University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers
1-1-2006

A comparative study of quadmesh compression for Touma-
Gotsman and Spirale Reversi schemes.

Demin Yin
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Yin, Demin, "A comparative study of quadmesh compression for Touma-Gotsman and Spirale Reversi
schemes." (2006). Electronic Theses and Dissertations. 7148.
https://scholar.uwindsor.ca/etd/7148

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7148?utm_source=scholar.uwindsor.ca%2Fetd%2F7148&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Comparative Study of Quadmesh Compression
for Touma-Gotsman and Spirale Reversi Schemes

by

Demin Yin

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

Library and Bibliothéque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-42339-4
Qur file Notre référence
ISBN: 978-0-494-42339-4

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theéses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont éteé enleveés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(© 2006 Demin Yin

All Rights Reserved. No Part of this document may be reproduced, stored or other-
wise retained in a retreival system or transmitted in any form, on any medium by

any means without prior written permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

A 3D mesh is made up of polygonal faces. A complete description of such a mesh
is provided by its connectivity (adjacencies of polygons) and geometry (vertex coor-
dinates). For most practical work, the meshes used are either triangular (all faces
are triangles) or quadrilateral (all faces are quadrilaterals) meshes (quadmeshes. for
short). Recently, there has been much work on compressing the connectivity informa-
tion pertaining to a mesh. For quadmesh compression, existing algorithms triangulate
the quadmesh first, and then apply triangle mesh compression techniques as previ-
ous researches on mesh compression were mostly focused on triangle meshes. To
avoid the additional triangulation step, we propose two direct techniques to compress
and decompress the connectivity of quadmeshes in linear time. In this thesis. we
will describe how to extend two well-known triangle mesh compression algorithimns to
quadmesh compression, and how to apply encoding schemes for them. A comparison

of the two algorithms for quadmesh compression is also given.

Keyword: quadmesh, quadrilateral mesh, mesh compression, Edgebreaker. Spirale

Reversi, connectivity encoding, linear encoding

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my Mom, Dad

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to express my gratitude to my supervisor Dr. Asish Mukhopadhyay. Dr.
Mukhopadhyay gave me many invaluable helps during the last 3 years. Without Dr.

Mukhopadhyay’s supervision. this thesis would not have been possible.

I would like to thank Dr. Jagdish Pathak and Dr. Arunita Jaekel for having the
patience to read drafts and for their attentive comments, suggestions and relevant

feedback.

I would like to thank committee chair Dr. Subir Bandyopadhyay for his interest

and time.

I would like to thank some of my friends in Windsor and Canada. Thank James,
Angela, Ben/Marlene, Lester, ..., who gave me many valuable helps in the last 3

years.

[would like to thank the faculties and staffs in Computer Science. You gave me

many kindly helps, and I really appreciate these helps.

Finally, I would like to thank the Government of Canada and the Canadians.
Thank the Government of Canada provided a chance for me to immigrate to Canada.
accepted my immigration application and provided supports for my study in Canada;
Thank the Canadians made such a great, such a peaceful, such a friendly country so

that I could enjoy my life here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract

Dedication
Acknowledgements
Contents

List of Figures
List of Tables

1 Introduction
1.1 Mesh compression
1.2 Objectives of the thesis

1.3 Overview of the thesis

2 Literature review about connectivity compression

iv

vi

vii

xi

Xiv

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background and basic conceptso 5

2.1.1 Geometric relationship of triangular mesh 7
2.1.2 Geometric relationship of quadrilateral mesh 7
2.2 Connectivity compression 8
221 Indexedfaceset 9
2.2.2 Triangle strip Lo 9
2.2.3 Spanning tree 12
2.2.4 Layered decomposition o0 14
2.2.5 Valence-driven approach 17
2.2.6 Triangle conquest L. 18
2.3 SUmMmAary oo e e e e e 25

3 Quadmesh compression and decompression using Touma-Gotsman

algorithm 27
3.1 Definitions 28
3.2 Definition of opposite half edge (OHE) data structure 28
3.3 Algorithm description L 30
3.3.1 Compression proCesso 39
3.3.2 Decompression process 44
3.4 Ilustrate the approach L. 50
3.4.1 Compression of atorusmesh 51
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.2 Decompression of a torusmesho
3.5 Handling boundaries Lo
3.6 Entropy coding of the command sequence
3.7 Time complexity analysis

3.8 Summary e e

Linear time quadmesh decompression using Spirale Reversi
4.1 Definition of opposite edge (OE) data structure
4.2 Edgebreaker compression algorithm
4.3 Spirale Reversi decompression algorithm
4.4 Tllustrate the approach
4.4.1 Compress a mesh with boundary
4.4.2 Decompress a mesh with boundary
4.5 Quadmesh of higher genus
4.6 Apply encoding schemes for the operation sequence
4.7 Time complexity analysis

4.8 Summary

Experimental Results
5.1 Implementation

5.2 Experimental results L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 SUummary e e

6 Conclusions and Future Work
6.1 Major contributions Lo

6.2 Future work

References

VITA AUCTORIS

140

140

141

143

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Examples of (A) an orientable manifold mesh, (B) a non-orientable

non-manifold mesh, and (C) an orientable non-manifold mesh.
2.2 (A) The sphere, (B) the torus, and (C) the eight-shaped mesh.

2.3 The indexed face set representation of a mesh: (A) a mesh example

and (B) its face array.

2.4 (A) The triangle strip, (B) the triangle fan, and (C) the generalizcd

triangle strip. L

2.5 (A) A set of boundary edges, (B) triangle fans for the first strip. aud
(C) triangle fans for the second strip, where thick arrows show selected
boundary edges and thin arrows show the triangle fans associated with

each inner boundary vertex. L.

2.6 (A) An octahedron mesh. (B) its vertex spanning tree, and (C) the cut
and flattened mesh with its triangle spanning tree shown by dashed

Lines.,

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.7 Fig. 7. llustration of (A) the layered vertex structure and the branch-
ing point depicted by a black dot, (B) a triangle strip, (C) bubble
triangles, and (D) a cross-contour triangle fan, where contours are de-

picted with solid lines and other edges with dashed lines. 15

2.8 A mesh connectivity encoding example by Touma and Gotsman (35),
where the active list is shown with thick lines, the focus vertex with

the black dot, and the dummy vertex with the gray dot. 19

2.9 Illustration of (A) edge loops and (B) gates and initial edge loops for
a mesh without boundary, and (C) gates and initial edge loops for a
mesh with boundary, where thick lines depict edge loops, and g denotes

thegate. 22

2.10 (A) Five op-codes C, L, R, E, and S, where the gate g is marked with an
arrow, and (B) an example of the encoding process in the edgebreaker

algorithm where the arrows and the numbers show the traversal order

and different filling patterns are used to represent different op-codes. . 24
3.1 OHE data structure 29
3.2 Compression example (AtoU) 62
3.3 Decompression example (AtoT) 73
4.1 OEdatastructure. 85
4.2 Compression operations 108
4.3 Decompression operations 111
4.4 Compression example (AtoS) 112
4.5 Decompression example (A toS) 122

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Comparison of compression ratios archived by different encoding schemes

and GZIip L 138

5.2 Comparison of compression ratios archived by different encoding schemes139

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 The output of each stepin Fig. 2.8 20
3.1 Free vertices found in different cases. 36
3.2 Effects on size of current active list 37
3.3 Number of commands created in each case 38
3.4 Huffman coding scheme for sample mesh “Torus” 61
4.1 Gotsman’s encoding scheme for Edgebreaker algorithm 103
4.2 Dr. Mukhopadhyay’s encoding scheme for Edgebreaker algorithm . . 104
4.3 Huffman coding scheme for sample mesh “Torus” 105
5.1 Sample quadmeshes for test 0L 134
5.2 File size for Touma-Gotsman’s algorithm 135
5.3 File size for Edgebreaker algorithm 135

5.4 Compression ratios archived by different encoding schemes for Edge-

breaker algorithmo 136

Xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Compression ratios archived by using GZip

5.6 Compression ratios archived by different encoding schemes and GZip

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XV

Chapter 1

Introduction

1.1 Mesh compression

Graphics data are more and more widely used in various applications, including video
gaming, engineering design, architectural walk through, virtual reality, e-commerce,
and scientific visualization. Among various representation tools, triangular meshes
provide an effective means to represent 3D mesh models. Typically, connectivity, ge-
ometry, and property data are used to represent a 3D polygonal mesh. Connectivity
data describe the adjacency relationship between vertices; geometry data specify ver-
tex locations; and property data specify several attributes such as the normal vector,
material reflectance, and texture coordinates. We concentrate on the compression of

connectivity in this thesis.

To achieve a high level of realism, complex models are required, and they are

obtained from various sources such as modeling software and 3D scanning. They

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

usually demand a huge amount of storage space and/or transmission bandwidth in
the raw data format. As the number and the complexity of existing 3D meshes
increase explosively, higher resource demands are placed on storage space, computing
power, and network bandwidth. Among these resources, the network bandwidth is
the most severe bottleneck in network-based graphic applications that demand real-
time interactivity. Thus, it is essential to compress graphics data efficiently. This
research area has received a lot of attention since early 1990s, and there has been a

significant amount of progress along this direction over the last decade.

Early research on 3D mesh compression focused on single-rate compression tech-
niques to save the bandwidth between CPU and the graphics card. In a single-rate 3D
mesh compression algorithm, all connectivity and geometry data are compressed and
decompressed as a whole. The graphics card cannot render the original mesh until
the entire bit stream has been wholly received. Later, with the popularity of the In-
ternet, the progressive compression and transmission has been intensively researched.
When progressively compressed and transmitted, a 3D mesh can be reconstructed
continuously from coarse to fine levels of detail (LODs) by the decoder while the bit
stream is being received. Moreover, progressive compression can enhance the inter-
action capability, since the transmission can be stopped whenever an user finds out
that the mesh being downloaded is not what he/she wants or the resolution is already

good enough for his/her purposes.

Three-dimensional mesh compression is so important that it has been incorporated
into several international standards. VRML (7) established a standard for transmit-
ting 3D models across the Internet. Originally, a 3D mesh was represented in ASCII
format without compression in VRML. For efficient transmission, Taubin et al. de-
veloped a compressed binary format for VRML (33) based on the topological surgery
algorithm (34), which easily achieved a compression ratio of 50:1 over the VRML
ASCII format. MPEG-4 (1), which is an ISO/IEC multimedia standard developed

by the Moving Picture Experts Group for digital television, interactive graphics,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

and interactive multimedia applications, also includes three-dimensional mesh coding
(3DMC) algorithm to encode graphics data. The 3DMC algorithm is also based on
the topological surgery algorithm, which is basically a single-rate coder for manifold
triangular meshes. Furthermore, MPEG-4 3DMC incorporates progressive 3D mesh
compression, non-manifold 3D mesh encoding, error resiliency, and quality scalability

as optional modes.

1.2 Objectives of the thesis

For quadmesh compression, existing single-rate compression algorithms triangulate
the quadmesh first, and then apply triangle mesh compression techniques as previons
researches on mesh compression were mostly focused on triangle meshes. To avoid
the additional triangulation step, we propose two direct techniques to compress and

decompress the connectivity of quadmeshes in linear time.

A comparison of the experimental results of two algorithms will also be discussed.

1.3 Overview of the thesis

The rest of this thesis is organized as follows. Chapter 2 provides a review of the back-
ground and introduces some definitions necessary to understand 3D mesh compression
techniques for connectivity. Chapter 3 shows how to extend Touma-Gotsman's al-
gorithm for quadmesh, Chapter 4 shows how to extend Edgebreaker/Spirale Reversi
algorithm for quadmesh. Chapter 5 discusses the results of experiments. Finally.

concluding remarks are given in Chapter 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Literature review about connectivity

compression

In this chapter, we intend to review various connectivity compression technologies
with the main focus on triangular mesh compression. It is worthwhile to point out
that there were several survey papers contains this subject. Rossignac (26) briefly
summarized prior schemes on vertex data compression and connectivity data com-
pression. Taubin (32) gave a survey on various mesh compression schemes. Although
the two schemes in the MPEG-4 standard (i.e., topological surgery and progressive
forest split) were described in detail in (32), the review of other schemes was relatively
sketchy. Shikhare (29) classified and described mesh compression schemes. However,
this work did not treat progressive schemes with enough depth. Gotsman et al. (13)
gave a tutorial on techniques for mesh simplification, connectivity compression, and
geometry compression. This tutorial gave a detailed treatment on mesh simplifica-

tion and geometry compression. However, the review on connectivity coding focused

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

mostly on single-rate region-growing schemes. Recently, Alliez and Gotsman (3) sur-
veyed techniques for both single-rate and progressive compression of 3D meshes. This
survey gave a high-level algorithm classification, but focused only on static polygonal

3D mesh compression.

2.1 Background and basic concepts

Several definitions and concepts needed to understand 3D mesh compression algo-
rithms are presented in this section. More rigorous definitions can be found in

(10, 14, 22).

We say that two objects A and B are homeomorphic, if A can be stretched or
bent without tearing to B. A 3D mesh is called a manifold if its every point has
a neighborhood homeomorphic to an open disk or a half disk. In a manifold, the
boundary consists of the points that have no neighborhoods homeomorphic to an open
disk but have neighborhoods homeomorphic to a half disk. In 3D mesh compression,
a manifold with boundary is often pre-converted into a manifold without boundary
by adding a dummy vertex to each boundary loop and then connecting the dummy
vertex to every vertex on the boundary loop. Fig. 2.1A is a manifold mesh, while
Figs. 1B and C are non-manifold meshes. Fig. 2.1B is non-manifold since each point
on the edge (v, v2) has no neighborhood that is homeomorphic to an open disk or a
half disk. Similarly, the vertex v; in Fig. 2.1C has no neighborhood homeomorphic

to a open disk or a half disk.

The orientation of a polygon can be specified by the ordering of its bounding ver-
tices. The orientations of two adjacent polygons are called compatible if they impose
opposite directions on their common edges. A 3D mesh is said to be orientable if
there exists an arrangement of polygon orientations such that each pair of adjacent

polygons are compatible. Figs. 2.1A and C are orientable with the compatible orienta-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

tions marked by arrows. In contrast, Fig. 2.1B is not orientable, since three polygons
share the same edge (v, v2). Note that, after we make polygon B and C compatible,
it is impossible to find an orientation of polygon A such that A is compatible with
both B and C.
A

Figure 2.1: Examples of (A) an orientable manifold mesh, (B) a non-orientable non-manifold mesh,

and (C) an orientable non-manifold mesh.

Figure 2.2: (A) The sphere, (B) the torus, and (C) the eight-shaped mesh.

The genus of a connected orientable manifold without boundary is defined as the
number of handles. For example, there is no handle in a sphere, one handle in a
torus, and two handles in an eight-shaped surface as shown in Fig. 2.2. Thus, their
genera are 0, 1, and 2, respectively. A mesh homeomorphic to a sphere is called a
simple mesh. For a connected orientable manifold without boundary, Euler’s formula
is given by

v—e+f=2—2¢g (2.1)

where v, e,and f are, respectively, the number of vertices, edges, and faces in the

manifold, and g is the genus of the manifold.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

2.1.1 Geometric relationship of triangular mesh

Suppose that a triangular manifold mesh contains a sufficiently large number of edges
and triangles, and that the ratio of the number of boundary edges to the number of

non-boundary edges is negligible. Then, we can approximate the number of edges by
e~3f/2 (2.2)

since an edge is shared by two triangles in general. Substituting equation 2.2 into

equation 2.1, we have v o~ f/2+ 2 — 2g. Since f/2 is much larger than 2 — 2g, we get
v f/2 (2.3)
In other words, a typical triangular mesh has twice as many triangles as vertices.

Also, from equation 2.2 and equation 2.3, we have an approximate relation
e~ 3v (2.4)

The degree (or valence) of a vertex is the number of edges incident on that vertex.
It can be shown that the sum of degrees is twice the number of edges (14). Thus, we
have

Z degree = 2e ~ 6v (2.5)

Thus, in a typical triangular mesh, the average vertex degree is 6.

2.1.2 Geometric relationship of quadrilateral mesh

Again, suppose that a quadrilateral manifold mesh contains a sufficiently large number
of edges and quadrilaterals, and that the ratio of the number of boundary edges to the
number of non-boundary edges is negligible. Then, we can approximate the number
of edges by

e~ 2f (2.6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

since an edge is shared by two quadrilaterals in general. Substituting equation 2.6

into equation 2.1, we have v ~ f + 2 — 2g. Since f is much larger than 2 — 2g, we get
v~ f (2.7)
In other words, a typical quadrilateral mesh has as many quadrilaterals as vertices.

Also, from equation 2.6 and equation 2.7, we have an approximate relation

o~ Das 9\
It can be shown that the sum of degrees is twice the number of edges (14). Thus, we

It C‘hawe

hav Z degree = 2e ~ 4uv (2.9)
Z degree = 2e ~ 4v (2.9)

Thus, in a typical quadrilateral mesh, the average vertex degree is 4.

When reporting the compression performance, some papers employ the measure
of bits per quad (bpq) while others use bits per vertex (bpv). For consistency, we
adopt the bpv measure exclusively, and convert the bpq metric to the bpv metric by

assuming that a mesh has as many quadrilaterals as vertices.

2.2 Connectivity compression

Single-rate compression is a typical mesh compression algorithm encodes connectivity
data and geometry data separately. Most early work focused on the connectivity
coding. Then, the coding order of geometry data is determined by the underlying

connectivity coding. In this thesis, we focus on connectivity data compression only.

We classify existing single-rate connectivity compression algorithms into six classes:
the indexed face set, the triangle strip, the spanning tree, the layered decomposition,
the valence-driven approach, and the triangle conquest. They are described in detail

below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

2.2.1 Indexed face set

In the VRML ASCII format (7), a triangular mesh is represented with an indexed
face set that consists of a coordinate array and a face array. The coordinate array
lists the coordinates of all vertices, and the face array lists each face by indexing its
three vertices in the coordinate array. For instance, Fig. 2.3 shows a mesh and its

face array.

If there are v vertices in a mesh, the index of each vertex requires logsv bits.
Therefore, a triangular face needs 3logov bits for its connectivity information. Since
there are about twice triangles as many as vertices in a typical triangular mesh, the
connectivity information costs about 6logov bpv in the indexed face set method. This
method provides a straightforward way for the triangular mesh representation. There
is actually no compression involved in this method, but we still list it here to provide

a basis of comparison for the following compression schemes.

In this method, each vertex is indexed several times by all its adjacent triangles.
Repeated vertex references degrade the efficiency of connectivity coding. In other
words, a good connectivity coding scheme should reduce the number of repeated

vertex references. This observation leads to the triangle strip method.

2.2.2 Triangle strip

The triangle strip method attempts to divide a 3D mesh into long strips of triangles,
and then encode these strips. The primary purpose of this method is to reduce the
amount of data transmission between CPU and the graphic card, since triangle strips
are well supported by most graphic cards. Although this scheme demands less storage
space and transmission bandwidth than the indexed face set representation, it is still

not very efficient for the compression purpose.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

A Va B

Index Face

0 0 (0,1,4)
1 (1,3,4)
y Vs 2 (1,2,3)

1

Figure 2.3: The indexed face set representation of a mesh: (A) a mesh example and (B) its face

array.

Fig. 2.4A shows a triangle strip, where each vertex is combined with the previous
two vertices in a vertex sequence to form a new triangle. Fig. 2.4B shows a triangle
fan, where each vertex after the first two forms a new triangle with the previous vertex
and the first vertex. Fig. 2.4C shows a generalized triangle strip that is a mixture of
triangle strips and triangle fans. Note that, in a generalized triangle strip. a new tri-
angle is introduced by each vertex after the first two in the vertex sequence. However.
in an indexed face set, a new triangle is introduced by three vertices. Thercfore. the
generalized triangle strip provides a more compact representation than the indexed
face set, especially when the strip length is long. In a rather long generalized triangle
strip, the ratio of the number of triangles to the number of vertices is very close to 1.

meaning that a triangle can be represented by almost exactly 1 vertex index.

However, since there are about twice as many triangles as vertices in a typical mesli.
some vertex indices should be repeated in the generalized triangle strip representation
of the mesh, which indicates a waste of storage. To alleviate this problen. several
schemes have been developed, where a vertex buffer is utilized to store the indices of

recently traversed vertices.

