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ABSTRACT

Language-processors, that are constructed using top-down recursive- 
descent search with backtracking parsing technique, are highly modular, 
can handle ambiguity, and are easy to implement with clear and 
maintainable code. However, a widely-held, and incorrect, view is that top- 
down processors are inherently exponential for ambiguous grammars and 
cannot accommodate left-recursive productions. It has been known for 
many years that exponential complexity can be avoided by memoization, 
and that left- recursive productions can be accommodated through a variety 
of techniques. However, until now, memoization and techniques for 
handling left-recursion have either been presented independently, or else 
attempts at their integration have compromised modularity and clarity of 
the code -  this leads to the fact that there exists no perfect environment for 
investigating many NLP-related theories. This thesis solves these 
shortcomings by proposing a new combinator-parsing algorithm, which is 
efficient, modular, accommodates all forms of CFG and represents all 
possible resulting parse-trees in a densely-compact format.
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CHAPTER 1: PREFACE

1.1 Introduction
Although the elegant top-down parsing method closely resembles a Natural Language 

Processing strategy, it has some short comings which make it less appealing for various 

NLP-related tasks. A naive implementation may require exponential time and space and 

do not provide any support for ambiguous left-recursion (note that converting left- 

recursive grammar to non-left recursive form may cause missing parses). Modularity of 

implementation is required so that individual components of a language-processor can be 

tested separately and semantic-rules can be integrated naturally. As natural-language is 

ambiguous, it is important to ensure that the language-processor is able to process 

ambiguous left-recursive grammars in order to have the proper right-most and left-most 

derivations, which is essential to retrieve all possible semantic meanings. Also the 

computation-time needs to be reasonable, and the exponential number of parse-trees 

should be represented within polynomial space. Many attempts have been made to 

accomplish the above requirements but none has been able to accommodate all of them 

within one algorithm.

In this thesis we develop a general top-down combinator-parsing algorithm that 

accommodates ambiguous and left-recursive grammars, whilst maintaining polynomial 

time-complexity, compact (polynomial) representation of exponential number of parse 

trees and modularity of the implementation. We implement the algorithm in a lazy 

functional language, Haskell, have analyzed it theoretically and have tested it with highly 

ambiguous grammars to support the theoretical claims.

1.2 Structure of the Thesis Report
Chapter 2 introduces the basics of top-down parsing, the problem, the requirements and 

how we will prove the thesis-statement. Chapter 3 and 4 briefly describes different 

aspects of lazy-functional programming and combinator-parsing. Chapter 5 mentions 

some related and motivational previous-work. Chapter 6 and 7 describe the new 

algorithm in detail - for recognition and parsing respectively. Chapter 8 explains the 

Haskell-implementation of the algorithm. Chapter 9 and 10 analyze the termination and

1
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complexity of the algorithm respectively. Chapter 11 presents some experimental results, 

which support the analytic results of chapter 10. Chapter 12 concludes the report and the 

appendix contains some example-output (densely packed parse-forests).

1.3 Contribution by the Candidate
In conducting the work described in this thesis-report, the candidate worked closely with 

Dr. Frost, his supervisor, and he also collaborated with Dr. Callaghan of the University of 

Durham.

The candidate and Dr. Frost jointly developed the algorithm to accommodate left- 

recursion with top-down parsing in polynomial time and space. The candidate was 

primarily responsible for implementing the algorithm in Haskell, with some suggestions 

from Dr. Frost and Dr. Callaghan. The candidate was responsible for conducting the 

experiments. The candidate also helped Dr. Frost to construct the proof of termination 

and complexity. The results of the collaborative work have been published in two papers 

co-authored by the candidate (Frost and Hafiz, 2006, [11]) and (Frost, Hafiz and 

Callaghan, 2006, [12]).

2
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CHAPTER 2: INTRODUCTION

2.1 Grammars and Top-Down Parsing
A ‘language’ is a set of finite-length sequences or strings, constructed over a finite-set of 

entities known as alphabet. Any formal or natural-language can be specified or defined 

with a finite-size specification (or generator) -  formally known as ‘grammar’. A formal 

grammar G is a 4-tuple (N, Z, P, S) where:

■ N is a finite-set o f  non-terminals

■ Z is a finite-set of terminals (or alphabet -  over which a language is defined)

■ P is a finite-set o f  production-rules

■ S is a distinguished symbol (known as start symbol)

■ N n Z  = 0, S e N and

(Vpi eP) ( p i e (N u  Z) * N (N u  Z) * x (N u  Z)*)

The language L (G), which is defined by G, is a set of ‘strings’ that consist only of the 

terminals from Z and that can be derived starting from S and applying 3pi until no non

terminal is present. This formal-grammar framework is the most expressive way to 

specify a language. According to Chomsky (1956, [4]), this general framework of formal 

orphrase-structure grammar can be divided into four ‘types’:

Grammar Properties
Types
Type 0- ■ Rules don’t have restrictions (in terms of number of symbols) on left
Unrestricted and right side of the productions.

■ Its most ‘unrestricted’ nature makes it less useful to linguists.
Type 1 - ■ Rules are of form aAp ->• a%P where A e N,
Context- a  & p e (N u  Z) * and % e (N u  Z )+.
Sensitive ■ The derivation A —> % is determined by the “context” of a  & p.

Type 2 - ■ Rules are of form A -»■ a  where A e N, a  e (N u  Z)*.
Context-Free ■ Simple and ‘powerful’ enough to define most of the languages.

Type 3 - ■ Rules are of form A ->  aB orA ->  a  where A & B e N and
Regular a, e Z .

■ Equivalent to ‘regular-expressions’ and the most restricted grammar.
Table 2.1: Four types of grammars, where type 0 3  type 1 3  type 2 3  type 3

3
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Out of the four types, the Context-Free Grammar (CFG)1, typically expressed in 

Backus-Naur Form (BNF), is the most important type in terms of application to various 

languages. The languages that can be specified by CFGs are known as Context-Free 

Languages. CFGs are considered as ‘standard sets of rules’ for syntax-analysis or 

parsing, which is a technique to determine whether a given input sequence’s 

grammatical structure can be recognized and identified by the given CFG. The most 

natural form of parsing is Top-Down Parsing, which is a method of attempting to find 

the ‘left-most derivation’ of a given input sequence. The ‘attempt’ starts from the root- 

symbol S and keeps expanding from the left-most position of S ’s definition. The 

recursive-decent fully backtracking parsing is the most general form of top-down 

parsing, where rules are implemented as ‘mutually-recursive’ procedures and if an 

alternative of a rule ‘fails’ or ‘ends’, the parser backtracks to try another rule. Top-down 

parsers are easy to construct and understand, compared to their bottom-up counter-parts. 

An Example

In order to specify or generate a language L (G_1) = {0, 1, 00 , 01 , 10 , 11,

000, 001 , 010, 100}, we may use the following CFG G_l:

G _ 1  =

(  N = {B_E,  D},

2  = { 0 , 1 },
P =

j  B_E : : =  D | D B_E | s
[ D  : : =  0 | 1

S = B_E )  (B_E = Binary Expression, D = Digit)

While determining the syntax-structure of an input “001” using top-down parsing 

technique with G _l, a parser executes the start-symbol or the root rule B_E, which has 

three alternatives. Each of the alternatives is individually (in a sequence from left) 

applied on the original-input. If  the alternatives have non-terminals, then they are

1 In this report, we represent a production-rule of a CFG as
Non-terminal ::= ... Non-terminal' .... te rm inal. . .  I..  Non-terminal'' . . . . te rm in a l ' . . .
Where means the starting of a rule-definition, '|' separates
alternatives, t e r m i n a l s are in i t a l i c , Non-terminals start with capital-letter 
and sequencing-symbols are written next to each other.

4
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expanded again recursively and their definitions (which may consist o f  different

alternatives) are applied to the remaining input-sequence (if some left-most tokens were 

previously consumed). The process ends if there are no more input-tokens left for 

processing. For example:

1. B E is expanded to its first alternative B E : : = D and then D is expanded to its two 

alternatives D: : = 0 and D: : = 1. The second alternative of D is a ‘failure’ as it derives 

to ‘1 ’ whereas the input sequence starts with ‘O’.

other non-terminals left for expanding, it is a valid parse.

2. When the previous phase is done, B_E ‘backtracks’ to try its second alternative 

B_E : : = D B_E, then D’s two alternatives are applied on “0 0 1 ” (as we know, only the 

first one succeeds and recognizes “0”) and the rest o f  the input “0 1 ” is processed by the 

non-terminal B E (which is a part o f  root B E’s recursive definition). In a similar way, 

B_E is expanded again to its three alternatives and eventually returns a successful parse- 

tree and also reports all failed attempts:

B E B E

Success Failure

The first alternative finds a match for the leftmost position of “001” and as there are no

B E B E B E

1
Success

8
Failure

0
Failure

(Note that the arrows are indicating the control-flow of the parsing-process.)

5
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3. When the above phase is done, the first application o f  B E ‘backtracks’ to try its third

alternative B _ E : :  = s ,  which always succeeds:
B E

£
Success

In terms of functional-programming, combinators or higher-order functions are 

ideally-suited for constructing top-down recursive-descent (with backtracking) parsers. 

The combinators are ‘operators’ which are used to construct basic parsers from terminals, 

and compound parsers from simpler parsers. Before examining any input-token, a 

combinator-parser tries to execute a ‘rule’ -  an executable-specification, to identify the 

token. If this attempt fails, the parser recursively tries another rule and so on. Language- 

processors, constructed using this parsing-technique, are able to provide many advantages 

such as:

1. They are easy to implement in most of the programming languages that support 

‘recursion’.

2. Associating semantic rules for recursive syntax-rules is straightforward (Frost [8]).

3. They are highly modular (Koskomies [22]), re-useable and each components can be 

tested individually.

4. The structure of the code is closely related to the structure of the grammar of the 

language to be processed and can be implemented as executable-specifications of 

grammars, as shown by Frost and Launchbury (1989, [13]). Definite Clause 

Grammars (DCGs) of logic-programming can also be used to achieve this.

A simplistic implementation of a top-down combinator-parser normally requires 

exponential computation time, may sacrifice ‘ambiguity’ and it is not capable of handling 

grammars having left-recursive production-rules, such as S: :=S a I a. Despite 

having many advantages, these drawbacks of a general top-down parser turn it to a less- 

attractive choice for practical uses. Consequently, all of the benefits of top-down parsing 

have not been available to researchers working on natural-language processing.

6
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2.2 Natural-Language Parsing

2.2.1 Ambiguity
As syntactic-ambiguity is a property of ‘human-spoken’ languages, a grammar that 

defines a natural-language is naturally ambiguous. It is important that any parsing system, 

which parses a natural-language, is able to identify all possible derivations or ‘parse- 

trees’ for a given sentence. For example, the following grammar (similar to Chamiak, 

1991) is ambiguous and a parsing-system that attempts to generate the syntactic structure 

of the sentence “John sells the dog food” according to this CFG, should identify more 

then one parse-tree:
Sent ::= NP VP
VP ::= Verb NP | Verb NP NP
NP ::= Del Noun I Noun | Del Noun Noun | NP NP
Noun ::= f o o d  | d o g I c a t  \ J o h n  \ L i z  
Det ::= t h e  | a I an
Verb ::= s e l l s  | b u y s | p l a y s

Parse 1
Sent 

/  \
NP VP
I /  I \

Noun Verb NP NP 
I I I \  \

J o h n  s e l l s  Det Noun Noun
I I I 

t h e  d o g  f o o d

[Semantically the meaning is 
"John sells food to the dog"}

Parse 2
Sent 

/  \
NP VP
I /  \

Noun Verb NP_____
] I I \  \

J o h n  s e l l s  Det Noun Noun
I I I 

t h e  d o g  f o o d

[Semantically the meeming is 
"John sells food for dogs"}

Figure 2.1: An ambiguous grammar and some possible parses

2.2.2 Left-Recursion
There are several reasons why it is important for an NL-parsing system to accommodate 

left-recursive CFGs:

1. If the parsing system can not process any grammar-rule written in left-recursive form 

‘directly’, then the syntax-structure o f the derivation changes and as a result, causes 

semantic misinterpretation. The text-book solution (Aho, Shethi and Ullman, 1986) for

7
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the left-recursion problem of top-town recursive-descent parsing is ‘eliminating a left- 

recursive production-rule by converting it into a non-left-recursive one’. The following 

example demonstrates missing valid-parses and semantic misinterpretations because of 

this elimination technique:

Original Left-recursive Grammar
Expr
Term
Digit
Op

= Expr Op Term | Term 
= Term Op Digit| Digit
= 0 | ........... 19
=  +1 *

[This grammar is also able to 
generate a right-most parse-tree 
like below]

Input: 3 * 4 + 2  
Parse Tree :

Expr 
/  I \

Expr Op Term
/  I \  \  \

Expr Op Term + Digit
I I I  I

Term * Digit 2
I I

Digit 4

[The result of this derivation is 
((3*4)+2) = 14]

Equivalent grammar after 
eliminating left-recursive rules
Expr : 
Expr': 
Term : 
Term': 
Digit: 
Op :

= Term Expr'
= Op Term Expr'
= Digit Term'
= Op Digit Term'
= 01 I 9
= + \ *

[This grammar is not able to 
generate a left-most parse-tree 
like above]

Input: 3 * 4 + 2  
Parse Tree :

Expr 
/  \

Term Expr'_____
/  \  /  \  

Digit Term' Op Term 
I I

\
Expr'

I /  \  \
3 E * Digit Term' e

I /  I \
4 Op Digit Term'

I I I
+ 2 E

[The result of this derivation is 
(3*(4 + 2)) = 18]

Figure 2.2: Elimination of left-recursion and possible problem

2. If the production rules of the grammar are in left-recursive form, sometimes it is 

straight-forward and easier to add semantic-meanings or attributes to a grammar -  that is 

used in a language-processor. For example, attributes can be easily added to the 

following left-recursive grammar, where as, there is no such simple way to add attributes 

to an equivalent right-recursive grammar (bold fonts are attributes):

8
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Left-recursive attrihute-grammar
number ::= digit digit ::= '0'number.VAL = digit.VAL digit.VAL = 0 ^

| number' digit _ I '1'
number.VAL = (10 * number'.VAL + digit.VAL) digit.VAL = 1

Equivalent non-left recursive attribute-qrammar
number ::= digit 
number.VAL = digit.VAL

I digit number' 
number.VAL = ?????

3. As mentioned in [11], if  left-recursive grammars could be used with top-down parsing, 

they would provide a better framework for investigating NL theories in order to achieve 

more efficient natural-language interfaces. For example, to test and investigate 

compositional Montague-like theories (for processing verb adjuncts such as “When and 

with what did Hall discover Phobos?”) the parsing-system needs to achieve all possible 

ambiguous leftmost and rightmost derivations.

2.3 The Problem
To utilize the advantages of a ‘recursive-descent backtracking’ top-down combinatory 

parser for natural-language parsing (and for other applications involving ambiguity), we 

require a new algorithm to accommodate ambiguity and left-recursive production rules in 

polynomial time. Many researchers have tried to address this problem with different 

approaches, but none of them completely satisfies the requirements.

It is widely believed 1) that top-down parsers require exponential computational

time, 2) that they fall into infinite-loop while processing left-recursive grammars, and 3) 

that it is not practical to implement a modular top-down parser. However, the following 

list of researchers’ work demonstrates that the above problem can be partially addressed:

1. Norvig (1991, [32]) showed that it is possible to achieve polynomial complexity for 

top-down recognizers by use of the memoization technique.

2. Shiel [34] and Kuno’s [23] algorithms, though terminating for left-recursion by 

utilizing the length of the input string, are based on the similarities between chart- 

parsing and top-down parsing, but have exponential complexity.

9
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3. Leermakers’ [24] claim to solve the problem using a “recursive ascent” functional 

approach appears to be achieved compromising modularity and clarity of the code, 

and is not really a top-down approach.

4. Frost’s [7] “guarded-attribute” approach solves the left-recursive problem, but 

exhibits exponential time at worst case.

5. Nederhof and Koster’s approach of “cancellation parsing” [30] to process left- 

recursive rules is exponential at the worst-case and the resulting code is less clear as 

it contains additional production rules and code to insert the special tokens.

6. Lickman’s use of purely functional set-monadic fix-point parser-combinator 

approach to accommodate left-recursion for recognition is exponential [27].

7. Johnson integrated memoization with continuous-passing style-programming [20] 

to resolve the problem. It appears that this approach is too complicated for practical 

use. Also, as pointed by the Johnson, this approach might be too difficult to modify 

for compact-representation of resulting parse-trees.

8. Camarao, Figueiredo, and Oliveiro’s [3] monadic compiler-generator may 

accommodate left-recursion but fails to accommodate ambiguity.

Even though the above approaches partially solve the well-known drawbacks of top- 

down parsing, for last 40 years no one has been able to provide full support for all of the 

following requirements within a single parsing-system:

1. Complete support for direct and indirect left-recursive grammar.

2. Accommodating ambiguity.

3. Accommodating any form of CFG (including empty, cyclic, ‘densely’ rules etc).

4. Maintaining at least polynomial time and space complexity at the worst case.

5. Clarity and modularity of the implementation for efficient practical use.

6. Not only recognition but also working as a complete parser -  that is able to 

represents the resulting parse-trees using least possible space.

This thesis fulfills the requirements above.
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2.4 Thesis Statement
2.4.1 The Statement
“Top-down parsing can accommodate ambiguity and left-recursion and can create a 

compact (polynomial-size) representation of parse trees in polynomial time at worst 

case.”

2.4.2 Why This Thesis is Important
Much work has been done and many theories have been proposed to analyze, investigate 

and compute different aspects and problems related to natural-language semantics. But all 

of the existing syntax-analysis systems share some common shortcomings (as mentioned 

in section 2.3); it is not completely possible to accommodate and easily investigate all 

semantic-analysis theories within current platforms. The algorithm described in this 

thesis will allow combinator-parsing to be used with any form of ambiguous left- 

recursive CFGs whilst maintaining polynomial time and space complexity. Hence, this 

work will enable the full potential of existing work on natural-language semantics to be 

integrated with and investigated within syntactic-analysis, thereby providing a useful 

environment for natural-language investigation. This work also allows constructing 

natural-language processors as executable specifications by being highly modular, 

structured and easily alterable. According to the proposed algorithm, the result of parsing 

is represented as a densely-compact form, which will help the potential users to retrieve a 

particular parse-tree by spending less time. Overall, investigating and implementing 

different theories and aspects o f computational-linguistics will benefit significantly.

2.4.3 Why it is Not Obvious
As top-down parsing attempts to find the left-most derivation for a given input sequence, 

it has been assumed that its ‘recursive-descent’ phase would never terminate while 

processing a CFG that contains left-recursive production rule(s). As ‘backtracking’ is 

important to achieve the desired ambiguity (especially for natural-language parsing) and 

requires sophisticated care during implementation, an unstructured and naive 

implementation may result loss of possible parses. Also, even if the CFG doesn’t have
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any left-recursive production rules, top-down parsing is generally considered to exhibit 

exponential time-complexity in the worst-case -  mainly because of its ‘backtracking’ 

characteristic. Reviews from literature suggest that it’s been universally assumed in the 

functional-programming community that combinator-parsing cannot accommodate left- 

recursion at all - because the left-most ‘parser’ would always keep executing its own 

definition again and again. Therefore, despite fulfilling some partial requirements (as 

mentioned in section 2.3), for last 40 years no one has been able to accommodate 

ambiguity and left-recursion within a complete top-down parsing system in polynomial 

time.

2.4.4 How the Thesis will be Proven
The following steps have been taken to justify that the proposed algorithm satisfies the 

thesis-statement:

■ Studying related-works thoroughly to identify whether they have addressed the 

following all requirements or not:

1. Complete support for direct and indirect left-recursive grammar.

2. Accommodating ambiguity.

3. Accommodating any form of CFG (including empty, cyclic, ‘densely’ rules 

etc).

4. Maintaining at least polynomial time and complexity at the worst case.

5. Not only recognition but also working as a complete parser -  that is able to 

represent the resulting parse-trees using least possible space.

6. Maintaining modularity, clarity and flexibility to accommodate different 

theories and applications for NLP including integrating semantic-rules with 

syntax-structure correctly.

■ Proposing a new algorithm to fulfill the above requirements.

■ Implementing the algorithm in a lazy-functional language -  Haskell.

■ Termination-analysis of the algorithm.

■ Complexity-analysis -  to justify the claim of polynomial time and space complexity.

■ Conducting experiments to test the practicality of the algorithm.

12
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2.5 Brief Description of the Solution
Frost and Szydlowski [14] proposed a framework to the utilize memoization technique 

for improving the complexity of purely-functional parser-combinators. Later, in 2003 [9], 

Frost showed how recognition of natural-languages can be achieved in polynomial-time 

by memoizing parser-combinators in a systematic way using ‘state- monads’. But the 

basic drawback of this approach is that it doesn’t ‘terminate’ while processing left- 

recursive grammars. The proposed algorithm of this thesis uses memoization in such a 

way that it can accommodate indirect and direct left-recursive grammars. In order to do 

so, the new algorithm keeps track of the depth of a particular parse and the length of the 

input which is currently being processed. Each time a particular parser is being called 

during recursive-descent while processing a particular input, a ‘counter’ (we call it ‘left- 

rec-counter’) is incremented by one -  indicating the depth of the parser. This parser is 

‘curtailed’ when its left-rec-counter exceeds the length of the remaining input and the 

process backtracks up the parse-tree to apply another alternative parse, if exists any. 

When the parser computes a result, it saves it to a ‘memo-table’ along with a reference to 

the position in current input.

Though this treatment solves the ‘direct left-recursive’ problem, the indirect or 

hidden left-recursive productions may still skip some valid ‘parses’. This is mainly 

because when an intermediate parser (of an indirect left-recursive parser) tries to look-up 

a previously stored result in the ‘memo-table’, it may retrieve only a partial result which 

is less then if the parser were applied again in the new context. The solution to this is to 

provide ‘context-based’ update and lookup for memoization. Now, when a parser goes 

down during recursive-descent, it keeps records of all others parses on its way and their 

‘left-rec-count’ along with its own. If any parser is ‘curtailed’ at a particular position (i.e. 

if a parser is left-recursive), it passes its ‘reference’ upward during recursive-ascent. 

When a parser computes a result, it saves the result to ‘memo-table’ along with its 

current-context w.r.t. the reference of the ‘curtailed’ parser(s), if any. Subsequently, 

while performing a lookup, the current parser judges whether to reuse a saved result or 

not by comparing the ‘saved-context’ with its ‘current-context’. If it finds that it has 

recursively descended enough, then it is eligible to re-use, otherwise it has to perform 

more recursive-descent operations.
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The new algorithm stores the resulting parse-trees in the memo-table as a forest of 

one-level depth, n-ary branches. Each branch has implicit pointers to determine ‘where to 

go next’ in its nodes and is shared between ambiguous parses. This densely-compact 

representation of resulting parse-trees ensures the cubic space-complexity, even though 

the total number of parses could be exponential.

