University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2006

XML Schema subtyping.

Yun Li
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
Li, Yun, "XML Schema subtyping.” (2006). Electronic Theses and Dissertations. 7136.
https://scholar.uwindsor.ca/etd/7136

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.


https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7136?utm_source=scholar.uwindsor.ca%2Fetd%2F7136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

XML Schema Subtyping
by
Yun Li

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2006

© 2006 Yun Li

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

Library and Bibliothéque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-42327-1
Qur file  Notre référence
ISBN: 978-0-494-42327-1

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theéses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont éteé enleveés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

An XML Schema is a grammar of an XML language. It defines a set of instance XML
documents that are valid sentences in this language. An XML Schema S is a subtype of
another XML Schema T if the set of instances of S is a subset of the instances of T. Since
XML Schema has become a mainstream data type definition format for XML documents,
its subtyping’ problem finds many applications in XML-centric programming and Web-

service technology.

The proposed subtyping algorithm is based on Antimirov’s derivation calculus
(Antimirov, 1994) for regular expressions and its extensions to regular hedge expressions
(Kempa & Linnemann, 2003) (Hohenadel, 2003). This thesis formalizes and rebuilds the
algorithm for regular tree grammars, which is very close to the subtyping algorithm for

regular hedge grammars.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my supervisor, Dr. Jianguo Lu, who
brought me to the research area of formal language theory and XML-related technologies.
He taught me the way of doing research as a serious, independent, and creative researcher.
His insightful comments and encouragements always inspired me to do my best in this

thesis.

I also want to thank my thesis committee members, Dr. Sang-Chul Suh, Dr. Jessica Chen,

and Dr. Richard Frost, for their great support.

Finally, I am very grateful for my family whose love and patience enabled me to

complete this work.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

ABSTRACT.......ccece. veesessassatensssassaesassenstssatsnnssrenesassansanssnnssneeasanes iii
ACKNOWLEDGEMENTS ...uconininininenincninsnssecsnnnscsnesesssesissssssisssssassassssssassssassassase iv
LIST OF TABLES. .......ccccceveevuervuerrercnees seesssesnnssrsesnsesananes vii
LIST OF FIGURES........ccocevvurerurens cesrtessessanesatsnsesnaesaassnnessesasanas viii
CHAPTER

L INTRODUCTION

1.1 Type Languages for XML Documents............c.ccccocveveiiinnnieannne. 1
1.2 XML Schema Subtyping.............cccccevvivinnrenienninieirinenieeenees 2
1.3 Thesis OVervVIew ............ccccceeriiriiiriiieiienieeneeneeseese e esvesee s 5

IL A FORMAL LANGUAGE FOR XML SCHEMAS

2.1 Regular Grammars and Context Free Grammars.................... 7
22 THEES ...ttt st 10
2.3 Regular Tree Grammars and Regular Tree Languages......... 12
2.4 Unranked & Ranked Trees...........cccoocorevinnenenninicninnnennennens 15
2.5 Intermediate Language ... 17
2.6 XML Schema Mapping.........ccccceeeevvieniienncnvieeninnieceeneenesnaens 22
2.7 Schema DeterminiSm...............c.ccocoevveriiiiinniinniineececeeeee 25
2.8 SUbBLYPING......cooiiriiii e 29
IIL A SUBTYPING ALGORITHM FOR XML SCHEMAS
3.1 What is a Subtyping Algorithm?......................cccoiiininniininn, 31
3.2 Main Ideas of the Subtyping Algorithm .....................c.oee. 31
3.3 Check for e-inclusion .............ccccocveviiviinniiniiinnenncnecnineeeenes 34
3.4 Simplification Process ... 36
3.5 Algorithm Rules ...........cccoovieviereiiinnieeniiiiner e sveees 47
3.6 Time Complexity..........ocoveevviiiiiiiiiniiieiniieecer e 52

Iv. IMPLEMENTATION

4.1 XML Schema Parsing.............ccccevevniinniiniiennenienieninesinsneonennns 56

4.2 Type Representations..............cccooceveeiimnrienineeniieenineeieneesnaenns 57

4.3 Subtype ChecKing............c.ccooeeiiriiiiiinniniieniiienerenteerene e 59

4.4 Tmplicit Subtyping ...........ccoocviiiiiiiiiiiiii e 64
v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



V. RELATED WORK

5.1 Tree-automaton-based Subtyping..............c..ccoccovviininninnnn. 66
5.2 Subtyping for Regular Expression Types...........ccoccevninininin 68
5.3 Subtyping Using BDD............ccoooiiiiiiiiccrceceeen 71
5.4 Subtyping Using Antimirov’s Containment Calculus............. 72
5.5 ComPAriSON ..........ooooviiiiiiiiiieiertree e sesre e ee s 75

VL CONCLUSIONS AND FUTURE WORK

6.1 Main ContriDULIONS ........covvvviiirvimiiinirireerriereeeetiieeereerererrrnnnss 80
6.2 Limitations and Future WorkK ...........ccooeovvvviviiineiirviiiiicinenenns 81

APPENDICES
A A Set-theoretic Observation reeereresesersssnesarresessensarsasssserassrrrnrsnsassesses 83
B Logfile for Example 3 ........ccocvivriiecnsnnsnicsnnesenss rerressenesnaesans .86
REFERENCES ......oovcieeeiieieresssasesessesossesssnssorsssssssssosasssrssssssssssssanssvensensassasessonsssssssasaanessss 93
VITA AUCTORIS teesesenssssssssesesessssrssesasasasassenssnssnsanasssasssssssssasesnasasanne 96

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

Table 1: Eight Type Classes in Implementation ..........cccvee. terseecessanessennttessnsnssnnnssnanes ey

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure 1: XML Schema Supervisorl..... e, 4

Figure 2: XML Schema Supervisor2.........ouueeecerunrncenenes veessessusneas . 4

Figure 3: An Instance XML Document of Supervisorl and Its Tree Representation12

Figure 4: The Relationship Between Unranked Trees and Binary Trees............cov.e.. 16
Figure 5: XML Schema Test.....cccccvniirnirinsnisensenssessecsenessasssecssnesssessesssnssnssssessossessncsascs 27
Figure 6: Main Ideas of the Subtyping Algorithm............cuuuienreneinvcsensuecseesnecnennes 32
Figure 7: Proof Tree of Example 3. . 46
Figure 8: XML Schema Subtyping Rules ........ccoviiinecseninnsnnsnssenssncssasssnsssnssaesassancsas 47
Figure 9: XML Schema Subtyping Architecture.........eeeiriienisecssencsacssasssasssessessenasens 55
Figure 10: DOM XIML ParSer ......cccccccivunisrncssiessascssssssncsssssssssnsssssossssssssssessasssssssasssssassas 56
Figure 11: XML Schema Built-in Data Type Hierarchy........ ceressnnsanns 65
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER1
INTRODUCTION

Since the World Wide Web Consortium (W3C) recommended XML (the eXtensible
Markup Language) as a standard in 1998, XML has received widespread attention and
adoption in the computer industry. Its usage ranges from document publication to data
exchange and integration on the Web. In addition, XML is the cornerstone of Web service
technology, which is becoming the new standard for distributed computing. Modern Web
applications and Web services generate XML documents dynamically, whose types need
to be checked. In particular, applications consuming one type of XML documents may
accept documents of its subtypes. Hence, the subtyping problem of various XML data
types has attracted substantial research attention (Hosoya, Vouillon, & Pierce, 2000)

(Tozawa & Hagiya, 2003) (Kempa & Linnemann, 2003) (Hohenadel, 2003).

1.1 Type Languages for XML Documents

An XML type describes a set of XML documents, typically expressed in terms of
constraints on the structure and content of the documents of that type. To improve the
safety of XML data processing, most XML-related technologies assume XML documents

follow an XML type.

Since the inception of the XML specification, there have been many XML type languages

defined. The original specification of XML (Bray et al., 2000) defined D7D (Document

Type Definitions) as its type language, or the schema language. Since then, DTD had

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



been the most commonly used type language until the introduction of XML Schema.
DTD is relatively simple and has a compact syntax. However, DTD has a few
shortcomings. For example, DTD has a non-XML syntax, which means one needs
separate tools, such as a parser, to let a machine understand it. In addition, DTD doesn’t
support namespaces easily, and provides very limited data typing. For example, it doesn’t
have types like date and integer. Furthermore, data types defined in DTD are for

attributes only.

To overcome the limitations of DTD, a large number of alternatives have been proposed.
The representative ones include XML Schema (Fallside & Walmsley, 2004), DSD
(Document Structure Description) (Klarlund et al.,, 2000), RELAX (Murata, 2001),
RELAX NG (Clark & Murata, 2001), and so on. Among them, XML Schema is the most
popular one and has become a mainstream data-type definition format for XML
documents. We investigated 3448 WSDL (Web Service Definition Language) files
randomly collected from the Web and found that 3070 WSDL files contain type

definitions, 3054 out of which (99.48%) use XML Schema for their datatype definitions.

Because of the popularity of XML Schema, this thesis focuses on the subtyping problem

of XML Schema only.

1.2 XML Schema Subtyping

There are various notions to capture the relationship between XML data types, such as

the subsumption relation proposed by Kuper, et al. in (Kuper & Siméon, 2001) and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



containment relation between two languages (Tozawa & Hagiya, 2003). In this thesis,
subtype refers to the set-inclusion relationship (Hosoya, Vouillon, & Pierce, 2000)
(Kempa & Linnemann, 2003) (Hohenadel, 2003), i.e., XML Schema S is a subtype of
another XML Schema T if the set of XML documents defined by S is a subset of the set

of XML documents defined by T.

To illustrate the subtyping problem, let’s consider two XML Schemas: Supervisor] and

Supervisor2, in Figure 1 and 2.

In Supervisorl, the minOccurs and maxOccurs attributes of the node labeled supervisor
are set to 0 and 1 respectively, which means the node supervisor can occur 0 or 1 time
within the node supervisor. However, Supervisor2 specifies that the node supervisor can
occur 0, 1, or 2 times within the node supervisor. Obviously, Supervisor2 describes
strictly more XML instances, which implies the set of instances of Supervisorl is a subset

of the set of instances of Supervisor2. Hence, Supervisorl is a subtype of Supervisor2.

Subtyping yields a substantial degree of flexibility in XML-centric programming. An
XML language supporting subtyping will allow procedures/methods applicable to one
type to be safely applied to its subtypes. For example, applications that are designed to
process the instance XML documents of Supervisor2 will also be able to process those of

Supervisorl.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<xs:schema xmlns:x

<xs:element name

<xs:complexType name = “supervisorType™>
<X$:8equUence™

<xs:element ref = “supervisor” minOecurs=*“0" maxOeccurs=“1" />
</xs:sequence™
</xs:complexType>
</xs:element™>
</xs:schema>

Figure 1: XML Schema Supervisorl

<xs:schema xmlns:xs = “http://www.w3.0rg/2001/XMLSchema™>
<xs:element name = “supervisor” type = “supervisorType”™>
<xs:complexType name = “supervisorType™>
<X$:SCqUENCe™
<xs:element name = “name” type = “xs:string” />
<xs:element name = “position” type = “xs:string™ />
<xs:element ref = “supervisor” minOccurs=“0"” maxOccurs=*2" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Figure 2: XML Schema Supervisor2

Subtyping becomes more important with the widespread acceptance of Web service
technology. A Web service is defined in terms of its types, i.e. XML Schema. So, when
searching for Web services or composing Web services, we need to compare Web
services in terms of XML Schemas, i.e., subtyping of XML Schemas. For example, the

subtyping facility can help us locate relevant sub-services from the Web.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.w3
http://www.w3.org/2001/XMLScheraa%e2%80%9d

1.3 Thesis Overview

The contributions of this thesis are, in short, as follows: (1) based on formal language
theory, we identify an appropriate language to model XML Schemas, and formally define
the language based on regular tree grammars. (2) We propose a subtyping algorithm,
which is based on Antimirov’s derivation calculus (Antimirov, 1994) for regular
expressions and its extensions to regular hedge expressions (Kempa & Linnemann, 2003)
(Hohenadel, 2003). This thesis formalizes and rebuilds the algorithm for regular tree
grammars, which is very close to the subtyping algorithm for regular hedge grammars. (3)

We implement the subtyping algorithm for XML Schemas.

The remainder of this thesis is organized as follows. In the next chapter, we will give the
definitions of those basic notations that we use in our work, e.g., trees, regular tree
grammars, and subtyping. Also, we will describe how to model XML Schemas by regular
tree grammars. Chapter 3 will present the main ideas of our subtyping calculus, which
was originally conceived by Antimirov (Antimirov, 1994). This chapter contains a
detailed description of all extensions and modifications added to the original calculus. A
detailed description of the implementation of the subtyping algorithm will be given in
Chapter 4. In Chapter 5, we will discuss related work and indicate what current technical
challenges are in this field. Importantly, we will compare our work with other related
work at length. Chapter 6 will conclude the main contributions of our research work and

then discuss the limitations of our subtyping system. Finally, we will address some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



aspects, which at this time cannot be discussed within the context of this thesis, or which

will become subject to optimization of the subtyping algorithm in the future works.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 11
A FORMAL LANGUAGE FOR XML SCHEMAS

To study the relationships between XML Schemas, first of all, we need to model XML
Schemas using a formal language. It is crucial to provide a formal model for XML
Schemas in order to facilitate efficient implementations of subtyping algorithms. Towards
this goal, in this thesis, we propose to use formal language theory, especially regular tree

grammar theory, as such a framework for XML Schemas.

To understand why we need to use regular tree grammars to model XML Schemas, we

first introduce two grammars that are closely related to regular tree grammars.

2.1 Regular Grammars and Context Free Grammars

Regular Grammars and context free grammars are the type 3 and type 2 grammars of

Chomsky Hierarchy (Hopcroft & Ullman, 1979), respectively.

According to (Hopcroft & Ullman, 1979), all productions of a regular grammar are of the

following forms:

n—->t
or n - iny or n = nyt but not both
or n->¢

where n, ny € N (denoting a non-terminal set), and # is a string of terminals € 2 (denoting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a terminal set).

It is impossible to use productions of the above forms to derive recursive trees when the
recursion occurs in the content model (i.e. the order and structure of the children of a tree
node). For example, XML Schema Supervisorl defines a set of trees derived from the

following productions

Supervisor — supervisor(Name, Position, Supervisor)

Supervisor — supervisor(Name, Position)

If we consider parentheses as terminal symbols, there are terminal symbols (in lower-case)
before and after the non-terminal symbol Supervisor on the right-hand side of the first
production. Such a production can not be replaced by a production of form either » - n;
or n - nit as defined in regular grammars. Therefore, the expressiveness of XML

Schemas is beyond that of regular grammars.