Deering (9) first introduced the concept of the generalized triangular mesh. A

generalized triangular mesh is formed by combining generalized triangle strips with

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

Figure 2.4: (A) The triangle strip, (B) the triangle fan, and (C) the generalized triangle strip.

a vertex buffer. He used a first-in-first-out (FIFO) vertex buffer to store the indices
of up to 16 recently visited vertices. If a vertex is saved in the vertex buffer, it
can be represented with the buffer index that requires a less number of bits than
the global vertex index. Assuming that each vertex is reused by the buffer index
only once, Taubin and Rossignac (34) showed that the generalized triangular mesh
representation requires approximately 11 bpv to encode the connectivity data for
large meshes. Deering, however, did not propose a method to decompose a mesh into

triangle strips.

Based on Deering’s work, Chow (8) proposed a mesh compression scheme optimized
for real-time rendering. He proposed a mesh decomposition method, illustrated in
Fig. 2.5. First, it finds a set of boundary edges. Then, it finds a fan of triangles
around each vertex incident on two consecutive boundary edges. These triangle fans
are combined to form the first generalized triangle strip. The triangles in this strip
are marked as discovered, and a new set of boundary edges is generated to separate
discovered triangles from undiscovered triangles. The next generalized triangle strip
is similarly formed from the new set of boundary edges. With the vertex buffer, the
vertices in the previous generalized triangle strip can be reused in the next one. This

process continues until all triangles in a mesh are traversed.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

Figure 2.5: (A) A set of boundary edges, (B) triangle fans for the first strip, and (C) triangle fans
for the second strip, where thick arrows show selected boundary edges and thin arrows show the

triangle fans associated with each inner boundary vertex.

The triangle strip representation can be applied to a triangular mesh of arbitrary
topology. However, it is effective only if the triangle mesh is decomposed into long
triangle strips. It is a challenging computational geometry problem to obtain an
optimal triangle strip decomposition (4, 11). Several heuristics have been proposed

to obtain suboptimal decompositions at a moderate computational cost (12, 30, 38).

2.2.3 Spanning tree

Turan (36) observed that the connectivity of a planar graph can be encoded with
a constant number of bpv using two spanning trees: a vertex spanning tree and
a triangle spanning tree. Based on this observation, Taubin and Rossignac (34)
presented a topological surgery approach to encode mesh connectivity. The basic
idea is to cut a given mesh along a selected set of cut edges to make a planar polygon.
The mesh connectivity is then represented by the structures of cut edges and the
polygon. In a simple mesh, any vertex spanning tree can be selected as the set of cut

edges.

Fig. 2.6 illustrates the encoding process. Fig. 2.6A is an octahedron mesh. First,
the encoder constructs a vertex spanning tree as shown in Fig. 2.6B, where each node

corresponds to a vertex in the input mesh. Then, it cuts the mesh along the edges

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

of the vertex spanning tree. Fig. 2.6C shows the resulting planar polygon and the
triallgle spanning tree. Each node in the triangle spanning tree corresponds to a
triangle in the polygon, and two nodes are connected if and only if the corresponding
triangles share an edge.

A

Figure 2.6: (A) An octahedron mesh, (B) its vertex spanning tree, and (C) the cut and flattened

mesh with its triangle spanning tree shown by dashed lines.

Then, the two spanning trees are run-length encoded. A run is defined as a tree
segment between two nodes with degrees not equal to 2. For each run of the vertex
spanning tree, the encoder records its length with two additional flags. The first flag
is the branching bit indicating whether a run subsequent to the current run starts
at the same branching node, and the second flag is the leaf bit indicating whether
the current run ends at a leaf node. For example, let us encode the vertex spanning
tree in Fig. 2.6B, where the edges are labeled with their run indices. The first run is
represented by (1,0,0), since its length is 1, the next run does not start at the same
node, and it does not end at a leaf node. In this way, the vertex spanning tree in

Fig. 2.6B is represented by

(1,0,0), (1.1,1), (1,0,0), (1,1.1), (1.0.1).

Similarly, for each run of the triangle spanning tree, the encoder writes its length
and the leaf bit. Note that the triangle spanning tree is always binary so that it
does not need the branching bit. Furthermore, the encoder records the marching
pattern with one bit per triangle to indicate how to triangulate the planar polygon

internally. The decoder can reconstruct the original mesh connectivity from this set

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

of information.

In both vertex and triangle spanning trees, a run is a basic coding unit. Thus,
the coding cost is proportional to the number of runs, which in turn depends on how
the vertex spanning tree is constructed. Taubin and Rossignac’s algorithm builds the
vertex spanning tree based on layered decomposition, which is similar to the way we
peel an orange along a spiral path, to maximize the length of each run and minimize

the number of runs generated.

Taubin and Rossignac also presented several modifications so that their algo-
rithm can encode general manifold meshes: meshes with arbitrary genus, meshes
with boundary, and non-orientable meshes. However, their algorithm cannot directly
handle non-manifold meshes. As a preprocessing step, the encoder should split a non-
manifold mesh into several manifold components, thereby duplicating non-manifold
vertices, edges, and faces. Experimentally, Taubin and Rossignac’s algorithm costs
2.48-7.0 bpv for mesh connectivity. It was also shown that the time as well as the
space complexities of their algorithm are O(N), where N is the maximum of the
vertex number v, the edge number e, and the triangle number f in a mesh. This
method demands a large memory buffer due to its global random vertex access at the

decompression stage.

2.2.4 Layered decomposition

Bajaj et al. (6) presented a connectivity coding method using a layered structure of
vertices. It decomposes a triangular mesh into several concentric layers of vertices,
and then constructs triangle layers within each pair of adjacent vertex layers. The
mesh connectivity is represented by the total number of vertex layers, the layout of
each vertex layer, and the layout of triangles in each triangle layer. Ideally, a vertex
layer does not intersect itself and a triangle layer is a generalized triangle strip. In

such a case, the connectivity compression is reduced to the coding of the number of

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

vertex layers, the number of vertices in each vertex layer, and the generalized triangle
strip in each triangle layer. However, in practice, overhead bits are introduced due

to the existence of branching points, bubble triangles, and triangle fans.

Branching points are generated when a vertex layer intersects itself. In Fig. 2.7A,
the middle layer intersects itself at the branching point depicted by a big dot. Branch-
ing points divide a vertex layer into several segments called contours. To encode the
layout of a vertex layer, we need to encode the information of both contours and
branching points. Also, as shown in Figs. 2.7B-D, each triangle in a triangle layer

can be classified into one of three cases.

Figure 2.7: Fig. 7. Illustration of (A) the layered vertex structure and the branching point depicted
by a black dot, (B} a triangle strip, (C) bubble triangles, and (D) a cross-contour triangle fan, where

contours are depicted with solid lines and other edges with dashed lines.

e Its vertices lie on two adjacent vertex lavers. A generalized triangle strip is

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

com-posed of a sequence of triangles of this kind.
e All its vertices belong to one contour. It is called a bubble triangle.

e Its vertices lie on two or three contours in one vertex layer. A cross-contour

triangle fan consists of a sequence of triangles of this kind.

Therefore, in addition to encoding generalized triangle strips between two adjacent
vertex layers, this algorithm requires extra bits to encode bubble triangles and cross-

contour triangle fans.

Taubin and Rossignac (34) also employed layered decomposition in the vertex
spanning tree construction. However, Bajaj et al.’s algorithm (6) is different from

(34) in the following:

e It does not combine vertex layers into the vertex spanning tree.

e Its decoder does not require a large memory buffer, since it accesses only a small

portion of vertices at each decompression step.

e It is applicable to any kind of mesh topology, while (34) cannot encode non-

manifold meshes directly.

The layered decomposition method encodes the connectivity information using
about 1.40-6.08 bpv. Moreover, it has a desirable property. That is. each triangle
de-pends on at most two adjacent vertex layers and each vertex is referenced by
at most two triangle layers. This property enables the error-resilient transmission
of mesh data, since the effects of transmission errors can be localized by encoding
different vertex and triangle layers independently. Based on the layered decomposition
method, Bajaj et al. (5) also proposed an algorithm to encode large CAD models. This
algorithm extends the layered decomposition method to compress quadrilateral and

general polygonal models as well as CAD models with smooth non-uniform rational

B-splines (NURBS) patches.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

2.2.5 Valence-driven approach

The valence-driven approach starts from a seed triangle whose three edges form the
initial borderline. The borderline divides the whole mesh into two parts, i.e., the
inner part that has been processed and the outer part that is to be processed. Then,
the borderline gradually expands outwards until the whole mesh is processed. The
output is a stream of vertex valences, from which the original connectivity can be

reconstructed.

In (35), Touma and Gotsman proposed a pioneering algorithm known as the
valence-driven approach. It starts from an arbitrary triangle, and pushes its three
vertices into a list called the active list. Then, it pops up a vertex from the active
list, traverses all untraversed edges connected to that vertex, and pushes the new
vertices into the end of the list. For each processed vertex, it outputs the valence.
Sometimes, it needs to split the current active list or merge it with another active
list. These cases are encoded with special codes. Before encoding, for each houndary
loop, a dummy vertex is added and connected to all the vertices in that boundary
loop, making the topology closed. Fig. 2.8 shows an example of the encoding process.
where the active list is depicted by thick lines, the focus vertex by the black dot.
and the dummy vertex by the gray dot. Table 2.1 lists the output of cach step in

association with Fig. 2.8.

Since vertex valences are compactly distributed around 6 in a typical mesh. arith-
metic coding can be adopted to encode the valence information of a vertex cffectively
(35). The resulting algorithm uses less than 1.5 bpv on average to encode mesh con-
nectivity. This is the state-of-the-art compression ratio which has not been seriously
challenged till now. However, their algorithm is only applicable to orientable aud

manifold meshes.

Alliez and Desbrun (2) proposed a method to further improve the performance of

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

Touma and Gotsman’s algorithm. They observed that split codes, split offsets, and
dummy vertices consume a non-trivial portion of coding bits in Touma and Gotsman’s
algorithm. To reduce the number of split codes, they used a heuristic method that
chooses the vertex with the minimal number of free edges as the next focus vertex,
instead of choosing the next vertex in the active list. To reduce the number of bits for
split offsets, they excluded the two adjacent vertices of the focus vertex in the current
active list that are not eligible for the split, and sort the remaining vertices according
to their Euclidean distances to the focus vertex. Then, a split offset is represented
with an index into this sorted list, which is further added by 6 and encoded in the
same way as a normal valence. To reduce the number of dummy vertices, they
used one common dummy vertex for all boundaries in the input mesh. In addition,
they encoded the output symbols with the range encoder (28), an effective adaptive

arithmetic encoder.

Alliez and Desbrun’s algorithm is also applicable only to orientable manifold
meshes. It performs better than Touma and Gotsman’s algorithm, especially for
irregular meshes. Alliez and Desbrun proved that if the number of splits is negligible,
the performance of their algorithm is upper-bounded by 3.24 bpv, which is exactly
the same as the theoretical bpv value computed by enumerating all possible planar

graphs (37).

2.2.6 Triangle conquest

Similar to the valence-driven approach, the triangle conquest approach starts from
the initial borderline, which divides the whole mesh into conquered and unconquered
parts, and inserts triangle by triangle into the conquered parts. The main difference is
that the triangle conquest approach outputs the building operations of new triangles,

while the valence-driven approach outputs the valences of new vertices.

Gumbhold and Strafler (18) first proposed a triangle conquest approach, called the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

Figure 2.8: A mesh connectivity encoding example by Touma and Gotsman (35), where the active
list is shown with thick lines, the focus vertex with the black dot, and the dummy vertex with the

gray dot.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

Figure Qutput Comments
A) An input mesh is given
B) Add a dummy vertex

Add 6, add 7, add 4 Output the valences of starting vertices

e N e T e T
@)
~—

D) Add 4 Expand the active list

E) Add 7 Expand the active list

(F) Add 5 Expand the active list

(G) Add 5 Expand the active list

(H) Choose the next focus vertex

(I Add 4 Expand the active list

@) Add 5 Expand the active list

(K) Split 5 Split the active list, and push the new active list into
stack

(L) Choose the next focus vertex

(M) Add 4 Expand the active list

(N) Add dummy 5 Choose the next focus vertex and conquer the
dummy vertex

(0) Pop the new active list from the stack

(P) Add 4 Expand the active list

(Q) Choose the next focus vertex

(R) Choose the next focus vertex

(S) The whole mesh is conquered

Table 2.1: The output of each step in Fig. 2.8

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

cut-border machine. At each step, this algorithm inserts a new triangle into the
conquered part, closed by the cut-border, using one of the five building operations:
‘new vertex’, ‘forward,” ‘backward’, ‘split’, and ‘close’. The sequence of building
operations is encoded using Huffman codes. This algorithm can encode manifold
meshes that are either orientable or non-orientable. Experimentally, its compression
performance lies within 3.22-8.94 bpv, mostly around 4 bpv. Its most important
feature is that the decompression speed is very fast and the decompression method is
easy to implement in hardware. Moreover, compression and decompression operations
can be processed in parallel. These properties make the method very attractive in
real-time cod-ing applications. In (16), Gumhold further improved the compression
performance using an adaptive arithmetic coder and optimizing the border encoding.

The experimental compression ratio is within the range of 0.3-2.7 bpv, and on average

1.9 bpv.

Rossignac (26) proposed the edgebreaker algorithm, which is another example of
the triangle conquest approach. It is nearly equivalent to the cut-border machine,
except that it does not encode the offset data associated with the split operation.
The triangle traversal is controlled by edge loops as shown in Fig. 2.9A. Each edge
loop bounds a conquered region and contains a gate edge. At each step, this algorithm
focuses on one edge loop and its gate edge is called the active gate, while the other edge
loops are stored in a stack and will be processed later. Initially, for each connected
component, one edge loop is defined. If the component has no physical boundary,
two half edges corresponding to one edge are set as the edge loop. For example, in
Fig. 2.9B, the mesh has no boundary and the initial edge loop is formed by g and
gHo, where g&o is the opposite half edge of g. In Fig. 2.9C, the initial edge loop is

the mesh boundary.

At each step, this algorithin conquers a triangle incident on the active gate, updates
the current loop, and moves the active gate to the next edge in the updated loop.

For each conquered triangle, this algorithm outputs an op-code. Assume that the

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

A unconquered regions

conquered region

g

Figure 2.9: Illustration of (A) edge loops and (B) gates and initial edge loops for a mesh without
boundary, and (C) gates and initial edge loops for a mesh with boundary, where thick lines depict

edge loops, and g denotes the gate.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

triangle to be removed is enclosed by active gate g and vertex v, there are five kinds

of possible op-codes as shown in Fig. 2.10A:

e C (loop extension), if v is not on the edge loop;

e L (left), if v immediately precedes g in the edge loop;
e R (right), if v immediately follows g;

e E (end), if v precedes and follows g;

e S (split), otherwise.

Essentially, the compression process is a depth-first traversal of the dual graph of
the mesh. When the split case is encountered, the current loop is split into two, and
one of them is pushed into the stack while the other is further traced. Fig. 2.10B
shows an example of the encoding process, where the arrows and the numbers give
the order of the triangle conquest. The triangles are filled with different patterns to
represent different op-codes, which are generated when they are conquered. For this

case, the encoder outputs the series of op-codes as CCRSRLLRSEERLRE.

The edgebreaker method can encode the topology data of orientable manifold
meshes with multiple boundary loops or with arbitrary genus, and guarantee a worst-
case coding cost of 4 bpv for simple meshes. However, it is unsuitable for streaming
applications, since it requires a two-pass process for decompression, and the decom-
pression time is O(v?). Another disadvantage is that. even for regular meshes, it

requires about the same bitrate as that for non-regular meshes.

King and Rossignac (23) modified the edgebreaker method to guarantee a worst-
case coding cost of 3.67 bpv for simple meshes, and Gumhold (17) further improved
this upper bound to 3.522 bpv. The decoding efficiency of the edgebreaker method
was also improved to exhibit linear time and space complexities in (20, 23, 27).

Furthermore, Szyvmczak et al. (31) optimized the edgebreaker method for meshes

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

10

Start

Figure 2.10: (A) Five op-codes C, L, R, E, and S, where the gate g is marked with an arrow. and (B)
an example of the encoding process in the edgebreaker algorithm where the arrows and the numbers

show the traversal order and different filling patterns are used to represent different op-cocdles.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

with high regularity by exploiting dependencies of output symbols. It guarantees a

worst-case performance of 1.622 bpv for sufficiently large meshes with high regularity.

As mentioned earlier, we can reduce the amount of data transmission between CPU
and the graphic card by decomposing a mesh into long triangle strips, but finding
a good decomposition (or stripification) is often computationally intensive. Thus, it
is often desirable to generate long strips from a given mesh only once and distribute
the stripification information together with the mesh. Based on this observation,
Isenburg (19) proposed an approach to encode the mesh connectivity together with
its stripification information. It is basically a modification of the edgebreaker method,
but its traversal order is guided by strips obtained with the STRIPE algorithm (12).
When a new triangle is included, its relation to the underlying triangle strip is encoded
with a label. The label sequences are then entropy encoded. The experimental

compression performance ranges from 3.0 to 5.0 bpv.

2.3 Summary

Among the various connectivity coding methods discussed in this chapter, Touma and
Gotsman’s algorithm (35) is considered as the state-of-the-art technique for single-
rate 3D mesh compression. With some minor improvements on Touma and Gotsman’s

algorithm, Alliez and Desbrun’s algorithm (2) yields an improved compression ratio.

The indexed face set, triangle strip, and layered decomposition methods can en-
code meshes with arbitrary topology. In contrast, the other approaches can handle
only manifold meshes with additional constraints. For instance, the valence-driven
approach (2, 35) require that the manifold is also orientable. Szymczak et al.’s algo-
rithm (31) requires that the manifold has neither boundary nor handles. Note that
using these algorithms, a non-manifold mesh can be handled only if it is pre-converted

to a manifold mesh by replicating non-manifold vertices, edges, and faces as in (15).

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

The methods discussed in this chapter focus on triangular mesh compression. In
next two chapters, we will propose two direct techniques to compress and decompress
the connectivity of quadmeshes, both of which are extended from the algorithms

discussed in this chapter.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Quadmesh compression and
decompression using Touma-Gotsman

algorithm

Touma-Gotsman’s algorithm is a valence-driven approach, originally for triangle mesh
compression. It starts from a seed triangle whose three edges form the initial border-
line. The borderline divides the whole mesh into two regions, i.e., the inner region
that has been processed and the outer region that is to be processed. Then, the bor-
derline gradually expands outwards until the whole mesh is processed. The output is a

stream of vertex valences, from which the original connectivity can be reconstructed.

The details of this algorithm for triangle mesh compression has been explained in
section 2.2.5. In this chapter we show how to expand the algorithm for quadmesh

connectivity compression.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

3.1 Definitions

First, we make some definitions relevant to the algorithm. Most of them have been

defined in Touma-Gotsman’s paper (35).

Vertex cycle A cyclic sequence of vertices along triangle edges in the mesh.

Active List A vertex cycle in the mesh. The active list partitions the mesh into an
“outer” part containing edges not yet encoded, and an “inner” part containing
edges already encoded. Each vertex in the active list has encoded and unencoded
incident edges separated by the edges to the two vertices which are its predecessor

and successor in the active list.

Focus One vertex in the active list is designated as the focus vertex. All coding

operations are done on the focus vertex.

We define a new term called "focus edge”. Focus edge is an opposite half edge
of an edge in the active list, and it takes focus vertex as its start point. So, we
must be aware that focus edge is not in the active list. Actually, The quad which

focus edge belongs to is the one which will be conquered next by the active list.
Free Vertex A vertex not vet encoded.

Full Vertex A vertex with no free edges. Here we introduce another term ”almost

full” to describe a vertex which has only one unvisited quad left around it.

3.2 Definition of opposite half edge (OHE) data structure

We propose a data structure, called OHE (opposite half edge) for representing the

ajacencies of quadmesh.

Fig. 3.1 illustrates the OHE data structure. Each quad in a quad mesh is rep-

resented by four integer references for the four vertices and four integer references

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

/ \
/ DS
{ i
foo |
v[3]/ __ohe[2] . V2]
s Y e[2] s ‘1{
3 s ‘g
| «---- i
‘x ‘ ohe i
\ e(3] 1] 1) € E
\ ohel3] *
+ e[0)focusEdge || : \

Figure 3.1: OHE data structure

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

for the four edges, plus four integer references for the four opposite half edges. The
opposite half edge of an edge e[1] in the center quad refers to the left edge in the right
quad. If e[1] is a boundary edge, we assign -1 in the opposite-half-edge field ohe[1].

