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ABSTRACT

The mobility of the uranyl cation, U022+, is of great concern for nuclear waste 

disposal and ground water contamination. Under circumneutral to alkaline abiotic 

conditions uranyl species are often complexed by available carbonate and 

phosphate leading to the precipitation of uranyl phosphate minerals. However, 

the reactivity and stability of uranyl phosphates in the presence of a natural 

microbial consortium is yet to be determined. By measuring the rates of 

anaerobic microbial weathering by Shewanella putrefaciens on the uranyl 

phosphates; synthetic meta-autunite (Ca[(U0 2 )(P0 4)]2 (H2 0 )6) and natural 

torbernite (Cu[(U0 2 )2 (P0 4 )2](H2 0 )io) it was possible to assess the corrosion 

potential of uranyl U(VI) phosphate phases. The results of this study suggest that 

microbial weathering of uranyl (VI) phosphate minerals is caused by the 

incongruent dissolution of the mineral phase with emphasis on the preferential 

cleavage of oxygen-phosphorus bonds driven by the cellular requirements of 

bacteria.
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CHAPTER 1 

INTRODUCTION
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THE PROBLEM

Understanding the fundamental biogeochemical processes governing 

radionuclide transport is a high priority. Uranium is of particular concern due to its 

toxicity, long half-life (4.5 x 109 years) and potential mobility in the environment 

(F inch  and M urakami, 1999). Mining, milling and isotopic processing have 

produced large volumes of highly toxic and radioactive pollution worldwide. In 

many cases, the storage of these wastes has been compromised thus leading to 

the contamination of surface water, groundwater and sediments. Therefore, 

quantifying both abiotic and biotic processes influencing uranium transport has 

profound implications for the isolation and containment of uranium wastes.

Uranyl phosphate minerals are common in a wide variety of ore deposits 

and are believed to control uranium concentrations in many groundwaters owing 

to their low solubilities. However, the reactivity and stability of uranyl phosphate 

minerals in the presence of native microbial consortium in situ or single bacterial 

strains is yet to be determined. The goal of this study is to examine the effects of 

a common dissimilatory metal reducing bacteria (Shewanella putrefaciens) on 

the short and long term stability of two uranyl phosphate minerals: synthetic 

meta-autunite (Ca[(U0 2 )(P0 4 )]2 (H2 0 )6 ) and natural meta-torbernite 

(Cu[(U02)(P04)]2(H20)io) under controlled anaerobic laboratory conditions. By 

measuring the rates of microbial corrosion of natural and synthetic uranyl- 

phosphate minerals and comparing quantifiable mineral properties (e.g. solubility 

and composition) it will be possible to assess the corrosion potential of uranyl
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phosphate phases and hence determine uranium mobility under these 

conditions.

BACKGROUND

Understanding the conditions of mineral formation and alteration is an 

important part of understanding the geochemical behavior of uranium. Uranium 

mobility is controlled by redox transformations between insoluble uranium (IV) 

and soluble uranium (VI). The most important uranium mineral in terms of 

abundance, wide-spread occurrence and economic value is uraninite, UO2 . It is 

found as an accessory mineral in granitic igneous rocks, pegmatites and 

aluminous metamorphic host rocks (Finch and Murakami, 1999). The chemical 

structure of uraninite closely resembles spent UO2 nuclear fuel. Therefore, 

researchers have taken advantage of these structural similarities by using the 

behavior of uraninite in natural systems as an analogue for long-term behavior of 

spent nuclear fuel in geological repositories (Burns, 1999).

At normal pH values and under reducing conditions, uraninite is sparingly 

soluble in dilute groundwater. However, the solubility increases with temperature 

and aqueous fluoride (F), chloride (Cl), and carbon dioxide (CO2 ) concentrations. 

Furthermore, where conditions are sufficiently oxidizing, uraninite is mobilized to 

the uranyl cation, UC>22+ and the mobility is controlled through complexation with 

available anions such as carbonate and phosphate. However, the mobility of 

uranium may also be controlled through uranium-bacteria-mineral interactions. 

The limitations of current chemical based-approaches to uranium contaminated 

sites has spawned intense interest to develop cost-effective remediation

3
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approaches based upon microbial/uranium interactions for the decontamination 

of sediments and water (Lloyd and Renshaw , 2005).

It is well understood that bacteria and other microorganisms can 

dramatically impact the form and distribution of uranium in the environment 

(Suzuki and Banfield , 1999). Bacteria are ubiquitous near the earth’s surface 

and in some cases an excess of 108 microorganisms can occupy one gram of 

soil including cell densities of at least one cell per square micron of surface area 

on some mineral surfaces (S uzuki and Banfield , 1999). Consequently, 

interactions between uranium and bacteria have been the focus of extensive 

studies.

These studies have illustrated the bacterial effects of speciation and 

mobility of uranium though metabolic processes or metabolic-independent 

processes such as biosorption or intracellular uptake. Metabolic processes 

include: formation of chelating agents, enzymatic precipitation and enzymatic 

uranium reduction. Uranyl phosphates are commonly formed through 

precipitation reactions involving the enzyme phosphatase. The enzyme catalyzes 

the release of phosphate from the cell wall thereby increasing local phosphate 

concentrations to super saturated conditions resulting in uranyl phosphate 

precipitation (Suzuki and Ba nfield , 1999).

Macaskie et al. (1985), showed enzymatic phosphate precipitation of 

aqueous uranyl nitrate hexahydrate on flow through columns containing 

immobilized Citrobacter sp (M acaskie and Dean , 1985). In fact, 90% of uranium 

was retained on the column through uranyl phosphate precipitation. Moreover,

4
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Baskanova et al. (1998) illustrated that secondary uranyl phosphate precipitates 

were efficient for complexing and removing nickel in wastewaters (Basnakova  et 

al., 1998). An alternative to phosphate precipitation is complexation.

Microorganisms will also affect uranium mobility by altering local redox 

conditions. Dissimilatory metal reducing bacteria (DMRB) will generate energy 

for growth by coupling the oxidation of a carbon source (i.e. acetate, glucose 

etc.) or hydrogen gas to the reduction of a terminal electron accepting (TEA) 

metal (i.e. U(VI) via the following reaction:

CH3COCr + 4 U6+ +4H20  -► 4U4+ +2HCCV + 9H+

H2 + U 022+ UO20 + 2H+

Bacteria such as Shewanella putrefaciens, Geobacter metallireducens and 

Geobacter sulfurreducens are widely studied for their ability to reduce aqueous 

uranyl ions and are used in biogeochemical research as the model bacteria for 

examining dissimilatory uranium reduction (Haas and No r th u p , 2004).

Reductive precipitation into sparingly insoluble uraninite, U 02, is 

suggested as an in situ remediation tool to immobilize uranium contaminated 

ground water aquifers. Suzuki et al.(2002), used organic substrates to produce 

anaerobic conditions to stimulate native bacterial growth in contaminated 

sediments and groundwater taken from Midnite Mine, Washington (Suzuki et al., 

2002). The dissolved uranium concentration decreased from 20 to 0.3ppm after 

one month. The authors applied synchrotron based X-ray Absorption near Edge 

Spectroscopy (XANES) to show the existence of a reduced form of uranium in

5
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the incubated sediment. Furthermore, transmission electron microscope (TEM) 

images and selected area electron-diffraction (SAED) patterns showed 

nanoparticles of uraninite associated with the cells. The responsible bacteria was 

identified through molecular techniques as Desulfosporosinus spp. (Suzuki et al., 

2002).

