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Abstract

A 3D mesh is m ade up of polygonal faces. A com plete description of such a mesh 

is provided by its connectivity (adjacencies of polygons) and geom etry (vertex coor

dinates). For m ost practical work, the  meshes used are either triangu lar (all face's 

are triangles) or quadrilateral (all faces are quadrilaterals) meshes (quadmeshos. for 

short). Recently, there  has been much work on compressing th e  connectivity inform a

tion perta in ing  to  a mesh. For quadm esh compression, existing algorithm s triangu late  

th e  quadm esh first, and then  apply triangle mesh compression techniques as previ

ous researches on mesh compression were m ostly focused on triangle meshes. To 

avoid the  additional triangulation  step, we propose two direct techniques to  compress 

and decom press th e  connectivity of quadm eshes in linear tim e. In this thesis, we 

will describe how' to  extend two well-known triangle, mesh compression algorithm s to 

quadm esh compression, and how to  apply encoding schemes for them . A com parison 

of the two algorithm s for quadm esh com pression is also given.

Keyword: quadm esh, quadrilateral mesh, mesh compression, Edgebreaker. Spirale 

Reversi, connectivity encoding, linear encoding
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Chapter 1

Introduction

1.1 M esh  com pression

G raphics d a ta  are more and more widely used in various applications, including video 

gaming, engineering design, architectural walk through, v irtual reality, e-commerce, 

and scientific visualization. Among various representation tools, triangular meshes 

provide an effective m eans to  represent 3D mesh models. Typically, connectivity, ge

ometry, and property  d a ta  are used to  represent a 3D polygonal mesh. Connectivity 

d a ta  describe the  adjacency relationship between vertices; geom etry d a ta  specify ver

tex  locations; and property  d a ta  specify several a ttrib u tes  such as th e  norm al vector, 

m aterial reflectance, and tex tu re  coordinates. We concentrate on th e  compression of 

connectivity in this thesis.

To achieve a high level of realism, com plex models are required, and they  are 

obtained from various sources such as m odeling software and 3D scanning. They

1
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1. INTRODUCTION

usually dem and a huge am ount of storage space a n d /o r transm ission bandw idth  in 

th e  raw d a ta  form at. As the  num ber and the  com plexity of existing 3D meshes 

increase explosively, higher resource dem ands are placed on storage space, com puting 

power, and  network bandw idth . Among these resources, th e  network bandw id th  is 

the  m ost severe bottleneck in netw ork-based graphic applications th a t  dem and real

tim e interactivity. Thus, it is essential to  compress graphics d a ta  efficiently. This 

research area has received a lot of a tten tion  since early 1990s, and there  has been a 

significant am ount of progress along th is direction over th e  last decade.

Early research on 3D mesh com pression focused 011 single-rate com pression tech

niques to  save the bandw idth  between CPU  and the  graphics card. In a single-rate 3D 

mesh compression algorithm , all connectivity and geom etry d a ta  are com pressed and 

decom pressed as a whole. The graphics card  cannot render the original mesh until 

the  entire bit stream  has been wholly received. Later, w ith  th e  popularity  of the In

te rne t, th e  progressive compression and transm ission has been intensively researched. 

W hen progressively com pressed and transm itted , a 3D mesh can be reconstructed  

continuously from coarse to  fine levels of detail (LODs) by the  decoder while the  bit 

stream  is being received. Moreover, progressive compression can enhance th e  in ter

action capability, since th e  transm ission can be stopped whenever an user finds out 

th a t the  mesh being downloaded is not w hat he/she w ants or the  resolution is already 

good enough for h is /he r purposes.

Three-dim ensional mesh com pression is so im portan t th a t it has been incorporated  

into several in ternational standards. VRM L (7) established a s tandard  for tran sm it

ting  3D models across th e  Internet. Originally, a  3D mesh was represented in A SCII 

form at w ithout compression in VRML. For efficient transm ission, Taubin et al. de

veloped a compressed binary  form at for VRM L (33) based on the  topological surgery 

algorithm  (34), which easily achieved a compression ra tio  of 50:1 over th e  VRM L 

A SCII form at. M PEG -4 (1), which is an IS O /IE C  m ultim edia s tandard  developed 

by the  Moving P icture E xperts G roup for digital television, interactive graphics,

2
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1. INTRODUCTION

and interactive m ultim edia applications, also includes three-dim ensional mesh coding 

(3DMC) algorithm  to  encode graphics data . The 3DMC algorithm  is also based on 

the  topological surgery algorithm , which is basically a single-rate coder for manifold 

triangu lar meshes. Furtherm ore, M PEG -4 3DMC incorporates progressive 3D mesh 

compression, non-manifold 3D mesh encoding, error resiliency, and quality scalability 

as optional modes.

1.2 O b jectives o f  th e  th esis

For quadm esh compression, existing single-rate compression algorithm s triangulate  

the  quadm esh first, and then  apply triangle mesh compression techniques as previous 

researches on mesh com pression were m ostly focused on triangle meshes. To avoid 

th e  additional triangulation  step, we propose two direct techniques to  compress and 

decom press the  connectivity of quadm eshes in linear tim e.

A com parison of the  experim ental results of two algorithm s will also be discussed.

1.3 O verview  o f  th e  th esis

The rest of th is  thesis is organized as follows. C hapter 2 provides a review of tin ' I jack- 

ground and introduces some definitions necessary to  understand  3D mesh compression 

techniques for connectivity. C hapter 3 shows how to  extend Toum a-G otsm an's al

gorithm  for quadm esh, C hapter 4 shows how to  extend Edgebreaker/Spirale Reversi 

algorithm  for quadm esh. C hapter 5 discusses the  results of experim ents. Finally, 

concluding rem arks are given in C hapter 6.

3
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Chapter 2

Literature review  about connectivity  

com pression

In th is chapter, we in tend to  review various connectivity com pression technologies 

w ith the  m ain focus on triangular mesh compression. It is worthwhile to  point out 

th a t there were several survey papers contains th is subject. Rossignac (26) briefly 

sum m arized prior schemes on vertex d a ta  com pression and connectivity d a ta  com

pression. Taubin (32) gave a survey on various mesh compression schemes. A lthough 

th e  two schemes in th e  M PEG -4 s tandard  (i.e., topological surgery and progressive 

forest split) were described in detail in (32), th e  review of o ther schemes was relatively 

sketchy. Shikhare (29) classified and described mesh compression schemes. However, 

th is work did not trea t progressive schemes w ith enough depth. G otsm an et al. (13) 

gave a tu to ria l on techniques for mesh simplification, connectivity compression, and 

geom etry compression. This tu to ria l gave a detailed trea tm en t on mesh simplifica

tion and geom etry compression. However, th e  review on connectivity coding focused

4
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2. LITERATURE REVIEW  ABOUT CONNECTIVITY COMPRESSION

m ostly on single-rate region-growing schemes. Recently, Alliez and G otsm an (3) sur

veyed techniques for bo th  single-rate and progressive compression of 3D meshes. This 

survey gave a high-level algorithm  classification, bu t focused only on sta tic  polygonal 

3D mesh compression.

2.1 B ackground and basic con cep ts

Several definitions and concepts needed to  understand  3D mesh compression algo

rithm s are presented in th is section. More rigorous definitions can be found in 

(10, 14, 22).

We say th a t two objects A  and B  are homeomorphic, if A  can be stretched or 

bent w ithout tearing  to  B.  A 3D mesh is called a manifold if its every point has 

a neighborhood homeomorphic to  an open disk or a half disk. In a manifold, the  

boundary  consists of the  points th a t have no neighborhoods hom eom orphic to  an open 

disk bu t have neighborhoods hom eom orphic to  a half disk. In 3D mesh compression, 

a manifold w ith boundary  is often pre-converted into a manifold w ithout boundary  

by adding a dum m y vertex to  each boundary loop and then  connecting the  dum m y 

vertex to  every vertex on the  boundary  loop. Fig. 2.1 A is a manifold mesh, while 

Figs. IB  and C are non-m anifold meshes. Fig. 2 .IB  is non-m anifold since each point 

on the  edge (u1? v2) has no neighborhood th a t is hom eom orphic to  an open disk or a 

half disk. Similarly, the  vertex V\ in Fig. 2.1C has no neighborhood hom eom orphic 

to  a open disk or a half disk.

The orientation of a polygon can be specified by the ordering of its bounding ver

tices. The orientations of two adjacent polygons are called com patible if they im pose 

opposite directions on their common edges. A 3D mesh is said to  be orientable if 

there exists an arrangem ent of polygon orientations such th a t each pair of adjacent 

polygons are com patible. Figs. 2.1 A and C are orientable w ith the  com patible orienta-

5
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2. LITERATURE REVIEW  ABOUT CONNECTIVITY COMPRESSION

tions m arked by arrows. In contrast, Fig. 2 .IB  is not orientable, since th ree  polygons 

share the  same edge Note th a t, after we make polygon B  and C  com patible,

it is im possible to  find an orientation of polygon A  such th a t A  is com patible w ith 

bo th  B  and C.

Figure 2.1: Examples of (A) an orientable manifold mesh, (B) a non-orientable non-manifold mesh, 

and (C) an orientable non-manifold mesh.

Figure 2.2: (A) The sphere, (B) the torus, and (C) the eight-shaped mesh.

The genus of a connected orientable manifold w ithout boundary  is defined as the 

num ber of handles. For exam ple, there  is no handle in a sphere, one handle in a 

torus, and two handles in an eight-shaped surface as shown in Fig. 2.2. Thus, their 

genera are 0, 1, and 2, respectively. A mesh homeom orphic to  a sphere is called a 

simple mesh. For a connected orientable manifold w ithout boundary, E u ler’s formula 

is given by

v - e  + f  = 2 - 2 g  (2.1)

where v, e,and /  are, respectively, the  num ber of vertices, edges, and faces in the 

manifold, and g is the  genus of th e  manifold.

6
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2. LITERATURE REVIEW  ABOUT CONNECTIVITY COMPRESSION

2.1.1 Geom etric relationship of triangular mesh

Suppose th a t a triangu lar manifold mesh contains a sufficiently large num ber of edges 

and triangles, and th a t th e  ra tio  of the num ber of boundary  edges to  the  num ber of 

non-boundary edges is negligible. Then, we can approxim ate th e  num ber of edges by

since an edge is shared by two triangles in general. Substitu ting  equation 2.2 into 

equation 2.1, we have / / 2  +  2 — 2 g. Since / / 2  is much larger th a n  2 — 2 g, we get

In o ther words, a typical triangu lar mesh has twice as m any triangles as vertices. 

Also, from equation 2.2 and equation 2.3, we have an approxim ate relation

The degree (or valence) of a vertex is the  num ber of edges incident on th a t vertex. 

It can be shown th a t the  sum of degrees is twice the  num ber of edges (14). Thus, we 

have

Thus, in a typical triangu lar mesh, the  average vertex degree is 6.

2.1.2 Geom etric relationship of quadrilateral mesh

Again, suppose th a t a quadrila teral manifold mesh contains a sufficiently large num ber 

of edges and quadrilaterals, and th a t the  ra tio  of the num ber of boundary  edges to  the 

num ber of non-boundary edges is negligible. Then, we can approxim ate the  num ber 

of edges by

e ~  3 / / 2 (2 .2 )

f  -  / / 2 (2.3)

(2.4)

(2.5)

(2 .6 )

7
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2. LITERATURE REVIEW  ABOUT CONNECTIVITY COMPRESSION

since an edge is shared by two quadrilaterals in general. S ubstitu ting  equation 2.6 

into equation 2.1, we have v ~  /  +  2 — 2g. Since /  is much larger th a n  2 — 2g, we get

In o ther words, a typical quadrilateral mesh has as m any quadrilaterals as vertices. 

Also, from equation 2.6 and equation 2.7, we have an approxim ate relation

Thus, in a typical quadrila teral mesh, th e  average vertex degree is 4.

W hen reporting  the com pression perform ance, some papers employ the  m easure 

of b its per quad (bpq) while others use b its per vertex (bpv). For consistency, we 

adopt the  bpv measure exclusively, and convert the  bpq  m etric to  th e  bpv m etric by 

assum ing th a t a mesh has as m any quadrilaterals as vertices.

2.2 C o n n ectiv ity  com pression

Single-rate compression is a typical mesh compression algorithm  encodes connectivity 

data  and geom etry d a ta  separately. M ost early work focused on the  connectivity 

coding. Then, the  coding order of geom etry d a ta  is determ ined by the  underlying 

connectivity coding. In th is thesis, we focus on connectivity data  compression only.

We classify existing single-rate connectivity compression algorithm s in to  six classes: 

the indexed face set, the  triangle strip, the  spanning tree, th e  layered decom position, 

the valence-driven approach, and the  triangle conquest. T hey are described in detail 

below.

v  ~  / (2.7)

(2 .8 )

It can be shown th a t  the  sum  of degrees is tw ice  the num ber of edges (14). Thus, we 

have

y  degree =  2e ~  Av (2.9)

8
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2.2.1 Indexed face set

In the  VRM L ASCII form at (7), a triangu lar mesh is represented w ith  an indexed 

face set th a t consists of a coordinate array and a face array. The coordinate array 

lists the  coordinates of all vertices, and th e  face array lists each face by indexing its 

three vertices in the  coordinate array. For instance. Fig. 2.3 shows a  mesh and  its 

face array.

If there are v vertices in a mesh, th e  index of each vertex requires log-vv bits. 

Therefore, a triangular face needs 3log2v  b its  for its connectivity inform ation. Since 

there are about twice triangles as m any as vertices in a typical triangu lar mesh, the 

connectivity inform ation costs abou t Qlog2V bpv in the  indexed face set m ethod. This 

m ethod provides a straightforw ard way for th e  triangular mesh representation. There 

is actually  no compression involved in th is m ethod, bu t we still list it here to  provide 

a basis of com parison for the following compression schemes.

In th is m ethod, each vertex is indexed several tim es by all its adjacent triangles. 

R epeated vertex references degrade the  efficiency of connectivity coding. In other 

words, a good connectivity coding scheme should reduce the  num ber of repeated  

vertex references. This observation leads to  the  triangle strip  m ethod.

2.2.2 Triangle strip

The triangle strip  m ethod a ttem p ts  to  divide a 3D mesh into long strips of triangles, 

and then  encode these strips. The prim ary purpose of th is m ethod is to  reduce the  

am ount of d a ta  transm ission between CPU and the  graphic card, since triangle strips 

are well supported  by m ost graphic cards. A lthough th is scheme dem ands less storage 

space and transm ission bandw idth  th a n  the  indexed face set representation, it is still 

not very efficient for the  compression purpose.

9
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V ,0

V,2V

Index Face
0 (0,1,4)
1 (1,3,4)
2 (1,2,3)

Figure 2.3: The indexed face set representation of a mesh: (A) a mesh example and (B) its face 

array.

Fig. 2.4A shows a triangle strip, where each vertex is com bined w ith the  previous 

two vertices in a vertex sequence to  form a new triangle. Fig. 2.4B shows a triangle 

fan, where each vertex after the  first two forms a new triangle w ith  the previous vertex 

and the  first vertex. Fig. 2.4C shows a generalized triangle strip  th a t is a m ixture of 

triangle strips and triangle fans. Note th a t, in a generalized triangle strip, a new tr i

angle is introduced by each vertex after the  first two in the  vertex sequence. However, 

in an indexed face set, a new triangle is introduced by three vertices. Therefore, the 

generalized triangle strip  provides a more com pact representation  th a n  the indexed 

face set, especially when the  strip  length is long. In a ra th e r long generalized triangle 

strip, the  ra tio  of the  num ber of triangles to  the  num ber of vertices is very close1 to  1. 

m eaning th a t a triangle can be represented by almost exactly 1 vertex index.

However, since there are abou t twice as m any triangles as vertices in a typical mesh, 

some vertex indices should be repeated  in the  generalized triangle strip  represent at ion 

of the  mesh, which indicates a waste of storage. To alleviate th is problem, several 

schemes have been developed, where a vertex buffer is utilized to  store the  indices of 

recently traversed vertices.

Deering (9) first introduced the  concept of the  generalized triangu lar mesh. A 

generalized triangular mesh is formed by combining generalized triangle strips w ith

10
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VV

Figure 2.4: (A) The triangle strip, (B) the triangle fan, and (C) the generalized triangle strip.

a vertex buffer. He used a first-in-first-out (FIFO ) vertex buffer to  store the  indices 

of up to  16 recently visited vertices. If a vertex is saved in the  vertex buffer, it 

can be represented w ith the buffer index th a t requires a less num ber of bits th a n  

th e  global vertex index. Assum ing th a t each vertex is reused by the  buffer index 

only once, Taubin and Rossignac (34) showed th a t th e  generalized triangu lar mesh 

representation requires approxim ately 11 bpv to  encode the connectivity d a ta  for 

large meshes. Deering, however, did not propose a m ethod to  decom pose a mesh into 

triangle strips.

Based on D eering's work, Chow (8) proposed a mesh com pression scheme optim ized 

for real-tim e rendering. He proposed a mesh decom position m ethod, illustrated  in 

Fig. 2.5. F irst, it finds a set of boundary  edges. Then, it finds a fan of triangles 

around each vertex incident on two consecutive boundary edges. These triangle fans 

are combined to  form th e  first generalized triangle strip . The triangles in th is strip  

are m arked as discovered, and a new set of boundary edges is generated to  separate 

discovered triangles from undiscovered triangles. The next generalized triangle strip  

is similarly formed from the  new set of boundary  edges. W ith  the  vertex buffer, the 

vertices in th e  previous generalized triangle strip  can be reused in the  next one. This 

process continues until all triangles in a mesh are traversed.

11
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B V ,

V„

3

V, V, V,0 4 6

Figure 2.5: (A) A set of boundary edges, (B) triangle fans for the first strip, and (C) triangle fans 

for the second strip, where thick arrows show selected boundary edges and thin arrows show the 

triangle fans associated with each inner boundary vertex.

T he triangle strip  representation  can be applied to  a triangular mesh of arb itrary  

topology. However, it is effective only if th e  triangle mesh is decom posed into long 

triangle strips. It is a challenging com putational geom etry problem  to  obtain  an 

optim al triangle strip  decom position (4, 11). Several heuristics have been proposed 

to  obtain  suboptim al decom positions a t a m oderate com putational cost (12, 30, 38).

2.2.3 Spanning tree

T uran  (36) observed th a t the  connectivity of a  p lanar graph can be encoded w ith 

a constan t num ber of bpv using two spanning trees: a vertex spanning tree and 

a triangle spanning tree. Based on th is observation, Taubin and Rossignac (34) 

presented a topological surgery approach to  encode mesh connectivity. The basic 

idea is to  cut a given mesh along a selected set of cut edges to  make a p lanar polygon. 

T he mesh connectivity is then  represented by the structu res of cu t edges and the 

polygon. In a simple mesh, any vertex spanning tree can be selected as the  set of cut 

edges.

Fig. 2.6 illustrates the  encoding process. Fig. 2.6A is an octahedron  mesh. F irst, 

th e  encoder constructs a vertex spanning tree as shown in Fig. 2.6B. where each node 

corresponds to  a vertex in the  inpu t mesh. Then, it cuts the  mesh along the edges

12
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of th e  vertex spanning tree. Fig. 2.6C shows th e  resulting p lanar polygon and the  

triangle spanning tree. Each node in the  triangle spanning tree corresponds to  a 

triangle in the  polygon, and two nodes are connected if and only if the  corresponding 

triangles share an edge.

