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ABSTRACT

The performance of two novel resistance spot welding electrodes was evaluated 

through the General Motors WS-5A laboratory test and production trials in an automotive 

assembly plant. The novel electrodes featured enhanced cooling properties such as a 

reduced face thickness and internal fins. The potential for a multiple-oxide dispersion 

strengthened copper electrode material is revealed given its performance in both the 

laboratory and production testing. For the production trials, extended electrode life and 

lower current levels were achieved compared to the baseline electrode. The results 

suggest that the optimum face thickness for electrode cooling is greater than 6 mm for a 

cooling-water flow rate of 0.5 gpm. The results also indicate that increased cooling-water 

flow rate is more beneficial for electrodes with cooling properties that enhance 

convective heat transfer. A methodology is presented for developing weld schedules in 

production operations.
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I. INTRODUCTION

The Resistance Spot Welding (RSW) process is the primary method for joining 

automotive assemblies in mass production. Its relatively low capital and operating costs 

along with its capacity to support high production rates continue to make the process very 

attractive to the automotive industry. However, advancements in the primary materials 

used in vehicle assembly have had a significant impact on weld process robustness and 

weld quality.

The demand for improved automobile performance and efficiency has lead to the 

production of new base metals, coatings, and treatments. Galvanized coatings were 

introduced to the automotive industry for their increased corrosion resistance properties. 

The copper-based electrodes, which contact the workpiece and deliver the weld current, 

alloy with the galvanized coating causing undesirable changes in their electrical, thermal, 

and mechanical properties. Furthermore, the electrodes are subjected to great 

compressive stresses at elevated temperatures leading to electrode face enlargement. 

This electrode wear process requires replacement of the electrodes within a small fraction 

of the life that would be attainable on uncoated steel, and results in reduced weld quality 

reliability. Electrode wear also adversely affects the cost and productivity of automotive 

assembly by requiring intensified inspection requirements and stricter control of weld 

parameters.

Automotive companies alleviate the effects of electrode wear by systematically 

increasing the weld current or by reconditioning the electrode face. Current stepping and 

electrode dressing have been used for many years on galvanized steels to increase 

electrode life; however, these techniques do not address the underlying causes of 

electrode wear. New electrode materials and geometries are needed to achieve a 

significant increase in electrode life and the concomitant cost reduction and weld quality 

improvement.

In a production environment, electrodes are normally replaced during breaks, at 

lunch, or between shifts. Thus, improvements in electrode life must be consistent with 

production scheduling in order to reap any significant economic gain. The annual 

savings associated with doubling electrode life, based only on electrode costs and

1
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replacement labour, was estimated in 2002 to be $US 20-million for the three North 

American automakers alone [1]. However, increased electrode life for the resistance spot 

welding of galvanized steel continues to be a significant challenge for the automotive 

industry.

In an effort to extend electrode life on galvanized steel consistent with production 

scheduling, a research initiative began under the direction of the United States Council 

for Automotive Research (USCAR). The initial stages of the research work set out to 

survey and comparatively test a broad selection of existing and developing technologies 

with technical merit for achieving long electrode life. A detailed characterization of the 

electrode wear process was obtained through a combination of laboratory testing, 

metallography, and computer modeling. For the final stage of the research initiative, the 

electrode designs offering the best opportunity for enhanced electrode life were beta-site 

tested in an automotive assembly plant. The selection process was based on previous 

laboratory results, a working knowledge of automotive production facilities, and the 

review of industry experts [2].

The main objective of this study was to evaluate the production welding 

performance of two novel resistance spot welding electrodes. The research approach was 

to generate a methodology for developing weld schedules in production operations. 

Another objective of this study was to compare and contrast the results from the 

laboratory testing to the results obtained from the production trials.

2
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II. LITERATURE REVIEW

The following literature review serves to introduce the fundamentals of resistance 

spot welding for those that are unacquainted with the process. It also highlights the 

various electrode materials and geometries, and describes several laboratory test methods 

that are used to evaluate electrode performance. Production-specific welding issues are 

discussed along with the methods used to extend electrode life. Information about 

galvanized coatings is presented along with their resistance spot welding characteristics. 

Finally, a detailed analysis of the various electrode wear mechanisms for galvanized steel 

is provided.

2.1 The Resistance Spot Welding Process

Resistance welding is a process in which heat is generated in workpieces from the 

resistance to the flow of electric current [3]. The resistance welding phenomenon was 

first discovered by Elihu Thomson in 1877 [4]. Resistance spot welding is one type of 

resistance welding process whereby two or more thin sheets of metal are joined at their 

contacting, or faying, surfaces by electrodes that provide current and force. The faying 

surfaces in the region of current concentration are heated by a pulse of low-voltage, high- 

amperage current to form a nugget of weld metal [3]. A sectioned view of the resistance 

spot welding setup is shown in Figure 1 displaying the shape of the nugget and the 

position of the nugget relative to the inner and outer surfaces of the workpieces.

■Upper e le c t r o d e

W o rk p ie c e s

N u g g e t

L o w er e le c t r o d e

Figure 1: Resistance spot welding setup [5]
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2.1.1 Resistance Heat Generation
Heat is generated when an electric current passes through a resistance. The two 

types of resistances present in the welding circuit are the volume resistances of the 

workpieces and the interfacial resistances of the contacting surfaces. The heat energy 

generated at any point is given by Joule’s Law: Q = I2 R t

Q = heat generated (joules) I = current (amperes)

R = resistance (ohms) t = duration of current (seconds)

The current flow through all parts of the circuit is the same at any point regardless 

of the resistance. The major points of heat generation and temperature gradients after 20 

and 100% of weld time are shown in Figure 2. Part of the heat generated is used to make 

the weld while the remainder is lost to the surrounding metal and water-cooled 

electrodes. The seven resistances connected in series are: (a) the bulk resistance of the 

upper electrode; (b) the contact resistance between the upper electrode and the upper 

workpiece; (c) the bulk resistance of the upper workpiece; (d) the interfacial contact 

resistance between the upper and lower workpieces; (e) the bulk resistance of the lower 

workpiece; (f) the contact resistance between the lower electrode and the lower 

workpiece; and (g) the bulk resistance of the lower electrode. The point of highest 

resistance, where heating is localized sufficiently to cause melting, is at the faying 

interface [3, 5].

