
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2006

A comparative study of quadmesh compression for Touma-A comparative study of quadmesh compression for Touma-

Gotsman and Spirale Reversi schemes. Gotsman and Spirale Reversi schemes.

Demin Yin
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Yin, Demin, "A comparative study of quadmesh compression for Touma-Gotsman and Spirale Reversi
schemes." (2006). Electronic Theses and Dissertations. 7148.
https://scholar.uwindsor.ca/etd/7148

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7148?utm_source=scholar.uwindsor.ca%2Fetd%2F7148&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Comparative Study of Quadmesh Compression
for Touma-Gotsman and Spirale Reversi Schemes

by

D em in Yin

A Thesis
Subm itted to the Faculty of G raduate Studies and Research

through the School of C om puter Science
in P artia l Fulfillment of the Requirem ents for

the Degree of M aster of Science a t the
University of W indsor

Windsor. Ontario, Canada
2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-42339-4
Our file Notre reference
ISBN: 978-0-494-42339-4

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nntemet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© 2006 Demin Yin

All Rights Reserved. No P a rt of this docum ent may be reproduced, stored or o ther

wise retained in a retreival system or tran sm itted in any form, on any m edium by

any m eans w ithout prior w ritten perm ission of th e author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

A 3D mesh is m ade up of polygonal faces. A com plete description of such a mesh

is provided by its connectivity (adjacencies of polygons) and geom etry (vertex coor

dinates). For m ost practical work, the meshes used are either triangu lar (all face's

are triangles) or quadrilateral (all faces are quadrilaterals) meshes (quadmeshos. for

short). Recently, there has been much work on compressing th e connectivity inform a

tion perta in ing to a mesh. For quadm esh compression, existing algorithm s triangu late

th e quadm esh first, and then apply triangle mesh compression techniques as previ

ous researches on mesh compression were m ostly focused on triangle meshes. To

avoid the additional triangulation step, we propose two direct techniques to compress

and decom press th e connectivity of quadm eshes in linear tim e. In this thesis, we

will describe how' to extend two well-known triangle, mesh compression algorithm s to

quadm esh compression, and how to apply encoding schemes for them . A com parison

of the two algorithm s for quadm esh com pression is also given.

Keyword: quadm esh, quadrilateral mesh, mesh compression, Edgebreaker. Spirale

Reversi, connectivity encoding, linear encoding

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my Mom. Dad

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to express my gratitude to my supervisor Dr. Asisli M ukhopadhyay. Dr.

M ukhopadhyav gave me many invaluable helps during the last 3 years. W ithout Dr.

M ukhopadhyay’s supervision, th is thesis would not have been possible.

I would like to than k Dr. Jagdish P a thak and Dr. A runita Jaekel for having the

patience to read drafts and for their a tten tive com m ents, suggestions and relevant

feedback.

I would like to th an k com m ittee chair Dr. Subir Bandyopadhyay for his interest

and time.

I would like to thank some of my friends in W indsor and Canada. T hank Jam es,

Angela, B en/M arlene, Lester, . . . , who gave me m any valuable helps in the last 3

years.

I would like to th an k the faculties and staffs in C om puter Science. You gave me

m any kindly helps, and I really appreciate these helps.

Finally, I would like to thank the Government of C anada and the Canadians.

T hank the Governm ent of C anada provided a chance for me to im m igrate to Canada,

accepted my im m igration application and provided supports for my study in Canada;

T hank the Canadians m ade such a great, such a peaceful, such a friendly country so

th a t I could enjoy my life here.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract iv

Dedication v

Acknowledgem ents vi

Contents vii

List o f Figures xi

List of Tables xiv

1 Introduction 1

1.1 Mesh com pression ... 1

1.2 Objectives of th e t h e s i s .. 3

1.3 Overview of the thesis .. 3

2 Literature review about connectivity com pression 4

v ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background and basic c o n c e p t s .. 5

2.1.1 Geom etric relationship of triangu lar mesh 7

2.1.2 Geom etric relationship of quadrilateral m e s h 7

2.2 Connectivity compression .. 8

2.2.1 Indexed face s e t .. 9

2.2.2 Triangle s t r i p ... 9

2.2.3 Spanning t r e e ... 12

2.2.4 Layered d e c o m p o s itio n .. 14

2.2.5 Valence-driven a p p r o a c h .. 17

2.2.6 Triangle c o n q u e s t .. 18

2.3 Sum m ary .. 25

3 Quadmesh com pression and decom pression using Toum a-Gotsman

algorithm 27

3.1 D efin itio n s .. 28

3.2 Definition of opposite half edge (OHE) d a ta s t r u c t u r e 28

3.3 A lgorithm d esc rip tio n ... 30

3.3.1 Compression p r o c e s s ... 39

3.3.2 Decompression p r o c e s s .. 44

3.4 Illustrate the a p p r o a c h ... 50

3.4.1 Compression of a to rus m e s h ... 51

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.2 Decompression of a to rus mesh ... 55

3.5 Handling b o u n d a r ie s ... 60

3.6 Entropy coding of the com m and sequence ... 60

3.7 Tim e com plexity a n a ly s is .. 61

3.8 Sum m ary ... 61

4 Linear tim e quadmesh decom pression using Spirale Reversi 83

4.1 Definition of opposite edge (OE) d a ta s t r u c t u r e 84

4.2 Edgebreaker compression a lg o r i th m ... 84

4.3 Spirale Reversi decom pression a l g o r i t h m ... 88

4.4 Illustrate the a p p r o a c h .. 93

4.4.1 Compress a mesh w ith boundary ... 93

4.4.2 Decompress a mesh w ith b o u n d a r y .. 97

4.5 Q uadm esh of higher g e n u s ... 101

4.6 A pply encoding schemes for the operation s e q u e n c e 103

4.7 Tim e com plexity a n a ly s is .. 105

4.8 Sum m ary .. 105

5 Experim ental R esults 132

5.1 Im p le m e n ta tio n .. 132

5.2 Experim ental r e s u l t s ... 133

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Sum m ary .. 138

6 Conclusions and Future Work 140

6.1 M ajor co n trib u tio n s ... 140

6.2 Future w o r k ... 141

References 143

VITA AUCTORIS 147

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Exam ples of (A) an orientable manifold mesh, (B) a 11011-orient able

non-manifold mesh, and (C) an orientable non-m anifold m esh............... b

2.2 (A) The sphere, (B) th e torus, and (C) th e eight-shaped m esh............... G

2.3 The indexed face set representation of a mesh: (A) a mesh example

and (B) its face array.. 10

2.4 (A) The triangle strip , (B) the triangle fan, and (C) the generalized

triangle s tr ip ... 11

2.5 (A) A set of boundary edges, (B) triangle fans for the first strip , and

(C) triangle fans for the second strip , where thick arrows show selected

boundary edges and th in arrows show the triangle fans associated with

each inner boundary vertex .. 12

2.6 (A) An octahedron mesh, (B) its vertex spanning tree, and (C) the cut

and flattened mesh w ith its triangle spanning tree shown by dashed

lines... 13

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.7 Fig. 7. Illustration of (A) th e layered vertex s truc tu re and th e branch

ing point depicted by a black dot, (B) a triangle strip, (C) bubble

triangles, and (D) a cross-contour triangle fan, where contours are de

picted w ith solid lines and o ther edges w ith dashed lines.......................... 15

2.8 A mesh connectivity encoding exam ple by Toum a and G otsm an (35),

where the active list is shown w ith thick lines, the focus vertex w ith

the black dot, and th e dum m y vertex w ith the gray d o t........................... 19

2.9 Illustration of (A) edge loops and (B) gates and in itial edge loops for

a mesh w ithout boundary, and (C) gates and initial edge loops for a

mesh w ith boundary, where thick lines depict edge loops, and g denotes

th e ga te .. 22

2.10 (A) Five op-codes C, L, R, E. and S, where the gate g is m arked w ith an

arrow, and (B) an exam ple of th e encoding process in the edgebreaker

algorithm where the arrows and the num bers show th e traversal order

and different filling p a tte rn s are used to represent different- op-codes. . 24

3.1 OHE data s t ru c tu re ... 29

3.2 Compression exam ple (A to U) .. 62

3.3 Decompression exam ple (A to T) .. 73

4.1 OE d a ta s t ru c tu re .. 85

4.2 Compression operations .. 108

4.3 Decompression o p e r a t i o n s .. I l l

4.4 Compression exam ple (A to S) ... 112

4.5 Decompression exam ple (A to S) .. 122

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Com parison of compression ratios archived by different encoding schemes

and GZip ... 138

5.2 Com parison of com pression ratios archived by different encoding schemes 139

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 The ou tpu t of each step in Fig. 2 . 8 ... 20

3.1 Free vertices found in different c a se s ... 36

3.2 Effects on size of current active l i s t .. 37

3.3 Num ber of com m ands created in each c a s e .. 38

3.4 Huffman coding scheme for sample mesh “Torus” 61

4.1 G otsm an’s encoding scheme for Edgebreaker a l g o r i t h m 103

4.2 Dr. M ukhopadhyay’s encoding scheme for Edgebreaker algorithm . . 104

4.3 Huffman coding scheme for sample mesh “Torus” 105

5.1 Sample quadm eshes for t e s t .. 134

5.2 File size for T oum a-G otsm an’s a lg o r i th m .. 135

5.3 File size for Edgebreaker a l g o r i t h m .. 135

5.4 Compression ratios archived by different encoding schemes for Edge

breaker a lg o r i th m 136

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Compression ratios archived by using G Z ip .. 136

5.6 Compression ratios archived by different encoding schemes and GZip 137

XV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 M esh com pression

G raphics d a ta are more and more widely used in various applications, including video

gaming, engineering design, architectural walk through, v irtual reality, e-commerce,

and scientific visualization. Among various representation tools, triangular meshes

provide an effective m eans to represent 3D mesh models. Typically, connectivity, ge

ometry, and property d a ta are used to represent a 3D polygonal mesh. Connectivity

d a ta describe the adjacency relationship between vertices; geom etry d a ta specify ver

tex locations; and property d a ta specify several a ttrib u tes such as th e norm al vector,

m aterial reflectance, and tex tu re coordinates. We concentrate on th e compression of

connectivity in this thesis.

To achieve a high level of realism, com plex models are required, and they are

obtained from various sources such as m odeling software and 3D scanning. They

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

usually dem and a huge am ount of storage space a n d /o r transm ission bandw idth in

th e raw d a ta form at. As the num ber and the com plexity of existing 3D meshes

increase explosively, higher resource dem ands are placed on storage space, com puting

power, and network bandw idth . Among these resources, th e network bandw id th is

the m ost severe bottleneck in netw ork-based graphic applications th a t dem and real

tim e interactivity. Thus, it is essential to compress graphics d a ta efficiently. This

research area has received a lot of a tten tion since early 1990s, and there has been a

significant am ount of progress along th is direction over th e last decade.

Early research on 3D mesh com pression focused 011 single-rate com pression tech

niques to save the bandw idth between CPU and the graphics card. In a single-rate 3D

mesh compression algorithm , all connectivity and geom etry d a ta are com pressed and

decom pressed as a whole. The graphics card cannot render the original mesh until

the entire bit stream has been wholly received. Later, w ith th e popularity of the In

te rne t, th e progressive compression and transm ission has been intensively researched.

W hen progressively com pressed and transm itted , a 3D mesh can be reconstructed

continuously from coarse to fine levels of detail (LODs) by the decoder while the bit

stream is being received. Moreover, progressive compression can enhance th e in ter

action capability, since th e transm ission can be stopped whenever an user finds out

th a t the mesh being downloaded is not w hat he/she w ants or the resolution is already

good enough for h is /he r purposes.

Three-dim ensional mesh com pression is so im portan t th a t it has been incorporated

into several in ternational standards. VRM L (7) established a s tandard for tran sm it

ting 3D models across th e Internet. Originally, a 3D mesh was represented in A SCII

form at w ithout compression in VRML. For efficient transm ission, Taubin et al. de

veloped a compressed binary form at for VRM L (33) based on the topological surgery

algorithm (34), which easily achieved a compression ra tio of 50:1 over th e VRM L

A SCII form at. M PEG -4 (1), which is an IS O /IE C m ultim edia s tandard developed

by the Moving P icture E xperts G roup for digital television, interactive graphics,

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

and interactive m ultim edia applications, also includes three-dim ensional mesh coding

(3DMC) algorithm to encode graphics data . The 3DMC algorithm is also based on

the topological surgery algorithm , which is basically a single-rate coder for manifold

triangu lar meshes. Furtherm ore, M PEG -4 3DMC incorporates progressive 3D mesh

compression, non-manifold 3D mesh encoding, error resiliency, and quality scalability

as optional modes.

1.2 O b jectives o f th e th esis

For quadm esh compression, existing single-rate compression algorithm s triangulate

the quadm esh first, and then apply triangle mesh compression techniques as previous

researches on mesh com pression were m ostly focused on triangle meshes. To avoid

th e additional triangulation step, we propose two direct techniques to compress and

decom press the connectivity of quadm eshes in linear tim e.

A com parison of the experim ental results of two algorithm s will also be discussed.

1.3 O verview o f th e th esis

The rest of th is thesis is organized as follows. C hapter 2 provides a review of tin ' I jack-

ground and introduces some definitions necessary to understand 3D mesh compression

techniques for connectivity. C hapter 3 shows how to extend Toum a-G otsm an's al

gorithm for quadm esh, C hapter 4 shows how to extend Edgebreaker/Spirale Reversi

algorithm for quadm esh. C hapter 5 discusses the results of experim ents. Finally,

concluding rem arks are given in C hapter 6.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Literature review about connectivity

com pression

In th is chapter, we in tend to review various connectivity com pression technologies

w ith the m ain focus on triangular mesh compression. It is worthwhile to point out

th a t there were several survey papers contains th is subject. Rossignac (26) briefly

sum m arized prior schemes on vertex d a ta com pression and connectivity d a ta com

pression. Taubin (32) gave a survey on various mesh compression schemes. A lthough

th e two schemes in th e M PEG -4 s tandard (i.e., topological surgery and progressive

forest split) were described in detail in (32), th e review of o ther schemes was relatively

sketchy. Shikhare (29) classified and described mesh compression schemes. However,

th is work did not trea t progressive schemes w ith enough depth. G otsm an et al. (13)

gave a tu to ria l on techniques for mesh simplification, connectivity compression, and

geom etry compression. This tu to ria l gave a detailed trea tm en t on mesh simplifica

tion and geom etry compression. However, th e review on connectivity coding focused

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

m ostly on single-rate region-growing schemes. Recently, Alliez and G otsm an (3) sur

veyed techniques for bo th single-rate and progressive compression of 3D meshes. This

survey gave a high-level algorithm classification, bu t focused only on sta tic polygonal

3D mesh compression.

2.1 B ackground and basic con cep ts

Several definitions and concepts needed to understand 3D mesh compression algo

rithm s are presented in th is section. More rigorous definitions can be found in

(10, 14, 22).

We say th a t two objects A and B are homeomorphic, if A can be stretched or

bent w ithout tearing to B. A 3D mesh is called a manifold if its every point has

a neighborhood homeomorphic to an open disk or a half disk. In a manifold, the

boundary consists of the points th a t have no neighborhoods hom eom orphic to an open

disk bu t have neighborhoods hom eom orphic to a half disk. In 3D mesh compression,

a manifold w ith boundary is often pre-converted into a manifold w ithout boundary

by adding a dum m y vertex to each boundary loop and then connecting the dum m y

vertex to every vertex on the boundary loop. Fig. 2.1 A is a manifold mesh, while

Figs. IB and C are non-m anifold meshes. Fig. 2 .IB is non-m anifold since each point

on the edge (u1? v2) has no neighborhood th a t is hom eom orphic to an open disk or a

half disk. Similarly, the vertex V\ in Fig. 2.1C has no neighborhood hom eom orphic

to a open disk or a half disk.

The orientation of a polygon can be specified by the ordering of its bounding ver

tices. The orientations of two adjacent polygons are called com patible if they im pose

opposite directions on their common edges. A 3D mesh is said to be orientable if

there exists an arrangem ent of polygon orientations such th a t each pair of adjacent

polygons are com patible. Figs. 2.1 A and C are orientable w ith the com patible orienta-

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

tions m arked by arrows. In contrast, Fig. 2 .IB is not orientable, since th ree polygons

share the same edge Note th a t, after we make polygon B and C com patible,

it is im possible to find an orientation of polygon A such th a t A is com patible w ith

bo th B and C.

Figure 2.1: Examples of (A) an orientable manifold mesh, (B) a non-orientable non-manifold mesh,

and (C) an orientable non-manifold mesh.

Figure 2.2: (A) The sphere, (B) the torus, and (C) the eight-shaped mesh.

The genus of a connected orientable manifold w ithout boundary is defined as the

num ber of handles. For exam ple, there is no handle in a sphere, one handle in a

torus, and two handles in an eight-shaped surface as shown in Fig. 2.2. Thus, their

genera are 0, 1, and 2, respectively. A mesh homeom orphic to a sphere is called a

simple mesh. For a connected orientable manifold w ithout boundary, E u ler’s formula

is given by

v - e + f = 2 - 2 g (2.1)

where v, e,and / are, respectively, the num ber of vertices, edges, and faces in the

manifold, and g is the genus of th e manifold.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

2.1.1 Geom etric relationship of triangular mesh

Suppose th a t a triangu lar manifold mesh contains a sufficiently large num ber of edges

and triangles, and th a t th e ra tio of the num ber of boundary edges to the num ber of

non-boundary edges is negligible. Then, we can approxim ate th e num ber of edges by

since an edge is shared by two triangles in general. Substitu ting equation 2.2 into

equation 2.1, we have / / 2 + 2 — 2 g. Since / / 2 is much larger th a n 2 — 2 g, we get

In o ther words, a typical triangu lar mesh has twice as m any triangles as vertices.

Also, from equation 2.2 and equation 2.3, we have an approxim ate relation

The degree (or valence) of a vertex is the num ber of edges incident on th a t vertex.

It can be shown th a t the sum of degrees is twice the num ber of edges (14). Thus, we

have

Thus, in a typical triangu lar mesh, the average vertex degree is 6.

2.1.2 Geom etric relationship of quadrilateral mesh

Again, suppose th a t a quadrila teral manifold mesh contains a sufficiently large num ber

of edges and quadrilaterals, and th a t the ra tio of the num ber of boundary edges to the

num ber of non-boundary edges is negligible. Then, we can approxim ate the num ber

of edges by

e ~ 3 / / 2 (2 .2)

f - / / 2 (2.3)

(2.4)

(2.5)

(2 .6)

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

since an edge is shared by two quadrilaterals in general. S ubstitu ting equation 2.6

into equation 2.1, we have v ~ / + 2 — 2g. Since / is much larger th a n 2 — 2g, we get

In o ther words, a typical quadrilateral mesh has as m any quadrilaterals as vertices.

Also, from equation 2.6 and equation 2.7, we have an approxim ate relation

Thus, in a typical quadrila teral mesh, th e average vertex degree is 4.

W hen reporting the com pression perform ance, some papers employ the m easure

of b its per quad (bpq) while others use b its per vertex (bpv). For consistency, we

adopt the bpv measure exclusively, and convert the bpq m etric to th e bpv m etric by

assum ing th a t a mesh has as m any quadrilaterals as vertices.

2.2 C o n n ectiv ity com pression

Single-rate compression is a typical mesh compression algorithm encodes connectivity

data and geom etry d a ta separately. M ost early work focused on the connectivity

coding. Then, the coding order of geom etry d a ta is determ ined by the underlying

connectivity coding. In th is thesis, we focus on connectivity data compression only.

We classify existing single-rate connectivity compression algorithm s in to six classes:

the indexed face set, the triangle strip, the spanning tree, th e layered decom position,

the valence-driven approach, and the triangle conquest. T hey are described in detail

below.

v ~ / (2.7)

(2 .8)

It can be shown th a t the sum of degrees is tw ice the num ber of edges (14). Thus, we

have

y degree = 2e ~ Av (2.9)

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

2.2.1 Indexed face set

In the VRM L ASCII form at (7), a triangu lar mesh is represented w ith an indexed

face set th a t consists of a coordinate array and a face array. The coordinate array

lists the coordinates of all vertices, and th e face array lists each face by indexing its

three vertices in the coordinate array. For instance. Fig. 2.3 shows a mesh and its

face array.

If there are v vertices in a mesh, th e index of each vertex requires log-vv bits.

Therefore, a triangular face needs 3log2v b its for its connectivity inform ation. Since

there are about twice triangles as m any as vertices in a typical triangu lar mesh, the

connectivity inform ation costs abou t Qlog2V bpv in the indexed face set m ethod. This

m ethod provides a straightforw ard way for th e triangular mesh representation. There

is actually no compression involved in th is m ethod, bu t we still list it here to provide

a basis of com parison for the following compression schemes.

In th is m ethod, each vertex is indexed several tim es by all its adjacent triangles.

R epeated vertex references degrade the efficiency of connectivity coding. In other

words, a good connectivity coding scheme should reduce the num ber of repeated

vertex references. This observation leads to the triangle strip m ethod.

2.2.2 Triangle strip

The triangle strip m ethod a ttem p ts to divide a 3D mesh into long strips of triangles,

and then encode these strips. The prim ary purpose of th is m ethod is to reduce the

am ount of d a ta transm ission between CPU and the graphic card, since triangle strips

are well supported by m ost graphic cards. A lthough th is scheme dem ands less storage

space and transm ission bandw idth th a n the indexed face set representation, it is still

not very efficient for the compression purpose.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

V ,0

V,2V

Index Face
0 (0,1,4)
1 (1,3,4)
2 (1,2,3)

Figure 2.3: The indexed face set representation of a mesh: (A) a mesh example and (B) its face

array.

Fig. 2.4A shows a triangle strip, where each vertex is com bined w ith the previous

two vertices in a vertex sequence to form a new triangle. Fig. 2.4B shows a triangle

fan, where each vertex after the first two forms a new triangle w ith the previous vertex

and the first vertex. Fig. 2.4C shows a generalized triangle strip th a t is a m ixture of

triangle strips and triangle fans. Note th a t, in a generalized triangle strip, a new tr i

angle is introduced by each vertex after the first two in the vertex sequence. However,

in an indexed face set, a new triangle is introduced by three vertices. Therefore, the

generalized triangle strip provides a more com pact representation th a n the indexed

face set, especially when the strip length is long. In a ra th e r long generalized triangle

strip, the ra tio of the num ber of triangles to the num ber of vertices is very close1 to 1.

m eaning th a t a triangle can be represented by almost exactly 1 vertex index.