Suppose the quad is the one to be conquered right now, which means that focus
edge is one of the four edges in the quad. In our implementation, we re-label the
vertices and edges of the quad, so that focus edge will be edge ¢[0] in the quad,
and edge ohel0] is in the active list. This is a very important step which makes the

implementation easier to understand.

3.3 Algorithm description

A simple example demonstrating the operation of the algorithm for triangle mesh
appears in Fig 2.8. The input of the algorithm is an orientable manifold quadmesh,

and the output is the code for the mesh connectivity.

Our algorithm is slightly different from what Touma-Gotsman explained, but both

follow the same idea.

The encoding algorithm starts off with an arbitrary quad in the mesh, defining an
active list of four edges. An arbitrary opposite half edge of this quad is designated
as the focus edge. The algorithm proceeds by trying to expand the active list by
“conquering” an unvisited quad! (if exists) in counter-clockwise order around the
start of the focus edge, which is the focus vertex. Some commands (“add”, “split”,
or “merge”) will be generated when conquering that unvisited quad. Each time we
conquer an unvisited quad, we make a decision where the next focus should be, no

matter weather current focus vertex is full or not.? The new focus vertex could be

11n Touma-Gotsman's implementation, they conquer edges rather than polygons.
2This is quite different from Touma-Gotman’s implementation. They insist that when coding operations on the

focus vertex are complete, the focus will move to the next vertex in the active list and the previous focus vertex is

removed from the active list to become one of the “inner” vertices. We did it in another way.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

the current focus vertex, or could be a vertex n adjacent to the current focus vertex,

or some other vertex.

The conquering procedure repeats for the new focus, and terminates when all the

quads have been traversed.

For the unvisited quad to be conquered, two vertices in the quad are end points of
the focus edge, which have already been encoded. The problem is to encode the other
two vertices. If any of the other two vertices is free (has not been encoded), we create
an “add” command for it. If any of the other two vertices in the unvisited quad las
been encoded during encoding, there are two possibilities: either it leads to a vertex
in the same active list or to a vertex in another active list. In the first case. the active
list is split. The encoding procedure proceeds with one, and push the others onto
the stack for future treatment. In the latter case, the active lists are merged to form
one active list on which the encoding continues. there will be no merge commands if
the object has sphere topology (genus 0), and can only occur in a torus-like topology

(non-genus-0).

The compression algorithm is shown in algorithm 1. The input file is a quad PLY
file, and the output files are two files, one file “out_commmand.txt” which contains
a sequence of commands, the other one is file “out_vertex.txt” which contains vertex

coordinates, as shown below.

out_command.txt

quadPLY file —
out_vertex.txt

The decompression algorithm is shown in algorithm 3. The two input files are

“out_command.txt” and “out_vertex.txt”, and the output is a quad PLY file.

out _command.txt
— quadPLY file

out_vertex.txt

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

During implementation, we noted that there are 7 different cases that need to be
handled for triangle mesh compression. However, there are 18 different cases that

need to be handled for quadmesh compression.

In each case, the current active list might expand or decrease by conquering one
unvisited quad, or it might be removed and we pop another active list from the list

stack for traversing.

Each such case would generate 1 command, or 2 commands, or even 3 commands.
Table 3.3 shows the number of commands created for each case. For case 1, 2, 3,
4.2, 4.3, no commands are generated, while case 7.3.2 generates 3 commands. All the

other cases generate 2 commands.

The number of “add” commands in the connectivity code is the same as the number
of vertices in the quadmesh, since each free vertex introduce one “add” command.

Table 3.1 shows the number of free vertices found in different cases.

Table 3.3 shows the effects of size of the current active list in different cases. The
column “Effects on Size” shows how the size of the current active list changes. For
example, the size will be the same for case 4.1.1, while it will increase by 2 in case
5.1. The symbol “—oc” is used to indicate that the size of the active list decreases
to 0, and the active list is deleted. For split and merge commands generated from
vertex v[2] or v[3], they either create a new active list, or remove an existing active
list from list stack. In Table 3.3 T} is the size of the active list involved on v[2], while
T) is the size of the active list involved on v[3]. The exception is, for case 7.3.2 where
T7 is the size of the active list found from the list stack, while T, is the size of the

active list created by the split command.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

input : file_in_ply
output: file_out_command, file_out_vertex
init(file_in_ply, 4);

while not listStack.isEmpty() do
activelList = listStack.pop();

while not activeList.isEmpty() do
if activeList.size() < 3 or activeList.areAllVerticesFull() then
activeList.clear(); /* case 1, case 2 */

else
current Polygon = get RevisedCurrentPolygon();

if LastPolygonOutside ActiveList() then activeList.clear(): /* case 3 */
else
if isLastUnvisited Polygon AroundFocusEdge() then /* case 4 */

| handleLastUnvisitedPolygonAroundFocusEdgeForCompression();

else if currentPolygon.v[2].isUnvisited() then /* case 5 */
if currentPolygon.v[3].isUnvisited() then handle case 5.1;

else if activeList.contains(current Polygon.v[3]) then handle case 5.2;

else handle case 5.3;

else if activeList.contains(currentPolygon.v[2]) then /* case 6 */
if currentPolygon.v[3].isUnvisited() then handle case 6.1;

else if activeList.contains(currentPolygon.v[3]) then handle case 6.2;

else handle case 6.3;
else /* case 7 */
if currentPolygon.v[3].isUnvisited() then handle case 7.1:

else if activeList.contains(currentPolygon.v[3]) then handle case 7.2;
else /* case 7.3 */

if currentPolygon.vf2] and currentPolygon.v[3] not on same list then
| handle case 7.3.1;

else

L handle case 7.3.2; /* one more split command created */

| increaseNumOfVisitedEdgesForPolygon(currentPolygon):

createCommandFile(file.out_command, commandStack);

createVertexFile(file_out_vertex, newV);

Algorithm 1: Quadmesh compression algorithm

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

—

switch type do

getRevisedCurrentPolygon():

case 2

if currentPolygon.v[2].isUnvisited() then handle case 4.1.1;

/* how many edges of currentPolygon are in activeList

/* case 4.1

else if activeList.contains{currentPolygon.v{3]) then handle case 4.1.2;

else handle case 4.1.3;

case 3
L handle case 4.2;

case 4
L activeList.clear():

/* case 4.2

/* case 4.3

Function handlelastUnvisitedPolygonAroundFocusEdgeForCompression

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN

ALGORITHM

else

input : file_in_command, file_in_vertex
output: file_out_ply
init(file_in_command, file_in_vertex, 4);

while not listStack.isEmpty() do
activeList = listStack.pop();

while not activeList.isEmpty() do
if activeList.size() < 3 or activeList.are AllVerticesFull() then

activeList.clear(); /* case 1, case 2 */

currentCommandl = commandStack.removeFirst();

currentCommand2 = commandStack.removeFirst():

if LastPolygonOutsideActiveList() then activeList.clear(); ; /* case 3 */
else
if isLastUnuvisited PolygonAroundFocusEdge() then /* case 4 */

| handleLastUnvisitedPolygonAroundFocusEdgeFor Decompression();

else if currentPolygon.v[2].isUnvisited() then /* case 5 */
if currentPolygon.v/3].isUnvisited() then handle case 5.1;

else if activeList.contains(currentPolygon.v/3/) then handle case 5.2;

else handle case 5.3;

el

Ise if activeList.contains(currentPolygon.vf2]) then /* case 6 */
if currentPolygon.vf3/.isUnvisited() then handle case 6.1;

else if activeList.contains(currentPolygon.v[3/) then handle case 6.2;

else handle case 6.3;

else /* case 7 */
if currentPolygon.v(3].isUnvisited() then handle case 7.1;

else if activeList.contains(currentPolygon.v[3]) then handle case 7.2;
else /* case 7.3 */

if currentPolygon.v[2] and currentPolygon.v[3] not on same list then
| handle case 7.3.1;

else

L handle case 7.3.2; /* one more split command popped */

| increaseNumOfVisitedEdgeForPolygon(currentPolygon);

createPLYFile(file_out ply, V, P);

Algorithm 3: Quadmesh decompression algorithm

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

getRevisedCurrentPolygon();
switch type do /* how many edges of currentPolygon are in activelList */

case 2 /* case 4.1 %/
if currentPolygon.v[2].isUnvisited() then handle case 4.1.1;

else if activeList.contains(current Polygon.v[3]) then handle case 4.1.2;
else handle case 4.1.3;

case 4 /* case 4.2 */
| handle case 4.2;

case 4 /* case 4.3 %/
| activeList.clear():

Function handlelastUnvisitedPolygonAroundFocusEdgeForDecompression

Case # | Case Index | # of Free Vertices | Comments

case 1 1 0 activeList.size() < 3

case 2 2 0 all vertices in activeList are full

case 3 3 0 last quad outside activeList

case 4 | 4.1.1 1 2 edges in activeList & v[2].isUnvisited()

case 5 | 4.1.2 0 2 edges in activeList & v[2].split()

case 6 | 4.1.3 0 2 edges in activeList & v[2].merge()

case 7 4.2 0 3 edges in activeList

case 8 | 4.3 0 4 edges in activeList

case 9 | 5.1 2 v[2].isUnvisited() & v[3].isUnvisited()

case 10 | 5.2 1 v([2].isUnvisited() & v{3].split()

case 11 | 5.3 1 v[2]. 1sUnv191ted() & v[3].merge()

case 12 | 6.1 1 v([2].split() & v[3].isUnvisited()

case 13 | 6.2 0 v([2].split() & v[3].split()

case 14 | 6.3 0 v[2].split() & v[3].merge()

case 15 | 7.1 1 v[2].merge() & v[3].isUnvisited()

case 16 | 7.2 0 v{2].merge() & v[3].split()

case 17 | 7.3.1 0 v[2].merge() & \7[3] merge() & v[2]/v[3] not in same list
case 18 | 7.3.2 0 v[2].merge() & v[3].merge() & v[2]/v[3] in same list

Table 3.1: Free vertices found in different cases

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN

ALGORITHM
Case Index | Effects on Size | Comments
1 -0 activeList.size() < 3
2 —0oC all vertices in activeList are full
3 —oc last quad outside activeList
4.1.1 0 2 edges in activeList & v{2].isUnvisited()
4.1.2 —~00 2 edges in activeList & v{2].split()
4.1.3 T 2 edges in activeList & v[2].merge()
4.2 -2 3 edges in activeList
4.3 —00 4 edges in activeList
5.1 +2 v[2].isUnvisited() & v[3].isUnvisited()
5.2 -1 +3 v[2].isUnvisited() & v[3].split()
5.3 T +2 v[2].isUnvisited() & v[3].merge()
6.1 -T1+3 v[2].split() & v{3] isUnvisited()
6.2 ~Ty —Tp+4 | v[2].split() & v[3].split()
6.3 -7 +T>+3 | v[2].split() & v[3].merge()
7.1 T +2 v[2].merge() & v[3].isUnvisited()
7.2 T, —-T5+3 v[2].merge() & v[3] split()
7.3.1 Th+T,+2 v[2].merge() & v[3].merge() & v[2]/v[3] not in same list
7.3.2 Th-To+2 v[2].merge() & v[3].merge() & v[2]/v[3] in same list

Table 3.2:

Effects on size of current active list

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

Case Index | # of Commands | Comments

1 0 activeList.size() < 3

2 0 all vertices in activeList are full

3 0 last quad outside activeList

4.1.1 1 2 edges in activeList & v|2].isUnvisited()

4.1.2 2 2 edges in activeList & v[2].split()

4.1.3 1 2 edges in activeList & v[2].merge()

4.2 0 3 edges in activeList

4.3 0 4 edges in activeList

5.1 2 v[2].isUnvisited() & v[3].isUnvisited()

5.2 2 v[2].isUnvisited() & v|3].split()

5.3 2 v[2]. 1sUnv1§1ted() & v[3].merge()

6.1 2 v[2].split() & v[3].isUnvisited()

6.2 2 v{2].split() & v[3].split()

6.3 2 v[2].split() & v[3].merge()

7.1 2 v[2].merge() & v[3].isUnvisited()

7.2 2 v[2].merge() & v[3].split()

7.3.1 2 v[2].merge() & v[3].merge() & v{2]/v[3] not in sawme list
7.3.2 3 v[2].merge() & v[3].merge() & v[2]/v[3] in same list

Table 3.3: Number of commands created in each case

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

3.3.1 Compression process

The 18 cases are handled in the following ways for compression.

1. activeList.size() < 3
e Remove (delete) the active list.
2. All vertices in active list are full
e Remove (delete) the active list.

3. Last unprocessed quad outside

In this case, size of the active list is 4, and all vertices are almost full.

e increase “numOfVisitedEdge” for all vertices of the quad by 1;

e Remove (delete) the active list.

4. Last unvisited polygon around focus edge

There are 3 subcases.

4.1. ohe[0], ohe[3] are in active list

There are 3 subcases.

4.1.1. v[2].isFree
e Set v[2] “visited”;
e Push v[2] to “newV” stack (for creating ordered vertex file);
e create an add command for v[2];
e reconstruct the current active list;
e set focus edge for the current acitve list:
e increase “numOfVisitedEdge” for all vertices of the quad by 1.

4.1.2. v|[2].Split

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

get “offset” of v[2];

e create a split command for v[2];

e create 2nd active list, set focus edge for it and push it to list stack;

e reconstruct the current active list;

e set focus edge for the current acitve list;

e increase “numOfVisitedEdge” for all vertices of the quad by 1.
4.1.3. v[2].Merge

e find the 2nd list (intersects at v[2]) from list stack;

e create a merge command for v[2];

e reconstruct the current active list (merge two lists);

e set focus edge for the current acitve list;

e increase “numOfVisitedEdge” for all vertices of the quad by 1.

4.2. ohe[0], ohe[3], ohe[2] are in active list

e reconstruct the current active list;

e set focus edge for the current acitve list;

e increase “numOfVisitedEdge” for all vertices of the quad by 1.
4.3. ohe[0], ohe[3], ohe[2], ohe[1] are in active list

This case happens only in non-genus-0 mesh. In this case. the size of the
current active list is 4, and all vertices in the active list are in the same
quad. The difference between the active list in case 3 and in this case is: In
case 3, all vertices are ”almost full”, while in this case, all other vertices are

"almost full” except one (v[1]).

e increase “numOfVisitedEdge” for all vertices of the quad by 1:

o remove (delete) the active list.

5. v[2].isFree

There are 3 subcases.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

5.1. v[2].isFree and v[3].isFree
e Set v[2] and v[3] “visited”;
e Push v[2] and v[3] to “newV” stack (for creating ordered vertex file);
e create add commands for v[2] and v[3];

e reconstruct the current active list;

set focus edge for the current active list;

e increase “numOfVisitedEdge” for all vertices of the quad by 1.
5.2. v[2].isFree and v[3].Split

o Set v[2] “visited”;

e Push v[2] to “newV” stack (for creating ordered vertex file);

e create an add command for v[2];

e get “offset” of v[3];

e create a split command for v[3];

e create 2nd active list, set focus edge for it and push it to list stack;

e reconstruct the current active list;

e set focus edge for the current active list;

e increase “‘numOfVisitedEdge” for all vertices of the quad by 1.
5.3. v[2].isFree and v[3].Merge

o Set v[2] “visited”;

e Push v[2] to “newV” stack (for creating ordered vertex file);
e create an add command for v[2];

e find the 2nd list (intersects at v[3]) from list stack;

e create a merge command for v[3];

e reconstruct the current active list (merge two lists);

e set focus edge for the current active list;

e increase “numOfVisitedEdge” for all vertices of the quad by 1.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN

ALGORITHM

6. v[2].Split

There are 3 subcases.

6.1. v[2].Split and v[3].isFree

get “offset” of v[2];

create a split command for v[2];

create 2nd active list, set focus edge for it and push it to list stack;
Set v[3] “visited”;

Push v[3] to “newV” stack (for creating ordered vertex file);

create an add command for v(3];

reconstruct the current active list;

set focus edge for the current active list;

increase “numOfVisitedEdge” for all vertices of the quad by 1.

6.2. v[2].Split and v[3].Split

get “offset” of v[2];

create a split command for v[2];

create 2nd active list, set focus edge for it and push it to list stack;
get “offset” of v[3];

create a split command for v[3];

create 3rd active list, set focus edge for it and push it to list stack;
reconstruct the current active list;

set focus edge for the current active list;

increase “numOfVisitedEdge” for all vertices of the quad by 1.

6.3. v[2].Split and v[3].Merge

get “offset” of v[2];

create a split command for v[2[;

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN

ALGORITHM

create 2nd active list, set focus edge for it and push it to list stack;
find a 3rd list (intersects at v[3]) from list stack;

create a merge command for v[3];

reconstruct the active list (merge the 3rd list and current active list);
set focus edge for the current active list;

increase “numOfVisitedEdge” for all vertices of the quad by 1.

7. v[2].Merge

There are 3 subcases.

7.1. v[2].Merge and v|[3].isFree

find a 2nd list (intersects at v[2]) from list stack;

create a merge command for v[2];

Set v[3] “visited”;

Push v[3] to “newV” stack (for creating ordered vertex file);
create add commands for v[3];

reconstruct the current active list;

set focus edge for the current active list;

increase “numOfVisitedEdge” for all vertices of the quad by 1.

7.2. v[2].Merge and v[3].Split

find a 2nd list (intersects at v[2]) from list stack;

create a merge command for v[2];

get “offset” of v[3];

create a split command for v[3];

create 3rd active list, set focus edge for it and push it to list stack;
reconstruct the current active list;

set focus edge for the current active list;

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

e increase “numOfVisitedEdge” for all vertices of the quad by 1.
7.3. v[2].Merge and v[3].Merge There are 2 subcases.

7.3.1. v[2].Merge and v[3].Merge, v[2]/v[3] are not on same list

e find the 2nd list (intersects at v[2]) from list stack;

e create a merge command for v[2];

o find the 3rd list (intersects at v[3]) from list stack;

e create a merge command for v[3];

e reconstruct the active list (merge the three lists);

e set focus edge for the active list:

e increase “numOfVisitedEdge” for all vertices of the quad by 1.
7.3.2. v[2].Merge and v[3].Merge, v[2]/v[3] are on same list

e find the 2nd list (intersects at v[2]) from list stack;

e create a merge command for v[2];

e create a merge command for v[3];

e get distance (offset) between v[2] and v[3] along the 2nd list;

e create a split command for v[3] on the 2nd list;

e create Jrd active list, set focus edge for it and push it to list stack:

e reconstruct the current active list;

e set focus edge for the current active list;

e increase “numOfVisitedEdge” for all vertices of the quad by 1.

3.3.2 Decompression process
The 18 cases are handled in the following ways for decompression.

1. activeList.size() < 3

e Remove (delete) the active list.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

2. All vertices in active list are full
e Remove (delete) the active list.

3. Last unprocessed quad outside

In this case, size of the active list is 4, and all vertices are almost full.

e create a new quad with all vertices on current active list;
e increase “numOfVisitedEdge” for all vertices of the quad by 1;

e Remove (delete) the active list.

4. Last unvisited polygon around focus edge

There are 3 subcases.

4.1. ohe[0], ohe[3] are in active list
There are 3 subcases.
4.1.1. v[2].isFree
(read next command, which is an add command)
e set v[2] to be next vertex in vertex list, and set degree infomation for
it;
e create a new quad with focusEdge, v[2] and nextOfFocusVertex:
e reconstruct the current active list;
e set virtual focus edge for the current active list;
e increase “numOfVisitedEdge” for all vertices of the quad by 1.
4.1.2. v[2].Split
(read next command, which is a split command)
e sct v[2] to be a vertex in current active list;
e create a new quad with focusEdge, v[2] and nextOfFocusVertex;

e reconstruct the active list;

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

e set virtual focus edge for the current active list;
e increase “numOfVisitedEdge” for all vertices of the quad by 1.

4.1.3. v[2].Merge

(read next command, which is a merge command)
e set v[2] to be a vertex in an active list from list stack;
e create a new quad with focusEdge, v[2] and nextOfFocusVertex;
e reconstruct the current active list (merge two lists);
e set virtual focus edge for the current active list;

e increase “numOfVisitedEdge” for all vertices of the quad by 1.
4.2. ohe[0], ohe[3], ohe[2] are in active list

e create a new quad with focusEdge, nextOfFocusVertex and nextnextOf-

FocusVertex;
e reconstruct the current active list;
e set virtual focus edge for the current active list;

e increase “numOfVisitedEdge” for all vertices of the quad by 1.
4.3. ohe[0], ohe[3], ohe[2], ohe[l] are in active list

e create a new quad with focusEdge, nextOfFocusVertex and nextnextOf-

FocusVertex;
e increase “numOfVisitedEdge” for all vertices of the quad by 1;

e remove (delete) the active list.

