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Abstract

In this thesis, a new methodology o f tomato plants structural model (SM) construction is 
presented. The methodology is based on the concepts from 3D reconstruction modeling 
methods, integrated with modem laser scanners and CAD tools to result in an 
architecturally accurate and human maniplable tomato plant model reflecting crop growth 
and management over time. A laser scanner is used for plant measurement and the 
resulting data are intelligently simplified. Critical data is extracted and exported to a 
CAD system as reference points to form a parametric model construction. A 2D comer 
detection algorithm is developed and applied for reference point extraction in 3D scans. 
A hierarchical structure is used to decompose the tomato plants into weekly-growth- 
sections (WGS) to relate age with plant growth geometry and solving occlusion and 
complexity problems. A mathematical plant growth model is developed to define 
geometry and topology o f the plant components, WGS and the plant as a whole.

Key W ords: Tomato Plant Modelling, CAD, Parametric model, Point cloud, Rule-based 
plant model, 3D reconstruction, Laser scanning, comer detection
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Terminology

Term inology fo r 3D CAD

2 j-j ! A concept o f displaying real-world objects on a flat surface showing only 
j height and width. This system uses only the X and Y axes.

^ j-j [A way o f displaying real-world object in a more natural way by adding 
j depth to the height and width. This system uses the X Y and Z axes.

Boolean i  Commands that allow you to add, subtract or intersect solid objects in 
operations i AutoCAD.

Complex s Generally a curved surface. Examples: car fender, landscape contour, 
i surface

Extrude
s The extrude command raises the shape o f a 2D outline into a 3D solid. For 
i example, a circle would be extruded into a cylinder.

Face s  The simplest true 3-D surface. 

Facet
A three or four sided polygon that represents a piece (or section) o f a 3-D 

! surface.

Isometric j A simple way o f achieving a '3-D' appearance using 2-D drawing methods. | 
Drawing i

. . . .  < Also known as the top view, a plan view looks directly down the WCS Z-
lan lew ^  x _ y  axis.

Primitive | A basic solid building block. Examples would be boxes, cones, cylinders. 

Region j A 2-D area consisting o f lines, arcs, etc.

_ , ! A complex way o f adding photo-realistic qualities to a 3-D model you
| have created.... ......... j.............. . . ...... ..... .......  ..... ... ... .

Shading j A quick way o f adding color to a 3-D object you have drawn.

Solid j A 3-D model creating using solid 'building blocks'. This is the most 
Model j accurate way o f representing real-world objects in CAD.

Surface I A 3-D model defined by surfaces. The surface consists o f polygons. (See 
Model § facets.)

Thickness A property of lines and other objects that gives them a 3-D like 
appearance.

j vertex t a zero-dimensional part o f  a higher dimensional entity,
i  e.g. part o f a geometry, a polygon, or polyhedron

! v . i A window into your drawing showing a particular view. You can have
! i several viewnorts on vour screen. Different from the viewnorrs used in

xii
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Wire­
frame
Model

plotting.

A 3-D shape that is defined by lines and curves. A skeletal representation. 
Hidden line removal is not possible with this model.

Terminology for Tomato Plant Modeling

Model

Rule-based modeling

Image-based modeling

i a pattern, plan, representation, or description designed to 
i show the structure or workings o f an object, system, or 
j concept.

! Based on previous experiments or measurement, using 
i compact rules or grammars to generate a model.

i methods rely on a set o f images o f a scene to generate a 
■three-dimensional model.

j Range-based modeling i Model an object using 3D data.

I L-system

i  Parametric model

j  Feature-based model

Laser Scanner

13D reconstruction

a formal grammar (a set o f rules and symbols) most 
famously used to model the growth processes o f plant 
development, though able to model the morphology o f a 
variety o f organisms. L-systems can also be used to 
generate self-similar fractals such as iterated function 
systems

Each entities in CAD, are defined by parameters which 
control the various geometric properties o f  the entities and 
also the locations o f  these entities within the model. These 
parameters can be changed by the operator as necessary to 
create the desired part.

|A  modeller allow operations such as create holes, fillets to 
I be associated with specific edges and faces, when edges or 
faces move because o f a regeneration, the feature 

I operations move along with it, keeping the original 
i relationships.

I a device that analyzes a real-world object or environment to 
| collect data on its shape and possibly color. The collected 
i data can then be used to construct digital, three dimensional 
models that are used in a wide variety o f applications.

: The process o f converting a point cloud into a polygonal 
3D model is called reconstruction. Reconstruction involves 

I finding and connecting adjacent points in order to create a 
(continuous surface

xiii
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Physiological model

(Morphogenetic model

j  Registration 

i Solid modeling

Time-of-flight

|
i
j Triangulation

| Topology

j Digitizing

Integrating the basic physiological functions that reflect the 
mechanism o f plant growth and the relation between the 
plant and agricultural environment, such as plant growth vs. 
carbohydrates.

Comprise object geometry and topology data, providing 
shape information.

the process o f transforming the different sets o f data into 
one coordinate system.

s the unambiguous representation o f the solid parts o f  an 
i object, that is, models o f  solid objects suitable for computer 
processing. It is also known as volume modeling.

. finds the distance o f a surface by timing the round-trip time 
(of a pulse o f light. A laser is used to emit a pulse o f light 
I and the amount o f time before the reflected light is seen by 
f a detector is timed

• I the triangulation laser shines a laser on the subject and 
| exploit a camera to look for the location o f the laser dot. 
j Depending on how far away the laser strikes a surface, the 
I laser dot appears at different places in the camera’s field of 
(view. This technique is called triangulation because the 
laser dot, the camera and the laser emitter form a triangle.

the connectivity o f a set o f points where adjacency is given 
[ by the edges regardless o f the location o f the points

the process o f using a 3D digitizer to capture points and 
output
scanned data; also referred to as scanning

3D digitizer

3D digitized dataset

| any device (contact or non-contact technology) that can 
|capture
(points (x,y,z coordinates) that describe the surface o f a 
(physical
(object, as well as possibly other information (color, 
(intensity, point
(organization, etc.); also referred to as a scanner

(the data (captured points) generated by a 3D digitizer; also 
j referred to
jas a point cloud or a scan

xiv
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1. Introduction

1.1 Objective, scopes and purposes

In this research, issues o f modeling a complex object using modem technologies are 

addressed. The goal is to develop a methodology to model structural aspects o f 

greenhouse tomato plants (here after called “plant”). The model needs to include detailed 

geometrical and topological information; sufficient to support 3D walk-through 

visualization, measurement and inspection. Users are allowed to manipulate the model by 

changing parameters to reflect plant growth over time and plant variety. The criteria 

considered in this work are:

•  Accuracy: in terms o f object geometry and topology;

• Level o f automation: in terms o f raw data acquisition, processing and model 

generation;

• Flexibility: in terms o f variety o f applications;

• Computational cost: in terms o f data size and processing time

To accomplish the objective and satisfy the criteria required, new technologies for 3D 

measurement and model construction are deployed in the modeling system. In general, 

the scope o f this research thesis can be summarised as:

1) Review and investigate the current tomato plant structural model construction 

methods by both theory and experiments;

2) Develop an appropriate modeling methodology for a complex object (like plants) 

visualization, measurement and inspection

There are two purposes to build a tomato plant structure model.

1) A plant structural model allows us visualize, measure and inspect the physical 

structure o f  a plant, by which plant functional characteristics can be derived and 

the interaction with the environment can be studied (see Section 1.5).

1
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2) Modern automation and computer technologies have been dramatically changing 

the nature o f labour tasks in most o f the industries. While, today, operations (e.g. 

harvesting) in crop management in agriculture industry are still heavily depend on 

labour manual work, though automate crop management has been studied for 

decades. One o f the many difficulties that delay the automation process in crop 

management is quick and accurate object detection and localization. As a digital 

map o f a plant, a digitized structural model will help in this aspect by offering 

accurate and detailed positional information o f components (e.g. fruits) o f a plant.

There are great similarities among a tomato plant with the other crops in terms of 

geometry and topology. Thus, the developed modeling methodology and applications can 

be applied to the other crops as well.

It is necessary to mention that modeling a crop (e.g. tomato plants) needs continuously 

monitoring and simulating the growth process of multiple samples with different 

environment settings, requiring heavy human and equipment resources. This research is a 

pioneering work in terms of technologies used and the concept o f plant decomposition. In 

this thesis, we are expecting to delivery a right direction and an advanced foundation for 

future studies in this area.

Figure 1: Typical tomato plants in a greenhouse, Leamington, Ontario, July 2006

2
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1.2 Outlines

Chapter 1 covers general introduction o f this thesis, including the research objective, 

scopes, background and motivations o f tomato plant modeling. Chapter 2 presents current 

methodologies review, where rule-based and 3D reconstruction methods were 

investigated and detailed. The Problems statement and the proposed solutions were 

presented in Chapter 3, where the new modeling system overview, plant mathematical 

model, scan data simplification and proposed reference point extraction, model validation 

and system interface, as well as concept and procedures o f CAD parametric model 

construction are illustrated. Chapter 4 describes the implementation and experiments 

results based on the new methodology. Plant measurement using a M inolta scanner, 

including the specifications o f the hardware and operating procedures are detailed in 

section 4.1. Scan data processing using PolyWorks including scan data acquisition, 

registration, data simplification and reference point extraction are collected in section 4.2. 

Plant mathematical model construction, measurement o f tomato plants are included in 

section 4.3. Measurement results, generated CAD components library and WGS library 

are shown in section 4.4. The conclusions, summary o f the contributions and issues for 

further research are presented in Chapter 5.

1.3 Plant structural model construction overview

As stated by Van Der Heijden, P.H.B. De Visser and E. Heuvelink (2003), plant models 

can be classified along the axis from structural to functional models. At one side o f the 

spectrum, models are mainly architectural or geometrical in nature (structural model,

SM). At the other end, models are predominantly process-based (Bouman et al. 1996), 

often referred to as functional models (FM). The SM comprises geometry (i.e. the size, 

shape o f plant components) and topology (i.e. the physical connections between plant 

components), providing shape information o f a plant [1][16], Conversely, FM integrate 

the basic physiological functions that reflect the mechanism o f plant growth and the 

relation between plant and agricultural environment.

3
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In structural modeling domain, crops (e.g. tomato plants), remain one o f the most difficult 

kinds o f object to model due to their complex geometry and wide variation in appearance. 

Compare with other objects, a tomato plant is complex and various in structures. 

Hundreds o f plant organs (e.g. leaves and trusses) make up a mature tomato plant. Each 

organ is an individual object. None o f the objects is identical from others in terms o f 

geometry and topology.

Computer modelling and visualization o f plant development can be traced back to 1962, 

when Ulam applied cellular automata to simulate the development o f branching patterns, 

thought o f as an abstract representation o f plants [6]. Subsequently, Cohen presented a 

more realistic model operating in continuous space and Lindenmayer proposed the 

formalism of L-systems as a general framework for plant modelling, and Honda 

introduced the first computer model o f tree structures. From these origins, plant 

modelling emerged as a vibrant area o f interdisciplinary research, attracting the efforts o f 

biologists, applied plant scientists, mathematicians, and computer scientists. Computer 

graphics, in particular, contributed a wide range of models and methods for synthesizing 

images o f plants [6].

Conventionally, there are four methods developed for plant structural or geometrical

model construction.

Interactive modeling tools

User constructs objects with drawing programs, e.g. mechanical CAD, like AutoCAD, 

Catia, Pro/Engineer, Unigraphics, SolidWorks. In this thesis we use SolidWorks 

2004/2006 as our CAD tools

Scanning tools

In this category, geometry o f objects is acquired with active sensors, like CAT, MRI, 

laser, magnetic, etc. The collected data can then be used to construct 3D models that are

4
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used in a wide variety o f  applications. In this thesis, we use Fero Laser scanner and 

Minontal Vivid 910 laser scanner to collect tomato plant 3D information.

Computer vision

Infer 3D geometry from images, using stereo, motion, constrains, etc. Obtain depth 

information using stereovision algorithms.

Procedural generation

The goal is to describe 3D models algorithmically using sweeps, fractals, and grammars. 

The advantages o f using procedural generation system are: automatic generation, concise 

representation and parameterized classes o f models. Rule-based plant modeling method is 

the representative o f this class, in that, a structural plant model is built by applying 

production rules. In this research, we use L-studio to investigate rule-based modeling.

1.4 General criteria

in the purpose o f evaluation o f  geometrical modelling, Sabry F. EI-Hakim and his team 

made a concise summary o f criteria in [25]. We use them as a guideline for our modeling 

methodology development.

• High geometric accuracy: in terms o f positions, orientations and sizes o f 

components and the plant as a whole.

•  Capture o f  all details required: in terms o f level of resolution that the 

measurement can be accomplished.

• Photorealism: in terms o f the degree o f faithfully reassemble o f the object.

• High automation level: in terms o f minimization o f user interaction during the 

modeling process.
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• Low cost: in terms o f hardware (sensor) cost, and computation (time and data 

size) cost.

• Portability: in terms o f hardware feasibility and accessibility.

• Application flexibility: in terms o f the wideness o f the range o f the modeling 

method applications, i.e. the same modeling system can handle broad range of 

objects.

• Model size efficiency: in terms o f the ability o f presenting more information with 

fewer data size. It is desirable that the reconstructed surface description is as 

simple as possible while preserving its details and accuracy [26].

1.5 The Motivations

As a digital map o f plants, a plant structural model is the tool that enable us to visualize, 

monitor and investigate plant growth, to test hypotheses about how different parts of the 

system interact, and to develop an understanding about the system as a whole [1].

Plant modelling started in the early 1970’s and being developed significantly in 1980’s. It 

has been motivated by the need for quantitative information to improve decision-making 

using the emerging computer technology. Plant models can be used at an operational level 

to simulate the crop processes that interact with the environment (i.e. greenhouse 

climate). At the tactical level, models are needed to relate the general policy of 

environment control and crop management to yield formation during the crop cycle [2],

The growers can utilize the model to predict a plant’s growth, understand its behaviour 

better and improve how it behaves in certain conditions and environment, optimizing the 

quality o f the crop production. The growers can start their desired production right at the 

very beginning by controlling the biochemical and physical conditions more closely.

From the grower’s point o f view, plant models can be used for production optimization, 

decision support systems and yield prediction. Use o f crop simulation models 

incorporating local climatic conditions with management operations may increase the 

grower’s ability to make more timely and reliable decisions.

6
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For researchers, scientific crop growth simulation models have traditionally been used to 

address research problems, answer questions and most importantly, to increase 

knowledge on crop growth, development and yield, see example [4],

For greenhouse automation, 3D plant models enhance 3D digital map o f the greenhouse 

that can be embedded into robotic computer system for object detect and localization, i.e. 

robotic navigation and harvesting.

For example, as shown In Figure 2, previous decision (dotted line) was made by growers 

using their experience or early experimental data; Now, by simulate and inspection a 

functional-structural model with the plant production with various settings, an optimal 

setting point can be achieved [5],

Expectation (e.g. Crop harvest 
2 weeks early)

Optimal set-point (e.g. raise 
temperature 5°C)

Grower decide set-point 
based on previous 
experienceManipulation 

(e.g. increasing 
heater capacity)

Feedback (e.g. 
plant growing 
faster)

Action (e.g. a warmer

Greenhouse
Mechanism

Grower,
Crop
Management

Crop
response

Environment and 
human 

intervention

Plant Model 
Simulate the crop response to the environment 

Test the decision made by grower 
Input: desired crop production 

Output: optimal set-point

greenhouse)

Fig. 2: An example o f  a plant model used in plant crop management system
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2. Plant modeling methodology review and investigation

2.1 Rule-based plant modeling

Rule-based methods use compact rules or grammar creating models o f plants and trees.