However, since there are abou t twice as m any triangles as vertices in a typical mesh,

some vertex indices should be repeated in the generalized triangle strip represent at ion

of the mesh, which indicates a waste of storage. To alleviate th is problem, several

schemes have been developed, where a vertex buffer is utilized to store the indices of

recently traversed vertices.

Deering (9) first introduced the concept of the generalized triangu lar mesh. A

generalized triangular mesh is formed by combining generalized triangle strips w ith

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

VV

Figure 2.4: (A) The triangle strip, (B) the triangle fan, and (C) the generalized triangle strip.

a vertex buffer. He used a first-in-first-out (FIFO) vertex buffer to store the indices

of up to 16 recently visited vertices. If a vertex is saved in the vertex buffer, it

can be represented w ith the buffer index th a t requires a less num ber of bits th a n

th e global vertex index. Assum ing th a t each vertex is reused by the buffer index

only once, Taubin and Rossignac (34) showed th a t th e generalized triangu lar mesh

representation requires approxim ately 11 bpv to encode the connectivity d a ta for

large meshes. Deering, however, did not propose a m ethod to decom pose a mesh into

triangle strips.

Based on D eering's work, Chow (8) proposed a mesh com pression scheme optim ized

for real-tim e rendering. He proposed a mesh decom position m ethod, illustrated in

Fig. 2.5. F irst, it finds a set of boundary edges. Then, it finds a fan of triangles

around each vertex incident on two consecutive boundary edges. These triangle fans

are combined to form th e first generalized triangle strip . The triangles in th is strip

are m arked as discovered, and a new set of boundary edges is generated to separate

discovered triangles from undiscovered triangles. The next generalized triangle strip

is similarly formed from the new set of boundary edges. W ith the vertex buffer, the

vertices in th e previous generalized triangle strip can be reused in the next one. This

process continues until all triangles in a mesh are traversed.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

B V ,

V„

3

V, V, V,0 4 6

Figure 2.5: (A) A set of boundary edges, (B) triangle fans for the first strip, and (C) triangle fans

for the second strip, where thick arrows show selected boundary edges and thin arrows show the

triangle fans associated with each inner boundary vertex.

T he triangle strip representation can be applied to a triangular mesh of arb itrary

topology. However, it is effective only if th e triangle mesh is decom posed into long

triangle strips. It is a challenging com putational geom etry problem to obtain an

optim al triangle strip decom position (4, 11). Several heuristics have been proposed

to obtain suboptim al decom positions a t a m oderate com putational cost (12, 30, 38).

2.2.3 Spanning tree

T uran (36) observed th a t the connectivity of a p lanar graph can be encoded w ith

a constan t num ber of bpv using two spanning trees: a vertex spanning tree and

a triangle spanning tree. Based on th is observation, Taubin and Rossignac (34)

presented a topological surgery approach to encode mesh connectivity. The basic

idea is to cut a given mesh along a selected set of cut edges to make a p lanar polygon.

T he mesh connectivity is then represented by the structu res of cu t edges and the

polygon. In a simple mesh, any vertex spanning tree can be selected as the set of cut

edges.

Fig. 2.6 illustrates the encoding process. Fig. 2.6A is an octahedron mesh. F irst,

th e encoder constructs a vertex spanning tree as shown in Fig. 2.6B. where each node

corresponds to a vertex in the inpu t mesh. Then, it cuts the mesh along the edges

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

of th e vertex spanning tree. Fig. 2.6C shows th e resulting p lanar polygon and the

triangle spanning tree. Each node in the triangle spanning tree corresponds to a

triangle in the polygon, and two nodes are connected if and only if the corresponding

triangles share an edge.

Figure 2.6: (A) An octahedron mesh, (B) its vertex spanning tree, and (C) the cut and flattened

mesh with its triangle spanning tree shown by dashed lines.

Then, the two spanning trees are run-length encoded. A run is defined as a tree

segment between two nodes w ith degrees not equal to 2. For each run of the vertex

spanning tree, the encoder records its length w ith two additional flags. T he first flag

is the branching bit indicating w hether a run subsequent to the current run s ta rts

a t the same branching node, and th e second flag is the leaf b it indicating w hether

th e current run ends at a leaf node. For exam ple, let us encode the vertex spanning

tree in Fig. 2.6B, where the edges are labeled w ith their run indices. The first run is

represented by (1 ,0 ,0), since its length is 1 , the next run does not s ta r t at the same

node, and it does not end at a leaf node. In th is way, the vertex spanning tree in

Fig. 2.6B is represented by

(1,0 ,0), (1.1,1), (1,0 ,0), (1.1.1), (1,0 ,1).

Similarly, for each run of th e triangle spanning tree, the encoder w rites its length

and th e leaf bit. Note th a t the triangle spanning tree is always binary so th a t it

does not need the branching bit. Furtherm ore, the encoder records th e m arching

p a tte rn w ith one bit per triangle to indicate how to triangu la te the p lanar polygon

internally. The decoder can reconstruct the original mesh connectivity from th is set

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

of inform ation.

In b o th vertex and triangle spanning trees, a run is a basic coding unit. Thus,

the coding cost is proportional to the num ber of runs, which in tu rn depends on how

the vertex spanning tree is constructed. Taubin and Rossignac’s algorithm builds the

vertex spanning tree based on layered decom position, which is sim ilar to the way we

peel an orange along a spiral path , to maximize the length of each run and minimize

the num ber of runs generated.

Taubin and Rossignac also presented several modifications so th a t their algo

rithm can encode general manifold meshes: meshes w ith a rb itra ry genus, meshes

w ith boundary, and non-orientable meshes. However, their algorithm cannot d irectly

handle non-m anifold meshes. As a preprocessing step, the encoder should split a non

manifold mesh into several m anifold com ponents, thereby duplicating non-m anifold

vertices, edges, and faces. Experim entally, Taubin and Ro.ssignac's algorithm costs

2.48-7.0 bpv for mesh connectivity. It was also shown th a t the tim e as well as the

space complexities of the ir algorithm are O (N), where N is th e m axim um of the

vertex num ber v, the edge num ber e, and the triangle num ber / in a mesh. This

m ethod dem ands a large memory buffer due to its global random vertex access a t the

decompression stage.

2.2.4 Layered decom position

B ajaj et al. (6) presented a connectivity coding m ethod using a layered s truc tu re of

vertices. It decomposes a triangular mesh into several concentric layers of vertices,

and then constructs triangle layers w ithin each pair of adjacent vertex layers. The

mesh connectivity is represented by the to ta l num ber of vertex layers, the layout of

each vertex layer, and the layout of triangles in each triangle layer. Ideally, a vertex

layer does not intersect itself and a triangle layer is a generalized triangle strip. In

such a case, the connectivity com pression is reduced to the coding of the num ber of

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION____________________

vertex layers, the num ber of vertices in each vertex layer, and th e generalized triangle

strip in each triangle layer. However, in practice, overhead bits are in troduced due

to the existence of branching points, bubble triangles, and triangle fans.

Branching points are generated when a vertex layer intersects itself. In Fig. 2.7A,

th e m iddle layer intersects itself a t the branching point depicted by a big dot. Branch

ing points divide a vertex layer into several segments called contours. To encode the

layout of a vertex layer, we need to encode the inform ation of bo th contours and

branching points. Also, as shown in Figs. 2.7B-D, each triangle in a triangle layer

can be classified into one of th ree cases.

Figure 2.7: Fig. 7. Illustration of (A) the layered vertex structure and the branching point depicted

by a black dot, (B) a triangle strip, (C) bubble triangles, and (D) a cross-contour triangle fan, where

contours are depicted with solid lines and other edges with dashed lines.

• Its vertices lie on two adjacent vertex layers. A generalized triangle strip is

bubble triangles D triangle fan

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

com -posed of a sequence of triangles of th is kind.

• All its vertices belong to one contour. It is called a bubble triangle.

• Its vertices lie on two or th ree contours in one vertex layer. A cross-contour

triangle fan consists of a sequence of triangles of th is kind.

Therefore, in addition to encoding generalized triangle strips between two adjacent

vertex layers, this algorithm requires ex tra b its to encode bubble triangles and cross

contour triangle fans.

Taubin and Rossignac (34) also employed layered decom position in the vertex

spanning tree construction. However, B ajaj et a l.’s algorithm (6) is different from

(34) in the following:

• It does not combine vertex layers into the vertex spanning tree.

• Its decoder does not require a large m em ory buffer, since it accesses only a small

portion of vertices at each decom pression step.

• It is applicable to any kind of mesh topology, while (34) cannot encode non

m anifold meshes directly.

The layered decom position m ethod encodes the connectivity inform ation using

about 1.40-6.08 bpv. Moreover, it has a desirable property. T h a t is. each triangle

de-pends on a t m ost two adjacent vertex layers and each vertex is referenced by

a t m ost two triangle layers. This property enables the error-resilient transm ission

of mesh d a ta , since the effects of transm ission errors can be localized by encoding

different vertex and triangle layers independently. Based on the layered decom position

m ethod, B ajaj et al. (5) also proposed an algorithm to encode large CAD models. This

algorithm extends the layered decom position m ethod to compress quadrila teral and

general polygonal models as well as CAD models w ith sm ooth non-uniform rational

B-splines (NURBS) patches.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

2.2.5 Valence-driven approach

The valence-driven approach s ta rts from a seed triangle whose three edges form the

initial borderline. T he borderline divides the whole mesh into two parts , i.e., the

inner p a rt th a t has been processed and the outer part th a t is to be processed. Then,

the borderline gradually expands outw ards until the whole mesh is processed. The

ou tp u t is a stream of vertex valences, from which the original connectivity can be

reconstructed.

In (35), Toum a and G otsm an proposed a pioneering algorithm known as the

valence-driven approach. It s ta rts from an a rb itra ry triangle, and pushes its th ree

vertices into a list called the active list. Then, it pops up a vertex from the active'

list, traverses all untraversed edges connected to th a t vertex, and pushes the1 now

vertices into the end of the list. For each processed vertex, it ou tpu ts the valence.

Sometimes, it needs to split th e current active list or merge it w ith another active

list. These cases are encoded w ith special codes. Before encoding, for each boundary

loop, a dum m y vertex is added and connected to all the vertices in th a t boundary

loop, m aking the topology closed. Fig. 2.8 shows an exam ple of the encoding process,

where th e active list is depicted by thick lines, the focus vertex by the black dot.

and the dum m y vertex by th e gray dot. Table 2.1 lists the ou tpu t of each step in

association w ith Fig. 2.8.

Since vertex valences are com pactly d is tribu ted around 6 in a typical mesh, arit h-

metic coding can be adopted to encode the valence inform ation of a vertex effectively

(35). T he resulting algorithm uses less th a n 1.5 bpv on average to encode mesh con

nectivity. This is the state-of-the-art com pression ratio which has not been seriously

challenged till now. However, the ir algorithm is only applicable to orientable and

manifold meshes.

Alliez and D esbrun (2) proposed a m ethod to fu rther improve the perform ance of

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

Toum a and G otsm an’s algorithm . They observed th a t split codes, split offsets, and

dum m y vertices consume a non-trivial portion of coding bits in Toum a and G otsm an’s

algorithm . To reduce th e num ber of split codes, they used a heuristic m ethod th a t

chooses th e vertex w ith the m inim al num ber of free edges as th e next focus vertex,

instead of choosing the next vertex in the active list. To reduce the num ber of bits for

split offsets, they excluded th e two adjacent vertices of the focus vertex in th e current-

active list th a t are not eligible for th e split, and sort th e rem aining vertices according

to their Euclidean distances to the focus vertex. Then, a split offset is represented

w ith an index into th is sorted list, which is further added by 6 and encoded in the

same way as a norm al valence. To reduce the num ber of dum m y vertices, they

used one com mon dum m y vertex for all boundaries in the inpu t mesh. In addition,

they encoded the ou tpu t symbols w ith the range encoder (28), an effective adaptive

arithm etic encoder.

Alliez and D esbrun’s algorithm is also applicable only to orientable manifold

meshes. It perform s b e tte r th a n Toum a and G otsm an’s algorithm , especially for

irregular meshes. Alliez and D esbrun proved th a t if the num ber of splits is negligible,

th e perform ance of their algorithm is upper-bounded by 3.24 bpv, which is exactly

the same as the theoretical bpv value com puted by enum erating all possible p lanar

graphs (37).

2.2.6 Triangle conquest

Similar to the valence-driven approach, the triangle conquest approach s ta rts from

the initial borderline, which divides the whole mesh into conquered and unconquered

parts, and inserts triangle by triangle into th e conquered parts. The m ain difference is

th a t the triangle conquest approach o u tpu ts the building operations of new triangles,

while the valence-driven approach o u tpu ts th e valences of new vertices.

G um hold and Strafier (18) first proposed a triangle conquest approach, called the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

G

D

H

M

S

o

Figure 2.8: A mesh connectivity encoding example by Touma and Gotsman (35), where the active

list is shown with thick lines, the focus vertex with the black dot, and the dummy vertex with the

gray dot.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

Figure Output Comments

(A) An input mesh is given

(B) Add a dummy vertex

(C) Add 6, add 7, add 4 O utput the valences of starting vertices

(D) Add 4 Expand the active list

(E) Add 7 Expand the active list

(F) Add 5 Expand the active list

(G) Add 5 Expand the active list

(H) Choose the next focus vertex

(I) Add 4 Expand the active list

(J) Add 5 Expand the active list

(K) Split 5 Split the active list, and push the new active list into

stack

(L) Choose the next focus vertex

(M) Add 4 Expand the active list

(N) Add dummy 5 Choose the next focus vertex and conquer the

dummy vertex

(0) Pop the new active list from the stack

(P) Add 4 Expand the active list

(Q) Choose the next focus vertex

(R) Choose the next focus vertex

(S) The whole mesh is conquered

Tabic 2.1: The output of each step in Fig. 2.8

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

cut-border machine. At each step, th is algorithm inserts a new triangle into the

conquered part, closed by th e cut-border, using one of the five building operations:

‘new vertex’, ‘forw ard,’ ‘backw ard’, ‘split/, and ‘close’. The sequence of building

operations is encoded using Huffman codes. This algorithm can encode manifold

meshes th a t are either orient-able or non-orientable. Experim entally, its compression

perform ance lies w ithin 3.22-8.94 bpv, m ostly around 4 bpv. Its m ost im portan t

feature is th a t the decom pression speed is very fast and the decom pression m ethod is

easy to im plem ent in hardw are. Moreover, compression and decom pression operations

can be processed in parallel. These properties make th e m ethod very a ttrac tive in

real-tim e cod-ing applications. In (16), G um hold further improved the compression

perform ance using an adaptive arithm etic coder and optim izing the border encoding.

The experim ental compression ra tio is w ith in th e range of 0.3-2.7 bpv, and on average

1.9 bpv.

Rossignae (26) proposed the edgebreaker algorithm , which is another exam ple of

th e triangle conquest approach. It is nearly equivalent to the cut-border m achine,

except th a t it does not encode the offset d a ta associated w ith th e split operation.

The triangle traversal is controlled by edge loops as shown in Fig. 2.9A. Each edge

loop bounds a conquered region and contains a gate edge. A t each step, th is algorithm

focuses on one edge loop and its gate edge is called the active gate, while the other edge

loops are stored in a stack and will be processed later. Initially, for each connected

com ponent, one edge loop is defined. If the com ponent has no physical boundary,

two half edges corresponding to one edge are set as the edge loop. For example, in

Fig. 2.9B, the mesh has no boundary and the initial edge loop is formed by g and

gTEo, where giEo is the opposite half edge of g. In Fig. 2.9C, the initial edge loop is

the mesh boundary.

A t each step, th is algorithm conquers a triangle incident on th e active gate, updates

th e current loop, and moves the active gate to the next edge in the updated loop.

For each conquered triangle, th is algorithm ou tpu ts an op-code. Assume th a t the

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

unconquered regions
conquered region

gate
active gate

8

T ~

(J

Figure 2.9: Illustration of (A) edge loops and (B) gates and initial edge loops for a mesh without

boundary, and (C) gates and initial edge loops for a mesh with boundary, where thick lines depict

edge loops, and g denotes the gate.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

triangle to be removed is enclosed by active gate g and vertex v, there are five kinds

of possible op-codes as shown in Fig. 2.10A:

• C (loop extension), if v is not on th e edge loop;

• L (left), if v im m ediately precedes g in the edge loop;

• R (right), if v im m ediately follows <7 ;

• E (end), if v precedes and follows <7;

• S (split), otherwise.

Essentially, the compression process is a, depth-first traversal of the dual graph of

the mesh. W hen th e split case is encountered, th e current loop is split into two, and

one of them is pushed into th e stack while the other is fu rther traced. Fig. 2.10B

shows an exam ple of the encoding process, where th e arrows and the num bers give

the order of the triangle conquest. The triangles are filled w ith different p a tte rn s to

represent different op-codes, which are generated when they are conquered. For this

case, th e encoder ou tpu ts th e series of op-codes as C C R SR L L R SE E R L R E .

The edgebreaker m ethod can encode the topology d a ta of orient able manifold

meshes w ith m ultiple boundary loops or w ith arb itrary genus, and guarantee a worst -

case coding cost of 4 bpv for simple meshes. However, it is unsuitable for stream ing

applications, since it requires a two-pass process for decom pression, and the decom

pression tim e is 0 (v 2). A nother disadvantage is th a t, even for regular meshes, it

requires about the same b itra te as th a t for non-regular meshes.

King and Rossignac (23) modified the edgebreaker m ethod to guarantee a worst-

case coding cost of 3.67 bpv for simple meshes, and G um hold (17) fu rther improved

th is upper bound to 3.522 bpv. The decoding efficiency of the edgebreaker m ethod

was also improved to exhibit linear tim e and space com plexities in (20, 23, 27).

Furtherm ore, Szymczak et al. (31) optim ized the edgebreaker m ethod for meshes

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

c L R E S

Start

Figure 2.10: (A) Five op-codes C, L, R, E, and S. where the gate g is marked with an arrow, and (B)

an example of the encoding process in the edgebreaker algorithm where the arrows and the numbers

show the traversal order and different filling patterns are used to represent different op-codes.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

w ith high regularity by exploiting dependencies of ou tp u t symbols. It guarantees a

worst-case perform ance of 1.622 bpv for sufficiently large meshes w ith high regularity.

As m entioned earlier, we can reduce th e am ount of d a ta transm ission between CPU

and th e graphic card by decom posing a mesh into long triangle strips, bu t finding

a good decom position (or stripihcation) is often com putationally intensive. Thus, it

is often desirable to generate long strips from a given mesh only once and d istribute

th e strip ihcation inform ation together w ith the mesh. Based 0 1 1 th is observation,

Isenburg (19) proposed an approach to encode the mesh connectivity together w ith

its strip ihcation inform ation. It is basically a modification of the edgebreaker m ethod,

b u t its traversal order is guided by strips obtained w ith the S T R IP E algorithm (12).

W hen a new triangle is included, its relation to the underlying triangle strip is encoded

w ith a label. The label sequences are then entropy encoded. The experim ental

compression perform ance ranges from 3.0 to 5.0 bpv.

2.3 Sum m ary

Among the various connectivity coding m ethods discussed in th is chapter, Toum a and

G otsm an’s algorithm (35) is considered as th e state-of-the-art technique for single

ra te 3D mesh compression. W ith some m inor im provements 011 Toum a and G otsm an’s

algorithm , Alliez and D esbrun’s algorithm (2) yields an improved compression ratio.

The indexed face set, triangle strip, and layered decom position m ethods can en

code meshes with a rb itra ry topology. In contrast, the o ther approaches can handle

only manifold meshes w ith additional constraints. For instance, the valence-driven

approach (2 , 35) require th a t the manifold is also orientable. Szymczak et a l.’s algo

rithm (31) requires th a t the manifold has neither boundary nor handles. Note th a t

using these algorithm s, a non-m anifold mesh can be handled only if it is pre-converted

to a manifold mesh by replicating non-m anifold vertices, edges, and faces as in (15).

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. LITERATURE REVIEW ABOUT CONNECTIVITY COMPRESSION

The m ethods discussed in th is chapter focus on triangu lar mesh compression. In

next two chapters, we will propose two direct techniques to compress and decompress

the connectivity of quadm eshes, b o th of which are extended from the algorithm s

discussed in this chapter.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Quadm esh com pression and

decom pression using T oum a-G otsm an

algorithm

T oum a-G otsm an’s algorithm is a valence-driven approach, originally for triangle mesh

compression. It s ta rts from a seed triangle whose three edges form the initial border

line. The borderline divides the whole mesh into two regions, i.e., the inner region

th a t has been processed and th e outer region th a t is to be processed. Then, th e bor

derline gradually expands outw ards until th e whole mesh is processed. The ou tp u t is a

stream of vertex valences, from which the original connectivity can be reconstructed.

The details of this algorithm for triangle mesh compression has been explained in

section 2.2.5. In this chapter we show how to expand th e algorithm for quadm esh

connectivity compression.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COM PRESSION AN D DECOM PRESSION USING TO U M A-G O TSM AN
A LG O RITH M ___

3.1 D efin itions

First, we make some definitions relevant to the algorithm . M ost of them have been

defined in T oum a-G otsm an’s paper (35).

V ertex cycle A cyclic sequence of vertices along triangle edges in th e mesh.

A ctive List A vertex cycle in th e mesh. The active list partitions th e mesh into an

“ou ter” p a rt containing edges not yet encoded, and an “inner” p a rt containing

edges already encoded. Each vertex in th e active list has encoded and unencoded

incident edges separated by the edges to the two vertices which are its predecessor

and successor in the active list.

Focus One vertex in the active list is designated as the focus vertex. All coding

operations are done on the focus vertex.