5. v|[2].isFree

There are 3 subcases.

5.1. v[2].isFree and v[3].isFree

(read next two commands which are two add commands)

e set v[2] to be next vertex in vertex list, and set degree infomation for it;

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN

ALGORITHM

set v[3] to be next vertex in vertex list, and set degree infomation for it;
create a new quad with focusEdge. v[2] and v[3];

reconstruct the current active list;

set virtual focus edge for the current active list;

increase “numOfVisitedEdge” for all vertices of the quad by 1.

5.2. v[2].isFree and v[3].Split

(read next two commands, Ist is an add command, next is split)

set v[2] to be next vertex in vertex list, and set degree infomation for it;
set v[3] to be a vertex in current active list;

create a new quad with focusEdge, v[2] and v[3];

reconstruct the active list;

set virtual focus edge for the current active list;

increase “numO{fVisitedEdge” for all vertices of the quad by 1.

5.3. v[2].isFree and v[3].Merge

(read next two commands, Ist is an add command, next is merge)

set v[2] to be next vertex in vertex list, and set degree infomation for it;
set v[3] to be a vertex in an active list from list stack:

create a new quad with focusEdge, v[2] and v[3];

reconstruct the current active list (merge two lists);

set virtual focus edge for the current active list:

increase “numOfVisitedEdge” for all vertices of the quad by 1.

6. v[2].Split

There are 3 subcases.

6.1. v[2].Split and v[3].isFree

(read next two commands, Ist is a split command, next is add)

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

e set v[2] to be a vertex in current active list;
e set v[3] to be next vertex in vertex list, and set degree infomation for it;
e create a new quad with focusEdge, v[2] and v[3];
e reconstruct the current active list;
e set virtual focus edge for the current active list;
e increase “numOfVisitedEdge” for all vertices of the quad by 1.
6.2. v[2].Split and v[3].Split

(read next two commands, which are split commands)
o set v[2] to be a vertex in current active list;
e set v[3] to be a vertex in current active list;
e create a new quad with focusEdge, v[2] and v[3];
e reconstruct the current active list;
e set virtual focus edge for the current active list:
e increase “numOfVisitedEdge” for all vertices of the quad by 1.

6.3. v[2].Split and v[3].Merge

(read next two commands, 1st is a split command, next is merge)
e set v[2] to be a vertex in current active list;
e set v[3] to be a vertex in an active list from list stack;
e create a new quad with focusEdge, v[2] and v[3];
e reconstruct the current active list;
e set virtual focus edge for the current active list;

e increase “numOfVisitedEdge” for all vertices of the quad by 1.

7. v[2].Merge

There are 3 subcases.

7.1. v[2].Merge and v|[3].isFree

(read next two commands which are two add commands)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

e set v[2] to be a vertex in an active list from list stack;

set v[3] to be next vertex in vertex list, and set degree infomation for it;

create a new quad with focusEdge, v[2] and v[3];

e reconstruct the current active list;

set virtual focus edge for the current active list;
e increase “numOfVisitedEdge” for all vertices of the quad by 1.
7.2. v[2].Merge and v[3].Split
(read next two commands, 1st is an add command, next is split)
e set v[2] to be a vertex in an active list from list stack;
e set v[3] to be a vertex in current active list;
e create a new quad with focusEdge, v[2] and v[3];

e reconstruct the current active list;

set virtual focus edge for the current active list;
e increase “numOfVisitedEdge” for all vertices of the quad by 1.
7.3. v[2].Merge and v|[3].Merge
There are 2 subcases.
7.3.1. v[2].Merge and v[3].Merge, v[2]/v[3] are not on same list
(read next two commands, both are merge commands)
e set v[2] to be a vertex in an active list from list stack:
e set v[3] to be a vertex in an active list from list stack;
e create a new quad with focusEdge, v[2] and v[3];
e reconstruct the current active list (merge the three lists);
e set virtual focus edge for the current active list;
e increase “numOfVisitedEdge” for all vertices of the quad by 1.

7.3.2. v[2].Merge and v[3].Merge, v[2]/v[3] are on same list

(read next 3 commands, two merge commands, 1 split command)

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

e set v[2] to be a vertex in an active list from list stack;

e set v[3] to be a vertex in the same active list from list stack:
e create a new quad with focusEdge, v[2] and v[3];

e reconstruct the current active list;

e set virtual focus edge for the current active list;

e increase “numOfVisitedEdge” for all vertices of the quad by 1.

3.4 Illustrate the approach

To illustrate the algorithm, we use a quadmesh of a twelve faced torus shown in Fig.
3.2(A) as example. The surface, shown in Fig. 3.2(B), is obtained from the torus in
Fig. 3.2(A) by cutting along its four edges (v10,v4), (v4, v5), (v5,v11) and (v1l,v10)
and laying it flat on the ground to produce a two dimensional image representation

which can be represented on paper.

For each vertex in the mesh, we need to know two properties of it: it’s de-
gree (field degree), and how many quads/edges around it has been visited (field
numO fVisitedEdge). In our example, each vertex in the figures is shown in the

following format:
vertexIndex(degree/numO fVisited Edge)

For example, in Fig. 3.2(C), the degree of vertex v10 is 4, and number of visited

quads/edges around vertex v10 is 0. So, in Fig. 3.2(C), vertex ©10 is described as:
10(4/0)

Fig. 3.2(A) to Fig. 3.2(U) shows how the compression algorithmn works for the
sample mesh, and Fig. 3.3(A) to Fig. 3.3(U) shows how the decompression algorithm

works.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

3.4.1 Compression of a torus mesh

After reading the mesh’s information from an input file, we set degree information for
each vertex in the mesh, as shown in Fig. 3.2(C). From this step, we can see that the
value of field numO fVisited Edge for each vertex is 0, which means that all vertices

are free vertices now.

The compression process starts with one quad in the mesh. Here we start the com-
pression with the first quad (v0, v1, v3, v2), defining the first active list (00, v1, v3, v2)
of four edges which are edges of the first quad, as shown in Fig. 3.2(D). The focus
edge (v0,v2) is the opposite half edge of the last edge of the quad, and focus vertex
(v0) is the first vertex of the quad. We should always keep in mind that: first, focus
vertex is the start vertex of the focus edge; secondly, the focus edge is not in the active
list, while it’s opposite half edge is in the active list; thirdly, each time we create a

new active list, we need to assign a focus edge for it.

Next, by enumeration, we can see that the current active list (v0, v1,v3, v2) doesn’t
match conditions for case 1, case 2, case 3 or case 4. So the current active list must
match conditions for case 5, case 6 or case 7, and at least two commands will be
created. To clarify which case it matches, we need to check the the other two vertices
(v8 and v6) in quad (v0,v2.v8,v6) which contains the focus edge (v0,v2). Since
the value of field numO fVisited Edge for either vertex is 0, which means both of
the vertices are free, we conclude that the current active list matches conditions for
subcase 5.1. In this case, two add comimands are created for vertex »8 and v6. the
current active list is expanded. and the focus edge moves to edge (v0,v6), as shown
in Fig. 3.2(E). There are also some other operations should be performed, but here
we will not give a detailed description for all the operations. For the operations
performed in each case, you can find the details in section 3.3.1. The same rule

applies for all the following discussion in this chapter.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

Now the focus edge (v0,v6) is in quad (v0,v6,v10,v4). From the same logic as
in the previous step, we now find that the current active list matches conditions for
subcase 5.1 again. So, we create two more add commands for vertex v10 and v4,
expand the current active list, and move the focus edge to edge (v0,v4), as shown in

Fig. 3.2(F).

Now, the current active list matches conditions for case 4, since vertex v(), one
of the two endpoints of the focus edge, is “almost full”. By checking neighboring
vertices of vertex v0 in the current active list, we find that there is only onc adjacent
vertex around vertex v0 that is “almost full”, which means 3 consecutive vertices in
the current active list are shared with quad (v0,v4,v5,v1) which contains the focus
edge (v0,v4). This matches conditions for subcase 4.1. We also find that vertex ¢5
(which is the only vertex in the quad that is not shared with the current active list)
is a free vertex since the value of field numO fVisitedEdge for it is 0. From what
we have examined, we finally conclude that the current active list matches conditions
for subcase 4.1.1. So, we create one add command for vertex v5, and perform some

other necessary operations, as shown in Fig. 3.2(G).

Now, the focus edge is (v1,v5), and the quad containing the focus edge is (1. 5.
v11, v7). We can see that the current active list matches conditions for case 5.1. So
we create two more add commands for vertex v11 and v7, expand the current active

list, and move the focus edge to edge (v1,v7), as shown in Fig. 3.2(H).

Similar to the case shown in Fig. 3.2(F), we now find that the current active list
matches conditions for subcase 4.1.1. So, we create one add command for vertex 9.

and perform some other necessary operations, as shown in Fig. 3.2(T).

Now, the focus edge is (v3,v9). and the current active list is (v4, v5, v11, v7. v9. 3.
v2, v8, v6, v10). By enumeration, we know that the current active list doesn’t match
conditions for case 1, case 2, case 3 or case 4. Then we check quad (v3,v9,v11,v5).

which contains the focus edge (v3,v9). We find that vertex v1l is in the current

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

active list, which matches conditions for case 6; vertex v5 is also in the current active
list, which matches conditions for subcase 6.2. This indicates that all 4 vertices of
quad (v3,v9,v1l,v5) are in the current active list. We create two split commands
for vertex v11 and v5. The offset of the first split comimand on vertex v1l is the
distance between vertex v11 and vertex v9 (end vertex of the focus edge) along the
current active list; the offset of the second split command on vertex v5 is the distance
between vertex v3 (start vertex of the focus edge) and vertex v5 along current active
list. The current active list is split into 3 active lists, 2 of which are pushed onto list
stack, and we proceed with the third one, which is active list (v11,v5), as shown in

Fig. 3.2(J) and Fig. 3.2(K).

Since size of the current active list (v11, v5) is less than 3, which matches conditions
for case 1, we just remove the current active list, and proceed with the active list

(v3,v2,v8,v6,v10, v4,v5) popped from the list stack, as shown in Fig. 3.2(L).

Now, the focus edge is (v3,v5), and the current active list is (v3, v2, v8, v6, v10,
v4, v5). We can see that the current active list matches conditions for case 4, since
at least one of the endpoints of the focus edge is “almost full’. By checking the
neighboring vertices of that “almost full” vertex in the active list, we find that there
are two consecutive “almost full” vertices around it, which means 4 consecutive
vertices in the active list are shared with quad (v3, v5, v4, ©2) which contains the focus
edge (v3,v5). This matches conditions for subcase 4.2. We perform some operations

for this case, and move to the next step, as shown in Fig. 3.2(M).

Now, the focus edge is (v2,v4), and the current active list is (v2, v8, v6,v10,v4).
Similar to the previous step, the current active list matches conditions for subcase

4.2. We perform the same operations as in the previous step, as shown in Fig. 3.2(N).

Now, the focus edge is (v8,v10), and the current active list is (v8.v6,v10). By
enumeration, we know that the current active list doesn’t match conditions for case
1, case 2, case 3 or case 4. So we need to check the other two vertices v11 and v9 in

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

quad (v8,v10,v11,v9) which contains the focus edge (v8,v10). It’s clear that vertex
v11 is in one of the active lists in the list stack, which matches conditions for case 7;
meanwhile, vertex v9 is also in one of the active lists in the list stack, which matches
conditions for subcase 7.3; what’s more, vertex vll and vertex ©9 are in the same
active list (v11,v7,v9), which matches conditions for subcase 7.3.2. For this case, we
add all the edges outside vertex v11 and vertex v9 along active list (v11,v7,v9) to the
current active list (v8,v6,v10), and create a new active list (v9, v11), which contains
edge (v11,v9) and all the edges between vertex v11 and vertex v9 along the active list
(v11,v7,v9). Since the size of the new created active list (v9,v11) is less than 3, we
just delete this new active list. Three commands are created for this case, two merge
commands for vertex v11 and vertex v9, and one split command for the new created
active list. The index value of the second merge command is —1, which indicates that
two merge operations are performed on the same active list. The details are shown

in Fig. 3.2(0), Fig. 3.2(P) and Fig. 3.2(Q).

Now, the focus edge is (v11, v10), and the current active list is (v11. v7, v9, v8, v6,
v10). We can see that the current active list matches conditions for case 4, since at
least one of the endpoints of the focus edge is “almost full”. By checking neighboring
vertices of that “almost full” vertex in the current active list, we can find that there
are two consecutive “almost full” vertices around it, which means 4 consecutive
vertices in the active list are shared with quad (v11,v10,v6,v7) which contains the
focus edge (v1l.v10). This matches conditions for subcase 4.2. We perform some

operations for this case, and move to the next step, as shown in Fig. 3.2(R).

Now, the focus edge is (v7,v6), and the current active list is (07, v9,v8,v6). By
enumeration, we know that the current active list doesn’t match conditions for case 1
or case 2. On the other hand, the current active list matches conditions for case 3 since
there are only 4 vertices in the current active list, and all of them are “almost full”.
This indicates that the quad (v7, v9. v8, v6) is the only quad outside the current active

list (v7,09,v8,v6). For this case, we increase the value of field numO fVisited Edge

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

by 1 for each vertex in the quad (v7,9, 8,v6), and then delete the current active list,

as shown in Fig. 3.2(S).

Now, there are no active lists left, and we claim that the compression process is

done.

During the compression process, each time we create an add command for a
free vertex, we push this free vertex onto stack newV. The output for the com-
pression process are two files. One contains the ordered vertices from stack newV,
named “out_vertex.txt”, the other one contains the sequence of commands, named
“out_command.txt”. The content of the output files are shown in Fig. 3.2(U). The

command file can be encoded using entropy coding, which will be discussed later.

3.4.2 Decompression of a torus mesh

Now we have two input files for decompression, file “out_vertex.txt” contains a se-
quence of vertex coordinates, and file “out_command.txt™ contains a sequence of
commands, as shown in Fig. 3.3(B). Let’s see how we reconstruct the torus using

these two input files.

As shown in Fig. 3.3(C), first, we read file “out_vertex.txt” and put the vertices
into a vertex stack; then, we read the command file “out_command.txt”, and put the

commands into a command stack.

The first 4 commands in command stack must be add commands. We pop the first
4 commands from command stack, and pop the first 4 vertices (¢0.v1,v3,v2) from
vertex stack. Then we create a quad (v0,v1,v3,v2) with these 4 vertices. We set the
current active list to be (v0,v1.v3,v2), and the focus edge to be (v0,v2), which is

the opposite half edge of the last edge of the quad. as shown in Fig. 3.3(D).

Next, by enumeration, we can see that the current active list (v0, v1,v3,v2) doesn’t

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

match conditions for case 1, case 2, case 3 or case 4. So the current active list must
match conditions for case 5, case 6 or case 7. To clarify which case it matches, we
pop two commands from command stack, since at least two commands are created
by case 5, case 6 or case 7 during compression. The next two commands are add
commands, which matches conditions for subcase 5.1. So we pop two vertices (v8
and v6) from vertex stack, create a new quad with the focus edge and the two new
vertices (v8 and v6). Also we need to expand the active list, move the focus edge to
edge (v0,v6), and perform some other necessary operations for case 5.1, as shown in

Fig. 3.3(E).

Now the focus edge is (v0,v6), and the current active list is (v0,v1, 03,02, v8, v6).
From the same logic as the previous step, we can find that now the current active list
matches conditions for case 5.1 again (after popping two commands from command
stack). So we pop another two vertices (v10 and v4) from vertex stack, create a new
quad (v0.v6, v10,v4), and perform some other necessary operations, as shown in Fig.

3.3(F).

Now, the focus edge is (v0,v4), and the current active list is (v0, v1, v3, v2, v8,
v6, v10, v4). You can see that the current active list matches conditions for case
4, since vertex v0, one of the two endpoints of the focus edge, is “almost full”. By
checking neighbor vertices of vertex v0 in the current active list, we can find that
there is only one consecutive vertex around vertex v0 is “almost full”, which means
3 consecutive vertices (v4,v0, v1) in the current active list are shared with the next
created quad which contains the focus edge (v0,v4). This matches conditions for
subcase sub4.1. To clarify the subcase further more, we pop one command from
command stack. The command popped out is an add command, which matches
conditions for subcase 4.1.1. So, we pop one vertex (v5) from vertex stack, create a
new quad (v0,v4,v5,v1), and perform some other necessary operations, as shown in

Fig. 3.3(G).

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

Now, the focus edge is (v1,v5). Again, by enumeration, we can find that the
current active list (v4, v5, v1,v3,v2, v8,v6,v10) doesn’t match conditions for case 1,
case 2, case 3 or case 4. So current active list must match conditions for case 5, case 6
or case 7. To clarify which case it matches, we pop two commands out from command
stack. The next two commands are add commands, which matches conditions for
subcase 5.1. So we pop two vertices (v1l and v7) from vertex stack, create a new
quad with the focus edge and the two new vertices (v11 and v7), as shown in Fig.

3.3(H).

Now, the focus edge is (v1,v7), and the current active list is (v4, v5, v1l, v7,
vl, v3, v2, v8, v6, v10). Similar to the case shown in Fig. 3.3(F), we can find that
now the current active list matches conditions for subcase 4.1 since 3 consecutive
vertices (v7,v1,v3) in the current active list are shared with the next created quad
which contains the focus edge (v1,v7). We pop one command from command stack.
The command popped out is an add command, which matches conditions for subcase
4.1.1. So, we pop one vertex (v9) from vertex stack, create a new quad (v3, v1,v7,v9),

and perform some other necessary operations, as shown in Fig. 3.3(I).

Now, the focus edge is (v3, ©9), and the current active list is (v4, v5, v11, v7, v9, v3,
v2, v8, v6, v10). Again, by enumeration, we know that the current active list doesn’t
match conditions for case 1, case 2, case 3 or case 4. So the current active list must
match conditions for case 5, case 6 or case 7. To clarify which case it matches, we pop
two commands from command stack. The next two commands are split commands,
which matches conditions for subcase 6.2. This indicates that all vertices of next
created quad are from current active list. By checking the of fset values of the splits
commands, we can find that the other two vertices of the new created quad are v11
and v5. So we create a new quad (v3,v9,v11,v5), split the current active list into
three active lists, push two of them into list stack. and proceed with the third one,

which is active list (v11,v5), as shown in Fig. 3.3(J) and Fig. 3.3(K).

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

Now the current active list is (v11,v5). Since size of the current active list (v11, v5)
is less than 3, which matches conditions for case 1, we just remove the current active
list, and proceed with the active list (v3,v2,v8, v6,v10, v4, v5) popped from list stack.
To make the following description easier for understanding, we draw the active list

(v3,v2,v8,v6,v10,v4,v5) in an alternative way, as shown in Fig. 3.3(L).

Now, the focus edge is (v3,v5), and the current active list is (v3, v2, v8, v6, v10,
v4, v5). We can see that the current active list matches conditions for case 4, since
at least one of the endpoints of the focus edge is “almost full”. By checking neighbor
vertices of that “almost full” vertex in the active list, we can find that there are three
consecutive “almost full” vertices around it, which means 4 consecutive vertices
(v4,v5.v3.v2) in the current active list are shared with the new created quad which
contains the focus edge (v3, v5). This matches conditions for subcase 4.2. So, we just
create a new quad (v3,v5,v4,v2), and perform some other necessary operations, as

shown in Fig. 3.3(M).

Now, the focus edge is (v2,v4), and the current active list is (v2, v8, v6, v10, v4).
Similar to the previous step, the current active list matches conditions for case 4.2,
and 4 consecutive vertices (v10, v4,v2,v8) in the current active list are shared with
the new created quad which contains the focus edge (v2,v4). So, we just create a
new quad (v2, v4, v10,v8), and perform some other necessary operations, as shown in

Fig. 3.3(N).

