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ABSTRACT
The shape of an object is a fundamental image feature and belongs to one of 

the most important image features used in Content-Based Image Retrieval 

(CBIR). In this thesis, we propose use of Neural Network-Based Shape 

Retrieval System in which Moment Invariants and Zernike Moments serve as 

the feature vector to describe shape. Fuzzy /(-means Clustering is used to 

group similar images in an image collection into /(-clusters whereas Neural 

Network is used to facilitate retrieval against a given query image. Neural 

Network is trained by the clustering results of all of the images in the collection 

in which feature vector formed by moments serves as its inputs and the output 

dictates the degree of membership among the /(-Clusters. The suggested 

approach is compared with /(-means Clustering for a number of different 

distance functions.
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1. Introduction
Rapid technological advances and digital imaging revolution has resulted in 

generation and storage of a large number of images. A number of application 

domains are utilizing such image collections for everyday use. Examples of 

such applications can be found in everyday life, from entrainment to medicine, 

from sports to training, where million of images are generated and growing 

every year. In order to utilize these image collections effectively, there is need 

to search for desired images both quickly and efficiently. However, effective 

and efficient search through these large image collections poses significant 

technical challenges. Image retrieval is a technique to find similar images from 

a given image collection on the basis of the similarity of image contents.

1.1 Text-Based Image Retrieval
Earlier image retrieval approaches were all text-based and can be traced back 

to early 1970’s [3], In this approach, keywords and textual annotation are 

associated with various salient image features. Traditional Database 

Management System (DBMS) techniques are used to store, index, search, and 

retrieve relevant images from the image collection against a given query image 

on the basis of matching keywords and annotations. After all the images are 

stored in the database, one can make a query using these keywords and 

textual annotation to find a specified image through the DBMS.

Though this idea is straightforward and easy to implement, it suffers from many 

disadvantages. Most important among them are the manual labor involved in 

the identification and annotation of salient image features and the subjectivity 

of human perception. Manual annotation of image contents is a tedious 

process. If the image collection is very large, it will become awfully difficult, 

exhaustive and time consuming to annotate all of the images. Moreover, this 

will suffer from the problem of human subjectivity since different people may

1
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perceive the same image differently.

Figure 1: An image taken in Toronto

As an example, consider the images given in Figure 1. It is an image of the 

Toronto skyline, featuring CN tower. Among others, this image may be 

annotated as ‘Toronto’ or ‘CN Tower’ or both. If the image is annotated as ‘CN 

Tower’ and user issues a query for ‘Toronto’ or vice versa, system will not be 

able to find this image even though the image does exist in the database.

1.2 Content-Based Image Retrieval (CBIR)

The problems mentioned above were significant to generate the idea of 

Content-Based Image Retrieval (CBIR). In this approach, instead of annotating 

the images manually, images are indexed by their contents. The main objective 

of content-based image retrieval is the automatic extraction of salient visual 

image features for determination of similarity among the database images and 

a given query image. All of these approaches are based on extraction of 

quantifiable low-level visual image features such as color, texture, shape, 

spatial positions, etc.

2
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These image features are generally described by multi-dimensional feature 

vectors. For retrieval, users provide the system with example images, from 

which system then extracts internal representation of feature vectors. The 

similarity or distance between the feature vectors of the query image and those 

of the images in the database are then calculated and retrieval is performed 

only with the aid of an indexing scheme.

1.3 Visual Features
Visual features of an image can be classified as general features and 

domain-specific features. General features include color, texture and shape 

while domain-specific features may include features specific to that domain 

such as human face for face database applications, finger prints for finger print 

matching, etc. Following sections provide a brief review of the most common 

general image features.

1.3.1 Color

Color is one of the most commonly used features in CBIR. We often use Color 

Histogram as the representation of this feature. From the perspective of 

statistics, color histogram represents the joint probability of three color 

channels which, most commonly, are red, green and blue. There are also other 

feature representations for color. In [4], the Color Moments method is proposed, 

which is based on the truth that the color distribution can be characterized by 

the color moments. Another approach as proposed in [44] is called Color Sets. 

In this approach, the RGB color space is first transformed into a perceptually 

uniform space, such as HSV space and then transformed further into some 

bins of colors which are called color sets.

3
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1.3.2 Texture

In [6], texture is defined as the visual patterns that have the properties of 

homogeneity that do not result from the presence of only a single color or 

intensity. For instance, the fire, cloud, grass, sea etc are the best 

representatives of texture. Instead of single pixel, texture does not only present 

the information of the pixel itself, but it also stores the structural information 

and the relationship to the surrounding area. The approach in texture 

representation such as co-occurrence matrix representation has a long history. 

In 1970’s, Haralick proposed the co-occurrence matrix representation. The 

Wavelet transform may be the most famous technique in texture representation 

when it was proposed in 1990’s [7]. This method used Wavelet signal to 

transform the image from time domain to frequency domain and got good 

results.

1.3.3 Shape

The shape of an object is a fundamental image feature and belongs to one of 

the most important image features used in Content-Based Image Retrieval 

(CBIR). Shape description is one of the key parts of image content description 

for shape-based image retrieval.

For many of the image processing and computer vision applications, shape of 

an object can be described through its binary representation. In this 

representation, the shape area is described by a single color whereas rest is 

defined as only the background, represented in a different color. As an 

example, we use black color to represent the pixel inside the object area while 

we use white color to represent the pixel outside the object area. There are two 

main categories of approaches for shape representation:

(i) Boundary-based approach: in this approach, shape of an object is 

represented with help of its boundary.

4
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(ii) Region-based approach which focuses on the whole region of the 

object in the image.

Regardless of the method for shape representation, [8] provides a set of 

criterion that a shape representation scheme must provide:

•  Unique: each shape should have a unique representation.