S tartin g  tem p era tu re

/-T e m p e ra tu re  a t 
/ 1 0 0 %  of weld tim e

^ T e m p e r a tu r e  a t  
2 0 %  of weld tim e

W elding tem p era tu re

./-C o o lin g -w a te r  inlet

U pper
e le c tro d e

N ugget

W orkpieces

Lower
e le c tro d e C ooling-w ater inlet

Figure 2: Major points of heat generation and temperature gradients after 20 and 
100% of weld time [5]

4
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2.1.2 The Resistance Spot Welding Cycle
The resistance spot welding cycle consists of a sequence of both current and force 

during the formation of a weld. Figure 3 displays the single-impulse resistance spot

welding cycle. The four basic steps of the cycle are:

1. Squeeze time - electrodes clamp the workpieces together to apply a force

2. Weld time - weld current is initiated and maintained as the weld is created

3. Hold time - weld current is turned off as electrode force is maintained until the 

weld nugget solidifies

4. Off time - the electrodes open to allow the workpieces to be moved into position 

for the next weld

ELECTRODE FORCE

<—  WELDING CURRENT

OFFHOLDSQUEEZE TIME WELD TIME

TIMETIME

WELDING CYCLE

Figure 3: Single-impulse resistance spot welding cycle [3]

2.1.3 The Weld Lobe Curve

The major parameters that affect the resistance spot welding process are weld 

current, weld time, and electrode force. Many combinations of the above parameters will 

produce an acceptable weld nugget size.

Figure 4(a) schematically illustrates nugget diameter as a function of weld current 

for a specific weld time. The minimum nugget diameter is generally established by 

specification. As the current is increased, the nugget diameter increases up to and, in

5
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most cases, beyond the expulsion level. Expulsion is defined as the ejection of molten 

weld metal from between the workpieces. Expanding the acceptable range by testing at 

other weld times produces a weld lobe curve, which defines the combination of weld 

currents and times over which acceptable nuggets are produced [5]. The width of the 

weld lobe curve is known as the current range. The current range can be taken as a 

measure of the weldability of the workpieces. Weldability is a comparative term that is 

loosely defined as the capacity of a material to be welded under the fabrication conditions 

imposed [5]. Materials that have wide weld lobe curves and produce repeatable 

acceptable welds are considered to have good weldability.

Weld current must be sufficient enough for heat to accumulate faster than it 

dissipates so that fusion can occur. The threshold current value must be such that it 

produces enough heat to bring the faying interface to a plastic temperature in spite of heat 

losses by conduction and radiation [3]. Lower current levels produce undersized, brittle 

welds because the nugget is produced at lower peak temperatures, and remains above the 

melting point for shorter periods of time [6]. Current levels that are too high may heat 

the entire thickness of the workpiece into the plastic region causing excess indentation on 

the sheet surface and expulsion of weld metal [3].

Weld times need to be carefully considered in relation to weld current. Shorter 

weld times require higher weld currents in order to produce a weld nugget. Since heat 

transfer is time dependent, weld time can only be shortened to a certain extent regardless 

of the increase in current [3].

Electrode force plays an important role in the size and location of the weld lobe 

curve. Electrode force should be such that it holds the workpieces tightly both to allow 

the passage of current during the weld time, as well as to ensure weld nugget 

solidification during the hold time. Increasing the electrode force decreases the contact 

resistance of the workpieces, thereby reducing the heat generated at the faying interface. 

Thus, electrode force should be selected so that excessive current is not required to 

generate a weld [5, 6].

6
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sion
A cceptab le

nuggets

M inimum nugget diam eter

1 Weld tim e  (A)

Small | 
nuggets ^

Weld current

Lobe curve

T im e
Expulsion

LevelA cceptable
nuggets

Sm aller
'Brittle"
nuggets

Weld Current

Figure 4: Development of a weld lobe curve [5]

2.2 Electrodes

Resistance spot welding electrodes are the component that contacts the 

workpieces and carries current to create the weld. Electrodes perform three important 

functions [3, 5]:

1. Conduct welding current to the workpieces;

2. Transmit the applied force to the workpieces;

3. Dissipate heat away from the weld zone.

2.2.1 Electrode Materials

A suitable electrode material must have high electrical conductivity to carry the 

weld current to the workpiece and high thermal conductivity to conduct heat away from

7
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the weld zone to aid nugget solidification. Electrodes must also have adequate high- 

temperature strength to resist mechanical deformation caused by the repeated application 

of electrode force.

Electrode materials are categorized by the Resistance Welder Manufacturers’ 

Association (RWMA) into groups A, B, and C, as shown in Table 1 [3]. RWMA Group 

A materials consist of copper alloys that attain their strength from a combination of heat 

treatment and cold working. Group A, Class 1 materials have the highest electrical 

conductivities and are recommended for welding aluminum alloys, magnesium alloys and 

coated materials. Class 1 materials include copper-zirconium (CuZr) and copper- 

cadmium (CuCd) alloys.

Group A, Class 2 materials have slightly lower electrical conductivity and higher 

mechanical properties than Class 1 materials. Class 2 materials are general purpose 

electrode materials that can be used with a wide range of metals and conditions. Class 2 

materials include copper-chromium (CuCr) and copper-chromium-zirconium (Cu-Cr-Zr) 

alloys.

Group A, Class 3 materials possess higher hardness and lower electrical 

conductivity than Class 1 or Class 2 materials. They are used for the most severe welding 

conditions since they have high annealing temperatures and good wear resistance. They 

are ideal for spot welding high resistance materials such as stainless steel, nichrome, and 

monel metal. Alloys in this group include copper-beryllium-nickel (Cu-Be-Ni) and 

copper-beryllium-cobalt (Cu-Be-Co).

Group B electrode materials consist of pressed and sintered powdered refractory 

metal compositions. They are divided into classes 10 to 14 and are recommended where 

high resistance to deformation is paramount to electrical conductivity. These electrode 

materials are used where high heat, long weld time, inadequate cooling, or high pressure 

would cause rapid deterioration of the copper-based alloys [3].

Group C electrode materials are special alloys that are neither solid solution 

copper alloys nor refractory metal compositions. Group C, Class 20 materials are 

dispersion-strengthened copper (DSC) alloys produced from powder metallurgy. The 

most widely used Class 20 material consists of pure copper containing finely dispersed 

particles of aluminum oxide ( A I 2 O 3 ) .  The oxide particles act as barriers to dislocation
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motion and retard recrystallization of the copper. Class 20 electrodes have excellent high 

temperature strength and are recommended for welding coated materials.

RWMA
Group Class Compositions HRB

Minimum Electrical 
Conductivity 

(%IACS)

A

1 CuZr, CuCd 55-65 80

2 CuCr,
Cu-Cr-Zr 65-75 75

3 Cu-Be-Co,
Cu-Be-Ni 90 45

4 CuBe 33HRC 20
5 CuAl 88 12

B

10 45Cu-55W 72 45
11 25Cu-75W 94 40
12 20Cu-80W 98 35
13 Tungsten 69HRA 30
14 Molybdenum 85 30

C 20 Cu + 0.5- 
1.1%A120 3 65-75 75

Table 1: Properties of RWMA materials [3]

2.2.2 Electrode Geometry

Electrode geometry is a significant aspect of the resistance spot welding process. 