The detailed description of the algorithm is given in chapter 6 and 7. Section 11 

contains experimental results (based on different grammars of the appendix with varying 

number of inputs). The implementation is described in section 8 and theoretical analysis 

is given sections 9 and 10.
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CHAPTER 3: LAZY FUNCTIONAL

PROGRAMMING

3.1 Introduction to Lazy Functional Languages
A functional-program, in general, consists of a set of function definitions -  which follow 

regular mathematical properties. Execution of a conventional program, written in a 

conventional language, is based on processing a set of ‘hidden stores of named locations’ 

by sequences of assignment statements, whereas execution of a functional program is 

based on computation of functions and application of them to data. Frost [10] has defined 

pure functional programming as programming in an environment where “function 

composition and function application are the only forms of control structure” and any 

form of looping and iteration must be performed through recursive function calls. In the 

purest form of functional programming (known as lazy functional-programming, LFP), 

the languages are polymorphically typed and embedded with automatic type checkers, 

“the evaluation of arguments to functions is delayed until those values are required” [10]. 

Assignment statements are not allowed in functional programs. So ‘variables’ don’t 

change their values during the program-life. Hence, nothing changes the value of an 

expression and function calls don’t have any other effects other than executing 

themselves. In other words, lazy languages don’t have any “side-effects”. As a result, the 

order of execution of any function is not important (i.e. functional programs have no 

flow-control). The properties above reduce possible causes of errors in programs and 

program-executions. As functional programs exhibit ‘natural-parallelism’ more than 

conventional programs, they are well suited for the latest computer-architecture where 

different processes operate simultaneously while communicating and cooperating with 

each other. Well-structured and modularity (achieved through ‘higher-order functions’ 

and laziness) make a fimctional-language more efficient than conventional languages. 

Commonly-used LFP languages are Haskell, Miranda and SML. Lisp and Scheme 

represent strict-version of FL. Hughes’s paper [16] answers the question “Why 
Functional Programming Matters?” in detail.
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3.2 Elements of Lazy Functional-Programming
Important components and attributes of LFP are described below briefly:

1. Lambda Calculus

Church invented lambda-calculus in 1930 to demonstrate that it is impossible to find a 

general algorithm which, for some given first-order statements, decides whether they are 

universally valid or not. Since then, it has been used for investigating function-definition, 

function-application, recursion and has influenced the basic implementation-mechanism 

of LFP languages. The basic building block of lambda calculus is computable-function 

formation (which is obtained by abstracting an expression), and variable substitution. A 

simple lambda-expression or term is, for example Xx. (x3 + 1) , where Xx abstracts 

the name-less expression (x3 + 1) w.r.t. x. We evaluate this L-term by substituting the 

variable x with a given constant. For example, in (Xx.  (x3 + 1) ) 2 = 23 + 1 = 9 

the variable x is replaced by the constant 2. A variable x is ‘bound’ if  its occurrence in 

the L-term is preceded by Xx,  otherwise x is ‘free’. For example, in the expression 

Xx.  (x + y) , x is bound and y if free, ^.-calculus is considered as the ‘universal 

programming language’. As any computable function can be expressed and evaluated 

using L-calculus, it is the central issue of the LFP paradigm.

2. Higher-Order Function

A ‘higher-order function’ (FIOF) is a function which can take other function(s) as its 

input-argument and also can produce some other function(s) as its output. For example, 

most LFP languages provide a HOF map that receives a function and a list as its input 

parameter and returns a list by applying the input function to each element of the input 

list, for example, map (* 2) [1,2,3] => [2,4,6]. HOFs are ‘first-class object’ of

LFP language. Use of higher-order functions as infix-operators is the basic for 

constructing parser-combinators as such use of functions can mimic the BNF notation of 

a CFG. For example, a CFG rule 's: := a s | empty' can be interpreted in English 

as

“s is either 'a then s' or empty”
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Using higher-order functions ( 'o r ' and 'th e n ') ,  parser-combinators1 can be written as:

empty input = [input]
a (x:xs) = if x =='a' then [xs] else []
(p 'or' q ) input = p input ++ q input
(p 'then' q) input = if r == [] then []

else map q r
where r = p input

and used, as for example:
s input = (a 'then' s 'or' empty) input

3. Pattern-matching

Pattern-matching enriches function-definitions’ readability and the structure of the 

program a great deal. Standard patterns (such as variables, constants, wildcard-pattem, 

patterns for tuples, lists, algebraic constructors etc) match against the syntactic-structure 

of an argument while maintaining the iazy-evaluation’ attribute. LFP supports another 

type of pattern -  known as ‘application pattern’ or ‘n+k-pattem’, which matches the 

semantic-structure of the arguments instead of syntactic-structure. As described in [33], a 

pattern n+k, where k is a constant, matches against an actual function-argument - a, if a 
can be considered as the result of an expression (A,n. n+k) b. If so, then n is bound to b. 

Clearly, b can be calculated by evaluating the inverse expression (A,n. n -k )  a.
4. Polymorphic Types

LFP languages are ‘strongly-typed’ -  which prevents users to use ill-typed values in 

function application, equipped with ‘statically type-checking’ system -  that tries to detect 

types automatically, checks for type-mismatch and identifies type-errors during 

compilation. Also, in LFP, functions’ input and output arguments may have 

‘polymorphic-type’ -  that means these function-definitions are common for any type of 

values. This facility makes function-definitions more general and reusable. For example, 

a simple function ‘tail’ -  which is defined to pick the last element of a list - works on lists 

of integers, strings etc: 

tail [1,2,3] => 3, 
tail ["aa","bb","cc"] =3 "cc".

1 Explained in section 3.3
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5. Currying

Frege, in 1893, observed that it is sufficient to define any function with a single 

argument. “Currying” (named after Haskell B. Curry) is a way that converts an n- 

argument function to a 1-argument function and returns another function (if more 

arguments are needed). Modem LFP languages use “currying” (and “uncurrying”) as a 

default method of evaluation (by treating all functions as higher-order functions) and 

provide abstraction to user through ‘syntactic-sugar’. For example, the function add (of 

type add :: Int -> Int -» Int) adds two integers. When ‘add 2 3’ is

executed, first ‘add 2 ’ is evaluated and returns a function (of type Int -» Int). Then 

this function is applied to 3 and returns 5 as the final result.

6. Lazy-evaluation

Lazy-evaluation delays the computation of a function until the result is required. This 

unique feature allows LFP languages to process ‘infinite data-structure’. For example, 

assume already defined pick_5th function selects 5th element of a list. When this 

function is applied on an infinite list of integers, it doesn’t go into non-terminating state 

but retunes the fifth element from the list. For example, pick_5th [1..] => 5
7. Monads

Monadic-computation is another unique feature of LFP languages. The underlying idea is 

derived from categorical-theory. Using monads, a computation could be constructed as 

sequential block of computations and the ‘block of computations’ may be constructed 

using other sequential block of computations too. Monads make programs much 

structural and modular by ensuring sequential execution of computations. A detailed 

description of monadic-computation is described in section 4.2.

3.3 Haskell -  A Purely-functional Language
Haskell (Hudak, 2000) is a purely-functional, lazy, polymorphically typed, widely used 

programming language. The latest version Haskell 98 is the most stable implementation 

and enriched with an expressive syntax, user-defined algebraic data-types and standard 

libraries with a wide range of built-in primitive data-types, functions and type-classes. 

Haskell 98’s features and functionalities are documented in “The Haskell 98 Report”
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(Peyton-Jones, 2002). In addition to supporting all of the features mentioned in previous 

section, it also provides a novel type-system that supports a systematic form of 

‘overloading’. Different variations of Haskell are also introduce such as: GPH, pH (both 

are parallelizable version of Haskell), Haskell++, O’Haskell (‘object-oriented’ Haskell), 

Mondrian (a ‘mixture’ of Haskell and Java -  can be used in .NET platform) etc. Haskell 

has been used frequently in academia and in industry simultaneously. Many NLP-relates 

systems have been implemented using Haskell. Following table summarizes Haskell’s

use in NLP:

System Implementer and Purpose
Year of

Implementation
LOLITA Garigliano, R., Natural Natural language processing

Language Engineering Content scanning
Group, University Of Implementing plausible reasoning model
Durham, 1989 Chinese language tutoring

Connexion to speech input and output
Natural language generation system for English and
Spanish
Discourse planner
Information extraction system for equity-derivation 
trading_____________________________________

Grammatical
Framework

Ranta, A. 1998 Multilingual authoring/ Multilingual Syntax Editing 
Proof text editor

(GF) Software specifications 
Controlled language 
Dialog system 
Technical document editor

Ontology
Construction

Khun, W., 2001 Building ontologies for natural language text to 
describe human activities

Functional
Morphology

Ranta, A. and Forsberg, 
M„ 2004

Constructing morphologies of Swedish, Italian, 
Russian, Spanish, and Latin

Combinator 
Parsing for 

NL

Frost, R and Hafiz, R, 
2006

Accommodating ambiguity and left-recursion in 
polynomial time
Compact-Representation of resulting parses

Table 3.1: Use of Haskell for constructing NLP-related systems

As the new algorithm - proposed and documented in this thesis-report - is implemented in 

Haskell, knowledge of elementary Haskell notations [5, 16] would be useful for the better 

understanding of the rest of the report.
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CHAPTER 4: COMBINATORY PARSING

4.1 General Concept
Use of a higher-order function as an infix operator in a function-definition is known as a 

‘combinator’. A parsing method, which is constructed using these combinators, is called 

‘combinatory-parsing’ (as higher-order functions ‘combine’ different parsers together). A 

complete language-processor can be constructed by combining small processors with 

combinators. Though the concept of combinatory-parsing was introduced by Burge in 

1975 [2], it was Wadler (1985, [37]) who first popularized this form of parsing. Wadler 

showed that results (success or failure) of a recognizer can be returned as a list. Multiple 

entries of this list represent ambiguous results, whereas an empty list represents a 

‘failure’. Most of time, parsers are generated automatically using tools like Lex and Yacc 

(for imperative languages) or Happy (for functional language Haskell). One drawback of 

this approach is the user needs to learn a new language (Lex, Yacc or Happy) to generate 

a parser. Combinatory parsers are written and used within the same programming 

language as the rest of the program. As function application in LFP is juxtaposition, a 

language-processor written using combinators can represent BNF representation of any 

CFG. By nature, a combinatory-parsing system is a top-down, recursive-descent (with 

full backtracking), which is able to accommodate ambiguity. These parser-combinators 

are straightforward to construct, ‘readable’, modular, well-structured and easily 

maintainable and alterable. Semantic-meaning and extra functionalities can be added to 

the respective production-rules effortlessly. Frost and Launchbury (1989, [13]) showed 

how to construct Natural-Language Interpreters in Miranda1 using higher-order functions. 

Based on this work, Frost later constructed an attribute grammar-programming 

environment -  W/AGE (Windsor attribute grammar-programming environment) (2002, 

[10]). Huttton (1992, [19]) also used parser-combinators to demonstrate a complete 

parser construction - that addresses parsing problems caused by white-space, special 

characters etc. Koopman and Plasmeijer (1999, [21]) used continuation to improve the 

efficiency and performance of parser-combinators.

1 Miranda is a trademark of Research Software Limited of Europe
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The following step-by-step example demonstrates how a CFG can be represented as a

language-processor using parser-combinators.

4.1.1 Example o f a Simple Parser-Combinator
A production-rule of a CFG may have one or more ‘alternatives’ and each alternative

may consist of a sequence of non-terminal(s) and/or terminal(s), or the alternative may

consist of a single non-terminal or terminal or ‘empty’. In order to build a recognizer for

a CFG using parser-combinators, we need to construct some basic combinators and use

them to ‘glue’ different terminals and non-terminals to form a complete rule. These

combinators work as infix operators and non-terminals (and terminal) work as operands

to these operators. (Note that in this example we just work with ‘recognizers’ instead of

‘parsers’) Consider a CGF that generates a limited subset of natural-language:

Sentence ::= Noun_Phrase Verb_Phrase
Noun_Phrase ::= Del Noun | Adjective Noun | Del 

Noun Verb 
= Verb PP NP | Verb I empty
= the | a | an
= universe I planets Isolar-system 
= earth-like \ finite
= the | a I an
= exist | finds | expands 
= in I on

Verb_Phrase
Det
Noun
Adjective
Det
Verb
PP

This grammar recognizes a given sentence (or parts of it) if the sentence’s syntactic- 

structures match some rules of the grammar. We denote the ‘sentence’ as a list of strings 

(or tokens). If some parts of the sentence (starting from the beginning) have been 

recognized, then the result of recognition is the ‘rest of the sentence’. That implies if the 

whole sentence is recognized successfully, the result is just a list of an empty string. If the 

recognition fails, the result is an empty list. If the same input can be recognized in more 

then one ways, then the result contains multiple entries.

For example, application of Noun Phrase to ["the", "universe"] and 

["the", "milky-way"] results [ [ ] ]  (indicating‘success’) and [] (indicating 

‘failure’) respectively.

So, the type of the basic recognizer is:

type Recognizer = [String] -> [[String]]
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We define four basic-combinators to construct the complete recognizer-set.

1. The empty recognizer always succeeds and simply returns the input.

empty input = [input]
2. Any terminal is constructed in terms of combinator - term, which matchers the first 

token of the input-sequence with its own token. If a match is found, it returns the rest of 

the input-sequence, otherwise returns an empty list.
term :: String -> Recognizer 
term w [] = L
term w (t:ts) w == t = [ts]

otherwise = []

3. We call the ‘alternative’ combinator orelse, which is used as an infix operator between

two recognizers. The orelse applies both of the recognizers on the same input-sequence

and sums up the results returned by of both of the recognizers, which is eventually

returned as the final result. It can be defined as:
orelse:: Recognizer -> Recognizer -> Recognizer 
(p 'orelse' q) inp = unite (p inp) (q inp)

We assume the function ' un i t e ' combines the results returned by the two

recognizers and removes the duplicate values.

4. The sequencing of recognizers is done with the then combinator. Like ‘orelse’, it is

also used as an infix operator between two recognizers. But it applies the first recognizer

to the input-tokens and if there is any successful result of this application, then the second

recognizer is applied to the result -  returned by the first recognizer, otherwise the final

result is an empty list -  indicating a failure. One way of defining it is:

then:: Recognizer -> Recognizer -> Recognizer 
(p 'then' q) inp = apply_to_all q (p inp) 

where
apply_to_all q [] = []
apply_to_all q (r:rs) = unite (q r)

(apply_to_all q rs)

The function a p p l y _ to _ a l l  ensures that the second recognizer - q -  is being applied 

sequentially to all possible results returned by first recognizer -  p.
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Using these four basic combinators, we now represent the previously mentioned 

CFG as a combinatory-parser for simple subset of English. Basically the sequencing 

terminal and/or non-terminals are glued together by then combinators, alternatives are 

represented with orelse combinators, terminals and empty recognizers are created by 

term and empty combinators. Each non-terminal definition works as an executable- 

function, which is simple enough to construct, understand and modify.

Sentence = Noun Phrase 'then' Verb Phrase
Noun Phrase = Del 'then' Noun 'orelse' Adjective 

'then' Noun 'orelse' Del 'then' Noun 
'then' Verb

Verb Phrase = Verb 'then' PP 'then' NP 'orelse' Verb 
'orelse' empty

Det = the 'orelse' a 'orelse' an
Noun = term "universe" 'orelse' 'orelse' term 

"planets" 'orelse' term "solar-system"
Verb = term "exist" 'orelse' term "finds" 

'orelse' 'term "expands"
Adjective
PP

= term "earth-like" 'orelse' "finite" 
= term "in" 'orelse' term "on"

Figure 4.1: A combinatory-parser representation of a CFG for NL

Below is a list of sample applications of these recognizers to some natural-language 
inputs:

1. Sentence ["earth-like", "planets", "exist", "in", 
"the", "universe"] => [[""]]
(A completely successful recognition)

2. Sentence ["earth-like", "planets", "may", "exist"] => 
[["may", "exists"]]
(A partially successful recognition)

3. Noun_Phrase ["the","universe", "expands", "uniformly"] 
=> [["expands", "uniformly"],["uniformly"]]

(Two different ways of recognitions for the same input -  shows ambiguity)

4. Sentence ["andromeda", "is", "next", "to", "milky- 
way"] => []
(A failed or unsuccessful recognition)
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4.2 Use of Monads for Combinatory-Parsing
4.2.1 Monads to Structure Program
As non-strict functional-programming languages do not permit ‘side-effects’ (such as: 

assignments, exceptions, continuation etc), it is relatively complex to perform operations 

like IO, maintaining states, raising exceptions, error handling etc. The monads appear as 

an easy solution of these kinds of problems. The concept of ‘monad’ in computing is 

derived from Category-Theory -  a branch of mathematics, which abstractly describes 

mathematical-structures (categories) and relations between them. Moggi [8, 9] showed 

how monads can be used efficiently to structure semantic-computations. Moggi (1989) 

and Spivey (1990) demonstrated that maintaining states, raising exceptions, error 

handling, continuations etc can be performed structurally using monads. Inspired by their 

works, Wadler established monads as a convenient tool for structuring functional 

programs [ 38, 39].

4.2.1.1 Definition o f  Monad

Our discussion about monads is restricted within its use in functional programming as a 

software-engineering tool. A monad consists of a triple (M, unit, bind).
M is a polymorphic type constructor.

Function unit (of type a -» M  a) takes a value and returns the computation of the 

value. Function bind (of type M a -> (a -» M b) - » M  b) applies the 

computation (a -» M  b) to the computation 'M a' and returns a computation 'M b'. 
The bind ensures sequential building blocks of computations. To be considered as a 

valid monad, the triple has to obey following three laws:

Left Unit :: unit a 'bind' k = k a 
Right Unit :: a 'bind' unit = a
Associative:: a 'bind' (\b -> (k b) 'bind' (\c —> h c) )

= (a 'bind' (\b —»• (kb)) 'bind' (\c -» h c)
By adding simple changes to an existing monadic-definition, one can perform complex 

operations with added requirements in a fairly easier way. Monads, to some extent, 

mimic an imperative-style programming environment within the scope of purely-
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functional language. Monad helps programmers to construct a ‘bigger’ computation 

combining sequential alterable blocks of ‘smaller’ computations. It abstracts the smaller 

computations and the combination-strategies from the main computation. As monad 

separates the type of computation from the type of resulting value, it’s easier to add new 

changes to an existing monad to fulfill different computational requirements.

Two most commonly used monads are the identity-monad and the state-monad. 

We are particularly interested in the ‘state-monad’ as this form of monad has been 

employed in this thesis to construct the combinatory parsers.

Identity-Monad:

This simplest monad just returns the value without attaching any information to it.

type Id x = x
unit :: a -> Id a 
unit x = x
bind:: Id a -> (a -> Id b) -> Id b 
x 'bind' f = f x

State-Monad:

As maintaining updateable variables (in other words -  ‘different states’) are not permitted 

in LFP languages, eveiy function-definition, which requires latest state-value, must have 

a ‘state’ as input-parameter. For complex functions, maintaining this explicit ‘state’ is 

complicated, error-prone and results unstructured and cluttered code. By using state- 

monads, function-definitions can ‘abstract away’ the updated ‘state’ as a function- 

parameter implicitly. A continuously-changing state-variable can float around within a 

monadic function-definition without forcing the function explicitly operates on it. One 

way to define a state-monad is:

type State a = S -> (a, S)

unit :: a -> State a
unit x = \s -> (x, s)

bind :: State a -> (a -> State b)-> State b
m 'bind' k = \x -> let (p, y) = m x in

let (q, z) = k p y in
(q , z)
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The u n i t  takes a value of any type (along with an initial state of type S, which is 

abstracted within the definition) and returns a pair that consists of the input-value and the 

initial state. In other words, the type of the output of u n i t  is 'State a'. The b in d  

takes two parameters - the first one, m, is of type 'State a' and the second one, k, 
which is a computation that takes a value of type a and returns a value of 'State a'. 
The output of b in d  is of type 'State a'. According to the type-definition of 

'State a', when x of type S is supplied to m, it returns a pair (p , y) where p is the 

value that ‘container’ m was holding and state y is of type S. Then b in d  takes p and y 

from the output o f 'm  x ' ,  applies k on p, which returns something of type 'S t a t e  a ' 

(which contains a value inside). When output of k is applied to the previously calculated 

state y, it returns (q, z) - by following the definition of 'State a'. Here q is the 

new value that the output of ' k p' was holding and z is the new state (of type S).

4 .2 .1 .2  E x a m p le  o f  M o n a d ic  C o m p u ta tio n

The following simple-but-illustrative example shows how adding some changes to the 

existing monadic-definition can perform different computational tasks.

With the non-monadic definition for reversing a list, it’s quite tedious to retrieve 

other information about the list. But by converting the naive definition of ‘reverse list’ to 

a monadic definition, we can perform additional tasks in a structured manner.

The original definition for reversing a list: 

revList [] = []
revList (e:es) = revList (es) ++ [e]

Example 1:

This basic monadic-definition (using identity-monad) of reversing a list and the original 

definition do not have any difference w.r.t. their functionalities. This monadic-definition 

can be considered as the basic building block for the other monadic-definitions. The type- 

constructor 'Ml a' has one data constructor - a. The unitl and bindl are defined 

according to the previous identity-monad definition.

revListl [] = unitl []
revListl (e:es) = revListl (es) 'bindl' f

where f a = unitl (a ++ [e])
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Sample output:
*Main> revListl [3,7,9,0] 
[0,9,7,3]

Example 2:

This version of ‘monadic reverse-list’ uses ‘state-monad’ and is changed in such a way 

that along with reversing a list, it is also able to return the length of the input list. It was 

done by changing the type constructor 'M2 a' so that it can maintain a state of integer 

type. The definition of bind was also changed to ensure that the recursive calls can have 

the latest state.
type M2 a = Int -> (a, Int)
unit2 :: t -> M2 t
unit2 x = f where f t = (x,t)
bind2 :: M2 tl -> (tl -> M2 t2) -> M2 t2
m 'bind2 ' k = f’

where f' x = (b,z)
where (b,z) = k a y

where (a,y) = m x

revList2 [] c = unit2 [] c
revList2 (e:es) count = (revList2 es 'bind2' f)

(count+1 ) 
where f a
= unit2 (a ++ [e])

Sample output:

*Main> revList2 [3,7,9,0] 0 
( [0,9, 7,3] ,4)

Example 3:

This version of ‘monadic reverse list’ is changed in such a way that along with reversing 

a list, it is also able to detect if the input-list has multiple occurrences of one or more 

elements. The same state-monad is used but the type constructor 'M3 a' is changed in 

such a way that it can print some information. The monad gives us the chance to add 

some helper functions like ‘findDup’ and ‘chkForDup’ for computational flexibility.
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type S = [Char] 
type M3 a = S -> (a, S)

revList3 [] = unit3 []
revList3 (e:es) = (drevList3 es 'bind2' f)

where f a = unit2 (a ++ [e])

drevList3 lis str = findDup revList3 lis str 
findDup revList3 lis str

= (out, chkForDup out) 
where (out, none)
= revList3 lis str 

chkForDup resList = if (resList == nub resList)
then "Has No Repetition" 
else "Has Repetition"

Sample output:
*Main> drevList3 [3, 7, 4, 9] ""
([9,4,7,3],"Has No Repetition")
*Main> drevList3 [3,7,9,4,9] ""
([9,4,9,7,3],"Has Repetition")

4 .2 .1 .3  M o n a d s  in  H a s k e l l

Haskell is equipped with many built-in monads (such as: list, maybe, IO etc) and the

Prelude1 contains some monadic classes (such as: Monad, MonadPlus, Functor etc).