•  Compact: a good representation should be compact to save storage 

space.

•  Accurate and Reliable: a good representation should reflect the shape 

features accurately and be robust.

•  Invariant: a shape representation should be invariant to geometric 

transformations such as rotation, scaling and translation.

1.4 Problem Statement

This thesis is an addition to an existing Shape-Based Image Retrieval System 

in which Moment Invariants and Zernike Moments are used as the feature 

vectors. In that system, Neural Network is used as the main classifier whereas 

K-means clustering is used to group similar images in non-overlapping K  

distinct clusters.

This thesis investigates use of Fuzzy K-means Clustering for image 

classification and compares its performance against the existing scheme that 

involved K-means Clustering with K-means Clustering. In the earlier proposed 

system, Euclidean and Mahalanobis functions were used as distance functions 

to evaluate system performance. In addition to these two distance functions, in 

this thesis, Correlation Distance and Standardized Euclidean Distance 

functions are used to evaluate and compare system performance.

The rest of the thesis is organized as follows: the background of this thesis is

5
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discussed in Chapter 2. Chapter 3 discusses our proposed methodology. 

Experimental results are presented in Chapter 4. Chapter 5 provides our 

conclusions and future work directions.

6
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2. Background
2.1 Moments

2.1.1 Moment Invariants

Moments are widely used in visual information processing. Moment Invariants 

are derived from shape moments and are not changed during two-dimensional 

geometric transformations such as rotation, translation and scaling, and, hence, 

can be used to represent the feature of a 2D image. The compactness in 

representing the shape feature with low overhead in calculation is the biggest 

advantage of the Moment Invariants.

In [9], the two-dimensional (p + g)th order moments of a density distribution 

function p(x, y )  is defined as:

mp« = £  £  xPy q P( x’ y  )dxdy (6)

p, q =  0, 1,2. . .

where p ( x , y )  is a piecewise continuous function.

It has the nonzero value only in the finite part of the x-y plane. Given the above 

definition, the moments of all orders exist and the uniqueness theorem can 

also be proved. This theorem is as follows: The double moment sequence mpq

is uniquely determined by p(x, y); and conversely, p(x, y) is uniquely 

determined bymM .

The characteristic function 0(u,v) and moment generating function of p(x, y), 

M(u, v) are defined as follows:

t/)(u,v) =  j°° j°° exp(iux + ivy)p(x, y)dxdy (7)

M(u, v) =  £° J~ exp(ux + vy)p(x, y)dxdy (8)

If the characteristic function </>(u,v) is known, the density distribution function

7
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p( x, y ) can be calculated by the inverse Fourier transform as follows:

p(x, y) = 1 /  { 2 k  ) 2 £° exp(-iux-ivx) 0(u,v)dudv (9)

The central moments are invariant under 2D translation. In [9], they are defined 

as Vp«= £  £  ( * _ x ) P(y -  y ) qP(x,y)d(x- x )d (y - y )  (10)

Where x = m j  m 00, y = m j m 00 (11)

In [9], seven Moment Invariants are derived as follows:

^1 — f̂ 20 "*■ M02 >

$2 = (/*20 ' U02)2 +4 A l 2.

O 3 = ( / / 30 - 3 jul2) 2 + ( 3 m21 - jum) 2,

=  ( / ^ 3 0  ■*" M n )  ( M 2 I A ( )3  )  >

^5 MP3,) - 3 p i2)(//30 + Ai2)[(A30 + A 2)2 -3 (p 21 + Po3)2] +

(3p21 - M 02)(M i \  + //03)[3(//30 + A 2 ) 2 - ( M i l  +  M o t ) 2 } ’

^ 6  — ( Ml O ~ /A)2 ) i (  A 30 "t" M u )  " ( P 2 I /^03 )  ]

4 p n (p 30 + Mn)(M2l Ao3 )

*̂ *7 — (3 p 2l ” Mo3 ) (A30 / 1̂2)[( /̂ 30 Mu) " 3 ( / / 2i + Po3 ) ]"

(JU30 - 3 jul2)(M21 + ju03)[3{ju30 + jul2) 2 -{ju21 + /A*)2] (12)

2.1.2 Zernike Moments
Zernike moments are formed by Zernike polynomials proposed by Zernike in 

1934 [10]. According to [10], Zernike polynomials construct a complete 

orthogonal basis set defined on the unit disc (x2 + y 2) < 1. Zernike moments 

are defined as:

8
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-4„ =  —  J f (13)7t Jx Jy

where m = 0 ,1 ,2 . . .  which defines the order and * denotes the complex 

conjugate.

The Zernike polynomial Vmn (r,6) are expressed in polar coordinates as:

V mn (>■- 6 )  =  R mn {l)exp(jn9) (14)

where Vmn(r; 6)  is defined over the unit disc (x2 + y 2) < ^ . j =  

and R mn (/) is defined as:

w-|n|

R mn(i)= F(m, n, s, I) (15)
5=0

where F(m, n , s , t ) =  ---------- j— l m lS l’ .— j------- rm2s (16)

Constructing high order Moment Invariants is a time-consuming work while it is 

much easier to construct high order Zernike Moments. This is because high 

order Zernike Moments can be constructed by simply changing the order n and 

repetition m while it takes much more time to compute Moment Invariants with 

large values of p and q according to equation 6.

2.2 Neural Networks
Neural Networks simulate the human brain to get the power of thinking like a 

human. According to [11], a Neural Network is an interconnected assembly of 

simple processing units whose functionality is based on the human neuron. 

The performance of the Neural Networks depends on the inter-unit connection 

strengths which are called weights in practice. The simplest Neural Networks 

may be the TLU (Threshold Logic Unit) proposed by McCulloch and Pitts [12].