We define a new term called ’’focus edge” . Focus edge is an opposite half edge

of an edge in the active list, and it takes focus vertex as its s ta rt point. So, we

m ust be aware th a t focus edge is not in the active list. Actually, The quad which

focus edge belongs to is the one which will be conquered next by the active list.

Free Vertex A vertex not yet encoded.

Full Vertex A vertex w ith no free edges. Here we in troduce another term ’’almost

full” to describe a vertex which has only one unvisited quad left around it.

3.2 D efin ition o f o p p o site h a lf ed ge (O H E) d a ta stru cture

We propose a da ta structure , called OHE (opposite half edge) for representing the

ajacencies of quadm esh.

Fig. 3.1 illustrates the OHE d a ta structure . Each quad in a quad mesh is rep

resented by four integer references for the four vertices and four integer references

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

v[3]/ ohe[2] V[2]

ohe[3]

v[0]

e[0]/focusEdge

ohe[1]

ohe[0] /v[1]

/ /

Figure 3.1: OHE data structure

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

for th e four edges, plus four integer references for the four opposite half edges. The

opposite half edge of an edge e[l] in the center quad refers to th e left edge in th e right

quad. If e[l] is a boundary edge, we assign -1 in the opposite-half-edge field ohe[1].

Suppose the quad is the one to be conquered right now, which m eans th a t focus

edge is one of the four edges in th e quad. In our im plem entation, we re-label the

vertices and edges of the quad, so th a t focus edge will be edge e[0] in the quad,

and edge ohe[0] is in the active list. This is a very im portan t step which makes the

im plem entation easier to understand.

3.3 A lgorith m d escrip tion

A simple exam ple dem onstrating the operation of the algorithm for triangle mesh

appears in Fig 2.8. The input of the algorithm is an orient.able manifold quadm esh,

and th e o u tp u t is the code for the mesh connectivity.

O ur algorithm is slightly different from w hat Toum a-G otsm an explained, bu t bo th

follow the same idea.

The encoding algorithm s ta rts off w ith an arb itrary quad in the mesh, defining an

active list of four edges. An a rb itra ry opposite half edge of th is quad is designated

as th e focus edge. The algorithm proceeds by try ing to expand the active list by

“conquering” an unvisited q u ad 1 (if exists) in counter-clockwise order around the

s ta r t of the focus edge, which is th e focus vertex. Some com m ands (“add” , “split” ,

or “m erge”) will be generated when conquering th a t unvisited quad. Each tim e we

conquer an unvisited quad, we make a decision where the next focus should be, no

m a tte r w eather current focus vertex is full or n o t . 2 The new focus vertex could be
1 In T o u m a - G o t s m a n ’s im p le m e n ta t io n , th e y c o n q u e r e d g e s r a t h e r t h a n p o ly g o n s .

2 T h is is q u i t e d if f e re n t f ro m T o u m a - G o tm a n 's im p le m e n ta t io n . T h e y in s is t t h a t w h e n c o d in g o p e r a t io n s o n t h e

fo c u s v e r te x a r e c o m p le te , t h e fo c u s w ill m o v e t o t h e n e x t v e r te x in t h e a c t iv e lis t a n d t h e p re v io u s fo c u s v e r te x is

re m o v e d fro m t h e a c t iv e lis t to b e c o m e o n e o f t h e “ in n e r ” v e r tic e s . W e d id i t in a n o th e r w ay.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

the current focus vertex, or could be a vertex n adjacent to th e current focus vertex,

or some other vertex.

T he conquering procedure repeats for th e new focus, and term inates when all the

quads have been traversed.

For the unvisited quad to be conquered, two vertices in the quad are end points of

th e focus edge, which have already been encoded. The problem is to encode the other

two vertices. If any of the o ther two vertices is free (has not been encoded), we create

an “add” com m and for it. If any of the o ther two vertices in the unvisited quad has

been encoded during encoding, there are two possibilities: either it leads to a vertex

in the same active list or to a vertex in another active list. In the first case, the active

list is split. The encoding procedure proceeds w ith one, and push the others onto

the stack for future trea tm en t. In the la tte r case, the active lists are merged to form

one active list on which the encoding continues, there will be no merge com m ands if

the object has sphere topology (genus 0), and can only occur in a torus-like topology

(non-genus-0).

The compression algorithm is shown in algorithm 1 . The input file is a quad PLY

file, and the ou tpu t files are two files, one file “out_com m m and.txt” which contains

a sequence of com mands, the o ther one is file “out_vertex .tx t” which contains vertex

coordinates, as shown below.

out co m m and .tx t
q u a d P L Y f i l e —

out_vertex.txt,

T he decompression algorithm is shown in algorithm 3. The two input files are

“out_com m and.txt” and “out._vertex.txt” , and the ou tp u t is a quad PLY file.

o u tjcom m and .tx t

o u tjver tex .tx t
->■ q u a d P L Y f i l e

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

D uring im plem entation, we noted th a t there are 7 different cases th a t need to be

handled for triangle mesh compression. However, there are 18 different cases th a t

need to be handled for quadm esh compression.

In each case, th e current active list m ight expand or decrease by conquering one

unvisited quad, or it might be removed and we pop another active list from th e list

stack for traversing.

Each such case would generate 1 com m and, or 2 com m ands, or even 3 com mands.

Table 3.3 shows th e num ber of com m ands created for each case. For case 1, 2, 3,

4.2, 4.3, no com m ands are generated, while case 7.3.2 generates 3 com m ands. All the

o ther cases generate 2 commands.

T he num ber of “add ’7 com m ands in th e connectivity code is th e same as the num ber

of vertices in the quadm esh, since each free vertex introduce one “add” com m and.

Table 3.1 shows the num ber of free vertices found in different cases.

Table 3.3 shows the effects of size of the current active list in different cases. The

column “Effects on Size” shows how th e size of the current active list changes. For

example, th e size will be the same for case 4.1.1, while it will increase by 2 in case

5.1. The symbol oc” is used to indicate th a t the size of the active list decreases

to 0, and th e active list is deleted. For split and merge com m ands generated from

vertex v[2] or u[3], they either create a new active list, or remove an existing active

list from list stack. In Table 3.3 Ti is th e size of th e active list involved on v[2], while

T ‘2 is th e size of th e active list involved on u[3]. The exception is, for case 7.3.2 where

T] is the size of the active list found from the list stack, while T2 is th e size of the

active list created by the split com mand.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

input : file.in.ply

output: file.out.command. file.out.vertex

init(file_in_ply, 4);

while not listStackA s E m pty () do
activeList = list Stack.pop():

while not activeList.isEm ptyQ do

if activeList.sizeQ < 3 or activeList.areA llVerticesFullQ then

activeList.clear(); /* case 1, case 2 */

else
current Polygon = getRevisedCurrentPolygonQ:

if LastPolygonO utsideActiveListQ then activeList.clear(); : /* case 3 */

else

if isLast.UnvisitedPolygonAroundFocusEdgeQ then /* case 4 * /
| handleLastUnvisitedPolygonAroundFocusEdgeForCompression();

else if currentPolygon.v[2}.isUnvisited() then /* case 5 * /
if currentPolygon.v[3}.isUnvisited() then handle case 5.1;

else if activeList.contains(currentPolygon.v[3\) then handle case 5.2;

else handle case 5.3:
else if activeList.cont.ains(currentPolygon.v[2}) then /* case 6 * /

if currentPolygon.v[3].isUnvisited() then handle case 6.1:

else if activeList.contains(currentPolygon.v[3]) then handle case 6.2;

else handle case 6.3;
else /* case 7 * /

if currentPolygon.v[3\.isUnvisited() then handle case 7.1:

else if activeList.contains(currentPolygon.v[3}) then handle case 7.2;

else /* case 7 .3 * /

if currentPolygon.v[2] and currentPolygon.v[3] not on same list then
| handle case 7.3.1;

else

handle case 7.3.2: /* one more s p l it command created */

increaseNumOfVisitedEdgesForPolygon(currentPolyg'on):

createCommandFile(file_out_comniand. commandStack);

createVertexFile(file_out_vertex, newV);
Algorithm 1: Quadmesh compression algorithm

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

getRevisedCurrentPolygon():

switch type do /* how many edges of currentPolygon are in activeL ist * /

case 2 /* case 4.1 */
if currentPolygon.v[2\.isUnvisit,ed() then handle case 4.1.1;

else if activeList.contains(currentPolygon.v{3]) then handle case 4.1.2;

else handle case 4.1.3;

case 3 /* case 4 .2 */
|_ handle case 4.2;

case 4 /* case 4 .3 */
|_ activeList.clear()-.

Function handleLastUnvisitedPolygonAroundFocusEdgeForCompression

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

input : file_in_command, file_in.vertex

output: file_out_ply

init(file_in_command, file_in_vertex, 4):

while not U stStack.isEm ptyQ do
activeList = UstStack.popQ:

while not activeList.isE m ptyQ do

if activeList.sizeQ < 3 or activeList.areA llVerticesFullQ then

activeList.dearQ ; /* case 1, case 2 */

else
currentC om m andl = com m andStack.rem oveFirstQ :

currentComm and2 = com m andStack.rem oveFirstQ :

if LastPolygonO utsideActiveListQ then activeList.dearQ : ; /* case 3 * /

else

if isLastU nvisitedPolygonAroundFocusEdgeQ then /* case 4 * /
| handleLastUnvisitedPolygonAroundFocusEdgeForDecompression();

else if currentPolygon.v[2].isUnvisit,ed() then /* case 5 * /
if currentPolygon.v[3].isUnvisited() then handle case 5.1;

else if activeList.contains(currentPolygon.v[3]) then handle case 5.2;

else handle case 5.3;
else if activeList.contains(currentPolygon.v[2j) then /* case 6 */

if currentPolygon.v[3].isUnvisited() then handle case 6.1;

else if activeList. contains(currentPolygon.v[3]) then handle case 6.2;

else handle case 6.3;
else /* case 7 */

if currentPolygon.v[3].isUnvisited() then handle case 7.1;

else if activeList. contains (currentPolygon.v [3]) then handle case 7.2;

else /* case 7 .3 * /

if currentPolygon.v[2] and currentPolygon.v[3] not on same list then
| handle case 7.3.1;

else

handle case 7.3.2; /* one more s p l it command popped * /

increaseNumOfVisitedEdgeForPolygon (currentPolygon);

createPLYFile(file.out_ply, V, P);
Algorithm 3: Quadmesh decompression algorithm

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

getRevisedCurrentPolygon();

switch type do /* how many edges of currentPolygon axe in activeL ist * /

case 2 /* case 4.1 * /
if currentPolygon.v{2].isUnvisited() then handle case 4.1.1;

else if activeList.contains(currentPolygon.v[3]) then handle case 4.1.2;

else handle case 4.1.3;

case 3 /* case 4 .2 */
|_ handle case 4.2;

case 4 /* case 4 .3 */
|_ activeList.clearQ ;

Function handleLastUnvisitedPolygonAroundFocusEdgeForDecompression

Case # Case Index # of Free Vertices Comments

case 1 1 0 activeList.sizeQ < 3

case 2 2 0 all vertices in activeList are full

case 3 3 0 last quad outside activeList

case 4 4.1.1 1 2 edges in activeList & v[2].isUnvisited()

case 5 4.1.2 0 2 edges in activeList & v[2].split,()

case 6 4.1.3 0 2 edges in activeList & v[2].merge()

case 7 4.2 0 3 edges in activeList

case 8 4.3 0 4 edges in activeList

case 9 5.1 2 v[2].isUnvisited() & v[3].isUnvisited()

case 10 5.2 1 v[2].isUnvisited() & v[3].split()

case 11 5.3 1 v[2].isUnvisited() & v[3].merge()

case 12 6.1 1 v[2].split() & v[3].isUnvisited()

case 13 6.2 0 v[2].split() & v[3].split()

case 14 6.3 0 v[2].split() & v[3].merge()

case 15 7.1 1 v [2],merge() & v[3].isUnvisited()

case 16 7.2 0 v[2].inerge() & v[3].split()

case 17 7.3.1 0 v[2].merge() & v[3].merge() k. v[2]/v[3] not in same list

case 18 7.3.2 0 v[2].merge() & v[3].merge() & v[2]/v[3] in same list

Table 3.1: Free vertices found in different cases

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

Case Index Effects on Size Comments

1 — 00 activeList.size() < 3

2 — 00 all vertices in activeList are full

3 —oc last quad outside activeList

4.1.1 0 2 edges in activeList & v[2].isUnvisited()

4.1.2 — oc 2 edges in activeList & v[2].split()

4.1.3 Ti 2 edges in activeList &: v[2].merge()

4.2 - 2 3 edges in activeList

4.3 — 00 4 edges in activeList

5.1 +2 v[2].isUnvisited() & v[3].isUnvisited()

5.2 - 7 i + 3 v[2].isUnvisited() & v[3].split()

5.3 7i + 2 v[2].isUnvisited() & v[3].merge()

6.1 -T i + 3 v[2].split() & v[3].isUnvisited()

6.2 —T\ - T 2 + 4 v[2].split() & v[3].split()

6.3 -T i + T 2 + 3 v [2].split() & v[3].merge()

7.1 T i + 2 v[2].merge() & v[3].isUnvisited()

7.2 Tj - T2 + 3 v[2].merge() & v[3].split()

7.3.1 Ti + T2 + 2 v[2].merge() & v[3].merge() & v[2]/v[3] not in same list

7.3.2 Ti - T2 + 2 v[2].merge() & v[3].merge() & v[2]/v[3] in same list

Table 3.2: Effects on size of current active list

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

Case Index # of Commands Comments

1 0 activeList.size() < 3

2 0 all vertices in activeList are full

3 0 last quad outside activeList

4.1.1 1 2 edges in activeList & v[2].isUnvisited()

4.1.2 2 2 edges in activeList & v[2].split()

4.1.3 1 2 edges in activeList & v[2].merge()

4.2 0 3 edges in activeList

4.3 0 4 edges in activeList

5.1 2 v[2].isUnvisited() & v[3].isUnvisited()

5.2 2 v[2].isUnvisited() & v[3].split()

5.3 2 v[2].isUnvisited() & v[3].merge()

6.1 2 v [2],split() & v[3].isUnvisit.ed()

6.2 2 v[2].split() & v[3].split()

6.3 2 v[2].split() & v[3].merge()

7.1 2 v[2].merge() & v[3].isUnvisited()

7.2 2 v[2].merge() & v[3].split()

7.3.1 2 v[2].merge() & v[3].merge() & v[2]/v[3] not in same' list

7.3.2 3 v[2].merge() & v[3].merge() & v[2]/v[3] in same list

T able 3.3: N um ber of com m ands c rea ted in each case

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

3.3.1 Com pression process

The 18 cases are handled in the following ways for compression.

1. activeList.size() < 3

• Remove (delete) the active list.

2. All vertices in active list are full

• Remove (delete) the active list.

3. Last unprocessed quad outside

In th is case, size of the active list is 4, and all vertices are alm ost full.

• increase “num O fV isitedEdge” for all vertices of the quad by 1;

• Remove (delete) th e active list.

4. Last unvisited polygon around focus edge

T here are 3 subcases.

4.1. ohe[0], ohe[3] are in active list

There are 3 subcases.

4.1.1. v[2].isFree

• Set v[2] “visited” ;

• Push v[2] to “newV” stack (for creating ordered vertex file);

• create an add com m and for v[2];

• reconstruct th e current active list;

• set focus edge for the current acitve list;

• increase “num O fV isitedEdge” for all vertices of th e quad by 1 .

4.1.2. v[2].Split

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM___

• get “offset” of v[2];

• create a split com m and for v[2];

• create 2nd active list, set focus edge for it and push it to list stack;

• reconstruct th e current active list;

• set focus edge for the current acitve list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

4.1.3. v[2].M erge

• find th e 2nd list (intersects a t v[2]) from list stack;

• create a merge com m and for v[2];

• reconstruct th e current active list (merge two lists);

• set focus edge for the current acitve list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

4.2. ohe[0], ohe[3], ohe[2] are in active list

• reconstruct the current active list;

• set focus edge for the current acitve list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

4.3. ohe[0], ohe[3], ohe[2], ohe[l] are in active list

This case happens only in non-genus-0 mesh. In th is case, the size of the

current active list is 4, and all vertices in the active list are in the same

quad. The difference between the active list in case 3 and in th is case is: In

case 3, all vertices are ’’alm ost full” , while in th is case, all o ther vertices are

’’almost full” except one (u[lj).

• increase “num O fV isitedEdge” for all vertices of th e quad by 1;

• remove (delete) th e active list.

5. v[2].isFree

There are 3 subcases.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM__

5.1. v[2].isFree and v[3].isFree

• Set v[2] and v[3] “visited” ;

• Push v[2] and v[3] to “newV” stack (for creating ordered vertex file);

• create add com m ands for v[2] and v[3];

• reconstruct the current active list;

• set focus edge for the current active list;

• increase “num O fV isitedEdge” for all vertices of th e quad by 1.

5.2. v[2].isFree and v[3].Split

• Set v[2] “visited” ;

• Push v[2] to “newV” stack (for creating ordered vertex file);

• create an add com m and for v[2j;

• get “offset” of v[3];

• create a split com m and for v[3];

• create 2nd active list, set focus edge for it and push it to list stack;

• reconstruct the current active list;

• set focus edge for the current active list;

• increase “num O fV isitedEdge” for all vertices of th e quad by 1.

5.3. v[2].isFree and v[3].M erge

• Set v[2] “visited” ;

• Push v[2] to “newV” stack (for creating ordered vertex file);

• create an add com m and for v[2j;

• find the 2nd list (intersects at v[3]) from list stack;

• create a merge com m and for v[3];

• reconstruct the curren t active list (merge two lists);

• set focus edge for th e current active list;

• increase “num O fV isitedEdge” for all vertices of th e quad by 1.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM__

6. v[2].Split

There are 3 subcases.

6.1. v[2].Split and v[3].isFree

• get “offset” of v[2];

• create a split com m and for v[2];

• create 2nd active list, set focus edge for it and push it to list stack;

• Set v[3] “visited” ;

• Push v[3] to “newV” stack (for creating ordered vertex file);

• create an add com m and for v[3];

• reconstruct the current active list;

• set focus edge for th e current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

6.2. v[2j.Split and v[3].Split

• get “offset” of v[2];

• create a split com m and for v[2];

• create 2nd active list, set focus edge for it and push it to list stack;

• get “offset” of v[3];

• create a split com m and for v[3];

• create 3rd active list, set focus edge for it and push it to list stack;

• reconstruct th e current active list;

• set focus edge for the current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

6.3. v[2j.Split and v[3j.M erge

• get “offset” of v[2];

• create a split com m and for v[2];

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM__

• create 2nd active list, set focus edge for it and push it to list stack;

• find a 3rd list (intersects a t v[3]) from list stack;

• create a merge com m and for v[3];

• reconstruct the active list (merge the 3rd list and current active list);

• set focus edge for the current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

7. v[2] .M erge

There are 3 subcases.

7.1. v [2].M erge and v[3].isFree

• find a 2nd list (intersects a t v[2]) from list stack;

• create a merge com m and for v[2];

• Set v[3] “visited” ;

• Push v[3] to “newV” stack (for creating ordered vertex file);

• create add com m ands for v[3];

• reconstruct the current active list;

• set focus edge for the current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

7.2. v[2].M erge and v[3j.Split

• find a 2nd list (intersects a t v[2]) from list stack;

• create a merge com m and for v[2];

• get “offset” of v[3];

• create a split com m and for v[3];

• create 3rd active list, set focus edge for it and push it to list stack;

• reconstruct th e current active list;

• set focus edge for the current active list,;

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM___

• increase “num O fV isitedEdge” for all vertices of th e quad by 1.

7.3. v[2].M erge and v[3] .M erge There are 2 subcases.

7.3.1. v[2].M erge and v[3].M erge, v[2]/v[3] are not on same list

• find th e 2nd list (intersects at v[2]) from list stack;

• create a merge com m and for v[2];

• find the 3rd list (intersects a t v[3]) from list stack;

• create a merge com m and for v[3];

• reconstruct th e active list (merge the th ree lists);

• set focus edge for the active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

7.3.2. v[2].M erge and v[3].M erge, v[2]/v[3] are on sam e list

• find the 2nd list (intersects at v[2]) from list stack;

• create a merge com m and for v[2];

• create a merge com m and for v[3];

• get distance (offset) between v[2] and v[3] along th e 2nd list;

• create a split com m and for v[3] on the 2nd list;

• create 3rd active list, set focus edge for it and push it to list stack;

• reconstruct th e current active list;

• set focus edge for the current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

3.3.2 Decom pression process

The 18 cases are handled in th e following ways for decompression.

1. activeL ist.size() < 3

• Remove (delete) the active list.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

2. All vertices in active list are full

• Remove (delete) the active list.

3. Last unprocessed quad outside

In th is case, size of the active list is 4, and all vertices are alm ost full.

• create a new quad w ith all vertices on current active list;

• increase “num O fV isitedEdge” for all vertices of th e quad by 1;

• Remove (delete) the active list.

4. Last unvisited polygon around focus edge

There are 3 subcases.

4.1. ohe[0], ohe[3] are in active list

There are 3 subcases.

4.1.1. v[2].isFree

(read next com m and, which is an add com m and)

• set v[2] to be next vertex in vertex list, and set degree infomatioii for

it;

• create a new quad w ith focusEdge, v[2] and nextOfFocusVertex:

• reconstruct th e current active list;

• set v irtual focus edge for the current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

4.1.2. v[2].Split

(read next com m and, which is a split com m and)

• set v[2] to be a vertex in current active list;

• create a new quad w ith focusEdge, v[2] and nextOfFocusVertex;

• reconstruct th e active list;

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

• set v irtual focus edge for th e current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

4.1.3. v[2].M erge

(read next com m and, which is a merge com mand)

• set v[2] to be a vertex in an active list from list stack;

• create a new quad w ith focusEdge, v[2] and nextOfFocusVertex;

• reconstruct th e current active list (merge two lists);

• set v irtual focus edge for th e current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

4.2. ohe[0], ohe[3], ohe[2] are in active list

• create a new quad w ith focusEdge, nextOfFocusVertex and nextnextO f-

FocusVertex;

• reconstruct the current active list;

• set v irtual focus edge for the current active list;

• increase “num O fV isitedEdge” for all vertices of th e quad by 1.