As a prime example, Prusinkiewicz developed a series of approaches based on the idea of 

the generative L-system in 1994 [6]. Weber and Penn use a series o f geometric rules to 

produce realistic-looking trees in 1995 [12]. There are a number o f techniques that take 

into account various kinds o f plant interaction with the environment.

2.1.1 Modelling plant as geometrical object

In rule-based modelling domain, a simple plant can be modelled as a geometrical object 

by (a) using simple 3D-symbols, or (b) by applying texture maps to improve the visual 

quality o f  simple symbols. However, for detailed modelling to a complex plant with 

thousands o f individual objects, algorithms for automatic object generation (i.e. L- 

system) have to be applied [17] (see Section 2.1.2).

For (a), there are numerous symbol sets available on the market, with a higher degree of 

detail and therefore larger file sizes, but still far away from real vegetation structures. For 

(b), a very popular method o f plant visualisation in landscape architecture is the use o f 

texture mapping in connection with simple 3D-faces. Texture mapping implies the 

projection of raster graphics onto a modelled surface in order to alter the surface 

characteristics such as the colour or the transparency [17]. In the case of plant 

visualisation, a photograph o f a real tree can be mapped onto a rectangular vertical face; 

in the rendering process the areas o f the image background are treated as transparent. By 

applying this simple method a high degree o f realism can be achieved [17].

2.1.2 Automatic generation of plant structures using rule-based method

Plants consist o f  a large number o f individual elements, however, the configuration of 

these elements follows relatively simple rules (e.g., the branching pattern within a genus
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is usually constant). Therefore plant-modelling algorithms have to find ways for a formal 

mathematical description of the ‘genetic construction plan’ o f a plant [2] [17].

Simple fractal structures

Benoit Mandelbrot’s work on fractal geometry provides a means for the simple 

description of complex structures found in nature [17]. The principles o f self-similarity, 

which form an important basis for fractal geometry, can be observed both in landscape 

morphology and biological organisms. It is easy to create simple tree-like structures with 

the help o f fractal construction rules implemented in a visualisation system.

However, there are limitations to the degree o f realism achievable with this approach. A 

typical example shows branching patterns: While it is obvious that a specific branching 

pattern is repeated from the major branches down to smaller twigs, this cannot be 

repeated infinitely. Many trees change their branching pattern with age. Also, there are 

phases o f vegetative growth alternating with phases o f generative growth, which are 

difficult to model within a standard fractal graphics system [17].

The AMAP system

As opposed to the deterministic approach o f L-system based method, the AMAP system 

is a stochastic model based on the specific statistical probability o f the occurrence o f a 

certain phenomenon, such as branching, trunk length, fructification, etc [6][17]. These 

parameters must be derived from field data for every single plant species; therefore the 

data collection and parameterisation for different growth stages is a very time consuming 

procedure.

AMAP was originally designed for the modelling o f agricultural crops, and was further 

developed into a commercial visualisation system for landscape architecture. A big 

advantage o f the practical implementation in the visualisation module is the fact that the 

individual plants are being modelled temporarily during the rendering process. This 

means that only the plant parameters have to be stored, but not the millions o f polygons 

that form a scene. This keeps file sizes for large projects in a manageable range [17].
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2.1.3 Modelling plants using L-system

L-systems

L-systems are a mathematical formalism proposed by the biologist Aristid Lindenmayer 

in 1968 as a foundation for an axiomatic theory o f biological development [6][13], More 

recently, L-systems have found several applications in computer graphics. Two principal 

areas include generation o f fractals and realistic modelling o f plants. Central to L- 

systems, is the notion of rewriting, where the basic idea is to define complex objects by 

successively replacing parts o f  a simple object using a set o f rewriting rules or 

productions. The rewriting can be carried out recursively [13].

With the help o f this approach, plants can be modelled in the same way as they grow in 

reality, from an initial apical bud to the development o f stems, branches, leaves etc. 

Different hormonal stages within a plant’s life, such as juvenile growth, flowering and 

fructification can be simulated. With relatively few lines o f program code, very complex 

structures can be modelled. In connection with high-end rendering systems, amazing 

images o f many different types o f organisms have been produced.

L-system formalism is able to generate detailed and realistically visualised 3D plant in 

computer, which is further refereed to as “virtual plant” [13][16].

L-studio and Vlab

L-studio and Virtual Laboratory (Vlab) are one o f the most recent L-system based plant 

modelling tools developed at the University o f Calgary, Canada. In that, plant growing 

with human intervention (i.e. pruning) can be simulated.

The simulation programs cpfg and lpfg are the heart o f L-studio. Their design has been 

guided by two key objectives: (a) flexibility, making it possible to model and simulate a 

wide range o f  structures and developmental processes in plants, and (b) visual realism o f 

models [15].

Both cpfg and lpfg make it possible to construct models with interactive features. The 

user can interact with the models by selecting a model component with a mouse to trigger
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a programmable action associated with this component. Some applications o f this feature 

include: simulation o f pruning and grafting, interactive placement o f  insects or pathogens 

on selected parts o f the plant, selective increase or decrease o f  the level o f detail in the 

model presentation, and selective display o f parameters associated with the model. Based 

on their input (a number o f files including the L-system model and optional data files), 

cpfg and lpfg create a three-dimensional internal representation o f a model and project it 

on the screen. Model visualization is based on the OpenGL graphics library and supports 

standard modelling and rendering techniques developed in computer graphics, such as 

parametric surfaces, generalized cylinders, and texture mapping [15].

The output may be a static model (which can be interactively rotated and zoomed in or 

out by the user) or computer-generated animation that results from visualizing 

consecutive stages o f the simulation. The visualizations may have the form o f schematic 

or realistic representations o f branching structures, as well as plots and histograms. The 

multi-view presentation mode, available in lpfg, makes it possible-to simultaneously 

visualize different aspects o f  the simulation in separate windows on the screen. For 

instance, one view may realistically depict a growing plant, while another view may 

represent quantitative aspects o f  the simulation in progress as function plots [15].

A experiment using L-Studio 4.0

The purpose o f the experiment is to test the functionality o f L-Studio. The following 

figures capture some experimental results and illustrate the functionality o f L-Studio. For 

all o f  the examples the software used was L-Studio 4.0 (Evaluation version), working on 

the Lychnis example plant, modified by Tong Wang, July 2006.
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Figure 3: Lychnis exam ple plant with flow ers disabled.
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Figure 4: Lychnis example plant with flowers enabled.
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Figure 5: Original branching angle function: angle over position
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Figure 6: Modified branching angle function: angle over position
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Figure 7: Lychnis example plant with modified branching angle pattern.
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Figure 8: Original leaf growth function: size over time
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■91
Figure 9: Modified leaf growth function: size over time

Figure 10: Lychnis example plant with modified leave pattern.

2.1.4 Summary of rule-based method

Rule-based plant modelling uses compact rules or grammars to generate realistic-looking 

plant synthetically [12]. The “rules” are derived from plant database, which can be 

obtained either from theoretical models, previous experimental data, or by 3D scan 

measurement [17]. “Rule-based” morphogenetic models can be parameterized and
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validated by 3D digitized plant. The beauty o f rule-based plant models is that they 

provide a clear interface connecting rules and the spatial and textured structure o f the 

plant. The rule decides the appearance o f a plant [15][23].

The purpose o f rule-based architecture tomato plant modelling (i.e. L-studio) is for 

generating a relationship between plant growth and the environment [12], The plant 

models are based on previous experiments data and assumptions, which are defined by 

rules. However, rules can represent certain type o f growing parameters, but not all. For 

example, a greenhouse r tomato plant is not growing naturally; on the contrary, it is in a 

specific environment with heavy human intervention, i.e. the plant is hanging up on the 

overhead wires, and with constant pruning activities. There are no rules available for this 

particular growing Patten. Thus, the geometrical accuracy is not satisfactory for plant 

architecture analysis in this case.

Moreover, rule-based plant models used in computer graphics are commonly created with 

procedural methods. A difficult problem is the user control o f the models: a small number 

o f parameters are insufficient to specify plant characteristics in detail, while large 

numbers o f parameter are tedious to manipulate and difficult to comprehends [9]. The 

drawback of the rule-based model is that it needs expertise to use [12], and for large plant 

or group o f plants, it is very time-consuming, as the un-structured nature o f a plant having 

too many organs and variables involved.

From the global level, it is clear that different plant growing have different rules, even 

same plant may show different growing attributes with various environments. As the 

model is made by rule, the accuracy o f the rule-based plant model is subject to the 

robustness of the rules as well as the input parameters.

2.2 Modeling plant using 3D reconstruction method

2.2.1 The concept

As mentioned in section 1.3, based on methodology, structural plant models can be 

achieved from rule-based plant modelling, or from 3D plant reconstruction. The latter can 

be accomplished either from image-based plant modelling, or using range-based
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approach. Basically, a morphogenetic plant model comprises the plant measurement and 

model construction based on the measurements. Rule-based modeling approach use 

computer graphics and rendering techniques (which are defined by rules) to construct the 

model based on the architectural measurement [21]. While, 3D reconstruction, use surface 

meshing techniques, taking 3D point cloud as reference to construct a polygonal surface 

model. In contrast to rule-based modelling strategy, 3D reconstruction directly models the 

plant using real world image and the resulting model inherits the realistic shape and 

complexity of the plant.

3D reconstruction builds models based on object measurements. Fabio described the goal 

o f surface reconstruction as follows [34]: “given a set o f sample points P, assumed to lie 

on or near an unknown surface S, create a surface model S’ approximating S”. A surface 

reconstruction procedure cannot guarantee the recovering o f  S exactly, since we have 

information about S only through a finite set o f sample points. In general, as the sampling 

density increases, the output results S’ is more likely topologically correct and converges 

to the original surface S.

From the above statement, we can conclude that 3D reconstruction comprises 2 steps:

1. Measurement: capture 3D information in point cloud format (called unorganized 

points).

2. Intelligently compress point’s density, forming a polygonal surface model

2.2.2 Image-based approach

The principle

Image-based plant modelling uses stereovision reconstruction techniques found in the 

field o f computer vision. It can be described as “A process o f recovering 3D structure 

from 2D images at their overlapping area. That is the ability to interpret information on 

the 3D structure and distance o f an object from two or more images taken from different 

viewpoints” [10]. To capture a full 3D representation o f  an object, close-spaced images 

surrounding the object are required [25][31],

17

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Basically, stereo vision must solve two problems [8][10],

• Correspondence problem: determine which pixel on the left corresponds to 

which pixel on the right. It is a “search” problem: find features to match or 

similarity measure to compare features.

• Reconstruction problem: given a number o f correspondence pairs and camera 

geometry information, find location and 3D structure o f  the observed objects.

Deriving 3D measurements from images naturally requires that interest points be visible 

in the image. Often, this is not possible for a complex object or combination o f many 

objects either because a region is hidden or occluded behind an object or a surface or 

there is no mark, edge or visible feature to extract, (like tomato plant). In objects such as 

monuments in their normal settings, restrictions also stem from there being limited 

locations from which to take the images and from the existence o f other objects, shadows, 

and uncontrolled illumination [25].

Reconstructing a 3D plant model from 2D images

At plant structural modeling domain, stereovision has been used by Ivanov et al in 1995, 

where a canopy o f maize plants has been reconstructed. In this set-up, two cameras at a 

fixed distance apart record the same scene. Extensive calibration of cameras leads to an 

estimate o f the perspective-transform matrix for each o f the cameras. From the shift o f 

corresponding points in both views, the 3D position in real-world coordinates can be 

computed. Sequential manual removal o f leaves and image recording was necessary to 

obtain a full reconstruction of the stand. A standard deviation o f about 1 cm in Xand Y- 

direction and 5 cm in Z-direction could be obtained, whereas bias was rather low. 

Stereovision as applied by Ivanov et al. required extensive manual intervention [31],

Nowadays, many different photogrammetry software tools exist, where pictures o f a 

scene are taken under a large number o f  angles with a calibrated camera. By interactively 

indicating object features like points, lines or edges, the software will try to reconstruct 

the points across the photos, resulting in a 3D model. Phattaralerphong and Sinoquet 

(2005) created artificial 3D scenes o f trees, using digitized data at leaf scale. The hence
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created scene was used to synthesize plant images using POV-Ray®. From these images, 

canopy volume parameters were estimated, using photogrammetic principles.

In summary, there are 2 major problems in correspondence pair setting:

• Occlusion: leaves overlap, branches are covered by leaves.

• Illumination levels vary for different viewpoints: This fact causes pixel 

intensity values to vary which can lead to correspondence search failure.

To overcome these problems, Quan presented his approach in [12]. There were three parts 

in the system:

• Image acquisition and structure construction from motion: to recover the 

camera parameters and extract point correspondence, obtain 3D point cloud.

• Leaf segmentation and recovery: to get a “sample le a f’, a deformable 

generic model which will be used to fit the other segmented data to model all 

the other visible leaves which are under occlusion.

• Interactive branch recovery: the branching structure is difficult to 

reconstruct automatically from images due to occlusion. The solution is to 

design a data-driven editor that allows the user to easily recover the branch 

structure. The user is presented with an interface with two windows: an area 

showing the current synthesized tree, and the other showing the synthetic tree 

superimposed on an input image. The image can be switched to any other 

image at anytime. The user can have four basic operations: draw curve, move 

curve, edit radius, specify leaf.

In this system, for a given plant, the user first segments out a leaf; this is used as a 

deformable generic model, which is subsequently used to fit the other segmented data to 

model all the other visible leaves. The system is also designed to use the images as guides 

for interactive reconstruction o f the branches. The resulting model o f the plant very 

closely resembles the appearance and complexity o f  the real plant [12].

19

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Summary of image-based approach

The image-based modelling approach is a well-proven and reliable technique for 3D 

object reconstruction. It is easy to use, and the necessary hardware is usually very 

portable, low to medium cost and integrated with a wide availability o f commercial 

modelling software packages [25] [31].

However, intensity values variation (i.e. illumination) from the images will cause errors 

when searching for corresponding pairs. In addition, issues remaining in image-based 

modelling include the capture o f details on unmarked and sculpted surfaces and the full 

automatic creation o f the 3D model [25], In this framework, capturing the data for a 

realistically model would require a large number o f closed spaced images, and deriving 

the depth require a large amount o f user input [11][25][26]. Difficulties in using this 

method to model a complex plant like a tomato plant can be listed as below:

• Occlusion problem: information o f components being covered or shadowed can 

not be recovered [12];

• Un-uniformed illumination from different viewpoints, causing difficulties on 

corresponding point pair searching [31];

• For detailed plant model, images are close-spaced. That means for a full plant 

modelling, “a lot of images” are needed [31].

• Camera calibration is required [10][31];

• Human interaction is required to initialize and supervise the computation process 

[12][31],

2.2.3 Range-based approach

2.2.3.1 The concept

The rapid development o f laser scanning and computer graphic technology has been 

advancing 3D plant reconstruction using active range data recently. In contrast with the 

image-based method, an active sensor has the advantage o f acquiring 3D information
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directly [25]. In this arrangement, a laser scanner is used to capture the 3D structure and a 

digital (or video) camera is incorporated to provide colours and textures which are then 

mapped on to the range image.The measured data alone, usually represented as a point 

cloud, lacks topological information and is therefore often processed and modeled into a 

more usable format such as a triangular faced mesh, a set o f NURBS surfaces or a CAD 

model. Applications like PolyWorks is used to process the point clouds themselves into 

formats usable in other applications such as 3D CAD, CAM, CAE or visualization.

In this research, a 3D scanner is used for object measurement in the form o f point cloud. 