9
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xf

T L U

Figure 2: TLU [12]

Figure 2 shows the structure of a TLU where X  i is the input, W, is the weight

attached to X, , 6 is the threshold, y  is the output, a is called the activation 

and is defined as:

a = E  *< w , <2°)

If a is greater than or equal to the threshold 6 , the output y  will be 1, otherwise, 

the output y  will be 0.

The Neural Networks work with two main steps, training and testing. The goal 

of training is to set the most appropriate weights for the specified Neural 

Network. This is achieved by providing input samples to the Neural Network to 

adjust the weights. After training, the Neural Network takes the query input and 

then produces output results according to the weights which have been set

10
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during training step.

2.2.1 Multilayer Neural Networks

Multilayer Neural Networks are the Neural Networks which have one input 

layer, one output layer and one or more hidden layers as shown in Figure 3:

Input First Hidden Second Hidden Output
Layer Layer Layer

Figure 3: A Multilayer (three-layer) Neural Network

Multilayer Neural Networks have the ability to solve some more complex 

problems which cannot be solved by simple Neural Networks because 

Multilayer Neural Networks achieve more complex decision region than the 

simple Neural Networks. According to [13], a three-layer Neural Network can 

form arbitrarily complex decision regions as shown in Figure 4:

11
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Network Structure

Single Layer

Two layers

Three layers

Type of Decision 
Region

Solution to Classes with Most general
exclusivs-OR meshed regions decision surface
problem shapes

Single
hyperplane

Open or closed 
convex regions

Arbitrary

(Complexity limited 
by the number of 
nodes)

Figure 4: Types of decision regions that can be formed by single-layer and 

multi-layer neural networks (After: [13])

In Multilayer Neural Networks, the input data are fed to the input layer. Output 

of input layer becomes input to the nodes in subsequent layers, and in this way, 

finally reach the output layer. This process is called Feed-Forward [13]. 

Suppose we have a three-layer network. Let x,. denotes the input data, m, n, o

denote the first hidden layer, second hidden layer and the output layer 

respectively, w denotes the weight, I denotes the inputs to each node of each 

layer. Feed-Forward process can be expressed as below:

L  =  X  wmt x , (21)
i

L = X  ML)  (22)
m

I. = I  ML) (23)
n

where A is the activation function which is used to get continuous, soft

12
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function instead of an abrupt function.

2.3 Clustering
Clustering can be considered as grouping of the ‘similar’ data. The goal of 

clustering is to make the data in the same cluster most similar and the data 

among different clusters most dissimilar. For example, the dots in the Figure 5 

are grouped into 4 clusters.

Figure 5: The dots grouped into 4 clusters [14]

Geometric distance provides the measurement of clustering. According to the 

goal of clustering, these dots are grouped so that the ones in the same cluster 

have the shortest distance between each other and the ones in the different 

clusters have the longest distance between each other.

According to [14], the clustering algorithm should satisfy the following 

requirements:

•  Scalability;

•  Dealing with different types of attributes;

•  Discovering clusters with arbitrary shape;

13
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•  Minimal requirements for domain knowledge to determine input 

parameters;

•  Ability to deal with noise and outliers;

•  Insensitivity to order of input records;

•  High dimensionality;

•  Interpretability and usability.

The clustering technique can be classified as two main categories as follows:

(i) Exclusive clustering: the algorithm such as K-means clustering.

(ii) Overlapping clustering: the algorithm such as Fuzzy K-means

clustering.

In exclusive clustering, a datum which belongs to one cluster can not belong to 

other clusters. On the other hand, in overlapping clustering, one datum belongs 

to two or more clusters with different degree of memberships.

Following sections provide some details about K-means clustering and Fuzzy 

K-means clustering.

2.3.1 K-Means Clustering
The K-Means Clustering involves five steps:

(1) Algorithm begins with initializing the number of clusters, say K.

(2) Then randomly put K  data into K  clusters such that each of these K  data 

elements is set to be the initial centroid of the corresponding cluster.

(3) Put each of all the remaining data into the cluster which has the closest 

centroid.

(4) Recompute the centroids of the K clusters.

(5) Repeat Step2 to Step 4 until the centroid no longer changes.

The algorithm minimizes the squared error which is defined as follows:

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



J - t t  U x r C . P (17)

where k is the number of clusters, n is the number of data, x ( is the /th 

datum, Cj is the centroid of the /th cluster.

This algorithm is said to be unsupervised because the K  is set randomly. 

Changing the value of K affects the performance of the application.

2.3.2 Fuzzy K-Means Clustering
In real world, a datum may have some features which belong to different 

groups. It will be better if the datum belongs to two or more clusters. In Fuzzy 

K-Means Clustering, one datum belongs to one or more clusters with different 

degrees of membership. According to [15], it is based on the minimization of 

the following function:

where m is a real number greater than or equal to 1, utj is the degree 

of membership of x, in the cluster j, x, is the /th data, cs is the center 

of the /th cluster, and //x; -c; // is the distance from any datum to the 

centroid of the cluster.

The Fuzzy K-Means Clustering algorithm involves following steps:

(1) Algorithm begins with initializing the number of clusters, say K

(2) Initialize m to be a real number greater than 0

(3) Initialize the iteration counter 7 = 0

(4) Initialize U=[uv] matrix, say U {0)

(5) Initialize the stopping criterion e ( e = 0.001 gives reasonable

J m= 1  t  ui jmllx i -C jI I2 (18)
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convergence)

(6) At T‘h step: calculate the center vectors C (T) =[c; ] with U (T) like follows:

NV  m
2 j u« xi

Cj = ^ --------------------------------------  (19)
X m

U V
i=1

(7) Update U iT+l) using the formula below:

/ "  " 1 ~  J m - 1

*=i

(8) If || U (T+1) - U (T) ||< e then STOP; otherwise increase Tby 1 and return to 

step 6.