Figure 2.6: (A) An octahedron mesh, (B) its vertex spanning tree, and (C) the cut and flattened 

mesh with its triangle spanning tree shown by dashed lines.

Then, the  two spanning trees are run-length  encoded. A run  is defined as a tree 

segment between two nodes w ith  degrees not equal to  2. For each run  of the  vertex 

spanning tree, the encoder records its length w ith two additional flags. T he first flag 

is the  branching bit indicating w hether a run  subsequent to  the  current run  s ta rts  

a t the  same branching node, and th e  second flag is the  leaf b it indicating w hether 

th e  current run  ends at a leaf node. For exam ple, let us encode the  vertex spanning 

tree in Fig. 2.6B, where the  edges are labeled w ith  their run  indices. The first run  is 

represented by ( 1 ,0 ,0 ), since its length is 1 , the  next run  does not s ta r t at the  same 

node, and it does not end at a leaf node. In th is way, the  vertex spanning tree in 

Fig. 2.6B is represented by

( 1,0 ,0), ( 1.1,1), ( 1,0 ,0), ( 1.1.1), ( 1,0 ,1).

Similarly, for each run  of th e  triangle spanning tree, the  encoder w rites its length 

and th e  leaf bit. Note th a t the  triangle spanning tree is always binary  so th a t it 

does not need the  branching bit. Furtherm ore, the encoder records th e  m arching 

p a tte rn  w ith one bit per triangle to  indicate how to  triangu la te  the  p lanar polygon 

internally. The decoder can reconstruct the  original mesh connectivity from th is set

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. LITERATURE REVIEW  ABOUT CONNECTIVITY COMPRESSION

of inform ation.

In b o th  vertex and triangle spanning trees, a run  is a basic coding unit. Thus, 

the  coding cost is proportional to  the  num ber of runs, which in tu rn  depends on how 

the  vertex spanning tree is constructed. Taubin and Rossignac’s algorithm  builds the 

vertex spanning tree based on layered decom position, which is sim ilar to  the  way we 

peel an orange along a spiral path , to  maximize the  length of each run  and minimize 

the  num ber of runs generated.

Taubin and Rossignac also presented several modifications so th a t their algo

rithm  can encode general manifold meshes: meshes w ith a rb itra ry  genus, meshes 

w ith boundary, and non-orientable meshes. However, their algorithm  cannot d irectly  

handle non-m anifold meshes. As a preprocessing step, the  encoder should split a non

manifold mesh into several m anifold com ponents, thereby duplicating non-m anifold 

vertices, edges, and faces. Experim entally, Taubin and Ro.ssignac's algorithm  costs 

2.48-7.0 bpv for mesh connectivity. It was also shown th a t the  tim e as well as the 

space complexities of the ir algorithm  are O (N ),  where N  is th e  m axim um  of the 

vertex num ber v, the  edge num ber e, and the  triangle num ber /  in a mesh. This 

m ethod dem ands a large memory buffer due to  its global random  vertex access a t the 

decompression stage.

2.2.4 Layered decom position

B ajaj et al. (6 ) presented a connectivity coding m ethod using a layered s truc tu re  of 

vertices. It decomposes a triangular mesh into several concentric layers of vertices, 

and then  constructs triangle layers w ithin each pair of adjacent vertex layers. The 

mesh connectivity is represented by the  to ta l num ber of vertex layers, the  layout of 

each vertex layer, and the  layout of triangles in each triangle layer. Ideally, a vertex 

layer does not intersect itself and a triangle layer is a generalized triangle strip. In 

such a case, the connectivity com pression is reduced to  the  coding of the  num ber of

14
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vertex layers, the num ber of vertices in each vertex layer, and  th e  generalized triangle 

strip  in each triangle layer. However, in practice, overhead bits are in troduced due 

to  the  existence of branching points, bubble triangles, and triangle fans.

Branching points are generated when a vertex layer intersects itself. In  Fig. 2.7A, 

th e  m iddle layer intersects itself a t the  branching point depicted by a big dot. Branch

ing points divide a vertex layer into several segments called contours. To encode the  

layout of a vertex layer, we need to  encode the  inform ation of bo th  contours and 

branching points. Also, as shown in Figs. 2.7B-D, each triangle in a triangle layer 

can be classified into one of th ree cases.

Figure 2.7: Fig. 7. Illustration of (A) the layered vertex structure and the branching point depicted 

by a black dot, (B) a triangle strip, (C) bubble triangles, and (D) a cross-contour triangle fan, where 

contours are depicted with solid lines and other edges with dashed lines.

•  Its  vertices lie on two adjacent vertex layers. A generalized triangle strip  is

bubble triangles D triangle fan

15
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com -posed of a sequence of triangles of th is kind.

•  All its vertices belong to  one contour. It is called a bubble triangle.

•  Its vertices lie on two or th ree contours in one vertex layer. A cross-contour

triangle fan consists of a sequence of triangles of th is kind.

Therefore, in addition to  encoding generalized triangle strips between two adjacent 

vertex layers, this algorithm  requires ex tra  b its to  encode bubble triangles and cross

contour triangle fans.

Taubin and Rossignac (34) also employed layered decom position in the  vertex 

spanning tree construction. However, B ajaj et a l.’s algorithm  (6 ) is different from

(34) in the  following:

•  It does not combine vertex layers into the  vertex spanning tree.

•  Its decoder does not require a large m em ory buffer, since it accesses only a small

portion  of vertices at each decom pression step.

•  It is applicable to  any kind of mesh topology, while (34) cannot encode non

m anifold meshes directly.

The layered decom position m ethod encodes the connectivity inform ation using 

about 1.40-6.08 bpv. Moreover, it has a desirable property. T h a t is. each triangle 

de-pends on a t m ost two adjacent vertex layers and each vertex is referenced by 

a t m ost two triangle layers. This property  enables the  error-resilient transm ission 

of mesh d a ta , since the  effects of transm ission errors can be localized by encoding 

different vertex and triangle layers independently. Based on the  layered decom position 

m ethod, B ajaj et al. (5) also proposed an algorithm  to  encode large CAD models. This 

algorithm  extends the layered decom position m ethod to  compress quadrila teral and 

general polygonal models as well as CAD models w ith sm ooth non-uniform  rational 

B-splines (NURBS) patches.

16
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2.2.5 Valence-driven approach

The valence-driven approach s ta rts  from a seed triangle whose three edges form the 

initial borderline. T he borderline divides the  whole mesh into two parts , i.e., the  

inner p a rt th a t  has been processed and the  outer part th a t is to  be processed. Then, 

the  borderline gradually expands outw ards until the  whole mesh is processed. The 

ou tp u t is a  stream  of vertex valences, from which the  original connectivity can be 

reconstructed.

In (35), Toum a and G otsm an proposed a pioneering algorithm  known as the  

valence-driven approach. It s ta rts  from an a rb itra ry  triangle, and pushes its th ree 

vertices into a list called the active list. Then, it pops up a vertex from the  active' 

list, traverses all untraversed edges connected to  th a t vertex, and pushes the1 now 

vertices into the end of the list. For each processed vertex, it ou tpu ts  the  valence. 

Sometimes, it needs to  split th e  current active list or merge it w ith another active 

list. These cases are encoded w ith  special codes. Before encoding, for each boundary 

loop, a dum m y vertex is added and connected to  all the  vertices in th a t boundary 

loop, m aking the  topology closed. Fig. 2.8 shows an exam ple of the encoding process, 

where th e  active list is depicted by thick lines, the  focus vertex by the  black dot. 

and the dum m y vertex by th e  gray dot. Table 2.1 lists the  ou tpu t of each step  in 

association w ith Fig. 2.8.

Since vertex valences are com pactly d is tribu ted  around 6  in a typical mesh, arit h- 

metic coding can be adopted to  encode the  valence inform ation of a vertex effectively

(35). T he resulting algorithm  uses less th a n  1.5 bpv on average to  encode mesh con

nectivity. This is the  state-of-the-art com pression ratio  which has not been seriously 

challenged till now. However, the ir algorithm  is only applicable to  orientable and 

manifold meshes.

Alliez and  D esbrun (2) proposed a m ethod to  fu rther improve the  perform ance of

17
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Toum a and G otsm an’s algorithm . They observed th a t split codes, split offsets, and 

dum m y vertices consume a non-trivial portion  of coding bits in Toum a and G otsm an’s 

algorithm . To reduce th e  num ber of split codes, they  used a heuristic m ethod th a t 

chooses th e  vertex w ith  the  m inim al num ber of free edges as th e  next focus vertex, 

instead  of choosing the  next vertex in the  active list. To reduce the  num ber of bits for 

split offsets, they excluded th e  two adjacent vertices of the  focus vertex in th e  current- 

active list th a t are not eligible for th e  split, and sort th e  rem aining vertices according 

to  their Euclidean distances to  the  focus vertex. Then, a split offset is represented 

w ith an index into th is sorted list, which is further added by 6  and encoded in the 

same way as a norm al valence. To reduce the num ber of dum m y vertices, they 

used one com mon dum m y vertex for all boundaries in the  inpu t mesh. In addition, 

they encoded the  ou tpu t symbols w ith the  range encoder (28), an effective adaptive 

arithm etic encoder.

Alliez and D esbrun’s algorithm  is also applicable only to  orientable manifold 

meshes. It perform s b e tte r th a n  Toum a and G otsm an’s algorithm , especially for 

irregular meshes. Alliez and D esbrun proved th a t if the  num ber of splits is negligible, 

th e  perform ance of their algorithm  is upper-bounded by 3.24 bpv, which is exactly 

the  same as the theoretical bpv value com puted by enum erating all possible p lanar 

graphs (37).

2.2.6 Triangle conquest

Similar to  the  valence-driven approach, the  triangle conquest approach s ta rts  from 

the  initial borderline, which divides the  whole mesh into conquered and unconquered 

parts, and inserts triangle by triangle into th e  conquered parts. The m ain difference is 

th a t the  triangle conquest approach o u tpu ts  the  building operations of new triangles, 

while the  valence-driven approach o u tpu ts  th e  valences of new vertices.

G um hold and Strafier (18) first proposed a triangle conquest approach, called the
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Figure 2.8: A mesh connectivity encoding example by Touma and Gotsman (35), where the active 

list is shown with thick lines, the focus vertex with the black dot, and the dummy vertex with the 

gray dot.
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Figure Output Comments

(A) An input mesh is given

(B) Add a dummy vertex

(C) Add 6, add 7, add 4 O utput the valences of starting vertices

(D) Add 4 Expand the active list

(E) Add 7 Expand the active list

(F) Add 5 Expand the active list

(G) Add 5 Expand the active list

(H) Choose the next focus vertex

(I) Add 4 Expand the active list

(J) Add 5 Expand the active list

(K) Split 5 Split the active list, and push the new active list into 

stack

(L) Choose the next focus vertex

(M) Add 4 Expand the active list

(N) Add dummy 5 Choose the next focus vertex and conquer the 

dummy vertex

(0) Pop the new active list from the stack

(P) Add 4 Expand the active list

(Q) Choose the next focus vertex

(R) Choose the next focus vertex

(S) The whole mesh is conquered

Tabic 2.1: The output of each step in Fig. 2.8
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cut-border machine. At each step, th is  algorithm  inserts a new triangle into the  

conquered part, closed by th e  cut-border, using one of the  five building operations: 

‘new vertex’, ‘forw ard,’ ‘backw ard’, ‘split/, and ‘close’. The sequence of building 

operations is encoded using Huffman codes. This algorithm  can encode manifold 

meshes th a t are either orient-able or non-orientable. Experim entally, its compression 

perform ance lies w ithin 3.22-8.94 bpv, m ostly around 4 bpv. Its  m ost im portan t 

feature is th a t the decom pression speed is very fast and the  decom pression m ethod is 

easy to  im plem ent in hardw are. Moreover, compression and decom pression operations 

can be processed in parallel. These properties make th e  m ethod very a ttrac tive  in 

real-tim e cod-ing applications. In (16), G um hold further improved the  compression 

perform ance using an adaptive arithm etic coder and optim izing the  border encoding. 

The experim ental compression ra tio  is w ith in  th e  range of 0.3-2.7 bpv, and on average 

1.9 bpv.

Rossignae (26) proposed the  edgebreaker algorithm , which is another exam ple of 

th e  triangle conquest approach. It is nearly equivalent to  the  cut-border m achine, 

except th a t it does not encode the  offset d a ta  associated w ith th e  split operation. 

The triangle traversal is controlled by edge loops as shown in Fig. 2.9A. Each edge 

loop bounds a conquered region and contains a gate edge. A t each step, th is algorithm  

focuses on one edge loop and its gate edge is called the  active gate, while the  other edge 

loops are stored in a stack and will be processed later. Initially, for each connected 

com ponent, one edge loop is defined. If the com ponent has no physical boundary, 

two half edges corresponding to  one edge are set as the  edge loop. For example, in 

Fig. 2.9B, the  mesh has no boundary  and the  initial edge loop is formed by g and 

gTEo, where giEo is the opposite half edge of g. In Fig. 2.9C, the  initial edge loop is 

the  mesh boundary.

A t each step, th is algorithm  conquers a triangle incident on th e  active gate, updates 

th e  current loop, and moves the  active gate to  the  next edge in the updated  loop. 

For each conquered triangle, th is algorithm  ou tpu ts  an op-code. Assume th a t the
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unconquered regions
conquered region

gate
active gate

8

T ~

(J

Figure 2.9: Illustration of (A) edge loops and (B) gates and initial edge loops for a mesh without 

boundary, and (C) gates and initial edge loops for a mesh with boundary, where thick lines depict 

edge loops, and g denotes the gate.
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triangle to  be removed is enclosed by active gate g and vertex v, there  are five kinds 

of possible op-codes as shown in Fig. 2.10A:

•  C  (loop extension), if v  is not on th e  edge loop;

•  L  (left), if v  im m ediately precedes g in the  edge loop;

•  R  (right), if v im m ediately follows <7 ;

•  E  (end), if v precedes and follows <7;

•  S  (split), otherwise.

Essentially, the compression process is a, depth-first traversal of the  dual graph of 

the  mesh. W hen th e  split case is encountered, th e  current loop is split into two, and 

one of them  is pushed into th e  stack while the  other is fu rther traced. Fig. 2.10B 

shows an exam ple of the  encoding process, where th e  arrows and the  num bers give 

the  order of the  triangle conquest. The triangles are filled w ith different p a tte rn s to  

represent different op-codes, which are generated when they  are conquered. For this 

case, th e  encoder ou tpu ts  th e  series of op-codes as C C R SR L L R SE E R L R E .

The edgebreaker m ethod can encode the topology d a ta  of orient able manifold 

meshes w ith m ultiple boundary  loops or w ith arb itrary  genus, and guarantee a worst - 

case coding cost of 4 bpv for simple meshes. However, it is unsuitable for stream ing 

applications, since it requires a two-pass process for decom pression, and the decom

pression tim e is 0 ( v 2). A nother disadvantage is th a t, even for regular meshes, it 

requires about the  same b itra te  as th a t for non-regular meshes.

King and Rossignac (23) modified the  edgebreaker m ethod to  guarantee a worst- 

case coding cost of 3.67 bpv for simple meshes, and G um hold (17) fu rther improved 

th is upper bound to  3.522 bpv. The decoding efficiency of the  edgebreaker m ethod 

was also improved to  exhibit linear tim e and space com plexities in (20, 23, 27). 

Furtherm ore, Szymczak et al. (31) optim ized the  edgebreaker m ethod for meshes
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c L R E S

Start

Figure 2.10: (A) Five op-codes C, L, R, E, and S. where the gate g is marked with an arrow, and (B) 

an example of the encoding process in the edgebreaker algorithm where the arrows and the numbers 

show the traversal order and different filling patterns are used to represent different op-codes.
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w ith high regularity  by exploiting dependencies of ou tp u t symbols. It guarantees a 

worst-case perform ance of 1.622 bpv for sufficiently large meshes w ith  high regularity.

As m entioned earlier, we can reduce th e  am ount of d a ta  transm ission between CPU  

and th e  graphic card by decom posing a mesh into long triangle strips, bu t finding 

a good decom position (or stripihcation) is often com putationally  intensive. Thus, it 

is often desirable to  generate long strips from a given mesh only once and  d istribute  

th e  strip ihcation inform ation together w ith  the mesh. Based 0 1 1  th is observation, 

Isenburg (19) proposed an approach to  encode the  mesh connectivity together w ith 

its strip ihcation inform ation. It is basically a modification of the  edgebreaker m ethod, 

b u t its traversal order is guided by strips obtained w ith the  S T R IP E  algorithm  (12). 

W hen a new triangle is included, its relation to  the  underlying triangle strip  is encoded 

w ith a label. The label sequences are then  entropy encoded. The experim ental 

compression perform ance ranges from 3.0 to  5.0 bpv.

2.3 Sum m ary

Among the various connectivity coding m ethods discussed in th is chapter, Toum a and 

G otsm an’s algorithm  (35) is considered as th e  state-of-the-art technique for single

ra te  3D mesh compression. W ith  some m inor im provements 011 Toum a and G otsm an’s 

algorithm , Alliez and D esbrun’s algorithm  (2 ) yields an improved compression ratio.

The indexed face set, triangle strip, and layered decom position m ethods can en

code meshes with a rb itra ry  topology. In contrast, the  o ther approaches can handle 

only manifold meshes w ith additional constraints. For instance, the  valence-driven 

approach (2 , 35) require th a t the  manifold is also orientable. Szymczak et a l.’s algo

rithm  (31) requires th a t the manifold has neither boundary  nor handles. Note th a t 

using these algorithm s, a non-m anifold mesh can be handled only if it is pre-converted 

to  a manifold mesh by replicating non-m anifold vertices, edges, and faces as in (15).
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2. LITERATURE REVIEW  ABOUT CONNECTIVITY COMPRESSION

The m ethods discussed in th is chapter focus on triangu lar mesh compression. In 

next two chapters, we will propose two direct techniques to  compress and decompress 

the  connectivity of quadm eshes, b o th  of which are extended from the  algorithm s 

discussed in this chapter.
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Chapter 3

Quadm esh com pression  and  

decom pression using T oum a-G otsm an  

algorithm

T oum a-G otsm an’s algorithm  is a valence-driven approach, originally for triangle mesh 

compression. It s ta rts  from a seed triangle whose three edges form the  initial border

line. The borderline divides the  whole mesh into two regions, i.e., the  inner region 

th a t has been processed and th e  outer region th a t is to  be processed. Then, th e  bor

derline gradually expands outw ards until th e  whole mesh is processed. The ou tp u t is a 

stream  of vertex valences, from which the  original connectivity can be reconstructed.

The details of this algorithm  for triangle mesh compression has been explained in 

section 2.2.5. In this chapter we show how to  expand th e  algorithm  for quadm esh 

connectivity compression.
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3. QUADMESH COM PRESSION AN D  DECOM PRESSION USING TO U M A-G O TSM AN  
A LG O RITH M _________________________________________________________________________

3.1 D efin itions

First, we make some definitions relevant to  the  algorithm . M ost of them  have been 

defined in T oum a-G otsm an’s paper (35).