The standard monad class in Haskell is defined as

class Monad m where 
return :: a -> m a
(»=) : : m a -> (a -> m b) -> m b

(where 'return' and ' ( » = )  ’ are equivalent to 'unit' and 'bind' of
previous discussion)

A basic monad can be constructed by creating an instance of this class. Haskell also 

provides a special syntax for monad (the ‘do’ notation -  an expressive short-hand 

notation), which gives programmers a touch of imperative-style-programming in Haskell. 

Instead of using the built-in monads, we shall use hand-written monads to maintain the 

clarity of the function-definitions.

1 The standard library o f Haskell

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2.2 Monadic Parser-Combinators
Wadler (1990, [38]) first noticed that using monads, combinatory-parsers can be 

represented in an organized manner. Hutton (1996, [19]) described a step-by-step 

procedure to form functional-combinators using monads. In 2003, Frost demonstrated 

how monadic parser-combinators can be used to maintain updatable ‘state’ efficiently 

during ‘memoization’. The main purpose of transforming regular combinators to monadic 

combinators is to abstract out the underlying computation mechanism in order to add new 

functionalities in a structured and modular way. In our case, however, the primary 

requirement is maintaining a changing ‘state’ securely. We begin by transforming the 

non-monadic combinators of section 4.1.1 to monadic combinators using identity-monad. 

Though these definitions don’t serve any useful purpose except modularity for now, we 

show in following sections, how we can systematically replace the identity-monad with a 

state-monad to provide systematic method for memoization.

Identity-monad definition 
type Recognizer x = x 
unit :: a -> Recognizer a 
unit x = x
bind:: Recognizer a -> (a -> Recognizer b) ->

Recognizer b
x 'bind' f = f x

Basic (identity) Monadic-combinators
term c [] = unit [""]
term c (r:rs)I r == c = unit [rs]

I otherwise = unit []
empty x = unit [ x ]

(p 'orelse' q) inp = p inp 'bind' f
where f m = q inp 'bind' g

where g k = unit(union m k)
(p 'then' q) inp = p inp 'bind' f

where f m = q m 'bind' g 
where g k = unit k 

Figure 4.2: Simple monadic-combinators
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In orelse, recognizers p and q are applied to the given input inp and their results are 

bound to the variables m and k using bind. The union of m and k is added to a 

‘container’ of computation through unit and returned as the result of o r e l s e .  In 

then, recognizer p is applied to the given input and its result is bounded to m with 

bind. Then recognizer q is applied to m and its result is bounded to k, which ultimately 

is returned as a computation using unit. The term and empty combinators’ results are 

added to a ‘container’ of computation using unit and returned afterwards. Using these 

combinators, we can form identical recognizers of figure 4.1.

4.3 Shortcomings of Combinatory-Parsing
Combinators are very effective for constructing modular top-down recursive-descent 

backtracking language-processors and to accommodate ambiguity. But they exhibit 

exponential time-complexity in worst-case and they don’t terminate when used to 

represent a left-recursive production rule.

4.3.1 Exponential Time-complexity
If no precaution is taken, a top-down parser normally exhibits exponential time-

complexity while processing an ambiguous grammar. As combinator-parsing follows

recursive-descent with backtracking top-down parsing technique, it is inherently

exponential. The simple ambiguous grammar - G_1 from section 2.1 that can generate

binary numbers -  can be expressed using combinators as:

B_E = D 'orelse' (D 'then' B_E) 'orelse' empty 
D = term 0 'orelse' term 1

And when executed on input " 0 0 0 " , the execution tree with repeated computations 

would look like: B E
/ T \

D (D B E) empty
/ \ /\ I \ \

0 1 0 1 D (D B E) empty
/\ /\ / I \

0 1 0 1 D (D B_E) empty
A  A  I
0 10  1 failed 

(the bold parses are repeated computation)
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When a non-terminal e.g. B E (or D) is applied on the input, according to the definition 

of 'orelse' combinator, all the alternatives of B E (or D) are being applied on the 

current input without knowing whether the same operation for same input was performed 

previously or not. For a highly ambiguous grammar, the rate of backtracked alternative 

re-computations grows exponentially with respect to the length of the input.

4.3.2 Non-Termination for Left-Recursion
If we express the above grammar in a left-recursive form, then the combinator-parser 

would be:

B_E = D 'orelse' (B_E 'then' D) 'orelse' empty
D = term 0 'orelse' term 1

The second alternative of the non-terminal B_E (B_E = B_E ' then' D) is a left-

recursive rule. When this particular rule is applied on an input "0 0 0 "  the following

parse will be ever-growing:

When the non-terminal B E is executed on any input, according 

1  ̂ to the definition of the combinator 'then', its left-mostB_E D
/  \  operand (which is the B E  function itself) is being applied on

the input first. When this second B_E executes its definition, the

same scenario occurs again. As B E rewrites itself at the left-
B_E ~

most position and doesn’t introduce any ‘terminal’, the parser 

doesn’t get the chance to ‘consume’ any input-token and 

therefore the process never terminates.
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CHAPTER 5: RELATED PREVIOUS WORKS

5.1 Use of memoization and monads to accommodate 

ambiguity in polynomial time
The technique of re-using ‘previously-stored results’ has been used to improve parsing 

and recognition efficiency by many. Earley’s well-known chart-parsing algorithm [6], 

which uses ‘dynamic-programming’, requires 0(n3) time in the worst case. Leermakers 

and Augusteijn [25] used ‘memoization’ to improve their parsing-algorithm though their 

explanations are slightly abstract in terms of modularity. It was Norvig [32] who first 

demonstrated how to construct modular and efficient parser-combinators using a strict 

functional language (Lisp) with the help of ‘memoization’. Inspired by his work, Frost 

and Szydlowski (1995) constructed a purely-functional versions of memoized language- 

processors. In 2003, Frost extended the previous work by changing the general-parser 

combinators to state-monadic parser-combinators to ensure correct systematic 

memoization. By using memoization, this approach also ensures cubic time-complexity at 

worst case for recognition. In this section, we discuss Frost and Szydlowski [14] and 

Frost’s [9] work briefly.

5.1.1 Basic Concept o f Memoization
Many recursive programs can be “memoized” to improve efficiency. Memoization (also 

known as ‘top-down dynamic-programming’) computes a ‘sub-problem’ once, saves the 

result in a storage (we shall refer this storage as ‘memo-table’) and reuses this result 

(instead of re-computing it) when the identical sub-problem is required to be solved 

again. Time-complexity of most of the recursive computations can be reduced from 

exponential to linear or polynomial using memoization. The whole process is based on 

two operations:

Update: whenever a result is computed for a sub-problem, it is saved in the memo-table 

(with a unique identifier (id)) during recursive-ascent - only once.

Lookup: if the recursive-process meets the same sub-problem again somewhere during 

recursive-descent, then the memo-table is being checked with this problem’s id and if a 

match is found, then the saved result is returned, otherwise, the problem has to be
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computed. Different variant of ‘update’ and ‘lookup’ can be used -  according to the 

needs. For example, consider the recursive definition ‘fib’ (for computing Fibonacci 

number) and the execution-tree for input 6:
fib n|n == 0 = 0  

In == 1 = 1
I otherwise = fib (n-1 ) + fib (n-2 )

fib 6__
I \

fib 5 + fib 4______
/  \  

fib 4 + fin 3 
/ \ / \ 

fib 3+fib 2 fib 2 + fib 1 fib 2
/

/
fib 3r

\
fib 2

\  I \
+ fib 1 fib 1+fib 0 
\\  /  \  / \  / 

fib 2 + fib 1 fib 1 + fib 0 fib 1 + fib 0 fib 1 + fib 0 
/ \ 

fib 1 + fib 0

Clearly, the time requires to compute ‘fib 6’ is exponential (0  (2n) ). But, if the results of 

sub-problems were saved in a memo-table for future use, then the required time would be 

reduced to linear:
fib 6 

t[update]
/  \

fib 5 + fib 4 4 [lookup]
T[update]

/  \ 
fib 4 + 

t[update]
/  \ 

fib 3 + fib 
T[update]

/  \ 
fib 2 + fib 1 

T[update]
/  \ 

fib 1 + fib 0

Memo-table for ‘fib 6’

fin 3 4 [lookup] 

2 4 [lookup]

n result
0 0
1 1
2 1
3 2
4 3
5 5
6 8

Figure 5.1: Memoized Computation of Fibonacci

In an imperative-programming (or in a strict-functional) language, a global 

memo-table can be used to store the previously computed results, but as there are no 

updatable variables in lazy-functional languages, the latest copy o f the memo-table has to 

be passed-around as an input argument of recursive function-calls.
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5.1.2 Frost and Szydlowski -  Memoized Language-processors
Frost and Szydlowski constructed memoized versions of basic combinators (as described 

in section 4.1.1) for building polynomial-time language-recognizers. Their method differs 

from Norvig’s approach by being implemented in a purely-fiinctional programming 

language -  Miranda. As Norvig used Lisp (a strict functional language), he was able to 

maintain a globally accessible memo-table within the program-scope, which could be 

updated or looked up by any function independently. But, as updatable dats-structure is 

not permitted in LFP languages, Frost and Szydlowski implemented language- 

recognizers in such a way that they can receive the recent memo-table as input-argument 

and can also return it as a part of the output. Basically the whole memo-table is threaded 

through the all recursive calls of the recognizers as an input-argument.

To illustrate their approach, we step-by-step construct memoized parser-combinators that 

represents the CFG rule “S: : = a S S I e”. In their original paper, Frost and 

Szydlowski described the recognition-procedure by identifying inputs as integer indices 

for improved efficiency. For simplicity and better readability o f the function-definitions, 

in this section we assume that

- input-tokens are represented as characters.

- unique-identifier of a recognizer is a string (i.e. recognizer’s name) and

- ‘result’ of recognition is a list of ‘remaining inputs’ (or a string).

So, the memo-table can be defined as:

type memo-table = [(String,[( String,[String])])]
which represents “memo-table = {(recognizer id,{(recognized input-token, {different

results o f recognition})})}”.

In order to perform a lookup or an update operation, recognizers are ‘memoized’ by 

applying a higher-order function — memoize -  to all recognizers. Through this 

function, a recognizer first looks up the memo-table, if look-up fails, then the recognizer 

executes its own definition and whenever it finds a result, it updates the memo-table with 

appropriate id and newly-computed result. If a similar computation is required at some 

point later, the recognizer just looks up the table to retrieve the result -  instead of re

computing it. The lookup and update functions can be defined as:
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lookup name inp table 
Ires_in_table == [] = []
lotherwise = res|(i, res) <- (res_in_table !! 0 ),i == inp] 

where
res_in_table = [pairs|(n,pairs) <- table,n == name]

update [] name inp res = [(name,[(inp,res)])] 
update ((key, pairs):rest) name inp res 
I key == name =(key, (inp,res):pairs) :rest 
lotherwise =((key,pairs): update rest name inp res)

The 'lookup' function scans through the memo-table with given recognizer 'name' 
and current input 'inp'. If there exists a result in memo-table, ' l o o k u p ' returns that, 

otherwise it returns an empty list - indicating a lookup-failure. The 'update' function 

adds a newly computed result 'res' to the end of the result-set for a particular 

recognizer 'name' and specific input 'inp'.

memoize rec-name recognizer (inp, table)
Itable_res == [] =(res, update newtable rec-name inp res) 
lotherwise = (table_res!!0 , table) 

where
table_res = lookup rec-name inp table 
(res, newtable) = recognizer inp table

The 'memoize' function takes a recognizer-name (unique id), recognizer function- 

definition, input-string and a memo-table as its input-parameters. From the definition, it 

is obvious that 'memoize' first performs a 'lookup', if 'lookup' returns an 

empty list, it permits the 'recognizer' to compute new results. When a result is 

found, it is updated to the memo-table for later use. To pass-around the memo-table as an 

input-argument (or as the part of the output) of a recognizer, the definitions of basic 

combinators can be modified as follows:

(p 'orelse' q) (inp, memo_tab) = (merge_result1 p_r q_r,n_tab)
where
(p_r, n_tab)= p (inp, memo_tab)
(q_r, n_tab)= q (inp, n_tab)

1 Assuming already-defined 'merge-result' function adds two sets of results by removing duplicates.
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(p ' t h e n S ' q) ( in p ,  m em o_tab)
I i f  n _ ta b  /=  [] = q (p _ r ,  n _ ta b )
I o th e r w is e  = ( [ ] ,n _ t a b )

w here
(p _ r ,  n _ ta b )  = p ( in p ,  memo_tab)

em pty ( in p ,  memo_tab) = ( [ i n p ] ,  memo_tab)

te rm  c ( [ ] ,  m em o_tab) = ( [ ] ,  memo_tab)
te rm  c ( in p ,  memo_tab)

I c —  h e ad  in p  = ( [ t a i l  i n p ] , memo_tab)
I o th e r w is e  = ( [ ] ,  memo ta b )

In o r e l s e ' ,  recognizer p is applied to the given input and table pair whereas q is 

applied to given input and table returned by p pair. Recognizers p and q ’s result-sets are 

merged to form the result of ' o r e l s e ' .  The combinator ' t h e n '  applies p to the 

given (input, table) pair and q is applied to the output and table pair - returned by p. The 

result of ' t h e n ' is simply the q ’s final result. Using these new combinators and the 

memoize function, the CFG ‘S : :  = a  SS | s ’ may now be expressed as:

s = memoize " s "  (a ' t h e n '  s ' t h e n '  s ' o r e l s e '  em pty) 
a = te rm  ' a '

This approach results in polynomial time-complexity when implemented correctly. 

However, it was found in practice, that errors often were made in implementation, 

resulting in unexpected exponential complexity.
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5.1.3 Frost- State-Monadic Language-processors
Frost [9] solved the shortcomings of the previous work by transforming the basic-

combinators into state-monadic-combinators and this approach allows the systematic

threading of memo-table systematically throughout all recursive recognizer-executions.

In addition, use of the state-monad improves the modularity of the language-processor

and provides flexibility to add different functionalities (e.g. adding semantic meaning to

the production rules etc) to the recognizers. Experiments suggest that this monadic-

version is less error-prone and ensures cubic time-complexity for ambiguous grammars

flawlessly. To explain Frost’s approach, we can simply change definitions of the basic-

monad from section 4.2.2 to a state-monad for building basic-combinators. From the

discussion of last sections, we know that a memo-table has to be passed around as an

input-argument and output of all recognizer-executions for real-time ‘update’ and

‘lookup’ operations. By using same ‘type’ of the last memo-table (represented here as

' S ' )  we formulate the state-monad as:

type S = [ (String, [( String, [String])])] 
type State a = S -> (a, S)

unit :: a -> State a 
unit x  = \s -> ( x ,  s)

bind :: State a -> (a -> State b)
-> State b 

m 'bind' k = \x -> let (p, y) = m x in
let (q, z) = k p y in

(q , z)

Operations of 'unit' and 'bind' are identical to the description of state-monad in

section 4.2.1.1.We can now reuse the definitions from section 4.2.2 to build the state-

monadic combinators:

term c [] = unit [""]
term c (r:rs)I r == c = unit [rs]

I otherwise = unit []

empty x = unit [x]
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(p 'orelse' q) inp = p inp 'bind' f
where f m  = q inp 'bind' g

where g n = units(union m n)

(p 'then' q) inp = p inp 'bind' f
where f m = apply_to_all q m

apply_to_all q [""] = unit [""]
apply_to_all q [] = unit []
apply_to_all q (r:rs) = q r 'bind' f

where f m = apply_to_all q rs 'bind' h
where h n = unit (union m n)

Beside the use of state-monad, the other change is the definition of ‘then’ combinator.

A function ‘apply_to_all’ is introduced in ‘then’ so that recognizer q is allowed to

be applied on all possible results returned by recognizer p. All the possible results

returned by q are united together, added to ‘container’ of computation through ‘unit’
and returned as the result of ‘then’. The combinator-recognizers, which represent a CFG

grammar can be ‘memoized’ identically using the same memoize, update and
lookup functions - defined in the last section.

For example, the CFG ‘S : : = a SS | e’ may again be expressed as:

s = memoize "s" (a 'then' s 'then' s 'orelse' empty) 
a = term 'a'

A test-execution ‘s "aaa" [ ] ‘returns:

( "a","aa","aaa"],
[ ("s", [("aaa", ["","a","aa","aaa"]),

/  - a  "  r  » »  ”  t !  M  I !  I !  ]  \v / L / J )  t

("a",["","a"]),
( " " ,  [ " " ] ) ] ) ] )

Both of the above mentioned approaches are for ‘recognition’ of the given input- 

sequence, no parsing system was constructed. Moreover, even though Frost’s last 

approach ensures accommodation of ambiguity in polynomial, it is not capable of 

processing any form of left-recursive grammar.
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5.2 Approaches to Accommodate Left-recursion
Kuno (1965) appears to be the first to have used the length of the input to force- 

termination of left-recursive descent in top-down processing. The minimal lengths of the 

strings - generated by the grammar on the continuation stack - are added and when their 

sum exceeds the length of the remaining input, expansion of the current non-terminal is 

terminated. However, Kuno’s method is exponential in the worst case.

Lickman (1995, [27]) showed how Wadler’s (1992) idea of ‘using (monadic) 

fixed-point operator to terminate left-recursive recognizer’ can be achieved practically. 

He described a program that takes a BNF representation of a CFG as a input and 

automatically converts it into a combinator-parser using fixed-point operator. However, 

as mentioned by Lickman, this approach may not be able to result all possible results (i.e. 

not complete) and exhibits exponential time-complexity with respect to the length of the 

input during recognition.

Other attempts, includes Johnson’s approach (1995) of integrating memoization 

with continuous-passing-style (CPS) programming to handle left-recursive grammars 

appears to solve the problem for recognition in polynomial time. He mentioned that 

simply memoizing a recognizer (as introduced by Norvig) doesn’t help to terminate a 

left-recursive recognizer, as memoization is ‘delayed’ due to left-growing parse. His 

approach to solve this problem, to some extent, is similar to the chart-parsing techniques - 

developed by Shiel (1976) and Leermakers (1993). According to this approach, the 

central idea of terminating a left-recursive memoized CPS recognizer is to make sure that 

‘no un-memoized procedure is ever executed twice with the same arguments’. Johnson 

mentioned that this approach may be too complicated to convert the recognizers into a 

parsing-system and a straight forward implementation would not have enough 

information for compact-representation of resulting parse-trees.
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CHAPTER 6: THE NEW ALGORITHM -  FOR 

RECOGNITION
The proposed-algorithm uses memoization to accommodate ambiguity and left-recursion 

in polynomial time. It utilizes the state-monadic computation-technique (section 5.1.3, 

Frost, 2003) for modular and structured construction of parser-combinators and for 

threading the memo-table correctly trough out all parser-executions. The memoization 

process has been defined in such a way that it may forcefully terminate a branch of a 

parse by performing a ‘bound-check’ with respect to the length of the input-sequence and 

the depth of the parse. Also, the ‘lookup’ process of memoization is strictly conditional, 

which ensures proper re-use of the saved results. If a parser tries to retrieve a result from 

the memo-table, its current ‘context’ is compared with its saved ‘context’ of memo-table 

with respect to the ‘reason’ -  that curtailed the underlying left-recursive parse, if any. The 

memo-table is currently able to represent the resulting ambiguous parse-trees in a highly- 

compact format, which can be viewed as a forest of directed-acyclic-graph (DAG). The 

definitions of the basic-combinators are redefined (utilizing the flexibility of the state- 

monad) to maintain n-ary branching of a non-terminal and to generate a list of reasons for 

curtailment, if any. We first describe the algorithm for recognition (in this chapter) and 

then parsing (in the next chapter) from a theoretic point o f view.

6.1 Basic Definitions
Some definitions - related to the algorithm -  are discussed informally in this section: 

Algorithm: An algorithm is a procedure (a ‘method’ of executing a series of finite 

number of instructions) that halts or terminates (or runs out of instructions) after 

executing a finite number of instructions in a finite time using finite effort on any number 

of inputs. An algorithm may have any number of inputs and can produce any number of 

outputs.

Recognizer: A recognizer simply indicates whether an input can be identified by a given 

CFG or not. It can be viewed as a decision maker, which, if  successfully identifies a part 

of the input-sequence, points the beginning of the remaining input-sequence, otherwise
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returns null. For example, a recognizer can identify the first three characters of the input 

“abcde” using R: : = abc I xy, so as a result, recognizer returns {“de”}.
Parser: A parser not only indicates the how far of the input-sequence is identified using 

a given CFG, but also tells ‘how’ it identifies the part or whole of the input. In other 

words, a parser results parse-tree(s) as the output of parsing. For example, while 

processing an input “abcde” using a CFG “R: : = Ac | xy, A: := be | pq” , a 

parser returns:

R
A 

A c 
/ \ 

a b

(In this report, we generally refer to a definition of a non-terminal/terminal using 

combinators, as a recognizer or parser)

Recursive Recognizer/Parser: A recognizer r is left-recursive if the left-most

recognizer in any of r’s ‘alternatives’ either immediately (direct left-recursive) or 

through some other recognizer-execution (indirect/hidden left-recursive) rewrites to r 

again without performing any ‘recognition’. For example, R : := R a | b is a direct 

left-recursive recognizer, whereas R' : : = A a | s  , A :: =R' a | b  is an indirect left- 

recursive recognizer. For a direct left-recursive recognizer, (1) at least one of the 

alternatives has to rewrite to a terminal or ‘empty’ (through a terminal or a non-terminal) 

at its left-most position. For an indirect left-recursive recognizer either (1) is true 

and/or one of the ‘causing’ immediate non-terminal’s one of the alternatives has to 

rewrite to a terminal or ‘empty’ (through a terminal or a non-terminal) at its left-most 

position. Any other forms of recursive-recognizers are non left-recursive recognizer, 

which recursively call themselves following some ‘other’ terminal(s)/non-terminal(s). 

The ‘other’ terminal(s)/non-terminal(s) must rewrite to a ‘terminal’ or ‘empty’. For 

example, R ' ' : : = a R ' ' I s i s a  non-left recursive recognizer. Any form of non left- 

recursive recognizer’s one of the alternatives has to rewrite to a terminal or ‘empty’ 

(through a terminal or a non-terminal) at its right-most position. Same definitions are 

applicable to the ‘parsers’ too.
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6.2 Overview of Basic Recognition
For computational efficiency, we define the recognition-process in terms of integer- 

indices. Assume that the sequence of input-token is represented by ' i n p u t '  and the 

length of it is ' # i n p u t ' .  Each input-token can be accessed by an integer-index or start- 

position. The result of recognition is expressed with a set of a pair of integers (i , j ) - 

where i  is the ‘start-position’ and j  is the ‘end-position + 1’ of the character-sequence, 

which has been ‘recognized’ by a particular recognizer. An ‘empty’ result-set indicates 

that the recognizer has failed to recognize the given input-sequence successfully. For 

example, if  an in p u t  of length 5 - " a b c d e "  - is to be recognized by a recognizer r : : = 

a b c | e, then the result of the recognition would be { ( 1, 4) , (1 , 1 )} .