These points can then be used to extrapolate the shape o f the subject. If  color information 

is collected at each point, then the colors on the surface o f the subject can also be 

determined. Like cameras, 3D scanners have a cone-like field o f view. They can only 

collect information about surfaces that are not obscured. While a camera collects color 

information about surfaces within its field o f view, 3D scanners collect distance 

information about surfaces within its field o f view. The “picture” produced by a 3D 

scanner describes the distance to a surface at each point in the picture. For most 

situations, a single scan will not produce a complete model o f the subject. Multiple scans, 

even hundreds, from many different directions are usually required to obtain information 

about all sides o f the subject. These scans have to be brought in a common reference 

system, a process that is usually called alignment or registration, and then merged to 

create a complete model.

At the following example (Fig. 11), S. Fleck, D. van der Zande, M.Schmidtc, P. Coppin 

used laser scans to model a tree structure, and extract the tree structural information (e.g. 

the height o f  the tree) to interpret the functional aspect o f the sampled tree [21].
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Fig.11: Reconstruction of tree structure from laser-scans: 3D point cloud of an apple 
tree, 1352 points after thinning. See [21]

In general, the entire modelling process can be briefly summarized as follows [30]:

• 3D measurement, multiple range data and colour images acquisition and data 

processing: capture needed points, remove unwanted

• Multi-scan registration: align scans as a complete view

• Fusion intensity image with range image: add colour and texture

•  Transform range data into 3D CAD model: from point to surface

2.2.3.2 Methods of 3D measurement

Plant architectural measurement is the bases o f model construction. Traditionally, Two 

main approaches exist: contact measurements, where the 3D coordinate o f each point is 

individually captured, requiring extensive human interaction, and non-contact point-cloud 

measurements.

Contact measurements
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A commonly used contact measurement device within the plant community (e.g. Sinoquet 

and Rivet 1997; Rakocevic et al. 2000; Evers et al. 2005) is the FASTRAK® magnetic 

3D digitizer (Polhemus, Colchester, VT, USA). It includes a magnetic signal receiver and 

pointer, allowing the user to record the 3D spatial coordinates o f the pointer within a 

hemisphere o f 3 m diameter from the receiver. Individual plants are digitally 

reconstructed by recording a series o f point coordinates and the relevant connectivity 

between the points. Due to its principle o f creating a magnetic field, it can be used 

outdoors at relative ease, but in greenhouse environments the surrounding iron frames can 

disturb measurements.

Non-contact point-cloud measurements

Active scanners emit kinds of radition and detect its reflection in the order to probe an 

object or environment. Possible types o f radiation used include light, ultrasound or x-ray 

Error! Reference source not found..

Time-of-flight

The time-of-flight 3D laser scanner is an active scanner that uses laser light to probe the 

subject. At the heart o f this type o f scanner is a time-of-flight laser range finder. The laser 

range finder finds the distance o f a surface by timing the round-trip time o f a pulse o f 

light. A laser is used to emit a pulse o f light and the amount o f time before the reflected 

light is seen by a detector is timed. Since the speed o f light c  is a known, the round-trip 

time determines the travel distance o f the light, which is twice the distance between the

scanner and the surface. If  t  is the round-trip time, then distance is equal to ( c  ‘ ^ ) / ^ .  

Clearly the accuracy o f a time-of-flight 3D laser scanner depends on how precisely we 

can measure the t  time: 3.3 picoseconds (approx.) is the time taken for light to travel 1 

millimetre [47],

The laser range finder only detects the distance o f one point in its direction o f view. Thus, 

the scanner scans its entire field o f view one point at a time by changing the range 

finder’s direction o f view to scan different points. The view direction o f the laser range
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finder can be changed by either rotating the range finder itself, or by using a  system o f 

rotating mirrors. The latter method is commonly used because mirrors are much lighter 

and can thus be rotated much faster and with greater accuracy. Typical time-of-flight 3D 

laser scanners can measure the distance at o f 10,000-100,000 points every second [47],

Laser triangulation

The triangulation 3D laser scanner is also an active scanner that uses laser light to probe 

the environment. The triangulation laser shines a laser on the subject and exploit a camera 

to look for the location o f the laser dot (Fig. 12). Depending on how far away the laser 

strikes a surface, the laser dot appears at different places in the camera’s field o f view. 

This technique is called triangulation because the laser dot, the camera and the laser 

emitter form a triangle. The length o f one side o f the triangle, the distance between the 

camera and the laser emitter is known. The angle o f  the laser emitter comer is also 

known. The angle o f the camera corner can be determined by looking at the location o f 

the laser dot in the camera’s field o f view. These three pieces o f information fully 

determine the shape and size o f the triangle and gives the location o f the laser dot comer 

o f the triangle. In most cases a laser stripe, instead o f a single laser dot, is swept across 

the object to speed up the acquisition process. The National Research Council o f Canada 

was among the first institutes to develop the triangulation based laser scanning 

technology in 1978 [47].

By laser triangulation, a laser point or laser line (sheet o f light) is projected on the scene. 

This method is rather robust, although shininess, absorption by the surface or abundance 

o f ambient light may cause insufficient contrast. Translucency o f plant material makes the 

position estimation less accurate. Occlusions can occur if the object has concavities. 

Texture mapping can add colour/texture to the object.
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Laser emitter

Camera
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Fig. 12: Principle o f a laser triangulation sensor. Two object positions are shown.

Major advantages o f laser triangulation are its high accuracy, the dense cloud o f points 

that can be measured, and its robustness. It can measure distance from the camera to plant 

parts, still generating a reasonable 3D outline (profile) o f the object in complex situations.

Disadvantages are the fixed resolution (depending on the thickness o f the laser beam), 

which may be crucial for scanning small flowers, and scattering as a result o f the 

translucent character o f most plant parts. Kaminuma et al. (2004) use a laser range finder 

(type Voxelan Hew- 50HS, Hamano Eng, Japan) to reconstruct A r a b i d o p s i s  plants. Loch 

(2004) used the Polhemus FastSCAN hand-held laser scanner (triangulation principle) 

extensively for the generation o f leaf-surface models. The hand-held device keeps track 

o f its position by means o f a magnetic field, hence being vulnerable for nearby metallic 

objects or electromagnetic fields [47].

2.2.3.3 Range data acquisition and processing
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Capturing range data

3D digitizing consists o f simultaneously recording plant geometry, (i.e. the spatial 

location o f plant components) and plant topology (i.e. the physical connection between 

plant components) [22]. Capturing range data for plant digitising raises several issues.

The first is that the surface may not produce sufficient laser contrast for the scanner to 

detect a profile. This may be caused by shininess or by the colour o f a surface. Since a 

green surface will absorb light o f any colour but green and laser light is relatively pure in 

colour, not enough o f a red laser beam may be reflected from the object and received by 

the scanner cameras to calculate positions o f the data points (see Fig. 13). Rather than an 

expensive change from a red to a green laser, the surface may be treated to change its 

reflective properties [20].

Secondly, plant digitising by laser scanner cannot be done under broad daylight. The 

reason for this is that scanning errors can occur when the scanners view direct sources o f 

bright, broad-spectrum light [20].

Lastly, at least one out o f the set o f scanner viewpoints needs to have a direct line o f view 

of the profile; otherwise the information for this part will be missing. This means that 

hidden plant parts cannot be scanned unless enough scans from different viewpoints are 

available [20],
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Figure 13: A test plant model: Software: PolyWorks V9; Scanner: Minolta VIVID 910, 

July 2006, NRC London. Measuring range setting: 1450mm; Accuracy: 0.068mm/2.5m; 

Total Scan taken: 12 (6 from top view, 6 from bottom view, 60 degree per step); Scanning 

Time: 25 Minutes; Registration Time: Manual + Auto, 90 Minutes

Potential solutions include:

• Change from a red to a green laser

• Treat surface to change its reflective properties

• Increase the laser output power 

Balancing image resolution and computation cost

There is a trade-off between image resolution and computation cost. 3D geometric 

models extracted from laser range data provide a high amount o f detail and accuracy o f 

the scene. However, the acquisition and processing o f the range data can be difficult and 

time consuming, and in a complex environment the size o f a detailed 3D model can 

quickly become too large. A possible solution is to use accurate geometric models from 

laser range data only for the parts o f  the scene that are most interesting and to use 

alternative visualisation techniques to obtain a rough model o f the general scene and 

provide a realistic spatial context [24] [26].

We can use high-resolution scan for object o f interest, low resolution for background.

In this case, we define a special window, which is intended to be surveyed. Important 

objects can be measured down to the smallest details with this feature, as we can easily 

set a very high resolution for this window [27] (Fig. 14 and Fig. 15).
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Figure 14: High resolution scan o f a section o f a Maple tree branch. Minolta Vivid 910, 

Resolution: 625 dot in 1 inch.

Figure 15: Low resolution scan o f the same branch as in Figure 15, Minolta Vivid 910, 

Resolution: 286 dot in linch.

Point cloud filtering
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The advent o f laser profile scanners means that 3D plant data can be captured holistically. 

The data acquired from laser surface scanners is in unordered point cloud form, while 

points to be collected are those only on the surface o f the object under study. This means 

the structure o f the plant must be extracted from the cloud o f 3D co-ordinates [20].

In addition, since background information is often captured, editing o f the data with a 

point manipulation program such as Point Picker developed at the ACMC to remove 

unwanted points is desirable [20].

In practice, associate software from the laser scanner manufacturers is available for 

outlier removal [30][32], However, user interaction is required for criteria setting and 

filtering supervision. The purpose o f the supervision is to make sure that valuable data is 

kept and unwanted data is removed.

Figure 16: Laser scan at a greenhouse, Leamington, Ontario. Point cloud, low resolution, 

filtered with distance setting: 0 ~ 2.50m, Scanner: FARO LS 880.

2.2.3.4 Multi-scan registration and ICP Algorithm

It is not possible to have a complete 3D representation from only one viewpoint. To 

capture the complete geometry o f a plant, it is necessary to acquire data from multiple 

viewpoints (Fig. 17), which are also advancing on higher resolution images in specific 

regions o f interest. Scans to the same object from various viewpoints are registered. The 

purpose o f data registration is to bring different scans from different coordinates into a 

common coordinate, that is, the transformation.
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Sequeira and his team presented a system in [26] where embedded software performs 

several automatic functions, including triangulation o f the range data, range to video 

registration, registration and integration o f data acquired from different capture points, 

planning the next optimal capture position in an initially unknown large-scale scene 

(indoor or outdoor) (see [26]). However, fully automatic registration o f multiple range 

images is still an area of active research in the computer vision community. State-of-the- 

art systems often still rely on user-interaction to determine the initial transformation, 

making the pre-registration a tedious and time-consuming task [25] [28] [30],

Iterative closest point (ICP) is a dominating algorithm for 3D data registration. The 

principle was developed by Besl & Mckay in 1992. Consider two datasets, called p and q. 

If  we manage to get the correct transformation (rotation matrix r and translation matrix t) 

between p and q (Fig. 18), then we can minimize the error function [45] below:

Error Function:
E=| rpi + t - q j  |2

The transformation can be derived if  we know correct corresponding point pairs (at least 

3 pairs for 6 unknown variables r and t). So the algorithm start from “guess 

correspondence point pairs” (begin with the closest point, i.e. p and q). If  they are 

corresponding points, we are lucky to get the correct transformation. Other wise, try other 

point again.

Fig. 17: Data registration 
using ICP: overlapping areas 
are required [45].

Fig. 18: Data registration 
using ICP [45]
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Successful convergence o f applying ICP algorithm requires the two data set “close” 

enough, as shown above. In practical application, if  the scans are not posed “close” 

enough, user initialization is required. The purpose o f the initialization is to establish data 

transformation. Effective transformation establishment can be derived from the following 

arrangements.

Using relative viewpoint positions of different scans

Additional information available from the scanning process can be exploited to derive the 

initial transformation. For instance, the relative viewpoint position might be known, e.g. 

from tracking the scanner position or by using a turntable on which the object to be 

digitized was located [28], Although direct and convenient, this is not always feasible due 

to the nature o f the object, its dimensions or location.

Using nre-defined feature points

A more general approach is to derive an initial transformation by aligning a small set o f 

corresponding feature points in the range images. These feature points are either found as 

local geometric features on the surface o f the object or by placing additional markers on 

or in the surrounding o f the object [28]. For example, FARO scene uses paper targets and 

spheres placed in the scene for this purpose [32]. In the former case, robustness o f the 

feature detection is o f vital importance, whereas in the latter, special care has to be taken 

in the placement o f the markers, as markers should be visible from as many viewpoints as 

possible whilst casting preferably no shadows on the object.

Using feature point from intensity images

On the other hand, scanning devices commonly capture not only geometry but also color 

information or light intensities for the scene. These intensity images are far less subject to 

noise and, as opposed to range images, do not exhibit missing values [28]. As a 

consequence, feature points extracted from these images are more robust than those 

extracted from range images, making them more suitable for correspondence computation 

[28].

2.2.3.5 Fusion intensity and range image
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To achieve virtually realistic models, 2D digital images are used to “paint” the 3D 

representation o f the scanned areas [26] that is Texture mapping. Commercial application 

examples can be found from FARO LT system (see [32]) and Minolta VIVID 910 system 

(see [30]).

To add colour and texture into point cloud, the first step corresponds to the normalisation 

and registration o f the visual and spatial data. To achieve these, the photographic and 

laser reflectance images are used [26].

2.2.3.6 Summary of range-based approach

Laser scanner automatically, accurately and quickly captures 3D plant information from a 

real plant in the form o f points cloud. Polygons are usually the idea way to accurately 

represent the results o f  measurements, providing an optimal surface description.

Therefore, with the accurate 3D measurement by laser scanner and advanced software 

tools to convert point clouds to polygons (and further convert to shaded CAD model), it is 

feasible to derive accurate 3D models with high level o f automation [34], Thus, this 

approach owns the following two advantages:

• Accurate and reliable results:

Laser scan is a faithful “resemble” o f  the real object. With more dense point, more 

details can be obtained. With matured point cloud processing algorithm and CAD 

modelling software, an accurate 3D representation with manageable data size is 

achieved.

• Automatic data capturing

In terms o f measurement, in contrast with rule-based approach, which still mainly 

relies on manual measurement, range-based modelling approach captures plant 3D 

data automatically.

Fig. 19 shows an experiment result o f  tomato plant model using 3D reconstruction 

approach, in that, total 64 scans are aligned. The registration was not successful due to the
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plant complexity. Due to occlusion, only surface data are collected. The level o f  details 

not satisfactory for plant geometrical analysis.

'A.1
Fig. 19: A typical greenhouse tomato plant polygonal model from scans. 
Sample taken from a greenhouse at Leamington, Ontario, Canada, 2006
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3. Developing the new methodology

3.1 The challenges and the solutions

A plant is a complex structure with different combinations o f many different organs. This 

various structured nature makes plant-modelling works more complicated than other 

modelling applications (i.e. single object modelling).

As mentioned in section 2.1.4, current rule-based modeling systems presents the 

interaction between plant growth and the environment [1], but are not geometrically 

accurate [3], As each plant grows differently, there is no single rule valid to every plant.

3D reconstruction techniques promise an accurate geometry and topology model. 

However, based on our experiment (Fig. 13), low-resolution scans with wider views make 

3D registration easy to convergence, but they do not provide details for individual 

component. While high-resolution scans offer great details, but their 3D registration 

hardly ends with successful convergence due to plant self-occlusion and high complexity. 

Occlusion, complexity and poor registration, make 3D reconstruction method incapable 

o f capturing the useful geometric and topological information o f a tomato plant. Further 

more, as an as-is model, 3D reconstruction offers no connection from plant growth to the 

environment. User interaction with the model is not allowed.

