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Abstract

Time delay is an important biological feature of gene regulation, and it is 
widely observed by biological experiments. Most of the current applications 
which use dynamic Bayesian network to model gene regulatory network assume 
that the time delay between regulators and their targets is one time unit in 
a time series gene expression dataset. In fact, multiple time units delay is 
indicated to exist in the gene regulation process. In this thesis, a method 
of using higher-order Markov dynamic Bayesian network (HMDBN) to model 
multiple time units delayed gene regulatory network is proposed. A learning 
framework using mutual information and genetic algorithm is designed to learn 
the structure of a HMDBN from time series gene expression data. When 
applied to real-world yeast cell cycle gene expression datasets, the predicted 
gene regulatory networks are strongly supported by biological evidence and 
consistent with the yeast cell cycle phase information.
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Chapter 1

Introduction

1.1 Bioinform atics

With the completion of sequencing the human genome, the post-genome era 

comes. Instead of concentrating on sequencing the genome in a pre-genome 

era, now the challenge is to develop efficient methods to harvest the fruits 

hidden in the large amount of genomic data. The challenge inspired an emerg­

ing research field, bioinformatics, to appear. Bioinformatics involves biology, 

computer science, mathematics, and statistics to analyze genomic data, and 

to solve biological problems usually on the molecular level [53]. Besides the 

sequence data, many new experimental data produced by modern technolo­

gies, such as gene expression microarray, genetic manipulation of genes in cells 

and organisms, are being assembled. The abundance of data offers researchers 

a great opportunity to understand the secret of diseases, evolution, biolog­

ical variations, etc. The field of bioinformatics supports a broad spectrum 

of research which includes determining the biological significance of the data, 

providing the expertise to organize it, and developing practical computational 

tools to mine the large volume and noisy data for new information [53].

1
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2 1.2 Gene Regulatory Networks

Currently, the topics in bioinformatics include sequence analysis, computa­

tional evolutionary biology, measuring biodiversity, gene expression analysis, 

regulation analysis, protein expression analysis, analysis of mutations in can­

cer, structure prediction, comparative genomics, modeling biological systems, 

and high-throughput image analysis [52]. This thesis falls into the areas of 

gene expression analysis and regulation analysis.

1.2 Gene R egulatory Networks

Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic in­

structions specifying the biological development of all cellular forms of life, 

and most viruses [1]. A DNA molecule is composed of two strands in the form 

of a double helix structure. Each strand is the sequence of combination of four 

nucleotides, Adenine (A), Thymine (T), Guanine (G) and Cytosine (C). A is 

complementary to T and G is complementary to C, which is also called Watson- 

Crick rule [26]. Each nucleotide along one strand of the DNA is matched with 

its complimentary nucleotide in the opposite position on the other strand .

Genetic information in DNA is coded in the sequences of nucleotides. The 

sequence can be viewed as an instruction book. Using the instruction book, 

various proteins can be generated. Protein is a molecular comprising a long 

chain of amino acids, which folds into a three-dimensional structure unique to 

a particular protein that has certain biological activities [53]. Every triplet of 

nucleotides in a ribo nucleic acid sequence is called a codon. Because there 

are four kinds of nucleotides, A, C, U, G, the number of possible codons is
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3 1.2 Gene Regulatory Networks

4 * 4 * 4 =  64. Each codon specify a single amino acid, while a single amino 

acid may correspond to several different codons. For example, the amino acid 

Lys can be represented by codon AAA or codon AAG. Totally, there are only 

20 different amino acids to compose proteins. The set of rules which map a 

tri-nucleotide sequences (codon) to an amino acid is also known as the genetic 

code. Proteins axe responsible for catalyzing most intracellular chemical reac­

tions (enzymes), for regulating gene expressions (regulatory proteins), and for 

determining many features of the structures of cell, tissue, and virus (struc­

tural protein) [27].

A gene is a segment of DNA that specifies a unit of biological functions and 

usually corresponds to a protein [53]. In many species, only a small fraction of 

DNA appears to be the gene area. The other area of the DNA which has not 

been understood to contain genes or have a function is assumed to be the junk 

DNA. Genes contain the sequence that determine the amino acid sequence 

of proteins and the surrounding sequences that controls when and where the 

protein will be produced [52].

RNA is usually a single-stranded molecule, and similar to DNA, is com­

posed by four nucleotides A, C, G, U. In RNAs, nucleotide U replaces nu­

cleotide T. The complementary rule between nucleotides applies to both RNA 

and DNA as A paired with T /U  and G paired with C. RNA severs as the 

template in the process of converting genes to proteins.

The process of converting the genetic information from DNA into pro­

teins is called gene expression. Gene expression is accomplished by a series of 

events. The principle steps in gene expression are transcription and transla­
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4 1.2 Gene Regulatory Networks

tion. In the transcription step, a segment of DNA is copied into a messenger 

RNA (mRNA). The translation step in gene expression is the synthesis of 

proteins from mRNAs. The genetic information flows from DNA to RNA to 

proteins, as shown in Figure 1.1, is also known as the central dogma of molec­

ular biology. During the process of gene expression, the amount of mRNA 

reflects the degree of genes’ expression. Microarray gene expression data is 

obtained by utilizing mRNAs, which is explained in Section 1.3.

Among all the genes in a cell, not all of them are active continuously. In 

a particular cell of an organism, at a certain time and under a specific con­

dition, only a subset of genes axe expressed at a high level. The levels of 

gene expression may differ from one cell type to another or according to the 

stages in the cell cycle. Viewing DNA as the a complex program, then genes 

can be seen as functions in the program. The output of every gene function 

is a protein. Inside the program, we need a mechanism to call various gene 

functions under different conditions. In general, the mechanism that control 

the expression of particular genes in response to external or internal signals is 

called gene regulation [27]. Any steps in the process of gene expression may be 

regulated, from transcription to post-translational modification of a protein.

transcription translation

Gene ' ...........  [>» mRNA  C> Protein,

V

Microorray Data 

(Expression data)

Figure 1.1: The process of gene expression.
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5 1.2 Gene Regulatory Networks

Many genes in eukaryotes are regulated at the level of transcription. Although 

both negative and positive regulations occur, positive regulation is typical [27].

In transcriptional regulation, a special protein, called transcription factor, 

binds itself to the promoter region of a gene to activate its expression. Be­

cause transcription factors themselves are also the expression products of some 

genes, so, they can affect the expression of other genes through their protein 

products. The binding site of a gene can be recognized by multiple transcrip­

tion factors, and the expression level of a gene is determined by a combination 

of these factors that bind to the binding site [32]. The regulatory interactions 

among genes and proteins form a complex network, called gene regulatory net­

work [26].

Gene regulatory network dynamically regulates the level of expression for 

each gene and often includes dynamic feedbacks. Malfunction of gene regu­

latory network is a major cause of human diseases. For example, more than 

50 transcription factors have now been identified to be related to human can­

cer [32], Although gene regulatory network is valuable to us, it is still un­

known. A central goal of molecular biology is to understand the regulatory 

mechanisms and the synthesis of proteins [19]. Several approaches have been 

explored to construct gene regulatory network from available experimental 

data. Microarray gene expression data is a major data source that is used in 

reverse engineering of gene regulatory network.
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6 1.3 Microarray and Gene Expression Data

1.3 Microarray and Gene Expression D ata

A DNA microarray (also commonly known as gene chip, DNA chip, or gene 

array) is a collection of microscopic DNA spots attached to a solid surface, 

such as glass, plastic or silicon chip forming an array for the purpose of ex­

pression profiling, monitoring expression levels for thousands of genes simul­

taneously [52].

Figure 1.2 is an example of DNA microarray. The spots on the chip axe 

arranged in a regular pattern usually forming a rectangular array. Usually, 

each spot corresponds to a particular gene, and the specific location of the 

spot is used as the identity of a gene. Hybridization is the fundamental basis 

of DNA microarray [26]. If two DNA stands are complementary to each other, 

they will hybridize to form a double strands union. Hybridization will still 

occur when one or both strands of the DNA axe replaced by RNA as long as 

they are complementary. Every spot contains many copies of single strand 

DNAs (DNA segment) of a particular gene. In microarray experiments, the 

spot is used to detect the amount of mRNAs which hybridize with the single 

strand DNAs, and the spot is also called probe.

O O O O O O O O O O O
O O O O O O O O O O O

ATCCGACTACGT.

O O O O O O O O O O O  
O O O O O O O O O O O  Single DNA strands

Figure 1.2: DNA microarray.
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7 1.3 Microarray and Gene Expression Data

There are mainly two kinds of microarray, oligonucleotide microarray (single­

channel microarray) and cDNA microarray (two-channel microarray) [53]. The 

basic ideas of the two kinds of arrays are similar. The difference is the way in 

which DNA fragments representing the genes are attached to the array.

Oligonucleotides are short sequences of nucleotides (RNA or DNA), typi­

cally with twenty or fewer bases. In oligonucleotide microarrays, the probes 

are oligonucleotides, and it is designed to match parts of the sequence of known 

or predicted mRNAs. Several companies such as Affymetrix, Healthcare, and 

Agilent provide commercial oligonucleaotide microarrays that cover complete 

genomes. These microarrays give estimations of the absolute value of gene 

expression. If we have two samples from different conditions, one control sam­

ple and one experimental sample, two separate microarrays need to be used. 

Therefore, Oligonucleotides array is also called single-channel microarray.

Complementary DNA (cDNA) microarrays are silimar to the oligonu­

cleotide arrays. Instead of using short oligonucleotides as probes, each spot 

contains a cDNA segments clone from a known gene, usually of hundreds of 

bases. cDNA is a single stranded DNA synthesized from a mature mRNA 

template witch only has exons of genes [53]. cDNA microarray allows multiple 

experimental samples, such as control sample and experimental sample, to hy­

bridize at the same time, as long as different dyes are used. Therefore cDNA 

microarray is also called two-channel microarray.

Figure 1.3 depicts the process of using cDNA microarray to collect gene 

expression data in a series of experiments. In a single experiment, experi­

mental sample and control sample are prepared, and mRNA in the samples
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8 1.3 Microarray and Gene Expression Data

Experimental sample Control sample

dyedye

mRNAmRNA

cDNA (Red)cDNA (Green)
Hybridization

Convert to cDNA

mRNA isolation

• 0 « 0 0 0 i 0 0 « 0
9 I 0 9 M I H Motooioiotoo• o # o # o o # o # i
• t o t o i o t o i o

Conducting experiments 
in different conditions

ClC lO
r \r \r \ r\ r\ Image

processing

• O t O O O i O O t O
o t o o t o e o e o o
• o t o t o o i o f t• • o t o t o t o t o

expression
dataset

Figure 1.3: Collecting gene expression data in cDNA micorarray experiments.

are isolated first. The concentration of a particular mRNA in the sample is a 

result of the expression of its corresponding gene. So, the amount of a par­

ticular mRNA is a measure of the expression level of its corresponding gene. 

Then, mRNA in the sample is transformed into its cDNA because cDNA is 

more stable than mRNA. Experimental and control samples are labeled with 

different fluorescent dyes. At last, the two samples are put onto the surface 

of a cDNA microarray to let the cDNA in the samples to hybridize with the 

probes on the array. Because the microarray chips contains many DNA probes, 

when a experimental sample is applied to a chip, different probes will match 

all mRNAs in the sample. After hybridization, different spots appeax in dif-
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9 1.3 Microarray and Gene Expression Data

UID NAME 10 min 30 min 50 min 70 min 80 min 90 min
YAL001C TFC3 -1.04 -0.173 -0.257 -0.617 0.0865 -0.979
YAL002W VPS8 -0.414 0.508 -0.103
YAL003W EFB1 -0.185 -0.039 0.125 0.08 0.655 -0.277
YAL005C SSA1 -1.735 -2.676 -2.865 -3.058 -1.729 -3.262
YAL007C ERP2 0.074 0.61 0.142
YAL008W FUN14 0.394 0.35 0.442 -0.38 0.788 -0.605
YAL009W SP07 -0.419 0.291 -0.161 0.259 -0.683
YAL010C MDM10 1.585 -0.406 -0.048 -0.023
YAL012W CYS3 -0.289 -0.717 -0.292 0.034 0.879 -0.434

Table 1.1: Gene expression dataset

ferent colors, and the intensity of each spot is related to the expression level 

of the particular gene corresponding to that spot. After an image processing 

step , the colors are transformed into gene expression values. Usually, a series 

of experiments are conducted under several different experimental conditions, 

such as temperatures, times, outside stimulations. A series of experimental 

data is organized into a gene expression dataset.