Now, the focus edge is (v8,v10), and the current active list is (v8,v6,v10). By
enumeration, we know that the current active list doesn’t match conditions for case 1,
case 2, case 3 or case 4. So current active list must match conditions for case 5, case
6 or case 7. To clarify which case it matches, we pop two commands from command
stack. The next two commands are merge commands. which matches conditions for
subcase 7.3. What’s more, the index value for the second merge command is -1, which

matches conditions for subcase 7.3.2. In this situation, we need to create a new quad

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

first. Two vertices of the new quad are the endpoints of the focus edge (v8.v10).
The other two vertices come from the active list (v1l,v7,v9) which is identified by
the index value of the first popped merge command. We can find the other two
vertices from the active list (v11,v7,v9) by checking the of fset value of the two
merge commands. After the other two vertices v11 and v9 are found, we create a new
quad (v8,v10,v11,v9). Then we add all edges outside vertex v11 and vertex v9 along
active list (v11,v7,v9) to the current active list (v8, v6,v10), and create another new
active list (v9,v11), which contains edge (v11,v9) and all the edges between vertex
v1l and vertex v9 along active list (v11,v7,v9). Creating a new active list mcans
splitting current active list into two, so we need to pop a new command (which must

be a split command) from command stack and then split. Details are shown in Fig.

3.2(0), Fig. 3.2(P) and Fig. 3.2(Q).

Now, the focus edge is (v11,210), and the current active list is (v11, 7. ¢9. ¢8.
v6, v10). We can see that the current active list matches conditions for casc 4. since
at least one of the endpoints of the focus edge is “almost full”. By checking neighhor
vertices of that “almost full” vertex in the active list, we can find that there are
three consecutive “almost full” vertices around it. which means four consecutive
vertices (vll,v7,v6,v10) in the current active list are shared with the new created
quad which contains the focus edge (v11,v10). This matches conditions for subcase
4.2. So, we just create a new quad (v11,v10,v6, v7), and perform some other necessary

operations, as shown in Fig. 3.3(R).

Now, the focus edge is (v7,v6), and the current active list is (v7,v9.v8.06). By
enumeration, we know that the current active list doesn’t match conditions for case
1 or case 2. On the other hand, current active list matches conditions for case 3 since
there are only 4 vertices in the current active list, and all of them are “almost full”.
This indicates that there should be only one un-created quad outside current active
list (v7,v9,v8,v6). For this case, we just create a new quad (v7, 9, 8, v6), increase the

value of field numO fVisitedEdge by 1 for each vertex of the quad, and then delete

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

the current active list, as shown in Fig. 3.3(S).

Now, there are no any active lists left, and we claim that the decompression process

is done.

3.5 Handling boundaries

Our implementation works for quadmesh without boundary. For mesh with boundary,
Touma-Gotsman suggested to add one dummy vertex and encode this dummy vertex

separately. The same idea won’t work for quadmeshes.

For a quadmesh with boundary, consider the polygon formed the by boundary
edges. Either you have to split this polygon into quads, which will introduce more

vertices/edges, or you have to introduce triangles. We do think the latter is better.
The easiest way might be:
1. Add one dummy vertex 1st, triangulate the polygon;
2. Traversc all triangles around the dummy vertex first.

The result mesh contains quads and some dummy triangles. During the com-
pression process, we conquer those dummy triangles first, and then conquer all rest

quads.

3.6 Entropy coding of the command sequence
The three commands appearing in the connectivity code are “add <degree>". “split

<offset>"” and “merge <index><offset>". Generally, a typical code contains many

“add” commands, a few “split” commands, and almost no “merge” commands.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

In typical quadmeshes, the average vertex degree is 4, and there is a spread of
degrees around this value. Using entropy coding. like Huffman to encode the connec-
tivity code could compress the connectivity further more. Table 3.4 is the Huffman

code for a sample mesh “Torus” which is presented in Chapter 5.

add 4 1
split 1 001
split 2 000
split 6 0110

merge -1 2 0111

merge 0 0 010

Table 3.4: Huffman coding scheme for sample mesh “Torus”

3.7 Time complexity analysis

The most time-consuming operation in the connectivity compression procedure is
searching for a given vertex in some active list on the list stack. This is needed only
for "merge” operations, which are extremely rare. Apart from that. both the space
and time complexity of the compression and decompression algorithms are linear in

the number of mesh quads/vertices.

3.8 Summary

In this chapter we discussed how Touma-Gotsman’s compression algorithm for tri-
angle meshes is successfully extended for quadrilateral meshes. Time complexity
analysis shows that both the compression and decompression algorithms are linear in

the mesh size.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

Compression Example

Figure 3.2: Compression example (A to U)

11

10
6 7
8 9
11
10
5
4
/ 2 .
0 1
4 next: init the mesh 5

Figure 3.2: Compression example (B)

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN

ALGORITHM
11(4/0)
10(4/0)
6(4/0) 7(4/0)
8(4/0) 9(4/0)
11(4/0)
10(4/0)
5(4/0)
4(4/0
e 3(4/0)>
Istquad
0(4/0 T ~ B 1(4/
(4/0) T 1st edge (40)
4(4/0) next: init the first active list 5(4/0)
Figure 3.2: Compression example (C)
11(4/0
10(4/0) “9
v 14
vl 7(4/0 14
v 6(4/0) (4/0) 14
v2 8(410) 9(4/0) 14
11(4/0
10(4/0) (“40)
5(4/0)
4(4/0
0(4/1) B 1(411)
next:
4(4/0) currentPolygon.v[2] (v8) is unvisited - case 5 5(4/0)

currentPolyaon.v{3] (v6) is unvisited > case 5.1

Figure 3.2: Compression example (D)

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN

ALGORITHM
11(4/0)
10(4/0)
VO 14
vi 7(4/0 14
s \5(4/1) (4/0) 14
v2 9(4/0 14
ve 8(4/1) (4/0) 14
v6 L 14
- 11(4/0)
© 10(4/0)
|
S
m
© 5(4/0)
4(4/0
0(4/2) 1(4/1)
next:
4(4/0) currentPolygon.v{2] (10} is unvisited = case 5 5(4/0)
currentPolyaon.vi3] (v4) is unvisited > case 5.1
Figure 3.2: Compression example (E)
11(4/0)

7(4/0)

7/0(413) (4/1)
next: focus vertex (v0) is “almost full” - case 4;

441) next quad has 2 OHEs in active list 5 case 4.1; 5(4/0)
currentPolygon.v[2] (v5) is unvisited = case 4.1.1

Figure 3.2: Compression example (F)

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/0)
vQ 14
v1 7(4/0) 14
v3 14
v2 14
v8 14
v6 14
v10 14
v4 14
v5 14
b cased11 IR
i 415 4 WO X i . i
4(4/2) currentPolygon V2] (v11) is unvisited - case 5 5(4/1)
currentPolygon.v[3] (v7) is unvisited <> case 5.1
Figure 3.2: Compression example (G)
11(411)
v 14
v 7(41 14
v 6(412) @) 14
v2 14
e 8(4/1) (4/0) 14
v6 14
vi0 14
vé 14
v5 14
v11 14
v7 14

HZ)

soamis pesaerreiosinebion oo

0(414) AN

g b £y ~u mos 17 -~ W o ;i

4(412) fiext quad has 2 OHEs in_ active list 2 case 4.1; 5(4/2)
currentPolygon v{2] (v9) is unvisited < case 4.1.1

Figure 3.2: Compression example (H)

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/1) 4
vO 14
vi 7(412) 14
v3 14
v2 14
w8 8(4/1) 14
vB 14
v10 14
v4 -1 - 14
vit Ik | o 14
V7 _g- 14
o 5 14

}0(;414) - A(44)>

& next . - RS MACH 5 o
4(4/2 currentPolygon.v[2] (v11) is in current active list > case 6, 5(4/2)
currentPolygon . vi31 (v5) is in current active list > case 6.2

Figure 3.2: Compression example (I)

11(4/1)

Vi ! 7(412 : 14
v3 I (4/2) b fil14 |
v2 14
v8 14
vb e 14
wo Il | 4
vé o 14
v5 14
vit |f§0 1 ¢ 14
v7 Lok 14
v8 : ; 14

4(412) 5(4/2)

Figure 3.2: Compression example (J)

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TO UMA-GOTSMAN
ALGORITHM

11(4/2) &

vO ™ v 14
v1 1. i 7(4 14
v3 : 1™ 14
Iz | ™ 1|14
e b -
vB 14
vio |} _ . 14
va it 1 142508 S|4
V5 i 10(4/1) T\t o .y
vit ip | W 14
v7 1 14
vg . 14
1 22
] 26

4(412) F\ext:(size of current active list) < 2 - case 1,

delete the current active list
Figure 3.2: Compression example (K)
11(4/2)

vO 14
vi 14
v3 14
v2 14
v8 14
vB 14
v10 14
v4 14
v5 14
vii 14
v7 14
v3 14
22
26

4(412) hext. focus vertex (v3) is “almost full” - case 4;
next quad has 3 OHESs in active list > case 4.2

5(4/3)

Figure 3.2: Compression example (L)

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/2)
vQ 14
v 14
v3 14
V2 14
v8 14
vB 14
vi0 14
va L 14
v5 - 14
vit S 14
v7 ' 14
ve o 14
- 22
i 26
4(4/3) next: focus vertex (v2) is “almost full” > case 4; 5(4/4)
next quad has 3 OHESs in active list > case 4.2
Figure 3.2: Compression example (M)
11(4/2)
VD 14
vi 14
v3 14
v2 14
v8 14
v6 14
v10 14
vé 14
vh 14
vi1 14
v7 14
vg 14
22
26
~ 0{414) o
~ next: currentPolygon v[2} (v11) is in another active list > case

4(4/4)currentPolygon,v[3] (v9) is in another active list > case 7.3;5(4/4)
v and v11 are in the same list > case 7.3.2

Figure 3.2: Compression example (N)

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/2)

IN10(412)
N
T I8 7(412)

v3
v2
v8
v e N M2 b .

v5 e - MI0(472) a

v7
vo

RE2) sy At

case 7.3.2

5(414) b 14

L

'.';0(414)‘_:. SwrTEeae e e ;j‘f(*’“}:’ .

i

s 5(4/4)

Figure 3.2: Compression example (O)

‘ 4/3)‘;."”-“—.--..»—-—‘.
. > /2)

vi0

vii
v7
vy

soms T T
S pextoo o e i L
4(4/4) (Size of the new active list created by case 7.3.2) < 2 5(4/4)
delete the new active list.

Figure 3.2: Compression example (P)

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

N
. ’ 1/2)

4(a/4) next: focus vertex (\/11) is “almost full’ = case 4, 5(4/4)
next guad has 3 OHESs in active list - case 4.2

Figure 3.2: Compression example (Q)

Vo Ji14
vi 14
v3 14
v2 14
v8 14
vB 14
vi0 14
vé 14
v5 14
vi1 14
v7 14
v8 14
22
26
300
3-12
21

4(4/4) next all vertices in active list are almost full > case 3 (4/4)

Figure 3.2: Compression example (R)

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

T4
vQ 14
vi 14
v3 14
v2 14
v8 14
v6 14
vi0 14
vd 14
v5 14
vii 14
v7 14
ve 14
— 22
26
300
3-12
21

4(4/4) | - 5(4/4)

Figure 3.2: Compression example (S)

Figure 3.2: Compression example (T)

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

out_vertex.txt out_command.txt

12 17
V0 14 “§
vi — 14 L init
v3 — 14 !
v2 — 14 i
v |14 . case 5.1
vB 114 .
vio [«——{14 ||
va 14 case 5.1
vh 14 + case 4.1.1
vit |~— 14
v7 14 case 5.1
V8 Je———[14 |} case 4.1.1
22 | case6.2
26
300 |
312 |, case7.3.2
21

Figure 3.2: Compression example (U)

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

Decompression Example

Figure 3.3: Decompression example (A to T)

out_vertex.txt out_command.tet

12 17
v0 — 14
v1 — 14
v3 —|14
v2 14
v8 —i14
v6 14
vig [«——— 14
vd —| 14
v5 —{14
vi1 14
v7 —_ 114
vo — 114
22
26
300
3-12
21

Figure 3.3: Decompression example (B)

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN

ALGORITHM
vQ 14
v 14
v3 14
v2 14
v8 14
v6 14
v10 14
v4 14
v5 14
vi1 14
v7 14
ve 14
22
26
300
3-12
21
next: init (read first 4 commands and first 4 vertices)
Figure 3.3: Decompression example (C)
vQ 14
vl 14
v3 14
v2 14
v8 14
v6 14
vi0 14
v4 14
v5 14
vi1 14
v7 14
vo 14
22
26
300
3-12
21
0(4/1) 1(411)
next.

read next command - case 5 (“add” command, v8)
read next command > case 5.1 (“add” command, v6)

Figure 3.3: Decompression example (D)

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN

ALGORITHM
v8 14
v6 14
v10 14
v4 14
v5 8(4n) 14
vi1 14
v7 14
vo 14
22
26
300
3-12
21
0(4/2) 1(4/1)
next:
read next command - case 5 (“add” command, v10)
read next command -> case 5.1 (“add” command, v4)
Figure 3.3: Decompression example (E)
viQ 14
v4 14
v5 14
vi1 14
M 8(411) 14
vo 14
22
26
300
312
21

L7-0(4/3)
next: focus vertex (VO) is “almost full” > case 4;

next created quad has 2 OHESs in active list -> case 4.1,
next command is an “add” command - case 4.1.1 (v5)

1(4/1)
4(41)
Figure 3.3: Decompression example (F)

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

v5 14
vi1 14
v7) 14
vo 8(4/1) ; ;
26
300
3-12
21
4t,2) read next command - case 5 (‘add” command, vi1) 5(4M)
read next command = case 5.1 (“add” command, v7)
Figure 3.3: Decompression example (G)
1(411)
2.10(4/1) _
vi1 d 14
v 7(411 14
A 6(4/2) (4n) 14
22
8(4/1) 26
300
3-12
21

o4r4y . (413N
- next’ focys verfex {1} js “almpc e n RS ey
2) next created quad has 2 OHES in active list > case 4.1, 5(4/2

4(4/
(next command is an “add” command - case 4.1.1 (v8)

Figure 3.3: Decompression example (H)

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/1)

7(412)

8(4/1) 9(4/1)

cased 11

next.. = po— c— =
nmand - case 6 (“split’ command) 5(4/2)

4(4/2) read n com
read next command -> case 6.2 (“split” command)
Figure 3.3: Decompression example (I)
11(4/1)

10(4/1)

7(4/2)

8(4/1) 9(4/1)

case 6.2

w2 5(4/2)

Figure 3.3: Decompression example (J)

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/2)
N10(4/1) ,

N 6(472) 7(4»
L 8(4/1) 9(4_ _

¥

|
| |
| !
i 11412 i
‘ § o
L |
o] |
i g '
e |
|
| AN |
4(42) ' next:(size of current active list) < 2 > case 1 5(4&/3

delete the current active list.

Figure 3.3: Decompression example (K)

11(412) 4]
N 4 I 300
LN 7(; 3-12
! 121
= 11(4/2)‘;‘5; |
case 1 !
. |
AN |

4(472) next focus vertex (v3) is “almost full” = case 4; '15(4/3)
next created quad has 3 OHEs in active list 2 case 4.2

Figure 3.3: Decompression example (L)

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/2)

w
Q
o

8(4/1)

1142
'H0(4/1) ()‘_ -

5(4/4)

4(473) Dext. focus vertex (v2) is “almost full” > case 4;
next created quad has 3 OHESs in active list > case 4.2

Figure 3.3: Decompression example (M)

11(412)

300
3-12
21

11(4/2) Eg

§

|
‘\
)

5(4/4)

Aoainy T 1)
__ next read next command > case 7 (1 “‘merge” command)
4(';{)23—"Te‘a'd“h”éxt command —» case 7.3 (1 “‘merge” command) 5(4/4)
2nd argument of the command is -1 - case 7.3.2

Figure 3.3: Decompression example (N)

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(412)
309
3-12
: 21
INB(4/2) 4124
N case 7.3.2 Ao
4(414) 5(414)
Figure 3.3: Decompression example (O)
____________ - 1 1(403)
300 |
3-12
21

4(4/8) (Size of the new active list created by case 7.3.2) < 2 5(4/4)
delete the new active list.

Figure 3.3: Decompression example (P)

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN

ALGORITHM

@13)

4/3)‘___“
R o T

5(4/4)

4(4/4) next. case 4.2

Figure 3.3: Decompression example (Q)

11(4/14)

5(4/4)

4(4/4) next: all vertices in active list are almost full = case 3

Figure 3.3: Decompression example (R)

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

4(4/4) |) 5(4/4)

Figure 3.3: Decompression example (S)

Figure 3.3: Decompression example (T)

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Linear time quadmesh decompression

using Spirale Reversi

Edgebreaker is a triangle conquest approach for connectivity compression of triangle
meshes, which has been explained in section 2.2.6. The approach starts from an initial
borderline, which divides the whole mesh into two regions: visited and unvisited
regions, and adds one triangle at a time to the visited regions. The main difference
between Edgebreaker algorithm and Touma-Gotsman’s algorithm is that Edgebreaker
outputs the building operations of new triangles, while Touma-Gotsman'’s algorithm

outputs the valences of new vertices.

There are different algorithms that can be used for the decoding process. Among
them, Spirale Reversi(20) is the most efficient one. In this chapter we show how to

extend the Spirale Reversi algorithm to quadmesh connectivity decompression.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

4.1 Definition of opposite edge (OE) data structure

In this chapter we use a simple data structure called OE (opposite-edge) for repre-

senting connectivity of a quad mesh. The data structure is defined by Jing (21).

Fig. 4.1 illustrates the OE data structure. Each quad in a quad mesh is represented
by four integer references for the four vertices and four integer references for edges,
plus four integer references for the four opposite-edges. The opposite-edge of an edge
e[l] in the center quad refers to the edge that is next to next to the opposite half
edge of e[3] in the left quad. If ¢[3] is a boundary edge, we arbitrarily assign -1 in the
opposite-edge field for ohe[l]. In other words, given an edge of the center quad, its
opposite-edge is an edge that belongs to an adjacent quad and is the edge of the center
quad that is opposite to the edge that it shares with the adjacent quad. Vertices.

edges, and opposite edges are identified using positive integers.

4.2 FEdgebreaker compression algorithm

The algorithm for Edgebreaker compression is shown as algorithm 5. The input file is
a quad PLY file, and the output files are three files: file “out_operation.txt” contains
a sequence of commands, file “out_handles.txt” contains handles information, and file

“out_vertex.txt” contains vertex coordinates, as shown below.

out_operation.txt
quadPLY file — out_handles.txt

out_vertex.txt

After the compression process, we get the operation code (op-code for short) for the
compression operation associated with each quad. We need to encode each operation

to convert the operation code to binary code to finalize the compression process. Once

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

| oel0] —|
fooo T
] ‘ 1
/ |
Vi3l - V2]
ETM’____ I e [2] 4
; D ;
I . oct3]|
‘%\ ‘ e[3] e[1] o, |
=‘i\Oe[ﬂ e (
\‘i\' v E[O]/(aCtiVEGatel ”
Vo] Ml
| v
f
| 0e[2] f
i >

Figure 4.1: OE data structure

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

we have the coding scheme and binary coding stream, we can easily extract ASCII

operations from the coding stream.

Compression operations are shown in Fig. 4.2. During compression, each operation

is processed as follows.

(1). Q1
e set status of all vertices of current quad to visited.
(2). Q2

e v[0].status = v[3].status = visited;

e push opposite half edge at RIGHT to gateStack.

(3). Q3

e v[0].status = visited;
e push opposite half edge at OPPOSITE/RIGHT to gateStack;

o markHandles(e[2]).
(4). Q4

e v[0].status = v[1].status = visited;

e push opposite half edge at OPPOSITE to gateStack.

(5). Q5
e v[0].status = visited;
e mark new inner vertex v[2];

e push opposite half edge at RIGHT to gateStack.

(6). Q6

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

e v[1].status = v[2].status = visited;

e push opposite half edge at LEFT to gateStack.

(7). Q7
e push opposite half edge at LEFT/RIGHT to gateStack;
o markHandles(e[3]).

(8). Q8
e push opposite half edge at LEFT/OPPOSITE/RIGHT to gateStack:
e markHandles(e[2], ¢[3]).

(9). Q9
o v[1].status = visited;
e push opposite half edge at LEFT/OPPOSITE to gateStack;
e markHandles(e[3]).

(10). Q10

e mark new inner vertex v([2];
e push opposite half edge at LEFT/RIGHT to gateStack;
e markHandles(e[3]).

(11). Q11

e mark new inner vertex v([3];
e push opposite half edge at OPPOSITE/RIGHT to gateStack;
e markHandles(e[2]).

(12). Q12

o v[l].status = visited;

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

e mark new inner vertex v(3];

e push opposite half edge at OPPOSITE to gateStack.
(13). Q13

e mark new inner vertex v|[2] and v[3];

e push opposite half edge at RIGHT to gateStack.