From the view point o f 3D measurement, all current non-contact methods (see Section 

4.2) only record the outline of the plant. For complex plants, it needs to revert to 

expensive internal imaging methods, like X-Ray CT-scans or MRI to capture a full 3D 

structure of a plant. Furthermore, although a 3D volume of the plant might be created 

automatically with point-cloud techniques, plant features still have to be extracted 

interactively since current software is not yet capable o f fully automatic extraction of 

plant features in complex images.
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Obviously, common rule-based method or solely 3D reconstruction method cannot fulfill 

our objective. In this research, we use a hierarchical structure to break tomato plants into 

weekly-growth-sections (WGS) to simplify the scan dataset and also relate age with plant 

growth geometry. We scan each WGS using 3D reconstruction concept, and exporting 

scan point cloud into CAD, constructing a parametric CAD plant model.

3D scans offer a digital map o f a plant. A laser scanner is used for 3D measurement, 

which rapidly captures the geometry o f the exposed surface in the form o f dense, accurate 

point clouds [15]. With matured point cloud processing software (e.g. PolyWorks), point 

clouds are intelligently thinned. With advanced data extracting algorithms, critical 

measurements are obtained and exported to CAD system as reference to form a 

parametric 3D model for visualization and inspection.

A Components Library (CL) is used to capture the characteristic o f  elements o f  the plant 

variety. Based on measurements from scans, a mathematical plant growth model is 

constructed to define the geometry and topology o f components and WGS. In addition, a 

model validation system is used to increase model accuracy and flexibility. The entire 

modeling system starts from plant decomposition and scanning. The CL is constructed 

from scan data. Each WGS is an assembly o f components; and the plant is an assembly o f 

WGSs.

3.2 System pipeline

The modeling pipeline is illustrated in Fig. 14. The sample plants data were measured and 

recorded during 2005 and 2006 at several Leamington, Ontario, Canada area greenhouses. The 

hardware used was a Minolta Vivid 910 Laser Scanner. The software used were InnovMetric’s 

PolyWorks V9, SolidWorks 2004/2007, Visual Basic 6.0 and Matlab 7.0.
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Step2: Scan WGS stem and typical components

Step6: Model Validation

Stepl: Break a plant into WGS; 
Break WGS into stems and components

Step4: Export reference points to CAD; 
Construct a Components Library (CL)

Step5: Build WGS by assembling o f  appropriate components from CL; 
Build a plant model by assembling o f  appropriate WGS from WGS Library,

3D registration 
Data segmentation 
Data simplification 
Reference points extraction

Step3: Scan data processing:

Fig. 20: The pipeline o f the proposed methodology

Stepl decomposes the plant into weekly growth sections using a plant mathematical 

model. For each WGS, the stems and associate components are measured and recorded. 

See section 3.3 for details.

Step2 takes measurements o f WGS stems and selected components using a laser scanner. 

The advantages o f using laser scanning technology for this application are demonstrated 

in section 3.4.1.

The purpose o f Step3 is to optimize scan data efficiency while maintain the model 

accuracy. We use ICP algorithms (Besl & Mckay 1992) to align multiple scans into a 

common coordinate (3D registration), where, additional feature markers and user 

initialization are required, see section 2.2.3. To segment the object to be modeled (e.g. a
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fruit truss) from the others, combination o f filters (e.g. distance, texture and color) and 

user interaction are used. Data simplification and reference point extraction are described 

in section 3.4.2 & 3.4.3 respectively..

Step4 constructs a components library (CL) using reference points that are exported into 

CAD from point cloud environment (e.g. PolyWorks). The procedures and a experiment 

are illustrated in section 4.4.1.

In Step5, with topology defined by the mathematical model and selected components, the 

WGS are accurately built. See section 4.4.2 for details.

In step6, Plant models are validated by comparing the model output against real plant 

measurements o f attributes considered relevant by the agriculture industry. See section

3.3 for details explanation and section 4.5 for experiment results.

In addition, in the system, a model interface is developed to connect interesting geometry 

and topology information about plant components, WGS, and their assembly. It allows 

the user to navigate from tomato plant visualization model to detailed measurements and 

to access components or editing functions for quick model modification and update, see 

section 3.7.

3.3 Tomato plant growth mathematical model

To ensure the geometric and topologic accuracy, a mathematical model is developed to 

constrain the model as “parts/assemblies” in CAD environment. That is, the size, shape, 

position and connectivity o f each plant components are defined.

Correct decomposition and attributes identification are the key issues o f mathematic 

model building. In general, a plant mathematic model includes:
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• Defining WGS: constrain a stem section with specified weekly growth rate, nodes 

information, and connections with respective components.

• Defining a Components Library (CL): constrain geometry and topology o f each 

element forming a right component (i.e. leaflets forms a compound leaf).

• Defining a plant with respective WGS assemblies: constrain topology o f  WGS.

An effective method to monitor tomato plant growth is measuring weekly growth rate in 

Leamington greenhouse industry. Using this concept in our modeling system, tomato 

plants are decomposed into WGS. Each WGS have their characteristic, which can be 

captured and modeled. Based on the plant measurement, a mathematical model is derived 

to define attributes on the respective WGS as well as their variations. The next step is 

rebuilding a WGS model using the mathematic model with user-selected age as input. 

Components are considered as constant and taken from CL.

Advantages o f  using WGS can be summarised as:

• Relating plant geometry with age;

• Overcomes occlusion problem, maintaining high geometrical accuracy

• Simplify model-building process, offering manageable working scales.

• Simplify model validation, offering a comparable working conditions;

• Relating components to the main stem structure. Topology accomplishment;

With strategy o f hierarchical structure and WGS, key attributes for a plant model can be 

defined as:

•  Numbers o f WGS for a given age

• For each WGS:

o Height, diameters 

o Node info, Position, orientation, type

o Components information (from CL), i.e. compound leaf, truss, suckers 

The algorithm can be illustrated as:
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Define WGS (numbers and types)

Construct CL: Define Components

Define topology o f  each W GS with main 
stem; PWGS Assembly

Define geometrical and topological 
properties o f each WGS using CL

Fig. 21: Constructing a plant mathematical model: the pipeline

3.4 Combining laser scan and CAD

3.4.1 Introduction

Modeling a free-form object (e.g. a leaflet) merely using interactive 3D CAD is time- 

consuming. A tomato plant, comprising hundreds o f such objects, makes the situation 

even worse. Our solution is laser scanning. We use laser scans as a source for intelligent 

measurements to create entities in the 3D CAD.

To obtain complete 3D information, scans from multi-viewpoint are registered [25][26]. 

To build a high quality polygonal model using 3D reconstruction method, dataset 

registration requires a great number o f local scans and extensive user interaction [40]. In 

contrast, in our system, only accurate control points from scan are vital; a watertight 

polygonal model is not required. This idea greatly reduce the number o f field laser scans, 

simplifying the scanning work and allow scanning to focus on critical areas resulting in 

improved accuracy.

In general, surface models are generated in CAD. To achieve accurate parameters, two 

techniques are used:
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• Creating a geometrical surface from selected control points in point environment,

i.e.PolyWorks, and export them into CAD (i.e. SolidWorks) as a feature for CAD 

model construction.

• Directly export selected primitives (i.e. points or curves) to CAD and then, use 

surface construction functions to form a parametric surface model.

3.4.2 Point Cloud simplification

The purpose o f point cloud simplification is to thin the original dense points, while 

maintain the model accuracy. That is to balance the efficiency o f the data processing 

system and the quality o f the output. Efficient simplification o f the point cloud is a 

fundamental for reference point extraction.

Currently, several point cloud simplification algorithms are developed. Schroeder et.al 

proposed Decimation o f triangle meshes method in 1992, in that, a vertex and the 

associate triangles are deleted if  the specified decimation criteria are met. Model 

simplification using vertex clustering method was developed by Low et.al in 1997, where, 

the closeness o f the vertices and determined and the vertex are grouped together based on 

the proximity. Eventually, they are replaced by a new representative vertex. The other 

algorithms include: Geometric optimization (Hinker et.al. 1993), Voxel based object 

simplification (He et.al. 1995), Simplification Envelopes (Cohen et.al. 1996), 

Simplification using Quatric Error Metrics (Garland et.al. 1997).

Reducing or compressing the mesh is an operation where some triangles are removed 

from the mesh without changing the accuracy o f the overall model. In PolyWorks, based 

on decimation o f triangle meshes and vertex clustering methods, the user can adjust the 

density o f polygons by setting meshing distance and surface sample steps [10]. During 

this operation, triangles are removed over flat areas and small triangles are kept in the 

highly curved or highly detailed areas.
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In addition, as a part o f  data compression process, while importing a polygonal model, 

IMEdit automatically verifies its quality. If  the following topological anomalies are 

found, the associated points will be removed.

• Degenerate triangle: 2 or 3 vertices o f a single triangle have the same X,Y,Z

coordinate;

• Duplicate triangle: 2 triangles use the same 3 vertices;

• Degenerate edges: more than 2 triangles share a common edge;

•  Inconsistent edge: vertices are ordered in the opposite direction or 2 adjacent

triangles have opposite normal directions (the front and back faces are flipped).

Table 3 demonstrates the data size o f meshing from points to polygonal surface models 

yielded by different configurations in PolyWorks. As shown in Fig.22, the numbers o f the 

points is significantly reduced when we use Decimation o f triangle meshes algorithm.

Table 1: Dataset configuration o f meshing a surface model o f a young fruit truss

(Original)

High-Resolution

Decimation points 

alg’m 1

Decimation points 

alg’m 2

Max.Distance 4.0 10 20

Surface Sampling Step 0.68 2.0 5.0

Standard deviation 0.59 1.0 1.0

Numbers o f  Points 231,452 20,830 1,122

Numbers o f  triangles 24,050 6,301 657

Size in IGES format 43MB 2.95MB 364KB
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Fig. 22, Left: Photo of a fully opened flower truss with forming fruit o f  the sample tomato plant Middle: a High- 
Resolution scan of the plant, with 231,452 points. Right: a Low-Resolution scan., thinned point cloud to 1,122 points 
using Decimation point algorithm 2.

3.4.3 Reference point extraction using corner detection method

3.4.3.1 The concept

As mentioned early, the output o f  a laser scanner is an unorganized point cloud. Point 

simplification can reduce point density, but current algorithms have their limitations.

With the cube experiment (see section 3.4.4), data compression was saturated at 2079 

triangles. If farther compression is attempted, the model will become distorted. However, 

for a simple cube, only 8 points is sufficient to define its structural property in space. To 

reduce data computation cost and increase system efficiency, beside data simplification, 

reference point extraction is also required.

Unfortunately, automatic extraction o f 3D architectural objects directly from unorganized 

point cloud data is still under research. Currently, this process largely depends on user’s 

interaction [16][39]. In PolyWorks, there are two methods available. One method is 

numerical generation [30], in that, point cloud are converted into .txt format. After 

numerical filtering (e.g set distance threshold), the extracted points are kept and exported 

back to PolyWorks for visualization and verification. The other method is manual 

selection in an interactive graphic window. In this research, we developed an image-based 

method for critical point extraction. That is using comer detection algorithms to extract 

anchor points in range image, and transform them into 3D point cloud environment.

42

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Each pixel o f a range image expresses the distance between a known reference frame and 

a visible point in the scene. Therefore, a range image reproduces the 3D structure o f a 

scene, and is best thought o f as a sampled surface. Range image can be represented in two 

basic forms. One is a list o f 3D coordinates in a given reference frame, called xyz or point 

cloud, for which no specific order is required (i.e. a scan). The other is a matrix o f depth 

values o f points along the directions o f  an x, y image axis, called ry data, where, the pixel 

values is representing the depth, with organized x, y coordinates, i.e. I (x, y) = 20cm. 

Furthermore, scans can be interpreted as a combination o f views o f 2D images, that is: 

slices o f 2D image with various range values, e.g. z = 1; z = 2, etc.

In a 3D scan, points are corresponding to the pixels in a 2D image, which is an oblique 

projection o f the scan. For us, the coordinates o f the pixels in image frame are o f interest 

as they represent the location o f the points.

Thus, given a point pair, in 3D scan, we have P (X, Y, Z); in 2D image frame, we have 

corresponding pixel coordinates I(c, r). If we define a pose o f a 3D scan (i.e. view +x, or 

+y, or +z), and derive its oblique projection (a 2D image) then there is a relationship (a 

transformation) between P (X, Y, Z) and I (c, r). If we have the transformation, we can 

transform coordinates o f the detected comers in 2D image frame to a 3D scan frame: I(c, 

r) P (X, Y, Z). P is a collection o f critical points we need for CAD.

3.4.3.2 Corresponding points transformation between 2D images and 3D scans

P (X,Y,Z) is a point in 3D scan coordinate. While, I (c,r) is a point in 2D image frame 

which is an oblique projection o f the scan, with pixel coordinate (c, r).

If  we have a transformation between I and P, then, P (X,Y,Z)=f (I(c, r)). To calculate the 

transformation, based on the nature o f our application, we propose preconditions are:

1. There is no rotation between the two frames. And,
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2. Images taken from scans must be oblique projection along +x view, +y view, 

or +z view. And,

3. At least 3 correspondence point pairs can be determined (for calculation of 

distance between adjacent pixels along horizontal axis and vertical axis, dh and 

dv, and set reference frame).

Let us picking a correspondence point pair which in image frame is at (co, ro); while in the 

scan frame is at (X0, Y0> Zo). If  we have an image with oblique projection along +y view, 

an input point (c, r) in image reference frame becomes: cr=c - co; rr=r - ro.

Thus, X= Xo + cr * dh; Z=Y0+rr* dv , where, Y is considered as a constant, and Z is the 

coordinate along horizontal axis.

3.4.3.3 The Harris Corner Detection Algorithm

Harris and Stephens improved upon Moravec's corner detector by considering the 

differential o f  the corner score with respect to direction directly, instead o f using shifted 

patches [8][46]. It should be noted that this corner score is often referred to as 

autocorrelation, since the term is used in the paper in which this detector is described. 

However, the mathematics in the paper clearly indicate that the SSD is used [47].

Without loss o f generality, we will assume a grayscale 2-dimensional image is used. Let 

this image be given by /. Consider taking an image patch over the area ( u , v )  and shifting 

it by ( x ,y ) .  The SSD between these two patches, S  is given by:

The Harris matrix (denotes A )  is found by taking the second derivative o f S  around ( x , y )  =  

(0,0). A  is given by:

s  = v ) -  I iu  -  z, -  y))2
U V
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where angle brackets denote averaging (summation over (w,v)), and the typical notation 

for partial derivatives is used. If a circular window (or circularly weighted window, such 

as a Gaussian) is used, then the response will be isotropic [8][34][47],

The strength o f  the corner is determined by 'how  much' second derivative there is. This is 

done by considering the eigenvalues ( h  and l i )  o f A .  Based on the magnitudes o f the 

eigenvalues, the following inferences can be made based on this argument:

1. If  ^1 ~  ^and ^2  ^  Othen there are no features o f interest at this pixel ( x ,y ) .

2. If ^  ^and X2 is some large positive values, then an edge is found.

3. If  A-i and k j  are both large, distinct positive values, then a comer is found.

3.4.3.4 The data extraction algorithm and a experiment result

As illustrated in Fig.29, the input is a scan o f an object in the unorganized, dense point 

cloud format; the output is a set o f point P(X,Y,Z), which is able to describe the 

geometrical nature o f the object. The main function blocks are: 2D comer detection and 

2D-3D transformation.

Select a scan, pose to +X (or +Y, or+Z);
Obtain its oblique projection (a 2D image) by snapshot the scan

Apply comer detection algorithm to 2D image; 
Obtain coordinates o f  corners I(c, r)

Find 3 correspondence point pairs from the scan and the 2D image; 
Obtain (X0> Y0>Z0),(co, r0) and dh, dv

A p p ly  tran sfo rm a tio n  P (X ,Y ,Z )= f  (I(c , r)); X =  X 0+  cr - <4; Z = Y 0+ rr*dv;
Obtain corresponding coordinates in 3D scan frame P(X,Y,Z). 