The appropriate selection of electrode geometry is controlled by the specific application. 

Figure 5 illustrates the most common electrode geometries. The most commonly used 

electrodes for general welding applications are types A, B, and E. D-nose electrodes are 

necessary when a weld has to be made close to an upturned flange or comer. The 

particular electrode geometry that is selected in industry is often dictated by the part fit- 

up. Generally, flat-face electrodes are selected when there is good fit-up while radius- 

face electrodes provide the best service when there is poor fit-up.

Electrodes are equipped with water cooling channels to extract heat from the 

electrode and workpieces. Heat from the welding process is conducted through the 

electrode and is coupled with the cooling-water. The size of the cooling channel, the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



position of the cooling tubes, and the distance between the electrode face and the water 

channel, known as the face thickness, are critical components for efficient cooling.

The electrode face diameter is an important consideration for producing quality 

welds. Electrode face diameter is governed by the thickness of the workpieces and the 

desired size of weld nugget [5]. Current density, defined as welding current divided by 

the contact area of the electrode face, is directly affected by electrode face diameter. If 

the electrode face diameter is too small, a high current density may cause severe heat 

concentration and excessive surface indentation. When the electrode face diameter is too 

large, current density drops below the minimum required to make a weld.

r - V j r-*n r # F̂ TMn p V iw w vv V
A-Nose B-Nose C-Nose D-Nose E-Nose F-Nose P-Nose

Figure 5: Standard electrode geometries [7]

2.3 Laboratory Test Methods

There are several laboratory tests available for evaluating electrode performance. 

Electrode life can be defined as the number of welds a pair of electrodes is able to 

produce during a repeatable application while maintaining a specified minimum weld size 

[1, 8]. Electrode life is evaluated through laboratory testing and is used to estimate 

electrode feasibility in a production environment.

The two most common ways to evaluate electrode life in the laboratory are the 

American Welding Society (AWS) D8.9 endurance test [9] and the General Motors (GM) 

WS-5A stepper test [10]. The oscillating weldability lobe test and sequential life test 

have also been employed to assess detailed aspects of electrode life.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3.1 AWS Endurance Test

The AWS endurance test evaluates electrode life by determining the number of 

acceptable welds that can be produced by a single pair of electrodes under constant 

current conditions. The acceptability criterion used is the minimum weld button size, 

which is given by the formula 4Vt, where t is the average sheet thickness in millimetres. 

A weld button is simply the weld metal, including all or part of the nugget, which 

remains after destructive testing is completed.

A weld size stabilization procedure is conducted prior to the beginning of the test 

to condition the electrode faces and promote reproducibility of test results. The 

stabilization procedure consists of adjusting the weld current as required to maintain a 

specified weld size. At the end of the stabilization period, which is never more than 250 

welds, the minimum button and expulsion currents are determined. The operating current 

is set 200 amperes below the expulsion limit and is kept constant throughout the 

endurance test [9].

Five button size measurements are conducted from peel-test samples every 200 

welds. The peel-test sample consists of two coupons, 1.5 x 4 inches (38.1 x 101.6 mm) 

each, which are welded to create two buttons about 1.5 inches (38.1 mm) apart. The 

sample is peeled apart and the diameter of the second weld is measured with a 

micrometer, as shown in Figure 6. The test is terminated when the button size of all five 

peel-test samples are below the minimum button size for two consecutive 200-weld 

checkpoints.

o

AVERAGE (XAMETER • £ 1 ^

Figure 6: Measuring button size from a peel-test sample [11]
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2.3.2 GM Stepper Test

The GM stepper test procedure is used to determine electrode life relative to other 

electrodes for a particular welding application. The test is also used to determine 

electrode life associated with a certain material and or sheet steel stack-up. The test 

involves increasing the weld current once the weld button size falls below a minimum 

specified value.

The weld button size is determined from a peel-test sample, as shown in Figure 6, 

every 100 welds. If the button size does not meet the minimum requirements at the 100- 

weld interval check, the current is increased in 100 ampere increments until the minimum 

size is reached. An additional 500 amperes is added to this current level and welding is 

continued.

There are several termination criteria for the GM stepper test. The test is 

continued until one or more of the following conditions occur [10]:

a) file electrode cap sticks to the sheet;

b) minimum button size can no longer be obtained with weld current increases;

c) the weld current exceeds a specific, limiting current level;

d) the electrode face diameter of either electrode exceeds a specified maximum.

2.3.3 Oscillating Weldability Lobe Test

The oscillating weldability lobe test measures the current range over the life of the 

electrodes. This is determined by measuring the nominal and expulsion currents as a 

function of the number of welds. The test is essentially an electrode life test during 

which the welding current is periodically oscillated between nominal and expulsion 

conditions [12, 13]. Electrode performance in this test is gauged on the consistency of 

the slope of the nominal and expulsion current lines. This test gives the user information 

about the current range at any point during electrode life. The data from this test may be 

more useful in a production environment where process reliability is a major concern.

2.3.4 Sequential Life Test

The sequential life test has been performed on zinc-coated steels [14-18] to gain 

insight into the development of electrode wear. Typically the test is run at constant
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current with the electrodes being removed at pre-determined weld numbers. 

Characterization techniques include measuring the thickness of the brass-alloy layers at 

the electrode face, determining alloy layer composition, and hardness mapping. 

However, the costs involved in sequential life testing can be prohibitive making its 

application limited [17].

2.4 Production Welding

Electrode life tests provide a comparative measure of how electrodes perform 

under highly controlled conditions. Laboratory tests are not intended to simulate 

production welding conditions or estimate electrode performance in production 

operations [9]; as such the results are not directly transferable to the production 

environment.

2.4.1 Production-Specific Issues

Certain production-specific issues are not encountered in a laboratory test setting. 

These production-specific issues include increased operating current, equipment 

maintenance, factory personnel, and weld schedule compromise.

Production welding operations are often performed at much higher current levels 

when compared to laboratory tests. These higher currents seem to compensate for 

inconsistencies in materials, prior processing, welding equipment and other adverse 

production conditions. Natale [19] has noted that consistent weld quality in production is 

promoted by welding with a slight amount of interfacial expulsion in conjunction with 

application-specific weld schedules. Karagoulis [20] also found that the weld process 

itself behaves more robustly when it is timed to operate at the expulsion limit. However, 

welding above the expulsion current level leads to accelerated electrode wear rates [21].

