Throughput analysis and improvement of paint shop in automobile industry.

Guangming Qiu
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Qiu, Guangming, "Throughput analysis and improvement of paint shop in automobile industry." (2007).
Electronic Theses and Dissertations. 7128.
https://scholar.uwindsor.ca/etd/7128

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

THROUGHPUT ANALYSIS AND IMPROVEMENT OF PAINT SHOP IN AUTOMOBILE INDUSTRY

By

Guangming Qiu

A Major Paper
Submitted to the Faculty of Graduate Studies and Research Through Industrial Engineering In Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor

Windsor, Ontario, Canada
2007
© 2007 Guangming Qiu

Library and Archives Canada

Published Heritage Branch

395 Wellington Street Ottawa ON K1A 0N4 Canada

Bibliothèque et Archives Canada

Direction du

Patrimoine de l'édition
395 , rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence ISBN: 978-0-494-42319-6
Our file Notre référence
ISBN: 978-0-494-42319-6

NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

AVIS:
L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

In compliance with the Canadian
Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

Abstract

It is natural that if a thing happens two times under similar conditions, it is likely to get the same result. Based on this assumption, the simulation model of a paint shop is built by software AutoMod to generate an artificial history to draw inferences about the operating characteristics of the real system. This model considers many factors that could affect the throughput, such as mixed products, optimal buffer location, varying part arriving rate, mean time between failures, mean time to repair, and maintenance policy. Using simulation as modelling techniques is a general approach to the complex situation where analytical methods have limitation.

DEDICATION

This major paper is dedicated to my family: Hong Qiu, Jie Sun, Yanqiu Gao, Shu Qiu

ACKNOWLEDGEMENTS

I feel fortunate to have had a lot of people who helped me completing the program of Master of Applied Science. I would like to take the opportunity to express my sincere gratitude to Dr. Walid Abdul-Kader, my academic advisor, for his encouragement, patience, invaluable advice through the course of writing this major paper.

My gratitude also goes to Dr. R. Lashkari, who acted as my committee member, for the time he spent reading and examining this major paper. His valuable suggestions helped significantly improve the quality of my work.

Sincere gratitude is also expressed to the faculty and staff of the Department of Industrial and Manufacturing Systems Engineering for providing me with such an excellent research experience.

TABLE OF CONTENTS

ABSTRACT iii
DEDICATION iv
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES x
GLOSSARY xi
CHAPTER
I. INTRODUCTION 1
II. LITERATURE REVIEW 4
2.1 Throughput estimation of the single workstation 4
2.2 Throughput estimation of two workstations in series separated by a buffer4
2.3 Increasing line's throughput by system configurations 6
2.4 Contribution of properly locating buffer 8
2.5 Increasing throughput by efficient maintenance policy 9
III. REVIEW OF PAINT SHOP 10
3.1 Process overview 10
3.2 Layout and facility 10
3.3 Paint shop operation 12
IV. SIMULATION MODELING 14
4.1 Serial system configuration 14
4.2 Simple hybrid system configuration 15
4.3 Factors to be tested 16
4.4 Simulation tools and notation in simulation code 16
V. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS 17
5.1 Determining warm-up period 17

- Introduction of experiment I 17
- Input data of experiment I 18
- Simulation results and analysis of experiment I 19
5.2 Serial system configuration versus simple hybrid system configuration 19
- Introduction of experiment II 20
- Input data of the serial system configuration 21
- Simulation results and analysis of the serial system configuration 22
- Input data of the simple hybrid system configuration 23
- Simulation results and analysis of simple hybrid system configuration 23
- Comparison of the serial and the simple hybrid system configurations 25
5.3 Determining optimal number of carriers 26
- Introduction of experiment III 27
- Simulation results and analysis of experiment III 27
5.4 Determining optimal buffer location 29
- Introduction of experiment IV 29
- Input data of experiment IV 30
- Simulation results and analysis of experiment IV 31
5.5 Corrective maintenance versus preventive maintenance 33
- Input data of experiment V 33
- Simulation results and analysis of experiment V 34
5.6 Final throughput 34
- Input data of experiment VI 35
- Simulation results and analysis of experiment VI 35
VI. CONCLUSION AND FUTURE WORK 37
APPENDIX A: CODE OF SERIAL SYSTEM CONFIGURATION 38
APPENDIX B: CODE OF SIMPLE HYBRID SYSTEM CONFIGURATION 50
APPENDIX C: CODE OF DEFINING OPTIMAL BUFFER LOCATIONS 74
APPENDIX D: EXPERIMENTAL DATA OF THE SERIAL SYSTEM CONFIGURATION 78
APPENDIX E: EXPERIMENTAL DATA OF THE SIMPLE HYBRID SYSTEM CONFIGURATION 81
APPENDIX F: EXPERIMENTAL DATA OF THE EFFECT OF VARYING THENUMBER OF CARRIERS ON THROUGHPUT IN SIMPLE HYBRIDSYSTEM CONFIGURATION82
APPENDIX G: EXPERIMENTAL DATA OF THROUGHPUT OF DIFFERENT BUFFER- COMBINATIONS 84
APPENDIX H: EXPERIMENTAL DATA OF FINAL THROUGHPUT PER MONTH OF THE SIMPLE HYBRID SYSTEM CONFIGURATION 85
REFERENCES 86
VITA AUCTORIS 87

LIST OF FIGURES

Figure 1.1: Automobile Manufacturing System 1
Figure 2.1: Two workstations in series separated by a buffer 5
Figure 2.2: System configurations 6
Figure 3.1: Layout of paint shop 11
Figure 3.2: End-shift operation routine 13
Figure 4.1: Flow chart of base model I, serial system configuration 14
Figure 4.2: Flow chart of base model II , simple hybrid system configuration 15
Figure 5.1: Warm-up period 19Figure 5.2: The effect of varying the number of product types on throughput in serial systemconfiguration22
Figure 5.3: The effect of varying the number of product types on throughput in simple hybridsystem configuration 24
Figure 5.4: Throughput illustration 25
Figure 5.5: The effect of varying the number of carriers on throughput in simple hybrid system configuration 28
Figure 5.6: Buffer location 29
Figure 5.7: Throughput of different buffer-combinations 31
Figure 5.8: Final throughput per month 35

LIST OF TABLES

Table 5.1: Input data of experiment I 18
Table 5.2: Input data of serial system configuration 21
Table 5.3: workstations' percent of time on set-up when the number of product types increases 23
Table 5.4: Probability of product being blocked 25
Table 5.5: WIP of the simple hybrid and the serial system configurations 26
Table 5.6: Possible combination of two buffers in seven locations 30
Table 5.7: Product's mix-ratio and cycle times 30
Table 5.8: Corrective maintenance versus preventive maintenance 34

GLOSSARY

Buffer - is used to store loads on semi-finished product
Mean time between failures (MTBF) - this is a quantity of time from which an object in working condition will fail
Mean time to repair (MTTR) - this is a quantity of time required to repair an object which is currently offline

Steady-state - is the limit of a response variable of a simulation model if the simulation model were run without termination

Transient state - the period after which steady-state is reached
Corrective maintenance - occurs when a system accidently fails and is usually driven by the failure of a component or system

Preventive maintenance - repair and maintenance of the facilities every certain period
White body storage (WBS) - is used to store white body before a paint shop
Painted body storage (PBS) - is used to store painted body after a paint shop
System configurations - are ways to deploying facilities
Cycle time - the number of time units per product produced on the line

CHAPTER I: INTRODUCTION

This paper studies a paint shop in the automobile industry. There are five main shops whose work is required to produce a car: the stamping shop, the body shop, the paint shop, the trim and chassis shop and the power train shop. The flow of work from stage to stage is illustrated in Figure 1.1 (with WBS standing for "white body storage" and PBS for "painted body storage").

Figure 1.1: Automobile Manufacturing System
Conway et al. (1988) presented six rules for the optimal buffering of balanced lines with moderate variability. One of these rules is the bowl phenomenon, which states that buffers should be allocated evenly among all sites-if possible-with any remaining buffers allocated symmetrically around the center of the line. Furthermore, Powell and Pyke (1996) stated that while a bottleneck station tends to draw buffers toward it, the optimal allocation depends on the location and severity of the bottleneck, as well as the number of buffers available. Therefore, if we consider the entire automobile manufacturing system as a production line, the paint shop-located in the middle of said line-is likely to act as a bottleneck.

The paint shop performs a series of processing steps to prepare and then coat the car body surfaces according to the quality requirements. Usually, a sedan demands higher painting quality than a truck and, therefore, requires more processes. Defects are common in a paint
shop, and painted cars with minor defects are taken off the regular production lines and moved to the repair area. Painted cars with major defects are directed to the rework loops to be processed again. Once the repair is finished, they are placed back on the regular line as soon as an opening occurs.

Multiple product types with a variety of surface areas are often processed in the same painting line. A car with a larger surface area requires more processing time than one car with a smaller surface area-facts that prompt varying processing times. Color changing is another common occurrence in the paint shop, i.e. mixed products. When changing color, a specific set up time is required for some workstations. For example, the plant must cleanse the painting apparatus of one paint color before switching to a new color.

In order to save on the investment in the painting facility and increase painting quality at the same time, jobs can enter the painting booths multiple times. For example, products with major defects are directed back to particular painting booths to be reprocessed, otherwise another painting booth must be built to perform the repair function. Therefore, Li (2004) stated that paint shops tend to be system bottlenecks in many automotive assembly plants due to the complexity of their tasks. This paper selects a paint shop-starting from WBS and ending at PBS-as a case study.

This is the first time that the two kinds of system configurations are thoroughly compared in terms of throughput, and a new equation for predicting optimal buffer location is introduced in Chapter II and validated in our case study.

The remainder of this major paper is divided into five more chapters. Chapter II presents analytical solutions to the throughput calculation, as well as their strong points and limitations. Techniques to improve throughput, such as suitable system configuration, optimal buffer location and an efficient maintenance policy are also offered.

Chapter III focuses on the paint shop, which consists of a material handling system, various work booths and resources such as workers and/or robots. The material handling system
includes various power and free conveyors and carriers (fixtures or skids) to perform the transportation, buffer and grouping functions. One of the main problems encountered by designers is the difficulty of gaining insight into how the number of carriers impacts the throughput. In addition, random failures and the repair time of the paint booths also affect the system throughput.

Chapter IV-Simulation Modeling-introduces the primary purpose of the simulation modeling techniques, the two base models, the different factors to be tested and the simulation tools.

Chapter V sets up several experiments to analyze the effect of different factors on system performance. A modeller could sense how the number of carriers affects the throughput based on the experimental results. Buffer location is also an important design factor. The impact of maintenance on the throughput is addressed as well. Ultimately, the final throughput is presented when all the suitable techniques are applied to the manufacturing system.

Finally, the conclusion and recommendations for future research are provided in chapter VI.

CHAPTER II: LITERATURE REVIEW

In an effort to gain insight into the throughput estimation for the whole manufacturing system, several typical modules are presented-including how to analyze single workstation throughput as well as two workstations in a series, separated by a buffer. Theoretically, the throughput of a complex manufacturing system could be calculated by decomposing the complex manufacturing system into many simple templates. Several techniques for improving throughput are presented later, some of which are applied to our case study.

2.1 Throughput estimation of the single workstation

For the single workstation, Sawyer (1970) gave a well-known relation-see equation 2.1for predicting the throughput:

$$
\begin{equation*}
Q=\frac{T}{C} \tag{2.1}
\end{equation*}
$$

where:

- $\mathrm{C}=$ cycle time (the number of time units per product produced on the line)
- $\mathrm{T}=$ useful processing time
- $\mathrm{Q}=$ throughput

However, further analysis reveals that this equation is not as simple as it initially appears. How does the designer calculate useful processing time? For example, given a one year period, the designer can reduce the time for holidays, for breaks and for repairing or setting up the facility, but how can they estimate the time for starting the production line and the time for stopping it-during which the production rate of the manufacturing system is apparently slowing down? In reality, the designer cannot ignore this issue because the factory manager encounters it whenever there is shift change. This problem is revisited in Chapter III, with our research trying to provide a solution according to the paint shop's special rules.

2.2 Throughput estimation of two workstations in series separated by a buffer

Alden (2002) developed a formula estimating the performance of two workstations in series with downtime and unequal speeds, as illustrated in Figure 2.1. In this configuration, jobs
flow from Station 1 to Station 2, and are to be processed at each station. To derive equation 2.2, which calculates the throughput in a steady state, Alden (2002) treats the movement of jobs through the line as a fluid flow.

Figure 2.1: Two workstations in series separated by a buffer

The throughput equation developed for this case is given by
$\rho=S_{2} \times P(w, w)+\hat{S}_{2} \times P(d, w)$
where:

- $\rho=$ the average number of jobs produced per time unit
- $S_{2}=$ the speed of station 2, i.e. jobs produced per time unit
- $\quad P(w, w)=$ the fraction of time that both stations are processing
- $P(d, w)=$ the fraction of time that station 2 is processing, while station 1 is down
- $\hat{S}_{2}=S_{2} \times \frac{M T B F_{2}}{M T B F_{2}+M T T R_{2}}$

Based on the research conducted by Alden (2002),

$$
\begin{equation*}
P(w, w)=\frac{1}{\left(\lambda_{1}+\lambda_{2}\right)\left[1 /\left(\lambda_{1}+\lambda_{2}\right)^{+} B \theta_{2} P_{0} / \hat{S}_{1}+B \theta_{2} P_{0} / \hat{S}_{2}+\frac{\theta_{2} P_{0}}{\theta_{1} \mu_{2}}+\frac{P_{0}}{\mu_{2}}\right]} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
P(d, w)=\frac{\hat{S}_{2}}{\left(B \theta_{2} P_{0}\right)\left[1 /\left(\lambda_{1}+\lambda_{2}\right)^{+} B \theta_{2} P_{0} / \hat{S}_{1}+B \theta_{2} P_{0} / \hat{S}_{2}+\theta_{2} P_{0} / \theta_{1} \mu_{2}+P_{0} / \mu_{2}\right]} \tag{2.4}
\end{equation*}
$$

where,

- $B=$ the buffer size
- $\mu_{l}=1 / \mathrm{MTTR}_{1}$ (mean repair rate of workstation 1)
- $\lambda_{1}=1 / \mathrm{MTBF}_{1}$ (mean failure rate of workstation 1)
- $\mu_{2}=1 / \mathrm{MTTR}_{2}$ (mean repair rate of workstation 2)
- $\lambda_{2}=1 / \mathrm{MTBF}_{2}$ (mean failure rate of workstation 2)
- $\theta_{1}=\lambda_{I} /\left(\lambda_{1}+\lambda_{2}\right)$ (for simplifying the above equation)
- $\theta_{2}=\lambda_{2} /\left(\lambda_{1}+\lambda_{2}\right)$ (for simplifying the above equation)
- $P_{0}=\theta_{l} /\left(1+\theta_{l} B\right)$ (the probability that the buffer is empty)
- $\hat{S}_{1}=S_{1} \times \frac{M T B F_{1}}{M T B F_{1}+M T T R_{1}}$

Alden's paper also reveals that Equations 2.3 and 2.4 are based on many assumptions-that "time between failures" and "time to repair" are exponentially distributed, that the first station is never starved and the second station is never blocked, and that jobs flow through the system with zero transit time. With so many assumptions (some of them impossible in a real-world situation, it is inconvenient to give an analytical solution, even if the manufacturing system is slightly modified. To remedy this problem, another method is wanted as the manufacturing system becomes more complex.

2.3 Increasing line's throughput by system configurations

Webbink and Hu (2005) stated that the system configuration could be divided into five categories: (a) serial configuration, (b) parallel configuration, (c) simple hybrid configuration, (d) complex hybrid configuration and (e) complex-hybrid configuration-as illustrated in Figure 2.2, where the little rectangle represents a workstation.

(a)

(c)

(b)

(d)

(o)

Figure 2.2: System configurations

These configurations, individually, have their own advantages and disadvantages. For example, the serial configuration is simple and does not require too many material handling facilities and the parallel configurations are more reliable. When one workstation breaks down, the other-possessing the same function-can keep the production line running. However, parallel configurations demand a complex material handling system and therefore waste too much time in the process of transportation, which does not add value to the product. Therefore, a factory manager is faced with a trade-off when selecting a suitable system configuration.

The studied case in this paper selects the simple hybrid configuration shown in Figure 2.2 (c) as its strategy for deploying equipment because several kinds of products are mixed together. Serial configuration requires a particular set-up time when changing product types, leading to a reduction in the over-all throughput. Furthermore, because most manufacturing systems now adopt a pull system instead of a push system and the market demand is always varying, grouping the same products as a batch is sometimes not practical. In this situation, a simple hybrid configuration could perform the grouping function by the material handling system.

In our case, a "cross-line transportation car" is the material handling equipment used to convey the first group of products to the upper serial line and the second group of products to the lower serial line (i.e. "grouping"). Both the upper and lower serial lines perform the same sequence of processes.

In addition, from a reliability standpoint, a simple hybrid configuration is better than a serial configuration. For example, if one of the workstations in the upper serial line breaks down, the factory manager can continue to run the production line as a whole by using the lower serial line. Failures in both the upper and lower serial production lines, however, causes the production to stop completely.

Chapter V studies and compares the serial configuration and the simple hybrid configuration when the types of product increase from 1 to 8 .

2.4 Contribution of properly locating buffer

Powell and Pyke (1996) studied the problem of buffering serial lines with moderate variability and a single bottleneck-a single station with a larger mean processing time than all other stations. Their analysis reveals that a bottleneck station draws buffers towards itself, but the optimal allocation depends on the location and severity of the bottleneck, as well as the number of buffers available.

In our case, a simple hybrid configuration is adopted as our deploying strategy. A restricted factory space prompted us to allow two buffers-each with a capacity of 1-in each line of the simple hybrid configuration. Therefore, the designer does not worry about the buffer capacity, only the buffer location. This makes the buffer analysis much easier.

The mean processing time for each workstation in our case is almost the same as the cycle time. The main difference between the various workstations is their mean time between failures, and mean time to repair. The spraying guns in the paint booth are very sensitive to the density of paint material, and frequently become blocked. Therefore, the painting booths have a much lower mean time between failures.

However, the conclusions, drawn by Powell and Pyke (1996), could be expanded by the assumption of replacing a larger mean processing time with a slower speed (see Equation 2.2 a) in order to conceptually predict a bottleneck in a serial production line. In addition, Equation 2.5 expresses the workstation's parameter for mixed products if the set up time is ignored.

$$
\begin{equation*}
S=\frac{1}{n_{1} t_{1}+n_{2} t_{2}+\cdots n_{n} t_{n}} \times \frac{M T B F}{M T B F+M T T R} \tag{2.5}
\end{equation*}
$$

Where,

- $n_{n}=$ the number of nth product
- $t_{n}=$ the time for producing one of nth product

Equation 2.5 is used to conceptually predict a serial line's bottleneck in the simple hybrid configuration, and is validated by the simulation model. For more information, please refer to Experiment IV in Chapter V.

2.5 Increasing throughput with efficient maintenance policy

Maintenance activities are performed to enhance or restore efficiency and alleviate the risk of losing throughput. Zhang (2005) presented that maintenance activities can be categorized as corrective maintenance (CM) or preventive maintenance (PM). CM occurs when a system experiences a random failure-usually driven by the failure of a component or system. PM occurs when a system can still run and be performed in either a time-based or a conditionbased manner.

The challenge the designer faces is not knowing which maintenance policy is more efficient, because efficiency depends on the reliability of the components and the system, or the failure rate curve. In addition, preventive maintenance can only reduce a facility's failure rate to a certain level, it cannot effectively prevent accident failures. This makes selecting a suitable maintenance policy more complex, because the levels depend on the frequency that preventive maintenance is performed. Chapter V compares data provided by the maintenance crew, corrective maintenance and time-based preventive maintenance in terms of throughput.

CHAPTER III: PAINT SHOP REVIEW

This chapter introduces the paint shop in our case study, presenting an overview of the paintprocess as well as the layout and operation of the shop.