P(X,Y,Z) are the critical points we need in the scan
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Fig. 23: Extracting reference point using comer detection algorithm

The implementation o f the algorithm can be illustrated by the following example (Fig.6). 

A WGS is scanned, and a 2D image is obtained from +X view o f the scan. A 

transformation is established. After comer detection process in the 2D image, 44 comers 

were detected. Using the established transformation, 44 point in (X,Y,Z) format are 

derived. We convert these data into .txt format and export them into the original scan in 

PolyWorks. We find that all the points match the expected critical positions. Thus the 

accuracy o f the algorithm, as well as the transformation has been proven. The code and 

output data are included in section 10.6.1.4.

X0=-63.90mm
Y0=65.60mm
Zo=-1555.40mm

Fig. 24. Left: Modeling WGS#2. Applying Harris corner detection algorithm, Standard derivative, 

sigma=l; Threshold level, t=0.05; Neighbourhood size, Size=5. Total 44 corners detected. Right: 

Modeling WGS#2. Transform 44 comers into scan coordinate, and export the X,Y,Z into PolyWorks for 

visualization. dh=0.7170mm dv=0.6810mm

3.4.4 A experiment: Modeling a Box
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To analyze data efficiency with different configurations at simplification and extraction 

stages, an experiment is conducted.

As shown in Fig. 31 and 32, a simple shaped box requires only 8 reference points to 

define in space, while a set o f aligned scans may return us 607,452 triangles. Using data 

decimation algorithm may reduce the data size significantly, However, from 2D image 

processing knowledge, that comer detection method may offer us a perfect data efficiency 

level. The comparison results are summarised in Table 4 (note: for comparison purpose, 

the 8 points are picked manually at this stage).

Fig. 25 (1). Left: a scan o f a simple box, 6 scans aligned, total 607,452 triangles generated Middle: a 

simplified point view o f the same box. Reduced mesh to 2079 triangles, using decimation algorithm, 

researching saturation status.

Right: a distorted model. I f  reduce triangles by increasing maximum distance and surface sampling step, we 

can get model with 407 triangles, but the shape is distorted.
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Fig. 25 (2). Left: View o f reference pointed extracted using edge detection algorithm, 236 curves are 

derived. Right: 8 points to be extracted from scans and exported to CAD for a CAD box model 

construction.

Table 2: Experiment summary

Data Simplification Data Extraction

Max distance 2.0 Decimation of 

mesh: targeted 

triangle: 1000; 

Tolerance 5

Targeted 

triangle: 500; 

Tolerance 50

20 Edge

detection

Comer

detection

S u rface

Sampling Step

0.73 N /A N /A 20 N /A N /A

Standard

Deviation

0.20 N/A N/A 1 N/A N/A

# O f

Triangles/points

607,452

Triangles

2372

Triangles

2079

Triangles

407

Triangles

236 points 8 points

Data size in stl 29.6MB 116KB 102KB 20KB - -

In wrl 50.6MB 223KB 189KB 41KB - -

In dxf 131MB 511KB 448KB 89KB - -

In igs 150MB 1.1MB 1MB 197KB 205KB 4.72KB

Data efficiency Very low Low Low Model Good Perfect

(Minimum 

points / 

generated 

points

8/607452 8/2372 8/2079 distorted 8/236 8/8
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3.5 Building a Parametric CAD model

3.5.1 Introduction

The capabilities o f modem CAD systems relevant to plant modeling include [39]:

• wireframe geometry creation

•  3D parametric feature based modelling, solid modeling

• freeform surface modeling

• Ease o f modification o f design o f model and the production o f  multiple versions

• Automatic generation o f  standard components o f the design

• Output o f design data directly to manufacturing facilities

• Output directly to a rapid prototyping or Rapid Manufacture Machine for 

industrial prototypes

• maintain libraries o f parts and assemblies

• Programmable design studies and optimization

Many CAD programs use what is called "wirefram e" modeling, in either a 2D or 3D 

representation. In these programs, the operator uses lines, circles, arcs, and other similar 

entities to create an outline o f the part. It is called wireframe modeling because it is 

analogous to building a physical model o f the part using wires to represent the edges of 

the part. These models can be used for blueprints, engineering drawings, and other 

applications that require only pictorial information about a part.

Programs that are capable o f solid modeling can be much more powerful than simple 

wireframe modelers. These programs are used to build parts that are actually solid objects 

instead o f simply a wireframe outline o f the part. Since these parts are represented as 

solids, they have volume, and if  given a density can have a weight and mass as well. The 

computer can calculate many physical properties o f these parts, such as center o f  gravity 

and moments o f inertia. These calculations can even be performed for irregularly shaped
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parts, for which manual calculations would be extremely difficult. Finite Element 

Analysis techniques can also be used to perform stress analyses o f these parts]

There are two basic methods used to create solid models. They are Constructive Solid 

Geometry (CSG) methods, and Boundary Representation (Brep) methods. CSG uses solid 

primitives (rectangular prisms, spheres, cylinders, cones, etc.) and boolean operations 

(unions, subtractions, intersections) to create the solid model. Brep methods start with one 

or more wireframe profiles, and create a solid model by extruding, sweeping, revolving or 

skinning these profiles. The boolean operations can also be used on the profiles 

themselves and the solids generated from these profiles. Solids can also be created by 

combining surfaces, which often have complex shapes, through a sewing operation. This 

can be used, for example, to create the body o f an aerodynamic vehicle such as an 

airplane, with its carefully designed wing profiles. Further details on these two different 

methods can be found in Zeid [Zeid]. These two methods can often be combined in order 

to create the desired parts. Each o f these methods has its limitations, and parts which are 

very difficult to create using just one or the other method can be created much more 

easily using a combination o f both methods. Thus, most commercial solid modeling 

systems are hybrids using both CSG and Brep methods.

3.5.2 A Parametric CAD model

An important feature o f modern 3D CAD tools is its ability to generate a parametric 

model, which allows quick model modification. In a parametric model, parameters 

control the various geometrical properties o f the entity, as well as the locations o f these 

entities within the model. Parameters can be changed by operators to regenerate desired 

entities or parts. Parametric model that use a history-based method keep a record o f the 

model building procedures [39][44]. When operators change parameters in the model, the 

program repeats the operating procedures from the history with new parameters, thus 

parts are regenerated.
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Fig. 26 Reconfigurating WGS using Excel. WGS are automatically regenerated according to different 
configurations. Left: C onf n 3; Right: C o n fn  1.

The great advantage in using parametric modeling system does not rest solely in the 

development o f mathematically correct models, but also in the ability to quickly edit or 

reconfigurate models and compare it with laser scan (from real world) to access the 

accuracy o f the CAD model. In this paper, the advantage o f using parametric CAD model 

can be summarised as:

• Relate model geometry with plant mathematical model,

•  Offering high level o f automation for model building, reconfiguration and 

regeneration (i.e. Excel can be inserted for easy data management, Fig.3),

• Offering a user-friendly interface. Users are able to direct the model output by 

selecting appropriate parameters.

3.6 Model validation

E.Heuvelink claimed in [1], that current poor validation methodology o f plant models 

limited the application o f plant models. Before a model can be used it must be validated,

i.e. the model output has to be compared with the real plant, even though, the algorithm 

for input and output quantification is still under development so far. Finding appropriate
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measures for validation o f 3D virtual plants with real plants in term o f geometry and 

topology data is another area for future research.

In general, real plant measurements are divided into two independent parts: one for model 

development, the other for model calibration -  control data [1]. Plant models can be 

validated by comparing the model output against the control data [3]. That is, the 

modelled and measured geometry and topology data are compared. The comparison 

results were verified mainly by human’s experience and measurement.

In this research, general procedures o f validation are:

• Define attributes to validate: components (e.g. position o f fruit truss), WGS (e.g. 

position o f nodes) and plant overall structure (e.g. stem length).

• Define the reference (control data), i.e. from grower’s field measurement or scans.

Plant models are validated through a hybrid method. For structured entities, like geometry 

o f main stems and nodes, we use traditional field measurement as reference comparing 

the model output [1], For unstructured object, like plant components, we export the CAD 

model back to point cloud environment (PolyWorks) to verify with scan reference 

[27] [30] or vice versa.

For example (see Section 4.5), to validate a forming fruit truss model in CL (T2), we take 

one truss with same age from greenhouse field, scan it as “scan reference” (Fig.58 Left) 

and verify them. Errors are detected and corrected using CAD parametric functions; then 

CL is updated. In this system, triggered by the feedback, updated components rebuild the 

assembly. Eventually, the whole plant model is updated. This feedback modeling system 

can be demonstrated as followings:

WGSComponent Plant Model: CAD

Reference: ScanModel Validation

Fig. 27: A feedback model validation system
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In addition, using this strategy, the system itself can be fine-tuned and “calibrated” 

ensure the accuracy and flexibility to multiple applications.

3.7 System interface

The purpose o f building a modeling interface is to provide an easy connection between 

interest geometry and topology information about plant models o f components, WGS, 

and their assembly. With selected plant age, allows user navigating from tomato plant 

visualization model to detailed measurements and accessing components editing 

functions for quick model modification and update. As a meaningful future work, the 

interface could be carried out with SolidWorks API, using VB 6.0. The concept is 

illustrated as below (see Fig. 28 & 29).
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Fig. 28: Main page o f a plant modeling interface
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4. Implementation and experiment results

4.1 Plant measurement using a Minolta Vivid 910 Laser scanner

In our experiment, 6 samples o f 16 weeks old plants were taken from a greenhouse at 

Leamintong, Ontario, Canada, on 01 Nov. 2006. They were spring-fall (two-crop per 

year) tomato plants, transplanted at 6 July 2006 . The first measurement marker, Marker 

#1 was taken after 3 weeks o f plant delivery. Hardware used is Minolta Vivid 910 Laser 

Scanner; while the softwares are InnovMetric’s PolyWorks V9, SolidWorks 2004/2006, 

Visual Basic 6.0, and Matlab 7.0.

General procedures o f plant scanning and data processing can be described below:

1. Performing laser scan for interested sections o f a sample tomato plant, obtain 3D, 

color and texture data; relate the scanned sections with WGS.

2. Using PolyWorks IMAlign and IMMerge build components and WGS polygonal 

models o f the plant;

3. Data segmentation, registration, simplification, and reference points extraction;

4. Export reference points to CAD;

4.1.1 The Hardware

The Minolta VIVID910 implements laser-beam light sectioning technology to scan 

workpieces using a slit beam. Light reflected from the workpiece is acquired by a CCD 

camera, and 3D data is then created by triangulation to determine distance information 

(see section 2.2.3.2). The laser beam is scanned using a high-precision galvanometric 

mirror, and each scan is capable o f measuring 640 x 480 individual points. In addition to 

distance data, this 3D digitizer can also be used to acquire color image data. Employing a 

rotating filter to separate the acquired light, the VIVID910 can create color image data for 

640 x 480 points with the same CCD as used for distance data [37], The VIVID910 is a 

non-contact 3D digitizers that set new standards for low cost, camera sensitivity, and

56

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



convenient operation. When operating in Fast mode, this advanced product requires only 

0.3 seconds for data input (approximately twice as fast as the VIVID900); furthermore, 

when operating in Fine mode, precision o f ± 0.008mm and accuracy o f ± 0.10 mm can be 

achieved on the Z-axis.

Table 3: Principle specifications o f Minolta Vivid 910 (see [37])

Model VIVID 910 Non-Contact 3D Digitizer

Measurement method Triangulation light block method

Incident lenses Tele: focal distance f=25mm 

MIDDLE: Focal distance f=14mm 

WIDE: Focal distance f=8mm

Positioning range for image 

input

0.6~2.5m

Laser safety class 2 (IEC60825-1)

Laser scanning method Galvanometric mirror

111-463mm (TELE), 

198~823mm (MIDDLE), 

3 5 9 -1 196mm (WIDE)

Y-direction input range 83~347mm (TELE), 

148-618mm (MIDDLE), 

269~897mm (WIDE

Z-direction input range 40~500mm (TELE),

70~800mm (MIDDLE),

110~750mm (WIDE/FINE mode)

Accuracy Z: ± 0.10 mm with respect to standard Z plane 

(Fine mode, Konica M inolta’s standard)

Input time 0.3s (Fast mode), 2.5s (Fine mode), or 0.5s (Color 

mode)

Transfer time to host 

computer

Approximately Is (Fast mode) or 1.5s (Fine 

mode)
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Ambient lighting condition 500 lx or less

Number o f Output pixels 3D data: 640 x 480 (Fine mode) or 320 x 240 

(Fast mode)

Color data: 640 x 480

Output format 3D data: Konica Minolta format (converted into 

3D data by utility software provided as a standard 

accessory)

Color data: RGB, 24-bit raster scan data

Data file size Total 3D data and color data: 1.6 MB (Fast mode) 

or 3.6 MB (Fine mode) per data

Output interface SCSI II (DMA-compatible simultaneous 

transmission)

Power supply Commercial 100V or 240V AC supply (50 or 

60Hz), rated current 0.6A (at 100V)

4.1.2 Scanning procedures

Plant surface treatment prior to scanning

Surface may not produce sufficient laser contrast for the scanner to detect a profile 

because o f shininess or by the colour o f a surface: a green surface will absorb light o f  any 

colour but green and laser light is relatively pure in colour, not enough o f a red laser beam 

may be reflected from the object and received by the scanner.

Solution:

□  Change from a red to a green laser

□  Treat surface to change its reflective properties: i.e. apply chalk powers

□  Increase the laser output power

Preparing feature markers for registration
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The similarity nature, make plant organs looks same. However, they are all different in 

geometry and topology. These coursed difficulty in finding reference point for 

registration. Since so far, fully automatic registration is not available, “Registration still 

rely on user-interaction to determine the initial transformation, making the pre­

registration a tedious and time-consuming task” [26], see Section 6.3. Thus, additional 

feature markers are important for successful scans registration.

The followings preparations are used in our scanning setup:

• Having at least 4 distinguishable markers as high as plant; making sure at 

least 3 poles can be “seen” from every single scan. (That is similar to 

FARO system, 3 spheres are required).

• Taking global scan from at least 4 directions with reference markers 

covered.

• Taking local scan with high resolution, with at least 2 reference markers 

covered.

Detailed scanning plan of a section of a plant

• scan bottom stem with high resolution, 6 directions;

• scan bottom mature leaves with stick, at least 3 sets;

•  scan top portion, 6 directions;

•  scan top young leaves with stick, at least 3 sets;

• scan up mid-mature leaves with stick, at least 3 sets;

• scan bud and flowers with close look;

•  scan young fruits with vine;

•  scan mature fruits with vine;

• remove all leaves, scan stem and branches, 6 directions;
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Fig. 30: Left Scanning the plant sample# 1 in IMTINRC, Nov.2006

Right: Decomposing plant sample#!into WGS for sectional scanning

Fig. 31: Scanning a WGS o f plant sample #1
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Fig. 32: Scanning the 1-week-old leaf (Leaf 40 in CL) on top position of plant sample#!

Fig. 33: Scanning a flower truss o f plant sample#!
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Fig. 34: Top: scanning a sucker o f plant sample#!

4.2 Scan data processing using PolyWorks

4.2.1 Introduction of PolyWorks

PolyWorks is a comprehensive software solution for point cloud data processing and 

creating accurate and smooth polygonal models and NURBS surfaces. Under PolyWorks 

Workplace Manager (WM) window, among the other features, there are 4 sections 

assembling the full process o f model building.

IMAlien — Data acquisition

Acquiring data is the first item in the PolyWorks workflow. It consists of two steps. Scanning 

and scans alignment.