Regular expressions correspond to regular grammars. They are just different ways to
express the same thing, except that regular expressions are more concise. Like regular

grammars, regular expressions are not expressive enough to model XML Schemas, either.

A context-free grammar (Hopcroft & Ullman, 1979) is more expressive than regular

grammars or regular expressions. It allows a sequence of terminals or non-terminals on

the right-hand side of a production rule. Since XML became the standard data format for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the Web in 1998, context-free grammars have been increasingly important for XML and
XML type languages such as DTD and XML Schema. Many early proposed type
formalisms for XML data types (Hosoya, Vouillon, & Pierce, 2000) (Kempa &

Linnemann, 2003) were based on context-free grammars.

Although context free grammars are expressive enough to model XML Schemas, the
decision problem for the inclusion-checking between context-free languages is
undecidable (Hopcroft & Ullman, 1979, Theorem 8.12). Syntactic restrictions have to be
imposed to reduce the power of context free grammars so that the types represented by
such grammars correspond to regular tree languages. These restrictions require, for any
production of a context free grammar, a recursive non-terminal to occur only in the tail
position and to be preceded by a non-nullable type expression on the right-hand side
(Hosoya, Vouillon, & Pierce, 2000) (Kempa & Linnemann, 2003) (Hohenadel, 2003). A
type expression is non-nullable if the language denoted by this type expression does not

contain the empty string. Thus, these restrictions ensure the regularity.

To guarantee enough expressiveness and avoid the above syntactic restrictions, regular
tree grammars are commonly used to model XML Schemas (Murata, Lee, Mani, &
Kawaguchi, 2005). This thesis follows this approach and uses regular tree grammars in

the subtyping algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

2.2 Trees

As an XML Schema describes a set of XML documents and an XML document can be

viewed as a tree, we first define what trees are in our work.

Following the definitions from (Comon et al., 2002), a ranked alphabet X is a finite
nonempty set of symbols, each symbol of which has a unique nonnegative arity (or rank),

denoting the number of its children. The ranked alphabet X' is partitioned into disjoint sets,
ie, 2 =2y UZ; U...UZywhere 0, 1,..., k£ are nonnegative integers and 2, denotes the

set of symbols of arity m. Elements of X are called k-ary symbols. In particular, elements

in 2 are constants.

A leaf alphabet X is an ordinary finite alphabet. It is disjoint from the ranked alphabet ~

considered in a given context.

Definition 1: Terms and Trees (Gécseg & Steinby, 1997)
Let 2 denote a finite set of operation symbols and X as a set of variables. The set 7x(X) of
2—terms with variables in X, is defined inductively as the smallest set 7" of strings such
that:

(D)X cT,and

)1ty ...,tn) € Twheneverm=>0,/ e X, and ty, ..., tn € T.

Term ¢( ) is simplified as ¢ when ¢ € 2.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

A ZX~tree is an Z—term with variables in X. Thus, the set 75(X) is the set of all ZX~trees.

Many XML documents can be represented by ZX—trees. In this view, the root and inner
nodes (labelled with a symbol from a ranked alphabet X) of a ZX-tree correspond to
elements which determine the structure of an XML document, while the leaf nodes
(labelled with a symbol from a leaf alphabet X) provide data contents. For example, in
Figure 3, XML document A is an instance of XML Schema Supervisorl and can be
represented by the ZX-tree below it, where X' = {supervisor, name, position} and X =

{Mary, secretary, John, manager, Zackery, director}.

In the domain of subtype-checking, we are only interested in the structure of a set of
XML documents, rather than in actual data values. In such cases, we ignore the leaf
alphabet X, and thus, an XML document can be adequately represented by a tree over a

finite alphabet 2. Such finite labelled ordered trees are called 2—¢rees (Neven, 2002).

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

“<supervisor> = L L iR
<name>Mary</name> ' <xm| yereion 1‘(? eﬂf:odtrng UTF-G5 I i
<position>secretary</position> &xsischema xm!ns.xs:- http.//)wv\‘ly.w:a.or“glzom{XMLSch:ema >
<supervisor> .-¥xs:element name= supervisor' type=supervisorType" >

<name>John</name> ~ <xs:complexType name="supervisortype'>
<position>manager</position> : <Xs'sequence>
<5<"'r"°:n“]’§>‘£ckery< i <xs:element name= ‘name" type= “xs:string"
= A =g
sposition=directors/position> g manccuri-"-1 m axpccu{_sn 1, I>. o
</supervisor> : £xsie eme(lt name= Eo"smon type= )"(s‘.’strmg
</supervisor> minOccurs="1"maxOccurs="1" />
\.&/supervisors <xs:element ref="supervisor”
XML Document A . minOccurs="0" maxOceurs="1" />
<[xs:sequence>
</xs:complexType>
</xs element>
</xs:schema>
Supervisor1

Figure 3: An instance XML document of Supervisorl and its tree representation

2.3 Regular Tree Grammars and Regular Tree Languages

An XML Schema defines a set of 2-trees. The formal language for XML Schema should
be defined over J—trees. Tree grammars generate such trees and thus they are appropriate
to model XML schemas. In our work, we capture XML Schemas by a class of tree

grammars called regular tree grammars.

The formal definitions (shown below) of regular tree grammars and regular tree
languages (below) are given in (Comon et al.,, 1999) and (Gécseg & Steinby, 1997).

Please note that we do not consider the set of variables X in this thesis.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.w3.org/2001/XMLSchema

13

Definition 2: Regular Tree Grammar
A regular tree grammar is defined by a system G = (X, N, P, S) where
- Yis aranked alphabet or a set of terminal symbols;

- Nis a finite nonempty set of non-terminal symbols and N N X' = @ is assumed;

- P is a finite set of productions of form n -> ¢, where n € N and ¢ € Ts(N);

- Sis the start symbol and S e N.

Regular tree grammars have two main differences from other classes of tree grammars:
- In a regular tree grammar, all non-terminal symbols have arity 0, while other tree

grammars allow non-terminals of arity greater than 0;

- A tree grammar has a set of production rules of form # —>?2 where 1,12 are trees

defined over a terminal set X and a non-terminal set N. Additionally, ?1 contains at

least one non-terminal. On the other hand, in any production of a regular tree

grammatr, only a single non-terminal is allowed on its left-hand-side. That is, the form

of productions is # —>¢ where n € Nand ! is a tree over 2UN.

A regular tree grammar is used to derive trees from the start symbol S, using the
corresponding derivation relations which can be defined simply by interpreting the
productions of a regular tree grammar as the rewrite rules of a term rewriting system.

That is, we replace a non-terminal A by the right-hand-side a of a rule 4 - a. We use the

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

notation = to denote the one-step derivation relation of a regular tree grammar G and

the notation 32; to denote the general derivability relation of G.

A regular tree language, denoted by L(G), is the language generated by a regular tree

grammar G. It is a set T of 2-trees defined as:

LG)={teTs|s =g B}

Example 1: (regular tree grammar G1) A regular tree grammar that represents XML

Schema Supervisorl can be defined as G; = (¥, 2, P, S), where
N = {Supervisor}
2’ = {supervisor, name, position, string}
S = Supervisor
P = { Supervisor — supervisor(name(string), position(string), Supervisor)

Supervisor — supervisor(name(string), position(string)) }

The regular tree language generated by G, denoted by L(G1), is a set of trees, i.e.,

L(Gy) = { supervisor(name(string), position(string)),
supervisor(name(string), position(string),

supervisor(name(string), position(string)))

The derivations of the two simplest trees in L(G) are as follows:

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

Supervisor =, supervisor(name(string), position(string))

Supervisor =, supervisor(name(string), position(string), Supervisor)
= supervisor(name(siring), position(string),

supervisor(name(string), position(string)))

A regular tree grammar G = (N, Z, P, S) is in normal form (Gécseg & Steinby, 1997) or

called normalized (Comon et al., 1999) if each production of G is of form n » corn -»
l(ny,..., nym) where n, ny,..., im€ N, c € 2y, [ € X, and m > 0. According to (Comon et al.,
1999, Proposition 3, p51), any regular tree grammar can be transformed into a normalized

regular tree grammar. In the rest of the thesis, wherever we say regular tree grammars, we

mean normalized regular tree grammars.

2.4 Unranked & Ranked Trees

An unranked tree is an Xtree where nodes can have an arbitrary number of children. In
other words, there is no fixed rank (or arity) associated with a label of an unranked tree. It
is allowable for an XML Schema to define unranked trees. For example, in XML Schema
Supervisorl, the supervisor node of the tree (as shown in Figure 3) has either two or three

children. Hence, that tree is unranked.

In Definition 2, a regular tree grammar G = (N, 2, P, S) is defined over a ranked alphabet

2. That is, the right-hand side of a production has either a constant (i.e. a terminal

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

without children) or a terminal € 2, (m > 0) followed by m number of children. Hence, a

question comes up when we try to model XML Schemas that define sets of unranked

trees, i.e., whether regular tree grammars are able to define unranked trees?

Neven’s work (Neven, 2002) on the relationship between unranked tree automata and
ranked tree automata answers the question positively. In his paper, Neven claims that any
unranked tree can be encoded into a binary tree where all non-leaf nodes have exactly

two children in several ways. In Figure 4, we illustrate one such possibility.

//\ encoding #/“\p

nop
N — 5
ne /s\ decoding * n/\#

N
nT N
#
AN
AN
# p
unranked tree (a) binary tree (b)

Figure 4: The relationship between unranked trees and binary trees

The unranked tree (a) in Figure 4 is a short form of the tree in Figure 3 after deleting the

data values. It can be converted into the binary tree (b) in Figure 4 by using some

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

encoding technique. Specifically, in the encoding, the leftmost child of a node remains
the first child (i.e. left child) of this node and the other children of this node are encoded
into the right descendants of the left child. Whenever a node doesn’t have the left or right

child, the symbol # is inserted as a placeholder.

After such encoding, the unranked tree (a) is converted into a ranked tree where all non-
leaf nodes have a fixed arity of 2. Then we can use a regular tree grammar to define such

binary trees.

2.5 Intermediate Language

Using binary tree encoding, we see that unranked trees can be defined by regular tree
grammars. However, the definition of regular tree grammar (i.e. Definition 2) should be

slightly modified in order to deal with unrankedness.

Definition 3: Intermediate Representation (Lee, Mani, & Murata, 2000)
- Aregular tree grammar is defined by a system G = (X, N;, N», P;, P>, S) where X,
Ny, and N; are pairwise disjoint, and
- Xis a set of terminal symbols;
- N is a finite nonempty set of non-terminal symbols used for deriving trees;
- N, is a finite set of non-terminal symbols used for specifying content models (i.e.

the orders and structures of the children of tree nodes);

- P; is a finite nonempty set of production rules of form n = /(4), where n € Ny, l e

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

2,and A € Ny,

- P, is a finite set of production rules of form 4 - r, where 4 € N, and r is a regular

expression over Ny;

- Sis the start symbol and S € N;.

The right-hand side of a production rule in a regular tree grammar conforming to

Definition 3 is referred to as a type expression in this thesis.

Please note that regular expressions are introduced in the above definition of regular tree
grammar to specify the orders and structures of the children of tree nodes. By using
regular expression operators such as the Kleene star (*), concatenation (+), and alternation
(), unrankedness is introduced into the definition of regular tree grammars (see
Definition 3). Thus, an XML Schema, which defines a set of trees (either ranked or
unranked), can be represented by a regular tree grammar as defined in Definition 3. The

definition of regular expressions is given in Definition 4.

Definition 4: Regular Expressions (Hopcroft & Ullman, 1979)
Let N be an alphabet. The regular expressions over N are defined recursively as follows:
e @ isaregular expression and denotes the empty set;

e ¢ (i.e. the empty string) is a regular expression and denotes the set {¢};

e n (€ N)is aregular expression and denotes the set {n};

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

e Ifrand s are regular expressions specifying the languages L(r) and L(s), then
r-s is a regular expression and denotes the set {a-f | a is in L(r) and £ is in L(s)};
e Ifrand s are regular expressions specifying the languages L(r) and L(s), then

r | s is aregular expression and denotes the set L(r) U L(s);

e Ifrisaregular expression specifying the language L(r), then the Kleene star ---
r* is a regular expression and denotes the smallest superset of L(r) that contains ¢
and is closed under string concatenation, i.e., the set of all strings that can be

made by concatenating zero or more strings in L(r).

To illustrate the mapping between XML Schemas and regular tree grammars, we give

another example below.

Example 2: (regular tree grammar G2) According to Definition 3, a regular tree
grammar representing XML Schema Supervisorl can be defined as G, = (X, N;, N,, P,

P, S), where

2 = {supervisor, name, position, string}
N; = {Supervisor, Name, Position, String}
N, = {SupervisorType, NameType, PositionType}
S = Supervisor
P; = { Supervisor — supervisor(SupervisorType)
Name — name(NameType)
Position — position(PositionType)
String — string }
P, = { SupervisorType — Name - Position * (Supervisor | €¢)

NameType — String

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

PositionType — String }

Please note that grammar G, can be rewritten into a regular tree grammar whose
production rules have the form as in Definition 2. In other words, the forms n - /(4) and
A - r as defined in Definition 3 can be just viewed as the short forms of n = I(ny,..., ny)

as defined in Definition 2.

Theorem 1: A grammar G’ in Definition 3 can be transformed into an equivalent

grammar G in Definition 2.

Proof: The transformation is defined recursively on the structure of the definition of
grammars in Definition 3.

1) The terminal set X in G is mapped to the set 2 in G’ and the arity of any
terminals in 2 in G that is greater than 1 is set to 1 in 2’ in G’ (i.e., the arity of
supervisor is changed to 1);

2) All non-terminals in the set N in G are included in the set N; in G°. In addition,
new non-terminals (i.e., Name, Position and String) are added in N to facilitate
deriving trees from inner and leaf nodes;

3) New non-terminals ending with “Type” (i.e., SupervisorType, NameType, and
PositionType) are added in the new set N, in G’. These non-terminals specify
the content models of tree nodes labelled with supervisor, name, and position,
respectively;

4) The start symbol S'in G is mapped to the start symbol S'in G’;

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

5) The productions of form n -> I(n,..., ny) (Where n, ny,..., i€ N, l € 2, and m

> 0) of P in G are transformed into productions of form n = I(4) and 4 - r

(where ne Ny, l € 2, and A € N,). The new set P; in G’ contains all productions

of form n - /(4) and the new set P; in G’ contains all productions of form 4 - r.