We now provide a set-theoretic definition of previously-discussed basic 

recognizers in terms of using indices. We use set-theory notation to simplify proofs of 

termination and complexity (given later). The simplest recognizer that recognizes a 

single terminal (or a character, in our case) is 'term' that takes an integer i, which 

indicates the i111 position of the input-sequence, and a terminal ‘c’ as input. If i is greater 

than the length of the input, the recognizer returns an empty set. Otherwise, it checks to 

see if the character at position i in the input is equal to the terminal ‘c’. If  so, then it 

returns a singleton-set containing a pair ( i , i  + 1), otherwise it returns the empty set. 

The basic recognizer for any terminal ‘c’ is defined as follows:

te r m l  i  c = {} , i f  i  > t i n p u t
= { ( i ,  i  + 1 )} , i f  to k e n  a t  p o s i t i o n  i  == c
= {} , o th e r w is e

The next simpler recognizer is 'empty' that takes a single index i and returns a 

singleton-set containing a pair ( i ,  i )  -  indicating no-action.

em p ty l i  = { ( i ,  i )  }

The next recognizer-operator 'orelse' is responsible for representing production-rules 

having different alternatives (i.e. r :  := p I q) in their definitions. The 'orelse' 
takes two alternative recognizers (p and q) and an index i that indicates the start-position 

as input-arguments, applies each recognizer individually to i and unites the results 

returned by both recognizers. It can be defined as:

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(p orelsel q) i = (p i)u(q i)

The sequencing of one terminal or non-terminal after another in a production-rule (i.e. 

r: : = p q) is achieved with the 'then' recognizer-operator. It takes two sequencing 

recognizers (p and q) and an index i that indicates the start-position as input-arguments, 

applies the first recognizer to i, then applies the second recognizer to a set o f end- 

positions (which are paired with start-positions) returned by the first one - p. At the end 

'then7 returns the union of each of the results returned by the applications o f the 

second recognizer q. We can define it as:

(p thenl q) i = (J (map (q pick_2nd) (p i) )

In order to avoid exponential behavior (caused by repeated same computation) of a 

recognizer that represents an ambiguous CFG, we define the ‘memoization’ procedure (as 

described in section s 5.1.1, 5.1.2, 5.1.3) as follows: 

memoizel
Input : recognizer name, recognizer, start position i 
Output: (a set of (start-pos, end-pos+1) pairs, memo-table)
Method: if lookup succeeds,

return memo-table result 
else

apply recognizer to i update table with results 
return (results, updated memo-table)

lookupl
Input : recognizer name, start position i 
Output: a set of (start-pos, end-pos+1) pairs 
Method: if memo-table has result for rec_name at i 

return result 
else

return empty set

update1
Input : recognizer name, new result, start position i 
Method: if an entry exists in memo-table for 

rec_name at i,
union (add the new-result to the end} 

else
create new entry for rec-name with 
new-result at i
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We assume, for now, that the memo-table of memoize procedure is globally-stored and 

has a type of
{{recognizer name, {start position, {(start position, end position + 1)}}}}.

An update-procedure is only executed during the recursive-ascent phase -  when 

the recognizer has computed a result already and ready to pass the control to the next one. 

And the lookup procedure is executed during recursive-descent phase -  when the 

recognizer checks the memo-table for previously saved results before ‘going down’. 

Using these basic building-blocks and procedures, an example CFG 'S : : = a S S I 
s ' can be expressed as

S = memoizel(((terml a thenl S) thenl S) orelsel emptyl)

and an execution o f  S on an input-sequence "aaa" at the start-position 1 results:

{ ( 1 , 1 ) ,  ( 1 , 2 ) ,  ( 1 , 3 ) ,  ( 1 , 4 ) ,  ( 2 , 2 ) ,  ( 2 , 3 ) ,  ( 2 , 4 ) ,  ( 3 , 3 ) ,  ( 3 , 4 ) } .

As mentioned earlier, each pair is in the result-set has a type (start- 
position, end-position + 1 ). For example, a pair (1, 3) implies that the

recognizer S has successfully identified first two characters of the input "sss". Notice 

that, as we are performing recognition only, it is sufficient to have only one copy of the 

(start, end) pair in the result set. But there might be more then one resulting (start, end) 

pairs -  in other words there could be ambiguous results, which are not necessary to detect 

with the recognition-procedure. It is parser’s job to identify all possible combinations of 

ways in order to detect different syntactic-structures of any given sequence of input. But 

if the above mentioned CFG’s equivalent left-recursive version 'S : : =  S S s  I s ' is 

expressed as a left-recursive recognizer -

S = memoizel (((S thenl S) then terml s) orelsel emptyl) 
and is executed on the same input at the same start-position, then the procedure won’t 

terminate (section 4.3.2).
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6.3 Accommodating Direct Left-Recursion
6.3.1 Condition for Curtailment
Our approach for handling left-recursion is to impose an upper-bound limit on the

number of recursive calls of a left-recursive recognizer at each start-position while

processing a particular input. More specifically, to retrieve all possible results, a

recognizer rj is only required to call itself at most n times at position j, where

j = any start-position of the input, input# > j > 1  

n = input# - (j -1 )

That implies, to curtail a recursively descending left-recursive recognizer t  from ever

growing when applied at a start position j, the following condition-check is sufficient:

if rij > n
then ri is 'curtailed'
else ri performs another recursive-descent operation 
where rij = number of time ri has been called at position j .

it increases each time ri is called at the same 
start-position. We shall refer this counter as 
'left-rec-counter'.

We attach an revalue for every recognizer (non-terminal) of the grammar. For any non- 

left recursive recognizer, the value of tj will never be more then one. This is because if a 

recognizer r, is non-left recursive then it will never apply itself again at the same start 

position, as either it will ‘fail’ to recognize the input-sequence or will ‘consume’ some 

input-token from the input before applying itself again. Hence, a non-left recursive 

recognizer will never be forcefully curtailed. These observations introduce the following 

assumptions and lemmas:

Assumption 6.1

Iff every alternative of a recognizer is tried on each input-token then the recognizer’s 

attempt to compute ambiguous-recognition is correct.

(This assumption stays valid for memoized recognizers too because re-using a result from 

the memo-table for a particular recognizer r at a particular start-position j is equivalent to 

computing a result by executing r on j.)
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Lemma 6.1

If any non-left recursive recognizer’s ( r '  ,,) left-rec-counter value ( r '  ij)  at any start- 

position ( j)  is 1, then the recognizer’s attempt to compute ambiguous-recognition is 

correct.

Direct Proof:

Let a non left-recognizer, r ' i : : =  ......  | a ....  r ' i  ..... | b ....  r ' i ....  be applied

to an in p u t  of length n . So, the start-positions ( j ) of in p u t  are 

{1 , 2 ,..., i , ..., n} and initially r ' i j  = 0 .

Regardless of the value of n and Vj e {1 , 2 , ,  i , ,  n }, initially r ' i goes ‘down’ one 

step and sets r ' i j  = 1. According to the definition of a non-left recursive 

recognizer, r '  i then applies the left-most ‘symbol’ (a or b) of its definition on j 

and this symbol (either a terminal or a non-terminal) does not introduce r ' i again 

without ‘consuming’ at least one input-token. If a  or b fails to consume any input at j ,  

the process terminates, otherwise all next applications of any processor is applied to j  +1 

position, if any. That implies, at position j , control of the processor goes to a different 

recognizer (a or b) or completely terminates leaving r ' i ’ s r '  ij value at 1 and other 

alternatives are applied to j  sequentially (definition of combinators). Hence, 

recognizer’s attempt to compute ambiguous-recognition is correct (assumption 6.1). □

Lemma 6.2

If any left-recursive recognizer’s ( r ±) left-rec-counter value ( r i j)  at any start-position ( j)  

is equal to n  (where n = # i n p u t - t o k e n  -  that r i  is currently processing), then 

the recognizer’s attempt to compute ambiguous-recognition is correct.

Proof by induction on # i n p u t :

Let a left-recursive recognizer, r i : :  = a   r i   I  r '  | b   r ' i   be

applied to an input of length n . So, the start-positions (j ) of n are 

{1 , 2 ,..., i ,..., n } and initially r i j  = 0 .

Base Case:

For n = 1 and Vj e {1 }, when r i  is applied at j =1, initially r i  goes ‘down’ one step 

and sets r i j  = 1 . According to the definition of a left-recursive recognizer and
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parser-combinators, n  then applies the left-most ‘symbol’ of one of its alternatives, 

which is rewritten to r i  again (directly or indirectly), if we let it go ‘down’ one more step 

then r i j  eventually would be 2 and at this point n '  s growth is curtailed by indicating 

this alternative as ‘failed’ .This lets other alternatives of r i  to be applied at j = l  

(definition of combinators). As n = 1 and at least one of alternatives consumes the 

input, there will no input-token be left for further processing. Hence, r i ’s attempt to 

compute ambiguous-recognition is correct (assumption 6.1).

Hypothesis:

Assume that the claim be true for n = k. That implies, r i ' s  rij-values Vj e 

{1 , 2 ,..., i , ,  k } are equal to {k , k - 1 ,..., i ,..., 2 , 1 } respectively and this ensures 

r i ' s  attempt for ambiguous-recognition is correct. We now show that the claim is true 

for n = k+1 .

Inductive Step:

For n = k+1, the start-positions are {1, 2 ,..., i , ..., k , k+ 1} and when j = 1, the 

length of remaining input-token = k+1. Up to kth token, rij-value is k (hypothesis). 

And then from the base-case, r i  needs to go ‘down’ one more step (hence increasing r e 

value by 1) for allowing other alternatives to recognize the (k+-l)th token. That implies, up 

to kth token at j  = l ,  rij-value of is k+1. It can be shown in the similar way that 

r i ' s  rij-values Vj e { 1 ,2 ,... ,  i , . . . ,  k , k+1} are equal to { k + l , k , k -  

1 ,..., i ,..., 2 , 1 } respectively, which ensures r i ’s correct attempt for recognition.

Theorem 6.1

Any recursive-recognizer’s left-rec-count value at a particular start-position can be at- 

most equal to the length of the input it is currently processing for its correct recognition 

attempts.

Direct Proof:

Directly proven from Lemma 6.1 and Lemma 6.2, as all recognizers fall either one of 

these two categories. □

[This theorem is applicable for parsers too, as number of recursive-calls remains same in 

both cases]
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6.3.2 Modified Memoization for Direct Left-recursion
To accommodate theorem 6.1, we define the memoize procedure as follows: 

memoize2
Input : recognizer name, recognizer (ri) , start position j 
Output: ({(start-pos, end-pos)}, memo-table)
Method: if lookup2 succeeds,

return memo-table result 
else

if rij > #input - (j -1 ) 
return {} 

else
increment r̂ j counter by 1
apply r± to j & update2 table with new-results 
return (results, updated memo-table)

looku p2 = lo o k u p l  

up date2
Input : recognizer name, new result, start position j 
Method: if an entry exists in memo-table for 

rec_name at j,
replace the old-entry with the new result 

else
create new entry for rec-name with 
new-result at j

We memoize every recognizer in order to check the ‘curtailment-condition’, which 

ensures a recognizer’s attempt for recognition is correct. As the new-result is computed 

on recursive-ascent - by applying all possible alternatives of a recognizer-definition, it 

contains the older-results too (if any). Hence, it is sufficient to replace the older result 

with the new result in u p date. Memoization reduces the number of recognizer- 

execution at a same start-position from exponential to polynomial.

Example:

Consider the same left-recursive grammar ‘S: :=  S S a | s' that now can be 

expressed as a memoized combinator-parser as

S = memoize2 "S" ( ( (S thenl S) thenl terml a) orelsel
emptyl)

and when recognizer S is applied on input "aaa" at start-position j= 1 we have the 

execution-tree of figure 6.2 .
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S lookup Sg Si2 a e  recursive-descent 1

Curtailed
/

1. At j =1, S recursively descending until its left-rec value > n 
= 3. At this point (S4), one alternative 'S->S S a' is 
curtailed but S->£ is applied that returns a result {(1,1)} 
for S at j = l and S3 u p d a te s  this in memo-table.

2. On the way up, at S6 ,S lo o k s -u p  the memo-table for j=l 
and retrieves the result {(1,1)}. At S2, S computes new 
result { (1 ,2 ),{1 ,1 }} and replaces the old result for j=l 
in memo-table through u p d a te .

3. At S7, S has two start-positions j= 2,1. As there is no 
result for j=2 in memo-table, S now goes recursive- 
descent phase for j=2 and get curtailed at Sio. This lets 
S->s rule to be executed and S u p d a te s  {(2,2)} to memo- 
table for j=2 .

4. At S1 2, S performs a successful lookup and at Sg, S 
updates a new result { (2,2) , (2,3) } for j=2. At S1 3, S 
lo o k s -u p  for j= 2  successfully but goes to recursive- 
descent again for j=3 and u p d a te s  result {(3,3),(3,4)}.

5. This same process is performed repeatedly and at S7, S 
u p d a te s  {(2,2), (2,3), (2,4), (3,3), (3,4)} and eventually at 
Si, s returns the final set of results:
{ (1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4)} .

Figure 6.1: ‘Condition for curtailment’ for left-recursive recognition
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6.4 Accommodating Indirect Left-Recursion
6.4.1 The Problem
Though the ‘curtailment-condition’ ensures right growth of the correct applications of all 

alternatives for recognition, for indirect left-recursive recognizers the process tends to do 

too little work -  which eventually causes some missing results (or parses -  in terms of 

parsing). This problem results from premature or out-of-place lookup-operations during 

memoization. If there is no memoization involved in recognizer-executions, then there 

wouldn’t be any problem.

Consider the recognizer

S = memoize2 "S" ((S thenl A) orelsel emptyl)
A = memoize2 "A" (S thenl terml a)

(which is the equivalent Chomsky Normal Form (CNF) of ' s  = memoize2 (( (S 
thenl S) thenl terml a) orelse emptyl) ' ). The result of executing S on 

input "aaa" at start-position j=l and according to section 6 .2 .2 .1, a part of the 

execution-tree is:

/
  So_____

/  I \
Si Ai E

/ A \
update! S2 updatelAa £ faulty-lookup for j=l

1 \
\ S 3  A a y e  S5 a

Curtailed lookup
1. According to the 'curtailment-condition', S is curtailed 

at S3 .
2 . S2 computes a result {(1 ,1 )} using 's->e' for j=l.
3. A2 computes a result {(1,2)} using 'A->((S-> lookup) a)' for 

j=l and updates to memo-table.
4. Si updates { (1 ,1 ), (1 ,2 )} for j=l.
5. Ai tries to compute for j=l,2 and for j=l, A already has 

a result in memo-table (step 3). But that result {(1,2)} 
was computed in a different context in terms of A's 
curtailed left-recursive predecessor S. To get the right 
result { (1,2), (1,3)} at j=l, A needs to perform another 
recursive-descent operation at Ai._______________________

Figure 6.2: Faulty ‘out-of-context’ lookup
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As a left-recursive recognizer’s attempts to find the ‘left-most derivation’ is 

‘delayed’ until the curtailment-condition is satisfied, we can say its process of recognition 

occurs on recursive-ascent. If a recognizer falls within the parse of a curtailing indirect 

left-recursive recognizer and if it tries to re-use a result, it needs to make sure that its 

parse has recursively descended enough when the result was stored to re-use the result 

later. In the previous example (figure 6.2), when A saved a result {(1, 2)} at A2 for j =1, 

its left-recursive predecessor S was called twice (at S0 and Si) and the same left- 

recursive recognizer S was curtailed at S3 as A 's  or any of its siblings’ successor. And 

when A at Ai tries to re-use a result (which was computed at A2), A 's  curtailed left- 

recursive predecessor S was called only once (at So). Therefore A’s contexts are not 

equal at Ai and A2 in terms of how many times A’s or any of its siblings’ curtailed-left- 

recursive successor was called as A’s predecessor. It is obvious because at A2, when A 

started to compute a result, it appeared a s S 0- > ( S i  ->  (S2 A2)) and at Alf A 

appeared as S0-> (Si A i) . Hence, it is not correct for A to re-use a result at Ax and in 

order to re-use, Ai has to grow one more step down. On the other hand, when S computed 

a result at S2, S (the curtailed-successor) was called twice (at So and Si) as predecessor 

and when S5 performs a lookup, it should be allowed to re-use the result because S (the 

curtailed successor) was called twice (at S0 and Si) too as the predecessor of S5. Hence, 

S’s contexts at S2 and S5 are the same. This scenario doesn’t apply for a non left- 

recursive parser’s attempt to re-use a result, because of its attempts to find the ‘left-most 

derivation’ is not ‘delayed’ or is ‘at the right place’ and it won’t try to re-use a result 

before growing correctly. That means, for a particular start-position, a non-left recursive 

recognizer’s growth of parse is not context-dependent.
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6.4.2 Context-Based Re-use,  Modified Combinators and Memoization
From the previous-section’s analysis, it is understood that

1. We need to know a parse-result’s reason(s) - r for curtailment, if any. Also we 

need to pass the current-context (of the current-recognizer) downwards during 

recursive-descent.

2. If a result is to be saved, we need to save the context in which it was computed, 

which we call the left-rec-context -  Ic, with respect to the reason(s) for 

curtailment, if any.

3. Before re-using any saved-result, we need to make sure that a recognizer’s 

current-context -  cc is appropriate or the recognizer is at right place - with 

respect to left-rec-context.

6 .4 .2 .1  G e n e r a t i n g  a n d  P a s s i n g  ‘R e a s o n  f o r  C u r ta i lm e n t  ’ a n d  ‘C u r r e n t - c o n te x t  ’

During recursive-descent, a recognizer needs to pass down its id and left-rec-count

(which we call a context) so that at a particular position, any recognizer can have its

predecessors’ ‘context’. For a specific start-position, a recognizer’s predecessors’ context

and its own context form current-context - cc for this recognizer. A subset of this

context (if applicable) will be stored with the recognizer’s computed-result as left-rec-

context -  lc (explained later).

current-context - cc
= { (start-position, {( recognizer- name, 

left-rec-counter)})}

The memo-table is also changed to accommodate the reason and the saved results’ left- 

rec-context.

memo-table = {( recognizer name,
{ (start-position,

(left-rec-context,
{(start position, end position + 1 )}))}} 

reasons = { recognizer-name }

For each result, which is computed by a recognizer with sequencing and alternating 

combinators, we need to know if its successor(s) or siblings’ successor(s) contains left- 

recursive recognizer(s) -  that has been curtailed according to the ‘condition for
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curtailment’, and if so, which recognizer(s) caused the curtailment. Each result should be 

paired with a list of recognizer-ids (i.e. reasons - r) which caused any curtailment in the 

sub-tree below the result. The reason is passed up on recursive-ascent together with the 

result as a pair. As memoization enforces the curtailment-condition, we have to modify 

the memoize procedure for producing the reason after curtailing a parse.

memoize3
Input : recognizer name, recognizer (ri) , start-position(j), 

current-context (cc)
Output: ((reasons,{(start-pos, end-pos + 1)}), memo-table)
Method: if lookup3 succeeds,

return memo-table result 
else

if rij > #input - (j -1 )
return {( {recognizer-name}, {})}

else
increment rij counter by 1 

apply g  to j & update3 memo-table with 
results and left-rec-context (if applicable) 

return ((reason, results), updated memo-table)

We also need to modify the definitions of the sequencing and alteration combinators for 

allowing them to ‘pass-up’ the reason. The combinators merge the recognizer-ids, which 

caused curtailment, as follows:

(p orelseS q) i cc = (reason_p u reason q,
result_p u result_q) 
where
(reason_p, result_p) = p i cc 
(reason_q, result_q) = q i cc

(p then3 q) i cc =
(reason_p u  reason_q, result_q) 
where
(reason_q, result_q)

• jover first= fold (II and second ) ({},{}) map (q * cc) result^set of th© 
result-pair 
respectively

where
q' cc i = q i cc
(reason_p, result_p) = p i cc
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Recognizers consist of term and empty don’t have any underlying ‘reasons’, hence the 

reason-part of their result is empty:

empty3 i cc = ({}, {(i, i) })

6 .4 .2 .2  S t o r i n g  t h e  R e s u l t  w i th  ‘L e f t - r e c - c o n t e x t ’ D u r i n g  ‘U p d a te ’

Whenever a recognizer computes a result at a specific start-position, the reasons for 

curtailment (if any) of the result - generated during the computation (comes from 

recursive-ascent) and the current recognizer’s current-context (computed during 

recursive-descent) are examined. If any ‘reason’ exists in the current recognizer’s 

‘current-context’ at current position, then that context (the left-rec-context -  lc, which 

includes the recognizer-id(s) and respective left-rec-counts at current position) is updated 

to the memo-table with the newly computed result. The new update operation consists 

of the following procedure:

left-rec-context - lc
= {( recognizer- name, left-rec-counter)}

update3
Input : recognizer_name, (reason - r, new result - res),

start position j, current-context - cc, memo-table

if (there is any r paired with res) 
then (Vx e {cc.j.recognizer-name} at position j) 

if x == 3 y  e {r. recognizer-name} 
then (x,x.left-rec-count): left-rec-context 
else -- do nothing 

else —  do nothing

if an entry exists in memo-table for 
recognizer_name at j, 

then replace the old-entry with 
(left-rec-context, res) 

else create new entry for rec-name with 
(left-rec-context, res) at j

term3 i c cc = ({},{})
= <{},{(!, i + 1)})

( { } ,{ } )

if i > #input 
if token at 
position i == c 
otherwise

Method: let left-rec-context = {}
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The only part of the current-context which is stored with a ‘result’, is a list of those 

recognizers and their left-rec-counts that had an effect on curtailing the result.

6 .4 .2 .3 . C o n d i t io n  f o r  R e - u s i n g  t h e  S a v e d  R e s u l t  D u r i n g  ‘L o o k u p ’

Whenever a memo-table result is being considered for re-use by a recognizer at a 

particular start-position j, the left-rec-context - lc -  saved with the result - is compared 

with the current-context - cc of the current recognizer at j for start-position j. The result 

is reused if, every recognizer-id of lc exists in cc (for j) and all of the left-rec-count of 

lc’s recognizer-id is equal or greater to the left-rec-count of cc’s recognizer-id. If 

there were no curtailments (in case of non-left recursive recognizers), the left-rec context 

of a result would be empty and that result can be reused irrespective of the current- 

context. So, the changed lookup procedure is:

lookup3
Input : recognizer-name, start position j, memo-table

(contains left-rec-context - lc and result - res) , 
current-context (at j) - cc

Method:
if memo-table has entry for recognizer-name at j 
then

if lc == {}
then re-use the result res
else (Vx e {lc.j.parser-id)),(3y e {cc.j.parser-id})

If (x == y a  x .left-rec-count >= y.left-rec-count) 
then re-use the result res
else recognizer goes to 'recursive-descent' phase 

by returning empty-set 
else return empty-set

This makes sure that a result - stored for some recognizer at start-position j - is only 

reused by a subsequent application of the same recognizer, at the same position, if  the 

left-rec context of the later executions of the recognizer would constrain the result 

equally as much as it has been constrained by the left-rec context for the previous 

application of the same recognizer at j.

