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ABSTRACT

In an attempt to provide a timely and efficient method of coastline extraction the 

use of Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data were 

used to delineate a 170 km stretch of the coast for 1992 and 2002 respectively. A series 

of preprocessing techniques, geometric correction and radiometric correction were 

applied to the images using the Idrisi Kilamanjaro (14.002 version) remote sensing 

software package. The acquisition of 25 control points along the coast ensured the 

geometric integrity of the 1992 and 2002 images by registering a RMS of 6.75 metres. 

Shorelines for both years under study were successfully exported into the ARCView 9.0 

GIS (ESRI, 2001) after subjecting the images to: band ratioing (band 2/band 4 and band 

2/band 5), histogram thresholding (band 5), image multiplication, and raster to vector 

conversions.

Through overlay analysis a tabulation of the polygons which have been identified 

as either accretional or erosional demonstrated that the entire coastal area is one where 

either erosion or accretion is occurring. When the ArcGIS-generated polygons were 

tabulated in an Excel spreadsheet it was found that there were 2 098 accretional polygons 

and 2 109 erosional polygons. Only 14 polygons indicated areas of no change. These 

results indicate that coast displays distinct temporal phase shifts occurring at various 

spatial scales. Given the fact that temporal patterns of accretion and erosion have a direct 

influence on the morphological stability and positional shifts of the coastline it becomes 

vital to understand and predict these positional shifts. The results of this study provide 

adequate evidence that the use of TM and ETM+ imagery can make a substantial 

contribution to understanding, on a timely basis, the dynamic nature o f the Guyana coast.

iii
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1.0 INTRODUCTION

The coastal zone of the world accounts for 8% of the world’s surface where more 

than 50% of the world’s population live within 60 km of this water-land boundary (Lucas, 

1996). The social, economic and environmental significance of the littoral zone is of 

great interest to coastal planners and managers. In particular, the below sea-level coast of 

Guyana is home to approximately 90% of the country’s population and is plagued by a 

series of issues including resource depletion, habitat losses, pollution, environmental 

degradation, flooding, erosion, salinization, and inundation (Lakhan, 2005). According to 

Lakhan (1994), these problems are the result of uncoordinated, individualistic and ill- 

conceived planning and development strategies that have negatively impacted the coastal 

inhabitants of Guyana.

Sixty percent of the coastal zone of Guyana is protected by some form of sea 

defence (earthen dams, concrete dikes, and boulder slopes). However, the coast is 

vulnerable to flooding due to breaches in the integrity of existing structures and a 

combination of factors including: mangrove forest depletion caused by the demand for 

wood fuel and the choking of sling mud, an increase in storms, future rise in sea level and 

the lack of maintenance of existing engineering structures (Singhroy, 1996). This threat 

to the coastal zone of Guyana would pose serious social and economic hardship as 

outlined by Singhroy (1996, p.l), ‘It is estimated that future large-scale flooding could 

destroy almost $1 billion (U.S.) of economic activity in the coastal areas.’ In an effort to 

provide successful strategies for sound coastal management, the need for timely and

1
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accurate coastal data is essential for an integrated management approach for the coastal 

resources along the Guyana coastline.

The acquisition of remotely sensed data and its subsequent integration into a 

Geographical Information System (GIS) has become an advantageous technique used in 

the detection of shoreline change. Hence, remote sensing provides an excellent aerial 

surveillance of a study area that when coupled with traditional modes of data acquisition 

assist in the process of research and analysis, as noted by Williams and Lyon (1997, p. 

375), “Because GIS is a convenient tool for manipulation of mapped data, it simplified 

development of data sets that could be used in data analysis.” Ultimately, this study will 

show that the use of TM and ETM+ imagery and its incorporation into a GIS is a sound 

and timely method in the investigation of shoreline change along the coast of Guyana

1-1 Statement of the Problem

The social and economic importance of the coastal zone is apparent to the 

approximate 675 000 coastal inhabitants of Guyana. In order to provide a comprehensive 

strategy for the protection and development of all coastal resources, the need for timely 

coastal data is a requisite tool in the analysis of coastal change. The need for a 

comprehensive method of shoreline extraction is necessary in the investigation of coastal 

change for the country of Guyana The ability to identify areas of accretion and erosion 

along the coast will permit investigators to assess the level of vulnerability and the 

corresponding management response to a specific area. Given the need to provide an

2
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integrated approach to the successful management of the country’s coastal resources, this 

research is of significance because it will help to establish the utility of TM and ETM+ 

imagery as a sound and timely approach for the detection of coastline positional changes.

In particular, the use of TM and ETM+ data will be shown to be an appropriate, 

efficient and cost effective means for the automatic extraction of coastlines. A synoptic 

view of the coastline with remote sensing will be valuable for identifying and visualizing 

spatial locations experiencing coastal changes. Within a GIS environment the use of 

multiple images derived from TM and ETM+ imagery will allow one to show areas 

experiencing both cumulative and isolated changes over time. Ultimately, low lying areas 

found along the coast need to be identified in order to provide a proactive management 

response for the protection of these vulnerable locations. Given this ancillary information, 

coastal managers can provide site-specific strategies to protect the structural integrity of 

existing sea defences and minimize the effects of natural and anthropogenic forces along 

the coast. This is especially important given the future threat of rising sea level for the 

coastal zone of Guyana, and all low lying countries of the world.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1*2 Study Area

The study area focuses on the Guyana coast which is a portion of the northeast 

coast of South America known as the Guiana Coast. The Guyana coastal plain, 

approximately 435 km in length, represents one of the country’s major physiographic 

regions. The coastal plain is bordered by the Pre-Cambrian lowlands in the west and by 

the sandy rolling lands in the east (Figure 1). The coastal plain is generally flat and is

'  Demnrara flay with sand rlcfcjas 

i  Landward Inn its-of D em erara Sedim ents 

0 10 M  30 4ij 5U
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I *fc
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■» PakarSima Mounts 
® O ther Mountains

ntains f .

M a a a
Figure 1: The Coastal Location of Guyana. Adapted from 
materials compiled by V.C. Lakhan.
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approximately 2.5 m to 4.0 m below high tide level (Lakhan, 1991). More than 90% of 

the country’s population live on the coastal plain which is a major source for agricultural, 

industrial, and recreational resources (Lakhan, 1994). Comprehensive accounts of the 

coast have been provided with reference to its development (Lakhan, 1994), 

environmental characteristics (Lakhan et al., 2000,2002) and morphology and 

configuration (Lakhan, 1991; Lakhan et al., 2004).

The configuration and width of the coast are affected by mudbanks which migrate 

along the coast on a periodic basis. The movement of mudbanks is accompanied by a 

pattern of erosion and accretion of the adjacent coast (Allersma, 1971; Augustinus, 1987). 

Accretion takes place on the coast directly opposite the mudbanks, while erosion occurs 

along the coast opposite the troughs situated between two mudbanks. The study by 

Lakhan et al. (2004) demonstrated that the presence of mudbanks influence oscillating 

cyclical patterns in erosional and depositional states along the coastline. When these 

states occur the configuration of the coastline changes. Positional shifts in the coastline 

have also been documented from an analysis of the historical records and maps of the 

coastline. Figure 2 highlights various positional states of the coastline in the time periods 

1783,1953 and 1970. Further temporal phase shifts in sections of the Demerara coastline 

are also expected to occur. The study by Ahmad et al. (2005) found that in 2016 the 

coastline will exhibit positional changes in width and configuration in several locations. 

Understanding and predicting these changes are extremely important for planning and 

developmental purposes. This study will, therefore, endeavour to demonstrate that remote

5
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sensing data could be used to identify and visualize spatial locations where changes in the 

position and configuration of the coastline have occurred.
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Figure 2: Demerara East Coast. Coastlines for 1783,1953 and 1970. Redrawn from
material compiled by V.C. Lakhan.
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2.0 LITERATURE REVIEW

2-1 Historical Techniques Used to Monitor Coastline Positional Change

Historically, shoreline mapping has been a function of the level of sophistication

of contemporary technology and methods used in determining the changing position of

the coastline over time. According to Moore (2000, p. 117) technological advances have

enhanced coastal research over time as,

‘Numerous shoreline mapping techniques have been developed throughout the 
last 27 years. The progression of techniques from manual, to partially automated, 
to fully automated is consistent with decreases in the cost of personal computers 
and workstations as well as improvements in data processing and storage 
capabilities.’

Prior to the 1930's, the use of planetables, alidades and rod were employed to survey the 

terrain and plot field measurements of the high water line (HWL) and ground control 

points (GCP). In an effort to standardize data collection techniques among shoreline 

investigators, the United States Federal Emergency Management Agency (FEMA) 

established draft guidelines that recommended to digitize historical and current shoreline 

positions from maps and aerial photographs in order to plot perpendicular transects along 

a shoreline for the purpose of measuring and calculating rates of shoreline change 

(Crowell et al,, 1991). Cambers (1975) employed the use of Ordnance survey maps to 

determine historical retreat rates of the Suffolk, England coastal cliff erosion system over 

a 70 to 100 year period. The subsequent use of aerial photographs provided up to date 

cliff top position data used in the production of paper maps which served in the 

calculation of annual average retreat rates (AARR).

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The rate of shoreline change is one of the most common measurements used by 

coastal investigators to reflect the cumulative effects of morphodynamic processes that 

influence the coast (Dolan, et a l, 1991). Common sources of shoreline mapping include 

aerial photographs, maps (Quadrangles), nautical charts, beach profiles, topographic maps 

(T-sheets), and hydrographic charts (H-sheets) (Crowell, et al., 1991; Dolan, et al., 1991; 

Moore, 2000; Fletcher, et al, 2003). Additionally, shoreline datums used include: high 

water line, approximate mean high water line, and sediment water interface (Dolan, et al., 

1991). Additionally, Crowell et al. (1991) acknowledged that the high water line (HWL) 

was demonstrated to be the best indicator of the land-water interface when calculating 

rates of shoreline change. The use of the aforementioned data sources were incorporated 

into paper maps and were subjected to time series analysis that measured differences in 

shoreline position over time.

The simplest method of rate calculation for shoreline positional change included 

the end point rate (EPR) which measures the distance of total shoreline movement 

divided by the time elapsed between measurements (Dolan, et a l, 1991). Variations to 

the EPR method include multiple shoreline position change data and their relative 

positions over time through the use of average of rates (AOR), linear regression (LR) and 

jack knifing (JK) (Dolan, et al., 1991). Given the use of these spatio-temporal methods, 

it is believed that the prediction of future shoreline change is based upon long term 

shoreline behaviour in order to minimize potential random error and short term variability 

(Dolan, et al., 1991). Fenster et al. (1993, p. 151) believed that linear regression models

8
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provide, ‘The most robust method for analyzing historical trends and extrapolating these 

trends into the future,...’ through regression techniques that best fit historic data with a 

linear or non-linear model.

