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A bstract

To assess the health of aquatic habitats, Uzarski et al. (2005) and Bhagat (2005) 

developed a multimetric index of biotic integrity (IBI) through assessing fish commu

nity composition at thirty sites with dominant Scirpus vegetation across the entire 

US Great Lakes coastline. Danz et al. (2005) derived an agricultural stress gradient 

to characterize the degradation of nature using GIS based data. The IBI-agricultural 

stress relationship resulting from the combined data set suggests that threshold rela

tionships rather than a linear relationship describe how the fish IBI changes as agri

cultural stress increases. The main objective in this paper is to estimate the threshold 

effects of the agricultural stressor to the health of aquatic habitats as represented by 

the fish IBI. First, we employed four tests for bivariate randomness hypothesis among 

’Fish IBI’ and ’Agricultural Stress Gradient’. All of the four tests gave results reject

ing the null hypothesis of bivariate randomness. A simulation study was performed 

to verify the power of those tests against our specific alternative in our data. Vari

ous regression techniques including linear, non-linear, nonparametric, and piecewise 

linear regression, were used to regress ’Fish IBI’ with ’Agricultural Stress Gradient’. 

Among all these regression techniques, only the piecewise linear regression model was 

able to estimate the threshold effects. We applied quantile regression techniques to 

identify the prediction band of the data as well as to estimate the threshold effects. 

Based upon the estimates of threshold parameters we identified the ’’undegraded” 

zone, the ’’transition” zone, and the ’’degraded” zone in terms of agricultural stress. 

We defined ’’undegraded” zone as the collection of sites with minimum level of agricul

tural stress, indicating a habitat suitable for fish communities typical of unimpaired

iii
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locations at the US Great Lakes Coastal margins and ’’degraded” zone as the collec

tion of sites with high level of agricultural stress, indicating degradation of natural 

habitat for fish communities at this Great Lakes Coastal margin. We also defined 

’’transition” zone as the collection of sites that fall between the ’’undegraded” zone 

and ’’degraded” zone with rapid decline in fish communities with the increase of agri

cultural stress. The results showed that seven sites among the selected thirty sites in 

the US Great Lakes coastal margin axe in the ’’degraded” zone. So, care should be 

taken to get rid of the degradation of natural habitat.

Finally, we recommended LOESS, piecewise linear regression and quantile regression 

techniques to model data with potential breakpoints and to estimate the threshold(s) 

as well. We also made recommendation for further research in terms of sampling 

scheme.
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Chapter 1

Introduction and Objectives

Many recent studies in ecology have been devoted to estimation of critical thresholds 

associated with human-induced natural habitat fragmentation (e.g., Andren 1994, 

Fahrig 2001). Critical thresholds occur when the response of a species or ecological 

process to habitat loss is not linear, but changes abruptly at some threshold level of 

loss (Toms and Lesperance 2003). Abrupt changes in ecological processes can also 

occur in other systems. Plant and animal communities change within a threshold dis

tance of habitat edges (edge effects; Wales 1972, Gates and Mosher 1981). Changes in 

management regimes may have threshold-type effects if processes are viewed through 

time. Human produced disturbance from agriculture is the major cause of natural 

habitat loss for fish population in lakes and rivers. In this paper, most of the statisti

cal analyses have been devoted for estimating threshold effects of agricultural stressor 

on fish population in the US Great Lakes coastal margins.

The effects of human-induced disturbances affecting the Great Lakes basin have been 

of major concern to managers and researchers alike. Since the passing of the US

1
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Clean Water Act of 1972 (PL 92 — 500), there has been much focus on developing 

biological indicators of anthropogenic stress to measure ’biotic integrity’ of a habitat. 

Biotic integrity is one of the primary objectives set forth by the Clean Water Act and 

is defined as ’’the ability of a habitat to support and maintain a balanced, integrated, 

adaptive community of organisms having a composition, diversity and functional or

ganization comparable to that of a natural habitat” (Frey 1977). A natural habitat 

as such, refers to an area with minimal levels of anthropogenic stress, also referred to 

as a reference condition area (Host et al. 2005).

Many groups of taxa have been used to develop indicators of stress, ranging from 

diatoms (Ferguson et al. 2003) and benthic invertebrates (Burton et al. 1999) to 

aquatic plants (Gallatowitsch et al. 1999), amphibians (Grabas et al. 2004) and 

more commonly, fish (e.g., Simon 1991). Fishes serve as a good indicators of stress 

because they are often philopatric, represent a broad spectrum of community tol

erance to manifestations of anthropogenic disturbance from very sensitive to highly 

tolerant, and respond to physical, chemical and biological degradation (Plafkin et al. 

1989). Fish communities include species representing various trophic levels (pisci- 

vores, omnivores, insectivores, herbivores), and their position in relation to diatoms 

and benthic invertebrates helps to provide an integrative approach to habitat assess

ment (Karr 1981).

The index of biotic integrity (IBI) is the most commonly used multimetric approach 

for stress, particularly in assessing streams and rivers in the US (Karr 1981, Lyons 

and Wang 1996, Mundahl and Simon 1999, Emery et al. 2003). Theoretically, the 

IBI reflects the degree to which the local environment influences the fish community.

2
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Development of an IBI depends on the a priori identification of reference sites (loca

tions that are subject to minimal levels of anthropogenic stress) typically delineated 

by watershed boundaries (Karr 1981, Fausch et al. 1984) or ecoregions (Hughes and 

Larson 1988, Omernik 1995). Thus, each ecological zone could theoretically require 

its own IBI consisting of metrics that represent measures of a healthy community, 

specific to that ecoregion or watershed. One of the main advantages of using the 

IBI approach is that it takes into account a variety of attributes that represent the 

fish community in a site (Simon 1991). The IBI produces a single score that cam be 

compared to a sampling distribution of expected scores based on scores of minimally 

disturbed sites in the region. Thus, the IBI reflects the fish community response to 

relative degree of disturbance at a particular site (Karr 1981). In this way the mul

timetric index of biotic integrity (IBI) becomes the popular approach to assess the 

health of an aquatic habitat.

Uzarski et al. (2005) used correspondence analysis to determine that the primary 

correlate in coastal wetland fish community composition is emergent plant zonation. 

They developed an IBI for sites dominated by (> 50% cover) Scirpus (bulrush) and 

Typha (cattail). Uzarski et al. (2005) proposed that the IBIs they developed would 

serve as good indicators of overall habitat integrity as long as the sites sampled and 

tested were dominated by either Typha and Scirpus. Danz et al. (2005), the Great 

Lakes Environmental Indicators group, sampled fish at a total of 82 coastal wetlands 

along US Great Lakes coastal margins in 2002 and 2003, according to a design that 

balanced effort across lakes, hydrogeomorphic wetland type, and degree of local an

thropogenic disturbance. Of those 82 coastal wetlands, Bhagat et al. (in review)

3
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found 36 sites with dominant Typha and Scirpus vegetation, more specifically 23 

sites with dominant Typha vegetation and 13 sites with dominant Scirpus vegetation 

across the entire US Great Lakes shoreline. In their study, vegetation density and 

cover were noted at the fish-capture net level rather than the site level and the crite

rion for dominant cover was lowered to 30% or greater. So, they calculated Uzarski 

et al.’s IBI scores for 13 Great Lakes wetland sites with dominant Scirpus vegetation 

23 Great Lakes wetland sites with dominant Typha vegetation, using their data from 

overnight sets fyke nets.

Most researchers to date have quantified primarily agricultural and land use as dis

turbance measures affecting fish communities (Brazner and Beals, 1977, Crosbie and 

Chow-Fraser 1999). General patterns of human activity and land use in the US Great 

Lakes basin differ between ecoprovinces, with most agricultural activities occurring 

in the southern portion of the basin, while the northern portion of the basin remains 

largely forested. The southern portion of the US Great Lakes basin contains deeper, 

more permeable, and more highly buffered soils than that of the northern portion. 

Metropolitan areas are more common in the southern basin.

Measures of Anthropogenic Stress

Danz et al. (2005) calculated measures five of anthropogenic stresses in the US Great 

Lakes Basin. For many regions of the continental US, there is a wealth of spatially 

explicit data from monitoring and reporting programs related to human activities; 

these variables can be used to represent stress if appropriate scales of impact and 

interactions with related factors can be identified. To integrate spatial stress data 

they used different methods ranging from relatively simple rank or scoring (Bryce

4
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et al., 1999) to multivariate statistical techniques in combination with a geographic 

information system (GIS) (Tran et al., 2003; Tran et al., 2004).

Danz et al. (2005) developed a geographic information system (GIS) database with 

149 spatial variables previously used to distribute sampling effort across a range of 

environmental conditions in the Great Lakes basin. A preliminary multivariate anal

ysis had been used to classify the variables into five categories of anthropogenic stress 

that are prominent in the Great Lakes basin. To calculate agricultural stress gradient 

they employed 21 variables characteristic of the major types of stresses associated 

with agricultural activities, including nutrient run off, pesticides, and erosion. They 

used principal component analysis (PCA) to integrate the information within each of 

the five categories of stress variables into a smaller number of stress measures. PCA 

is a multivariate statistical technique that creates a set of novel orthogonal variables 

(PCs) that are linear combinations of the original variables (Rencher, 1995).

To assess the relationship between GLEI stressors and the fish data collected by 

Uzarski et al. (2005), Bhagat (2005) overlaid geographic co-ordinates for each site 

sampled by Uzarski et al. (2005) on a map of their GLEI segment-shed delineations 

and determined its corresponding GLEI stressor score. Since the stressor information 

was only available for sites on the US coastline, they were only able to get Uzarski et 

al. (2005) data and the GLEI data for Scirpus dominant sites.

Fish Sampling

Fish communities were sampled using 2 large fyke net arrays (1.25 cm mesh) and 2 

small fyke net arrays (0.5 cm mesh) set overnight at each site. Each fyke net array 

was placed lead-to-lead (leads parallel to shore), with the wings set at 45° angles

5
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(Brazner and Beals 1997). One set of large and one set of small nets were placed near 

each of the two dominant shoreline habitats at a site. Fish community composition 

(number of individuals of each species) and condition of up to 25 fish per species (to

tal length, incidence of damage or disease) were measured at each fyke net the next 

day. Unidentifiable fish were euthanized in clove oil, preserved in 9 : 1 v/v ethanol: 

formalin mixture, and taken to the lab for identification. Physicochemical variables 

(temperature, dissolved oxygen concentration, conductivity pH) were measured at 

each net using a multi-probe meter (YSI 556 MPS). Water clarity at each net was 

measured using a Secchi disk and turbidity tube. Dominant and subdominant genera 

of emergent, subemergent and floating vegetation (cover and density) were also noted 

at each net per site.

IB I Development

The Fish IBI that we used in this paper was developed by Uzarski et al. (2005). 

The IBI was developed according to Uzarski et al.’s (2005) method, and Table 1 in 

the Appendix contains the final set of IBI metrics for Scirpus zones and Table 2 in 

the Appendix contains the data with observations from Uzarski et al. (2005) sites 

and GLEI sites. Bhagat (2005) concluded that Typha IBI was significantly negatively 

correlated to agricultural stress. In contrast, Scirpus IBI scores reflected a threshold 

effect (Figure 1.1) at agricultural stress scores of —0.5 or less, whereas at stress scores 

> 0, there were no IBI score greater than 45. The pattern was more consistent with 

a threshold effect rather than a linear response.

We defined, undegraded Zone: A zone with the collection of sites with minimum 

level of agricultural stress, indicating a habitat suitable for fish communities in the

6
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US Great Lakes Coastal margins. Degraded Zone: A zone with the collection of 

sites having high level of agricultural stress, indicating degradation of natural habitat 

for fish communities in this Great Lakes Coastal margin. Transition Zone: A zone 

with the collection of sites that fall between the ’’undegraded” zone and ’’degraded” 

zone with rapid decline in fish communities with the increase of agricultural stress. 

Before beginning to track the pattern between the random variables ’Fish IBI’ and 

’Agricultural Stress Gradient’, it is wise to test the randomness between them. A 

random process is a repeating process whose outcomes follow no describable pattern. 

Chapter 2 talks about the tests for bivariate randomness. To test the hypothesis 

of bivariate randomness of the two random variables, we used (1) the test based on 

the mean nearest-neighbor distance proposed by Clark and Evans (1954) that takes 

into account dependencies amongst the nearest-neighbor distances and incorporates a 

correction for edge effects; (2) the test based on the cumulative R-spectrum proposed 

by Mugglestone and Renshaw (1990) known as spectral test; (3) the test based on the 

reduced second-order moment function by Ripley (1976); and (4) the test based on 

the bivariate Cramer-von Mises statistic proposed by Zimmerman (1993). The reason 

for choosing these tests is that they were shown to be powerful against different types 

of alternatives especially against a clustered alternative, which is what we observe 

in our data. We also performed a simulation study to compare the power of those 

chosen tests.

In Chapter 3 we employed regression techniques to regress ’Fish IBI’ by ’Agricultural 

Stress Gradient’. Some nonparametric regression techniques (e.g., Kernel smoothing, 

LOESS) have been used to identify the pattern that is present in the data. Among

7
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Figure 1.1: Plot of Fish IBI of GLEI and Uzarski sites against agricultural stress 

gradient (from Bhagat et al. in review)
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the parametric regression procedures, we used (1) linear, (2) nonlinear: logistic curves 

and (3) piecewise linear regression techniques and compared them in terms of residual 

sum of squares. Toms and Lesperance (2003), used piecewise linear regression models 

to estimate break points and used these as estimates of thresholds. We followed Toms 

and Lesperance (2003) techniques to fit piecewise linear model for two breakpoints 

and hence to estimate two thresholds. We specified the interval between two break

points as the ’’transition” zone and the zone beyond the second break point as the 

’’degraded” zone.