Currently, many gene expression dataset, such as yeast cell cycle gene ex­

pression dataset [6,47], human cell cycle gene expression dataset [51], are 

published and can be accessed freely on the Internet. Table 1.1 is an segment 

of the gene expression dataset of Spellman et al. [47]. The first two columns 

in the table are the IDs and names of genes. Prom the third column, every 

column represents the expression levels of all the genes measured at a specific 

time in the yeast cell cycle. Every row in the table is the gene expression 

profile of a single gene collected in a time series. The blank cells in the table 

are missing values.
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10 1.4 Gene Expression Analysis

1.4 Gene Expression Analysis

Gene expression data provides a snap shot of the gene expression levels of a 

large amount of genes in genome scope and under many different experimen­

tal conditions. It provides us a great opportunity to interpret the underlying 

biologcal mechanisms that control the expression of genes. Analyzing gene ex­

pression dataset has become a complete new research area in bioinformatics. 

In this section, a literature review on gene expression analysis is provided.

Gene expression data has been analyzed on at least three levels of increas­

ing complexity. First, the level of single genes, where one intends to establish 

whether each gene in isolation behaves differently in a control versus a treat­

ment situation. The second level considers gene combinations, where clusters 

of genes are analyzed in terms of common functionalities, interactions, co­

regulation, and so forth. The third level is to uncover the gene regulatory 

network, or gene regulation pathway [2]. It is the ultimate goal of gene ex­

pression data analysis.

1.4.1 The First Level

In the first level, a mathematical description of the biophysical processes in 

terms of a system of coupled differential equations is provided to describe the 

processes of transcription factor binding, diffusion, protein and UNA degrada­

tion [4], Constructing differential equations requires detailed understanding of 

the interaction agents as well as the parameters of the biochemical reaction. 

Therefore, this approach is restricted to describing very small systems [19]. In 

Zak et al [54], it was mentioned that even for a system of only 3 genes, the
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11 1.4 Gene Expression Analysis

differential equations are not identifiable when only gene expression data is 

observed.

1.4.2 The Second Level

The most popular method in the second level is clustering. The basic idea 

of clustering is to group genes into clusters based on the similarities among 

their gene expression patterns over different experimental conditions. Genes 

in the same cluster are co-expressed. In clustering analysis, it is assumed that 

co-expressed genes are co-regulated. Thus, genes in the same cluster may have 

similar functions or are involved in related biological processes. Defining the 

meaning of similarity is an important issue in all clustering methods. Eisen 

et al. [11] first proposed to apply clustering to gene expression data analysis. 

Following that, a lot of clustering methods have been designed to group gene 

expression data in different ways. D’Haeseleer et al. [8] provided a good survey 

of clustering in gene expression analysis. Although clustering provided us a 

fast cheap way to extract useful information from a large scale gene expression 

dataset, it did not lead to a fine solution of the interaction process. It only 

indicates which genes are co-regulated, but in a cluster, whether a gene is the 

regulator or the regulatee can not be distinguished [19].

1.4.3 The Third Level

In the third level, it aims to address the ultimate goal of gene expression data 

analysis, constructing the gene regulatory network, or gene regulation pathway, 

from the data. The problem of reverse engineering of gene regulatory networks
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12 1.4 Gene Expression Analysis

from gene expression data can be attacked using two different forms of data: 

time series data and steady-state data of gene knockouts [26]. The method 

proposed in this thesis belongs to constructing gene regulatory network from 

time series gene expression data.

Several machine learning (data mining) methods have been explored to 

mine gene regulatory network from gene expression data. Relevance net­

work [3] is constructed by computing comprehensive pair-wise mutual infor­

mation, and then adding undirected edges between gene pairs with a high 

mutual information above a threshold. This method can only construct a net­

work structure without directions. Boolean network was first applied to model 

gene regulatory network by Liang et al. [30]. In a boolean network model, all 

factors in a genetic regulatory network are represented by boolean variables, 

which can only take on two possible values, on and off; all relationships be­

tween variables are required to be logical. These restrictions limit the ability 

of boolean networks to handle noise data, and to model a gene regulatory 

network which can not be represented as exactly logic functions but rather 

an inherently stochastic process. Other methods, such as decision tree [29], 

neural network [49], have also been applied. In particular, Bayesian network 

and dynamic Bayesian network have been proved to be useful tools to model 

gene regulatory networks.

Friedman et al. [12] was credited with first proposing and using Bayesian 

network (BN) to gene expression analysis. When learning a BN structure 

from the gene expression data, they treat each measurement as a sample from 

a distribution and do not take into account the temporal aspect of the mea­

surement. A heuristic learning algorithm is designed to estimate a network
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13 1.4 Gene Expression Analysis

structure from limited gene expression data efficiently without using any prior 

knowledge. When looking for results, they do not use a single best full struc­

ture, but use a bootstrap method to attract the common low dimension net­

work structures from a set of full network structures which all fit the data. 

Applied to a yeast time series gene expression dataset containing 800 genes 

in 76 measurements, it shows some success in extracting central regulatory 

pathways in yeast. This exploration demonstrates the potential of applying 

BNs to model gene regulatory networks and also exposes some disadvantages. 

One of the important problems is that although delicate learning algorithm 

and bootstrap method are used, the accuracy of predicated relationships is 

still very low [38]. It indicated that the method is not suitable to be applied to 

large amount of genes where the predication will become extremely unreliable.

Pe’er et al. [39] extended the framework of Friedman et al. [12] to leaxn a 

Bayesian network from perturbed gene expression data. It shows the ability of 

BN to handle both time series data and steady-state data with gene mutation 

and deletion.

Segal et al. [43] proposed a module network procedure, a method based on 

Bayesian network for inferring regulatory modules from gene expression data. 

This model is a mixture of Bayesian network and clustering. It is capable 

of handling large amount of genes as clustering, and at the same time it can 

model a fine structure of gene regulation as Bayesian network.

Unlike Friedman et al., who only use gene expression data, some researchers 

explored the possibility to mine knowledge from multiple data sources using 

Bayesian networks. Hartemink et al. [16] constructed the BNs not only from
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14 1.4 Gene Expression Analysis

the gene expression data but also combining with the location data to enhence 

the accuracy of the predicted network structure. Tamada et al. [48] developed 

a method to integrate microarray gene expression data and DNA sequence in­

formation into a Bayesian network model. Imoto et al. [22] proposed a method 

to add protein-protein interactions, protein-DNA interactions, binding site in­

formation, and existing literature knowledge into BNs.

Usually, gene expression data are discretized into two or three categories 

before learning a Bayesian network from the data. Instead of using discreted 

variables, a method of using Bayesian network and nonparametric regression 

to handle continuous variables was proposed [21].

Although these applications of Bayesian networks can provide some useful 

biological information, the dynamic nature of gene regulatory networks was 

ignored. Dynamic Bayesian network (DBN), an extension of (static) Bayesian 

network to model temporal processes, is more suitable to represent gene reg­

ulatory networks [14]. Furthermore, DBN is not restricted to be an acyclic 

graph as BN, which makes it possible to model an important property of gene 

regulatory network, the regulatory feedback.

DBN was first introduced to model gene regulatory network by Murphy 

et al. [35] and Friedman et al. [14]. In Murphy et al. [35], extracting the dy­

namic interactions among genes from gene expression data was discussed from 

a very theoretical point of view. In Friedman et al. [14], a simplified dynamic 

Bayesian network was defined and a learning framework for DBNs was pro­

posed. Following that, Ong et al. [37] applied DBN to analyze the regulatory 

pathways in E.Coli. Perrin et al. [40] proposed a method to handle missing
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15 1.4 Gene Expression Analysis

data and continuous variables in dynamic Bayesian network and applied it to 

extract gene regulations in DNA repair network of the E.coli [40]. Kim et 

al. [24] combined DBN with a non-parametric regression method to construct 

nonlinear regulatory relationships from continuous data and tested the method 

on a yeast cell cycle gene expression dataset [47]. Zou et al. [55] proposed a 

new method to increase the accuracy of prediction of DBN through estimating 

the accurate transcriptional time lag.

Although many methods of using BNs or DBNs to model gene regulatory 

networks have been developed, evaluating their effectiveness has not been well 

studied. Currently, comparing the predicted regulatory network with known 

biological knowledge from biological experiments is a widely used method. 

This evaluation method lacks of formal standards because of the insufficiency 

of current biological knowledge. Some researchers suggested to validate the 

methods through simulation studies. Smith et al. [46] designed a simulator to 

generate data representing a comlex biological system, and then test various 

Bayesian network learning algorithms on the simulated datasets to evaluate 

the effectivness. Husmeier et al. [19] proposed a method of using dynamic 

Bayesian network and Bayesian learning with Markov chain Monte Carlo to 

infer networks from simulated data. In the simulation studies, the issues about 

how the network learning performance varies with the size of training data, the 

degree of inadequacy of prior assumptions, the experimental sampling strategy 

and the inclusion of further, sequence-based information are discussed.
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1.5 M otivation

In the dynamic process of gene regulation, time delay is an important feature 

and is observed by many biological experiments [9]. Time delay could exist in 

various situations in a gene regulation process. One of the possibilities is that 

one gene is transcribed and translated into a protein, and it then activates or 

inhibits its target gene to express. This implies that the expression dependence 

between the two genes is not simultaneous, but with a time delay. Dynamic 

Bayesian network [15] can model the situation that one event causes another 

event in the future, which makes it suitable to model time delayed gene regu­

latory networks. Although there are some applications of using DBN in gene 

regulation analysis [25,35,37,40], in their DBNs, the time delay between all 

the regulators and their targets is assumed to be one time unit of a time series 

gene expression dataset. Although it was indicated that multiple time units 

delay in gene regulation is possible, the computational cost for incorporating 

this information into the learning process of DBN is expensive [37]. Zou et 

al. [55] proposed an approach to handle multiple time units delay using DBN, 

however, the structure of the learned DBN ignored the scenario that several 

regulators co-regulate one gene with different time lags. Besides DBN, other 

methods, such as decision tree [29], clustering [41] have also been tried to cap­

ture multiple time units delay in gene regulatory networks.

In this thesis, we propose using higher-order Markov DBN (HMDBN) to 

model multiple time units delayed gene regulatory networks. A two step heuris­

tic learning framework is designed. First, a mutual information matrix is com­

puted to select gene pairs with a particular time lag as candidate pairs. Then, 

genetic algorithm is applied to search for an optimal network structure using
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17 1.6 Outline

mutual information matrix as prior knowledge. Genetic algorithm interacts 

with mutual information matrix through population initialization and genetic 

operators. A particular problem in learning the structure of a HMDBN is 

that the size of applicable training data varies when scoring different network 

structures. One solution to this problem is suggested in this thesis. In or­

der to verify the effectiveness of the proposed method, we apply the learning 

framework to real-life gene expression datasets and compare the results with 

biological evidence.

1.6 Outline

This thesis is organized as follows. In Chapter 2, the background of Bayesian 

network and dynamic Bayesian network is introduced. In Chapter 3, a new 

type of DBN, higher-order Markov DBN is proposed, and the learning frame­

work for it is proposed. The experiments results on Saccharomyces cerevisiae 

gene expression datasets are analyzed in Chapter 4. In Chapter 5, the conclu­

sion and future work are presented.
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Chapter 2 

Bayesian Networks and 

Dynamic Bayesian Networks

2.1 Bayesian Networks

Bayesian networks are interpretable and flexible models for representing prob­

abilistic relationships between multiple interacting variables [20]. A Bayesian 

network is composed of two components, a graphical component (the structure 

of a BN) and a numerical component (the parameters of a BN). At a qualita­

tive level, the structure of a BN describes the relationships between variables 

in the form of conditional independence relations. At the quantitative level, 

relationships between variables are described by conditional probability dis­

tributions [20]. The two components define a joint probability distributions 

over a set of random variables together. In this thesis, we use capital letters 

for variable names and boldface capital letters for sets of variables. Formally, 

considering a set X =  {Xt, ...,X n} of random variables, a Bayesian network 

(BN) 1 is a graphical representation of a joint probability distribution of X [12].

1When we say Bayesian networks, it means static Bayesian networks.