4.3. ohe[0], ohe[3], ohe[2], ohe[l] are in active list

• create a new quad w ith focusEdge, nextOfFocusV ertex and nextnextO f-

Focus Vertex;

• increase “num O fV isitedEdge” for all vertices of th e quad by 1;

• remove (delete) the active list.

5. v[2].isFree

There are 3 subcases.

5.1. v[2].isFree and v[3].isFree

(read next two com m ands which are two add com mands)

• set v[2] to be next vertex in vertex list, and set degree infom ation for it;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

• set v[3] to be next vertex in vertex list, and set degree infom ation for it;

• create a new quad w ith focusEdge, v[2] and v[3];

• reconstruct the current active list;

• set v irtual focus edge for the current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

5.2. v[2].isFree and v[3].Split

(read next two com mands, 1st is an add com m and, next is split.)

• set v[2] to be next vertex in vertex list, and set degree infom ation for it;

• set v[3] to be a vertex in current active list;

• create a new quad w ith focusEdge, v[2] and v[3];

• reconstruct the active list;

• set v irtual focus edge for the current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

5.3. v[2].isFree and v[3].M erge

(read next two com m ands, 1st is an add com mand, next is merge)

• set v[2] to be next vertex in vertex list, and set degree infom ation for it;

• set v[3] to be a vertex in an active list from list stack;

• create a new quad w ith focusEdge, v[2] and v[3];

• reconstruct the current active list (merge two lists);

• set v irtual focus edge for the current active list:

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

6. v[2j.Split

T here are 3 subcases.

6.1. v[2].Split and v[3].isFree

(read next two com mands, 1st is a split com m and, next is add)

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

• set v[2] to be a vertex in current active list;

• set v[3] to be next vertex in vertex list, and set degree infom ation for it;

• create a new quad w ith focusEdge, v[2] and v[3];

• reconstruct the current active list;

• set v irtual focus edge for th e current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by E

6.2. v[2].Split and v[3].Split

(read next two com mands, which are split com mands)

• set v[2] to be a vertex in current active list;

• set v[3] to be a vertex in current active list;

• create a new quad w ith focusEdge, v[2] and v[3j;

• reconstruct the current active list;

• set v irtual focus edge for the current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

6.3. v[2].Split and v[3].Merge

(read next two com mands, 1st is a split com m and, next is merge)

• set v[2] to be a vertex in current active list;

• set v[3] to be a vertex in an active list from list stack;

• create a new quad w ith focusEdge, v[2] and v[3];

• reconstruct the current active list;

• set v irtual focus edge for th e current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

7. v[2].M erge

There are 3 subcases.

7.1. v[2] .Merge and v[3].isFree

(read next two com m ands which are two add com mands)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

• set v[2] to be a vertex in an active list from list stack;

• set v[3] to be next vertex in vertex list, and set degree infom ation for it:

• create a new quad w ith focusEdge, v[2] and v[3];

• reconstruct the current active list;

• set v irtual focus edge for the current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

7.2. v[2].M erge and v[3].Split

(read next two com m ands, 1st is an add com m and, next is split)

• set v[2] to be a vertex in an active list from list stack;

• set v[3] to be a vertex in current active list;

• create a new quad w ith focusEdge, v[2] and v[3];

• reconstruct the current active list;

• set v irtual focus edge for the current active list;

• increase “num O fV isitedEdge” for all vertices of the quad by 1.

7.3. v[2].M erge and v[3].M erge

There are 2 subcases.

7.3.1. v[2].M erge and v[3].M erge, v[2]/v[3] are not on same list

(read next two com m ands, b o th are merge com m ands)

• set v[2] to be a vertex in an active list from list stack;

• set v[3] to be a vertex in an active list from list stack;

• create a new quad w ith focusEdge, v[2] and v[3];

• reconstruct th e current active list (merge the th ree lists);

• set v irtual focus edge for th e current active list;

• increase “num O fV isitedEdge” for all vertices of th e quad by 1.

7.3.2. v[2].M erge and v[3].M erge, v[2]/v[3] are on same list

(read next 3 com mands, two merge com mands, 1 split com m and)

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

• set v[2] to be a vertex in an active list from list stack;

• set v[3] to be a vertex in the same active list from list stack;

• create a new quad w ith focusEdge, v[2] and v[3];

• reconstruct the current active list;

• set v irtual focus edge for th e current active list;

• increase “num O fV isitedEdge” for all vertices of th e quad by 1.

3.4 Illu stra te th e approach

To illustrate th e algorithm , we use a quadm esh of a twelve faced to rus shown in Fig.

3.2(A) as example. T he surface, shown in Fig. 3.2(B), is obtained from the to rus in

Fig. 3.2(A) by cu tting along its four edges (ulO, u4), (u4,u5), (u5, n i l) and (u ll .u lO)

and laying it flat, on the ground to produce a two dim ensional image representation

which can be represented on paper.

For each vertex in th e mesh, we need to know two properties of it: i t ’s de

gree (field degree), and how m any quads/edges around it has been visited (field

n u m O f V i s i t e d E d g e) . In our example, each vertex in th e figures is shown in the

following form at;

ver tex I ndex(degr ee;/ n u m O fV i s i t e d E d g e)

For example, in Fig. 3.2(C), the degree of vertex ulO is 4, and num ber of visited

quads/edges around vertex ulO is 0. So, in Fig. 3.2(C), vertex ulO is described as;

10(4/0)

Fig. 3.2(A) to Fig. 3.2(U) shows how the com pression algorithm works for the

sample mesh, and Fig. 3.3(A) to Fig. 3.3(U) shows how the decompression algorithm

works.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

3.4.1 Compression of a torus mesh

A fter reading the m esh’s inform ation from an inpu t file, we set degree inform ation for

each vertex in the mesh, as shown in Fig. 3.2(C). From this step, we can see th a t the

value of field nurnO f V i s i t e d E d g e for each vertex is 0, which m eans th a t all vertices

are free vertices now.

The compression process s ta rts w ith one quad in the mesh. Here we s ta rt the com

pression w ith the first quad (vO, v l. v3. v2), defining th e first, active list. (uO, e l , v3, v2)

of four edges which are edges of the first quad, as shown in Fig. 3.2(D). The focus

edge (eO, v2) is the opposite half edge of th e last edge of the quad, and focus vertex

(r;0) is the first, vertex of the quad. We should always keep in m ind that.: first, focus

vertex is the s ta rt vertex of the focus edge; secondly, the focus edge is no t in th e active

list, while i t ’s opposite half edge is in the active list: thirdly, each tim e we create a

new active list, we need to assign a focus edge for it.

Next, by enum eration, we can see th a t the current active list. (uO, u l, v?>. v2) doesn’t

m atch conditions for case 1, case 2, case 3 or case 4. So the current active list m ust

m atch conditions for case -5, case 6 or case 7, and a t least two com m ands will be

created. To clarify which case it m atches, we need to check the th e o ther two vertices

(u8 and v6) in quad (vO, v2, v8, v6) which contains th e focus edge (uO, v2). Since

the value of field n u m O f V i s i t e d E d g e for either vertex is 0, which m eans bo th of

the vertices are free, we conclude th a t the current active list m atches conditions for

subcase 5.1. In th is case, two add com m ands are created for vertex v8 and u6, the

current active list, is expanded, and the focus edge moves to edge (?;0,u6), as shown

in Fig. 3.2(E). There are also some other operations should be perform ed, bu t here

we will not give a detailed description for all the operations. For the operations

perform ed in each case, you can find the details in section 3.3.1. The same rule

applies for all the following discussion in th is chapter.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

Now the focus edge (uO, v6) is in quad (nO, u6, ulO, v4). From th e same logic as

in the previous step, we now find th a t the current active list m atches conditions for

subcase 5.1 again. So, we create two more add com m ands for vertex rdO and v4,

expand the current active list, and move the focus edge to edge (uO, v4), as shown in

Fig. 3.2(F).

Now, the current active list m atches conditions for case 4, since vertex uO, one

of the two endpoints of th e focus edge, is “alm ost full” . By checking neighboring

vertices of vertex uO in th e current active list, we find th a t there is only one adjacent

vertex around vertex vO th a t is “alm ost full” , which m eans 3 consecutive vertices in

the current active list are shared w ith quad (uO, u4, v5, u l) which contains the focus

edge (uO, u4). This m atches conditions for subcase 4.1. We also find th a t vertex r 5

(which is the only vertex in th e quad th a t is not shared w ith the current active l is t)

is a free vertex since the value of field n u m O f V i s i t e d E d g e for it is 0. From what

we have exam ined, we finally conclude th a t the current active list m atches conditions

for subcase 4.1.1. So, we create one add com m and for vertex u5, and perform some

other necessary operations, as shown in Fig. 3.2(G).

Now, the focus edge is (u l, v5), and the quad containing the focus edge is (c l. co.

d l , v7). We can see th a t the current active list m atches conditions for case 5.1. So

we create two more add com m ands for vertex e l l and v7. expand the current active

list, and move the focus edge to edge (v l , v7) , as shown in Fig. 3.2(H).

Similar to the case shown in Fig. 3.2(F), we now find th a t the current active list

m atches conditions for subcase 4.1.1. So, we create one add com m and for vertex r9.

and perform some other necessary operations, as shown in Fig. 3.2(1).

Now, the focus edge is (c3, c9), and th e current active list is (c4. ?;5, n i l , v7, c9. r3 .

v2, v8, v6, clO). By enum eration, we know th a t the current active list doesn 't m atch

conditions for case 1, case 2, case 3 or case 4. T hen we check quad (w3, w9, n i l , ?;5).

which contains the focus edge (n3,w9). We find th a t vertex n i l is in the current

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

active list, which m atches conditions for case 6; vertex vb is also in the current active

list, which m atches conditions for subcase 6.2. This indicates th a t all 4 vertices of

quad (u3, u9, n i l , v5) are in the current active list. We create two split com m ands

for vertex v l l and w5. The offset of th e first split com m and on vertex v l l is the

distance between vertex v \ \ and vertex v9 (end vertex of th e focus edge) along the

current active list; the offset of the second split com m and on vertex v5 is the distance

between vertex v3 (s ta rt vertex of th e focus edge) and vertex vb along current active

list. The current active list is split into 3 active lists, 2 of which are pushed onto list

stack, and we proceed w ith the th ird one, which is active list (u l l ,u 5) , as shown in

Fig. 3.2(J) and Fig. 3.2(K).

Since size of the current active list (n i l , u5) is less th a n 3, which m atches conditions

for case 1, we ju st remove the current active list, and proceed w ith the active list

(u3, v2, v8, i^6, r'10, u4, u5) popped from the list stack, as shown in Fig. 3.2(L).

Now, th e focus edge is (v3.v5), and the current active list is (u3, v2, v8, v6, vlO,

v4, v5). We can see th a t the current active list m atches conditions for case 4, since

a t least one of th e endpoints of the focus edge is “alm ost full". By checking the

neighboring vertices of th a t “alm ost full” vertex in th e active list, we find th a t there

are two consecutive “alm ost full” vertices around it, which m eans 4 consecutive

vertices in th e active list are shared w ith quad (v3, vb, u4, v2) which contains the focus

edge (u3.u5). This m atches conditions for subcase 4.2. We perform some operations

for th is case, and move to the next step, as shown in Fig. 3.2(M).

Now, the focus edge is (v2,v4), and the current active list is (r?2, v8, vQ, r.’lO, v4).

Similar to th e previous step, the current active list m atches conditions for subcase

4.2. We perform the same operations as in the previous step, as shown in Fig. 3.2(N).

Now, the focus edge is (u8 ,u l0), and the current active list is (v8. v6. rdO). By

enum eration, we know th a t th e current active list doesn’t m atch conditions for case

1, case 2, case 3 or case 4. So we need to check the o ther two vertices v l l and v9 in

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

quad (u8, clO, v l l , v9) which contains the focus edge (u8, ulO). I t ’s clear th a t vertex

v l l is in one of the active lists in the list stack, which m atches conditions for case 7;

meanwhile, vertex c9 is also in one of th e active lists in the list stack, which m atches

conditions for subcase 7.3; w h a t’s more, vertex v l l and vertex v9 are in the same

active list (n i l , v7, v9), which m atches conditions for subcase 7.3.2. For this case, we

add all th e edges outside vertex v l l and vertex v9 along active list (n i l , v7, u9) to the

current active list (r;8, r;6, ulO), and create a new active list (u 9 ,u l l) , which contains

edge (n i l , v9) and all the edges between vertex v l l and vertex v9 along the active list

{ v l l , v 7 , v 9) . Since th e size of the new created active list (u9, n i l) is less than 3, we

ju s t delete th is new active list. T hree com m ands are created for th is case, two merge

com m ands for vertex v l l and vertex c9, and one split com m and for the new created

active list. The index value of the second merge com m and is —1, which indicates th a t

two merge operations are perform ed on the same active list. The details are shown

in Fig. 3 .2 (0), Fig. 3.2(P) and Fig. 3.2(Q).

Now7, th e focus edge is (n i l , rTO), and th e current active list is (n i l . v7, v9, v8, v6,

t'10). We can see th a t the current active list m atches conditions for case 4, since a t

least one of the endpoints of the focus edge is “alm ost full” . By checking neighboring

vertices of th a t “alm ost full” vertex in the current active list, we can find th a t there

are two consecutive “alm ost full” vertices around it, wdiich m eans 4 consecutive

vertices in the active list are shared w ith quad (n il , r;10, v6, v7) wdiich contains the

focus edge (c ll.rT O). This m atches conditions for subcase 4.2. We perform some

operations for this case, and move to the next step, as showm in Fig. 3.2(R).

Now, th e focus edge is (c7, c6), and the current active list is (v7. v9, v8, v&). By

enum eration, we know th a t th e current active list doesn’t m atch conditions for case 1

or case 2. On the o ther hand, the current active list m atches conditions for case 3 since

there are only 4 vertices in the current active list, and all of them are “alm ost full” .

This indicates th a t the quad (v7, v9. v8, v6) is the only quad outside the current active

list (v7, u9, v8, v6). For th is case, we increase the value of field n u m O f V i s i t e d E d g e

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

by 1 for each vertex in th e quad (v7, 9, 8, v6), and then delete th e current active list,

as shown in Fig. 3 .2(S).

Now, there are no active lists left, and we claim th a t the com pression process is

done.

D uring th e com pression process, each tim e we create an add com m and for a

free vertex, we push th is free vertex onto stack new V . The o u tp u t for the com

pression process are two hies. One contains th e ordered vertices from stack n e w V ,

nam ed “out_vert.ex.txt” , the other one contains the sequence of com m ands, nam ed

“out_conunand.tx t” . The content of the ou tp u t hies are shown in Fig. 3.2(U). The

com m and hie can be encoded using entropy coding, which will be discussed later.

3.4.2 Decom pression of a torus mesh

Now we have two input hies for decompression, hie “out_vertex .tx t” contains a se

quence of vertex coordinates, and hie “out_com m and.txt’’ contains a sequence of

com m ands, as shown in Fig. 3.3(B). L e t’s see how we reconstruct the torus using

these two input hies.

As shown in Fig. 3.3(C), first, we read hie “out._vertex.txt” and pu t the vertices

into a vertex stack; then , we read the com m and hie “out_com m and.txt” , and pu t the

com m ands in to a com m and stack.

The first 4 com m ands in com m and stack m ust be add com m ands. We pop the first.

4 com m ands from com m and stack, and pop the first 4 vertices (t’O, c l , v3, v2) from

vertex stack. T hen we create a quad (uO, u l, v3. v2) w ith these 4 vertices. We set the

current active list to be (uO, u l. u3, u2), and the focus edge to be (vQ,v2), which is

the opposite half edge of the last edge of the quad, as shown in Fig. 3.3(D).

N ext, by enum eration, we can see th a t the current active list. (uO, u l, r3. v2) doesn’t

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

m atch conditions for case 1, case 2, case 3 or case 4. So th e current active list m ust

m atch conditions for case 5, case 6 or case 7. To clarify which case it m atches, we

pop two com m ands from com m and stack, since a t least two com m ands are created

by case 5, case 6 or case 7 during compression. The next two com m ands are add

com mands, which m atches conditions for subcase 5.1. So we pop two vertices (v8

and v6) from vertex stack, create a new quad w ith the focus edge and the two new

vertices (v8 and v6). Also we need to expand the active list, move the focus edge to

edge (u0,u6), and perform some other necessary operations for case 5.1, as shown in

Fig. 3.3(E).

Now the focus edge is (uO, u6), and the current active list is (uO. u l, v3. u2, v8, v6).

From the same logic as th e previous step, we can find th a t now the current active list

m atches conditions for case 5.1 again (after popping two com m ands from com m and

stack). So we pop another two vertices (ulO and vA) from vertex stack, create a new

quad (vO, v6, t ’10, vA), and perform some other necessary operations, as shown in Fig.

3.3(F).

Now, th e focus edge is (vO,vA), and the current active list is (uO, u l, c3. r;2, u8,

v6, r>10, vA). You can see th a t the current active list m atches conditions for case

4, since vertex nO, one of the two endpoints of the focus edge, is “alm ost full” . By

checking neighbor vertices of vertex vO in the current active list, we can find th a t

there is only one consecutive vertex around vertex uO is “alm ost full” , which m eans

3 consecutive vertices (u4, uO, u l) in the current active list are shared w ith the next

created quad which contains the focus edge (u0,t>4). This m atches conditions for

subcase sub4.1. To clarify th e subcase fu rther more, we pop one com m and from

com m and stack. The com m and popped out is an add com m and, which m atches

conditions for subcase 4.1.1. So, we pop one vertex (v5) from vertex stack, create a

new quad (uO, v4, u5, id) , and perform some other necessary operations, as shown in

Fig. 3.3(G).

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

Now, th e focus edge is (u l,u 5). Again, by enum eration, we can find th a t the

current active list (u4, vb, v l , v3, v2, v8, v6. ?;10) doesn’t m atch conditions for case 1,

case 2, case 3 or case 4. So current active list m ust m atch conditions for case 5, case 6

or case 7. To clarify which case it m atches, we pop two com m ands out from com m and

stack. The next two com m ands are add com mands, which m atches conditions for

subcase 5.1. So we pop two vertices (n i l and v7) from vertex stack, create a new

quad w ith the focus edge and the two new vertices (n i l and n7), as shown in Fig.

3.3(H).

Now', th e focus edge is (n l,n 7), and th e current active list is (n4, n5, n i l , v7,

n l, n3, n2, n8, n6, nlO). Similar to the case shown in Fig. 3.3(F), we can find th a t

now the current active list m atches conditions for subcase 4.1 since 3 consecutive

vertices (n7, n l,n 3) in the current active list are shared w ith th e next created quad

which contains the focus edge (n l,n 7). We pop one com m and from com m and stack.

The com m and popped out is an add com m and, which m atches conditions for subcase

4.1.1. So, we pop one vertex (u9) from vertex stack, create a new quad (u3, u l, u7, n9),

and perform some other necessary operations, as shown in Fig. 3.3(1).

Now, the focus edge is (v3, v9), and the current active list is (u4, vb, n i l , v7, v9, v3,

v2, v8, v6, ulO). Again, by enum eration, we know th a t the current active list doesn’t

m atch conditions for case 1, case 2, case 3 or case 4. So the current active list m ust

m atch conditions for case 5, case 6 or case 7. To clarify which case it m atches, we pop

two com m ands from com m and stack. T he next two com m ands are split com mands,

which m atches conditions for subcase 6.2. This indicates th a t all vertices of next

created quad are from current active list. By checking the o f f s e t values of the splits

com m ands, we can find th a t th e o ther two vertices of the new created quad are ?;11

and vb. So we create a new quad (u3 ,v 9 , n i l ,u 5) , split the current active list into

three active lists, push two of them into list stack, and proceed w ith th e th ird one,

which is active list (n ll ,u 5) , as shown in Fig. 3.3(J) and Fig. 3.3(K).

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

Now the current active list is (n i l , u5). Since size of the current active list (i’l l , v5)

is less th an 3, which m atches conditions for case 1, we ju st remove th e current active

list, and proceed w ith the active list (v3, v2, v8. v6, ulO, v4, v5) popped from list stack.

To make th e following description easier for understanding, we draw th e active list

(u3, t ’2, u8, u6, ulO, u4, u5) in an alternative way, as shown in Fig. 3.3(L).

Now, the focus edge is (v3,v5), and th e current active list is (v3, v2, v8, v6, ulO,

v4, v5). We can see th a t the current active list m atches conditions for case 4, since

at least one of the endpoints of th e focus edge is “alm ost full” . By checking neighbor

vertices of th a t “alm ost full” vertex in the active list, we can find th a t there are th ree

consecutive “alm ost full” vertices around it, which m eans 4 consecutive vertices

(u4, r5 . v3. v2) in th e current active list are shared w ith the new created quad which

contains the focus edge (v3, v5). This m atches conditions for subcase 4.2. So, we just

create a new quad (v3, v5, v4, v2), and perform some other necessary operations, as

shown in Fig. 3.3(M).

Now, the focus edge is (v2,v4), and the current active list is (v2, v8, v6, rTO, v4).

Similar to th e previous step, th e current active list m atches conditions for case 4.2,

and 4 consecutive vertices (ulO, u4, v2, v8) in the current active list are shared w ith

the new created quad which contains th e focus edge (v2,v4). So, we ju s t create a

new quad (v2. v4, r.’lO, v8), and perform some o ther necessary operations, as shown in

Fig. 3.3(N).

Now, the focus edge is (u8,rT 0), and th e current active list is (u 8 ,u 6 ,u l0). By

enum eration, we know th a t the current active list doesn’t m atch conditions for case 1,

case 2, case 3 or case 4. So current active list m ust m atch conditions for case 5, case

6 or case 7. To clarify which case it m atches, we pop two com m ands from com m and

stack. The next two com m ands are merge com m ands, which m atches conditions for

subcase 7.3. W h a t’s more, th e index value for th e second merge com m and is -1, which

m atches conditions for subcase 7.3.2. In this situation, we need to create a new quad

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

first. Two vertices of the new quad are the endpoints of th e focus edge (u 8 ,t’10).