Like K-Means Clustering, Fuzzy K-Means Clustering is also unsupervised 

because K  is set randomly. Changing the value of K affects the performance of 

the application. In [21], a method using Simulated Annealing is proposed to 

determine the optimal K.

2.3.3 Distance Functions
The performance of clustering highly depends on the distance function used. 

Many distance functions have been proposed and used in clustering 

techniques. In this thesis, we investigated four distance functions, Euclidean 

Distance, Mahalanobis Distance, Correlation Distance, and Standardized 

Euclidean Distance. The details of these four distance functions are covered in 

Chapter 3. The performances of these distance functions are showed in 

Chapter 4.

2.4 User Feedback

Although the Content-Based Image Retrieval got the most attention in past few

16
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years, the User Feedback has not got enough consideration. In [16], the early 

method for CBIR is called Computer-Centric which is not satisfactory because 

of the following reasons:

•  The gap between the high-level and the low-level features of the image. 

The high-level features refer to the objects in the image such as the ball, 

animals or the fruits, while low-level features are the color, shape and 

texture. Sometimes, the mapping from the high-level features to the 

low-level features is difficult for the user to do.

•  The subjectivity of human perception. Different people may perceive 

the same image differently. One person may be more interested in the 

color of the image while another may be more interested in the texture. 

For example, in Figure 6 below, one may perceive that (a) and (b) are 

more similar if they do not care for the intensity contrast but the other 

one may think (a) and (c) are more similar because they ignore the 

details of the seeds.

<») W <c)

Figure 6: Subjectivity of human perception [16]

Because of the above reasons, many researchers move their focus from the 

traditional CBIR to the interactive methods which involve User Feedback. For 

instance, in [16], usage of supervised learning before retrieval is introduced.

17
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3. Methodology

In the proposed approach, Moment Invariants and Zernike Moments are used 

to extract the visual features of the images. The core of our system is the 

Neural Network. It takes user’s input--a query image and outputs the retrieved 

images onto the screen. These retrieved images are ranked by the similarity of 

the retrieved image to the query image. But before that, the Neural Network 

has to be trained with sample images. We could combine the Neural Network 

with the Clustering techniques to speed up the retrieval process. Data can be 

clustered in different ways. In our approach, we used Fuzzy K-means 

clustering technique but have also compared its performance with K-means 

clustering technique. We have also tested four different Distance Functions 

which are used in Clustering.

3.1 System architecture

The proposed shape retrieval system has 5 main stages as follows:

(1) Moment Invariants and Zernike Moments are extracted as the shape 

features from the images.

(2) The shape features are grouped into several clusters using Fuzzy 

K-means clustering.

(3) Neural Network is trained. All the shape features are taken as the inputs 

of the Neural Network and the cluster indices of images which have 

these shape features are given as the target output.

(4) Neural Network performs the testing process. User’s query image is 

taken as the input of the Neural Network. The output of the Neural 

Network is used to determine the indices of the clusters which may 

include the relevant images.

(5) Compare the shape feature of the query image with all the images in the 

selected cluster and return the most similar images.

18
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The system architecture is shown in Figure 7.

Query

Training Phase

Retrieval Phase

User

Image
Collection

Shape
Features

Neural
Network
classifier

Feature Clusters

Matching
and
Ranking

Feature
Extraction

Retrieval Engine

Figure 7: System Architecture

3.2 Feature Extraction

Two types of shape representations are used in this system: Moment 

Invariants and Zernike Moments. They both need boundary information of the 

image to represent the shape region. To get the boundary information, we use 

the Improved Turtle procedure [17]. This algorithm has the following steps [1]: 

Algorithm: Finding the Boundary Sequence

Input: a digital binary image in which all pixels belonging to the shape have a 

value of 1 and those in background pixels have a value of 0 

Output: a boundary sequence C[/]

Method:

(1) Find the starting point S(sx, sy) in the image whose value is 1; 

i = 0;

19
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Let the current pixel be C[/]( cx, cy), i.e., set C = S;

(2) Let the 4th neighbor (neighbor pixel on the left) of C be B(bx, by);

(3) /++

(4) Let D[ 1], D[2], ..., D[8] be the 8 neighbors (anticlockwise, starting with 

B) of C;

Find the smallest k, k = 1, 2........8, that D[k] has value of 1;

(5) Let C = D[k] and B = D[k-1];

(6) If C is the start point S then terminate;

Otherwise goto step (3).

Then, C[/]s are the boundary pixels, starting with S, in the anticlockwise order. 

After getting boundary sequence, we use it to compute Moment Invariants and 

Zernike Moments.

For Moment Invariants, because we are dealing with digital images, we could 

approximate double integrals to double summations. That means, we could 

approximate the (p+q)th moment

mM = £  £  xPy q P(x,y)dxdy  

to

= 1  I  x pyq p( x, y ). (21)
* ^

We can also replace p(x, y) by a binary function u(x, y) defined as follows to 

save computation time:

u(x, y) = 1 if {x, y) belongs to shape region, otherwise u{x, y) = 0. (22)

Then the equation (21) becomes

mpq =  X  X  x? yq where (*> y) belongs to shape region (23)
* y

We can further save the computation time by using Delta Method proposed in 

[18]. This method uses only the coordinates of the first pixel and the length of

20
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the chained pixels of the shape region in each row to compute the moments. 

Then we calculate seven Moment Invariants according to Equation (12) 

mentioned in section 2.1.1.

For the Zernike Moments, we need to compute the centroid of the shape region 

first. The centroid (xc, y c) is computed as

This is followed by transformations which has the following three steps:

(1) Translation.

Translate the image origin from the top-left of the image (u, v) to the 

shape region centroid (x c, y c) by

In this final step, we have to normalize the shape region into a unit disk 

of Radius R. It is given as

We used 32 in our approach as the value of R  to save computation 

time. We could also take 8, 16, or 64 because they are of the power of 

2.