Numerous studies have shown that most uranium uptake by microbes is 

metabolically independent and it is the nature of the bacterial cell wall polymers 

that will determine the metal adsorption reactions that will take place (E lias et al., 

2003; Fow le  et al., 2000; Gorman-Lewis et al., 2005; S. D. K e lly  et al., 2002; 

S tran d b erg  et al., 1981; Suzuki and Banfield, 1999; Suzuki et al., 2002). The 

biosorption of uranium to microbial/algal biomass is commonly utilized in mine 

site remediation (Kalin et al., 2005). Both gram negative and gram positive cell 

walls contribute ionizable functional groups as possible metal binding sites. The 

most common sites are carboxyl, hydroxyl, phosphoryl and amino functional 

groups. Using geochemical modeling and sorption at low pH values (1.5-5), 

Fowle et al. (2000) were able to model cell wall sorption with the gram positive 

bacteria Bacillus subtillus. They determined the best fitting model for the uranyl 

cation was low pH adsorption onto protonated phosphate sites (Fow le  et al., 

2000). These observations were later confirmed by synchrotron based Extended 

X-ray Absorption Fine Structure Spectroscopy (EXAFS) (S. D. K e lly  et al., 

2002).

While uranium may be sorbed onto cells, it may also accumulate 

internally. The toxicity of uranium increases the membrane permeability of the

6
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cell and is consequently immobilized by complexation to anionic sites in the 

cytoplasm or by precipitation (S uzuki and Ba nfield , 1999; S uzuki and Ba nfield ,

2004). Intracellular accumulation was demonstrated by Suzuki and Banfield

(2004) in the inactive cells of Anthrobacter ilicis, a common uranium mine isolate. 

Transmission electron microscope (TEM) images showed intracellular 

accumulation of uranium that was identified as a uranyl phosphate by energy 

dispersive spectroscopy (EDS) and selected area electron-diffraction (SAED) 

patterns.

The research conducted by Suzuki and Banfield (2004) highlights an 

important factor often overlooked when examining uranium-bacterial interactions. 

While it is necessary to use well studied and well characterized model bacteria, it 

is also necessary to use bacteria native to uranium contaminated sites. In the 

same study the authors examined uranium uptake on inactive Deinococcus 

radiodurans cells isolated from the same mine. D. radiodurans is characterized 

as the most radiation-resistant organism and did not accumulate as much 

uranium as reported in other studies thus suggesting that uranium accumulation 

does not correlate directly with resistance. Furthermore, Transmission Electron 

Microscope (TEM) images, Energy Dispersive X-ray Spectroscopy (EDS) and 

Single Area Electron Diffraction (SAED) patterns confirmed that D. radiodurans 

precipitated uranyl phosphates extracellularly which is probably the result of 

phosphate release during cell lysis. It was demonstrated that these inactive cells 

precipitated uranyl phosphate minerals from a phosphate free solution within 1 

hour (S uzuki and Banfield , 2004). This has important implications for uranium

7
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mobility because in many natural oxidizing groundwaters, the precipitation of 

highly insoluble uranyl phosphate minerals will control aqueous uranium 

concentrations (F inch and M urakami, 1999).

Uranyl phosphate minerals form in abundance and have a 

correspondingly wide distribution in nature thus impacting the mobility of uranium 

in phosphate-bearing systems. Uranyl phosphates and arsenates constitute the 

most diverse group of uranium minerals with nearly 70 species described (F inch 

and M urakami, 1999). The autunite and meta-autunite subgroup comprises at 

least 40 of these known mineral species (F inch  and M urakami, 1999; Locock  

and Bu rn s , 2003a; Locock  and Bu r n s , 2003b). Autunite group minerals are 

composed of uranyl phosphate sheets that are connected by interlayer cations 

and water molecules and are susceptible to dehydration to form meta-autunite 

minerals (Bu rns , 1999; Lo cock  and Bu r n s , 2003a; Suzuki et al., 2005b). 

Members of autunite and meta-autunite groups have a general composition of 

AfUC^PO^nFfeO where A represents a divalent cation and n represents the 

hydration number (S uzuki et al., 2005b). These minerals are common in a 

variety of ore deposits such as the Koongarra Uranium deposit in Australia 

(F inch and M urakami, 1999; M urakami et al., 2005; Sato  et al., 1997).

Under oxidizing conditions, dissolution of uranium (IV)-bearing minerals 

such as uraninite mobilize uranium generally due to the formation of uranyl 

carbonate complexes and in a wide range of uranium deposits the uranyl ions 

are immobilized into insoluble uranyl phosphates (F inch  and M urakami, 1999; 

S uzuki et al., 2005b). In the Koongarra Uranium deposit, iron nodules were

8
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enriched with the copper uranyl phosphate minerals, torbernite and meta- 

torbernite. The nodules exhibited a higher enrichment of uranium (up to 8 wt%) 

as compared to other sediments in the deposit (M urakami et al., 2005; Sato  et 

al., 1997). It was suggested that uranium, phosphorus and copper found as trace 

elements associated with ferrihydrite were released during oxidation and 

subsequent recrystallization to goethite and hematite. The cations accumulated 

on the surfaces of the goethite and hematite and continued to coprecipitate 

nanoparticles of uranyl phosphates during nodule growth (M urakami et al.,

2005). Therefore, these iron nodules serves as potential uranium sinks and are 

important with respect to limiting uranium mobility within the deposit (M urakami 

et al., 2005; Sato  et al., 1997).

Not surprisingly, sites contaminated with uranium from uranium 

processing plants are also a common location for autunite group minerals to 

mineralize. Contaminated sediments from former uranium processing facilities in 

Fernald, Ohio and Hanford in Washington State both show evidence of autunite 

group mineral formation (Catalano et al., 2006; Francis and Do d g e , 1998). 

Analysis of contaminated soil from Fernald showed the presence of meta- 

autunite, uraninite and uranium metaphosphate (Francis and Do d g e , 1998). At 

Hanford, changes in uranium speciation were examined through a depth 

sequence in a dry former waste pond (Catalano et al., 2006). While, they did not 

find variation in uranium speciation they did find variations in uranium 

mineralogy. At the surface of the pond, uranium was coprecipitated with calcite 

and at intermediate depths in the vadose zone (3-4m) they found metatorbernite

9
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while at deeper vadose zones the uranium occurred predominantly sorbed onto 

phyllosilicates. These observations are important with respect to remediation 

practices at the Hanford Site as the calcite bearing sediments have since been 

removed from the waste ponds and the fate of uranium within the groundwater 

will now be determined by torbernite dissolution rates and the desorption of 

uranium from the phyllosilicates (Catalano et al., 2006).

In light of the environmental relevance and abundance of uranyl 

phosphate minerals it is surprising that few studies exist regarding the abiotic 

and biotic dissolution of the solid mineral phases (Khijniak et al., 2005; Sandino  

and Br u n o , 1992; W ellman et al., 2006). Sandino and Bruno (1992), examined 

the dissolution of a synthetic uranyl orthophosphate (U02)3(P 04)2-4H20 with 

respect to phosphate (P043'). hydroxide (OH ) and carbonate (C 032) complexes. 

The authors determined that in the pH range (6-9) of natural waters uranyl 

phosphate complexation will dominate when the total concentration ratio of 

[P043']t /[C0 32']t is greater than 0.1 (Sand in o  and Br u n o , 1992).

More recently, Wellman et al. (2006) quantified the effects of dissolved 

organic material, pH and temperature on the dissolution kinetics of synthetic 

sodium meta-autunite and natural calcium meta-autunite (W ellman et al., 2006). 