3.1 Process overview

The white bodies are transported from the automotive body shop to the paint shop, where they undergo pre-paint treatment. -a process that involves thorough washing and phosphate, which is used to cause a chemical crystallization on the white body surface that provides improved paint adhesion and anti-corrosion protection.

The white bodies dry, and are directed through the process of base-coat application-a layer of material applied to the vehicle surface that causes the top-coat to readily adhere to the surface of the vehicle. The base-coat material requires excellent adhesion to both the automotive white body-generally made of lightweight steel—and the top-coat painting material.

The truck bodies are then transported to a bake oven where the base-coating is cured and dried, prior to being directed to the sanding booth where the surface of the base-coat is made coarser to improve its adhesive ability. Forced cooling is provided by the cooling-booth between the bake-oven and the sanding-booth to lower the temperature of the truck bodies to around $45^{\circ} \mathrm{C}$.

When the top-coating process is finished-one similar to the base-coating process-the painted bodies undergo inspection and repair in terms of paint quality and correctable defects.

3.2 Layout and facility

As previously stated, the facilities are finally deployed according to a simple hybrid configuration-illustrated in the conceptual layout of Figure 3.1 -where the squares represent various facilities and the stars signify the candidate buffer locations. Grouping function is performed by the cross-line transportation cars, which separate groups of products
into a variety of serial production lines. Only two Capacity 1 buffers are allowed in each parallel production line, due to space limitation and investment-efficiency on the paint shop floor. The size and shape of the truck bodies-approximately ten meters long and two meters high whether they are stacked or stored on the same level-the buffer occupies too much space in the paint shop. Chapter V addresses the optimal buffer location.

Figure 3.1: Layout of paint shop

Other workstations-except the phosphate and drying booths-are doubled because the production rates of the phosphate and drying booths are much faster than the rates of the other workstations. In addition, the phosphate and dry-up processes are similar even for different products-unlike other workstations, such as base-coat and top-coat, which must change the performance of their tasks with the changing product types. The cross-line transportation car is the material handling equipment used to perform the grouping function. According to PLC code, it can separate different products and send them to one of the basecoat booths, based on the "first come first serve" principle.

White truck bodies are only placed on carriers in the loading zone before they are conveyed to the next process if two conditions have been met. The first is that there are white truck bodies in the WBS. The second is that carriers are available in the carrier storage. Once the entire painting process is complete, the truck bodies are transported to the unloading zone where they separate with the carriers. The workers then put the carriers in the carrier storage, and the painted bodies in PBS.

3.3 Paint shop operation

The paint shop runs eight hours a day, five days a week. During its daily operation, production must be scheduled so that end-shift changes can be made with a minimum of interruption in production. Scheduling the end-shift is difficult because the conveyors running parts through bake ovens cannot be stopped for long, or they risk inflicting damage resulting from the high temperature. With this in mind, the manager empties all the bake ovens before shift, leading to a temporary slow down for the throughput of the whole system. The end-shift operation routine is illustrated in Figure 3.2, and this special rule makes the calculation of useful processing time in Equation 2.1 very complex. Chapter V includes the shifting impact in the simulation model to accurately estimate the performance of the whole system.

To prevent paint build-up on spray gun tips, each paint-delivery hose and spray gun are purged with solvent between each change in color. Despite these efforts, the spray guns are often blocked as a result of an inefficient purge-prompting the base-coat and top-coat
booths to suffer a high fraction of down time. Consequently, they test CM and PM to minimize the impact caused by the facility's various fractions of down time.

Figure 3.2: End-shift operation routine

CHAPTER IV: SIMULATION MODELING

The first step in designing the simulation model was to identify its primary purpose. In our case, the primary purpose of simulating the manufacturing system was to estimate the throughput and test different factors that might increase throughput before the final layout is applied to the shop floor. Two base models were built to compare serial system configuration and simple hybrid system configuration. After selecting a suitable system configuration, different factors with potential effects on the throughput were tested. These factors are the number of carriers, buffer locations and maintenance policies.

4.1 Serial system configuration

Base Model I was built to estimate the throughput of a serial system configuration, and then compared with the simple hybrid system configuration estimated by Base Model II. The flow chart of Base Model I is illustrated as Figure 4.1.

Figure 4.1: Flow chart of Base Model I, serial system configuration

4.2 Simple hybrid system configuration

Base Model II is built to estimate the throughput of a simple hybrid system configuration and then compared with the serial system configuration estimated by Base Model I. The flow chart of Base Model II is illustrated in Figure 4.2.

Figure 4.2: Flow chart of Base Model II, simple hybrid system configuration

4.3 Factors to be tested

After a suitable system configuration is selected, various factors such as the quantity of carriers, buffer locations and maintenance policies-all of which have a potential influence on the final throughput-are tested by the simulation of Base Models I and II.

4.4 Simulation tools and notation in simulation code

The simulation models were built using AutoMod-a commercial simulation package that combines CAD-like drawing tools with a powerful engineering-oriented language to model control logic and material flow. Unlike most other simulation languages, AutoMod's strong graphical interface precisely captures the physical constraints of distance, size and spaceproducing exceptionally accurate 3 -dimensional details.

To help readers understand the simulation code, a summary of the notation is presented below:

- V1_... = variable used for product 1
- V2_... = variable used for product 2
- V3_... $=$ variable used for product 3
- V4_... = variable used for product 4
- V5_... = variable used for product 5
- V6_... $=$ variable used for product 6
- $\mathrm{V} 7_{-} \ldots=$ variable used for product 7
- V8_... $=$ variable used for product 8
- $V_{\text {_... }}=$ variable used for all products
- $\mathrm{A}_{-} \ldots=$ load attribute
- $\mathrm{R}_{-} .$. = resource
- $P_{-} \ldots=$ process
- L_... $=$ load
- Conv $=$ power and free conveyor system
- $\mathrm{Pm}=$ automatic guided vehicle system
- Sta_... $=$ workstations
- $\mathrm{Lbl}_{\ldots} . .=$ labels
- $\mathrm{Ol}_{-\ldots}=$ order list

CHAPTER V: SIMULATION EXPERIMENTS AND RESULTS ANALYSIS

Chapter V is divided into six sections. The first section defines the warm-up period using a leading base model, then applies the warm-up period and the steady-state length to the subsequent simulation models. The second section compares the simple hybrid system configuration with the serial system configuration in terms of throughput when the number of product types varies. The third section determines the optimal number of carriers. The fourth section uses a conceptual simulation model to validate Equation 2.5, which predicts the optimal buffer location. The result is then applied to arrange the facilities on the shop floor. The fifth section addresses factory management-with the maintenance policies considered in this experimental design. The last section predicts the throughput per month when the endshift change is considered.

5.1 Determining warm-up period

Most of the simulation models are started empty and idle. Almost every time, these conditions differ from the steady-state condition. Therefore, the simulation model takes some time to reach steady-state. During this time period, the model is said to be in transient-state, i.e. warming up.

Mahajan and Ingalls (2004) categorized the methods for dividing the warm-up period into (1) graphical, (2) statistical, (3) heuristics and (4) initialization bias methods. In this paper, the graphical method is employed to define the warm up period using a leading base model. All the following experiments are analyzed with data recorded from the simulation steady-state behavior.

- Introduction of Experiment I

The leading base model is designed to define the warm-up period. Eight kinds of products are used to test this leading base model.

- Input data for Experiment I

Table 5.1 presents the input data for Experiment I. Column 1 reports the name of different workstations. In the table, all the cycle times are the uniform distribution. And the first value is the mean of the distribution, while the second value is the standard deviation. By using uniform distribution, the maximum and minimum processing times are limited that accords to the reality.

	Cycle time in minutes								
Product	1	2	3	4	5	6	7	8	Set-up time in minutes
Phosphate	5,1	$5.2,1$	$5.5,1$	$5.6,1$	$6.0,1$	$6.2,1$	$6.4,1$	$6.6,1$	7
Dry up	$4.8,1$	5,1	$5.2,1$	$5.4,1$	$5.5,1$	$5.5,1$	6,1	$6.4,1$	8
Basecoat I and II	$10.4,3$	$10.6,3$	$11.2,3$	$12.4,3$	$12.6,3$	$12.8,3$	13,3	$13.2,3$	6
Bake oven I (1 and 2) and II (1and2)	$10.2,2$	$10.4,2$	11,2	12,2	$12.3,2$	$12.6,2$	$12.8,2$	13,2	6
Cooling I $(1$ and 2) and II (land2)	$10.2,1$	$10.4,1$	$10.9,1$	$11.8,1$	$12.4,1$	$12.7,1$	$12.7,1$	$12.9,1$	7
Sanding I and II	10,1	$10.2,1$	11,1	$11.8,1$	$12.3,1$	$12.5,1$	$12.8,1$	$12.8,1$	8
Topcoat I and II	$10.3,3$	$10.5,3$	$11.3,3$	$12.3,3$	$12.5,3$	$12.8,3$	$13.1,3$	$13.4,3$	8
Inspection and repair I and II	$10.1,1$	$10.3,1$	$11.1,1$	$12.1,1$	$12.2,1$	$12.6,1$	13,1	$13.2,1$	6
Unloading	5,1	$5.1,1$	$5.4,1$	$5.3,1$	$5.8,1$	6,1	6,1	$6.6,1$	$\mathrm{~N} / \mathrm{A}$
Product mix- ratio	$1 / \mathrm{N}$	$\mathrm{N}: 1 \sim 8$							

Table 5.1: Input data for Experiment I

- Simulation results and analysis of Experiment I

Figure 5.1 is based on the data from Experiment I. The X-axis in Figure 5.1 represents the time in hours, while the Y -axis tells us the throughput per hour. Figure 5.1 suggests that the manufacturing system enters the stable-state after 20 hours.

For the sake of insurance, the warm-up period is enlarged to 50 hours, and the simulation model is run for 1000 hours after the first 50 hours. During these 1000 hours, the simulation data are collected and analyzed to compare serial system configuration with simple hybrid system configuration and determine the optimal number of carriers, predict the optimal buffer locations and choose a suitable operation policy.

Figure 5.1: Warm-up period

5.2 Serial system configuration versus simple hybrid system configuration

The first step in designing a manufacturing production line is to choose a strategy for deploying the facilities. The truck paint shop has two common system configurations. The first is a serial system configuration, as shown in Figure 2.2 (a). The second is a simple hybrid system configuration, as illustrated in Figure 2.2 (c).

Which system configuration the designer finally chooses depends on a variety of restrictions. For example, if the truck paint shop floor is long and narrow, a serial system configuration is a better choice because the final shape of a serial system configuration on the shop floor usually appears as a slot that maximizes the floor's utilization.

Another important restriction is the investment. More capital expenditure means a highlyautomated manufacturing system where a central control room could be set up to supervise and direct the material flow. This would allow the cross-line transportation cars to distinguish different products and convey them to the appropriate serial production lines according to PLC code, i.e. grouping.

There are two major benefits of grouping. The first is that it basically balances the different production lines according to the products' cycle times. For example, there are four types of products produced in two identical production lines. The cycle times of the four types of products are $4.2,6.3,8.5$ and 10.6 minutes, separately. The material handling system can group the products that have 4.2 and 10.6 minute cycle times together in one production line, and the other two products into another production line-resulting in two balanced production lines with near 14.8 -minute cycles. The other benefit is that it saves set-up time, as mentioned in Section 2.2.

- Introduction of Experiment II

The product goes through the same kind of process whether it's in the serial or simple hybrid system configurations. However, except for the phosphate, dry-up and unloading workstations, the number of other workstations in the simple hybrid system configuration are doubled when compared with the serial system configuration-as illustrated in Figures 4.1 and 4.2. As a result, the production rate of the workstations in the simple hybrid system configuration should be twice as slow as the production rate in the serial system configuration. Apparently the equipment with a fast production rate is generally more complex and expensive than the equipment with a slow production rate. Consequently, the
set-up times for the workstation in the serial system configuration are also doubled, when compared with the simple hybrid system configurations-as illustrated in Tables 5.2 and 5.4.

This paper selects a suitable system configuration based on throughput. Two separate simulation models are built to predict the throughputs of the serial and the simple hybrid system configurations, according to a certain number of product types. At this level, the modeller does not need to consider the impact that the quantity of carriers, buffer location, random failures and maintenance policies have on the throughput-a fact that dramatically simplifies the simulation models.

- Input data for the serial system configuration

Table 5.2 represents the cycle times of different products in different workstations in minutes. All the cycle times are uniform distribution. For example, the cycle time of Product 4 at the phosphate workstation is an uniform distribution with a mean of 5.6 and a standard deviation of 1 .

	Cycle time in minutes								
Product	1	2	3	4	5	6	7	8	Set-up time in minutes
Phosphate	5,1	$5.2,1$	$5.5,1$	$5.6,1$	$6.0,1$	$6.2,1$	$6.4,1$	$6.6,1$	7
Dry up	$4.8,1$	5,1	$5.2,1$	$5.4,1$	$5.5,1$	$5.5,1$	6,1	$6.4,1$	8
Basecoat	$5.2,3$	$5.3,3$	$5.6,3$	$6.2,3$	$6.3,3$	$6.4,3$	$6.5,3$	$6.6,3$	12
Bake oven 1 and 2	$5.1,2$	$5.2,2$	$5.5,2$	6,2	$6.15,2$	$6.3,2$	$6.4,2$	$6.5,2$	12
Cooling 1 and 2	$5.1,1$	$5.2,1$	$5.45,1$	$5.9,1$	$6.2,1$	$6.35,1$	$6.35,1$	$6.45,1$	14
Sanding	5,1	$5.1,1$	$5.5,1$	$5.9,1$	$6.15,1$	$6.25,1$	$6.4,1$	$6.4,1$	16
Topcoat	$5.15,3$	$5.25,3$	$5.65,3$	$6.15,3$	$6.25,3$	$6.4,3$	$6.55,3$	$6.7,3$	16
Inspection and repair	$5.05,1$	$5.15,1$	$5.55,1$	$6.05,1$	$6.1,1$	$6.3,1$	$6.5,1$	$6.6,1$	12
Unloading	5,1	$5.1,1$	$5.4,1$	$5.3,1$	$5.8,1$	6,1	6,1	$6.6,1$	$\mathrm{~N} / \mathrm{A}$
Product mix-ratio	$1 / \mathrm{N}$	$\mathrm{N}: 1 \sim 8$							

Table 5.2: Input data for serial system configuration

- Simulation results and analysis of the serial system configuration

Figure 5.2 is drawn according to the simulation result explicitly in an effort to analyze it. For the experimental data details, refer to Appendix D, where eighty runs are performed. For each number of product types, ten replications are performed to get the statistical average throughput per hour. There are eight types of product, in total, to be tested in the manufacturing system. Therefore, eighty runs are performed. In Figure 5.2, the X -axis represents the number of product types, while the Y -axis indicates the throughput per hour.

Figure 5.2: The effect of varying the number of product types on throughput in serial system configuration

It is reasonable to state that the throughput decreases as the product type increases, due to the time spent on set-up. When there is only one type of product, no set-up is needed and the percentage of time spent on set-up is zero, as illustrated in Table 5.3. As the number of product types increases to two, workstations require set-up whenever there is a product change. Therefore, the percentage of time spent on set-up increases dramatically from zero to
a particular number. Table 5.3 also reveals that the percentage of time spent on set-up only gently increases when the types of products increases from two to three, three to four, four to five, five to six, six to seven and seven to eight. Take the phosphate workstation as an example. When the number of product types changes from one to two, the percentage of time spent on set-up increases $15.5-0=15.5$. When the number of product types changes from two to three, the percentage of time spent on set-up increases 19.9-15.5=4.4. Following this routine provides the numbers $1.9,1.2,0.9,0.1$, and 0.8 . As 15.5 is much bigger than $1.9,1.2$, $0.9,0.1$ and 0.8 , the throughput dramatically reduces from 7.07 to 2.67 when the number of product types changes from one to two, and drops down slightly as the number of product types changes further.

	Percentage of time spent on set-up							
The number of product types	1	2	3	4	5	6	7	8
Phosphate	0	15.5	19.9	21.8	23	23.9	24	24.8
Dry up	0	17.7	22.5	24.8	26	27.1	27.8	28
Base-coat	0	26.6	33.9	37.2	39.2	40.5	41.4	42.1
Bake oven land2	0	26.6	33.9	37.2	39.2	40.5	41.5	42.1
Cooling land2	0	30.9	39.5	43.2	45.8	47.5	48.2	49.3
Sanding	0	35.5	45.1	49.3	52.2	54.2	55.2	56.3
Top-coat	0	35.5	45.1	49.3	52.2	54.2	55.2	56.3
Inspection and repair	0	26.6	34	37.2	39.2	40.5	41.4	42.1

Table 5.3: Workstations' percentage of time spent on set-up when the number of product types increases

- Input data for the simple hybrid system configuration

The input data are the same as the data in figure 5.1. The product mix-ratios are the same for all kinds of product.

- Simulation results and analysis of the simple hybrid system configuration

Figure 5.3 is drawn based on the simple hybrid system configuration. For experimental data details, refer to Appendix E. The curved shape in Figure 5.3 is similar to the curved shape in Figure 5.2-with the throughput decreasing as the product type increases.

One might ask why the throughput drops down dramatically for the simple hybrid system configuration when the number of product types changes from one to two? We know that no set-up is needed when two types of products are produced by the simple hybrid system configuration.

Figure 5.3: The effect of varying the number of product types on throughput in simple hybrid system configuration

Figure 5.4 presents an answer to this question, with the rectangles representing workstations and the circles signifying loads. When there is only one type of product, the products are directed to the upper and lower serial lines one-by-one. When there are two types of products, the first type of product is conveyed to the upper serial line and the second type of product to the lower serial line to save set-up time, i.e. grouping products. In addition, the loads arrive randomly, so the same kind of product is sometimes grouped together, leading to the increasing probability that either the upper or lower serial lines will become blocked when the number of product types changes from one to two. Therefore, the throughput decreases from 6.20 to 4.31 per hour, even though no set-up time is needed for either situation.

Figure 5.4: Throughput illustration

The above analysis is also verified by the simulation data in Table 5.4, which shows the probability of the product being blocked in the dry-up workstation (before Workstations 1-1 and 2-1) when the processing is over. As the number of product types changes from one to two, the probability of the product becoming blocked increases from 0.39 to 0.55 , leading to a decrease in throughput.

The number of product types	1	2
Probability of product being blocked	0.39	0.55
Standard deviation	0.03	0.02
Minimum	0.34	0.53
Maximum	0.43	0.60
Median	0.39	0.54
Number of runs	10	10

Table 5.4: Probability of product becoming blocked

- Comparison of the serial and the simple hybrid system configurations

Figures 5.2 and 5.3 tell us that the throughput of the serial system configuration for one type of product is 7.07 per hour, while the throughput of the simple hybrid system configuration for the same product is 6.20 per hour. Therefore, the serial system configuration performs better than the simple hybrid system configuration for one type of product. The simple hybrid system configuration needs a complex material handling system (cross-line transportation cars), which leads to spending more time on work-in-process (WIP) than the serial system configuration. The simulation data from Table 5.5 also shows that the product spends more time on WIP in the simple hybrid system configuration than in the serial system configuration (43.8>38.7).

	The simple hybrid system configuration	The serial system configuration
Average	43.8 minutes	38.7 minutes
Standard deviation	0.2 minutes	0.1 minutes
Minimum	43.6 minutes	38.5 minutes
Maximum	44.1 minutes	38.9 minutes
Median	43.9 minutes	38.8 minutes
Number of runs	10	10

Table 5.5: WIP of the simple hybrid and the serial system configurations

As the product type increases from one to two, however, a significant difference occurs between the two kinds of system configurations. The throughput of the simple hybrid system configuration is around 4.31 per hour-much higher than the throughput of the serial system configuration, which is approximately 2.67 per hour. When the number of product types increases further, the modeller finds that the curve of the simple hybrid system configuration is always above the curve of the serial system configuration.