After transforming shape region into the unit disk, we invoke Equation (13), 

(14), (15), (16) mentioned in section 2.1.2 to get the six Zernike Moments.

21

where n is the number of region boundary pixels. (24)

x t = u - x c, y t = v - y c (25)

(2) Rotation.

Flip y  axis to make it fits the typical Cartesian coordinates by

x , = x , , y r = - y t (26)

(3) Scaling.

(27)
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3.3 Fuzzy K-means Clustering
System performance highly depends on the clustering algorithm we use. If we 

use non-fuzzy clustering, one image could only belong to one cluster. When 

user queries an image, the cluster which includes this image may not be the 

output cluster because we cannot guarantee the images are clustered 

correctly.

On the other hand, if we use fuzzy clustering, the query image may belong to 

one or more clusters. This increases the possibility of finding the query image 

even though the system may get more non-relevant images.

Figure 8 shows how fuzzy clustering works. Suppose we have some data 

extracted from the images and we want to group them into four clusters. /V,.

represents image A/’s membership in the /th cluster. We invoke Fuzzy K-means 

clustering algorithm mentioned in Section 2.3.2 to update the data 

memberships and cluster centroids until the change is less than a stopping 

criterione (in this system, 0.001 gives reasonable result). After clustering, 

suppose A’s memberships in four clusters are 0.1, 0.49, 0.31, and 0.1 

respectively.

22
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A l = 0.1 A 2 = 0.49 A 3 =0.31 4*. II

<NII B 2 = 0.35 B 3 =0.35
’-'IIITf

C , = 0.5 C2 =0.1 C3 =0.05 C 4 =0.35

IIQ 
i 

:

D 2 =0.35 D 3 =0.2 D 4 =0.15

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 8: Fuzzy K-means Clustering

After clustering, data are grouped into different clusters with different 

memberships, but the training of the Neural Network needs the training 

samples to have the clear output values representing the index of the cluster 

they belong. That means we have to set a threshold for the membership. If 

datum A/’s membership in cluster /' is greater than this threshold, N  belongs to 

cluster /'. N  could also belong to cluster j  if A/’s membership in cluster j  is also 

greater than the threshold.

In Figure 8, if we set the membership threshold to 0.3, datum A belongs to 

cluster 2 and cluster 3 but not cluster 1 and cluster 2. Then we can train the 

neural network. After training, system is ready for retrieving images. Suppose 

we take A as the query image. In theory, system returns cluster 2 as the result 

cluster, but in reality, clustering is not perfect. It might return cluster 2 and 

cluster 1 or cluster 2 and cluster 3 or other combinations of the clusters. But 

whatever the return index is, A can be retrieved as long as it includes cluster 2 

or cluster 3 because both of these clusters include A.

23
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On the other hand, if we are using non-fuzzy clustering algorithm such as 

K-means clustering, suppose A is in cluster 2, the system might not find A if 

Neural Network is not trained ideally. Although Fuzzy K-means clustering does 

not guarantee finding the query image, it increases the possibility of finding the 

query image by extending the searching range.

3.4 Neural Network

Neural Network has two main steps, training and testing. After Fuzzy K-means 

Clustering, training samples are ready for the training step. In our approach, 

we use Moment Invariants and Zernike Moments as the image feature 

extractors. There are seven moments for Moment Invariants and six moments 

for Zernike Moments. So we need two Neural Networks, one of them should 

have seven nodes in the input layer while the other one should have six nodes 

in the input layer. We choose three layers Neural Network because it can form 

arbitrarily complex decision region [13].

In this case, training is a two step process [19]:

•  Feed-Forward: the input data feed the input layer and get each node 

of the next hidden layer, and in this way, finally reach the output layer. 

As mentioned in section 2.2.2, activation functions are used to get 

smooth functions instead of abrupt functions. According to [1], we 

choose Binary sigmoid and Bipolar sigmoid in this system because they 

do not need much computation time and provide good results.

Binary sigmoid is defined as:

m  = (28)
l + e  x

Bipolar sigmoid function is defined as:

9<x) =  (29)l + e  x

•  Back-Propagation: back-propagate the associated error of each layer

24
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to its previous layer, and adjusts the weights connecting these two 

layers. The algorithm is as follows [1]:

Algorithm: Back-Propagation.

Input: The training samples for a multilayer feed-forward neural 

network.

Output: A Neural Network trained to classify the samples.

Method:

(0) Termination condition is :

(a) Minimum Squared Error (MSE) is less than a thresholds, say 

£ =0 .05  OR

(b) |MSE(f) -  M SE(M )| < e and the network has gone through 

the training samples a maximum number of times, say 10000 

times.

(1) Initialize all weights in NN

(2) while terminating condition is not satisfied {

(3) for each training sample X  {

(4) // Propagate the input forward

(5) for each hidden or output layer unit j  {

(6) / ,  =  X .w „0 ,

(7) // Compute the bet input of unit j with respect to the 

previous layer i

(8) Oj = f(lj )■, II Compute the output of each unit j

(9)

(10)

// Back-propagate the errors: 

for each unit yin the output layer

(11)

Sj = ( T . - O j )  f ’(lj )\ II compute the error

for each unit j  in the hidden layers, from the last to the first 

hidden layer

(12)

25
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// Compute the error with respect to the next higher 

layer k

(13) for each weight w0 in NN {

A wij(t) =  (T])SJO i + ( a ) A w ij( t - V \

II Weight increment where 0 < a ,  77 < 1  with typical

values of 77 = 0.5 to 0.6, a  = 0.8 to 0.9

(14) Wy ( t+  1) = Wy (t) + A Wy (t)]} // Weight update

}}}

3.5 Distance Functions

Distance Function is used to measure the extent of similarity of two data items. 