Classical least squares linear regression technique gives the regression line through 

the mean of the conditional distribution of the dependent variable y. As the mean 

alone gives an incomplete picture about the distribution of a random variable, sim

ilarly mean regression gives an incomplete picture about regression line, especially 

when the data are sparse and heterogeneous. By complementing the exclusive focus 

of classical least-squares regression on the conditional mean, quantile regression offers 

a systematic strategy for examining how covariates influence the location, scale, and 

shape of the entire response distribution (Koenker 2005). We fitted linear regression, 

nonlinear regression (logistic curve) and piecewise linear regression through different 

quantiles. Among those, piecewise linear quantile regression gives us a set of values 

for the first break point (threshold) and another set of values for the second break 

point (threshold), from which we can get a comprehensive view of the ’’transition” 

zone and hence we were able to determine the ’’degraded” zone in terms of agri

cultural stress gradient. Quantile regression techniques have permitted us to get an 

idea about prediction band of the data. So, Chapter 4 contains the methodology of

9
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quantile regression and its application to our data.

Finally Chapter 5 contains the summary and conclusion of this paper.

O bjectives

The overall objective of this paper is to examine how values of the Uzarski et al. 

(2005) and Bhagat (2005) Scirpus IBI varied across the agricultural anthropogenic 

stressor gradient derived from GIS-recorded data measured at the segment shed scale. 

More specifically,

• Testing bivariate randomness in ’Fish IBI’ and ’Agricultural Stress Gradient’.

• Regressing ’Fish IBI’ with ’Agricultural Stress Gradient’ and selecting an ap

propriate model.

• Regression through different quantiles and estimation of prediction interval.

• Estimation of threshold parameters and determination of the ’’undegraded” 

zone, the ’’transition” zone, and the ’’degraded” zone in terms of ’Agricultural 

Stress Gradient’.

The statistical analyses and graphical procedures have been done by R  (version 2.3.1) 

and S-Plus (version 7.0) programming environment and the programs have been 

included in the Appendix.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Test for Bivariate Randomness

2.1 Introduction

The objective of this chapter is to test bivariate randomness of the random variables 

’Fish IBI’ and ’Agricultural Stress Gradient’. If they are bivariate random, then it

is foolhardy to go further to try to identify any pattern between them. There is a

huge collection of literature to test for bivariate randomness. Among them we have 

chosen four popular and powerful tests to serve for our objective in this chapter. 

Mathematically, we can express the null hypothesis as:

Hq : ((x1,y l),(x2,y 2 ) , - , { x n,yn))i.i.d. ~u([x,y]) (2.1)

This implies that the two random variables x  and y are uniformly and independently 

distributed. The alternative hypothesis can be expressed as:

Ha ■ ((xi,yi), (x2, 2/2), (x„, yn))i.i.d. u([x, y]) (2.2)

This implies that there is some pattern between the two random variables.

Clark and Evans (1954) proposed the ’Distance to nearest neighbor’ method as a mea-
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sure of spatial relationships. One mentionable feature of that proposed methodology 

is the simplicity of the procedure. Bartlett (1964) extended his proposed spectral 

analysis from a one-dimensional point process to a two-dimensional stationary point 

processes. Various distance-based methods of testing for randomness in a population 

of spatially distributed events were described by Diggle et al. (1976). They concluded 

that the method of T-square sampling can help to provide quick and informative re

sults and suited to large populations.

A rigorous foundation for the second-order analysis of stationary point processes on 

general spaces was provided by B.D.Ripley in 1976. In that paper, the main tool 

was the decomposition of moment measures pioneered by Krickeberg and Vere-Jones 

and the Ripley’s K function was proposed. Diggle (1977) proposed a two-stage pro

cedure for the detection of random-heterogeneity and applied it in plant populations. 

Ripley (1979) incorporated the methods of edge-correction in tests of ’’randomness” 

and investigated the asymptotic distribution theory and power of tests based on the 

nearest-neighbour distances and estimates of the variance function. Diggle (1979) 

discussed the objectives of spatial point pattern analysis, for the mapped data and 

reviewed the available models, discussed the role of preliminary testing and outlined 

a procedure for fitting a parametric model.

Renshaw and Ford (1984) described spatial point pattern using two-dimensional spec

tral analysis. Four functions were described: the autocorrelation function; the peri- 

odogram; and, the R- and ©-spectra, which respectively summarize the periodogram 

in terms of scale and directional components of patterns. Zimmerman(1993) exam

ined the randomness of a mapped spatial pattern of events in a rectangle D in R2 using

12
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a bivariate Cramer-von Mises type statistic that is based on the ’distance’ between 

the bivariate empirical distribution function of the events’ Cartesian co-ordinates and 

the uniform distribution function. In a simulation study, he showed that the proposed 

test was superior to existing tests for detecting heterogeneous alternatives to spatial 

randomness but inferior for detecting regular or aggregated alternatives. The feature 

of this test is its simplicity.

A test based on the angle between the vectors joining each sample point to its two 

nearest neighbors was derived by Renato in 1994. He proposed that the test statis

tic can be useful in forestry and ecology studies in regions with terrains that make 

distance measurements difficult. Zimmerman (1994) derived and tabulated the limit

ing null distribution for an origin-invariant bivariate Cramer-von Mises-type statistic 

using the principal component decomposition method. Mugglestone and Renshaw 

(1996) showed how spectral analysis can be used as a tool for the exploratory analysis 

of spatial point patterns. They compared the interpretations obtained using spectral 

analysis with those derived from analysis using the reduced second-order moment 

function. A test for the complete spatial randomness hypothesis of a point pattern in 

R 2, based on functions of the spacings between x-ordinates and the spacings between 

y-ordinates was proposed by Cucala et al. in 2000. They showed in a simulation 

study that the proposed test was inferior to existing tests for detecting regularity or 

clustering but more powerful for detecting certain types of heterogeneity. Prayag et 

al. (2000) proposed a test of randomness based on Eberhardt’s index and empirically 

obtained its distribution. The test is powerful under various degress of aggregation 

and regularity.

13
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Mugglestone and Renshaw (2001) developed a spectral framework for testing the hy

pothesis of complete spatial randomness (CSR) for a spatial point pattern. They 

compared five spectral tests and performed a simulation study to compare the power 

of those tests with the widely used tests for CSR specifically with the test based on 

the mean nearest-neighbour distance, test based on the reduced second-order mo

ment function, and the test based on the bivariate Cramer-von Mises statistic. They 

showed that test based on the scaled cumulative R-spectrum was more powerful than 

the widely used tests for detecting clustered alternatives, especially when the number 

of events was small.

In this chapter, four widely used tests for CSR are investigated. They are tests 

based on mean nearest-neighbor distance, scaled cumulative R-spectrum, the reduced 

second-order moment function (K-function), and bivariate Cramer-von Mises statis

tic. The reason for choosing these tests is that they were shown to be powerful against 

different types of alternatives especially against clustered alternative which is what 

we observe in our data.

2.2 Test Statistics

In this section the description of the four test statistics that has been chosen are 

narrated briefly.

2.2 .1  T est based on th e  m ean nearest-neighbour d istan ce

This test was first proposed by Clark and Evans (1954). This is the simplest test 

among the four chosen tests. Let an observed pattern consists of N events (points)

14
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in a rectangle with sides of length lx and ly. The first step in calculating the test

statistic is to scale the coordinates of the events to the unit square. Let (Xi,yi),i —

1 , 2 denote the coordinates of the events relative to the unit square. For N

events observed in the unit square, the mean nearest-neighbour distance is given by

d =  ^Z d i/N , where d* (i=l,2,...,N) represents the distance from the ith event to its 
i - 1

nearest neighbour. Under the null hypothesis, the distribution of d is approximately 

normal with mean and variance given by /xj =  0.500iV_1 +  0.1647V-3/2 and cr| =  

0.070./V-2 +  0.148/V-5/2, respectively (Donnelly, 1978). For cluster processes, d tends 

to be less than /xj whilst for inhibition processes, it tends to be greater than /uj. Thus 

a two-sided test for CSR is obtained by comparing

T  = { d - n i )l<ji ~ N {  0,1) (2.3)

with critical values of the standard normal distribution.

2.2 .2  Test b ased  on th e  cum ulative R -spectrum

The latest version of this test is due to Mugglestone and Renshaw(1996). The cal

culation of the periodogram depends on the coordinates of the events to the unit 

square; this reduces the bias in the periodogram at low frequencies (Bartlett, 1964).

Let (xi,yi),i = 1,2,..., TV, denote the coordinates of the events relative to the unit 

square. The periodogram is given by:
N  N

f(w p, wq) =  cos{N{wpXi + wqyi)} }2 +  sin{N(wpXi +  wqyi) } }2 (2.4)
i=l i=1

which is calculated for the frequencies (wp,wq) — (2np/N, 2Trq/N), where p =  0,1, ...,Pmax 

and q -  - q max, -qmax +  1, qmax ~ 1 for suitable values of pmax and qmax. The suit

able values of pmax and qmax depend on the optimum selection of periodogram values
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which in turn depends on the number of events suggested by Mugglestone and Ren- 

shaw (1996). The values for pmax =  5 and qmax — 5 are capable of capturing the 

suggestion of Mugglestone and Renshaw.

Calculation of the periodogram amounts to a transformation from coordinate data to 

a (Pmax +  1) x 2qmax matrix of periodogram values. The ordinates (elements) of the 

periodogram hold information about the strength of periodicities and the intensity 

of the point pattern. The term f(w p, wq) corresponds to a periodic pattern with p 

repeats in the x direction and q repeats in the y direction.

Completely random spatial point processes are characterized by ’’flat” periodograms; 

the values are roughly constant at all frequencies because no one frequency domi

nates the process. The R-spectrum, /fl(r), summarizes average periodogram values 

for ordinates with similar values of r  =  y/{p* + q2)] it is used to investigate scales 

of pattern. If a spatial pattern is isotropic (that is, if it does not contain any direc

tional structure), then the R-spectrum fully captures the second-order structure of 

the pattern. Formally

/* ( > ■ )  =  [ £ £  Wq)I{ ,—  l < r < r } ( ^ ) f { O o < 0 < 1 8 O ° } ( ^ ) ] /^ r  ( ^ - 5 )

t 6

where 6 = tan~1(p/q). Here nr denotes the number of periodogram ordinates for 

which r  — 1 < r < r  and 0° < 6 < 180°.

Note that the ordinate for p — q = 0 is excluded from the averaging procedure 

(since it has different sampling properties to the rest of the periodogram). Ordinates 

corresponding to positive values of q on the row for p = 0 are also excluded since these 

are exact repeats of ordinates for negative values of q. These ordinates are discarded 

before calculating nT.
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Tests based on the precise bands of frequency magnitudes might be more powerful 

than the other spectral tests, since certain frequency ranges will be more affected by 

departures from CSR than others. One way of achieving this more sensitive form of 

the test is to determine appropriate ” cut-off” levels r\ < r < r2  in the R-spectrum 

that are especially tailored for testing against specific alternatives to CSR.

A natural extension to the R-spectrum is the cumulative R-spectrum proposed by 

Mugglestone (1990)
r

fcR.{r) = 'Y^nsf R(s)/Nr (2.6)
S = 1

r

where Nr — X) n«- This indicates the total power present in the spectrum up to a
5 = 1

scale of pattern, r. The scaled cumulative R-spectrum has the distribution

} c r { ? ) / N  ~  (2ATr)_1X2ivr (2-7)

Invoking the above equation for a given value of r allows us to calculate critical values 

°f fcn{r) /N  for a test of CSR. Two-sided critical region from the x2 distribution is 

necessary to capture the specific alternative.

The simulation experiments of Mugglestone (1990) and Mugglestone and Renshaw 

(1996) suggest that tests of CSR should be based on ordinates of the cumulative 

R-spectrum for which r < 5. According to their experiments the ordinates of the

cumulative R-spectrum for r < 2,3,4,5 are based on Nr — 6,14,24,40 periodogram

values, these form appropriate test statistics for patterns containing at least N  =  

12,28,48,80 events, respectively.
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2 .2 .3  Test based on  th e  reduced  second-order m om ent func

tion

The reduced second-order moment function, or K-function, represents the expected 

number of events within distance t of a randomly chosen event. Under the null 

hypothesis, K(t) is equal to 7rf2, whereas for cluster processes it exceeds nt2 and for 

an inhibition processes it is smaller than nt2. A test of CSR is typically based on

Lm =  sup | y/{K (f) / tt} -  <| (2.8)
t<to

where K(t) is Ripley’s (1976) estimator for K(t) defined as K{t) =  N~2 ^  k(x,y), 

here l /k(x, y) is the proportion of the circumference of the circle x passing through 

y within an area and to is some maximum distance of interest. With reference to 

Mugglestone and Renshow(2001), we shall use to =  1-25/y/N,  so that as N increases 

the test concentrates on smaller inter-event distances.

According to Zimmerman (1993), the critical value of the test based on Lm is obtained 

by Monte Carlo simulation each and every time as follows. Let L\m denote the value 

of Lm for the sample pattern, and calculate Z,im(i=2,3,...,j), the values of Lm for (j-1) 

realizations of CSR with intensity N. The attained significance level of the test of 

CSR is given by rank(Lim)/j. We shall use j  — 1 — 999 realizations of CSR, these 

being obtained by simulating from the null distribution.