V ertex cycle A cyclic sequence of vertices along triangle edges in th e  mesh.

A ctive List A vertex cycle in th e  mesh. The active list partitions th e  mesh into an 

“ou ter” p a rt containing edges not yet encoded, and an “inner” p a rt containing 

edges already encoded. Each vertex in th e  active list has encoded and unencoded 

incident edges separated  by the  edges to  the  two vertices which are its predecessor 

and successor in the  active list.

Focus One vertex in the  active list is designated as the  focus vertex. All coding 

operations are done on the  focus vertex.

We define a new term  called ’’focus edge” . Focus edge is an  opposite half edge 

of an edge in the active list, and it takes focus vertex as its s ta rt point. So, we 

m ust be aware th a t focus edge is not in the  active list. Actually, The quad which 

focus edge belongs to  is the  one which will be conquered next by the  active list.

Free Vertex A vertex not yet encoded.

Full Vertex A vertex w ith no free edges. Here we in troduce another term  ’’almost 

full” to  describe a vertex which has only one unvisited quad left around it.

3.2 D efin ition  o f o p p o site  h a lf ed ge (O H E ) d a ta  stru cture

We propose a da ta  structure , called OHE (opposite half edge) for representing the 

ajacencies of quadm esh.

Fig. 3.1 illustrates the  OHE d a ta  structure . Each quad in a quad mesh is rep

resented by four integer references for the  four vertices and four integer references
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3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
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v[3]/ ohe[2] V[2]

ohe[3]

v[0]

e[0]/focusEdge

ohe[1]

ohe[0] /v[1]

/  /

Figure 3.1: OHE data structure

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

for th e  four edges, plus four integer references for the  four opposite half edges. The 

opposite half edge of an edge e[l] in the  center quad refers to  th e  left edge in th e  right 

quad. If e[l] is a boundary  edge, we assign -1 in the opposite-half-edge field ohe[ 1].

Suppose the  quad is the  one to  be conquered right now, which m eans th a t focus 

edge is one of the four edges in th e  quad. In our im plem entation, we re-label the  

vertices and  edges of the quad, so th a t focus edge will be edge e[0 ] in the  quad, 

and edge ohe[0] is in the  active list. This is a very im portan t step  which makes the 

im plem entation easier to  understand.

3.3 A lgorith m  d escrip tion

A simple exam ple dem onstrating  the  operation of the algorithm  for triangle mesh 

appears in Fig 2.8. The input of the  algorithm  is an orient.able manifold quadm esh, 

and th e  o u tp u t is the  code for the  mesh connectivity.

O ur algorithm  is slightly different from w hat Toum a-G otsm an explained, bu t bo th  

follow the  same idea.

The encoding algorithm  s ta rts  off w ith an arb itrary  quad in the  mesh, defining an 

active list of four edges. An a rb itra ry  opposite half edge of th is quad is designated 

as th e  focus edge. The algorithm  proceeds by try ing  to  expand the  active list by 

“conquering” an unvisited q u ad 1 (if exists) in counter-clockwise order around the 

s ta r t of the  focus edge, which is th e  focus vertex. Some com m ands ( “add” , “split” , 

or “m erge” ) will be generated when conquering th a t unvisited quad. Each tim e we 

conquer an unvisited quad, we make a decision where the  next focus should be, no 

m a tte r w eather current focus vertex is full or n o t . 2 The new focus vertex could be
1 In  T o u m a - G o t s m a n ’s im p le m e n ta t io n ,  th e y  c o n q u e r  e d g e s  r a t h e r  t h a n  p o ly g o n s .

2 T h is  is q u i t e  d if f e re n t f ro m  T o u m a - G o tm a n 's  im p le m e n ta t io n .  T h e y  in s is t  t h a t  w h e n  c o d in g  o p e r a t io n s  o n  t h e  

fo c u s  v e r te x  a r e  c o m p le te ,  t h e  fo c u s  w ill m o v e  t o  t h e  n e x t  v e r te x  in  t h e  a c t iv e  lis t  a n d  t h e  p re v io u s  fo c u s  v e r te x  is 

re m o v e d  fro m  t h e  a c t iv e  lis t  to  b e c o m e  o n e  o f  t h e  “ in n e r ” v e r tic e s .  W e  d id  i t  in  a n o th e r  w ay.
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the  current focus vertex, or could be a vertex n adjacent to  th e  current focus vertex, 

or some other vertex.

T he conquering procedure repeats for th e  new focus, and term inates when all the 

quads have been traversed.

For the  unvisited quad to  be conquered, two vertices in the  quad are end points of 

th e  focus edge, which have already been encoded. The problem  is to  encode the  other 

two vertices. If any of the  o ther two vertices is free (has not been encoded), we create 

an “add” com m and for it. If any of the  o ther two vertices in the  unvisited quad has 

been encoded during encoding, there are two possibilities: either it leads to  a vertex 

in the  same active list or to  a vertex in another active list. In the  first case, the active 

list is split. The encoding procedure proceeds w ith one, and push the  others onto 

the  stack for future trea tm en t. In the  la tte r  case, the active lists are merged to  form 

one active list on which the  encoding continues, there  will be no merge com m ands if 

the  object has sphere topology (genus 0 ), and can only occur in a torus-like topology 

(non-genus-0 ).

The compression algorithm  is shown in algorithm  1 . The input file is a quad PLY 

file, and the  ou tpu t files are two files, one file “out_com m m and.txt” which contains 

a sequence of com mands, the o ther one is file “out_vertex .tx t” which contains vertex 

coordinates, as shown below.

out co m m and .tx t
q u a d P L Y  f i l e  —

out_vertex.txt,

T he decompression algorithm  is shown in algorithm  3. The two input files are 

“out_com m and.txt” and “out._vertex.txt” , and the  ou tp u t is a quad PLY file.

o u tjcom m and .tx t

o u tjver tex .tx t
->■ q u a d P L Y  f i l e

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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D uring im plem entation, we noted th a t there are 7 different cases th a t need to  be 

handled for triangle mesh compression. However, there  are 18 different cases th a t 

need to  be handled for quadm esh compression.

In each case, th e  current active list m ight expand or decrease by conquering one 

unvisited quad, or it might be removed and we pop another active list from th e  list 

stack for traversing.

Each such case would generate 1 com m and, or 2 com m ands, or even 3 com mands. 

Table 3.3 shows th e  num ber of com m ands created for each case. For case 1, 2, 3,

4.2, 4.3, no com m ands are generated, while case 7.3.2 generates 3 com m ands. All the 

o ther cases generate 2  commands.

T he num ber of “add ’7 com m ands in th e  connectivity code is th e  same as the num ber 

of vertices in the quadm esh, since each free vertex introduce one “add” com m and. 

Table 3.1 shows the  num ber of free vertices found in different cases.

Table 3.3 shows the  effects of size of the  current active list in different cases. The 

column “Effects on Size” shows how th e  size of the  current active list changes. For 

example, th e  size will be the  same for case 4.1.1, while it will increase by 2 in case

5.1. The symbol oc” is used to  indicate th a t the size of the  active list decreases 

to  0, and th e  active list is deleted. For split and merge com m ands generated from 

vertex v[2] or u[3], they  either create a new active list, or remove an existing active 

list from list stack. In Table 3.3 Ti is th e  size of th e  active list involved on v[2], while 

T ‘2 is th e  size of th e  active list involved on u[3]. The exception is, for case 7.3.2 where 

T] is the  size of the  active list found from the  list stack, while T2 is th e  size of the 

active list created by the  split com mand.
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input : file.in.ply

output: file.out.command. file.out.vertex

init(file_in_ply, 4);

while not listStackA s E m pty () do 
activeList =  list Stack.pop():

while not activeList.isEm ptyQ  do

if activeList.sizeQ  < 3 or activeList.areA llVerticesFullQ  then

activeList.clear(); /*  case 1, case 2 */

else
current Polygon =  getRevisedCurrentPolygonQ:

if LastPolygonO utsideActiveListQ  then activeList.clear(); : /*  case 3 */

else

if isLast.UnvisitedPolygonAroundFocusEdgeQ  then /*  case 4 * /
| handleLastUnvisitedPolygonAroundFocusEdgeForCompression();

else if currentPolygon.v[2}.isUnvisited() then /*  case 5 * /
if currentPolygon.v[3}.isUnvisited() then handle case 5.1;

else if  activeList.contains(currentPolygon.v[3\) then handle case 5.2; 

else handle case 5.3: 
else if activeList.cont.ains(currentPolygon.v[2}) then /* case 6 * /

if currentPolygon.v[3].isUnvisited() then handle case 6.1:

else if activeList.contains(currentPolygon.v[3]) then handle case 6.2; 

else handle case 6.3; 
else /*  case 7 * /

if currentPolygon.v[3\.isUnvisited() then handle case 7.1:

else if activeList.contains(currentPolygon.v[3}) then handle case 7.2;

else /* case 7 .3  * /

if currentPolygon.v[2] and currentPolygon.v[3] not on same list then  
| handle case 7.3.1;

else

handle case 7.3.2: /* one more s p l it  command created */

increaseNumOfVisitedEdgesForPolygon(currentPolyg'on):

createCommandFile(file_out_comniand. commandStack); 

createVertexFile(file_out_vertex, newV);
Algorithm 1: Quadmesh compression algorithm
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getRevisedCurrentPolygon():

switch type do /* how many edges of currentPolygon are in activeL ist * /

case 2 /*  case 4.1 */
if currentPolygon.v[2\.isUnvisit,ed() then handle case 4.1.1;

else if activeList.contains(currentPolygon.v{3]) then handle case 4.1.2; 

else handle case 4.1.3;

case 3 /*  case 4 .2  */
|_ handle case 4.2;

case 4 /*  case 4 .3  */
|_ activeList.clear()-.

Function handleLastUnvisitedPolygonAroundFocusEdgeForCompression
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input : file_in_command, file_in.vertex

output: file_out_ply

init(file_in_command, file_in_vertex, 4):

while not U stStack.isEm ptyQ  do 
activeList = UstStack.popQ:

while not activeList.isE m ptyQ  do

if activeList.sizeQ  < 3 or activeList.areA llVerticesFullQ  then

activeList.dearQ ; /*  case 1, case 2 */

else
currentC om m andl =  com m andStack.rem oveFirstQ : 

currentComm and2 = com m andStack.rem oveFirstQ :

if LastPolygonO utsideActiveListQ  then activeList.dearQ : ; /*  case 3 * /

else

if isLastU nvisitedPolygonAroundFocusEdgeQ  then /*  case 4 * /
| handleLastUnvisitedPolygonAroundFocusEdgeForDecompression();

else if currentPolygon.v[2].isUnvisit,ed() then /* case 5 * /
if currentPolygon.v[3].isUnvisited() then handle case 5.1;

else if activeList.contains(currentPolygon.v[3]) then handle case 5.2; 

else handle case 5.3; 
else if activeList.contains(currentPolygon.v[2j) then /* case 6 */

if currentPolygon.v[3].isUnvisited() then handle case 6.1;

else if activeList. contains(currentPolygon.v[3]) then handle case 6.2; 

else handle case 6.3; 
else /*  case 7 */

if currentPolygon.v[3].isUnvisited() then handle case 7.1;

else if activeList. contains (currentPolygon.v [3]) then handle case 7.2;

else /*  case 7 .3  * /

if currentPolygon.v[2] and currentPolygon.v[3] not on same list then  
| handle case 7.3.1;

else

handle case 7.3.2; /*  one more s p l it  command popped * /

increaseNumOfVisitedEdgeForPolygon (currentPolygon);

createPLYFile(file.out_ply, V, P);
Algorithm 3: Quadmesh decompression algorithm
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getRevisedCurrentPolygon();

switch type do /* how many edges of currentPolygon axe in activeL ist * /

case 2 /* case 4.1 * /
if currentPolygon.v{2].isUnvisited() then handle case 4.1.1;

else if activeList.contains(currentPolygon.v[3]) then handle case 4.1.2; 

else handle case 4.1.3;

case 3 /*  case 4 .2  */
|_ handle case 4.2;

case 4 /*  case 4 .3  */
|_ activeList.clearQ ;

Function handleLastUnvisitedPolygonAroundFocusEdgeForDecompression

Case # Case Index #  of Free Vertices Comments

case 1 1 0 activeList.sizeQ <  3

case 2 2 0 all vertices in activeList are full

case 3 3 0 last quad outside activeList

case 4 4.1.1 1 2 edges in activeList & v[2].isUnvisited()

case 5 4.1.2 0 2 edges in activeList & v[2].split,()

case 6 4.1.3 0 2 edges in activeList & v[2].merge()

case 7 4.2 0 3 edges in activeList

case 8 4.3 0 4 edges in activeList

case 9 5.1 2 v[2].isUnvisited() & v[3].isUnvisited()

case 10 5.2 1 v[2].isUnvisited() & v[3].split()

case 11 5.3 1 v[2].isUnvisited() & v[3].merge()

case 12 6.1 1 v[2].split() & v[3].isUnvisited()

case 13 6.2 0 v[2].split() & v[3].split()

case 14 6.3 0 v[2].split() & v[3].merge()

case 15 7.1 1 v [2],merge() & v[3].isUnvisited()

case 16 7.2 0 v[2].inerge() & v[3].split()

case 17 7.3.1 0 v[2].merge() & v[3].merge() k. v[2]/v[3] not in same list

case 18 7.3.2 0 v[2].merge() & v[3].merge() & v[2]/v[3] in same list

Table 3.1: Free vertices found in different cases
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Case Index Effects on Size Comments

1 — 00 activeList.size() <  3

2 — 00 all vertices in activeList are full

3 —oc last quad outside activeList

4.1.1 0 2 edges in activeList & v[2].isUnvisited()

4.1.2 — oc 2 edges in activeList & v[2].split()

4.1.3 Ti 2 edges in activeList &: v[2].merge()

4.2 - 2 3 edges in activeList

4.3 — 00 4 edges in activeList

5.1 +2 v[2].isUnvisited() & v[3].isUnvisited()

5.2 - 7 i  + 3 v[2].isUnvisited() & v[3].split()

5.3 7i + 2 v[2].isUnvisited() & v[3].merge()

6.1 -T i  + 3 v[2].split() & v[3].isUnvisited()

6.2 —T\ - T 2 +  4 v[2].split() & v[3].split()

6.3 -T i  + T 2 +  3 v [2].split() & v[3].merge()

7.1 T i + 2 v[2].merge() & v[3].isUnvisited()

7.2 Tj -  T2 +  3 v[2].merge() & v[3].split()

7.3.1 Ti +  T2 +  2 v[2].merge() & v[3].merge() & v[2]/v[3] not in same list

7.3.2 Ti -  T2 +  2 v[2].merge() & v[3].merge() & v[2]/v[3] in same list

Table 3.2: Effects on size of current active list
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Case Index #  of Commands Comments

1 0 activeList.size() < 3

2 0 all vertices in activeList are full

3 0 last quad outside activeList

4.1.1 1 2 edges in activeList & v[2].isUnvisited()

4.1.2 2 2 edges in activeList & v[2].split()

4.1.3 1 2 edges in activeList & v[2].merge()

4.2 0 3 edges in activeList

4.3 0 4 edges in activeList

5.1 2 v[2].isUnvisited() & v[3].isUnvisited()

5.2 2 v[2].isUnvisited() & v[3].split()

5.3 2 v[2].isUnvisited() & v[3].merge()

6.1 2 v [2],split() & v[3].isUnvisit.ed()

6.2 2 v[2].split() & v[3].split()

6.3 2 v[2].split() & v[3].merge()

7.1 2 v[2].merge() & v[3].isUnvisited()

7.2 2 v[2].merge() & v[3].split()

7.3.1 2 v[2].merge() & v[3].merge() & v[2]/v[3] not in same' list

7.3.2 3 v[2].merge() & v[3].merge() & v[2]/v[3] in same list

T able 3.3: N um ber of com m ands c rea ted  in each case
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3.3.1 Com pression process

The 18 cases are handled in the  following ways for compression.

1. activeList.size() < 3

•  Remove (delete) the  active list.

2. All vertices in active list are full

•  Remove (delete) the  active list.

3. Last unprocessed quad outside

In th is case, size of the  active list is 4, and all vertices are alm ost full.

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1;

•  Remove (delete) th e  active list.

4. Last unvisited polygon around focus edge

T here are 3 subcases.

4.1. ohe[0], ohe[3] are in active list

There are 3 subcases.

4.1.1. v[2].isFree

•  Set v[2] “visited” ;

•  Push v[2] to  “newV” stack (for creating ordered vertex file);

•  create an add com m and for v[2 ];

•  reconstruct th e  current active list;

•  set focus edge for the  current acitve list;

•  increase “num O fV isitedEdge” for all vertices of th e  quad by 1 .

4.1.2. v[2].Split
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•  get “offset” of v[2];

•  create a split com m and for v[2];

•  create 2nd active list, set focus edge for it and push it to  list stack;

•  reconstruct th e  current active list;

•  set focus edge for the  current acitve list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1. 

4.1.3. v[2].M erge

•  find th e  2nd list (intersects a t v[2]) from list stack;

•  create a merge com m and for v[2];

•  reconstruct th e  current active list (merge two lists);

•  set focus edge for the current acitve list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

4.2. ohe[0], ohe[3], ohe[2] are in active list

•  reconstruct the current active list;

•  set focus edge for the current acitve list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

4.3. ohe[0], ohe[3], ohe[2], ohe[l] are in active list

This case happens only in non-genus-0 mesh. In th is case, the  size of the  

current active list is 4, and all vertices in the  active list are in the same 

quad. The difference between the  active list in case 3 and in th is case is: In 

case 3, all vertices are ’’alm ost full” , while in th is case, all o ther vertices are 

’’almost full” except one (u[lj).

•  increase “num O fV isitedEdge” for all vertices of th e  quad by 1;

•  remove (delete) th e  active list.

5. v[2].isFree

There are 3 subcases.
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5.1. v[2].isFree and v[3].isFree

•  Set v[2] and v[3] “visited” ;

•  Push v[2] and v[3] to  “newV” stack (for creating ordered vertex file);

•  create add com m ands for v[2] and v[3];

•  reconstruct the  current active list;

•  set focus edge for the  current active list;

•  increase “num O fV isitedEdge” for all vertices of th e  quad by 1.

5.2. v[2].isFree and v[3].Split

•  Set v[2] “visited” ;

•  Push v[2] to  “newV” stack (for creating ordered vertex file);

•  create an add com m and for v[2j;

•  get “offset” of v[3];

•  create a split com m and for v[3];

•  create 2nd active list, set focus edge for it and push it to  list stack;

•  reconstruct the  current active list;

•  set focus edge for the  current active list;

•  increase “num O fV isitedEdge” for all vertices of th e  quad by 1.

5.3. v[2].isFree and v[3].M erge

•  Set v[2] “visited” ;

•  Push v[2] to  “newV” stack (for creating ordered vertex file);

•  create an add com m and for v[2j;

•  find the  2nd list (intersects at v[3]) from list stack;

•  create a merge com m and for v[3];

•  reconstruct the  curren t active list (merge two lists);

•  set focus edge for th e  current active list;

•  increase “num O fV isitedEdge” for all vertices of th e  quad by 1.
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6. v[2].Split

There are 3 subcases.