IMAlign allow user-applying plug-ins interfacing with scanner. Once connected, the 

scanner is remotely controlled by TMAlign. Firstly, the scan range is adjusted either by 

auto or by manual. A distance-colored preview with scan range map is presented for user 

decides the optimal range setting. Scanner must be calibrated whenever, the object
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position or the scanner’s position change. User can select different angles for step-scan; 

the less the angle the more scans will be produced. Once scans are captured, user defined 

feature points in the scans can be used for scan registration.

PolyWorks answers the scan alignment needs with its IMAlign module. Situate all o f the scans in 

the same coordinate system, based on the shapes o f the scanned object. For the operation to 

succeed, the scans must meet two criteria: each scan must share some redundant information with 

adjacent scans, and each scan should contain at least one change o f shape (e.g., comer, hole, 

angle) o f the object, since IMAlign does a shape-based alignment (changes in shape help lock the 

scans).

IMMerge - From point cloud to surface model

An important part of 3D reconstruction is a process that involves converting the aligned scans into 

a high-quality, highly accurate surface represented by polygons. The model building process 

consists o f two steps.

Table 4: Steps o f polygonal model building using reverse engineering concept

Steps

1 Generate a Polygonal model

Using IMMerge to create a polygonal model from the points in the aligned 

datasets. IMMerge offers smoothing reduction that reduces the number of 

triangles in planar regions while respecting object curvature.

2 Improve the model

It is normal that a model made from digitized dtasets has some 

imperfections. Use IMEdit to improve the model by filling holes, 

extracting sharp edges, optimizing triangles, performing local reductions.

PolyWorks’ IMMerge module is employed to create an accurate polygonal model from an 

IMAlign project, which contains scans aligned using the IMAlign module. The polygonal mesh is 

adapted to the object's curvature, and it is possible to control the triangle size, smooth the input
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data by removing digitizer noise, and significantly reduce the model size while respecting the 

object's shape. The IMMerge module is composed of a main parameter window, a 3D scene, and 

a text output area. The 3D scene shows the evolution of the meshing process and the text output 

area gives precise information as to the processing currently being performed. The 3D scene can 

be transformed using standard, mouse-based operations.

In the following experiment (Fig. 35), 4 scans merged surface. Meshing parameters: 

smooth level: low, maximum distance: 4.0 mm, surface sampling step: 0.26, standard 

deviation: 0.11, number o f model triangle: 85,426, number o f displayed triangles: 85,426.

Figure 35: Using IMMerge, Leaf polygonal model

IMEdit - Improve the polygonal model

The IMEdit module is InnovMetric’s toolbox for preparing your polygonal model for the 

applications. You use composite Bezier curves and surfaces to enhance the model, Point
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and Plane primitives for a number o f functions, and cross-sections to export the object’s 

shape. Curve networks can be created, and NURBS surfaces fitted to them and then 

exported to IGES. IMEdit tools allow you:

• analyze topology watertightness

• reduce the mesh (selection)

• extrude boundaries

• subdivide the mesh

• fill holes

• smooth the mesh

• optimize the mesh

• trim the model

•  reconstruct edges, comers, and fillets

• slice the model (dowels), and more

In IMEdit, you will import a polygonal model and edit it. The import operation consists 

o f making a copy o f the model and storing it in an internal PolyWorks format. Once the 

editing is completed, the improved polygonal model may be exported to a number o f 

standard formats.

Once the project is finished, the polygonal model (or other objects) must be exported to a 

specified standard format for use in another software. The export operations are found in 

the File menu. The following formats are supported in PolyWorks for data transfer.

•  Autodesk files (*.dxf)

• Iges files (*.igs)

• Invertor files (*.iv)

• Nastran files (*.nas)

•  Wavefront files (*.obj)

• PLY files (*.ply)

•  InnovMetric files (*.pol)
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• STL files (*.stl)

• ASCII STL files (*stla)

• Bianry STL files (*stlb)

• VRML files (*wrl)

It allows user doing hole-filling, surface smoothing, feature creating and measurement.

IMInspect -  Model inspection

Load the IMAlign project as the data object (digitized object). Load reference object 

(theoretical model). Align the data to the reference (Fig. xx). Then perform global 

comparison using color maps, generate cross-sections, and take measurements.

[3 P 167.712]

Figure 36: Polygonal surface models o f maple leaves. Scan taken by Tong Wang, 24 Aug. 

2006, using IMInspect tools to compare a reference leaf (left) and modeled leaf (right).

4.2.2 Data simplification

On importing a polygonal model, IMEdit automatically verifies its quality. If  topological 

anomalies are found, they must be corrected before the software allows further work on 

the model. A correction wizard pops up. It informs you that IMEdit will delete some 

triangles to remove anomalies and asks for your approval. IMEdit detects the following 

four kinds o f topological anomalies:
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•  Degenerate triangle: 2 or 3 vertices o f a single triangle have the same X,Y,Z 

coordinate;

•  Duplicate triangle: 2 triangles use the same 3 vertices;

•  Degenerate edges: more than 2 triangles share a common edge;

•  Inconsistent edge: vertices are ordered in the opposite direction or 2 adjacent

triangles have opposite normal directions (the front and back faces are flipped).

Reducing or compressing the mesh is an operation where some triangles are removed 

from the mesh while maintaining the required accuracy of the overall model. During this 

operation, triangles are removed over flat areas and small triangles are kept in the highly 

curved or highly detailed areas (Fig.37). In IMEdit, you can reduce part or all o f  the 

polygonal mesh.

Reduction is normally done once the editing work is finished. The reduction window 

offers you four options for specifying a reduction level:

• Specify a target number o f triangles in the Number o f triangles text box.

•  Specify a reduction percentage on the number o f triangles in the Reduction 

percentage spin box. A 0% reduction percentage preserves the current 

triangulation, while a 100% percentage guarantees maximum reduction o f the 

selected area.

• Specify a relative 3D tolerance in the Relative tolerance text box, as a percentage 

o f the largest side o f the model’s bounding box.

• Specify a 3D tolerance in model units in the Tolerance text box. This is a 

maximum absolute distance in model units that a surface area can be lowered by 

removing a vertex and retriangulating.

In addition, the window provides a Max edge length combo box that allows you to set a 

maximum triangle edge length, which is set to Not constrained by default. To specify a 

maximum edge length, enter a value in the combo box.
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Finally, the window provides a Max dihedral angle text box for detecting sharp edges and 

comers prior to compression. Sharp edges and corners will then be preserved by the 

polygon reduction algorithm. Edges are reduced along their length using the same 

tolerance applied to the surface triangulation reduction. Reduction is performed by 

pressing the Apply button. It should be noted that IMEdit preserves the boundary o f the 

selected area throughout the reduction process.

Fig. 37: An example o f dataset simplification: triangles are removed over flat areas and 

small triangles are kept in the highly curved or highly detailed areas

4.2.3 Reference point extraction

In this research, with help o f PolyWorks, there are 3 basic methods used for reference 

point extraction.

Cross-section
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In this case, the level o f  detail is important. As examples, a plant fruit truss (Fig. 38 & 

39), and leaflets (Fig. 44) are free-form objects whose geometry in space can not be 

generated unless references are given. In Fig. 38, We use cross-section functions in 

IMMedit, to derive the diameters o f the fruit truss as well as the shape and positional data 

from scans.

* Hi

Fig. 38: Extracting reference data (e.g. diameters and shape) from cross section
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Fig. 39: The original scan

Manually picking

Manually select critical points can be done using interactive graphic windows in IMEdit 

[30], As shown below (Fig. 40), the main structural data, used to define the shape of 

WGS, are derived from manual picking. In this case, level o f  detail is not essential, only 

the main stem geometry and nodes topology data are important. So that, 30 points per 

meter long for the main stem is sufficient to describe the plant shape in space. We can 

manually select critical points and export them using IGES format to CAD for parametric 

model generation.
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Fig. 40: Reference point extraction by manual picking

Corner detection method

To increase the accuracy and the level o f automation o f reference point extraction, we 

proposed using comer detection method to detect the critical points. The concept, the 

algorithm and the experiment are introduced in Section 3.4.3. The Matlab code and 

experiment results are listed in Appendix 1.

4.3 Building a plant mathematical model

4.3.1 Plant decomposition

As stated in section 3.3, a plant mathematical model is developed to define the geometry 

and topology o f plant components, WGS, and the plant structure as a whole. In our
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experiment, the 16 weeks old plant sample# 1 was decomposed into 16 WGSs. The 

structure o f the decomposed plant are shown below (Fig. 41).

Overall Plant height (from top to bottom): 392 cm 

Distance from marker #1 to rockwool is: 75 cm.

Distance from top to first fruit is: 140 cm.

Plant tt1 Main StructureF7 MiMM Flower Tru55
S.. J s

L9 WGS#1
S16

L8
F6

WGS#2

F5
S14

L*>
tilS13

1.1 WGS#5S12 L2 RockwoolBase
F 3

S11 9

F2 ^ S9 S8 S7 S6 S5 S4 S3 S2 S1

FI

WGS# 16

Fig.41: A 16-WGS representing a 16 week-old plant. 
F: Fruit or flower truss; L: Compound Leaf
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4.3.2 Tomato plant measurement

Tomato plant manual measurement includes geometry and topology measurement for 

each structured entities o f  components, WGS, and the plant structural as a whole. The 

following measurements are obtained from the 6 sample plants mentioned at the 

beginning o f Chapter 4.

Stem Weekly Growth Rate fcml

Table 5: Plant weekly growth rate (cm)

WGS 1 2 3 4 5 6 7 8

Sample #1 18 18.5 19.00 17.5 20.0 21.0 21.5 22.0

Sample #2 18.5 21.5 18.00 20.5 19.0 21.0 22.5 19.0

Sample #3 20.5 18.5 19.00 19.5 22.0 22.0 19.5 21.0

Sample #4 18 18.5 19.00 18.5 20.0 21.0 21.5 22.0

Sample #5 21 20.5 20.00 19.5 18.0 18.0 19.5 20.0

Sample #6 19 21.5 19.00 20.5 21.0 19.0 20.5 21.0

Mean 19.3125 19.6250 19.2500 19.6250 20.000 20.3333 20.8333 20.9871

Standard

Derivative
1.6462 1.3562 0.8864 1.2464 1.4142 1.5055 1.2111 1.1690

Probability [16 

-2 2 ]
0.9266 0.9563 0.9989 0.9698 0.9190 0.8639 0.8323 0.8408
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Week 9 10 11 12 13 14 15 16

Sample #1 18 18.5 19.00 17.5 22.0 21.0 21.5 22.0

Sample #2 18.5 21.5 18.00 20.5 19.0 21.0 22.5 19.0

Sample #3 20.5 18.5 19.00 19.5 22.0 22.0 19.5 21.0

Sample #4 18 18.5 19.00 18.5 20.0 21.0 21.5 22.0

Sample #5 21 20.5 20.00 19.5 18.0 18.0 19.5 20.0

Sample #6 19 21.5 19.00 20.5 21.0 19.0 20.5 21.0

Mean
19.166

7

19.833

3
19.000 19.3333 20.3333

20.333

3
20.8333 20.8333

Standard

Derivative
1.2910 1.5055 0.6325 1.1690 1.6330 1.5055 1.2111 1.1690

Probability [16 ~ 

22]
0.9788 0.9195 1 0.9866 0.8423 0.8639 0.8323 0.8408

Numbers of Leafs Per WGS

Table 6: Numbers o f compound leaves per WGS

WGS 1 2 3 4 5 6 7 8

Sample #1 3 1 1 3 3 0 0 0

Sample #2 3 1 1 3 2 1 0 0

Sample #3 2 1 1 2 3 0 0 0
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Sample #4 2 1 2 1 3 0 0 0

Sample #5 3 2 1 2 3 0 0 0

Sample #6 3 1 1 3 2 1 0 0

Mean 3 1 1 3 3 0.3333 0 0

Standard

Derivative
0.5164 0.5477 0.5477 0.8165 0.5477 0.5164 0 0

Probability [ 1- 3] 0.8775 0.8163 0.8163 0.7417 0.8163 - - -

Numbers of Truss Per WGS

Table 7: Numbers o f truss per WGS

WGS 1 2 3 4 5 6 7 8

Sample #1 1 1 1 0 1 1 1 1

Sample #2 1 1 0 1 1 0 1 1

Sample #3 1 1 1 0 1 1 1 1

Sample #4 1 1 1 0 1 0 1 1

Sample #5 1 1 0 1 1 0 0 1

Sample #6 1 1 1 0 1 1 1 1

Mean 1 1 1 0 1 1 1 1
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Standard

Derivative
0 0 0.5164 0.5477 0 0.5142 0.8623 0

Probability [0-2] - - 0.8967 0.8163 - 0.8543 0.8975 -

Due to deleafing operations, there is no fruit truss on WGS#9 and backward to the 

rockwool.

Stem Diameters (mm) Vs age (week)

Measurement taken at the location o f 5th leaf from top o f the plant

Table 8: Stem diameters Vs. age

WGS 1 2 3 4 5 6 7 8 9

Stem Diameter 

(mm) 8 8.5 8.8 9.3 9.5 10.5 11.3 12.18 12.6

10 11 12 13 14 15 16

12.83 11.80 11.68 11.70 11.57 10.96 11.89

Plant components measurement

As shown in Fig. 42 & 43, plant components are measured to build the CL. The 

measurement results are listed in Table 15.
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Fig. 42: measuring a compound leaf

m m
i

Fig. 43: measuring leaflets

Components measurement on Sample# 1:

Table 9: Components measurement on Sample#!
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F l-1 8 9 96 to  m ark er # 1 270 8.2 245.3

F l -2 8 9 96 to  m arker # 1 270 9.1 286.3

F2-1 7 10 2 6  to  F I 300 7.1 152.95

F2-2 7 10 7.2 170.91

F3-1 6 11 25 to  F2 310 7.1 168.29

F 3-2 6 11 25 to  F2 310 4 .4 36 .2

F4-1 5 12 6 to L3 270 6.1 90 .5 8

F 4-2 5 12 6  to L3 270 6.2 86.43

F4-3 5 12 6  to L3 270 3.5 2 3 .6 6

F 4-4 5 12 6 to  L3 270 3 23 .6 6

F5 3 13 11 to  L6 190 young fru it

F6 2 15 7 to  L7 200 fully  o p en  f lo w e r tru ss

F7 1 16 connect to  L I  1 form ing  f lo w er tru ss

L I 5 12 6  to  F3 210 17 42

L2 5 12 7 to L2 100 15 45

L3 5 12 6  to  L2 270 12 40

L4 4 13 4  to  F4 90 11 46

L5 4 13 8 to  L4 0 15 49

L 6 4 13 7 to L5 100 15 46 12

L7 3 14 6 to F5 2 90 12 44

L8 2 15 4 .5  to  F6 340 9 28

L9 1 16 12 to  L8 340 12 39

L 10 1 16 6 .5 to  L9 120 11 34

L i t 1 16

4.3.3 Observations
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The flowing observations were made based on measurements shown section 11.2, and 

discussions with greenhouse vegetable specialist, as well as greenhouse field studies.

• With standard labour task implied, numbers o f compound leaf are normal 

distributed, central mean: 11 for spring-fall crop plant. 2 or 3 for each WGS. So, 

we have 5 or 6 WGSs with compound leaves.

• With standard labour task implied, weekly growth rate are normally distributed. 

Central means for different WGSs are shown at table 11 for spring-fall crop plant.

• One truss per week developed on one WGS from WGS#1 to #8.

• Flower truss need 1 to 2 weeks to mature. So newly forming flower truss is on 

WGS#1. A fully opened flower truss is on the 2nd week section, WGS#2.