18
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19 2.1 Bayesian Networks

The graphical structure G of a BN consists of a set of nodes and a set of 

directed edges. The nodes represent random variables. The edges indicated 

conditional dependence between variables. If there is a directed edge from 

node A  to node B, then A  is called the parent B, and B  is called the child of

A. Figure 2.1 is an example of the structure of a five-node Bayesian Network. 

In Figure 2.1, we have a set of nodes V  =  {A, B, C, D, E}, and a set of edges 

E =  {{E ,B ),{A , B ),(A , D ),{B, C)}. Node E  and node A  do not have any 

parents. Node E  and A  are the parents of node B. Node D is the child of 

node A  and node C  is the child of node B. The graphical structure of a BN 

has to be a directed acyclic graph or DAG, which is defined by the absence of 

directed cycles.

The graph G encodes the markov assumption: each variable X, is indepen­

dent of its non-descendant, given its parents in G. This assumption enables a 

BN to represent a joint probability distribution of X in a more compact way. 

Let X =  {X i,..., X„} be a set of random variables represented by the nodes 

i =  1, ...n in a BN, and let PA(i) to be the set of parents of variable X*, then,

P (X l t X 2,....Xn) = P(X<|PA(*)). (2.1)

In this way, instead of using a space in the order of 0(2n) to present the joint 

probability, only a space in the order of 0(2fc) is require to represent a Bayesian 

network, where k is the maximum number of parents of a variable [34]. Take 

Figure 2.1 as an example, according to the markov assumption, variable C  is 

independent of its non-descendant variables A, E, D  given its parent, vari­

able B, and it is represented as I{C\ A, D, E\B). Similarly, we have I  (A] E ),
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20 2.1 Bayesian Networks

I(B; D\A, E), 1(D) B , C, E\A), and 1(E) A , D ). The network structure repre­

sent the joint probability in the form of a production,

P(A, B , C, D, E) =  P(A)P(B\A, E)P(C\B)P(D\A)P(E). (2.2)

The variables in BNs can be continuous or discrete. For discrete variables, 

the parameters of BNs are a set of conditional probability tables. Every node is 

associated with a conditional probability table given its parents. In Figure 2.1, 

every variable can only take boolean values, and the table in the bottom of 

the figure is the conditional probability table of variable B. In the table, the 

probabilities of all possible assignments of P (B  = b\E = e,A  = a), where 

b, e, a = 0,1 are shown. For continuous variables, the parameters are a set 

of conditional probability distribution for every variable. The set of local con­

ditional probability tables or distributions for all the variables, together with 

the set of conditional dependence assumptions described by the structure of 

the BN, define a full joint probability distribution for the network.

When applying BNs to model gene regulatory networks, we associate nodes

E=I,A*I E=1A=Q E°0,A=1 E*0.A»0

Figure 2.1: An example of a 5-node Bayesian network.
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21 2.2 Structure Learning of BNs

with genes and the values of the nodes with the expression values of genes, 

while the directed edges indicates interactions between the genes. For instance, 

the network structure of Figure 2.1 suggests that gene E  and gene A  co-regulate 

gene B , that gene B  mediates the interaction between gene E, A  and gene C\ 

that gene A  regulate gene D. With the parameters of a BN, different type of 

regulations, such as inhibition or activation can be differentiated.

2.2 Structure Learning of BNs

Learning Bayesian networks from training data can be considered in several 

different settings. If the structure of a Bayesian network is known, the task is 

to the learn the probability table for each variable from the training data, it 

is known as parameters learning; otherwise, the structure needs to be learned 

from the training data first, it is known as structure learning. Furthermore, 

sometime, not all the the variables in a Bayesian network are observable, some 

are not presented in the training dataset or the dataset is not complete, it 

involves learning Bayesian network with hidden variables. Below, the basic 

idea of learning the structure of BNs from complete dataset is reviewed.

Learning the structure of a (static) Bayesian network from training dataset 

can be seen as a search problem to find an optimal structure in the search space 

that maximizes a score function. The score function measures the fitness of 

a given structure with respect to the dataset. The basic idea of learning the 

structure of a BN is to enumerate all the possible structures and choose the one 

with the highest score. However, the number of network structures increases 

super-exponentially with the number of nodes, and the optimization is a NP- 

hard problem [5]. If we have a training dataset of N  variables, the number of
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22 2.2 Structure Learning of BNs

possible structures of the Bayesian network composed by N  variables is given 

by the formula below,

For n=2, the number of possible structure is 3; for n=3, it is 25; for n=5, it is 

29,000; and for n=10, it is approximately 4.2*10(18) [7]. In order to solve the 

problem of large search space, heuristic search methods, such as hill-climbing, 

simulated annealing, have to be resorted to [17].

Among the existing different score functions, Maximum likelihood (ML) [14] 

is a widely used score. It is defined as below [14]:

where N ij.^  is the number of cases in the training dataset when node takes 

value ji and its parents take the values A:*. The higher the score for a structure, 

the better the structure is.

The problem of ML score is that it prefers complex structures because 

adding more parents to a node can not decrease the likelihood [42]. In order 

to find a sparse structure, one solution is to limit the maximal number of 

parents. Another solution is to use Minimal description length (MDL) score, 

which is proposed to penalize complex structures based on ML score [28]. The 

MDL score is defined by the following equations [28,50],

n

(2.3)
1 = 1

(2.4)
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23 2.2 Structure Learning o f BNs

M D L  — DLdota +  DLfnodeii (2-5)

DLtota =  -M L , (2.6)

D L m o d e i  =  [kilog2(n) + d ( 8 i  -  1) n  «>]. (2-7)
n i £ n  jeFni

where n is the number of nodes ; for node n*, is the number of its parents, 

Fni is its set of parents, s, is the number of states it can be in, and Sj is the 

number of values a particular variable in Fni can take on; d is the number of 

bits needed to store a numerical value. MDL score is the sum of two parts. 

The first parts is DLdata, which is used to evaluate how the structure fits the 

training dataset. It is in fact the negative ML score. The second part is 

DLm o d e i , which is used to evaluate the complexity of a structure. Because the 

structure with lower MDL is better, DLm0<2e* is a penalty for complex structure.

BIC score (Bayesian Information Criterion approximation) [36] is an vari­

ation of MDL score. It is defined as below,

B IC  = M L — \In M , (2.8)

where d is the number of bits needed to store a numerical value, and M  mea­

sures the complexity of the network structure. It is designed for approximation 

for large amount of data. Compared to BIC score, MDL is more suitable for 

learning small training dataset.
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24 2.3 First-order Markov Dynamic Bayesian Networks

2.3 First-order Markov Dynam ic Bayesian N et­

works

Dynamic Bayesian network (DBN) is an extension of (static) Bayesian network 

to model temporal processes [14]. Assuming X =  { X i,...,X n} is a set of 

attributes changing in a temporal process of T  time slices, random variable 

Xj[t] denotes the value of attribute at time slice t, and X[t] denotes the set 

of variables {Xj[t] | 1 < i <  n}, for 0 < t < T  — 1. A DBN represents the 

joint probability distribution over the variables X[0] (JX[1]... (JX[T — 1] [14]. 

Because the distribution of a DBN is extremely complex, in [14], a simplified 

DBN, called first-order Markov DBN, is proposed based on the following two 

assumptions:

1 First Order Markovian:

P ( X [ t ] |X [ t - l ) ,X [ t - 2 ] ......X[0]) =  P(X[(] | X [t -  1])

2 Stationary: P(X[t] | X[£ — 1]) is independent of t.

First order Markovian assumption means that given variables in X[t — 1], vari­

ables in X[t] are independent of variables in X[t — 2] (JX[£ — 3] | J .... [JX[0]. 

Stationary assumption means that the dependence between X[t] and X [t—1] is 

stationary. This two assumptions together suggest that in a first-order Markov 

DBN, arrows are only allowed to appear between adjacent time slices and the 

structure between two adjacent time slices remains same as time evolves. Fig­

ure 2.2(a) is an example of a first-order Markov DBN, in which there are three 

nodes A, B, C  evolving in T  time slices. Every node in a particular time 

slices represents a variable. Arrows represent probabilistic dependence. In 

Figure 2.2(a), we can see that the structures between all the adjacent time
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25 2.4 Structure Learning of First-order Markov DBNs

slices are same. Because of the reduplicate structures, usually, a rolled repre­

sentation which only shows two time slices is used. The rolled representation 

of Figure 2.2(a) is shown in Figure 2.2(b). The structure between two time 

slices is called inter-slice structure. Applying the structure in Figure 2.2(b) to 

model a gene regulatory network, the arrows from node A[t — 1] to C[t) and 

from C[t — 1] to C[f] represent that gene C is co-regulated by gene A and itself 

with one time unit delay. It is interesting that DBN can model a regulation 

feedback that gene C is regulated by itself.

'a

o

o l T-2 T-l2 t-l
(b) Rolled Representa­
tion.

(a) Unrolled Representation.

Figure 2.2: An example of a first-order Markov DBN.

2.4 Structure Learning of First-order Markov 

D B N s

Learning the structure of a dynamic Bayesian network shares the same idea 

with learning the structure of a (static) Bayesian network. Friedman [14] ex­

tended the score functions of BN to evaluate the structure of first-order Markov 

DBN. For the structure between two adjacent time slices, the same score func­

tions, such as ML, MDL, for (static) Bayesian network can be used. The 

difference is that for dynamic Bayesian network, the training dataset needs
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to be shifted. Given a time series training dataset, to compute the ML score 

for a inter-slice structures, N i j ^  has to be counted from the transition cases. 

For the first-order Markov DBN, because the parents of a given node are all 

from previous adjacent time slice, the transition cases are obtained by shifting 

the data of the child one time unit back to align with the data of its parent [34].

10 m 20 m 30 m 40 m SO m 60 m 70 m 80 m 90 m 100 m

A 1 3 2 2 3 2 1 1 3 1

B 1 1 1 3 1 3 1 2 3 1

C 2 2 2 3 3 3 3 1 1 1

(a) A time series gene expression dataset.

10 m 20 m 30 m 40 ra SO m 60 m 70 m 80 m 90 m

B 1 1 1 3 1 3 1 2 3

A 3 2 2 3 2 1 1 3 1

20 m 30 m 40 m SO m 60 m 70 m 80 m 90 m 100 m

(b) Shifted dataset for node A.

10 m 20 m 30 m 40 m SO m 60 m 70 m 80 m 90 m

A 1 3 2 2 3 2 1 1 3

C 2 2 2 3 3 3 3 1 1

C 2 2 3 3 3 3 1 1 1

20 m 30 m 40 m 50 m 60 m 70 m 80 m 90 m 100 m

(c) Shifted dataset for node C.

Figure 2.3: An example of dataset shifting for learning the structure of first- 
order Markov DBNs.

In Figure 2.3, an example of shifting a training dataset to obtain transition 

cases is illustrated. Figure 2.3(a) is a gene expression dataset of 3 variables, 

gene A ,B ,C  . This dataset contains the gene expression of 10 time slices in 

a time series from 10 to 100 minute with equal intervals. Given this dataset, 

computing the ML score for the structure of a first-order Markov DBN in 

Fiure 2.2, the structures of every node given its parents need to be evaluated 

respectively according to the Equation 2.4. Node A has a single parent node
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B. To obtain the transition cases where node B  affects node A  in 10 minutes 

later,as shown in Figure 2.3(b), the data of node B  from 10 to 90 minute 

and the data of node A  from 20 to 100 minute is used. Every column in the 

shifted dataset is a transition case. For node C, who has two parents, node 

A  and node C itself from previous time slice, the shifted dataset is shown in 

Figure 2.3(c). A transition case is composed by the values of node A  and C 

at the m  minute and the value of node C at the m  +  10 minute.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Learning HM DBNs From Gene 

Expression Data

3.1 Higher-order Markov Dynam ic Bayesian  

Networks

As suggested in [15], first-order Markov DBN can be extended to allow higher 

order interactions among variables. In a rth-order Markov DBN, given a node

Xi[t], its parents can be chosen from the set of varibles X[£ — r] | J  |J  X[t —

1] [15]. In this thesis, the two assumptions of first-order Markov DBN are 

extended for rth-order Markov DBN as below:

1 rth Order Markovian:

P(X[t] I X[i -  1], X[t -  2],..., X[0]) =  P(X[i] I X[t -  1],..., X[t -  r])

2 Stationary: P(X[£] [ X[t — 1],..., X[f — r]) is independent of t.

r th order Markovian assumption means that given variables X[£—1],..., X [t—r], 

X[f] are independent of all the variables in the time slices before time slice t —r.

28
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Compared with First order Markowian, it can be seen that variables in time 

slice t are dependent on the variables in all r previous time slices instead of 

only depending on the variables in time slide t — 1. Stationary assumption 

means that the dependence between X[t] and X[i — 1 ] , X[£ — r] remains the 

same when time evolves.

