 1 
Phase I Measurement 2 
Phase I Measurement 3 
Phase I Measurement 4 
Phase I Measurement 5 

0.000 
0.147 
0.284 
0.412 
0533 

0.0 
0.2 
0.3 
0.4 
0.5 

0.0 
0.7 
0.9 
1.0 
1.1 

0.000000 
0.000012 
0.000003 
0.000001 
0.000001 

0.000000 
0.062500 
0.027778 
0.015625 
0.010000 

0.000 
0.184 
0.158 
0.129 
0.107 

0.0% 
25.0% 
16.7% 
12.5% 
10.0% 

Phase III Measurement 1 
Phase III Measurement2 
Phase III Measurement 3 
Phase lit Measurement 4 
Phase III Measurements 

0.000 
0.126 
0.254 
0.395 
0.523 

0.0 
0.3 
0.6 
1.1 
1.6 

0.0 
0.4 
0.4 
0.4 
0.3 

0.000000 
0.000016 
0.000004 
0.000002 
0.000001 

0.000000 
0.027778 
0.006944 
0.002066 
0.000977 

0.000 
0.070 
0.035 
0.016 
0.010 

0.0% 
16.7% 
8.3% 
4.5% 
3.1% 
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3. Copper chill plate assembled onto runner mould for purpose of capturing entrained 
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4. Mould holding fixture adjustable to facilitate variable flow velocity 
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