6.1. v[2].Split and v[3].isFree

•  get “offset” of v[2];

•  create a split com m and for v[2];

•  create 2nd active list, set focus edge for it and  push it to  list stack;

•  Set v[3] “visited” ;

•  Push v[3] to  “newV” stack (for creating ordered vertex file);

•  create an add com m and for v[3];

•  reconstruct the  current active list;

•  set focus edge for th e  current active list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

6.2. v[2j.Split and v[3].Split

•  get “offset” of v[2];

•  create a split com m and for v[2];

•  create 2nd active list, set focus edge for it and push it to  list stack;

•  get “offset” of v[3];

•  create a split com m and for v[3];

•  create 3rd active list, set focus edge for it and push it to  list stack;

•  reconstruct th e  current active list;

•  set focus edge for the  current active list;

•  increase “num O fV isitedEdge” for all vertices of the quad by 1.

6.3. v[2j.Split and v[3j.M erge

•  get “offset” of v[2];

•  create a split com m and for v[2];
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•  create 2nd active list, set focus edge for it and push it to  list stack;

•  find a 3rd list (intersects a t v[3]) from list stack;

•  create a merge com m and for v[3];

•  reconstruct the  active list (merge the  3rd list and current active list);

•  set focus edge for the  current active list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

7. v[2] .M erge

There are 3 subcases.

7.1. v [2].M erge and v[3].isFree

•  find a 2nd list (intersects a t v[2]) from list stack;

•  create a merge com m and for v[2];

•  Set v[3] “visited” ;

•  Push v[3] to  “newV” stack (for creating ordered vertex file);

•  create add com m ands for v[3];

•  reconstruct the  current active list;

•  set focus edge for the  current active list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

7.2. v[2].M erge and v[3j.Split

•  find a 2nd list (intersects a t v[2]) from list stack;

•  create a merge com m and for v[2];

•  get “offset” of v[3];

•  create a split com m and for v[3];

•  create 3rd active list, set focus edge for it and push it to  list stack;

•  reconstruct th e  current active list;

•  set focus edge for the  current active list,;
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•  increase “num O fV isitedEdge” for all vertices of th e  quad by 1.

7.3. v[2].M erge and v[3] .M erge There are 2 subcases.

7.3.1. v[2].M erge and v[3].M erge, v[2]/v[3] are not on same list

•  find th e  2nd list (intersects at v[2]) from list stack;

•  create a merge com m and for v[2];

•  find the  3rd list (intersects a t v[3]) from list stack;

•  create a merge com m and for v[3];

•  reconstruct th e  active list (merge the  th ree lists);

•  set focus edge for the  active list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

7.3.2. v[2].M erge and v[3].M erge, v[2]/v[3] are on sam e list

•  find the  2nd list (intersects at v[2]) from list stack;

•  create a merge com m and for v[2];

•  create a merge com m and for v[3];

•  get distance (offset) between v[2] and v[3] along th e  2nd list;

•  create a split com m and for v[3] on the  2nd list;

•  create 3rd active list, set focus edge for it and push it to  list stack;

•  reconstruct th e  current active list;

•  set focus edge for the  current active list;

•  increase “num O fV isitedEdge” for all vertices of the quad by 1. 

3.3.2 Decom pression process

The 18 cases are handled in th e  following ways for decompression.

1. activeL ist.size() < 3

•  Remove (delete) the  active list.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

2. All vertices in active list are full

•  Remove (delete) the  active list.

3. Last unprocessed quad outside

In th is case, size of the active list is 4, and all vertices are alm ost full.

•  create a new quad w ith  all vertices on current active list;

•  increase “num O fV isitedEdge” for all vertices of th e  quad by 1;

•  Remove (delete) the active list.

4. Last unvisited polygon around focus edge

There are 3 subcases.

4.1. ohe[0], ohe[3] are in active list

There are 3 subcases.

4.1.1. v[2].isFree

(read next com m and, which is an add com m and)

•  set v[2] to  be next vertex in vertex list, and set degree infomatioii for 

it;

•  create a new quad w ith focusEdge, v[2] and nextOfFocusVertex:

•  reconstruct th e  current active list;

•  set v irtual focus edge for the  current active list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

4.1.2. v[2].Split

(read next com m and, which is a split com m and)

•  set v[2] to  be a vertex in current active list;

•  create a new quad w ith focusEdge, v[2] and nextOfFocusVertex;

•  reconstruct th e  active list;
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•  set v irtual focus edge for th e  current active list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

4.1.3. v[2].M erge

(read next com m and, which is a merge com mand)

•  set v[2] to  be a vertex in an active list from list stack;

•  create a new quad w ith focusEdge, v[2] and nextOfFocusVertex;

•  reconstruct th e  current active list (merge two lists);

•  set v irtual focus edge for th e  current active list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

4.2. ohe[0], ohe[3], ohe[2] are in active list

•  create a new quad w ith focusEdge, nextOfFocusVertex and nextnextO f- 

FocusVertex;

•  reconstruct the  current active list;

•  set v irtual focus edge for the  current active list;

•  increase “num O fV isitedEdge” for all vertices of th e  quad by 1.

4.3. ohe[0], ohe[3], ohe[2], ohe[l] are in active list

•  create a new quad w ith focusEdge, nextOfFocusV ertex and nextnextO f- 

Focus Vertex;

•  increase “num O fV isitedEdge” for all vertices of th e  quad by 1;

•  remove (delete) the  active list.

5. v[2].isFree

There are 3 subcases.

5.1. v[2].isFree and v[3].isFree

(read next two com m ands which are two add com mands)

•  set v[2] to  be next vertex in vertex list, and set degree infom ation for it;
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•  set v[3] to  be next vertex in vertex list, and set degree infom ation for it;

•  create a new quad w ith focusEdge, v[2] and v[3];

•  reconstruct the  current active list;

•  set v irtual focus edge for the  current active list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

5.2. v[2].isFree and v[3].Split

(read next two com mands, 1st is an add com m and, next is split.)

•  set v[2] to  be next vertex in vertex list, and set degree infom ation for it;

•  set v[3] to  be a vertex in current active list;

•  create a new quad w ith focusEdge, v[2] and v[3];

•  reconstruct the  active list;

•  set v irtual focus edge for the current active list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

5.3. v[2].isFree and v[3].M erge

(read next two com m ands, 1st is an add com mand, next is merge)

•  set v[2] to  be next vertex in vertex list, and set degree infom ation for it;

•  set v[3] to  be a vertex in an active list from list stack;

•  create a new quad w ith focusEdge, v[2] and v[3];

•  reconstruct the  current active list (merge two lists);

•  set v irtual focus edge for the  current active list:

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

6. v[2j.Split

T here are 3 subcases.

6.1. v[2].Split and v[3].isFree

(read next two com mands, 1st is a split com m and, next is add)
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•  set v[2] to  be a vertex in current active list;

•  set v[3] to  be next vertex in vertex list, and set degree infom ation for it;

•  create a new quad w ith focusEdge, v[2] and v[3];

•  reconstruct the  current active list;

•  set v irtual focus edge for th e  current active list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by E

6.2. v[2].Split and v[3].Split

(read next two com mands, which are split com mands)

•  set v[2] to  be a vertex in current active list;

•  set v[3] to  be a vertex in current active list;

•  create a new quad w ith focusEdge, v[2] and v[3j;

•  reconstruct the  current active list;

•  set v irtual focus edge for the  current active list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

6.3. v[2].Split and v[3].Merge

(read next two com mands, 1st is a split com m and, next is merge)

•  set v[2] to  be a vertex in current active list;

•  set v[3] to  be a vertex in an active list from list stack;

•  create a new quad w ith focusEdge, v[2] and v[3];

•  reconstruct the  current active list;

•  set v irtual focus edge for th e  current active list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

7. v[2].M erge

There are 3 subcases.

7.1. v[2] .Merge and v[3].isFree

(read next two com m ands which are two add com mands)
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•  set v[2] to  be a vertex in an active list from list stack;

•  set v[3] to  be next vertex in vertex list, and set degree infom ation for it:

•  create a new quad w ith focusEdge, v[2] and v[3];

•  reconstruct the  current active list;

•  set v irtual focus edge for the  current active list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

7.2. v[2].M erge and v[3].Split

(read next two com m ands, 1st is an add com m and, next is split)

•  set v[2] to  be a vertex in an active list from list stack;

•  set v[3] to  be a vertex in current active list;

•  create a new quad w ith  focusEdge, v[2] and v[3];

•  reconstruct the current active list;

•  set v irtual focus edge for the  current active list;

•  increase “num O fV isitedEdge” for all vertices of the  quad by 1.

7.3. v[2].M erge and v[3].M erge 

There are 2 subcases.

7.3.1. v[2].M erge and v[3].M erge, v[2]/v[3] are not on same list

(read next two com m ands, b o th  are merge com m ands)

•  set v[2] to  be a vertex in an active list from list stack;

•  set v[3] to  be a vertex in an  active list from list stack;

•  create a new quad w ith focusEdge, v[2] and v[3];

•  reconstruct th e  current active list (merge the  th ree lists);

•  set v irtual focus edge for th e  current active list;

•  increase “num O fV isitedEdge” for all vertices of th e  quad by 1.

7.3.2. v[2].M erge and v[3].M erge, v[2]/v[3] are on same list 

(read next 3 com mands, two merge com mands, 1 split com m and)
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•  set v[2] to  be a vertex in an active list from list stack;

•  set v[3] to  be a vertex in the  same active list from list stack;

•  create a  new quad w ith focusEdge, v[2] and v[3];

•  reconstruct the  current active list;

•  set v irtual focus edge for th e  current active list;

•  increase “num O fV isitedEdge” for all vertices of th e  quad by 1.

3.4  Illu stra te  th e  approach

To illustrate  th e  algorithm , we use a quadm esh of a twelve faced to rus shown in Fig. 

3.2(A) as example. T he surface, shown in Fig. 3.2(B), is obtained from the  to rus in 

Fig. 3.2(A) by cu tting  along its four edges (ulO, u4), (u4,u5), (u5, n i l )  and (u ll .u lO )  

and laying it flat, on the  ground to  produce a two dim ensional image representation 

which can be represented on paper.

For each vertex in th e  mesh, we need to  know two properties of it: i t ’s de

gree (field degree), and how m any quads/edges around it has been visited (field 

n u m O f V i s i t e d E d g e ) .  In our example, each vertex in th e  figures is shown in the  

following form at;

ver tex  I  ndex(degr  ee;/  n u m O  fV i s i t e d E d g e )

For example, in Fig. 3.2(C), the degree of vertex ulO is 4, and num ber of visited 

quads/edges around vertex ulO is 0. So, in Fig. 3.2(C), vertex ulO is described as;

10(4/0)

Fig. 3.2(A) to  Fig. 3.2(U) shows how the  com pression algorithm  works for the  

sample mesh, and Fig. 3.3(A) to  Fig. 3.3(U) shows how the  decompression algorithm  

works.
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3.4.1 Compression of a torus mesh

A fter reading the m esh’s inform ation from an inpu t file, we set degree inform ation for 

each vertex in the mesh, as shown in Fig. 3.2(C). From this step, we can see th a t the 

value of field nurnO  f V i s i t e d E d g e  for each vertex is 0, which m eans th a t all vertices 

are free vertices now.

The compression process s ta rts  w ith  one quad in the  mesh. Here we s ta rt the  com

pression w ith  the first quad (vO, v l. v3. v2), defining th e  first, active list. (uO, e l ,  v3, v2) 

of four edges which are edges of the  first quad, as shown in Fig. 3.2(D). The focus 

edge (eO, v2)  is the  opposite half edge of th e  last edge of the quad, and focus vertex 

(r;0) is the  first, vertex of the quad. We should always keep in m ind that.: first, focus 

vertex is the  s ta rt vertex of the  focus edge; secondly, the  focus edge is no t in th e  active 

list, while i t ’s opposite half edge is in the  active list: thirdly, each tim e we create a 

new active list, we need to  assign a focus edge for it.

Next, by enum eration, we can see th a t the  current active list. (uO, u l, v?>. v2) doesn’t 

m atch conditions for case 1, case 2, case 3 or case 4. So the current active list m ust 

m atch conditions for case -5, case 6 or case 7, and a t least two com m ands will be 

created. To clarify which case it m atches, we need to  check the  th e  o ther two vertices 

(u8 and v6) in quad (vO, v2, v8, v6) which contains th e  focus edge (uO, v2). Since 

the  value of field n u m O f V i s i t e d E d g e  for either vertex is 0, which m eans bo th  of 

the  vertices are free, we conclude th a t the  current active list m atches conditions for 

subcase 5.1. In th is case, two add com m ands are created for vertex v8  and u6, the  

current active list, is expanded, and the  focus edge moves to  edge (?;0,u6), as shown 

in Fig. 3.2(E). There are also some other operations should be perform ed, bu t here 

we will not give a detailed description for all the operations. For the  operations 

perform ed in each case, you can find the  details in section 3.3.1. The same rule 

applies for all the following discussion in th is chapter.
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Now the focus edge (uO, v6) is in quad (nO, u6, ulO, v4). From th e  same logic as 

in the  previous step, we now find th a t the  current active list m atches conditions for 

subcase 5.1 again. So, we create two more add com m ands for vertex rdO and v4, 

expand the  current active list, and move the  focus edge to  edge (uO, v4), as shown in 

Fig. 3.2(F).

Now, the  current active list m atches conditions for case 4, since vertex uO, one 

of the  two endpoints of th e  focus edge, is “alm ost full” . By checking neighboring 

vertices of vertex uO in th e  current active list, we find th a t there is only one adjacent 

vertex around vertex vO th a t  is “alm ost full” , which m eans 3 consecutive vertices in 

the  current active list are shared w ith quad (uO, u4, v5, u l)  which contains the  focus 

edge (uO, u4). This m atches conditions for subcase 4.1. We also find th a t vertex r 5 

(which is the  only vertex in th e  quad th a t is not shared w ith the  current active l is t) 

is a free vertex since the  value of field n u m O f V i s i t e d E d g e  for it is 0. From what 

we have exam ined, we finally conclude th a t the  current active list m atches conditions 

for subcase 4.1.1. So, we create one add com m and for vertex u5, and perform  some 

other necessary operations, as shown in Fig. 3.2(G).

Now, the  focus edge is (u l, v5), and the  quad containing the  focus edge is (c l.  co. 

d l ,  v7). We can see th a t the  current active list m atches conditions for case 5.1. So 

we create two more add com m ands for vertex e l l  and v7. expand the  current active 

list, and move the focus edge to  edge (v l , v7 ) ,  as shown in Fig. 3.2(H).

Similar to  the case shown in Fig. 3.2(F), we now find th a t the  current active list 

m atches conditions for subcase 4.1.1. So, we create one add com m and for vertex r9. 

and perform  some other necessary operations, as shown in Fig. 3.2(1).

Now, the  focus edge is (c3, c9), and th e  current active list is (c4. ?;5, n i l ,  v7, c9. r3 . 

v2, v8, v6, clO). By enum eration, we know th a t the  current active list doesn 't m atch 

conditions for case 1, case 2, case 3 or case 4. T hen we check quad (w3, w9, n i l ,  ?;5). 

which contains the  focus edge (n3,w9). We find th a t vertex n i l  is in the  current
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active list, which m atches conditions for case 6; vertex vb  is also in the  current active 

list, which m atches conditions for subcase 6.2. This indicates th a t all 4 vertices of 

quad (u3, u9, n i l ,  v5) are in the  current active list. We create two split com m ands 

for vertex v l l  and  w5. The offset of th e  first split com m and on vertex v l l  is the 

distance between vertex v \ \  and vertex v9 (end vertex of th e  focus edge) along the  

current active list; the  offset of the  second split com m and on vertex v5 is the  distance 

between vertex v3 (s ta rt vertex of th e  focus edge) and vertex vb along current active 

list. The current active list is split into 3 active lists, 2 of which are pushed onto list 

stack, and we proceed w ith the  th ird  one, which is active list (u l l ,u 5 ) ,  as shown in 

Fig. 3.2(J) and Fig. 3.2(K).

Since size of the  current active list ( n i l ,  u5) is less th a n  3, which m atches conditions 

for case 1, we ju st remove the  current active list, and proceed w ith the  active list 

(u3, v2, v8, i^6, r'10, u4, u5) popped from the list stack, as shown in Fig. 3.2(L).

Now, th e  focus edge is (v3.v5),  and the  current active list is (u3, v2, v8, v6, vlO, 

v4, v5).  We can see th a t the  current active list m atches conditions for case 4, since 

a t least one of th e  endpoints of the  focus edge is “alm ost full". By checking the  

neighboring vertices of th a t “alm ost full” vertex in th e  active list, we find th a t there 

are two consecutive “alm ost full” vertices around it, which m eans 4 consecutive  

vertices in th e  active list are shared w ith quad (v3, vb, u4, v2) which contains the  focus 

edge (u3.u5). This m atches conditions for subcase 4.2. We perform  some operations 

for th is case, and move to  the  next step, as shown in Fig. 3.2(M).

Now, the  focus edge is (v2,v4),  and the current active list is (r?2, v8, vQ, r.’lO, v4). 

Similar to  th e  previous step, the  current active list m atches conditions for subcase

4.2. We perform  the  same operations as in the  previous step, as shown in Fig. 3.2(N).

Now, the  focus edge is (u8 ,u l0 ), and the  current active list is (v8. v6. rdO). By 

enum eration, we know th a t th e  current active list doesn’t m atch  conditions for case 

1, case 2, case 3 or case 4. So we need to  check the  o ther two vertices v l l  and v9 in
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quad (u8, clO, v l l ,  v9) which contains the  focus edge (u8, ulO). I t ’s clear th a t vertex 

v l l  is in one of the  active lists in the  list stack, which m atches conditions for case 7; 

meanwhile, vertex c9 is also in one of th e  active lists in the  list stack, which m atches 

conditions for subcase 7.3; w h a t’s more, vertex v l l  and vertex v9 are in the  same 

active list ( n i l ,  v7, v9), which m atches conditions for subcase 7.3.2. For this case, we 

add all th e  edges outside vertex v l l  and vertex v9 along active list ( n i l ,  v7, u9) to  the 

current active list (r;8, r;6, ulO), and  create a new active list (u 9 ,u l l) ,  which contains 

edge (n i l ,  v9) and all the  edges between vertex v l l  and vertex v9  along the  active list 

{ v l l , v 7 , v 9 ) .  Since th e  size of the  new created active list (u9, n i l )  is less than  3, we 

ju s t delete th is new active list. T hree com m ands are created for th is case, two merge 

com m ands for vertex v l l  and vertex c9, and one split com m and for the  new created 

active list. The index value of the  second merge com m and is —1, which indicates th a t 

two merge operations are perform ed on the  same active list. The details are shown 

in Fig. 3 .2 (0 ), Fig. 3.2(P) and Fig. 3.2(Q).

Now7, th e  focus edge is ( n i l ,  rTO), and th e  current active list is ( n i l .  v7, v9, v8, v6, 

t'10). We can see th a t the  current active list m atches conditions for case 4, since a t 

least one of the  endpoints of the  focus edge is “alm ost full” . By checking neighboring 

vertices of th a t “alm ost full” vertex in the  current active list, we can find th a t there 

are two consecutive “alm ost full” vertices around it, wdiich m eans 4 consecutive 

vertices in the  active list are shared w ith quad (n il ,  r;10, v6, v7) wdiich contains the 

focus edge (c ll.rT O ). This m atches conditions for subcase 4.2. We perform  some 

operations for this case, and move to  the next step, as showm in Fig. 3.2(R).