Since the 1930's the use of remotely sensed data has taken the primary form of 

aerial photographs (O’Regan, 1996). Modem coastal investigators continue to use aerial 

photographs as a data source to identify, distinguish, map and measure shoreline 

positional change over time using varied spatial scales. According to O’Regan (1996), 

the use of remotely sensed devices has successfully served to enhance coastal 

investigation by providing a series of benefits that include: a wide variety of spatial 

scales, unbiased content, repetitive coverage, and an economic and efficient method of 

data acquisition.

Given the utility of aerial surveillance within coastal investigation, several authors 

(Phillips, 1986; Foster and Savage, 1989; Smith and Zarillo, 1990; Jimenez et al., 1997; 

Fletcher, et al. 2003; Al*Tahir and Ali, 2004) have incorporated aerial photographs to 

quantify long term and short term shoreline positional change. In particular, Jimenez et 

al. (1997, p. 1256) used aerial photography to analyse short-term shoreline changes along 

the Erbo Delta in Spain in order, ‘...to obtain a synoptic view of large coastal stretches, 

avoiding thus expensive and seasonal topographical beach surveys’. Subsequently, the 

use of aerial surveillance allowed for the formation of a base map from which future 

maps could be overlayed in such a fashion to allow for the detection of coastal change. 

The benefits provided by this method of coastal investigation include: homogeneous and

9
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comprehensive data coverage, cost effectiveness (Gardner, 1992) and high reliability of 

results (Jimenez, et al. 1997). Jimenez, et al. (1997) tested the reliability of results for 

shoreline changes (expressed in metres per year) from both beach profile data sets and 

the aerial surveillance data sets, and established a linear relationship of r = 0.98.

The use of aerial photography and its interpretation within coastal studies has 

evolved in tandem with advances in imaging technology, computer hardware and 

software and associated peripheral devices. The level of accuracy with respect to the 

georeferencing of control points of a study area has progressed from projecting aerial 

photographs on to base topographic maps of different scales using a Zoom Transfer 

Scope as employed by Smith and Zarillo (1990) to digital methods. By scanning aerial 

photographs Al-Tahir and Ali (2004) were able to import a digital image into a Computer 

Aided Design (CAD) program, secure ground control points through GPS survey, 

georeference the images of different scales and produce images of the same reference 

system. Similarly, Fletcher et al. (2003) used vertical aerial photographs and T-sheets to 

determine historical shoreline positions through the digitizing of maps and aerial 

photographs for the sandy beaches of the Hawaiian island of Maui. During the 

aforementioned studies, shoreline change and its associated accretion and erosion patterns 

were readily identified.

2.2 Use of Remote Sensing Imagery to Monitor Coastline Positional Change

The advances made in remote sensing techniques and imaging applications have 

given rise to a new paradigm whereby coastal investigations are being carried out through

10
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a variety of active and passive remote sensing methods including: light detection and 

ranging (LIDAR) topographic mapping, video-based coastal imaging systems and the use 

of satellite multi spectral sensors. By virtue of recent advances in imaging technology, 

LIDAR has been adopted as a joint venture by the United States Geologic Survey 

(USGS), National Aeronautics and Space Administration (NASA) and National Oceanic 

and Atmospheric Administration (NOAA) for the mapping of the United States coastline. 

The use of light aircraft flying at low altitudes (<1000 m) incorporates the use of 

differentiated GPS, internal navigation systems (INS) and inertial measuring units (IMU) 

with LIDAR units to scan beach widths along the coastline (Brock et al, 2002). The 

scanning of the beaches under surveillance provides a high resolution of the terrain 

topography as laser light is emitted and detected by the onboard sensor given the two way 

travel time emitted by a laser pulse as it is reflected off a remote target (Brock et al, 

2002). The use of this remote sensing technique affords the coastal investigator high 

levels of reliability and accuracy as noted by (Brock et al, 2002, p. 1),

‘Combined within contemporary airborne laser mapping systems, these newly 
emerged technologies now enable low cost geomorphic surveys at decimeter 
vertical accuracy and at spatial densities greater than 1 elevation measurement per 
square meter.’
Contemporary technologies provide reliable and accurate data in the production of 

base maps that can be fully integrated into digital form within a GIS for coastal mapping 

purposes and shoreline positional change analysis. The use of the video-based coastal 

imaging application found within the coasts of New South Wales, Australia provides a 

unique investigation into the diverse study of temporal scales ranging from seconds to

11
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years, and spatial scales ranging from centimetres to kilometres (Turner et al., 2006). A 

network of video cameras continuously monitors nearshore processes at an oblique angle 

as digital images are converted into three dimensional ‘real world’ co-ordinates from real 

life two dimensional video images (Turner et al., 2006). The use of enhanced imaging 

techniques provide the framework to produce geo-referenced images that are incorporated 

into a coastal database for future reference and analysis (Turner et al., 2006). The use of 

coastal imaging applications for the New South Wales coast experience has helped to 

shape planning and management strategies surrounding sand nourishment programs, 

beach protection, sand bypassing projects and coastline monitoring. This video-based 

coastal imaging method has proven to be a valuable asset for coastal investigators as 

outlined by Turner et al. (2006, p. 45), ‘At the core of many coastal monitoring programs 

is the identification of the shoreline for the purposes of quantifying the available beach 

amenity and to assess impacts of new or existing engineering works.’.

Since the launching of the Landsat 1 satellite in 1972, the use of remotely sensed 

images ushered in a new era of environmental monitoring as digital data began to flow 

from the geosynchronous orbit of space to receiving earth stations. The ensuing 

advantages for coastal research become apparent as outlined by O’Regan (1996, p. 193) 

where he states that due to the nature of the data extracted from satellite imagery, ‘...the 

data are collected in an inherently digital form, and are therefore immediately amenable 

to computer processing.’ When the processed data are incorporated into a GIS further 

advantages for coastal and shoreline change detection occur, including an easy

12
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assimilation into numerical models (O’Regan, 1996). According to Gardner (1992), the 

nature of data acquired from satellites allows for a continuous spatial and temporal 

transmission of data, as data is collected every 16 days for the study area Mid transmitted 

back as consistent digital information. This form of comprehensive coverage suggests 

that remotely sensed data provides a reliable and cost-effective method of spatial data 

acquisition for repeated observations over a broad area (Klemas, et al, 1993). 

Furthermore, the incorporation of data into a GIS such as ARCVIEW 9.0 (ESRI, 2001) 

allows for future projections of shoreline change and its associated coastal management 

response given the utility of the overlap analysis inherent within the program. Similarly, 

remotely sensed data from the Landsat TM and ETM+ sensors will be incorporated into 

the Guyana analysis, whereby annual shoreline changes will be made from the ensuing 

map overlays.

The use of remotely sensed data and its incorporation into a GIS have provided an 

efficient and reliable data set in the detection of shoreline change. O’Regan et al. (1995) 

incorporated the use of historical shoreline data with recent data for the Te Puru coastal 

region of New Zealand. In the analysis, a base map from 1968 was constructed and 

incorporated into a GIS. Subsequently, ensuing shoreline data from 1968 was collected, 

digitally processed and outputted as a series of annual maps. By comparing the base map 

of 1968 with subsequent years, coastal researchers examined and compared shorelines 

between two time periods using the graphics program ARC-COAST. From the digitized 

data contained within the GIS, individual polygons of data from the study area were
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compared and differentiated. In the analysis, positive and negative values were calculated 

from fixed points of the study polygons, indicating either an area of accretion or erosion 

respectively (O’Regan et al., 1995).

More recent studies, (Grigio e ta l, 2005; Singhroy, 2006) have employed the use 

of remotely sensed satellite data to map changing shoreline position and identify areas of 

accretion and erosion within the coastal zone. Singhroy (1996) employed the use of a 

combination of airboume SAR, RADARSAT and TM images for coastal mapping 

purposes. This method was beneficial as, ‘Geomorphological mapping of Guyana’s 

coastal plain, including detailed knowledge of erosion and depositional processes, are 

essential for planning sea defence strategies.’ (Singhroy, 1996, p. 324). In particular, the 

interpretation of the remotely sensed images allowed the investigation of: sea defence 

priority identification in areas of severe coastal erosion; estimated coastline change; 

erosion, accretion and stable shorelines; land use analysis and revision among agricultural 

and forested lands; and risk assessment of mangrove regeneration (Singhroy, 1996). In 

the analysis, Singhroy demonstrated that the integration of RADARSAT and SAR images 

was useful in the monitoring and mapping of the coastal zone in Guyana.

2-3 Investigating Coastline Positional Change with TM and ETM+ Imagery

To ensure sustainable development within the coastal zone, the extensive survey, 

monitoring and database creation for all water and coastal parameters is critical. Hence, 

the use of satellite imagery provides data that once mapped can detect erosion and 

accretion processes within a coastal study area (Ahmad, 1994). Several authors (White
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and El Asmar, 1999; Ryu et a l, 2002; Anthony et al, 2002; Scott et al, 2003; Alves et 

al 2003, Noemberg and Marone, 2003; Bagli and Soille, 2004; and Grigio et a l, 2005) 

have utilized a combination of either TM and ETM+ satellite imagety in the delineation 

of shorelines, monitoring of coastal evolution and detection of accretion and erosion 

patterns. The specific benefits associated with the use of TM and ETM+ imagery for the 

purposes of coastline mapping include: adequate pixel resolution for medium scale 

mapping requirements, lower data acquisition costs (Scott et al., 2003), repetitive 

acquisition and synoptic capabilities allowing for spatial data incorporation into a GIS, 

(White and El Asmar, 1999), and a more efficient method when compared to traditional 

geomorphological fieldwork (Noemberg and Marone, 2003). Furthermore, according to 

Bagli and Soille (2004), the extraction of a coastline directly from satellite images 

overcomes the problems associated with matching available coastal data with the image 

itself. This potential problem is magnified through projection system bias, mechanical 

error and the labourious nature of georeferencing multiple image data sets of varied scales 

(Bagli and Soille, 2004).