According to [20], in a d-dimensional space, for two elements x  and y, there 

exists a real number D(x, y), called the distance function that must possess the 

following four properties:

(4) D(x, y) <= D(x, z) + D(z, y) (triangle inequality)

In our approach, we chose and tested 4 different Distance Functions, 

Euclidean Distance, Correlation Distance, Standardized Euclidean Distance, 

and Mahalanobis Distance because they measure extent between data from 

different aspects. We will discuss this later in this section. First, let us see the 

definitions of these 4 Distance Functions.

Suppose we have two n-dimensional vectors x  = (xt , x 2, ..., x „ ) and y  = {yx, 

y 2  y  J ,  then each of these distance functions is defined as:

26

(1) D(x, y) >= 0 (non-negativity)

(2) D(x, y) = 0 if and only if x  = y  (identity)

(3) D(x,y) = D(y,x) (symmetry)
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(1) Euclidean Distance is defined as:

dE{x, y) = - y f  (30)

(2) Correlation Distance is defined as:

n
£(*,. -x)(y, -50

dR(x, y) = 1 -   (31)

J£(*, ~yfw  -  ”n2
i = i  V  i = i

where x =  - £ x , . ,

(3) Standardized Euclidean Distance is defined as:

dSE(x,yi= £ -L (* ,- * )2 (32)
V i=i ‘S';

where is the standard deviation of all sample vectors

(4) Mahalanobis Distance is defined as:

dML(x, y) = y j (x -y )TS \ x - y )  (33)

where S is the covariance matrix.

S = — ^ ( x i - u ) ( x i - u ) , , U =  —
M t o  M t a

Where M  is the number of all sample vectors.

Different Distance Functions may measure different aspects of data extent. 

Correlation Distance focuses on the similar variation of the feature vector as 

opposed to the similar numerical values which may be the focus of Euclidean 

Distance. Suppose we have x(1,2,3,4,5), ><100,200,300,400,500), z(5,4,3,2,1). 

If we are using Euclidean Distance, xand y  will be placed into the same cluster 

whereas x and zwill be placed into the same cluster if we are using Correlation 

Distance.

Standardized Euclidean Distance and Mahalanobis Distance could cluster data

27
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with unequal coordinate variances as shown in Figure 9.

•  H i

Cluster D
14--------------------------------------------------------------------------- ►

^ ►

Figure 9: Data with unequal coordinate variances (After: [44])

In Figure 9, a point A and a point B have the same distance from the cluster 

centroid C. B belongs to the cluster D but A does not. The points outside the 

ellipse may not have the same distribution with the points inside. On the other 

hand, Euclidean Distance and Correlation Distance are good at clustering the 

data whose distribution is like a circle but not an ellipse as shown in Figure 10.

28
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i i

Cluster D

< ►

Figure 10: Data with equal coordinate variances

In Figure 10, a point B belongs to the cluster D. If a point A has the same 

distance away from the cluster centroid C with the point B, it must belong to the 

cluster D. But this is not always the case in Figure 9.

If we are dealing with feature vectors which have unequal coordinate variances, 

Standardized Euclidean Distance and Mahalanobis Distance will be working 

better than Euclidean Distance and Correlation Distance because 

Standardized Euclidean Distance and Mahalanobis Distance consider all 

elements of the feature vector equally important.
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4. Experiments and Discussions

4.1 Development Environment and GUI
We have developed our system using Visual C#.NET 2003 on a system with 

Windows XP running on a Dell computer which has a Pentium4M CPU of 

2.6GHz and RAM of 512MB. Image features are extracted and stored in XML 

files. A Graphical User Interface (GUI) is provided. Users can access all 

functionalities such as Adding Image to the Image Collection, Clustering, 

Neural Network Training, and Retrieval of Images using GUI. It is showed in 

Figure 11.

i' * *' iuxal Hetwork— Based Shape Ret r i eva I vising Invariants and Ternibe Io>ent s

image Collection Jetrieye Xreining Help

.H }1 ^rlS yw  . P]1_t180poB . 13] 1_r175-png ' [4) 1_r18S.pn9nnnn
2.775775E-16 0.00129118 0.001350623 0.001413085
ini-.r170.png j8}1_r165.pna P I 1_r155.pn9 {10| 1„i32&gn9□□□cl
06615T73 0.0015S3875 0.001663822 0.001690672.
1131 i_rl4S.png {1411_r320.png {I5ji_i25.png [161 i_r140.png

Dianci
0.00227948 0.002839191 0.003072699 0.003688387

Figure 11: GUI and a sample retrieval action

As shown in Figure 11, query image is in the top left, whereas the retrieved 

images are shown on the right with calculated distance below them. These 

retrieved images are ranked by distance in ascending order.
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The training time depends on the size of the image collection and the 

capabilities of the machine running the system. In our case, with an image 

collection consisting of 10000 images, it took about 24 hours for training the 

Neural Networks for both Moment Invariants and Zernike Moments.

4.2 Image Collection

In order to test the system performance, we have chosen Amsterdam Library of 

Object Images (ALOI). ALOI uses 1000 objects to record images for scientific 

purposes. About 100 images have been recorded for each object. These 

images are recorded with different viewing angle, illumination angle, and 

illumination color.

a i
a—n

Figure 12: Sample Binary Images in the Image Collection

ALOI contains not only contain color images, but also contain binary images 

which are needed for our research. There are more than 100,000 binary 

images with different resolutions in the collection. We have selected 10,000
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images such that each image has a resolution of 192 x 144. This selected 

image collection includes 200 groups of images. Each group has 50 images 

which are identified as relevant images, whereas images from different groups 

are considered as irrelevant images.

4.3 Performance Measurement

Normally, precision and recall is the most commonly used coefficient to 

measure the performance of the CBIR system.