Now, th e  focus edge is (c7, c6), and the  current active list is (v7. v9, v8, v&). By 

enum eration, we know th a t th e  current active list doesn’t  m atch  conditions for case 1 

or case 2. On the o ther hand, the  current active list m atches conditions for case 3 since 

there are only 4 vertices in the  current active list, and all of them  are “alm ost full” . 

This indicates th a t the quad (v7, v9. v8, v6) is the  only quad outside the  current active 

list (v7, u9, v8, v6). For th is case, we increase the  value of field n u m O f V i s i t e d E d g e
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by 1 for each vertex in th e  quad (v7, 9, 8, v6), and then  delete th e  current active list, 

as shown in Fig. 3 .2(S).

Now, there are no active lists left, and we claim th a t the  com pression process is 

done.

D uring th e  com pression process, each tim e we create an add com m and for a 

free vertex, we push th is free vertex onto stack new V .  The o u tp u t for the com

pression process are two hies. One contains th e  ordered vertices from stack n e w V , 

nam ed “out_vert.ex.txt” , the other one contains the sequence of com m ands, nam ed 

“out_conunand.tx t” . The content of the  ou tp u t hies are shown in Fig. 3.2(U). The 

com m and hie can be encoded using entropy coding, which will be discussed later.

3.4.2 Decom pression of a torus mesh

Now we have two input hies for decompression, hie “out_vertex .tx t” contains a se

quence of vertex coordinates, and hie “out_com m and.txt’’ contains a sequence of 

com m ands, as shown in Fig. 3.3(B). L e t’s see how we reconstruct the  torus using 

these two input hies.

As shown in Fig. 3.3(C), first, we read hie “out._vertex.txt” and  pu t the vertices 

into a vertex stack; then , we read the  com m and hie “out_com m and.txt” , and pu t the  

com m ands in to  a com m and stack.

The first 4 com m ands in com m and stack m ust be add com m ands. We pop the  first. 

4 com m ands from com m and stack, and pop the first 4 vertices (t’O, c l ,  v3, v2) from 

vertex stack. T hen  we create a quad (uO, u l, v3. v2) w ith  these 4 vertices. We set the 

current active list to  be (uO, u l. u3, u2), and the  focus edge to  be (vQ,v2), which is 

the opposite half edge of the last edge of the  quad, as shown in Fig. 3.3(D).

N ext, by enum eration, we can see th a t the  current active list. (uO, u l, r3. v2) doesn’t
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m atch conditions for case 1, case 2, case 3 or case 4. So th e  current active list m ust 

m atch conditions for case 5, case 6 or case 7. To clarify which case it m atches, we 

pop two com m ands from com m and stack, since a t least two com m ands are created 

by case 5, case 6 or case 7 during compression. The next two com m ands are add 

com mands, which m atches conditions for subcase 5.1. So we pop two vertices (v8 

and v6) from vertex stack, create a new quad w ith the  focus edge and the  two new 

vertices (v8 and v6). Also we need to  expand the  active list, move the  focus edge to  

edge (u0,u6), and perform  some other necessary operations for case 5.1, as shown in 

Fig. 3.3(E).

Now the  focus edge is (uO, u6), and the  current active list is (uO. u l,  v3.  u2, v8, v6). 

From the  same logic as th e  previous step, we can find th a t now the  current active list 

m atches conditions for case 5.1 again (after popping two com m ands from com m and 

stack). So we pop another two vertices (ulO and vA) from vertex stack, create a new 

quad (vO, v6, t ’10, vA), and perform  some other necessary operations, as shown in Fig. 

3.3(F).

Now, th e  focus edge is (vO,vA), and the  current active list is (uO, u l, c3. r;2, u8, 

v6, r>10, vA). You can see th a t the current active list m atches conditions for case 

4, since vertex nO, one of the  two endpoints of the  focus edge, is “alm ost full” . By 

checking neighbor vertices of vertex vO in the current active list, we can find th a t 

there is only one consecutive vertex around vertex uO is “alm ost full” , which m eans 

3 consecutive vertices (u4, uO, u l)  in the  current active list are shared w ith the next 

created quad which contains the  focus edge (u0,t>4). This m atches conditions for 

subcase sub4.1. To clarify th e  subcase fu rther more, we pop one com m and from 

com m and stack. The com m and popped out is an add com m and, which m atches 

conditions for subcase 4.1.1. So, we pop one vertex (v5) from vertex stack, create a 

new quad (uO, v4, u5, id ) , and perform  some other necessary operations, as shown in 

Fig. 3.3(G).
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Now, th e  focus edge is (u l,u 5 ). Again, by enum eration, we can find th a t the 

current active list (u4, vb, v l ,  v3, v2, v8, v6. ?;10) doesn’t  m atch conditions for case 1, 

case 2, case 3 or case 4. So current active list m ust m atch conditions for case 5, case 6 

or case 7. To clarify which case it m atches, we pop two com m ands out from com m and 

stack. The next two com m ands are add com mands, which m atches conditions for 

subcase 5.1. So we pop two vertices ( n i l  and v7) from vertex stack, create a new 

quad w ith the  focus edge and the  two new vertices ( n i l  and n7), as shown in Fig. 

3.3(H).

Now', th e  focus edge is (n l,n 7 ), and th e  current active list is (n4, n5, n i l ,  v7, 

n l,  n3, n2, n8, n6, nlO). Similar to  the  case shown in Fig. 3.3(F), we can find th a t 

now the  current active list m atches conditions for subcase 4.1 since 3 consecutive 

vertices (n7, n l,n 3 ) in the  current active list are shared w ith th e  next created quad 

which contains the  focus edge (n l,n 7 ). We pop one com m and from com m and stack. 

The com m and popped out is an add com m and, which m atches conditions for subcase

4.1.1. So, we pop one vertex (u9) from vertex stack, create a new quad (u3, u l, u7, n9), 

and perform  some other necessary operations, as shown in Fig. 3.3(1).

Now, the  focus edge is (v3, v9),  and the  current active list is (u4, vb,  n i l ,  v7, v9, v3, 

v2, v8, v6, ulO). Again, by enum eration, we know th a t the current active list doesn’t 

m atch conditions for case 1, case 2, case 3 or case 4. So the current active list m ust 

m atch conditions for case 5, case 6 or case 7. To clarify which case it m atches, we pop 

two com m ands from com m and stack. T he next two com m ands are split com mands, 

which m atches conditions for subcase 6.2. This indicates th a t all vertices of next 

created quad are from current active list. By checking the o f f s e t  values of the  splits 

com m ands, we can find th a t th e  o ther two vertices of the new created quad are ?;11 

and vb. So we create a new quad (u3 ,v 9 , n i l ,u 5 ) ,  split the  current active list into 

three active lists, push two of them  into list stack, and proceed w ith th e  th ird  one, 

which is active list (n ll ,u 5 ) ,  as shown in Fig. 3.3(J) and Fig. 3.3(K).
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Now the current active list is ( n i l ,  u5). Since size of the  current active list (i’l l ,  v5) 

is less th an  3, which m atches conditions for case 1, we ju st remove th e  current active 

list, and proceed w ith the  active list (v3, v2, v8. v6, ulO, v4, v5) popped from list stack. 

To make th e  following description easier for understanding, we draw  th e  active list 

(u3, t ’2, u8, u6, ulO, u4, u5) in an alternative way, as shown in Fig. 3.3(L).

Now, the  focus edge is (v3,v5), and th e  current active list is (v3, v2, v8, v6, ulO, 

v4, v5). We can see th a t the  current active list m atches conditions for case 4, since 

at least one of the endpoints of th e  focus edge is “alm ost full” . By checking neighbor 

vertices of th a t “alm ost full” vertex in the  active list, we can find th a t there are th ree 

consecutive “alm ost full” vertices around it, which m eans 4 consecutive vertices 

(u4, r5 . v3. v2) in th e  current active list are shared w ith the  new created quad which 

contains the  focus edge (v3, v5). This m atches conditions for subcase 4.2. So, we just 

create a new quad (v3, v5, v4, v2), and perform  some other necessary operations, as 

shown in Fig. 3.3(M).

Now, the focus edge is (v2,v4), and the  current active list is (v2, v8, v6, rTO, v4). 

Similar to  th e  previous step, th e  current active list m atches conditions for case 4.2, 

and 4 consecutive vertices (ulO, u4, v2, v8) in the  current active list are shared w ith 

the  new created quad which contains th e  focus edge (v2,v4). So, we ju s t create a 

new quad (v2. v4, r.’lO, v8), and perform  some o ther necessary operations, as shown in 

Fig. 3.3(N).

Now, the  focus edge is (u8,rT 0), and th e  current active list is (u 8 ,u 6 ,u l0 ). By 

enum eration, we know th a t the  current active list doesn’t m atch  conditions for case 1, 

case 2, case 3 or case 4. So current active list m ust m atch conditions for case 5, case 

6 or case 7. To clarify which case it m atches, we pop two com m ands from com m and 

stack. The next two com m ands are merge com m ands, which m atches conditions for 

subcase 7.3. W h a t’s more, th e  index  value for th e  second merge com m and is -1, which 

m atches conditions for subcase 7.3.2. In this situation, we need to  create a new quad
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first. Two vertices of the  new quad are the  endpoints of th e  focus edge (u 8 ,t’10). 

The other two vertices come from th e  active list, ( n i l ,  v7, v9) which is identified by 

the  index  value of the  first popped merge com mand. We can find the  o ther two 

vertices from the  active list (u l l ,u 7 ,  v9) by checking the  o f f s e t  value of the  two 

merge com mands. A fter the  o ther two vertices v l l  and v9 are found, we create a new 

quad (u8, ulO, e l l ,  u9). Then we add all edges outside vertex e l l  and  vertex e9 along 

active list, ( e l l ,  e7, e9) to  the  current active list (e8, e6, elO), and create another new 

active list (e9. e l l ) ,  which contains edge ( e l l ,e 9 )  and all the  edges between vertex 

e l l  and vertex e9 along active list ( e l l ,e 7 ,e 9 ) .  C reating a new active list m eans 

splitting  current active list into two, so we need to  pop a new com m and (which must 

be a split com m and) from com m and stack and then  split. Details are shown in Fig. 

3 .2 (0 ), Fig. 3.2(P) and Fig. 3.2(Q).

Now, th e  focus edge is ( e l l ,e lO ) ,  and the  current active list is ( e l l ,  v7. c9. r 8 . 

e6, elO). We can see th a t the current active list m atches conditions for case 4. since 

at least one of the endpoints of the  focus edge is “alm ost full” . By checking neighbor 

vertices of th a t “alm ost full” vertex in the  active list, we can find th a t there are 

three consecutive “alm ost full” vertices around it, which m eans four consecutive 

vertices ( e l l ,  v7, v6, r.’lO) in th e  current active list are shared w ith the  new created 

quad which contains the  focus edge (u l l ,u lO) .  This m atches conditions for subcase

4.2. So, we ju s t create a new quad (n i l ,  r.’lO, v6, u7), and perform  some other necessary 

operations, as shown in Fig. 3 .3(R).

Now, th e  focus edge is (v7, v6), and th e  current active list is (v7, v9. v8. rG). By 

enum eration, we know th a t th e  current active list doesn’t  m atch conditions for case 

1 or case 2. On the  other hand, current active list m atches conditions for case 3 since 

there are only 4 vertices in th e  current active list, and all of them  are “almost full". 

This indicates th a t there should be only one un-created quad outside current active 

list (?;7, u9, v8, u6). For th is case, we ju s t create a new quad (v7 . 9, 8, u6), increase the 

value of field n u m O f V i s i t e d E d g e  by 1 for each vertex of the  quad, and then  delete
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the  current active list, as shown in Fig. 3.3(S).

Now, there are no any active lists left, and we claim th a t th e  decom pression process 

is done.

3.5 H andling  boundaries

O ur im plem entation works for quadm esh w ithout boundary. For mesh w ith boundary. 

Toum a-G otsm an suggested to  add  one dum m y vertex and encode th is dum m y vertex 

separately. The same idea won’t work for quadm eshes.

For a quadm esh w ith boundary, consider the  polygon formed the by boundary  

edges. E ither you have to  split th is polygon into quads, which will in troduce more 

vertices/edges, or you have to  in troduce triangles. We do th ink  the  la tte r  is better.

The easiest way m ight be:

1. A dd one dum m y vertex 1st, triangu late  the  polygon;

2. Traverse all triangles around the dum m y vertex first.

The result mesh contains quads and some dum m y triangles. D uring the com

pression process, we conquer those dum m y triangles first, and then  conquer all rest 

quads.

3.6 E ntropy cod in g  o f  th e  com m and sequence

The th ree  com m ands appearing in the  connectivity code are “add < d eg ree> ” , “split 

< offset> ” and “merge < index> < offset > ” . Generally, a typical code contains m any 

“add” com mands, a few “sp lit” com m ands, and alm ost no “m erge” com mands.
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In typical quadm eshes, th e  average vertex degree is 4, and there is a spread of 

degrees around th is value. Using entropy coding, like Huffman to  encode the  connec

tiv ity  code could compress th e  connectivity further more. Table 3.4 is th e  Huffman 

code for a sample mesh “Torus” which is presented in C hap ter 5.

add 4 1

split 1 001

split 2 000

split 6 0110

merge -1 2 0111

merge 0 0 010

Table 3.4: Huffman coding scheme for sample mesh “Torus"

3.7  T im e co m p lex ity  analysis

The m ost tim e-consum ing operation  in the  connectivity com pression procedure is 

searching for a given vertex in some active list on the  list stack. This is needed only 

for ’’m erge” operations, which are extrem ely rare. A part from th a t, b o th  the  space 

and tim e com plexity of the  com pression and decom pression algorithm s are linear in 

the num ber of mesh quads/vertices.

3.8 Sum m ary

In th is chapter we discussed how Toum a-G otsm an’s com pression algorithm  for tr i

angle meshes is successfully extended for quadrilateral meshes. Tim e com plexity 

analysis shows th a t b o th  the  com pression and decom pression algorithm s are linear in 

the  mesh size.
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Compression Example

W  - V rrr̂

Figure 3.2: Compression example (A to U)

54 next: init the mesh

Figure 3.2: Compression exam ple (B)
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11(4/0)
10(4/0)

7(4/0)6(4/0)

9(4/0)8(4/0)

11(4/0)
10(4/0)

5(4/0)
4(4/0

2(4/0) 3(4/0)
1st quad

0(4/0) 1(4/0)
" 1 s t  edge

5(4/0)4(4/0) next: init the first active list

Figure 3.2: Com pression example (C)

11(4/0)
10(4/0)

7(4/0)6(4/0)

9(4/0)8(4/0)

11(4/0)
10(4/0)

5(4/0)
4(4/0

0(4/1)
next:

1(4/1)

4(4/0) currentPolygon.v[2] (v8) is unvisited -> case 5 
currentPolvgon.v[3] (v6) is unvisited -> case 5.1

5(4/0)

Figure 3.2: Com pression example (D)
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1(4/0)
10(4/0)

7(4/0)6(4/1)

9(4/0)8(4/1)

11(4/0)
10(4/0)

5(4/0)
4(4/0'

i r.

0(4/2)
next:

1(4/1)

4(4/0) currentPolygon.v[2] (10) is unvisited -> case 5currentPolygon ( 10) unvisited 5(4/0)is case
currentPolvaon.v[3l (v4) is unvisited -> case 5.1

1 4 
1 4 
1 4 
1 4 
1 4 
1 4

Figure 3.2: Compression exam ple (E)

v0
v1
v3
v2
v8
v6
v 10
v4

.10(4/1)
11(4/0)

S ^ 6 (4 /2 ) 7 ( 4 / 0 / ^ ' ' '

\8 (4 /1 ) 9 (4 /0 ) /

10(4/1) \

5(4/0)\
4(4/11 ----------- k

1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4

0(4/3) 1(4/1)'
next: focus vertex (vO) is “almost full” -> case 4;

4 (4 / 1 ) next quad has 2 OHEs in active list -> case 4.1; 5(4/0)
currentPolygon.v[2] (v5) is unvisited -> case 4.1.1

Figure 3.2: Compression exam ple (F)
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11(4/0)
10(4/1)

\
case 4.1.1

1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4

4(4/2) currentPolygon.v[2] (v11) is unvisited -> case 5 
currentPolygon.v[3] (v7) is unvisited -> case 5.1

Figure 3.2: Compression exam ple (G)

5(4/1)

J 0(4/1)

10(4/1)

!\
fows,varte& i s  “a l m n s t  f i ill"

1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4

4(4/2) next c'uad has 2 OHEs in active list case 4.1; 
currentPolygon.v[2] (v9) is unvisited -> case 4.1.1

5(4/2)

Figure 3.2: Compression exam ple (H)
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11(4/1)
10(4/1)

1(4/4;S q(4/4)

 ........................................
4 (4 /2 )currentP°lygon v[2] (v11) is in current active list -» case 6; 5(4/2)

'    , , r O !  / w C \  «r% im  i ■ r - f r \ n t  l i c t  R  O

v 1 0

v11

6(4/2)

8(4/1)

10(4/1)

4(4/2’

11(4/1)

5(4/2)

9(4/1)

7(4/2)

Figure 3.2: Compression exam ple (I)
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10(4/1)

v11

5(4/2)
4(4/2'

0(4/4)

5(4/2)4(4/2)

Figure 3.2: Compression exam ple (J)
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11(4/2)
10(4/1)

7(4/2)6(4/2)

9(4/2}8(4/1)
v6
v 1 0
v4 11(4/2 <N10(4/1)
v11

5(4/3’
4(4/2'

1(4/4)

next:(size of current active list) < 2  -> case 1 ; 
delete the current active list

5(4/3;4(4/2)

1
1
1
1
1
1
1
1
1
1
1
1
2 2 
2 6

Figure 3.2: Compression exam ple (K)

10(4/1)

1(4/4)0(4/4)

4 (4 /2 ) next: focus vertex (v3) is “almost full” -> case 4; 
next quad has 3 OHEs in active list -> case 4.2

5(4/3)

v2

v 1 0
v4

v11
v7
v 9

2 2

6(4/2)

m

8(4/1)

0(4/1)
11(4/2)

9(4/2)

7(4/2)

Figure 3.2: Compression exam ple (L)
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10(4/1)

1(4/4)0(4/4)

4 (4 /3 ) next: focus vertex (v2) is “almost full” -A case 4; 
next quad has 3 OHEs in active list -> case 4.2

5(4/4)

v 2

v6
v 1 0
v4

v11

2 2
2 6

6(4/2)

5(4/3)

8(4/1)

0(4/1)

(4/3

case 4.2

11(4/2)

5(4/4)

9(4/2}/

3(4/4)

7(4/2)

Figure 3.2: Compression exam ple (M)

11(4/2)
10(4/2

11(4/2)
10(4/2)

case 4.2

0(4/4) 1(4/4)
next eurrentPolygon.v[2] (v11) is in another active list -> case

1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
2 2
2 6

4 (4 /4 )currentR°lygon.v[3 ] (v9) is in another active list -A case 7.3;5(4/4) 
v9 and v11 are in the same list -> case 7.3.2

Figure 3.2: Compression exam ple (N)
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11(4/2)
10(4/2)

*10(4/2)

4(4/4) 5(4/4)

Figure 3.2: Compression exam ple (O)

11(4/3)
10(4/3)

case 7.3.2

10 4/3)

4 (4 /4 ) (size of the new active list created by case 7 .3 .2 ) < 2  
delete the new active list.