Analyzing both types of system configurations allows one to choose a suitable strategy for deploying facilities in terms of throughput. In the paint shop, different products are often produced together, and comparing the two sets of data reveals to the designer that the simple hybrid system configuration is preferred over the serial system configuration because the number of product types often exceeds one.

5.3 Determining optimal number of carriers

Carriers (a part of the material handling system introduced later) used in the truck paint shop are also conveyed to some workstations located in the body shop and the trim and chassis shop. Here, carriers are used to connect different material handling systems in the body shop, the paint shop and the trim and chassis shop.

Graehl (1992) stated that simulation studies of large material handling systems include only a portion of the entire system. One reason for this is that large systems tend to require equally large and time-consuming simulation efforts. As a result, the modeller defines the scope of study to include everything from the white body storage to the painted body storage, and
assumes that the carriers are then freed and returned to the carrier storage once the load arrives at the painted body storage. Another assumption is that one kind of carrier is designed to fit all kinds of products. In this way, the designer can gain insight into how many carriers the truck paint shop needs.

It is important to determine what is a suitable number of carriers. On the one hand, if the number of carriers is not enough it becomes a bottleneck in the whole manufacturing system-leading to reduced throughput in the truck paint shop. On the other hand, because the carriers are bulky and require a lot of space for storage, it is impossible to put many carriers in the carrier storage-a waste of money and space on the shop floor.

- Introduction of Experiment III

Carriers are used to transport truck bodies from one workstation in the paint shop to another. Each carrier in this paint shop is able to carry one truck body at a time. The carriers wait in storage until a white truck body arrives at the white body storage. In the loading zone, the white truck body is put on top of one carrier, which then goes through all the necessary processes with the truck body. When said processes are finished, the carrier separates from the truck body and is conveyed to carrier storage.

Similarly, at this level in the simulation model, the designer excludes optimal buffer location, shift-changing and maintenance policies as factors with the potential to affect the throughput in the truck paint shop. The simulation model of the simple hybrid system is furthered by considering the number of carriers as a factor that affects the throughput-based on the results from Experiment II. Eighty kinds of product are produced in this case-prompting the input data to be the same as that in Table 5.1.

- Simulation results and analysis of Experiment III

Figure 5.5 is obtained by running the furthered model. For more information on the experimental data, refer to Appendix F. The X-axis in Figure 5.5 represents the number of carriers, while the Y -axis indicates the throughput per hour. The modeller increases the number of carriers from seven to thirty.

Figure 5.5: The effect of varying the number of carriers on throughput in simple hybrid system configuration

Figure 5.5 reveals how the throughput dramatically increases with the number of carriers at the beginning, because there are not enough number of carriers in the whole manufacturing system. Therefore, a small change in the quantity of carriers prompts a large difference in terms of throughput. When the number reaches forteen carriers, the throughput gently rises with the number of carriers until it hits seventeen-at which point the simulation model enters a stable state and the throughput stops increasing with the number of carriers. It comes down to a trade-off for the designer. If the efficient utilization of the shop floor is more important than the little difference in terms of throughput when the number of carriers is forteen to seventeen, then forteen carriers is preferable to seventeen carriers. Otherwise, seventeen carriers is preferable. Finally, the designer decides to put seventeen carriers in the carrier storage.

In addition, the modeller notices that the throughput at seventeen carriers in Figure 5.5 is 3.38 - the same as 3.38 , the throughput in Figure 5.3 for eight types of product. The experimental data in Figure 5.3 is obtained by assuming that there are infinite carriers available to fix the truck body, therefore the carriers cannot be the bottleneck of the whole
manufacturing system. Furthermore, when the quantity of carriers reaches seventeen, they no longer act as the system bottleneck anymore-according to Figure 5.5. Consequently, the two throughputs are the same.

5.4 Determining optimal buffer location

This section is designed to validate Equation 2.5, which states that the workstation with a slower parameter draws the buffer towards it (where the parameter is expressed by Equation 2.5). The obtained result is applied in our case study to predict the optimal buffer location in the simple hybrid system configuration.

- Introduction of Experiment IV

Experiment IV considers cycle times, mean time between failures, mean time to repair and the product's mix-ratio as potential factors to define a buffer location. A simulation model consisting of eight workstations and two buffers is set up to obtain analysis data. Four kinds of products are produced in this serial production line.

Figure 5.6: Buffer location

Figure 5.6 illustrates the configuration, with the rectangles representing workstations and the arrows indicating the candidate buffer locations. In our case, two identical buffers are allowed in the production line. Therefore, there are thirty-six possible combinations-as illustrated in Table 5.7.

	Possible combinations							
Buffer I at location 1	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$	$(1,7)$	$(1,8)$	$(1,9)$
Buffer I at location 2	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$	$(2,7)$	$(2,8)$	$(2,9)$	
Buffer I at location 3	$(3,4)$	$(3,5)$	$(3,6)$	$(3,7)$	$(3,8)$	$(3,9)$		
Buffer I at location 4	$(4,5)$	$(4,6)$	$(4,7)$	$(4,8)$	$(4,9)$			
Buffer I at location 5	$(5,6)$	$(5,7)$	$(5,8)$	$(5,9)$				
Buffer I at location 6	$(6,7)$	$(6,8)$	$(6,9)$					
Buffer I at location 7	$(7,8)$	$(7,9)$						
Buffer I at location 8	$(8,9)$							

Table 5.6: Possible combination of two buffers in seven locations

- Input data of Experiment IV

There are two sets of input data. The first set is about the workstations and is shown as follows: Time between failures for base-coat and top-coat booths is assumed to be uniform distribution with a mean of 40 minutes, and a standard deviation of 5 minutes. Time between failures for other facilities is assumed to be uniform distribution with a mean of 8 hours, and a standard deviation of 1 hour. Time to repair is assumed to be the same for all facilitiesuniform distribution with a mean of 12 minutes and a standard deviation of 2 minutes.

	Product's mix-ratio	Cycle times in minutes					
		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \dot{U} \\ & \ddot{W} \\ & \ddot{\sim} \end{aligned}$			$\begin{aligned} & \text { 霛 } \\ & \text { 䍏 } \end{aligned}$	W O O O O-	
Product 1	30\%	10.4, 3	10.2, 2	10.2, 1	10.0, 1	10.3, 3	10.1, 1
Product 2	30\%	10.6, 3	10.4, 2	10.4, 1	10.2, 1	10.5,3	10.3, 1
Product 3	20\%	13, 3	12.8, 2	12.7, 1	12.8, 1	13.1,3	13, 1
Product 4	20\%	13.2, 3	13, 2	12.9, 1	12.8, 1	13.4, 3	13.2, 1

Table 5.7: Product's mix-ration and cycle times

The second set of data is about a product's mix-ratio and the cycle times of different products in different workstations. Table 5.8 specifies the detailed information. All the cycle times are
uniform distribution. The first value is the mean, while the second value is the standard deviation.

- Simulation results and analysis of Experiment IV

Based on the above input data, Figure 5.7 is obtained by running the simulation model. Appendix G illustrates the detailed experimental data. The X-axis represents the throughput per hour, and the Y -axis indicates the different buffer-combinations. For example, $(5,6)$ means: one buffer is put at Location 5, and the other at Location 6. Figure 5.7 shows the modeller that the buffer combination of $(2,5)$ is better than all the other buffer combinations.

Figure 5.7: Throughput of different buffer-combinations

In addition, the stand-alone speeds of different workstations are calculated according to Equation 2.5:

$$
\begin{aligned}
& S_{1}=\frac{1}{n_{1} t_{1}+n_{2} t_{2}+\cdots n_{n} t_{n}} \times \frac{M T B F}{M T B F M T T R}=\frac{100}{30 \times 104+30 \times 106+20 \times 13+20 \times 132} \times \frac{0.67}{0.67+0.2}=0.0667 \\
& S_{2}=\frac{1}{n_{1} t_{1}+n_{2} t_{2}+\cdots n_{n} t_{n}} \times \frac{M T B F}{M T B F 4 M T T R}=\frac{100}{30 \times 102+30 \times 104+20 \times 128+20 \times 13} \times \frac{8}{8+0.2}=0.0860
\end{aligned}
$$

$$
S_{3}=\frac{1}{n_{1} t_{1}+n_{2} t_{2}+\cdots n_{n} t_{n}} \times \frac{M T B F}{M T B F+M T T R}=\frac{100}{30 \times 102+30 \times 104+20 \times 127+20 \times 129} \times \frac{8}{8+0.2}=0.0863
$$

$$
S_{4}=\frac{1}{n_{1} t_{1}+n_{2} t_{2}+\cdots n_{n} t_{n}} \times \frac{M T B F}{M T B F+M T T R}=\frac{100}{30 \times 100+30 \times 102+20 \times 128+20 \times 128} \times \frac{8}{8+0.2}=0.0873
$$

$$
S_{5}=\frac{1}{n_{1} t_{1}+n_{2} t_{2}+\cdots n_{n} t_{n}} \times \frac{M T B F}{M T B F+M T T R}=\frac{100}{30 \times 103+30 \times 105+20 \times 131+20 \times 134} \times \frac{0.67}{0.67+0.2}=0.0667
$$

$$
S_{6}=\frac{1}{n_{1} t_{1}+n_{2} t_{2}+\cdots n_{n} t_{n}} \times \frac{M T B F}{M T B F 4 M T T R}=\frac{100}{30 \times 101+30 \times 103+20 \times 13+20 \times 132} \times \frac{8}{8+0.2}=0.0859
$$

Where,
a) S_{I} is the stand-alone speed of base-coat
b) S_{2} is the stand-alone speed of bake oven 1 and 2
c) S_{3} is the stand-alone speed of cooling 1 and 2
d) S_{4} is the stand-alone speed of sanding
e) S_{5} is the stand-alone speed of top-coat
f) S_{6} is the stand-alone speed of inspection and repair

These calculations reveal that the stand-alone speeds of base-coat and top-coat are slower than the other workstations. Therefore, two buffers should be drawn to the base-coat and topcoat workstations-based on our prediction. This is validated by Figure 5.7, where the buffer-combination of Locations 2 and 5 appears to yield a larger throughput. Candidate

Location 2 is beside the base-coat workstation, and candidate Location 5 is beside the topcoat workstation.

5.5 Corrective maintenance versus preventive maintenance

The simulation model of the simple hybrid system configuration is advanced again to select a suitable maintenance policy for operating the factory on the shop floor. Corrective and preventive maintenance policies are tested by eight kinds of products in the experiment to distinguish the throughput differences.

There are two assumptions made about maintenance polices. First, that spare parts and maintenance crew are always available whenever failure occurs. Second, that the maintenance crew keeps to the regular preventive maintenance schedule even though an accident failure occurs between two preventive maintenance periods.

- Input data for Experiment \mathbf{V}

There are three sets of input data in Experiment V. The first set addresses the processing time. Since eight kinds of products are used to test maintenance polices, the first set of data is the same as in Table 5.1.

The second set of data is about the corrective maintenance policy, which is illustrated as follows:
a) Time between failures for base-coat and top-coat booths follows an uniform distribution with a mean of 40 minutes, and a standard deviation of 5 minutes.
b) Time between failures for other facilities follows an uniform distribution with a mean of 8 hours, and a standard deviation of 1 hour.
c) Time to repair is assumed to be the same for all facilities and follows an uniform distribution with a mean of 12 minutes, and a standard deviation of 2 minutes.

The last set of data is about the preventive maintenance policy, which states that all workstations are to be repaired for 8 hours every 40 hours. In addition, failures occur as the following statement between two preventive maintenance shifts.
a) Time between failures for base-coat and top-coat booths follows an uniform distribution with a mean of 400 minutes, and a standard deviation of 50 minutes.
b) Time between failures for other facilities follows an uniform distribution with a mean of 80 hours and a standard deviation of 10 hour.
c) Time to repair is assumed to be the same for all facilities and follows an uniform distribution with a mean of 12 minutes, and a standard deviation of 2 minutes

- Simulation results and analysis of Experiment V

Table 5.9 provides the results of the corrective and preventive maintenance tests.

	Corrective maintenance	Preventive maintenance
Average (throughput per hour)	2.90	2.80
Standard deviation	0.01	0.10
Minimum	2.88	2.7
Maximum	2.93	2.95
Median	2.90	3.81
Number of runs	10	10

Table 5.8: Corrective maintenance versus preventive maintenance

The two test data categories show the modeller that the standard deviation of preventive maintenance is much higher than that of corrective maintenance. It is reasonable, because there are eight hours of maintenance every forty hours for preventive maintenance. The manufacturing system stops completely for PM, but not for CM-which leads PM to have higher variation in terms of throughput than CM. Either way, the corrective maintenance policy performs better than the preventive maintenance policy. Its throughput is 2.90 smaller than 3.38 (shown Figure 5.3 at eight kinds of products)-due to the inclusion of random failures and repairs as factors that influence the throughput.

5.6 Final throughput

The next step is to give the factory manager a clear picture of how many products the truck paint shop can actually produce every month when all the selected factors are included. Based on this data, the manager could efficiently control the manufacturing system and meet
the market requirement. To estimate the throughput per month, the end-shift change must be considered in the simulation model because it causes the manufacturing system to stop every day.

- Input data for Experiment VI

In addition to the input data in Table 5.1, the simulation model utilizes the above experimental results to maximize the final throughput per month when the number of product types varies from one to eight. Therefore, a number of seventeen carriers, the buffer combination of $(2,5)$ and the use of a corrective maintenance police are the parameters in Experiment VI.

Furthermore, the manufacturing system carries out a one-shift and five-days-a-week operation policy. So the factory operates twenty-two days or 176 hours per month.

- Simulation results and analysis of Experiment VI

Figure 5.8 follows. For the detailed experimental data, refer to Appendix H.

Figure 5.8: Final throughput per month

Experiment V told the modeller that the throughput is 2.90 per hour when there are eight kinds of products and the selected factors are considered. Figure 5.8 is verified with a simple calculation made in terms of average throughput per month:
$2.90 \times 8 \times 22=510$ units/month

When the end-shift is included as a factor, the manufacturing system is limited by another restriction. Therefore, the final average throughput per month reduces from 510 to 500 as figure 5.8 shows (with eight kinds of products).

CHAPTER VI: CONCLUSION AND FUTURE WORK

6.1 Conclusion

This paper covers common issues found in the truck paint shop, and discusses system configurations, suitable number of carriers, optimal buffer locations and maintenance policies-all as ways of improving the throughput. The final throughput is also presented, with all the optimal factors considered.

This study is the first to thoroughly compare the two kinds of system configurations in terms of throughput. The research results of Powell and Pyke (1996) are, in turn, improved by replacing a larger mean processing time with a slower stand-alone speed. In Experiment 5.4, the simulation model verifies this improvement.

Manufacturing systems are a diverse as people, however, and have a tendency to display different personalities. Therefore, each particular manufacturing system needs to be analyzed using particular factors. This paper focused on the methodologies used to analyze the manufacturing systems, rather than on the obtained data. Simulation as a modelling technique provides the designer with a powerful tool for solving various problems.

6.2 Future work

Another significant problem in the paint shop is known as a "Single-track multi-hoist scheduling problem", which can also happen in the cross-line transportation car of our manufacturing system-particularly when there are multi-cars and many workstations to serve. Second, a conceptual comparison of the different system configurations-as illustrated in Figure 2.2-would also be required in the future. Finally, the experiments only select a factor at a time. In the future, the experiment should be designed to test all the factors at the same time and optimize the final throughput.

APPEXDIX A: CODE OF SERIAL SYSTEM CONFIGURATION

```
/*read data from input file*/
begin p_init arriving procedure
    read v_junk, v_partarrivingtime,v_junk from "arc/input.txt"
    print "part_arriving_time=" v partarrivingtime current value to
lbl_partarrivingtime
    read v_junk, v_partdieingtime,v_junk from "arc/input.txt"
    print "part_die_time=" v_partdieingtime current value to
lbl_partdieingtime
    read v_junk, v_minordefectrate,v_junk from "arc/input.txt"
    print "minor_dēfect_rate=" v_minordefectrate current value "%" to
lbl_minordefectrate
    read v_junk, v_majordefectrate,v_junk from "arc/input.txt"
    print "major_defect_rate=" v_majordefectrate current value "%" to
lbl_majordefectrate
    read v_junk, v1_mixrate,v_junk from "arc/input.txt"
    print "product1__portion=" v1_mixrate current value "%" to lbl1_mixrate
    read v_junk, v2_mixrate,v_junk from "arc/input.txt"
    print "product2_portion=" v2_mixrate current value "%" to lbl2 mixrate
    read v_junk, v3_mixrate,v_junk from "arc/input.txt"
    print "product3_portion=" v3_mixrate current value "%" to lbl3_mixrate
    read v_junk, v4_mixrate,v_junk from "arc/input.txt"
    print "product4_portion=" v4_mixrate current value "%" to lbl4_mixrate
    read v_junk, v5_mixrate,v_junk from "arc/input.txt"
    print "product5_portion=" v5_mixrate current value "%" to lbl5_mixrate
    read v_junk, v6 mixrate,v_junk from "arc/input.txt"
    print "product6_portion=" v6_mixrate current value "%" to lbl6_mixrate
    read v_junk, v7 mixrate,v_junk from "arc/input.txt"
    print "product7_portion=" v7_mixrate current value "%" to lbl7_mixrate
    read v_junk, v8_mixrate,v_junk from "arc/input.txt"
    print "product8_portion=" v8_mixrate current value "%" to lbl8_mixrate
    read v_junk, v_phosphatesetup,v_junk from "arc/input.txt"
    read v_junk, v_dryupsetup,v_junk from "arc/input.txt"
    read v_junk, v_basecoatsetup,v_junk from "arc/input.txt"
    read v_junk, v_bakeovensetup,v_junk from "arc/input.txt"
    read v_junk, v_coolingsetup,v_junk from "arc/input.txt"
    read v_junk, v_sandingsetup,v_junk from "arc/input.txt"
    read v_junk, v_topcoatsetup,v_junk from "arc/input.txt"
    read v_junk, v_inspectionsetup,v_junk from "arc/input.txt"
    read v_junk, v_timebetweenmaintenance,v_junk from "arc/input.txt"
```