2 .2 .4  Test based on  th e  b ivariate Cram er-von M ises s ta tis tic

This test, which is due to Zimmerman(1993), measures deviations between the empir

ical distribution function of the two-dimensional coordinates of a point pattern and

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.1: Selected percentiles of the limiting null distribution of w2.

Pr(w2 < x ) X Pr(w2 < :r) X

0.01 0.0433 0.75 0.1713

0.02 0.0487 0.85 0.2062

0.05 0.0569 0.90 0.2337

0.10 0.0664 0.95 0.2806

0.15 0.0747 0.98 0.3425

0.25 0.0881 0.99 0.3892

0.50 0.1219

the bivariate uniform distribution. For data in the unit square, the test statistic is 

=  I) C1 — ~ 2/i I ) /(4iV) — — 0-5) (yf — 2/i — °.5)/2+A^/9
»=1 j=1 i=l

(2.9)

A two-sided alternative is necessary to capture the specific alternative described ear

lier. The limiting distribution of w2 under CSR is that of an infinite sum of x\  random 

variables, and is tabulated by Zimmerman(1994) and is given in Table 2.1.

2.3 Sim ulation

In order to evaluate the performance of the four chosen tests for our type of alter

natives, we generated data from the null situation as well as from the alternatives 

and converted to the unit square using the origin and scale transformations. We used 

the mean and variances of the ’Agricultural Stress Gradient’ and ’Fish IBI’ variables
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given in Table 2 in the Appendix. The mean and variance of the stress variable calcu

lated from the data are —0.1033 and 0.5678 respectively. For the ’Fish IBI’ variable 

the mean and variance are 44.4 and 174.2483 respectively. The estimated correlation 

coefficient between the two variables is —0.6474. We evaluated the four test statistics 

under several situations by generating data from:

1. null distribution to check the empirical size of those tests. We calculated, the 

standard error of the empirical size using the formula y/p (1 — p)jn.

2. bivariate normal distribution with means and variances of the fish data and corre

lation coefficients ranging from —0.30 to —0.80.

A nominal level of 4% was used. One thousand samples with these parameter values 

were generated. The empirical power of each test is given by the proportion of the 

1000 replicates for which the bivariate randomness null hypothesis was rejected. 

Results of empirical a  level for the four tests are given in Table 2.2. All of the four 

tests show slight fluctuations around 0.04 in their size for smaller sample sizes. For 

larger sample sizes, the empirical level of significance for all of the four tests stabilizes 

with a little bit of conservativeness.

The overall performance of these four tests (mean nearest-neighbour distance, cumula

tive R-spectrum, reduced second-order moment function, bivariate Cramer-von mises 

statistic) were evaluated under bivariate normal distributions with specific means 

and variances but for different correlation coefficients (p— -0.30, -0.40, -0.50, -0.60, 

-0.64737, -0.70, -0.80). Results of empirical power are displayed in Table 2.3.

Mean nearest-neighbour distance (T): The performance of this test for smaller sample 

sizes (N  < 25) and for weaker associations (-0.70 < p < —0.30) is not satisfactory
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Table 2.2: Estimated size (standard error) of nominal 4% tests of bivariate random

ness

N

Test statistic 12 25 50 75 100

T 0.035
(0.0058)

0.046
(0.0066)

0.032
(0.0056)

0.032
(0.0056)

0.038
(0.0060)

f CR(r) /N 0.040
(0.0062)

0.034
(0.0057)

0.044
(0.0065)

0.042
(0.0063)

0.037
(0.0060)

Lm 0.044
(0.0065)

0.032
(0.0056)

0.050
(0.0016)

0.036
(0.0059)

0.039
(0.0061)

W2 0.036
(0.0059)

0.026
(0.0050)

0.045
(0.0065)

0.037
(0.0060)

0.037
(0.0060)

comparing to the other three tests. It showed better power performance for larger 

sample sizes (N  > 30) in comparison with smaller sample sizes for weaker correla

tions (—0.70 < p < —0.30). In stronger correlation situations (—0.80 < p < —0.70), 

the power of this test is better in comparison to weaker correlations but showed the 

lowest power of rejecting the null hypothesis among the four chosen tests. 

Cumulative R-spectrum (fcR.(r)/N): This test showed better power performance 

compared to T  irrespective to every situation. The performance of this test and of 

the test Lm are almost the same for weaker correlations. But for higher correlation 

situations (—0.80 < p < —0.60), its performance is below Lm. For the weaker cor

relation situations, the performance of this test is far below than that of the test 

based on the bivariate Cramer-von mises statistic (w2) but for stronger associations 

(—0.80 < p < —0.60), the performances of the tests based on cumulative R-spectrum 

(fcR{r)/N) and bivariate Cramer-von mises statistic (w2) are almost the same. This
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Table 2.3: Power of four tests at 4% level. Data generated from bivariate normal 

with nx =  —0.1033, a\ — 0.5678, ny =  44.4, ay =  174.2483 and different correlation 

coefficients p_____________________________________________________
Corr. coef. N

P Test statistic 15 20 25 30 35
-0.30 T 0.035 0.095 0.157 0.243 0.300

f c u ( r ) /N 0.216 0.448 0.684 0.661 0.802

Lm 0.228 0.391 0.644 0.794 0.901
up 0.447 0.583 0.770 0.871 0.950

-0.40 T 0.058 0.126 0.215 0.284 0.386
f c n ( r ) /N 0.259 0.495 0.744 0.735 0.870

Lm 0.261 0.496 0.725 0.855 0.950
up 0.452 0.616 0.801 0.896 0.969

-0.50 T 0.064 0.162 0.250 0.383 0.504
f c n ( r ) /N 0.297 0.593 0.820 0.764 0.887
Lm 0.315 0.606 0.791 0.919 0.971
uP 0.491 0.643 0.817 0.915 0.966

-0.60 T 0.115 0.234 0.398 0.531 0.653
fcR (r ) /N 0.345 0.644 0.889 0.879 0.940
Lm 0.394 0.702 0.901 0.971 0.992
up 0.496 0.680 0.853 0.958 0.987

-0.64737 T 0.147 0.294 0.453 0.613 0.722
f CR(r) /N 0.388 0.705 0.917 0.890 0.976

Lm 0.418 0.743 0.938 0.987 0.998
uP 0.509 0.706 0.893 0.971 0.992

-0.70 T 0.191 0.341 0.567 0.710 0.817
f CR{r) /N 0.439 0.774 0.940 0.928 0.984

Lm 0.540 0.813 0.963 0.996 0.999
uP 0.522 0.745 0.911 0.973 0.999

-0.80 T 0.338 0.634 0.815 0.908 0.968
fcR (r ) /N 0.546 0.910 0.983 0.988 0.999

Lm 0.651 0.943 0.993 1.000 1.000
uP 0.550 0.786 0.934 0.996 0.999
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test showed lower power performance for the sample size 30 than for the sample size 

of 25. This might be due to the definition of initial values proposed by Mugglestone 

and Renshaw (1996). According to them, for sample sizes of 25 and 30, the test 

statistic uses 6 and 14 periodogram values respectively. So, there is further scope for 

redefinition of the initial values for this test.

Reduced second-order moment function (Lm): This test has the highest power among 

the four chosen tests in stronger correlation situations (—0.80 < p < —0.60) and 

showed good power (power > 0.40) performances for larger (N  > 20) sample sizes. 

Bivariate Cramer-von mises statistic (w2): This test showed the best power perfor

mances among the four chosen tests in the situations of weaker correlations (—0.50 < 

p < —0.30) irrespective to small and large sample sizes, and the test based on the re

duced second-order moment function Lm showed second highest power performance. 

But for strong correlation situations (—0.80 < p < —0.60) and for the sample sizes 

(N  > 20), the performance of (w2) is slightly lower than the test based on the reduced 

second order moment function (Lm).

Table 2.3 also gives the estimated power of the four tests for our specific alternative 

situation (correlation coefficient, p =  —0.64737). We see that test based on the mean 

nearest-neighbour distance (T) gives the lowest power among the four chosen tests for 

all of the chosen sample sizes. The test based on the reduced second-order moment 

function (Lm) gives the highest power among the four chosen tests when the sample 

sizes are large, i.e., > 20. The test based on the bivariate Cramer-von Mises statistic 

(w2) gives the highest power when the sample size is small. This is extremely im

portant in ecology, because often it is difficult to obtain large sample sizes. The test
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based on the cumulative R-spectrum is in the third position among the four tests in 

terms of power. Except for the test based on mean nearest-neighbour distance (T), 

all tests showed good power performance in that situation.

2.4 D ata A nalyses

Table 2.4 shows the results after the application of four chosen tests to our data set. 

All of the tests resulted in rejection of the null hypothesis of bivariate randomness 

at 4% level of significance. The test based on the reduced second order moment 

function (Lm) shows p-value of < 0.001, indicating the strongest evidence against the 

null hypothesis.

Hence, we conclude that there is some non-random pattern present between ’’Fish 

IBI” and ’’Agricultural Stress Gradient”. So it is worthwhile to go and find the 

pattern between the two random variables.

Table 2.4: Application of the tests to the data (level of significance^ 0.04)

Test statistic Calculated Value LCV UCV P-val Decision

T -3.606 -2.054 2.054 — Rejected

fcn{r)/N 3.314 0.530 1.622 — Rejected

Lm 0.123 — — <0.001 Rejected

W2 0.797 0.0487 0.3425 — Rejected

LCV: Lower Critical Value UCV: Upper Critical Value
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2.5 Sum mary

In this chapter we have chosen the four most powerful tests available, which have fre

quently been used as tests for CSR. We performed a simulation study to compare their 

empirical power and size. All of the tests showed some fluctuations in size for small 

sample sizes but stabilized for large sample sizes and showed some conservativeness 

for rejecting the null hypothesis. The test based on reduced second-order moment 

function (Lm) showed the highest power for larger sample sizes and for stronger corre

lations while the test based on bivariate Cramer-von Mises statistic (w2) showed the 

highest power for small sample size and for weaker correlations. The test based on the 

mean-nearest neighbor distance showed least tendency to reject the null hypothesis 

when the alternative is true among the four chosen tests. All of the four chosen tests 

were applied to our data set and showed strong evidence against the null hypothesis, 

indicating some pattern in the data.
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Chapter 3

Regression and Estim ation of 

Thresholds

3.1 Introduction

Regression is the basic statistical technique to model statistical data. Linear regres

sion is the most popular and widely used regression technique among others. There 

are other techniques also, such as non-linear regression, nonparametric regression etc. 

Recently, the piecewise regression technique has become popular for modelling en

vironmental threshold parameters in ecology. In ecology thresholds occur when the 

response of a species or ecological process to an independent variable is not linear, 

but changes abruptly at some threshold level of loss (Toms and Lesperance 2003). 

Piecewise regression models axe ’’broken-stick” models, where two or more lines are 

joined at some unknown points, called ” break-points” . ” Breakpoints” can be used as 

estimates of thresholds and are used to determine the width of edge effects. Piecewise
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linear regression allows transitions from one linear regime to another linear regime. 

The aim is to estimate the position of the transition points between the linear regimes 

and to take these as estimates of threshold parameters.

Bacon and Watts (1971) defined a model that includes two intersecting straight lines. 

They used a Bayesian estimation procedure to determine the plausibility of differ

ent parameter values. Watts and Bacon (1974) extended their proposed model using 

the hyperbola as a transition model to fit two regime straight line data. Tishler and 

Zang (1981) proposed a maximum likelihood algorithm for piecewise regression model. 

Chiu (2002) incorporated a bent-cable model to estimate ecological thresholds. Toms 

and Lesperance (2003) used all of the previously defined models to estimate ecological 

threshold parameters. They also showed how the piecewise regression model can be 

fitted using a standard non-linear least squares algorithm. All of the previous works 

were used to define and estimate one breakpoint (i.e., threshold). These models incor

porated two straight lines joined at the threshold. In this paper, we fitted a piecewise 

linear regression model to our data to capture two breakpoints incorporating three 

linear regression lines joined at two threshold points (Seber and Wild 1989). We also 

incorporated the non-linear least squares method to estimate the model parameters 

proposed by Toms and Lesperance in 2003.

3.2 M odel fitting

Different types of regression models can be fitted to our data given in Table 2 in 

the Appendix. The most widely used linear regression model was fitted first. As an 

improvement over the lineax model, the non-linear logistic model was fitted also. Then
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we tried to guess the position of breakpoints using some nonparametric regression 

techniques (local mean, local linear regression and LOESS). Finally, the piecewise 

linear regression model was fitted to the data to estimate the threshold parameters.

3.2 .1  Linear R egression  

M ethods

Denote the variable ’Fish IBI’ as y, and variable ’Agricultural Stress Gradient’ as x, 

and the lineax regression model

y = p0 + 0ix  +  e (3.1)

where e is the error term independently and identically distributed with N(0, a2). 

Our estimation procedure is the least square method where we get the estimates by 

minimizing the sum of squares of deviations from the true line

5  -  = E?(Vi - 0 o -  0iXi)2. (3.2)

We can determine b0 and &i (estimates of 0O and 0i respectively) by differentiating 

equation (3.2) with respect to 0o and 0i and setting the results equal to zero. 