Figure 3.1(a) is an example of an 2nd-order Markov DBN (r =  2). It is

t-2 t-l t
(a) A 2nd-order Markov DBN.

(b) Compact Representation for the 2nd-order Markov DBN 

Figure 3.1: An example of a HMDBN.

represented by 3 time slices in its rolled representation. Generally, a rth-order 

Markov DBN can be presented in r +  1 time slice in a rolled representation 

because the structures of every r-t-l time slices are identical. In Figure 3.1(a), 

there is an arrow from node A  in slice t — 2 to node C in slice t. This arrow 

is not allowed in a first-order Markov DBN.

Most of the applications using DBN in gene regulation modeling use only 

first-order Markov DBNs [25,37,40]. Those applications assume that all the 

regulators regulate their taxgets with a delay of one time unit in a time se­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30 3.1 Higher-order Markov Dynamic Bayesian Networks

ries gene expression dataset. In fact, multiple time units delay is indicated 

to exist in a gene regulation process [9]. Using first-order DBNs to model 

gene regulatory networks will ignore some regulation pairs with more than one 

time units delay. In the thesis, a method of using rth- order Markov DBN to 

model multiple time unit delayed gene regulatory network is proposed. Unlike 

first-order Markov DBN, it can model the situation that one gene regulates 

another gene with 1,.., r time units delay. For example, if using DBN in Fig­

ure 3.1(a) to model a gene regulatory network, it represents that gene A  and 

gene B  co-regulate gene C with two time units delay and one time unit delay 

respectively; gene B  regulates gene A  with one time unit delay. The suitable 

length of time delay in the scope of 1, ..,r  is learned from the gene expression 

dataset rather than using a fixed one.

In Figure 3.1(a), imaging an extra arrow from gene B to gene A across two 

time slices, then there will be two arrows from gene B to gene A. One is across 

two time slices and one is across one time slice. This situation is allowed in 

the definition of a 2nd-order Markov DBN. But when using it to model a gene 

regulatory network, the situation that gene B regulates gene A with two time 

unit delay and one time unit delay simultaneously is hard to be explained. In 

the proposed method, using a HMDBN to model a gene regulatory network is 

based on the assumption that one gene can only be the parent of anther gene 

with one particular time lag. Based on this assumption, the 2nd-order Markov 

DBN in Figure 3.1(a) can be conveniently represented in a compact way as 

shown in Figure 3.1(b), in which the arrow from node A to node C attached 

with number 2 represents the arrow from node A to node C across two time 

slices in Figure 3.1(a).
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Given a time series gene expression dataset of N  genes in T  time slices, to 

learn a reo rd e r Markov DBN from the dataset is the task of learning a DBN 

structure composed by (r + 1 ) x JV nodes. First-order Markov DBN (r =  1) is 

the simplest case of learning a structure of 2 x N  nodes. When r increases, the 

search space becomes extremely larger. Currently, most available time series 

gene expression data only contains a few dozen time slices. It means the size 

of training data is small. The problem of learning an optimal structure from 

a large space using limited training data makes learning the structure of a 

r th-order Markov DBN (r > 1) an extremely challenging task.

3.2 A Two Steps Learning Framework

In order to address the problem of large search space, a two steps heuristic 

learning framework to learn the structure of a reo rd e r  Markov DBN (r > 1) 

is proposed. First, a mutual information matrix is computed to store the 

variable pairs with mutual information above threshold m. Second, genetic 

algorithm is applied to search for an optimal DBN structure by using the 

mutual information matrix obtained in step 1. The learning framework is 

presented in Algorithm 1. The details of the framework are described and 

explained in the following sections.

3.2.1 Pre-processing: Discretization

Before computing the mutual information and fitness functions, gene expres­

sion data is discretized first. Choosing discrete gene expression values instead 

of using continuous ones is because it is more easy to capture the nonlinear 

relationships [20]. Some researchers chose fixed threshold to discretize gene 

expression data into two or three categories [12]. The fixed threshold is de-
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Algorithm 1 Learning framework____________________________________
Pre-processing-. Discretize the each gene’s expression data in to 3 cate­
gories using k-mean clustering algorithm.

1 Compute mutual information matrix M , select the cells in the matrix 
whose values are above threshold m, and update M.

2 Genetic Algorithm (M , r, p, mi, m 2, w, M ax , M ax  — fa n  — in)
M: Mutual information matrix.
r: the order of the DBN. 
p: The size of population.
mi: The percent of population to do knowledge guided mutation. 
m2: The percent of population to do random mutation. 
w: The percents of the population to do the swap.
Max: The maximal number of iterations.
M ax — fa n  — in: The maximal number of parents for a node.

— Initial the population using M  and evaluate the population.
— While iterations < M ax

Select:
Choose (1 — w) x p individuals from population probabilisticly 
and add it to Population^w.
Crossover: Choose 0.5 x w x p pairs of individual from 
population to do the swap and add it to Populationnel£). 
Knowledge Guided Mutation:
Choose mi x p individuals from populationnew randomly to 
do knowledge guided mutation.
Random Mutation:
Choose m2 x p individuals from populationnew randomly to 
do random mutation.
Update:
Population *— Populationnew 
Evaluate:
Compute fitness function (MDL score, ML score) for 
Population

— Return the individual in Population with the lowest MDL score or 
highest ML score.
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termined according to the overall gene expression data of all the genes in the

dataset. Using the fixed threshold to discretize all the genes is not delicate 

enough because the scopes of gene expression value vary for different genes. 

Discretizing every gene’s data based on its own expression profile is more rea­

sonable. In the thesis, a discretization method using k-mean algorithm [10] 

to group every gene’s expression values into three clusters is proposed. Given 

one gene’s expression profile composed by n  values, the initial means of the 

three clusters are the lowest, average and highest values of the n  values. Every 

value in the profile is then assigned to the closest cluster and the means of the 

three clusters are updated. This process is repeated until the the means of the 

three clusters are stable. Using clustering to discretize gene expression data 

was also adopted in Pe’er et al. [39]. Figure 3.2 shows the discretization results 

of 6 genes’ expression profiles in Spellman’s dataset. The horizon axis is the 

time points and the vertical axis is the gene expression values. The profile in 

dashed line is the original gene expression values and the profile in solid line is 

the discrete values as 1,2,3. Figure 3.2 shows that the shapes of the discrete 

profiles are similar to the original ones, and most of the turning points are 

kept.

3.2.2 Step 1: Mutual Information Matrix

Mutual Information [3] is a natural way to measure the dependence between 

two variables and was employed in gene expression analysis [3,12]. It is defined

where X, Y  are two variables, x, y are particular values that X ,  and Y  take,

by as [13],

P(x)P(yy
(3-1)

and P  denotes the observed frequencies in the dataset. The higher the mutual
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(a) Cdc28

(c) Farl

(e) Sicl

(b) Mbpl

(d) Cln2

(f) Clb5

Figure 3.2: discrete profiles of six yeast genes using k-mean algorithm.
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information, the stronger the dependence between X  and Y .

To learn a r t/l-order DBN of N  variables evolving in time series, a matrix M  

with the dimension of N  x N  x r  is computed first. The cell M(i, j , I),  where 

1 < j  < N,  1 < I < r , is the mutual information between variable Xj  and 

Xi  with time lag I (Xj  precedes X {). When computing the mutual information 

I), the data of X t needs to be shifted back I time units to align with the 

data of Xj  [18]. The value of threshold m  is set to select the candidate pairs 

with a mutual information above the threshold. In the proposed method, m  is 

chosen as the mean of the overall mutual information. The matrix M  is then 

transformed to record the candidate pairs with particular time lags using the 

following Equation,

) =  I represents Xj  and Xi  with time lag I has a high mutual infor­

mation; while M (i , j , l ) =  —1 represents the mutual information is low. When 

searching DBN structures, if ) =  I, it is more likely that there will be

an arrow from variables Xj[t  — /] to variable Aj[£]. That is to say, variable 

Xj[t  — /] is a good candidate parent for variable X i[f]. The same idea was also 

employed in Sparse candidate algorithm [13].

Figure 3.3 is an example of computing mutual information matrix for a 

2-node 3rd-order Markov DBN. A matrix of dimension of 2 x 2 x 3  is first 

computed to store the mutual information between variable A  and B  with time 

lags 1,2,3 (the matrix on the top). The average value of the overall threshold

(3.2)
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is

0.8 +  0.3 +  0.1 -F 0.5 +  0.4 -F 0.3 -F 0.7 -F 0.4 -F 0.6 -F 0.2 -F 0.9 -F 0.4--------------------------------------— -— -----------------------------  «  0.5.
2 * 2 * 3

(3.3)

Then, 0.5 is used as the threshold to transform the mutual information matrix 

to store good candidate parents for every node. In the matrix at the bottom, 

in the intersection of column A and row B, the numbers 1, —1,3 represents it 

is more possible that there is an arrow from gene A to gene B with time lag 1 

or time lag 3.

G e n e A B
Time Lag 1 2 3 1 2 3
A 0.8 0.3 0.1 0.5 0.4 0.3 II
B 0.7 0.4 0.6 0.2 0.9 0.4 I

Threshold=0.5

G e n e A B

A 1 -1 -1 1 -1 -1
B 1 -1 3 -1 2 -1

Figure 3.3: Mutual information matrix for a 2-node 3rd-order Markov DBN.

Zou et al. [55] proposed a method to find good candidate parents for a 

gene with a particular time lag. In their method, given a time series gene 

expression dataset, in order to determine if gene A is a possible parent of gene 

B, a threshold is chosen to determine the time point of the initial significant 

change in the expression profiles of gene A  and B. If gene A’s significant initial 

change is before gene B ’s, then gene A  is chosen as a good candidate parent of 

gene B. The time lag between A  and B  is the time difference of their significant
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initial changes. The problem of this method is that it is very sensitive to the 

value of the threshold and noisy data. Using mutual information to choose the 

good candidate parents is more reliable because it is based on the dependence 

of a segment of gene expression profiles rather then a single time point value.

3.2.3 Step 2: Genetic Algorithm

Genetic algorithm was proposed to learn the structure of (static) Bayesian 

networks and dynamic Bayesian networks before [50]. In the thesis, genetic 

algorithm is customized to interact with the mutual information matrix to 

search the structure of a HMDBN.

Genetic algorithm (GA) is motivated by an analogy to biological evolu­

tion. It is designed to address the problem of searching a space of candidate 

hypotheses to identify the best hypothesis. In GA, hypothesis is evaluated by 

a predefined numerical measure for the problem, called fitness function. The 

search for the best hypothesis begins with a population, a collection of initial 

hypotheses. Individuals in the current generation give rise to the next gener­

ation by operations such as random mutation or crossover, which are inspired 

by biological evolution. In each generation, the hypotheses are evaluated by 

the fitness function and a part of hypotheses are selected probabilistically as 

seeds for producing the next generation. When selecting hypotheses, the one 

with higher fitness function will be chosen to produce offsprings with a higher 

probability. In this way, the new generation will become better and better [31]. 

To design a GA, three main parts have to be considered, including represen­

tation of hypothesis, designing of genetic operators, and selection of fitness 

function.
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In the proposed GA of searching for an optimal structure of a HMDBN 

(Figure 1), individuals in a generation of population are a set of possible net­

work structures. The structure of a HMDBN is represented as a matrix in the 

GA. To evaluate a structure given the dataset, score functions for the first- 

order Markov DBN, such as ML score and MDL score, can be extended to 

evaluate the structure of a HMDBN. Therefore, these score functions can be 

used as the fitness functions of GA. The population is initialized using the 

mutual information matrix produced in Step 1. Three operators, crossover, 

knowledge guided mutation and random mutation are designed. The details 

of the proposed genetic algorithm are described as below.

Representation

In the customized genetic algorithm, the structure of a r t/l-order Markov DBN 

of N  variables evolving in a time series is represented as a matrix I  with 

dimension N  x N. Each cell I(i, j),  in the matrix I  is defined as,

I  (i, j) = <

—1 if there is no arrow between

variables in Xi and X,
J (3-4)

1(1 < I < r) if there is an arrow from

variable Xj[t — I] to Xi\t}.