print "time_between_maintenances=" v_timebetweenmaintenance current value "min" to lbl_timebetweenmaintenance
read v_junk, v_maintenancetime,v_junk from "arc/input.txt" print "maintenancetime=" v_maintenancetime current value "min" to lbl_maintenancetime
read v_junk, v1_cycletimeofphosphate,v_junk from "arc/input.txt" read v_junk, vl_cycletimeofdry,v_junk from "arc/input.txt" read v_junk, v1_cycletimeofbasecoat, v_junk from "arc/input.txt" read v_junk, v1_cycletimeofbaseoven, v_junk from "arc/input.txt" read v_junk, v1_cycletimeofcooling,v_junk from "arc/input.txt" read v_junk, v1_cycletimeofsanding,v_junk from "arc/input.txt" read v_junk, v1_cycletimeoftopcoat, v_junk from "arc/input.txt" read v junk, $v l^{-}$cycletimeofinspection, v junk from "arc/input.txt" read v_junk, vl_cycletimeofunload, v_junk from "arc/input.txt"
read v_junk, v2_cycletimeofphosphate,v_junk from "arc/input.txt" read v_junk, v2_cycletimeofdry,v_junk from "arc/input.txt" read v_junk, v2_cycletimeofbasecōat, v_junk from "arc/input.txt" read v_junk, v2_cycletimeofbaseoven, v_junk from "arc/input.txt" read v_junk, v2_cycletimeofcooling,v_junk from "arc/input.txt" read v_junk, v2_cycletimeofsanding,v_junk from "arc/input.txt" read v_junk, v2_cycletimeoftopcoat, v_junk from "arc/input.txt" read v_junk, v2_cycletimeofinspection, v_junk from "arc/input.txt" read v_junk, v2_cycletimeofunload, v_junk from "arc/input.txt"
read v_junk, v3_cycletimeofphosphate, v_junk from "arc/input.txt" read v_junk, v3_cycletimeofdry,v_junk from "arc/input.txt" read v_junk, v3_cycletimeofbasecoat,v_junk from "arc/input.txt" read v_junk, v3_cycletimeofbaseoven, v_junk from "arc/input.txt" read v_junk, v3_cycletimeofcooling,v_junk from "arc/input.txt" read v_junk, v3_cycletimeofsanding,v_junk from "arc/input.txt" read v_junk, v3_cycletimeoftopcoat, v_junk from "arc/input.txt" read v_junk, v3_cycletimeofinspection, v_junk from "arc/input.txt" read v_junk, v3_cycletimeofunload,v_junk from "arc/input.txt"
read v_junk, v4_cycletimeofphosphate, v_junk from "arc/input.txt" read v_junk, v4_cycletimeofdry,v_junk from "arc/input.txt" read v_junk, v4_cycletimeofbasecoat, v_junk from "arc/input.txt" read v_junk, v4_cycletimeofbaseoven, v_junk from "arc/input.txt" read v_junk, v4_cycletimeofcooling,v_junk from "arc/input.txt" read v_junk, v4_cycletimeofsanding,v_junk from "arc/input.txt" read v_junk, v4_cycletimeoftopcoat,v_junk from "arc/input.txt" read v_junk, v4_cycletimeofinspection, v_junk from "arc/input.txt" read v_junk, v4_cycletimeofunload, v_junk from "arc/input.txt"
read v_junk, v5_cycletimeofphosphate, v_junk from "arc/input.txt" read $v_{-j u n k, ~ v 5-c y c l e t i m e o f d r y, ~ v _j u n k ~ f r o m ~ " a r c / i n p u t . t x t " ~}^{\text {- }}$ read v_junk, v5_cycletimeofbasecoat,v_junk from "arc/input.txt" read $v^{-} j u n k, ~ v 5_{-}^{-}$cycletimeofbaseoven, $v^{-} j u n k$ from "arc/input.txt" read v_junk, v5_cycletimeofcooling,v_junk from "arc/input.txt" read v_junk, v5_cycletimeofsanding, v_junk from "arc/input.txt" read v_junk, v5_cycletimeoftopcoat, v_junk from "arc/input.txt" read v_junk, v5_cycletimeofinspection, v_junk from "arc/input.txt" read v_junk, v5_cycletimeofunload,v_junk from "arc/input.txt"

```
    read v_junk, v6_cycletimeofphosphate,v_junk from "arc/input.txt"
read v_junk, v6 cycletimeofdry,v_junk from "arc/input.txt"
read v_junk, v6_cycletimeofbasecoat,v_junk from "arc/input.txt"
read v_junk, v6_cycletimeofbaseoven,v_junk from "arc/input.txt"
read v_junk, v6_cycletimeofcooling,v_junk from "arc/input.txt"
read v_junk, v6_cycletimeofsanding,v_junk from "arc/input.txt"
read v_junk, v6_cycletimeoftopcoat,v_junk from "arc/input.txt"
read v_junk, v6 cycletimeofinspection,v_junk from "arc/input.txt"
read v_junk, v6_cycletimeofunload,v_junk from "arc/input.txt"
read v_junk, v7_cycletimeofphosphate,v_junk from "arc/input.txt"
read v_junk, v7_cycletimeofdry,v_junk from "arc/input.txt"
read v_junk, v7_cycletimeofbasecoat,v_junk from "arc/input.txt"
read v_junk, v7-cycletimeofbaseoven, v_junk from "arc/input.txt"
read v_junk, v7_cycletimeofcooling,v_junk from "arc/input.txt"
read v_junk, v7_cycletimeofsanding,v_junk from "arc/input.txt"
read v_junk, v7_cycletimeoftopcoat,v_junk from "arc/input.txt"
read v_junk, v7_cycletimeofinspection,v_junk from "arc/input.txt"
read v_junk, v7_cycletimeofunload,v_jun\overline{k}}\mathrm{ from "arc/input.txt"
read v_junk, v8_cycletimeofphosphate,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeofdry,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeofbasecöat,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeofbaseoven,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeofcooling,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeofsanding,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeoftopcoat,v_junk from "arc/input.tst"
read v_junk, v8_cycletimeofinspection,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeofunload,v_junk from "arc/input.txt"
/*print v8_cycletimeofunload current value to lbl_test*/
send to p_loadcreating
```

end

```
/*load creating*/
begin p_loadcreating arriving procedure
if v_numberofproducts = 7 then
    bēgin
    set v8_mixrate = 0
end
else if v_numberofproducts = 6 then
    begin
    set v8 mixrate = 0
    set v7_mixrate = 0
end
else if v_numberofproducts = 5 then
    begin
    set v8_mixrate = 0
    set v7_mixrate = 0
    set v6_mixrate = 0
end
```

```
else if v_numberofproducts = 4 then
    begin
    set v8_mixrate = 0
    set v7-mixrate = 0
    set v6_mixrate = 0
    set v5_mixrate = 0
end
else if v_numberofproducts = 3 then
    begin
    set v8_mixrate = 0
    set v7-mixrate = 0
    set v6 mixrate = 0
    set v5_mixrate = 0
    set v4_mixrate = 0
end
else if v_numberofproducts = 2 then
    begin
    set v8_mixrate = 0
    set v7_mixrate = 0
    set v6_mixrate = 0
    set v5_mixrate = 0
    set v4_mixrate = 0
    set v3_mixrate = 0
end
else if v_numberofproducts = 1 then
    begin
    set v8_mixrate = 0
    set v7-mixrate = 0
    set v6_mixrate = 0
    set v5_mixrate = 0
    set v4_mixrate = 0
    set v3_mixrate = 0
    set v2_mixrate = 0
end
while 1=1 do begin
    /*creating mixed products*/
    set a_product to oneof(v1_mixrate:1,v2_mixrate:2,v3_mixrate:3,
    v4_mi\overline{xrate:4,v5_mixrate:5,v6_mixrate:6,v7_mixrate:7,v8_mixrate: 8)}
    /*set up processing parameters according to product type*/
    if a_product = 1 then
        begin
        set a cycletimeofphosphate to vl_cycletimeofphosphate
        set a_cycletimeofdry to vl_cycletimeofdry
        set a_cycletimeofbasecoat to v1_cycletimeofbasecoat
        set a_cycletimeofbakeoven to v1_cycletimeofbaseoven
        set a_cycletimeofcooling to v1_cycletimeofcooling
        set a_cycletimeofsanding to vl_cycletimeofsanding
        set a_cycletimeoftopcoat to vl_cycletimeoftopcoat
        set a_cycletimeofinspection to vl_cycletimeofinspection
        set a_cycletimeofunload to v1_cycletimeofunload
```

```
    /*print a_cycletimeofunload current value to lbl_test*/
    clone 1 load to p_wbs nlt l_product1
end
else if a_product = 2 then
    begin
    set a cycletimeofphosphate to v2 cycletimeofphosphate
    set a_cycletimeofdry to v2_cycletimeofdry
    set a cycletimeofbasecoat to v2 cycletimeofbasecoat
    set a_cycletimeofbakeoven to v2_cycletimeofbaseoven
    set a_cycletimeofcooling to v2_cycletimeofcooling
    set a_cycletimeofsanding to v2_cycletimeofsanding
    set a_cycletimeoftopcoat to v2_cycletimeoftopcoat
    set a_cycletimeofinspection to v2 cycletimeofinspection
    set a_cycletimeofunload to v2_cycletimeofunload
    /* print a_cycletimeofunload current value to lbl_test*/
    clone 1 load to p_wbs nlt l_product2
end
else if a_product = 3 then
    begin
    set a cycletimeofphosphate to v3 cycletimeofphosphate
    set a_cycletimeofdry to v3_cycleEimeofdry
    set a_cycletimeofbasecoat to v3_cycletimeofbasecoat
    set a_cycletimeofbakeoven to v3_cycletimeofbaseoven
    set a_cycletimeofcooling to v3_cycletimeofcooling
    set a_cycletimeofsanding to v3_cycletimeofsanding
    set a_cycletimeoftopcoat to v3_cycletimeoftopcoat
    set a_cycletimeofinspection to v3_cycletimeofinspection
    set a_cycletimeofunload to v3_cycletimeofunload
    /*print a_cycletimeofunload currrent value to lbl_test*/
    clone 1 load to p_wbs nlt l_product3
end
else if a_product = 4 then
    begin
    set a_cycletimeofphosphate to v4_cycletimeofphosphate
    set a_cycletimeofdry to v4_cycletimeofdry
    set a_cycletimeofbasecoat to v4_cycletimeofbasecoat
    set a_cycletimeofbakeoven to v4_cycletimeofbaseoven
    set a_cycletimeofcooling to v4_cycletimeofcooling
    set a_cycletimeofsanding to v4_cycletimeofsanding
    set a_cycletimeoftopcoat to v4_cycletimeoftopcoat
    set a_cycletimeofinspection to v4_cycletimeofinspection
    set a_cycletimeofunload to v4_cycletimeofunload
    /*print a_cycletimeofunload current value to lbl_test*/
    clone 1 load to p_wbs nlt l_product4
end
else if a_product = 5 then
    begin
    set a_cycletimeofphosphate to v5_cycletimeofphosphate
    set a_cycletimeofdry to v5_cycletimeofdry
    set a_cycletimeofbasecoat to v5_cycletimeofbasecoat
    set a_cycletimeofbakeoven to v5_cycletimeofbaseoven
    set a_cycletimeofcooling to v5_cycletimeofcooling
    set a_cycletimeofsanding to v5_cycletimeofsanding
```

```
    set a_cycletimeoftopcoat to v5_cycletimeoftopcoat
    set a_cycletimeofinspection to v5_cycletimeofinspection
    set a_cycletimeofunload to v5_cycletimeofunload
    /*priñt a_cycletimeofunload current value to lbl_test*/
    clone 1 load to p_wbs nlt l_product5
end
    else if a_product = 6 then
    begin
    set a_cycletimeofphosphate to v6_cycletimeofphosphate
    set a_cycletimeofdry to v6_cycletimeofdry
    set a cycletimeofbasecoat to v6 cycletimeofbasecoat
    set a_cycletimeofbakeoven to v6_cycletimeofbaseoven
    set a cycletimeofcooling to v6 cycletimeofcooling
    set a_cycletimeofsanding to v6_cycletimeofsanding
    set a_cycletimeoftopcoat to v6_cycletimeoftopcoat
    set a-cycletimeofinspection to v6 cycletimeofinspection
    set a_cycletimeofunload to v6_cycletimeofunload
    /*print a_cycletimeofunload current value to lbl_test*/
    clone 1 load to p_wbs nlt l_product6
end
else if a_product = 7 then
    begin
    set a_cycletimeofphosphate to v7_cycletimeofphosphate
    set a_cycletimeofdry to v7 cycletimeofdry
    set a_cycletimeofbasecoat to v7_cycletimeofbasecoat
    set a_cycletimeofbakeoven to v7_cycletimeofbaseoven
    set a_cycletimeofcooling to v7_cycletimeofcooling
    set a_cycletimeofsanding to v7_cycletimeofsanding
    set a_cycletimeoftopcoat to v7_cycletimeoftopcoat
    set a_cycletimeofinspection to v7 cycletimeofinspection
    set a_cycletimeofunload to v7_cycletimeofunload
    /*priñt a_cycletimeofunload current value to lbl_test*/
    clone 1 load to p_wbs nlt l_product7
end
else if a product = 8 then
    begin
    set a_cycletimeofphosphate to v8_cycletimeofphosphate
    set a_cycletimeofdry to v8_cycletimeofdry
    set a_cycletimeofbasecoat E'o v8_cycletimeofbasecoat
    set a_cycletimeofbakeoven to v8_cycletimeofbaseoven
    set a_cycletimeofcooling to v8 cycletimeofcooling
    set a_cycletimeofsanding to v8_cycletimeofsanding
    set a_cycletimeoftopcoat to v8_cycletimeoftopcoat
    set a_cycletimeofinspection to v8_cycletimeofinspection
    set a_cycletimeofunload to v8_cycletimeofunload
    clone 1 load to p_wbs nlt l_product8
end
    wait for e v_partarrivingtime min
    /*time between load arrivals*/
```

end
end

```
begin p_wbs arriving procedure
    move into q_wbs /*check the average number in wbs*/
    send to p_loading
end
begin p_loading arriving procedure
    move into conv:sta_load
    set a_timestamp to ac
    use r_load for u 3, 1 min
    /*fix white truck body to the carrier*/
    send to p_phosphate
end
begin p_phosphate arriving procedure
    travel to conv:sta_phosphate
    set v phosphate new to a product
    if v_phosphate_old <> v_phosphate_new then
        begin
        get r_phosphate
        /*the set-up time belonging to the operation time*/
        use r_phosphate_operator for v_phosphatesetup min
        /*setup time*/
        free r_phosphate
        /*time spending on set up is included in processing*/
        print v_phosphate_new current value to lbl_test
        print v_phosphate_old current value to lbl_testl
    end
    set v_phosphate_old to a_product
    increment v_phosphate_count by 1
    /*count how many parts are processed*/
    use r_phosphate for u a_cycletimeofphosphate, 1 min
    /*actually processing time*/
    /*print a_cycletimeofphosphate current value to lbl_test*/
    send to p_dry
end
begin p_dry arriving procedure
    travel to conv:sta_drying
    if v_dry_old <> a product then
        begin
```

```
        get r_dry
        /*the set-up time belonging to the operation time*/
        use r_dry_operator for v_dryupsetup min
        /*setüp time*/
        free r_dry
        /*time spending on set up is included in processing*/
    end
    set v_dry_old to a_product
    increment v dry_count by 1
    /*count how many parts are processed*/
    use r_dry for u a_cycletimeofdry, 1 min
    /*print a_cycletimeofphosphate current value to lbl_test*/
    send to p_basecoat
end
begin p_basecoat arriving procedure
    travel to conv:sta_basecoat
    if v_basecoat_old <> a_product then
        begin
        get r_basecoat
        /*the set-up time belonging to the operation time*/
        use r basecoat_operator for v_basecoatsetup min
        /*setup time*/
        free r_basecoat
        /*time spending on set up is included in processing*/
    end
    set v_basecoat_old to a product
    increment v_basecoat_count by 1
    /*count how many parts are processed*/
    use r_basecoat for u a_cycletimeofbasecoat, 3 min
    send to p_buffer1
end
begin p_bufferl arriving procedure
    /*for storage*/
    travel to conv:sta bufferl
    send to p_bakeoven1
end
begin p_bakeovenl arriving procedure
    travel to conv:sta_bakeovenl
    if v_bakeovenl_old <> a_product then
```

```
        begin
        get r_bakeoven1
        /*the set-up time belonging to the operation time*/
        use r_bakeovenl_operator for v_bakeovensetup min
        /*setup time*/
        free r_bakeoven1
        /*time spending on set up is included in processing*/
    end
    set v_bakeoven1_old to a_product
    increment v_bakeoven1_count by 1
    /*count how many parts are processed*/
    use r_bakeovenl for u a_cycletimeofbakeoven, 2 min
    send to p_cooling1
end
begin p_coolingl arriving procedure
    travel to conv:sta_coolingl
    if v_coolingl_old <> a_product then
        begin
        get r_coolingl
        /*the set-up time belonging to the operation time*/
            use r_cooling1_operator for v_coolingsetup min
            /*setup time*/
            free r_cooling1
            /*time spending on set up is included in processing*/
        end
    set v_coolingl_old to a product
    increment v_cooling1_count by 1
    /*count how many parts are processed*/
    use r_cooling1 for u a_cycletimeofcooling, 1 min
    send \overline{to p_sanding}
end
begin p_sanding arriving procedure
    travel to conv:sta_sanding
    if v_sanding_old <> a_product then
        begin
        get r_sanding
        /*the set-up time belonging to the operation time*/
        use r_sanding_operator for v_sandingsetup min
        /*setup time*/
        free r_sanding
        /*time spending on set up is included in processing*/
    end
```

```
    set v_sanding_old to a_product
increment v_sanding_count by 1
/*count how many parts are processed*/
use r_sanding for u a_cycletimeofsanding, 1 min
send to p_topcoat
```

end
begin p_topcoat arriving procedure travel to conv:sta_topcoat if v_topcoat_old <> a_product then begin
get r_topcoat
/*the set-up time belonging to the operation time*/
use r_topcoat_operator for v_topcoatsetup min
/*setup time*/
free r_topcoat
/*time spending on set up is included in processing*/
end
set v_topcoat_old to a_product
increment v_topcoat_count by 1
/*count how many parts are processed*/
use r_topcoat for u a_cycletimeoftopcoat, 3 min
send to p_buffer2
end
begin p_buffer2 arriving procedure
/*for storage*/
travel to conv:sta buffer2
send to p bakeoven $\overline{2}$
end
begin p_bakeoven2 arriving procedure
travel to conv:sta_bakeoven2
if v_bakeoven2_old <> a_product then
begin
get r_bakeoven2
/*the set-up time belonging to the operation time*/
use r_bakeoven2_operator for v_bakeovensetup min
/*setup time*/
free r_bakeoven2
/*time spending on set up is included in processing*/
end
set v_bakeoven2_old to a_product
increment v_bakeoven2_count by 1
/*count how many parts are processed*/

```
    use r_bakeoven2 for u a_cycletimeofbakeoven, 2 min
    send to p_cooling2
end
begin p_cooling2 arriving procedure
    travel to conv:sta_cooling2
    if v_cooling2_old <> a_product then
        begin
        get r_cooling2
        /*the set-up time belonging to the operation time*/
        use r_cooling2_operator for v_coolingsetup min
        /*setup time*/
        free r cooling2
        /*time spending on set up is included in processing*/
    end
    set v_cooling2_old to a product
    increment v_cooling2 count by 1
    /*count how many parts are processed*/
    use r_cooling2 for u a_cycletimeofcooling, 1 min
    send to p_inspection
end
begin p_inspection arriving procedure
    travel to conv:sta_inspection
    if v_inspection_old <> a_product then
        begin
        get r_inspection
        /*the set-up time belonging to the operation time*/
        use r_inspection operator for v_inspectionsetup min
        /*setup time*/
        free r_inspection
        /*time spending on set up is included in processing*/
    end
    set v_inspection old to a product
    increment v_inspection_count by l
    /*count how many parts are processed*/
    use r_inspection for u a_cycletimeofinspection, 1 min
    send to p_unload
end
begin p_unload arriving procedure
    travel to conv:sta_unload
    /*unloading time*/
```

```
    use r unload for u a cycletimeofunload, I min
    tabulate (ac - a timestamp-4100)/60 in t_wip
    send to p_pbs
end
begin p_pbs arriving procedure
    move into q_pbs
    /*calculate the output*/
    increment v_throughput by 1
    send to die
end
```