The form n - I(4) in G’ conforms to the form n - I(n,,..., n,) in G. We prove (see
below) that 4 = r in G’ can be transformed into the form n - I(ny,..., ny) in G by
using the definition of regular expressions (see Definition 4).

- Ifr is the empty set @, the empty string ¢, or any symbol » in N, the form 4

-> r obviously consistent with the form in G.

- Assume n; > a(4,) and ny - b(A,), where 41, Ay € N», nj, mme Ny, a,b € 2.

If » is the concatenation of ny-n,, using binary tree encoding described in

(Neven, 2002), we get
A—- nycny
ni = a(4r)
m - b(4,)

A = a(41, b(42, #)) 2-1)

If r is the alternation of mj|n;, using binary tree encoding described in

(Neven, 2002), we get

A ni | np
n - a(A1)
ny = b(Az)

A= a(4y) (2-2)

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

A = b(4y) (2-3)

If » is m*, using binary tree encoding described in (Neven, 2002), we get

A I’ll*
ni—> a(Al)

=
A=e (2-4)
A a4, ) (2-5)
4 - a4y, a(4y, 4)) (2-6)

Form (2-1)-(2-6) are consistent with the form # = I(n;,..., #y) in G.

Therefore, a grammar G’ in Definition 3 can be transformed into a grammar G in

Definition 2, and G’ is equivalent to G. Q.E.D.

2.6 XML Schema Mapping

To facilitate XML Schema mapping, we partition the terminal set X into two disjoint sets
2o and Xy, (m > 0), ie. X' = 3,UX,,. The set X, corresponds to the set of element names
(or tag names) and the constants in X correspond to the built-in simple types defined in
the XML Schema Recommendation (Fallside & Walmsley, 2004). The set N; contains
those non-terminals that we add in production rules. The non-terminal set N, corresponds
to the set of type names. When anonymous types are encountered in an XML Schema, we
introduce new non-terminals (in the set N,) and new production rules to facilitate XML
Schema mapping based on our modeling language. In this thesis, we assume that every
XML Schema in our problem domain always has a root element .S, whose production is

of form n - /(4). An element declaration defines a production rule of form n - I(4)

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

where n € N, | € 2 corresponds to the assigned element name, and 4 € N, corresponds to

the assigned type name for this element. A complex or simple type-definition defines a

production rule without terminals, i.e., 4 = r. The regular expression on the right-hand

side of such a production rule (e P,) corresponds to the content model of a type.

In addition, we also extend the notion e* in the definition of regular expressions to e{n,
m}, in order to denote an occurrence of at least n and at most m times of iteration of a
regular expression e connected by concatenation, where n is a non-negative integer and m
is either a non-negative integer (n < m) or the string of value undefined. The values of n
and m directly correspond to the values of the attributes minOccurs and maxOccurs in an
element declaration, respectively. The Kleene star (*) and other commonly-used

operators for regular expressions are redefined (Hohenadel, 2003) as follows:

e* = e{0, undefined}
et = e{l, undefined}

e?=¢e{0, 1}

Like other research work on schema subtyping (Kempa & Linnemann, 2003) (Hohenadel,
2003), the intermediate language (see Definition 3) can not model all the features of

XML Schemas. We explain that in the following.

1. Attributes. We do not consider attributes in this thesis. How to compare two types

with different attribute types? One possible method proposed by (Kempa &

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

Linnemann, 2003) to solve this problem may be to consider an attribute as a special

“child” of the corresponding node.

2. Namespaces. Namespaces are an important issue in the context of XML Schema.

However, in order to simplify XML Schema mapping, this thesis ignores namespaces.

3. Content Types. There are four types of contents for complex types: simple, element,
mixed, and empty. An element that has simple content contains only character data
and attributes. An element that has element content contains child elements, but no
character data content. If an element has both child elements and character data
content, it has mixed content. If an element does not have any content (just attributes),
it has empty content. In this thesis, we only consider elements with simple and

element contents.

4. Model groups. In XML Schema, content models are defined using a combination of
model groups, element declarations or references, and wildcards. There are three
kinds of model groups: sequence, choice, and all. The sequence model group
requires that the child elements appear in the order specified. The choice model
group allows any one of child elements to appear. The all model group requires that
all the child elements appear 0 or 1 times, in any order. These groups can be nested,
and may occur multiple times, allowing you to create sophisticated content models.

For now, we only consider two kinds of model groups: sequence and choice.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

5. Include and import. An XML Schema can be composed of one or more other XML
Schemas. One way (but not the only way) to compose schemas is through the
mechanisms include and import provided in the XML Schema Recommendation
(Fallside & Walmsley, 2004). Include is used when the other schema(s) has the same
target namespace as the main schema. Import is used when the other schema
document has a different target namespace. In the future, we will work on how to

deal with the import and include mechanisms in XML Schema mapping.

6. List and union types. Most simple types in XML Schemas are atomic types, which
mean they contain values that are indivisible. Besides atomic types, there are also
two other varieties of simple types: /ist and union types. List types have values that
are whitespace-separated list of atomic values, such as <availableSizes>10 large
2</availableSizes> (Walmsley, 2002). Union types may have values that are either

atomic values or list values. In this thesis, we do not consider /ist and union types.

7. Other features. Some features provided by the XML Schema Recommendation are
not an integral part of every XML Schema. These features include reusable groups,

identity constraints, substitution groups, and redefinition.

2.7 Schema Determinism

The paper (Murata, Lee, Mani, & Kawaguchi, 2005) defines two restricted classes of
regular tree grammars: local tree grammars and single-type tree grammars. A local tree

grammar is a regular tree grammar without competing non-terminals (Murata, Lee, Mani,

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

& Kawaguchi, 2005). Two different non-terminals compete with each other if their
productions share the same terminal on the right-hand side. This class of regular tree

grammars roughly corresponds to DTD (Murata, Lee, Mani, & Kawaguchi, 2005).

A single-type tree grammar is such a regular tree grammar that for each production rule
of form 4 - r, the non-terminals appearing in regular expression » do not compete with
each other. We see that a single-type tree grammar is less restricted than a local tree
grammar because it allows the existence of competing non-terminals in different content

model.

Like XML 1.0, XML Schema requires that content models be deterministic (Walmsley,
2002). That is, a schema processor, as it makes its way through the children of an
instance element, must be able to find only one branch of the content model that is
applicable, without having to look ahead to the rest of the children. According to this
specification, the expressiveness of XML Schema should be within that of single-type
grammars. However, in some cases, it is beyond the expressiveness of single-type tree
grammars. For example, element wildcards supported by the XML Schema
Recommendation, which are represented by the any elements, allow elements without
specifying tag names. This feature doubtless increases flexibility as to what elements may
appear in a content model. However, it may lead to non-single-type schemas. Let’s
consider the following XML Schema borrowed from (Murata, Lee, Mani, & Kawaguchi,

2005).

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

<xs:schema xmlns:xs = “http://www.w3.0rg/2001/XMLSchema™
<xs:element name = “test” >
<xs:complexType>
<xs:sequence>
<x$:any namespace = “##any” processContents = “strict” />
<xs:element name = “foo” type = “xs:integer” />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name = “foo” type = “xs:string” />
</xs:schema>

Figure 5: XML Schema Test

The XML Schema Recommendation allows two element declarations with the same
element names, as long as they are in different scopes. In XML Schema Test, the foo
element of type integer is scoped to the complex type within which it is declared, while
the foo element of type string is global-scoped. Although these two element declarations
share the same element name, they are in different scopes and thus they are allowable in

XML Schemas.

In XML Schema Test, the value of the namespace attribute in the any element declaration
(in bold) is ##any, which means the replacement element can be in any namespace
whatsoever, or be in no namespace. So, one of the possible replacement elements is the
foo element of type string. In such a case, the content model of XML Schema Test is non-
deterministic because the processor, if it first encounters a child foo, will not know
whether it should validate it against the foo declaration of type string, or the foo

declaration of type integer.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.w3.org/200l/XMLSch%5ema%e2%80%99b*

28

We represent XML Schema Test by a regular tree grammar G3 = (2, N;, N, Py, P3, S)
where
X' = {test, foo, integer, string}
N; = {Test, Any, Foo, String, Integer}
N, = {TestType, FooType}
S'=Test
P; = { Test — test(TestType)
Any — foo(FooTypel)
Foo — foo(FooType2)
Integer — integer
String — string }
P, = { TestType — Any - Foo
FooTypel— String
FooType2 — Integer }

We see that (73 is not a single-type tree grammar because the non-terminals Any and Foo
compete with each other. That is, their production rules (in bold) have different non-
terminals on the left-hand side, but share the same terminal on the right-hand side.
Moreover, these non-terminals appear in the right-hand-side regular expression of the

following production

TestType — Any - Foo

In terms of expressive power, any local tree language is a single-type tree language and

any single-type tree language is a regular tree language ((Murata, Lee, Mani, &

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

Kawaguchi, 2005, Lemma 2.1). Most XML Schemas can be represented by single-type
tree grammars. However, if the content model of an XML Schema is non-deterministic,

only a regular tree grammar can model this XML Schema.

2.8 Subtyping

Based on the definitions of regular tree grammars and regular tree languages (see

Definition 3), we formally define subtyping below.

Definition 5 (subtyping)
Given two XML Schemas R and S, R is a subtype of S (denoted by R <: S) if L(R)

L(S), where L(R) and L(S) are regular tree languages generated by the regular tree

grammars representing R and S, respectively.

As XML Schemas describe sets of XML documents, the subtyping problem between
XML Schemas is reduced to the set-inclusion problem of sets of XML documents. This
concept of inclusion-subtyping corresponds to one of the XML Schema derivation
mechanisms: fype restriction. As its name implies, type restriction means restricting the
valid content of either a simple type or a complex type (i.e. base type) to define a new
one. Specifically, the XML Schema Recommendation provides twelve facets (e.g.
minlength, maxlength, pattern, enumeration, etc.) for users to specify a valid range of
values, to constrain the length and precision of values, to enumerate a list of valid values,
or to specify a regular expression that valid values must match. All instances of a new

type derived by restriction are valid against its base type. In other words, the set of

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

instances consistent with the restricted type is a subset of the set of instances of its
corresponding base type. In terms of the concept of set-inclusion subtyping (Definition 5),

a restricted type is a subtype of its base type.

However, this concept of set-inclusion subtyping is not sufficient to support another
important XML Schema mechanism, namely, type extension, which yields a “subclass”
relationship by adding additional child elements and/or attributes to the tail of a
“superclass” type, thus extending the content of the “superclass” type. This is quite
similar to inheritance in object-oriented languages. Obviously, instances of an extended
type are not valid against its base type any more, since new elements and/or attributes are
added, and vice versa. For example, given a type person we may define another type
employee where the instances of employee have the same elements as the instances of
person, except for the augmentation with a new child element named employeeNumber.
Like what is done in object-oriented processing, we are able to apply all the
methods/procedures for type person to the instances of type employee. However, since
neither of the instance sets of type employee and type person is a subset of the other, the
relationship between these “subclass” and “superclass” types can not be described by set-
inclusion subtyping. In the paper (Bry et al., 2004), a notion of extension-subtyping is
proposed to deal with XML Schema’s type extension. However, we will not go further

about this kind of subtyping here, because it is beyond the scope of this thesis.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER III

A SUBTYPING ALGORITHM FOR XML SCHEMAS

3.1 What is a Subtyping Algorithm?

The subtyping problem for XML Schema is often reduced to the inclusion problem for
regular expressions or regular tree languages (Hosoya, Vouillon, & Pierce, 2000) (Kempa
& Linnemann, 2003) (Hohenadel, 2003). Since we model XML Schemas based on
regular tree grammars, checking the subtype relationship between two regular tree

languages is the main task in this thesis.

An algorithm that aims to check for L(r) < L(s) is called a subtyping algorithm, which
lies at the core of XML-centric programming language implementations. The input of
such a subtyping algorithm is a subtype relationship statement r <: s, which is called
regular inequality (Antimirov, 1994). The output of a subtyping algorithm is either true

or false, in accordance to the truth value of the input subtype relationship statement.

3.2 Main Ideas of the Subtyping Algorithm

Based on Antimirov’s derivation calculus (Antimirov, 1994) for regular expressions and
its extensions to regular hedge expressions (Kempa & Linnemann, 2003) (Hohenadel,
2003), we formalize and rebuild the algorithm for regular tree grammars, which is very

close to that for regular hedge grammars. Additionally, we add some heuristics in the

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

algorithm.

A
Trivial Check  Simplification | < _

L

yes

result

Figure 6: Main ideas of the subtyping algorithm

The basic idea of the subtyping algorithm (shown in Figure 6) is as follows: given two
XML Schemas, if they can be trivially checked, the algorithm stops and returns the result
immediately. Otherwise, it recursively simplifies the corresponding type expressions of

the input XML Schemas, until they are simple enough to perform a trivial check.

- For every invalid regular inequality, there exists at least one reduced regular inequality
which is trivially inconsistent (Antimirov, 1994). A regular inequality r <: s is trivially
inconsistent if the language generated by r contains the empty type ¢ and the language
generated by s doesn’t. If no such a trivially-inconsistent regular inequality is
encountered, then after a finite number of derivation steps, the system ends up with a

state that all reduced inequalities are already processed in previous derivation steps (i.e.,

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

no new inequality is reduced any more). In this case, the original regular inequality is
assumed to be frue. This is a standard procedure in subtyping algorithms of recursive
types (Hosoya, Vouillon, & Pierce, 2005) and (Kempa & Linnemann, 2003). The
correctness and termination proofs given by the paper (Hosoya, Vouillon, & Pierce, 2005)
explain that if there is no trivial inconsistency encountered in recursions, the algorithm
can eventually end up with the state that it cannot produce any new reduced regular

inequality, and then the input regular inequality holds.

So, subtyping algorithms of recursive types, including ours, do not prove subtyping
directly. Instead, these algorithms keep track of already-treated inequalities in an
environment variable o , which is a set of inequalities and is empty at the beginning of the
algorithms. Each time before a regular inequality is subtype-checked, the system checks
whether this inequality is already in the environment o . If yes, the inequality is proven to
be true; otherwise, the inequality is put into the environment o before the system
simplifies it. Next time when the system encounters the same inequality again, it stops

and returns true. Thus, the termination of subtyping algorithms is ensured.