A variety of remote sensing techniques are employed by coastal investigators to 

delineate the boundary between open water and land to accurately determine the position 

of a shoreline. The proposed methodology of any coastal researcher begins with the 

selection of an appropriate imaging platform through which one can obtain the desired 

digital information as noted by Grigio et al. (2005, p. 412),’ The choice of the spectral 

bands is a very important factor in the successful interpretation of satellite images.’ The
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interpretation of the strip of green within the visible spectrum of TM band 2 and the near- 

infrared spectrum of TM band 4 has been successfully used to extract shoreline position 

by employing the Normalized Difference Water Index (NDWI) algorithm (McFeeters, 

1996; Noemberg and Marone, 2003; Grigio et al., 2005). The NDWI, denoted by the 

formula - (band 2 - hand 4)/(band 2 + band 4), is known to enhance the differences in 

pixel resolution between land and sea given the feet that the typical wavelength 

reflectance of water is maximized at the visible end of the electromagnetic spectrum, and 

minimized within the near-infrared spectrum. Additionally, soil and vegetation land 

cover generates a maximum high reflectance of radiant energy within the near-infrared 

spectrum (Noemberg and Marone, 2003).

Scott et al. (2003) utilized Landsat 7 ETM+ imagery and the tasseled cap 

transformation method to extract shoreline position along the Louisiana and Delaware 

coastlines respectively. Based on the satellite reflectance and spectral characteristics 

derived from known sampling of earth terrain data, a classification system based on three 

components namely, brightness, greenness and wetness was developed. The 

transformation of this classification system was based on interpretation of the six ETM+ 

bands where the ‘wetness’ component was used to differentiate land from water (Scott et 

al., 2003). Similarly, White and El Asmar (1999) employed the use Landsat TM data and 

a segmentation algorithm to delineate shoreline position along the Nile Delta, Egypt. 

Initially, the segmentation technique identifies known pixels of open water, referred to as 

‘seeds’ to determine a common spectral reflectance class for water. The process merges
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similiar neighbouring pixels into the water classification and proceeds to grow in a 

homogenous grouping in all directions until dissimiliar pixels are detected.

The use of Landsat TM data and its subsequent method of imaging techniques has 

proven to be beneficial in the investigation of coastal morphodynamics. Of particular 

interest is the findings by Grigio et al. (2005, p. 414), where the interpretation of the red, 

green, and blue components of the visible spectrum of TM bands 4 and 2 and its 

incorporation into the NDWI, provided an excellent delimitation of the coastline...’ 

within the study area of northeastern Brazil. After digital processing of the TM data, the 

coastline data was vectorized and exported into the ARCVIEW 3.0 GIS (ESRI) where 

polygon-based maps for three distinct time periods (1989-1998,1998-2000,2000-2001) 

were created. In the analysis, each map (polygon) was subjected to overlay analysis 

whereby each theme (year) was processed to ascertain areas of overlap. The union 

process between the themes contained within the GIS created an attribute table that 

presented classes for each time period and indicated the presence or absence of the 

shoreline position within the area of overlap along the coast. This process served to 

visualize and quantify areas of erosion or accretion based on the shoreline position for the 

period under study as sliver polygons were created through the overlay of successive 

shorelines.

17
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3.0 METHODOLOGY

3.1 Objectives

With the knowledge that remotely sensed satellite data are both accurate and 

reliable for coastal investigation, this study will demonstrate that the use of TM and 

ETM+ imagery and its incorporation into a GIS are useful techniques to distinguish, 

differentiate, and quantify morphological change along the coast of Guyana. This thesis 

will, therefore, have objectives of:

(1) utilizing remote sensing imaging techniques to delineate coastline positions 
from different time periods;
(2) visualizing the spatial and temporal changes that have occurred along the 
coastline; and
(3) quantifying and visualizing accretion and erosion patterns that have occurred 
along the coast.

3.2 Data Acquisition and Preprocessing

3.2.1 Data Acquisition

Data from two time periods was used. The data from September 19,1992 were 

from the Thematic Mapper (TM) and represent seven spectral bands (see Table 1). The 

October 1,2002 data were from the ETM+ sensor with seven spectral bands stretching 

from 0.45 micrometers to 12.5 micrometers (see Table 2).

Data for each of the time periods and for each band represented a portion of the

D em erara coast and the Essequibo coast o f  Guyana.
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Table 1: TM Bands

Bands
Wavelength

(micrometers)
Wavelength
(nanometers)

Resolution
(meters)

1 0.45-0.52 450-520 30

2 0.52-0.60 520-600 30

3 0.63-0.69 630-690 30

4 0.75-0.90 750-900 30

5 1.55-1.75 1550-1750 30

6 10.4-12.5 10400-12500 120

7 2.08-2.35 2080-2350 30

Table 2: ETM+ Bands

Bands
Wavelength

(micrometers)
Wavelength

(nanometers)
Resolution

(meters)

1 0.45-0.515 450-515 30

2 0.525-0.605 525-605 30

3 0.63-0.69 630-690 30

4 0.75-0.90 750-900 30

5 1.55-1.75 1550-1750 30

6 10.40-12.50 10400-12500 60

7 2.09-2.35 2090-2350 30
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3.2.2 Data Preprocessing

Several image processing techniques incorporated in the Idrisi Kilimanjaro 

version 14.002 software (Clark Labs, 2003) were utilized to process the images. Space 

limitations prevent describing all the image processing techniques that were employed, 

but in brief those advocated by Lakhan (1993) were used to carry out the following 

operations.

3.2.3 Geometric Corrections

The intent of image rectification and restoration is to correct image data for 

distortions or degradations that stem from the image acquisition process (Lillesand and 

Kiefer, 1994). Geometric correction was done so that the corrected image will have the 

geometric integrity of a map. Distortions were corrected by analyzing well distributed 

ground control points (GCPs) collected along the coast of Guyana. GCPs were selected 

and utilized in the Resample module of Idrisi using Bilinear as the Resampling type.

3.2.4 Projection of All Image Files for 1992 and 2002 to UTM

Even though the specified coordinate system is UTM Zone 2IN for both the 1992 

and 2002 image files, the Project module was used on all the image bands to remove any 

potential anomalies or distortions that may exist in the data set. For the 1992 image bands 

all files were projected to the Band 2,1992 image which was used as the reference image. 

For the 2002 image bands all files were projected to the Band 2,2002 image which was 

used as the reference image. For both years, Bands 4 and 5 were copied and projected 

into the UTM Zone 21N coordinate system.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2.5 Mask Creation

A sample Landsat Image is shown in Figure 3. Note that the image has a black 

background. Normally, this background is omitted from image processing. A mask file 

can be used to mask out the surrounding black background box.

The Reclass module was used to create a mask image file. Using the Cursor 

Inquiry Mode in Idrisi, it can be verified that the entire background is black (i.e., DN = 0) 

whereas the other DN values range from 0-255. This can also be verified using the Histo 

module and examining the resulting histogram.

Figure 3: Sample Landsat Image (Band 3 ,1992)

The Project module was used to project the Mask_for_Background file to the UTM-21N 

coordinate system. The Project module is available from the Reformat menu in Idrisi. The

21
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type of file to be projected is specified as raster. The input file is specified as 

Mask_for_Background. The input reference system is specified as UTM-21N. The output 

filename is specified as Mask_for_Back_Proj.

3.3 Preprocessing of Data with IDRISI

Two Landsat images were obtained in digital format with each image stored on a 

separate CD. A composite image for September 19,1992 is shown in Figure 4. A 

composite image for October 1,2002 is shown in Figure 5.

50*3616"W

6*37,49‘N- ■37’49’N

59*S18W 68*616 W

Figure 4: Composite Image of September 19,1992
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8*37'49*N- J*37I49,N

Figure 5: Composite Image of October 1,2002

Idrisi version 14.002 was used to import the two Landsat images. A Project environment 

was set in Idrisi using the Project environment window available from the File menu, 

Data Paths. The main working folder and resource folders were designated for the 

software. The two images were imported into the main working folder whereas the 

original image files were maintained in a resource folder.

The image bands are imported into the Idrisi software and stored as Idrisi raster 

image files. Each Idrisi image file consists of two parts, the actual image file and a 

corresponding documentation file. The documentation file is used by Idrisi to display and 

manipulate the image. The documentation file consists of the metadata provided,

resolution, and various flags w hich can  be set for use w ith various Idrisi m odules.
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3.3.1 Geometric Correction

Idrisi’s Resample module was used to perform geometric correction. In Idrisi, the 

Resample module can be used to register remotely sensed imagery to a grid referencing 

system, and make non-integer changes in the resolution of an image (Clark Labs, 2003). 

The Resample module is used to ensure that locations in both the 1992 and 2002 image 

bands correspond in the UTM coordinate reference system. The resolution of the 2002 

image bands changes during the resampling process so that both images have the same 

resolution. The process involved in the Resampling module is one where a set of 

polynomial equations are developed to serve as mapping equations to transform points 

from the input grid to a modified output grid. The Resample module requires the 

selection of a mapping function, and the resampling options of either bilinear or nearest 

neighbor. Either of the latter two options are used to estimate, if necessary, data values in 

the new output grid.

To register the two images (1992 and 2002) to a common reference system, a set 

of well distributed ground control points were needed. Ground control points were chosen 

using topographic maps of the study area, and GPS data collected from field work.

In reviewing the literature it was decided that Bands 2,4 and 5 of each image year would 

be used for analysis of shoreline change. Because of less cloud cover in the coastal area, 

the 1992 image was used as the base input reference image, and the 2002 image was 

chosen as the output image to be resampled. The Resample module requires the actual 

image bands to be resampled based on the input of ground control points. Hence, a group
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file was created using Bands 2,4 and 5 of the 2002 image using the Collection Editor in 

Idrisi (see Figure 6). The group file (2002grp245) allows for the resampling of all the 

member image bands of the group during the resample procedure. This avoids having to

Collection Editor

Cofedmn nonhMt
1992band1
1992band2

2002band2
2002band4

1992band3
1992band4
1992band5
1992composto
2002bandl

run the Resample module three times, one for each image band.

In addition, the Resample module requires Input and Output reference images 

when placing ground control points on the images. Composite images were created for 

both 1992 and 2002 which served as the input and output reference images respectively. 

Bands 2,4 and 5 were used to create the composite image for 1992 (see Figure 7) to 

minimize cloud cover along the coastal area. Bands 2,4 and 5 were used to create the 

composite image for 2002 (see Figure 8).