Equipment maintenance has been cited as a leading cause of discrepant weld 

quality in an automotive plant [20]. The study concluded that the key maintenance 

variables were secondary loop resistance, water flow, mechanical gun condition, and 

welding current. When preventive maintenance and improved process monitoring were 

introduced to production welding guns, perfect weld quality was achieved during several 

extended production runs.
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Factory personnel also have an effect on the efficiency and reliability of the 

welding process. Standard weld parameters may be adjusted to satisfy the personal 

preferences of the welding engineers and technicians. Well-trained and competent 

factory personnel are better able to address and correct welding problems by having a 

more fundamental knowledge of the resistance spot welding process.

Weld schedules are often a compromise between productivity and electrode life. 

Electrodes in an automotive assembly plant are normally replaced at convenient times 

such as during breaks, lunches, or shift changes. Since the electrodes in a given area are 

replaced at the same time, electrode life is based on the worst-case electrode pair. 

Furthermore, production fluctuations require that the electrodes be able to extend to a 

maximum number of welds. Therefore, some electrode life remains unused for the sake 

of productivity.

2.4.2 Methods to Extend Electrode Life in Production

Repeated welding leads to thermal degradation of the electrode, which is 

manifested by an increase in the electrode face diameter. The current density drops and 

weld size is decreased, sometimes even to the point of not making a weld. A short 

electrode life can limit the rate of production that can be achieved in a fixed period of 

time by requiring frequent replacement of electrodes. The two methods of extending 

electrode life in production are current stepping and electrode dressing.

Current stepping is a process whereby the weld current is systemically increased 

to accommodate for electrode face enlargement and maintain current density. When 

stepping occurs too frequently, the electrodes are exposed to higher than necessary 

welding current and electrode deterioration is increased. When stepping does not 

compensate for the increase in face diameter, undersized welds are produced. Stepping 

the current ceases when the current capacity of the welding transformer is approached, or 

when further increases in current no longer produce acceptable welds.

Electrode dressing is a process whereby the electrode face is reconditioned with a 

tool to restore the initial face diameter. The dressing tool removes material only from the 

periphery of the face so as not to destroy the equilibrium established between the 

electrode and work material. The dressing frequency depends on the severity of the
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welding environment. Dressing is terminated once the electrode face thickness falls 

below a minimum value. When this distance becomes too short, overheating of the 

electrode can occur.

The choice to employ stepping, dressing, or a combination of the two is 

determined by a given company. The development of the actual stepping or dressing 

procedure is carried out by plant personnel in accordance with corporate standards.

2.5 Galvanized Steel in the Automotive Industry

Galvanized steels were adopted by the automotive industry for their improved 

corrosion resistance properties. The zinc coating acts as both a physical and sacrificial 

barrier to keep the corrosive environment away from the steel surface. Over the years, 

the use of galvanized steels has gradually escalated from underbody members with 

perforation corrosion to exterior panels where cosmetic corrosion occurs [22].

2.5.1 Types of Galvanized Coatings
The automotive industry uses a wide variety of galvanized coatings; each 

engineered with specific properties. Three of the most common galvanized coatings used 

in the automotive industry are hot-dipped galvanized (HDG), galvannealed (GA), and 

electrogalvanized (EG).

A hot-dipped galvanized coating is produced on a steel substrate by immersing it 

in a bath of molten zinc. Upon emergence from the bath, the thickness of the coating is 

controlled by the air-knives method and then allowed to solidify [22]. Table 2 indicates 

the iron-zinc alloys that are present in a typical hot-dipped galvanized coating. The ratio 

of the total thickness of the alloy layers to that of the outer free-zinc layer is affected by 

the bath immersion time [23]. Longer immersion times provide more time for diffusion 

and result in thicker iron-zinc alloy layers. The iron-zinc alloy portion of the coating 

usually represents 50 to 60 percent of the total coating thickness; the surface remains 

primarily unalloyed free zinc [23]. Aluminum is added to suppress the formation of alloy 

layers and to improve the adhesion between the coating and the steel substrate [23,24].
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Layer wt% Zn

Zinc 100

Zeta (Q, FeZnn 94

Delta (8),FeZnio 90

Gamma (T i), FesZ^i 75

Base Steel 0

Table 2: Iron-zinc alloy compositions in a hot-dipped galvanized coating [23,2S]

A galvannealed coating is produced by heating a hot-dipped galvanized sheet in a 

furnace at approximately 550°C [24]. All of the free zinc is converted to iron-zinc alloy 

producing a coating with a spangle-free surface finish and a dull grey appearance. The 

two primary reasons for the use of galvannealed coatings are improved spot-weldability 

and enhanced paintability [23,24].

Zinc can also be electrodeposited on the base steel to produce a thin uniform 

coating of pure zinc. Electrogalvanizing is done in a continuous plating cell, in which the 

moving annealed strip becomes the cathode in a flowing electrolyte bath [22]. 

Electrogalvanized coatings have excellent adherence, a homogeneous structure, and a 

fine spangle-free surface finish [23].

2.5.2 Resistance Spot Welding of Galvanized Steel

When welding uncoated steel, nuggets form at the faying interface despite gross 

electrode face enlargement because of the heat generated from the high hardness, and 

hence high interfacial resistance, of the sheet surfaces. The surface resistance restricts the 

spread of current to the high contact pressure locations thereby maintaining an adequate 

current density [1]. Gould and Peterson [26] found that button size and the position of 

the current range were nearly invariable throughout electrode life when welding uncoated 

steel. Failure to form a weld nugget is attributed to an increased rate of heat conduction 

away from the faying interface, lowering the current density below the minimum required 

to produce a weld [27]. Electrode life values of 50,000 welds have been noted when 

welding uncoated steels [1],
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Galvanized coatings are much softer and more conductive than the steels to which 

they are applied. The soft asperities on the galvanized coatings deform easily under 

pressure, resulting in a very low resistance that spreads the current over a large effective 

contact area. Thus, the effect of gross electrode face enlargement is far more detrimental 

to weld initiation and growth than for uncoated steels [1].

High speed photography was used to demonstrate that longer weld times are 

required to spot weld galvanized steel. This increase is necessary to melt and displace the 

zinc coating from the weld zone during the first few cycles [27]. Similar to uncoated 

steel, the remaining cycles are used for initiation and growth of the weld nugget.