In [43], Precision is defined as:

p _ N u m b e r O f  R e  l e v a n t  I m  a g e s  R e  t r i e v a e d  

N u m b e r  O f  I m  a g e s  R e  t r ie v e d

Recall is defined as:

P  _  N u m b e r O f  R e  l e v a n t  I m  a g e s  R e  t r ie v a e d

T o t a l N u m b e r O f  R e  l e v a n t  I m  a g e s ln  T h c l m  a g e C o l le c t io n

An ideal CBIR system should have 100% precision and 100% recall. But 

practically, it is very hard to get high precision and high recall at the same time. 

In some applications, we have to find as many relevant images as we can so 

we have to increase the recall. To do this, we often extend the range of retrieval 

to increase the recall, but this results in retrieval of a significant number of 

irrelevant images, at the expense of reduced precision. This is because that we 

may get much more irrelevant images than the relevant images when we 

extend the retrieval range.

In following sections, we present our measurement of the system performance 

in terms of Distance Functions, Clustering Algorithms, the number of clusters, 

the threshold of the Neural Network, evaluation of system performance and the 

training samples, determination of the number of relevant images in a cluster, 

and the image size.
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4.4 Comparison of Distance Functions

Unless mentioned otherwise, in all of the following experiments described in 

this section, the number of clusters have been chosen to be 5 with a threshold 

of 0.4 and a image collection consisting of 10000 images. Furthermore, D 

denotes the distance function; Eu denotes the Euclidean Distance; Cor 

denotes the Correlation Distance; SE  denotes the Standardized Euclidean 

Distance; Ma denotes the Mahalanobis Distance; Tr denotes the threshold of 

the Neural Network, K denotes the number of clusters.

Distance Function_MI_10K_K5_Tr0. 4

0.8

0.7

0.6

0.5
co

0.4u£
CL

0.3

0.2

0.1

0
1. 20 0.2 0.4 0.6 0.8

Recall

Figure 13: Comparison of Distance Function for Moment Invariants

Figure 13 shows the Comparison of four Distance Functions for Moment 

Invariants in precision-recall graph. For the same value of recall, a higher 

precision represents better performance. Generally speaking, Correlation 

Distance performs better than other distance functions in this case since 

images in a cluster have high degree of correlation for Moment Invariants.
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Figure 14: Comparison of Distance Function for Zernike Moments

—♦ —Cor 

— SE 
— Eu 

- * - M a

Figure 14 shows the Comparison of four Distance Functions for Zernike 

Moments. In this case, Correlation Distance performs worst because of the 

large numerical variance of Zernike Moments. Euclidean Distance performs 

better than Correlation Distance because the focus of the Zernike Moments is 

the variance of the numerical values.

Standardized Euclidean Distance and Mahalanobis Distance perform well 

because they eliminate the unequal coordinate variances in the data 

distribution. Unequal coordinate variance is a more serious problem in Zernike 

Moments so Standardized Euclidean Distance and Mahalanobis Distance 

perform better for Zernike Moments than Moment Invariants.
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4.5 Comparison of Fuzzy K-means Clustering and 

K-means Clustering

NonFuzzy-Fuzzy_Cor_MI_10K_K3_Tr0. 4
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0 0 .2  0 .4  0 .6  0 .8  1 1.2
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(a): D: Cor, K: 3; Tr. 0.4

NonFuzzy-Fuzzy_Cor_MI_10K_K5_TrO. 4
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(b) D: Cor, K: 5; Tr. 0.4 
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(c): D: Cor, K\ 5; Tr. 0.6 

Figure 15: Comparison of Fuzzy K-means Clustering and K-means Clustering 

for Moment Invariants using Correlation Distance

Figure 15 shows the Comparison of Fuzzy K-means Clustering and K-means 

Clustering for Moment Invariants. In these three graphs, different Numbers of 

Clusters (3 and 5) and Neural Network Thresholds (0.4 and 0.6) have been 

tested. From these graphs, it is obvious that Fuzzy K-means Clustering always 

performs better than K-means Clustering for Moment Invariants.
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(a): D: Cor, K: 3; Tr. 0.4
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(b): D: Cor, K: 5; Tr. 0.4
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Figure 16: Comparison of Fuzzy K-means Clustering and K-means Clustering 

for Zernike Moments using Correlation Distance

Figure 16 above shows similar results for the Zernike Moments. Here we can 

also see that Fuzzy K-means Clustering is performing better than the K-means 

Clustering.
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(a): D: Eu\ K: 3; Tr. 0.4
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Figure 17: Comparison of Fuzzy K-means Clustering and K-means Clustering 

for Moment Invariants using Euclidean Distance
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Figure 18; Comparison of Fuzzy K-means Clustering and K-means Clustering 

for Zernike Moments using Euclidean Distance

Figure 17, 18 provide the results of comparison between Fuzzy K-means 

Clustering and K-means Clustering for different number of clusters and
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threshold values but the distance function in these experiments is Euclidean 

Distance. It shows that the Fuzzy K-means Clustering performs better than the 

K-means Clustering with Euclidean Distance as well.

4.6 Comparison of number of clusters in Fuzzy K-means 

Clustering
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Figure 19: Comparison of Number of Clusters in Fuzzy K-means Clustering for 

Moment Invariants (D: Eu)

Figure 19 shows the Comparison of number of clusters for Moment Invariants. 