4.3 Spirale Reversi decompression algorithm

Following the Spirale Reversi decompression algorithm for triangle mesh, which was
described by Isenburg and Snoeyink (20), we define the Spirale Reversi decompression
algorithm for quadmesh, which is shown as algorithm 6. The three input files are file
“out_operation.txt”, “out_handles.txt” and “out_vertex.txt”, and the output is a quad

PLY file, as shown below.

out_operation.txt
out_handles.tzt — quadPLY file

out_vertex.txt

Decompression operations are shown in Fig. 4.3. For each operation, we process

it as follows.

1). Q1

set status of all vertices of current quad to visited:
e create a new quad with 4 new vertices;
e set previous on boundary vertex for v[0], v[3], v[2];

e push previous gate to gateStack.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

(2). Q2
e create a new quad with 2 new vertices;

e set previous on boundary vertex for v[0], v[3].

(3). Q3
e create a new quad with 1 new vertex;

e set previous on boundary vertex for v[0];

e remove duplicate created vertices at v[2].

(4). Q4
e create a new quad with 2 new vertices;

e set previous on boundary vertex for v[0], v[2].

(5). Q5
e create a new quad with 1 new vertex;

e set previous on boundary vertex for v[0];

o mark new inner vertex v[2], assign coordinates for it.

(6). Q6
e create a new quad with 2 new vertices;

e set previous on boundary vertex for v[2], v[3].
(7). Q7
e pop a gate from gateStack;

e create a new quad;

e set previous on boundary vertex for v[3].
(8). Q8

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

e pop 2 gates from gateStack
e create a new quad ;

e remove duplicate created vertices at v[2], v[3].

(9). Q9
e pop a gate from gateStack
e create a new quad with 1 new vertex;
e set previous on boundary vertex for v[2];

e remove duplicate created vertices at v[3].
(10). Q10

e pop a gate from gateStack;
e create a new quad;
e remove duplicate created vertices at v[3];

e mark new inner vertex v[2], assign coordinates for it.
(11). Q11

® pop a gate from gateStack;
e create a new quad;
e remove duplicate created vertices at v[2];

e mark new inner vertex v[3], assign coordinates for it.
(12). Q12

e create a new quad with 1 new vertex;
e set previous on boundary vertex for v([2];

e mark new inner vertex v[3], assign coordinates for it.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

(13). Q13
e create a new quad with 1 new vertex;

e mark new inner vertex v[2] and v[3], assign coordinates for them.

input : file_in_ply

output: file_out_operation, file_out_vertex, file_out_handle

Read OE file, and set all vertices and all quads to be unvisited;

Get boundary info by checking OE file, and create stack boundaryVertex;

if boundaryVertex is empty then /* no boundary on the mesh */
Set 1st quad’s boundary edges to be the boundary of the mesh;

Set status of vertices on boundary to be onBoundary:
Push the opposite edge of the 1st edge on boundary into gateStack;
Set status of the 1st quad to be visited,;

else
Set status of vertices on boundary to be onBoundary:

| Push the opposite edge of the 1st edge on boundary into gateStack;

while gateStack is not empty do
activeGate = a gate popped from gateStack;

activeQuad = the quad containing activeGate;

if activeQuad is unvisited then
Get activeQuad’s interactionType;

Update mesh according to interactionType; /* call function updateMesh() */
Set status of activeQuad to be visited,;

Push interactionType into operationStack;

| Check possible handles for activeQuad;
Create operation file containing all operations;

Create handle file containing all handles;

Sort vertices according to stacks innerVertexr and boundaryVertex;

Create vertex file containing sorted vertex coordinates;

Algorithm 5: Quadmesh compression using EdgeBreaker

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

input : file_in_operation, file_in_vertex, file_in_handle
output: file_out_ply

Read operation file and create stack operationStack:
Read vertex file;

Read handle file, and create stack handleStack;

while operationStack is not empty do
operation = operationStack.pop();

processOperation(operation); /* new vertices/quad created here */
Set next activeGate to be new quad’s 1st edge;

mark new quad to be unvisited;
Remove duplicate vertices from temporary vertex list;

Assign coordinates for boundary vertices; Create PLY file;

Algorithm 6: Quadmesh decompression using Spirale Reversi

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

4.4 Illustrate the approach

To illustrate the algorithm, we use a quadmesh with boundary shown in Fig. 4.4(B)

as example.

For each vertex and each quad has two possible status: visited or unvisited. We

use the status information of the vertices and the quads to identify a quad’s quad’s

type.

There are two kinds of vertices in the mesh: inner vertex and boundary vertex.

We need to create four stacks for the algorithm: an inner vertex stack used to store
inner vertices of the mesh, a boundary vertex stack used to store boundary vertices
of the mesh, an operation stack used to store quad’s types for each quad, and a gate

stack used to store gates.

Fig. 4.4(C) to Fig. 4.4(S) shows how the compression algorithm works for the
sample mesh, and Fig. 4.5(B) to Fig. 4.5(S) shows how the decompression algorithm

works.

4.4.1 Compress a mesh with boundary

After reading the mesh’s information from an input file, we can create an image of

the mesh, as shown in Fig. 4.4(C).

Next we need to identify the boundary of the quadmesh. All vertices on the
boundary are boundary vertices. Boundary vertices are ordered in counter-clockwise
order, and then pushed onto the boundary stack. The first active gate (v0, v1), is the

opposite half edge of the first edge (v1,v0) on the boundary, as shown in Fig. 4.4(D).

Quad (v0. v1,v2,v3) which contains the active gate is the one we are visiting. We

can identify quad (v0,v1,v2,v3) as quad’s type “Q5” since its left neighbor quad

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

does not exist or is visited, and the third vertex v2 is not on the current boundary
now. So, we push vertex v2 onto the inner vertex stack, push quad type “Q5” onto
the operation stack, and push a new gate (v2,v1) onto the gate stack, as shown in
Fig. 4.4(E). What’s more, we need to mark v0 as not on the current boundary (here
we mark v0 as visited). Although there is no boundary shown in the figures, you
still need to keep in mind that there is a boundary (or several boundaries) which
enclose the visited region of the mesh during the compression process, and same for

the decompression process.

For each step, we need to check if a handle is created or not. Since in this example
there are no any handles created, we won’t discuss how to identify handles and how

to handle them.

Next, we pop a gate (v2,vl) off the gate stack. Now quad (v2,v1,v4.¢5) which
contains active gate is the one we are visiting, and we identify it as quad’s tvpe “Q117.
So, we push vertex v5 onto the inner vertex stack, push quad’s type “Q117 onto the
operation stack, and push two new gates (v4,v1) and (v5, v4) onto the gate stack. as

shown in Fig. 4.4(F).

Next, we pop a gate (v4,vl) off the gate stack. Now quad (v4,v1,v6.¢7) which
contains the active gate is the one we are visiting, and we identify it as quad’s tvpe
“Q17. So, we just mark all vertices of the quad as not being on the current boundary
(here we mark the vertices as visited). and push quad’s type “Q1” onto the operation

stack, as shown in Fig. 4.4(G).

Next, we pop a gate (v5.v4) off the gate stack. Now quad (v5.v4.v8.v9) which
contains the active gate is the one we are visiting, and we identify it as quad’s tvpe
“Q6”. So, we just mark vertex v4 and vertex v8 of the quad as not being on the
current boundary (here we mark the vertices as visited), push one new gate(v5. v9)

onto the gate stack, and push quad’s type “Q6” onto the operation stack, as shown
in Fig. 4.4(H).

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Next, we pop a gate (v5,v9) off the gate stack. Now quad (v5,v9,v10, v11) which
contains the active gate is the one we are visiting, and we identify it as quad’s type
“Q117. So, we push vertex v11 onto the inner vertex stack, push quad’s type “Q11”
onto the operation stack, and push two new gates (v11,v10) and (v10,v9) onto the

gate stack, as shown in Fig. 4.4(I).

Next, we pop a gate (v10,v9) off gate stack. Now quad (v10,v9,v12,v13) which
contains active gate is the one we are visiting, and we identify it as quad’s type “Q1”.
So, we just mark all vertices of the quad as not on the current boundary, and push

quad’s type “Q1” onto the operation stack, as shown in Fig. 4.4(J).

Next, we pop a gate (v11,v10) off gate stack. Now quad (v11,v10,v14,v15) which
contains active gate is the one we are visiting, and we identify it as quad’s type
“Q6". So, we just mark vertex v10 and vertex v14 of the quad as not on the current
boundary, push one new gate(vll,v15) to gate stack, and push quad’s type “Q6”

onto the operation stack, as shown in Fig. 4.4(K).

Next, we pop a gate (v11,v15) off gate stack. Now quad (v11,v15,v16,v17) which
contains active gate is the one we are visiting, and we identify it as quad’s type
“Q117. So, we push vertex v17 onto the inner vertex stack, push quad’s type “Q11”
onto the operation stack, and push two new gates (v16,v15) and (v17,v16) onto the

gate stack, as shown in Fig. 4.4(L).

Next, we pop a gate (v16,v15) off gate stack. Now quad (v16, v15,v18, ©19) which
contains active gate is the one we are visiting, and we identify it as quad’s type “Q1”.
So, we just mark all vertices of the quad as not on the current boundary, and push

quad’s type “Q1” onto the operation stack, as shown in Fig. 4.4(M).

Next, we pop a gate (v17,v16) off gate stack. Now quad (v17, v16,v20, v21) which
contains active gate is the one we are visiting, and we identify it as quad’s type

“Q6”. So, we just mark vertex v16 and vertex v20 of the quad as not on the current

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

boundary, push one new gate(v17,v21) onto the gate stack, and push quad’s type

“Q6” onto the operation stack, as shown in Fig. 4.4(N).

Next, we pop a gate (v17,v21) off gate stack. Now quad (v17,v21,v3,v2) which
contains active gate is the one we are visiting, and we identify it as quad’s type “Q7”.
So, we push quad’s type “Q7” onto the operation stack, and push two new gates

(v3,v21) and (v17,v2) onto the gate stack, as shown in Fig. 4.4(0O).

Next, we pop a gate (v3,v21) off gate stack. Now quad (v3,v21.v22,v23) which
contains active gate is the one we are visiting, and we identify it as quad’s type “Q1”.
So, we just mark all vertices of the quad as not on the current boundary, and push

quad’s type “Q1” onto the operation stack, as shown in Fig. 4.4(P).

Next, we pop a gate (v17,v2) off gate stack. Now quad (v17.v2,v5,v11) which
contains active gate is the one we are visiting, and we identify it as quad’s type “Q1”.
So, we just mark all vertices of the quad as not on the current boundary, and push

quad’s type “Q1” onto the operation stack, as shown in Fig. 4.4(Q).

Now, the gate stack is empty, and we claim that the compression process is done.
The output are two files, as shown in Fig. 4.4(R). File “out_operation.txt” contains the
sequence of quad’s types, and file “out_vertex.txt” contains the sequence of vertices,
which contains two parts. The first part is the ordered inner vertices, which are
identified in sequence during compression process, and the second part is the ordered
boundary vertices, which are identified before we traverse any quads in the mesh.
We need to keep in mind that, the last two vertices in file “out_vertex.txt” are two
boundary vertices which are endpoints of the first active gate. The first active gate

is where the compression starts and where the decompression ends.

The operation file “out_operation.txt” can be encoded using some code schemes,

which will be discussed later.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

4.4.2 Decompress a mesh with boundary

Now we have two input files for decompression, file “out.vertex.txt” contains a se-
quence of vertex coordinates, and file “out_operation.txt” contains a sequence of op-
erations, as shown in Fig. 4.5(B). Let’s see how we reconstruct the mesh using these

two input files.

As shown in Fig. 4.5(C), first, we read file “out.vertex.txt” and put the vertices
onto a vertex stack; then, we read the file “out_operation.txt”, and put the operations
onto a operation stack. We also need to create another two more empty stacks, one

is the gate stack, the other one is the inner vertex stack.

The decompression process works like this: we pop the operations from the opera-
tion stack one by one, and create a quad for each operation, until the operation stack

iIs empty.

The first operation popped out from operation stack is “Q1”. So we create four
“virtual” vertices, create a quad with them, and set the active gate to be the first
edge g1 of the quad, as shown in Fig. 4.5(D). For the newly created quad and its four
vertices (v[0], v[1],v[2],v[3]), we claim that all the four vertices are on the boundary
now, the previous on-boundary vertex of vertex v[0] is v[3], the previous on-boundary
vertex of vertex v[3] is v[2], and the previous on-boundary vertex of vertex v[2] is
v[1]. Actually, for each on-boundary vertex, we remember its previous on-boundary
vertex; thus we know the exact information about current boundary of the mesh

during decompression.

Next operation popped out from operation stack is “Q1”. So we create four more
“virtual” vertices, create a quad with them, push active gate g1 onto gate stack and
set the active gate to be the first edge g2 of the quad, as shown in Fig. 4.5(E). For the
new created quad and its four vertices (v[0], v[1], v[2], v[3]), we claim that all the four

vertices are on boundary now, the previous on boundary vertex of vertex v[0] is v([3].

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

the previous on-boundary vertex of vertex v[3] is v[2], and the previous on-boundary

vertex of vertex v[2] is v[1].

Next operation popped out from operation stack is “Q7”. So we pop a gate gl
off gate stack, create a quad with the four vertices of gate gl and gate g2, and set
active gate to be the first edge g3 of the quad, as shown in Fig. 4.5(F). For the new
created quad and its four vertices (v[0],v[1],v[2],v[3]), we claim that the previous

on-boundary vertex of vertex v[3] is v[2].

Next operation popped out from operation stack is “Q6”. So we So we create two
more “virtual” vertices, create a quad with the two “virtual” vertices and the two
vertices of gate g3, and set active gate to be the first edge g4 of the quad, as shown
in Fig. 4.5(G). For the new created quad and its four vertices (v[0], v[1], v[2], v[3]), we
claim that the previous on-boundary vertex of vertex v[3] is v[2], and the previous

on-boundary vertex of vertex v[2] is v[1].

Next operation popped out from operation stack is “Q1”. So we create four more
“virtual” vertices, create a quad with them, push active gate g4 to gate stack and
set active gate to be the first edge g5 of the quad, as shown in Fig. 4.5(H). For the
new created quad and its four vertices (v[0], v[1], v[2], v[3]), we claim that all the four
vertices are on boundary now, the previous on boundary vertex of vertex v[0] is v[3],
the previous on-boundary vertex of vertex v[3] is v[2], and the previous on-boundary

vertex of vertex v[2] is v[1].

Next operation popped out from operation stack is “Q11”. We pop a gate g4 off
gate stack first. The start vertex of active gate gb and the end vertex of gate g4 are
the same vertex in the mesh, so we remove one of them out from the mesh. Next, we
create a quad with the previous on-boundary vertex of the start vertex of gate g4,
and the three vertices of gate g4 and gate gb. Next, we set active gate to be the first
edge g6 of the quad. as shown in Fig. 4.5(1). For the new created quad and its four

vertices (v[0], v[1],v[2],v[3]), we can see that v[3] is an inner vertex, so we pop one

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

vertex v17 out from vertex stack and push it onto inner vertex stack. We claim that

v[3] of the new created quad is v17.

Next operation popped out from operation stack is “Q6”. So we So we create two
more “virtual” vertices, create a quad with the two “virtual” vertices and the two
vertices of gate g6, and set active gate to be the first edge g7 of the quad, as shown
in Fig. 4.5(J). For the new created quad and its four vertices (v[0], v[1],v[2],v[3]), we
claim that the previous on-boundary vertex of vertex v[3] is v[2], and the previous

on-boundary vertex of vertex v[2] is v[1].

Next operation popped out from operation stack is “Q1”. So we create four more
“virtual” vertices, create a quad with them, push active gate ¢7 onto gate stack and
set active gate to be the first edge g8 of the quad, as shown in Fig. 4.5(K). For the
new created quad and its four vertices (v[0], v[1],v[2], v[3]), we claim that all the four
vertices are on boundary now, the previous on boundary vertex of vertex v[0] is v[3],
the previous on-boundary vertex of vertex v[3] is v[2], and the previous on-boundary

vertex of vertex v[2] is v[1].

Next operation popped out from operation stack is “Q11”. We pop a gate g7 off
gate stack first. The start vertex of active gate g8 and the end vertex of gate g7 are
the same vertex in the mesh, so we remove one of them out from the mesh. Next, we
create a quad with the previous on-boundary vertex of the start vertex of gate g7,
and the three vertices of gate g7 and gate ¢g8. Next, we set active gate to be the first
edge g9 of the quad, as shown in Fig. 4.5(L). For the new created quad and its four
vertices (v[0], v[1},v[2],v[3]), we can see that v[3] is an inner vertex, so we pop one
vertex v11 out from vertex stack and push it onto inner vertex stack. We claim that

v[3] of the new created quad is v11.

Next operation popped out from operation stack is “Q6”. So we So we create two
(49N b] M (39— " 3
more “virtual” vertices, create a quad with the two “virtual” vertices and the two

vertices of gate g9, and set active gate to be the first edge g10 of the quad, as shown

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

in Fig. 4.5(M). For the new created quad and its four vertices (v[0], v[1],v[2],v[3]).
we claim that the previous on-boundary vertex of vertex v[3] is v[2], and the previous

on-boundary vertex of vertex v[2] is v[1].

Next operation popped out from operation stack is “Q1”. So we create four more
“virtual” vertices, create a quad with them, push active gate g10 to gate stack and
set active gate to be the first edge g11 of the quad, as shown in Fig. 4.5(N). For the
new created quad and its four vertices (v[0], v[1], v[2], v[3]), we claim that all the four
vertices are on boundary now, the previous on boundary vertex of vertex v[0] is v[3],
the previous on-boundary vertex of vertex v[3] is v[2], and the previous on-boundary

vertex of vertex v[2] is v[1].

Next operation popped out from operation stack is “Q117. We pop a gate ¢10 off
gate stack first. The start vertex of active gate g11 and the end vertex of gate g10 are
the same vertex in the mesh, so we remove one of them out from the mesh. Next, we
create a quad with the previous on-boundary vertex of the start vertex of gate ¢10,
and the three vertices of gate g10 and gate g11. Next, we set active gate to be the
first edge g12 of the quad, as shown in Fig. 4.5(O). For the new created quad and its
four vertices (v[0]. v[1],v[2],v[3]), we can see that v[3] is an inner vertex, so we pop
one vertex v5 out from vertex stack and push it onto inner vertex stack. We claim

that v[3] of the new created quad is v5.

Next operation popped out from operation stack is “Q5”. So we create one “vir-
tual” vertex, create a quad with the “virtual” vertex, the previous on-boundary vertex
of the start vertex of gate gl12, and the two vertices of gate g12. Next, we set active
gate to be the first edge g13 of the quad, as shown in Fig. 4.5(P). For the new created
quad and its four vertices (v[0], v[1], v[2]. v[3]), we can see that v[2] is an inner vertex,
so we pop one vertex v2 out from vertex stack and push it onto inner vertex stack. We
claim that v[2] of the new created quad is v2, and the previous on-boundary vertex

of vertex v[0] is v[3].

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Now there are no any operations left in the operation stack, and we have identified
all the inner vertices and labeled them. The problem is: how to label the boundary

vertices?

Now the vertex stack only contains boundary vertices which are stored in order.
The two vertices (v1 and v0) at the bottom of the vertex stack is the vertices of the
last active gate during decompression process. So, we sort the boundary vertices in
the reconstructed mesh in counter-clockwise order, set vertex v1 to be the first vertex

of the boundary, and assign coordinates for them one by one, as shown in Fig. 4.5(R).

Now we can say that we complete the decompression process successfullv. The

reconstructed mesh is shown in Fig. 4.5(S).

4.5 Quadmesh of higher genus

Non-genus-0 mesh contains handles, which never come up in simple mesh (genus-0
mesh). A handle is an edge shared by two quads which are visited during compression
process, where the first quad is a S-type quad (split-type quad, which means one of
Q3, Q8, Q9, Q10 or Q11), and the second quad intersects with the first quad at the
second edge, the third edge or the fourth edge of the second quad. Here we suppose

that the first edge of a quad is the active gate when visiting the quad.

Since we don’t know which quad could have a handle binding on it before coni-
pression, so we just created an array “handlesForQuad” which will be used to store
information about handles. The size of the array “handlesForQuad” is the same as
the number of quads in the mesh. Each element of the array “handlesForQuad” is
filled with values when processing a S-type quad (which could be the first quad of
a handle) during compression. The values are used later when processing a second

quad checking if a handle exists between the first quad and the second quad.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

When a S-type quad (which could be the first quad of a handle) was processed
during compression, we put a mark saying that the gate(s) pushed into stack when

processing this quad could possibly create a handle(s).