Figure 3.2: Compression example (P)
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11(4/3)
10(4/3f

7(4/2)6(4/2)

case 7 3 2

vio
v4 11(4/3)

10(4/3)
v11
v7 5(4/4)

4(4/4

2(4/4) 3(4/4)

1(4/4)0(4/4)

4 (4 /4 ) next: focus vertex (v11) is "almost full” case 4; 
next quad has 3 OHEs in active list -A case 4.2

5(4/4)

Figure 3.2: Compression exam ple (Q)

4
4
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

2 2  
2 6  
3 0 0  
3 - 1 2  
2 1

10(4/4) case 4 2
11(4/4)

1/3) —  “  1{A3 ^

%

> ----- VI(4/4)\
T 10(4/4) \

5(4/4) V ^
: 7 [4(474L__.------- —K  y

/ * « * >  .........3 (4 M k

70(4/4) 1(4/4)

4(4/4) next: all vertices in active list are almost full -> case 3 5(4/4)

1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4
1 4 
2 2  
2 6  
3 0 0  
3 - 1 2
2 1

Figure 3.2: Compression example (R)
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10(4/4)

7(4/4)6(4/4) case 3

9(4/4)8(4/4)

v10
11(4/4)

10(4/4)
v11

5(4/4)
4(4/4

3 0 0
2(4/4)

3(4/4)

1(4/4)

5(4/4)4(4/4)

Figure 3.2: Compression example (S)

Done!

Figure 3.2: Com pression example (T)
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out vertex.txt out command.txt

12
vO
v1
v3
v2
v8
v6
v1 0
v4
v5
v11
v7
v9

17
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

22  
26 
3 0 0  
3-12 
2 1

in it

case 5.1

case 5.1

case 4.1.1

\ case 5.1

j  case 4.1.1 
j. case 6 . 2

case 7.3.2

Figure 3.2: Compression exam ple (U)
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Decompression Example

Figure 3.3: Decompression example (A to T)

out_vertex.txt out_command.txt

1 2 17
vO 1 4
v1 1 4
v3 1 4
v2 1 4
v8 1 4
v6 1 4
v1 0 •<------------ 1 4
v4 1 4
v5 1 4
v11 1 4
v7 1 4
v9 1 4

2  2
26
3 0 0
3-12
2  1

Figure 3.3: Decompression example (B) 
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vO
v1
v3
v2
v8
v 6
v 1 0
v4
v5
v11
v7
v9

1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4
1 4 
2 2  
2 6  
3 0 0  
3 - 1 2
2 1

next: init (read first 4 commands and first 4 vertices) 

Figure 3.3: Decompression exam ple (C)

vO
v1
v3
v2
v8
v 6
v1 0
v4
v5
v11
v 7
v 9

init

0(4/1) 1(4/1)
next:
read next command -> case 5 ("add" command, v8 ) 
read next command -> case 5.1 (“add” command, v6 )

Figure 3.3: Decompression exam ple (D)

1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4 
1 4
1 4 
2 2  
2 6  
3 0 0  
3 - 1 2
2 1
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v8
v6
v 1 0
v4
v5
v11
v7
v9

f  8(4/1)

1 0

1(4/1)0(4/2)
next:
read next command case 5 (“add” command, v10) 
read next command A  case 5.1 (“add" command, v4)

Figure 3.3: Decompression exam ple (E)

10(4/1)

6(4/2)

8(4/1)

4(4/1)

0(4/3) 1(4/1)
next: focus vertex (vO) is “almost full” -> case 4; 
next created quad has 2 OHEs in active list -> case 4.1; 
next command is an “add" command -> case 4.1.1 (v5)

Figure 3.3: Decompression example (F)

1 4 
1 4 
1 4 
1 4 
1 4
1 4 
2 2
2 6 
3 0 0  
3 - 1 2  
2 1
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\
case 4.1.1

npyt

4(4/2) read next commancl case 5 (“add” command, v11) 5(4/1) 
read next command A  case 5.1 (“add” command, v7)

Figure 3.3: Decompression exam ple (G)

1 4 
1 4 
1 4
1 4 
2 2
2 6
3 0 0 
3 - 1 2  
2 1

v11
v7
v9

1 1 (4 /1 )^

i m W ( 4 / 2 ) 7(4/1) *T

j 8(4/1)
4

| >

t o

j j <0
\
i

i  _  . . .

o

i

: f 7
\ r y p (4 /4 ) 1(4ra*t  : i ,|

i r  ...... . r S ,  •:!

4(4/2) next crealecTquad has 2 OHEs in active list -> case 4.1; 
next command is an “add” command -> case 4.1.1 (v9)

Figure 3.3: Decompression example (H)

5(4/2)

1 4 
1 4
1 4 
2 2  
2 6  
3 0 0  
3 - 1 2
2 1

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. QUADMESH COMPRESSION AND DECOMPRESSION USING TOUMA-GOTSMAN
ALGORITHM

11(4/1)
10(4/1)

2 2
2 6
3 0 0

7(4/2)6(4/2)

9(4/1)8(4/1)

<o

1(4/4)

4 (4 /2 ) read next command -> case 6  ("split” command) 
read next command case 6 . 2  (“split” command)

5(4/2)

Figure 3.3: Decompression exam ple (I)

11(4/1)
10(4/1)

2 8 
3 0 0

7(4/2)6(4/2)

9(4/1)8(4/1)

co

0(4/4) 1(4/4)

5(4/2)4(4/2)

Figure 3.3: Decompression exam ple (J)
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11(4/2)
10(4/1)

7(4/2)6(4/2)

9(4/2);8(4/1)

0(4/4) 1(4/4)

next:(size of current active list) < 2  -> case 1 ; 
delete the current active list.

Figure 3.3: Decompression example (K)

5(4/3;4(4/2)

11(4/2)
10(4/1)

3 0 0

9(4/2W

11(4/2)

caste 1

4 (4 /2 ) next: focus vertex (v3) is “almost full” -> case 4; 5(4/3)
next created quad has 3 OHEs in active list -> case 4.2

Figure 3.3: Decompression example (L)
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11(4/2)
10(4/1)

3 - 1 2

11(4/2)'

case 4.2

4 (4 /3 ) next: focus vertex (v2) is “almost full” -> case 4; 5(4/4)
next created quad has 3 OHEs in active list -> case 4.2

Figure 3.3: Decompression example (M)

10(4/2)

-10(4/2)

X0(4/4) i ( 4 / 4 ) \
/  next: read next command -> case 7 (1 "merge” command) X .
4 (4 /4 ) read next command case 7.3 (1 “merge” command) 5 (4 /4 )

2nd argument of the command is -1 case 7.3.2

Figure 3.3: Decompression example (N)

3 0 0
3 - 1 2  
2 1
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11(4/2)
10(4/2)

3 0 0

7(4/2)6(4/2)

9(4/2V
case 7.3.2

>10(4/2)

5(4/4) \

2{4t4)
3(4/4)

0(4/4) 1(4/4)

5(4/4)4(4/4)

Figure 3.3: Decompression exam ple (O)

11(4/3)
10(4/3)

10(4/3)

3 0 0
3 - 1 2
2  1

4 (4 /4 ) (s^ e of the new active list created by case 7.3.2) < 2 5(4/4)
delete the new active list.

Figure 3.3: Decompression exam ple (P)
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11(4/3)
10(4/3)

7(4/2)6(4/2)

case 7.3.2

11(4/3)
10(4/3)

5(4/4)
4(4/4

2(4/4)
3(4/4)

1(4/4)

5(4/4)4(4/4) next: case 4.2

Figure 3.3: Decompression exam ple (Q)

11(4/4)
,10(4/4) case 4.2

11(4/4)
10(4/4)

5(4/4)
4(4/4

2(4/4)
3(4/4)

0(4/4) 1(4/4)

4(4/4) next: all vertices in active list are almost full A  case 3 5(4/4)

Figure 3.3: Decompression exam ple (R)
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11(4/4)
10(4/4)

7(4/4)6(4/4) case 3

9(4/4)8(4/4)

11(4/4)
10(4/4)

5(4/4)
4(4/4

2(4/4)
3(4/4)

0(4/4) 1(4/4)

5(4/4)4(4/4)

Figure 3.3: Decompression exam ple (S)

Done!

Figure 3.3: Decompression exam ple (T)
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Chapter 4

Linear tim e quadm esh decom pression  

using Spirale R eversi

Edgebreaker is a triangle conquest approach for connectivity compression of triangle 

meshes, which has been explained in section 2.2.6. The approach s ta rts  from an initial 

borderline, which divides the  whole mesh into two regions: visited and unvisited 

regions, and adds one triangle at a tim e to  the  visited regions. The m ain difference 

between Edgebreaker algorithm  and Toum a-Gotsm aiTs algorithm  is th a t Edgebreaker 

ou tpu ts  the  building operations of new triangles, while Toum a-G otsm an’s algorithm  

ou tpu ts  the  valences of new vertices.

There are different algorithm s th a t can be used for th e  decoding process. Among 

them , Spirale Reversi(20) is th e  m ost efficient one. In th is chapter we show how to  

extend the  Spirale Reversi algorithm  to  quadm esh connectivity decompression.

8 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

4.1 D efin ition  o f o p p o site  ed ge (O E) d a ta  stru ctu re

In th is chapter we use a simple d a ta  s truc tu re  called OE (opposite-edge) for repre

senting connectivity of a quad mesh. The d a ta  s truc tu re  is defined by Jing (21).

Fig. 4.1 illustrates the  OE d a ta  structure . Each quad in a quad mesh is represented 

by four integer references for th e  four vertices and four integer references for edges, 

plus four integer references for the  four opposite-edges. T he opposite-edge of an edge 

e[l] in the  center quad refers to  the  edge th a t is next to  next to  the  opposite half 

edge of e[3] in the left quad. If e[3] is a boundary  edge, we arb itrarily  assign -1 in the  

opposite-edge field for ohe[ 1], In o ther words, given an edge of the  center quad, its 

opposite-edge is an edge th a t belongs to  an adjacent quad and is the  edge of the center 

quad th a t is opposite to  the  edge th a t it shares w ith the  adjacent quad. Vertices, 

edges, and  opposite edges are identified using positive integers.

4.2 E dgebreaker com p ression  a lgorithm

The algorithm  for Edgebreaker compression is shown as algorithm  5. The inpu t file is 

a quad PLY file, and the  ou tpu t files are three files: file “ou t_operation .tx t” contains 

a sequence of com mands, file “out_handles.tx t” contains handles inform ation, and file 

“out_vertex .tx t” contains vertex coordinates, as shown below.

out  ̂ operation, t/xt,

quad P L Y  f i l e  —* outJ iandIes . txt

out- .vertex.txt

A fter the  compression process, we get th e  operation code (op-code for short) for the 

compression operation associated w ith each quad. We need to  encode each operation 

to  convert the  operation code to  binary code to  finalize the  com pression process. Once
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oe[1]

oe[0]

v[3]/ v[2]

v[0]

e[2]

e[3] \ /  e[1]

e[0]/(activeGate)

/v[1]

oe[2]

4  !

°e[3] I

Figure 4.1: OE data structure
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we have the  coding scheme and binary coding stream , we can easily ex tract ASCII 

operations from the  coding stream .

Compression operations are shown in Fig. 4.2. During compression, each operation 

is processed as follows.

(1). Q l

•  set s ta tus of all vertices of current quad to  visited.

(2). Q2

•  v[0].status =  v[3].status =  visited;

•  push opposite half edge a t R IG H T to  gateStack.

(3). Q3

•  v[0 ]. s ta tus =  visited;

•  push opposite half edge a t O P P O S IT E /R IG H T  to  gateStack;

•  markHandles(e[2]).

(4). Q4

•  v[0 ]. s ta tus =  v [l],sta tu s =  visited;

•  push opposite half edge a t O PP O S IT E  to  gateStack.

(5). Q5

•  v[0 ]. s ta tu s =  visited;

•  m ark new inner vertex v[2 ];

•  push opposite half edge a t R IG H T to  gateStack.

(6). Q6
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•  v[l], s ta tus =  v[2 ]. s ta tu s  =  visited;

•  push opposite half edge a t L E FT  to  gateStack.

(7). Q7

•  push opposite half edge at L E F T /R IG H T  to  gateStack;

•  markHandles(e[3]).

(8). Q8

•  push opposite half edge a t L E F T /O P P O S IT E /R IG H T  to  gateStack:

•  markHandles(e[2], e [3]).

(9). Q9

•  v[l], s ta tus =  visited;

•  push opposite half edge a t L E F T /O P P O S IT E  to  gateStack;

•  markHandles(e[3]).

(10). Q10

•  m ark new inner vertex v [2 ];

•  push opposite half edge a t L E F T /R IG H T  to  gateStack;

•  markHandles(e[3j).

(11). Q l l

•  m ark new inner vertex v[3];

•  push opposite half edge a t O P P O S IT E /R IG H T  to  gateStack;

•  markHandles(e[2]).

(12). Q12

•  v[l], sta tus =  visited;
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•  m ark new inner vertex v[3];

•  push opposite half edge at O PP O S IT E  to  gateStack.

(13). Q13

•  m ark new inner vertex v[2] and v[3];

•  push opposite half edge a t R IG H T  to  gateStack.

4.3 Spirale R eversi d ecom p ression  a lgorithm

Following th e  Spirale Reversi decom pression algorithm  for triangle mesh, which was 

described by Isenburg and Snoeyink (20), we define the  Spirale Reversi decom pression 

algorithm  for quadm esh, which is shown as algorithm  6 . The th ree  inpu t files are file 

“out_operation.tx t” , “out_handles.tx t” and “out_vertex.txt” , and th e  ou tp u t is a quad 

PLY file, as shown below.

outjoperation. txt

ou tJ iand le s . tx t quad P L Y  f i l e

outjvert.ex. txt

Decompression operations are shown in Fig. 4.3. For each operation, we process 

it as follows.

(1). Q1

•  set s ta tus of all vertices of current quad to  visited:

•  create a new quad w ith  4 new vertices:

•  set previous on boundary  vertex for v[0], v[3], v[2];

•  push previous gate to  gateStack.
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(2). Q2

•  create a new quad w ith  2  new vertices;

•  set previous on boundary vertex for v[0], v [3].

(3). Q3

•  create a new quad w ith  1 new vertex;

•  set previous on boundary  vertex for v[0 ];

•  remove duplicate created  vertices a t v[2 ],

(4). Q4

•  create a, new quad w ith  2  new vertices;

•  set previous on boundary  vertex for v[0 ], v[2 ].

(5). Q5

•  create a new quad w ith 1 new vertex;

•  set previous on boundary vertex for v[0 ];

•  m ark new inner vertex v[2 ]. assign coordinates for it.

(6). Q6

•  create a new quad w ith 2  new vertices;

•  set previous on boundary vertex for v[2], v[3],

(7). Q7

•  pop a gate from gateStack;

•  create a new quad;

•  set previous on boundary  vertex for v[3 ].

(8). Q8
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•  pop 2 gates from gateStack

•  create a new quad ;

•  remove duplicate created vertices a t v[2], v[3].

(9). Q9

•  pop a gate from gateStack

•  create a new quad w ith 1 new vertex;

•  set previous on boundary vertex for v[2 ];

•  remove duplicate created vertices a t v[3].

(10). Q10

•  pop a gate from gateStack;

•  create a new quad;

•  remove duplicate created vertices a t v[3];

•  m ark new inner vertex v[2 ], assign coordinates for it.

(11). Q l l

•  pop a gate from gateStack;

•  create a new quad;

•  remove duplicate created vertices a t v[2 ];

•  m ark new inner vertex v[3], assign coordinates for it.

(12). Q12

•  create a new quad w ith  1 new vertex;

•  set previous on boundary vertex for v[2 ];

•  m ark new inner vertex v[3], assign coordinates for it.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

(13). Q13

•  create a new quad w ith  1 new vertex:

•  m ark new inner vertex v[2] and v[3], assign coordinates for them , 

input : file_in_ply

output: file_out_operation, file_out_vertex, file_outJiandle 

Read OE file, and set all vertices and all quads to be unvisited;

Get boundary info by checking OE file, and create stack boundaryVertex;

if boundaryVertex is empty then /* no boundary on the mesh */
Set 1st quad’s boundary edges to be the boundary of the mesh;

Set status of vertices on boundary to be onBoundary;

Push the opposite edge of the 1st edge on boundary into gateStack;

|_ Set status of the 1st quad to be visited; 

else
Set status of vertices on boundary to be onBoundary:

|_ Push the opposite edge of the 1st edge on boundary into gateStack;

while gateStack is not empty do
activeGate =  a gate popped from gateStack;

activeQuad =  the quad containing activeGate:

if activeQuad is unvisited then
Get activeQuad’s interactionType;

U pdate mesh according to inter actionType; /*  c a ll  function updateMeshO */ 

Set status of activeQuad to be visited:

Push inter actionType into operationStack;

Check possible handles for activeQuad;

Create operation file containing all operations;

Create handle file containing all handles;

Sort vertices according to stacks innerV ertex and boundaryV ertex:

Create vertex file containing sorted vertex coordinates;
Algorithm 5: Quadmesh compression using EdgeBreaker
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in p u t  : file jn .operation, file_in.vertex, file_in_handle 

o u tp u t:  file_out_ply

Read operation file and create stack operationStack:

Read vertex file;

Read handle file, and create stack handleStack-,

w hile  operationStack is not empty do  
operation =  operationStack .pop()\

processOperation(operation); /*  new vertices/quad created here */

Set next activeGate to be new quad's 1st edge;

mark new quad to be unvisited ;
Remove duplicate vertices from temporary vertex list;

Assign coordinates for boundary vertices; Create PLY file;
A lg o rith m  6: Quadmesh decompression using Spirale Reversi

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

4.4  I llu stra te  th e  approach

To illustrate  the  algorithm , we use a quadm esh w ith boundary  shown in Fig. 4.4(B) 

as example.

For each vertex and each quad has two possible status: visited or unvisited. We 

use the  s ta tu s  inform ation of th e  vertices and th e  quads to  identify a q u ad ’s q u ad ’s 

type.

T here are two kinds of vertices in the  mesh: inner vertex and boundary  vertex.

We need to  create four stacks for th e  algorithm : an inner vertex stack used to- store 

inner vertices of th e  mesh, a boundary  vertex stack used to  store boundary  vertices 

of the  mesh, an operation stack used to  store q u ad ’s types for each quad, and a gate 

stack used to  store gates.

Fig. 4.4(C) to  Fig. 4.4(S) shows how the  compression algorithm  works for the 

sample mesh, and Fig. 4.5(B) to  Fig. 4.5(S) shows how the  decom pression algorithm  

works.

4.4.1 Compress a mesh with boundary

After reading the m esh's inform ation from an input file, we can create an image of 

the  mesh, as shown in Fig. 4.4(C).