It can be observed that when K = 7, we get the best result. This is because of 

the fact that generally increasing the number of clusters reduces the number of 

irrelevant images in each cluster so the precision increases. But we could not 

guarantee that the images are always clustered correctly, and therefore, we get 

worse result when K =  8 than K =  7.
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Figure 20: Comparison of Number of Clusters in Fuzzy K-means Clustering for 

Zernike Moments (D: Eu)

Figure 20 shows similar result for Zernike Moments. In this case, best result is 

achieved when K  = 6. In [21], an approach using Simulated Annealing is 

introduced to find the optimal K.
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4.7 Comparison of the threshold for retrieval
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Figure 21: Comparison of the threshold for retrieval for Moment Invariants (D: 

Eu)

Figure 21 shows the comparison of the threshold for retrieval for Moment 

Invariants. Generally speaking, performance is improved by increasing the 

threshold. When we increase the threshold, system returns less clusters. 

Though we get less relevant images, we also get much less irrelevant images, 

so the precision is increased; when we decrease the threshold, precision is 

decreased because of the more irrelevant images in more returned clusters for 

retrieval.

We could also see that when recall reaches about 0.9, the precision of the 

curve which has high threshold drops dramatically. This is because the 

retrieval engine could not find any of the relevant images. Suppose we have 50 

relevant images in an image group. First 45 images are included in the first 

cluster, and other 5 belong to the second cluster. When the threshold increases,
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the second cluster is omitted by the retrieval engine. The clusters which are 

omitted because of the threshold always contain small amount of images. This 

is the reason why we may see a precision drop when the recall is very high.

Threshold_Eu_ZM_10K_K5

0 . 2 0.4 0.6

Recall

0.8

0.8

0.7

0.6

0.5
co

0.4
£

Cl.

0.3

0.2

0.1

0

— Tr=0.  1 
- ■ —Tr=0. 2 
- * - T r = 0 . 3  

-X -*T r= 0 .4 
-5K—Tr=0, 5 
- * - T r = 0 . 6

Figure 22: Comparison of the threshold for retrieval for Zernike Moments (D: 

Eu)

Figure 22 shows the comparison of the threshold for retrieval for Zernike 

Moments. The results are similar to those given in Figure 21. Though high 

threshold gives us high precision, we can’t use the threshold as high as 0.9 or 

even 1.0. It will let the retrieval engine skip too many clusters so that we may 

not get any relevant images.

Selecting a good threshold value for optimal results is application dependent. 

For instance, the retrieval of medical images usually requires the system to find 

as many images as it can, so we can’t set the threshold too high, whereas if we 

just want to find a place to visit from some landscapes, we could set a higher 

threshold to eliminate more irrelevant places we do not want to go.
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4.8 Evaluation of System Performance and the Training 

Samples
We have tested our system for cases, when the images used for the system 

training involved query image, as well as experiments in which the query 

images were not included in the images used for the system training.
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Figure 23: Evaluation of System Performance and the Training Samples for 

Moment Invariants (D: Coi)
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Figure 24: Evaluation of System Performance and the Training Samples for 

Zernike Moments (D: Cot)

As we can see in Figure 23 and 24, precision is worse if the query image does 

not belong to the training samples. That is because the weights of the Neural 

Network is set for retrieving the training samples, not the images not belong to 

the training samples. The errors of the weights because of the unfamiliar input 

will affect the performance of the Neural Network.
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4.9 Determination of the number of relevant images in a 

cluster
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Figure 25: Determination of the number of relevant images in a cluster for 

Moment Invariants (D: Cot)
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Figure 26 Determination of the number of relevant images in a cluster for 

Zernike Moments (D: Cot)

Figure 25 and 26 show the Fuzzy K-means Clustering accuracy. Our image 

collection contains 200 groups of images; each of them has 50 relevant 

images.

If we are using Moment Invariants, about 88% of the first 5 images (ranked by 

similarity) belong to the first cluster the Neural Network returns. About 60% of 

all of the 50 images belong to the cluster that the Neural Network has 

determined to be the most relevant.

If we are using Zernike Moments, about 82% of the first 5 images (ranked by 

similarity) belong to the first cluster the Neural Network returns. About 58% of 

all of the 50 images belong to the cluster that the Neural Network has 

determined to be the most relevant.

Because of the high accuracy of the Fuzzy K-means Clustering, if we do not 

have to find all the relevant images, we could stop retrieval when we get 

enough relevant images we need to save computation time.

4.10 Comparison of Image Sizes

For the experiment, we have used the image collection containing 200 images 

for the comparison of the images sizes. As mentioned in Chapter 2, 

geometrically transforming the image should not affect the retrieval result 

because Moment Invariants and Zernike Moments are invariant to them.
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Figure 27: Comparison of Image Sizes for Moment Invariants (D: Eu; Number 

of Images of the Image Collection: 200)
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Figure 28: Comparison of Image Sizes for Zernike Moments (D: Eu; Number of 

Images of the Image Collection: 200)

In Figure 27 and Figure 28, we used images with different pixel dimensions
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(sizes) of 192 x 144 and 96 x 72. It indicates that the results do not change 

regardless of the size of images.
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5 Conclusion and Future Works 

5.1 Conclusion

Use of Clustering to group correlated image and Neural Network as a classifier 

and retrieval engine make it possible to perform efficient image retrieval even 

in large image database.

The main goal of this thesis is to implement and evaluate Fuzzy K-means 

Clustering using Neural Network and various distance functions and compare 

its performance against an existing system given in [1]. Results show that 

Fuzzy K-means Clustering performs better than K-means Clustering.

We implemented and compared Euclidean, Correlation, Standardized 

Euclidean and Mahalanobis distance functions in our system. Results show we 

could choose different distance functions with different applications to get 

better performance.

5.2 Future Directions

Our approach can be improved in following ways:

1. Improving Clustering by finding the optimal number of clusters.

System performance may be improved by finding the optimal number of 

clusters. In [21], a method using Simulated Annealing is proposed to 

determine the optimal K.

2. Adding User Feedback

Different people may perceive the same picture differently, this will provide 

a supplementary information to the retrieval engine to improve the 

performance.
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