Results

From the estimates of the coefficients of the simple linear regression equation pre

sented in Table 3.1, we can see that the intercept and slope parameters are signif

icantly different from zero. The sign of the estimated slope coefficient is —11.340,

implying that ’Fish IBI’ decreases as ’Agricultural Stress Gradient’ increases. From 

the analysis of variance table (Table 3.2), we can see the F-value is very high with

small p-value, indicating that the slope coefficient is significantly different from zero.
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Table 3.1: Estimate of the parameters of the linear regression line

Coefficients Estimate Std. Error t-value P{> 1*1)

00 43.229 1.887 22.903 < 0.001

0x -11.340 2.523 -4.494 0.00011

Table 3.2: Analysis of variance for the straight line relationship

Source df SS MS Calculated F-value Pr{> F)

Regression 1 2117.74 2117.74 20.2 0.00011

Residual 28 2935.46 104.84

Total(corrected) 29 5053.2

R 2 =  0.4191

The model explained only 41.91% variation of the total variation in ’Fish IBI’ which 

is rather a poor performance. The residual sum of squares for this linear regression 

model is 2935.46. Figure 3.1 shows the fitted linear regression line and the data. We 

can see that the linear model overestimates the value of Fish IBI at smaller Stress, 

underestimates Fish IBI when the Stress Gradient is around —0.5, and overestimates 

IBI for the Stress around 0.08. For the purpose of improvement in regression in the 

next section of this chapter we are going to fit non-linear regression model.

3 .2 .2  N on-linear R egression: L ogistic Curves

We attempted to improve the fit by using logistic curves. Again, we denote the ’Fish 

IBI’ as y and ’Agricultural Stress Gradient’ as x. Our first logistic curve with the
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and the other with cubic term superimposed to the data
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quadratic term is given by:

E(y\x) = A/(  1 +  exp (B + Cx + Dx2)) (3-3)

where A, B, C, D  are the model parameters. Our second logistic curve including a 

cubic term is given by:

where A, B, C, D , E  are the model parameters. The estimation procedure is the 

Gauss-Newton non-linear least squares and the parameter estimates are displayed 

in the result section at Tables 3.3 and 3.4. To fit the models with non-linear least 

squares we used the software package R  version 2.3.1.

Model Selection

Usually, there is no true model. Instead, a model only approximates reality. The 

question then is to find which model would best approximate reality given the data. 

In other words, we are trying to minimize the loss of information. Kullback and 

Leibler (1951) addressed such issues and developed a measure, the Kullback-Leibler 

information, to represent the information lost when approximating reality. A few 

decades later, Akaike (1973) used Kulback-Leibler information for model selection. 

He established a relationship between the maximum likelihood and the Kullback- 

Leibler information. In essence, he developed an information criterion to estimate 

the Kullback-Leibler information, resulting in Akaike’s information criterion (AIC)

where K  is the number of parameters included in the model. This reflects the overall 

fit of the model with small values indicating good fit.

E(y\x) =  AJ{\ + exp(B +  Cx  +  Dx2 -I- E x3)) (3.4)

AIC  — —2{log {likelihood)} +  2 K (3.5)
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In cases where analyses are based on more conventional least squares regression for 

normally distributed errors, one can compute the AIC with the following formula

A IC  = nlog((j2) +  2K  (3.6)

where, a2 =  Residual Sum of Squares/n, and n is the sample size.

Results

The parameter estimates of the logistic curves with quadratic and cubic terms are 

presented in Tables 3.3 and 3.4 respectively. From the parameter estimates of the 

logistic curve with quadratic term, we see that all the parameters are significant at 

the 5% level. The residual sum of squares is given by 2037.855 which is far below 

the residual sum of squares of simple linear regression fit. The AIC for this model is 

219.69. On the other hand the estimates of the parameters D and E  of the logistic 

curve with cubic term are not significant. Though the residual sum of squares de

creases to 2018.729, the AIC increases to 221.407 indicating that there is more loss of 

information in the later model comparing to the former. So among the two logistic

Table 3.3: Estimates of the parameters of the logistic curve with quadratic term

Parameters Estimate Std. Error t-value Pr{> |t|)

A 55.257 4.274 12.928 < 0.001

B -0.985 0.478 -2.061 0.049

C 2.988 1.250 2.391 0.024

D -1.723 0.812 -2.122 0.044

RSS  = 2037.855, AIC  -  219.69

curves, the model with quadratic term is better. The fitted logistic curve is presented
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in Figure 3.1, showing it fits the data well. It shows better performance of residual 

sum of squares comparing to the linear counterpart. However, one result of this fitted 

line is against our expectation. It shows the increase of Fish IBI with increase of 

Stress Gradient when the Stress is > 1.00. Our expectation of decreasing Fish IBI 

with increasing Stress is violated. So, our next effort is to find a way to overcome 

this difficulty.

Table 3.4: Estimates of the parameters of the logistic curve with cubic term

Parameters Estimate Std. Error t-value Pr{> |t|)

A 54.541 4.338 12.573 < 0.001

B -0.982 0.480 -2.046 0.051

C 3.318 1.851 1.792 0.085

D -2.632 2.696 -0.976 0.338

E 0.455 1.125 0.404 0.689

R S S  = 2018.729, AIC  = 221.407

3 .2 .3  N on param etric  R egression

There are cases where linear models fit poorly because of intrinsic nonlinearity in 

the data. Nonparametric regression aims to provide a means of modelling such non- 

linearity in the data. Even where the suitability of linear models has not yet been 

brought into question, smoothing techniques are still useful by enhancing scatter- 

plots to display the underlying structure of the data, without reference to a para

metric model. In this section, the main goal of nonparametric regression is to gather
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knowledge about the pattern of the data. A suitable model can be described as

y - m(x) +  £ (3-7)

where y denotes the response variable, x  the covariate, m(x) is the model of interest 

and e denotes an independent error term with mean 0 and variance a1.

Kernel Smoothig: Local Mean

A simple kernel approach is to construct the local mean estimator

mix) =  ^ * = 1  W X̂i ~ X) (3 8)
( )  E”=i w(X i - x ; h )  ( ' }

which was first proposed by Nadaraya (1964) and Watson (1964). The kernel func

tion w(z; h) is generally a smooth positive function which peaks at 0 and decreases 

monotonically as 2  increases in size. This ensures that most weight is given to the 

observations whose covariate values Xi lie close to the point of interest x. For con

venience, a normal density function, with standard deviation h, is commonly used 

as the kernel. But in our problem we used the kernel ’box’ because of the sparse

ness of the data. The kernel ’box’ is a square with point of interest x  as the center 

having 2h length with each sides. The smoothing parameter h controls the width of 

the kernel function, and hence the degree of smoothing applied to the data. When 

h is the standard deviation of a normal density, observations over an effective range 

of 4h in the covariate axis contribute to the estimate. As the smoothing parameter 

increases, the resulting estimator misses some details in the curvature of the data. 

As the smoothing parameter decreases too much, the estimator begins to track the 

data closely and ends up interpolating the observed points. Clearly, some effective

compromise is required. In order to do that, we choose a collection of values of h
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from 0.3 to 1.0 with interval 0.01 and calculate R S S  = — m(xi))2 like statistic.
i = l

For each h, we choose that h which gives the smallest RSS  which is h =  0.47 for our 

data set.

Local Linear Regression

An alternative approach to the construction of a local mean for the data is to fit a 

local linear regression. This involves solving the least squares problem

n

min {yi — a — f3(xi — x)}2w(xi — x; h) (3.9)
a ,8

i = l

and taking as the estimate at x  the value of a, as this defines the position of the local 

regression line at the point x. Again, it is the role of the kernel weights to ensure 

that observations close to x have the most weight in determining the estimate. The 

local linear estimator can be given an explicit formula

. . . 1 A  {s2(x; h) -  SiQr; h)(x{ -  x)}w{xj -  x; h)yj . .
m X  s2 (x', h)s0(x\ h) — si(x-, h)2

where sr(x-,h) =  ~ x)rw(xi — x;h)}/n.  The local mean estimator described

above can be derived in a similar way by removing the /3(xj — x) term from the 

formulation of the least squares problem in equation (3.9). The advantage of the 

local linear regression estimator over the local mean estimator is its superior behavior 

near the edges of the covariate space. The local mean estimator is biased at the edges 

of the covariate space. In our local linear regression estimator, we used the normal 

kernel function.

One of the properties of nonparametric regression estimators is that bias increases

with the size of the smoothing parameter while variance decreases. In order to define a

suitable level of smoothing it is therefore necessary to find some compromise between
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these properties. A simple strategy is to define at each point of x the mean squared 

error E{m(x) — m(x)}2, which is the sum of the squared bias and variance terms. To 

prepare the way for asymptotic analysis, it is natural to consider the mean integrated 

squared error given by

M I S E (h ) =  j  E{m(x ) — m(x)}2f(x)dx  (3-11)

where f (x)  represents the density of observed design points. The MISE is a function 

of the smoothing parameter h. An optimal value h ^  can be defined as the value 

which minimizes this quantity.

Cross-validation has provided a popular means of selecting smoothing parameters by 

constructing an estimate of MISE and minimizing this over h. The philosophy of 

cross-validation is to attempt to predict each response value yi from the remainder

of the data. For the value j/i, this prediction can be denoted by rh-i(xi), where

the subscript —i denotes omission of the observation (Xi,yi). The cross-validation 

function is then defined as

CV(h) = -  ^{ 2 /i -  rh-i(xi)}2 (3.12)
^  • 11 = 1

Some simple algebra shows that

i(xj) -  m{xi)}2 +  a2 (3.13)
Tl

The averaging over the design points x, provides a discrete analogue of the integral 

and factor f (x)  in the MISE curve defined above, and so CV(h) provides a simple 

estimator for MISE(h), apart from the unimportant additive constant a2(For more 

details see Bowman and Azzalini 1997). For our data, the value of h that minimizes
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the cross-validation curve is /iOT =  0.465. We used a routine named 'sm! in R, and 

the program has been included in the Appendix.

Variable Bandwidths: LOESS

The estimators described in the previous sections have used the same smoothing pa

rameter h in the weights attached to each observation (xj,?/*). In some situations 

it can be advantageous to use different smoothing parameters for different covariate 

values. Sometimes it is appealing to use a large smoothing parameter where the data 

are sparse and to use a small smoothing parameter where the data are dense. A sim

ple way to implement this is to employ a variable bandwidth that reflects the density 

of the design points through a nearest neighbor distance. The bandwidth used in the 

kernel function for estimation at the point x could be defined by hi — h x dk(x)/d, 

where dk{x) denotes the distance to the kth nearest neighbor of the covariate value Xj 

and d denotes the geometric mean of the dk(x). In this way, the overall bandwidth h 

is scaled to increase the degree of smoothing applied in regions where data are sparse, 

and to decrease the degree of smoothing where the data are dense.

One of the earliest, and still very popular, approaches to nonparametric regression 

uses nearest neighbor distances in a particularly simple and appealing way. This was 

described by Cleverland (1979) and is referred to as the lowess estimator, or LOESS 

after its more general S-Plus implementation. The key component is that in the local 

linear estimator defined through the least squares criterion (3.10), the kernel function 

for estimation at the point x is w(xt — x; dk{x)). This achieves an approximately vari

able pattern of smoothing without the need for an overall smoothing parameter h. To 

provide weights which are easily evaluated but adequately smooth, Cleverland (1979)
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Figure 3.2: Nonparametric regression lines (local mean, local linear regression and 

LOESS) are superimposed to the data
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used the tricube kernel function defined by w(z; h) = (1 — (|z|//i)3)3, for ze[—h, /»]. A 

further appealing feature of this formulation is that the degree of smoothing applied 

to the data can be expressed in the parameter k/n,  which describes the proportion of 

the sample which contributes positive weight to each local linear regression. This is 

referred to as the span of the estimator and it has the attraction of a clear and simple 

interpretation. Here, in our LOESS estimator, we are using the default span of 0.5. 

The LOESS estimator proposed by Cleverland (1979) incorporates robustness in the 

fitting procedure, to prevent unusual observations from exerting large influence on 

the fitted curve. We used an S-plus package named loess and the program has been 

included in the Appendix.

The bootstrap and nonparametric regression

The bootstrap method can often provide a very useful means of deriving the prop

erties of estimators, and of constructing confidence intervals. In order to apply the 

bootstrap in the context of nonparametric regression, Hardle and Bowman (1988) 

proposed the following algorithm. For convenience, the notation m(x; h) is adopted 

for the estimator in order to make the values of the smoothing parameter explicit.

1. Construct residuals e,- = Vi — m{xi, hp) through a pilot estimator rh(x; hp).

2. Create a set of normalized residuals ii = ii — ^ Ylj £j> with mean 0.

3. Repeatedly create bootstrap observations y* — rh{xi\ hp) +  £*, through the pilot 

estimator m(xi\hp) and random sampling of e* from {e,-}. We created 500 sets of 

bootstrap observations.

4. Repeatedly create bootstrap estimators rh*(x\h) by smoothing the observations 

(Xi,Pi).
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Figure 3.3: Five hundred bootstrap estimates of the local mean regression (kernel 

smooth)
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Figure 3.4: Five hundred bootstrap estimates of the local linear regression
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Figure 3.5: Five hundred bootstrap estimates of LOESS
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Results

Among the three nonparametric smoothing techniques that have been applied to the 

data, the ’local mean’ is the least appealing and the ’LOESS’ is the most appealing 

of the techniques. The bandwidth for LOESS is wider where the data are sparser 

and narrower where the data are denser. For our data, there are few observations 

below stress level —0.5 and above stress level 0.3, which advocates in favor of LOESS 

technique. Figure 3.2 displays the three types of smoothing curves; local mean, local 

linear and LOESS. The local mean curve shows that the Fish IBI is stable up to stress 

level -0.5, then it decreases with the increase of stress level and reaches minimum at 

stress level around 1.0. The most disappointing thing is that it indicates the increase 

of Fish IBI with the increase of stress after stress level 1.0. Figure 3.3 gives us the 

idea of the band of local mean curve. The most disappointing performance of local 

mean estimator is its indication of positive response of Fish IBI at the stress level 

> 1.0. Also it shows some sharp changes of the curve at some points. The local 

linear regression estimator is comparatively stable and does not show sharp changes, 

but it also shows the positive change of Fish IBI with agricultural stress level beyond 

1.0 and gives an upward biased result at this area. Seemingly local linear regression 

is stable in response to the increase of the stress variable. Both of these techniques 

(local mean regression and local linear regression) show wider bands at the edge of the 

stressor. Perhaps the cause behind that is, they use fewer observations in smoothing 

at the edges.