The authors illustrate that meta-autunite dissolution kinetics are strongly 

dependent on the concentration of dissolved organic material and pH. Dissolved 

organic material is present in surface water and groundwater and has been 

shown to complex uranium over a wide range of pH and temperature. The 

authors used organic TRIS (tris(hydroxymethyl)aminomethane) buffer solutions

10
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to represent dissolved organic material and illustrated that increased TRIS buffer 

concentrations yielded a higher uranium release from the synthetic sodium meta- 

autunite.

In both minerals it was shown that while uranium release was affected by 

pH, phosphorus release rates were not thus supporting the hypothesis that the 

dissolution of autunite minerals is controlled by a surface mediated reaction with 

the uranium polyhedra (W ellman et al., 2006). It was also shown that the 

phosphorus release rates were faster than uranium rates by approximately 30 

times. At pH 10, an increase of calcium and a decrease in uranium 

concentrations were observed. Geochemical modeling suggested saturation of 

calcium and subsequent precipitation of calcium uranate (CallC^) as the 

possible mechanism. However, it was shown that the effects of temperature on 

autunite dissolution up to 70°C were minimal.

Dissolution studies were also conducted in 0.1M deuterated ammonium 

hydroxide. This study enabled the authors to examine the role that ion exchange 

with H+ and the hydronium ion (HaO+) played in the dissolution of the mineral. 

The mean bond enthalpies for H20  and D20  are 463.5 and 470.9 kJ/mol, 

respectively, therefore reflecting a stronger bond for the D20  compared to H20 . 

An observed decrease in the uranium release using D20  in lieu of H20  illustrated 

that uranium release must be governed by the breakage of an O-H (O-D) bond. 

Therefore, the slower release of uranium into the D20  is attributed to a rate 

limiting step in the hydrolysis of uranium within the autunite sheet. The results 

also showed that uranium release rates were slower in the D20  while the

11
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phosphorus release rates were not significantly affected. This illustrates that the 

dissolution of the autunite mineral was controlled by the surface mediated 

reaction with the uranium polyhedra and release of phosphorus is unaffected by 

surface mediated reaction. Therefore, these observations supported the 

hypothesis that dissolution occurs through the surface mediated attack of water 

at the crystal edges of the autunite sheet and along the cleavage planes 

(W ellman et al., 2006).

Khijniak et al, 2005 reported the only results on the microbial reduction of 

a uranyl phosphate compound (Khijniak et al., 2005) . They examined the 

reduction of a biogenically produced uranyl (VI) phosphate phase during the 

growth of the thermophilic bacterium Thermoterrabacterium ferrireducens. This 

was accomplished by injecting uranyl acetate into a growth medium containing 

the bacteria. An immediate yellow precipitate was observed and X-ray diffraction 

analysis identified the phase as a uranyl uramphite ((r4H4)(UC>2 )(P0 4 ))-3 H2 0 ) and 

2 later hours it was reduced to ningyoite (CaU(P0 4 )2 ‘H2 0 ). This study is 

important because it illustrates that the bacteria are able to use the uranium as a 

terminal electron acceptor even in the presence of the highly insoluble uranyl 

phosphate mineral phase (Khijniak et al., 2005).

Furthermore, the long term stabilities of bioreduced uranium precipitates 

are lacking (G inder-V qgel et al., 2006; W an et al., 2005). Wan et al. (2005), 

showed microbial reoxidation of bioreduced uraninite on contaminated soil 

columns under strict anaerobic conditions. On day 1, reduced uranium 

comprised 24% of the original sediment and by day 107, the sediment contained
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87% U(IV) thus suggesting successful uranyl bioreduction. However, on day 346, 

the reduced uranium phase only comprised 58% of the sediment. Wan et al.

(2005) suggested that ferric and manganese hydroxides found in sediments 

served as terminal electron acceptors (TEA). These TEAs coupled with 

increased carbonate concentrations due to microbial respiration complexed the 

available uranyl ion thereby increasing the mobility (Wan et al., 2005). This study 

reaffirms the necessity to conduct long term kinetic studies of remediation and 

disposal technologies.

While substantial research has examined the microbial reduction of 

aqueous uranium, there has been limited research investigating the microbial 

reductive alteration of solid uranium minerals. This study examines the short and 

long term effects of a metal reducing anaerobic bacteria (Shewanella 

putrefaciens) on solid synthetic meta-autunite (Ca[(U02)(P04)]2 (H20)6 and 

natural torbernite Cu[(UC>2 )2 (P0 4 )2](H2 0 )io uranyl phosphate minerals under 

anaerobic laboratory conditions. The goal of this study is to understand the 

biogeochemical influences that this generic metal reducing bacteria exerts on 

these solid uranyl mineral substrates and hence its control on uranium mobility.
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CHAPTER 2

The microbial weathering of solid synthetic meta-autunite (Ca[(U0 2 )(P0 4 ) ] 2  

(H2 0 ) 6  and natural torbernite Cu[(U0 2 )2 (P0 4 )2](H2 0 )io
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INTRODUCTION

The migration of uranium from mining operations and nuclear fuel disposal 

sites is a major environmental concern. In many cases, improper storage of 

these wastes has led to the contamination of surface water, groundwater and 

sediments. Due to the toxicity, long half-life (4.5 x 109 years) and potential 

mobility in the environment, the mechanisms governing uranium transport is a 

high priority.(FiNCH and M urakami, 1999). Therefore, quantifying both abiotic and 

biotic processes influencing uranium mobility has profound implications for the 

isolation and containment of uranium wastes.

The mobility of uranium is controlled by redox transformations between 

insoluble uranium (IV) and soluble uranium (VI). The most important uranium 

mineral in terms of abundance, wide-spread occurrence and economic value is 

uraninite, U 02. It is found as an accessory mineral in granitic igneous rocks, 

pegmatites and aluminous metamorphic host rocks (F inch and M urakami, 1999). 

The chemical structure of uraninite closely resembles that of spent U 02 nuclear 

fuel. Therefore, researchers utilize uraninite as a natural analogue for nuclear 

fuel to examine long-term behavior in potential geological repositories (Bu r n s , 

1999).

It is well established that bacteria and other microorganisms can 

dramatically impact the form and distribution of uranium in the environment 

through non-metabolic and metabolic processes (S uzuki and Ba nfield , 1999). 

Dissimilatory metal reducing bacteria (DMRB) will generate energy for growth by 

coupling the oxidation of an organic food source (ie. acetate, glucose etc.) to the
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reduction of a terminal electron acceptor (TEA) such as the uranyl cation (S uzuki 

and Banfield , 1999). Bacteria such as Shewanella putrefaciens, Geobacter 

metallireducens and Geobacter sulfurreducens are used in biogeochemical 

research as model bacteria for examining this process (Haas  and No r th u p , 

2004; Khijniak et al., 2005; Lovley et al., 1991; Lovley and Phillips , 1992; 

Suzuki eta  I., 2002).

The bioreductive precipitation of uranium (VI) into sparingly insoluble 

uraninite, UO2 , is widely suggested as an in situ remediation tool to immobilize 

uranium contaminated ground water aquifers. Suzuki et al.(2002), used organic 

substrates to stimulate native bacterial growth in contaminated sediments and 

groundwater and produced autunite nanoparticles (S uzuki et al., 2002). Uranyl 

phosphate precipitation is suggested as an alternate uranium remediation 

strategy. Fuller et al. (2002), reported using synthetic hydroxyapatite (Ca3 P0 4 ), 

to stimulate the precipitation of uranyl phosphate from solutions. They reported 

>99.5% removal of the uranyl cation by the hydroxyapatite followed by uranyl 

phosphate precipitation thus suggesting potential applications in permeable 

reactive barrier (PRB) remediation technology (Fuller et al., 2002).