According to this modified context-based memoization, the example-recognition of 

figure 6.2 now can be computed correctly as follows:

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



out-of-context lookup failed 
and forced recursive-descent

/
  S0_

/  \_
update T S i________

/  /  
updatet S 2  updatetA2_E

J - L ^ \  /  \
(S3 A 3 j  s S 5 a lookup
> ----------- ^  I

Cur-bailed lookup
For example:
S at j=l
S2's lc = { (1,{ (S,2) }) }, (r, res) = ({S} , { (1, 1) } )
S5's cc = { (1, { (S, 2) } ) }
As lc.S.left-rec-counter == j.cc.S.left-rec-counter, 
re-uses S2's result
A at j=l
A2's lc = { (1,{ ( S , 2 )  }) }, (r, res) = ({s},{ (1,2 )})
Ai's cc = { (1, { (S, 1) }) }
As lc.S.left-rec-counter + j.cc.S.left-rec-counter 
for A at Ai, instead of 'lookup', A goes to 
'recursive-descent' phase and eventually computes 
new result for j=l and updates to memo-table:

{ ( 1 ,  2 ) , ( 1 , 3 ) }

Figure 6.3: Restricted re-use of result when recognizer is ‘out-of-context’

6.4.3 Results in Memo-table
Up to this point, our discussion is limited to only ‘recognition’. An application of a 

memoized-recognizer

S = memoize3 "S" 
A = memoize3 "A"

((S then3 A) orelse3 empty3) 
(S then3 a)
(term3 a)

G 2

to the input-sequence “a a a” saves all possible ways to recognize “aaa” in the memo- 

table by indicating the starting and ending position of the recognized-tokens (as a pair of 

(start- position, end-position +1)).
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Start positions

2?ID00
iQ0H-
NIDh

1 2 3
s (1,1) (2,2) (3,3)

(1,2) (2,3) (3,4)
(1,3) (2,4)
(1,4)

A (1,2) (2,3) (3,4)
(1,3) (2,4)
(1,4)

a (1,2) (2,3) (3,4)

Figure 6.4: Memo-table represents results of recognition using G_2

A sample “snapshot” of the memo-table is shown in figure 6.4. As this 

representation only informs us how far the input-token has been recognized using which 

recognizer, in the next chapter we transform the algorithm in to a parser to indicate the 

syntax-structure(s) of the recognized input-tokens i.e. the parse-trees. Note that as we 

have united the results obtained through sequencing and alteration, the duplicate results 

(more then one result having same start and end position) are not indicated in the memo- 

table for recognition.
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CHAPTER 7: THE NEW ALGORITHM -  FOR

PARSING

7.1 Overview
Recognition is not sufficient to identify the grammatical-structure of an input sentence.

From NLP point-of-view, parse-trees generated by a parser, are essential to incorporate

semantic-meanings or theories to the syntax-structures of an input-sentence. It is also

important for a parser to generate all possible ambiguous parse-trees so that all possible

‘meanings’ of a sentence can be retrieved. For example, an application of

S = memoize3 "S" (S then3 term3 a orelse3 empty3) to input "aaa"
would generate { (1 ,  1 ) ,  (1,  2 ) ,  (1,  3 ) ,  (1, 4)} .  Instead of this, we

would like to have a set of parse-trees:

S (1,1) S ( 1 ,2 )  S  (1 ,3 )  S___ (1 ,3 )
I /\ \ /\ \ / \ \
8 S S a  S S _ a  S _ S a

I I  I /\\ /\ \ \
8 8  s S S a  S S a s

8 8

We need to add some extra information to the memo-table for constructing a parse-tree. 

A memoized-recognizer -  constructed using alteration and sequencing -  descends 

downwards until it recognizes some tokens and then ascends upwards to recognize 

another token. Throughout this interchanging recursive-process, a recognizer actually 

visits all required ‘nodes’ to construct a parse-tree. The extra pointing-information should 

be able to indicate ‘where to go next’ from one point of a parse. A parser can keep track 

of this pointing-information by saving some information about its ‘previously-visited’ 

nodes during recursive-ascent, along with the information about the end-points. For 

example, consider the 4th parse-tree of the above example again:
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Si (1,3)_________________________

/  \  \
S 2  ( 1 , 2 ) _________  S 5  ( 2 , 2 )  a 2 ( 2 , 3 )

/  \  \  \
S3 (1,1) S4 (1,1) ai(l,2 ) 8 (2 ,2 )
I I 

8 ( 1 , 1 ) 8 ( 1 , 1 )

1. At S2, non-terminal S tries its one of the alternatives 
"S -> S S a " .  When S recognizes "empty" at S3 (for 
start-position 1) , it can store a reference of the 
rule it used on its way up with its recognition-result
in form of 'S (1, l)->e (1,1)'. It then uses same rule
again to recognize another "empty" at S 4 (for start- 
position 1), hence as entry 'S (1, l)->s (1,1)' can be
stored. In the sequence, "a" is recognized by "term3 
a " .  So, at the end of the rule "S -> S S a", S can
save an entry 'S (1, 2) -> S (1, 1) S (1, 2) a (1, 2)'
where each pointer attached with a terminal or non
terminal keeps the information of 'where to go next' 
if we look at from top-down.

2. Similarly, at the end of recursive-ascent when S 
reaches at Si, it can save an entry 'S (1, 3) -> S (1, 
2) S (2, 2) a (2, 3)' .

3. The stack of saved results, according to the order of 
computation, would be:

5. S (1, 3) -> S (1, 2) S (2, 2) a (2, 3)
4. S (1, 1) -> s (1,1)
3. S (1, 2) -> S (1, 1) S (1, 2) a (1, 2)
2. S (1, 1) -> 8 (1,1)
1. S (1, 1) -> 8 (1,1)

And if we follow the pointers from top (S (1, 3)), 
we'll have the above-mentioned parse-tree.

Figure 7.1: Basic idea of constructing a parse-tree

7.2 Concepts of Compact-representation
It is desired that a top-down parser should identify an exponential number of parse-trees 

for an ambiguous grammar. If no precaution is taken, the space-requirement for 

representing ambiguous-parses would be exponential, which is inefficient for practical 

uses. To avoid this, we represent the resulting parse-trees as a forest of n-aiy one-level-
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depth branches (and leaves) with pointers attached at each sub-node, which ensures 

polynomial space-complexity by sharing common sub-trees and grouping ambiguities. 

The overall representation acts as a directed-graph (to some extent similar to the Tomita’s 

[35] compact-representation for general LR parsing algorithm). A branch of an example 

non-terminal

(R: := Ai A2 A3 | bi  B2 I Ci) represents one of R’s alternatives’ (which has been 

used recently to compute a result) terminals and/or non-terminals in a sequence. Each of 

the nodes of the branch has pointers to their own entries in the memo-table. If one of R’s 

alternatives “Ai A2 A3” is used to recognized part of current input (for example, start- 

position = 2 to end-position+1 = 8), we represent it as:

Node R (2, 8)
4

Branch [Sub-node Ax (2, 3) Sub-node A2 (3,4) Sub-node A3 (4,8)]

For the same start-end position, R may have more (ambiguous) parses with the same 

alternative and/ or with different alternatives:

Node R (2, 8)
4

Branch [Sub-node Ax (2, 4) Sub-node A2 (4, 5) Sub-node A3 (5, 8)] 
Node R (2, 8)

4
Branch [leaf bx (2, 3) Sub-node B2 (3, 8)]
Node R (2, 8)

4
Sub-node Cx (2, 8)]

Each of the non-terminals (pointed sub-nodes) has its own entry in the memo-table under 

the particular start-end position. The terminals (leaves) indicate the “bottom” of a parse. 

If another non-terminal (for example D : :  = R | A2 A3) also parses from start-position = 

2 to end-position+1 = 8 at the upper level of R, then D needs to have four different entries 

in the memo-table to point to R’s four different results.

Node D (2, 8) Node D (2, 8) Node D (2, 8)
4 4 4

Sub-node R (2, 8)] Sub-node R (2, 8)] Sub-node R (2, 8)]
Node D (2, 8)

4
Sub-node R (2, 8)]
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Though this representation is still ‘compact’, we can achieve a more densely-compact 

form by grouping branches of a non-terminal together, which have been used to parse a 

specific start-end position, also merging the common branches (of a same non-terminal 

for same start-end position) in to a single one. This representation reduces the space- 

requirement significantly.____________________________________________________

Node D (2, 8)

/ JSub-node R (2, 8) 

i ,.Branch [Sub-node A2 Sub-node A3 (4, 8)]
_ v 4 _____ _________________________________________________________
/'•^Node R (2, 8)

[Branch [Sub-node Ai (2, 3) Sub-node A2 (3, 4) Sub-node A3 (4, 8)]

.ranch [Sub-node Ax (2, 4) Sub-node A2 (4, 5) Sub-node A3 (5, 8)]

^Branch [leaf bi (2, 3) Sub-node B2 (3, 8)]

Sub-node Cx (2, 8)]
t
t

Node R (2, 6)
\ /[Branch [Sub-node Ax (2, 3) Sub-node A2 (3, 4) Sub-node A3 (4, 6)]

Branch [leaf bx (2, 3) Sub-node B2 (3, 8)]]
\ --------------------------------------------------------------------------------------------------------------------
Node A3 (4, 8)
/[Branch [Sub-node Ax (4, 5) Sub-node A2 (5, 7) leaf bx (7, 8)]

> Branch [Sub-node A2 (4, 7) leaf bx (7, 8)]] ...............

Figure 7.2: Example of a densely-compact representation

If it is required to retrieve parse-trees for start-position = 2 to end-position+1 = 8, one has 

to just follow the pointing notations of sub-nodes, from the root, until all leaves are 

reached. We shall discuss formally how this representation ensures polynomial space- 

requirement in chapter 11
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7.3 The Modified Algorithm
In this section we modify the recognition-algorithm (described in chapter 6) step-by-step 

to accommodate parsing. We replace all occurrences of the term ‘recognizer’ of the last 

version of the algorithm with term ‘parser’.

7.3.1 Type of Result and Memo-table
Instead of having only pairs of start-end positions as the results saved in memo-table, it is 

also required to save the n-ary sub-nodes (sequences of terminal/non-terminals) of one- 

level-depth branches for a node (non-terminal) at a specific start-end position. So the new 

memo-table type is:

memo-table = {( parser name, {(start-position,(left-
rec-context1, {result}))}}

result = ((start-position, end-position + 1), {tree} )
tree = leaf or sub-node or branch
leaf = terminal name
sub-node = (non-terminal name, (start-position, end-

position + 1) )
branch = {tree}

A ‘tree’ can be considered as a ‘name-less’ leaf, sub-node or a set of leaves and/or sub

nodes (a branch), where each nodes have pointers to indicate ‘where to go next’. The 

‘name’ of a tree is added during the memoization process -  as a part of the pointing- 

reference.

7.3.2. Modified Combinators
When a parser - constructed using an alternative combinator -  is applied to the current 

start-position of the input, it may return multiple one-level-depth trees -  indicating 

different or same ending-positions, which were computed using different alternatives. So 

the alternative combinator simply unites the returned results of the two operands of 

'orelse', which is -  as before -  paired with the united reasons of two operands of

1 If not pointed out, then any previously-mentioned procedure or data-type’s definition remains same. For 
example, the type o f ‘left-rec-context’ is same as section 6.4.2.
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'orelse'. So the definition remains same for the alternative combinator -  only the 

type of result has changed.

(p orelse4 q) i cc = (p orelse3 q) i cc

The sequence combinator 'then' is responsible for creating one-level-depth n-ary 

branches of the terminal and/or non-terminals (which are in a sequence) of an altemative- 

defmition of a non-terminal. It ensures that all the sub-nodes of a branch are properly 

pointed (i.e. having appropriate start-end position). The left-operand of 'then' , p, 
is applied on start-position i, it returns a result-set { ( (start-pos, end-pos+1 
) , {tree}) }. Then right-operand of 'then', q, is applied on every 'end- 
pos+1' returned by p. Every application of q returns a result-set { ( (start-pos, 
end-pos+1 ) , {tree}) }. As mentioned before, the type of tree is leaf or 

sub-node or branch. For every element ' ( (start-posp, end-pos + lp ) ,
{treep}) ' of the result-set of p and for each element ' ( (start-posq, end- 
pos + lq ) , {treeq}) ' of the respective result-set of q, we form a new result 
'((start-posp, end-pos+lq ), name-less one-level-depth branches 
involving {treep} and {treeQ})'. At the end, all newly created one-level-depth 
n-ary branches are united and returned.

(p then4 q) i cc
= (reason_p u reason_q, result_p-q) 

where
(reason_q, result_p-q)

U over firstand second ) ({},{}) (map (q1 cc) result p)
set of the J- — i
result-pair
respectively

where
q 1 cc (end-pos_of_p,tree_p)

= (reason_q1,create-branch (end-pos_of_p,
tree_p) result_q')

where
(reason_p, result_p) = p i cc 
{(end-pos_of_p,tree_p)} = result_p 
(reason_q', result_q') = (q end-pos_of_p cc)
where
result_q'is of type
{(end-pos_of_q,tree_q_at-end-pos_of_p)}
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create-branch
Input : (end _ p, tp) set_tq 
Method: l e t  s e t _ t p _ t q  = {}

(V(end _  q, tq )  e s e t _ t q )
(form n a m e - le s s  b r a n c h  a s  

( t p ' s  p o i n t e r  a s  l e f t - n o d e ,  
t q ' s  p o i n t e r  a s  r i g h t - n o d e )  and  add 

( (end_p, e n d _ q ) , ( l e f t - n o d e  t p ,  r i g h t - n o d e  tq )  
t o  s e t _ t p _ t q )  

r e t u r n  set__tp__tq

Parsers which consist of t e r m  and empty return a t r e e  of type l e a f  and other 

functionalities remain same:

te rm 4  i  c cc  = ( { } , { } )  , i f  i  > # i n p u t
= ( { } , { (  ( i ,  i  + 1) , { l e a f  V ) )  })

, i f  t o k e n  a t  
p o s i t i o n  i  == c 

= ( { } , { } )  , o t h e r w i s e

empty4 i  cc  = ({},  { ( ( i ,  i ) , { l e a f  " e m p ty " } )} )

Note that, for all combinators, the functionalities related to ‘context’ and ‘reason’ remain 

unchanged.

7.3.3. Modified Memoization
When a memoized-parser (r i)  computes a ‘result’ using one of its alternatives (which 

may have sequences of terminals and/ or non-terminals) for the current start-position, the 

set of result may have multiple entries for an identical start-end position -  due to 

ambiguous parsing. Each of these entries has the same start-end positions but will have 

different ‘name-less’ trees. As mentioned before, when this parser ( r x) is referred by 

another parser ( r 2) for this same start-end position, r 2 needs to refer r i  multiple times -  

for each ambiguous result individually. To avoid this extra space-requirement, we group 

these multiple ambiguous trees of r i  as a ‘set of trees’ having only one start-end pointer. 

This grouping also unites the identical trees into one tree so that this single ‘common- 

tree’ can be shared by any parser that has a reference to it. Now r 2 needs to refer r i  only 

once for this specific start-end position. This grouping takes place when a parser
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computes a result for a specific start-position for the first time. The grouped ambiguous 

result-set is a set of ‘name-less trees with pointers’ and it is updated in the memo-table 

under current parser’s name and start-position. During recursive-ascent, when current- 

parser rx passes the control to a preceding-parser (either after successfully performing a 

‘lookup’ or freshly computing and updating a new result), it only requires to pass-up its 

own reference (pointer) of the memo-table entry, instead of returning the actual entry of 

the memo-table. In other words, for the other parsers to refer r i ’s entry in the memo- 

table, it is required to point the r i ’s computed set of result as r i ’s name and start-end 

position. This requirement ensures the one-level-depth structure of the trees, which 

eventually reduces the space-requirement. Hence, during the creation of branches in the 

sequencing-combinator, it is only required to refer to this added ‘pointing’ node of the 

current parser, instead of the whole set of results. To accommodate these requirements, 

we modify the memoize procedure as follows:

memoize4
Input : parser name, parser (ri) , start-position(j), 

current-context (cc)
Output: ((reasons,{((start-pos, end-pos),{tree})}), memo-
table)
Method: if lookup4 succeeds,

return (create_pointer parser name memo-table 
result)

else
if rij > #input - (j -1)

return {( { parser-name}, {})}
else

increment rij counter by 1
apply ri to j (that returns new__results)
update4 memo-table (grouping_ambiguity
new_results) with left-rec-context (if
applicable)

return ((reason, create_pointer parser name
new results), updated memo-table)

grouping_ambiguity
Input : result-set = {(start-pos,end-pos+1), trees)}
Method: unite the trees of identical (start-pos,end-pos+1) 

pairs as a new set of trees under a single (start- 
pos , end-pos+1 ) pair.
Return the altered result-set.
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create_pointer
Input : pa r s e r  name (p_name), result - s e t  = {(s t a r t - p o s ,end-

pos+1), trees),
Method: let pointer_set = {}

(V((s,e),t) e result-set) 
add ((s,e),{sub-node (p_name, (s,e))} to 

pointer_set 
return pointer_set

lookup4 = lookup3, update4 = update3

The other functionalities (i.e. creating context and reason, comparing contexts w.r.t 

reason etc) remain the same in m e m o iz a t io n ,  u p d a t e  and lookup ,  the only 

difference in new update and lookup procedure is the new type of the ‘result’.

7.4 Memo-table as a Forest of n-ary Branches
For secured and correct operations on the memo-table, we use a state-monad to thread the

memo-table within different recursive parser-calls (section 4.2.2 and 5.1.3).

According to the modified parsing-algorithm, an application of a memoized-parser

S = memoize4 "S" ((S then4 A) orelse4 empty4)
A = memoize4 "A" (S then4 (term4 a))

to the input-sequence “a a a ” saves ambiguous and common ‘results’ under a parser’s 

start-position entry as a set of n-ary branches of ‘sub-trees’, where each sub-node 

(represents another non-terminal) of a branch has appropriate pointers to its own entry in 

the memo-table (figure 7.3).

To retrieve a complete parse-tree (for example, based on some semantic- 

interpretations) one has to follow the directed-pointers of a node -  starting from the root 

and continuing expanding from its left-most sub-node - until all ‘leaves’ are retrieved.
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Start positions

>opiH(0(DH

(D
to

l 2 3

s S(l,l) S (2,2) 
|

S(3,3)
|

£ 6 e
S (1,2)

/\
S(l,l) A(l,2)

S (1,3)
A

S(l,l) A(l,3) 
S (1, 3)
A

S (1, 2 ) A(2,3)

S (2,3)
A

S (2,2) A (2, 3)

S <1,4)
A

S (1,1) A(l, 4) 
S(l,4)
A

S (1, 2) A (2, 4) 
S(l,4)
A

S (1,3) A(3,4)

S (2,4)
A

S (2,2) A(2,4) 
S (2,4)
A

S (2, 3) A(3,4)

S (3, 4)
A

S (3, 3) A(3,4)

A A (1,2)
/\

S(l,l) a (1, 2)

A (2, 3)
A

S (2,2) a (2,3)
A (1,3)

/\
S (1,2) a (2, 3)

A (2, 4)
A

S (2,3) a (3, 4)

A (3, 4)
/\

S(3,3) a (3, 4)
A(l,4)
A

S (1, 3) a (3, 4)

Figure 7.3: Memo-table represents results of parsing as a packed-forest
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CHAPTER 8: IMPLEMENTATION IN HASKELL
Haskell has been used for the implementation of the algorithm described in the previous 

chapters. (See the [41] for basic notation of Haskell). The description in this section 

covers both recognition and parsing. The algorithm is implemented mostly in self- 

explanatory descriptive fashion.

8.1 Data-types and State-monadic Combinators
As discussed before, we have utilized Frost’s (section 5.13) approach of constructing 

combinators using state-monads for secure threading of the memo-table. For 

convenience, we repeat the definition of state-monad according to the description of 

section 4.2 :

units :: t -> StateM t
units x = f where f t = (x,t)

binds :: StateM tl -> (tl -> StateM t2) -> StateM t2
m 'bindS' k = f

where f x = (b,z)
where (b,z) = k a y

where (a,y) = m x

The state or memo-table Mtable keeps a record of a parser’s results at every start- 

position of the input. The general-term Context is a pair of reason for curtailing a left- 

recursive parser (a list of parser-names) and left-recursive-context - a list of 

(parser, parser’s left-recursive count) pairs at different start-positions. An element of the 

list of Result consists of a pair of (start-position, end-position + 1) and a list of trees.

type State = Mtable
type StateM t = State -> (t, State)
type Mtable = [ (String, [(Int, (Context, [Result]))])]
type Context = (Reason, Left-recursive-context)
type Reason = [String]
type Left-recursive-context

= [(Int, [ (String, Int)])] 
type Result = ((Start, End),[Tree String])

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We define a tree data-type utilizing Haskell’s facility of constructing user-defined 

algebraic and recursive data-type. The data-type Tree could be either a Leaf (represents 

a terminal), a SubNode (represents a non-terminal with pointer -  node name and start- 

end position in the memo-table) or a Branch (consists of a list of any form of trees) to 

represent sequencing.

data Tree a = 
1 
1

Leaf a
Branch [Tree a]
SubNode (NodeName, (Start,End)) 
deriving (Eq,Ord,Show)

type NodeName = String
type Start = Int
type End = Int

The combinator empty simply returns a tree of type Leaf -  with the same start-end 

position. But combinator term checks whether the token at given input’s start-position 

(r) has a match with its own. If so, then it returns a Leaf with (r, r+l) that makes the 

next parser move-ahead to parse next token. Either empty or term has no effect on the 

current descending lef t-reccontext (1) and none of them produce any reason.

empty x 1 = units (([],[]),[((x,x), [Leaf "empty"])])
term c r 1 |r - 1 == length input = units (([],[]),[])

i input !! (r - 1) == c =
units (([],[]), [((r,r+l),[Leaf [c]])])

I otherwise = units (([],[]),[])

The orelse combinator individually applies parsers p and q to the given start-position 

inp and current-context cc and returns back the united reasons with 'union (f st 
11) (fst 12)' and summed results with ' (m ++ n)'. Note that as both 11

and 12 are pairs o f type (Reason, Lef t-recursive-context), we just need to unite 

the Reasons to pass upwards. The then combinator first applies p  to the given start- 

position inp, which returns a set of results. Then parser q  is applied to every end- 

positions returned by p sequentially using apply_to_all.
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(p 'orelse' q) inp cc
= p inp cc 'binds' f
where f (11,m) = q inp cc 'binds' g

where g (12,n) = units ((union (fst 11)
(fst 12) , [] ) , (m ++ n) )

(p 'thenS' q) inp cc
= p inp cc 'binds' f

where f (l,m) = apply to all q m 1 cc
apply_to_all q [] 1 cc = units ((fst 1,[]), [] )
apply to all q (r:rs) 1 cc
= (q 'add P' (r,cc,l)) 'bindS' f

where f (11,m) = ((apply to all q rs 1 cc) 'binds' h)
where h (12,n)
= units ((union (fst 11) (fst 12),[]) , ( m ++ n) )