On the other hand, LOESS gives results consistent with our expectation. It shows 

some increment in Fish IBI up to stress level —0.7. This might be for very few ob-
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servations lying in that region. After stress level —0.7, it is showing a decreasing 

trend with increment in stress, and reaches its minimum at stress level around 0.4 

and stabilizes after that. Figure 3.5 gives an idea of the band of LOESS from 500 

bootstrap estimates. The band for LOESS at the edges are narrower than the edges 

given by the other two nonparametric methods, because at the edges where the data 

are sparser the LOESS uses wider bandwidth. The five hundred bootstrap band of 

LOESS indicates that there might be two break points (i.e., thresholds), one is around 

stress level —0.7 and the other is around stress level 0.4.

3 .2 .4  P iecew ise  L inear R egression  and T hresholds

Many recent studies have looked for critical thresholds associated with habitat frag

mentation (e.g., Andren 1994, Fahring 2001). Critical thresholds occur when the 

response of a species or ecological process to habitat loss is not linear, but changes 

abruptly at some threshold level of loss. Abrupt changes in ecological processes can 

also occur in other systems. Plant and animal communities change within a threshold 

distance of habitat edges (edge effects; Wales 1972, Gates and Mosher 1981). In this 

section we described a piecewise linear regression model that is effective in modelling 

abrupt thresholds. Piecewise regression models are ’’broken-stick” models, where two 

or more lines are joined at some unknown point(s), called ’’breakpoints(s)”, repre

senting the threshold (s). We describe a model where the segments are straight lines. 

We have parameterized the model in such a way that the standard nonlinear models 

can be fitted and the break point estimates can be obtained as well.
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Methods

The fitted LOESS model gives us the indication that there might be two break points 

in the data. We assume straight line models among the segments separated by thresh

olds. The piecewise regression model (Seber and Wild 1989) that joins three straight 

lines sharply at the breakpoints is as follows:
f

0o +  P\Xi +  Si for Xi < Oil

Vi = 0 0  + PiXi +  0 2 (xi -  c*i) +  Ei for ai < Xi < a2 (3>14)

0o + 0\Xi +  02{xi -  ai) +  03(xi -  a2) + Si for x{ > a2

where is the value for the ith observation, Xi is the corresponding value for the

independent variable, c*i and a2 are the breakpoints (the two thresholds), and are

assumed to be normal and independent errors with mean zero, constant variance, and 

finite absolute moment for some order > 2 (Seber and Wild 1989). The slopes of the 

lines axe 0i, 0 i+  02 and 0 1  + 0 2  + 0 3 , so 02 can be interpreted as the difference in 

slopes between lines in first segment and second segment and 03 can be interpreted 

as the difference in slopes between lines in second segment and in third segment. 

Parametrizing the model in this way forces continuity at the breakpoints. We assume 

that there are abrupt transition at the breakpoints. One drawback of the model is 

that there may be convergence problems when fitting, especially when the data axe 

sparse, so a careful study of the residual sum of squares surface is needed.

Results

Using non-linear least squares algorithm, we estimated the parameters of the piecewise

linear regression model. We wrote the program statements in R  version 2.3.1. Table

3.5 contains the estimates of the parameters of the model for our data set. According
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to the fitted model, the estimates of the first break point (i.e., first threshold) is 

—0.397 and of the second break point (i.e., second threshold) is 0.087. The residual 

sum of squares of the fitted model is R S S  = 1976.205 which is a great reduction in 

residual sum of squares comparing to the logistic curve that gives R S S  = 2037.855. 

The chosen model is very sensitive to the initial values and might converge to a local 

minimum rather than the global minimum especially when the data are sparse.. To 

check whether the model converged to a global minimum, we produced the contour 

plot of the residual sum of squares surface (Figure 3.6). The contour plot shows 

that the convergence of the model in global minimum. Figure 3.7 contains the fitted 

piecewise linear regression model and depicts the breakpoints (i.e., thresholds). It 

gives a similar pattern as LOESS though there is some deviation in the first segment 

between them.

Table 3.5: Estimates of the parameters of the piecewise linear regression model

Parameters Estimate Std. Error

c n -T H l -0.397 0.190

(*2-TH2 0.087 0.376

Po 55.323 5.337

Pi 2.508 6.913

P2 -49.564 51.109

Pz 45.932 50.898

R SS  = 1976.205
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3.3 Summary

This chapter deals with modelling ’Fish IBI’ variable with ’Agricultural Stress Gra

dient’ variable. The linear regression model tells us that the ’Fish IBI’ responds 

negatively with an increase of ’Agricultural Stress Gradient’. Among the non-linear 

models, we tried the logistic curve with quadratic term fits the data very well. One of 

the least appealing findings of non-linear logistic curve is its indication of a positive 

response of ’Fish IBI’ with ’Agricultural Stressor’ for the region of stress level > 1.00. 

Three nonparametric regression techniques were employed to investigate the pattern 

of relationship between the two variables. LOESS gave the most promising results 

among them. It gives us the idea that the ’Fish IBI’ and ’Agricultural Stressor’ are 

negatively related with two thresholds. Finally, the piecewise linear regression model 

with two breakpoints was fitted using non-linear least squares technique. It gives two 

thresholds in stresses; one with stress level —0.397 and the other with stress level 

0.087. The residuals of the fitted model were calculated and analyzed and indicated 

consistency with the assumptions behind the estimation technique. To extract a 

clear view about the ’’transition” zone (area between two thresholds) and to identify 

the ’’degraded” zone (area beyond the second breakpoint), a sophisticated statistical 

technique will be employed in the next chapter.
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Chapter 4

Quantile Regression and 

Thresholds

4.1 Introduction

Regression is the basic technique in statistics to identify relationships between vari

ables. Usually, a dependent variable y is some function of independent variables x, 

such as y = f(x ). Regression techniques mainly focus on estimating rates of change 

in the mean of the distribution of the dependent variable as some function of a set 

of independent variables; in other words, the technique deals with the expected value 

of y conditional on x, i.e., E(y\x). But it is possible to fit regression curves to other 

parts of the distribution of the response variable, which is rarely done, and there

fore most regression analysis gives an incomplete picture of the relationships between 

variables (Cade and Noon 2003). Just the mean gives an incomplete picture of a 

single distribution, so the classical regression gives correspondingly incomplete pic-
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ture for a set of distributions (Mosteller and Tukey 1977). Alternatively, quantile 

regression methods offer a mechanism for modelling the conditional median function, 

and the full range of other conditional quantile functions. By supplementing the esti

mation of conditional mean functions with techniques for estimating an entire family 

of conditional quantile functions, quantile regression is capable of providing a more 

complete statistical analysis of the stochastic relationships among random variables. 

(http : / / www.econ.uiuc.edu/ ~  roger/research/rq/rq.html).

A regression model with heterogeneous variances implies that there is not a single 

rate of change that characterizes changes in the probability distributions. Focusing 

exclusively on changes in the means may underestimate, overestimate, or fail to dis

tinguish real nonzero changes in heterogeneous distributions (Terrell et al. 1996; Cade 

et al. 1999). Unequal variation implies that there is more than a single slope (rate of 

change) describing the relationship between a response variable and predictor vari

ables measured on a subset of these factors. Quantile regression estimates multiple 

rates of change (slopes) from the minimum to maximum response, providing a more 

complete picture of the relationships between variables missed by the other regression 

methods. According to Cade and Noon (2003) ’’Quantile regression is a method for 

estimating functional relationships between variables for all portions of a probability 

distribution”.

When the predictor variables x  exert both a change in means and a change in vari

ance on the distribution of y, we have a regression model with unequal variances a 

’’location-scale model” in statistical terminology. Consequently, changes in the quan- 

tiles of y across x  cannot be the same for all quantiles. Slope estimates differ across

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.econ.uiuc.edu/


quantiles since the variance in y changes as a function of x. In this situation, ordinary 

least squares regression for the mean is commonly modified by incorporating weights 

in inverse proportion to the variance function (Neter et al. 1996). To improve the es

timates of the sampling variation for the estimated mean function, the use of weighted 

least squares is done. Estimating prediction intervals based on weighted least squares 

estimates implicitly recognize the unequal rates of change in the quantity of y (Cunia 

1987). Generalized linear models offer an alternative way to link changes in the vari

ances of y with changes in the mean based on assuming some specific distributional 

form in the exponential family for example, Poisson, negative binomial, or gamma 

(McCullagh and Nelder 1989). The purpose is to provide better estimates of rates 

of change in the mean of y rather than estimates in the changes in the quantiles of 

y that must occur when variances are heterogeneous. Estimating prediction interval 

for a generalized linear model would implicitly recognize that rates of change in the 

conditional distribution of y given x cannot be the same for all quantiles, and these 

interval estimates would be linked to and sensitive to violations of the assumed error 

distribution.

An advantage of using quantile regression, to model heterogeneous variation in re

sponse distributions, is that no specification of how variance changes are linked to the 

mean is required, nor is there any restriction to the exponential family of distribu

tions. Furthermore, one can also detect changes in the shape of the distribution of y 

across the predictor variables (Koenker and Machado 1999). Complicated changes in 

central tendency, variance, and shape of distributions are common in statistical anal

ysis. Quantile regression is able to effectively address those statistical problems and
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precisely answer the research questions. Regression quantile estimates can be used to 

construct prediction and tolerance intervals without assuming any parametric error 

distribution and without specifying how variance heterogeneity is linked to changes 

in means.

Scharf et al.(1998) described methodologies to quantify the boundaries of scatter di

agrams. They tested regression techniques based on least squares and least absolute 

values models using several independent data sets on prey length and predator length 

for piscivorous fishes and compared estimated slopes for consistency. They observed 

that least squares regression techniques were particularly sensitive to outlying y val

ues and irregularities in the distribution of observations, and that they frequently 

produced inconsistent estimates of slopes for upper and lower bounds. In contrast, 

quantile regression techniques based on least absolute values models appeared robust 

to outlying y values and spareness within data sets, while providing consistent esti

mates of upper and lower bound slopes. They recommended quantile regression as an 

improvement to currently available techniques used to examine potential ecological 

relationships dependent upon quantitative information on the boundaries of polygo

nal relationships.

This chapter contains the results from the application of linear quantile regression, 

nonlinear quantile regression and piecewise linear quantile regression to our data set 

to regress the ’Fish IBI’ by ’Agricultural Stress Gradient’. Among them we emphasize 

on piecewise linear quantile regression to estimate the thresholds that are present in 

our data set. In the previous chapter, we compared those regression techniques in 

terms of residual sum of squares. We found that linear regression is the least appeal-
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ing and piecewise linear regression is the most appealing technique among the three 

techniques for our particular data set. In this chapter, we are evaluating the efficiency 

of those techniques in terms of quantiles. So, section 4.2 contains the linear quantile 

regression, section 4.3 the nonlinear quantile regression and section 4.4 the piecewise 

linear quantile regression methodologies and the results.

4.2 Linear Quantile Regression

The linear quantile regression is simply the linear regression techniques through dif

ferent quantiles of the conditional distribution of y given x  though the parameter 

estimation techniques is different. Before defining the quantile linear regression func

tion, it is necessary to define quantile.

Quantile

Any real-valued random variable Z  may be characterized by its distribution function 

F(z) =  P (Z  < z ), whereas for any 0 < r  < 1,

F - 1( t)  =  inf{z : F(z) > r} (4.1)

is called the rth  quantile of Z. The median, which usually plays the central role, is

denoted by F _1(l/2). It is possible to define an optimization problem to estimate

quantiles of a random variable Z  using linear programming techniques (for details

see Koenker 2005). The rth  sample quantile, d(r), could be estimated by solving the 

objective function
n

<4-2)
» = i
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where pT is the loss function defined as:

pT(u) =  u ( t  — I(u  < 0)) (4.3)

for some re(0 ,1), and u is the residual or error. The above equation led to specifying

the rth  conditional quantile function as: Qy{r\x) = xT0(r), and to consideration of

0 (r) by solving
n

pr(yi ~  (4-4)BeR '
t = l

This is the main idea to estimate linear quantile regression elaborated by Koenker 

and Bassett (1978). They also described how to convert this optimization problem 

into linear programming techniques to solve for the parameters of the model through 

different quantiles. The techniques of linear programming selects a subset of elements, 

called the basic solutions, by minimizing the loss function, equation 4.3, for some spe

cific quantile re(0 ,1). Quantile regression then interpolates the selected observations. 

In this section we specified the rth  conditional quantile function as:

Qv{t \x ) -  Pq(t ) + /3i (t )x (4.5)

where y denotes the dependent variable ’Fish IBI’ and x denotes the independent 

variable ’Agricultural Stress Gradient’. Hence, the corresponding objective function 

to estimate for the parameters is:

n

min Y ]  pr(Vi - 0 o -  PiXi) (4.6)
8 e R  ‘  

i = l

We used the ’’quantreg” package in R  for quantile regression, more specifically the 

statement ”rq” for the linear quantile regression.
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Results

Table 4.1 contains the parameter estimates (intercept and slope) of the linear quan

tile regression models. Figure 4.2 contains the parameter plot (intercept and slope) 

against different quantiles. We can see from the table and from the intercept plot 

(Figure 4.2 left) that the intercept is increasing with the increase of quantile.