From Figure 6, we see, to (dis)prove r <: s where r and s are the type representations of
two given XML Schema, there are two steps: (1) trivial check; (2) simplification. The
process of simplification or derivation leads to a number of simpler regular inequalities.
The algorithm recursively calls steps (1) and (2) on those regular inequalities. We will

discuss these two steps at length in the following subsections.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

3.3 Check for ¢-inclusion

Checking for e-inclusion of a type expression e means to check whether the regular tree

language L(e) contains the empty string &, i.e. € € L(e).

Given a regular inequality r <: s, if the language represented by r contains ¢ but the

language represented by s doesn’t, i.e.

eeL(r) A e&L(s)

one can easily infer L(r) ¢ L(s). Then, according to the formal definition of subtyping
(see Definition 5), the given inequality r <: s doesn’t hold. This situation, i.e., e€ L(r) A &

& L(s), is called a frivial inconmsistency (Antimirov, 1994), which is a special case of &-

inclusion check.

If a trivial inconsistency occurs, the algorithm returns false immediately; otherwise, the
input inequality r <: s is recursively simplified (or reduced), until all reduced inequalities

are simple enough to perform a trivial check.

To check for e-inclusion in the implementation of the subtypng algorithm, we redefine the
function Nullable below, which was originally defined in (Hohenadel, 2003), by
replacing its original expressions with our type expressions as the argument. Since

Hohenadel’s formal framework for XML Schema is different from ours, these two

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

expressions are different. The Nullable function returns frue if a type expression e is

nullable, i.e., € € L(e), otherwise, false.

Nullable(7) = false (N1)
Nullable(e) = true (N2)
Nullable( ¢) = false, where ¢ € 2 (N3)
Nullable( I(A) ) = false, where A€ N, [ € 2 (N4)
Nullable(e-€y) = Nullable(e)) N Nullable(e,) (N5)
Nullable(e | €;) = Nullable(e)) v Nullable(e,) (N6)
Nullable(e{n,m}) = true, ifn=0 (N7a)

| Nullable(e), otherwise (N7b)

To illustrate the derivation process, we introduce a concrete example here.

Example 3: To check if R <: S holds, where

R = a(a(R)) | string
S — a(S) | string

After unfolding the non-terminal R and S by replacing them with their corresponding

right-hand-side type expressions, the original inequality R <: S is rewritten as:

a(a(R)) | string <: a(S) | string

To check the above inequality is equal to check the following two inequalities:

(1) a(a(R)) <: a(S) | string
(2) string <: a(S) | string

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

The second inequality is trivially true according to set theory and the definition of
subtyping (see Definition 5). Thus, we focus on checking the first inequality in the

following computations.

According to rule N4, we get

Nullable(a(a(R))) = false

So, the inequality a(a(R)) <: a(S)|string is not trivially inconsistent. We need to simplify

it.

3.4 Simplification Process

XML Schemas define the tree structures of sets of XML documents. The tree structures,
as defined in Definition 3 (i.e. S = [(4)), are derived from the root elements of XML
Schemas. So, to compare two XML Schemas, we actually compare two trees derived
from their root elements. From this point of view, we roughly explain how the

simplification process works below.

Our subtyping algorithm adopts a top-down checking approach to fulfill this task. That is,
the algorithm first checks the roots of two trees that represent two given XML Schemas.
If the two roots have different labels (i.e. element names in our problem domain), then
the algorithm stops and return false. In such a case, we think that there is no subtyping

relationship between the two input XML Schemas. If the roots share the same element

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

name, the algorithm proceeds to check the content models of the roots. This check,
augmented with the check for siblings, is repeated recursively on the inner nodes. For leaf
nodes, the algorithm only needs to check their labels and siblings because leaf nodes do
not have any children (or content model). Briefly speaking, our algorithm does the
subtype-check for two trees dependently on the three dimensions of a node of a tree: the

label, the content model and the siblings.

To make the algorithm recognize these three parts, we introduce the concept of linear
forms (Antimirov, 1994). A linear form is a pair consisting of the label of a leaf node or
the label of a non-leaf node followed by its content model as the first component and the
siblings of the node as the second component. The set of linear forms of a tree node
(denoted by a type expression) contains all possible permutations of the label, content

model and siblings that the node can have.

If two tree nodes have the same label, the system only needs to check the content model
and siblings of these nodes. These two parts are represented by the rest of the linear form
after extracting the label. The label to be extracted is called a leading name (Kempa &
Linnemann, 2003). The rest part, i.e., the pair only consisting of the content model and
siblings, is called a partial derivative (Antimirov, 1996) of the original expression. Since
a leading name is extracted from a linear form of the original expression, the resulted
partial derivative is simpler than the original expression. The subtype-check is called

recursively on partial derivatives of two type expressions.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

To reduce (or simplify) a regular inequality r <: s, we have to compute:
(1) the linear forms of type expressions r and s
(2) the leading names of r
(3) the partial derivatives of r and s

(4) the partial derivatives of r <: s

3.4.1 Linear Forms

Following the definition of linear forms of a regular term (Antimirov, 1994), Hohenadel
(Hohenadel, 2003) defines the set of linear forms of an expression e, denoted by /f(e), as
a set of pairs consisting of the leftmost expression in e as the first component and the

remainder of e as the second component. For example, leta, b ¢ € 2pand ! € 21,

Ifla) = {<a, &}
(@) = {<Ua), &}
Ifil(a) - b) = {<l(a), b>}

If(a] b)c) = {<a, c>, <b, c>}

Intuitively, the set of linear forms of an expression actually represents the permutation of

all possible sequences in the language specified by the expression.

To compute the linear forms of a type expression, we modify the /f function (Hohenadel,
2003) by taking our type expressions rather than regular expressions (Hohenadel, 2003)

as the input. The function [fis redefined recursively by the following equations.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

f@ =9 (LF1)

If(e) = o (LF2)

If(c) = {<c, &>}, wherec e 2y (LF3)

FAA) = {<I(A), e>}, where d € Np, I & & (LF4)
If (ere) = If (e1) © e, if Nullable(e,) = false (LF5a)
| If(e1) © ey U If(ey), otherwise (LF5b)

If(erle = If(er) U If (e2) (LF6)
If (e{n,m}) = If(e) ® e{n, m}, if mis “undefined”  (LF7a)
|If(e) @ e{n,m-1}, otherwise (LF7b)

The computation of linear forms involves a binary concatenation operation ®, which

takes a set of linear forms and a type expression as its arguments, and returns another set
of linear forms. It is an extension of concatenation to linear forms and its definition (see

below) is borrowed from Antimirov (Antimirov, 1994).

For any set of linear forms /, /” and any type expression x, ¢, p, excluding @ and ¢,

[ ®3=0 (LF8)
2©®t=p (LF9)
[®e=1 (LF10)
{<x, p>}® t={<x, p-t>} (LF11)
U ©t=(®@sU ¢ ®1 (LF12)

Let’s go back to Example 3. According to the definition of linear forms, we get

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

Ila(a(R))) = {<a(a(R)), e} by rule LF4
Ila(S) | string) = Ifa(S)) w If(string) by rule LF6
= {<a(S), e} U {<string, >} by rule LF4 and LF3
= {<a(8), &>, <string, £} by set theory
3.4.2 Function First

According to the definition of regular tree grammars (Definition 3), a leading name of a
type expression can be an element name or a built-in simple type. This is the part to be

extracted from the linear forms of this type expression.

Please note that a type expression may have more than one leading names. For example,
the leading names of type expression ¢ile; should include the leftmost constants of e; and
;. Another case is the concatenation e;- e; where e; is nullable, the leading names of

¢;- €2 should include the leading name of e,.

To compute the leading name(s) in a type expression, we use the First function, which
takes a type expression as input and returns a set of leftmost terminals. The definition of

First is given below (Aho, Sethi & Ullman, 1988).

1. Ifn 3*6 ¢ where ¢ € 2, First(n) = {c};
2. Ifnm D*G ccar where ¢ € 2 and is a sequence of symbols from 2 and N,
First(n)= {c}.Ifn :>*G g, add ¢ to First(n),

3. Ifn :>2; a\...an Where a1, @, ..., i € 2, add First(e) to First(n). If &y

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

=t ¢, add First(an) to First(n). If & =g e and @ =g ¢, add Firsi(as) to

First(n), and so on.

Please note that this function is only applied on the left-hand-side type expression of a

given regular inequality. In Example 3, First( a(a(R)) ) = {a}.

3.4.3 Partial Derivatives of a Type Expression
After extracting a leading name w € First(e)/{e} from the linear forms of a type

expression e, the remainder of the linear forms, i.e., the set of partial derivatives of e w.r.t.
w is denoted by &,,(e) . The set of partial derivatives of a type expression represents the

reduced representation of the original type expression.

As the linear forms of a type expression is a set of pairs, the partial derivatives of the type
expression is also a set of pairs after extracting a leading name. However, the first
component of a pair in 9,,(e) is the content of the leading name, instead of the leftmost

type expression. We modify the definition of partial derivatives (Hohenadel, 2003) as
follows.

9, (e)={<cn(es, w), e>> | <ej, e2> € If (e), and cn(e;, w) # @}

In the above definition, we remove the original condition e; # @ and add cn(e;, w) # @.
The reason why we don’t need e, # @ is the empty set can not be the second component of

a type pair according to the definition of linear form (see Section 3.4.1).

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

As defined in (Hohenadel, 2003), the definition of partial derivatives involves a function
called cn, which is only applied on the first components of linear forms. According to the

definition of linear forms, only two type expressions p and /(4) can be the first

component of a pair of linear forms, where p € 2, 4 € N, and / € 2. So, the function cn

takes type expressions of form p or /(4) as an argument. As the computation of the
content of a given leading name w in a type expression should also depend on w, our
modified function cn requires two arguments, instead of just one in (Hohenadel, 2003).

The function cn is redefined as follows:

cn(p,w)=g¢,ifp € Zpandp =w

| @, otherwise

cen(l(A),w)=A4,ifl =w

| @, otherwise

As the cn function may return the empty set @, to avoid its appearing as the first
component, we add the condition cn(e;, w) # @ in our definition of partial derivatives of a

type expression.

Let’s go back to Example 3. The leading name of type expression a(a(R)) is {a}. After
extracting the leading name a from the linear forms of a(a(R)) and a(S)|string, the partial

derivatives of a(a(R)) and a(S) | string w.r.t. the leading name a are given as follows:

9,(a(a(R))) = {<a(R), &>}
9,4(a(S)) = {<S, &>}

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

Please note that the original concept of partial derivatives proposed by Antimirov
(Antimirov, 1996) is based on regular expressions. So, the partial derivatives of a regular
expression were defined as a set of regular expressions, instead of a set of pairs. As we
know, an ordinary regular expression denotes sequences of letters. For any letter in such a
sequence, we only need to consider its siblings in addition to its label. However, a node
of an XML tree has not only siblings and a label, but also a content model denoting the
order and structure of its child elements. Therefore, Anitmirov’s definition of partial
derivatives must be modified to make it applicable to XML types. Specifically, the two
components of a pair in partial derivatives correspond to the two dimensions of a tree
node: the parent-child dimension (i.e. the content model) and the sibling dimension,

respectively.

3.4.4 Partial Derivatives of a Regular Inequality
According to the definition of partial derivatives of a type expression, given a regular
inequality (r <: t), the partial derivatives of r and t w.r.t. a leading name w e First(r)/{e}

are given as follows:

3, () ={<c1, pr>, <2, P2, ..., <Cn, P}

aw(t) ={<C] s Pi >9 <02 » P2 >s vees <cm s Pm >}

where <c;, p7> is one of partial derivatives of r w.r.t. w, i=1, ..., n, and <c;, p;> is one of

partial derivatives of t wr.t. w,j=1, ..., m.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

Antimirov (Antimirov, 1994) defines the partial derivatives of a regular inequality (r <: t)

as follows:

0,(r<n={p<qlped,(randg=2%3,(:)} G-1)

where >0, (), called derivatives (Antimirov, 1994) of t w.r.t. w, is the union of all partial

derivatives of t w.r.t. w,i.e., 20, (f) = <cr,pr>|<c,p2>| ... | <Cm>Pm>

According to this definition, the equation (3-1) can be extended as follows:

8, (r <t)={<ci,pr> <t <c1,p1>|<c2,p2>| ... | <Cm»Dm >
<ez p> <t <cp,p1>| <2, p2>| ... | <CmsPm>
<Cp P> <t <cp1,p1>|<c2,p2>| ... | <Cm,Pm>} (3-2)

We see that 0, (r <:t) contains » regular inequalities, each of which has one partial

derivative of r on the right hand side and the union of m partial derivatives of ¢ on the left
hand side, where # is the number of partial derivatives of » w.r.t. w and m is the number

of partial derivatives of r w.r.t. w.

For example, the partial derivatives of a(a(R)) <: a(S)|string in Example 3 is as follows:

0, (a(a(R)) < a(S)|string) ={<a(R),e > < <S8,e>} (3-3)

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

To further simplify the computation of partial derivatives of a regular inequality (3-3), we
borrow the set-theoretic observation proposed by Hosoya et al. (Hosoya, Vouillon, &

Pierce, 2005), which we explain in Appendix A.

According to Hosoya et al.’s observation, we transform the inequality

<a(R),e> < <S§, &>

into the following Boolean set consisting of two clauses (3-4) and (3-5), each of which
contains two inequalities connected by the Boolean operator OR (V).
{aR) <. @ v  e<g, (G-4)
alR) < S v  e<ig} (3-5)
We can see that Hosoya et al.’s observation reduces the subset relation on Cartesian
products to a subset relation on sets, and thus simplify the computation. As a result, we
get a number of simpler regular inequalities reduced from the original one. In the next
step, we recursively call the simplification process to check those reduced inequalities. If

all clauses in the Boolean set are evaluated to be true, then the original inequality holds.

In our example, clause (3-4) is trivially true because ¢ <: ¢ always holds. To evaluate
clause (3-5), we need to call the derivation process again to check the inequality a(R) <:
S. Similarly, after unfolding S by production rule S — a(S)|string and calling the

subtyping algorithm again, the following regular inequalities are reduced from a(R) <: S.