The other two vertices come from th e active list, (n i l , v7, v9) which is identified by

the index value of the first popped merge com mand. We can find the o ther two

vertices from the active list (u l l ,u 7 , v9) by checking the o f f s e t value of the two

merge com mands. A fter the o ther two vertices v l l and v9 are found, we create a new

quad (u8, ulO, e l l , u9). Then we add all edges outside vertex e l l and vertex e9 along

active list, (e l l , e7, e9) to the current active list (e8, e6, elO), and create another new

active list (e9. e l l) , which contains edge (e l l ,e 9) and all the edges between vertex

e l l and vertex e9 along active list (e l l ,e 7 ,e 9) . C reating a new active list m eans

splitting current active list into two, so we need to pop a new com m and (which must

be a split com m and) from com m and stack and then split. Details are shown in Fig.

3 .2 (0), Fig. 3.2(P) and Fig. 3.2(Q).

Now, th e focus edge is (e l l ,e lO) , and the current active list is (e l l , v7. c9. r 8 .

e6, elO). We can see th a t the current active list m atches conditions for case 4. since

at least one of the endpoints of the focus edge is “alm ost full” . By checking neighbor

vertices of th a t “alm ost full” vertex in the active list, we can find th a t there are

three consecutive “alm ost full” vertices around it, which m eans four consecutive

vertices (e l l , v7, v6, r.’lO) in th e current active list are shared w ith the new created

quad which contains the focus edge (u l l ,u lO) . This m atches conditions for subcase

4.2. So, we ju s t create a new quad (n i l , r.’lO, v6, u7), and perform some other necessary

operations, as shown in Fig. 3 .3(R).

Now, th e focus edge is (v7, v6), and th e current active list is (v7, v9. v8. rG). By

enum eration, we know th a t th e current active list doesn’t m atch conditions for case

1 or case 2. On the other hand, current active list m atches conditions for case 3 since

there are only 4 vertices in th e current active list, and all of them are “almost full".

This indicates th a t there should be only one un-created quad outside current active

list (?;7, u9, v8, u6). For th is case, we ju s t create a new quad (v7 . 9, 8, u6), increase the

value of field n u m O f V i s i t e d E d g e by 1 for each vertex of the quad, and then delete

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

the current active list, as shown in Fig. 3.3(S).

Now, there are no any active lists left, and we claim th a t th e decom pression process

is done.

3.5 H andling boundaries

O ur im plem entation works for quadm esh w ithout boundary. For mesh w ith boundary.

Toum a-G otsm an suggested to add one dum m y vertex and encode th is dum m y vertex

separately. The same idea won’t work for quadm eshes.

For a quadm esh w ith boundary, consider the polygon formed the by boundary

edges. E ither you have to split th is polygon into quads, which will in troduce more

vertices/edges, or you have to in troduce triangles. We do th ink the la tte r is better.

The easiest way m ight be:

1. A dd one dum m y vertex 1st, triangu late the polygon;

2. Traverse all triangles around the dum m y vertex first.

The result mesh contains quads and some dum m y triangles. D uring the com

pression process, we conquer those dum m y triangles first, and then conquer all rest

quads.

3.6 E ntropy cod in g o f th e com m and sequence

The th ree com m ands appearing in the connectivity code are “add < d eg ree> ” , “split

< offset> ” and “merge < index> < offset > ” . Generally, a typical code contains m any

“add” com mands, a few “sp lit” com m ands, and alm ost no “m erge” com mands.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

In typical quadm eshes, th e average vertex degree is 4, and there is a spread of

degrees around th is value. Using entropy coding, like Huffman to encode the connec

tiv ity code could compress th e connectivity further more. Table 3.4 is th e Huffman

code for a sample mesh “Torus” which is presented in C hap ter 5.

add 4 1

split 1 001

split 2 000

split 6 0110

merge -1 2 0111

merge 0 0 010

Table 3.4: Huffman coding scheme for sample mesh “Torus"

3.7 T im e co m p lex ity analysis

The m ost tim e-consum ing operation in the connectivity com pression procedure is

searching for a given vertex in some active list on the list stack. This is needed only

for ’’m erge” operations, which are extrem ely rare. A part from th a t, b o th the space

and tim e com plexity of the com pression and decom pression algorithm s are linear in

the num ber of mesh quads/vertices.

3.8 Sum m ary

In th is chapter we discussed how Toum a-G otsm an’s com pression algorithm for tr i

angle meshes is successfully extended for quadrilateral meshes. Tim e com plexity

analysis shows th a t b o th the com pression and decom pression algorithm s are linear in

the mesh size.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

Compression Example

W - V rrr̂

Figure 3.2: Compression example (A to U)

54 next: init the mesh

Figure 3.2: Compression exam ple (B)

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/0)
10(4/0)

7(4/0)6(4/0)

9(4/0)8(4/0)

11(4/0)
10(4/0)

5(4/0)
4(4/0

2(4/0) 3(4/0)
1st quad

0(4/0) 1(4/0)
" 1 s t edge

5(4/0)4(4/0) next: init the first active list

Figure 3.2: Com pression example (C)

11(4/0)
10(4/0)

7(4/0)6(4/0)

9(4/0)8(4/0)

11(4/0)
10(4/0)

5(4/0)
4(4/0

0(4/1)
next:

1(4/1)

4(4/0) currentPolygon.v[2] (v8) is unvisited -> case 5
currentPolvgon.v[3] (v6) is unvisited -> case 5.1

5(4/0)

Figure 3.2: Com pression example (D)

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

1(4/0)
10(4/0)

7(4/0)6(4/1)

9(4/0)8(4/1)

11(4/0)
10(4/0)

5(4/0)
4(4/0'

i r.

0(4/2)
next:

1(4/1)

4(4/0) currentPolygon.v[2] (10) is unvisited -> case 5currentPolygon (10) unvisited 5(4/0)is case
currentPolvaon.v[3l (v4) is unvisited -> case 5.1

1 4
1 4
1 4
1 4
1 4
1 4

Figure 3.2: Compression exam ple (E)

v0
v1
v3
v2
v8
v6
v 10
v4

.10(4/1)
11(4/0)

S ^ 6 (4 /2) 7 (4 / 0 / ^ ' ' '

\8 (4 /1) 9 (4 /0) /

10(4/1) \

5(4/0)\
4(4/11 ----------- k

1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4

0(4/3) 1(4/1)'
next: focus vertex (vO) is “almost full” -> case 4;

4 (4 / 1) next quad has 2 OHEs in active list -> case 4.1; 5(4/0)
currentPolygon.v[2] (v5) is unvisited -> case 4.1.1

Figure 3.2: Compression exam ple (F)

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/0)
10(4/1)

\
case 4.1.1

1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4

4(4/2) currentPolygon.v[2] (v11) is unvisited -> case 5
currentPolygon.v[3] (v7) is unvisited -> case 5.1

Figure 3.2: Compression exam ple (G)

5(4/1)

J 0(4/1)

10(4/1)

!\
fows,varte& i s “a l m n s t f i ill"

1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4

4(4/2) next c'uad has 2 OHEs in active list case 4.1;
currentPolygon.v[2] (v9) is unvisited -> case 4.1.1

5(4/2)

Figure 3.2: Compression exam ple (H)

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM ______________________________ ___________

11(4/1)
10(4/1)

1(4/4;S q(4/4)

 ..
4 (4 /2)currentP°lygon v[2] (v11) is in current active list -» case 6; 5(4/2)

' , , r O ! / w C \ «r% im i ■ r - f r \ n t l i c t R O

v 1 0

v11

6(4/2)

8(4/1)

10(4/1)

4(4/2’

11(4/1)

5(4/2)

9(4/1)

7(4/2)

Figure 3.2: Compression exam ple (I)

11(4/1)
10(4/1)

7(4/2)6(4/2)
v2 9(4/1)8(4/1)
v6
v1 0

11(4/1)
10(4/1)

v11

5(4/2)
4(4/2'

0(4/4)

5(4/2)4(4/2)

Figure 3.2: Compression exam ple (J)

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM _______________________

11(4/2)
10(4/1)

7(4/2)6(4/2)

9(4/2}8(4/1)
v6
v 1 0
v4 11(4/2 <N10(4/1)
v11

5(4/3’
4(4/2'

1(4/4)

next:(size of current active list) < 2 -> case 1 ;
delete the current active list

5(4/3;4(4/2)

1
1
1
1
1
1
1
1
1
1
1
1
2 2
2 6

Figure 3.2: Compression exam ple (K)

10(4/1)

1(4/4)0(4/4)

4 (4 /2) next: focus vertex (v3) is “almost full” -> case 4;
next quad has 3 OHEs in active list -> case 4.2

5(4/3)

v2

v 1 0
v4

v11
v7
v 9

2 2

6(4/2)

m

8(4/1)

0(4/1)
11(4/2)

9(4/2)

7(4/2)

Figure 3.2: Compression exam ple (L)

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM ________________ _

10(4/1)

1(4/4)0(4/4)

4 (4 /3) next: focus vertex (v2) is “almost full” -A case 4;
next quad has 3 OHEs in active list -> case 4.2

5(4/4)

v 2

v6
v 1 0
v4

v11

2 2
2 6

6(4/2)

5(4/3)

8(4/1)

0(4/1)

(4/3

case 4.2

11(4/2)

5(4/4)

9(4/2}/

3(4/4)

7(4/2)

Figure 3.2: Compression exam ple (M)

11(4/2)
10(4/2

11(4/2)
10(4/2)

case 4.2

0(4/4) 1(4/4)
next eurrentPolygon.v[2] (v11) is in another active list -> case

1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
2 2
2 6

4 (4 /4)currentR°lygon.v[3] (v9) is in another active list -A case 7.3;5(4/4)
v9 and v11 are in the same list -> case 7.3.2

Figure 3.2: Compression exam ple (N)

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/2)
10(4/2)

*10(4/2)

4(4/4) 5(4/4)

Figure 3.2: Compression exam ple (O)

11(4/3)
10(4/3)

case 7.3.2

10 4/3)

4 (4 /4) (size of the new active list created by case 7 .3 .2) < 2
delete the new active list.

Figure 3.2: Compression example (P)

5(4/4)

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM ________________

11(4/3)
10(4/3f

7(4/2)6(4/2)

case 7 3 2

vio
v4 11(4/3)

10(4/3)
v11
v7 5(4/4)

4(4/4

2(4/4) 3(4/4)

1(4/4)0(4/4)

4 (4 /4) next: focus vertex (v11) is "almost full” case 4;
next quad has 3 OHEs in active list -A case 4.2

5(4/4)

Figure 3.2: Compression exam ple (Q)

4
4
4
4
4
4
4
4
4
4
4
4

2 2
2 6
3 0 0
3 - 1 2
2 1

10(4/4) case 4 2
11(4/4)

1/3) — “ 1{A3 ^

%

> ----- VI(4/4)\
T 10(4/4) \

5(4/4) V ^
: 7 [4(474L__.------- —K y

/ * « * > 3 (4 M k

70(4/4) 1(4/4)

4(4/4) next: all vertices in active list are almost full -> case 3 5(4/4)

1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
2 2
2 6
3 0 0
3 - 1 2
2 1

Figure 3.2: Compression example (R)

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

10(4/4)

7(4/4)6(4/4) case 3

9(4/4)8(4/4)

v10
11(4/4)

10(4/4)
v11

5(4/4)
4(4/4

3 0 0
2(4/4)

3(4/4)

1(4/4)

5(4/4)4(4/4)

Figure 3.2: Compression example (S)

Done!

Figure 3.2: Com pression example (T)

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

out vertex.txt out command.txt

12
vO
v1
v3
v2
v8
v6
v1 0
v4
v5
v11
v7
v9

17
4
4
4
4
4
4
4
4
4
4
4
4

22
26
3 0 0
3-12
2 1

in it

case 5.1

case 5.1

case 4.1.1

\ case 5.1

j case 4.1.1
j. case 6 . 2

case 7.3.2

Figure 3.2: Compression exam ple (U)

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

Decompression Example

Figure 3.3: Decompression example (A to T)

out_vertex.txt out_command.txt

1 2 17
vO 1 4
v1 1 4
v3 1 4
v2 1 4
v8 1 4
v6 1 4
v1 0 •<------------ 1 4
v4 1 4
v5 1 4
v11 1 4
v7 1 4
v9 1 4

2 2
26
3 0 0
3-12
2 1

Figure 3.3: Decompression example (B)

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

vO
v1
v3
v2
v8
v 6
v 1 0
v4
v5
v11
v7
v9

1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
2 2
2 6
3 0 0
3 - 1 2
2 1

next: init (read first 4 commands and first 4 vertices)

Figure 3.3: Decompression exam ple (C)

vO
v1
v3
v2
v8
v 6
v1 0
v4
v5
v11
v 7
v 9

init

0(4/1) 1(4/1)
next:
read next command -> case 5 ("add" command, v8)
read next command -> case 5.1 (“add” command, v6)

Figure 3.3: Decompression exam ple (D)

1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
2 2
2 6
3 0 0
3 - 1 2
2 1

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

v8
v6
v 1 0
v4
v5
v11
v7
v9

f 8(4/1)

1 0

1(4/1)0(4/2)
next:
read next command case 5 (“add” command, v10)
read next command A case 5.1 (“add" command, v4)

Figure 3.3: Decompression exam ple (E)

10(4/1)

6(4/2)

8(4/1)

4(4/1)

0(4/3) 1(4/1)
next: focus vertex (vO) is “almost full” -> case 4;
next created quad has 2 OHEs in active list -> case 4.1;
next command is an “add" command -> case 4.1.1 (v5)

Figure 3.3: Decompression example (F)

1 4
1 4
1 4
1 4
1 4
1 4
2 2
2 6
3 0 0
3 - 1 2
2 1

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

\
case 4.1.1

npyt

4(4/2) read next commancl case 5 (“add” command, v11) 5(4/1)
read next command A case 5.1 (“add” command, v7)

Figure 3.3: Decompression exam ple (G)

1 4
1 4
1 4
1 4
2 2
2 6
3 0 0
3 - 1 2
2 1

v11
v7
v9

1 1 (4 /1)^

i m W (4 / 2) 7(4/1) *T

j 8(4/1)
4

| >

t o

j j <0
\
i

i _ . . .

o

i

: f 7
\ r y p (4 /4) 1(4ra*t : i ,|

i r r S , •:!

4(4/2) next crealecTquad has 2 OHEs in active list -> case 4.1;
next command is an “add” command -> case 4.1.1 (v9)

Figure 3.3: Decompression example (H)

5(4/2)

1 4
1 4
1 4
2 2
2 6
3 0 0
3 - 1 2
2 1

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/1)
10(4/1)

2 2
2 6
3 0 0

7(4/2)6(4/2)

9(4/1)8(4/1)

<o

1(4/4)

4 (4 /2) read next command -> case 6 ("split” command)
read next command case 6 . 2 (“split” command)

5(4/2)

Figure 3.3: Decompression exam ple (I)

11(4/1)
10(4/1)

2 8
3 0 0

7(4/2)6(4/2)

9(4/1)8(4/1)

co

0(4/4) 1(4/4)

5(4/2)4(4/2)

Figure 3.3: Decompression exam ple (J)

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/2)
10(4/1)

7(4/2)6(4/2)

9(4/2);8(4/1)

0(4/4) 1(4/4)

next:(size of current active list) < 2 -> case 1 ;
delete the current active list.

Figure 3.3: Decompression example (K)

5(4/3;4(4/2)

11(4/2)
10(4/1)

3 0 0

9(4/2W

11(4/2)

caste 1

4 (4 /2) next: focus vertex (v3) is “almost full” -> case 4; 5(4/3)
next created quad has 3 OHEs in active list -> case 4.2

Figure 3.3: Decompression example (L)

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ro
k)

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/2)
10(4/1)

3 - 1 2

11(4/2)'

case 4.2

4 (4 /3) next: focus vertex (v2) is “almost full” -> case 4; 5(4/4)
next created quad has 3 OHEs in active list -> case 4.2

Figure 3.3: Decompression example (M)

10(4/2)

-10(4/2)

X0(4/4) i (4 / 4) \
/ next: read next command -> case 7 (1 "merge” command) X .
4 (4 /4) read next command case 7.3 (1 “merge” command) 5 (4 /4)

2nd argument of the command is -1 case 7.3.2

Figure 3.3: Decompression example (N)

3 0 0
3 - 1 2
2 1

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/2)
10(4/2)

3 0 0

7(4/2)6(4/2)

9(4/2V
case 7.3.2

>10(4/2)

5(4/4) \

2{4t4)
3(4/4)

0(4/4) 1(4/4)

5(4/4)4(4/4)

Figure 3.3: Decompression exam ple (O)

11(4/3)
10(4/3)

10(4/3)

3 0 0
3 - 1 2
2 1

4 (4 /4) (s^ e of the new active list created by case 7.3.2) < 2 5(4/4)
delete the new active list.

Figure 3.3: Decompression exam ple (P)

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/3)
10(4/3)

7(4/2)6(4/2)

case 7.3.2

11(4/3)
10(4/3)

5(4/4)
4(4/4

2(4/4)
3(4/4)

1(4/4)

5(4/4)4(4/4) next: case 4.2

Figure 3.3: Decompression exam ple (Q)

11(4/4)
,10(4/4) case 4.2

11(4/4)
10(4/4)

5(4/4)
4(4/4

2(4/4)
3(4/4)

0(4/4) 1(4/4)

4(4/4) next: all vertices in active list are almost full A case 3 5(4/4)

Figure 3.3: Decompression exam ple (R)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/4)
10(4/4)

7(4/4)6(4/4) case 3

9(4/4)8(4/4)

11(4/4)
10(4/4)

5(4/4)
4(4/4

2(4/4)
3(4/4)

0(4/4) 1(4/4)

5(4/4)4(4/4)

Figure 3.3: Decompression exam ple (S)

Done!

Figure 3.3: Decompression exam ple (T)

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Linear tim e quadm esh decom pression

using Spirale R eversi

Edgebreaker is a triangle conquest approach for connectivity compression of triangle

meshes, which has been explained in section 2.2.6. The approach s ta rts from an initial

borderline, which divides the whole mesh into two regions: visited and unvisited

regions, and adds one triangle at a tim e to the visited regions. The m ain difference

between Edgebreaker algorithm and Toum a-Gotsm aiTs algorithm is th a t Edgebreaker

ou tpu ts the building operations of new triangles, while Toum a-G otsm an’s algorithm

ou tpu ts the valences of new vertices.

There are different algorithm s th a t can be used for th e decoding process. Among

them , Spirale Reversi(20) is th e m ost efficient one. In th is chapter we show how to

extend the Spirale Reversi algorithm to quadm esh connectivity decompression.

8 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

4.1 D efin ition o f o p p o site ed ge (O E) d a ta stru ctu re

In th is chapter we use a simple d a ta s truc tu re called OE (opposite-edge) for repre

senting connectivity of a quad mesh. The d a ta s truc tu re is defined by Jing (21).

Fig. 4.1 illustrates the OE d a ta structure . Each quad in a quad mesh is represented

by four integer references for th e four vertices and four integer references for edges,

plus four integer references for the four opposite-edges. T he opposite-edge of an edge

e[l] in the center quad refers to the edge th a t is next to next to the opposite half

edge of e[3] in the left quad. If e[3] is a boundary edge, we arb itrarily assign -1 in the

opposite-edge field for ohe[1], In o ther words, given an edge of the center quad, its

opposite-edge is an edge th a t belongs to an adjacent quad and is the edge of the center

quad th a t is opposite to the edge th a t it shares w ith the adjacent quad. Vertices,

edges, and opposite edges are identified using positive integers.

4.2 E dgebreaker com p ression a lgorithm

The algorithm for Edgebreaker compression is shown as algorithm 5. The inpu t file is

a quad PLY file, and the ou tpu t files are three files: file “ou t_operation .tx t” contains

a sequence of com mands, file “out_handles.tx t” contains handles inform ation, and file

“out_vertex .tx t” contains vertex coordinates, as shown below.

out ̂ operation, t/xt,

quad P L Y f i l e —* outJ iandIes . txt

out- .vertex.txt

A fter the compression process, we get th e operation code (op-code for short) for the

compression operation associated w ith each quad. We need to encode each operation

to convert the operation code to binary code to finalize the com pression process. Once

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

oe[1]

oe[0]

v[3]/ v[2]

v[0]

e[2]

e[3] \ / e[1]

e[0]/(activeGate)

/v[1]

oe[2]

4 !

°e[3] I

Figure 4.1: OE data structure

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

we have the coding scheme and binary coding stream , we can easily ex tract ASCII

operations from the coding stream .

Compression operations are shown in Fig. 4.2. During compression, each operation

is processed as follows.

(1). Q l

• set s ta tus of all vertices of current quad to visited.

(2). Q2

• v[0].status = v[3].status = visited;

• push opposite half edge a t R IG H T to gateStack.

(3). Q3

• v[0]. s ta tus = visited;

• push opposite half edge a t O P P O S IT E /R IG H T to gateStack;

• markHandles(e[2]).

(4). Q4

• v[0]. s ta tus = v [l],sta tu s = visited;

• push opposite half edge a t O PP O S IT E to gateStack.

(5). Q5

• v[0]. s ta tu s = visited;

• m ark new inner vertex v[2];

• push opposite half edge a t R IG H T to gateStack.

(6). Q6

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

• v[l], s ta tus = v[2]. s ta tu s = visited;

• push opposite half edge a t L E FT to gateStack.

(7). Q7

• push opposite half edge at L E F T /R IG H T to gateStack;

• markHandles(e[3]).

(8). Q8

• push opposite half edge a t L E F T /O P P O S IT E /R IG H T to gateStack:

• markHandles(e[2], e [3]).

(9). Q9

• v[l], s ta tus = visited;

• push opposite half edge a t L E F T /O P P O S IT E to gateStack;

• markHandles(e[3]).

(10). Q10

• m ark new inner vertex v [2];

• push opposite half edge a t L E F T /R IG H T to gateStack;

• markHandles(e[3j).

(11). Q l l

• m ark new inner vertex v[3];

• push opposite half edge a t O P P O S IT E /R IG H T to gateStack;

• markHandles(e[2]).

(12). Q12

• v[l], sta tus = visited;

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

• m ark new inner vertex v[3];

• push opposite half edge at O PP O S IT E to gateStack.