Higher welding currents are required when welding galvanized steels to overcome 

the reduced heat generation at the faying interface. Howe [28] notes that the displaced 

zinc at the faying interface forms an annulus around the periphery of the weld through 

which a portion of the weld current is shunted. The initial delay required for zinc 

displacement leaves less time for the formation of the weld, thus necessitating higher 

weld currents. Since galvanized steel has a lower contact resistance than uncoated steel, 

less heat is generated at the electrode-sheet interface and heat conduction away from the 

weld zone is more rapid [29]. Clearly the ability to generate heat at the faying interface is 

reduced while the tendency to lose heat to the electrodes is increased.

2.5.3 Galvanized Steel and Electrode Life

Electrode life when resistance spot welding galvanized steel is significantly 

shorter than for uncoated steels. The steel substrate, type of galvanized coating, and 

surface finish all have an effect on electrode life.

Since harder steel substrates have higher bulk resistance, electrode life generally 

improves as the strength of the steel substrate increases. Steel substrates that are more 

resistive have increased bulk resistance, which increases heat generation in the steel and 

requires lower welding currents.

Zinc-alloy coatings, such as galvannealed, tend to have longer electrode lives than 

free-zinc coatings due to increased coating hardness and resistivity. The increased 

hardness and resistivity result in higher faying interface resistance, which promotes weld 

initiation and lower current requirements compared to free-zinc coatings [30].
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Surface finish can also have an effect on electrode life by altering the contact 

resistance of the workpieces. In general, surface treatments that increase contact 

resistance require less current and result in increased electrode life. Rough surface 

finishes, such as regular spangle, introduce variability to the process due to the deviation 

in roughness from point to point.

2.5.3.1 Hot-Dipped Galvanized Coatings and Electrode Life

Peterson [1] has noted that the electrode life of hot-dipped galvanized coatings is 

considered the worst-case scenario and is commonly the baseline by which all coated 

steels are measured. The free-zinc coating results in a low interfacial resistance and 

higher current requirements.

Increased aluminum content in the coating has been associated with reduced 

electrode life [14, 15, 31]. It was originally thought that the accumulation of a highly 

resistive aluminum oxide on the electrode face led to increased heat generation [14, 15]. 

However, it has been shown that sheets with higher aluminum contents form a Fe2Al5 

inhibiting layer at the substrate-coating interface [31, 32]. This inhibiting layer acts as a 

barrier to the formation of iron-zinc alloys, and lowers the melting point of the coating. 

This phenomenon accelerates electrode wear through increased alloying between the 

electrode and the coating, resulting in shorter electrode life [31].

2.5.3.2 Galvannealed Coatings and Electrode Life

Galvannealed coatings produce longer electrode lives when compared to hot- 

dipped galvanized coatings [19, 33]. The increased hardness of galvannealed coatings 

over hot-dipped galvanized coatings, attributed to the formation of iron-zinc 

intermetallics, allows them to be resistance welded with lower weld currents.

The iron in the galvannealed coating leads to a very prominent FeZn parting layer 

on the electrode face. Lu et al. [16] have noted that this parting layer increases electrode 

life by acting as a barrier to the underlying brass phases. Pickett et al. [34] found that 

electrode life improved as the total iron content of the coating increased. It was also 

determined that the optimum material for weldability consists of a thin discontinuous

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



gamma phase at the steel interface and an intermittent zeta phase on the surface of the 

coating.

2.6 Electrode Wear Mechanisms for Galvanized Steel

The high temperatures and pressures encountered in the resistance spot welding 

process expose the electrodes to both thermal and mechanical stresses. These stresses 

cause the strengthening mechanisms of the electrode material to deteriorate. When 

resistance spot welding galvanized steel, the copper-based electrodes also alloy with the 

zinc coating. This alloying causes undesirable changes in the electrical, thermal, and 

mechanical properties of the electrode material.

The composition of the electrode material, electrode geometry, steel substrate, 

coating type, and weld schedule all influence the extent of electrode wear. The electrode 

wear mechanisms for galvanized steel include: brass-alloy formation on the electrode 

face, mushrooming, sticking and brassing, pitting and cavitation, and cracking. One 

beneficial reaction that can occur on the electrode face is the formation of a protrusion.

2.6.1 Brass-Alloy Formation on the Electrode Face

Temperatures at the electrode-sheet interface are high enough to allow atomic 

diffusion between zinc and copper. The transfer of zinc atoms at the electrode-sheet 

interface results in the formation of brass-alloy layers on the face of the electrode. The 

extent of zinc diffusion depends on the time-temperature history of the interface, the 

characteristics of the galvanized coating, and electrode composition.

The surfaces of new electrodes experience a rapid transformation during their first 

few welds. Well defined brass-alloy layer boundaries have been noted on the electrode 

face as early as five welds into electrode life [35]. The brasses that form on the face of 

the electrode have lower electrical and thermal conductivities than the copper-based 

electrode material, resulting in higher temperatures at the electrode-sheet interface. As 

well, they have lower melting temperatures and generally lower strength. The increase in 

homologous temperature (T/Tm) that results from higher operating and lower melting
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temperatures combined with the decreased strength of the brass-alloys causes faster 

deformation rates at the electrode face.

The chemical compositions of the brass-alloy layers are well correlated with the 

compositions given by the Cu-Zn phase diagram, as shown in Figure 7. The outermost 

phase on the face of the electrode is a porous dark-grey iron rich parting layer, followed 

by a white gamma-brass layer, and a yellow beta-brass layer. The innermost layer 

corresponds to alpha-brass, which is usually very thin and difficult to distinguish from the 

base copper. The complete absence of the alpha-brass phase has been noted [7, 17]. 

Howes and Lake [35] have shown that there is no difference in the composition of an 

alloy layer with increasing weld number.
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Figure 7: The copper-zinc phase diagram [36]
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2.6.2 Electrode Face Enlargement

Electrode face enlargement, commonly referred to as mushrooming, occurs as 

material from the electrode face is extruded to the periphery causing an increase in the 

electrode face diameter. The two types of mushrooming that have been observed are 

brass-alloy extrusion and bulk copper extrusion.

2.6.2.1 Brass-Alloy Extrusion

The extrusion of brass-alloys occurs early in electrode life and can exist without 

bulk copper extrusion. Dong and Kimchi [37] believed this extrusion to be a 

consequence of the decrease in the beta-brass flow stress at high temperatures coupled 

with the thermal gradient that develops between the electrode body and face during the 

hold time. Since the electrode cools from the water channel outward, the face remains at 

a higher temperature than the body upon cooling. It is proposed that the electrode body 

contracts independently of the electrode face along the beta-brass interface. The high 

temperature, low strength beta-brass accommodates this contraction by extrusion. Finite- 

element modelling confirmed that the overall brass extrusion results from an 

accumulation of these incremental extrusions [37].