Table 4.1: Estimates of parameters of the linear quantile regression model

T &o(t ) M t ) r b0 ( r )

0.05 27.268 -12.537 0.55 45.671 -7.881

0.10 29.194 -11.248 0.60 47.772 -8.058

0.15 31.236 -9.881 0.65 48.955 -8.868

0.20 34.271 -12.550 0.70 50.715 -10.073

0.25 36.002 -14.062 0.75 50.888 -9.743

0.30 37.532 -15.418 0.80 51.563 -9.898

0.35 40.025 -11.491 0.85 55.328 -12.148

0.40 40.843 -10.968 0.90 55.743 -12.396

0.45 42.399 -9.973 0.95 56.264 -12.708

0.50 44.344 -10.297

The relationship between intercept and quantile is linear and the direction is posi

tive. For the 50t h  quantile, the estimate of the intercept is 44.344. On the other 

hand, all of the slope estimates are negative which indicates that with the increase 

of ’Agriculture Stressor’ the ’Fish IBI’ decreases. For the 50t h  quantile the estimate 

of slope is —10.297. But estimates of slope show some oscillation (Figure 4.2 right) 

with different quantiles.
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Figure 4.1: Fitted linear quantile regression functions (tau—(0.05, 0.10, 0.25, 0.50, 

0.75, 0.90, 0.95)) from bottom to top and the least squares linear regression (solid 

line) superimposed to the data
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Figure 4.2: Parameter plot of the linear regression model against different quantiles.

The minimum slope is for the 30th quantile which is —15.418 and the maximum slope 

estimate is for the 55th. quantile which is —7.881. Figure 4.1 show the estimated quan

tile regression lines and the fitted least squares regression line. The mean regression 

line is steeper than the median regression line. Figure 4.1 contains the 5th  and 95th 

quantile regression lines, the bottom one and top one respectively, from which we get 

an idea about 90% prediction interval of the data.

4.3 Non-Linear Quantile Regression

The asymptotic behavior of the nonlinear quantile regression estimator closely par

allels the well-established theory for nonlinear least squares, and so the inference 

apparatus for nonlinear quantile regression can be adapted directly from existing

methods (Koenker 2005). In this section we fit the logistic regression curves through
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the different quantiles. Our chosen logistic regression curve is:

Qv{t \x) =  A(t ) / (  1 +  exp(B(r) +  C( t )x +  D ( t)x2)) (4.7)

We are not going to fit the logistic curve with a cubic term in this model, since the cu

bic term appeared to be insignificant in fitting the nonlinear curve through the mean 

of distribution of y, fitted in the previous chapter of this paper. To estimate the pa

rameters of the nonlinear quantile regression model the nonlinear quantile regression 

technique solve the objective function:

n

(4 -8)
ecR p  i = i

where, we have <&($) =  (yi — Qyi(r\xi)). Here, pT is the loss function defined in terms 

of residual in equation 4.3. The function is differentiable with respect to 9. It 

is possible to convert that optimization problem into linear programming techniques 

and estimates the parameter vector 0 for different quantiles. For further details see 

Koenker (2005). We used the statement ”nlrq” in the package ’’quantreg” to fit the 

non-linear quantile regression models.

Results

The esimates of the parameters of the nonlinear logistic curve through different quan

tiles are given in Table 4.3. The parameter A increases with the increase of r  but 

remains stable for quantiles from 0.45 to 0.80 (Figure 4.4 top left). The parameter B  

decreases almost in linear fashion with the increase of t (Figure 4.4 top right). The 

parameter C remains stable for quantiles from 0.05 to quantile 0.75 and after that 

it increases for the larger quantiles (Figure 4.4 bottom left). Parameter D remains

stable for quantiles from 0.05 to 0.75 and it is around —2.0 but after quantile 0.75
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it decreases. At the quantile 0.80 the parameter B  is minimum, C is maximum and 

again D is minimum (Table 4.3).

Table 4.2: Estimates of the parameters of the non-linear quantile regression model

r A(r) B(t ) C(r) D(t)

0.05 46.003 -0.098 3.049 -2.200

0.10 46.002 -0.136 3.298 -2.336

0.15 50.802 0.062 3.056 -2.133

0.20 49.217 -0.493 2.885 -1.870

0.25 49.171 -0.500 2.921 -1.890

0.30 49.271 -0.560 3.009 -1.919

0.35 51.514 -1.047 3.402 -1.927

0.40 54.433 -0.877 3.212 -1.816

0.45 58.016 -0.674 2.685 -1.514

0.50 58.008 -0.758 2.805 -1.556

0.55 58.001 -0.748 3.375 -2.138

0.60 58.082 -0.739 3.349 -2.176

0.65 58.007 -1.523 2.777 -1.266

0.70 57.716 -1.730 3.732 -1.981

0.75 57.837 -1.720 3.720 -1.975

0.80 58.000 -3.068 5.896 -2.830

0.85 59.016 -2.918 5.689 -2.737

0.90 62.133 -2.538 5.183 -2.509

0.95 62.133 -2.538 5.183 -2.509

For the quantiles 0.90 and 0.95, all the estimates of parameter values are the same,

hence the 90th  and 95th  quantile regression lines fall close to each other (Figure 4.2).

For the 50th  quantile the parameter values for A, B, C, and D are 58.008, —0.758,

2.805 and —1.556 respectively. Figure 4.3 displays the fitted logistic regression curve

with different quantiles. The shape of the right tail of those curves is against our

expectation of decreasing ’Fish IBI’ with increasing ’Agricultural Stress Gradient’.
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Figure 4.3: Fitted non-linear quantile regression functions (tau=(0.05, 0.10, 0.25, 

0.50, 0.75, 0.90, 0.95)) from bottom to top superimposed to the data
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Figure 4.4: Plots of parameters of the non-linear least squares regression against 

different quantiles.
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Those curves fit the data very well except for the right tail. The curves through 

quantiles 0.05 and 0.95 give us the 90% prediction interval of the data. Those curves 

indicate that the ’Fish IBI’ is stable up to stressor level around —0.5 then it decreases 

and reaches its minimum at the stressor level around 0.6. There are two weaknesses of 

the fitted logistic curves through different quantiles. The first one is its right tail after 

stressor level > 1.0, which is against our expectation. The second one is its inability 

to give us the threshold estimates. So we propose to overcome these difficulties using 

piecewise linear quantile regression techniques and applied to our data.

4.4 Piecew ise Linear Quantile Regression

Piecewise linear regression model is a broken stick model where two or more linear 

regression lines join each other at the break points. Those break points could be 

considered as thresholds. In this section we are going to fit the piecewise linear 

regression lines through different quantiles. The piecewise linear regression function 

through the different quantiles is defined as:

Qy{r\x) = <

Po{t )+ P i (t )x for x < <*i (r)

Po (f) +  Pi { t )x  +  P2( t ) {x  -  a i(r)}  for a x(r) < x <  a 2(r)

Pair) +  Pi (t )x +  P2(r){x -  o-i(t)}

(4.9)

+Pz{r){x -  0 2 (7")} for x  > a 2(r)

where y is the value for the dependent variable ’Fish IBI’, x  is the value for the inde

pendent variable ’Agricultural Stress Gradient’, « i(r) and a2(r) are the breakpoints 

(the two thresholds) at quantile r . For parameter estimation the objective function is
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the same as for nonlinear quantile regression described in previous section. We used 

the statement ”nlrq” in the package ’’quantreg” to fit the piecewise linear quantile 

regression.

Results

Among the three parametric regression techniques fitted in our data, piecewise lin

ear regression came out with our expected results, gaving minimum residual sum of 

squares and allowed us to estimate the thresholds. We saw that linear and nonlinear 

quantile regression techniques gave different estimates of the parameter values for dif

ferent quantiles. This might be due to the sparseness of our data. So, in this section 

we fitted piecewise linear regression through different quantiles to capture the thresh

olds in our data. We got different estimates of thresholds for different quantiles 

(Table 4.3). Figure 4.6 gives the threshold plots against different quantiles. From 

the left plot in Figure 4.6 of the first threshold against different quantiles and from 

the Table 4.3, we can see that there is little difference of the first threshold estimates 

around the value —0.39 but the minimum value is —0.557 which is for the quantile 

0.65. For the 50th  quantile, the estimate of the first threshold parameter is —0.390. 

From the plot for the second threshold parameter (Figure 4.6 right) and Table 4.3, 

we see that there is little variation of the second threshold estimates around the value 

0.05 but most of the values are around 0.15. Quantile regression based on 85th  quan

tile did not give the estimate for the second threshold parameter. It gives a straight 

line after the first threshold. The maximum value of the second threshold parameter 

is 0.220 which corresponds to the quantile 0.95. So, from a conservative point of view 

we took the minimum of the first threshold estimates for different quantiles as our
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Figure 4.5: Fitted piecewise linear quantile regression functions (tau=(0.05, 0.10, 

0.25, 0.50, 0.75, 0.90, 0.95)) from bottom to top superimposed to the data

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.3: Estimates of the parameters of the piecewise linear quantile regression 

model __________________________________________

r a i(r) a 2(r) r a i(r) a2(r)

0.05 -0.281 0.146 0.55 -0.399 0.103

0.10 -0.555 0.128 0.60 -0.399 0.101

0.15 -0.552 0.139 0.65 -0.557 0.126

0.20 -0.399 0.032 0.70 -0.294 -0.109

0.25 -0.343 -0.031 0.75 -0.294 0.130

0.30 -0.343 -0.096 0.80 -0.344 0.168

0.35 -0.359 0.168 0.85 -0.547 NA

0.40 -0.364 0.168 0.90 -0.399 0.189

0.45 -0.368 0.168 0.95 -0.399 0.220

0.50 -0.390 0.168

first threshold (—0.557) and the maximum of the second threshold estimates for dif

ferent quantiles as our second threshold (0.220). We defined the region of agricultural 

stressor between —0.557 to 0.220 as the ’’transition” zone. We also defined the region 

of stressor value greater than 0.220 as the ’’degraded” zone. Figure 4.5 gives us the 

three zones in terms of agricultural stressor: the ’’undegraded” zone, the ’’transition” 

zone, and the ’’degraded” zone. We can see from the figure that 7 of the sites among 

total selected sites are in ’’degraded” zone in terms of agricultural stress gradient.
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Figure 4.6: Parameter plot of the piecewise linear regression against different quan

tiles.

4.5 Summary

We fitted linear regression lines and nonlinear logistic curves through different quan

tiles. The slope parameter in the linear model and the parameters in the nonlinear 

logistic curve showed fluctuations for different quantiles. The fluctuations among the 

parameter estimates for different quantiles might be due to sparseness of our data. 

If there is sparseness in the data, the estimate of breakpoints from piecewise linear 

model through the mean fitted in chapter 3 might not give the complete picture. So, 

we calculated the breakpoints through different quantiles and took the minimum of 

the first break point estimates and the maximum of the second break point estimates 

to define the ’’transition” zone. According to our analysis the ’’transition” zone is 

between the Agricultural stressor values from —0.557 to 0.220. From Figure 4.5 we
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can see that seven sites are in the ’’degraded” zone and three sites are in the boundary 

of ’’transition” zone and ’’degraded” zone. We also see that the Fish IBIs are very 

low among the sites in ’’degraded” zone. One of the sites in the ’’degraded” zone is 

showing moderate Fish IBI. This may be due to the fact that other types of stressor 

might have less impact on this particular site.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Summary and Conclusion

With the advancement of the science and technology, there is an increase of agricul

tural activities in the US Great Lakes coastal region that causes the degradation of 

nature and loss of aquatic habitat of fish in the US Great Lakes coastal margins. The 

fish communities across lakes and rivers serve as a good indicators of stress (Karr 

1981). The fish IBI reflects the fish community response to relative degree of dis

turbance at a particular site. Uzarski et al.(2005) and Bhagat (2005) calculated fish 

IBI scores at 17 and 13 sites respectively that were dominated by Scirpits vegetation 

across the US Great Lakes coastal margins. We got agricultural stress gradient for 

those 30 sites developed by Danz et al. (2005). In this paper, we have applied sev

eral statistical techniques to analyze the fish data that contains only two variables 

’Agricultural Stress Gradient’ and ’Fish IBI’. Bhagat (2005) established that the fish 

IBI responded negatively to agricultural stress gradient but not in a linear fashion. 

Instead it exhibited some threshold effects. Our goal of this paper was to estimate 

those threshold effects. We observed that there were two threshold points, one at the
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agricultural stress level around —0.50 where the fish IBI starts falling suddenly and 

the other one is at the stress level around 0.20 where it reaches its minimum IBI level. 

We applied several statistical techniques to arive at our objectives. First, four statis

tical tests were used to test the null hypothesis of bivariate randomness among ’Fish 

IBI’ and ’Agricultural Stress Gradient’. Our chosen tests were based on the mean 

nearest-neighbour distance, cumulative R-spectrum, reduced second-order moment 

function and the bivariate Cramer-von Mises statistic. The reason for choosing those 

tests was that they had been found to be powerful against Poisson clustered processes 

which was close to our specific alternative. We did a simulation study to check the 

performance of these tests by generating bivariate normal random sample with the 

specific means and variances for our data and for different negative correlation co

efficients since the two variables were negatively correlated. We applied these tests 

to our data to verify whether they are bivariate random. We used the 4% level of 

significance since Zimmerman (1993) tabulated the value for the distribution of the 

bivariate Cramer-von Mises statistic for 4% significance level.