J

....I

Figure 6: Collection Editor Window Showing the 
Raster Group File Members for the 2002 Landsat 
Image
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Figure 7: Composite Image for 1992

Hjmm
^m■

Figure 8: Composite Image for 2002

Metadata for both image files were created when the image bands were initially 

imported to Idrisi. The reference parameters consisted of the number of rows and
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columns, the maximum and minimum values of X and Y, the reference system used, the 

reference units used and the unit distance (see Figure 9).

jgri.li'iVill 1! l.UMfts? '
t~  Copy from emsfcng HIb

Number of columns | '

Humber of raws |7266

MmmunX coordnate |227?29 25

MowmumXooadrMe' J< |u  >31 25

Minimum Y coordinate: | f 725 25

MammumV ooordnate 1903906 25

Reference unite
jutm Hn |  1 Meter

Unit dntanoe I

Clow |  Help }

Figure 9: Reference Parameters Window 
Used in the Resample Module Showing the 
Parameters Copied from Band 2 of the 1992 
Image.

The composite images for 1992 and 2002 were displayed as the Input reference and 

Output reference, respectively. The selected Mapping function was Linear, and Bilinear 

was chosen as the Resampling type (see Figure 10).

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UtTOF |2Q02jpM.» 

OutfM'firate p x C ^ t T  

BAfconndVMiR
Output n f t iT M P

T S i —  Output w f a W i f c a __  T t f r i R t t
|iww *"1 ®̂J|?>CAompo3-tc_

Id ] W g J »  I jw t lX  | l i y J Y  |O tdputX  W a n J V  I f l m d u f .  |  N ird u i c d G T t  1 r  ^
1 I'**** nlfl

i c~,'in
JhiW.%f. r  Na

inffra.J *■
OK | Omb I But. HagrCiw

Figure 10: Resample Window Showing Two Composite Images for 1992 and 2002

The ground control points are input sequentially. The first ground control point (GCP) is 

located in Georgetown near the Demerara River. The first GCP is shown in Figure 11.

An additional three ground control points are added to the reference images. 

Figure 12 shows the Total RMS for the first four GCPs. The Total RMS appears after the 

input of the fourth GCP. The Residual amounts associated with each GCP (see Figure 12) 

describe how far the individual GCPs deviate from the best fit equation (calculated using 

the four GCPs). It can be seen from Figure 12 that GCP 2, with a value of approximately 

168, deviates the most from the best fit equation.
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Figure 11: First Ground Control Point Shown in the Input and Output Reference Images

Input RAF |20G2grp245

371273174815754702.2213^371266.814327546929643672108902 
j 370691.71206 7S4206.54497 378810.30997754007.57581198981517 
i 386744.0151£ 751696.23803 386744.01137 751664.1 4029 149 775739 

1390949184756 748266.99399 391017.91377 748991.87224 52 082957

f  OK i  Out |  Hein 1 M<gNjn> |

Figure 12: Four Ground Control Points Showing the Total RMS Error
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At this stage of GCP input the Total RMS is 121.015. This value describes the overall 

positional error of the four GCPs in relation to the best fit equation, or the probability that 

a mapped position varies from its true location (see Clark Labs, 2003). According to US 

mapping standards, an acceptable Total RMS for images should be less than one*half of 

the resolution of the input image. In the case of Landsat images which have resolution of 

30 m, an acceptable Total RMS would be 15 m. It can be seen from Figure 12 that the 

current Total RMS is approximately 121 m. At this stage, the four GCPs can be 

repositioned in one or both of the reference images to reduce the Residual values and 

therefore the Total RMS. GCP 2 would be the first candidate for repositioning due to the 

high associated Residual value. The objective in inputting the remaining GCPs will be to 

reduce the Total RMS to below 15 m.

A further 21 ground control points are input for a total of 25 ground control 

points. The accuracy of the position can be determined as the GCP is added. The Total 

RMS is updated with the input of each additional GCP. When all 25 GCPs have been 

input, various GCPs with large Residuals can be targeted for repositioning. When the 

Total RMS is at an acceptable level (less than 15 m), the input of GCPs is considered 

complete. GCPs can be saved for later retrieval; individual GCPs can be removed, or 

specified as Omitted so that they are not included in the calculation of the Total RMS. 

Figure 13 shows the Resample window with GCPs on the Input and Output reference 

images, and the Total RMS. A Total RMS of 6.75 m is considered acceptable.
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Figure 13: Resample Window Showing GCPs on Both Reference Images. 
The Total RMS is 6.75 m.

The Resample module is initiated with the current set of GCPs by clicking on the OK 

button. When complete, three new image files are created for Bands 2,4 and 5 for the 

2002 image. Each image band has the prefix “2002jn v d ” attached to its name.

3.3.2 Project all the Image Bands for 1992 and 2002 to UTM-21N

Even though the specified coordinate system is UTM Zone 2 IN for both the 1992 

and 2002 image bands, the Project module was used on all the image bands to remove 

any potential anomalies or distortions that may exist in the data set due to the resampling
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process. Project can also be used to change the resolution of an image by a non-integer 

multiple by specifying the same output reference system as the current input reference 

system.

The type of file to be projected was raster. The input file and input reference 

system together with the output filename and reference file for output result were 

specified. The Resample type was Bilinear and the background value was left at 0.

For the 1992 image bands all files were projected to the Band 2,1992 image which was 

used as the reference image. For the 2002 image bands all files were projected to the 

Band 2,2002 image which was used as the reference image. Each output filename 

included the short form “proj” (for example, 1992_b2_proj) to indicate that these image 

files would be used in further processing. After resampling and projection, the image 

resolution for the image bands for 1992 and 2002 was 28.5 m

3.3.3 Creation of Mask File for the Background

A sample Landsat Image is shown in Figure 14. Note that the image has a black 

background. Normally, this background is omitted from image processing. A mask file 

can be used to mask out the surrounding black background box. The Reclass module can 

be used to create a mask image file.
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Figure 14: Sample Landsat Image for the Study 
Area

Creating Image Mask File to Mask Out Background Values of 0 (i.e.. black)

The Reclass module is available from the GIS Analysis, Database Query menu. The 

Reclass module was used as follows.

1. The type of file to reclass was specified as image.

2. The classification type was user-defined reclass.

3. The input file in this case was a previously geometrically corrected image file for 

Landsat 5 TM Band 2,1992.

4. The output file was nam ed: M a sk fo rB a c k g ro u n d .rs t
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5. The reclass parameters were as follows:

To iust less than 

1

256

The Reclass window is shown in Figure 15.

Assign a new value of To all values from 

0 -1

1 1

•fn: RECLASS - image classift jJZlJSl
f TjType of fife to reclass - 

Image

f* Attribute values fde

Classfication type ;

<* Uset-darined iselasi

11 EquaRntervalredesa

Input fie 

Output (ile

Reclass parameters'

|1992_b2_pio|

|Mask_far_Background J

Assign a new value of | To A  valuet from |To|wttetathai)

1
256
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Figure 15 Reclass Window Showing the 
Reclassification Values for the Mask File
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The resulting MaskforJBackground file is shown in Figure 16.

Figure 16: Mask Image for Background (0 = Black, the 
background) 1 = Red

The Project module was use to project the Mask_for_Background file to the 

UTM-21N coordinate system. The reference file for output result is given as UTM-21N. 

Resample type is given as Bilinear. The Background value is 0. The output reference 

information button opens a new window called Reference Parameters. This window 

requires the number of rows and columns in the image together with the Maximum and 

Minimum X, Y coordinates. The option to copy the reference parameters from an existing 

file is used. In this case, the previously geometrically corrected image for Landsat 5 TM 

Band 2, 1992 was used. After clicking on the OK button in the PROJECT window, the 

operation is com pleted. The file M ask_for_Back_Proj w ill be specified w ith  any m odule 

where the background polygon is to be excluded in processing. This is specified as
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M a s k f o r B  ack_Proj.

3.4 Description of General Methodology and Principles

Since one of the objectives of this study is to detect positional change of the 

coastline between 1992 and 2002 it is necessary to extract the coastline from both the 

1992 image and the 2002 image. Composite images could be created and exported to 

ArcMap for manual digitizing of the coastline, but this would be tedious and time 

consuming. From the literature it is known that several techniques have been advocated 

for automatically extracting a coastline from a remote sensing image. After evaluating 

various automatic extraction techniques presented in the literature the decision was made 

to utilize the procedure proposed by Alesheikh et al. (2004). Figure 17 presents a 

flowchart of the technique for extracting coastlines from remotely sensed images.

For each of the two image years, bands 2,4 and 5 will be utilized. Band 2 

represents the green strip (0.52-0.60 pm) of the visible end of the electromagnetic 

specrtum where the reflectance of water is maximized. Additionally, band 2 serves to act 

as a measure of ‘greenness’ for vegetation and its corresponding characteristic of high 

reflectance. Bands 4 and 5 represent the near infrared (0.75-0.90 pm) and mid infrared 

(1.55-1.75 pm) band widths respectively. Both bands 4 and 5 are characteristic of low 

reflectivity of water and high reflectivity of vegetation and soil. Band 5 is used because it 

is usually the best spectral band for discriminating the interface between water and land. 

In particular, the mid-infrared spectral environment of water found within band 5 is 

characterized by very low reflectance due to the high absorption of electromagnetic
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energy by a water body including turbid water (Alesheikh et al., 2004). As a result, the 

corresponding average radiant flux values received by the TM and ETM+ sensors

Decisions

Coastline
Map(s)

Detecting Shoreline 
Change - Guyana /  

■ C o a st -■..

Final Binary Images

Image
Number

Image
Number

Raster to Vector Conversion

Data Incorporation 
ARCVEEW 9.0 GIS 

Database

Multiplication 
of Images

TM Imagery (1992) 
ETM+ Imagery (2002)

Radiometric
Calibration

Histogram Thresholding 
Band 5

b2/b4> 1 and b2/b5>l 
Application on 

Images

Figure 17: Flowchart design of coastline extraction technique for remote sensing images 
as proposed by A lesheikh et al. 2004.
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expressed as digital numbers (DNs) would register as zero or values approaching zero. 

Conversely, band 5 shows high reflectance for both vegetation and soil resulting in 

corresponding radiance values expressed as high DNs. The strong contrast between water 

and land values allows for the delineation of the interface between these two mediums 

and will ultimately help to determine shoreline position.

3.4.1 Radiometric Correction - An Overview

In order to provide an image that resembles an accurate representation of the 

earth’s surface it is necessary to remove or reduce distortions encountered in the image 

acquisition process (Lillesand et. al., 2004). According to Sabins (1987), the source of 

any distortion is the result of systematic (satellite and sensor induced) or non-systematic 

(environment and atmospheric induced) errors. Systematic errors and distortion are 

associated with data transmission problems, satellite orbit and path and anomalies 

referred to as random ‘noise’. Among common systematic errors, image banding or 

striping caused by satellite sensors out of calibration and scan line drop out due to signal 

loss resulting in the omission of scan lines of data cause image distortion.