Uranyl phosphate minerals form in abundance and have a 

correspondingly wide distribution in nature thus impacting the mobility of uranium 

in phosphate-bearing systems. Uranyl phosphates and arsenates constitute the 

most diverse group of uranium minerals with nearly 70 species described (F inch 

and M urakami, 1999). The autunite and meta-autunite subgroup comprises at 

least 40 of these known mineral species (F inch and M urakami, 1999; Locock
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and Bu r n s , 2003a; Locock  and Bu r n s , 2003b). Autunite group minerals are 

composed of uranyl phosphate sheets that are connected by interlayer cations 

and water molecules and are susceptible to dehydration to form meta-autunite 

minerals (Burns , 1999; Locock  and Bu r n s , 2003a; S uzuki et al., 2005b)

These minerals are common in a variety of ore deposits such as the 

Koongarra U deposit in Australia (F inch and M urakami, 1999; M urakami et al., 

2005; Sato  et al., 1997). Under oxidizing conditions, dissolution of U(IV)-bearing 

minerals such as uraninite mobilize uranium due to the formation of uranyl 

carbonate complexes and in a wide range of uranium deposits the uranyl ions 

are immobilized into insoluble uranyl phosphates (F inch and M urakami, 1999; 

S uzuki et al., 2005b). Not surprisingly, sites contaminated with uranium from 

processing plants are also a common location for the formation of autunite group 

minerals. Contaminated sediments from former uranium processing facilities in 

Fernald, Ohio and Hanford in Washington State both show evidence of autunite 

group mineral formation (Catalano  et al., 2006; Francis  and Do d g e , 1998).

In light of the environmental relevance and abundance of uranyl 

phosphate minerals it is surprising that few studies exist on the dissolution of the 

solid mineral phases (Sandino  and Br un o , 1992; W ellman et al., 2006). Sandino 

and Bruno (1992), studied the solubility of a synthetic uranyl orthophosphate 

(U 02)3(P04)2-4H20  and compared the stability to the relative stability of 

phosphate, hydroxide and carbonate complexes. They determined that in the pH 

range (6-9) of natural waters uranyl phosphate complexation dominates when
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the total concentration ratio [P 0 43']t/ [C 0 32']t is greater than 0.1 (Sandino  and 

Br u n o , 1992).

More recently, Wellman et al. (2006) quantified the effects of temperature, 

pH, and dissolved organic material on the dissolution kinetics of synthetic sodium 

meta-autunite and calcium meta-autunite. Their results showed that meta- 

autunite dissolution kinetics is strongly dependent on pH and the concentration of 

dissolved organic material. In both minerals it was shown that while uranium 

release increases with pH, phosphorus release rates were not thus supporting 

the hypothesis that the dissolution of autunite minerals is controlled by a surface 

mediated reaction with the U polyhedra (W ellman et al., 2006).

Khijniak et al, 2005 reported the only study of the microbial reduction of a 

uranyl phosphate compound. They examined the reduction of a biogenic uranyl 

(VI) phosphate phase formed during the growth of the thermophilic bacterium 

Thermoterrabacteriuni ferrireducens. The phosphate formed was uranyi 

uramphite ((NH4)(U02)(P04)-3H20 ) and was reduced two hours later to ningyoite 

(CaU(P04)2'H20 ) (Khijniak et al., 2005).

However, there is a dearth of research examining the microbial 

weathering of uranium phosphate minerals formed prior to inoculation with 

bacteria. In the present study we examine the short and long term effects of a 

dissimilatory metal reducing bacteria (Shewanella putrefaciens) on solid 

synthetic meta-autunite (Ca[(U02)(P04)]2 (H20 )6 and natural torbernite 

Cu[(U02)2(P04)2](H20)io uranyl phosphate minerals under anaerobic laboratory 

conditions. By measuring the rates of microbial corrosion of natural and synthetic
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uranyl-phosphate minerals and comparing quantifiable mineral properties (e.g. 

solubility and composition) it will be possible to assess the corrosion potential of 

uranyl phosphate phases and hence determine uranium mobility under these 

conditions.

MATERIALS and METHODS

A. Mineral Preparation

Synthetic meta-autunite was obtained from P. Burns (University of Notre 

Dame) and was characterized using X-ray diffraction (XRD) (Figure 1) and 

scanning electron microscopy (SEM)/ energy dispersive spectroscopy (EDS) 

(Table 1). The natural torbernite samples were obtained from Old Gunnislake 

Mine, Gunnislake Cornwall, UK and due to insufficient sample size it was only 

characterized using SEM/EDS (Table 2) rather then XRD. The synthetic meta- 

autunite and natural torbernite were placed in dialysis tubing (Spectra/Por® 

Membrane MWCO: 15,000) and washed daily with 18 MQ reverse-osmosis- 

deionized water (Milli-Q) until the supernatant reached pH 7.13 and 6.97 

respectively. The samples were removed from the tubing and lypholized.

Both minerals were sieved to a size fraction of 53-125pM. By combining 

scanning electron microscope (SEM) images and using energy dispersive 

spectroscopy (EDS)/EDAX® Genesis Particle Analysis Software© the average 

diameter and surface area of the starting materials was determined based upon 

3 random samplings of 68 particles per mineral. The mean diameter (±1a) of the 

meta-autunite and torbernite particles was 78.87 ± 0.34 and 90.37 ± 0.49 pm

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



respectively. The average surface area of the meta-autunite and torbernite was 

8104 and 7880 pm2 respectively.

B. Bacteria and cultivation methods

The strain used in this study, Shewanella putrefaciens 200R, was 

obtained from J. Hass (University of Western Michigan) and chosen based upon 

its wide use in biogeochemical research as a model bacteria for examining 

dissimilatory metal reduction. S. putrefaciens 200R was originally isolated from a 

crude oil pipeline in Alberta, Canada (O buekw e  and W estlake , 1982), and it is a 

gram-negative, facultatively aerobic bacterium capable of using a broad variety 

of electron acceptors including uranium (VI) (Haas and No r th u p , 2004; Liu et al., 

2002).

The cultures were prepared from frozen glycerol stock maintained at - 

80°C, transferred to Trypticase Soy Agar plates and grown aerobically for 24 

hours. Single colonies were inoculated into 20 mL tubes of sterile Trypticase Soy 

Broth (TSB) and incubated aerobically at 32°C for 18 hours. The 20 mL seed 

cultures were used to inoculate 100 mL volumes of sterile Luria-Bertrani (LB) 

media and were incubated aerobically at 32°C until the culture reached late log 

phase (18 hours).

Bacteria were harvested by centrifugation at 3000 g and washed twice 

with sterile 0.1M sodium nitrate (NaN03). Bacteria were also washed twice with 

aerobic sterile minimal media and once with anaerobic sterile minimal media. 

The final wet masses of the bacteria in the anaerobic media for the meta-autunite
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and torbernite experiments were 1.02 and 1.36g L'1 of minimal media 

respectively.