Regression techniques to regress ’Fish IBI’ by ’Agricultural Stress Gradient’ were ap

plied in chapter 3. We used linear, non-linear and piecewise linear regression models 

and compared them in terms of residual sum of squares. Some nonparametric tech

niques were applied also and bootstrap techniques were adopted to figure out the band 

of the regression line. A piecewise linear regression model with three linear regimes 

was incorporated to estimate two threshold effects. Finally, we employed quantile 

regression techniques to identify the prediction band of the data and to estimate the 

threshold parameters. To accomplish these analysis, sometimes we wrote our own
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programs and sometimes we used some packages in R  and S  — Plus.

We applied those above mentioned statistical techniques to our fish and stressor data. 

The null hypothesis of bivariate randomness was rejected by all of the four chosen 

tests, this indicates that there is association, more specifically there are some pat

terns between ’Fish IBI’ and ’Agricultural Stress Gradient’. From the nonparametric 

regression techniques, specifically from LOESS, we got the idea about the position 

of the two breakpoints, and piecewise linear regression allowed us to estimate the 

threshold parameters. Estimates of the breakpoints, i.e., threshold parameters, from 

the piecewise linear regression lines were —0.397 and 0.087.

We used quantile regression techniques for different regression models. From the 

piecewise linear quantile regression model, we got a set of estimates for the first 

and second threshold parameters. We took the minimum of the estimates of the 

first threshold parameter (—0.557) and the maximum of the estimates of the second 

threshold parameter (0.220) to define the ’’transition” zone. We defined the zone that 

was beyond the maximum of the second threshold estimates (0.220) as the ’’degraded” 

zone. Figure 4.5 displayed that seven of the sites among the thirty selected sites in the 

US Great Lakes coastal margin were in ’’degraded” zone. The sites were Rapid River, 

Venderbilt Park, Wigwam Bay, Wildfowl Bay, Menominee River, L. Pickerel Creek, 

and Black River. Three of the sites were in the boundary between the ’’transition” 

zone and the ’’degraded” zone. The sites were Bradleyvile Rd., Pinconning[l], and 

Pinconning[2]. One important point to note here is that only two sites among the 

thirty selected sites were in the ” undegraded” zone and most of the sites were in the 

’’transition” zone. From these findings, we could say that the natural habitat for fish
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in the US Great Lakes coastal margins has been degraded for agricultural activities. 

So, care should be taken to get rid of the degradation of natural habitat. Finally, we 

are recommending LOESS, piecewise linear regression and quantile regression tech

niques to model data with potential breakpoints and to estimate the threshold(s) as 

well.

Limitations and Scope of Further Research

The data set in this paper is created by merging two data sets. So, one might question 

the randomness of the observations in our data. This is the major limitation of this 

study. Secondly, this study employed only thirty sites in the US Great Lakes coastal 

margins with dominant Scirpus vegetation. So, an extension of this research work is 

to incorporate more sites from the US and Canada Great Lakes coastal margins and 

calculating the different stressors for those regions and study their relationships with 

fish IBI and to find the threshold effect if there is any.

Recommendation for Further Study

(1) Determine agricultural stress gradient across the US and Canada Great Lakes 

Coastline. (2) Define three strata in terms of the agricultural stress gradient accord

ing to the findings of this research. (3) Randomly select sites from the different strata. 

If possible, use stratified random sampling with proportional allocation. (4) Select at 

least twenty sites or more from each stratum depending on the cost of your study and 

the precision you want. (5) Calculate fish IBI for those randomly selected sites. (6) 

Use LOESS, piecewise linear regression and quantile regression techniques to model 

the data and to estimate the threshold effects.
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Table 1: Preliminary fish-based index of biotic integrity metrics for Great Lakes

coastal wetlands.
|  Scirpus Zone: j

1. Mean catch per net-night:

< 10 score=0 10 — 30 score= 3 > 30 score=5

2. Total richness:

< 5 score=0 5 to < 10 score=3 10 to 14 score =5 > 14 score=7

3. Percent non-native richness:

>12% score=0 7 to 12% score=3 < 7% score=5

4. Percent omnivore abundance:

> 70% score=0 50 to 70% score=3 < 50% score=5

5. Percent piscivore richness:

< 15% score=0 15 to 25% score—3 > 25% score=5

6. Percent insectivore abundance:
< 20% score=0 20 — 30% score=3 > 30% score=5

7. Percent insectivorous Cyprinidae abundance:

<1%  score=0 1 — 2% score=3 > 2% score=5

8. Percent carnivore (insectivore+piscivore+zooplanktivore) richness:

< 60% score=0 60 — 70% score=3 > 70% score=5

9. White sucker (Catostomus commersoni) mean abundance per net-night:

0 score=0 > 0 to 0.4 score=3 > 0.4 score=5
10. Black bullhead (Ictalusrus melas) mean catch per net-night:

0 score=0 > 0 to 3 score=3 > 3 score=5

11. Rock bass (Ambloplites rupestries) mean catch per net-night:

0 score=0 > 0 to 4 score=3 > 4 score=5

12. Alewife (Alosa psuedoharengus) mean catch per net-night:

>11 score=0 1 to 11 score=3 < 1 score=5

13. Smallmouth bass (Micropterus dolomieu) mean catch per net-night:
0 score=0 > 0 to 5 score=3 > 5 score=5

14. Pugnose shiner(Notropis anogenus) mean catch per net-night:
0 score=0 > 0 to 5 score=3 > 5 score=5
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Table 2: Site locations and IBI scores for Scirpus dominant sites sampled through the

GLEI project and by Uzarski et al. (2005)
Site Name Latit Longit Lake F. IBI Ag Chem Project
Big Fishdam 45.893 -86.585 Michigan 65 -0.39931 Uzarski
Bradleyvile Rd. 43.622 -83.635 Huron 19 0.16783 Uzarski
Cedarvile 45.997 -84.363 Huron 57 -0.54924 Uzarski
Escanaba 45.818 -87.052 Michigan 47 -0.22034 Uzarski
Garden Bay 45.997 -86.573 Michigan 52 -0.34341 Uzarski
Hessel Bay 46.005 -84.434 Huron 56 -0.5247 Uzarski
Hill Island 45.982 -84.317 Huron 57 -0.52569 Uzarski
Mackinac Bay 46.001 -84.409 Huron 52 -0.5247 Uzarski
Moscoe Channel 45.992 -84.314 Huron 62 -0.54924 Uzarski
Ogontz Bay 45.832 -86.782 Michigan 60 -0.29399 Uzarski
Pinconningl 43.859 -83.913 Huron 25 0.18094 Uzarski
Rapid River 45.914 -86.966 Michigan 48 0.29638 Uzarski
Shephads Bay 45.984 -84.364 Huron 50 -0.54924 Uzarski
St. Ignace 45.845 -84.739 Michigan 56 -0.55164 Uzarski
Vanderbilt Park 43.601 -83.661 Huron 22 0.99574 Uzarski
Wigwam Bay 43.961 -83.859 Huron 35 1.67332 Uzarski
Wildfowl Bay 43.802 -83.463 Huron 20 1.13714 Uzarski
Middle River 46.68 -91.82 Superior 58 -0.18207 GLEI
Clover 46.88 -91.17 Superior 35 -0.28764 GLEI
McKay Creek 45.99 -84.34 Huron 46 -0.54924 GLEI
Menominee River 45.09 -87.59 Michigan 42 0.22765 GLEI
Pinconning2 43.85 -83.92 Huron 32 0.18094 GLEI
L. Pickerel Creek 41.46 -82.79 Erie 36 1.4608 GLEI
Sterling Creek 43.35 -76.68 Ontario 44 -0.16053 GLEI
Deer Tick Creek 43.61 -76.19 Ontario 58 -1.56431 GLEI
Skinner Creek 43.67 -76.18 Ontario 46 -1.49408 GLEI
Black River 43.99 -76.06 Ontario 29 1.07982 GLEI
Sterling Creek 43.35 -76.68 Ontario 31 -0.16053 GLEI
Bear Lake 45.97 -84.16 Huron 46 -0.51999 GLEI
McKay Creek 45.99 -84.34 Huron 46 -0.54924 GLEI
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R  and S-plus Programs

#  Function Used in Simulation for the four tests

’’brantest” < — function ()

{ #  nnn gives no of iteration 

nnn < — 1

install.packages(” spatstat”) 

library(spatstat) 

install.packages(” MASS”) 

library(MASS)

P < — rep(0 , 4) 

repeat {

#  Generation of Bivariate random sample 

covxy < -  -0.80* sqrt (0.567825)* sqrt (174.2483)

Sigma < — matrix(c(0.567825, covxy, covxy, 174.2483),ncol=2)

data2 < — mvrnorm(35, c(-0.1032857,44.4), Sigma)

x2 < — data2[,l]

y2 < — data2[,2]

mix2 < — min(x2)

miy2 < — min(y2)

ifelse((mix2 < 0), x l < -  x2 + abs(mix2), x l < -  x2) 

mxl < — max(xl)

ifelse((miy2 < 0), y l < -  y2 + abs(miy2), y l < -  y2) 

myl < — max(yl)
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ifelse((mxl > l),x < — xl/m xl, x < — xl) 

ifelse((myl > 1), y < -  yl/m yl, y < -  yl)

#  Generation of Uniform random sample

#  x < — runif(100,0,l);

#  y < — runif(100,0,l) 

data < — cbind(x,y)

#  No of Data points 

n < — length(x)

#  Test Based on the Cumulative E-spectrum 

if(n < 12){r=l}

if(n > =  12 k k  n<28){r=2} 

if(n>=28 k k  n<48){r=3} 

if(n>=48 k k  n<80){r=4} 

if(n>=80){r=5} 

count < — 0 

CR < — 0

f< —matrix(rep(0,60), ncol=10)

for (p in 0:5) {

i< -p + 1

for (q in -5:4){

j<  -q + 6

r l<  — sqrt(pA2 +  qA2)

if((p ! =  0 || q ! =  0) k k  (p ! =  0 || q <=0) k k  (rl <=  r)){
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f[ij]<  — (sum(cos(n*((2*pi*p/n)*x+(2*pi*q/n)*y))))A 2 

+  (sum(sin(n*((2*pi*p/n)*x+(2*pi*q/n)*y))))A 2 

if(f[i,j] > 0 ){ 

count< —count+1 

CR< -CR+f[ij] } } } }

CRF< —CR/count

#  Test statistic 

T < —CRF/n 

df< —2*count

#  Lower and Upper critical region 

L< —qchisq(0.02,df)/df

U< —qchisq(0.98,df)/df

ifelse((T <=  L || T > =  U),P[1]< -P[1]+1,P[1]< —P[l]+0)

#  Test Based on the Mean Nearest-neighbor Distance 

dm< —pairdist(x,y)

d< —rep(0,n) 

for(i in l:n){

d[i]< —min(dm[i,][dm[i,]!=0]) } 

dbar< — mean(d)

mu <  — 0.50/sqrt(n) +  0.206/n +  0.164/(nA(3/2)) 

sig <  -  0.070/(n A 2) +  0.148/(n A (5/2))

#  Test Statistic

z < — (dbar-mu) /  (sqrt (sig))
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ifelse(z < =  qnorm(0.02) || z > =  qnorm(0.98), P[2] < — P[2]+l, P[2]< —P[2]+0)

#  Test Based on the Reduced second-order Moment Function 

if(nnn — 1){

LM < -  rep(0,1000) } , 

m < — as.ppp(data, c(0,1,0,1)) 

tO < — 1.25/sqrt(n)

#  Calling the function LRM.

LM[1] < -  LRM(m,tO) 

if(nnn = =  1){

for(i in 2:1000){

m l < — as.ppp(matrix(c(runif(n,0,l),runif(n,0,l)),ncol=2),c(0,1,0,1))

LM[i] < -  LRM(ml,tO) } }

RLM < -  rank(LM)

#  P-value of this test 

pval < — 1 - RLM[1]/1000

ifelse(pval < =  0.04, P[3] < -  P[3]+l, P[3] < -  P[3]+0)

#  Test Based on the Bivariate Cramer-von Mises Statistic 

A < — matrix(rep(0,n*n),ncol=n)

B < — rep(0,n) 

for(i in l:n){

B[i] < -  (x[i]A2 - x[i] - 0.5)* (y[i]A2 - y[i] - 0.5) 

for(j in l:n){

A[i,j] < -  (l-abs(x[i]-x[j]))*(l-abs(y[i]-yp])) } }
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A1 < — sum(A)

B1 < — sum(B)

#  Test statistic

wbar < — Al/(4*n) - B l/2  +  n/9

ifelse((wbar < =  0.0487 || wbar > =  0.3425), P[4]< —P[4]+l, P[4]< —P[4]+0)

#  Controls the total number of simulated sample 

if(nnn > =  1000) break

nnn < — nnn+1

}

cat(”No of iteration = ”)

cat(nnn)

cat(”\  n”)

powr < — P/nnn

method < — c(”Cumulative R-spectrum:”,”Mean Nearest-neighbor Distance:” / ’Reduced 

second-order Moment Fuction:”,”Bivariate Cramer-von Mises Statistic:”) 

power < — list(Method — method, Power =  powr) 

return(power) }

#  Supporting Program: LRM

function (data,t0) {

#  Estimate Ripley’s K-function

kt < — Kest(data,correction=”Ripley”) 

k < — kt$iso 

t < — kt$r
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1 < — abs(sqrt(k/pi)-t)