Similarly, non-systematic errors associated with environmental and atmospheric 

conditions may effect the path radiance from the sensor to ground object and vice versa. 

For example, earth-sun distance and sun elevation corrections are necessary when 

comparing images of different locations and times in order to normalize average pixel 

brightness values given the varied solar elevation angle throughout the seasons (Lillesand 

et al., 2004). In addition, topographic attenuation caused by slope and aspect of certain
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ground features may vary the illumination levels within a scene by casting shadows on 

adjacent similar features resulting in false radiant values (Jensen, 1996). Further 

atmospheric effects include the scattering and absorption of radiant energy by 

atmospheric particles (ie. water vapour, particulant matter) which encourages a reduction 

in path radiance upon a ground object or increases path radiance via reflection back 

through the satellite sensors. The former effect will reduce illumination upon a ground 

object and result in lower average radiant values expressed as DNs, the latter effect will 

elevate radiant measures of illumination expressed as higher than expected DNs. In both 

cases, atmospheric effects will falsify the expected radiant values and negatively skew the 

ensuing ground image.

In the analysis, each of the six spectral bands will be radiometrically corrected 

using Idrisi’s Radiance module. Two initial images (Image 1 and Image 2) would be 

produced, one for 1992 and one for 2002 - (see Radiometric Correction).

3.4.2 Band Ratioing

In processing the two images, band ratioing was used because ratio images 

emphasize differences in slopes of spectral reflectance curves between the two bands of 

the ratio. Individual ratio images allow for the extraction of reflectance variations 

(Sabins, 1987). For each of the two years, two band ratios were developed; namely,

Band 2/Band 4 and Band 2/Band 5. From the literature (McFeeters, 1996), band ratioing 

of Bands 2 and 4 is known to enhance the differences in pixel resolution between water
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and land based on the fact that the typical reflectance of water is maximized in the visible 

band of the electromagnetic spectrum (TM and ETM+ Band 2) and minimized within the 

near-infrared (TM and ETM+ Band 4) and mid-infrared (TM and ETM+ band 5) 

respectively. Conversely, Bands 4 and 5 display high reflectance of land based cover 

such as soil and vegetation within the near and mid-infrared electromagnetic spectrum 

found in Bands 4 and 5. In the analysis, the ratios generated between Band 2/Band 4 and 

Band 2/Band 5 were either greater than one denoting water or less than one denoting land. 

The resultant binary classification was used to delineate the water-land interface and an 

intermediate image referred to as Image 2 was generated for both years.

3.4.3 Histogram Thresholding

For each year, histogram thresholding was done using Band 5. The selection of 

Band 5 has proven to been a good indicator of the spectral differences between land and 

water based on its aforementioned spectral characteristics. When examining a histogram 

of a scene contained within the coastal zone, the bimodal presentation reveals a sharp 

peak skewed to the left of the histogram, another peak skewed to the right and a trough 

that separates the two (see Figure 18). The former distribution reveals the presence of 

water as noted by DNs approaching zero or near zero levels. The latter distribution 

depicts the presence of land values (soil and/or vegetation) as noted by higher brightness 

values. The trough found within the histogram separating these two distinct zones is the 

interface between land and water. Values expressed as DNs found to the left of this 

interface (trough) would represent water pixels, conversely values found to the right of
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the trough would be classified as land pixels. Ultimately, this information will help to 

ascertain the coastline position during binary classification.

auphTme 
&  B a S n p h  

f~  L m Q i tp h

Figure 18: Sample Histogram Showing Two Peaks

The resulting images were binary images with land classified as 0 and water 

classified as 1. These images were designated as Image 1 for each year. For each year, 

Image 2 was derived from two intermediate images generated through the band ratioing 

process. For each year, Image 1 was multiplied by Image 2 to obtain the final binary 

image for each year. The two final binary images showed a fairly good delineation 

between land and water. This final binary images were exported from Idrisi to ArcGIS as 

GeoTiff files. The ArcGIS extension, ArcScan, was used to aid in converting the raster 

images to vector files.

A  geom etrically corrected and  rectified com posite im age for each year was 

produced in Idrisi and exported as a GeoTiff image. For each year the composite images
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were used in ArcGIS to assess the accuracy of the coastline vector files obtained using 

ArcScan. Any necessary adjustments to the coastline was made using the Editing tools 

available in ArcMap. After radiometric calibration for each image band, two initial 

images were produced for each year (1992 and 2002). For the year 1992, the initial image 

was the result of histogram thresholding on Band 5 so that the resulting image had land 

classified as 0 and water classified as 1. The initial image was designated as Image 1. The 

second image was produced by using a logical AND operation on two intermediate band 

ratioed images. The first intermediate image was Band 2/Band 4 reclassified so that

land = 0 and water = 1. The second intermediate image was Band 2/Band 5 reclassified so 

that land = 0 and water = 1. The logical AND operation on the two intermediate images 

produced the second image. The second image was designated as Image 2.

Image 1 and Image 2 were multiplied together to obtain a final binary image. The 

final binary image revealed a fairly good delineation between land and water. A 

composite map for both image years, 1992 and 2002, was exported from Idrisi as a 

GeoTiff file so that the images could be imported to ArcMap. The raster files were used 

to compare the vector files showing the shorelines to ascertain whether any corrections 

were required to the generated coastlines for each year.
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3.4.4 GIS Input and Analysis

The outputs from image processing were exported for input into the ARCView 

GIS database (ESRJL, 2001). A spatially referenced GIS database will be able to show the 

temporal variations and spatial extents of coastline changes in the near and offshore zones 

of Guyana. One of the unique aspects of the GIS system is that it produced maps to show 

how the coastline varied along different sections of the coast for both time periods.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.0 ANALYSIS

4.1 Radiometric Correction

The Idrisi module, Radiance, converts raw satellite DN values to calibrated 

radiances using lookup tables of gain and offset setting for LANDSAT satellites 1-5, and 

user-defined values for Lmin/Lmax or Offset/Gain for other sensor systems. Conversion 

to radiances was used to facilitate comparisons between images from different dates.

Radiometric correction was performed since two different sensors are used for two 

different years, namely 1992 and 2002. The 1992 image is a Landsat 4 Thematic Mapper 

image and the 2002 image is a Landsat 7 Enhanced Thematic Mapper Plus image.

4.1.1 1992 Image

Figure 19 shows the Radiance window used to convert the digital numbers (DN) in Band 

2, 1992 to radiance values. It can be seen in Figure 19 that for Landsat 1-5, the Landsat - 

4/5 TM (TIPS-ERA after Jan 15,1984) was selected. Note that Band number 2 was 

specified. It is worthwhile to note that the resulting file, given the name “1992_b2_rad” 

has the data type as “real”. The range of values extend from a minimum of -28.8 to a 

maximum o f29.5621. Some Idrisi modules cannot be utilized on files with data type as 

“real”. Therefore, the Stretch module was used to stretch the values from 0 to 255. This 

operation changed the data type to byte. The resulting image file is shown in Figure 20.
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Figure 19: Band 2,1992: Convert DN Values to Radiance
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Figure 20: Band 2,1992 After Using Radiance 
Module and Stretch Module
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Based on the outlined methodology, only Bands 2,4 and 5 were used for each image year. 

Therefore, the Radiance module was used on the remaining image bands. The Stretch 

module was used to so that the DN values range from 0 to 255 which provided good 

contrast, and also changed the data type from real to byte.

4.1.2 2002 Image

Figure 21 shows the Radiance window used to convert the digital numbers (DN) 

in Band 2,2002 to radiance values. It can be seen in Figure 21 that for Landsat 7 ETM+, 

Other system was specified. This was because the version of the software did not include

lookup tables for the Landsat 7 sensor. Therefore, three user defined band specifications 

had to be specified. These were maximum DN value, spectral radiance at DN = 0 (Lmin), 

and spectral radiance at DN = 255 (Lmax). In addition, either Lmin/Lmax or Offset/Gain 

had to be selected.

I
r  L andw tl-S

Cf Other syaarr

Output mage

Input tinege

|2 0 0 2 _ b 2  ta d

A
A

, User delmed band jpeelfcationi - 
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MawmtmDn value 

Spectral Radiance at Dn= 0  fUnmf

r  C>rft.M3e».

Spsclratflfldiance at Dn -  255 (Lmet'J |l9  65

Output docunertatm

I QIC I C tae [ Hdp I

Figure 21: Band 2,2002: Convert DN Values to 
Radiance
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The information required for the 2002 image was obtained from two sources. The 

calibration for ETM+ sensor spectral range values for low and high gain mode for each 

band were obtained from a Landsat frequently asked question document from the US

Table 3 - ETM+-7 spectral range values in low gain mode.

Band 1 2 : 4 5 6 7 8
Lmin (WAn3*sr*p) -6,2 -6,4 -5 -5,1 -1 0 -0,35 -4,7
Lmax (Wjhi^s^p) 293,7 300,9 234,4 241,1 47,57 17,04 16,54 243,1
Offset = Lmin, (AO) -6,2 -6,4 -5 -5,1 -1 0 -0,35 -4.7
Gain = (Lmax-Lmin)/255, (A1) 1,1761 1,2051 0,9388 0,9655 0,1905 0,0668 0,0662 0,9718

Table 4 - ETM+-7 spectral range values in high gain mode.

Band 1 : 3 4 5 6 7
Lmin (W<mMsr*tJ) -6,2 -6,4 -5 -5,1 -1 3,2 -0,35 -4,7

Lmax (W/m3*sr*p) 191,6 196,5 152,9 157,4 31,06 12,65 10,8 158,3

Offset = Lmin, (AO) -6,2 -6,4 -5 -5,1 -1 3,2 -0,35 -4,7

Gain= (Lmax-Lmin)/255, (A1) 0,7757 0,7957 0,6192 0,6373 0,1257 0,0371 0,0437 0,6392

Source: European Space Agency, 2006. Landsat Frequently Asked Questions. Earth 
Observation Quality Control. Earthnet Online. Earth Observation. As of September 20, 
2006.