2.6.2.2 Bulk Copper Extrusion

Extrusion of bulk copper has been noted to occur in the middle to late stages of 

electrode wear after brass-alloy extrusion has taken place [14, 15]. Thermal degradation 

of the strengthening mechanisms of the bulk electrode material causes significant 

softening and gross extrusion. The extrusion process is the same as that proposed for 

brass-alloy extrusion. Gross deformation could also be the result of a thermal fatigue or 

creep-type mechanism [38]. A combination of these phenomena may exist concurrently 

and extend to different depths below the electrode face.

2.6.3 Sticking and Brassing

Electrode sticking is the bonding of the interface between the galvanized coating 

and the brass-alloys on the electrode face. One cause of sticking is attributed to liquated 

brass penetrating into the grain boundaries of the galvanized steel. Sticking is most often
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encountered early in electrode life and is usually not a factor once the brass layers on the 

electrode face have stabilized [39]. In certain cases, sticking is so severe that the 

electrodes can be pulled from their holders.

Irving [6] notes that DSC electrodes have reduced sticking frequency when 

compared to CuZr or CuCr electrodes. It has been suggested that the aluminum oxide on 

the electrode surface inhibits wetting of the molten zinc and brass [1]. Conversely, CuCr 

electrodes exhibit the most severe sticking behaviour in terms of frequency and strength 

of sticking [39,40].

Sticking may lead to brassing, where layers of brass are removed from the 

electrode face and deposited on the galvanized steel surface. This deposition usually 

results in a visually undesirable surface. The random transfer of yellow beta-brass onto 

the steel surface may be aided by cracks along the gamma-beta interface [41], Gallagher 

et al. [18] have pointed to the transfer of gamma-brass, its white colour making it less 

visually detectable than yellow beta-brass, as a possible primary mechanism of electrode 

erosion.

2.6.4 Pitting and Cavitation

Pitting is a common aspect of electrode wear and has been noted on the electrode 

face on several occasions [15, 39, 42, 43]. Pits can form after a single weld event, and 

either agglomerate together to form larger pits or disappear after additional welds. Gugel 

et al. [15] noted that a healing process occurs whereby the continued forging action 

during welding results in metal flow that fills in smaller pits.

For welding currents below expulsion, studies have shown that CuCr and CuZr 

electrodes tend to form small pits that coalesce into a large central pit while DSC 

electrodes tend to form pits that do not coalesce [39, 42]. When welding currents are 

above the expulsion limit, central pitting is common for all electrode materials [1]. Gugel 

et al. [42] noted that at higher current levels, DSC materials have the ability to self-heal, 

whereas CuCr and CuZr electrodes have softened too much and wear rapidly. The 

superior performance of DSC electrodes in current stepping tests is best explained from 

this observation.
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Pitting has been reported to affect the shape of the weld nugget by inhibiting local 

current flow. It is believed that a non-uniform current density results from the current 

being forced to use the remaining contact surface. Hot spots are created on the electrode 

face accelerating thermal damage, causing irregular nugget penetration and weld button 

size variation [15, 37]. Wist and White [39] noted that the fracture or shear of the brass- 

alloy layer may play a critical role in the pitting process by bringing the zinc rich phases 

into closer contact with the underlying electrode material.

Cavitation is the formation of a central pit spanning a considerable amount of the 

electrode face. Concentrated thermal damage about the central portion of the electrode 

face may result in the coalescence of smaller pits to form a cavitation. Cavitation often 

results in the end of electrode life.

2.6.5 Cracking

Peterson [1] notes that cracking of the electrode face most likely occurs from 

thermal-expansion-induced residual stresses. Cracks form because the state of stress at 

the electrode face, and the high-temperature strength of the electrode material do not 

allow relaxation to be accommodated by mushrooming.

Cracks are usually oriented radially from the centre of the electrode face and 

cause the current distribution to be segmented in much the same way as pits. Cracking is 

common in DSC materials since thermal stresses are generated from differences in the 

thermal expansion of copper and the dispersoids.

2.6.6 Protrusions

A protrusion is the build up of brass or galvanized coating that extends beyond the 

central portion of the electrode face. Protrusions may also result from annular wear along 

the electrode face periphery.

The presence of a protrusion has been reported to be beneficial for electrode life 

when welding galvanized steels [16, 34]. The protrusions may extend electrode life by 

reducing the effective contact area, increasing the current density and stabilizing nugget 

formation. The protrusion may also act as a zinc diffusion barrier by forming a wear
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layer that thermally isolates the electrode body from increased levels of thermal 

degradation.

2.6.7 Electrode Wear Sequence

In the beginning stages of electrode wear, the electrode face goes through a 

substantial metallurgical transition. The rapid diffusion of zinc creates a series of brass 

alloys on the electrode face. Sticking between the electrode and sheet is pronounced, 

leading to the deposition of brass onto the galvanized sheet. The stage culminates in the 

formation of a stable set of brass alloys on the electrode face.

The middle stage of electrode wear begins with geometric changes on the 

electrode face. The most notable change is the extrusion of brass-alloy layers to the 

periphery of the electrode face. Cracking, pitting and the formation of protrusions also 

begin during this stage.

The final stage of electrode wear is characterized by extrusion of the bulk copper 

material from the electrode face. This occurs after thermal softening has defeated the 

strengthening mechanisms of the bulk copper. Pit consolidation also occurs in the final 

stage, often focusing on the central portion of the electrode face.
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IH. EXPERIMENTAL MATERIALS AND PROCEDURE

The performance of two developmental electrodes was evaluated through both 

laboratory and production testing. The GM WS-5A stepper test [8] was carried out at the 

General Motors Technical Center in Warren, Michigan. Electrode life was determined on 

hot-dipped galvanized steel. The DaimlerChrysler (DCX) beta-site trials were performed 

at the Windsor Assembly Plant (WAP) in Windsor, Ontario. Electrode performance was 

evaluated on galvannealed steel through adjustments to the weld schedule. In each case, 

the performance of the developmental electrodes was evaluated relative to the 

performance of a baseline electrode.

3.1 Electrode Properties

All of the electrodes tested during this investigation were female B-nose cap 

electrodes, as shown in Figure 8, with a 15.9 mm (5/8-inch) body diameter and 4.8 mm 

(0.188-inch) face diameter. The B-nose geometry was chosen to conform to existing 

production practices. The CuZr electrode is the baseline electrode for the GM stepper 

tests, as mandated by the test procedure. The WAP electrode represents the baseline 

electrode for the DCX beta-site trials; it was in use for the particular welder where the 

testing was conducted. The M and the FIN represent the developmental electrodes. The 

M electrode was manufactured from a proprietary oxide dispersion strengthened (ODS) 

copper. This material was chosen for its consistent performance in several previous 

laboratory tests. Copper-zirconium was chosen for the FIN electrode because of its high 

conductivity and proven performance in production. The composition and geometry 

alterations for each of the electrodes are provided in Table 3.