The media was degassed in a Coy® anaerobic chamber for 24 hours prior 

to sterilization to remove dissolved oxygen. Minimal media contained 1.34 mM 

potassium chloride (KCI), 28 mM ammonium chloride (NH4CI), 0.68 mM calcium 

chloride (CaCfe), 50 mM sodium perchlorate (NaCI04) and 24mM Na-lactate 

(60% syrup). All experimental media were prepared from reagent grade materials 

and were either filter sterilized (0.2 pM) or autoclaved.

C. Experimental Methods

The cell suspensions were transferred to the anaerobic chamber 

(95%N2/4%H2) and 15 mL of the suspension was added to 20ml polypropylene 

test tubes containing 0.001 g of meta-autunite or torbernite. Controls contained 

15 mL of sterile experimental media in 20 mL polypropylene tubes containing 

0.001 g of the meta-autunite or torbernite. There were 88 tubes containing meta- 

autunite and only 40 tubes containing torbernite due to the small amount of 

available sample. The samples were rotated end-over-end at 30 rpm and 

incubated at 30°C in the absence of sunlight.

D. Sampling Methods

Inoculated and control samples were sacrificed over time intervals ranging 

from 0 to 4.5 months and 0 to 3.5 months for the meta-autunite and torbernite, 

respectively, with two replicates at each interval. Semi-micro electrodes sterilized 

with ethanol enabled the monitoring of pH (Thermo Ross Sure-flow semi micro
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pH probe) and Eh (Thermo Ross Sure Flow combo redox/ORP) in situ before 

each sampling. Microbial biomass was determined by transferring a 3 mL aliquot 

of the sample slurry to a 60 mL glass vial containing 7.5 mL of dichloromethane, 

15.0 mL of methanol and 5.0 mL of a 5.0 mM phosphate buffer. Lipids were 

extracted and quantified using the modified Bligh and Dyer procedure (Bligh and 

Dye r , 1959; W hite ei al., 1979). Glassware was soaked for 24 hours with micro 

cleaner and placed in a combustion furnace at 500°C in order to prevent lipid 

contamination. Upon sampling, all vials were covered with foil to minimize 

photodegradation of lipids.

The concentrations of uranium, phosphorus and copper in the samples 

were determined using inductively coupled mass spectrometry (ICP-MS). Total 

uranium was extracted from 0.5 mL of the slurry through acid digestion with trace 

metal grade 0.1M hydrochloric acid (HCI) followed by filtration through a 0.20 pm 

nylon syringe filter (Z ielinski and M eier , 1988). Filtered solutions were diluted 

and acidified with sub-boiling doubly distilled 0.016M nitric acid containing 

thallium (Tl), beryllium (Be) and Indium (In) as internal standards to correct for 

instrumental drift and mass bias of the ICP-MS. Dissolved uranium and 

phosphorus concentrations were determined by filtration of the sample through a 

syringe coupled with a 0.20 pm nylon syringe filter. Again, filtered samples were 

diluted and acidified with sub-boiling doubly distilled 0.016M nitric acid containing 

the TI/Be/ln internal standard. The solid phase was transferred to a 

microcentrifuge tube and immediately sealed with parafilm to prevent oxygen 

contamination and placed in a refrigerator at 4°C.
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E. Solid Phase Characterization

Field Emission-Environmental Scanning Electron Microscopy (FE-ESEM) 

(FEI Quanta 200F) was used to characterize the solid phase. Samples were 

treated with 2.5% gluteraldehyde for 1 hour at room temperature and examined 

under low vacuum at 10 kV. The abundance and spatial distribution of bacteria 

with respect to the minerals were examined using backscattered electron (BSE) 

and secondary electron (SE) detectors. Energy dispersive spectroscopy (EDS) 

analysis was performed in order to examine any shifts in elemental composition 

of the minerals. Transmission electron microscopy (TEM) (Phillips 30EM- 

University of Guelph) was also used to characterize the solid phase in order to 

view the bacterial cell walls and any mineral phase associations.

F. XANES Experiments

To determine the valence state of the reacted meta-autunite, subset 

samples of preliminary experiments were collected under similar conditions 

exhibiting similar solution chemistry. The slurries were syringe filtered in the 

anaerobic chamber onto 0.45pm filter paper, air dried in the chamber and 

mounted onto kapton tape to minimize beam effects. The samples were 

analyzed using X-ray Absorption near edge structures (XANES). The XANES 

data were collected at the Advanced Photon Source (APS) at Argonne National 

Laboratory. The samples were run on beamline PNC/XOR BM19 which is 

capable of an energy range of 2.5-25 keV with a focus beam size of 5pm x 5pm. 

The uranium absorption edge (U L-lll) is 17.16keV, therefore XANES data were 

collected from 17.1 (pre-edge) to 17.36 (post edges) KeV. Analysis of the
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XANES data was performed using Athena version 0.8.05. To determine whether 

samples were subject to artificial shifts in U reduction as a result of beam 

induced damage, 4 replicates of data were taken at 3 different locations per filter 

paper for extended periods of time.

RESULTS and DISCUSSION

Biomass measured within the sample is based on the reasonably strong 

relationship between phospholipid phosphate (PLP) and microbial carbon 

content (Bligh and Dy e r , 1959; W hite  et al., 1979). Figure 2 illustrates short 

(A,C) and long term lipid concentrations (B,D) for both the inoculated and control 

meta-autunite and torbernite. After an initial lipid increase to 72 hours (0.40 

nmol kg'1) and 36 hours (0.24 nmolkg"1) for the meta-autunite and torbernite 

respectively, biomass decreased dramatically in both experiments to near zero 

values for the rest of the experiment. This suggests the bacterial population was 

stabilized and decreased to a steady state or death phase. Furthermore, the 

biomass in the torbernite experiments was significantly lower than the meta- 

autunite inocula despite a higher initial wet weight of S. putrefaciens.

Copper (Cu) toxicity from the torbernite is a potential explanation for the 

decrease in lipid concentrations. While elements such as copper and nickel play 

important roles in metabolic processes they can serve as potential toxins to cells 

at elevated concentrations (S uzuki and Banfield , 1999). Copper will interfere 

with proteins, enzymatic processes and will weaken the cell membrane 

(F lem m ing  and T r evo r s , 1989). In fact, Lovley and Phillips (1992), showed that 

uranium reduction by D. desulfuricans was completely inhibited when 100 pM of
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copper (II) was added to solution due to the loss of activity of the cells (Lovley 

and Phillips , 1992).

An alternative explanation for reduced microbial biomass in the torbernite 

samples is uranium toxicity and radioactivity. While the meta-autunite samples 

were 99.997% depleted, the torbernite samples showed a moderate radioactivity 

reading on the Geiger counter. Bacteria are not susceptible to radioactivity 

because uranium has a long half life as compared to the short life cycles of 

bacteria (Suzuki and Banfield , 1999). However, the toxicity of uranium may play 

a role in the reduced biomass. Unlike copper, uranium serves no biological 

purpose in the cell. Uranium may block essential biological pathways (nutrient 

transport systems), substitute the essential metal ion from biomolecules, 

denature enzymes and weaken the cell wall. When we compare the relative U 

concentrations from EDS measurements we saw that meta-autunite had a higher 

weight percent of uranium of 50.81% (Table 1) while torbernite (Table 2) had a 

lower weight percent of 37.35%. Based upon higher relative U concentrations 

and increased biomass in the meta-autunite samples it may be inferred that U is 

not toxic to the bacteria in these systems. In fact, back scattered electron (BSE) 

images and aqueous copper concentrations suggest that copper is inhibiting the 

growth of the bacteria.