• Because fruit setting start from 3rd week flower truss, and getting mature 6 weeks 

later. So a fully mature fruit is on an 8 weeks old truss, WGS#8 (if not picked); 

and a forming fruit truss is just on a 3 weeks old truss, WGS#3.

• For spring-fall crop, the growth cycle is 8 week. That is to say, the geometry of 

WGS#1 to WGS#8 will be remained as constant over the whole season. Because 

o f deleafing and fruit picking operations, only top 8 sections, WGS#1 to #8, have 

components with them. There is no component on WGS #9 and backwards. For 

example, a 20 weeks old plant will have WGS#1 to WGS#8 with components on, 

and no components on WGS#9 to WGS#20.

4.3.4 Mathematically define plant WGSs

As stated in section 5.2, the Plant WGS data can be defined by the measurement data as 

follows.
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Table 10: WGS data for plant sample #1

WGS Age (Weeks)

Components Section 

Length (cm)Leaf Truss

1 1 L9, L10, LI 1 F7, Sucker 18

2 2 L8 F6 18.5

3 3 L7 F5 19

4 4 L4,L5, L6 17.5

5 5 L3, L2, LI F4 20

6 6 F3 21

7 7 F2 21.5

8 8 FI 22

9 9 18

10 10 18.5

11 11 19

12 12 17.5

13 13 22

14 14 21

15 15 21.5

16 16 22

Base As Delivered 75

4.4 A Laser-scanning based CAD parametric plant model

4.4.1 Constructing a plant components library

In the CL, typical trusses and compound leaves are constructed in CAD. Trusses are 

identified by ages (in weeks), and compound leaves are identified by length (in cm). 

Components in the CL can be utilized with respective WGS and with respective
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connections. For example, a 2 weeks old WGS requires 1 set o f 2 week-old fruit truss, 1 

set o f 200mm Leaf with specified connectivity (see example WGS data below).

Within the CL, a component is made up o f various elements. The geometry o f each 

element (e.g. leaflet) is measured from scans and their roles in the topological structures 

are recorded (see Fig. 44). The geometry and topology o f suckers, fully opened flowers, 

fruit clusters, nodes and compound leafs are obtained from laser scans in the form o f 

reference points which are exported to CAD as anchors for model construction.

Fig. 44. Left: Surface measurements from 3D scan: Curves captured from PloyWorks. Rigth: Reconstructed 
lea fle t in S o lidW orks.

Compound Leaf

Similar to Long Quan’s plant modeling method [4], we consider leaves in the same plant 

are typically very similar. We extract a generic leaf model with certain length from a 

sample leaf and use it to fit all the other leaves with the same length. This strategy turns 

out to be more robust as it reduces uncertainty due to noise and occlusion by constraining 

the shapes o f leaves [4], In our experiment, the measurement o f sample# 1 plant are listed 

in Table 17. The corresponding CAD models are shown in Appendix 3.

Table 11: Compound leaf data for plant sample #1
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C L  ID

Leaf

Length

cm

Leaflets Max. Leaflet length Min. Leaflet length

Numbers

OD

cm

Leaflet

length

cm

Stick

length/OD

cm

Leaflet

length

cm

Stick

length/OD

cm

Leaf 40 4 1 4

Leaf 80 8 9 0.5 8 4/0.1 3.5 0.5

Leaf 180 18 10 0.1 5 1.5/0.1 1 0.5/0.1

Leaf 280 28 9 0.2 6 2/0.1 2 2/0.1

Leaf 310 31 10 0.2 8 2/0.1 4 1/0.1

Leaf 340 34 13 0.2 8.5 3 2 0.8

Leaf 390 39 12 0.4 11 2.5 2 0.8

Leaf 400 40 16 0.3 11 3/0.1 1.5 0.5/0.05

Leaf 450 45 15 18 12/0.18 2

Leaf 460 46 15 0.6 17 11/0.15 2 2.5/0.1

Leaf 490 49 17 0.8 14 11/0.2 2 2.5/0.1

The numbering o f Compound Leaf is based on length o f leaf, i.e. “Leaf 440”, means a 

compound leaf with 44 cm in length, see Fig. 45.
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Fig. 45: Leaf 440

Truss

Similar to compound leaf, the truss are measured as shown in Table 18. the CAD models 

are shown in Appendix 3. The numbering o f trusses in the CL are based on the age, i.e. 

“T2”, means 2nd week-old truss. T l, T2 and T3 are built based on the scans, see Fig. 46, 

47 & 48.
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Table: 12: Truss data of plant sample#!

CL ID

Age

week Description

F 1 ( m m ) F 2 ( m m ) F3 (mm)

Height Radio Height Radio Height Radio

Tl 1

forming flower, 

from scan

T2 2

fully open 

flower, forming 

fruit, from scan

T3 3 developing fruit 25 15 28 17.5

T4 4 25 15 32 20 38 22.5

T5 5 32 20 50 30 55 35

T6 6 55 37.5 58 38.5

T7 7 55 37.5 58 38.5

T8 8 65 45 58 38.5

Fig. 46: Constructing a CAD model o f  a Forming fruit truss T2. Left: the scan; right: CAD
model based on scan data
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Fig. 47: Cross section data of a fruit truss

M i
-  -  .  ■ m m

Fig. 48. Left: The scan o f T3. Right: the CAD model o f T3

Sucker

The positional and size information o f a sucker is an entity o f  interest to plant researchers. 

There is one sucker at Sample# 1 plant. The CAD model is constructed based on the scan 

reference points.
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Fig. 49: Sucker

4.4.2 Modeling plant WGS

Based on the mathematical model described earlier, a WGS database is developed to 

define parameters to be used in CAD. To define the nodes geometry and topology in a 

WGS, raw data can be obtained from 1) scans or 2) traditional manual measurement. As 

mentioned in Section 3.4, laser scans promise quick, accurate and automatic data 

acquisition, while it is expensive on hardware in comparison with manual measurement. 

In this experiment, for comparison purpose, we use 1) to construct WGS#2, and use 

method 2) to construct the rest o f  WGSs. The results o f method 2) are included in 

Appendix 2.

To define the nodes geometry and topology in a WGS, reference points from scan are 

used.

A simple point in space gives connectivity information between node and respective 

component. With the exported 44 reference points in CAD, WGS#2 model is constructed 

(Fig. 51). Table 13 and Table 14 show an example description o f WGS #2.
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Table 13: Example WGS #2 data

W G S N o rm al

d istrib u tio n

L en g th  (cm ) # o f  C o m p o u n d  

L e a f

# o f

T russ

#  of Suckers

# 2 C u rren t

m easu rem en t

18.5 1 1 N A

M ean 19.625 1 1

S tandard

D eriv a tiv e

1.3562 0 .5477 0

Table 14: Example Components data for WGS #2

C o m p o n en ts C L  ID C o n n e c tiv ity  to  W G S

C o m p o u n d  le a f  #1 L e a f 200 N o d e  #1 o f  scan  W G S # 2

T ru ss #1 T 2 N o d e  # 2  o f  scan  W G S #2

Fig. 50. Left: Critical points are detected by corner detection algorithm, 44 corners 
detected; Right: Detected comer points are transformed to scan coordinate, ready 
for exporting to CAD
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Fig. 51: WGS#2 structure CAD Fig. 52: Components are added to WGS#2
model are constructed from imported structure CAD model
44 reference points

The WGS#2 CAD model can also be constructed using cross section method (Fig. 53).

Fig.53: Capture WGS cross section data from Fig.54: CAD model o f the WGS based on the 
scan scan
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4.4.3 Assembly a tomato plant model from W GS

With selected plant age and the mathematical model, we can define numbers o f WGS. A 

plant model is achieved by correctly assembling the appropriate WGSs.

Fig.55: a 16-week-old Plant Model, Assembly o f WGS #1 to #16
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4.5 Model Validation

As mentioned in Section 3.6, a plant model validation is carried out at different levels. 

For structured entities, like the geometry and topology of main stems and nodes, we use 

manual measurement (at field or from scans, see Fig. 56, stem node information are 

recorded from a scan) for comparison at WGS level.

:  - •  *  n  \ f ' n ' n  , p j  f ~ j  i  3

i  __|£_______ UK______ 1«_______ tfi.

Fig. 56: Model validation using measurements obtained from scans

The following example is to validate the accuracy o f node positions o f a WGS CAD 

model with scans (Fig. 57).
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Fig. 57: WGS#2 is validated with scan data

At component level, interested entities are verified with scan data. We export the CAD 

model o f the component back to point cloud environment scan data to make comparison 

with reference data or vice versa. The following examples show that truss (Fig. 58, Left), 

leaflet (Fig. 58, Right), sucker (Fig. 59, Left) and a young leaf (Fig. 59, Right) are 

validated with corresponding scan data.

In this research, we use point-to-point method manually identify the interested attributes 

and make comparison. At the experiment shown in Fig. 58 Left, interested attributes, such 

as fruit position data from model and reference are compared. The error are recorded and 

transferred to the CL for correction and model regeneration. Because current validation is 

conducted at component level point-to-point, thus, it is very time consuming. A better 

automate solution is considered a future improvement and listed in Chapter 5, future 

works.
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Fig. 58. Left: a fruit truss is validated with scans; Right: a leaflet is validated with scans

■iii—

M l
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" iK H b hi i i i i
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Fig. 59. Left: A sucker is validated with scan data; Right: a young leaf is validated with

scans
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5. Conclusion and Future Works

We have developed a new methodology for tomato plant modeling which is robust 

enough for many other similar varieties. In the proposed modeling system, we combine 

several sources o f  data to achieve a parametric CAD model based on 3D scans. We 

gathered weekly plant data to describe WGS and thus connect plant geometry with age 

and used laser scans and CAD modelling tools to create a library o f  components. Through 

modeling interface, users can quickly edit the current models to improve accuracy and 

accomplish plant variety.

The characteristics o f the methodology include:

• High accuracy: the method is based on plant scan data and plant growth records; 

which are derived from real world measurements. In addition, this system enables 

model validation starting from component level, resulting in a calibrated plant 

model.

• Semi-Automatic: with help from laser scans, 3D measurements are automatically 

captured; with help from CAD’s parametric functions, models are automatically 

regenerated according to re-entered parameters. However, user interaction is 

required to process the point cloud and generate a CAD 3D model.

• High manipulability: through advanced CAD, parameters are accessed and edited 

to fine tune and customize different type o f plant model (i.e. plants with various 

ages).

• Wide application: this method can be applied to other complex objects whose 

structure can be decomposed.

•  Computational cost: The user can customize the data size for control point 

extraction, polygonal model meshing and numbers o f  reference points to be 

transferred. A comfortable and manageable data size can thus be achieved by 

balancing the efficiency o f the system and the accuracy o f the output model.
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The contributions of this research can be summarized into 3 aspects.

1. Traditionally, the input o f 3D reconstruction is a set o f  scans, while the expected 

output is a watertight polygonal model. Because o f conditions o f applying 3D 

registration algorithms and dense dataset handling, 3D reconstruction modeling 

method are constrained to “simple” structured object, or the quality o f the output 

model are compromised.

In this research, we utilize the advantage o f 3D reconstruction method, while, 

expecting accurate reference points, rather than a high-quality polygonal model. 

This arrangement greatly eases the difficulty o f 3D registration and dense data 

processing problems. With reference point exported to CAD software, a 

parametric model can be made. By this approach, the advantages o f 3D 

reconstruction method and CAD are integrated, which can be used to model more 

complex objects, like tomato plant.

2. Unorganized point cloud data simplification and extraction are not fully developed 

today. Practically, user interaction is required. In this research, issues about 

improving the automation level o f  this operation are addressed. We propose 

extracting reference data using comer detection algorithm from a 2D image and 

transform the detected comer points back to 3D scan coordinate, and further 

exported to CAD. As a new direction on this topic, the advantage o f this approach 

is that mature 2D image processing technology can be utilized in 3D data 

processing domain.

3. We introduced the concept o f WGS to decompose a tomato plant into meaningful 

sections. The idea o f  WGS not only simplifying the complexity o f a plant, solving 

occlusion problems in the plant modeling domain, but also in the crop research 

domain. WGS relates plant growing characteristics and the interaction to its 

environment with its geometrical structure. For example, plant age and its 

generative aspects (e.g. labour task efficiency) can be analyzed from WGS.
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To improve the proposed modeling method in terms o f level o f  automation and data 

efficiency, the following issues can be pursuit in the future works:

• Point cloud simplification: reduce data size, while keep high accuracy

• 3D feature segmentation: extract specified features to model

• Improving the capacity and robustness o f data acquisition during laser scanning: 

surface treatment, 3D registration

• Developing and applying CAD API: automatic CAD model construction with 

given specifications

• Incorporate more attributes into modeling system, building a components property 

library: e.g. mass, color, texture.

• Developing a robust plant modeling validation system to increase the automation 

level and the accuracy.
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Appendix 1

Extracting reference points using Harris Corner 
Detection Algorithm

1. The Harris Corner Detection code

% Tong Wang 07 FEB 2007 
% Harris Comer detector
% this is a user friendly program, allowing user to key in parameters and 
% using dragging down window to select interested object to be comer-detected.

%%%%%%%%%%% Initializing data%%%%%%%%%%%%%%%%
disp('Enter Standard Derivation');
sigm a=input('sigm a-);

disp('Enter Threshold Level');
Threshold=input('T-); %Threshold=0.01;

disp('Enter Neighborhood Size'); 
s=input('Size-);

%%%%%%%%%%%%%% Object Selection%%%%%%%%%%%%%%%%
% this section can automatically adjust threshold level to compromise the required

%number o f comers expected to be detected

disp('Enter Minimum Number o f Comers E xpected '); 
min_N=input('N_min=');

disp('Enter Maximum Number o f Comers Expected '); 
max_N=input('N_m ax-);

%set how many numbers o f comer you are expecting to get 

A=imread('pl+z.jpg'); %read-in image
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figure, imview(A); 
imshow(A);%show image

%A=imnoise(AA,'salt & pepper', 0.02);
%A= imnoise(AA,'gaussian', 0,0.04); %implement noise-gaussian 

%imshow(A)

% optional - First filtering-reduce noise - gaussian

I=double(A); %conversion- unsigned 8-bit integer to double

%  prepare windows for corner detection which can be made by mores dragging-down 

k = waitforbuttonpress;
point 1 = get(gca,'CurrentPoint'); %button down detected
rectregion = rbbox; %%%retum figure units
point2 = get(gca,'CurrentPoint');%%%%button up detected
point 1 = point 1 (1,1:2); %%% extract col/row min and maxs
point2 = point2(l,l :2);
lowerlefit = min(pointl, point2);
upperright = m ax(pointl, point2);
ymin = round(lowerleft(l)); %%% define 4 - coordinate o f the window 
ymax = round(upperright(l)); 
xmin = round(lowerleft(2)); 
xmax = round(upperright(2));

A=8;
cmin=xmin-A; cmax=xmax+A; rmin=ymin-A; rmax=ymax+A; % set allowance

%%%%%% Calculate gradient %%%%%%%%%

dx = [1 0 -1 ; 1 0 -1 ; 1 0-1]; % mask for x-axis, from textbook, A2
dy = dx'; % mask for y-axis

Ix = conv2(I(cmin:cmax,rmin:rmax), dx, 'same'); %get gradient Ix
Iy = conv2(I(cmin:cmax,rmin:rmax), dy, 'same'); %get gradient Iy
g = fspecial('gaussian',max(l,fix(6*sigma)), sigma); % % % % % %  Gaussien Filter

%%%%% Forming C, getting Eigenvalue % % % % % % % % % % % % % % % %

1x2 = conv2(Ix.A2, g, 'same');
Iy2 = conv2(Iy.A2, g, 'same');
Ixy = conv2(Ix.*Iy, g,'same');
LM=((Ix2+Iy2)-(4*Ixy.*Ixy+(Ix2-Iy2).A2).A( 1 /2))/2;
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%eigenvalue from "mathworld.wolfram.com"

R=LM; % buffering values to R
ma=max(max(R)); %get globle maximum
sz = 2 *s+ l; % Q size o f  neighborhood

MX = ordfilt2(R,szA2,ones(sz));
% perform filtering, replace elements in R by maximum value o f Q,
% eliminating non-maxima point

LM = (R==MX)&(R>Threshold);
% if R (representing a point) is the local maxima and greater than Threshold, increment 
%LM by 1

count=sum(sum(LM(5:size(LM,l)-5,5:size(LM,2)-5)));

%count how many comers detected.