To enhance the cooling properties of the developmental electrodes, the face 

thickness was reduced to 6 and 7 mm, from a typical thickness of 10 mm, for the M and 

FIN electrodes respectively. Fins were also formed in the water channel of the FIN 

electrode to further enhance cooling. Attempts to cold-form internal fins on the M 

electrode resulted in cracking. A sectioned view of the FIN electrode is provided in 

Figure 9. The fins are triangular in shape and extend nearly half the depth of the water 

channel.
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Water
channel

15.9

Face
thickness

4.8
Figure 8 : Female B-nose electrode cap used for the testing (dimensions in mm)

Electrode Name Composition (Cu +) Geometry Alterations

CuZr 0.15 wt% Zr N/A

WAP Body: 0.15 wt% Zr 
Insert: 1.1 wt% AI2O3 N/A

M 1.1 W t%  AI2O3 +
0.15 wt% mixed oxides of Ti, Fe, and Si 6 mm face thickness

FIN 0.15 wt% Zr 7 mm face thickness + 
internal fins

Table 3: Composition and geometry alterations for each of the tested electrodes

Figure 9: Sectioned view of the FIN electrode showing the fins in the water channel. 

The fins are triangular in shape and extend nearly half the depth of the water 

channel.
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3.2 GM Stepper Tests Procedure

The chemical composition, coating properties, and mechanical properties of the 

galvanized sheet steel used in the GM stepper tests are summarized in Table 4. The cold 

rolled high strength low alloy (HSLA) steel, with minimum yield strength of 350 MPa 

(50 ksi), was supplied by AK Steel Corporation. The steel substrate had an average 

thickness of 1.12 mm and was coated with a minimum spangle hot-dipped galvanized 

coating. Hot-dipped galvanized steel was selected because it represents the most severe 

condition with respect to electrode life.

The weld parameters for the GM stepper tests are listed in Table 5. The tests were 

conducted using a pedestal welder with an air-operated cylinder, Miyachi MM-326B 

current analyzer, and a digital read-out force gauge. The electrode force and weld time 

were set according to GM WS-4A as a function of sheet coating and thickness. The weld 

current required to obtain minimum button size (4.0 mm), as specified in GM4488M, was 

determined by welding peel-test samples. The current at the beginning of the test was set 

500 amperes higher than the determined minimum button current.

Peel tests were conducted every 100 welds to determine if minimum button size 

had been maintained. If minimum button size was achieved, welding was continued at 

the same current level. If minimum button size was not achieved, the current was 

increased in 100 ampere increments until minimum button size was re-obtained. Once 

minimum button size was re-obtained, 500 amperes was added to the current level and 

welding continued. The GM stepper test was continued until one of the previously 

mentioned termination criteria (Section 2.3.2) was met.

Electrode alignment was determined from carbon imprints taken prior to the first 

weld, after 200 welds, after 500 welds and after every successive 500-weld interval. 

Carbon imprinting, as shown in Figure 10, involves the application of welding force, 

without the weld current, to a single coupon sandwiched between carbon paper and white 

paper. An impression of the electrode face is left on the white paper, revealing the shape 

of the contact surface between the electrode and work sheets. Carbon imprints are 

particularly useful in exhibiting any evidence of pitting on the electrode face.
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Chemical Composition (wt%)

C Mn P S Si Cr Ni Mo
0.071 0.72 0.006 0.009 0.012 0.025 0.006 < 0.003
Cu Al Ti Nb V B Ca N

0.018 0.047 <0.003 0.018 < 0.003 < 0.003 < 0.003 0.0036

Coating Composition (wt%) Coating Weight (g/m2)

Surface Al Fe Pb EdgeX Centre EdgeY
Top 0.42 0.24 0.005 79 73 76

Bottom 0.44 0.20 0.005 82 82 82

Mechanical Proper!ties

Orientation YPE
(%)

Lower YS 
MPa (ksi)

UTS 
MPa (ksi)

Elongation
(%)

n-
Value

Hardness
(HRB)

Longitudinal 1.5 374 (54.2) 469(68.0) 29.8 0.164 76
Transverse 2.9 406 (58.9) 478 (69.4) 31.0 0.155 77

Table 4: Chemical composition, coating properties, and mechanical properties of the 

hot-dipped galvanized sheet steel used for the GM stepper tests

Weld Parameter Value
Electrode Force 670 lbf (2.98 kN)
Squeeze Time 30 cycles

Weld Time 16 cycles
Hold Time 2 cycles
Weld Rate 30WPM

Minimum Button Size 4.0 mm
Water Flow Rate 0.5 gpm (1.9 L/min)

Table 5: Weld parameters for the GM stepper tests
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Figure 10: Carbon imprint schematic [9]

3.3 DCX Beta-Site Trials Procedure

The DCX beta-site trials used a programmed initial current and stepper schedule 

to weld a non-safety critical part. The application involved a two thickness stack-up, 1.21 

mm to 0.71 mm, with a weldable sealer applied at the interface of the two parts. The 

assembly was robotically manipulated with 11 welds being performed in 18 seconds. 

The minimum cycle time for welding and part manipulation was 45 seconds. The 

average cycle time allowing for intermittent production stoppages was approximately 1 

assembly per minute. The weld parameters are outlined in Table 6 .

The minimum allowable button size for the application was 3.1 mm as given in 

DCX Process Standard 9471 (PS-9471) [44]. During the testing, periodic button size 

measurements and weld quality inspections were performed through destructive peel 

tests, chisel checks, and ultrasonic testing.

A current range test was conducted for each electrode to determine an appropriate 

starting current. The beginning current in the current range test was set at 6500 A and 

increased in 250 A increments until the first instance of expulsion occurred. The 

expulsion current was used as a reference in determining an appropriate starting current 

for the trials. The term expulsion is used to represent interfacial expulsion as opposed to 

surface expulsion. Interfacial expulsion refers to the expulsion of metal from between the
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sheets, where the weld nugget is being formed. Surface expulsion occurs at the 

electrode-sheet interface and can occur when the sheet surface contains oil or grease.