Differences in BSE images were observed between the inoculated 

torbernite and meta-autunite. The BSE image of the inoculated torbernite 

showed a lower contrast than the meta-autunite. The production of backscattered 

electrons varies directly with the specimen's atomic number thus causing higher
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atomic number elements to appear brighter than lower atomic number elements. 

Therefore, due to the high molecular mass (238.0289 g-mol'1) of uranium it 

appears brighter under these conditions. Figures 3A and 3C show BSE images 

of the control and inoculated torbernite after 2304 hours. The BSE images of the 

inoculated torbernite appear darker than the control samples (Figure 3A), 

suggesting a surface masked by lighter elements present on the surface. 

Bacteria may develop resistance mechanisms to toxic metals through 

physiological adaptation and a potential mechanism in this case may be the 

production of bacterial extra cellular polymeric substances (EPS) to sequester 

the copper (Ga d d , 2004; S uzuki and Ba n field , 1999).

Perhaps the most compelling evidence for the production of EPS is the 

release of copper over time in the torbernite experiments. Figure 4 shows the 

initial copper concentration in the inoculated experiments at time zero was 0.25 

pmol-L'1 and after 2880 hours it rose to 1.37 pmol-L'1 at a rate of 0.022 pmol-L'1 

hour '1. While, in the control experiments the initial copper concentration at time 

zero was 1.18 pmol-L'1 and after 2880 hours it rose linearly to 4.74 pmol-L'1 at a 

rate of 0.0095 pmol-L*1 hour '1. This evidence suggests the bacteria are binding 

the copper by the formation of EPS as a stress induced response to toxicity. 

Therefore, the microbial biomass of the bacteria would be lower due to the 

energy invested to produce the EPS as is seen in the case of the inoculated 

torbernite samples (Figures 2C and D). Furthermore, the data reveals (Figure 

4B) that copper concentrations plateau at 0.22 pmol-L’1 in the inoculated 

torbernite until 336 hours where it shows a steep increase to 1.04 pmol-L'1 at 672
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hours followed by another increase to 1.37 pmol-L'1 at 2880 hours. This suggests 

the bacteria are beginning to lose their capacity to sequester the copper as 

illustrated by the rapid decline of bacterial biomass due to cell lysis shown in 

Figure 2D. An alternative explanation would be the production of copper 

carbonates commonly formed as a result of increased carbonate (CO32') 

concentrations due to microbial respiration.

Aqueous uranium release over time in the meta-autunite study is shown in 

Figures 5A and 5B and illustrates an initial increase of uranium in the inoculated 

samples with a rate of 0.067 pmol-L'1 hour '1 for the first 42 hours followed by a 

significant decrease in uranium concentrations (Figure 5A). The highest uranium 

concentration for the inoculated samples was 3.39 pmol-L'1 at 12 hours and may 

be attributed to metabolic activity from the increasing microbial biomass (Figure 

2A) coupled with the dissolution of fine grained material on the surface of the 

meta-autunite. The decrease in aqueous uranium may be due to the formation of 

an insoluble reduced uranium phase through dissimilatory uranium reduction by 

Shewanella putrefaciens as shown in previous studies (Haas and No r th u p , 

2004; Liu et al., 2002). Aqueous uranium release over time for the abiotic 

samples show a minimal initial increase of uranium to 0.43 pmol-L'1 at 30 hours 

with a rate of 0.0007 pmol-L'1 hour '1 for the first 42 hours followed by a decrease 

in uranium concentrations (Figure 5A). This initial release of uranium may be the 

result of the dissolution of fine grained material on the surface of the mineral as 

seen with the inoculated samples.
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The aqueous release of uranium over time in the torbernite samples is 

shown in Figures 5C and 5D and illustrates an increase of uranium in the 

inoculated samples with a rate of 0.00073 pmol-L'1 hour '1 for first 672 hours 

followed by a decrease in the uranium concentration (Figure 5D). The highest 

uranium concentration for the inoculated samples was small at 0.075 pmol-L'1 at 

0 hours and may be attributed to the dissolution of fine grained material on the 

surface of the torbernite. The second largest concentration of aqueous uranium 

in the inoculated samples was 0.642 pmol-L'1 at 672 hours, however, at this point 

the microbial biomass has decreased (Figure 2D), thereby eliminating the 

potential for dissimilatory uranium reduction in the sample. Aqueous uranium 

release over time for the abiotic torbernite samples shows a maximum 

concentration of 1.29 pmol-L'1 at time 0 followed by a decrease and plateau 

(Figures 5C and D). The dissolution of fine grained material on the surface of the 

torbernite is a potential explanation for the initial increase as seen in the abiotic 

meta-autunite samples.

Figure 6 illustrates extractable total uranium as a function of time. This 

extraction targets the weakly bound uranium at the mineral and cell surfaces. 

The highest uranium concentrations for meta-autunite were found at time 0 and 

were 27.27 pmol-L'1 for the inoculated sample and 15.58 pmol-L'1 for the control 

(Figure 6A,B). While, the highest concentrations for meta-torbernite were 2.54 

pmol-L'1 at 168h for the inoculated sample and 1.93 pmol-L"1 for the control 

sample they were still much lower than the meta-autunite values. Again, this
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may be the result of the dissolution of fine grained material found on the surface 

of the minerals.

The difference in chemical structures of the meta-autunite (Figure 7A) and 

torbernite (Figure 7B) may provide essential insight into the different release 

rates of uranium. Torbernite contains a single symmetrically independent U(VI) 

cation that is part of a linear (UC>2 )2+ cation (Locock  and Bu r n s , 2003b). The 

uranyl ion is coordinated by four additional oxygen atoms arranged at the 

equatorial positions of a square bipyramid, with the uranyl ion oxygen atoms at 

the apices of the bipyramid. Phosphate tetrahedra share the equatorial vertices 

of uranyl square bipyramids to form the autunite-type sheet, of composition 

[(UO2XPO4 )]' (Locock  and Bu r n s , 2003a; Locock  and Burns , 2003b). There is 

a symmetrically independent copper (II) cation in the interlayer between the 

uranyl phosphate sheets. The copper(ll) cation occurs with short bonds to four 

water groups in a square planar arrangement and two longer bond distances to 

oxygen atoms of uranyl ions with an interatomic distance of 2.54A that bridge 

uranyl phosphate sheets (Locock  and Bu rn s , 2003b).

While meta-autunite contains the same autunite-type sheet structure as 

torbernite the interlayer contains the calcium (II) cation that are coordinated by 

seven water groups. The interatomic distance between the calcium (II) cation 

and the uranyl ion oxygen atom is 3.275 A and it is suggested that it may form 

weak bonds to the autunite sheets. There are two additional H2O groups that are 

located in the interlayer where they are held together in position only by 

hydrogen bonding (Locock  and Bu r n s , 2003a).
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The important difference between the two structures with respect to 

interlayer stability is that within the meta-autunite structure, the calcium (II) cation 

is only weakly bonded to the uranyl ion via hydrogen bonding while the 

copper (II) cation in the torbernite forms a stronger covalent bond directly to the 

oxygen of the uranyl polyhedra. These differences are reflected in the interatomic 

distances between the cations and the oxygen in the uranyl polyhedra. The 

interatomic distance between calcium (II) and oxygen in meta-autunite is 3.275 

A. The interatomic distance between copper (II) and oxygen in the torbernite is 

2.54 A (Locock  and Bu rn s , 2003a; Lo cock  and Bu rn s , 2003b). Therefore, the 

weak hydrogen bonding within the structure of autunite increases its 

susceptibility to microbial weathering while the torbernite is more resistant to 

weathering due to stronger covalent bonding between the oxygen and the uranyl 

ion. Unfortunately, aqueous calcium release in this study could not be properly 

quantified due to contribution of the calcium from the 0.68 mM calcium chloride 

(CaCI2) added to the minimal media.