APPEXDIX B: CODE OF SIMPLE HYBRID SYSTEM CONFIGURATION

```
/*read data from input file*/
begin p_init arriving procedure
    read v_junk, v_partarrivingtime,v_junk from "arc/input.txt"
    print "part arriving time=" v partarrivingtime current value to
lbl_partarrivingtime
    read v_junk, v_partdieingtime,v_junk from "arc/input.txt"
    print "part_die_time=" v_partdieingtime current value to
lbl_partdieingtime
    read v_junk, v_minordefectrate,v_junk from "arc/input.txt"
    print "minor dēfect rate=" v_minordefectrate current value "%" to
lbl_minordefectrate
    read v_junk, v_majordefectrate,v_junk from "arc/input.txt"
    print "major_defect_rate=" v_majordefectrate current value "%" to
lbl_majordefectrate
    read v_junk, v1_mixrate,v_junk from "arc/input.txt"
    print "product1_portion=" v1_mixrate current value "%" to lbl1_mixrate
    read v_junk, v2 mixrate,v_junk from "arc/input.txt"
    print "product2_portion=" v2_mixrate current value "%" to lbl2_mixrate
    read v_junk, v3_mixrate,v_junk from "arc/input.txt"
    print "product3_portion=" v3_mixrate current value "%" to lbl3_mixrate
    read v_junk, v4_mixrate,v_junk from "arc/input.txt"
    print "product4_portion=" v4_mixrate current value "%" to lbl4_mixrate
    read v_junk, v5_mixrate,v_junk from "arc/input.txt"
    print "product5_portion=" v5_mixrate current value "%" to lbl5_mixrate
    read v_junk, v6_mixrate,v_junk from "arc/input.txt"
    print "product6_portion=" v6_mixrate current value "%" to lbl6_mixrate
    read v junk, v7 mixrate,v_junk from "arc/input.txt"
    print "product7_portion=" v7_mixrate current value "%" to lbl7_mixrate
    read v_junk, v8_mixrate,v_junk from "arc/input.txt"
    print "product8_portion=" v8 mixrate current value "%" to lbl8_mixrate
    read v_junk, v_phosphatesetup,v_junk from "arc/input.txt"
    read v_junk, v_dryupsetup,v_junk from "arc/input.txt"
    read v_junk, v_basecoatsetup,v_junk from "arc/input.txt"
    read v_junk, v_bakeovensetup,v_junk from "arc/input.txt"
    read v_junk, v_coolingsetup,v_junk from "arc/input.txt"
    read v_junk, v_sandingsetup,v_junk from "arc/input.txt"
    read v_junk, v_topcoatsetup,v_junk from "arc/input.txt"
    read v_junk, v_inspectionsetup,v_junk from "arc/input.txt"
    read v_junk, v_timebetweenmaintenance,v_junk from "arc/input.txt"
```

print "time_between_maintenances=" v_timebetweenmaintenance current value "min" tō lbl_timebetweenmaintenañce
read v_junk, v_maintenancetime, v_junk from "arc/input.txt" print "maintenāncetime=" v maintenancetime current value "min" to lbl_maintenancetime


```
read v_junk, v6_cycletimeofphosphate,v_junk from "arc/input.txt"
read v_junk, v6_cycletimeofdry,v_junk from "arc/input.txt"
read v_junk, v6_cycletimeofbasecoat,v_junk from "arc/input.txt"
read v_junk, v6_cycletimeofbaseoven,v_junk from "arc/input.txt"
read v_junk, v6_cycletimeofcooling,v junk from "arc/input.txt"
read v_junk, v6_cycletimeofsanding,v_junk from "arc/input.txt"
read v_junk, v6_cycletimeoftopcoat,v_junk from "arc/input.txt"
read v-junk, v6_cycletimeofinspection,v_junk from "arc/input.txt"
read v_junk, v6_cycletimeofunload,v_junk from "arc/input.txt"
read v_junk, v7_cycletimeofphosphate,v_junk from "arc/input.txt"
read v_junk, v7_cycletimeofdry,v_junk from "arc/input.txt"
read v_junk, v7_cycletimeofbasecoat,v_junk from "arc/input.txt"
read v junk, v7 cycletimeofbaseoven,v junk from "arc/input.txt"
read v_junk, v7_cycletimeofcooling,v_junk from "arc/input.txt"
read v_junk, v7_cycletimeofsanding,v_junk from "arc/input.txt"
read v_junk, v7_cycletimeoftopcoat,v_junk from "arc/input.txt"
read v_junk, v7__cycletimeofinspection,v_junk from "arc/input.txt"
read v_junk, v7_cycletimeofunload,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeofphosphate,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeofdry,v_junk - from "arc/input.txt"
read v_junk, v8_cycletimeofbasecoat,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeofbaseoven,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeofcooling,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeofsanding,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeoftopcoat,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeofinspection,v_junk from "arc/input.txt"
read v_junk, v8_cycletimeofunload,v_jun\overline{k} from "arc/input.txt"
/*print v8_cycletimeofunload current value to lbl_test
*/
send to p_loadcreating
```

end

```
/*load creating*/
begin p_loadcreating arriving procedure
/*creat desired number of carriers*/
clone v_numberofcarriers loads to p_carriersstorage nlt l_carrier
/*print v_numberofcarriers current value to lbl_test*/
/*clone 1 load to p_shift*/ /*used for simulate the daily operation*/
clone 1 load to p preventivemaintenance
/*used for simulate the preventive maintenance*/
if v_numberofproducts = 7 then
    begin
    set v8_mixrate = 0
end
else if v_numberofproducts = 6 then
    begin
    set v8_mixrate = 0
```

```
    set v7_mixrate = 0
end
else if v_numberofproducts = 5 then
    begin
    set v8_mixrate = 0
    set v7_mixrate = 0
    set v6_mixrate = 0
end
else if v_numberofproducts = 4 then
    begin
    set v8 mixrate = 0
    set v7_mixrate = 0
    set v6_mixrate = 0
    set v5_mixrate = 0
end
else if v_numberofproducts = 3 then
    begin
    set v8_mixrate = 0
    set v7-mixrate = 0
    set v6_mixrate = 0
    set v5_mixrate = 0
    set v4_mixrate = 0
end
else if v_numberofproducts = 2 then
    begin
    set v8_mixrate = 0
    set v7_mixrate = 0
    set v6_mixrate = 0
    set v5_mixrate = 0
    set v4_mixrate = 0
    set v3_mixrate = 0
end
else if v_numberofproducts = 1 then
    begin
    set v8_mixrate = 0
    set v7-mixrate = 0
    set v6-mixrate = 0
    set v5_mixrate = 0
    set v4_mixrate = 0
    set v3_mixrate = 0
    set v2_mixrate = 0
end
while l=1 do begin
    /*creating mixed products*/
    set a product to oneof(v1_mixrate:1, v2 mixrate:2, v3 mixrate:3,
        v4_mixrate:4, v5_mixrate:5, v6_mixrate:6,v7_mixrate:7, v8_mixrate:8)
    /*set up processing parameters according to product type*/
```

```
if a_product = 1 then
    begin
    set a_cycletimeofphosphate to v1_cycletimeofphosphate
    set a_cycletimeofdry to v1_cycletimeofdry
    set a_cycletimeofbasecoat प्o v1 cycletimeofbasecoat
    set a_cycletimeofbakeoven to v1_cycletimeofbaseoven
    set a_cycletimeofcooling to v1_cycletimeofcooling
    set a_cycletimeofsanding to v1_cycletimeofsanding
    set a_cycletimeoftopcoat to v1_cycletimeoftopcoat
    set a_cycletimeofinspection to vl_cycletimeofinspection
    set a_cycletimeofunload to vl_cycletimeofunload
    /*priñt a product current value to lbl_test*/
    clone 1 load to p_wbs nlt l_product1
end
else if a_product = 2 then
    begin
    set a_cycletimeofphosphate to v2_cycletimeofphosphate
    set a_cycletimeofdry to v2_cycletimeofdry
    set a_cycletimeofbasecoat to v2_cycletimeofbasecoat
    set a-cycletimeofbakeoven to v2 cycletimeofbaseoven
    set a_cycletimeofcooling to v2_cycletimeofcooling
    set a_cycletimeofsanding to v2_cycletimeofsanding
    set a_cycletimeoftopcoat to v2_cycletimeoftopcoat
    set a_cycletimeofinspection to - v2_cycletimeofinspection
    set a_cycletimeofunload to v2_cycletimeofunload
    /*print a_product current value to lbl_test*/
    clone 1 load to p_wbs nlt l_product2
end
else if a_product = 3 then
    begin
    set a_cycletimeofphosphate to v3_cycletimeofphosphate
    set a_cycletimeofdry to v3_cycletimeofdry
    set a_cycletimeofbasecoat to v3_cycletimeofbasecoat
    set a_cycletimeofbakeoven to v3_cycletimeofbaseoven
    set a_cycletimeofcooling to v3_cycletimeofcooling
    set a_cycletimeofsanding to v3_cycletimeofsanding
    set a_cycletimeoftopcoat to v3_cycletimeoftopcoat
    set a__cycletimeofinspection to v3_cycletimeofinspection
    set a_cycletimeofunload to v3_cycletimeofunload
    clone-1 load to p_wbs nlt l_product3
end
else if a_product = 4 then
    begin
    set a_cycletimeofphosphate to v4_cycletimeofphosphate
    set a_cycletimeofdry to v4_cycletimeofdry
    set a_cycletimeofbasecoat to v4_cycletimeofbasecoat
    set a_cycletimeofbakeoven to v4 cycletimeofbaseoven
    set a_cycletimeofcooling to v4_cycletimeofcooling
    set a_cycletimeofsanding to v4_cycletimeofsanding
    set a_cycletimeoftopcoat to v4_cycletimeoftopcoat
    set a_cycletimeofinspection to - v4_cycletimeofinspection
    set a_cycletimeofunload to v4_cycletimeofunload
    clone -1 load to p_wbs nlt l_product4
end
```

```
else if a_product = 5 then
    begin
    set a_cycletimeofphosphate to v5_cycletimeofphosphate
    set a cycletimeofdry to v5 cycletimeofdry
    set a_cycletimeofbasecoat to v5_cycletimeofbasecoat
    set a_cycletimeofbakeoven to v5_cycletimeofbaseoven
    set a_cycletimeofcooling to v5_cycletimeofcooling
    set a_cycletimeofsanding to v5_cycletimeofsanding
    set a_cycletimeoftopcoat to v5_cycletimeoftopcoat
    set a_cycletimeofinspection to v5_cycletimeofinspection
    set a_cycletimeofunload to v5_cycletimeofunload
    clone 1 load to p_wbs nlt l_product5
end
else if a_product = 6 then
    begin
    set a_cycletimeofphosphate to v6_cycletimeofphosphate
    set a_cycletimeofdry to v6_cycletimeofdry
    set a_cycletimeofbasecoat to v6_cycletimeofbasecoat
    set a_cycletimeofbakeoven to v6_cycletimeofbaseoven
    set a_cycletimeofcooling to v6 cycletimeofcooling
    set a_cycletimeofsanding to v6_cycletimeofsanding
    set a_cycletimeoftopcoat to v6_cycletimeoftopcoat
    set a cycletimeofinspection to v6 cycletimeofinspection
    set a_cycletimeofunload to v6 cycletimeofunload
    clone - 1 load to p_wbs nlt l_product6
end
else if a_product = 7 then
    begin
    set a_cycletimeofphosphate to v7_cycletimeofphosphate
    set a_cycletimeofdry to v7_cycletimeofdry
    set a_cycletimeofbasecoat to v7_cycletimeofbasecoat
    set a_cycletimeofbakeoven to v7_cycletimeofbaseoven
    set a_cycletimeofcooling to v7_cycletimeofcooling
    set a cycletimeofsanding to v7 cycletimeofsanding
    set a_cycletimeoftopcoat to v7_cycletimeoftopcoat
    set a_cycletimeofinspection to v7_cycletimeofinspection
    set a_cycletimeofunload to v7_cycletimeofunload
    clone 1 load to p_wbs nlt l_product7
end
else if a_product = 8 then
    begin
    set a_cycletimeofphosphate to v8_cycletimeofphosphate
    set a-cycletimeofdry to v8 cycle\overline{t}imeofdry
    set a-cycletimeofbasecoat to v8_cycletimeofbasecoat
    set a_cycletimeofbakeoven to v8_cycletimeofbaseoven
    set a-cycletimeofcooling to v8_cycletimeofcooling
    set a_cycletimeofsanding to v8_cycletimeofsanding
    set a_cycletimeoftopcoat to v8_cycletimeoftopcoat
    set a_cycletimeofinspection to v8_cycletimeofinspection
    set a-cycletimeofunload to v8 cycletimeofunload
    clone - I load to p_wbs nlt l_product8
end
```

```
        wait for e v_partarrivingtime min
        /*time between load arrivals*/
    end
end
begin p_carriersstorage arriving procedure
    move into q_carriers
    wait to be ordered on ol_carriers
    /*waiting for parts arrival*/
end
/*begin p_shift arriving procedure
    /*simulate the operation time 8 hours per day*/
    while 1 = 1 do
        begin
        wait for 7.8 hr
        take down r1_basecoat
        take down r1_topcoat
        take down r2_basecoat
        take down r2 topcoat
        wait for 0.2 hr
        take down rl_bakeovenl
        take down rl_bakeoven2
        take down r2 bakeoven1
        take down r2_bakeoven2
        take down r_load
        take down r_phosphate
        take down r_dry
        take down rl_coolingl
        take down r1_sanding
        take down r1_cooling2
        take down r1_inspection
        take down r2_cooling1
        take down r2_sanding
        take down r2_cooling2
        take down r2_inspection
        take down r_unload
        wait for 16 hr
        bring up rl_basecoat
        bring up r1_topcoat
        bring up r2_basecoat
        bring up r2 topcoat
        bring up rl_bakeoven1
```

```
    bring up rl bakeoven2
    bring up r2 bakeoven_
    bring up r2_bakeoven2
    bring up r Ioad
    bring up r phosphate
    bring up r_dry
    bring up r1_coolingl
    bring up rl_sanding
    bring up rl cooling2
    bring up rl_inspection
    bring up r2_coolingl
    bring up r2_sanding
    bring up r2-cooling2
    bring up r2_inspection
    bring up r_unload
    end
end*/
begin p_preventivemaintenance arriving procedure
    while 1 = 1 do
    begin
    wait for v timebetweenmaintenance hr
    take down \overline{rl_basecoat}
    take down rl_topcoat
    take down r2 basecoat
    take down r2_topcoat
    wait for 0.1 hr
    take down r1_bakeoven1
    take down r1 bakeoven2
    take down r2 bakeoven1
    take down r2_bakeoven2
    take down r_load
    take down r_phosphate
    take down r_dry
    take down rl_coolingl
    take down r1 sanding
    take down rl_cooling2
    take down rl_inspection
    take down r2 cooling1
    take down r2 sanding
    take down r2_cooling2
    take down r2_inspection
    take down r_unload
    wait for v maintenancetime hr
    bring up r\overline{1}}\mathrm{ basecoat
    bring up r1_topcoat
    bring up r2 basecoat
```

```
    bring up r2_topcoat
    bring up r1 bakeoven1
    bring up rl_bakeoven2
    bring up r2_bakeoven1
    bring up r2 bakeoven2
    bring up r load
    bring up r_phosphate
    bring up r_dry
    bring up r\overline{l}_cooling1
    bring up rl sanding
    bring up r1_cooling2
    bring up r1_inspection
    bring up r2 cooling1
    bring up r2_sanding
    bring up r2_cooling2
    bring up r2_inspection
    bring up r_unload
    end
end
begin p_wbs arriving procedure
    move into q_wbs /*check the average number in wbs*/
    send to p_loading
end
begin p_loading arriving procedure
    /*make sure there is carrier in carriers storage*/
    wait until ol_carriers current value > 0
    order 1 load from ol_carriers to die
    move into conv:sta_load
    use r_load for u 3, 1 min
    /*fix white truck body to the carrier*/
    send to p_phosphate
end
begin p_phosphate arriving procedure
    travel to conv:sta_phosphate
    if v_phosphate_count = 0 then
        begin
        set v_phosphate_old to 1/*initializing the start value*/
    end
    set v_phosphate_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
```

```
    if v_phosphate_old <> v_phosphate_new then
    begin
    get r_phosphate
    /*the set-up time belonging to the operation time*/
    use r_phosphate_operator for v_phosphatesetup min /*setup time*/
    free r_phosphate /*time spending on set up is included in
processing*/
    end
    set v_phosphate_old to a_product
    increment v_phosphate_count by 1 /*count how many parts are processed*/
    use r_phosphate for u a_cycletimeofphosphate, 1 min /*actually
processing time*/
    /*print a_cycletimeofphosphate current value to lbl_test*/
    send to p_dry
end
begin p_dry arriving procedure
    travel to conv:sta_drying
    if v_dry_count = 0 then
        begin
        set v_dry_old to 1 /*initializing the start value*/
    end
    set v_dry_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v_dry_old <> v_dry_new then
        begin
        get r_dry
        /*the set-up time belonging to the operation time*/
        use r_dry_operator for v_dryupsetup min /*setup time*/
        free r_dry /*time spending on set up is included in processing*/
    end
    set v_dry_old to a_product
    increment v_dry_count by 1 /*count how many parts are processed*/
    use r_dry for u a_cycletimeofdry, 1 min
    /*print a_cycletimeofphosphate current value to lbl_test*/
    send to p_grouping
end
begin p_grouping arriving procedure
    if v_numberofproducts = 8 then
        begin /*grouping several types of product into basecoat1*/
```

```
    if a_product = 1 then
    begin
    send to p1_basecoat
    end
    else if a_product = 2 then
    begin
    send to p1_basecoat
    end
    else if a product = 7 then
    begin
    send to pl_basecoat
    end
    else if a_product = 8 then
    begin
    send to pl_basecoat
    end
    else
    send to p2_basecoat
end
if v_numberofproducts = 7 then
    begin /*grouping several types of product into basecoat1*/
    if a_product = 1 then
        begin
        send to pl_basecoat
    end
    else if a_product = 3 then
        begin
        send to pl__basecoat
    end
    else if a_product = 7 then
        begin
        send to pl_basecoat
    end
    else
    send to p2 basecoat
end
if v_numberofproducts = 6 then
    beg}in/*grouping several types of product into basecoat1*
    if a product = 1 then
            begin
            send to p1_basecoat
        end
        else if a_product = 3 then
            begin
            send to p1_basecoat
        end
        else if a_product = 6 then
```

```
        begin
        send to pl_basecoat
    end
    else
    send to p2 basecoat
end
if v_numberofproducts = 5 then
    begin /*grouping several types of product into basecoat1*/
    if a product = 4 then
        begin
        send to pl_basecoat
    end
    else if a_product = 5 then
        begin
        send to p1 basecoat
    end
    else
    send to p2_basecoat
end
if v_numberofproducts = 4 then
        begin /*grouping several types of product into basecoat1*/
            if a_product = 1 then
                begin
                send to pl_basecoat
            end
            else if a_product = 4 then
                begin
                send to pl_basecoat
            end
            else
            send to p2_basecoat
end
if v_numberofproducts = 3 then
        beg̈in /*grouping several types of product into basecoat1*/
            if a_product = 1 then
            begin
            send to p1 basecoat
            end
            else if a product = 2 then
            begin
            send to p1_basecoat
            end
            else
            send to p2_basecoat
```

```
    end
    if v_numberofproducts = 2 then
        begin /*grouping several types of product into basecoat1*/
            if a_product = 1 then
                begin
                send to pl_basecoat
            end
            else if a_product = 2 then
                begin
            send to p2 basecoat
            end
    end
    if v_numberofproducts = 1 then
        begin
            send to oneof(1:p1_basecoat,1:p2_basecoat)
end
end
begin p1_basecoat arriving procedure
    /*check where this load come from*/
    if a_site = 0 then
    begin
    travel to conv:sta_transfer1
    move into pm.cpl
    end
    /*check where this load come from*/
    if a_site = 1 then
    begin
    travel to conv:sta transfer5
    move into pm.cp2
    end
    travel to pm.cp1
    move into conv:sta transfer2
    travel to conv:sta1_basecoat
    if v1_basecoat_count = 0 then
        begin
        set v1_basecoat_old to 1 /*initializing the start value*/
    end
    set v1_basecoat_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v1_basecoat_old <> v1_basecoat_new then
        begin
        get rl_basecoat
```

```
        /*the set-up time belonging to the operation time*/
        use rl_basecoat_operator for e v_basecoatsetup min /*setup time*/
        free rl_basecoat /*time spending on set up is included in
processing*/
    end
    set v1_basecoat_old to a_product
    increment v1_basecoat_count by 1 /*count how many parts are processed*/
    use rl_basecoat for u a_cycletimeofbasecoat, 3 min
    send to p1_buffer1
end
begin pl_bufferl arriving procedure
    /*for storage*/
    travel to conv:stal bufferl
    send to p1_bakeoven1
end
begin p1_bakeoven1 arriving procedure
    travel to conv:stal_bakeoven1
    if v1_bakeoven1_count =0 then
        begin
        set vl_bakeovenl_old to I/*initializing the start value*/
    end
    set v1_bakeoven1_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v1_bakeovenl_old <> v1_bakeoven1_new then
        begin
        get rl_bakeoven1
        /*the set-up time belonging to the operation time*/
            use r1_bakeoven1_operator for e v_bakeovensetup min /*setup time*/
            free r\overline{1}_bakeoven\overline{1}/*time spending}\mp@subsup{\overline{`}}{}{-
processing*/
    end
    set v1_bakeoven1_old to a_product
    incremēnt v1_bakeoven1_count by 1 /*count how many parts are processed*/
    use r1_bakeoven1 for u a_cycletimeofbakeoven, 2 min
    send to p1_cooling1
end
begin pl_cooling1 arriving procedure
```

```
    travel to conv:stal_coolingl
    if v1_cooling1_count = 0 then
        begin
        set v1_cooling1_old to 1 /*initializing the start value*/
    end
    set v1_cooling1_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v1_cooling1_old <> v1_coolingl_new then
        begin
        get r1_cooling1
        /*the set-up time belonging to the operation time*/
        use r1_cooling1_operator for e v_coolingsetup min /*setup time*/
        free r1_cooling\overline{1}/*time spending on set up is included in
processing*/
    end
    set v1_coolingl_old to a_product
    increment vl_coolingl_count by 1 /*count how many parts are processed*/
    use rl_coolingl for u a_cycletimeofcooling, 1 min
    send to p1_sanding
end
begin p1_sanding arriving procedure
    travel to conv:stal_sanding
    if v1_sanding_count = 0 then
        begin
        set v1_sanding_old to 1 /*initializing the start value*/
    end
    set vl_sanding_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v1_sanding_old <> v1_sanding_new then
        begin
        get rl sanding
        /*the set-up time belonging to the operation time*/
        use rl_sanding_operator for e v sandingsetup min /*setup time*/
        free r\overline{1}_sanding /*time spending on set up is included in processing*/
    end
    set vl_sanding_old to a_product
    increment vl_sanding_count by 1 /*count how many parts are processed*/
    use rl_sanding for u a_cycletimeofsanding, 1 min
```

```
    send to p1 buffer2
end
begin pl_buffer2 arriving procedure
    /*for storage*/
    travel to conv:sta transfer3
    move into pm2.cp5
    travel to pm2.cp6
    move into conv:sta_transfer4
    travel to conv:sta\overline{1 buffer2}
    send to pl_topcoat
end
begin pl_topcoat arriving procedure
    travel to conv:stal_topcoat
    if v1_topcoat_count = 0 then
        begin
        set vl_topcoat_old to 1 /*initializing the start value*/
    end
    set vl_topcoat_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v1_topcoat_old <> v1_topcoat_new then
        begin
        get r1_topcoat
        /*the set-up time belonging to the operation time*/
        use rl_topcoat_operator for e v_topcoatsetup min /*setup time*/
        free r1_topcoat /*time spending on set up is included in processing*/
    end
    set v1_topcoat_old to a_product
    increment v1 topcoat_count by 1 /*count how many parts are processed*/
    use rl_topcoat for u a_cycletimeoftopcoat, 3 min
    send to p1_bakeoven2
end
begin pl_bakeoven2 arriving procedure
    travel to conv:stal_bakeoven2
    if v1_bakeoven2_count = 0 then
        begin
        set v1_bakeoven2_old to 1 /*initializing the start value*/
    end
    set v1__bakeoven2_new to a_product
```

```
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v1_bakeoven2_old <> v1_bakeoven2_new then
        begin
        get r1_bakeoven2
        /*the set-up time belonging to the operation time*/
        use r1_bakeoven2_operator for e v_bakeovensetup min /*setup time*/
        free r\overline{1}\mathrm{ bakeoven }\overline{2}/*time spending-on set up is included in
processing*/
    end
    set v1 bakeoven2 old to a product
    increment vl_bakeoven2_count by 1 /*count how many parts are processed*/
    use r1_bakeoven2 for u a_cycletimeofbakeoven, 2 min
    send to p1_cooling2
end
begin pl_cooling2 arriving procedure
    travel to conv:stal_cooling2
    if v1_cooling2_count = 0 then
        beg
        set v1_cooling2_old to 1/*initializing the start value*/
    end
    set v1_cooling2_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v1_cooling2_old <> v1_cooling2_new then
        begin
        get r1_cooling2
        /*the set-up time belonging to the operation time*/
        use rl_cooling2_operator for e v_coolingsetup min /*setup time*/
            free r\overline{1}_cooling}\overline{2}/*\mathrm{ time spending on set up is included in
processing*/
    end
    set v1_cooling2_old to a_product
    increment v1_cooling2_count by 1/*count how many parts are processed*/
    use r1_cooling2 for u a_cycletimeofcooling, 1 min
    send to p1_inspection
end
begin pl_inspection arriving procedure
    travel to conv:stal_inspectrepair
```

```
    if v1_inspection_count = 0 then
        begin
        set v1_inspection_old to 1 /*initializing the start value*/
    end
    set v1_inspection_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v1_inspection_old <> v1_inspection_new then
        begin
        get r1_inspection
        /*the set-up time belonging to the operation time*/
        use rl_inspection_operator for e v_inspectionsetup min /*setup time*/
        free r1_inspection /*time spending on set up is included in
processing*/
    end
    set vl_inspection_old to a_product
    increment v1_inspection_count by 1 /*count how many parts are
processed*/
    use rl_inspection for u a_cycletimeofinspection, 1 min
    set a_site to 1
    /*send to oneof(v_majordefectrate:pl_basecoat,(100-
v_majordefectrate):\overline{p}_unload)*/
    send to p_unload
end
begin P_unload arriving procedure
    if a_site = 1 then
        begin
        travel to conv:sta_transfer5
        move into pm.cp2
    end
        if a_site = 2 then
        begin
        travel to conv:sta_transfer9
        move into pm.cp4
    end
    travel to pm.cp3
    move into conv:sta transferlo
    travel to conv:sta_unload
    /*unloading time*/
    use r_unload for u a_cycletimeofunload, 1 min
    /*send carrier back to carrier storage*/
    clone 1 load to p_carriersstorage nlt l_carrier
```

```
    /*send painted body to storage*/
    send to p_pbs
end
begin p_pbs arriving procedure
    move into q_pbs
    /*calculate the output*/
    increment v throughput by 1
    set v_average_rate to (v_throughput*60)/ac
    tabuläte v_average_rate in t_average_rate
    /*send to ōther workk shop*/
    wait for u v_partdieingtime, 1 min
    send to die
end
begin p2_basecoat arriving procedure
    /*check where this load come from*/
    if a_site = 0 then
    begin
    travel to conv:sta_transferl
    move into pm.cpl
    end
    /*check where this load come from*/
    if a site = 2 then
    begin
    travel to conv:sta_transfer9
    move into pm.cp4
    end
    travel to pm.cp3
    move into conv:sta transfer6
    travel to conv:sta\overline{2}_basecoat
    if v2_basecoat_count = 0 then
        begin
        set v2 basecoat_old to 1 /*initializing the start value*/
    end
    set v2__basecoat__new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v2_basecoat_old <> v2_basecoat new then
        begin
        get r2_basecoat
        /*the set-up time belonging to the operation time*/
        use r2 basecoat_operator for e v_basecoatsetup min /*setup time*/
```

```
            free r2 basecoat /*time spending on set up is included in
processing*/
    end
    set v2 basecoat old to a product
    increment v2_basecoat_count by 1 /*count how many parts are processed*/
    use r2_basecoat for u a_cycletimeofbasecoat, 3 min
    send to p2 buffer1
end
begin p2_buffer1 arriving procedure
    /*for storage*/
    travel to conv:sta2 bufferl
    send to p2_bakeoven\overline{1}
end
begin p2_bakeovenl arriving procedure
    travel to conv:sta2_bakeoven1
    if v2_bakeoven1_count = 0 then
            begin
            set v2_bakeoven1_old to 1 /*initializing the start value*/
    end
    set v2_bakeoven1_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v2_bakeoven1_old <> v2_bakeoven1_new then
        begin
        get r2_bakeoven1
        /*the set-up time belonging to the operation time*/
        use r2_bakeovenl_operator for e v_bakeovensetup min /*setup time*/
        free r\overline{2}_bakeoven\overline{1}/*time spending
processing*/
    end
    set v2_bakeoven1_old to a_product
    increment v2_bakeoven1_count by l /*count how many parts are processed*/
    use r2_bakeoven1 for u a_cycletimeofbakeoven, 2 min
    send to p2_cooling1
end
begin p2_cooling1 arriving procedure
    travel to conv:sta2_coolingl
```

```
    if v2_cooling1_count = 0 then
        begin
        set v2_coolingl_old to l /*initializing the start value*/
    end
    set v2_cooling1_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v2_cooling1_old <> v2_cooling1_new then
        begin
        get r2_cooling1
        /*the set-up time belonging to the operation time*/
        use r2_cooling1_operator for e v_coolingsetup min /*setup time*/
        free r\overline{2}cooling1 /*time spending on set up is included in
processing*/
    end
    set v2_cooling1_old to a_product
    increment v2_cooling1_count by 1 /*count how many parts are processed*/
    use r2_cooling1 for u a_cycletimeofcooling, I min
    send to p2_sanding
end
begin p2_sanding arriving procedure
    travel to conv:sta2_sanding
    if v2_sanding_count = 0 then
        begin
        set v2_sanding_old to 1 /*initializing the start value*/
    end
    set v2_sanding_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v2_sanding_old <> v2_sanding_new then
        begin
        get r2_sanding
        /*the set-up time belonging to the operation time*/
        use r2_sanding_operator for e v_sandingsetup min /*setup time*/
        free r\overline{2}_sanding /*time spending on set up is included in processing*/
    end
    set v2 sanding old to a_product
    increment v2_sanding_count by 1 /*count how many parts are processed*/
    use r2_sanding for u a_cycletimeofsanding, 1 min
    send to p2_buffer2
```

```
end
begin p2_buffer2 arriving procedure
    /*for storage*/
    travel to conv:sta_transfer7
    move into pm2.cp7
    travel to pm2.cp8
    move into conv:sta transfer8
    travel to conv:sta\overline{2}}\mathrm{ buffer2
    send to p2_bakeoven2
end
begin p2_topcoat arriving procedure
    travel to conv:sta2_topcoat
    if v2_topcoat_count = 0 then
        begin
        set v2_topcoat_old to 1 /*initializing the start value*/
    end
    set v2_topcoat_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v2_topcoat_old <> v2_topcoat_new then
        begin
        get r2_topcoat
        /*the set-up time belonging to the operation time*/
        use r2 topcoat operator for e v topcoatsetup min /*setup time*/
        free r\overline{2}_topcoa\overline{t}/*time spending on set up is included in processing*/
    end
    set v2_topcoat_old to a_product
    increment v2_topcoat_count by 1 /*count how many parts are processed*/
    use r2_topcoat for u a_cycletimeoftopcoat, 3 min
    send to p2_bakeoven2
end
begin p2_bakeoven2 arriving procedure
    travel to conv:sta2_bakeoven2
    if v2_bakeoven2_count = 0 then
        begin
        set v2_bakeoven2_old to 1 /*initializing the start value*/
    end
    set v2__bakeoven2_new to a_product
```

```
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v2_bakeoven2_old <> v2_bakeoven2_new then
        begin
        get r2_bakeoven2
        /*the set-up time belonging to the operation time*/
        use r2_bakeoven2_operator for e v_bakeovensetup min /*setup time*/
        free r2_bakeoven2 /*time spending on set up is included in
processing*/
    end
    set v2_bakeoven2_old to a_product
    increment v2_bakeoven2_count by 1 /*count how many parts are processed*/
    use r2_bakeoven2 for u a_cycletimeofbakeoven, 2 min
    send to p2_cooling2
end
begin p2_cooling2 arriving procedure
    travel to conv:sta2_cooling2
    if v2_cooling2_count = 0 then
        begin
        set v2_cooling2_old to 1 /*initializing the start value*/
    end
    set v2_cooling2_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v2_cooling2_old <> v2_cooling2_new then
        begin
        get r2_cooling2
            /*the set-up time belonging to the operation time*/
            use r2 cooling2 operator for e v coolingsetup min /*setup time*/
            free r\overline{2}\mathrm{ cooling }\overline{2}/*time spending on set up is included in
processing*/
    end
    set v2_cooling2_old to a_product
    increment v2_cooling2_count by 1 /*count how many parts are processed*/
    use r2_cooling2 for u a_cycletimeofcooling, 1 min
    send to p2 inspection
end
begin p2_inspection arriving procedure
    travel to conv:sta2_inspectrepair
```

```
    if v2_inspection_count = 0 then
        begin
        set v2_inspection_old to 1 /*initializing the start value*/
    end
    set v2_inspection_new to a_product
    /*check whether the comming part is the same as the last one to set up
facility*/
    if v2_inspection_old <> v2_inspection_new then
        begin
        get r2_inspection
        /*the set-up time belonging to the operation time*/
        use r2_inspection operator for e v_inspectionsetup min /*setup time*/
        free r\overline{2}_inspection /*time spending on set up is included in
processing*/
    end
    set v2_inspection_old to a product
    increment v2_inspection_count by 1 /*count how many parts are
processed*/
    use r2_inspection for u a_cycletimeofinspection, 1 min
    set a_site to 2
    /*send to oneof(v_majordefectrate:p2_basecoat,(100-
v_majordefectrate):\overline{p}_unload)*/
    send to p_unload
end
```