Geological Survey and posted on the European Space Agency web site. This information

is shown in Tables 3 and 4. The gain mode for each band on October 1,2002 was 

included with the metadata supplied with the image. Using this information it was 

possible to provide the appropriate information in the Radiance window.
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The metadata for October 1,2002 indicated that Band 2 was taken in high gain 

mode. Using Table 4, the Lmin value was determined to be -0.64 (-6.4 / 10), and the 

Lmax value was determined to be 19.65 (196.5 /10). The maximum DN value in Band 2 

was 255. Clicking on the OK button produced the radiance image. As done for the 1992 

image bands, the Stretch module was used so that the DN values stretched from 0 to 255

so that the image bands can be used in other Idrisi modules.

The resulting image for Band 2,2002 is shown in Figure 22. Band 4,2002 was 

taken in low gain mode and the values found in Table 3 were used to input the Lmin and 

Lmax values in the Radiance window. Similarly, Band 5,2002 was taken in high gain 

mode and the values found in Table 4 were used to input the Lmin and Lmax values.

Figure 22: Band 2, 2002 After Using Radiance 
Module and Stretch Module
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4.2 Image Processing According to Methodological Principles

4.2.1 Obtaining Image 1 for 1992

Band 5.1992

Band 5 is frequently used because it was found to be best, in most instances, for 

distinguishing the interface between land and water (Alesheikh et al., 2004, Ouma and 

Tateishi, 2006). Band 5 is in the mid-infrared range (1.55-1.75 pm), and water exhibits a 

high degree of absorption of the energy in this spectral band while vegetation has strong 

reflectance in this spectral band (Alesheikh et al., 2004, Ouma and Tateishi, 2006).

After radiometrically correcting Band 5,1992 it was stretched to show DN values 

of 0-255. The background polygon has a value of 0. The data type is byte. The filename is 

currently 1992_b5_rad_stre. This image is shown in Figure 23. It can be seen in Figure 23

Figure 23: Band 5,1992 After Using 
Radiance Module and Stretch Module
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that land and water areas appear quite distinct except where there is cloud.

Histogram thresholding was done in order to create a binary image that separates 

land from water. The Histo module in Idrisi was used. A histogram using the module’s 

default values was produced and is shown in Figure 24. The histogram in Figure 24 

shows two peaks. The lower DN values represent water, the higher DN values represent 

land. For the histogram in Figure 24,38 was determined to best demarcate land from 

water.
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Figure 24; Histogram for 1992_b5_radjstre Showing 
Two Peaks
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The Reclass module was then used to reclassify the image file. The reclass parameters 

were specified as follows:

Assign a new value of To all values from To iust less than

-5 - 0.001 0.001

1 0.001 39

0 39 256

After reclassification, the image band was named 

1992_b5_rad_stre_3classes_imagel. This image is shown in Figure 25. The image 

represents the land-water boundary using thresholding on Band 5. It should be noted that 

the selection of the threshold value is based on the information provided by the histogram 

and is not exact. Some pixels that are water may be classified as land and vice versa. It 

can be seen in Figure 25 that there is visible haze over areas of water that extend onto 

land, and the offshore coastal area is known to carry sediments. Turbid areas offshore 

could be incorrectly classified as land whereas the area may actually be sediment-laden 

water.
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Figure 25: Reclassified Image 
1992_b5_rad_stre_3classes_Image 1 Showing 
Land/Water Boundary. Note problematic cloud areas 
near the coast
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4.2.2 Obtaining Image 1 for 2002

Band 5.2002

Band 5 for the year 2002 is shown in Figure 26. Finding DN values that would 

indicate a boundary between land and water required the use of Idrisi’s Update module. 

The Input image name was specified. The input requirement for the module is the Value

Figure 26: Band 5,2002

to be given to the First row, Last row, First column, and Last column. This assigns a new 

value to the pixels within the designated row/column area. The Update module was run 

several times to avoid assigning water values to the background polygon. The updated 

image is shown in Figure 27.
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Figure 27: Band 5,2002 Showing the Major Cloud 
Area Updated With the Values of Water Pixels.

The Histo module is used to display a histogram using the default values. The histogram

is shown in Figure 28. In this case, the Histo module was run again, this time using the

anphljp.

F ig u re  28: H istogram  for 
2002_b5_remove_cloud_rad_stre Showing 2 
Peaks
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Output type of Numeric to gain a better understanding of the histogram distribution. 

Together with Cursor Inquiry mode, it was determined that the best approximate value to 

delineate water from land was 47.

The reclassified image for Band 5,2002 is shown in Figure 29.

2002_b5_remve_cld_rail lie JrU isv* imaqe

j
i
j

Figure 29: Reclassified Image for Band 5, 2002 Showing 
the Land/W ater Boundary.

4.2.3 Obtaining Image 2 for 1992

Band Ratioing

Band ratioing was done using Bands 2,4 and 5 for 1992. Band 2,1992 can be 

seen in Figure 20. Band 5,1992 can be seen in Figure 23. Band 4, 1992 is shown in 

Figure 30.
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ii11932_b4..iad_stre

Figure 30: Band 4,1992 (1992_b4_radjstre)

Using the Overlay module (see Figure 31) from the GIS Analysis, Database Query menu, 

Band 2 is divided by Band 4 to produce a ratioed image (First/Second in the Overlay 

window). In the Overlay window, Division by zero is specified as resulting in the value 0 

instead of an error.
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Figure 31: Overlay Window for Band 2 / 
Band 4 for 1992

The resulting image file has a data type of “real”. The resulting filename is 

1992_b2_div_b4 and is shown in Figure 32.

Figure 3 2 :1992_b2_divb4
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A similar procedure is used to produce the ratio image for Band 2 divided by Band 5. The 

resulting filename is 1992_b2_div_b5 and the image is shown in Figure 33.

HH
m m ■

H
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Figure 33: 1992_b2_div_b5
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The histogram for Band 2/Band 4,1992 is shown in Figure 34. The histogram for

Band 2/Band 5 is shown in Figure 35. It can be seen from the histograms in Figures 34

wimm.
Figure 34; Histogram for 1992 Band 2/Band 4
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Figure 35: Histogram for 1992 Band 2/Band5

and 35 that the maximum value in Figure 34 is 5 and the maximum value for Figure 35 is 

10. The values contain decimal points, indicative of the data type “real”. It can be noted 

that the break between the two “peaks” in each histogram occurs at the approximate value
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of 1. Hence, creating an image where the ratio is greater than 1 would create an image 

where the water area is classed as “1" and everything else is classed as “0". To do this the 

Image Calculator is used. For Band 2 / Band 4 the output filename will be 

1992_b2_div_b4_gt_l. The Expression to process is: 1992_b2_div_b4 > 1. Figure 36 

shows the Image Calculator window with the abovementioned expression.

Im age C alcu la to r - M ap  ̂ i 4 I 1 1 irul 1
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Figure 36: Image Calculator Window to Evaluate the 
Expression: 1992_b2_div_b4 > 1

Figures 37 and 38 show the resulting images: b2/b4 > 1 and b2/b5 > 1. The land area and 

background are coded with the value “0". The water area is coded with the value of “1". 

The data type for these image files is byte binary.

Performing a logical AND using these two images (Figures 37 and 38) should find 

the common coastline area The Image Calculator is used again, and the resulting file is 

shown in Figure 39.
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Figure 37: Band 2 / Band 4 > 1 Figure 38: Band 2 / Band 5 > 1
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Figure 39: Image 2 Derived From (Band 2 / Band 4 
> 1) AND (Band 2 / Band 5 > 1)

The background has been reclassified to 0, the same as land. When converting to vector, 

the background is to be ignored. Therefore, we will attempt to reclassify image 2 so that
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the background can be separated from the land. The Reclass module is used to reclassify 

the image so that the background is coded -5, the land is coded 0 and the water is coded 1. 

The reclassified image is shown in Figure 40.

1992_image2_add1_t»mes-_in<a*K

Figure 40: Reclassified Image 2 Where the background is 
coded -5, the land is coded 0, and the water is coded 1
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4-2.4 Obtaining Image 2 for 2002

Band Ratioing

For 2002, band ratioing was also done using Bands 2,4 and 5. Band 2,2002 can 

be seen in Figure 41. Band 4,2002 can be seen in Figure 42, and Band 5,2002 can be 

seen in Figure 43.

,=4=1*1

Figure 41: Band 2,2002 (2002_b2_rad_stre)
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Figure 42: Band 4,2002 (2002_b4_rad_stre)
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Figure 43:Band 5,2002 
(2002_b5_remove_cloud_rad_stre)
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As before the Overlay module (see Figure 44) is used. Band 2 is divided by Band 4 to 

produce a ratioed image (First/Second in the Overlay window). The resulting image file 

has a data type of “real”. The resulting filename is 2002_b2_div_b4 and is shown in 

Figure 45. A similar procedure is used to produce the ratio image for Band 2 divided by

n a c i
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Figure 44: Overlay Window for Band 2 / 
Band 4 for 2002

Figure 45: 2002_b2_div_b4 
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Band 5. The resulting filename is 2002_b2_div_b5_cldimv and the image is shown 

Figure 46.

I b2 div bb cldrmv

Figure 46: 2002_b2_div_b5_cldrmv

The histogram for Band 2/Band 4,2002 is shown in Figure 47.
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Figure 47: Histogram for 2002 Band 2/Band 4
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The histogram for Band 2/Band 5 is shown in Figure 48.
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Figure 48: Histogram for 2002 Band 2/ Band 5

It can be seen in Figure 47 that the maximum value is 6.9. For Figure 48, the maximum 

value is 12.54. Both values contain decimal points, indicative of the data type “real”. In 

these two instances, there are two peaks in each histogram. It can be noted by using the 

Cursor Inquiry mode in Idrisi that the break between the two “peaks” in the histogram for 

Figure 47 occurs at the approximate value of 1.6. Hence, creating an image where the 

ratio is greater than 1.6 would create an image where the water area is classed as “1" and 

everything else is classed as “0". To do this for Band 2/Band 4 the Image Calculator is 

used.

The Image Calculator (Figure 49) produced the image shown in Figure 50.
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I rw lln m p B  1 CUAR I

. ..   .
Figure 49: Image Calculator Window to 
Evaluate the Expression: 2002_b2_div_b4 >1.6

Figure 50: Band 2 / Band 4 > 1.6

The Image Calculator was used to produce an image with the filename: 

2002 b2 div b5 cldrm v gt lp t25. This im age is show n in F igure 51.
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Figure 51: Band 2 / Band 5 > 1.25

Performing a logical AND using these two images should find the common coastline 

area. The resulting file is shown in Figure 52.