Furthermore, the interatomic distance of uranium to oxygen within the 

uranyl polyhedra for torbernite and autunite is 1.79 A and 2.12 A respectively, 

thus implying stronger bonds between the uranium and oxygen in the torbernite 

thereby reducing its susceptibility to attack and subsequent release of uranium 

(Locock  and Bu r n s , 2003a; Locock  and Bu r n s , 2003b). Therefore, in light of 

this evidence coupled with lower microbial biomass observed in the torbernite 

samples it is not overly surprising that weathering rates are lower in the 

torbernite experiments.
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The release of aqueous phosphorus over time in the inoculated meta- 

autunite study shows a maximum increase of phosphorous to 95.46 pmol-L' 1 at 

30 hours at a rate of 1.35 pmol-L'1 hour '1 during this initial time period followed 

by a gradual decrease in concentrations at 0.35 pmol-L'1 hour '1 to 1334 hours 

where the concentrations plateau (Figure 8A and B). The phosphorus released 

over time in the abiotic samples shows a maximum increase of phosphorous to

57.96 pmol-L'1 at 12 hours at a rate of 0.689 pmol-L'1 hour '1 during this initial 

time period followed by a gradual decrease in concentrations to 0.0242 pmol-L'1 

at 1334 hours where the concentrations plateau (Figure 8A and B). The release 

of aqueous phosphorus over time in the inoculated torbernite samples show a 

maximum increase of phosphorous at the end of the study of 95.46 pmol-L'1 at 

2880 hours (Figure 8D). However, the steepest increase in phosphorus 

concentrations during the first 36 hours at a rate of 1.17 pmol-L'1 hour '1 (Figure 

8C and D). The rates of aqueous phosphorus release for the abiotic torbernite 

samples as the concentrations were below the detection limits of the ICP-MS.

The release of phosphorus in the inoculated meta-autunite and torbernite 

experiments is the strongest indicator of the microbial weathering of the uranyl 

phosphate minerals. The interatomic distances between the oxygen and the 

phosphorus bonds are both 1.53 A therefore the bonds are structurally similar 

and are susceptible to attack via hydrolysis (Locock  and Bu rns , 2003a; Locock  

and Bu r n s , 2003b). In fact, the aqueous phosphorus release rates of the meta- 

autunite and torbernite to 30 hours were both similar at pmol-L'1 hour 1 and 1.17 

pmol-L'1 hour '1, respectively. A potential explanation for the initial release of
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57.96 pmol-L'1 of phosphorus in the control meta-autunite (Figure 8C,D) is the 

abiotic dissolution of the mineral due to the susceptibility of the oxygen- 

phosphorus bond to hydrolysis. In fact, Wellman et al. (2006), recently showed 

that abiotic phosphorus release from synthetic and natural autunite increased to 

as much 30x faster than the dissolution of uranium thus suggesting incongruent 

dissolution of the mineral, leaving the uranyl polyhedra relatively in tact 

(W ellman et al., 2006).

The increased phosphorus release in the biotic versus abiotic experiments 

may be explained by the bacterial requirements of phosphorus as an essential 

element. Bacteria utilize phosphorus for the synthesis of DNA, RNA, ATP, 

polyphosphates and phospholipids which are made bioavailable in natural 

systems by the microbial dissolution of highly insoluble phosphate bearing 

phases such as apatite (Ja n sso n , 1987). Therefore, breaking the oxygen- 

phosphorus bond within the uranyl phosphate structure provides bacteria with 

phosphorus to ensure their survival.

Scanning electron microscope (SEM) images shown in Figure 9 illustrate 

a gradual comminution of the meta-autunite associated with regions of bacterial 

attachment which coincides with areas of active high energy sites and a 

weakening of the mineral matrix. The bottom images are characterized by large 

fractures along grain boundaries and along cleavage planes. The gradual 

progression of physical weathering of these minerals coupled with the 

phosphorus solution chemistry suggests a kinetic reaction driven by the physical
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break up of the minerals which may potentially be attributed to the preferential 

breaking of the oxygen-phosphorus bonds by the bacteria.

In Figure 10 (A,B and C) bacteria and bacterial biomass (10C) are found 

associated with the meta-autunite mineral. In particular, Figure 10B shows a 

bacterium associated with a fracture. Generally, fractures have a higher surface 

area and increase the number of potential reactive sites for bacteria on the 

surface of the mineral. Therefore, bacteria are commonly found near fractures 

and fissures on mineral surfaces. Figure 11D illustrates the classic etch pits 

features commonly associated with bacterial/mineral interactions. The microbial 

corrosion of meta-autunite also lead to the aggregation of small lathes of uranyl 

phosphate as in Figure 10. These aggregates are small (5-50pm) thus increasing 

the surface area and potentially increasing the probability of sorption onto other 

mineral surfaces or mobility in the environment. TEM images (Figure 12B) reveal 

polished surfaces of the inoculated meta-autunite lathes with respect to the 

control, therefore implying weathering of the mineral surface with respect to the 

control.

EDS/X-ray maps of relative uranium, phosphorus and oxygen 

concentrations showed a lack of phase difference between the weathered and 

unweathered areas on the mineral (Figures 13 and 14). The initial increase and 

subsequent decrease of dissolved uranium in the biotic meta-autunite and 

torbernite experiments suggests a reduction of uranium (VI) to uranium (IV). 

However, based on the XANES spectra (Figure 15), there was no observed 

change in the U L(lll) energy absorption edge therefore inferring no detectable
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difference in oxidation and implying that the bulk sample has remained as a 

U(VI) mineral. This observation was also confirmed by SEM images as no 

secondary mineralization (i.e. uraninite) was detected in any of the samples. 

However, the absence of detectable uraninite may be due to the limitations of the 

techniques used. Suzuki et al. (2002), showed nanometre-sized products of 

uranium bioreduction thus illustrating the need for high resolution microscopy for 

future investigations of our samples (Suzuki et al., 2002). In X-ray absorption 

spectroscopy the detection limit is on the order of a few ppm to 1000 ppm 

(Galo isy , 2004) and therefore it is possible only a small amount of uraninite was 

bioprecipitated and bulk x-ray absorption spectroscopy lacked the sensitivity to 

detect the shift in oxidation state.

The results of this study suggests that a potential model for the microbial 

weathering of uranyl phosphate minerals may be based upon the incongruent 

dissolution of the mineral phase with emphasis on the preferential break up of 

oxygen-phosphorus bonds driven by the cellular requirements of bacteria. 

Furthermore, substituted cations (i.e. Cu2+) within the uranyl phosphate sheet 

and crystal structure will have an effect on the rates of uranyl release. It is 

anticipated that the results from this study may be used as a model for 

investigating solid uranium mineral microbe interactions.
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CONCLUSION

The ultimate goal of this study was to determine the extent of microbial 

weathering on the uranyl phosphate minerals meta-autunite and torbernite. The 

release of phosphorus over time in the inoculated experiments suggests that 

microbial weathering of uranyl phosphate is driven by the incongruent dissolution 

of the mineral phase with an emphasis on the preferential breaking of oxygen- 

phosphorus bonds within the autunite and torbernite structures.