APPEXDIX C: CODE OF DEFINING OPTIMAL BUFFER LOCATIONS

```
begin p_init arriving procedure
    read v junk, v1_mixrate, v_junk from "arc/input.txt"
    read v_junk, v2_mixrate, v_junk from "arc/input.txt"
    read v_junk, v3_mixrate, v_junk from "arc/input.txt"
    read v_junk, v4_mixrate, v_junk from "arc/input.txt"
    read v_junk, v1 cycle basecoat, v junk from "arc/input.txt"
    read v_junk, v1_cycle_bakeoven, v_junk from "arc/input.txt"
    read v_junk, vl_cycle_cooling, v_junk from "arc/input.txt"
    read v_junk, vl_cycle_sanding, v_junk from "arc/input.txt"
    read v_junk, v1_cycle_topcoat, v_junk from "arc/input.txt"
read v_junk, v1_cycle_inspection, v_junk from "arc/input.txt"
read v_junk, v2_cycle_basecoat, v_junk from "arc/input.txt"
read v_junk, v2_cycle_bakeoven, v_junk from "arc/input.txt"
read v_junk, v2_cycle_cooling, v_junk from "arc/input.txt"
read v_junk, v2_cycle_sanding, v_junk from "arc/input.txt"
read v_junk, v2_cycle_topcoat, v_junk from "arc/input.txt"
read v_junk, v2_cycle_inspection, v_junk from "arc/input.txt"
read v_junk, v3_cycle_basecoat, v_junk from "arc/input.txt"
read v_junk, v3_cycle_bakeoven, v_junk from "arc/input.txt"
read v_junk, v3_cycle_cooling, v_junk from "arc/input.txt"
read v_junk, v3_cycle_sanding, v_junk from "arc/input.txt"
read v_junk, v3_cycle_topcoat, v_junk from "arc/input.txt"
read v_junk, v3_cycle_inspection, v_junk from "arc/input.txt"
read v junk, v4 cycle basecoat, v junk from "arc/input.txt"
read v junk, v4 cycle bakeoven, v_junk from "arc/input.txt"
read v_junk, v4_cycle_cooling, v_junk from "arc/input.txt"
read v_junk, v4_cycle_sanding, v_junk from "arc/input.txt"
read v_junk, v4_cycle_topcoat, v_junk from "arc/input.txt"
read v_junk, v4_cycle_inspection, v junk from "arc/input.txt"
print v4_cycle_inspection current value to lbl_test
send to \overline{p}loadcereating
```

end
begin p_loadcreating arriving procedure

```
while 1 = 1 do
    begin
    set a_product to oneof(v1_mixrate:1,v2 mixrate:2,v3_mixrate:3
                                    v4_mixrate:\overline{4)}
    if a_product = 1 then
        begin
        set a cycle basecoat to vl_cycle_basecoat
        set a_cycle_bakeoven to v1_cycle__bakeoven
```

```
        set a_cycle_cooling to v1_cycle_cooling
        set a_cycle_sanding to vl_cycle_sanding
        set a_cycle_topcoat to v1_cycle_topcoat
        set a_cycle_inspection to vl_cycle_inspection
        clone - load to p_buffer1 nl\overline{t l_product1}
    end
    if a_product = 2 then
    begin
    set a_cycle_basecoat to v2_cycle_basecoat
    set a_cycle_bakeoven to v2_cycle_bakeoven
    set a_cycle_cooling to v2_cycle_cooling
    set a_cycle_sanding to v2_cycle_sanding
    set a_cycle_topcoat to v2_cycle_topcoat
    set a_cycle_inspection to v2_cycle_inspection
    clone -1 load to p_buffer1 nl\overline{t l_product2}
    end
    if a_product = 3 then
    begin
    set a_cycle_basecoat to v3_cycle_basecoat
    set a_cycle_bakeoven to v3_cycle__bakeoven
    set a_cycle_cooling to v3_cycle_cooling
    set a_cycle_sanding to v3_cycle_sanding
    set a_cycle_topcoat to v3_cycle_topcoat
    set a_cycle_inspection to v3_cycle_inspection
    clone 1 load to p_buffer1 nlt l_product3
    end
    if a product = 4 then
    begin
    set a_cycle_basecoat to v4_cycle_basecoat
    set a_cycle_bakeoven to v4_cycle_bakeoven
    set a_cycle_cooling to v4_cycle_cooling
    set a_cycle_sanding to v4_cycle_sanding
    set a_cycle_topcoat to v4_cycle_topcoat
    set a_cycle_inspection to v4_cycle_inspection
    clone 1 load to p_buffer1 nlt l_product4
    end
    wait for e 2 min
end
end
begin p_bufferl arriving procedure
    move into q_bufferl
    send to p_basecoat
end
begin p_basecoat arriving procedure
    move into q_basecoat
```

```
    use r_basecoat for u a_cycle_basecoat, 3 min
    send to p_buffer2
end
begin p_buffer2 arriving procedure
    move into q_buffer2
    send to p_bakeoven1
end
begin p_bakeoven1 arriving procedure
        move into q_bakeoven1
        use r_bakeovenl for u a cycle bakeoven, 2 min
        send to p_coolingl
end
begin P_coolingl arriving procedure
        move into q coolingl
        use r_coolingl for u a cycle_cooling, l min
        send to p_sanding
end
begin p_sanding arriving procedure move into q_sanding use \(r\) sanding for \(u\) a_cycle_sanding, 1 min send to p_topcoat
end
begin p_topcoat arriving procedure move into q_topcoat use r topcoat for u a cycle topcoat, 3 min send to p_bakeoven2
end
begin p_bakeoven2 arriving procedure move into q_bakeoven2 use r_bakeoven2 for u a_cycle_bakeoven, 2 min send to p_cooling2
end
begin p_cooling2 arriving procedure
```

```
    move into q_cooling2
    use r_cooling2 for u a_cycle_cooling, 1 min
    send to p_inspection
end
begin p_inspection arriving procedure
    move into q_inspection
    use r_inspection for u a_cycle_inspection, 1 min
    send to die
end
```