N ext we need to  identify th e  boundary  of the  quadm esh. All vertices on the  

boundary are boundary vertices. B oundary vertices are ordered in counter-clockwise 

order, and then  pushed onto the  boundary  stack. The first active gate (t’O, u l) , is the 

opposite half edge of the  first edge (u l, uO) on th e  boundary, as shown in Fig. 4.4(D).

Q uad (uO. u l, v2, v3) which contains the  active gate is the  one we are visiting. We 

can identify quad (uO, v l ,  v2, v3) as q u ad ’s type “Q5” since its left, neighbor quad
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does not exist or is visited, and th e  th ird  vertex v2 is not on th e  current boundary 

now. So, we push vertex v2 onto the  inner vertex stack, push quad type “Q5” onto 

the  operation stack, and push a new gate ( v2 ,v l )  onto the  gate stack, as shown in 

Fig. 4.4(E). W h a t’s more, we need to  m ark vD as not on th e  current boundary (here 

we m ark vO as v is i ted ). A lthough there is no boundary  shown in th e  figures, you 

still need to  keep in m ind th a t there is a boundary  (or several boundaries) which 

enclose th e  visited region of the  mesh during th e  compression process, and same for 

the  decom pression process.

For each step, we need to  check if a handle is created or not. Since in th is exam ple 

there are no any handles created, we w on’t discuss how to  identify handles and how 

to  handle them .

Next, we pop a gate ( v 2 , v l )  off the  gate stack. Now quad (v2, v \ .  vA. r5 ) which 

contains active gate is the  one we are visiting, and we identify it as q u ad ’s type "Ĉ  1 1 ". 

So, we push vertex vb onto the  inner vertex stack, push q u ad ’s type “Q ll"  onto the 

operation stack, and push two newr gates (vA .vl )  and (r?5,u4) onto the  gate stack, as 

shown in Fig. 4.4(F).

Next, we pop a gate {vA.v l)  off the  gate stack. Now quad (u4, r.’l,  ?’G. v7) which 

contains the  active gate is the  one we are visiting, and we identify it as quad 's type 

“Q l” . So, we ju st m ark all vertices of th e  quad as not being on the  current boundary 

(here we m ark the  vertices as visited),  and push q u ad ’s type “Q l” onto the  operation 

stack, as shown in Fig. 4.4(G).

Next, we pop a gate (v5,v4)  off the  gate stack. Now7 quad (u5. v4. v8. v9) which 

contains the  active gate is the  one we are visiting, and we identify it as quad 's type 

“Q 6 ” . So, we just m ark vertex v4  and vertex v8 of the  quad as not being 011 the 

current boundary (here we m ark the vertices as visi ted),  push one new7 gate(u 5 . v9 ) 

onto the  gate stack, and push q u ad ’s type “Q 6 ” onto the  operation stack, as shown 

in Fig. 4.4(H).
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Next-, we pop a gate (u5, v9) off th e  gate stack. Now quad  (u5, v9, t ’10, n i l )  which 

contains th e  active gate is the  one we are visiting, and we identify it as q u ad ’s type 

“Q l l ” . So, we push vertex v l l  onto the  inner vertex stack, push q u ad ’s type “Q l l ” 

onto the  operation stack, and push two new gates (u ll .u lO )  and (ulO, v9) onto the 

gate stack, as shown in Fig. 4.4(1).

Next, we pop a gate (r-’lO, v9) off gate stack. Now quad (ulO, u9, u l2 , u l3 ) which 

contains active gate is th e  one we are visiting, and we identify it as q u ad ’s type “Q l” . 

So, we ju st m ark all vertices of the  quad  as not on the  current boundary, and push 

quad ’s type “Q l” onto the  operation stack, as shown in Fig. 4.4(J).

Next, we pop a gate (n i l ,  r-’lO) off gate stack. Now quad ( n i l ,  rlO , n l4 , u l5 ) which 

contains active gate is the  one we are visiting, and we identify it as quad ’s type 

“Q 6 ” . So, we ju st m ark vertex ulO and vertex u l4  of the  quad as not on the current 

boundary, push one new g a te (u ll,  u l5 ) to  gate stack, and push q u ad ’s type “Q 6 ” 

onto the  operation stack, as shown in Fig. 4.4(K).

Next, we pop a gate (n i l ,  n l5 ) off gate stack. Now quad (n i l ,  n l5 , n l 6 , n l7 ) which 

contains active gate is the  one we are visiting, and we identify it as quad ’s type 

“Q l l ” . So, we push vertex n l7  onto th e  inner vertex stack, push q u ad ’s type “Q l l ” 

onto th e  operation stack, and push two new gates (n l6 . n l5 ) and (n l7 , n l 6 ) onto the 

gate stack, as shown in Fig. 4.4(L).

Next, we pop a gate (n l 6 , n l5 ) off gate stack. Now quad (n l 6 , n l5 , n l 8 , n l9 ) which 

contains active gate is th e  one we are visiting, and we identify it as quad 's  type “Q l” . 

So, we ju st m ark all vertices of the quad as not on the  current boundary, and push 

quad ’s type “Q l” onto th e  operation stack, as shown in Fig. 4.4(M).

Next, we pop a gate (ul7, n ib ) off gate stack. Now quad (vl7,  r?16, u20, v21) which 

contains active gate is the  one we are visiting, and we identify it as q u ad ’s type 

“Q6 ” . So, we ju st m ark vertex vlQ and vertex u20 of th e  quad as not on the current-
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boundary, push one new gate(u l7 , r;21) onto the  gate stack, and push q u ad ’s type 

“Q 6 ” onto the  operation stack, as shown in Fig. 4.4(N).

Next, we pop a gate (c l7 , ?;21) off gate stack. Now quad (u l7 , u21, r?3, c2) which 

contains active gate is th e  one we are visiting, and we identify it as q u ad ’s type “Q77' . 

So, we push quad ’s type “Q7” onto the  operation stack, and push two new gates 

(u3,u21) and (wl7, v2) onto the  gate stack, as shown in Fig. 4 .4 (0 ).

Next, we pop a gate (u3,u21) off gate stack. Now quad (u3.u21,u22, u23) which 

contains active gate is the  one we are visiting, and we identify it as q u ad ’s type “Q l” . 

So, we ju s t m ark all vertices of the  quad as not on the  current boundary, and push 

q u ad ’s type “Q l” onto the  operation stack, as shown in Fig. 4.4(P).

Next, we pop a gate (ul7, v2) off gate stack. Now quad (r>17. c2, r;5, n i l )  which 

contains active gate is the  one we are visiting, and we identify it as q u ad ’s type “Q l” . 

So, we ju s t m ark all vertices of the  quad as not on th e  current boundary, and push 

quad ’s type “Q l” onto the  operation  stack, as shown in Fig. 4.4(Q).

Now, th e  gate stack is empty, and we claim th a t th e  compression process is done. 

The ou tpu t are two files, as shown in Fig. 4.4(R). File “ou t_operation .tx t” contains the  

sequence of quad ’s types, and file “out_vertex .tx t” contains the  sequence of vertices, 

which contains two parts. The first p a rt is the ordered inner vertices, which are 

identified in sequence during com pression process, and the  second part is the ordered 

boundary  vertices, which are identified before we traverse any quads in the  mesh. 

We need to  keep in m ind th a t, th e  last two vertices in file “out_vertex .tx t” are two 

boundary vertices which are endpoints of the  first active gate. The first active gate 

is where th e  com pression s ta rts  and where the decom pression ends.

The operation file “out_operation .tx t” can be encoded using some code schemes, 

which will be discussed later.
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4.4.2 Decom press a mesh w ith boundary

Now we have two inpu t files for decompression, file “out_vertex.tx t” contains a se

quence of vertex coordinates, and file “out_operation.tx t” contains a sequence of op

erations, as shown in Fig. 4.5(B). L et’s see how we reconstruct the  mesh using these 

two inpu t files.

As shown in Fig. 4.5(C), first, we read file “out_vertex .tx t” and pu t the  vertices 

onto a  vertex stack; then , we read the  file “out_operation .tx t” , and pu t th e  operations 

onto a operation stack. We also need to  create another two more em pty stacks, one 

is the gate stack, the  o ther one is the  inner vertex stack.

The decom pression process works like this: we pop th e  operations from th e  opera

tion stack one by one, and create a quad for each operation, until the  operation stack 

is empty.

The first operation popped out from operation  stack is “Q l” . So we create four 

“v irtual” vertices, create a quad w ith them , and set the  active gate to  be th e  first 

edge g l  of the  quad, as shown in Fig. 4.5(D). For the  newly created  quad and its four 

vertices (u[0], u[l], u[2], u[3]), we claim th a t all the  four vertices are on the  boundary 

now, th e  previous on-boundary vertex of vertex ?’[()] is u[3], the  previous on-boundary 

vertex of vertex u[3] is u[2], and the  previous on-boundary vertex of vertex u[2] is 

u[l]. A ctually, for each on-boundary vertex, we rem em ber its previous on-boundary 

vertex; thus we knowr th e  exact inform ation about current boundary  of the  mesh 

during decompression.

Next operation popped out from operation stack is “Q l” . So we create four more 

“v irtual” vertices, create a quad w ith them , push active gate g l  onto gate stack and 

set the  active gate to  be the  first edge g2 of the  quad, as shown in Fig. 4.5(E). For the 

new created  quad and its four vertices (u[0], u[l], u[2], u[3]), we claim th a t all the  four 

vertices are on boundary now, th e  previous on boundary  vertex of vertex u[0] is u[3],
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the  previous on-boundary vertex of vertex r;[3] is u[2], and  the  previous on-boundary 

vertex of vertex v[2] is u[l].

N ext operation popped ou t from operation stack is “Q7” . So we pop a gate gl  

off gate stack, create a quad w ith the  four vertices of gate gl  and gate e/2 , and set- 

active gate to  be the  first edge g3 of the  quad, as shown in Fig. 4.5(F). For th e  new 

created quad and its four vertices (u[0],u[l],u[2],u[3]), we claim th a t the  previous 

on-boundary vertex of vertex u[3] is r[2].

Next operation popped out from operation stack is “Q 6 ” . So we So we create two 

more “v irtua l” vertices, create a quad w ith the  two “v irtua l” vertices and th e  two 

vertices of gate g3, and set active gate to  be the  first edge gA of the  quad, as shown 

in Fig. 4.5(G). For the  new created quad and its four vertices (u[0], u[l], v[2), w[3]), we 

claim  th a t the  previous on-boundary vertex of vertex u[3] is v[2], and the  previous 

on-boundary vertex of vertex v[2] is u[l].

N ext operation popped out from operation stack is “Q l” . So we create four more 

“v irtua l” vertices, create a quad w ith them , push active gate gA to  gate stack and 

set active gate to  be th e  first edge c/5 of th e  quad, as shown in Fig. 4.5(H). For the  

new created quad and its four vertices (u[0 ], r;[l], v{2], u[3]), we claim th a t all the  four 

vertices are on boundary  now, the  previous on boundary vertex of vertex u[0] is u[3], 

the  previous on-boundary vertex of vertex u[3] is v[2], and th e  previous on-boundary 

vertex of vertex v[2) is u[l].

Next operation popped out from operation stack is “Q l l ” . We pop a gate gA off 

gate stack first. The s ta r t vertex of active gate gb and the  end vertex of gate gA are 

th e  same vertex in the  mesh, so we remove one of them  out from the  mesh. Next, we 

create a quad w ith th e  previous on-boundary vertex of th e  s ta rt vertex of gate gA, 

and the  th ree vertices of gate gA and gate gb. Next, we set active gate to  be the  first 

edge g6 of the  quad, as shown in Fig. 4.5(1). For the  new created quad and its four 

vertices (u[0], u[l], ?;[2], u[3]), we can see th a t e[3] is an inner vertex, so we pop one
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vertex v \ 7  out from vertex stack and push it onto inner vertex stack. We claim th a t 

u[3] of the  new created  quad is vl7.

N ext operation popped out from operation stack is “Q 6 ” . So we So we create two 

more “v irtual” vertices, create a quad w ith the  two “v irtua l” vertices and th e  two 

vertices of gate g(L and set active gate to  be th e  first edge g7 of the  quad, as shown 

in Fig. 4.5(J). For the  new created quad and its four vertices (u[0], w[l], u[2], u[3]), we 

claim th a t the  previous on-boundary vertex of vertex n[3] is u[2], and the  previous 

on-boundary vertex of vertex n[2 ] is u[l].

Next operation popped out from operation stack is “Q l” . So we create four more 

“virtual” vertices, create a quad w ith  them , push active gate g7 onto gate stack and 

set active gate to  be the  first edge g8 of the  quad, as shown in Fig. 4.5(K). For the  

new created quad and its four vertices (u[0], u[l], u[2], n[3]), we claim th a t all th e  four 

vertices are on boundary now, th e  previous on boundary  vertex of vertex n[0] is u[3], 

the  previous on-boundary vertex of vertex u[3] is n[2], and the previous on-boundary 

vertex of vertex n[2 ] is u[l].

Next operation popped out from operation stack is “Q l l ” . We pop a gate g 7 off 

gate stack first. The s ta r t vertex of active gate g8 and the  end vertex of gate g7 are 

the  same vertex in th e  mesh, so we remove one of them  out from the  mesh. Next, we 

create a quad w ith the previous on-boundary vertex of the  s ta rt vertex of gate g7, 

and the  three vertices of gate g 7 and gate g8. Next, we set active gate to  be th e  first 

edge g9 of the  quad, as shown in Fig. 4.5(L). For the new created quad and its four 

vertices (^’[0], ^[2], ?;[3]), we can see th a t n[3] is an inner vertex, so we pop one

vertex v l l  out from vertex stack and push it onto inner vertex stack. We claim th a t 

u[3] of the  new created quad is n i l .

Next operation popped out from operation stack is “Q 6 ” . So we So we create two 

more “v irtua l” vertices, create a quad w ith the  two “v irtua l” vertices and the  two 

vertices of gate #9, and set active gate to  be the  first edge # 1 0  of the quad, as shown
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in Fig. 4.5(M ). For the  new created  quad and its four vertices (u[0], u[l], v[2], u[3]), 

we claim th a t the previous on-boundary vertex of vertex u[3] is u[2], and th e  previous 

on-boundary vertex of vertex u[2 ] is r;[l].

N ext operation popped out from operation stack is “Q F !. So we create four more 

“v irtua l” vertices, create a quad w ith them , push active gate glO to  gate stack and 

set active gate to  be the  first edge #11 of the  quad, as shown in Fig. 4.5(N). For the 

new created quad and its four vertices (u[0], u[l], u[2], u[3]), we claim th a t all the  four 

vertices are on boundary now, the  previous on boundary vertex of vertex y[0] is u[3], 

the  previous on-boundary vertex of vertex u[3] is v[2). and the  previous on-boundary 

vertex of vertex u[2 ] is u[l].

N ext operation popped out from operation stack is “Q l l ” . We pop a gate rylO off 

gate stack first. The s ta rt vertex of active gate g l l  and the  end vertex of gate glO are 

the  same vertex in the  mesh, so we remove one of them  out from the  mesh. Next, we 

create a quad w ith the  previous on-boundary vertex of the  s ta rt vertex of gate r/1 0 . 

and th e  three vertices of gate #10 and gate g 11. Next, we set active gate to  be the 

first edge g 12 of th e  quad, as shown in Fig. 4 .5 (0 ). For the  new created quad and its 

four vertices (u[0], r;[l], u[2], u[3]), we can see th a t u[3] is an inner vertex, so we pop 

one vertex c5 out from vertex stack and push it onto inner vertex stack. We claim 

th a t u[3] of the  new created quad  is u5.

Next operation popped out from operation stack is “Q5” . So we create one “vir

tu a l” vertex, create a quad w ith  the  “v irtua l” vertex, the  previous on-boundary vertex 

of the  s ta rt vertex of gate gl2.  and the  two vertices of gate gl2.  Next, we set active 

gate to  be the  first edge #13 of th e  quad, as shown in Fig. 4 .5(P). For the  new created 

quad and  its four vertices (u[0], u[l], v[2]. u[3]), we can see th a t v[2] is an inner vertex, 

so we pop one vertex v2 out from vertex stack and push it onto inner vertex stack. We 

claim th a t v{2) of the  new created  quad is v2, and the previous on-boundary vertex 

of vertex u[0] is u[3].
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Now there are no any operations left in th e  operation stack, and we have identified 

all th e  inner vertices and labeled them . T he problem  is: how to  label the  boundary  

vertices?

Now the  vertex stack only contains boundary  vertices which are stored in order. 

The two vertices (u l and i;0) a t the  bo ttom  of the  vertex stack is the  vertices of the  

last active gate during decom pression process. So, we sort th e  boundary  vertices in 

th e  reconstructed  mesh in counter-clockwise order, set vertex id  to  be th e  first vertex 

of the  boundary, and assign coordinates for them  one by one, as shown in Fig. 4.5(R).

Now we can say th a t we com plete the  decompression process successfully. The 

reconstructed mesh is shown in Fig. 4.5(S).

4.5 Q uadm esh  o f h igher genus

Non-genus-0 mesh contains handles, which never come up in simple mesh (genus - 0  

mesh). A handle is an edge shared by two quads which are visited during compression 

process, where the  first quad is a S-type quad (split-type quad, which m eans one of 

Q3, Q 8 , Q9, Q10 or Q l l ) ,  and th e  second quad intersects w ith the  first quad at the 

second edge, the  th ird  edge or th e  fourth  edge of the second quad. Here we suppose 

th a t the  first, edge of a quad is the  active gate when visiting th e  quad.

Since we don’t  know which quad could have a handle binding on it before com

pression, so we ju s t created an array “handlesForQ uad” which will be used to  store 

inform ation about handles. The size of th e  array “handlesForQ uad” is the same as 

th e  num ber of quads in the  mesh. Each element of the  array “handlesForQuad"  is 

filled w ith  values when processing a S-type quad (which could be th e  first quad of 

a handle) during compression. T he values are used la ter when processing a second 

quad checking if a handle exists between the  first, quad and th e  second quad.
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W hen a S-type quad (which could be th e  first quad of a handle) was processed 

during compression, we put a m ark saying th a t the gate(s) pushed in to  stack when 

processing th is quad could possibly create a handle(s).

W hen a quad (which could be the  second quad of a handle) is processed during 

compression, we check its adjacent quad on its le ft/righ t/opposite(above). If one 

visited adjacent quad is S-type, it m eans th a t the  edge shared by them  is a handle. 

We push th is handle into handle stack.

The handles in the  handle stack are ordered according to  when the  first quad is 

processed. Handles are stored in a  file called “out_handles.tx t” , which looks like this:

F i r s t  l i n e :  “#  of handles"

F o llo w in g  l i n e s :  “index of  the second quad” “interaction position (of fset)”

Here “index of the second quad” m eans the  index indicating when the  second quad 

is visited during compression, “in teraction position” m eans the  offset between the 

active gate when visiting the  second quad and the  edge of the  second quad where the 

second quad in teracts w ith the  first quad.

For exam ple, if file “out_handles.tx t” contains the  following inform ation,

2

444 1 

555 2

we can know th a t the  mesh contains two handles (so the  mesh is a genus- 1 mesh). 