{R< 2 v e<ig, (3-6)
R<:S v e< 0} (-7
45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

Clause (3-6) is true because of ¢ <: ¢. Clause (3-7) is also true because R <: S is the given
input and is already in the seto . So, a(R) <: S is true. Since both Clause (3-4) and (3-5)

are true, 0,(a(a(R)) <: a(S)| string) holds and thus a(a(R)) <: a(S)|string holds. Therefore,

we prove R <: S. Figure 7 gives the proof tree of this example.

a(a(R)|string <z a(S)|swing

a(a(R)) <z a(S)|string

8,4(ala(R)) < a(S)| string)

string <t a(S) | string

|

aR) < Sor e< O

Re &

Ol'é' < &

R<:S ofr <0

Figure 7: Proof Tree of Example 3

The logfile for Example 3 is given in Appendix B.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

3.5 Algorithm Rules

The subtyping algorithm for XML Schema is expressed by the rules in Figure 8.

(Terminate Rule)

- ,if(r<s)eo

r<s
(Disprove Rule) <) Af g€ L(r) ne ¢ L(s)
(Derive Rule) Al <:|} . ;j;”(r ~5) feelr)
eriveRule)  Z2EZT =D e 1) neeLls)
. gi-r<s
(UnfoldRule) ~ — {flfi':;r <L FR>7rS>s
(Unfold Rule) UU{f: e
(Unfold Rule) Gugﬁfﬂ; <8 S
(Disjunction Rule) ol-rn<sol-r <s

ol-(rlr,)<s

Figure 8: XML Schema Subtyping Rules

To (dis)prove r <: s where r and s are the type expressions of two given XML Schema,
we first apply the Termination rule to check whether it is already in the environmento .
Please note the set o is empty at the beginning of the algorithm. If r <: s is ino, we
immediately prove r <: s. Otherwise, we check whether there exists a trivial inconsistency

inr <:s,ie, eeL(r) A ¢ & L(s). If the system encounters a trivial inconsistency,

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

according to the Disprove rule, the system returns false immediately. In other cases, i.e.,
(ee L{r)AeeL(s)) or & ¢ L(r), we add the inequality r <: s to the environment & and then
apply the simplification process (described in Section 3.4) to it. In the two Derive rules in
Figure 8, we see that the problem to check r <: s is reduced to the problem to check its

partial derivatives 0, (r <s) , which is a set of simplified regular inequalities after

retrieving a leading name w (€2) from both sides of the original inequality r<:s.We see
that the Terminate rule and Disprove rule ensure the termination of the algorithm, as well
as the avoidance of repeated checks of the same inequality. The Derive rules are for
recursively applying the simplification process to those regular inequalities that fail at

rules Termination and Disprove.

The remaining rules in Figure 8 depend on what input type expressions are like. If the
right-hand side, or the left-hand side of a regular inequality, or both, are non-terminals
(denoting by R, S), then according to the three Unfold rules in Figure 8, we simply
interpret the productions for those non-terminals as the term rewriting rules. That is, we
unfold a non-terminal by replacing it with the right-hand-side type expression of its

production rule.

The Disjunction rule handles the case where the left-hand side is the union of two type
expressions r; and ry. We generate two sub-goals in such cases. The intuition behind this
rule is the set-theoretic fact that

L(r)U L(r;) < L(s) iff L(r;) < L(s) and L(r;) < L(s).

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

We give a complete example below to show how to apply the rules in Figure 8 to do

subtype-checking.

Example 4: Suppose we want to check if R <: S, where

R — (a(a(R)) - string) | string

S = ((a(S) | b(S)) string) | string

Assume that o = @ at the beginning of the algorithm.

Step (1): R and S are non-terminals, by the Unfold rule & YR |<: Z} | _; =S fR—>rS—>s
o|-R<

g |-R<S

- {R<:S} | - (a(a(R))- string) | string <:((a(S) | b(S)) - string)| string

Step (2): by the disjunction rule & |-r <is,0|-r, <is

o'l——(r1 lr2)<:s

g |-R<S
& {R<S}|-(a(a(R))-string)| string <:((a(8) | b(S)): string) | string
& (R<S} | -a(a(R))- string < (a(S)| b(S))- string)| string
A

{R<:S} | - string <:((a(S) | b(S)) - string) | string

Step (2-1): check for {R<:S} |-(a(a(R))-string)| string <:((a(S) | b(S))- string) | string
According to rules N3, N4 and N5, we get Nullable( a(a(R)) - string ) = false.

ou{r<s)|-0,(F<s)
o|l-r<s

JifegLr),weln(r)  we compute the partial

By the Derive rule

derivatives of the regular inequality as follows.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

If{ a(a(R)) - string ) = {< a(a(R)), string >}

IR ((a(S)| B(S))- string) | string ) = {< a(S), string >,< b(S), string >,< string ,& >}

According to the definition of leading names, we get

First( a(a(R)) - string ) = {a}

So
04(a(a(R))-string) = {< a(R), string >}

8, (((a(S)| b(S)) - string) | string) = {< S, string >}

According to the definition of partial derivatives of a regular inequality, we get

0,4 (a(a(R))- string < ((a(S) | b(S)) - string) | string) = < a(R), string > <:< §, string >

By Hosoya’s set-theoretic observation (see Appendix A),

< a(R), string > <:< §, string >
is equal to

alRy< g v  string < string

a(R)<: S v, string < @

Since string <:string is trivially true and string < ¢ is trivially false, in the next step we
need to recursively call the main method for subtype-checking on the regular inequality

a(R)< S,

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

{R<:S} | —a(a(R))- string <.((a(S) | b(S)) - string) | string
&) (R<: S a(a(R))-string < ((a(S) ] b(S))- string) | string} | —a(R) <: S

ou{r<S}-r<s
o|l-r<S

By the Unfold rule ,if S—s

{R<:S} | — a(a(R)) string <. ((a(S) | b(S)) - string) | string
 {R< S a(a(R))-string <: ((a(S)| b(S))- string) | string} | — a(R) <: S

=)
{R<:S§,a(a(R)) string <: ((a(S) | b(S)) - string) | string} | — a(R) <: ((a(S) | b(S)) - string) | string

Since Nullable( a(R) ) = false,

ocu{r<s)|-0 <s
by the Derive rule { oy )_Ir <_t: r<s) ,if € & L(r),w € First(r)/{e}

we compute the partial derivatives of the regular inequality as follows.

Ifla®) = {<a(R),& >}
I (a(8)| b(S))- string) | string ) = {< a(S), string >,< b(S), string >,< string ,& >}

According to the definition of leading names, we get
First(a(R)) = {a}

So
04(aR) = {<R,g >}

8, (((a(S) | b(S)) - string) | string) = {< §,string >}

According to the partial derivatives of a regular inequality, we get

0,(a(R) < ((a(S) | b(S)) - string) | string) = < R,& > <:< §,string >

By Hosoya’s set-theoretic observation (Appendix A), we know

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

<R,e><:< §,string >
is equal to

R<g v e<string

R<S , s<y

Since & < string is trivially frue and & < @ is trivially false, we get

{R<S} | —a(a(R))- string <:((a(S) | b(S)) - string) | string
& {R<: S a(a(R))-string <: ((a(S) | b(S)) - string) | string} | —a(R) <: S

—
{R<:8 a(a(R))- string <: ((a(S) | b(S)) - string) | string} | — a(R) < ((a(S) | b(S)) - string) | string

- {R <8, a(a(R))- string <:((a(S) | b(S)) - string) | string} | - R <. S

Since the original inequality R <:S is already in the environment O , by the Terminate

rule - ——ifr<is€o R < Sholds. Q.E.D.

3.6 Time Complexity

The simplification process makes the subtype-checking for a single reduced regular
inequality at a lower cost; however, it leads to an increased number of regular inequalities

in need of check, which increases the time complexity of the subtyping algorithm.

Given an input inequality r <: s, if it is already in the environment o or it is trivially

inconsistent, it takes constant time to dis(prove) it. Otherwise, we have to compute the

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

partial derivatives of this inequality w.r.t. any leading name w € In(r) as follows.

0,(r<t)y={<cLprr <t <c;,p1>|<c2,p2>| ...| <Cm, Pm>, (3-8)
<02>p2> <t <cl,>P1>|<02ap2>| |<Cm >pm>9
<Cp, P> <t <cp,p1>|<c2,p2>| ... | <Cm,Dm>}

where n denotes the number of partial derivatives of the L.H.S. expression r, i.e., <cj, p;>,
<cz, p2>, ..., <cn, pr>, m denotes the number of partial derivatives of £, i.e., <cl’, p1’>, <02’,
P>, ., <Cp » pm’>. The partial derivatives of the regular inequality » <: ¢ is a set

consisting of » inequalities of form

<A, B> < <Cj, D> | <Cy, Dy>| ... | <Cp, D> (3-9)

According to the set-theoretic observation (explained in Appendix A), to test the

inequality (3-9) is equally to test: for each subset 7 of {1, 2, ..., m},

(A<i|ierC) vV B<:|jer Dy

where I is the complement of [, i.e., {1,2,...,m}\7 .

For example, when m = 3, to check

<A, B> <: <Ci, D> | <Cy, Dy>| <C3, D3>

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is equally to check the set:

54

A< @ Vv B <: C1|C,|C3 I=0 <{1,2,3)
A< C \% B <: C,|C5 I={1} <{1,2,3}
A< C \ B <: C4|Cs I={2} <{1,2,3}
A< Cs \Y B <: C4|C, I={3} <{1,2,3}
A< CiC, v B<:C; I=1{1,2} c{1,2,3}
A<:C|Cs % B<C I={1,3} <{1,2,3}
A<:CyCs \ B<:C I={2,3} <{1,2,3}
A <: C1|CylC3 Vv B<: g I={1,2,3} <{1,2,3}

The above set consists of 23 clauses, each of which has two regular inequalities connected

by “V”. So, the total number of inequalities reduced from (3-9) is 2™, As the partial

derivatives of the regular inequality r <: t w.r.t. a leading name is a set consisting of »

inequalities of form (3-9) (see (3-8)), for each leading name w € In(r), the total number of

regular inequalities reduced from r <:  is nx2™"".

In the worst case, we may have to check all of the reduced inequalities. So, there may be
an exponential blow-up incurred by considering all the subsets of {1, ..., m} until the

algorithm dis(prove) the regular inequality r <: ¢,

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1V
IMPLEMENTATION

The implementation architecture of the subtyping algorithm is shown in Figure 9.

XML Schema XML Schema
R S

|
T

| XML Schema Parsing

y

Typé Setting

L

Subtype Checking

F Subtype Checker

l

Result

Figure 9: XML Schema subtyping architecture

The subtype checker for XML Schema consists of the following three steps:
1. Parsing input XML Schemas;
2. Converting schemas to their internal representations based on regular tree
grammars;

3. Checking the subtype relationship on the intermediate representations.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

4.1 XML Schema Parsing

Any XML Schema is XML-syntax based, which means that an XML Schema is basically
an XML document. As an XML document is just a text file about data, in order to
recognize the elements/attributes and their types defined in an XML Schema, we first
need an XML parser to process it. The parser we’ve chosen in our implementation is
Apache’s Xerces (The, 2001). Xerces is one of the most popular XML parser that supports
the W3C’s XML Schema Recommendation version 1.0 and DOM (the Document Object

Model) (W3C, 2004).

When we use Xerces to parse an XML Schema, a DOM tree is constructed. A DOM tree
is a document object representation of a parsed XML Schema. It contains all of the
elements of this XML document. By using the interfaces defined in the DOM APIs, we
can access any node of a DOM tree and get the elements/attributes declared in the parsed
XML Schema, as well as their assigned types. The entire process is illustrated in Figure

10.

;,3» ’Y‘&ur;)gml, .
DOMAPI ‘appl'tcatibljj;;j;;

DOM Tree

Figure 10: DOM XML Parser

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Type Representations

57

After parsing the input XML Schemas with Xerces and get elements and their assigned

types, we represent these XML Schemas by regular tree grammars. Following the

definition of regular tree grammars (see Definition 3), we classify all of the possible type

expressions of a regular tree grammar into the following eight types (Table 1). All

elements and types defined in an XML Schema are represented by those eight types in

the implementation of the subtyping algorithm.

In some cases, m may be the string of
value “unbounded”.

Type -
Type Name . Description Example
Expression
NoneType ) it denotes the empty set @
EmptyType £ It denotes the empty sequence £
o It represent all XML Schema built-in L

PrimitiveType c . string, integer, byte, etc.
simple types

N 1A A is a non-terminal representing the type T

odeType supervisor (supervisorType
e @ name of a node with label | € X P (sup ype)
Supervisor
NamedType n n&N; denote a tree node
. e4 and ez are regular expressions on the »

ConcatenationType | er-e2 ] Name-Position

non-terminal set Ny
. e, and ez are regular expressions on the .

AlternationType e ez . Phone | Email
non-terminal set Ny
e is a regular expression over N,

) n and m are non-negative integers (n s m) | Grade{0, 10}
IterationType e{n,m}

Grade{0, unbounded}

Table 1: Eight type classes in implementation

Each type in Table 1 corresponds to a subclass of an abstract superclass called REType.

Class REType contains two protected members (childl and child 2 of type REType).

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




58

Classes NoneType and EmptyType do not use any of these two members. Classes
PrimitiveType, NodeType, NamedType, and IterationType use only one of the two
members. Classes ConcatenationType and AlternationType use both members because
concatenation (*) and alternation (|) are binary operators. The following lists the main
methods in Class REType. These methods are abstract, and thus must be implemented in

its subclasses.

public abstract boolean isNullable();
public abstract String leadingNames();
public abstract String IA);

public abstract String pd(String w);

The isNullable method represents the implementation of function Nullable (see Section

3.3). It returns true if the type instance on which it is called is nullable; otherwise false.

The leadingNames method implements function First (see Section 3.4.2). It returns a

string consisting of all leading names of the type instance.

The /f method implements the /f function (see Section .3.4.1). It returns a string consisting
of pairs, each of which has the leftmost expression of the type instance as the first

component and the remainder as the second component.

The pd method computes the partial derivatives of the type instance w.r.t. a leading name
w. It returns a string consisting of pairs, each of which has the content of w as its first

component and the second component is the same as that in the linear forms of the type

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

instance.

In the implementation, every element declaration or type definition in input XML
Schemas is represented by an object of one of the eight subclasses. As we assume that
every XML Schema in our work has a root element, we use the type instance for the root
of an XML Schema to represent the document type, i.e., XML Schema. Therefore, to

subtype-check two XML Schemas is equally to subtype-check two root elements.