8.2 Forming ‘name-less’ n-ary branches for Parsers in 

Sequence
With add_P function of apply_to_all, the end-positions of the p ’s result-set are 

selected and individually passed to q for sequencing applications of q on them, which 

returns ( ( (s2, e2), t2) : restQ) on each application. At the end, add_P unites 

reasons of current p and current q and with addp function (of add_P) , current result of 

p - ( ( s i , el ) , tl ) -  creates branches with every results of q by executing 

addToBranch function . The addToBranch function creates sequencing results of p 

and q as ((p's start-position, q's end-position), p's result as 

left-node & q's result as right-node) . At the end apply_to_all function 

unites all reasons with ' (union (fst 11) (fst 12 ) , [ ] ) ' and sums all sequencing 

results with ' ( m ++ n) ' o f every q ’s application on p ’s result-set. Like orelse,

only reasons for curtailments are united.

q 'add P' (rp,cc,l)
= (q (pickEnd rp) cc) 'binds' f

where f (11,m)
= units ((union (fst 1) (fst 11),(]),(addP ra rp))

pickEnd ((s,e),t) = e —  selecting the end-position

addP [] ( (si,el),tl) = []
addP (( (s2,e2),t2):restQ) ((sl,el),tl)
= ((sl,e2), addToBranch ((s2,e2),t2) (si,el),tl))

: addP restQ ((sl,el),tl)
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For creating ‘name-less’ n-aiy branching with addToBranch function, there could be 9 

cases. If a branch already exists (either p  or q ’s result), we just add the new candidate to 

the end. If two candidates are two branches, we append them. Otherwise, we form a new 

branch with non-branch candidates.

addToBranch ((st2,en2),((SubNode (name2,(s2,e2))):ts2) )
{(stl,enl),((SubNode (namel,(si,el))): tsl) )

= [Branch [(SubNode (namel,(stl,enl))),(SubNode (name2,(st2,en2)))]]
addToBranch ((st2,en2),((Branch t2):ts2))

( (stl,enl), ((Branch tl) :tsl))
= [Branch (tl++t2)j
addToBranch ((st2,en2),((Branch t2):ts))

((stl,enl),((SubNode (namel, (si,el))): tsl) )
= [Branch ((SubNode (namel,(stl,enl))):t2)]
addToBranch ((st2,en2),((SubNode (name2,(s2,e2))): ts2) )

((stl,enl), ((Branch tl) :ts) )
= [Branch (tl++[ (SubNode (name2,(st2,en2)))])]
addToBranch ((st2,en2), ((SubNode (name2, (s2,e2))) :ts2) )

((stl, enl),[Leaf x])
= [Branch [(SubNode (("Leaf "++x), (stl,enl))),

(SubNode (name2,(st2,en2)))]]
addToBranch ((st2,en2),[Leaf x])

((stl,enl),((SubNode (namel,(si,el))): tsl) )
= [Branch [(SubNode (namel,(stl,enl))),

(SubNode (("Leaf "++x),(st2,en2)))]]
addToBranch ((st2,en2),((Branch t2):ts)) ((stl,enl ),[Leaf x])
= [Branch ((SubNode (("Leaf "++x),(stl,enl))):t2)]
addToBranch ((st2,en2),[Leaf x]) ((stl,enl),((Branch tl):ts))
= [Branch (tl++ [(SubNode (("Leaf "++x),(st2,en2))) ] ) ]
addToBranch ( (st2,en2), [Leaf x2]) ((stl,enl), [Leaf xl] )
= [Branch [(SubNode (("Leaf "++xl),(stl,enl))),

(SubNode (("Leaf "++x2),(st2,en2)))]]

8.3 Lookup, Update and Computing New-result using 

Memoization
When a memoized-parser is executed, the function memoize is applied with the parser- 

name (name), the parser-definition (f), starting input-position (inp), the descending- 

down context (context) and the initial memo-table (mTable).
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memoize name f inp context mTable
I table res /= []
= ((fstl table res,(addNode name inp (sndl table_res))), mTable)

| (funccount (snd context)) > ((length input) - (inp-1) )
= ((([name],[]),[]), mTable)

I table res == []
= (( 11 ,(addNode name inp newRes)),udtTab)

where
fstl [ (a,b)] = a
sndl [(a,b)] = b

8.3.1 Lookup Operation
The memoize first looks in the memo-table to find whether there already exists a 

reusable-result for name at inp by checking the content of table_res, which in terns 

executes lookupT operation.

The lookupT fails if:

1. there is no entry for name-inp in mTable (failure 1 & 2)1,
2. the saved-entry’s reason (re in c h e c k u s a b il i ty )  is not empty but left-rec-context is 

empty at inp (failure 3) or

3. some entries in saved left-rec-context are not present or have less left-rec-counter value 

(failure 4 & 5).
The lookupT succeeds if:

1. the saved-entry’s reason (re in checkusability) is empty (success 1),
2. the descending current-context or saved left-rec-context is empty (success 2 & 3) 
or

3. all members of saved left-rec-context exists in current left-rec-context and all of them 

have equal or greater number of lefl-rec-count (towards success 4 to 10).

1 All possible failures and successes are marked in the code of the next page
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table_res = lookupT name inp (snd context) mTable 
lookupT name inp context mTable
| res_in_table == [] = [] — failure 1
I otherwise = checkusability inp

context (lookupRes (res_in_table !! 0) inp) 
where res_in_table = [pairs|(n,pairs) <- mTable,n == name] 

lookupRes [] inp = []
lookupRes ((i,res):rs) inp I i == inp = [res]

I otherwise = lookupRes rs inp

checkusability inp context [] = [] — failure 2
checkusability inp context [ ((re,sc),res)]
I re == [] = [((re,sc),res)] — success 1
I otherwise = checkUsability_ (findlnp inp context) (findlnp inp sc)

[((re,sc),res)] 
findlnp inp [] = []
findlnp inp ((s,c):sc) I s == inp = c

| otherwise = findlnp inp sc

checkUsability_
checkUsability_
checkUsability_
checkUsability_
I and (memCheck

I otherwise = []

[] [] [(sc,res)] = [(sc,res)]
((n,cs):ccs) [] [(sc,res)] = []
[] ((nl,csl):scs) [(sc,res)] = [(sc,res)]
((n,cs):ccs) ((nl,csl):scs) [(sc,res)]
((n,cs):ccs) ((nl,csl):scs)) = [(sc,res)]

— towards success 4,

-success 2 
-failure 3 
-success 3

if true for all 
— failure 4

memCheck [] ((nl,csl):scs) = [] —  towards_success 5
memCheck ((n,cs):ccs) ((nl,csl):scs)
= condCheck (n,cs) ((nl,csl):scs) ++ memCheck ccs ( (nl,csl):scs) 

condCheck (n,cs) ((nl,csl):scs)
I (notElemCheck (n,cs) ((nl, csl):scs)) == [] = [] —  towards_success 6
I any (==(n,cs)) ((nl,csl):scs) = [] —  towards_success 7
I otherwise = [False] —  failure 5

notElemCheck (n,cs) [] = [] —  towards_success 8
notElemCheck (n,cs) ((nl,csl):scs) | n /=nl = notElemCheck (n,cs) scs

—  towards_success 9 
I otherwise = [False]

—  towards success 10

If the lookupT fails, memoize then checks the ‘condition for curtailment’

' (funccount (snd context)) > ((length input) - (inp-1) ) ' in the descending- 

context.
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funccount [ ] = 0
funccount ((key,funcp):rest) | key == inp = findf funcp

1 otherwise = funccount rest
where
findf [] = 0
findf ((tk,fc) :rx) | tk == name = fc

I otherwise = findf rx
((l,newRes),mft) = ((fst res,packAmb $ sort (snd res)),newtable)
where
(res, newtable) = f inp ([],(incContext (snd context) name inp)(mTable

incContext [] name inp = [(inp,[(name,1)])]
incContext ( (st, ((n,c):nc)):sn) name inp

I st == inp = ((st, (addNT ((n,c):nc)) name inp ) :sn)
I otherwise = ( (st,( (n,c):nc)): incContext sn name inp )

addNT [] name inp = [(name,1)]
addNT ((n,c):nc) name inp 1 n == name = ((n,(c + 1)):nc)

I otherwise = ((n,c):addNT nc name inp)

If the current parser is left-recursive and if the ‘condition for curtailment’ fails (3rd 

guarded condition of memoize function), then the left-rec-counter of the current parser is 

increased by one for the current starting position of the input. At this point the left- 

recursive parser starts recursively descending with 'f inp ( [], (incContext (snd 

context) name inp)) mTable' until it satisfies th e ‘condition for curtailment’.

8.3.2 Update Operation
When the ‘condition for curtailment’ is satisfied, the left-recursive parser is curtailed (2nd 

guarded condition of memoize function) by adding its name to the ‘reason for 

curtailment’ and on the recursive-ascent, eventually computes a new result (res, 
newtable) for the current starting-position. This new-result res is added to the recent 

memo-table newtable with function udtTab. Before saving any result, we need to 

group and unite the ambiguous result-set -  res (described next section) and also have to 

make sure that the correct left-rec-context is saved w.r.t the ‘reasons for curtailment’ 

' (fst 1)' for res. With the function makeContext, we compare the current parser’s 

descending current-context (findContext (snd context)) at current start-position
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inp with (fst 1) . We only keep entries from the (findContext (snd 

context)) which has a match in (fst 1 ) and remove the other entries. These selected 

entries are then placed at the appropriate position (w.r.t inp) and paired with (fst 1). 

These operations are carried through makeContext, makeContext_ and

makeContext   functions. When the appropriate left-rec-context 11 is created, it is

paired with grouped and united result-set newRes and updated to the latest memo-table 

mf t with function ud t .
udtTab = (udt ((11,newRes),mft) name inp)

11 = makeContext (fst 1) (findContext (snd context)) 
where
findContext [] = []
findContext ((st,rest):sr) | st == inp = [(st,rest)]

I otherwise = findContext sr
makeContext [] [(st,((n,c):ncs))] = ([],[])
makeContext (r:rs) (] = ((r:rs) , [])
makeContext [] [] =([],[])
makeContext (r:rs) [(st,((n,c):ncs))] = ((r:rs), [(st,makeContext_

(r:rs) ((n,c):ncs))])

makeContext_ [] ((n,c):ncs) = []
makeContext_ (r:rs) ((n,c):ncs) = makeContext__  r ((n,c):ncs) ++

makeContext_ rs ((n,c):ncs)

makeContext  r [] = []
makeContext  r ((n,c):ncs) I r == n = (n,c): makeContext  r ncs

I otherwise = makeContext  r ncs
udt (res, mTable) name inp

= update mTable name inp res
update [] name inp res = [(name, [ (inp, res)])]
update ((key, pairs):rest) name inp res

| key == name = (key,my_merge inp res pairs):rest 
I otherwise = ((key, pairs): update rest name inp res)

my_merge inp res (] = [(inp, res)] 
my_merge inp res ((i, es):rest)

Iinp == i = (i, res):rest
I otherwise = (i, es): my_merge inp res rest

The update-function udt simply searches through the memo-table to find an entry for 

name at inp, and if there exits a previous result, udt replaces that with the new result. 

Otherwise udt creates a new entry for name at inp and places the new result in it. 

These operations are performed with update and my_merge respectively.
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8.3.3 Grouping Ambiguities and Adding Pointers
When a memoized-parser creates a new-result, according to the algorithm, multiple trees 

(either identical or different) for a specific start-end position are grouped into a list of 

trees -  with a single entry indicating the whole set’s start-end position. The newly-created 

result (snd  re s )  is first sorted1 and passed to the function packAmb, which searches 

for the common start-end positions ( s i , e l )  == ( s2 ,e2 ) ,  and if found, it then groups 

their respective results (which are name-less list of one-level-depth trees) together. If for 

identical start-end position, there exists some identical trees, they are also united into a 

single one -  under a single start-end position -  so that they can be shared by other parsers 

with a single reference. This grouped-result - newRes -  is used in the update-operation,

which was described in the last section._________________________________________
{—  repeted segment of code - for convenience
((1,newRes),mft) = ((fst res,packAmb $ sort (snd res)),newtable) 
where (res, newtable) = f inp ([],(incContext (snd context) name 
inp))mTable — }
packAmb [] = []
packAmb [ ( (si,el),tl)] = [ ( (si,el),tl)]
packAmb [ ( (si,el),tl), ((s2,e2),t2)]

I (si,el) == (s2,e2) = [((s2,e2), tl++t2)]
I otherwise = [ ((si,el),11), ((s2,e2),t2)]

packAmb (((si,el) ,tl) :((s2,e2) ,t2):xs)
I (si,el) == (s2,e2) = packAmb (((s2,e2), tl++t2):xs)
I otherwise = {(si,el),tl):packAmb {((s2,e2),t2):xs)

On ascending, the memoized-parser, which either computes a new result or successfully

looks up a previous result, returns a pointer (consists of its name and the start-end

position) to upwards -  instead of returning the complete set of results. It does so by

simply replacing every trees of the result-set with its name and start-end position -

through the function addNode.
{—  repeted segment of code - for convenience 
memoize name f inp context mTable 
I table_res /= []
= ((fstl table_res,(addNode name inp (sndl table_res))), mTable

I table_res == [] = ((11 ,(addNode name inp newRes)),udtTab)— }
addNode name inp [] = []
addNode name inp (((s,e) ,t):rs)

= ( (s,e),[SubNode (name,(s,e))]):addNode name inp rs

1 For sorting, we have used Haskell’s library-function sort and its definition varies depending on the use 
of a particular interpreter or compiler i.e. Hug 98 uses a variation of inset-sort and GHCi uses stable quick
sort.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 9: TERMINATION ANALYSIS

9.1 Basic Concept
In the following, the terminations of recursively-defined procedures are described in 

terms of ‘parsers’ -  which also justifies the terminations of recognizers, as recursively- 

defined recognizers and parsers have same number of recursive calls for a particular 

input. We discuss termination analysis of the algorithm by adopting a well-practiced 

technique for ‘termination analysis of recursive functions’ -  where the central idea is to 

ensure that there exits a well-founded ordering so that the argument of each recursive call 

is ‘smaller’ (or ‘greater’) then the corresponding inputs. This comparison is done in terms 

of a ‘measure’ (an element of the well-founded set), which decreases (or increases) after 

each recursive-procedure execution. A ‘measure-function’ needs to be defined so that it 

can map a data-object (which is related to the corresponding recursive-function’s input) 

to a member of a well-founded ordered set. For example, consider a recursive function 

definition:

f U 1) = ....  f t x 1) ......

To show f  terminates, the first task would be to define a measure function (|| . ||) that 

maps some type of data-object (in this example, the input to f ) to a ‘measure’ (the output 

of | . ||, which is a natural-number). The next step is to define a well-founded order1 of 

decreasing ‘measures’ for all executions of f  until f  (xk) , which is the last recursive 

call:

l l * i >   > ....  11x11 > ....... > ||xk||

If the above inequality holds, then the function f  terminates. The inequality could 

be formed the other way around too (based on the ‘semantic’ of the recursive function). 

The important property is that every two consecutive ‘measures’ must be related with a 

well-founded order. For example, in the case of the above inequality, x 1+1 < x 1 holds 

for each pair of consecutive measures -  that ensures termination. Giesl (1997, [15]) 

employed this basic approach to establish an automated termination-proof technique for

1 In this case, the standard ordering < of the Natural-number -  that contains the ‘least element’ and ensures 
there exists no infinitely decreasing sequence of non-negative Integers.
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nested and/or mutual recursive algorithms. But as we already know how our algorithm 

works (i.e. the semantics of the algorithm), we have the flexibility to prove the 

termination by following four ‘general-steps’ [15]:

1. Generating a measure-fiinction | | . || and a well-founded ordering -<

2. Generating an Induction Lemma I L : || x || -< || g (x ) ||

3. Proving the Induction Lemma

4. Proving the inequality || x l M l x ' l

The induction lemma is required for the recursive parsers of the form f  (t )

.... g  (x )...., where parsers f  and g are both recursively defined (but can be different).

9.2 Cases for Combinatory-Parsers’ Termination
Non-recursive basic parsers constructed with te rm , em pty or other non-recursive 

parsers (constructed with te rm  and em pty) - terminate for a finite input in case of 

success or failure, as they are not recursively calling themselves or other functions again.

Tf a memoized nested and/ or mutually recursive parser (p) has a previously- 

computed re-usable entry in the memo-table for the current start-position (j) , then 

instead of recursively descending, it simply retrieves the result and terminates (definition 

of lo o k u p  operation). If there is no entry in the memo-table, then the parser is bound to 

descend downwards and uses its alternatives to parse the current input. At this point, the 

following cases may occur:

Case 1: p  is a non-left recursive parser.

a. If the memoized p fails to parse the input-token at j using all of its alternatives, 

then it terminates, without trying other sequential parsers of its alternatives 

(definition of te rm , th e n  and o r e l s e ) .

b. If memoized p parses the input-token at j successfully using any of its 

alternatives’ first symbol, then the next parser (which could be recursive w.r.t p) 

is applied at start-position (j +1) as the input-token at j is consumed by now.
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Case 2: p is a left-recursive parser.

Memoized p has to call itself (directly or indirectly) n (length of the input) times 

before determining a success or failure. This growth is tracked with a counter -  

left-rec-counter, which increases by one after each left-recursive call at 

same start-position. After descending down n times, the left-recurring branch is 

curtailed and the next alternative is being applied on the input-token at starting- 

position j (definition of condition for curtailment). If the next- 

available symbol consumes the current input, the start-position changes to (j + 1)
- indicating a success (hence, all subsequence parser-applications are on ( j+ D ) . 

Otherwise, the alternative fails -  indicating a failure.

A measure-function needs to be defined so that it can map the start-position and 

left-rec-counter (of each recursive call of a parser) to a natural-number (which is 

increased by at least one or remains the same after each recursive call) in order to form a 

well-founded order. From the above discussion, it is sufficient to show the termination of 

Case l.b and Case 2 to prove that any recursively-defined parser terminates if it follows 

the algorithm described in chapter 6 and 7.

9.3 Proof of Termination
Definitions

9.1 The length of the finite sequence of input-tokens is input#.
9.2 P is a finite set of recursively-defined memoized parsers of size P# which have been 

constructed by finite application of empty, term, orelse, and then. The 

members of P are denoted b y p i, l<i<Pr
9.3 R is a finite set of left-rec-counters, the members of which are denoted by 

r i j  where l^i<P# and l<j<input#. The counter r i j  represents the left-rec- 
counter for parser p± applied to the input at the start-position given by the 

index j. The r i j ' s  value is passed down only during the recursive-descent phase and
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temporarily saved within the second element of context (section 6.4.2.1 and 8.1)1. For 

left-recursive parsers, r i j  is incremented by 1 during each recursive call up to input# 
-  (j -1) and j remains unchanged till this point. For non-left recursive parsers, r i j  

stays to 1 and j is incremented by 1 after successfully parsing each input-token.

9.4 The measure-function | | . || maps a memoized recursive parser (p i)’s input-argument 

(start-position (j ), context, memo-table2) to a natural-number as follows:

|| j, context,memo-table | = 0 , if context's second element
doesn't have any entry for pi 
(i.e. rij = null)

= rij, if j = null 
= j + rij , otherwise

9.5 The well-founded order, -< is formed by relation h on natural-numbers, which has the 

least element = 0 and greatest element = input# + 1.

Assumptions

9.1 All parser applications are memoized and the initial parser is applied to start- 
position, j = 1 with an empty context ({},{}) and an empty memo-table {}.

9.2 An application of p at (j context memo-table) returns (result, memo- 
table'), were result = {((start-position (j), end-position + 1 
(j')), {Tree})}. The end-position, (j'-l) indicates how far the parser has 

parsed the input starting from start-position, j i.e. j' = start-position for 
next parser in sequence (if exists any).

9.3 All non-recursive parsers terminate, (as there is no recursion involved)

9.4 If a non-left recursive parser fails to parse an input-token then it terminates, (as there

won’t be a case to introduce any recursion and definition of term, then and orelse)

1 The second-element of context has a type of { (start-position (j) , { (parser-name 
(Pi) , left-rec-count (rij)))}}.
2 Type o f memo-table = {(parser-name, { (start-position, (Context', {Result})) }) } 
Context' = part o f left-rec-context that has a match with ‘reason’ (section 6.4.2)
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Lemmas

9.1 (V s t a r t - p o s i t io n ,  j) l  < j < input#. It directly follows from the 

definition of te rm , which increases j  by 1 until in p u t#  upon each successful parsing.

9.2 (V le f t - r e c - c o u n te r ,  rij)  0 ^ ^ input# -  (j -1) . It directly

follows from the definition of m em o iz a tio n , which, according to c o n d itio n  o f  

c u r ta ilm e n t (section 6.3.1), increments p i ’s r^j by one if r Xj < input# -  (j - 

1) •

9.3 The measure-function | | . || ensures a well-founded ordering -< as it has minimum 

value = 0 (1st alternative of the definition of | | . || = 0) and maximum value = in p u t#  

+ 1 (2nd alternative of the definition of | | . |  = j + = input# + 1 (definition 

9.3, 9.4 and lemma 9.1, 9.2)).

Induction Lemma IL P

(Vpi e P)
memoize (pi s t a r t - p o s i t i o n  ( j)  c o n te x t m em o-table) returns ( r e s u l t ,  
m e m o -tab le ') and the corresponding r±j is updated in c o n t e x t '  through 
memo i  z a t  i  on during recursive-descent 
=>
IL  ( 1 ) .  r e s u l t  = {} v
( ( j -  ^  e  maP p ic k _ 2 nd r e s u l t )  a  ( r i j  e c o n te x t  ( i f  any)

^ r ' i j  e c o n t e x t ' ) ) .
[w here p ic k _ 2 nd (a , b) = b]

IL ( 2 ) .  map ( || s t a r t - p o s i t i o n  (j )  c o n te x t  memo-1 a b le  ||<)
(map ( I . || c o n t e x t '  m e m o - ta b le ') map p ic k _ 2 nd r e s u l t )

IL (1). Proof by Induction on P#

Base Case

IL (1) P = {em pty, te rm  any} (definition of em pty and te rm ) 

Hypothesis

Assuming IL (1) P = S is true.

Inductive step

Have to show IL  (1) P = s u  {p±}.
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(3 pi, p2, p3 6 S) (pi = memoize "Pi" (pi then p2) orelse p3) .T h e IL  

(Pi) directly follows from base-case, hypothesis, definitions of then, orelse, 
memoization and definition 9.2, 9.3. In practice, a parser may be defined in terms of 

various combinations of other parsers using then and orelse combinators. But as the 

total number of parsers is constant (definition 9.2), this lemma still holds for any parser 

constructed over any combination of then and orelse. Also, from definition 9.3, 

assumption 9.2, lemma 9.1 and 9.2, this lemma is applicable for any left-recursive and 

non left-recursive parser. Hence, IL (1) P = S u {pi}. □

IL (2). Direct Proof

|start-position (j)  context memo-table|| = j + r'ij.......  b
Mapping | . || context' andmemo-table' to (map pick_2nd result) returns

a set of values B ={(j'i + r'iji), ( j ' 2 + r'ij2),.... , (j'input# +
r' ijn) } (definition of | | . | | ) . It follows from lemma 9.1, 9.2, induction lemma 1,

definition 9.2 and 9.3 that b ^ Vb' e B. Hence mapping (b <) to B results

map (|| start-position ( j )  context memo-table || <)
(map (| • || context' memo-table') map pick_2nd result). □

Proof of Termination

Theorem 9: We have to show that, using the induction-lemma, any recursively defined 

parser terminates.