Table 3.1 is an example of using a 3 x 3 matrix I  to preprent the 3-node 2nd- 

order Markov DBN in Figure 3.1(a). In Table 3.1, each row represents a local 

structure, the structure of a node and its parents. The first row represents 

node A  has a parent node B  from previous adjacent time slice. The second 

row represent node B  has no parents. The third row represents node C  has
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Gene A B C
A -1 1 -1
B -1 -1 -1
C 2 1 -1

Table 3.1: Representation of a network structure in genetic algorithm

two parents, node A  and B, from two time slices and one time slice before 

respectively. Note that this representation is based on the assumption that 

one gene only can be the parent of anther gene with one particular time lag.

Population initialization

In order to limit the search space, the population are initialized using mutual 

information matrix as prior knowledge. For a rth-order Markov DBN, assuming 

we have a matrix I  representing an individual in the population and a mutual 

information matrix M , the cell I(i, j ) is initialized by randomly choosing a 

value from the set of values {M(i,  j, I) | 1 < / < r, M(i, j, I) > — 1} (J{—!}• 

This initialization seeds the population to a set of structures in which all the 

variables pairs connected by an arrow have a high mutual information.

Operators in GA

The three operators used in the genetic algorithm are crossover, knowledge 

guided mutation and random mutation.

The crossover operator randomly swaps several pairs of parallel rows be­

tween two individuals in the population. Given two a x b matrixes I\ and I2 

from a population, < h i}) >, (1 <  i <  a) is a pair of parallel rows. As
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| Gene A |btrz •1 \T
-1 > h

| C 1
- L

Exchange

Exchange

U jene A B | C

-1 1 | - l |

-1 -1 | 3 |

| c 2 2 | -11

(a) Two individuals before crossover

IQE3
in n
in n
o n

Gene

(b) Two new individuals after crossover 

Figure 3.4: Crossover for 3-node 3rd-order Markov DBNs.
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described before, every row in an individual matrix represents a local struc­

ture of a node and its parents. Using a row as the swapping unit is based on 

the property of ML/MDL scores that the score of the whole structure cam be 

decomposed as the sum of local structure scores. In Figure 3.4, an example of 

crossover between two structures of a 3r<i-order Markov DBN is shown. The 

local structures of node A  and node C  are exchanged between the two struc­

tures , and two new individuals axe generated.

Knowledge guided mutation operator mutates the value in cell I(i, j )  by 

randomly choosing a value from the set of values {M(i,  j , I) | 1 < I < 

r, M(i, j, I) > — 1}(J{—1} w^h uniform distribution. Knowledge guided mu­

tation switches the gene regulation pair to other time lags which also appear 

in the mutual information matrix or turns off the gene regulation relationship 

between two genes. In Figure 3.5, an example of knowledge guided mutation 

for a two-node 3rd-order Markov DBN (r — 3) is shown. Before mutating the 

value of the cell of column A  and row B, a set of possible mutation values, 

{—1,1,3}, are obtained from the mutual information matrix. Then, the value 

of the cell in the individual is changed from 1 to 3. The value 3 is randomly 

picked from the set of values,}—1,1,3}.

Because the population initialization and knowledge guided mutation are 

both based on the mutual information matrix, the search space could be over­

restricted by the dependence on high mutual information single arrow struc­

tures. In order to overcome the over-restriction, random mutation operator 

is designed. Random mutation, without referring to the mutual information 

matrix, mutates I(i, j ) randomly to a value in the set of values {—1,1,2, ..r} 

with uniform distribution. In Figure 3.6, an example of random mutation for
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M utual inform ation m atrix Individual in GA

Gene A B
A 1 -1 -1 1 -1 -1

B 1 -1 3 -1 2 -1

Gene A B
A 1 -1

B IF2

K now ledge M utation

Gene
{1,3} U {-!} = { - ! , 1 ,3}

New individual after m utation

Figure 3.5: Knowledge guided mutation for a 2-node 3rci-order Markov DBN

Individual in GA N ew  individual after m utation

Gene A B H ,  l , . . r}  
= { - 1 ,1 ,2 ,3 }

Gene A B
A 1

1

-1 A 1

2

-1

B 2
M utation

B 2

Figure 3.6: Random mutation a 2-node 3rd-order Markov DBN.

a two-node 3rd-order Markov DBN (r =  3) is shown. The set of possible mu­

tation values is {—1,1,2,3}. The value of the cell in the individual is changed 

from 1 to 2 by randomly choosing a value from {—1,1,2,3}. W ithout using 

the mutual information matrix in Figure 3.5, value 2 becomes a possible time 

lag.

3.3 T he P roblem  o f Varied Size o f Training  

D ata

When extending the score functions of first-order Markov DBN, such as ML 

score and MDL score, to evaluate.the structure of a higher-order Markov DBN,
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a particular problem is encountered. This problem will be introduced through 

a simple example as blow.

Gene A Ti t 2 t 3 t 4 Ts Ts

Gene B Tj t 2 t 3 t 4 Ts t 6

(a) Structure 1, Size=4.

Gene A Ti t 2 t 3 t 4 Ts t 6

Gene B Tj t 2 t 3 t 4 Ts t 6

(b) Structure 2, Size=5.

Figure 3.7: An example of training data size variation for different HMDBN 
structures.

In Figure 3.7, there are two possible structures of a two-node 2nd- order 

Markov DBN. Figure 3.7(a) is the structure that A  is B ’s parent with time 

lag 2. Figure 3.7(b) is the structure that A  is B ’s parent with time lag 1. 

To choose a better structure from the two structures, the scores of the two 

structure need to be compared. When scoring the structure in Figure 3.7(a), 

the data of gene B  need to be shifted two time units back to align with the 

data of gene A, and the available data points can be used is 6 — 2 =  4. When 

scoring the structure in Figure 3.7(b), the data of gene B  need to be shifted 

one time unit back to align with the data of gene A, and the data points can 

be used is 6 — 1 =  5. The scores of the two structures are computed based on 

different amount of training data, which makes the score comparison for the
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two structures unreliable. In general, when evaluating different structures of a 

HMDBN (r > 1), because of different time lags, the size of training data varies 

for different structures. This problem does not exist when learning first-order 

Markov DBN because the time lag between all variables is fixed to be 1.

In order to maintain the same size of training data for different structures, 

one solution is to sacrifice the size of training data. For the structure in Fig­

ure 3.7(b), although there are 5 available time slices can be used as training 

data, in order to use the same amount of training data as the structure in Fig­

ure 3.7(a), only four time slices will be used. In general, to learn a r th-order 

Markov DBN from a time series dataset of T  time slices, only T  — r time slices 

can be used as training data. Currently, most time series dataset contains 

only a few dozen time slices. The decreased size makes the learning result 

unreliable when r becomes larger. For example, the yeast cell cycle dataset of 

Cho et al. [6] contains 17 time slices. To learn a 5t/l-order Markov DBN, the 

size of available training data decreases to 17 — 5 =  12.

Compared to sacrificing the size of training data, another solution is to 

simulate some time slices to maintain the same size of training data for all 

structures. In Figure 3.7(a), because of shifting back the data of the child 

node, the data of the first two time slices of the child and the last two time 

slices of the parent can not be used. The size of available training data de­

creases when time lags exist in a local structure (the structure of a node and 

its parents). If two time slices can be added at the end of the child’s data 

as a complement to align with the last 2 time slices of the parent, the size of 

the training data will be maintained. Sampling two more time slices at the 

end of the time series data of the child based on the pattern of its previous
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time slices is a possible solution. For some particular time series dataset, some 

special time slices can be chosen to simulate the time slices after the end. The 

yeast cell cycle dataset of Cho et al. [6] contains 17 time slices across nearly 

two complete cell cycles. The 17th time slice is the end of a cell cycle. If the 

18t/l time slice exists, it should be the start time slice of another cell cycle; 

while the 1th time slice, which is a start time slice of a cell cycle, can be used 

to simulate the 18th time slice. Because the dataset records a period event, 

the data can be viewed as a loop. No matter which time slice is chosen as the 

start point, the end point can be found in the loop to keep the size as 17.

Figure 3.8 is an example of using time series data as a loop to maintain the 

T,

Gene A Ti t 2 t 3 t 4 Ts t 6

Gene B t 3 t 4 Ts t 6 Tj t 2

(a) Dataset Can Be 
Used as a Loop.

(b) Structure 1, Size=6.

Gene A Ti t 2 t 3 t 4 Ts Ts

Gene B t 2 t 3 t 4 Ts t 6 Tj

(c) Structure 2, Size=6.

Figure 3.8: An example of using dataset as a loop.

same size of training data for different structures. A time series dataset con­

taining 6 time slices is viewed as a loop as in Figure 3.8(a). In Figure 3.8(b), 

for the child node B, the start time slice of the data is T3 and time slices Ti and 

T2 are added after time slice T6. The size of available training dataset for the
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structure in Figure 3.8(b) is maintained to be 6. The same as Figure 3.8(b), 

the size of available training dataset for the structure in Figure 3.8(c) is also 

maintained to be 6. Compared with the example in Figure 3.7, it can be seen 

that using the data as loop can solve the problem of the size variation of the 

training data and make the score comparison for different structures reliable.

In our experiments, the two solutions, using data as a loop, and simply 

sacrificing the size of training dataset, are both used. For the experiment 

on the dataset of Chou et al. [6], using data as a loop are adopted. For the 

experiment on the dataset of Spellman et al. [47], simply sacrificing the amount 

of training data is used because the information about the cell cycle boundary 

is not available for this dataset.
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Chapter 4 

Experiments

4.1 A N ine-G ene Network

4.1.1 Dataset

To test the proposed method, the learning framework is applied to analyze a 

Saccharomyces cerevisiae gene expression dataset of Chou et al. [6]. In this 

dataset, the expression data of thousands of yeast genes were collected in time 

series experiments. This dataset is ideal to test the proposed method because 

it has a relatively large number of time slices (17 time slices) and small time 

intervals (10 minutes). Furthermore, the 17 time slices cross nearly two full 

cell cycles [6]. As mentioned in section 3.3, the dataset can be used as a loop. 

Figure 4.1 (taken from Chou et al. ) shows 4 genes’ expression profiles in the 

dataset [6]. The vertical axis is the relative expression value according to the 

mean of every gene’s expression data. The horizontal axis is the time. One 

cell cycle is divided into four phases, Gi, S, G2 , M. In Figure 4.1, below the 

horizontal axis, the corresponding phases of time scopes in the experiments 

are presented.

47
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IS

# 5 s'

too m
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6 , S G, M G, S C* M

Figure 4.1: Gene expression profiles and yeast cell cycle phase information of 
Chou’s dataset.

4.1.2 Results

Simon et al. [45] used genome wide location analysis to investigate nine genes 

(Swi4, Swi6, Swi5, Fkh2, Mcml, Nddl, Cln3, Ace2, Mbpl) that play a role 

during yeast cell cycle progression. The result revealed a nine gene regulatory 

network that appears to control the sequential activation of cyclins and other 

cell cycle regulators. It is shown in Figure 4.3(a). 1 Using Figure 4.3(a) as 

a comparison target, an experiment is designed to learn the HMDBN from 

Chou’s [6] data subset containing the same nine genes.

Figure 4.3(a) (from simon et al. [45]) represents a regulatory circuit in yeast 

cell cycle derived from genomic binding data. In Figure 4.3(a), there are four 

groups of genes who are active in different phases. The group of genes Swi6, 

Swi4 and Mbpl are active in phase late Gl; genes Mcml, Fkh2, Nddl axe 

active in phase G2/M; genes Swi5, Ace2, Mcml are active in phase M /G l; 

gene Cln3 are active in late Gl phase. Arrows represent gene regulation rela- 

JThe figure is taken from [45].
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Experiment Fitness Function r Max-fan-in
1 ML Score 5 2
2 MDL Score 5 9

Table 4.1: Experiment Parameters.

tionships. Each group of genes regulate other genes acting in the next phase 

in the cell cycle. Figure 4.3(a) is used as a comparison target because it is a 

well-studied regulation network and it offers gene regulation relationships with 

corresponding phase information.

Two experiments are conducted using ML score and MDL score as fit­

ness functions respectively. The parameters of the two experiments are shown 

in Table 4.1. Parameter r is the order of the DBN. A rth-order Markov DBN 

means the maximal time lag between variables is r. Parameter max — fa n  —in 

is the maximal number of parents a node can have. Using ML score, the max­

imal number of parents has to be limited because this score prefers complex 

structures. Using MDL score, the maximal number of parents is not limited 

because this score can penalize complex structures. Figure 4.2 shows the fit­

ness function converging plots. Figure 4.2(a) is the converging plot for ML 

score. The vertical axis is the highest ML score in each generation of popu­

lation. The horizontal axis is the number of iterations. Figure 4.2(b) is the 

converging plot for MDL score. The vertical axis is the negative MDL score. 