4.3 Subtype Checking

Given two XML Schemas R and S, let r and s be the root type expressions of R and S,
respectively. Then, the original call for the main method for subtype-checking (i.e. the
check method in our work), is made on the regular inequality r <: s. The purpose of the
check method is to check the subtyping relationship between two type expressions. Its
inputs are two types defined in Table 1 and the environmento . Please note that the set
o is empty at the beginning of the subtyping algorithm. The output of the check method
is true if r < s; otherwise, it is false. The pseudo-code for this method is given below and
it is similar to that of the XOBE and Pathfinder subtyping algorithms (Kempa &
Linnemann, 2003) and (Hohenadel, 2003), except for lines 12-31 where we add some

heuristics to speed up the algorithm. Specifically, the system
- returns frue immediately when checking whether a type is a subtype of the
union of itself and other any type, i.e. X <: X|Y where X, Y are type

expressions;

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

- returns frue when the partial derivatives of both sides of a regular inequality are
the same w.r.t. any leading name of the left-hand-side type expression, i.e.,
Ow(r)=0y(s) where r <: s is a regular inequality and w e First(r)/{e}.

- stops computing the partial derivatives of a regular inequality w.r.t. a leading
name when the set of partial derivatives of the right-hand-side expression w.r.t.
this leading name is empty;

- prunes the recursive call on the second inequality of a clause in the set of

partial derivatives of a regular inequality when the first inequality holds.

We will discuss these heuristics in detail as we explain the pseudo-code line by line.

boolean check(r <:s, o) {

1 if(r<tsecVr=sVr=0)
2 return TRUE;

3 if (s= @ V (nullable(r) A -nullable(s))
4 return FALSE;

5 if(r= ¢)

6 return nullable(s);

7 InSet := getLeadingNames(r);
8 if (InSet= 7)

9 return TRUE;

10 else if (s= ¢)

11 return FALSE;

12 flag := TRUE;

13 pdSet := @,

14 foreach (w € InSet/{e}) do {
15 if (Ow(r) = 0y(s)) {

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16
17

18
19
20
21
22
23
24
25
26
27

28

29
30
31
32
33

61

flag .= FALSE;
lf(aw(s) #* @)

pdSet :=pdSet U 9,,(r <) ;

}
}
if(flag)
return TRUE;
if(pdSet= @)
return FALSE;
else {
result := TRUE;
c=cU{r<s};
foreach ((r; <:sy) V (r2 <: s3) € pdSet) do {
if( - check(r; <: s1))
result := result A check(r; <: s7);
}
return result;
¥

According to the Disprove and Termination rule in Figure 8, given a regular inequality r <

s, the subtyping algorithm ends up either with false when a trivial inconsistency, i.e.,

nullable(r) A ~nullable(s), is encountered, or with frue when r <: s is already in the seto .

In the implementation, in order to shorten the path to the result in many cases, we add in

line 1-4 the following trivial cases not yet discussed in Chapter 3.

r<:sistrueifr =s (TC1)

r<:sistrueifr = ¢ (TC2)

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

r<:sisfalseifs = 0 andr = @ (TC3)

The intuitions behind TC1, TC2, and TC3 are based on set theory and the formal
definition of subtyping given in Definition 5. Obviously, a set is a subset of itself. So, if
the derivation process faces an inequality r <: r, immediately the Boolean value true is
derived. Similarly, the empty set Jis a subset of any set and any set except for ¢ is not a

subset of @. Then, we get TC2 and TC3.

Another trivial case is induced by the presence of ¢ as the left-hand-side type of an
inequality, i.e., € <: s. Obviously, the result of this inequality depends on nullable(s) (see

lines 5-6).

If the left-hand-side type is @, ¢, or nothing else, then it has no leading names. This case
is described, in line 7, InSet = @. As we already check whether the left-hand-side type is ¢
in lines 5-6, in lines 8-9, InSet = @ if and only if r = @. According to TC2, the system
returns true. If InSet is not empty (i.e., r is neither @ nor ¢) and the right-hand-side type is

g, then the system returns false (see lines 10-11).

Lines 12-20 compute the partial derivatives of the regular inequality r <: s w.r.t. each

leading name in the set InSet. The result is stored in the set pdSet. As we discussed in
Chapter 3, to compute the partial derivatives 0, (r <:5) of a regular inequality r <: s w.r.t.
a leading name w, we need to compute the partial derivatives of both sides of type
expressions wW.r.t. w, i.e., 9, () and 8,,(s) . If 0,,(r) = 8,,(s) for any leading name w in the

set InSet, then the value of a Boolean variable flag is frue and thus in lines 21-22, the

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

system returns frue. In such a case, we don’t need to recursively check the reduced

inequalities in the set of 8, (r <:s) . For example, the following regular inequality

string <: string | integer

holds because InSet = {string}, and

Ostring (string) ={<&,& >}

Ostring (string | integer) = {< &, € >}

If the set of partial derivatives of the right-hand-side type s w.r.t. a leading name w is
empty, i.e., 9y (s) = @, no derivation w.r.t. this leading name is possible and therefore we

stop computing the partial derivatives of r <: s w.r.t. this leading name and continue the
loop with the next leading name in the set InSet. For example, the following regular

inequality

integer <: string

evaluate trivially to false because the leading name of the left-hand-side type expression,
i.e., integer, doesn’t occur in the right-hand-side type and thus the set of partial

derivatives of the right-hand-side type expression w.r.t. the leading name integer is empty,
i.e. Oineger(string) = @. In such a case, the set pdSet is empty too. According to lines 23-

24, false is returned.

If all of trivial checks we discussed above fail, the original regular inequality r <: s

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

completely processed and considered as “previously analyzed” by being added to the
environment o . According to the modified definition of partial derivatives of a regular
inequality (see Chapter 3) and Hosoya et al.’s set-theoretic observation (see Appendix A),
each element of the set pdSet is a clause consisting of two simpler inequalities connected
by “or”. In lines 28-29, the check method will be recursively called on the reduced
inequalities in the set pdSet. The result of true will be returned if and only if all clauses in

the set pdSet are evaluated to be frue.

4.4 Implicit Subtyping

There are 44 built-in simple types defined in XML Schema. The derivation relationships

among all these built-in types form the type hierarchy in Figure 11 (Biron & Malhotra,

2001).

From Figure 11, we see that except for 19 built-in primitive types, the rest simple built-in
types are derived, either by restriction or by list, from primitive types or other simple
built-in types. As we discussed in Section 2.5, the restriction derivation of a simple or
complex type leads to an implicit subtyping relationship between the base type and the
restricted type. Therefore, the subtyping relationships caused by restriction (not derived
by list) among those built-in simple types are established in the implementation of our
subtyping algorithm. One point that is worth to mention is that the extension derivation,

unlike restriction, doesn’t imply a subtyping relationship.

From the set-inclusion definition of subtyping (Definition 5), we know that subtyping is

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

transitive. That means if a <: b and b <: ¢, then a <: ¢ holds. Any subtyping relationship
that satisfies the transitivity property of subtyping can be recognized by our subtyping
algorithm. For example, from the built-in data type hierarchy (in Figure 8), we know that
integer is a subtype of decimal and nonNegativelnteger is a subtype of integer. Then the

subtyping between nonNegativelnteger and decimal also holds.

Built-in Dabsbype Hierarchy

- ——— - - — AT A S——— > W]

all complex types |

IDREES | |[ENTITIES

ur types m— Qerived by restriction
built~in primitive types wmmwnenww - Gerived by list

built-in derived types e e derived by extension or

_ reatriction
complex types

Figure 11: XML Schema built-in data type hierarchy

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER V
RELATED WORK

Many approaches have been proposed for the subtyping problem in the domain of XML
processing in the past a few years. Roughly, we classified them into the following two

groups. Our approach belongs to the second one.

5.1 Tree-automaton-based Subtyping

As the subtyping problem for XML schema can be reduced to the set-inclusion problem
between two regular tree languages, a classical approach for testing the inclusion of tree
languages is to construct tree automata for two XML schemas, and then use tree-automata
techniques (Comon et al., 1999) to check the inclusion relationship between these tree
automata. Specifically, it works as follows:

a) Construct tree automata Ar and A4s, accepting L(r) and L(s) respectively.

b) Compute the complement As of 4s, by constructing a deterministic automaton As’
from As using a subset construction, and then making it total (if it is partial) and
exchanging final and non-final states of 4s’. This step is quite expensive.

¢) Take the intersection of Ar and As, using a product construction. This is a highly
expensive operation because the number of states of the new tree automata 4 = (4r
N As) is generally exponential in the number of states of 4.

d) Test the emptiness of 4. If 4 only accepts ¢, i.e., L(4) = {¢}, which means that no

final state of 4 is reachable given any tree, then 4r < As holds and thus r <: s is

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

evaluated to be frue; otherwise, the system returns false. ( according to the set-

theoretic fact that Ar < As iff Ar N As = empty)

Using this approach, the subtyping problem, which is reduced to the inclusion problem
between tree automata, is known to be decidable but EXPTIME-hard (Seidl, 1999). The
reason is that this approach requires many expensive manipulations of tree automata,
which usually cost O(2") in the worst case, where n is the number of states of a tree
automaton. A non-deterministic tree automaton for a practical XML schema usually has
10% — 10’ states. So, this approach may cause an exponential blow-up. For example, the
complexity of converting a non-deterministic tree automaton into a deterministic tree
automaton using the subset construction algorithm is exponential in the states of the

resulted deterministic tree automaton.

However, as the expressive power and attractive mathematical properties of tree
automaton make itself a natural basis for type systems for tree-structured data (such as
XML documents), many early and later research work in the field of subtype-checking is
based on tree automata. Those representative research work includes Hosoya et al.’s
subtyping algorithm using regular type expressions (Hosoya, Vouillon, & Pierce, 2000)
and (Hosoya, Vouillon, & Pierce, 2005), and the XML schema containment checker

proposed by Tozawa & Hagiya (Tozawa & Hagiya, 2003).

Hosoya et al. implemented the classical subtyping algorithm in the early prototype

implementation of a statically typed programming language called XDuce (Hosoya &

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

Pierce, 2000). However, a problem came up when they checked the subtyping relationship
between two type representations that involve a large degree of sharing. For example,

considering the following regular inequality:

a* b* <: (a|b)*

We can see that both the R.H.S. type and the L.H.S. type share the same alphabet {a, b}.
The L.H.S. type denotes a set of ordered sequences consisting of any number of as
followed by any number of bs, while the R.H.S. type denotes a set of unordered sequences
consisting of any number of as and any number of bs in any order. Obviously, the set
denoted by the L.H.S. type is a subset of the set denoted by the R.H.S. type. Therefore, it
should be easy to prove that the L.H.S. type is a subtype of the R.H.S. type, no matter what
and how big types a and b may be. In practice, it is seldom necessary to explore all the

states of tree automata as we do in the classical approach.

5.2 Subtyping for Regular Expression Types

To solve the problem, Hosoya et al. proposed a new set-inclusion subtyping algorithm
(Hosoya, Vouillon, & Pierce, 2000) and (Hosoya, Vouillon, & Pierce, 2005). Unlike the
classical algorithms based on determinization of tree automata, the proposed algorithm
checks the inclusion relation by a top-down traversal of the original type expressions. It
works as follows: given a pair of types, it checks matching of the top-most type
constructors, proceeds to the subcomponents of the types, and repeats the same check
recursively until it reaches leaves that require only trivial checks. The main contribution of

this top-down algorithm is that it enables many simple optimizations in the

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

implementation of a subtyping algorithm. Thus, it decreases the high complexity in many
typical cases. In particular, it exploits the reflexivity property in those cases where the
input types being compared have a large degree of sharing in their representations. For
example, they use @ <. a, b <. b to prune large parts of the subtype checking for the

inequality a* b* <: (a | b)*.

In addition, Hosoya et al. (Hosoya, Vouillon, & Pierce, 2000) first proposed the concept of
regular expression types and defined regular expression types as a natural generalization of
DTDs, describing structures of XML documents using regular expression operators, i.e.,
* ?, |. Furthermore, they formalize the connection of regular expression types to tree
automata. In their work, a tree automaton is a finite mapping from type states to the
internal form of regular expression types. Therefore, regular expression types directly

correspond to tree automata.

Hosoya et al. claim that their algorithm can be viewed as a variant of Aiken and Murphy’s
set-inclusion constraint solver (Aiken & Murphy, 1991). However, the domains of these two
algorithms are different. Hosoya et al.’s algorithm is applied to a type system for XML
processing, while Aiken and Murphy’s algorithm focuses on program analysis for
optimization. So, several modifications and optimizations have been added to Aiken and
Murphy’s algorithm before it is applied to check XML schema subtyping. First of all, types
in Aiken & Murphy’s algorithm can contain free variables and the goal of this algorithm is to
obtain a substitution for the variables that satisfies the given set-constraints. Hosoya et al.

removed the rules related to free variables from their algorithm. Secondly, Hosoya et al.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

argue that their algorithm is complete, and give the proof of completeness as well as the
proofs of soundness and termination of their algorithm in the paper (Hosoya, Vouillon, &
Pierce, 2005). Their algorithm, thus, can generate comprehensible error messages in case of
type-checking failure, while the completeness is not critical in Aiken and Murphy’s
algorithm. In addition, they add the notion of subtagging to support subtyping between types
with different labels. For example, we can have the subtype relation: student[Tel*] <
person[Tel*], based on such a declaration that the tag srudent is subtag of person, i.e. subtag
student <: person. This feature goes beyond the expressive power of DTDs, but similar to
the “substitution groups” mechanism in XML Schema. Last but not less important, Hosoya
et al. (Hosoya, Vouillon, & Pierce, 2005) added a number of optimization in the
implementation of their subtype-checker. These optimizations are specialized to the
subtyping problem that arises in practice in the domain of XML processing. For example,
they use set-theoretic observations (see Appendix A) to overcome the difficulties produced
by subtype checking the “untagged” union types where the components of a union may have

the same outermost label.

Hosoya et al. present the results of some preliminary measurements of their algorithm’s
practical effects in the paper (Hosoya, Vouillon, & Pierce, 2005). The authors claim that they
tried their method on many practical cases and it can check subtyping quite efficiently (less
than one second on XDuce applications that involve fairly large types, such as the full DTD

for XHTML documents).