% % % % % % % % % % % %  Dealing with Your expected number of 
comers %%%%%%%

loop=0;
while (((count<min_N)|(count>max_N))&(loop<30)) % if  over-estimate, relax T;

if  count>max_N
Threshold=Threshold* 1.5; 

elseif count < min_N % if  under-estimate, reduce T ;
Threshold-Threshold*0.5;

end

LM = (R==MX)&(R>Threshold); % LM is maxima list 
count=sum(sum(LM(5:size(LM,l)-5,5:size(LM,2)-5))); 
loop=loop+l; 

end

R=R*0; %clear R, and re-load R with LM -  maxima list 
R(5 :size(LM, 1 )-5,5 :size(LM,2)-5)=LM(5:size(LM, 1 )-5,5:size(LM,2)-5);

[r l,c l]  = fmd(R);
%[I,J] = FIND(X) returns the row and column indices (location) o f 
%the nonzero entries in the matrix X. This is often used 
%with sparse matrices.

PIP=[rl+cmin,cl+rm in]% %  IP

Size_PI=size(PIP, 1); 
for r = l : Size_PI
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I(PIP(r, 1 >3 :PIP(r, 1 )+3,PIP(r,2)-3)=255;
I(PIP(r, 1 )-3 :PIP(r, 1 )+3,PIP(r,2)+3)=255;
I(PIP(r,l)-3,PIP(r,2)-3:PIP(r,2)+3)=255;
I(PIP(r, 1 )+3,PIP(r,2)-3 :PIP(r,2)+3)=255;
% will add in numbering label here 
end

%%%%%%% mark the comers %%%%%%%%%%%%%%%%

cor=PIP;

inter_x = cor(:,2); 
inter_y = cor(:,l);

%%%%%%%%%%%%%% options to display %%%%%%%%
% draw an "X" at the point o f intersection

figure,
imshow(uint8(I)); %Convert to unsigned 8-bit integer. 

%%%%%%%%prepare labelling on each corner %%%%%%%%%%%% 

hold on;
text(l 0,10,'Applying Harris Comer Detection','ColorVyVFontWeight', 'bold'); 
aa=size(PIP);
dispCNumbers o f  the corner detected '); 
aa(l)

2. The detected comers

The followings is the Matlab output with the input image o f Fig. 30, Left. The 44 corners 
detected are also shown on the same Figure.

Enter Standard Derivation 
sigma=l
Enter Threshold Level 
T=0.05
Enter Neighborhood Size 
Size=5
Enter Minimum Number of Comers Expected 
N_min=5
Enter Maximum Number of Comers Expected 
N_max=25

PIP=[r, c];
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PIP =

287 270
290 282
300 287
290 292
302 300
293 306
280 309
305 309
252 310
305 315
290 319
248 323
285 325
290 331
233 334
304 335
289 339
254 342
318 343
244 344
271 347
293 347
263 348
251 350
307 350
324 351
270 357
298 359
253 362
308 363
263 364
310 373
313 387
306 388
315 395
306 396
318 403
309 408
311 416
322 417
314 425
325 425
329 437
319 438
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Numbers of the comer detected

ans = 

44

3. The transformation between 2D image and 3D scan

The principle o f the transformation is shown at Section 7.2.3. The following is 
detailed implementation with the input data PIP shown at section 10.5.4.2.

»  r=PIP(l:44);
»  r'

ans =

287
290
300
290
302
293
280
305
252
305
290
248
285
290
233
304
289
254
318
244
271
293
263
251
307
324
270
298
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253
308 
263
310
313 
306 
315 
306
318
309
311 
322
314 
325 
329
319

»  mew=r'-288

mew =

-1
2
12
2
14
5

-8
17

-36
17
2

-40
-3
2

-55
16
1

-34
30

-44
-17

5
-25
-37
19
36
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-18
10

-35
20

-25
22
25 
18 
27 
18
30 
21 
23 
34
26 
37 
41
31

»  c=PIP(45:88); 
»  c'

ans =

270
282
287
292
300
306
309
309
310 
315 
319 
323 
325 
331
334
335 
339
342
343
344 
347
347
348
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350
350
351 
357 
359
362
363
364 
373
387
388
395
396 
403 
408
416
417 
425 
425
437
438

»  cnew=c'-335

cnew =

-65
-53
-48
-43
-35
-29
-26
-26
-25
-20
-16
-12
-10
-4
-1
0
4
7
8 
9 
12
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12
13
15
15
16 
22 
24
27
28 
29 
38
52
53 
60 
61 
68 
73 
81 
82 
90 
90 
102 
103

»  X=-63.9;
»  Y=65.6+cnew*0.717

18.9950
27.5990
31.1840
34.7690
40.5050
44.8070
46.9580
46.9580 
47.6750 
51.2600 
54.1280 
56.9960 
58.4300 
62.7320 
64.8830 
65.6000 
68.4680 
70.6190
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71.3360
72.0530
74.2040
74.2040 
74.9210
76.3550
76.3550 
77.0720 
81.3740 
82.8080 
84.9590 
85.6760 
86.3930 
92.8460 
102.8840 
103.6010 
108.6200 
109.3370 
114.3560 
117.9410 
123.6770 
124.3940
130.1300
130.1300 
138.7340 
139.4510

»  Z=mew*0.681-1555.4

1.0e+003 *

-1.5561
-1.5540
-1.5472
-1.5540
-1.5459
-1.5520
-1.5608
-1.5438
-1.5799
-1.5438
-1.5540
-1.5826
-1.5574
-1.5540
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-1.5929
-1.5445
-1.5547
-1.5786
-1.5350
-1.5854
-1.5670
-1.5520
-1.5724
-1.5806
-1.5425
-1.5309
-1.5677
-1.5486
-1.5792
-1.5418
-1.5724
-1.5404
-1.5384
-1.5431
-1.5370
-1.5431
-1.5350
-1.5411
-1.5397
-1.5322
-1.5377
-1.5302
-1,5275
-1.5343

With derived Y and Z, corresponding X can be found from the point cloud (X, Y, Z) 
dataset.
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Obtain WGS information from manual measurement
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W GS #1

Table 2-1: WGS#1 data
WGS age 1

Items Current
Mean Stan’d

Deviation
Numbers o f Truss 1 1 0
Numbers o f compound leaf 3 3 0.5164
Length cm 18.00 19.31 1.6462
OD mm 8.00

Component Position (cm) down 
to next comp’t

Orientation to
Front
(Degree)

CL ID

LI 1 On top 300 Forming leaf

F7 1 to LI 1 290 Forming flower truss, 
T1

L10 6.5 to F7 120 Leaf 110
L9 5 to L10 340 Leaf 120
Sucker On L9 340 Sucker

H<$tfe mt
d ^ u p *  a-w • < ** * .ai o*f. 3 * e s o a t  # a«*<

>• . *  + •: <• e *: « *-
>♦. >    . i
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ill
EQ
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*. p « * .» * -  5 a » . « . - • ■ ; *  i

M g l »
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Fig. 2-1: WGS# 1

WGS#1
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Fig. 2-2: WGS#2+CL

WGS #2

Table 2-2: WGS#2 data
WGS age 2

Items Current
Mea
n Stan’d Deviation

Numbers o f Tmss 1 1 0
Numbers o f compound leaf 1 1 0.5477

Length cm 18.50
19.6
25 1.3562

OD mm 8.50

Component Position (cm) down to 
next comp’t

Orientation 
to Front 
(Degree)

CL ID

L8 6 to top 340 Leaf 280

F6 9 to L8 200
Fully opened 
flower truss with 
forming fruit, T2

WGS#2 is constructed using scan data. Reference points derived from comer detection 
algorithm. Refer to Fig. 50, 51 and 52 at section 4.4.2 for details.

I l l
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WGS #3

Table 2-3: WGS#3 data
WGS age 3
Items Current Mean Stan’d Deviation
Numbers o f Truss 1 1 0.5164
Numbers o f compound 
leaf 1

1
0.5477

Length cm 19.00 19.25 0.8844
OD mm 8.80

Component Position (cm) down 
to next comp’t

Orientation to 
Front (Degree) CL ID

L7 6 to top 290 L ea f440
F5 8 to L7 190 Young fruit, T3

2 > * U P *  <*3t « B  m*S« * '  V <<.**(* "3»* f lSJOCI  * * • » > *
4* © 3 3

M l N M H
i i i i

2 . s w i » »  Js.ti « * c <  c i k - n ^ i  *  n ^ o r  . *t- aoattJ i « * .

.A  I: . . .  y  •• : .  T * \  S. ;• A  * .......

■ » »  ..ijE5515ii3MliBllitf

Fig. 2-3: WGS#3
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Fig. 2-4: WGS#3+CL 

W G S #4

Table 2-4: WGS#4 data
WGS age 4
Items Current Mean Stan’d Deviation
Numbers of Truss 0 0 0.5477
Numbers of compound 
leaf 3

3
0.7417

Length cm 17.5 19.625 1.2462
OD mm 9.30

Component
Position (cm) 
down to next 
comp’t

Orientation to 
Front (Degree) CL ID

L6 5 to top 100 L eaf460

L5 7 to L6 0 Leaf 490
L4 8 to L5 90 L eaf460
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W G S #5

Table 2-5: WGS#5 data
WGS age 5
Items Current Mean Stan’d Deviation
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Numbers of Truss 1 1 0
Numbers of compound 
leaf 3

3
0.5477

Length cm 20.00 20.00 1.4142
OD mm 9.50

Component
Position (cm) 
down to next 
comp’t

Orientation to 
Front (Degree) CL ID

F4 4 to top 270 T5
L3 6 to F4 170 Leaf 400
L2 6 to L3 100 Leaf 450
LI 3 to L2 210 L eaf420

Fig. 2-7: WGS#5
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Fig. 2-8: WGS#5+CL
WGS #6

Table 2-6: WGS#6 data
WGS age 6
Items Current Mean Stan’d Deviation
Numbers o f  Truss 1 1 0
Numbers o f compound 
leaf 0

0.3333
0.5477

Length cm 21.00 20.3333 1.5055
OD mm 10.50

Component
Position (cm) down 
to next comp’t

Orientation to 
Front (Degree) CL ID

F3 6 to top 310 T6
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Fig. 2-9: WGS#6

W G S #7

Table: 2-7: WGS#7 data
WGS age 7
Items Current Mean Stan’d Deviation
Numbers o f Truss 1 1 0.8623
Numbers o f compound 
leaf 0

0
0

Length cm 21.50 20.8333 1.2111
OD mm 11.3

Component Position (cm) down to 
next comp’t

Orientation 
to Front 
(Degree)

CL ID

F2 16 to top 300 T7
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Fig. 2-10: WGS#7

W GS #8

Table 2-8: WGS#8
WGS age 8
Items Current Mean Stan’d Deviation
Numbers o f Truss 1 1 0
Numbers o f compound leaf 0 0 0
Length cm 22.00 20.9871 1.1690
OD mm 12.18

Component Position (cm) down to 
next comp’t

Orientation to Front 
(Degree) CL ID

FI 10 to top 300 T1
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Fig. 2-11: WGS#96

WGS #9

Table 2-9: WGS#9
WGS age 9
Items Current Mean Stan’d Deviation
Numbers of Truss 0 0 0
Numbers of compound 
leaf 0

0
0

Length cm 19.000 19.1667 1.2910
OD mm 12.6

Component
Position (cm) down to 
next comp’t

Orientation to 
Front (Degree) CL ID
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Fig. 2-12: WGS#9

WGS #10

Table 2-10: WGS#10 data

WGS age 10
Items Current Mean Stan’d Deviation
Numbers o f Truss 0 0 0
Numbers o f compound 
leaf 0

0
0

Length cm 18.50 19.8333 1.5055
OD mm 12.83

Component
Position (cm) down to 
next comp’t

Orientation to 
Front (Degree) CL ID
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Fig. 2-13: WGS# 10

W GS #11

Table 2-11: WGS# 11
WGS age 11
Items Current Mean Stan’d Deviation
Numbers of Truss 0 0 0
Numbers o f compound 
leaf 0

0
0

Length cm 19.00 19.00 0.6325
OD mm 11.80

Component Position (cm) down to 
next comp’t

Orientation to 
Front (Degree) CL ID
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Fig. 2-14: WGS# 11

WGS #12

Table 2-12: WGS#12
WGS age 12
Items Current Mean Stan’d Deviation
Numbers o f Truss 0 0 0
Numbers o f compound 
leaf 0

0
0

Length cm 17.50 19.33 1.1690
OD mm 11.68

Component Position (cm) down to 
next comp’t

Orientation to 
Front (Degree) CL ID
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Fig. 2-15: WGS#12

WGS #13

Table 2-13: WGS# 13
WGS age 13
Items Current Mean Stan’d Deviation
Numbers of Truss 0 0 0
Numbers o f compound leaf 0 0 0
Length cm 22.00 20.3333 1.6330
OD mm 11.70

Component Position (cm) down to 
next comp’t

Orientation to 
Front (Degree) CL ID

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Fig. 2-16: WGS# 13

W GS #14

Table 2-14: WGS# 14 data
WGS age 14
Items Current Mean Stan’d Deviation
Numbers o f Truss 0 0 0
Numbers of compound 
leaf 0

0
0

Length cm 21.00 20.3333 1.5055
OD mm 11.57

Component
Position (cm) down to 
next comp’t

Orientation to 
Front (Degree) CL ID
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Fig. 2-17: WGS# 14

WGS #15

Table 2-15: WGS# 15 data
WGS age 15
Items Current Mean Stan’d Deviation
Numbers o f Truss 0 0 0
Numbers o f compound 
leaf 0

0
0

Length cm 21.50 20.8333 1.2111
OD mm 10.96

Component
Position (cm) down to 
next comp’t

Orientation to 
Front (Degree) CL ID
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Fig. 2-18: WGS# 15

WGS #16

Table 2-16: WGS# 16 data
WGS age 16
Items Current Mean Stan’d Deviation
Numbers o f Truss 0 0 0
Numbers o f  compound leaf 0 0 0
Length cm 22.00 20.8333 1.1690
OD mm 11.89

Component
Position (cm) down to 
next comp’t

Orientation to 
Front (Degree) CL ID
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Fig. 2-19: WGS# 16

W G S# base

Table 2-17: WGS Base data
WGS age base
Items Mean Stan’d Deviation
Numbers o f Truss 0
Numbers o f compound 
leaf 0
Length cm 75
OD mm 11.5

Component
Position (cm) down to 
next comp’t

Orientation to 
Front (Degree) CL ID
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Leaflet

—

Fig. 3-1: 1 week-old leaflet, Leaf 40

Fig. 3-2: leaflet 45
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Fig. 3-3 : leaflet 75
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Fig. 3-9: Leaf 128
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Fig. 3-10: Leaf 300
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Fig. 3-15: Building truss T1 from scans
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Fig. 3-16: Constructing a CAD model o f a Forming fruit truss T2
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Fig. 3-17: T3

Fig. 3-18: T4
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Fig. 3-19: T5
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Fig. 3-20: T6
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Sucker

Fig. 3-22: Sucker
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