(13). Q13

• m ark new inner vertex v[2] and v[3];

• push opposite half edge a t R IG H T to gateStack.

4.3 Spirale R eversi d ecom p ression a lgorithm

Following th e Spirale Reversi decom pression algorithm for triangle mesh, which was

described by Isenburg and Snoeyink (20), we define the Spirale Reversi decom pression

algorithm for quadm esh, which is shown as algorithm 6 . The th ree inpu t files are file

“out_operation.tx t” , “out_handles.tx t” and “out_vertex.txt” , and th e ou tp u t is a quad

PLY file, as shown below.

outjoperation. txt

ou tJ iand le s . tx t quad P L Y f i l e

outjvert.ex. txt

Decompression operations are shown in Fig. 4.3. For each operation, we process

it as follows.

(1). Q1

• set s ta tus of all vertices of current quad to visited:

• create a new quad w ith 4 new vertices:

• set previous on boundary vertex for v[0], v[3], v[2];

• push previous gate to gateStack.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

(2). Q2

• create a new quad w ith 2 new vertices;

• set previous on boundary vertex for v[0], v [3].

(3). Q3

• create a new quad w ith 1 new vertex;

• set previous on boundary vertex for v[0];

• remove duplicate created vertices a t v[2],

(4). Q4

• create a, new quad w ith 2 new vertices;

• set previous on boundary vertex for v[0], v[2].

(5). Q5

• create a new quad w ith 1 new vertex;

• set previous on boundary vertex for v[0];

• m ark new inner vertex v[2]. assign coordinates for it.

(6). Q6

• create a new quad w ith 2 new vertices;

• set previous on boundary vertex for v[2], v[3],

(7). Q7

• pop a gate from gateStack;

• create a new quad;

• set previous on boundary vertex for v[3].

(8). Q8

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

• pop 2 gates from gateStack

• create a new quad ;

• remove duplicate created vertices a t v[2], v[3].

(9). Q9

• pop a gate from gateStack

• create a new quad w ith 1 new vertex;

• set previous on boundary vertex for v[2];

• remove duplicate created vertices a t v[3].

(10). Q10

• pop a gate from gateStack;

• create a new quad;

• remove duplicate created vertices a t v[3];

• m ark new inner vertex v[2], assign coordinates for it.

(11). Q l l

• pop a gate from gateStack;

• create a new quad;

• remove duplicate created vertices a t v[2];

• m ark new inner vertex v[3], assign coordinates for it.

(12). Q12

• create a new quad w ith 1 new vertex;

• set previous on boundary vertex for v[2];

• m ark new inner vertex v[3], assign coordinates for it.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

(13). Q13

• create a new quad w ith 1 new vertex:

• m ark new inner vertex v[2] and v[3], assign coordinates for them ,

input : file_in_ply

output: file_out_operation, file_out_vertex, file_outJiandle

Read OE file, and set all vertices and all quads to be unvisited;

Get boundary info by checking OE file, and create stack boundaryVertex;

if boundaryVertex is empty then /* no boundary on the mesh */
Set 1st quad’s boundary edges to be the boundary of the mesh;

Set status of vertices on boundary to be onBoundary;

Push the opposite edge of the 1st edge on boundary into gateStack;

|_ Set status of the 1st quad to be visited;

else
Set status of vertices on boundary to be onBoundary:

|_ Push the opposite edge of the 1st edge on boundary into gateStack;

while gateStack is not empty do
activeGate = a gate popped from gateStack;

activeQuad = the quad containing activeGate:

if activeQuad is unvisited then
Get activeQuad’s interactionType;

U pdate mesh according to inter actionType; /* c a ll function updateMeshO */

Set status of activeQuad to be visited:

Push inter actionType into operationStack;

Check possible handles for activeQuad;

Create operation file containing all operations;

Create handle file containing all handles;

Sort vertices according to stacks innerV ertex and boundaryV ertex:

Create vertex file containing sorted vertex coordinates;
Algorithm 5: Quadmesh compression using EdgeBreaker

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

in p u t : file jn .operation, file_in.vertex, file_in_handle

o u tp u t: file_out_ply

Read operation file and create stack operationStack:

Read vertex file;

Read handle file, and create stack handleStack-,

w hile operationStack is not empty do
operation = operationStack .pop()\

processOperation(operation); /* new vertices/quad created here */

Set next activeGate to be new quad's 1st edge;

mark new quad to be unvisited ;
Remove duplicate vertices from temporary vertex list;

Assign coordinates for boundary vertices; Create PLY file;
A lg o rith m 6: Quadmesh decompression using Spirale Reversi

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

4.4 I llu stra te th e approach

To illustrate the algorithm , we use a quadm esh w ith boundary shown in Fig. 4.4(B)

as example.

For each vertex and each quad has two possible status: visited or unvisited. We

use the s ta tu s inform ation of th e vertices and th e quads to identify a q u ad ’s q u ad ’s

type.

T here are two kinds of vertices in the mesh: inner vertex and boundary vertex.

We need to create four stacks for th e algorithm : an inner vertex stack used to- store

inner vertices of th e mesh, a boundary vertex stack used to store boundary vertices

of the mesh, an operation stack used to store q u ad ’s types for each quad, and a gate

stack used to store gates.

Fig. 4.4(C) to Fig. 4.4(S) shows how the compression algorithm works for the

sample mesh, and Fig. 4.5(B) to Fig. 4.5(S) shows how the decom pression algorithm

works.

4.4.1 Compress a mesh with boundary

After reading the m esh's inform ation from an input file, we can create an image of

the mesh, as shown in Fig. 4.4(C).

N ext we need to identify th e boundary of the quadm esh. All vertices on the

boundary are boundary vertices. B oundary vertices are ordered in counter-clockwise

order, and then pushed onto the boundary stack. The first active gate (t’O, u l) , is the

opposite half edge of the first edge (u l, uO) on th e boundary, as shown in Fig. 4.4(D).

Q uad (uO. u l, v2, v3) which contains the active gate is the one we are visiting. We

can identify quad (uO, v l , v2, v3) as q u ad ’s type “Q5” since its left, neighbor quad

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

does not exist or is visited, and th e th ird vertex v2 is not on th e current boundary

now. So, we push vertex v2 onto the inner vertex stack, push quad type “Q5” onto

the operation stack, and push a new gate (v2 ,v l) onto the gate stack, as shown in

Fig. 4.4(E). W h a t’s more, we need to m ark vD as not on th e current boundary (here

we m ark vO as v is i ted). A lthough there is no boundary shown in th e figures, you

still need to keep in m ind th a t there is a boundary (or several boundaries) which

enclose th e visited region of the mesh during th e compression process, and same for

the decom pression process.

For each step, we need to check if a handle is created or not. Since in th is exam ple

there are no any handles created, we w on’t discuss how to identify handles and how

to handle them .

Next, we pop a gate (v 2 , v l) off the gate stack. Now quad (v2, v \ . vA. r5) which

contains active gate is the one we are visiting, and we identify it as q u ad ’s type "Ĉ 1 1 ".

So, we push vertex vb onto the inner vertex stack, push q u ad ’s type “Q ll" onto the

operation stack, and push two newr gates (vA .vl) and (r?5,u4) onto the gate stack, as

shown in Fig. 4.4(F).

Next, we pop a gate {vA.v l) off the gate stack. Now quad (u4, r.’l, ?’G. v7) which

contains the active gate is the one we are visiting, and we identify it as quad 's type

“Q l” . So, we ju st m ark all vertices of th e quad as not being on the current boundary

(here we m ark the vertices as visited), and push q u ad ’s type “Q l” onto the operation

stack, as shown in Fig. 4.4(G).

Next, we pop a gate (v5,v4) off the gate stack. Now7 quad (u5. v4. v8. v9) which

contains the active gate is the one we are visiting, and we identify it as quad 's type

“Q 6 ” . So, we just m ark vertex v4 and vertex v8 of the quad as not being 011 the

current boundary (here we m ark the vertices as visi ted), push one new7 gate(u 5 . v9)

onto the gate stack, and push q u ad ’s type “Q 6 ” onto the operation stack, as shown

in Fig. 4.4(H).

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Next-, we pop a gate (u5, v9) off th e gate stack. Now quad (u5, v9, t ’10, n i l) which

contains th e active gate is the one we are visiting, and we identify it as q u ad ’s type

“Q l l ” . So, we push vertex v l l onto the inner vertex stack, push q u ad ’s type “Q l l ”

onto the operation stack, and push two new gates (u ll .u lO) and (ulO, v9) onto the

gate stack, as shown in Fig. 4.4(1).

Next, we pop a gate (r-’lO, v9) off gate stack. Now quad (ulO, u9, u l2 , u l3) which

contains active gate is th e one we are visiting, and we identify it as q u ad ’s type “Q l” .

So, we ju st m ark all vertices of the quad as not on the current boundary, and push

quad ’s type “Q l” onto the operation stack, as shown in Fig. 4.4(J).

Next, we pop a gate (n i l , r-’lO) off gate stack. Now quad (n i l , rlO , n l4 , u l5) which

contains active gate is the one we are visiting, and we identify it as quad ’s type

“Q 6 ” . So, we ju st m ark vertex ulO and vertex u l4 of the quad as not on the current

boundary, push one new g a te (u ll, u l5) to gate stack, and push q u ad ’s type “Q 6 ”

onto the operation stack, as shown in Fig. 4.4(K).

Next, we pop a gate (n i l , n l5) off gate stack. Now quad (n i l , n l5 , n l 6 , n l7) which

contains active gate is the one we are visiting, and we identify it as quad ’s type

“Q l l ” . So, we push vertex n l7 onto th e inner vertex stack, push q u ad ’s type “Q l l ”

onto th e operation stack, and push two new gates (n l6 . n l5) and (n l7 , n l 6) onto the

gate stack, as shown in Fig. 4.4(L).

Next, we pop a gate (n l 6 , n l5) off gate stack. Now quad (n l 6 , n l5 , n l 8 , n l9) which

contains active gate is th e one we are visiting, and we identify it as quad 's type “Q l” .

So, we ju st m ark all vertices of the quad as not on the current boundary, and push

quad ’s type “Q l” onto th e operation stack, as shown in Fig. 4.4(M).

Next, we pop a gate (ul7, n ib) off gate stack. Now quad (vl7, r?16, u20, v21) which

contains active gate is the one we are visiting, and we identify it as q u ad ’s type

“Q6 ” . So, we ju st m ark vertex vlQ and vertex u20 of th e quad as not on the current-

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

boundary, push one new gate(u l7 , r;21) onto the gate stack, and push q u ad ’s type

“Q 6 ” onto the operation stack, as shown in Fig. 4.4(N).

Next, we pop a gate (c l7 , ?;21) off gate stack. Now quad (u l7 , u21, r?3, c2) which

contains active gate is th e one we are visiting, and we identify it as q u ad ’s type “Q77' .

So, we push quad ’s type “Q7” onto the operation stack, and push two new gates

(u3,u21) and (wl7, v2) onto the gate stack, as shown in Fig. 4 .4 (0).

Next, we pop a gate (u3,u21) off gate stack. Now quad (u3.u21,u22, u23) which

contains active gate is the one we are visiting, and we identify it as q u ad ’s type “Q l” .

So, we ju s t m ark all vertices of the quad as not on the current boundary, and push

q u ad ’s type “Q l” onto the operation stack, as shown in Fig. 4.4(P).

Next, we pop a gate (ul7, v2) off gate stack. Now quad (r>17. c2, r;5, n i l) which

contains active gate is the one we are visiting, and we identify it as q u ad ’s type “Q l” .

So, we ju s t m ark all vertices of the quad as not on th e current boundary, and push

quad ’s type “Q l” onto the operation stack, as shown in Fig. 4.4(Q).

Now, th e gate stack is empty, and we claim th a t th e compression process is done.

The ou tpu t are two files, as shown in Fig. 4.4(R). File “ou t_operation .tx t” contains the

sequence of quad ’s types, and file “out_vertex .tx t” contains the sequence of vertices,

which contains two parts. The first p a rt is the ordered inner vertices, which are

identified in sequence during com pression process, and the second part is the ordered

boundary vertices, which are identified before we traverse any quads in the mesh.

We need to keep in m ind th a t, th e last two vertices in file “out_vertex .tx t” are two

boundary vertices which are endpoints of the first active gate. The first active gate

is where th e com pression s ta rts and where the decom pression ends.

The operation file “out_operation .tx t” can be encoded using some code schemes,

which will be discussed later.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

4.4.2 Decom press a mesh w ith boundary

Now we have two inpu t files for decompression, file “out_vertex.tx t” contains a se

quence of vertex coordinates, and file “out_operation.tx t” contains a sequence of op

erations, as shown in Fig. 4.5(B). L et’s see how we reconstruct the mesh using these

two inpu t files.

As shown in Fig. 4.5(C), first, we read file “out_vertex .tx t” and pu t the vertices

onto a vertex stack; then , we read the file “out_operation .tx t” , and pu t th e operations

onto a operation stack. We also need to create another two more em pty stacks, one

is the gate stack, the o ther one is the inner vertex stack.

The decom pression process works like this: we pop th e operations from th e opera

tion stack one by one, and create a quad for each operation, until the operation stack

is empty.

The first operation popped out from operation stack is “Q l” . So we create four

“v irtual” vertices, create a quad w ith them , and set the active gate to be th e first

edge g l of the quad, as shown in Fig. 4.5(D). For the newly created quad and its four

vertices (u[0], u[l], u[2], u[3]), we claim th a t all the four vertices are on the boundary

now, th e previous on-boundary vertex of vertex ?’[()] is u[3], the previous on-boundary

vertex of vertex u[3] is u[2], and the previous on-boundary vertex of vertex u[2] is

u[l]. A ctually, for each on-boundary vertex, we rem em ber its previous on-boundary

vertex; thus we knowr th e exact inform ation about current boundary of the mesh

during decompression.

Next operation popped out from operation stack is “Q l” . So we create four more

“v irtual” vertices, create a quad w ith them , push active gate g l onto gate stack and

set the active gate to be the first edge g2 of the quad, as shown in Fig. 4.5(E). For the

new created quad and its four vertices (u[0], u[l], u[2], u[3]), we claim th a t all the four

vertices are on boundary now, th e previous on boundary vertex of vertex u[0] is u[3],

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

the previous on-boundary vertex of vertex r;[3] is u[2], and the previous on-boundary

vertex of vertex v[2] is u[l].

N ext operation popped ou t from operation stack is “Q7” . So we pop a gate gl

off gate stack, create a quad w ith the four vertices of gate gl and gate e/2 , and set-

active gate to be the first edge g3 of the quad, as shown in Fig. 4.5(F). For th e new

created quad and its four vertices (u[0],u[l],u[2],u[3]), we claim th a t the previous

on-boundary vertex of vertex u[3] is r[2].

Next operation popped out from operation stack is “Q 6 ” . So we So we create two

more “v irtua l” vertices, create a quad w ith the two “v irtua l” vertices and th e two

vertices of gate g3, and set active gate to be the first edge gA of the quad, as shown

in Fig. 4.5(G). For the new created quad and its four vertices (u[0], u[l], v[2), w[3]), we

claim th a t the previous on-boundary vertex of vertex u[3] is v[2], and the previous

on-boundary vertex of vertex v[2] is u[l].

N ext operation popped out from operation stack is “Q l” . So we create four more

“v irtua l” vertices, create a quad w ith them , push active gate gA to gate stack and

set active gate to be th e first edge c/5 of th e quad, as shown in Fig. 4.5(H). For the

new created quad and its four vertices (u[0], r;[l], v{2], u[3]), we claim th a t all the four

vertices are on boundary now, the previous on boundary vertex of vertex u[0] is u[3],

the previous on-boundary vertex of vertex u[3] is v[2], and th e previous on-boundary

vertex of vertex v[2) is u[l].

Next operation popped out from operation stack is “Q l l ” . We pop a gate gA off

gate stack first. The s ta r t vertex of active gate gb and the end vertex of gate gA are

th e same vertex in the mesh, so we remove one of them out from the mesh. Next, we

create a quad w ith th e previous on-boundary vertex of th e s ta rt vertex of gate gA,

and the th ree vertices of gate gA and gate gb. Next, we set active gate to be the first

edge g6 of the quad, as shown in Fig. 4.5(1). For the new created quad and its four

vertices (u[0], u[l], ?;[2], u[3]), we can see th a t e[3] is an inner vertex, so we pop one

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

vertex v \ 7 out from vertex stack and push it onto inner vertex stack. We claim th a t

u[3] of the new created quad is vl7.

N ext operation popped out from operation stack is “Q 6 ” . So we So we create two

more “v irtual” vertices, create a quad w ith the two “v irtua l” vertices and th e two

vertices of gate g(L and set active gate to be th e first edge g7 of the quad, as shown

in Fig. 4.5(J). For the new created quad and its four vertices (u[0], w[l], u[2], u[3]), we

claim th a t the previous on-boundary vertex of vertex n[3] is u[2], and the previous

on-boundary vertex of vertex n[2] is u[l].

Next operation popped out from operation stack is “Q l” . So we create four more

“virtual” vertices, create a quad w ith them , push active gate g7 onto gate stack and

set active gate to be the first edge g8 of the quad, as shown in Fig. 4.5(K). For the

new created quad and its four vertices (u[0], u[l], u[2], n[3]), we claim th a t all th e four

vertices are on boundary now, th e previous on boundary vertex of vertex n[0] is u[3],

the previous on-boundary vertex of vertex u[3] is n[2], and the previous on-boundary

vertex of vertex n[2] is u[l].

Next operation popped out from operation stack is “Q l l ” . We pop a gate g 7 off

gate stack first. The s ta r t vertex of active gate g8 and the end vertex of gate g7 are

the same vertex in th e mesh, so we remove one of them out from the mesh. Next, we

create a quad w ith the previous on-boundary vertex of the s ta rt vertex of gate g7,

and the three vertices of gate g 7 and gate g8. Next, we set active gate to be th e first

edge g9 of the quad, as shown in Fig. 4.5(L). For the new created quad and its four

vertices (^’[0], ^[2], ?;[3]), we can see th a t n[3] is an inner vertex, so we pop one

vertex v l l out from vertex stack and push it onto inner vertex stack. We claim th a t

u[3] of the new created quad is n i l .

Next operation popped out from operation stack is “Q 6 ” . So we So we create two

more “v irtua l” vertices, create a quad w ith the two “v irtua l” vertices and the two

vertices of gate #9, and set active gate to be the first edge # 1 0 of the quad, as shown

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

in Fig. 4.5(M). For the new created quad and its four vertices (u[0], u[l], v[2], u[3]),

we claim th a t the previous on-boundary vertex of vertex u[3] is u[2], and th e previous

on-boundary vertex of vertex u[2] is r;[l].

N ext operation popped out from operation stack is “Q F !. So we create four more

“v irtua l” vertices, create a quad w ith them , push active gate glO to gate stack and

set active gate to be the first edge #11 of the quad, as shown in Fig. 4.5(N). For the

new created quad and its four vertices (u[0], u[l], u[2], u[3]), we claim th a t all the four

vertices are on boundary now, the previous on boundary vertex of vertex y[0] is u[3],

the previous on-boundary vertex of vertex u[3] is v[2). and the previous on-boundary

vertex of vertex u[2] is u[l].

N ext operation popped out from operation stack is “Q l l ” . We pop a gate rylO off

gate stack first. The s ta rt vertex of active gate g l l and the end vertex of gate glO are

the same vertex in the mesh, so we remove one of them out from the mesh. Next, we

create a quad w ith the previous on-boundary vertex of the s ta rt vertex of gate r/1 0 .

and th e three vertices of gate #10 and gate g 11. Next, we set active gate to be the

first edge g 12 of th e quad, as shown in Fig. 4 .5 (0). For the new created quad and its

four vertices (u[0], r;[l], u[2], u[3]), we can see th a t u[3] is an inner vertex, so we pop

one vertex c5 out from vertex stack and push it onto inner vertex stack. We claim

th a t u[3] of the new created quad is u5.

Next operation popped out from operation stack is “Q5” . So we create one “vir

tu a l” vertex, create a quad w ith the “v irtua l” vertex, the previous on-boundary vertex

of the s ta rt vertex of gate gl2. and the two vertices of gate gl2. Next, we set active

gate to be the first edge #13 of th e quad, as shown in Fig. 4 .5(P). For the new created

quad and its four vertices (u[0], u[l], v[2]. u[3]), we can see th a t v[2] is an inner vertex,

so we pop one vertex v2 out from vertex stack and push it onto inner vertex stack. We

claim th a t v{2) of the new created quad is v2, and the previous on-boundary vertex

of vertex u[0] is u[3].

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Now there are no any operations left in th e operation stack, and we have identified

all th e inner vertices and labeled them . T he problem is: how to label the boundary

vertices?

Now the vertex stack only contains boundary vertices which are stored in order.

The two vertices (u l and i;0) a t the bo ttom of the vertex stack is the vertices of the

last active gate during decom pression process. So, we sort th e boundary vertices in

th e reconstructed mesh in counter-clockwise order, set vertex id to be th e first vertex

of the boundary, and assign coordinates for them one by one, as shown in Fig. 4.5(R).

Now we can say th a t we com plete the decompression process successfully. The

reconstructed mesh is shown in Fig. 4.5(S).

4.5 Q uadm esh o f h igher genus

Non-genus-0 mesh contains handles, which never come up in simple mesh (genus - 0

mesh). A handle is an edge shared by two quads which are visited during compression

process, where the first quad is a S-type quad (split-type quad, which m eans one of

Q3, Q 8 , Q9, Q10 or Q l l) , and th e second quad intersects w ith the first quad at the

second edge, the th ird edge or th e fourth edge of the second quad. Here we suppose

th a t the first, edge of a quad is the active gate when visiting th e quad.

Since we don’t know which quad could have a handle binding on it before com

pression, so we ju s t created an array “handlesForQ uad” which will be used to store

inform ation about handles. The size of th e array “handlesForQ uad” is the same as

th e num ber of quads in the mesh. Each element of the array “handlesForQuad" is

filled w ith values when processing a S-type quad (which could be th e first quad of

a handle) during compression. T he values are used la ter when processing a second

quad checking if a handle exists between the first, quad and th e second quad.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

W hen a S-type quad (which could be th e first quad of a handle) was processed

during compression, we put a m ark saying th a t the gate(s) pushed in to stack when

processing th is quad could possibly create a handle(s).