The aqueous release of copper in both the biotic and abiotic experiments 

illustrates the potential for inner layer cations to be released into the 

environment. This is particularly important with respect to the potential mobility of 

other toxic cations that may be found in uranyl phosphates. Furthermore, the 

potential sequestration of copper by Shewanella putrefaciens onto the torbernite 

mineral surface illustrates a potential sink within uranium contaminated sites that 

may be susceptible to weathering and remobnization.

The majority of research on uranium-microbial interactions is focused on 

aqueous uranium biotransformation and in many cases the uranium is reduced to 

a U(IV) phase such as uraninite (Haas and No r th u p , 2004; Lovley et al., 1991; 

Lovley and Phillips , 1992; S uzuki et al., 2002). However, the results from this 

study did not suggest bulk uranium reduction which may be the result of limited 

instrument sensitivity, therefore, solid uranyl phosphate-microbe interactions 

need to be investigated using highly sensitive techniques. Furthermore, the 

communition of the mineral and aggregation into smaller particles is also an 

important observation in terms of the solubility of the uranyl phosphate. While,
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uranyl phosphates are generally thought to be insoluble, the BSE showed 

evidence of substantial weathering. The smaller aggregates hold a greater 

potential for increased mobility and reactivity within the environment.

In order to improve these studies, it is necessary to utilize surface 

sensitive surface techniques such as X-ray photoelectron spectroscopy (XPS) 

and time of flight secondary ion mass spectrometry (TOF-SIMS) to examine 

localized mineral alterations. XPS will provide compositional and chemical 

information of the surface atoms (e.g. oxidation state) while TOF-SIMS will 

provide chemical and compositional information of surface atoms. Depending 

upon the instrumental conditions the depths can range for TOF-SIMS from a few 

A to >100A. (W eisener , 2003).

This study should be expanded by examining the microbial weathering of 

different autunite group minerals. For example, uranyl arsenates have a similar 

structure to autunite with arsenic occupying the place of phosphorus. Therefore, 

it would be interesting to examine the microbial weathering rates of these 

minerals based upon the capacity for arsenic to be a terminal electron acceptor 

(TEA) for dissimilatory metal reduction (DMR) and the potential mobility and 

toxicity of arsenic in the environment.

While, Shewanella putrefaciens is a model bacteria for examining 

dissimilatory metal reduction it would be beneficial to use Suzuki and Banfield’s 

approach to examining uranium interactions by using bacteria isolated from an 

actual uranium mining or contaminated site (Suzuki et al., 2005a). However, it is 

important to bear in mind that communities can be misrepresented by
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conventional culture dependant sampling techniques (D ojka et al., 2000; 

Hug enh o ltz , 2002). In fact, more than 99% of microorganisms in the 

environment are unculturable using standard techniques (H u g enh o ltz , 2002). 

Therefore, it is necessary to rely on independent culture techniques such as 16S 

rRNA sequencing and fluorescence in situ hybridization (FISH) in order to 

explore microbial distribution and diversity within uranium contaminated sites 

(Aoi, 2002; Dojka et al., 2000).

The release of uranium into the environment is the subject of intense 

public concern and has prompted much research into its fate. However, the 

results of this study reveal that further work is required in order to accurately 

characterize the processes on the microbe-mineral scale and it is anticipated that 

the results from this study will serve as a model to investigate microbe-uranium 

mineral interactions.
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Table 1. Elemental composition of meta-autunite based upon EDS analysis

Element_______ Weight_%______Atomic Weight %

U 50.81 7.03

O 40.97 84.32

P 7.86 8.36

Ca* 0.36 0.30

*absorption line of Ca is very close to that of uranium therefore there is a 
potential interference effect

Table 2. Elemental composition of torbernite based upon EDS analysis

Element_______ Weight %______Atomic Weight %

U 37.35 4.44

O 49.28 87.06

P 5.4 4.98

Cu 7.92 3.52
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Figure 2
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Figure 2 : Lipid concentration (microbial biomass-PLFA) growth as a function of time for the A) 
synthetic autunite mineral inoculations and autunite controls to 200 hrs B) synthetic autunite mineral 
inoculations and autunite controls to 3500 hrs C) torbernite mineral inoculations and torbernite 
controls to 200 hrs and D) torbernite mineral inoculations and torbernite controls to 3500 hrs
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Figure 3
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Figure 3: BSE SEM/EDS images at day 96 o f A) control torbernite B) and C) inoculated torbernite D) 
bacterial mineral associations with the torbernite.
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Figure 4
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700 hrs and B) torbernite mineral inoculations and torbernite controls to 3500 hrs
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Figure 5: Aqueous U release as a function o f time for the A) synthetic autunite mineral inoculations 
and autunite controls to 200 hrs B) synthetic autunite mineral inoculations and autunite controls to 
3500 hrs C) torbernite mineral inoculations and torbernite controls to 200 hrs and D) torbernite 
mineral inoculations and torbernite controls to 3500 hrs
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Figure 6
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Figure 6 : 0.1 M HCL extractable Total U as a function o f time for the A)synthetic autunite mineral 
inoculations and autunite controls to 200 hrs B) synthetic autunite mineral inoculations and autunite 
controls to 3500 hrs C) torbernite mineral inoculations and torbernite controls to 200 hrs and D) 
torbernite mineral inoculations and torbernite controls to 3500 hrs
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Figure 7

Figure 7A: Polyhedral representation o f the structure o f autunite, Ca[(U0 2)(P04)]2 (H20)6. Uranyl 
poiyhedra are shown in gray and the phosphate tetrahedra are stippled. The Ca atoms are shown as 
large spheres, and the H20  (with O atoms labeled) are shown as small spheres. (Locock and Burns, 
2003a)

Figure 7B: Polyhedral representation o f the structure of torbernite, Cu[(UO2)2(PO4)2](H2O)10. Uranyl 
poiyhedra are yellow, phosphate tetrahedra are green and stippled, copper bipyramids are blue, and 
the H20  groups are shown as red spheres. (Locock and Burns, 2003b)
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Figure 8
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Figure 8: Aqueous P release as a function o f time for the A) synthetic autunite mineral inoculations 
and autunite controls to 200 hrs B) synthetic autunite mineral inoculations and autunite controls to 
3500 hrs C) torbernite mineral inoculations and torbernite controls to 200 hrs and D) torbernite 
mineral inoculations and torbernite controls to 3500 hrs
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Figure 9

Figure 9: BSE/SEM images of control autunite minerals (top) and inoculated autunite minerals 
(bottom) as a function o f time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55



Figure 10: BSE/SEM images of A) S. putrefaciens attached to autunite surface at day 140 with 
particles associated with cell wall B) Bacteria located an edge site on the meta-autunite after day 1334 
C) microbial biomass attached to autunite surface after 140 days embedded with mineral particles D) 
SE Images of etch pits associated with inoculated autunite at day 1008.
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Figure 11

Figure 11: BSE/SEM/EDS images ofA,B, C and D) aggregation o f the inoculated autunite mineral at 
day 140
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Figure 12
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Figure 12: TEM images of autunite lathes at day 119 o f A) autunite control and B) inoculated autunite
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Figure 13

Figure 13: SEM/EDS X-Ray elemental (U,0 and P) map images o f inoculated autunite sampled at 
day 140 (3364 h).
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Figure 14
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Figure 14: SEM/EDS X-Ray elemental (U,0 and P) map images of inoculated autunite sampled at 
day 140 illustrating bacterial depletion o f U and P associated with the mineral (3364 h).
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Figure 15
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Figure 15: Comparison o f U (L III) edges XANES spectra o f inoculated autunite mineral at 0,168,2856 
hrs
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