#  Estimate Lm

lm < — max(l[t <=  tO]) 

return(lm) }

#  Reading the data file from the location ”c:/data.txt”. 

data< —matrix(scan(” c: /data.txt”) ,ncol=2,byrow=TRUE) 

data < — data[sort.list(data[,l])i]

x < — data[,l] 

y < — data[,2]

#  Making Postscript file.

postscript(”j:/Major Paper/plotl.ps” ,horizontal=FALSE, width=6,height=6)

plot (x,y,xlab=” Agricultural Stress Gradient” ,ylab=” Fish IBI”)

dev.off()

#  Linear regression fit

plot (x,y,xlab=” Agricultural Stress Gradient” ,ylab=”Fish IBI”) 

pm< — glm(y~x,family=gaussian) 

lines(x,pm$fitted.values, lty=l)

#  Logistic regression function

fm< —nls (y~A/(l+exp (B+C*x+D*xA2)) ,start=list (A=55,B=-0-98,

C= 2.98,D=-1.72)) 

summary(fm)

AlC(fm)
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fml< —nls(y~A/(l+exp (B+C*x+D*xA2+E*xA3)) ,start=list(A=54, 

B=-0.98, C=3.31,D=-2.63,E=0.45))

#  Plot of linear, and nonlinear Logistic regression 

fm< -nls(y~A/(l+exp(B+C*x+ D*xA2)),start=list 

(A=55 ,B=-0.98,C=2.98,D=-1.72))

fml< —nls(y~A/(l+exp(B+C*x+ D*xA2+E*xA3)) ,start=list 

(A=54,B=-0.98, C=3.31,D=-2.63,E=0.45)) 

tt < — seq(-1.564, 1.674, length =  100000)

pm < — glm(y~x,family=gaussian) lines(x,pm$fitted.values,lty=l) 

lines(tt, predict(fm, list(x =  tt)),lty=2) 

lines(tt, predict(fml, list(x =  tt)),lty=3)

#  Bandwidth selection for Kernel smooth (box), 

bd < -  seq(0.3, 1.0, 0.001)

RSS < — rep (0,length(bd)) 

for (i in l:length(bd)){

model < — ksmooth(x,y,kernel=”box”, bandwidth=bd[i], x.points=x) 

RSS[i] < — sum((y-model$y)A2) }

#  cbind(bd,RSS)

plot(bd, RSS, xlab=”bandwidth”, ylab=”Residual SS”)

#  Plotting the Kernel smooth.

plot(x,y,xlab=”Agricultural Stress Gradient”,ylab=”Fish IBI”) 

lines(ksmooth(x,y,kernel=”box”, bandwidth=0.47, x.points=x),lty=3) 

4f= fitting local linear regression
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install.packages(”sm”) 

library(sm)

sm.regression(x,y,h=0.4646703,add=T,lty=2)

#  fitting loess.

lines(loess.smooth(x,y),lty=l)

legend(0.35,62,c(”Local Mean”,’’Local Linear” ,’’loess”),lty=c(3:l))

#  500 Bootstrap lines of the local mean regression

plot(x,y,xlab=”Agricultural Stress Gradient” ,ylab=”Fish IBI”,ylim=c(10,70)) 

model < — ksmooth(x,y,kernel=”box”,bandwidth=0.47, x.points=x) 

mhat < — modelSy 

r < — y-mhat 

rr < — r-mean(r) 

for(i in 1:500)

lines(ksmooth(x,mhat+ sample(rr,length(x),replace=TRUE), 

bandwidth=0.47, x.points=x),lty=3,col=2)

#  500 Bootstrap lines of the local linear regression

plot (x,y,xlab=” Agricultural Stress Gradient” ,ylab=”Fish IBI”,ylim=c(10,70)) 

smodel < — sm.regression(x,y,h=0.4646703,eval.points=x,display=”none”) 

mhat < — smodelSestimate 

r < — y-mhat 

rr < — r-mean(r) 

for(i in 1:500)

sm.regression(x, mhat+sample(rr,replace=T),h=0.4646703, add=T , col=2 ,lty=3)
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#  500 Bootstrap lines of the of loess

plot (x,y,xlab=” Agricultural Stress Gradient” ,ylab=” Fish IBI” ,ylim=c( 10,70))

model < — loess(y x)

mhat < — fitted(model)

r < — y-mhat

rr < — r-mean(r)

for(i in 1:500)

lines(loess.smooth(x,mhat+ sample(rr,length(x),replace=TRUE)),lty=3,col=2)

#  Fit of Piecewise Linear Regression

fit21< — nls(y ~  cbind(l,x,ifelse((x>brl),x-brl,0),

ifelse(x>br2,x-br2,0)), start=list(brl=-0.53,br2=0.00),control=list(maxiter=200, 

toler=0.00001 ,minFactor=0.00001 ,minscale=0.000001) ,algorithm= ” plinear” ,trace=T) 

tt < — seq(min(x), max(x), length =  10000) 

lines(tt, predict(fit21, list(x =  tt)),lty=l) 

lines(loess.smooth(x,y) ,lty=2)

legend(0.35,62,c(”Piecewise Reg”,”loess”),lty=c(l:2))

#  Contour Plot for the Non Linear Least squares algorithm 

data.sharp.wtl< —llsurface.sharp(x,y,seq(-0.50,-0.25,

0.005), seq(-0.1,0.25,0.005),c(-0.39,0.08))

contour(data.sharp.wtl$brl,data.sharp.wtl$br2,data.sharp.wtl$loglik,xlab=”First break 

point” ,ylab=”Second break point”,cex=0.8) 

points(-0.39727286,0.08711336)

’’loopfn.sharp” < — function(br,data) {
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datadf < — data 

brl < — br[l] 

br2 < — br[2]

loglik < -  summary(lm(datadf$y ~  cbind(x,ifelse(x > brl, x-brl,0),ifelse(x >br2,x-

br2,0))))$sigmaA2

return(loglik) }

’’llsurface.sharp” < — function(dx, dy, brl,br2, br.start) {

#  Calculates a linear fit for each grid point (grid of possible brl and br2 values).

#  Calculates a RSS surface across the grid.

#  For the sharp piecewise regression model, 

y < -  dy

x < — dx

datadf < — data.frame(x — dx, y — dy) 

brOl < — br.start[l] 

br02 < — br.start[2]

nlsmax < -  nls(y ~  cbind(l, x, ifelse(x > brl, x - brl, 0),ifelse (x > br2, x - br2, 0)), 

start =  list(brl =  br01,br2=br02), control = list(maxiter =  50, tolerance = 0.000001, 

minscale =  0.000001,minFactor=l/2048), algorithm =  ’’plinear”, data=datadf) 

nlsum < — summary(nlsmax) 

ds2 < — nlsum$sigmaA2 

error.df < — nlsum$df[2]

out < — data.frame(brl =  brl, br2 =  br2, loglik =  rep(NA, length(brl)* length(br2))) 

out < — NA
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outSloglik < — matrix(nrow =  length(brl), ncol =  length(br2)) 

for(i in lrlength(brl)) { 

for(j in l:length(br2)) {

out$loglik[i, j] < — loopfn.sharp(c(brl[i],br2[j]), datadf) }}

outSloglik < — (outSloglik * (error.df +  2) - ds2 * error.df)/(ds2* error.df)

outSbrl < — brl

out$br2 < — br2

return(out) }

#  Linear Quantile Regression(Quantiles =0.05,0.10,0.25,0.50,0.75,0.90,0.95) 

plot(x,y,xlab=”Agricultural Stress Gradient”,ylab=”Fish IBI”)

taus < — c(0.05,0.10,0.25,0.50,0.75,0.90,0.95)

abline(lm(y ~  x), lty=l)

for(i in l:length(taus)){

abline(rq(y ~  x,tau=taus[i]),lty=2) }

#  5th Linear Quantile Regression 

res05 < — rq(y ~  x,tau=0.05)

fitl < — summary(rq(y~x, tau=10:90/100)) 

plot (fit 1 ,nrow=1 ,ncol=2)

#  Nonlinear Quantile Regression

tt < — seq(min(x), max(x), length =  100000)

plot(x,y,xlab=” Agricultural Stress Gradient” ,ylab=”Fish IBI” ,ylim=c(l0,70)) 

us < -  c(0.05,0.10,0.25,0.50,0.75,0.90,0.95)

TModel < — function(x,A,B,C,D){
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z < -  A/(l+exp(B+C*x+D*xA2)) } 

for(i in l:length(us)){ 

tau < —us[i]

fitl < — nlrq(y ~  TModel(x,A,B,C,D),tau=tau,start= 

list (A=55,B=-0.98,C=2.98,D=-1.72)) 

lines(tt, predict(fitl, list(x =  tt)),lty=l) }

TModel < — function(x,A,B,C,D){ 

z < -  A/(l+exp(B+C*x-t-D*xA2)) }

#  5th nonlinear quantile regression

fit5 < — nlrq(y ~  TModel(x,A,B,C,D),tau=0.05,start= 

list (A=55,B=-0.98,C=2.98,D=-1.72))

#  Plot of the par for non-linear quant, reg. 

qt< — seq(0.05,0.95,0.05)

A < -  c(46.00322757,46.0015831,50.80178101, 49.2167128,49.170653,49.2710882, 

51.514157, 54.433383,58.0164279,58.0075565,58.0013685, 58.0817096, 

58.007417,57.715818, 57.836875,58.000,59.016324,62.133323,

62.133324)

B < -  c(-0.09818163,-0.1362395,0.06224087, -0.4926758,-0.500369,-0.5596914, 

-1.047112, -0.876823,-0.6738135,-0.7579338,-0.7482654, -0.7393034, 

-1.522860,-1.729951, -1.719833,-3.067618,-2.917635, -2.538496,-2.538496)

C < -  c(3.04874793,3.2978630,3.05614167, 2.8854126,2.920869,3.0090278, 

3.402148,3.211561, 2.6852760,2.8052632,3.3750957, 3.3495226, 

2.777200,3.732109,3.719965, 5.896347,5.689467,5.183207,5.183207)
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D < -  c(-2.20018181,-2.3355178,-2.13263174, -1.8696890,-1.889770,-1.9187520, 

-1.927464,-1.816251,-1.5141582,-1.5559036 ,-2.1381157,-2.1755281,

-1.265649, -1.981030,-1.974853,-2.829626, -2.737126,-2.508716,-2.508715) 

par(mfrow=c(2,2))

plot(qt,A,type=”o” ,xlab=” Quantile” ,ylab=” Parm, A”) 

plot(qt,B,type=”o”,xlab=”Quantile”,ylab=”Parm, B”) 

plot(qt,C,type=”o” ,xlab=” Quantile” ,ylab=”Parm, C”) 

plot(qt,D,type=”o” ,xlab=” Quantile” ,ylab=” Parm, D”)

#  Plot of the par for linear and piecewise linear quant, reg. 

qt< —seq(0.05,0.95,0.05)

B0< -c(27.26847,29.19433,31.236476,34.27074,36.00232,37.53202, 

40.02493,40.84313,42.399023,44.34422,45.67131,47.771745,

48.954590, 50.71468,50.887709,51.563350,55.32775,55.74300,56.26406)

B l<  -c(-12.53716,-11.24817,-9.881348,-12.54968,-14.06223,-15.41764,

-11.49073,-10.96769,-9.973073,-10.29747,-7.88123,-8.058424,-8.868147,

-10.07303,-9.743265,-9.898495,-12.14815,-12.39632,-12.70771)

brl < -  c(-0.2814259,-0.5552924,-0.5522797,-0.39935516,-0.34341016,-0.34339834,

-0.3588400,-0.3636134,-0.3677486,-0.3901717,-0.3993249,-0.3993144, -0.5568753,

-0.2939816,-0.2939890,-0.3438695,-0.5466294,-0.3993366,-0.3993374)

br2< -c(0.1455510,0.1278622,0.1388161,0.03187916,-0.03131366,-0.09572109,

0.1678362,0.1678544,0.1678288,0.1678487,0.1025280,0.1014321,0.1261136,

-0.1085645,0.1299741,0.1678324,NA,0.1887980,0.2197467)

plot (qt ,B0, type=” o” ,xlab—” Quantile” ,ylab=” Linear Intercept”)
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plot (qt ,B 1 ,type=” o” ,xlab=” Quantile” ,ylab=” Linear Slope”) 

plot (qt,brl ,type=” o” ,xlab=” Quantile” ,ylab=” First Break point”) 

plot(qt,br2,type=”o” ,xlab=” Quantile” ,ylab=” Second Break point”)

#  Piecewise Linear Quantile Regression

tt < — seq(min(x), max(x), length =  100000)

plot(x,y,xlab=” Agricultural Stress Gradient” ,ylab=”Fish IBI”,ylim=c(10,70)) 

us < -  c(0.05,0.10,0.25,0.50,0.76,0.90,0.95) 

for(i in l:length(us)){ 

tau < — us[i]

fit30< —nlrq(y~ A+B*x+C*ifelse((x>brl),x-brl,0)+D*ifelse(x>br2,x-br2,0),

start=list(A=55,B=2.5,C=-49.56,brl=-0.39,D=45.93,br2=0.08),

tau=tau,trace=FALSE)

lines(tt, predict(fit30, list(x =  tt)),lty=l) }

abline(v=c(-0.5552924,0.2197467), lty=2,col=l)

#  5 th piecewise linear quantile regression

fit5< —nlrq(y ~  A+B*x+C*ifelse((x>brl),x-brl,0)+D*ifelse(x>br2,x-br2,0),start=list 

(A=55,B=2.5,C=-49.56,brl=-0.39,D=45.93,br2=0.08),tau=0.05,trace= FALSE)
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