W hen a quad (which could be the second quad of a handle) is processed during

compression, we check its adjacent quad on its le ft/righ t/opposite(above). If one

visited adjacent quad is S-type, it m eans th a t the edge shared by them is a handle.

We push th is handle into handle stack.

The handles in the handle stack are ordered according to when the first quad is

processed. Handles are stored in a file called “out_handles.tx t” , which looks like this:

F i r s t l i n e : “# of handles"

F o llo w in g l i n e s : “index of the second quad” “interaction position (of fset)”

Here “index of the second quad” m eans the index indicating when the second quad

is visited during compression, “in teraction position” m eans the offset between the

active gate when visiting the second quad and the edge of the second quad where the

second quad in teracts w ith the first quad.

For exam ple, if file “out_handles.tx t” contains the following inform ation,

2

444 1

555 2

we can know th a t the mesh contains two handles (so the mesh is a genus- 1 mesh).

For th e first handle, the second quad of the handle is th e 444th quad visited during

compression, and it in teracts w ith the first, quad of th e handle a t the second edge

(which is th e next edge of the active gate when visiting the second quad). For the

second handle, the second quad of th e handle is the 555th quad visited during com-

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

pression, and it in teracts w ith th e first quad of the handle at the th ird edge (which

is th e opposite edge of the active gate when visiting th e second quad).

4.6 A p p ly en cod in g schem es for th e op eration sequ en ce

C urrently there two encoding schemes can be used to encode the sequence of operation

code. One is developed by G otm an (24), which is shown in table 4.1. the other one

is developed by Dr. M ukhopadhyay (25), which is shown in tab le 4.2. Applying the

two encoding schemes for the op-code archives higher compression ratio. Details will

be discussed in C hapter 5.

Similar to Toum a-G otsm an’s algorithm which have been discussed in C hapter 3,

we can invites entropy coding, like Huffman to encode the op-code. Table 4.3 shown

th e Huffman code scheme for sample mesh “Torus” .

Interaction Type Code

Q l 11000

Q2 11001

Q3 11010

Q4 11011

Q5 010

Q6 11100

Q7 11101

Q8 11110

Q9 11111

Q10 011

Q ll 100

Q12 101

Q13 00

Table 4.1: Gotsman’s encoding scheme for Edgebreaker algorithm

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Encoding Current Quad Next Quad Code Num. of bits

Quad started Q6 Ql-5 11111 5

with Q6-13 Q6-13 11110 5

Q7 Ql-5 11101 5

Q6-13 11100 5

Q8 Ql-5 11011 5

Q6-13 11010 5

Q9 Ql-5 11001 5

Q6-13 11000 5

Q10 Q6-13 10111 5

Q ll Ql-5 10110 5

Q6-13 10101 5

Q12 Q6-13 100 3

Q13 Q6-13 0 1

Quad started Q l Ql-5 00 2

with Ql-5 Q6-13 01 2

Q2 Ql-5 1100 4

Q6-13 1101 4

Q3 Ql-5 1010 4

Q6-13 1011 4

Q4 Ql-5 1000 4

Q6-13 1001 4

Q5 Q6-13 111 3

Table 4.2: Dr. Mukhopadhyay’s encoding scheme for Edgebreaker algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Interaction Type Code

Q l 010

Q4 00

Q6 011

Q7 110

Q12 111

Q13 10

Table 4.3: Huffman coding scheme for sample mesh “Torus”

4.7 T im e com p lex ity analysis

For the compression process, since each quad is processed exactly once, and the

processing tim e for each quad is constan t tim e, and accessing the next quad is constan t

tim e, the overall tim e com plexity of com pression process is linear. Same for the

decom pression process.

4.8 Sum m ary

In th is chapter we discussed how E dgebreaker/Spirale Reversi com pression and de

compression algorithm for triangle meshes is successfully extended for quadrilateral

meshes. Same as T oum a-G otsm an’s algorithm , the tim e com plexity is linear.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

v[2]

v[S] \ v[3] \ \

\ \ \ \

\ ' ; vl1! \
v[0] v[0]

Q l Q 2

v[2]\\ \ \

• v[3] \ \ J \ v[3] \

\ \ \ \• '• \ ;
\ ' vm . . \

v[0] lv[0]

Q3 Q4

.,,--'v[2]\\ \ v[2]\

43] \ \ \ / ». v;3] \

\ N \ / W \

\ V[1] / ' \- v[1j

v[0: " / • v[Q]

Q5 Q 6

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Q l l Q12

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

v[2]

\v[3]

...

v[1]

/v[0]

Q13

Figure 4.2: Compression operations

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Q1
Mesh decompressed so far -------------

nU

\t

*•

Q4
--------------p.

v[2]
m \\ \
\ \

V[1]
V[0]

\ \ \ v[2]

\ \ Q2 f [3] \

-""vii] .
v[0]

W Q 3 V[3]
v[2]i

v[0]

- v[2]
V[3] \

\
\ v[1]
v[0]

\ . v[2]
\\ r - - A Q5

 „ — ->
. <•- v[1]

vfO]

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Q11

Q12

. - • v[2 }
V[3] \

v[1]
MO]

I —

y[3]

}v[0]

v[2]

M U

w
\

Q13
y[3]

v[2]

v[1] \
:'v[G]

Figure 4.3: Decompression operations

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Example:
Encode a quadmesh with boundary

Figure 4.4: Compression example (A to S)

Figure 4.4: Compression exam ple (B)

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

v19 v18

[gate stack

\!

v22

v23

v20

v21

v3

vO

operation

v16

v17

v2

v1

v6

v15 v14

v11

v5

v4

v7

v10

v9

v8

_y13

v12

inner vertex j boundary vertex j

[jgate

Figure 4.4: Compression exam ple (C)

stack

e(vO. v1)~ | | [

v6

~vF
v4

v8

v9
v12

v i l

v10

v14
v15

v18
v19

v16

v20

v21

v22

v23
v3

~vT
v1

v19 v18

v20

v22

v23

v21

v3

vO

j operation

v16

v17

v2

v1

v6

v15 v14

v11

v5

v4

v7

inner vertex boundary vertex

v10 v13

v9 v12 /

v8
/

Figure 4.4: Compression exam ple (D)

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

[gate stack

i !
\ i

e(v2. v1) ~ | | v2 |

v6

v7

v4

v8

v9
v12

v13

v10

v14

v15

v18
v19

v16

v20
v21

v22
v23
v3
vO

v1

v22

v23

v20

v21

v3

Q5
vO ^

v19

v16

v17

,kv2

v1

operation v6

v18

v15

v11

v5

v4

v7

v14

v10

v9

v8

_y13

v12

inner vertex H boundary vertex

Figure 4.4: Compression exam ple (E)

[gate stack

e(v4, v1 j
s(vo, v4}

v5

v2

v6

v7

v4

v8

v9
v12
v?3

v10

v14

v15
v18
v19

v16

v20

v21
v22

v23
v3

vO

v1

Q11

Q5

v22

v23

v20

v21

v3

v19 v18

Q5
vO

[[operation

vie

v17

v2

Q11
v1

v6

y15_______ V14

v11

,v5

v4

v7

v10

v9

v8

_y13

v12

inner vertex boundary vertex

Figure 4.4: Compression exam ple (F)

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

[gate stack

! /
1 /
1/
V

e(v5, v4)

v5

v2

v6

v7

v4
v8

v9
v12

v13

vIO

v14

v15

v18
v19
v16

v20

v21

v22

v23
v3

vO
v1

v19 v18

Q1
Q11
Q5

v20 v16 v15 v14

v22 v21 v17 v11 v10

v23 v3 v2 v5 v9

Q5 Q11 - ►

vO v1 X v4 v8
▼

Q1

np rat inn v6 v7

inner vertex boundary vertex

_y13

v12

Figure 4.4: Compression exam ple (G)

[gate stack

e(v5, v9)

v6

v7

v4

v8

v9
v12

v13
vIO

v14

v15
v18
v l¥

v16

v20
v21

v22

v23
v3
vO
v1

0 6
01
Oil
0 5

v22

v23

v19 v18

v20

v21

v3

Q5
vO

[[[operation

v16

v17

v2

Q11 -► Q6
v1

Q1
v6

v15 v14

v11

v5

v4

v7

inner vertex | [boundary vertex

v10

v9

v8

_y13

v12

Figure 4.4: Compression exam ple (H)

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

gate stack

V v11

e{v10. v9) v5
e{v11, v10) v2

v9

v?2
v13

vTo
v14

v15

v18
v19

v16

v20

v21

v22

v23
v3

vO
v1

Oil
Q6
Q1

Q11
Q5

v22

v23

v19 v18

v20

v21

v3

Q5
vO

operation

v16

v17

v2

Q11
v1

Q1
v6

v15

Q11

v5 4

Q6
v4

v7

inner vertex [j boundary vertex

v14

v10

v9

v8

_y13

v12

Figure 4.4: Compression example (I)

[_gate stack

e(v11, v10)

v11
v5

v2

v6

v7

v4

~vtT

v9
v12

v13

v10

v14

v15
v18
Visi
Vl6
v20

v21

v22

v23
v3

~v0~
v1

Q1

Q11
Q6
Q1
Oil
0 5

v22

v23

v19 v18

v20

v21

v3

Q5
vO

operation

v16

v17

v2

Q11
v1

Q1
v6

v15

v11 ,

v14

v10 -V13

Q11 Q1
v5

Q6
v4

v7

inner vertex i boundary vertex

v9

v8

v12

Figure 4.4: Compression example (J)

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALS REVERSI

[gate stack

v11

e(v11, v15)

v5

v2

v6

v7
v4

^ 8~
v9

v12
v13
v10
v14
v15
v18
v19
v16

v20
v21

v22
v23
~v3~
~vO~

v1

Q6
o7

O il
Q6
Q1

oiT
Q5

v22

v23

v20

v21

v3

vO

[operation

inner vertex j boundary vertex

v19 v18

Q5

v16

v17

V2

v15

Q11
v1

Q1
v6

Q6

v5

Q6
v4

v7

v14

v10

Q11 Q1
v9

v8

_y13

v12

Figure 4.4: Compression example (K)

[_gate stack

V
e(v16, v15)
e(v17. v16)

v17
v11
v5
v2

v6
v7
v4

v8
v9

Ln
vl¥
v10

v14

v l ?
v18
v19
vi6
v20

v21
v22

v23
v3

~v0~
v1

Q11
Q6
Q1

Q11

0 6
Q1

Q11

Q5

v22

v23

v19 v18

v20

v21

v3

Q5
vO

[[operation

v16 ,

- Q11
,v17

v2

Q11
v1

Q1
v6

v15

Q6
v11

v5

Q6
v4

v7

inner vertex || boundary vertex [

v14

v10 ~yl3

Q11 Q1
v9 v12

v8

Figure 4.4: Compression example (L)

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

gate stack

b(v1 7. v16)

v17
v11

v5
v2

v6
v7
v4
v8

v9
v12

v13
v10
v14
v15

v18
v19
v16

v20
v21
v22
v23
v3
vO
v1

Q1
Q11

Q6
Q1
Q11
Q6
01

Q11
Q5

v22

v23

v19 v18

v20

v21

v3

Q5
vO

operation

Q1
v16^

- Q 1 1
v17

v15

Q6
v11

v2 v5

Q11 Q6
vi

Q1
v6 v7

inner vertex I boundary vertex

v14

v10

Q11

v8

_y13

Q1
v9________ v12

Figure 4.4: Compression example

gate stack

s(v1 /, v21)

v17
v11
v5
v2

v6
v7
v4

v8
v9

v12
vT3
vIO

v14

v15
v18

vFi
v16

v20
v21
v22
v23
v3
vO
v1

Q11

Q6
Q1

Q11

Q6
Q1

Q11
0 5

v22

v23

v19 v18

v20

Q6
v21

v3

Q5
vO

[^operation

Q1
v16

-Q 1 1
v17

v2

Q11
v1

Q1
v6

v15

Q6
v11

v5

Q6
v4

v7

inner vertex j boundary vertex

v14

v10 _y13

Q11 Q1
v9

v8

v12

Figure 4.4: Compression example (N)

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

gate stack
i

e(v3, v21)
e(v1 i . v2)

v17

v11

v5
v2

v9
v12
v13

v10

v14
v15

v18
v19
v16
v20
v21
v22
v23
v3
vO
v1

Q7

Q6
Q1

Oil
Q6
Q1
Oil
Q6
Q1

011
Q5

v19 v18

v20

Q1
v16 v15 v14

v22

Q6

v21 X

Q11
v17

Q6
v11 v10

<

▼

- Q7 - ► Q11 Q1
v23 v3 v2 v5 v9

Q5 Q11 Q6
vO v1 v4 v8

Q1

npratmn v6 v7

_y13

v12

inner vertex 1j boundary vertex [

Figure 4.4: Compression exam ple (0)

|_gate stack

e(v17. v2)

v17
v11
v5
v2

v6
v7
v«4
v8
v9

v12

v13
v10
v14
v15
v18
v19
v16
v20
v21

v22
v23
~v3~
~vtf
v1

inner vertex

Q1
Q7
Q6
Q1
oTT
Q6

Q1
Q11
0 6
Q1

Q11
Q5

v19 v18

v20

v22

Q1
v23

Q6
v21

Q7
v3

Q5
vO

Q operation

Q1
v16

Q11
v17

v2

Q11
v1

Q1
v6

v15

Q6
v11

v5

Q6
v4

v7

boundary vertex

v14

v10 _y13

Q11 Q1
v9

v8

v12

Figure 4.4: Compression exam ple (P)

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

gate stack

1 / v17
y v11

v5

" 1 v2

v9
v12
v13

v10
v14
v15

v18
v19

v16
v20
v21
v22
v23
v3
vO
v1

Q1
01
Q7

Q6
Q1

Q11
Q6

Q1
Q11
Q6
01
Q11
Q5

v22

Q1
v23

v19 v18

v20

Q6
v21

Q7
v3

Q5
vO

£ operation

Q1
v16

Q11
v17

v15

Q6
v11

«► Q1
v2 v5

Q11 Q6
v1 v4

Q1
v6 v7

inner vertex 11 boundary vertex

v14

v10 _y13

Q11 Q1
v9 v12

v8

Figure 4.4: Compression example (Q)

v17
v11

v5
~v2~

v6

v7
v4
v8
v9

v12
v13
v10
v14

v15
v18
v19
v16
v20
v21
v22

v23
v3

vO
v1

Q1

Q1

~o7
0 6
Q1

Q11
Q6

Q1

Q11

Q6
Q1
ori
Q5

out_operation.txt
*3 * # ofquads& peri
^ V I comp

■ o'ti
m ' : -ix-
m . ■

oe
.07 -'

:
::w com pressed

operation

inner vertex | i boundary vertex

out_vertex.txt

3 4 - ^ :# : # v e i t i o e s ' : : . .
:Vi7

:=V1.1

v5 .

^ : : boundary vmim
*4 . : .
v6

:V.tz

•?13 ' ' v ' :=:1

viQ .

v i 4 ; .
V?S F:.'.
■y»
:.V15

:V l6 : "

v20

*2f. ■
*22"
v 23...:'

v3
| w h e r e c Q r f |? r © s s i o r ? s t a i t s

vt | a r ? d d e c o r i i p r ^ s s i o n e n d - s :

Figure 4.4: Compression example (R)

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

torus.ply (partly)

i ;
4 0 1 3 2
4 3 5 4 2
4 0 4 5 1
4 1 7 11 5
4 3 9 11 5
4 3 1 7 9
4 7 6 10 11
4 10 11 9 8
4 6 8 9 7
4 8 6 0 2
4 Q r/ 4 10
4 4 0 6 10

out_operation.txt

11
Q13
013
Q12
or
Q4
013
012
06
07
04
01

out_code.bin

Figure 4.4: Compression exam ple (S)

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

How to decode using Spirale
Reversi algorithm?

Figure 4.5: Decompression example (A to S)

gate stack

o
/ X ,

inner vertex

v17
v11

v5

v2
v6

v7
v4
v8
v9

v12
v13
v10

v14
v15
v18
v19
v16
v20
v21
v22
v23

v3

v1

Q1

Q1
Q7

Q6
Q1

Q11
Q6
Q1

Q11

Q6
Q1

Q11
Q5

out_operation.txt

.■

;:w;

:

or. i
1911 :

: 91' ::
mi.::
' ■M ;: :

131 ?•

operation

out_vertex.txt
® • * : - # o f V e r t i c e s ;

*1:1:2

:v8;
v12::: .1

.f
vlS
v1S

v13. : -A

*29x:'

y22
>123
v3
M i corapressiort starts

t a n d ; j 3 e c o m p F e s ? i o i 5 e n d s

Figure 4.5: Decompression example (B)

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

I gate
— I r

stack

o

inner vertex

v17

v11

v5
v2

v6

v7

v4
v8

v9
v12

v13

v10

v14

v15
v18

vl?
v16

v20

v21
v22

v23
v3

~to"
v T

Q1

Q1

Q7

0 6
Q1

oiT
Q6
Q1

Q11
Q6
Q1

Q11
Q5

[[operation

Figure 4.5: Decompression exam ple (C)

[gate stack

□
inner vertex

v17

v11
v5
v2

v6

v7

v4

v8

v9
v12

vll
v10

v14

v15
v18
v19
v16

v20
v21
v22

v23
v3

v1

Q6
Q1

oiT
Q6
Q1

Q11

Q6
Q1

Q11

Q5

giQi

[[^operation

Figure 4.5: Decompression exam ple (D)

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

gate stack

31 II I

inner vertex

v17

v11

v9
v12
v13
v10
v14
v15
v18
v19

v16
v20

v21

v22
v23
v3
iO

v1

Q7
Q6
Q1

Q11
Q6

Q1
Q11
Q6
Q1
OiT
Q5

4

Qig2 jg iQ i
V

operation

gate
1—i r

Figure 4.5: Decompression exam ple (E)

stack

inner vertex

v17
v11
v5
v2
v6
v7
v4

v8
v9

v12
v13
v10

v14
v15

v18
v19

v16
v20
v21
v22
v23
v3

v1

Q6
Q1
Oil
Q6
Q1

Q11
Q6
Q1

Q11
Q5

g3
Q1 Q7 Q1

operation

Figure 4.5: Decompression example (F)

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

gate stack

o

inner vertex

v17
v11

v9
v12
v13
v10
v14
v15
v18
v19
v16

v20
v21

v22
v23
v3

£v1

01
Q11

0 6
Q1

Q11
0 6
01
Q11
0 5

Q ^ j

Q1 Q7 Q1

operation

Figure 4.5: Decompression exam ple (G)

i /

gate stack

a4 i □

inner vertex

v17

v11

v5
”v2~
~v6~

v7

v4

v8

v9
v12

v13
v10

v14

v15

v18
vFi
v16
v20
v21
v22
v23
v3

%v1

011
0 6
Q1

Q11
0 6

~Q1~
Q11
0 5

Q1
gs

A

Q6g4;

Q1 Q7 Q1

operation

Figure 4.5: Decompression exam ple (H)

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

gate stack

Ee]

inner vertex

v11

~v5~

v2

v6

v7
v4

~vB
v9

v12

v13

v10
v14

v15

v18

v19

v16
v20

v21

v22
v23

v3

v1

Q1

Q6

*

Q11
g6

»v17

Q1

%

Q7 Q1

0 6

Q1
Q11

Q6
Q1

Q11
Q5

operation

Figure 4.5: Decompression exam ple (I)

gate stack

inner vertex

v11
v5

v2
v6

v7
v4
v8

v9

V12
v13

v10
v14

Fl5
v18

v19

v16

v20
v21
v22

v23
v3

v1

Q1

Q11

Q6
Q1

Q11

"oF

Q1

Q6 Q11 Q6
v17 ,

Q1 Q7 Q1

[_ operation

Figure 4.5: Decompression exam ple (J)

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

[gate stack

g7

inner vertex

v8

v9
v12
v13
v10
v14

v15
v18
v19

v16
v20
v21
v22
v23
v3

v1

Q1

Q6 Q11 Q6

v17 97 .

Q1 Q7 Q1 g8Q1

Q11
0 6

Q1
Q11

Q5

operation

Figure 4.5: Decompression exam ple (K)

v5

v2

v6
v7
v4

v8
v9

v12
v13

v10
v14
v15

gate stack | v18
v19

i / v16
\ I v20

v11

v21
v22

v17 v23
v3

inner vertex i-
v1

Q1

Q6 Q11

v17 a

Q6

v11

Q1 Q7

a

Q1

► -

Q11
g9 ,

Q1

Q6
Q1

OiT
0 5

operation

Figure 4.5: Decompression exam ple (L)

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

gate stack

inner vertex

v11
v17
/V.

v5

v2

v6

v7
v4
v8

v9
v12

v13

vIO

v14
v15

v18

v19

v16

v20

v21
v22
v23

v3

v1

Q1
Q11
Q5

Q1

Q6 Q11
v17

Q6

v11

Q1 Q7 Q1 Q11 Q1

gi o
Q6

'1

[operation

Figure 4.5: Decompression exam ple (M)

I gate
i r

stack

glO

inner vertex

v11

v17

v9
v?2
v13
v10
v14

v15
v18
v19

v16
v20
v21
v22
v23
v3

%v1

Q1

Q6 Q11
v17

Q6

v11

Q1 Q7 Q1 Q11 Q1

CO
o

o

-
.