For th e  first handle, the second quad of the  handle is th e  444th quad visited during 

compression, and it in teracts w ith the  first, quad of th e  handle a t the  second edge 

(which is th e  next edge of the  active gate when visiting the  second quad). For the 

second handle, the  second quad of th e  handle is the  555th quad visited during com-
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pression, and it in teracts w ith th e  first quad of the  handle at the  th ird  edge (which 

is th e  opposite edge of the  active gate when visiting th e  second quad).

4.6  A p p ly  en cod in g  schem es for th e  op eration  sequ en ce

C urrently  there two encoding schemes can be used to  encode the  sequence of operation 

code. One is developed by G otm an (24), which is shown in table 4.1. the  other one 

is developed by Dr. M ukhopadhyay (25), which is shown in tab le  4.2. Applying the 

two encoding schemes for the op-code archives higher compression ratio. Details will 

be discussed in C hapter 5.

Similar to  Toum a-G otsm an’s algorithm  which have been discussed in C hapter 3, 

we can invites entropy coding, like Huffman to  encode the op-code. Table 4.3 shown 

th e  Huffman code scheme for sample mesh “Torus” .

Interaction Type Code

Q l 11000

Q2 11001

Q3 11010

Q4 11011

Q5 010

Q6 11100

Q7 11101

Q8 11110

Q9 11111

Q10 011

Q ll 100

Q12 101

Q13 00

Table 4.1: Gotsman’s encoding scheme for Edgebreaker algorithm
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Encoding Current Quad Next Quad Code Num. of bits

Quad started Q6 Ql-5 11111 5

with Q6-13 Q6-13 11110 5

Q7 Ql-5 11101 5

Q6-13 11100 5

Q8 Ql-5 11011 5

Q6-13 11010 5

Q9 Ql-5 11001 5

Q6-13 11000 5

Q10 Q6-13 10111 5

Q ll Ql-5 10110 5

Q6-13 10101 5

Q12 Q6-13 100 3

Q13 Q6-13 0 1

Quad started Q l Ql-5 00 2

with Ql-5 Q6-13 01 2

Q2 Ql-5 1100 4

Q6-13 1101 4

Q3 Ql-5 1010 4

Q6-13 1011 4

Q4 Ql-5 1000 4

Q6-13 1001 4

Q5 Q6-13 111 3

Table 4.2: Dr. Mukhopadhyay’s encoding scheme for Edgebreaker algorithm
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Interaction Type Code

Q l 010

Q4 00

Q6 011

Q7 110

Q12 111

Q13 10

Table 4.3: Huffman coding scheme for sample mesh “Torus”

4.7  T im e com p lex ity  analysis

For the  compression process, since each quad is processed exactly once, and the 

processing tim e for each quad is constan t tim e, and accessing the  next quad is constan t 

tim e, the  overall tim e com plexity of com pression process is linear. Same for the  

decom pression process.

4.8 Sum m ary

In th is chapter we discussed how E dgebreaker/Spirale Reversi com pression and de

compression algorithm  for triangle meshes is successfully extended for quadrilateral 

meshes. Same as T oum a-G otsm an’s algorithm , the  tim e com plexity is linear.
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Figure 4.2: Compression operations
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Figure 4.3: Decompression operations
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4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Example: 
Encode a quadmesh with boundary

Figure 4.4: Compression example (A to S)

Figure 4.4: Compression exam ple (B)
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Figure 4.4: Compression exam ple (D)
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4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI
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Figure 4.4: Compression exam ple (E)
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Figure 4.4: Compression exam ple (F)
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Figure 4.4: Compression exam ple (H)
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Figure 4.4: Compression example (J)
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Figure 4.4: Compression example (K)

[_gate stack

V
e(v16, v15)
e(v17. v16)

v17
v11
v5
v2

v6
v7
v4

v8
v9

Ln
vl¥
v10

v14

v l ?
v18
v19
vi6
v20

v21
v22

v23
v3

~v0~
v1

Q11
Q6
Q1

Q11

0 6
Q1

Q11

Q5

v22

v23

v19 v18

v20

v21

v3

Q5
vO

[ [  operation

v16 ,

-  Q11
,v17

v2

Q11
v1

Q1
v6

v15

Q6
v11

v5

Q6
v4

v7

inner vertex || boundary vertex [

v14

v10 ~yl3

Q11 Q1
v9 v12

v8

Figure 4.4: Compression example (L)
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Figure 4.4: Compression example (N)
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Figure 4.4: Compression exam ple (P)
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Figure 4.4: Compression example (Q)
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Figure 4.4: Compression example (R)
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torus.ply (partly)
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Figure 4.4: Compression exam ple (S)
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4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

How to decode using Spirale 
Reversi algorithm?

Figure 4.5: Decompression example (A to S)
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Figure 4.5: Decompression example (B)
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Figure 4.5: Decompression exam ple (C)
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Figure 4.5: Decompression exam ple (D)
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Figure 4.5: Decompression exam ple (E)
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Figure 4.5: Decompression example (F)
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Figure 4.5: Decompression exam ple (G)
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Figure 4.5: Decompression exam ple (H)
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Figure 4.5: Decompression exam ple (I)
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Figure 4.5: Decompression exam ple (J)
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Figure 4.5: Decompression exam ple (K)
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Figure 4.5: Decompression exam ple (L)
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Figure 4.5: Decompression exam ple (M)
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Figure 4.5: Decompression exam ple (N)
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Figure 4.5: Decompression exam ple (O)
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Figure 4.5: Decompression exam ple (P)
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4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI
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Figure 4.5: Decompression exam ple (Q)
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Figure 4.5: Decompression exam ple (R)
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4. LINEAR TIME QUADMESH DECOMPRESSION USING SPIRALE REVERSI

Done!
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Figure 4.5: Decompression example (S)
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Chapter 5

Experim ental Results

In th is chapter, the  im plem entation of com pression/decom pression of quad meshes is 

introduced in section 5.1. Then, the  experim ental results are presented in section 5.2.

5.1 Im p lem en tation

Im plem entation of Toum a-G otsm an’s algorithm  have been discussed in chapter 3, 

while im plem entation of E dgebreaker/Spirale Reversi algorithm  have been discussed 

in chapter 4. The source code is developed using Java under JD K  1.5. Since Java is 

platform -independent, the  program s are portab le  to  o ther operating systems.

B oth im plem entations works for non-genus-0 mesh, bu t not b o th  of them  works for 

mesh w ith boundary. O ur im plem entation of Toum a-G otsm an’s algorithm  only works 

for quadm esh w ithout boundary, while the  im plem entation of Edgebreaker/Spirale 

Reversi algorithm  works also for quadm esh w ith boundary.
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5.2 E xp erim en ta l resu lts

Term “compression ra tio ” is used to  quantify the  reduction in d a ta  quan tity  produced 

by the  compression algorithm s. Here we declare th a t compression ratios are expressed 

as a percentage in th e  following form

C om pression  R a tio  =  C™TgZ i  tS™

Thus a 100MB file th a t compresses to  20MB would have a compression ra tio  of 

2 0 :1 0 0 , or 2 0

For com parison purpose, we only select quadm eshes w ithout boundary  for exper

im ents. We tested  th e  program s on 11 different quadm eshes, pictures of which are 

shown in tab le  5.1.

D etailed experim ental results are shown in table 5.2, table 5.3, tab le  5.2 and ta 

ble 5.2. In all these tables, file size are m easured by bytes.

For edgebreaker algorithm s, we use th ree  different encoding schemes to  encode th e  

sequence of operations: G otsm an’s encoding scheme, Dr. M ukhopadhyay's encoding 

scheme, and Huffman code. In th e  tables, we use “I” , “II” and “III” to  represent the 

th ree encoding schemes separately.

Com parisons about the  compression ratios are shown in Fig. 5.1 and Fig. 5.2.

Fig. 5.1 shows the  perform ance of the  two mesh compression algorithm s com paring 

to  the compression ra tio  achieved by using general file compression software GZip. 

From th e  picture we can see th a t using GZip we can only have a compression ratio  

around 23% for large meshes, while using either of th e  two algorithm s, we can get 

a com pression ratio  less th an  1% This indicates th a t for connectivity compression, 

general file compression tools (like GZip) should not be considered as first choice.
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Tetrahedron Torus 16 Face Torus

2HandTorus

o

Icosahedron

> ' ■  4

V

SplitTorus

Ball240 Ball960 Split2HandleRnd

Ball3840

> r

SplitCow

Table 5.1: Samplqg|iadineshes for test 
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5. EXPERIMENTAL RESULTS

Sample Name #  of 

Vertices

#  of 

Faces

Size of 

PLY File

Size of 

Command File

Size of 

Face File

Size of 

Connectivity

tetrahedron 14 12 884 58 149 2

torus 12 12 654 75 141 4

16facetorus 16 16 842 91 201 5

2handtorus 32 34 1510 193 467 13

icosahedron 62 60 3387 250 851 12

SplitTorus 72 72 3249 356 1021 27

ball240 242 240 13428 971 4092 51

ball960 962 960 54530 3864 17594 205

Split2HandRnd 1312 1314 64086 5502 25415 326

ball3840 3842 3840 235655 15385 82755 805

SplitCow 17414 17412 895506 70704 419592 4127

Table 5.2: File size for Touma-Gotsman’s algorithm

Sample Name # o f

Vertices

# o f

Faces

Size of 

PLY Fib

Size of 

OE File

Size of 

Op-code File

Size of 

Face File

Size of Connectivity

I II III

tetrahedron 14 12 884 713 42 149 5 5 3

torus 12 12 654 446 40 141 6 5 4

16facetorus 16 16 842 618 55 201 7 6 5

2handtorus 32 34 1510 1732 120 467 15 13 10

icosahedron 62 60 3387 3836 225 851 24 23 13

SplitTorus 72 72 3249 3309 264 1021 30 26 21

ball240 242 240 13428 16397 910 4092 96 89 50

ball960 962 960 54530 70419 3664 17594 382 359 187

Split2HandRnc 1312 1314 64086 81986 4974 25415 527 488 282

ball3840 3842 3840 235655 308744 14693 82755 1524 1439 731

SplitCow 17414 17412 895506 1278045 66325 419592 6931 6451 3591

Table 5.3: File size for Edgebreaker algorithm
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5. EXPERIMENTAL RESULTS

Sample Name # o f

Vertices

# o f

Faces

Size of Connectivity Compression Ratio of Connectivity

I II III I II III

tetrahedron 14 149 5 5 3 3.36% 3.36% 2.01%

torus 12 141 6 5 4 4.26% 3.55% 2.84%

16facetorus 16 201 7 6 5 3.48% 2.99% 2.49%

2handtorus 32 467 15 13 10 3.21% 2.78% 2.14%

icosahedron 62 851 24 23 13 2.82% 2.70% 1.53%

SplitTorus 72 1021 30 26 21 2.94% 2.55% 2.06%

ball240 242 4092 96 89 50 2.35% 2.17% 1.22%

ball960 962 17594 382 359 187 2.17% 2.04% 1.06%

Split2HandRnd 1312 25415 527 488 282 2.07% 1.92% 1.11%

ball3840 3842 82755 1524 1439 731 1.84% 1.74% 0.88%

SplitCow 17414 419592 6931 6451 3591 1.65% 1.54% 0.86%

Table 5.4: Compression ratios archived by different encoding schemes for Edgebreaker algorithm

Sample Name #  of 

Vertices

#  of 

Faces

Size of 

Face File

Size of 

Compressed File

Compression

Ratio

tetrahedron 14 12 149 104 69.80%

torus 12 12 141 104 73.76%

16facetorus 16 16 201 121 60.20%

2handtorus 32 34 467 219 46.90%

icosahedron 62 60 851 312 36.66%

SplitTorus 72 72 1021 372 36.43%

ball240 242 240 4092 1245 30.43%

ball960 962 960 17594 4927 28.00%

Split2HandRnd 1312 1314 25415 6762 26.61%

ball3840 3842 3840 82755 21260 25.69%

SplitCow 17414 17412 419592 96472 22.99%

Table 5.5: Compression ratios archived by using GZip
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5. EXPERIMENTAL RESULTS

Sample Name Compression Ratio

Edgebreaker Tourna-

Gotsman

GZip

I II III

tetrahedron 3.36% 3.36% 2.01% 1.34% 69.80%

torus 4.26% 3.55% 2.84% 2.84% 73.76%

16facetorus 3.48% 2.99% 2.49% 2.49% 60.20%

2handtorus 3.21% 2.78% 2.14% 2.78% 46.90%

icosahedron 2.82% 2.70% 1.53% 1.41% 36.66%

SplitTorus 2.94% 2.55% 2.06% 2.64% 36.43%

ball240 2.35% 2.17% 1.22% 1.25% 30.43%

ball960 2.17% 2.04% 1.06% 1.17% 28.00%

Split2HandRnd 2.07% 1.92% 1.11% 1.28% 26.61%

ball3840 1.84% 1.74% 0.88% 0.97% 25.69%

SplitCow 1.65% 1.54% 0.86% 0.98%, 22.99%

Table 5.6: Compression ratios archived by different encoding schemes and GZip

Fig. 5.2 lists th e  perform ance of different encoding schemes used for th e  two algo

rithm s. From this figure, we can find th ree useful conclusion:

•  For Edgebreaker compression algorithm , Dr. M ukhopadhyay’s encoding scheme 

is b e tte r  th an  G otsm an’s encoding scheme.

•  If we apply entropy code like Huffman for bo th  algorithm s, Edgebreaker algo

rithm  could get a lower, b e tte r  com pression ra tio  th an  Toum a-G otsm an’s algo

rith m  for large mesh. This is an interesting results.

W hen com pressing large meshes, Edgebreaker algorithm s could generate a t most 

13 different symbols, while Toum a-G otsm an’s algorithm  could generate much 

more th a n  13 different symbols. Thus, when use Huffman code to  encode the  

symbols, Edgebreaker algorithm  generally could have lower compression ratio.

•  For Edgebreaker algorithm , Huffman code have a lower com pression ratio  th a n
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5. EXPERIMENTAL RESULTS

either of the  other two encoding schemes.

R unning th e  standard  GZip compression u tility  on a compressed symbol file does 

not reduce its size any further. On the  contrary, it only increases it. This indi

cates th a t our compression algorithm s are good, and no additional “general purpose” 

compression techniques are applicable.

'■C

80.00%

70.00%

60.00%

50.00%

Oh

• I  40.00%  -

°  30.00% 

2 0 .0 0 %  

10 00% 

0 .0 0 %

- v

! ■
■ x

l i i i l

- Gotsman

- Asish 

Huffman. 1 (HE) 

Hufiman2 (TG)

-GZip

149 141 201 467  851 1021 4092 17594 25415 82755 419592

File Size

Figure 5.1: Comparison of compression ratios archived by different encoding schemes and GZip

5.3 Sum m ary

This C hap ter shows th e  experim ental results for bo th  algorithm s. From the  exper

im ental results, we we get to  useful conclusion for quadm esh compression. F irst, 

Edgebreaker archives slightly b e tte r  compression ratio  th an  T oum a-G otsm an’s al

gorithm . Secondly, Dr. M ukhopadhyay’s encoding scheme results less b itra te  th a n  

G otsm an’s encoding scheme.
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Figure 5.2: Comparison of compression ratios archived by different encoding schemes
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Chapter 6

Conclusions and Future Work

A lthough triangle meshes are used m ost frequency and  studied extensively, quadri

la teral meshes are used a lot in scientific applications. Traditionally, th e  problem  of 

connectivity compression of quadrila teral meshes is solved by triangu la ting  th e  mesh 

first and then  compressing it using triangle compression techniques. This strategy  

may in troduce additional cost. Some researchers have a ttem p ted  to  compress polygon 

meshes w ithout prior triangulation . In th is thesis we presented two simple linear tim e 

algorithm s for connectivity com pression of quadrila teral meshes, which are extended 

from algorithm s for triangle mesh compression.

6.1 M ajor con trib u tion s

There are four m ajor contributions achieved in th is thesis, which have been illustrated  

in chapters 3, 4 and 5. The following is a sum m ary of these contributions.
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6. CONCLUSIONS AND FUTURE WORK

Extend Toum a-G otsm an’s algorithm  for quadm esh com pression

Toum a and G otsm an provided an efficient algorithm  for triangle mesh com pres

sion (35). In th is thesis, we extended the  algorithm  for quadm esh compression.

Extend Spirale Reversi algorithm  for quadmesh decom pression

Spirale Reversi decom pression for non-triangle meshes has been m entioned by 

K ronrod and G otsm an (24), bu t they  never gave a detailed  explanation abou t the 

im plem entation. We presents the  first detailed description of the  Spirale Reversi 

decompression process for quadm eshes. Jing (21) had  done some valuable works 

in th is topic, which gave us some hints for the  im plem entation.

D etailed comparison of the two algorithm s for quadmesh com pression

The compression algorithm s discussed in chapter 3 and chapter 4 create a se

quence of symbols, which could be encoded fu rther by applying coding schemes. 

In th is thesis, we encode th e  sequence using different coding schemes. T he ex

perim ents confirmed th a t Dr. M ukhopadhvay’s encoding schemes is b e tte r  th a n  

G otsm an’s encoding scheme for Edgebreaker algorithm , and Edgebreaker algo

rithm  archives b e tte r  compression ra tio  th a n  T oum a-G otsm an's algorithm  for 

large mesh compression.

Portable data structures for m esh com pression

We defined a set of d a ta  structures which includes all kinds of geom etric objects 

for mesh compression. T he d a ta  structu res we defined can also be used in m any 

other im plem entations.

6.2 F uture w ork

In chapter 2, we said th a t  Alliez and D esbrun (2) proposed a m ethod to  further 

improve the perform ance of Toum a and G otsm an’s algorithm . The m ethod could
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also be used for quadm esh compression.

We agree th a t it will be possible to  achieve compression ratios significantly b e t

te r th a n  th e  algorithm s discussed in chapter 3 and chapter 4 for mesh connectivity 

compression. On the  o ther hand, we could use two-pass encoding/decoding m ethods, 

in which th e  connectivity of the  quadm esh is first decoded, and then  the  coordi

nate  decoding is s tarted . T he advantage of two-pass m ethods is, more connectivity 

inform ation is available a t the  tim e of the  coordinate decoding.

For triangle meshes containing m ainly vertices of degree six, work by Szymczak et 

al. (31) exploits the  reverseness of Spirale Reversi for efficient predictive compression 

of the  labels. This could be extended for quadm esh decompression.

Experim ental results show th a t Dr. M ukhopadhyay’s encoding scheme always has 

a b e tte r perform ance for quadm eshes com pressed using Edgebreaker algorithm . The 

coding schemes m ight be improved by using more constants, as discussed by G um hold

(17).

W hen im plem enting th e  E dgebreaker/Spirale Reversi algorithm  for quadm esh, we 

used th e  O E d a ta  structu re  defined by Jing (21), which contains opposite edges 

inform ation for a quad. Meanwhile, we use a different d a ta  s truc tu re  called OHE when 

im plem enting T oum a-G otsm an’s algorithm  for quadm esh. The OHE data  structu re  

is easier for understanding  com paring to  the  OE d a ta  structu re . We believe th a t 

bo th  of the  algorithm s could be im plem ented using th e  OHE d a ta  structu re only, 

thus make th e  im plem entation m ore understandable.
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