Direct proof

Let a recursive parser p± e P such that p± = p±' then pi-* and parsers p± and pi- 
are applied on ' j context memo-table' (definition of then and semantically 

Pi inp = (pi- then pi") inp = p t inp = p i.,  (pi- inp) ). Suppose pi* 
returns (result, memo-table' ) and updates its left-rec-counter at context' 
during recursive-descent. According to IL (1) (which includes both left and non-left 

recursive parsers):
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Case 1: r e s u l t  = {} i . e .  pi- fails -  that implies pi< and eventually p± fails 

too (definition of then). From assumption 9.4, IL (2) and definition of | | . ||

|  p i ' s  a rg u m en t || < || p i - ' s  a rg u m e n t || < || p i " ' s  a rg u m en t | | ,

where minimum value of | | . || = 0 (if j  = 1 and r i j  = n u l l )  and maximum

value of | . || = 1 (if p± is non left-recursive ) or in p u t#  -  ( j  -1 )  (if p i is left-

recursive , lemma 9.2). Hence,
|| p i ' s  a rg u m en t || -k || p i ' ' s a rg u m e n t || -k || p i " ' s  a rg u m e n t || 

(definition 9.5 and lemma 9.3) .

Case 2: r e s u l t  + {} i . e .  p ±> succeeds. From the definition of th e n ,  -k and

| | . | | ,  |  p i ' s  a rg u m en t || -< || P i ' ' s  a rg u m en t ||

o  ( j + r ±j) < ( j  + r i j  + 1) ............ c

As pi- succeeds, p i"  is applied to V j ' e (map p ic k _ 2 nd r e s u l t )  with

m e m o -ta b le ' (definition of th e n ) . According to IL (2) , definition of | | . | | , the 

following is true for

V j '  e (map p ic k _ 2 nd r e s u l t ) :  

map ( | | j '  c o n t e x t '  m e m o -ta b le ' ||<)
(map ( I . || c o n t e x t '  m e m o - ta b le ') map p ic k _ 2 nd r e s u l t )

map ( (j  ' + r ±j' ) <)
(map ( | . |  c o n t e x t '  (p ± " ' a rg u m en t) ))

map ( ( j '  + r i;j ' ) <) | | ( p i " '  a rg u m e n t) !  ................ d

But as pi- succeeds, j  <V  j '  a n d (rij + 1) <V r i j '  (lemma 9.1 and 9.2). 

Therefore, from c and d , lemma 9.3, definition of | | . || and -k :

( j + r i j )  -k ( j + n j  + 1) -k || (p ± " ' a rg u m en t) ||

=>

| |p i ' s a rg u m en t || -k || P i ' ' s a rg u m e n t || -k || p i " ' s  a rg u m en t || 

Well-founded order of any number of parser-sequencing of p i with th e n  can be shown 

according to the above argument and if p i has more then one alternative, all of their 

individual termination ensures p i 's  complete termination.

Hence, all recursive parsers terminate. □

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 10: COMPLEXITY ANALYSIS
10.1 Time Complexity of Recognition -  w.r.t the length of input
In this section, we show that the worst-case complexity of recognizing an input-sequence 

(of length n) is 0 (n3) for a non-left recursive recognizer and 0 (n4) for a left-recursive 

recognizer - w,r.t n. The complexities of individual building blocks are analyzed first in 

order to prove the complexity of a complete recognizer (proof by construction).

Assumptions

10.1 R = non-terminals, nts u  terminals, ts -  is a finite set of recognizers 

of a given grammar and size of this set is R#. Vri e nts applications are memoized 

and the initial recognizer is applied on (start-position j = 1, context
({},{}) r memo-table {}). An application of a recognizer returns (result, memo- 
table'), were result ={ (start-position (j), end-position + 1 (j'))}, 
where j' = start-position for next recognizer in sequence (if exists any). On 

ascending, this result is paired with a set of reasons for curtailment (first element 

of context), if any (section 6.4.2).

10.2 For recognition, size of the memo-table = R#*n*n = 0(n2) and size of the second 

element of context = n*R# = O(n) (definition of memo-table and context for 

recognition (section 6.4.2)) .

10.3 The following operations have constant time-complexity:

comparison of two values, extracting a value from a tuple, adding an element to the front 

of a list and retrieving i th value from a list whose length depends on R# not on n .
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Lemmas 

10.1 Merging two result-sets, curtailment-condition check, incrementing left-rec- 

counter requires O (n) time

Follows from the definition of (++) -  which is the only operation used for merging 

result-sets and from assumption 10.2 (as curtailment-condition check and incrementing 

left-rec-counter are performed on second element of context).

10.2 Operations related to manipulating context and reason need O (n) time 

According to section 6.4.2, forming the left-rec-context, comparison between 

left-rec-context and current-context etc. take place at start-position j 

of each context’s second element and actual operations are dependent on R#. Also, 

creating reason for curtailment is independent of n too. Hence, time required for 

manipulating context and reason is 0 (n ) .

10.3 Basic Recognizers require O (n) time

Recognizers constructed with term require 0 (n) time at the worst case as the start- 

position j could be the last index of the input (definition of term) and recognizers 

constructed with empty need 0(1) time as its only purpose is to return { (j , j ) } 

(definition of empty).

10.4 Memo-table update and lookup require O (n) time

The lookup requires a search for the current recognizer’s set of saved results (which is 

paired with reason and left-rec-context, if any) at the current start-position j in 

the memo-table of size 0(n2) (assumption 10.2), which needs O(n) time. Then 

lookup performs the re-usability test by comparing left-rec-context with 

current-context w.r.t reason, if any (section 6.4.2). These operations are 

sequential linear operations w.r.t the length of input n (lemma 10.2). Therefore the worst- 

case complexity remains O (n ).

The update operation constructs appropriate left-rec-context with 0(n) time 

(lemma 10.2) and saves the newly computed result by replacing the old result in the 

memo-table (it does so instead of merging so that there exists no duplicates), which 

requires a search for the current recognizer and the current start-position j  by spending 

O (n ) time (section 6.4.2). Hence the worst-case complexity remains 0 (n ).
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10.5 Recognizer with Alteration requires O (n) time

Application of memoize (rp orelse rq) at start-position j involves the 

following steps (assuming recognizers rp and rq had already been applied on j and their 

results are available):

1. One memo-table lookup -  requires 0 (n )

2. If the lookup fails

2.1 Condition for curtailment check -  requires 0 (n)

2.2 If 2.1 permits

2.2.1 Merging two results and reason returned by rp and rq -  requires 

O(n) (merging reasons depends on R#)

2.2.3 Updating the new result to memo-table -  requires 0 (n )

All the above time complexities follow from lemma 10.1 to 10.4. Hence, the worst case 

complexity remains to 0 (n ).

10.6 Recognizer with Sequencing requires O (n2) time

In case of memoize (rp then rq) at start-position j, at worst-case rp may 

returns a set of results of length n and according to the definition of then, rq has to be 

applied to every (end-position +1) of r p' s result-set. Application of memoize (rp 

then rq) at start-position j involves following steps (assuming recognizers rp 

and rq had already been applied on j and V j ' e (map pick_2nd rp' s result-set) 

respectively and their results are available):

1. One memo-table lookup -  requires O (n )

2. If the lookup fails

2.1 Condition for curtailment check -  requires 0 (n )

2.2 If 2.1 permits

2.2.1 Application of rq on Vj' e (map pick_2nd rp' s result-set) and 

merging their results and reasons to form new result -  requires 0 (n*n) 

= 0(n2)

2.2.2 Updating the new result to memo-table -  requires 0 (n )

All the above time complexities follow from lemma 10.1 to 10.4. Hence, the worst case 

complexity remains to O (n2).
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Theorem 10.1

Non-left recursive recognizers require O (n3) time at the worst case.
Direct proof:
Given an input of length n and a recognizer-set (grammar) R of size R#, each non-left 

recognizer, r e R is applied to a particular start-position j e n at most once, as at 

least one left-most input-token of current input would be consumed before recursive 

execution of r again.

................................. a

In practice, a recognizer may have multiple combinations of then and orelse to form 

a bigger recognizer. Multiple occurrences of then in a recognizer-definition (r x then 

r2 then.... rx) doesn’t change the time complexity 0 (n2) of lemma 10.6 because each 

subsequent recognizers (r2....ri) can be applied sequentially to at most n start- 

positions and this cost of time depends on R# not on n. Also multiple occurrences of

orelse in a recognizer-definition (rx orelse r2 orelse....rx) maintains time

complexity 0 (n) of lemma 10.5 as all alternative recognizers are applied sequentially to 

a same start-position and their underlying number of computations depend on the number 

of alternatives not on n. Therefore, irrespective of how many times then and orelse 

combinators have been used in a recognizer-definition, it’s worst-case time complexity 

would be 0 (n2) when applied to one input (from lemma 10.3,10.5 and 10.6).

.......................b

Hence, from a and b, worst-cast time complexity of a non-left recursive recognizer =

n* O (n2) = O (n3) . □
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Theorem 10.2

Left recursive recognizers require O (n 4) time at the worst case.
Direct proof:
Given an input of length n and a recognizer-set (grammar) R of size R#, each direct left- 

recognizer, r is applied to a particular start-position j e n at most n times -  follows 

from the definition o f‘condition for curtailment’(section 6.3.1).

.................................... a '

If r is an indirect left-recursive recognizer and its lookup fails due to re-usability 

checking then at the very worst-case r may be applied to any j e n at most n*nt# 

times, where nt# = is the number of non-terminals in R (section 6.4.2).

......................  a ' '

This worst-case may happen when every nt of R is involved within the path of a indirect 

left-recursive recognizer towards its recursive call.

Hence, from a '  , a ' ' and b  (of theorem 10.1), worst-cast time complexity of a left

recognizer= nt#*n*n*0 (n2) = 0(n4). □

It follows from lemma 10.3, theorem 10.1 and theorem 10.2 that Vr e R terminates. □

10.2 Time Complexity of Parsing -  w.r.t the length of input
We gradually show that worst-case time complexity of parsing an input-sequence (of 

length n) is O (n3) for a non-left recursive parser and 0{n4) for a left-recursive parser 

w.r.t n -  length of the input.

Assumptions

10.4 P = non-terminals, nts u  terminals, ts -  is a finite set of parsers of a 

given grammar and size of this set is P#. Vpi e nts applications are memoized and 

the initial parser is applied on (start-position j = 1, context ([], []) , memo- 

table []). An application of a parser returns (result, memo-table'), were 

result = {( (start-position (j), end-position + 1 (j')), {tree1})},

1 From section 7.3.1
tree = leaf or sub-node o r branch
leaf = terminal name
sub-node= (non-terminal name, (start-position, end-position + 1) )
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where j' = start-position for next recognizer in sequence (if exists any). On 

ascending, this result is paired with a set of reason for curtailment (first element 

of context), if any (section 6.4.2).

10.5 For parsing, size of the memo-table increases by a factor of n = R#*n*n*n = 

O (n3) and size of the second element of context = n*R# = O(n) (definition of 

memo-table and context for parsing (section 7.3.1)) .

Assumption 10.3 and Lemma 10.1, 10.2, 10.3 and 10.4 remain unchanged except the

term parser replaces the term recognizer.

Lemma 10.7 Functionalities for ‘creating pointers’ and ‘grouping ambiguity’ need 

O(n) andO(n2) time respectively

From the discussion o f ‘modified memoization’ of section 7.3.2 and 7.3.3, the following 

two sequential operations may need to be performed:

1. A pointer is being created for a set of results of the current parser at current start- 

position that refers to the actual set of results in the memo-table. It basically 

involves searching the result-set, which requires O(n) time (definition of 

create_pointer).

2. Grouping ambiguity involves uniting the trees of identical (start-pos, end-pos+1) 

pairs as a new set of trees under a single (start-pos, end-pos+1) pair. According to 

current implementation of group_ambiguity (section 8.3.2), the new-results are 

sorted first before the actual grouping (that requires 0 (n ) time) takes place. As the 

library function ‘sort’ is interpreter/ compiler dependent (i.e. worst case is 0 (n2)), 

the overall worst-case complexity for ambiguity-grouping is O (n2) .

Lemma 10.8 Creating n-ary branches requires O (n) time

From the discussion of ‘modified combinators’ of section 7.3, creation of name-less n-ary 

branches between a single pointer and a set of pointers (of length O (n) ) requires O (n) 

time in the worst-case.
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Lemma 10.9 Parsers with Alteration requires O (n2) time

Application of memoize (pp o re ls e  pq) at s t a r t - p o s i t i o n  j involves following 

steps (assuming parsers pp and pq had already been applied on j  and their results are 

available):

1. One memo-table lookup + create pointer -  requires 0 (n)

2. If the lookup fails

2.1 Condition for curtailment check -  requires O (n)

2.2 If 2.1 permits

2.2.1 Merging two results and reason returned by pp and pq -  requires

O(n) (merging reasons depends on R#)

2.2.3 Ambiguity packing of new result + updating the packed result to 

memo-table + create pointer -  requires 0 (n 2)

All the above time complexities follow from lemma 10.1 to 10.4 and 10.7. Hence, the 

worst case complexity remains at 0 (n 2).

Lemma 10.10 Parser with Sequencing requires O (n2) time

In case of memoize (pp th en  pq) at s t a r t - p o s i t i o n  j ,  at worst-case pp may 

returns a set of results of length n and according to the definition of th e n  (of section 

6.3.3), pq has to be applied on every (end-position +1) of pp' s result-set and each 

pointers of pp' s result-set needs to create n-ary branch with pointer-set returned by 

p q' s  application on each (end-position + 1) of pp. Application of memoize (pp th en  

pq) at s t a r t - p o s i t i o n  j  involves following steps (assuming Pp and pq had already 

been applied on j  and Vj ' e (map p ic k _ 2 nd r p' s result-set) respectively and their 

results are available):

1. One memo-table lookup + create pointer -  requires O (n )

2. If the lookup fails

2.1 Condition for curtailment check -  requires O (n )

2.2 If 2.1 permits

2.2.1 Application of pq on Vj ' e (map p ic k _ 2 nd pp' s  result-set) + 

forming n-ary branching between each pointer of pp with corresponding
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pointer-set of p q on current j ' + merging their results and reasons to form 

new result -  requires 0 (n*n)  = 0 ( n 2)

2.2.2 Ambiguity packing of new result + updating the packed result to 

memo-table + create pointer -  requires 0 (n 2) .

All the above time complexities follow from lemma 10.1 to 10.4, 10.7 and 10.8. Hence, 

the worst case complexity remains at 0 (n 2).

Applying same arguments of theorem 10.1 and 10.2, we can conclude that a non-left 

recursive parse and a left-recursive parser require 0 (n3) and 0 (n 4) time respectively. □

10.3 Space Complexity -  w.r.t the length of input
According to section 6.4.2, the memo-table used for recognition is of type 
{ ( r e c o g n iz e r - n a m e ,{ ( s t a r t - p o s i t i o n , ( l e f t - r e c - c o n t e x t , { ( s t a r t -  

p o s i t i o n ,  e n d - p o s i t i o n  + 1) }) ) }}.  As described in section 6.4.3 and shown in 

figure 6.4, each recognizer has at most n entries and each of these entries may have at 

most a result-set of size n. So the size of the final memo-table would be O (n2) after 

complete recognition.

Similarly, according to section 7.3.1, the memo-table used for parsing is of type 

{ ( p a r s e r -n a m e ,{ ( s t a r t - p o s i t i o n ,  ( l e f t - r e c - c o n t e x t ,  { r e s u l t } ) ) } } ,  

r e s u l t  is of type ( s t a r t - p o s i t i o n ,  e n d - p o s i t i o n  + 1) ,  { tree})  . As 

described in section 7.4 and shown in figure 7.3, each parser has at most n memo-table 

entries and each of them has a result-set of size at most n. But each entry of result-set can 

be paired with a tree of size at most n * k (where k is a constant that depends on 

number of symbols - r  on the right-hand side of a rule). If the grammar is in Chomsky 

Normal Form (i.e. r  = 2) or r  > n then k = 1. The reason is if  r  = 2 or r  > n 

then there could be at most n number of ambiguous results (branches) for a particular 

start/ end pair. Hence, the size of the final memo-table would be O (n 3) (if r  = 2 or r  

> n ) after complete parsing.
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An Analysis for polynomial space requirement due to ambiguity-packing

Consider the grammar
S = memoize4 "S" ( (S th en 4  A) o r e ls e 4  empty4)
A = memoize4 "A" (S th en 4  (term 4 s ) )
Say for start-position 1 and end-position 4 on input “s s s s ”, S creates 4 different parses.

Pointers with one-level depth branches but without ambiguity grouping, there would be 4

different memo-table entries for S:

"S", 1, { ( ( 1 , 4 ) ,  t r e e l ) ,
( ( 1 , 4 ) ,  t r e e 2 ) ,
( ( 1 , 4 ) ,  t r e e 3 ) ,
( ( 1 , 4 ) ,  t r e e 4 ) }

If A is to refer S (1, 4) for its parses, then A creates 4 different entries in the memo-table 

for S:

"A", 1, { ( ( 1 , 4 ) ,  S ( 1 , 4)  . . ) ,
( ( 1 , 4 ) ,  S ( 1 , 4)  . . ) ,
( ( 1 , 4 ) ,  S ( 1 , 4 )  . . ) ,
( ( 1 , 4 ) ,  S ( 1 , 4 )  . . ) }

If A (1,4) if  needed to be referred by S again somewhere in the parse, each 4 o f  A’s

entries has to be added to S ’s list. For total 64 complete parse-trees, space requirement is

12 cells -  still compact

With ambiguity grouping. S ’s 4 ambiguous results are grouped together in a single list:

"S", 1, { ( ( 1 , 4 ) ,  { t r e e l ,  t r e e 2 ,  t r e e 3 ,  t r e e 4 } ) }

Now A needs to create only one entry that refers to S ’s memo-table entry (1, 4) cell:

"A", 1, { ( ( 1 , 4 ) ,  S ( 1 , 4)  . . ) }

S now can now refer to A  by adding only one entry to its list:

"S", 1, { ( ( 1 , 4 ) ,  A ( 1 , 4)  . .  ) }

Now, for 64 parse-trees space requirement is only 6 cells -  densely compact. It is 

needless to say that if  there was no one-level depth pointing branches and no ambiguity- 

grouping, it would take 64 cells in the memo-table.

(The example 5 o f  the appendix contains the actual result)
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CHAPTER 11: EXPERIMENTAL RESULTS
To justify the complexity-analysis of the previous chapter, we have tested different 

versions of a highly ambiguous grammar (s : :  S s ' s '  | e )  by applying our

implemented algorithm (chapter 8) on various lengths of inputs (n). According to Aho

and Ullman [l]’s equation 

number of parses, for example:

vn j
/(n + 1), the above grammar generates enormous

Length of 
input, n

No of parses

3 5
6 132
12 20,812
24 128,990,414,734
48 1.313278982422e+26

We have used four different parsers - representing four versions of the above grammar:

1. Un-memoized non-left recursive parser
s = (((term ' s ' )  'thenS' s 'thenS' s) 'orelse' empty)
2. Memoized non-left recursive parser (example 2 of the appendix)
si = memoize "si" (((term ’s') 'thenS' si 'thenS' si) 'orelse' empty)
3. Memoized left-recursive parser (example 3 of the appendix)
s2 = memoize "s2" (s2 'thenS' s2 'thenS' (term ’ s ' )  'orelse' empty)
4. Memoized left recursive parser in CNF1 (example 4 of the appendix)

As the algorithm is not restricted to only CNF, we memoize every components of the 

previous parser to represent it in a CNF. This is only possible because of the modularity 

of combinator-parsers.
s3 = memoize "s3" (s3 'thenS' memoize "s3'" (s3 'thenS' (term ’s'))

'orelse' empty)
Parsers s2 and s3 are equivalent, according [1].

It is worth mentioning that any practical grammar for a Natural Language would be much

less ambiguous than the above grammars.

1 In a CNF grammar, each rule has at most two symbols in sequence for each alternative.
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We have collected ‘number of seconds’ and ‘number of reductions’ required for 

generating compact-representation of packed forest per input-length -  using built-in 

functionalities of GHCi1 and Hugs’982. The experiments were performed on a PC with

0.5 GB of RAM and the results are listed in the following tables:

n = 
No o f ‘s’ 
in input

Parser s

time required
(using GHCi)

No of reduction 
(using Hugs)

nx where 
x = log n (no of reductions)

3 0.05 secs 14470 8.719939617
6 1.22 secs 627678 7.450655517
12 1006.27 secs (out of space)

Table 11.1: Time and no of reductions for parser s

n = 
No of ‘s’ 
in input

Parser si
time required
(using GHCi)

No of reduction
(using Hugs)

nx where 
x = log n (no of reductions)

3 0.02 secs 7407 8.11039606
6 0.15 secs 36415 5.861688601
9 0.32 secs 106899 5.270121162
12 0.52 secs 240206 4.985801848
15 1.07 secs 457662 4.813014985
24 4.24 secs 1847653 4.540334278
30 7.66 secs 3628761 4.440907166
35 13.31 secs 5825128 4.381481436
40 20.96 secs 8769200 4.333770279
48 32.65 secs (out of space)

Table 11.2: Time and no of reductions for parser si

n = 
No o f ‘s’ 
in input

Parser s2
time required
(using GHCi)

No of reduction
(using Hugs)

n* where 
x = log n (no of reductions)

3 0.07 secs 12188 8.563719191
6 0.20 secs 102908 6.441484397
9 0.33 secs 486526 5.9598121
12 0.80 secs 1613858 5.752384358
15 1.38 secs (out of space)
24 5.84 secs
30 13.30 secs
35 24.02 secs
40 45.91 secs

Table 11.3: Time and no of reductions for parser s2

'Glasgow Haskell Compiler is the most widely used standard compiler for Haskell.
www.haskell.org/ghc
2 Hugs’ 98 is a standard interpreter for Haskell, www. haskell. org/hugs
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n = 
No o f ‘s’ 
in input

Parser s3
time required
(using GHCi)

No of reduction
(using Hugs)

n* where 
x = log n (no of reductions)

3 0.08 secs 14483 8.720757018
6 0.18 secs 83260 6.323239093
9 0.41 secs 301298 5.741723089
12 0.71 secs 831423 5.485475268
15 1.17 secs 1880703 5.334892313
24 4.28 secs 11761465 5.122738612
30 8.88 secs 28636547 5.048279297
35 16.12 secs (out of space)
40 23.62 secs
48 68.21 secs

Table 11.4: Time and no of reductions for parser s3

From the above results, it is evident that the required time (using GHCi) increases in a 

polynomial-rate (except the un-memoized parser, s -  which fails, after exhibiting 

exponential behavior, at n=12 ). It also suggests that, though parsers s2 (non-CNF) 

and s3  (CNF) are equivalent left-recursive parsers, time-requirements of s 3 is much 

less (which is almost equivalent to memoized non-left recursive parser’s time 

requirements) then s2 . As Hugs 98 allocates less memory then GHCi for each session it 

runs out-of-space much quicker then GHCi. Even though Hug 98’s ‘number of reduction 

count’ is a rough-measure, it also suggests polynomial nature of the memoized parsers.