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

5.3 Subtyping Using BDD

Another subtyping algorithm worth notice is the XML schema containment checker
proposed by Tozawa & Hagiya (Tozawa & Hagiya, 2003). This approach adopts Hosoya et
al.’s algorithm (in Section 5.2) to convert XML schemata into non-deterministic tree
automata (NTAs) and then uses semi-implicit techniques to perform the determinization of
NTAs. Briefly speaking, Tozawa & Hagiya’s semi-implicit technique means that each subset
of the state set of a NTA is encoded by a binary decision diagram (BDD) (Bryant, 1986),
whereas implicit techniques (Clarke, Grumberg & Peled, 1999) usually encode the state set
of a NTA with a single BDD. With their semi-implicit technique, Tozawa & Hagiya don’t
use the expensive operations on tree automata, such as the complement and intersection
operations, to explicitly decide whether L(A) < L(B) holds, or not, but rather they use BDD
operations to perform the determination of two NTAs A and B. Tozawa & Hagiya claim that
semi-implicit techniques are not used in previous work on the language containment-
checking and their algorithm based on these techniques is efficient and can answer problems
that cannot be solved by previously known algorithms. They also claim that their technique
can directly be applied to the type systems of schemas that can easily be transformed into
NTAs, such as regular expression types, RELAX and DTDs. The correctness proof of their

algorithm is given in (Tozawa & Hagiya, 2003).

Although both Tozawa et al.’s algorithm and Hosoya et al’s algorithm model XML schema
by (binary) tree automata, they are quite different in the fact that Hosoya et al’s algorithm
does not use BDD and is explicit, i.e. it uses set operations on types, which are essentially

Boolean operations on tree automata.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72

To get a better comparison, Tozawa et al. implemented their “semi-implicit” algorithm and
the classical algorithm (Comon et al., 1999). Also, they re-implemented Hosoya et al.’s
subtyping algorithm in Java (since it was originally implemented in O’Caml). The
researchers claim that the result of applying these three algorithms on three experimental
examples and one real-world XHTML example shows that their BDD-based algorithm
performed well in general, while both Hosoya et al.’s algorithm and the classical algorithm
caused blow-up in two test examples. Among these algorithms, the classical algorithm
performed the worst. Tozawa et al. applied their subtyping algorithm in the development
of a typed XML processing language called XML Processing Plus Plus, which is released
from IBM alphaWorks. Interested readers can find details at the web site

http://www.alphaworks.ibm.com/tech/xmlprocessingplusplus.

5.4 Subtyping Using Antimirov’s Containment Calculus

Instead of modeling XML schemas by tree automata, an alternative approach adopts a
purely algebraic decision procedure to solve the subtyping problem for XML Schema,
without constructing tree automata. That seems to be an interesting contribution since
highly-expensive manipulations of tree automata are avoided. This approach uses
Antimorov’s derivation calculus (Antimirov, 1994) to recursively simplify the type
representations of two XML schemas, until they are simple enough to perform a trivial
check. The representative work in this branch is Kempa & Linnemann’s subtyping
algorithm for XML objects (XOBE) (Kempa & Linnemann, 2003) and Hohenadel’s

subtyping algorithm for the type system of XQuery and XML Schema (Hohenadel, 2003).

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.alphaworks.ibm.com/tech/xmlprocessingplusplus

73

To cope with type checking in the XOBE project of the University of Liibeck (Kempa &
Linnemann, 2003), Antimirov’s algoritim for checking subtyping between regular
expressions was modified to be applicable for subtype-checking between XML Schemas.
One big modification in the XOBE-version subtyping algorithm is that in XOBE, an XML
Schema is represented internally by a regular hedge grammar and types defined in this
schema are represented by regular hedge expressions, instead of regular expressions as in
Antimirov’s algorithm. In their work (Kempa & Linnemann, 2003), a regular hedge
grammar G is defined as a tuple (7, N, s, P), where T is a set of terminal symbols
(consisting simple types names B and elements names E), N is a set of non-terminal

symbols (consisting names of groups and complex types), s is the start expression and P is

a set of production rules of form » = r with n € N and r is a regular hedge expression over

TUN. The production rules in the set P have to fulfill two constraints: (1) recursive non-
terminals may appear in tail positions only; (2) recursive non-terminals must be preceded
by at least one regular hedge expression which does not contain the empty hedge €. These

two constraints ensure regularity.

Regular hedge expressions, in their work, are defined recursively as follows:
- the empty set
- the empty hedge ¢

- any simple type name b € B

- any complex type name n e N

- e[r], where ecF is an element name and r is a regular hedge expression

- 1,8 whererand s are regular hedge expressions

- r|s whererand s are regular hedge expressions

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

- Kleene star (r*) where r is a regular hedge expression

The syntax is quite similar to the syntax of the external form of regular expression types.
The formal definitions of regular hedge grammar and regular hedge expressions can be

found in (Kempa & Linnemann, 2003).

Checking the subtype relationship between two regular hedge expressions is the main task
in type checking of XOBE programs. Kempa & Linnemann extend Antimirov algorithm to
the regular hedge expressions and the regular hedge grammar case. Kempa & Linnemann
(Kempa & Linnemann, 2003) describe their subtyping algorithm as “compared to standard
subtyping based on regular tree automata which involve the computation of automata
intersection and automata complement, our algorithm is more efficient. Although our
algorithm has a potential exponential inefficiency as the automata procedure, there are
cases where our algorithm is exponentially faster.” They also present some preliminary
performance measurements of three XOBE programs using XHTML or WML schema and

claim that their subtyping algorithm runs at acceptable speed for these applications.

In addition to XOBE, Antimirov’s algorithm was later refined and applied to the
construction of a compiler for XQuery, which was a part of the “Pathfinder” project at the
University of Konstanz (Hohenadel, 2003). The basic idea of Pathfinder version of
subtyping algorithm is quite similar to the XOBE one, except that the author avoids to use
regular hedge grammars and regular hedge expressions in modeling the type system of
XQuery and XML Schema. In the context of his work, types are represented by the so-

called regular expressions, the concept of which is different from the formal definition of

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

regular expressions based on formal language theory.

Although the construction of tree automata is avoided, the subtyping algorithms based on
Antimirov’s calculus, including ours, still cause a high degree of time complexity in the
worst case. The reason is that the simplification process leads to a lower degree of time
complexity for checking a single type pair; but to an increased (may be exponential blow-
up in the worst case) number of type pairs derived from the original type expressions

which are in need of subtyping check.

5.5 Comparison

In our survey of related work in the field of subtype-checking, we find that the subtyping
problem for XML schemas seems to be able to be divided into two sub-problems. One is
how to define formalism for XML Schema. The other is how to develop an efficient
algorithm to check the subtyping relationship for XML Schemas in real-world practice.
The first sub-problem focuses on the expressive power of a type formalism (or type
representation). That is, appropriate type formalism should be sufficiently expressive for
modeling XML schemas. Additionally, the subtyping problem based on the type formalism
should be decidable. The second sub-problem emphasizes the efficiency of a subtyping
algorithm. In this section, we compare our work with other research work in the same field

from these two points of view.

Many early proposed type formalisms for specifying XML Schema or DTD, e.g. Regular

Expression Types (Hosoya, Vouillon, & Pierce, 2000), Regular Hedge Expressions (Kempa

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

& Linnemann, 2003), “Regular Expressions” (Hohenadel, 2003), are based on context-free
grammars but restricted by adding some syntactic conditions to ensure regularity (see
Section 2.1). These conditions are necessary since the decision problem for inclusion
between context-free languages denoted by context-free grammars is undecidable
(Hopcroft & Ullman, 1979, Theorem 8.12). They need to impose additional restrictions to
reduce the power of context free grammars so that the type formalisms for XML schemas
correspond to regular tree languages. To illustrate this, we borrow an example from
(Hohenadel, 2003). Suppose that type T1 is defined by recursion in the following

production:

T1 — T1- integer | &

The derivation of T1 will lead to an endless recursion as follows.

If (T1) = If(T1- integer | &) by the Unfold rule

If (T1 integer)UIf (¢) by rule LF6 in Section 3.4.1

= Jf(T1- integer) by rule LF2 in Section 3.4.1, If ()= 9

= (If (T1) @ integer)UIf (integer) since T1 is nullable, by rule LF5b
= (If(T1- integer | &) © integer)UIf (integer) by the Unfold rule

= (((If (T1) @ integer)UIf (integer))® integer)UIf (integer)

= (((If (T1- integer | &) © integer)UIf (integer))® integer)UIf (integer)

Because the production of T1 contains recursive occurrences of this type at the beginning

of the right-hand-side expression, an endless application of the /f rules to any of these

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

recursive occurrences is unavoidable.

The formal framework we proposed for XML Schema is based on regular tree grammars.
The inclusion problem between regular tree languages is known to be decidable (Seidl,
1999). So, we don’t need any constraints on recursive types as in the Hosoya et al.’s
algorithm (Hosoya, Vouillon, & Pierce, 2000), XOBE (Kempa & Linnemann, 2003) and
Pathfinder subtyping algorithms (Hohenadel, 2003). Moreover, the technique of
representing XML Schemas based on regular tree grammars provides a formal framework
for XML Schema using formal language theory. That is, this framework helps to describe,
compare XML Schemas in a rigorous manner (e.g., check for equivalence or subtype
relationship), and facilitates the implementation of a subtyping algorithm. Many previous
modeling languages for XML schemas are not based on formal language theory. Some of
them are not rigorously defined; others are lack of sufficient expressiveness in a larger

problem domain.

As we mentioned before, the formal system for XML Schema subtyping we propose in
this thesis is based on Antimirov’s derivation calculus. Like other work based on the same
calculus (Kempa & Linnemann, 2003) (Hohenadel, 2003), our subtyping algorithm has the
following advantages and disadvantages in comparison with tree-automata-based

approaches (Hosoya, Vouillon, & Pierce, 2000) (Tozawa & Hagiya, 2003):

Advantages:
- Avoiding the construction of tree automata, and thus the algorithm is simple;

- Decreasing the time complexity to check a single regular inequality.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78

Disadvantage:
- Increasing the number of regular inequalities in need of subtype-checking.
In the worst case, there exists an exponential blow-up in the number of

partial derivatives of the right-hand-side type of a regular inequality.

Antimirov’s derivation calculus provides a purely algebraic decision procedure to solve the
subtyping problem. Thus, in comparison with those algorithms based on tree automata,
the algorithms based on Antimirov’s approach, including ours, seem simpler than the
classical one in typical cases of current XML processing, though there is still a high
complexity in the worst case. To make it clear, let’s look at the following example.

Suppose we want to check

X < X|Y

where X - I(@) and Y - (alb)*a(alb)™’. Here, we use (a|b)™" as a shorthand for (n-1)
times of concatenation of (a|b). Similarly, (a|b)* denotes 0 or more times of concatenation

of (a|b).

Using the classical approach, we need to construct tree automata for X and X|Y. It is
known that the minimal deterministic finite automaton for Y has 2" states (Perrin, 1990).
So, it cost O(2™) where m=2" to check the subtyping relationship based on operations of

tree automata. Obviously, this approach is very expensive.

However, using Antimirov’s approach, only four simpler regular inequalities (listed below)

reduced from the input inequality X <: X|Y and it takes constant time to check each of

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

them.

a< @ \Y e <:g

a<ia \ e <@

Among those algorithms based on Antimirov’s approach, our subtyping algorithm is very
similar to the XOBE and Pathfinder subtyping algorithms. We share the basic ideas
(originally conceived by Antimirov) to check and simplify a regular inequality. Therefore,
the computations of linear forms of type expressions, leading names of type expressions,
partial derivatives of type expressions, and partial derivatives of regular inequalities are
similar. However, since the formal frameworks proposed for modeling XML Schema in
the XOBE and Pathfinder subtyping algorithms are different from ours, we make some
modifications to make Antimirov’s calculus suitable for our type formalism. Also, we
redefine some basic concepts, and adopt rigorously-defined concepts and functions in
standard textbooks, e.g., the definition of partial derivatives of a type expression and the
First function. In the implementation of the subtyping algorithm, we add some heuristics
not presented in the XOBE and Pathfinder subtyping’algorithms, to speed up the subtype-

check for XML Schemas.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

CHAPTER VI
CONCLUSIONS AND FUTURE WORK

6.1 Main Contributions

The main contributions of this thesis in the field of XML Schema subtyping are given as
follows.

- We identify the appropriate language to model XML Schema, and formally define
the language based on Regular Tree Grammar. In the past, there have been
substantial studies on the formal models of XML Schema or DTD, including
Regular Expression Types (Hosoya, Vouillon, & Pierce, 2000), Regular Hedge
Expressions (Kempa & Linnemann, 2003), and so on. However, some of them are
not rigorously defined. Others lack sufficient expressiveness to model XML
Schemas. The technique of representing XML Schemas based on regular tree
grammars provides a formal framework for XML Schema using formal language
theory. Hence, this framework helps to describe, compare XML Schemas in a
rigorous manner (e.g., check for equivalence or subtype relationship), and

facilitates the implementation of the subtyping algorithm.

- We present a formal system for the subtype-checking of our language, which is
based on Antimirov’s derivation calculus (Antimirov, 1994) for regular expressions
and its extensions to regular hedge expressions (Kempa & Linnemann, 2003)
(Hohenadel, 2003). This thesis formalizes and rebuilds the algorithm for regular

tree grammars, which is very close to that for regular hedge grammars.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

- We add modifications and heuristics so that the subtyping algorithm for XML
Schema. Although a high complexity is required to check subtyping between XML
schemas in the worst case (because the number of simplified type pairs needed to
check may be exponential in the number of partial derivatives of the right-hand-
side type of a regular inequality), by choosing appropriate representations and
applying a few domain-specific heuristics, it is expected to improve the time

complexity in those typical cases that we encounter most often in XML processing.

- We have completed the implementation of the subtyping algorithm for XML
Schema. It performs well in the subtype checking for simple XML Schemas,
containing user-defined simple and complex types, types derived by restriction and

extension, and all built-in simple data types defined in XML Schema.

6.2 Limitations and Future Work

Comparing to DTD, XML Schema has many advanced features, such as namespaces,
reusable groups, identity constraints, substitution groups, redefinition, and so on. However,
none of the existing schema modeling languages, including ours, can capture all the
features of XML Schema (see details in Section 2.5). Currently, we are conducting a
survey of existing XML Schemas on the Web in order to identify scarcely-used features. In

this way, we can tailor our modeling language to what is needed in practice.