The genetic algorithm converges around 40 iterations for the ML score and 

120 iterations for MDL score. It takes more iterations to converge for MDL 

score because in the experiment of using MDL score, the maximal number of 

parents is not limited and search space is larger.
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(b) MDL Score Converging Plot.

Figure 4.2: Fitness function converging plots for the 9-gene network.
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Bold and Solid Bold and Dashed Dashed
10 min. Swi4=t>Swi4 Ace2=>Swi5 Mcml=>Cln3

Swi5=»Nddl
20 min. Ace2=^Cln3 Swi4=»Swi6 Mbpl=t>Mcml
30 min. Nddl=t>Swi5

Mcml=>Swi5
Mcml=f>Ace2
Mcml=>Cln3

Swi4=>Mbpl
Swi6=t>Mbpl

40 min. Mbpl=^Nddl Fkh2=^Swi6
Swi5=t>Fkh2

50 min. Swi6=r>Swi4 Ace2=>Fkh2
Total Number 8 4 6
Support Simon Literatures None

Table 4.2: Predicted regulation pairs in Figure 4.3(b)

Result of ML Score

Figure 4.3(b)is the result produced by the proposed learning framework using 

ML score. In Figure 4.3(b), arrows represent the regulation relationships and 

the numbers associated with the arrows are the predicted time delay. Among 

the 18 arrows, 8 solid and bold arrows are the common arrows appeared in 

the target network (Figure 4.3(a)), 4 dashed and bold arrows are regulation 

relationships supported by SGD database [44], and 6 regular dashed arrows 

are new predicted regulation relationships (support from biological literature 

is not available). Taking the gene pairs connected by solid and bold arrows 

and dashed and bold arrows as supported relationships, the rate supported 

by biological evidence is (8 +  4)/18 =  0.67. The regulation pairs presented in 

Figure 4.3(b) are also summarized in the Table 4.2

Analyzing the 8 solid and bold arrows and attached time delay carefully, 

it is found that the predicted time delay is consistent with the yeast cell cycle 

phase information. In Figure 4.3(b), the arrows representing gene Mcml and
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(a) The Network of Simon et al..
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(b) Predicted Network by Our Learning Framework 
Using ML Score.
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(c) Predicted Network by REVEAL using ML Score.

Figure 4.3: Results Comparison of the 9-gene network using ML score
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Nddl coregulating gene Swi5 together and the arrow representing gene Mcml 

regulating Ace2 are all attached with 30 minutes time delay. Compared with 

Figure 4.3(a), it shows that gene Mcml and Nddl are active in phase late 

G2/M, and gene Ace2 and Swi5 are active in phase late M /Gl. Referring to 

the time scopes of the phases for the dataset in Figure 4.1, the time difference 

from late G2 phase to early G l phase is approximately between 60 minutes 

to 90 minutes. The acting phase delay is 90 — 60 =  30 minutes, which is con­

sistent with the predicted 30 minutes time delay. In Figure 4.3(a), it shows 

that gene Mbpl acting at phase late G l regulating gene Nddl which is active 

at phase G2/M. The acting time delay cross phase late Gl, S, G2. Referring 

to the time scope of phases for the dataset in Figure 4.1, the time difference 

from phase late G l to phase late G2 is approximately between 20 minutes 

to 60 minutes or between 100 minutes to 140 minutes. In Figure 4.3(b), the 

proposed method predicts that gene Mbpl regulates gene Nddl with 40 min­

utes time delay, which is also consistent with the phase information. Similarly, 

gene Ace2 regulating gene Cln3 with 20 minutes delay and Mcml regulating 

Cln3 with 30 minutes delay predicted in Figure 4.3(b) are also supported by 

their acting phases information in Figure 4.3(a). From the above comparison, 

it seems that the predicted time delay information are highly consistent with 

the cell cycle phase information.

Besides the solid and bold arrows, there are 4 dashed and bold arrows. 

The regulation pairs presented by the 4 dashed arrow do not appear in the 

network of Simon et al. (Figure 4.3(a)), but also can be explained. The arrow 

representing gene Swi5 regulating gene Ace2 is supported by the evidence that 

gene Ace2 and Swi5 are homologous regulators [44]. Swi4 regulating Swi6 and 

Swi6 regulating Mbpl is supported by the fact that Swi4 and Swi6 compose
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as a complex SBF and Swi6 and Mbpl compose as a complex MBF [44,45].

In Figure 4.3(a), the arrows from Cln3 to the group of genes Swi4, Swi6 

and Mbpl are post-transciptional regulations while other arrows are transcrip­

tional regulation. Interestingly, the predicted network by our method is nearly 

a full cycle except for missing arrows from gene Cln3 to the group of genes 

Swi4, Swi6 and Mbpl. This may indicate that the post-transcriptional regu­

lation dependence is not hidden in gene expression data.

In order to compare the proposed HMDBN with widely adopted first-order 

Markov DBN, experiments using an existed algorithm, REVEAL, are also 

conducted. REVEAL is first proposed for learning boolean network from gene 

expression dataset and is adopted to learn the structure of first-order Markov 

DBN by Murphy et al. [35]. Some researchers applied REVEAL to learn gene 

regulatory network from discrete gene expression datasets [35,55]. In an open 

source package in matlab named Bayesian Network Toolbox (BNT), REVEAL 

is implemented using two score functions, ML score and BIC score [33]. The 

experimental results below is obtained by using the REVEAL algorithm in 

BNT package.

An similar experiment on the same nine gene dataset is also conducted 

using REVEAL with ML score. In Figure 4.3(c), the result produced by 

REVEAL is presented. Among the 18 arrows, only 3 solid and bold ar­

row and 4 dashed and bold arrows. The biological evidence support rate 

is 3 +  4/18 =  0.39. As mentioned above, the biological support rate for the 

experiment of the proposed 5t/l-order Markov DBN using ML score is 0.67. It 

seems that HMDBN can produce more supported gene regulatory pairs than
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Bold and  Solid Bold and  Dashed D ashed
10 min. Mbpl=^Swi4 Swi6=»Mbpl Cln3=f-Mcml
20 min. Ace2=>Cln3

Nddl=^Ace2
30 min. Nddl=>Swi5 Ace2=f>Swi6
40 min. Swi6=4>Nddl
50 min.
Total Number 5 1 3
Support Simon Literatures None

Table 4.3: Predicted regulation pairs in Figure 4.3(b)

first-order Markov DBN.

R esult of M DL Score

Besides ML score, an experiment using MDL score is performed. The result 

is in Figure 4.4(b), and it is also summarized in the Table 4.3. Because 

the MDL score penalizes complex structure, it produces a simpler structure 

which contains only 9 arrows. There are 5 bold and solid arrows, 1 bold 

and dashed arrow, and the prediction rate supported by biological evidence 

is (5 +  l)/9  =  0.67. Compared with the result obtained by using ML score, 

three solid and bold arrows disappear when using MDL score. Taking gene 

Swi5 for example, in Figure 4.3(b), it has two parents, gene Mcml and Nddl; 

in Figure 4.4(b), only one parent, gene Nddl, remains. It indicates that using 

MDL score, the situation of several genes together co-regulating one gene are 

inclined to be replaced by the situation of one gene regulated by a single reg­

ulator.

In Figure 4.4(c), the result of REVEL algorithm using BIC score is pro­

vided. BIC score is very similar to MDL score. So, using BIC score in RE­

VEAL can be a comparison with using MDL score in the proposed method. In
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Figure 4.4(c), there are two solid and bold arrows and 3 three dashed and bold 

arrows. The support rate by biological evidence is (2+3)/9 =  0.56. Compared 

with the result in Figure 4.4(b), it can seen that in the result of REVEAL, the 

supported arrows across phase late Gl to phase G2 and across phase G2 to 

phase M disappear. It may indicates that first-order Markov DBN are good at 

finding regulatory pairs existed in the same phase but weak in finding regula­

tory pairs existed across phases. While higher-order Markov DBN can handle 

the regulatory pairs both with large time delay and small time delay.

4.1.3 Parameter Selection

Using rth-order Markov DBN, the parameter r has to be chosen properly. 

The above experimental results are obtained using 5t/l-order Markov DBN 

(r =  5), which means the maximal regulatory time lag between genes axe 50 

minutes. Observing simon’s regulatory network in Figure 4.3(a), it was found 

that regulatory pairs are across maximal three phases. Compared to the phase 

information in Figure 4.1, 50 minutes (r =  5) can be a proper maximal time 

lag to allow the HMDBN to capture all the potential gene regulatory pairs in 

Figure 4.3(a). As shown in Section 4.1.2, some interesting pairs with 30 and 

40 minutes delay are found by the proposed method. If r is chosen to be a 

small value, such as 2, these pairs with large time delay will be shielded out. 

But if choosing a very large number for r, such as r  =  16, then the search 

space will become extremely large. It is reasonable to choose r  as a relative 

large number by using some available prior knowledge.

Besides conducted the experiment with r = 5, the experiments using r = 6 

and r  =  7 are also conducted using ML score. The results are shown in 

Figure 4.5(a) and Figure 4.5(b) respectively.
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(a) The Network of Simon et al.
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(b) Predicted Network by Our Learning Framework 
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(c) Predicted Network by Our Learning Framework 
Using ML Score.

Figure 4.4: Results Comparison of the 9-gene network using MDL score.
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(b) Result of r = 7

Figure 4.5: Learning results of r  > 5.
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In Figure 4.5(a), compared with the result of r =  5 in Figure 4.3(b), all the 

8 solid and bold arrows are kept the same. One dashed and bold arrow and 

three regular dashed arrows are different. In Figure 4.5(b), compared with the 

result of r  =  5, one solid and bold arrows changes, and other 7 are kept. From 

the above comparison, it shows although the result will be affected by different 

values of r, the result are stable when lager value for r is chosen.

4.2 A Fourteen-Gene Network

4.2.1 Dataset

Another gene expression dataset used in the experiment is collected by Spell­

man et al. [47]. Similar to chou’s dataset, it is another widely used dataset for 

monitoring the gene expression levels of thousands of genes in yeast cell cycle. 

This dataset contains two short series, Cln3 (2 time points) and Clb2 (1 time 

points), and three medium time series, alpha (18 time points), Clu (14 time 

points) and Cdcl5 (24 time points). Cdcl5 series records the gene expression 

profiles in 300 minutes in the yeast cell cycle with intervals of 10 minutes or 20 

minutes. In order to get a series with equal intervals, 19 time slices in Cdcl5 

series are used in the experiment. With a equal interval of 10 minutes, it starts 

from the time slice of 70 min. and ends at the time slice of 250 min.

4.2.2 Result

The experiments are designed to learn the yeast cell cycle pathway stored in 

the KEGG database [23]. The whole pathway in KEGG contains 45 genes. 

The experiments focus on recovering a partial pathway containing 14 genes 

in KEGG. In Figure 4.7(a), the 14 genes pathway in KEGG are presented.
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Figure 4.6: Fitness function converging plots for the 14-gene network.

The training dataset is a subset of the gene expression dataset of Spellman et 

al. [47] containing the same 14 genes, Fus3, Farl, Cln3, Cdc28, Swi4, Swi6, 

Mbpl, Clnl, Cln2, Sicl, Clb5, Clb6, Cdc20 and Cdc6.

The target network in Figure 4.7(a) shows the regulatory network (path­

way) of 4 single genes and three groups of genes. Because every gene and every 

group of genes only has one regulator, choosing MDL score in the experiment 

is expected to find a similar sparse structure. Observing the pathway existed 

in two adjacent phases, phase G l and S, the time delay between genes are not 

likely to be very large, 3rd-order Markov DBN (r — 3) is chosen to represent 

the network. It means the maximal time delay between genes is allowed to be 

30 minutes. When learning the dataset of the 14 genes, genetic algorithm still 

converge well on this larger dataset. Figure 4.6 shows the converging plot of 

the MDL score in genetic algorithm.

The predicted network by the proposed method is shown in Figure 4.7(b). 

Among the 14 predicted arrows, 7 solid and bold arrows are consistent with 

the target network (Figure 4.7(a)), 2 dashed and bold arrows axe supported
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by SGD database [44] and 5 dashed arrows lack of supporting.