When a quad (which could be the second quad of a handle) is processed during
compression, we check its adjacent quad on its left/right/opposite(above). If one
visited adjacent quad is S-type, it means that the edge shared by them is a handle.

We push this handle into handle stack.

The handles in the handle stack are ordered according to when the first quad is

processed. Handles are stored in a file called “out_handles.txt”, which looks like this:

First line: “# of handles”

Following lines: “index of the second quad” “interaction position (offset)”

Here “index of the second quad” means the index indicating when the second quad
is visited during compression, “interaction position” means the offset between the
active gate when visiting the second quad and the edge of the second quad where the

second quad interacts with the first quad.

For example, if file “out_handles.txt” contains the following information,

2
444 1
555 2

we can know that the mesh contains two handles (so the mesh is a genus-1 mesh).
For the first handle, the second quad of the handle is the 444th quad visited during
compression, and it interacts with the first quad of the handle at the second edge
(which is the next edge of the active gate when visiting the second quad). For the

second handle, the second quad of the handle is the 555th quad visited during com-

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

pression, and it interacts with the first quad of the handle at the third edge (which

is the opposite edge of the active gate when visiting the second quad).

4.6 Apply encoding schemes for the operation sequence

Currently there two encoding schemes can be used to encode the sequence of operation
code. One is developed by Gotman (24), which is shown in table 4.1. the other one
is developed by Dr. Mukhopadhyay (25), which is shown in table 4.2. Applying the
two encoding schemes for the op-code archives higher compression ratio. Details will

be discussed in Chapter 5.

Similar to Touma-Gotsman’s algorithm which have been discussed in Chapter 3,
we can invites entropy coding, like Huffman to encode the op-code. Table 4.3 shown

the Huffman code scheme for sample mesh “Torus”.

Interaction Type Code
Q1 11000
Q2 11001
Q3 11010
Q4 11011
Q5 010
Q6 11100
Q7 11101
Q8 11110
Q9 11111
Q10 011
Q11 100
Q12 101
Q13 00

Table 4.1: Gotsman'’s encoding scheme for Edgebreaker algorithm

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Encoding Current Quad Next Quad Code Num. of bits
Quad started Q6 Q1-5 11111 5
with Q6-13 Q6-13 11110 5
Q7 Q1-5 11101 5
Q6-13 11100 5
Q8 Q1-5 11011 5
Q6-13 11010 5
Q9 Q1-5 11001 5
Q6-13 11000 5
Q10 Q6-13 10111 5
Q11 Q1-5 10110 5
Q6-13 10101 5
Q12 Q6-13 100 3
Q13 Q6-13 0 1
Quad started Q1 Q1-5 00 2
with Q1-5 Q6-13 01 2
Q2 Q1-5 1100 4
Q6-13 1101 4
Q3 Q15 1010 4
Q6-13 1011 4
Q4 Q1-5 1000 4
Q6-13 1001 4
Q5 Q6-13 111 3

Table 4.2: Dr. Mukhopadhyay’s encoding scheme for Edgebreaker algorithm

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Interaction Type Code
Q1 010
Q4 00
Q6 011
Q7 110
Q12 111
Q13 10

Table 4.3: Huffman coding scheme for sample mesh “Torus”

4.7 Time complexity analysis

For the compression process, since each quad is processed exactly once, and the
processing time for each quad is constant time, and accessing the next quad is constant
time, the overall time complexity of compression process is linear. Same for the

decompression process.

4.8 Summary

In this chapter we discussed how Edgebreaker/Spirale Reversi compression and de-
compression algorithm for triangle meshes is successfully extended for quadrilateral

meshes. Same as Touma-Gotsman’s algorithm, the time complexity is linear.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

2D e
W@ @
“ i
H Y /,/! S X
[t} L) Y

ol ol

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Q9 Q10
[V24
/ i3l o 3]
| w
4 P M)
T 4 * o]
Q11 Q12
107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

1 o \\‘
l “__,“ . ‘.‘ K
| V2 \
] i y
V3 A
ﬁl\ ‘.‘:‘,* ‘ e
\ "\
4 PN \
e [P g V1] -
- Vo N
S L
/ / V[O]
7 /
e g 1,!
‘ /
e

Q13

Figure 4.2: Compression operations

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Mesh decompressed so far

IR
. Y
ey
A
o
Y
e A —
- 7 T ’ I
S y
'__:('/, 0
e by ‘
S 1 |
A IRy %
3 §
\.\\ | e N |
H \
[\ A
\.\.\ |
S
.
4
.
- "/ *x
e -
g
- //
l')/r
S -
e kY
< Sy \
- PPl R 3
o R 3
- L \
LY 3
% §
V4 e
) kY
A
o 5
N

Q1
B

Q4

109

,«'/J‘ s‘
Y2 Y
V3 Vo
! R

\.\ 1 \“
} A
[=a Y k) IR

L

~—— -
Y §
R VA Y
T
Y B 3\
! iifv{/‘/[ﬂ\ \
V[O]
V[3] \
L e
V]
VO]
//), e, -/_/_',/“’"“ A,
\}/[3] "‘: R .
\).'x ,,»»’j!'}"\\ ‘l\,‘
\“ AT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI
2,
T V3
/ k\z\ Q6 p; ; 31 |
5 i ey
< £ L]
~—— Y ——
7 7 Mol
/ / g
Lo A
t ’ M“‘_»‘ o 4 /\N_\‘i\.
. &
YA Y 4 4
< * iy '{:“““*‘%~-\ Q7 e [] : AR A
‘:.\\\ ‘\' ‘\ — y '
— A S -

—

110
Reproduced with permission of the copyright owner.

Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

o \‘\ R Pl ~—— o A
a\ ‘\) 4 :‘;
o X‘\\ \ V2]
3 [8 5
/,/ ’\ 5‘*{“‘ “— —= Q11 Vi3]
s 4 IS
éh\‘“s \/‘ :\
4 H
/ /

R S

3
p
|
o l
N .
P
b
e,
B
. e R e
-
-

'\\.
V[Z] \\,
V[3] Voo
y oo T
_—p
3 .
/ #_____‘/

Figure 4.3: Decompression operations

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Example:
Encode a quadmesh with boundary

Figure 4.4: Compression example (A to S)

Figure 4.4: Compression example (B)

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

v19 viB8
v20 vi6 vi5 vid
v22 v21 vi7 vii vi0 13
v23 v3 v2 v5 v9 vi2
gate stack
I v0 vi v4 v8
1 ;
L
1
V
L operation vé v
\'*L
inner verteﬂ boundary vertex !
Figure 4.4: Compression example (C)
S e T .
| V6 | 7/ vig vig ™
v7 /
vad / \\.\
v8 / '
T ! v20 vig vi5 vid
vi2 i
vi3 i
vi0 { v22 v21 vi7 vit v10 43
1 I
vi4 B
V15 |
18
- j v23 v3 V2 v ve vi2
,-/
y
gate stack /s
“ / vi vl v8
i i:
i ./ ,/
¥ v6 v7) /
~—

lnnervertex boundary vertex |

Figure 4.4: Compression example (D)

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

gate stack

7
i
b
i
iy
1

‘Vl

ez, v1)

v19 vig

vo v20 vig vi5 vid

vi0 v22 v21 vi7 vi1 vi0

13

v23 v3 v2 v5 \%

v12

vi9
vi6
—;2—0‘1 Q5

v21 M vl v4 v8

A E——n
innervertex_]§ boundary vertex |

gate stack | [2g]
i =

[
(I
L
[
1/
i8]
\
/

¥

eivd vl

e(va, vd)

15 | [vo|
]

Figure 4.4: Compression example (E)

v6
v7
v4

vi9 vig

v20 vi6 vi5 vid

vi0 v22 v21 v17 vi1 vi0

vig
— v23 v3 V2 v5 vo

v21{ v0 vi * v4 v8
v22
—
v23
v3

v6 v7

v0

vi

inner verteﬂ% boundary vertex |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.4: Compression example (F)

114

13

vi2

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

vi9 vig

Vo v20 vig vis

vid4

vi0 v22 v21 vi7 vi1

vi0

13

v23 v3 v2 vb

vo

vi2

vig
gate stack | [0] Q5 Q11w

/ 21 v0 vi va
P v,

y v

1

3 .I
‘1'
i
v6 v7

&3, w4} v2

s

| mnerverteﬂ boundary vertex

Figure 4.4: Compression example (G)

R —

12 vi9 vi8

v v20 vig vi5

vi0 v22 v21 vi7 vii

vi4

vio

v23 3
Vo V. v2 v5 *

vig
gate stack | [0 Q5 Q11 4 Q6

i v21 v0 vi v4

i

b

P v22
i v23| | Q6 Q1

Y v3 6
- w0 Li)peratlon J v7
Cem] e o] (o8] =

A —

inner ver‘teﬂ boundary vertex

Figure 4.4: Compression example (H)

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v8

13

v12

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

gate stack | {20

/

i
{

i
¥
/
i
\

. innerve

v‘ |
&{vi0. vB} v0
efwif, vith vi

vi0 v22

v20

vi9

vig

v16

vi5s vi4

v21

vi7

vig V23

v3

v2

v11 vi0
-4

vi* vl

vi2

=

rteﬂg boundary vertex |

vi6
gate stack | [\20

eivit, vilh

P —

inner ve

Qb

Q1

vi

Q1
v6

v7

Figure 4.4: Compression example (I)

3|

<
Y

£

<<
oo

|

<
-
N

<
=
w

vi0 v22

v20

vig

vi8

vi6

vi5 vi4

v21

vi7

y13

vi5
vig

|

v23

v3

v2

m v10

Q11 Q1
e

vi2

vig

8]

A,
St N

rteﬂ boundary vertex

Q5
v0

Q1

vi

Q6
vd v8

Q1

v7

Figure 4.4: Compression example (J)

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

vé vi9 vi8
v7
v4
v8
—vg“ v20 vi6 vis vig
vi2 (
vi3 < Q6
vi0 v22 v21 vi7 v11* vi0 13
vid4
I
vig Q11 Q1
18
v v23 v3 v2 v5 vo vi2
vig
vi6
gate stack | [4201 as Q5 Qn Q6
P v21| | o1 v0 vi v4 w8
[—
| ;’ v22| |at1
\ v23| | Q6 Q1
1 v3 | lat| -
L= v6 v7
v | [o11 ,,‘_’_E?lil‘i[lj
et vis || v2 || vt ||Q5] =
_inner vertex || boundary vertex |
Figure 4.4: Compression example (K)
vig vi8
v20 vi6 & vi5 vi4
I Q11 g Q6
v22 v21 v17 vii v10 13
Q11 Q1
v23 v3 v2 v5 vl vi2
gate stack Q5 Q11 Q6
3] i v0 vi v4 v8
i
\/ Q1
i v6 v7
etvig vig) L}ﬁer ation
al7, vy -
. inner verteﬂé undary vertex |

Figure 4.4: Compression example (L)

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

ve vi9 vig
v7
va Q1
v8
Vs | v20 vi6 4, vis vi4
vi2
vi3 - Q11 Qb6
vi0 v22 v21 vi7 vii vi0 13
vid
vis Q11 Q1
vig8
— 23
wiol (o1 V. v3 v2 v5 v9 vi2
vig| |Q11
gate stack | [v20 o8 Q5 Q11 Q6
i / v21 Q1 v0 vi v4 v8
L | &7
| /'} v22| |Qtt
i v23| | Q8 Q1
4 v3 o v v7
vo | o1} LT
v (o8] =
| inner vertex—“ boundary vertex E
Figure 4.4: Compression example (M)
v6 v19 vig
v7
4
| V4 | a1
v20 vig vi5 vid4
Q6 - Q11 Q6
v22 v21 vi7 vi1 v10 13
I Q11 Q1
| Q6 | v23 3 5 v
o v v2 v vi2
an
gate stack a6 Q5 Q11 Q6
]‘i i Q1 v0 vi v4 v8
/ ot
EJ ar
¥ a1 v6 v7
o111
[o5]

T

‘ AN .
innerverteﬂ§ boundary vertex

Figure 4.4: Compression example (N)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

vé 19 vig
v7
vd al
v8
vo v20 vi6 vis vi4
vi2
vi3 Q6 Q1 Q6
vi0 v22 v21 vi7 vii v10 13
vi4 *
vis| | Q7
—\/1_; T o f3 Q7 -)2 5Q11 901 ;
e —-‘01 v V, \'% Vi v
vig| [Q11
gate stack | [v20| e Q5 Q11 Q6
! / v21| | ot vo vi v4 v8
i/ Qi1
\f Qs Q1
i o]
v6 v7
e(vd, v21} ?_peﬂ[a_‘lgﬂm
epit7, \1.,}
inner verteﬂ boundary vertex
Figure 4.4: Compression example (O)
,E vig vig
v7
v4
—— Q1
v8
o v20 vi6 vi5 vi4
vi2
vi3 Qb6 Q11 Q6
v v v21 vi7 vii vi0
10 22 13
vid) | Q1
vis| | Q7 | Ql 4 Q7 » a1 | at
vi8) Q8| v23 3 2 5 9 1
wol a1 V. v v v vi2
vie| [Q11
gate stack | [y20] o6 Qs Q11 Q6
i Y v0 vi v V8
Loy
Y Qi
¥ vb v7

inner verteﬂ boundary vertex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.4: Compression example (P)

119

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

vé vi9 vig

i Q1
v20 vié vis vi4

vi3 Qb Q11 Q6
v22 v21 vi7 vii vi0 13

Q1 Q7 -+ Q1 Qt1 Q1
v23 v3 v2 v5 vo v12

Q5 Q11 Q6

gate stack | | 2]

/

Q1

: innervertex—‘i boundary vertex

Figure 4.4: Compression example (Q)

-~ e

v6 out_operation.txt out_vertex.txt
| v7 | 1 4 ¥ofquadsioperalions 2~ of vertices
v4 95 % 4% comprested W Lo
v8 at aen 0w
| vo | 58 - : 2. abpveinnner veriax
vi2 au ’ L % below: boundary vertex
vi3 o . W .
vi0 & ® o w
vid | ot | o o .
vis| | Q7 % e vz
vig| | Q6 o i 13
vig| | Q1 a Vg
vie! lo11] e lnek compressed :ﬁ
v20| | Q6 e
v21, | Q1 Wy
v22| Q11 e
20
v23 ——g? w21
V3 ..
— = ;)
vi | |05 |~ Ho v
T e W {where compression siads
i "“‘EE o jand decompression eods
|nnerveneﬂ; boundary vertex | o

Figure 4.4: Compression example (R)

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

torus.ply (partly) out_operation. txt out_code.bin
1z 11
4013z + Q15 + B =
43542 Q12
40451 Q12
4171165 o
439115 o4
43178 Qs
47610 11 1z
4101198 %6
46897 %
45602 o
482410 a1

e 440610

>

%

&

3

Figure 4.4: Compression example (S)

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

How to decode using Spirale
Reversi algorithm?

Figure 4.5: Decompression example (A to S)

vi7
vi1 out_operation.txt out_vertex.txt
5 - i
v 13 %= Zoiouadsioperations 2%+ & of vertices
v2 o flcompressed o W
v6 e S i ¥t
v7 o L w5
16 ' . : 5
w s -
v8 9 _ oy
vi2 s | Gt . s
& at L &
vi3 Q7 - : - s
v10| I og o . .
vid| [a1 ot : | 70
vi5| (11l G- dast eompressed i
5
gate stack | [vi8| [og :ﬁ
‘l .!! vi9 [e}] vi9.
'§ H vi6| a1 5
f ——
11;’ v20 16_ g:]
i v21 Q1 - -
v22| (g1 "yoi)eratlon -
v 4 jwhere compression sterts
—— — A ot decompression ends
inner vertex | ¥0 o »
""""""""""""""""""""" vi

Figure 4.5: Decompression example (B)

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

|v17]

vl

v5

v2

v6

v7

v4

e

N

vi2 F

vi3| (a7

vi0 F

vig F

V1] o]
gate stack | V18| [gg |
T el [ar
b vis | [on]
’1”:‘ v20 o6 |
y v21| Mo

v22| o11] ’opgration

|

|
. inner vertex }@
vi

Figure 4.5: Decompression example (C)

vi7
vi1

giQ1

gate stack

[
(]
o
[
L
i
w

¥

. inner vertex

Figure 4.5: Decompression example (D)

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

vi7
vit
1%
v2
v6
v7
¥4
v8
|vo |
vi2 !
vi3| Mao] :
—— | Q7 | Qg2 giQ1
vi0 Qs = H
vi4 o1 M
V5] [an

gate stack | [v18| | og

Vi !i vi9 Q1

v V18] T~ar]

¢ Y121 lan

¥ v20| ae

V M Q1 | o
v22| fo91] LoperatlorlJ

e e fos] =
e | V3
¢ inner vertex

vi

Figure 4.5: Decompression example (E)

v17
V11|
s |
V2 |
v
v7
w4
i
v9
vi2 =
vi3 g3
E o6 Q1 Q7 Q1
vi4 'F
vi5 W
gate stack | |v18| qg]
V) s o]
' / v16 Qi1
iwi v20 E'
V A =Y
v22| (1] L‘operation J

! inner vertex | ¥0

Figure 4.5: Decompression example (F)

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Yy Q1 Q7 Q1

gate stack | |v18
v1g

i i
i

Q1

(o11]

(s |

/ vi6 %
|Q11]

| Q6

i
L
\1\ /

i]
22| [g77| | operation |

— |

| inner vertex

| V8 | Qg4
vo 69:;

s Q1 Q7 Q1

Q
gate stack | [vi8
L V19! a7
Q

1
Q

[Q
1

Q

Q

.
i

L
[
if

221 511 operation
v22| fo1y L P .m..mj

! inner vertex

b

vi6
v20
v21

1
6
1

1
6
1
5

vi

Figure 4.5: Decompression example (H)

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

v2
v | Q1

Q1 Q7 Q1

gate stack | [v18| [g

L V1 [
v V18| fo11
1”5’ v20 Q6
V v21 [0 T T e ———

vi7] V23] o5 | =
[l

inner vertex

E vi

Figure 4.5: Decompression example (I)

Q1

Q11 Qe
vi7 97

Q1

gate stack | [v18)

i 7
[
[
L
L
[}
f

¥
L 7]

. inner vertex ?,0

Figure 4.5: Decompression example (J)

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Q1
Q11 Q6
vz | 97

Qi FSQ,]

-

23]
N

| inner vertex

Figure 4.5: Decompression example (K)

v5

V.

» Q1

v
v
v8 Q6 Q11 Q6
vi7 v11

2
6
7
4
vo
vi2
13
10
14

|
°

v

Q1 Q7 Q1 Q11 Qi
g8

v

v

vis

gate stack | |vi8

[vig
' { vig

i
L v20| e

L
E Loperation }
—]
r—————/"f"_

v3

. inner vertex EO

vi

Figure 4.5: Decompression example (L)

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

o Q1

ve Qb6 Q11 Q6
17 vii

13
12 Qi Q7 Qi Qi1 | af

vi5 10
gate stack | |v18 Qb
! v19

i
i

!
b
i
¥
;l

vi I R —
[v11] [v22 WOP?IEE@W\J
PN

¢ inner vertex

Figure 4.5: Decompression example (M)

v6 Q1

Q6 Q11 Q6
vi7 vii

Q1 Q7 Q1 Qi Q1

[vi5] g10

gate stack | |v18 Qb6
i vi9

Vo
i
/

Q1

| e |
i/ v21

[zl Lopeten
] fvir] [25) [as|

| inner vertex

vi

Figure 4.5: Decompression example (N)

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Q1

vi3 Q6 Q11 Q6
vio vi7 vi1

(V15 Q1 Q7 Q1 Q11 Q1
v5

vi6]| g12

gate stack | {v20 Q11 Q6

/ v21

/ 23 Q1
y E ..
v0 LOP

m =

eration

o

o)

vi3 Q6 Q1 Q6
viQ vi7 vii

(V18 Q1 Q7 Q1 Q11 Q1
v2 vb

gate stack | [y20 Q5 Q11 Q6
/ 813

[v21 2
b

- v22
L v2 | {v23 Q1

y W 1 va | e
:0 operation J

_operation
Elian
R

| inner vertex

<

<
S~

<

ey

Figure 4.5: Decompression example (P)

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Q1

vi3 Q6 Q1 Q6
vi0 vi7 vii

vis Q1 Q7 Qi Qi1 Q1
] v2 vE

gate stack | [0 Qb5 Q11 Qb6
/ v21 ¥ MV |

L
i v22
\ v23 Q1

i
_VL ,;L";;,Eggra ion
“ D

<
-

I

:' innervertex—‘@ boundary vertex |

Figure 4.5: Decompression example (Q)

e

S e
/ vig vig e

5|
/'

4
v ./ v20 vi6 vis vid

Q6 Q11 Q6
vi0 i v22 v21 vi7 vii vi0 13

1 Q7 a1 Qi Q1

vi8 { w23 3
vio : M v2 v5 vo vi %

gate stack | [vzp] | Q5 | Q11 | a6
f N /
v8 /

[v21 . 7 — | v4

L
[
Y
Ly
\f

e -

innerverteﬂ% boundary vertex : o

Figure 4.5: Decompression example (R)

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Donel!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vig

vig

Q1
v20 vi6 vis vi4
Qb6 Q11 Qb6
v22 v21 vi7 vl vi0
Q1 Q7 Q1 Q11 Q1
v23 v3 v2 v5 v9
Q5 Q11 Q6
vO vi vd v8
o]

131

v6

v7

Figure 4.5: Decompression example (S)

13

v12

Chapter 5

Expertmental Results

In this chapter, the implementation of compression/decompression of quad meshes is

introduced in section 5.1. Then, the experimental results are presented in section 5.2.