2002_b2divb4gt1 pt6_and_b2<

F i g u r e  5 2 : Im age 2 Derived From  (B and 2 /  
Band 4 > 1.6) AND (Band 2 / Band 5 > 1.25)
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4.2.5 Multiplication of Image 1 and Image 2

1992

Image 1 (1992_b5_rad_stre_3 classes_Image 1) was multiplied by image 2 which 

was obtained using the logical AND operator on the two ratioed images (band 2/band 4 

and band 2/band 5). The file was named 1992_image2_addl_times_mask_3classes_final. 

Both Images 1 and 2 have data type of integer. The multiplication of the two images was 

performed using the Overlay window. The result of multiplying images 1 and 2 is shown 

in Figure 53 (filename is 1992_imagel_times_image2).

1992_image1__times_image2

Figure 53:1992 Image Derived from Multiplying 
Images 1 and 2

Before conversion to a vector file, it was decided to reclassify the image so that only three 

values occur. The background was reclassified to show a value of 0. Land was assigned a 

value of 1 and water a value of 10.
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The resulting file (1992_final_binary_image_reclass; see Figure 54) has a data type of 

byte. The file was ready for conversion from a raster to a vector file.

Figure 54: 1992 Final Image File Ready for 
Conversion to a Vector File
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2002

The 2002 images were processed in the same manner as the images for 1992. 

Image 1 (2002_b5_remve_cld_rad_stre_3classes_imagel) was multiplied by image 2 

which was obtained using the logical AND operator on the two ratioed images (band 

2/band 4 and band 2/band 5). The file was named

2002_image2_cldrmv_addl_timesjnask_3classes_final. As for the 1992 images, both 

Images 1 and 2 for 2002 have data type of integer. The multiplication of the two images 

was performed using the Overlay window. The result of multiplying images 1 and 2 is 

shown in Figure 55 (filename is 2002_imagelcldrmv_times_image2).

.icixl2D02 Jm a g e l cldrmy .times.. >mage2

Figure 55: 2002 Image Derived from Multiplying 
Images 1 and 2
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Before conversion to a vector file, it was decided to reclassify the image so that only three 

values occur. The background was reclassified to show a value of 0. Land was assigned a 

value of 1 and water a value of 10.

The resulting file (2002_final_binary_image_cldrmv_reclass; see Figure 56) has a 

data type of byte. The file was ready for conversion from a raster to a vector file.

Since the version of Idrisi used had no advanced editing features (CartaLinx is an add on 

module) and the Update module in Idrisi was based on selecting specific rows and

2002  J inal._b inaiy_Jm age_cld rn iv_nk« hi

Figure 56:2002 Final Image File Ready for 
Conversion to a Vector File

columns for editing, it was decided to export the raster images from Idrisi as Geotiff files 

for use in editing in ArcMap using the extension ArcScan.
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4 .2 .6  Raster Clean U p  Using ARCSCAN

1992

The raster image for 1992 (1992_fmal_binary_imagejreclass) was exported from 

Idrisi as a GeoTiff image file. The exported image is shown in Figure 57. A personal 

geodatabase relating to the 1992 image was created using ArcCatalog. The raster image 

was imported to the geodatabase for the 1992 image using ArcCatalog. The raster image 

is then added to ArcMap, The 1992 composite image exported from Idrisi was also added 

to ArcMap. ArcScan was then used because it is a raster to vector conversion extension 

for ArcMap.

Figure 57: Raster Image for 1992 

ArcScan operates on images which are bi-level. This means that the raster image can only 

have two colors visible. The objective is to have 2 classes; one representing
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water, the other representing land (and the background). For the 1992 image, the values 0 

and 1 (background and land) would be in one class, and 10 (water) would be in a second 

class. Figure 58 is the 1992 image with 2 colors.

Figure 58:1992 Image Showing 2 Colors, One 
for Land (combined with the background), One 
for Water

Raster cleanup was begun by selecting Start Cleanup from the Raster Cleanup menu on 

the ArcScan toolbar. This enabled the other choices on the Raster Cleanup menu (see 

Figure 59). From the Raster Cleanup menu, the most frequently used choices were Fill 

Selected Cells and Save.
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Figure 59: Raster 
Cleanup Menu

An example of the cleaned raster for 1992 is shown in Figure 60.

Figure 60: Cleaned Raster Image for 1992

Once the cleanup was satisfactory, Vectorization Settings was selected from the 

Vectorization menu.

II*-:
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Since ArcScan was used to automatically generate vector-based features for the 1992 

image, both an empty polygon layer and an empty line layer were prepared (i.e., empty 

layers were placed in the geodatabase for the 1992 image).

The two previously created empty layers contained the new polygon and line 

layers generated by ArcScan. The line layer did not contain any information. The polygon 

layer contained a valid set of polygons. This feature layer had been given the filename of 

Shoreline_1992 and is shown in Figure 61.

Figure 61: Vector File Showing Land Polygons 
for 1992
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2002

The raster image for 2002 (2002_final_binary_image_reclass) was also exported 

from Idrisi as a GeoTiff image file. This exported image is shown in Figure 62.

Figure 62: Raster Image for 2002

As for the 1992 image, the important objective was to distinguish land from water. A 

suitable color scheme was chosen for the two classes. The resulting image is shown in 

Figure 63. As done with the 1992 image, the objective was to cleanup the raster image
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Figure 63: 2002 Image Showing 2 Colors,
One for Land (combined with the 
background), One for Water

by removing the cloud areas, and/or misclassified pixels. The cleaned raster image for 

2002 is shown in Figure 64.

Figure 64: Cleaned Raster Image for 
2002
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As for the 1992 image, the line layer contained no information, and the polygon layer 

contained valid polygons. The feature layer had been given the name of Shoreline_2002, 

and is shown in Figure 65.

Figure 65: Vector File Showing Land Polygons
for 2002

4-2.7 Prepare New Feature Lavers for Difference Imaging

Two feature layers were prepared, Shoreline_1992 and Shoreline_2002. As can be 

seen in Figures 61 and 65, only polygons representing land are shown. A difference image 

involves subtraction. In order to detect areas of erosion (-1), accretion (1) and no change

(0), a polygon representing water is required for both layers. In this manner, the 2002 

layer can be subtracted from the 1992 and areas of change can be determined.
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Add Water Polygon

The mask file used in Idrisi was exported as a GeoTiff image and added to 

ArcMap. The mask file was projected to the UTM Zone 20N coordinate system, the same 

coordinate system as for the layer files. The filename used was Mask_File_Projected. The 

ArcToolbox tool, RasterToPolygon was used to convert the mask file to polygons.

The Union tool was used to combine the Mask_for_1992 layer with the 

Shoreline_1992 layer. The resulting layer was named Shoreline_1992_Union, and is 

shown in Figure 66. The layer, Shoreline_2002_Union was done in a similar manner and 

is shown in Figure 67.

Figure 66: Shoreline_1992_Union Figure 67: Shoreline_2002_Union
Showing Water Polygon Showing Water Polygon
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Differencing

Spatial Analyst was used to subtract the 1992 image from the 2002 image. Spatial 

Analyst operates on raster images. Therefore, the two layers, Shoreline_1992_Union and 

Shoreline_2002_Union were converted to raster images in order to obtain a difference 

image using Spatial Analyst.

For a difference image, one image (Shore_1992) was subtracted from another 

image (Shore_2002). The attribute table for the difference image is shown in Figure 68.

As can be seen, the attribute table contains 3 polygons. Land (2) minus water (1) equals 

accretion (1). Land (2) minus land (2) equals no change (0). Water (1) minus land (2) 

equals erosion (-1).

A portion of the attribute table for Coast_02_Diff_92 is shown in Figure 69. The Value 

field in the raster image is equivalent to the Gridcode in the feature layer.

To add the value, “Erosion”, to all records with a Gridcode of -1, it was necessary to 

select only those records with the Gridcode of -1. Similarly, “Accretion” was the value

Figure 68: Attribute Table for 
Difference Image. 1 represents 
accretion, 0 represents no change, 
and -1 represents erosion.
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added to all records with a Gridcode of 1, and “No change” was the value added to all

.... .  V’" ’. ' . " ' " -------— ................ . . . . . . . . . . . .......... . . . . . . —  ..... . . . . . . . .. -  . . . . . . . . . . . . . . . . . . . 11 " . . . . . . . . . . . . . . . . . . . . . . .i

I | oBjrciwr ! Shiiw 1 owncyDF 1
> 1 Polygon -1 106.868886 520.145849

" 2 Polygon 1 4653.075055 154828.026752

1 3 Polygon 1 113599872 812.248178

s 4 Polygon 1 113599872 812.248178
HU 5 Polygon 1 113.999872 812.248178

6 Polygon 1 113599872 612548176
i
m 7 Polygon 1 107528907 556.139874

H 8 Polygon -1 107528276 556.133476
I I g Polygon -1 114500896 812.262769

I 10 Polygon ■1 113.999872 812.248178

t f i 11 Polygon -1 113599672 812.248178

1
12 Polygon -1 113599872 812.248178

§ 13 Polygon -1 113599872 612.248178

| 14 Polygon -1 113599872 812.248178

1 15 Polygon -1 113599872 812.248178

I 16 Polygon -1 624.704758 9915.583523

i 17 Polygon -1 1581564650 124223.069814

P 16 Polygon _ .................... -1 1179.481925 82757.038361

Figure 69: Portion of Attribute Table Showing Gridcode 
(-1 represents erosion and 1 is indicative of accretion).

records with a Gridcode of 0.
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5.0 RESULTS AND DISCUSSION

The GIS analysis pertaining to shifts in coastline positions could be observed by 

examining areas of accretion and erosion along the length of the coastline for the two 

time periods. The output map presented in Figure 70 and its enlarged version (Figure 70a) 

highlights areas where the coastline has shifted over time. While these areas are not easily
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Figure 70: Areas of Erosion and Accretion along the Guyana Coast
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distinguishable in Figures 1 and la, ArcGIS was used to produce larger scale maps to 

highlight those areas where coastline shifts could be easily observed.
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Figure 70a: Areas of Erosion and Accretion along the Guyana Coast (enlarged version)

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In the upper northwest comer of the Guyana coast there is a broad band of erosion 

which occurred between the time period 1992 and 2002 (see Figure 71). This erosion 

resulted in the retreat of Papaw Beach and Ille Beach. On Figure 71 there is also a narrow
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Figure 71: Erosion of Papaw Beach and Die Beach between 1992 and 2002
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accretionary area in the extreme upper northwest comer.