In Kim et al. [25], an experiment result of the same 14 genes on the dataset 

of Spellman et al. [47] is also reported. Their result, which is shown in Fig­

ure 4.7(c), is obtained by using first-order Markov DBN and nonparametric 

regression. Among their 17 predicted arrows, 6 are consisted with the path­

way in KEGG. The rate supported by KEGG pathway is 6/17 =  0.35. In our 

method, the rate supported by KEGG pathway is 7/14 =  0.5. Compared the 

two results, it can be seen that the supported regulatory pairs predicted by the 

proposed method and Kim’s method are complementary to each other. It may 

indicated that HMDBN could capture some interesting regulatory pairs which 

can not be got by first-order Markov DBN. At the same time, some useful 

regulatory pairs with small time lags may be shielded by some incorrect pairs 

with larger time lags. If a correct regulator of a regulatee with one time unit 

delay is replaced by another regulator with a larger time delay in HMDBN, it 

is because the dependence is more stronger in the latter case. Although the 

correct one is not found, it can not be judged only based on the statistical 

score from gene expression data, more information need to be provided.
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Figure 4.7: Results Comparison of the 14-gene network.
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Chapter 5

Conclusion and Future Work

5.1 Contributions

In this thesis, a new type of DBN, higher-order Markov dynamic Bayesian 

network (HMDBN), is proposed to model multiple time units delayed gene 

regulatory network. Most of applications of DBN in gene regulation analysis 

only use first-order Markov DBN to model gene regulatory networks with a 

fixed length of time delay. Although in the work of Zou et al. [55], multiple 

time units delay is incorperated into DBN, it ignores the situation that several 

regulators regulating a regualtee with different time lags. To the best of our 

knowledge, this thesis presents the first application that considers all the pos­

sible combinations of the candidates regulators in all possible time lags using 

HMDBN.

In order to address the learning problem of large search space of HMDBN 

compared to the limited size of time series gene expression data, a two step 

heuristic learning framework is designed. First, a mutual information matrix 

is computed. Second, a genetic algorithm is applied to search for an optimal
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structure using mutual information matrix as prior knowledge. A particular 

problem rose in learning HMDBN is that the size of applicable training data 

varies when scoring different network structures. The possible solutions to this 

problem are discussed in the thesis, and applied in the experiments.

In order to verify the effectiveness of the proposed method, it is applied 

to learn gene regulatory networks from two different gene expression datasets 

of yeast cell cycle. The results show that the proposed method can produce 

meaningful gene regulatory network which is strongly supported by biolog­

ical evidence and highly consistent with yeast cell cycle phase information. 

Compared with the results obtained by first-order Markov DBN, it reveals 

that higher-order Markov DBN can find more supported gene regulatory pairs 

from some dataset.

5.2 Future Work

In the proposed learning framework, two score functions, ML score and MDL 

score are used. The different results of the two score functions show that score 

function is a key factor to affect the learning result. MDL score prefers simple 

network structures, and typically the structure that each node only has one 

parent. ML score prefers complex structures, and the suitable number of par­

ents must be limited. Although both scores can find useful structures, they 

are both not perfect. In the future, more available score functions are going 

to be investigated.

Learning gene regulatory networks from gene expression data is only based
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on the statistical patterns hidden in the gene expression dataset. Some re­

searchers argue that gene expression data does not contain enough information 

to construct gene regulatory network, especially for large gene regulatory net­

works [19,26]. This argument is reasonable. In our experiments, it is found that 

although the regulatory pairs which are supported by the biological evidence 

has a high statistical score, sometimes, they are not the pairs with the high­

est scores. Sometimes, only picking the structure with the highest score will 

lead to a mis-understanding because the training dataset is not large enough 

and the learning result is not statistically reliable enough. More information 

need to be provided to choose the real structures from a pool of high score 

structures. Furthermore, the direct regulation and indirect regulation is hard 

to be distinguished only from gene expression data. One of possible solutions 

to this problem is to providing more information other than gene expression 

data, such as prior knowledge from literatures and protein interactions. The 

proposed learning framework has the potential to incorporate different kinds 

of prior knowledge. In this thesis, mutual information matrix is used as the 

prior knowledge. In the future, the possibilities of adding other kinds of prior 

knownledges into the proposed learning framework is going to be explored.

In the proposed method, it is assumed that one gene can not be the regu­

lator of another gene with more than on different time lags. This assumption 

may limit the situation that one regulators regulating its regulatee in several 

different pathways. Solutions to this limitation need to be investigated in the 

future.
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Appendix A Source Code

if-m ean  Discretization

'/.fucntion of k_means

function output=k_means(vector)
global n;
n=length(vector);
global k;
k=3;
global a; 
a=vector’;
add =zeros(length(a),1); 
a=[a,add]; 
global meanO; 
meanO=zeros(k,l) ;

mecinl=zeros (k, 1); 
global dis; 
dis=zeros(l,2); 
same=0;

'/, initial by the large , small and mean 

7. mean

meanO(1,1)= min(vector); 
mean0(2,l)=mean(vector); 
meanO(3,l)=max(vector);

’/, k mean 
while (1)
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assign;

'/, update k mean 
for i=l:k 

count=0; 
sum=0; 
for j=l:n

if a(j,2)==double(i)

count=count+l; 
sum=sum+a(j, 1);

end

end
'/, in case there are some empty class
if(count>0)
meanl(i)=sum/count;
end

end

'/« check if mean remain the same 
if meanl==meanO break; 
else meanO=meanl; 
end

end

output= a(:,2)’; 
end

% end of k-mean

‘/.fucntion assign

function assign 
global a; 
global meanO; 
global dis;
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global k 
global n;

for i=l:n 
v=a(i);

for ii=l:k
dis(ii,l)=ii;

end

for j=1:k 
m=meanO(j); 
dis(j,2)= abs(v-m); 
end

dis=sortrows(dis,2); 
a(i,2)=dis(l,l);

end

end

'/.function to discretize gene expression data into three values
xmmxmxxMmxmw,
function Dl=discrete3(D)

ng=length(D(:,1)); 
t ime=length(D(1,:));

for i=l:ng
vector=D(i,:); 
Dl(i,:)=k(vector); 

'/, output some graph

a=[0:time-1]; 
if i<10 
figure,

plot(a,vector,’— gs’,’LineWidth’,2,...
’MarkerEdgeColor’,’kJ,... 
’MarkerFaceColor', ’g ’ , . . .  
’MarkerSize’,5) ;
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hold on

plot(a,100*Dl(i,:),’— rs',’LineWidth’,2, 
’MarkerEdgeColor',’k',... 
’MarkerFaceColor’,’r’,••• 
’MarkerSize’,5);

'/.title (rowheaders (i));
hold off 
end

'/, output some graph 

end

end

'/, test discrete3 function

clc
data;
rowheaders;
output=discrete3(data); 
output
save(’9regulator.txt’ , 1 output’,’-ASCII’); 
'/, a ^ o a d C ’disSQregu.txtO

Score Functions

m m m ram ram m m m fflm m m m m m nm m
*/. score fmiction for one idividual in the population
mmmmmmfflmmmmmmnmmmmmmmx
function [BICscore, LLscore.MDLscore]
= score(individual, data,ntimepoint,n)
7, for one gene 
for i=l:n

onegenerepre=individual(i,:);

D=[] ;
maxlag=max(onegenerepre); 
for k=l:length(onegenerepre)

infactlag=onegenerepre(k);
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if infactlag>-l 
if infactlag==maxlag 
D=[D;data(k,:)]; 
else
beforeshift=data(k,:);

aftershift=[beforeshift(l+maxlag-infactlag:ntimepoint) 
beforeshift(1:maxlag-infactlag)];

D=[D;aftershift] ; 
end

end
end

'/, this D contains the target gene itself as a regulator 
D;
B = data(i,:);
B=[B(l+maxlag:ntimepoint) B(1:maxlag)];

D = [D;B];
'/, D=addlength(D,ntimepoint); 
counts = compute_counts(D, 3*ones(l,length(D(:,1))));
CPT = mk_stochastic(counts);

[bic_score_onegene(i), ll_score_onegene(i),mdl_score_onegene(i)] 
= bic_score_family(counts, CPT, ntimepoint);

end

*/, sum the score for every gene given it’s parents 
BICscore=sum(bic_score_onegene); 
LLscore=sum(ll_score_onegene); 
MDLscore=sum(mdl_score_onegene);

end

'/oMDL.ML, BIC Score function
m m m m m m r a m m m m m m  yx/x/x/x/:/:m%
function [S, LL,MDL] = bic_score(covmts, CPT, ncases)
*/, modified from the original one from BNT package
mmmmmmmmmmmxmmmmmmmmxm
% BIC_SC0RE Bayesian Information Criterion score for
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'/, a single family
*/, [S, LL] = bic_score(counts, CPT, ncases)
*/.
S is a large sample approximation to 

*/, the log marginal likelihood,
'/, which can be computed using dirichlet_score.
•/.
'/, S = \log [ prod_j _prod_k theta_ijk “ N_ijk ]
'/, - 0.5*d*log(ncases)
% where counts encode N_ijk,
'/, theta_ijk is the MLE comptued from counts,
% and d is the num of free parameters.

*/,CPT = mk_stochastic(counts); 
tiny = exp(-700);
LL = sum(log2(CPT(:) + tiny) .* counts(:));
*/, CPT(i) = 0 iff counts (i) = 0 so it is okay to add tiny

ns = mysize(counts); 
ns_ps = ns(l:end-1); 
ns.self = ns(end);
nparams = prod([ns_ps (ns_self-l)]);
'/, sum-to-1 constraint reduces the effective num. vals of the node by 1

S = LL - 0.5*nparams*log2(ncases);

% MDL score 
d=l;
% CPT+tiny 
7. new=l/(CPT+tiny)
'/, for the small data set 
*/.n=9;
'/. for the large data set 
n=14;
DLdata = sum(log2(l./(CPT(:) + tiny)) . * counts(:));
DLmodel=length (ns_ps) *log2 (n) +d*nparams;
MDL=DLdata+DLmodel;
MDL=-MDL;

M utual Information M atrix
x/x/x/xam. vxMxmvm

7, generate mutual information matirx
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clc
clear all 
maxtimelag=7;

data= load( ’9 r e g u la to r . tx t ’);

numberofgene=length(data(:,1)); 
time=length(data(l,:));
mutualInfo=cell(numberofgene,numberofgene); 
t = cputime; 
for nl=l:numberofgene 

for n2=l:numberofgene

i=0;
for dt=l:maxtimelag 

seql=data(nl,:) 
seq2=data(n2,:) 
i=i+l;
7. n2 regulate nl

*/. MutuallnfoCseql ,seq2,dt) 
if dt>0
seql=[seql(l+dt:time) seql(l:1+dt-l)] 
end
output3 ’..................................
'/, seq2 is regulator

mutualInfo{nl,n2}(i)=MutualInfo(seq2,seql,0) ; 
end

7.
end 7, end nl

end 7.end n2 
e = cputime-t 
mutuallnfo;

savematrix=cell2mat(mutualInfo);

save(’mutualinfomatrix.txt',’savematrix’,’-ASCII’); 
savematrix=load(’mutualinf omatrix.txt’);

mutualInfo2
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=mat2cell(savematrix, ones(1.numberofgene), 
(maxtimelag)*ones(1,numberofgene))

*/, Transform mutual information matrix above threshold

'/, above average mutual 
clc
'/, clear all 
threshold=0.2043;

data= load(’9regulator.txt’);

rowheaders
numberofgene=length(data(:, 1)) ; 
savematrix=load(’mutualinfomatrix.txt’); 
matrix=savematrix; 
mutualInfo2
=mat2cell(savematrix, ones(1,numberofgene), 
(maxtimelag)*ones(1 .numberofgene) ) ;

'/. let the mutual information less than time lag 4

for i=l: numberofgene
for j=l: numberofgene

temp=mutuallnf o2{i,j >; 
new= [] ;
for n=l:maxtimelag 

value=temp(n);
’/, use this condition to control maxtimelag

if value>threshold && n<=maxtimelag 
block=[n;value]; 
new=[new block];

end
end
if length(new)==0

mutuallnfo3{i,j >=0;
else

mutuallnfo3{i,j}=new;
end
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end
end

for i=l:numberofgene
for j=l:numberofgene
strcat(rowheaders(j), ’ regulate: ’, rowheaders(i))

mutuallnfo3{i,j}
end

end

save(’thresholdmutual.mat’,’mutuallnfo3’)

G enetic Algorithm

7. Crossover in genetic algorithm

function Swap(nofswap) 
global sizeofpopulation; 
global population; 
global newpopulation;
7. global populationold;
7. populationold=population; 
global numberofgene; 
global remain; 
global maxfanin; 
global maxtimelag; 
maxtimelag=7;
crosscirray=randperm(sizeofpopulation); 
crossarray=crossarray(l:nofswap);