Time in sec (from  G H C i)

 ----------time for s i ................. time for s 2 ------------ tim e for s3

50 

45 

40 

35 

30 

25 

20 

15 

10 

5 

0
3 6 9 12 15 24 30 35 40

n = length o f  input

Figure 11.1: time vs. length-of-input plot for memoized parsers
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CHAPTER 12: CONCLUSION
In this report we have proven the thesis-statement (section 2.4.2) by proposing a new 

algorithm, analyzing its termination and complexity, implementing it in Haskell and 

performing experiments on different Context-Free Grammars with variable length of 

inputs. The experimental results of chapter 11 (that include highly-ambiguous left- 

recursive grammar) suggest that the polynomial nature of the algorithm is correct as 

proven in chapter 10. It is also evident that memoizing all component-parsers of a bigger 

and highly ambiguous left-recursive parser requires almost the same time to generate a 

complete parse-forest as it would require for a memoized non-left recursive parser. Our 

experiments were not only restricted to proper and CNF grammars, but included 

grammars with cyclic and empty rules. Though monadic facilities and the lazy-evaluation 

of Haskell assisted to propagate the memo-table systematically, to share computed values 

within different recursive calls, and facilitated the construction of the compact- 

representation of parse trees, the described algorithm can be implemented using other 

programming languages which support recursion and dynamic data-structures.

Future works related to this algorithm includes:

■ Analyzing the time and space complexity w.r.t variable length of grammars.

■ Improving the Haskell-code by following conventions according to the 

existing libraries of Haskell and by accommodating ‘user-supplied’ input for 

more general use.

■ Investigating the use of advanced programming techniques, such as those 

proposed in [21] to optimize the implementation of the parser combinators.

■ Investigating the use of arrays instead of lists to access and search the memo- 

table and to group ambiguous parses much faster.

■ Testing the algorithm on bigger and more practical NL grammars.

* Analyzing extraction-time of a complete parse from the compact 

representation w.r.t variable length of input and variable size of the grammar.
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APPENDIX: EXPERIMENTAL OUTPUT OF

COMPACT REPRESENTATIONS
The Haskell implementation of the algorithm has been applied on different Context-Free 

grammars with variable lengths of input. Some of those sample applications are listed 

below:

Example 1: CFG for Natural Language
Following is a grammar (similar to the one mentioned in Tomita’s paper [35]) that 
defines a subset of English and its equivalent combinator-parser -  written according to 
the algorithm of this report:
NL grammar
s ::= NP VP | S PP det ::= ' a ' 't'
NP ::= n| det n| NP PP noun ::- ‘ x ‘
PP ::= prep NP verb ::= 's'
VP : v NP prep ::= 'n' ' w'

where S stands for sentence, NP for noun-phrase, VP for verb-phrase, PP for 
prepositional-phrase, p r e p  for preposition, and d e t  for determiner.

Equivalent combinator-parser
s = memoize "s" ((np 'thenS' vp) 'orelse' (s 'thenS' pp))
np = memoize "np" (noun 'orelse' (det 'thenS' noun) 'orelse'

(np 'thenS' pp)) 
pp = memoize "pp" (prep 'thenS' np)
vp = memoize "vp" (verb 'thenS' np)
det = memoize "det" (term 'a' 'orelse' term 't1 ) 
noun = memoize "noun" (term 'i' 'orelse' term ’m' 'orelse'

term 'p1 'orelse' term 'b')
verb = memoize "verb" (term ’ s ’ )
prep = memoize "prep" (term 'n' 'orelse' term 'w')

The original grammar and the equivalent combinator-parser are structurally closely 
related and each of the sub combinator-parsers can be tested individually. An application 
of the root combinator-parser s on input " i s am n tp w ab "  (which represents " i  saw 
a man i n  th e  p a r k  w i t h  a  b a t " )  results following result, in which 
exponential numbers of parse-trees are represented in a polynomial space as a forest of 
one level depth n-ary branches:
apply s at start-position 1 of input "isamntpwab" with empty comtext and empty memo-table 
=>
"noun" 1 ((1,2),[Leaf "i"])

4 ((4,5), [Leaf "m"] )
7 ((7,8),[Leaf "p"])
10 ((10,11),[Leaf "b"])

"det" 3 ((3,4),[Leaf "a"])
6 ((6,7),[Leaf "t"])
9 ((9,10),[Leaf "a"])

"np" 1 (["np"],[(1,[])])
( (1,2),[SubNode ("noun", (1,2))])

3 (["np"], [])
((3,5),[Branch [SubNode ("det",(3,4)),SubNode ("noun", (4,5))]])
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((3,8),[Branch [SubNode ("np", (3,5)),SubNode ("pp", (5,8))]])
((3,11),[Branch [SubNode ("np",(3,5)),SubNode ("pp", (5,11))],

Branch [SubNode ("np",(3,8)),SubNode ("pp", (8,11))]])
6 (["np"],[])

( (6,8),[Branch [SubNode ("det",(6,7)),SubNode ("noun",(7,8))]])
((6,11),[Branch [SubNode ("np",(6,8)),SubNode ("pp",(8,11))]])

9 (["np"], [])
((9,11),[Branch [SubNode ("det",(9,10)),SubNode "noun",(10,11))]])

"prep" 5 ((5,6),[Leaf "n"])
8 ((8,9),[Leaf "w"])

"pp" 8 ( ["np"], [] )
((8,11),[Branch [SubNode ("prep",(8,9)),SubNode ("np",(9,11))]])

5 <["np"],[])
((5,8),[Branch [SubNode ("prep",(5,6)),SubNode ("np",(6,8))]])
((5,11) , [Branch [SubNode ("prep", (5,6)),SubNode ("np", (6,11)}]])

"verb" 2 ((2,3),[Leaf "s"])
"vp" 2 (["np"],[])

((2,5),[Branch [SubNode ("verb",(2,3)),SubNode ("np",(3,5))]])
((2,8),[Branch [SubNode ("verb",(2,3)),SubNode ("np",(3,8))]])
((2,11),[Branch [SubNode ("verb",(2,3)),SubNode ("np",(3,11))]])

"s" 1 (["np","s"], [])
((1,5),[Branch [SubNode ("np", (1, 2)),SubNode ("vp",(2,5))]])
((1,8),[Branch [SubNode ("np",(1,2)),SubNode ("vp",(2,8))],

Branch [SubNode ("s",(1,5)),SubNode ("pp", (5, 8))]])
((1,11),[Branch [SubNode ("np",(1,2)),SubNode ("vp",(2,11))],

Branch [SubNode ("s",(1,5)),SubNode ("pp",(5,11))],
Branch [SubNode ("s",(1,8)),SubNode ("pp",(8,11))]])

Example 2: Highly ambiguous non-left recursive CFG

The following is a highly ambiguous non-left recursive grammar.
Original CFG 
S::= 's' S S I £

Equivalent combinator-parser
s = memoize "s" {((term ' s ' )  'thenS' s 'thenS' s) 'orelse' empty) 
input = "ssss"
apply s at start-position 1 of input "ssss" with empty comtext and empty memo-table

((5, 5), [Leaf "empty'’]) 
((4,4), [Leaf "empty"])
((4,5),[Branch [SubNode ("Leaf s". (4,5)),SubNode ("s", (5,5)),SubNode ("s". (5,5) )
((3,3),[Leaf "empty"])
((3,4), [Branch [SubNode {"Leaf s", (3,4) ,SubNode ("s",(4,4) ,SubNode ("s", (4,4) )
( (3,5), [Branch [SubNode ("Leaf s", (3,4) ,SubNode ("s",(4,4) ,SubNode ("s". (4,5) )

Branch [SubNode ("Leaf s", (3,4) ,SubNode ("s",(4,5) ,SubNode ("s", (5,5) )
((2,2), [Leaf "empty"])
((2,3), [Branch [SubNode ("Leaf s". (2,3) ,SubNode ("s",(3,3) ,SubNode (" s " , (3,3))
((2,4), [Branch [SubNode ("Leaf s". (2,3) ,SubNode <"s",(3,3) ,SubNode (" s " ,(3,4) )

Branch [SubNode ("Leaf s", (2,3) ,SubNode ("s",(3,4) ,SubNode ("s", (4,4) )
((2,5), [Branch [SubNode ("Leaf s", (2,3) ,SubNode ("s",(3,3) ,SubNode ("s", (3,5) )

Branch [SubNode ("Leaf s", (2,3) ,SubNode ("s", (3,4) ,SubNode (" s " ,(4,5) )
Branch [SubNode ("Leaf s",(2,3) ,SubNode ("s",(3,5) ,SubNode ("s". (5,5) )

((1,1),[Leaf "empty"]) 
((1,2),[Branch [SubNode ("Leaf s". (1,2) ,SubNode ("s”, (2,2) ,SubNode ("s", (2,2))
((1,3),[Branch [SubNode ("Leaf s", (1,2) ,SubNode ("s",(2,2) , SubNode (" s " , (2,3) )

Branch [SubNode ("Leaf s", (1,2) ,SubNode ("s",(2,3) , SubNode ("s", (3,3) )
((1,4),[Branch [SubNode ("Leaf s", (1,2) ,SubNode ("s",(2,2) ,SubNode (" s " , (2,4) )

Branch [SubNode ("Leaf s",(1,2) ,SubNode ("s",(2,3) ,SubNode (" s " ,(3,4))
Branch [SubNode ("Leaf s". (1,2) ,SubNode ("S",(2,4) ,SubNode ("s". (4,4) )

((1,5),[Branch [SubNode ("Leaf s ”, (1,2) ,SubNode ("s",(2,2) ,SubNode ("s". (2,5) )
Branch [SubNode ("Leaf S", (1,2) ,SubNode ("s", (2,3) , SubNode (" s " ,(3,5) )
Branch [SubNode ("Leaf 3", (1,2) ,SubNode ("s", (2,4) , SubNode (" s " ,(4,5) )
Branch [SubNode ("Leaf s", (1,2) ,SubNode ("s",(2,5) , SubNode ("s", (5,5) )
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Example 3: Highly ambiguous left-recursive CFG

The following example is the equivalent highly ambiguous left-recursive version of the 
grammar from example 2.
Original CFG 
S::= S S 's' | s

Equivalent combinator-parser
s = memoize "s" (s 'thenS' s 'thenS' (term ’ s ’ ) 'orelse' empty) 
input = "ssss"
apply s at start-position 1 of input "ssss" with empty comtext and empty memo-table 
=>
"s" 1 (["s"], [])

((1,1),[Leaf "empty"])
((1,2),[Branch [SubNode <"s", (1,1)),SubNode ("s", (1,1)),SubNode ("Leaf s", (1,2))]])
((1,3),[Branch [SubNode ("s”.(1,1)),SubNode ("s", (1,2)),SubNode ("Leaf s", (2,3))],

Branch [SubNode ("s", (1,2)),SubNode ("s", (2,2)),SubNode ("Leaf S", (2,3))]])
((1,4),[Branch [SubNode ("s", (1,1)),SubNode ("s". (1,3)),SubNode ("Leaf s", (3,4))],

Branch [SubNode { " S " ,(1,2)),SubNode ("s", (2,3)),SubNode ("Leaf s", (3,4))],
Branch [SubNode ( "s" ,(1,3)),SubNode ("s". (3,3)),SubNode ("Leaf s", (3,4))]])

((1,5),[Branch [SubNode ("s", (1,1)),SubNode ("s", (1,4)),SubNode ("Leaf 3", (4,5))],
Branch [SubNode ("s". (1,2)),SubNode ("s", (2,4)),SubNode ("Leaf s", (4,5))],
Branch [SubNode ("s", (1,3)),SubNode ("s", (3,4)),SubNode ("Leaf s", (4,5) ) ] ,
Branch [SubNode ("s", (1,4)),SubNode ("sn,(4,4)),SubNode ("Leaf s", (4,5))]])

(["s"], [])
((2,2),[Leaf "empty"])
((2,3),[Branch [SubNode ("s". (2,2)),SubNode ("s", (2,2)),SubNode ("Leaf s", (2,3))]])
((2,4),[Branch [SubNode ("s", (2,2)),SubNode ("s", (2,3)),SubNode ("Leaf s", (3,4))],

Branch [SubNode ("3n, (2,3)),SubNode ("s", (3,3)),SubNode ("Leaf s", (3,4) ) ] ] )
((2,5), [Branch [SubNode ("s”,(2,2)),SubNode ("s", (2,4)),SubNode ("Leaf s", (4,5))],

Branch [SubNode ("s", (2,3)),SubNode (" S " , (3,4)),SubNode ("Leaf s", (4,5))],
Branch [ SubNode ( " 3 " , (2,4)),SubNode ("S", (4,4)),SubNode ("Leaf s", (4,5))]])

(["s"j,[])
((3,3),[Leaf "empty"]}
( (3,4), [Branch [SubNode ("3", (3,3)),SubNode ("s", (3,3)),SubNode ("Leaf s", (3,4) ) ] ] )
((3,5),[Branch [SubNode ("s", (3,3)),SubNode ( " s " ,(3,4)),SubNode ("Leaf s", (4,5) ) ] ,

Branch [SubNode ("s", (3,4)),SubNode ("s", (4,4)),SubNode ("Leaf s", (4,5))]])
4 (["s"], [])

((4,4), [Leaf "empty"])
((4,5),[Branch [SubNode ("s",(4,4)),SubNode ("s",(4,4)),SubNode ("Leaf s”,(4,5))]]) 

5 (["s"], [])
((5,5),[Leaf "empty"])

Example 4: Memoizing components o f CFG

The following example is the equivalent ambiguous left-recursive version of the grammar 
from example 3, but we memoized sub-components of the grammar for improved 
performance. In this way any grammar can be represented in CNF.
Original CFG 
S::= S S 's' i e
Equivalent combinator-parser
si = memoize "si" ((si 'thenS' memoize "s_" (si 'thenS' (term 's'))) 'orelse' empty) 
input = "ssss"
apply s at start-position 1 of input "ssss" with empty comtext and empty memo-table 
=>
" s i "  1 ( [ " s i " ] , [ ] )

((1,1),[Leaf "empty"])
((1,2),[Branch [SubNode ("si",(1,1)),SubNode ("s_",(1,2))]])
((1,3),[Branch [SubNode ("si",(1,1)),SubNode ("s_",(1,3))],

Branch [Sube ("si", (1,2)),SubNode ("s_",(2,3))]])
((1,4),[Branch [SubNode ("si", (1,1)),SubNode ("s_", (1, 4)) ] ,

Branch [Sube ("si",(1,2)),SubNode ("s_",(2,4))],
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Branch [SubNode ("si",(1,3)),SubNode ("s (3,4))]])
((1,5),[Branch [SubNode ("si",(1,1)),SubNode ("s_",(1,5))], 

Branch [Sube ("si", (1,2)),SubNode ("s_”,(2,5))], 
Branch [SubNode ("si",(1,3)),SubNode ("s(3,5))],
Branch [SubNode ("si", (1,4)),SubNode ("s_", (4,5))]])

2 (["si"],[(2, [])]) 
((2,2),[Leaf "empty"])
((2,3),[Branch [SubNode ("si", (2,2)),SubNode ("s_", (2,3))] ])
((2,4),[Branch [SubNode ("si", (2,2)),SubNode ("s_". (2,4))] /

Branch [SubNode ("si", (2,3)),SubNode ("s_", (3,4))]])
((2,5),[Branch [SubNode ("si", (2,2)),SubNode ("s ", (2,5))] ,

Branch [SubNode ("si", (2,3) ) , SubNode ("s_", (3,5) ) ],
Branch [ SubNode ("si", (2,4)),SubNode ("S_", (4,5))] ])

3 (["si"],[(3, [])]) 
((3,3),[Leaf "empty"])
((3,4),[Branch [SubNode ("si", (3,3)),SubNode ("s_". (3,4))]])
((3,5),[Branch [ SubNode ("si", (3,3)),SubNode ("S_", (3,5) ) ],

Branch [SubNode ("si", (3,4)),SubNode ("s_", (4,5))] ])
4 (["Si"],[(4, [])])

((4,4),[Leaf "empty"])
((4,5),[Branch [SubNode ("si". (4,4)),SubNode <”s_". (4,5) ) ] ] )

5 (["si"], [(5, [])]) 
((5,5),[Leaf "empty"])

1 ( ["si"], [ (1, [ (’sl",l)])]
((1,2),[Branch [ SubNode ("si", (1,1)),SubNode ("Leaf s",(1,2))]])
((1,3),[Branch [SubNode ("si", (1,2)),SubNode ("Leaf s ", (2,3))]])
((1,4),[Branch [SubNode ("si", (1,3)),SubNode ("Leaf s", (3,4))]])
((1,5),[Branch [SubNode ("si", (1,4)),SubNode ("Leaf s",(4, 5))]])

2 (["si"], [])
((2,3),[Branch [SubNode ("si", (2,2)),SubNode ("Leaf s", (2,3))]])
((2,4),[Branch [SubNode ("si", (2,3)),SubNode ("Leaf s", (3,4))]])
((2,5),[Branch [SubNode ("si", (2,4)),SubNode ("Leaf s",(4,5))]])

3 (["si"],[])
((3,4),[Branch [SubNode ("si", (3,3)),SubNode ("Leaf s",(3, 4))]])
((3,5),[Branch [SubNode ("si", (3,4)),SubNode ("Leaf s",(4, 5))]])

4 (["si"],[])
((4,5),[Branch [SubNode ("si". ( 4 , 4 ) ) , SubNode ("Leaf s",( 4 , 5))]])

5 (["si"], [])

Example 5: Direct CNF form of CFG

The following example is the equivalent ambiguous left-recursive Chomsky-Normal 
Form (CNF) version of the grammar from example 3 and 4.
Original CFG 
S: := S A | E 
A::= S 's'
Equivalent combinator-parser
s = memoize "s" ((s 'thenS' a) 'orelse' empty)
a = memoize "a" (s 'thenS' (term ' s ' ) )
input = "ssss"
apply s at start-position 1 of input "ssss" with empty comtext and empty memo-table 
=>
"s" 1 (["s"], [])

((1,1),[Leaf "empty"])
((1,2),[Branch [SubNode ("s",(1,1)),SubNode ("a",(1,2))]])
((1,3),[Branch [SubNode ("s”,(1,1)),SubNode ("a",(1,3))],

Branch [SubNode ("s", (1,2)),SubNode ("a", (2,3))]])
( (1,4), [Branch [SubNode ("s", (1,1)),SubNode ("a", (1,4))],

Branch [SubNode"s",(1,2)),SubNode ("a",(2,4))],
Branch [SubNode ("s",(1,3)),SubNode ("a",(3,4))])

((1,5), [Branch [SubNode ("s", (1,1)),SubNode ("a", (1,5))],
Branch [SubNode"s",(1,2)),SubNode ("a",(2,5))],
Branch [SubNode ("s",(1,3)),SubNode ("a",(3,5)),
Branch [SubNode ("s",(1,4)),SubNode ("a",(4,5))]])

2 (["s"], [(2, [])])
((2,2),[Leaf "empty"])
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( (2,3 , [Branch [SubNode ("s", (2,2)),SubNode ("a", (2,3))]])
((2,4 ,[Branch [SubNode ("s", (2,2)),SubNode ("a",(2,4))],

Branch [SubNode ("s", (2,3)),SubNode ("a",(3,4))]])
( (2,5 ,[Branch [SubNode ("s". (2,2)),SubNode ("a",(2,5))],

Branch [SubNode ("s", (2,3)),SubNode ("a",(3,5))],
Branch [SubNode ("s", (2,4)),SubNode ("a", (4,5))])

3 (["s" , [(3, [] ) ])
( (3,3 ,[Leaf "empty"])
( (3,4 ,[Branch [SubNode ("s", (3,3)),SubNode ("a",(3,4))]])
( (3,5 ,[Branch [SubNode ("s", (3,3)),SubNode ("a",(3,5))],

Branch [SubNode ("s", (3,4)),SubNode ("a", (4,5))]])
4 (["s" 

( (4, 4
, [(4, [])])
,[Leaf "empty"])

((4,5 ,[Branch [SubNode ("s", (4,4)),SubNode ("a",(4,5))]])
5 (["s" ,[(5, [])] )

( (5,5 ,[Leaf "empty"])
1 ( ["s" ,[(1, t("s",1)])]>

( (1,2 ,[Branch [SubNode (" s ", (1,1)),SubNode ("Leaf s",(1,2))]])
((1,3 ,[Branch [SubNode ("s". (1,2)),SubNode ("Leaf s",(2,3))]])
((1,4 ,[Branch [SubNode ("s". (1,3)),SubNode ("Leaf s", (3,4))]])
( (1,5 ,[Branch [SubNode ("s", (1,4)),SubNode ("Leaf s", (4,5))]])

2 ( ["s" , [] )
( (2,3 , [Branch [SubNode ("s", (2,2)),SubNode ("Leaf s",(2,3))]])
( (2,4 , [Branch [SubNode ("s", (2,3)),SubNode ("Leaf s",(3,4))]])
( (2,5 , [Branch [SubNode ("s", (2,4)),SubNode ("Leaf s", (4,5))]])

3 (["s" , [])
((3,4 , [Branch [SubNode ("s", (3,3)),SubNode ("Leaf s", (3,4))]])
( (3,5 , [Branch [SubNode ("s", (3,4)),SubNode ("Leaf s", (4,5))]])

4 (["s" , [] )
( (4,5 , [Branch [SubNode ("s", (4,4)),SubNode ("Leaf s", (4,5))] ])

5 (["s" , m
Example 6: Cyclic Grammar

The following example is an application of the algorithm on a cyclic-CFG.
Oriqinal CFG
SI::= SI 'x'
Q : : = R
R : : = P
P ::= SI V
Equivalent combinator-parser
si = memoize "si" ((si 'thenS' (term 'x')) 'orelse' p 'orelse' 

'x') 'orelse' (term 1y') 'orelse' q)
q = memoize " q "  r
r = memoize "r" p
p = memoize "p" (si 'thenS' (term ’y 1))
input = "yyyy"
apply s at start-position 1 of input "ssss" with empty comtext and empty memo 
=>
"p" 1 (["si"],[(1,[("si",1)])])

( (1,3), [Branch [SubNode ("si", (1,2)),SubNode ("Leaf y", (2,3))]])
((1,4),[Branch [SubNode ("si",(1,3)),SubNode ("Leaf y",(3,4))]])
((1,5),[Branch [SubNode ("si",(1,4)),SubNode ("Leaf y", (4,5))]])

"r" 1 (["si"],[(1,[("si",1)])])
((1,3),[SubNode ("p",(1,3))])
( (1,4), [SubNode ("p", (1,4))])
((1,5), [SubNode ("p", (1,5))])

"q" 1 (["si"], [(1, [("sl",l)])]>
((1,3), [SubNode ("r", (1,3))])
((1,4),[SubNode ("r",(1,4))])
((1,5),[SubNode ("r”,(1,5))])

" s i "  1 ( [ " s i " ] ,  [ ] )
( (1,2),[Leaf "y"])
((1,3),[SubNode ("p", (1, 3)),SubNode ("q", (1,3))])
( (1,4), [SubNode ("p", (1,4)),SubNode ("q", (1,4))])
((1,5),[SubNode ("p", (1,5)),SubNode ("q",(1,5))])
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