APPEXDIX D: EXPERIMENTAL DATA OF THE SERIAL SYSTEM CONFIGURATION

numbe_ of_ploduct types: 1										
	Run 1	Rung	Fun 17	Run 25	Run 33	Run 41	Run 49	Run 57	Run 65	Run 73
	BNS Sel 1	RN Set 2	RNSel 3	RN See 4	RN Set 5	RN Set 6	RNSel 7	RN Set 8	RNSelg	RNS Sel 10
sel-up peicertage for bake oven 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
sel-up pelcentage for bake oven2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
sel-up percentage for base coat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
setup percentage for cooling 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
set.up percentage for cooling 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
set-up percentage for dy up	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
set-up peicentage fo inpection and repai	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
sel-up percentage for phosphate	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
setup peicentage lor sanding	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
set-up peicentage for top coat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
throughput_pei_hour	7.062	7.077	7.056	7.072	7.067	7.062	7.077	7.064	7.067	7.072
waok in process	38.8502	38.5868	38.7411	38.7349	38.6039	38.6226	38.7099	38.8286	38.7044	38.5059
number_of_producl_types: 2										
	Run2	Run 10	Run18	Run 26	Run 34	Run 42	Run 50	Run 58	Run 66	Run 74
	RN Set 1	RN Sel2	RN Set 3	RNS Set 4	RN Set5	RN Sel 6	RN Set 7	RN Set 8	RNS Sel9	RN Set 10
sel-up percenlage for bake oven 1	0.26	0.26	0.26	0.27	0.26	0.27	0.27	0.27	0.27	0.27
sel-up pelcentage for bake oven2	0.26	0.26	0.26	0.27	0.26	0.27	0.27	0.27	0.27	0.27
selup percentage for base coat	0.26	0.26	0.26	0.27	0.26	0.27	0.27	0.27	0.27	0.27
set-up peicentage for cooing 1	0.31	0.31	0.3	0.31	0.3	0.31	0.31	0.31	0.32	0.31
sel-up percentage for cooting 2	0.31	0.31	0.3	0.31	0.3	0.31	0.31	0.31	0.32	0.31
selup percentage for dity up	0.18	0.17	0.17	0.18	0.17	0.18	0.18	0.18	0.18	0.18
sel-up percentage for inpection and repai	0.26	0.26	0.26	0.27	0.26	0.27	0.27	0.27	0.27	0.27
setup percentige for phosphate	0.15	0.15	0.15	0.16	0.15	0.75	0.16	0.16	0.16	0.16
sei-up percentage for sanding	0.35	0.35	0.35	0.36	0.35	0.35	0.36	0.36	0.36	0.36
sel-up percentage for lop coat	0.35	0.35	0.35	0.36	0.35	0.35	0.36	0.36	0.36	0.36
throughout pee hour	2.669	2.667	2684	2.655	2.665	2.664	2.659	2.659	2.659	2.671
work in process	191.119	191.1175	1897549	192.5289	191.6756	191.4529	191.9159	192.4319	1923348	191.8808
numbel of produet lypes: 3										
	Bun 3	Rum11	Run 19	Run 27	Run 35	Rinn 43	Run51	Run 59	Run 67	Run 75
	Bil Sel 1	RN Sel2	RN Sel 3	RN Sel 4	RN Sel 5	AN Set 6	RN Set 7	RNSet 8	RN Sel 9	RN Set 10
sel-up pelcentage lor bake oven 1	0.34	0.34	0.34	0.33	0.34	0.34	0.34	0.34	$4 \quad 0.34$	0.34
sel-up percentage for bake oven2	0.34	0.34	0.35	0.33	0.34	0.34	0.34	0.34	0.34	0.34
sel-up percentage for base coat	0.34	0.34	0.34	0.33	0.34	0.34	0.34	0.34	0.34	0.34
setrup peicentage for cooing 1	0.39	0.4	0.4	0.39	0.39	0.39	0.39	0.4	40.4	0.4
setup percentage for cooling 2	0.39	0.39	0.4	0.39	0.39	0.39	0.39	0.4	0.4	0.4
setup pecentage loo dy up	0.22	0.23	0.23	0.22	0.22	0.22	0.22	0.23	$3 \quad 0.23$	0.23
set-up percentage fot inpection and repai	$1-0.34$	0.34	0.35	0.33	0.34	0.34	0.34	0.34	$4 \quad 0.34$	0.34
selup percentage for phosphate	0.2	0.2	0.2	0.19	0.2	0.2	0.2	0.2	20.2	0.2
set-up pecentage lor sanding	0.45	0.45	0.46	0.44	0.45	0.45	0.45	0.45	50.45	0.46
sel-up percentage lor top coat	0.45	0.45	0.46	0.44	0.45	0.45	0.45	0.45	$5 \quad 0.45$	0.46
throughpu_ _per_hour	2541	2.544	2.536	2.544	2.536	2.534	2.544	2.538	8 $\quad 2.533$	2.53
work in process	2068.812	206.5322	207.6223	206.1277	207.3622	207.4698	206.4227	207.1461	1. 207.7871	208.3086

APPEXDIX D, CONT'D

numbei_of_product _ypes 4										
	Run 4	Run 12	Run 20	Run 28	Run 36	Run 44	Run 52	Run 60	Run 68	Run 76
	RN Sel 1	RN Set 2	RN Ser 3	RN Sel 4	RN Set 5	RN Sel 6	RN Sel 7	RN Ser 8	RN Sel 9	RN Set 10
set-up percentage for bake oven 1	0.38	0.37	0.37	0.37	0.37	0.37	038	0.37	0.37	0.37
sel-up percentage for bake oven 2	0.38	0.37	0.37	0.37	0.37	0.37	0.38	0.37	0.37	0.37
sel-up percenlage for base coat	0.38	0.37	0.37	0.37	0.37	0.37	0.38	0.37	0.37	0.37
sel-up percentage for cooling 1	0.44	0.43	0.43	0.43	0.43	0.43	0.44	0.43	0.43	0.43
sel-up percentage for cooling 2	0.44	0.43 .	0.43	0.43	0.43	0.43	0.44	0.43	0.43	0.43
sel-up percentage for diy up	0.25	0.25	0.24	0.25	0.24	0.25	0.25	0.25	0.25	0.25
sel-up percentage for inpection and repai	0.38	0.37	0.37	0.37	0.37	0.37	0.38	0.37	0.37	0.37
sel-up percentage for phosphate	0.22	022	0.21	0.22	0.21	0.22	0.2	0.22	0.22	0.22
sel-up percentage for sanding	0.5	0.49 :	0.49	0.49	0.49 .	0.49	0.5	0.5	0.49	0.49
sel-up percenlage for top coat	0.5	0.49	0.49	0.49	0.49	0.49	0.5	0.5	0.49	0.49
throughput_per_hour	2.476	2487	2.491	2.484	2.481	2486	2486	2.482	2.49	2.489
woik in process	215.1789	214.1072	213598	214.2568	214:1582	213.9908	274.3218	214.6074	213.6156	213.741
number_of_product types 5										
	Run 5	Run 13	Run 21	Run 29	Run 37	Run 45	Run 53	Run 81	Run 69	Run 77
	RNSel 1	RNSel 2	RNS Ser 3	RN Sel 4	PNSer 5	RN Sel 6	RN Set 7	RN Set 8	RN Sel 9	RN Sel 10
sel-up percenlage for bake oven 1	0.4	0.39	0.4	0.39	0.39	0.39	0.39	0.39	039	0.39
sel-up percentage for bake oven 2	0.4	0.39	0.4	0.39	0.39	0.39	0.39	0.39	0.39	0.39
set-up percentage for base coak	0.4	0.39	0.4	039	0.39	0.39	0.39	0.39	0.39	0.39
set-up percenlage for cooling 1	0.46	0.45	0.46	0.45	0.46 ,	0.46	0.46	0.46	0.46	0.46
set-up percenlage for cooling 2	0.46	0.45	0.46	0.45	0.46	0.46	0.46	0.46	0.46	0.46
set-up percentage for dy up	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.28
sel-up percentage for inpection and repai	0.4	0.39	0.4	0.39	0.39	0.39	0.39	0.39	0.39	0.39
sel-up percentage for phosphate	023	0.23	0.23	023	0.23	0.23	0.23	0.23	0.23	0.23
sel-up percentage for sanding	053	0.52	0.53	0.52	0.52	0.52	0.52	0.52	0.52	0.52
setup percentage for lop coal	0.53	0.52	0.53	0.52	0.52	0.52	0.52	0.52	0.52	0.52
throughpul_per_hour	2455	2.459	2451	2458	2.449	2.455	2.458	2.456	2.454	2.454
work in process	218.6001	218.0531	2191956	218.2143	219.2604	218.4716	218.1989	2183967	218715	218.7595
number of_product types: 6										
	Run 6	Run 14	Run 22	Run 30	Run 38	Run 46	Run 54	Run 62	Run 70	Run 78
	RN Set 1	RN Set 2	RN Sel 3	RN Sel 4	RN Sel 5	RN Sel 6	RN Sel 7	RN Sel 8	RNS Set 9	RN Set 10
sel-up percentage for bake oven 1	0.41	0.4	0.4	0.4	0.4	0.4	0.41	0.41	0.41	0.41
serup percentage for bake oven 2	0.41	0.4	0.4	0.4	0.4	0.4	0.41	0.41	0.41	0.41
sertup percentage for base coal	0.41	0.4	0.4	0.4	0.4	0.4	0.41	0.41	0.41	0.41
sel-up percentage for coding 1	0.48	0.47	0.47	0.47	0.47	0.47	0.48	0.48	0.48	0.48
sel-up percentage for cooling?	0.48	0.47	0.47	0.47	0.47	0.47	0.48	0.48	0.48	0.48
sel-up percentage for dry up	0.28	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27
setup percentage for inpection and repai	0.41	0.4	0.4	0.4	0.4	0.4	0.41	0.41	0.41	0.41
set-up percentage for phosphate	0.24	0.24	0.24	0.24	024	0.23	0.24	0.24	0.24	0.24
set-up percentage for sanding	0.55	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.55
setup percertage for lop coat	0.55	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.55
throughpu_per_hous	2.434	2.434	2437	2.432	2438	2.436	2.438	2.429	2.432	2.437
work in process	221.977	221.5244	221.4186	221.7921	221.305	221.4569	221.2539	222.3817	222.2751	221.6295

APPEXDIX D, CONT'D

numbee_ olp poduct twpes. 7				Run 31	Run 39	Run47	Run 55	Run 63	Run71	Run79
	Run7	Bun15	Run23							
	RNSet 1	hnset2	RNSel3	PNSel4	R Set5	RNSel 6	RNSel 7	RNSed 8	RNSel 9	PN Set 10
selup percentege for bake oven 1	0.42	0.41	0.42	0.42	0.41	0.41	0.41	0.42	0.41	0.42
setup percentage for bake ovien 2	0.42	0.41	0.42	0.42	0.41	0.41	0.41	0.42	0.41	0.42
sel-up pelcentage for base coat	0.41	0.41	0.42	0.42	0.41	0.41	0.41	0.42	0.41	0.42
sellup percentage for coding	0.48	0.48	0.49	0.48	0.48	0.48	0.48	0.48	0.48	0.49
setup percentege for cooling 2	0.48	0.48	0.49	0.48	0.4	0.48	0.48	0.48	0.48	0.49
selup peicentoge for dy up	0.28	0.28	0.28	0.28	0.28	0.27	0.28	028	0.27	0.28
selup percentigef fof inpecion and depai	- 0.41	0.41	0.42	0.42	0.41	0.41	0.41	0.42	0.41	0.42
sel-up pelcentage for hoss fhate	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24
selup perenerlag for sanding	0.55	0.55	0.56	0.55	0.55	0.55	0.55	0.55	0.55	0.56
setup peremenlag fotiop coat	0.55	0.55	0.56	0.55	0.55	0.55	0.55	0.55	0.55	0.56
throughout pel_ hour	2.47	2417	2.41	2.415	2.42	2.42	2421	2413	2.424	2413
waikinplocess		224.1882	224.5188	224.8874	223.653	223.624	223523	2245728	223.239	224.625
	224.0226									
number_of product types 8										
	Rung	Run16	Run 24	Prun32	Bun 40	Run 48	Run 56	Run 64	Run 72	Aun 80
	RNSel 1	RNSet2	RNSet3	RNSel 4	RiNsel 5	RNSet 6	RNSet 7	RNSet 8	RNSet9	RNSel 10
setup peicentage lo bake oven 1	0.42	0.42	0.43	0.42	0.42	0.42	0.42	0.42	0.42	0.42
seetup percertige for bake oven2	0.42	0.42	0.43	0.42	0.42	0.42	0.42	0.42	0.42	0.42
Settup percenlage forbase coat		0.42	0.43	0.42	0.42	0.42	0.42	0.42	0.42	0.42
setup percentige for cooling 1	0.42	0.49	0.5	0.49	0.5	0.49	0.49	0.49	0.49	0.49
Seltup percentage for cooing 2	0.49	0.49	05	0.49	0.5	0.49	0.49	0.43	0.48	0.49
setup peceentoge fordy up	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
setup percentage forinpection and diepal	0.42	0.42	0.43	0.42	0.42	0.42	0.42	0.42	0.42	0.42
sel-Lup percenioge for phoshhate	0.25	0.25	0.25	0.24	0.25	0.24	0.25	0.25	0.25	0.25
selup percentage for sanding	0.57	0.56	0.57	0.56	0.57	0.56	0.56	0.56	0.56	0.56
setup percentage for lop coat	0.57	0.56	0.57	0.56	0.57	0.56	0.56	0.56	0.56	0.56
Hhrughput pel_ haur	2.40	- 2.406	2.42	2405	2.405	2.406	2.45	2.402	2402	2404
wook in pocess	226.5588	-225.795	226.321	225.989	225.5885	225.87	226.0561	226.3561	226.2041	226.074

APPEXDIX E: EXPERIMENTAL DATA OF THE SIMPLE HYBRID SYSTEM CONFIGURATION

number of products: 1										
	Run 1	Run 9	Run 17	Run 25	Run 33	Run 41	Run 49	Run 57	Run 65	Run 73
	RN Sel 1	RNSE2	RN Sel 3	RN Sel 4	RN Set 5	RN Sel 6	RN Sel 7	RN Set 8	RN Sel 9	RN Set 10
throughput_per_hour	6.169	6.191	6.222	6.145	6.142	6.194	6.221	6.243	6.239	6.201
work in process	43.8663	437361	43.6628	44.0995	43.9243	43.787	43.5717	43.6378	43.5932	43.7038
number of products: 2										
	Run 2	Run 10	Run 18	Run 26	Run 34	Run 42	Run 50	Run 58	Run 66	Run 74
	RN Sel 1	RN Sel 2	RN Sel 3	RN Sel 4	RN Set 5	RN Set 6	RN Sel 7	RNSel 8	RN Sel 9	RN Sel 10
throughput_per_hour	4.311	4.293	4.307	4.317	4.307	4.319	4.322	4.305	4.315	4.314
work in process	52.3012	52.2408	52.3304	52.2819	52.2605	52.2095	52.348	52.2711	52.2125	52.0818
number_of_products: 3										
	Run 3	Run 11	Run 19	Run 27	Run 35	Run 43	Mun 51	Run 59	Run 67	Run 75
	RN Sel 1	RNS Sel 2	RNS Sel 3	FN Sel 4	RN Set 5	RN Ser 6	RN Set 7	RNSel 8	RN Ser9	RN Ser 10
throughput_per_hour	3.694	3.67	3.677	3.669	3.643	3.668	3.724	3.724	3.665	3.706
work in process	107.427	108.7431	106.7698	107.014	110.8525	106.5581	105.9195	103.0634	110.6002	107.2849
number_of_products 4										
	Run 4	Bun 12	Bun 20	Run 28	Run 36	Run 44	Run 52	Run 60	Aun 68	Run 76
	RNS Sel 1	RN Sel 2	RN Sel 3	RN Sel 4	RNSet 5	RN Sel 6	AN Sel?	RN Sel 8	RN Sel 9	RN Sel 10
throughput_per_hour	3.717	3.663	3.65	3.678	3.722	3.888	3.693	3.674	3.683	3.709
work in process	117.5743	120.0771	120.5385	120.737	114.9256	120.0751	118.0985	117.5402	119.0649	117.4928
number_of_products 5										
	Run 5	Run 13	Run 21	Run 29	Run 37	Run 45	Run 53	Run 61	Run 69	Run 77
	RN Sel 1	RN Sel2	RN Sel 3	RN Sel 4	RN Sel 5	RN Sel 6	RN Set 7	RN Ser 8	RNS Sel 9	RN Set 10
throughput_per_hour	3.517	3.478	3.512	3.52	3.475	3.488	3.498	3.534	3.49	3.504
work in process	132.5799	134.6949	132.9624	133.2126	134.2224	132.6628	133.6139	131.0818	132.4609	133.7991
number_of_products: 6										
	Run6	Bun 14	Run 22	Run 30	Bun 38	Run 46	Run 54	Run 62	Run 70	Bun 78
	RNSel 1	RN Sel2	RN Sel 3	RN Sel 4	RNSet 5	RN Set 6	RN Sel 7	RN Sel 8	RN Sel 9	RN Sel 10
throughput_per_hour	3.485	3.513	3.504	3.495	3.469	3.5	3.507	3.53	3.458	3.513
wark in process	137.0448	137.0997	137.8437	138.3107	137.7079	138.5002	138.1096	135.5919	138.9167	135.6164
numbe__of_products: 7										
	Run 7	Run 15	Run 23	Run 31	Run 39	Run 47	Run 55	Run 63	Run 71	Run 79
	RN Sel 1	RNS Set 2	RN Sel 3	RN Sel 4	RN Sel 5	RN Ser 6	RN Sel 7	RN Set 8	RN Sel 9	RN Ser 10
throughpu_per_hour	3.366	3.369	3.348	3359	3.396	3.373	3.412	3.417	3.37	3.396
work in process	147.765	146.7173	148.3504	147.8626	143.9134	146.5754	146.3668	142.3516	146.0875	143.3613
numbet_of_products: 8										
	Run 8	Run 16	Run 24	Run 32	Run 40	Run 48	Run 56	Run 64	Run 72	Run 80
	RN Set 1	RNSet 2	RN Sel 3	RN Set 4	RN Sel 5	RNSer 6	RN Ser 7	RNS Sel 8	RN Set 9	RN Sel 10
throughput_per_hour	3.38	3.366	3.373	3.384	3.402	3.377	3.394	3.371	3.374	3.402
work in process	148.5687	147.4548	147.4596	146.7708	147.0013	148.859	146.6686	145.7873	147.9499	147.932