'/, uniform crossover 
7, for every pair 
remainadd=l;
for i=l:length(crossarray)/2 

7, uniform crossover mask 
a = 0; b = 1;
mask = a + (b-a) *round( rand(1.numberofgene)) ; 

7. crossarray (i)
7. crossarray(nofswap+l-i)
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*/, swap according to mask 
for j=l:length(mask) 

if mask(j)==l

temp=population{crossarray(i)}(j,:); 
population{crossarray(i)}(j,:) 

=population{crossarray(nofswap+l-i)}(j, ;
population{crossarray(nofswap+l-i)}(j,:)=temp;

end

end
'/, put it into newpopulation 
newpopulat i on(remain+remainadd)

=population(crossarray(i)); 
remainadd=remainadd+l; 
newpopulat ion(remain+remainadd) 

=population(crossarray(nofswap+l-i)); 
remainadd=remainadd+l;

end

end

mmmmmmmmmmmmmrarammmmxm
'/, knowledge guided mutation in genetic algorithm

function lagmutateO 
global thrmutuallnfol; 
global mutatenumber; 
global population; 
global newpopulation; 
global numberofgene; 
global sizeofpopulation; 
global maxfanin;
'/, Loop for individual in the population 
numberofpair=numberofgene*numberofgene; 
mutatearray=randperm(sizeofpopulation); 
mutatearray
=mutatearray(sizeofpopulation-mutatenumber:sizeofpopulation);
'/, define the percent to mutate in one individual
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’/, lower=round(0.2*numberofpair) 
'/, upper=round(0.9*numberofpair)

for i=l: mutatenumber

tempindi=newpopulation-[mutatearray(i)};

'/, random generate a number of pair between lower and upper 
'/, rannpair=lower + (upper-lower) *round( rand(l)); 
count=0;
*/, loop for every gene pair mutaiton, mutate the time lag. 
for ii=l: numberofgene 

nofp=0;

for cc=l:numberofgene
if tempindi(ii,cc)>-l 

nofp=nofp+1;
end

end

for jj=l:numberofgene

outout=’ 
change-------------

tempthrmutual=thrmutuallnf ol{ii, j j}; 
le=length(tempthrmutual(1,:)); 
if length(tempthrmutual(:,1))==2 
Message^tempthrmutual is no zero’; 
flag=round(l+6*rand(l));

*/, change random
if flag==l k k tempindi(ii,jj)>-l 
ranindex=round(l+(le-l)*rand(l)); 

mutatetimelag=tempthrmutual(l,ranindex); 
count=count+l;
tempindi(ii,jj)=mutatetimelag; 
output= ’ eifter change ’; 

tempindi(ii,jj);

else
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if flag==l k k tempindi(ii,jj)==-l

if nofp<maxfanin
ranindex=round(l+(le-l)*rand(l)); 
mutatetimelag

=tempthrmutual(1,ranindex);
count=count+l;
t emp indi(i i,j j)=mut at et imelag; 
output=’after change’; 
tempindi(ii,jj); 
nofp=nofp+l;

end

end

end

end

end
end
'/, end loop for every gene pair mutaiton, mutate the time lag. 

newpopulation-fmutatearray (i) }= tempindi;

end
'/, end Loop for individual in the population

end
% end of function

*/, random mutation in genetic algorithm
xxmmmmmmm:
function randommutateO
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global thrmutuallnfol; 
global mutatenumber; 
global population; 
global newpopulation; 
global numberofgene; 
global sizeofpopulation; 
global maxfanin; 
global maxtimelag;
'/, Loop for individual in the population 
numberofpair=numberofgene*numberofgene; 
mutatearray=randperm(sizeofpopulation); 
mutatearray
=mutatearray(sizeofpopulation-mutatenumber: sizeof population) ; 

for i=l: mutatenumber

t empindi=newpopulat i on{mut at earray(i)};

'/, random generate a number of pair between lower and upper 
'/» rannpair=lower + (upper-lower) *round( rand(l)); 
count=0;
'/, loop for every gene pair mutaiton, mutate the time lag. 
for ii=l: numberofgene 

nofp=0;

for cc=l:numberofgene
if tempindi(ii,cc)>-l 

nofp=nofp+1;
end

end

for jj=l:numberofgene

out out= ’--------------- before @
change---------------------------------------

flag=round(l+6*rand(l));
% change random
if flag==l && tempindi(ii,jj)>-l 
mutatetimelag
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=round(l+(maxtimelag-l)*rand(l));
count=count+l;
tempindi(ii,j j)=mutatetimelag; 
output=’after change’; 
tempindi(ii,jj);

else
if flag==l && tempindi(ii,jj)==-l

if nofp<maxfanin 
mutatetimelag 

=round(l+(maxtimelag-l)*rand(l));
count=count+l;
tempindi(ii,jj)=mutatetimelag; 
output=’after change’; 
tempindi(ii,jj); 
nofp=nofp+1;

end

end

end

end

end
end
*/, end loop for every gene pair mutaiton, mutate the time lag.

newpopulat i on{mut atearray(i)}= tempindi;

end
'/, end Loop for individual in the population

end
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*/. end of function 

*/. The framework of proposed genetic algorithm
m m ram m m m m m m m m m m m m m m m m
'/, the genetic algorithm

*/, genetic algorithm to initial the population
clear all
clc
% this part is the variable used in genetic algorithm
data= load(’9regulator.txt’);
global numberofgene
numberofgene=length(data(:,1));

thrmutuallnfo=load(’thresholdmutual’) 
global sizeofpopulation; 
sizeofpopulation=500;
'/. the first colum is presentation,
*/. the second colum is score 
global population;
population=cell(sizeofpopulation,i) ; 
global newpopulation
newpopulation=cell(sizeofpopulation,1);
IndexScore=[]; 
global maxfanin; 
maxfanin=2;

ntime=length(data(l,:))
Maxscore=0;
Maxnumberof interation=50; 
threshold=150;
factnumberofiteration=0; 
replacenumber=round(sizeofpopulation*0.7); 
if rem(replacenumber, 2) ~=0

replacenumber=replacenumber-l;
end
replacenumber 
global remain
remain=sizeofpopulation-replacenumber 
global mutatenumber;
mutatenumber=round(sizeofpopulation*0.3) 

for noofp=l:sizeofpopulation
representation=-l* ones(numberofgene,numberofgene);
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global thrmutuallnfol;
thrmutualInf o1=thrmutualInfo(1).mutualInf o3;
*/, generate the structure for gene one by one 
for i=l:numberofgene

'/, copy the non=empty cell to another 
'/, temp array for every gene 

temp= [] ; 
count=l;
for j=l:numberofgene 
if thrmutuallnfol-Ci, j}~=0

temp{count}=thrmutualInfol{i,j};

temp{count}
= [temp-Ccount}; j *ones (1, length (temp{count} (1,:)))] ; 

count=count+l;
end
end
temp;
le=length(temp) ;

'/, incase the maxnumber is smaller than 4. 
tempmax=min(le,maxfanin);

*/, generate a ramdon number between 1 to tempmax. [l.tempmax] .
•/.

nof randomf anin=round (1+(tempmax-1) *rand) ;
*/. generate a purmutation between 1 to le of noframdomfanin 

tempperm = randperm(le); 
parents index=tempperm(l :nofrandomf anin) ;

'/, the index is the potential parents in the temp,
*/, for each gene in the
'/, temp, you have to choose a random index for the time lag 
indextimelag=[]; 

for in=l:length(parentsindex)
tempcell=temp{parentsindex(in)}; 
noftimelag=length(tempcell(1,:));
indextimelag=[indextimelag round(l+(noftimelag-l)*rand)] ;

end
indextimelag;
% for now, you have the information of which 
'/, is the gene in temp and the
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'/, time lag in temp , you need to change it to 4 digits

for ind=l:length(parentsindex) 
finaltimelag 

=temp{parentsindex(ind)}(1,indextimelag(ind));
f inalgeneindex 

=temp{parentsindex(ind)}(3,indextimelag(ind));
*/. finalgeneindex 

'/,=temp{parentsindex(ind)}(3,indextimelag(ind)) is the 
7, mutual information

'/, choose the gene 
% representation{i,finalgeneindex}(1)=1;

'/, choose the timelag, using the case representation 
switch finaltimelag

'/.case{0}
'/.representat ion ( i, f inalgeneindex) =0 ; 
case{l}
representat ion(i,f inalgene index)=1; 
case{2}
representat ion(i,finalgeneindex)=2; 
case{3}
representation(i,f inalgeneindex)=3; 
case{4>
repre sentation(i,f inalgene index)=4; 
case{5>
repre sentat i on(i,f inalgene index)=5; 

case{6}
representation(i,finalgeneindex)=6; 
case{7>
representation(i,finalgeneindex)=7;

end

end

end 7, end of for for each gene 

populat i on{noofp}=repre sentati on;
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*/, initial the score of the popuation.

'/.BICsocre
'/, this part can be change to many other score 
[tempBIC, tempLL, tempMDL]
=score(representation, data,ntime,numberofgene); 
IndexScore(noofp,2)= tempLL;
IndexScore(noofp,l)=noofp;
'/, save (* populations. mat ’, ’ population ’) 
end '/, ebd of for for each population 
population;
IndexScore;
'/, end of initial population

'/, ranking the population 
[IndexScore(:,2),Indexindex]
=sort(IndexScore(:,2),’descend’);
IndexScore(:,l)=IndexScore(Indexindex,1);
IndexScore;
Maxscore=IndexScore(1,2);
caculate the selection probability, change it to 

’/, 1-probability/ (sizeof popualation-1) 
scoresum=sum(IndexScore(:,2)); 
for i=l:length(IndexScore(:,1))

IndexScore(i,3) 
=(l-IndexScore(i,2)/scoresum)/(sizeofpopulation-l); 
end 
IndexScore;

Maxscoreaxray(1)=Maxscore;

'/,while loop of the genetic algorithm 
Nofinteration=0;
while Nofinteration<Maxnumberofinteration

factnumberofiteration3 factnumberofiteration+1;
% probabilistic select population(replacerate)
*/,to add to new population
*/. in fact, I simplify it to remain the higest part, 
newpopulation(1:remain)
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=population(IndexScore(l:remain,1));

’/, select population to crossover using uniform 
'/,distribution(I simplify it, infact,
'/.should probabilisticly choose)
Swap(replacenumber)

'/, select population to mutate

lagmutate

randommutate

'/. replace the population 
population=newpopulation; 
newpopulation=cell(sizeofpopulation,1);

'/» compute new IndexScore for new population 
IndexScore=[]; 
for ttt=l:sizeofpopulation 
representation=population{ttt};
[tempBIC, tempLL,tempMDL]
=score(representation, data,ntime,numberofgene); 
IndexScore(ttt,2)= tempLL;
IndexScore(ttt,1)=ttt;
IndexScore; 
end

'/, ranking the population 
[IndexScore(:, 2),Indexindex]
=sort(IndexScore(:,2),’descend’); 
IndexScore(:,l)=IndexScore(Indexindex,1); 
IndexScore;
newMaxscore=IndexScore(1,2) 
difference=Maxscore-newMaxscore;
'/» if abs(difference)<0.0001 
'/, output=’no dif fence at’
'/, factnumberof iteration
% break;
'/, else difference<0
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*/, Maxscore=newMaxscore 
'/, end

if difference<0
Maxscore=newMaxscore

end

if Maxscore>threshold
output3*below threshold* 
f actnumberof iteration 
break;

end
factnumberofiteration
Maxscorearray(factnumberofiteration)=newMaxscore;
Nofinteration=Nofinteration+1;
end
V, end of while loop
Maxscore

a=(l:factnumberofiteration)
plot(a,Maxscorearray)

mmmmmmxmmmmmmmxmmxmmmm
y, Output in text form

rowheaders
result=population{l}; 

diary resultLL.out

sep=*-----------
Maxscore

diary off

for i=l:numberofgene 
message3’*; 
for j=l:numberofgene

temp=result(i,j); 
if temp~=-l
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message= strcat(rowheaders(j),’at time lag ’); 
message= strcat(message,int2str(temp)) ; 
message=strcat(message, ’REGULATE :’,rowheaders{i}); 
diary resultLL.out

message 
diary off 

end

end
diary resultLL.out

ses=’*******************************************************’ 
diary off

end
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