Q11
Q5

operation

at 1
Q1

Figure 4.5: Decompression exam ple (N)

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

gate stack

! /

!/
v5

v11
v17

v2

v6
v7

v4
v8
v9

v12
vT?
vIO
v14
v15

vli
v19

vi?
v20

v21
v22
v23
v3
vO
v1

Q1

posl
operation

inner vertex [

Q6

Q7

Q1

Q11
v17

Q1

g12
Q11

Q1

Q6

v11

Q11
y5

Q6

Q1

[gate

Figure 4.5: Decompression exam ple (O)

stack

v2
v5

v11
v17

v6
v7
v4
v8

v9
v12
v13

v10
v14
v15
v18

v19
v16
v20
v21

v22
v23
v3
vO
v1

Q1

operation

□
inner vertex

Q6

Q7

Q5
q13

Q1

Q11
v17

Q1
v2

Q11

Q1

Q6

V11

Q11
v5

Q6

Q1

Figure 4.5: Decompression exam ple (P)

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

gate stack

v2
v5

v11
v17

v6

v7
v4

v8
vS
v12

v13
vIO
v14
v15
v18
v19

v16
v20
v21
v22

v23
v3

~v0~
v1

Q1

□

Q6

Q7

Q5
vQ~

operation

Q1

Q11
v17

Q1
v2

Q11
v1

Q1

Q6

v11

Q11
v5

Q6

inner vertex j boundary vertex

Q1

Figure 4.5: Decompression exam ple (Q)

gate stack

v2
v5

v11
v17

v6
v7

v4

v8
v9

v12
v13

v10

v14

v15

v18
v19

viF
v20
v21
v22
v23
v3
vO
v1

/
/

Q1
\

v20 v16 v15 v14

Q6 Q11 Q6

v22 v21 v17 v11 v10

Q1 Q7 Q1 Q11 Q1
v23 v3 v2 v5 v9

Q5 Q11 Q6 //

vO--------- » v1 v4
/

v8 /
/

Q1 /

)D eration v6 v7 /

inner vertex boundary vertex

v13 !

v12 /

Figure 4.5: Decompression exam ple (R)

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Done!

v19 v18

Q1
v20 v16 v15 v14

Q6 Q11 Q6
v22 v21 v17 v11 v1° u13

Q1 Q7 Q1 Q11 Q1
v23 v3 v2 v5 v9 v12

Q5 Q11 Q6
vO v1 v4 v8

Q1
v6 v7

Figure 4.5: Decompression example (S)

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Experim ental Results

In th is chapter, the im plem entation of com pression/decom pression of quad meshes is

introduced in section 5.1. Then, the experim ental results are presented in section 5.2.

5.1 Im p lem en tation

Im plem entation of Toum a-G otsm an’s algorithm have been discussed in chapter 3,

while im plem entation of E dgebreaker/Spirale Reversi algorithm have been discussed

in chapter 4. The source code is developed using Java under JD K 1.5. Since Java is

platform -independent, the program s are portab le to o ther operating systems.

B oth im plem entations works for non-genus-0 mesh, bu t not b o th of them works for

mesh w ith boundary. O ur im plem entation of Toum a-G otsm an’s algorithm only works

for quadm esh w ithout boundary, while the im plem entation of Edgebreaker/Spirale

Reversi algorithm works also for quadm esh w ith boundary.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

5.2 E xp erim en ta l resu lts

Term “compression ra tio ” is used to quantify the reduction in d a ta quan tity produced

by the compression algorithm s. Here we declare th a t compression ratios are expressed

as a percentage in th e following form

C om pression R a tio = C™TgZ i tS™

Thus a 100MB file th a t compresses to 20MB would have a compression ra tio of

2 0 :1 0 0 , or 2 0

For com parison purpose, we only select quadm eshes w ithout boundary for exper

im ents. We tested th e program s on 11 different quadm eshes, pictures of which are

shown in tab le 5.1.

D etailed experim ental results are shown in table 5.2, table 5.3, tab le 5.2 and ta

ble 5.2. In all these tables, file size are m easured by bytes.

For edgebreaker algorithm s, we use th ree different encoding schemes to encode th e

sequence of operations: G otsm an’s encoding scheme, Dr. M ukhopadhyay's encoding

scheme, and Huffman code. In th e tables, we use “I” , “II” and “III” to represent the

th ree encoding schemes separately.

Com parisons about the compression ratios are shown in Fig. 5.1 and Fig. 5.2.

Fig. 5.1 shows the perform ance of the two mesh compression algorithm s com paring

to the compression ra tio achieved by using general file compression software GZip.

From th e picture we can see th a t using GZip we can only have a compression ratio

around 23% for large meshes, while using either of th e two algorithm s, we can get

a com pression ratio less th an 1% This indicates th a t for connectivity compression,

general file compression tools (like GZip) should not be considered as first choice.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Tetrahedron Torus 16 Face Torus

2HandTorus

o

Icosahedron

> ' ■ 4

V

SplitTorus

Ball240 Ball960 Split2HandleRnd

Ball3840

> r

SplitCow

Table 5.1: Samplqg|iadineshes for test

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Sample Name # of

Vertices

of

Faces

Size of

PLY File

Size of

Command File

Size of

Face File

Size of

Connectivity

tetrahedron 14 12 884 58 149 2

torus 12 12 654 75 141 4

16facetorus 16 16 842 91 201 5

2handtorus 32 34 1510 193 467 13

icosahedron 62 60 3387 250 851 12

SplitTorus 72 72 3249 356 1021 27

ball240 242 240 13428 971 4092 51

ball960 962 960 54530 3864 17594 205

Split2HandRnd 1312 1314 64086 5502 25415 326

ball3840 3842 3840 235655 15385 82755 805

SplitCow 17414 17412 895506 70704 419592 4127

Table 5.2: File size for Touma-Gotsman’s algorithm

Sample Name # o f

Vertices

o f

Faces

Size of

PLY Fib

Size of

OE File

Size of

Op-code File

Size of

Face File

Size of Connectivity

I II III

tetrahedron 14 12 884 713 42 149 5 5 3

torus 12 12 654 446 40 141 6 5 4

16facetorus 16 16 842 618 55 201 7 6 5

2handtorus 32 34 1510 1732 120 467 15 13 10

icosahedron 62 60 3387 3836 225 851 24 23 13

SplitTorus 72 72 3249 3309 264 1021 30 26 21

ball240 242 240 13428 16397 910 4092 96 89 50

ball960 962 960 54530 70419 3664 17594 382 359 187

Split2HandRnc 1312 1314 64086 81986 4974 25415 527 488 282

ball3840 3842 3840 235655 308744 14693 82755 1524 1439 731

SplitCow 17414 17412 895506 1278045 66325 419592 6931 6451 3591

Table 5.3: File size for Edgebreaker algorithm

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Sample Name # o f

Vertices

o f

Faces

Size of Connectivity Compression Ratio of Connectivity

I II III I II III

tetrahedron 14 149 5 5 3 3.36% 3.36% 2.01%

torus 12 141 6 5 4 4.26% 3.55% 2.84%

16facetorus 16 201 7 6 5 3.48% 2.99% 2.49%

2handtorus 32 467 15 13 10 3.21% 2.78% 2.14%

icosahedron 62 851 24 23 13 2.82% 2.70% 1.53%

SplitTorus 72 1021 30 26 21 2.94% 2.55% 2.06%

ball240 242 4092 96 89 50 2.35% 2.17% 1.22%

ball960 962 17594 382 359 187 2.17% 2.04% 1.06%

Split2HandRnd 1312 25415 527 488 282 2.07% 1.92% 1.11%

ball3840 3842 82755 1524 1439 731 1.84% 1.74% 0.88%

SplitCow 17414 419592 6931 6451 3591 1.65% 1.54% 0.86%

Table 5.4: Compression ratios archived by different encoding schemes for Edgebreaker algorithm

Sample Name # of

Vertices

of

Faces

Size of

Face File

Size of

Compressed File

Compression

Ratio

tetrahedron 14 12 149 104 69.80%

torus 12 12 141 104 73.76%

16facetorus 16 16 201 121 60.20%

2handtorus 32 34 467 219 46.90%

icosahedron 62 60 851 312 36.66%

SplitTorus 72 72 1021 372 36.43%

ball240 242 240 4092 1245 30.43%

ball960 962 960 17594 4927 28.00%

Split2HandRnd 1312 1314 25415 6762 26.61%

ball3840 3842 3840 82755 21260 25.69%

SplitCow 17414 17412 419592 96472 22.99%

Table 5.5: Compression ratios archived by using GZip

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Sample Name Compression Ratio

Edgebreaker Tourna-

Gotsman

GZip

I II III

tetrahedron 3.36% 3.36% 2.01% 1.34% 69.80%

torus 4.26% 3.55% 2.84% 2.84% 73.76%

16facetorus 3.48% 2.99% 2.49% 2.49% 60.20%

2handtorus 3.21% 2.78% 2.14% 2.78% 46.90%

icosahedron 2.82% 2.70% 1.53% 1.41% 36.66%

SplitTorus 2.94% 2.55% 2.06% 2.64% 36.43%

ball240 2.35% 2.17% 1.22% 1.25% 30.43%

ball960 2.17% 2.04% 1.06% 1.17% 28.00%

Split2HandRnd 2.07% 1.92% 1.11% 1.28% 26.61%

ball3840 1.84% 1.74% 0.88% 0.97% 25.69%

SplitCow 1.65% 1.54% 0.86% 0.98%, 22.99%

Table 5.6: Compression ratios archived by different encoding schemes and GZip

Fig. 5.2 lists th e perform ance of different encoding schemes used for th e two algo

rithm s. From this figure, we can find th ree useful conclusion:

• For Edgebreaker compression algorithm , Dr. M ukhopadhyay’s encoding scheme

is b e tte r th an G otsm an’s encoding scheme.

• If we apply entropy code like Huffman for bo th algorithm s, Edgebreaker algo

rithm could get a lower, b e tte r com pression ra tio th an Toum a-G otsm an’s algo

rith m for large mesh. This is an interesting results.

W hen com pressing large meshes, Edgebreaker algorithm s could generate a t most

13 different symbols, while Toum a-G otsm an’s algorithm could generate much

more th a n 13 different symbols. Thus, when use Huffman code to encode the

symbols, Edgebreaker algorithm generally could have lower compression ratio.

• For Edgebreaker algorithm , Huffman code have a lower com pression ratio th a n

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

either of the other two encoding schemes.

R unning th e standard GZip compression u tility on a compressed symbol file does

not reduce its size any further. On the contrary, it only increases it. This indi

cates th a t our compression algorithm s are good, and no additional “general purpose”

compression techniques are applicable.

'■C

80.00%

70.00%

60.00%

50.00%

Oh

• I 40.00% -

° 30.00%

2 0 .0 0 %

10 00%

0 .0 0 %

- v

! ■
■ x

l i i i l

- Gotsman

- Asish

Huffman. 1 (HE)

Hufiman2 (TG)

-GZip

149 141 201 467 851 1021 4092 17594 25415 82755 419592

File Size

Figure 5.1: Comparison of compression ratios archived by different encoding schemes and GZip

5.3 Sum m ary

This C hap ter shows th e experim ental results for bo th algorithm s. From the exper

im ental results, we we get to useful conclusion for quadm esh compression. F irst,

Edgebreaker archives slightly b e tte r compression ratio th an T oum a-G otsm an’s al

gorithm . Secondly, Dr. M ukhopadhyay’s encoding scheme results less b itra te th a n

G otsm an’s encoding scheme.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C
om

pr
es

si
on

R

at
io

5. EXPERIMENTAL RESULTS

4.50%

4.00%

3.50%

3.00%

Gotsman
Asish

Huffman 1 (EB)
Huffaan2 (TG)

2.50%

2 .00%

1.50%

1 . 0 0 %

0.50%

0 .00%

149 201141 467 851 1021 4092 17594 25415 82755 419592

File Size

Figure 5.2: Comparison of compression ratios archived by different encoding schemes

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

A lthough triangle meshes are used m ost frequency and studied extensively, quadri

la teral meshes are used a lot in scientific applications. Traditionally, th e problem of

connectivity compression of quadrila teral meshes is solved by triangu la ting th e mesh

first and then compressing it using triangle compression techniques. This strategy

may in troduce additional cost. Some researchers have a ttem p ted to compress polygon

meshes w ithout prior triangulation . In th is thesis we presented two simple linear tim e

algorithm s for connectivity com pression of quadrila teral meshes, which are extended

from algorithm s for triangle mesh compression.

6.1 M ajor con trib u tion s

There are four m ajor contributions achieved in th is thesis, which have been illustrated

in chapters 3, 4 and 5. The following is a sum m ary of these contributions.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. CONCLUSIONS AND FUTURE WORK

Extend Toum a-G otsm an’s algorithm for quadm esh com pression

Toum a and G otsm an provided an efficient algorithm for triangle mesh com pres

sion (35). In th is thesis, we extended the algorithm for quadm esh compression.

Extend Spirale Reversi algorithm for quadmesh decom pression

Spirale Reversi decom pression for non-triangle meshes has been m entioned by

K ronrod and G otsm an (24), bu t they never gave a detailed explanation abou t the

im plem entation. We presents the first detailed description of the Spirale Reversi

decompression process for quadm eshes. Jing (21) had done some valuable works

in th is topic, which gave us some hints for the im plem entation.

D etailed comparison of the two algorithm s for quadmesh com pression

The compression algorithm s discussed in chapter 3 and chapter 4 create a se

quence of symbols, which could be encoded fu rther by applying coding schemes.

In th is thesis, we encode th e sequence using different coding schemes. T he ex

perim ents confirmed th a t Dr. M ukhopadhvay’s encoding schemes is b e tte r th a n

G otsm an’s encoding scheme for Edgebreaker algorithm , and Edgebreaker algo

rithm archives b e tte r compression ra tio th a n T oum a-G otsm an's algorithm for

large mesh compression.

Portable data structures for m esh com pression

We defined a set of d a ta structures which includes all kinds of geom etric objects

for mesh compression. T he d a ta structu res we defined can also be used in m any

other im plem entations.

6.2 F uture w ork

In chapter 2, we said th a t Alliez and D esbrun (2) proposed a m ethod to further

improve the perform ance of Toum a and G otsm an’s algorithm . The m ethod could

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. CONCLUSIONS AND FUTURE WORK

also be used for quadm esh compression.

We agree th a t it will be possible to achieve compression ratios significantly b e t

te r th a n th e algorithm s discussed in chapter 3 and chapter 4 for mesh connectivity

compression. On the o ther hand, we could use two-pass encoding/decoding m ethods,

in which th e connectivity of the quadm esh is first decoded, and then the coordi

nate decoding is s tarted . T he advantage of two-pass m ethods is, more connectivity

inform ation is available a t the tim e of the coordinate decoding.

For triangle meshes containing m ainly vertices of degree six, work by Szymczak et

al. (31) exploits the reverseness of Spirale Reversi for efficient predictive compression

of the labels. This could be extended for quadm esh decompression.

Experim ental results show th a t Dr. M ukhopadhyay’s encoding scheme always has

a b e tte r perform ance for quadm eshes com pressed using Edgebreaker algorithm . The

coding schemes m ight be improved by using more constants, as discussed by G um hold

(17).

W hen im plem enting th e E dgebreaker/Spirale Reversi algorithm for quadm esh, we

used th e O E d a ta structu re defined by Jing (21), which contains opposite edges

inform ation for a quad. Meanwhile, we use a different d a ta s truc tu re called OHE when

im plem enting T oum a-G otsm an’s algorithm for quadm esh. The OHE data structu re

is easier for understanding com paring to the OE d a ta structu re . We believe th a t

bo th of the algorithm s could be im plem ented using th e OHE d a ta structu re only,

thus make th e im plem entation m ore understandable.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] IS O /IE C 14496-2: Coding of A udio-Visual O bjects: Visual. Technical report.

2001 .

[2] P. Alliez and M. Desbrun. Valence-Driven Connectivity Encoding for 3 D Meshes.

Com puter Graphics Forum, 20(3):480-489, 2001.

[3] P. Alliez and C. G otsm an. Recent advances in compression of 3D meshes. Pro

ceedings o f the Sym posium on M ultiresolution in Geometric Modeling. 3. 2003.

[4] E.M. Arkin, M. Held, J.S.B . Mitchell, and S.S. Skiena. H am iltonian triangula

tions for fast rendering. The Visual Com puter, 12(9):429-444, 1996.

[5] C. B ajaj, V. Pascucci, and G. Zhuang. Compression and Coding of Large CAD

Models. Technical report, Technical report, U niversity of Texas, 1998.

[6] C.L. B ajaj, V. Pascucci, and G. Zhuang. Single resolution com pression of arbi

tra ry triangu lar meshes w ith properties. Com putational Geometry: Theory and

Applications, 14(1-3): 167—186, 1999.

[7] R. Carey, G. Bell, and C. M arrin. IS O /IE C 14772-1: 1997 v irtual reality modeling

language (VRML). Technical report, The VRM L Consortium Incorporated, 1997.

[8] M.M. Chow. O ptimized geometry compression fo r real-time rendering. PhD

thesis, M assachusetts In s titu te of Technology, D ept, of Electrical Engineering

and C om puter Science, 1997.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES REFERENCES

[9] M. Deering. G eom etry compression. Proceedings o f the 22nd annual conference

on Com puter graphics and interactive techniques, pages 13-20, 1995.

[10] E. Edelsbrunner. Geometry and Topology fo r M esh Generation. Cambridge,

2001 .

[11] F. Evans, S. Skiena, and A. Varshney. Com pleting sequential triangulations is

hard. Technical report, Technical report, D epartm ent of C om puter Science, S tate

U niversity of New York a t Stony Brook, 1996.

[12] F. Evans, S. Skiena, A. Varshney, et al. O ptim izing triangle strips for fast ren

dering. IE E E Visualization , 96:319-326, 1996.

[13] C. G otsm an, S. Gum hold, and L. K obbelt. Simplification and com pression of 3d

meshes. European Sum m er School on Principles o f M ultiresolution in Geometric

Modelling (PRIM U S), M unich , 2001.

[14] Jonathon L Gross and Jay Yellen. Graph Theory A n d Its Applications. CRC

Press, 1998.

[15] A. Gueziec e t al. Converting Sets o f Polygons to M anifold Surfaces by Cutting

and Stitching. IBM T J W atson Research Center, 1998.

[16] S. Gumhold. Improved cut-border m achine for triangle mesh compression. E r

langen Workshop99 on Vision, Modeling and Visualization, 1999.

[17] S. Giimhold. New bounds on th e encoding of p lanar triangulations, preprint,

2000 .

[18] S. G um hold and W. Strafier. Real tim e compression of triangle mesh connectivity.

Proceedings o f the 25th annual conference on Com puter graphics and interactive

techniques, pages 133-140, 1998.

[19] M. Isenburg. Triangle S trip Compression. Com puter Graphics Forum , 20(2):91-

101 , 2 0 0 1 .

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES REFERENCES

[20] M. Isenburg and J. Snoeyink. Spirale Reversi: Reverse decoding of the Edge

breaker encoding. Com putational Geom etry, 20(l-2):39-52, 2001.

[21] Q. Jing. Compression and Decompression of Q uadrila teral Meshes, 2003.

[22] D.W . Kahn. Topology: A n Introduction to the P oin t-Set and Algebraic Areas.

Dover Publications, 1995.

[23] D. King and J. Rossignac. G uaranteed 3.67 v b it encoding of p lanar triangle

graphs. 11th Canadian Conference on Com putational G eometry , 149, 1999.

[24] B. K ronrod and C. G otsm an. Efficient Coding of N on-Triangular Mesh Connec

tivity. Graphical Models, 63(4):263-275, 2001.

[25] A. M ukhopadhyay and Q. Jing. Encoding Q uadrila teral Meshes. 15th Canadian

Conference on Com putational Geometry (2003).

[26] J. Rossignac. Edgebreaker: Connectivity com pression for triangle meshes. IE E E

Transactions on Visualization and Com puter Graphics, 5(1):47—61, 1999.

[27] J. Rossignac and A. Szymczak. W rap& Zip decompression of th e connectivity of

triangle meshes com pressed w ith Edgebreaker. Com putational Geometry, 14(1-

3): 119—135, 1999.

[28] M. Schindler. A fast renorm alisation for arithm etic coding. In D C C ’98: Pro

ceedings o f the Conference on Data Compression, page 572, W ashington, DC,

USA, 1998. IEEE C om puter Society.

[29] D. Shikhare. S tate of the A rt in G eom etry Compression. National Centre fo r

Software Technology, 2000.

[30] B. SPECKM ANN. Easy triangle strips for TIN te rra in models. International

Journal o f Geographical In form ation Science, 15(4):379-386. 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES REFERENCES

[31] A. Szymczak, D. King, and J. Rossignac. An Edgebreaker-based efficient com

pression scheme for regular meshes. Computational Geometry: Theory and A p

plications., 20(1-2) :53—6 8 , 2001.

[32] G. Taubin. 3D G eom etry Compression and Progressive Transmission. Euro

graphics ST A R report, 3, 1999.

[33] G. TAUBIN, W .P. HORN, F. LAZARUS, and J. ROSSIGNAC. G eom etry Cod

ing and VRML. P R O C E E D IN G S OF TH E IE E E , 8 6 (6), 1998.

[34] G. Taubin and J. Rossignac. Geom etric compression through topological surgery.

A C M Transactions on Graphics (TO G), 17(2):84—115, 1998.

[35] C. Toum a and C. G otsm an. Triangle mesh compression. P R O C G R A P H IC S

IN TE R F A C E , pp. 26-34■ 1998, 1998.

[36] G. Turan. Succinct representation of graphs. D IS C R E T E A P P L . M ATH ..

8(3):289-294, 1984.

[37] W T T utte . A census of p lanar triangulations. Canad. J. Math, 14(1):21—38,

1962.

[38] X. Xiang, M. Held, and J.S.B . M itchell. Fast and effective stripification of polyg

onal surface models. Proceedings o f the 1999 sym posium on Interactive 3D graph

ics, pages 71-78, 1999.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA A U C T O R I S

Mr. Demin Yin was born in 1977 in Nanjing, Jiangsu, China.

He graduated from Sichuan University in 1999, and later worked for several Internet companies
in China. In year 2003, Mr. Yin immigrated to Canada, and lived in Windsor, Ontario.

In fall 2004, Mr. Yin enrolled as master student at School of Computer Science, University of
Windsor. He studied there for the next two years under Dr. Asish Mukhopadhvay’s supervision.

P erso n a l in form ation

Name: Demin Yin

Email: yin6@uwindsor.ca

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:yin6@uwindsor.ca

	A comparative study of quadmesh compression for Touma-Gotsman and Spirale Reversi schemes.
	Recommended Citation

	tmp.1507664919.pdf.T9a50