APPENDIX F: EXPERIMENTAL DATA OF THE EFFECT OF VARYING THE NUMBER OF CARRIERS ON THROUGHPUT IN SIMPLE HYBRID SYSTEM CONFIGURATION

numbel_of_products: 8, numbet_of_carrieis: 7										
	Run 81	Run 105	Run 129	Bun 153	Run 177	Run 201	Run 225	Run 249	Run 273	Run 297
	RN Set 11	RN Set 12	RN Set 13	RN Sel 14	RN Sel 15	RN Set 16	RNS Ser 17	RN Set 18	PN Set 19	RN Set 20
throughput pet hour	2.032	2.03	2027	2.031	2.036	2.034	2.04	2.035	2.032	2.034
number of products: 8 . number of carriers: 8										
	Run 82	Run 106	Run 130	Pun 154	Run 178	Bun 202	Run 226	Run 250	Run 274	Run 298
	RN Sel 11	RN Set 12	RN Set 13	PN Ser 14	PN Set 15	RN Set 16	PN Set 17	RN Set 18	RN Sel 19	RN Sel 20
throughput_pet_hour	2.265	2272	2273	2276	2.282	2.289	2.284	2.279	2.275	2279
number_of_products: 8, number_of_cariers: 9										
	Run 83	Run 107	Run 131	Run 155	Run 179	Run 203	Run 227	Run 251	Run 275	Run 299
	RN Sel 11	RN Sel 12	RNS Sel 13	RNS Sel 14	RN Set 15	RN Set 16	RNS Sel 17	RN Sel 18	RNSet 19	RN Set 20
throughput per_ hour	2503	2.499	2.515	2.512	2.507	2524	2.535	2.501	2.534	2.498
number_of_products: 8, number_of_cariers: 10										
	Run 84	Run 108	Run 132	Run 156	Run 180	Run 204	Run 228	Run 252	Fun 276	Run 300
	RN Sel 11	RN Sel 12	RN Sel 13	BNSet 14	RN Set 15	RNSet 16	RN Sel 17	RN Set 18	RN Sel 19	RN Set 20
throughpu_per hour	2726	2708	2732	2741	2732	2724	2728	2719	273	2702
number_of_products: 8, number_ol_cariers: 11										
	Run 85	Run 109	Rum 133	Run 157	Run 181	Run 205	Run 229	Run 253	Run 277	Run 301
	RNS Sell1	RN Sel 12	RN Sel 13	RN Sel 14	RN Set 15	RN Sel 16	RN Sel 17	RN Sel 18	RN Sel 19	RN Sel 20
throughpul_pei_ hour	2.925	2.926	2.898	2.922	2.923	2.937	2.934	2.933	2.95	2.919
number_ol_products 8. number_ol_cariers 12										
	Fun 86	Run 110	Run 134	Run 158	Run 182	Run 206	Run 230	Run 254	Run 278	Fun 302
	RN Set 11	PN Sel 12	RN Set 13	RN Sel 14	RN Sel 15	RN Sel 16	RN Sell 17	RN Set 18	PN Sel 19	PN Sel 20
throughput_per hour	3.07	3.089	3.078	3.092	3.096	3.102	3.089	3.11	3.11	3.093
number of products: 8 . number of carriers: 13										
	Pun 87	Run 111	Bun 135	Run 159	Run 183	Run 207	Run 231	Run 255	Run 279	Run 303
	RN Sel 11	RN Sel 12	PN Sel 13	RN Sel 14	RN Sel 15	RN Sel 16	RN Sel 17	RN Set 18	RN Set 19	RN Sel 20
throughput per hour	3.254	3.233	3.204	3.223	3.239	3.235	3.231	3.236	3.231	3.248
number_ of producls: 8, number_ of cariers: 14										
	Run 88	Run 112	Run 136	Run 160	Run 184	Run 208	Pun 232	Run 256	Run 280	Run 304
	RNS Ser 11	RN Set 12	RN Sel 13	RN Set 14	RN Sel 15	RN Sel 16	RN Sel 17	RN Set 18	RN Sel 19	RN Set 20
throughput per hour	3.289	3.333	3.308	3.338	3.309	3.308	3.345	3303	3.314	3.311
number_ot_products: 8 , number_of_cariers: 15										
	Run 89	Run 113	Run 137	Run 161	Fun 185	Run 209	Run 233	Run 257	Pun 281	Run 305
	RNS Sel 11	RN Set 12	RN Set 13	RN Set 14	RN Sel 15	RN Sel 16	RN Sel 17	RN Set 18	RN Sel 19	RN Set 20
throughput_pet_hour	3.35	- 3.4	3.369	3.345	3.365	3.375	3.344	3.36	3.369	3.362
number_of_products: 8, number_of_cariers: 16										
	Run 90	Run 114	Run 138	Pun 162	Ruin 186	Run 210	Piun 234	Run 258	Run 282	Run 306
	RN Sel 11	RN Sel 12	RN Sel 13	RN Sel 14	RN Sel 15	RN Sel 16	RN Set 17	RN Sel 18	RN Sel 19	RN Set 20
throughput_per hour	3.368	3.399	3398	3.392	3.355	3394	3.401	3.366	3.382	3.425
number of products 8, number of cariers: 17										
	Run 91	Run 115	Run 139	Run 163	Run 187	Pun 211	Run 235	Rurn 259	Run 283	Run 307
	RN Sel 11	RNS Sel 12	RN Sel 13	RIN Set 14	RiN Set 15	RN Sel 16	RN Sel 17	RN Set 18	RN Sel 19	RN Ser 20
throughpul_per hour	3.384	$4 \quad 3.385$	3395	3.418	$8 \quad 3356$	3.348	3.377	7 3.384	- 3.396	- $\quad 3.394$

APPENDIX F, CONT'D

number_of_products: 8, number_of_cariers: 18										
	Run 92	Pun 116	Run 140	Bun 164	Run 188	Run 212	Run 236	Run 260	Run 284	Run 308
	RN Sel 11	RN Sel 12	RN Sel 13	RN Sel 14	RN Set 15	RNSel 16	RN Sel 17	RN Set 18	RN Set 19	RN Sel 20
throughput_per hour	3.342	3375	3.389	3408	3.399	3.393	3.352	3374	3.377	3.393
number_of_products: 8 , numbet_of_cariers: 19										
	Run 93	Pun 117	Rum 141	Run 165	Run 189	Run 213	Run 237	Pun 261	Run 285	Run 309
	RN Sel 11	RN Sel 12	RN Set 13	RN Sel 14	RN Set 15	RN Sel 16	RN Sel 17	RN Set 18	RN Sel 19	RN Ser 20
throughput_pel_hour	3.342	3.375	3.385	3.398	3.399	3.333	3.345	3.374	3.386	3.393
number_of_products 8. number_ol_cariers: 20										
	Run 94	Run 118	Run 142	Run 166	Bun 190	Fun 214	Run 238	Run 262	Run 286	Run 310
	RN Set 11	RN Set 12	RN Ser 13	RN Sel 14	RN Sel 15	RN Sel 16	RN Sel 17	RN Sel 18	RN Sel 19	RN Set 20
throughpul per_ houi	3.342	3.375	3.385	3.398	3.399	3.393	3.345	3.374	3.386	3.393
number_of_products: 8, number_ol_cariers: 21										
	Run 95	Run 119	Run 143	Run 167	Run 191	Run 215	Run 239	Run 263	Run 287	Run 311
	RN Sel 11	RN Sel 12	RN Ser 13	RN Sel 14	RN Sel 15	RN Sel 16	RNS Sel 17	RNS Sel 18	RN Sel 19	RN Set 20
throughput_per_ hour	3.342	3.375	3.385	3.398	3.399	3.393	3.345	3.374	3.386	3.393
number_of_products: 8 , number_of_cariers: 22										
	Pun 96	Run 120	Run 144	Run 168	Run 192	Run 216	Pun 240	Run 264	Run 288	Aun 312
	RN Set 11	RN Set 12	RN Set 13	RN Sel 14	BN Sel 15	RN Sel 16	RN Sel 17	RN Sel 18	RN Sel19	RN Sel 20
throughput_per hour	3.342	3375	3.385	3.398	3.399	3393	3.345	3374	3.386	3.393
number_of_products: 8, number_of_carieers: 23										
	Run 97	Run 121	Run 145	Run 169	Bun 193	Run 217	Run 241	Run 265	Run 289	Run 313
	RN Set 11	RNSet 12	RNSet 13	RN Set 14	RN Set 15	RN Set 16	RN Sel 17	RN Set 18	RN Sel 19	RN Sel 20
throughput_per hour	3342	3375	3.385	3.398	3.399	3.393	3.345	3.374	3.386	3.393
numbe__ol_products: 8 , numbel_ol_caries: 24										
	Run 98	Run 122	Ruin 146	Run 170	Run 194	Run 218	Run 242	Run 266	Run 290	Run 314
	RNS Set 11	RNSet 12	RIN Set 13	BN Set 14	RN Set 15	RNS Sel 16	RN Sel 17	RN Set 18	RN Sel 19	RN Sel 20
throughput_pel_ hour	3.342	3.375	3.385	3.398	3.399	3.393	3.345	3.374	3.386	3.393
number_of_products: 8 , number_ot calies: 25										
	Run 99	Run 123	Run 147	Run 171	Run 195	Run 219	Run 243	Run 267	Run 281	Run 315
	BN See 11	RN Set 12	RN Sel 13	RNSer 14	RN Set 15	RN Sel 16	RN Sel 17	PN Sel 18	RNSel 19	RN Sel 20
throughput_pel_hour	3.342	3.375	3.385	3.398	3.399	3.383	3.345	3.374	3.386	3.393
number_of_products: 8 , numbel_of_cariers: 26										
	Run 100	Run 124	Run 148	Run 172	Run 196	Run 220	Run 244	Run 268	Run 292	Run 316
	RN Sel 11	RN Sel 12	RN Sel 13	RNSel 14	RN Set 15	RN Sel 16	RN Sel 17	RN Ser 18	RN Set 19	RN Set 20
throughput_pei_hour	3.342	2.3 .375	3.385	3.398	3.399	3.393	3.345	3.374	3.386	3.393
number_ol_products: 8 , numbe__of_cariers: 27										
	Run 101	Run 125	Run 149	Run 173	Run 197	Run 221	Pun 245	Run 269	Run 293	Run 317
	RN Sel 11	RN Set 12	RN Sel 13	RN Sel 14	RN Sel 15	RN Set 16	RN Sat 17	RN Sel 18	RN Set 19	RN Set 20
throughput pei_ hour	3.342	23375	3.385	3.398	3.389	3.393	3345	3.374	3.386	3.383
number_of_puducts 8 number_ol_cariers: 28										
	Run 102	Run 126	Run 150	Run 174	Run 198	Run 222	Run 246	Run 270	Run 294	Run 318
	RN Sei 11	RN Sel 12	RN Sel 13	RN Sel 14	RN Sel 15	RN Sel 16	RN Sel 17	RN Sel 18	RN Sel 19	RN Sel 20
throughput_per_ hour	3.342	2.3 .375	3.385	. $\quad 3.398$	3.399	3.393	3.345	3.374	3.386	3.393

APPEXDIX G: EXPERIMENTAL DATA OF THROUGHPUT OF DIFFERENT BUFFER-COMBINATIONS

	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10
Throughput per hour of (1,2)	3.5	3.49	3.51	3.49	3.49	3.5	3.5	3.49	3.49	3.5
Throughput per hour of (1,3)	3.49	3.5	3.51	3.5	3.51	3.51	3.51	3.49	3.49	3.51
Throughput per hour of (1,4)	3.51	3.52	3.53	3.52	3.51	3.53	3.52	3.52	3.53	3.53
Throughput per hour of (1,5)	3.56	3.56	3.58	3.56	3.55	3.55	3.55	3.56	3.56	3.58
Throughput per hour of (1,6)	3.49	3.48	3.48	3.5	3.48	3.48	3.48	3.49	3.49	3.48
Throughput per hour of (1,7)	3.42	3.44	3.44	3.44	3.41	3.43	3.43	3.44	3.42	3.45
Throughput per hour of (1,8)	3.41	3.42	3.42	3.41	3.43	3.42	3.41	3.42	3.41	3.41
Throughput per hour of (1,9)	3.41	3.42	3.43	3.42	3.41	3.41	3.43	3.4	3.41	3.43
Throughput per hour of $(2,3)$	3.5	3.5	3.52	3.52	3.53	3.51	3.51	3.51	3.53	3.54
Throughput per hour of $(2,4)$	3.53	3.56	3.54	3.55	3.55	3.53	3.55	3.54	3.56	3.55
Throughput per hour of $(2,5)$	3.67	3.66	3.68	3.68	3.67	3.68	3.68	3.66	3.67	3.68
Throughput per hour of (2,6)	3.63	3.63	3.63	3.63	3.63	3.65	3.64	3.63	3.63	3.64
Throughput per hour of (2,7)	3.53	3.53	3.54	3.54	3.52	3.51	3.55	3.51	3.53	3.54
Throughput per hour of (2,8)	3.48	3.48	3.53	3.49	3.49	3.5	3.51	3.48	3.51	3.52
Throughput per hour of (2,9)	3.49	3.49	3.5	3.5	3.51	3.52	3.51	3.51	3.51	3.5
Throughput per hour of $(3,4)$	3.53	3.55	3.54	3.54	3.53	3.52	3.54	3.52	3.55	3.56
Throughput per hour of $(3,5)$	3.6	3.61	3.61	3.61	3.61	3.62	3.61	3.61	3.62	3.62
Throughput per hour of (3,6$)$	3.62	3.62	3.64	3.61	3.6	3.61	3.61	3.6	3.61	3.61
Throughput per hour of (3,7)	3.53	3.53	3.54	3.54	3.53	3.54	3.55	3.51	3.54	3.54
Throughput per hour of (3,8)	3.5	3.52	3.53	3.49	3.49	3.52	3.52	3.51	3.52	3.52
Throughput per hour of (3,9)	3.5	3.52	3.54	3.51	3.5	3.51	3.5	3.48	3.5	3.52
Throughput per hour of (4,5)	3.59	3.58	3.61	3.59	3.59	3.6	3.6	3.59	3.61	3.6
Throughput per hour of (4,6)	3.6	3.62	3.63	3.61	3.59	3.61	3.62	3.6	3.61	3.61
Throughput per hour of (4,7)	3.55	3.54	3.57	3.54	3.54	3.55	3.55	3.54	3.55	3.55
Throughput per hour of (4,8)	3.52	3.52	3.53	3.52	3.51	3.51	3.53	3.51	3.53	3.52
Throughput per hour of (4,9$)$	3.51	3.52	3.53	3.52	3.51	3.53	3.52	3.52	3.53	3.53
Throughput per hour of (5,6)	3.63	3.61	3.63	3.62	3.61	3.62	3.62	3.61	3.62	3.63
Throughput per hour of (5,7)	3.6	3.58	3.59	3.57	3.59	3.59	3.58	3.58	3.59	3.59
Throughput per hour of $(5,8)$	3.55	3.55	3.58	3.57	3.54	3.56	3.57	3.55	3.57	3.57
Throughput per hour of (5,9)	3.56	3.56	3.58	3.56	3.55	3.55	3.55	3.56	3.56	3.58
Throughput per hour of (6,7$)$	3.47	3.49	3.49	3.49	3.47	3.49	3.5	3.48	3.48	3.48
Throughput per hour of (6,8)	3.52	3.52	3.52	3.46	3.38	3.46	3.48	3.48	3.44	3.5
Throughput per hour of (6,9)	3.49	3.48	3.5	3.48	3.47	3.49	3.48	3.48	3.5	3.48
Throughput per hour of $(7,8)$	3.43	3.43	3.45	3.43	3.43	3.43	3.43	3.43	3.41	3.45
Throughput per hour of (7,9)	3.42	3.44	3.44	3.44	3.41	3.43	3.43	3.44	3.42	3.45
Throughput per hour of (8,9)	3.41	3.42	3.42	3.41	3.43	3.42	3.41	3.42	3.41	3.41

APPEXDIX H: EXPERIMENTAL DATA OF FINAL THROUGHPUT PER MONTH OF THE SIMPLE HYBRID SYSTEM CONFIGURATION

number of product ypes: 1										
	Run 1	Run2	Run 3	Run 4	Runi 5	Run 6	Run 7	Run 8	Run 9	Run 10
	RN Set 1	RN Set2	RN Set 3	RNSel 4	RN Set 5	RN Set 6	RN Sel7	RN Sel 8	RNS Sel 9	RN Set 10
throughput_per_month	842688	837.936	841.104	845.856	843.744	837.408	838.992	825.792	831.6	840.048
rumber_of_roduct_ypes: 2										
	Run 11	Run 12	Run 13	Run 14	Run 15	Bun 16	Run 17	Run 18	Rurn 19	Run 20
	RN Sel 11	RNSet 12	RN Set 13	RN Set 14	RNSel 15	RN Sel 16	RN Set 17	RNS Sel 18	RN Set 19	RN Set 20
throughpu_per_month	652.08	648.334	661.584	650.496	652.608	652.608	655.776	660.528	657.36	650.496
number_of_product_types: 3										
	Run 21	Run 22	Run 23	Run 24	Run 25	Run 26	Run 27	Run 28	Run 29	Run 30
	RN Sel 21	RNSet 22	RN Sel 23	RNS Set 24	RN Set 25	RN Set 26	RN Set 27	RN Sel 28	RN Set 29	RN Set 30
throughpu__per_month	553.344	555.984	553.344	571.824	544,368	554.4	550.176	554.4	546.48	558.096
number_ of _roduct types 4										
	Ren 31	Run 32	Run 33	Run 34	Run 35	Run 36	Run 37	Run 38	Run 39	Run 40
	RN Sel 31	RN Sel 32	RN Sel 33	RN Set 34	RN Set 35	RN Set 36	RN Sel 37	RN Set 38	RN Set 39	RN Sel 40
throughpul_per_month	550.176	548.064	548.064	564.432	550.176	551.76	547.536	541.2	543.84	549.648
number_of_product_ types: 5										
	Run 41	Bun 42	Run 43	Run 44	Run 45	Run 46	Runn 47	Run 48	Run 49	Run 50
	RN See 41	RN Sel 42	RN See 43	RNSet 44	RNN Sel 45	RNSel 46	RN Set 47	RN Set 48	RN Sel 49	RN Set 50
throughpul_pei_month	531.696	523.776	528	525.888	521.664	523.248	523.776	528	524.832	521.664
numbe! of product ypes: 6										
	Bun 51	Run 52	Run53	Bun 54	Bun 55	Run 56	Run 57	Run 58	Run 59	Run60
	RMSet 51	RN Set 52	RNS Set 53	RNSel 54	RN Sel 55	RNSe 56	RN Sel 57	RN Sel 58	RN Sel 59	RN Set 60
throughpul_per_month	512.16	516.912	535.92	516.912	514.272	519.024	516.912	516.912	519.024	522.192
numbel_of_product_ypes: 7										
	Run 61	Run 62	Bun 63	Run 64	Run 65	Run 68	Run 67	Run 68	Run 69	Run 70
	RN Sel 61	RNSel 62	RNSel 63	RN Sel 64	RNSel 65	RN Set 66	RN Set 67	RN Sel 68	RN Set 69	PN Ser 70
throughput_per_month	513.216	511.104	507.408	516.912	511.632	506.88	515.856	500.016	506.88	503.184
number_ol_product_ types: 8										
	Run 71	Run72	Run 73	Run 74	Run 75	Run 76	Run 77	Run 78	Run 79	Run 80
	RN Sel 71	RN Sel 72	RN Sel 73	RN Sel 74	RN Sel 75	RN Sel 76	RN Set 77	RN Sel 78	RN Set 79	RN Set 80
lthroughpul_per_month	496.32	497.376	498.432	493.68	505.296	501.6	500.016	499.488	495.792	498.432

REFERENCE

J. M. Alden, Estimating performance of two workstations in series with downtime and unequal speeds, Research Publication R\&D-9434, General Motors R\&D Center, Warren, Michigan, 2002.

Robert F. Webbink and S. Jack Hu, Automated Generation of Assembly System-Design Solutions, IEEE Transactions on Automation Science and Engineering, 2005

SAWYER, J.H.F., Line Balancing by J.H.F.SAWYER, Brighton: Machinery Publishing, 1970

Stephen G. Powell and David F. Pyke, Allocation of Buffers to serial Production Lines with Bottlenecks, IIE Transactions, 1996

Zhun Zhang, Maintenance Planning and Cost Effective Replacement Strategies, University of Alberta, 2005

Prasad S. Mahajan, Ricki G. Ingalls, Evaluation of Methods Used to Detect Warm-up Period in Steady State Simulation, Proceeding of the 2004 winter simulation conference

David W.Graehl, Insights into Carrier Control: a Simulation of a Power and Free Conveyor Through an Automotive Paint Shop, Proceedings of the 1992 Simulation Conference

Conway, R. W., Maxwell, W. L., McClain, J. O. and Thomas, L. J., the ROLE OF Work-inProcess Inventories in Serial Production Lines. Operations Research, 1988, 36, 229-241

Jingshan Li, Throughput Analysis in Automotive Paint Shops: A Case Study. IEEE Transactions on Automation Science and Engineering, Vol. 1, No. 1, July 2004

VITA AUCTORIS

NAME:
PLACE OF BIRTH: Nong'an ChinaGuangming Qiu
YEAR OF BIRTH: 1974
EDUCATION: Nong'an Experimental High School, China1989-1992
Taiyuan Heavy Machine University, China
1992-1996 B.ScUniversity of Windsor, Windsor, Ontario2005-2006 M.Sc