5.1 Implementation

Implementation of Touma-Gotsman’s algorithm have been discussed in chapter 3,
while implementation of Edgebreaker/Spirale Reversi algorithm have been discussed
in chapter 4. The source code is developed using Java under JDK 1.5. Since Java is

platform-independent, the programs are portable to other operating systems.

Both implementations works for non-genus-0 mesh, but not both of them works for
mesh with boundary. Our implementation of Touma-Gotsman’s algorithm only works
for quadmesh without boundary, while the implementation of Edgebreaker/Spirale

Reversi algorithm works also for quadmesh with boundary.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

5.2 Experimental results

Term “compression ratio” is used to quantify the reduction in data quantity produced
by the compression algorithms. Here we declare that compression ratios are expressed

as a percentage in the following form

. . _C d Siz
Compression Ratio = —L———g’zgﬁfjf e
Thus a 100MB file that compresses to 20MB would have a compression ratio of

20:100, or 20

For comparison purpose, we only select quadmeshes without boundary for exper-
iments. We tested the programs on 11 different quadmeshes, pictures of which are

shown in table 5.1.

Detailed experimental results are shown in table 5.2, table 5.3, table 5.2 and ta-

ble 5.2. In all these tables, file size are measured by bytes.

For edgebreaker algorithms, we use three different encoding schemes to encode the
sequence of operations: Gotsman’s encoding scheme, Dr. Mukhopadhyay’s encoding
scheme, and Huffman code. In the tables, we use “I”, “II” and “III” to represent the

three encoding schemes separately.
Comparisons about the compression ratios are shown in Fig. 5.1 and Fig. 5.2.

Fig. 5.1 shows the performance of the two mesh compression algorithms comparing
to the compression ratio achieved by using general file compression software GZip.
From the picture we can see that using GZip we can only have a compression ratio
around 23% for large meshes, while using either of the two algorithms, we can get
a compression ratio less than 1% This indicates that for connectivity compression,

general file compression tools (like GZip) should not be considered as first choice.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EXPERIMENTAL RESULTS

Tetrahedron

Torus

16 Face Torus

2HandTorus

Icosahedron

SplitTorus

Ball240

Ball960

Split2HandleRnd

Ball3840

SplitCow

Table 5.1: Sample; ggadmeshes for test

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Sample Name # of | # of | Size of | Size of | Size of | Size of
Vertices | Faces PLY File | Command File| Face File | Connectivity

tetrahedron 14 12 884 o8 149 2

torus 12 12 654 75 141 4

16facetorus 16 16 842 91 201 5

2handtorus 32 34 1510 193 467 13

icosahedron 62 60 3387 250 851 12

SplitTorus 72 72 3249 356 1021 27

ball240 242 240 13428 971 4092 51

ball960 962 960 54530 3864 17594 205

Split2HandRnd | 1312 1314 64086 5502 25415 326

ball3840 3842 3840 235655 15385 82755 805

SplitCow 17414 17412 895506 70704 419592 4127

Table 5.2: File size for Touma-Gotsman'’s algorithm

Sample Name | # of # of | Size of | Size of | Size of Size of Size of Connectivity
Vertices| Faces| PLY Fil¢ OE Filel Op-code Filg Face File| 1 II III
tetrahedron 14 12 884 713 42 149 5 5 3
torus 12 12 654 446 40 141 6 5 4
16facetorus 16 16 842 618 55 201 7 6 5
2handtorus 32 34 1510 1732 120 467 15 13 10
icosahedron 62 60 3387 3836 225 851 24 23 13
SplitTorus 72 72 3249 3309 264 1021 30 26 21
ball240 242 240 | 13428 16397 | 910 4092 96 89 50
ball960 962 960 | 54530 70419 | 3664 17594 382 | 359 | 187
Split2HandRnd 1312 1314 | 64086 81986 | 4974 25415 527 | 488 | 282
ball3840 3842 3840 | 235655 | 308744 | 14693 82755 1524 | 1439| 731
SplitCow 17414 | 17412| 895506 | 1278045 66325 419592 | 6931 6451 3591

Table 5.3: File size for Edgebreaker algorithm

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Sample Name # of # of Size of Connectivity | Compression Ratio of Connectivity
Vertices | Faces I I 111 I I II1
tetrahedron 14 149 5 5 3 3.36% | 3.36% | 2.01%
torus 12 141 6 5 4 4.26% | 3.55% | 2.84%
16facetorus 16 201 7 6 5 3.48% | 2.99% | 2.49%
2handtorus 32 467 15 13 10 3.21% | 2.78% | 2.14%
icosahedron 62 851 24 23 13 2.82% | 2.70% | 1.53%
SplitTorus 72 1021 30 26 21 2.94% | 2.55% | 2.06%
ball240 242 4092 96 89 50 2.35% | 217% | 1.22%
ball960 962 17594 | 382 | 359 | 187 217% | 2.04% | 1.06%
Split2HandRnd | 1312 256415 | 527 | 488 | 282 207% | 1.92% | 1.11%
ball3840 3842 82755 | 1524 | 1439 | 731 1.84% | 1.74% | 0.88%
SplitCow 17414 419592 | 6931 | 6451 | 3591 | 1.65% | 1.54% | 0.86%

Table 5.4: Compression ratios archived by different encoding schemes for Edgebreaker algorithin

Sample Name # of | # of | Size of | Size of | Compression
Vertices| Faces Face File | Compressed File | Ratio
tetrahedron 14 12 149 104 69.80%
torus 12 12 141 104 73.76%
16facetorus 16 16 201 121 60.20%
2handtorus 32 34 467 219 46.90%
icosahedron 62 60 851 312 36.66%
SplitTorus 72 72 1021 372 36.43%
ball240 242 240 4092 1245 30.43%
ball960 962 960 17594 4927 28.00%
Split2HandRnd | 1312 1314 25415 6762 26.61%
ball3840 3842 3840 82755 21260 25.69%
SplitCow 17414 17412 419592 96472 22.99%

Table 5.5: Compression ratios archived by using GZip

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Sample Name Compression Ratio
Edgebreaker Touma- GZip
I II III Gotsman

tetrahedron 3.36% 3.36% 2.01% 1.34% 69.80%
torus 4.26% 3.55% 2.84% 2.84% 73.76%
16facetorus 3.48% 2.99% 2.49% 2.49% 60.20%
2handtorus 3.21% 2.78% 2.14% 2.78% 46.90%
icosahedron 2.82% 2.70% 1.53% 1.41% 36.66%
SplitTorus 2.94% 2.55% 2.06% 2.64% 36.43%
ball240 2.35% 2.17% 1.22% 1.25% 30.43%
ball960 2.17% 2.04% 1.06% 1.17% 28.00%
Split2HandRnd | 2.07% 1.92% 1.11% 1.28% 26.61%
ball3840 1.84% 1.74% 0.88% 0.97% 25.69%
SplitCow 1.65% 1.54% 0.86% 0.98% 22.99%

Table 5.6: Compression ratios archived by different encoding schemes and GZip

Fig. 5.2 lists the performance of different encoding schemes used for the two algo-

rithms. From this figure, we can find three useful conclusion:

e For Edgebreaker compression algorithm, Dr. Mukhopadhyay’s encoding scheme

is better than Gotsman’s encoding scheme.

o If we apply entropy code like Huffman for both algorithms, Edgebreaker algo-
rithm could get a lower, better compression ratio than Touma-Gotsman’s algo-

rithm for large mesh. This is an interesting results.

When compressing large meshes, Edgebreaker algorithms could generate at most
13 different symbols, while Touma-Gotsman’s algorithm could generate much
more than 13 different symbols. Thus, when use Huffman code to encode the

symbols, Edgebreaker algorithm generally could have lower compression ratio.

e For Edgebreaker algorithm, Huffman code have a lower compression ratio than

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

either of the other two encoding schemes.

Running the standard GZip compression utility on a compressed symbol file does
not reduce its size any further. On the contrary, it only increases it. This indi-
cates that our compression algorithms are good, and no additional “general purpose”

compression techniques are applicable.
80 00%
70.00%
60.00%

50.00% —+— Gotsman

—u— fsich
Huffnan] (EB)

+ Huffmanz (TG)
30.00% ——GZp

40.00%

Uompression Ratie

20.00%

10.00%

0.00%

14% 141 201 467 251 1021 4092 17594 25415 BZT55 419592
File Size

Figure 5.1: Comparison of compression ratios archived by different encoding schemes and GZip

5.3 Summary

This Chapter shows the experimental results for both algorithms. From the exper-
imental results, we we get to useful conclusion for quadmesh compression. First,
Edgebreaker archives slightly better compression ratio than Touma-Gotsman’s al-
gorithm. Secondly, Dr. Mukhopadhyay’s encoding scheme results less bitrate than

Gotsman’s encoding scheme.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

4.50%

4.00%

3.50%

3.00%

—— Gotsman

—#—~ Asish
Huffmanl (EB)

------ Huffiman2 (TG)

2.50%

2.00%

1.50%

Compression Ratio

1.00%

0.50%%

0.00%

149 141 201 467 851 1921 4092 17594 25415 E2U55 419592
File Size

Figure 5.2: Comparison of compression ratios archived by different encoding schemes

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

Although triangle meshes are used most frequency and studied extensively, quadri-
lateral meshes are used a lot in scientific applications. Traditionally, the problem of
connectivity compression of quadrilateral meshes is solved by triangulating the mesh
first and then compressing it using triangle compression techniques. This strategy
may introduce additional cost. Some researchers have attempted to compress polygon
meshes without prior triangulation. In this thesis we presented two simple linear time
algorithms for connectivity compression of quadrilateral meshes, which are extended

from algorithms for triangle mesh compression.

6.1 Major contributions

There are four major contributions achieved in this thesis, which have been illustrated

in chapters 3, 4 and 5. The following is a summary of these contributions.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. CONCLUSIONS AND FUTURE WORK

Extend Touma-Gotsman’s algorithm for quadmesh compression

Touma and Gotsman provided an efficient algorithm for triangle mesh compres-

sion (35). In this thesis, we extended the algorithm for quadmesh compression.

Extend Spirale Reversi algorithm for quadmesh decompression

Spirale Reversi decompression for non-triangle meshes has been mentioned by
Kronrod and Gotsman (24), but they never gave a detailed explanation about the
implementation. We presents the first detailed description of the Spirale Reversi
decompression process for quadmeshes. Jing (21) had done some valuable works

in this topic, which gave us some hints for the implementation.

Detailed comparison of the two algorithms for quadmesh compression

The compression algorithms discussed in chapter 3 and chapter 4 create a se-
quence of symbols, which could be encoded further by applying coding schemes.
In this thesis, we encode the sequence using different coding schemes. The ex-
periments confirmed that Dr. Mukhopadhyay’s encoding schemes is better than
Gotsman’s encoding scheme for Edgebreaker algorithm, and Edgebreaker algo-
rithm archives better compression ratio than Touma-Gotsman’s algorithm for

large mesh compression.

Portable data structures for mesh compression

We defined a set of data structures which includes all kinds of geometric objects
for mesh compression. The data structures we defined can also be used in many

other implementations.

6.2 Future work

In chapter 2, we said that Alliez and Desbrun (2) proposed a method to further

improve the performance of Touma and Gotsman’s algorithm. The method could

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. CONCLUSIONS AND FUTURE WORK

also be used for quadmesh compression.

We agree that it will be possible to achieve compression ratios significantly bet-
ter than the algorithms discussed in chapter 3 and chapter 4 for mesh connectivity
compression. On the other hand, we could use two-pass encoding/decoding methods,
in which the connectivity of the quadmesh is first decoded, and then the coordi-
nate decoding is started. The advantage of two-pass methods is, more connectivity

information is available at the time of the coordinate decoding.

For triangle meshes containing mainly vertices of degree six, work by Szymeczak et
al. (31) exploits the reverseness of Spirale Reversi for efficient predictive compression

of the labels. This could be extended for quadmesh decompression.

Experimental results show that Dr. Mukhopadhyay’s encoding scheme always has
a better performance for quadmeshes compressed using Edgebreaker algorithm. The

coding schemes might be improved by using more constants, as discussed by Gumbhold

(17).

When implementing the Edgebreaker/Spirale Reversi algorithm for quadmesh, we
used the OE data structure defined by Jing (21), which contains opposite edges
information for a quad. Meanwhile, we use a different data structure called OHE when
implementing Touma-Gotsman’s algorithm for quadmesh. The OHE data structure
is easier for understanding comparing to the OE data structure. We believe that
both of the algorithms could be implemented using the OHE data structure only,

thus make the implementation more understandable.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] ISO/IEC 14496-2: Coding of Audio-Visual Objects: Visual. Technical report.
2001.

[2] P. Alliez and M. Desbrun. Valence-Driven Connectivity Encoding for 3 D Meshes.
Computer Graphics Forum, 20(3):480-489, 2001.

[3] P. Alliez and C. Gotsman. Recent advances in compression of 3D meshes. Pro-

ceedings of the Symposium on Multiresolution in Geometric Modeling. 3. 2003.

[4] E.M. Arkin, M. Held, J.S.B. Mitchell, and S.S. Skiena. Hamiltonian triangula-
tions for fast rendering. The Visual Computer, 12(9):429-444, 1996.

[5] C. Bajaj, V. Pascucci, and G. Zhuang. Compression and Coding of Large CAD

Models. Technical report, Technical report, University of Texas, 1998.

[6] C.L. Bajaj, V. Pascucci, and G. Zhuang. Single resolution compression of arbi-
trary triangular meshes with properties. Computational Geometry: Theory and

Applications, 14(1-3):167-186, 1999.

[7] R. Carey, G. Bell, and C. Marrin. ISO/IEC 14772-1: 1997 virtual reality modecling
language (VRML). Technical report, The VRML Consortium Incorporated, 1997.

[8] M.M. Chow. Optimized geometry compression for real-time rendering. PhD
thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering

and Computer Science, 1997.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES REFERENCES

[9] M. Deering. Geometry compression. Proceedings of the 22nd annual conference

on Computer graphics and interactive techniques, pages 13-20, 1995.

[10] E. Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge,
2001.

[11] F. Evans, S. Skiena, and A. Varshney. Completing sequential triangulations is
hard. Technical report, Technical report, Department of Computer Science, State

University of New York at Stony Brook, 1996.

[12] F. Evans, S. Skiena, A. Varshney, et al. Optimizing triangle strips for fast ren-
dering. IEEE Visualization, 96:319-326, 1996.

[13] C. Gotsman, S. Gumbhold, and L. Kobbelt. Simplification and compression of 3d
meshes. FEuropean Summer School on Principles of Multiresolution in Geometric

Modelling (PRIMUS), Munich, 2001.

[14] Jonathon L Gross and Jay Yellen. Graph Theory And Its Applications. CRC
Press, 1998.

[15] A. Guéziec et al. Converting Sets of Polygons to Manifold Surfaces by Cutting
and Stitching. IBM TJ Watson Research Center, 1998.

[16] S. Gumhold. Improved cut-border machine for triangle mesh compression. Er-

langen Workshop99 on Vision, Modeling and Visualization, 1999.

[17] S. Gumhold. New bounds on the encoding of planar triangulations. preprint,

2000.

[18] S. Gumhold and W. Strafler. Real time compression of triangle mesh connectivity.
Proceedings of the 25th annual conference on Computer graphics and interactive

techniques, pages 133-140, 1998.

[19] M. Isenburg. Triangle Strip Compression. Computer Graphics Forum, 20(2):91-
101, 2001.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES REFERENCES

[20] M. Isenburg and J. Snoeyink. Spirale Reversi: Reverse decoding of the Edge-
breaker encoding. Computational Geometry, 20(1-2):39-52, 2001.

[21] Q. Jing. Compression and Decompression of Quadrilateral Meshes, 2003.

[22] D.W. Kahn. Topology: An Introduction to the Point-Set and Algebraic Areas.
Dover Publications, 1995.

[23] D. King and J. Rossignac. Guaranteed 3.67 v bit encoding of planar triangle
graphs. 11th Canadian Conference on Computational Geometry, 149, 1999.

[24] B. Kronrod and C. Gotsman. Efficient Coding of Non-Triangular Mesh Connec-
tivity. Graphical Models, 63(4):263-275, 2001.

[25] A. Mukhopadhyay and Q. Jing. Encoding Quadrilateral Meshes. 15th Canadian
Conference on Computational Geometry (2003).

[26] J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes. IEEE

Transactions on Visualization and Computer Graphics, 5(1):47-61, 1999.

[27] J. Rossignac and A. Szymczak. Wrap&Zip decompression of the connectivity of
triangle meshes compressed with Edgebreaker. Computational Geometry, 14(1-
3):119-135, 1999.

[28] M. Schindler. A fast renormalisation for arithmetic coding. In DCC "98: Pro-
ceedings of the Conference on Data Compression, page 572, Washington, DC,
USA, 1998. IEEE Computer Society.

[29] D. Shikhare. State of the Art in Geometry Compression. National Centre for
Software Technology, 2000.

[30] B. SPECKMANN. Easy triangle strips for TIN terrain models. International
Journal of Geographical Information Science, 15(4):379-386. 2001.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES REFERENCES

[31] A. Szymczak, D. King, and J. Rossignac. An Edgebreaker-based efficient com-
pression scheme for regular meshes. Computational Geometry: Theory and Ap-

plications, 20(1-2):53-68, 2001.

[32] G. Taubin. 3D Geometry Compression and Progressive Transmission. Furo-

graphics STAR report, 3, 1999.

[33] G. TAUBIN, W.P. HORN, F. LAZARUS, and J. ROSSIGNAC. Geometry Cod-
ing and VRML. PROCEEDINGS OF THE IEFE, 86(6), 1998.

[34] G. Taubin and J. Rossignac. Geometric compression through topological surgery.

ACM Transactions on Graphics (TOG), 17(2):84-115, 1998.

[35] C. Touma and C. Gotsman. Triangle mesh compression. PROC GRAPHICS
INTERFACE. pp. 26-34. 1998, 1998.

[36] G. Turan. Succinct representation of graphs. DISCRETE APPL. MATH.,
8(3):289-294, 1984.

[37] WT Tutte. A census of planar triangulations. Canad. J. Math, 14(1):21-38,
1962.

[38] X. Xiang, M. Held, and J.S.B. Mitchell. Fast and effective stripification of polyg-
onal surface models. Proceedings of the 1999 symposium on Interactive 3D graph-

1cs, pages 71-78, 1999,

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

Mr. Demin Yin was born in 1977 in Nanjing, Jiangsu, China.

He graduated from Sichuan University in 1999, and later worked for several Internet companies
in China. In year 2003, Mr. Yin immigrated to Canada, and lived in Windsor, Ontario.

In fall 2004, Mr. Yin enrolled as master student at School of Computer Science, University of
Windsor. He studied there for the next two years under Dr. Asish Mukhopadhyay’s supervision.

Personal information
Name: Demin Yin

Email: yin6@uwindsor.ca

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:yin6@uwindsor.ca

	A comparative study of quadmesh compression for Touma-Gotsman and Spirale Reversi schemes.
	Recommended Citation

	tmp.1507664919.pdf.T9a50