Beginning at the mouth of the Pomeroon River and extending almost 6 km on the 

eastern side is a major accretionary band of sediments (see Figure 72). This broad band of 

sediments almost half a kilometer wide extended to the community of Aberdeen and 

could be attributed to the establishment of a sandbank.
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Figure 72: Accretionary Band of Sediment (mouth of the Pomeroon River)
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Adjoining this accretionary area is a fairly lengthy section of the coastline which
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Figure 73: Coastal Erosion Zone, Freetown to Land of Promise

exhibited erosional characteristics (see Figure 73). In 2002, the coast stretching from the 

community of Freetown to the community of Land of Promise was under intense
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wave-induced erosion.

This alternating patterns of accretion and erosion are again observed along the 

coast where on the western side of the mouth of the Essequibo River there is also a 

distinct accretionary area which stretched for nearly 20 km along the coast (Figure 74).
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Figure 74: Accretion Zone found along western side of the mouth of the Essequibo River
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The entire area from Playfair to Charity was associated with accretional characteristics. 

Along the coast away from the Essequibo River there are small but evident linear bands 

of accretion and erosion.

The distinct accretionary area along the Demerara coast, from the community of 

Paradise to Ann’s Grove (Figure 75), was observed in 2002 by field researchers from the 

University of Windsor. This is then followed by a noticeable erosional trend along the 

coastline (Figure 76). The erosional area, from Clonbrook to Concord, was in the same 

locality which was being studied by graduate students from the University of Windsor. 

Interestingly, the positional shifts of the coastline recorded by remote sensors are in very 

close agreement with those of field observations.
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Figure 75: Accretionary Area, from the community of Paradise to Ann’s 
Grove
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Figure 76: Accretion Areas, from Clonbrook to Concord.
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Given the distinct areas of erosion and accretion which have been observed in the 

two time periods, the claim could be made that the procedures used in this study have 

permitted the recognition and delineation of spatial areas along the Guyana coastline 

which have experienced positional shifts. Evidently, the coast is of a dynamic nature 

where there are alternating spatial areas of accretion and erosion.

A tabulation of the polygons which have been identified as either accretional or 

erosional demonstrates that the entire coastal area is one where either erosion or accretion 

is occurring. When the ArcGIS-generated polygons are tabulated in an Excel spreadsheet 

it was found that there were 2 098 accretional polygons and 2 109 erosional polygons. 

Only 14 polygons indicated areas of no change. These results are plotted in Figure 77. 

Evidently, the coast displays distinct temporal phase shifts. These shifts occur at various

Areas of Accretion and Erosion Along the 
Guyana Coast
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Figure 77: Areas of Accretion and Erosion Along the Guyana Coast
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spatial scales. The analysis of empirical data by Lakhan et al. (2004; 2006) highlighted 

the fact that the Guyana coast, at different spatial scales and at different times, will 

display quantifiable aggradational and degradational sequences. Given the fact that 

temporal patterns of accretion and erosion have a direct influence on the morphological 

stability and positional shifts of the coastline it becomes vital to understand and predict 

these positional shifts. The results of this study provide adequate evidence that the use of 

remote sensing imagery can make a substantial contribution to understanding, on a timely 

basis, the dynamic nature of the Guyana coast.
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6.0 CONCLUSION

The need to provide an ongoing and comprehensive management plan for the 

coastal zone of Guyana is apparent given the dynamic nature of this environment and its 

reliance on coastal resources for its inhabitants, hi order to provide timely and accurate 

coastal data for coastal investigators, the incorporation of Landsat TM and ETM+ 

imagery in the extraction of the Guyana coast served to fulfil the objectives established in 

this thesis; namely:

(1) remote sensing techniques as outlined in the methodology successfully delineated 

coastline positions for the 1992 and 2002 time periods;

(2) spatial and temporal changes that occurred along the Guyana coast were readily 

visualized given the mapped outputs; and

(3) areas of erosion and accretion were identified, visualized and quantified through 

the incorporation of remote sensing techniques and a GIS.

The use of the imaging processing techniques presented in the methodology 

provided the necessary framework for the successful extraction of the coastlines. The 

selection of the mid-infrared band within the electromagnetic spectrum (TM and ETM+) 

provided the best spectral response for delineating the water-land interface. The 

combination of contrast stretching and histogram thresholding of band 5 readily identified 

the necessary threshold values in the analysis. This coupled with band ratioing of bands 2 

and 4, and bands 2 and 5 enhanced the differences in spectral reflectance to establish the 

binary classification.

The incorporation of both methods through image multiplication served to
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demarcate the coastlines for subsequent vectorization, and calculation of accretional and 

erosional areas, The use of ARCView GIS provided the necessary framework for raster to 

vector conversions using the extension ArcScan which provided the polygon based maps 

to visual change along the coast. The overlay analysis employed within this study to 

quantify lineal change was performed through the Spatial Analyst extension. The ability 

to convert the data back from vector to raster images permitted the calculation of change 

polygons denoting erosion, accretion or no change. The utility and flexibility of the 

ARCView GIS software program was invaluable in visualizing, assessing and quantifying 

shoreline positional change for this study.

The synpotic view provided by the results clearly show that the coast of Guyana 

experiences a dynamic framework of alternating areas of erosion and accretion. The 

ability to visual and quantify areas of erosion and accretion were evident through the 

overlay analysis provided (Figure 70-76). When examining Figure 77, the results clearly 

indicate the instability of the coast over time period 1992 to 2002. The morphological 

change that occurred is indicative of an overall balance along the coast as noted by the 

changing position of the coastline and its corresponding area of change (Figure 77). In 

the analysis, the evolution of the coast of Guyana displays temporal shifts at different 

spatial scales. The synoptic view provided for the 170 km portion of the Guyana coast 

was beneficial in showing large scale change over the ten year time period.

The observed alternating pattern of erosion and accretion resemble a sawtooth 

pattern along the 170 km stretch of the Guyana coast. Given this pattern and the 

empirical evidence supported by Lakhan et al. (2004; 2006), cyclical trends in erosion

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and accretion patterns have occurred. This may help to explain the movement of 

available material from an area of erosion to an accretionary zone further along the coast. 

Further evidence indicates that the Demerara coast experiences predictable patterns of 

erosion and accretion based on observations spanning four decades. The latest erosion 

and accretion patterns reflected during the 1982-1987 observations showed an erosional 

cycle. The results from this study reveal an alternating pattern of an accretionary cycle 

along the Demerara coast for the 1992-2002 time period. The observed shift in shoreline 

position and resulting spatio-temporal changes associated with the aforementioned 

pattern may be indicative of quasi-stationary circulation cell affecting the Guyana coast

Additionally, the formation and presence of mudbanks adjacent to the coast have 

known to affect the morphology and configuration of the shoreline. It is know that 

mudbanks dampen the effect of propagating waves against a coast (Allersma, 1971; 

Augustinus, 1987; Lakhan and Pepper, 1997), and as a result, accretion occurs along the 

coast adjacent to the mudbank. Conversely, coastal areas experience erosion when 

mudbanks are absent in attenuating wave energy upon a coast. The repeated pattern of 

mudbank migration and stabilization affect the spatio-temporal changes associated with 

erosion and accretion patterns (Lakhan and Pepper, 1997). Based on this information, 

mudbanks affect littoral cell circulation and their associated velocity patterns and 

ultimately contribute to the alternating patterns of erosion and accretion observed in this 

study.

Although the extraction of coastlines for the time periods 1992 and 2002 was 

successfully accomplished, there were, nevertheless, certain limitations. Primarily, this
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method of coastline extraction is reliant upon a series of algorithms inherent to the Idrisi 

software package. A series of preprocessing, radiometric and geometric corrections, and 

image enhancement steps were used to calibrate images, enhance contrast within an 

image through stretching and band ratioing, reclassify image data based on initial radiant 

values or DNs, and produce raster and vector files for demarcation of the coastline.

Given the nature and complexity of the mathematics involved within the 

application of these algorithm-based modules it is difficult to ascertain a hue truncation 

point that would ultimately define the water’s edge. Best estimates and segmentation 

averages within the sections of the coastline were subjected to line smoothing techniques 

which served to assign the midpoint value of vector files representing the coastline.

These methods coupled with a resolution of 30 m from the Landsat images can not 

produce digital quality photographs of coastlines when compared to more contemporary 

finer resolution satellite platforms of IKONOS and Quickbird with 1 m resolution 

capabilities.

Furthermore, the nature of the resolution of TM and ETM+ images produces 

mixed pixels that reflect an area of both land and water that may be manifested within a 

tidal flat or nearshore turbidity. As a result, average brightness values expressed as DNs 

within a pixel may not be a true representation of the ground features found along the 

Guyana coast. To circumvent this issue, histogram thresholding was employed on Bands 

5 to ascertain the threshold value representing the land-water interface by segmenting 

pixels into either a water or land class. However, when examining a typical histogram 

within any TM or ETM+ band the visual interpretation of the saddle point found between
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the twin peaks is chosen arbitrarily. Hence, the exact value is determined by the user 

from area to area and is dependent upon the user’s level of expertise in image 

classification and knowledge of the local area (Ouma and Tateishi, 2006). Conceptually, 

this arbitrary classification found within the narrow band of the histogram valley may 

overestimate water pixels or land pixels given the spectral response of each class along 

the coastline.

While many areas of accretional and erosional changes were recognized with the 

remote sensing images, only a few could be compared with data collected from the coast 

of Guyana Interestingly, the morphological changes observed through analysis of the 

remote sensing images are similar to those documented by Lakhan et al. (2004) for a 30- 

km portion of the coastline. Unfortunately, empirical data do not exist to verify the 

positional changes observed by the remote sensing sensors in the various other spatial 

locations along the coast. This limitation could be rectified with an ongoing and timely 

field program which monitors morphological changes throughout the length of the coast. 

Lastly, slight variations in tidal ranges between the 1992 and 2002 images within the 

relatively flat plain of the Guyana coast may result in the underestimation of water or land 

pixels and its corresponding measure of accretion or erosion.

The use of Landsat TM and ETM+ images, together with the automatic extraction 

method presented in this study will serve as a reliable, efficient and cost effective method 

to detect coastline positional changes. The computer-assisted capabilities of this method 

will allow coastal investigators to visualize and quantify lineal changes that occur along 

the coastline fairly rapidly. Having knowledge of areas of accretion and erosion will
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permit investigation by coastal researchers. Given this ancillary information, coastal zone 

planners and managers will acquire the necessary information to make informed and 

coordinated decisions to assess the level of vulnerability of coastal areas, and specifically 

to provide the appropriate management response. In the final analysis this method of 

coastline extraction will serve to facilitate the interests of all stakeholders in the 

protection and management of coastal resources.
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