The efficiency of the subtyping algorithm is anther important motivation in our future

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

work. Although subtyping algorithms have been implemented in the compiler construction
of typed languages (such as XQuery, XDuce, etc.), there are still many technical
challenges in this area. The main difficulty that we have to face in this field is that the
decision problem of subtyping for XML types is algorithmically difficult because a high
complexity (EXPTIME) is generally required to check subtyping between XML schemas
in the worst case. Since the subtyping algorithm is not efficient, it is not able to search
subtypes from a large data set. Hence we will extend the subtyping facility with more
efficient searching methods borrowed from information retrieval techniques, in order to

build an effective schema search engine.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDICES
APPENDIX A
A Set-theoretic Observation

The following explains the set-theoretic observation proposed by Hosoya et al. (Hosoya,
Vouillon, & Pierce, 2005).

Suppose we want to check the following subtyping relationship:

<A, B> < <Cy, D> | <Cy, Dy> | <Cs3, D3> (A-1)

In general, a cross product X XY is equal to <X X7> N <7 XY>, where 7 is the
maximal type denoting the set of all ground types. Then, <C;, D> | <C,, D2> | <C3, D3>

is equal to:

<C1,T> N <r,Dp>
| <Ca, >N <7 ,Dp> (A-2)

|<C3,T>ﬂ <7,D3>

Using distributivity of intersections over unions, we turn the disjunctive form of (A-2) to

the following conjunctive form:

<Cpr>|<Cyr>|<Cs,c> Ll (A-3)
N <z,Dp>|<Cyr>|<C5,7>
N <Cpr>|<r,Dy>| <Cs,7>

n <Cyz> | <Cy,t> l <7,D3>

......

In each clause of (A-3), if C; appears, then the corresponding argument D; does not

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

appear, and vice versa. So a short form for one clause of (A-3) is as follows:

<ier Ci, 7> | <7,]je; D (A-4)

where [ is a subset of {1, 2, 3} and 7 is the complement of I, i.e., {1, 2, 3}\/ . Since
the conjunctive form (A-3) is the intersection of clauses of form (A-4) for all subset / of

{1, 2, 3}, the inequality of (A-1) can be rewritten as, for each subset I of {1, 2, 3}:

<A,B> < <|ic; G, > | <7,]je1 D (A-5)

Let C=|ies Ciand D = | ;< Dj, then inequality (A-5) is transformed into:

<A, B> <: <C, t> | <7,D> (A-6)
It suffices to test the following two inequalities:

(A<C) v B<:D) (A-7)
To prove this, suppose <A, B> <: <C, 7> | <7, D> holds and the negation of (A-7) is
true, i.e., neither A <: C nor B <: D hold. We can find a tree t; € L(A) but t; ¢ L(C), and
another tree ty € L(B) but ;¢ L(D). Thus, <t}, t,> € L(<A, B>). However, neither <t, t;>

e L(<C, 7 >) nor <t;, t;> € L(<7, D>). Then L(<A, B>) & L(<C, 7 >) and L(<A, B>) ¢

L(<7,D>). Thatis, L(<A, B>) ¢ L(<C, 7>) | L(<7, D>). So, <A, B> <: <C, 7> |

<7, D> doesn’t hold. That contracts the assumption. The other direction, i.e., if A <: C or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



85

B <: D, then <A, B> < <C, 7> | <r, D>, is obviously true. Therefore, <A, B> <

<C,z>| <7,D> e (A< C) v B<D) QED.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B

Logfile for Example 3

input inequality: t <: r

t:als]|string
(1) s:a[t]
r:alr]|string

typel: This is NamedType.
Type name: t
Type definition: a[s]|string

type2: This is NamedType.
Type name: r
Type definition: alr]|string

Unfold typel and typeZ2.
Check: afs]|string <: alr]istring

—————————————————————————— Call 1 Starts———--=-=-—--rm—mm
Check: als]lstring <: alrlistring

(1) s:aft]
(1) t:als]|string
(1) r:alr]lstring

typel: This is AlternationType.
childl: This is NodeType.
nodeName: a
Subtree: This is NamedType.
Type name: s
Type definition: a[t]

child2: This is PrimitiveType.
Simple type: string

type2: This is AlternationType.
childl: This is NodeType.
nodeName: a
Subtree: This is NamedType.
Type name: r
Type definition: alr]istring

child2: This is PrimitiveType.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Simple type: string

Result:

(1) check: als] <: alr]l|string
" (2)check: string <: alr]l|string
—————————————————————————— Call 2 Starts
Check: al[s] <: alrlistring
(1) s:a[t]

(1) t:a[s]lstring
(1) r:alr]l|string

typel: This is NodeType.
nodeName: a
Subtree:
Type name: s
Type definition: aflt]

type2: This is AlternationType.

childl: This is NodeType.
nodeName: a
Subtree: This is NamedType.

Type name: r

Type definition: al[r]lstring

child2:
Simple type:

string

The leadingName (s) of typel are: a
Linear form of typel: <a[s], empty>
Linear form of type2: <alr], empty>
Partial derivatives of typel by the
Partial derivatives of type2 by the
The derivation produces 2x2 simpler

(1)s <: none or

(2)s <: ¢ or empty <: none

Check: s <: none

(1) s:aft]
(1) t:als]|string

typel: This is NamedType.
Type name: s

This is NamedType.

empty <: empty

This is PrimitiveType.

<string, empty>
leading name "a": <s,

leading name "a": <r,

inequalities:

empty>

empty>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87



Type definition: alt]
type2: This is NoneType.
Processing ends when type2 is NoneType.

Result: false

Check: empty <: empty

typel: This is EmptyType.
type2: This is EmptyType.

Processing ends when typel and type2 are structurally equal.

Result: true

—————————————————————————— Call 4 Ends--——=———m——-—mmme e
—————————————————————————— Call 5 Starts-—-—-—=-—--r-cmmmm e
Check: s <: T

(1) s:aflt]

(1) t:als]lstring
(1) r:alfrllistring

typel: This is NamedType.
Type name: s
Type definition: alt]

type2: This is NamedType.
Type name: r

Type definition: alr]|string

Unfold typel and type2.
Check: alt] <: afr]lstring

—————————————————————————— Call 6 Startg—-—=-m—mrer e
Check: alt] <: alrlistring

(1) t:als]listring

(1) s:alt]

(1) r:air]istring

typel: This is NodeType.

nodeName: a
Subtree: This is NamedType.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Type name: t
Type definition: a[s]|string

type2: This is AlternationType.
childl: This is NodeType.
nodeName: a
Subtree: This is NamedType.
Type name: r
Type definition: alr]istring

child2: This is PrimitiveType.
Simple type: string

The leadingName(s) of typel are: a

Linear form of typel: <alt], empty>

Linear form of type2: <alr], empty> <string, empty>

Partial derivatives of typel by the leading name "a": <t, empty>
Partial derivatives of type2 by the leading name "a": <r, empty>
The derivation produces 2x2 simpler inequalities:

(1)t <: none or empty <: empty
(2)t <: r or empty <: none

Check: t <: none

(1) t:al[s]lstring
(1) s:alt]

typel: This is NamedType.

Type name: t

Type definition: als]istring
type2: This is NoneType.

Processing ends when type2 is NoneType.

Result: false

Check: empty <: empty

typel: This is EmptyType.

type2: This is EmptyType.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

Processing ends when typel and type2 are structurally equal.

Result: true

Check: t <:r

(1) t:a[slistring
(1) s:aft]
{1y r:alr]lstring

typel: This i1s NamedType.
Type name: t
Type definition: afls]|string

type2: This is NamedType.
Type name: r
Type definition: alr}|string

ssumption set:

1) t<:x

2) als]|string<:alr]l|string

3) alsl<:alr]|string

4) s<:r

(5) altl<:alr]lstring

Processing ends when t<:r is already in the set of assumption or can be
derived from the transitivity property of subtyping.

A
(
(
(
(

Result: true

Check: empty <: none

typel: This is EmptyType.
type2: This is NoneType.
Processing ends when type2 is NoneType.

Result: false

Result: true

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Result: true

Check: empty <: none

typel: This is EmptyType.
type2: This is NoneType.
Processing ends when type2 is NoneType.

Result: false

Result: true

Check: string <: a[r]|string
(1) r:alr]listring

typel: This is PrimitiveType.
Simple type: string

type2: This is AlternationType.
childl: This is NodeType.
nodeName: a
Subtree: This is NamedType.
Type name: r
Type definition: alr]lstring

child2: This is PrimitiveType.
Simple type: string

The leadingName(s) of typel are: string
Linear form of typel: <string, empty>
Linear form of type2: <afr], empty> <string, empty>

Partial derivatives of typel by the leading name "string": <empty,
empty>

Partial derivatives of type2 by the leading name "string”: <empty,
empty>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

Processing ends when the partial derivatives of typel and type2 by the
leading name "string" are identical.

Result: true

Result: true

Result: true

Final result: true

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

Aho, AV, Sethi, R., & Ullman, J.D. (1988). Compilers: Principles, Techniques, and
Tools. Addison-Wesley.

Aiken, A., & Murphy, B. R. (1991). Implementing regular tree expressions. Proceedings
of the fifth ACM conference on functional programming languages and computer
architecture, 427-447.

Antimirov, V. (1994). Rewriting regular inequalities (extended abstract). Fundamentals of

Computation Theory, Lecture Notes in Computer Science, 965, 116-125.

Antimirov, V. (1996). Partial derivatives of regular expressions and finite automaton

constructions. Theoretical Computer Science, 155,291-319.

Biron, P. V., & Malhotra, A. (Eds). (2001). XML Schema Part 2: Datatypes. W3C
Recommendation, May. http://www.w3.0rg/TR/2001/REC-xmlschema-2-20010502/.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., & Maler, E. (2000). Extensible markup
language (XML™). http://www.w3.org/XML/.

Bryant , R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE
Transactions and Computers, C-35(8), 677-691.

Clark, J., & Murata, M. (2001). RELAX NG.. http://www.relaxng.org.
Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model checking. MIT press.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S. & Tommasi
M. (2002). Tree automata techniques and applications. Draft book.
http://www.grappa.univ-lille3.fr/tata.

Fallside, D. C., & Walmsley, P. (Eds). (2004). XML Schema Part 0: Primer Second
Edition. W3C Recommendation. http://www.w3.org/TR/2004/REC-xmlschema-0-

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.w3
http://www.w3.org/XML/
http://www.relaxng.org
http://www.w3.org/TR/2004/REC-xmlschema-0-

94

20041028/.

Gécseg, F., & Steinby, M. (1997) Tree languages, in: Rozenberg, G., Salomaa, A. (Eds),
Handbook of Formal Language (vol. 3), Words, B., Springer-Verlag, Berlin
Heidelberg, 1-68.

Hohenadel, S. A. (2003). Subtyping for regular tree types: A Java-based Implementation.

Master’s Thesis, University of Konstanz, Germany.

Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to automata theory, languages, and

computation. Addison-Wesley.

Hosoya, H., & Pierce, B. C. (2000). XDuce: A typed XML processing language
(preliminary report). Proceedings of the 3rd International Workshop on the Web and
Databases (WebDB2000), Lecture Notes in Computer Science, 1997, 226-244. Also
appeared in ACM Transactions on Internet Technology (2003), 3(2), 117-148.

Hosoya, H., Vouillon, J., & Pierce, B. C. (2000). Regular expression types for XML.
Proceedings of the fifth ACM SIGPLAN international conference on functional
programming ICFP '00, 35(9) 11-22.

Hosoya, H., Vouillon, J., & Pierce, B. C. (2005). Regular expression types for XML.
ACM transactions on programming languages and systems (TOPLAS), 27(1) 46-90.

Kempa, M., & Linnemann, V. (2003). Type checking in XOBE. Proceedings of
datenbanksysteme fiir business, technologie und web, BTW '03, LNI, 227-246.

Klarlund, N., Mller, A., & Schwartzbach, M. 1. (2000). DSD: A schema language for
XML. http://www.brics.dk/DSDY/.

Kuper, G. M., & Siméon, J. (2001). Subsumption for XML Types. Proceedings of the 8th
International Conference on Database Theory. Lecture Notes in Computer Science,
1973, 331-345.

Lee, D., Mani, M., & Murata, M. (2000). Reasoning about XML schema languages using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.brics.dk/DSD/

95

formal language theory. Technical report, IBM Almaden Research Center, RJ#10197,
Log#95071. http://www.cs.ucla.edu/~dongwon/paper/.

Murata, M. (2001). RELAX (REgular LAnguage description for XML).
http://www.xml.gr.jp/relax/.

Murata, M., Lee, D., Mani, M., & Kawaguchi, K. (2005). Taxonomy of XML schema
languages using formal language theory. ACM Transactions on Internet Technology
(TOIT), 5(4), 660-704.

Neven, F. (2002). Automata theory for XML researchers. ACM SIGMOD Record, 31(3),
39-46.

Perrin, D. (1990). Finite automata. In J. van Leeuwen, A. Meyer, M. Nivat, M. Paterson,
and D. Perrin, editors, Handbook of Theoretical Computer Science, vol.(B). Elsevier

Science Publishers, Amsterdam; and MIT Press.

Seidl, H. (1990). Deciding equivalence of finite tree automata. SIAM Journal on
Computing, 19(3), 424-437.

The Apache XML Project. (2001). Xerces Java Parser (version 1.4.4).
http://xml.apache.org/xerces-j/index.html.

Tozawa, A., & Hagiya, M. (2003). XML Schema containment checking based on semi-
implicit techniques. Implementation and Application of Automata, 8th International
Conference, CIAA 2003, Santa Barbara, California, USA, July 16-18. Lecture Notes
on Computer Science, 2759, 213-225.

Walmsley, P. (2002). Definitive XML Schema  Prentice Hall PTR.
http://www.datypic.com/books/DefXMLSchema.

W3C. (2004) Document Object Model (DOM) technical reports.
http://www.w3.0rg/DOM.DOMTR.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.cs.ucla.edu/~dongwon/paper/
http://www.xml
http://xml.apache.org/xerces-j/index.html
http://www.datypic.com/books/DefXMLSchema

VITA AUCTORIS

NAME Yun Li

PLACE OF BIRTH Kunming, Yunnan, China

YEAR OF BIRTH 1970

EDUCATION Shanghai Jiao Tong University, Shanghai, China
1988-1992 B.Eng.

University of Windsor, Windsor, Ontario
2002-2004 B.C.S.

University of Windsor, Windsor, Ontario
2004-2006 M.S.C.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



	XML Schema subtyping.
	Recommended Citation

	tmp.1507664919.pdf.uemjN