Weld Parameter Value
Electrode Force 380 M (1.70kN)
Squeeze Time 30 cycles

Weld Time 10 cycles
Hold Time 2-4 cycles
Weld Rate 11 welds /18 seconds

Minimum Button Size 3.1 mm
Water Flow Rate 4.0 gpm (15.1 L/min) average

Table 6 : Weld parameters for the DCX beta-site trials

The visual detection and counting of interfacial expulsions was employed to 

provide a benchmark for electrode performance. The number of expulsions per assembly 

was counted and recorded through Passive Data Collection (PDC). The data collection is 

termed passive because there are no engineering adjustments to the process beyond those 

adjustments that are part of a normal production operation [45]. The number of 

expulsions per assembly provided a reference to the weld lobe as welding progressed. A 

voting technique among the project members was employed to determine the number of 

welds per assembly that displayed expulsion. Expulsion was easily detected in most 

cases; as such, there was general concurrence by the project members.

Expulsion graphs depicting expulsions per assembly vs. assembly number were 

constructed. The expulsions per assembly were represented by a moving average of five 

assemblies. The moving average was selected to depict overall expulsion behaviour and 

eliminate graph sharpness. The moving average also represents a more conservative 

checkpoint of 55 welds compared to the 100-weld interval for the GM stepper test.

The development of a suitable weld schedule was achieved through adjustments 

to both the starting weld current and stepper rate. The goal was to reduce the current 

level, represented by the start current and stepper rate, to the lowest feasible yet reliable 

rate. Expulsion observations determined the direction of current level adjustment. The 

ability to maintain moderate expulsion, while preserving weld quality, was the main
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determinant of stepper schedule feasibility. A prolonged period of several assemblies 

without any instances of expulsion resulted in the trial being terminated.

The starting current for the first trial was selected at least 250 A higher that the 

expulsion current from the current range test. For the preliminary trials, conservative 

stepper rates were employed to ensure weld quality and were lowered according to 

expulsion observations. Following acceptable expulsion observations with a constant 

stepper rate, the stepper schedule was adjusted in stages. The final adjusted stepper 

schedule increased the stepper rate for each successive stage to better maintain current 

density. Upon successful results from the preliminary trials, multiple production trials 

were carried out with the developed weld schedule to ensure process repeatability.

3.4 Metallographic Procedure

Upon completion of testing, the surface of the electrode face was documented via 

digital imaging at Inspect-X Testing Services in Windsor, Ontario. The magnification 

level was variable depending on the size of the face and was dictated by obtaining 

maximum screen fill. The electrode face diameters were measured using an Optical 

Gauging Products Smartscope MVP. The electrode face diameters were measured on the 

digital images by using a circle target which produced a best-fit result.

The top electrodes were sectioned on a Buehler Isomet 1000 saw with a 6-inch 

diameter diamond wafer blade set to a speed of 200 rpm. Varsol was used as a lubricant 

for the blade during cutting. The electrodes were first sectioned longitudinally at an 

offset to the centre of the face. The offset ensured that after grinding and polishing, the 

sample would provide a central profile of the electrode face. A second cut was conducted 

across the electrode body to produce two cross sections, as shown in Figure 11(a).

The electrode cross sections were mounted in a Buehler Simplimet 3 Mounting 

Press using blue Buehler Mineral Filled Diallyl Phthalate powder. The electrode cross 

sections were mounted at 150°C and 3000 psi for 2.5 minutes with no pre-load. 

Following mounting, identification labels were inscribed on the back of the 1.5 inch 

diameter samples. The sample edges were beveled on a Buehler Surfmet I Belt Surfacer 

silicon carbide belt grinder for easier handling in subsequent steps.
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Figure 11: (a) Electrode sectioning schematic and (b) final mount sample showing 

the location of the microstructural observations

A Buehler Handimet II Roll Grinder was employed to rough grind the samples 

progressively through 240, 320, 400, and 600 grit silicon carbide papers. The samples 

were rinsed with soap and water and rotated 90 degrees between grits.

Initial polishing was accomplished on a Buehler Ecomet 3 Variable Speed 

Grinder-Polisher. The samples were polished using 9 pm diamond paste applied to a 

billiard cloth on a 9-inch diameter wheel. The speed of the wheel was set to 200 rpm. 

The main purpose of this step was to ensure that the sample was flat before fine 

polishing.

Fine polishing was accomplished on a Buehler Metaserv Grind-Polisher. The 

samples were polished using 1.0 pm Buehler Micropolish II Deagglamorated Alpha 

Alumina suspended in water. The aluminum oxide powder was applied to the billiard 

cloth on a 9-inch diameter wheel set to a speed of 200 rpm. Fine polishing was 

accomplished with 0.05 pm Buehler Micropolish II Deagglamorated Alpha Alumina 

oxide powder. The aluminum oxide powder was applied to the billiard cloth on a 9-inch 
diameter wheel set to a speed of 175 rpm.

Optical examination of the polished samples revealed the electrode face to consist 

of a dark grey surface layer, a white brass layer, and a yellow brass layer. The polished 

samples were etched with a solution of 5 g ferric chloride (FeCL), 2 ml hydrochloric acid
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(HC1), and 100 ml ethanol to reveal recrystallization at the electrode face. Immediately 

after etching, the samples were briefly rinsed in cold tap water.

3.5 Alloy Layer Thickness Measurements

Alloy layer thickness measurements were conducted with a Buehler Omnimet 

Image Analysis System (Version 5.20) on samples polished through 1.0 pm aluminum 

oxide. Thicknesses were measured perpendicular to the electrode face at 500x 

magnification. The measurements were taken across the face of the electrode cross- 

section every 250 to 300 pm. Pitted areas as well as mushroomed areas at the edges of 

the face were not included in the measurements.

The composition of the individual layers was not determined since previous 

research confirmed that the yellow layer has a zinc composition corresponding to beta- 

brass and the white layer has a zinc composition corresponding to gamma-brass [17].

3.6 Hardness Measurements

To determine the depth of softening into the electrode face, Vickers 

microhardness testing was performed on a Buehler Micromet II Microhardness Tester 

using a 200 g load and an indentation time of 12 seconds. Hardness profiles into the 

electrode body were taken on the polished electrode cross-section beginning at both the 

centre and edge of the electrode face. Measurements were conducted every 0.1 mm for 

the first 2 mm of depth and every 1 mm thereafter.
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IV. EXPERIMENTAL RESULTS

This chapter presents the results obtained from both the GM stepper tests and the 

DCX beta-site trials. The results from the GM stepper tests include the weld current and 

button size measurement graphs. The DCX beta-site trials results include the current 

range curves and expulsion graphs. Electrode face images and face diameter 

measurements are given for the tested electrodes. Microhardness results, alloy layer 

thickness measurements, and microstructural observations are also provided.

4.1 GM Stepper Tests Results

The weld current graphs for the CuZr, M, and FIN electrodes are shown in Figure 

12. Each of the tests was terminated due to the maximum face diameter restriction of 10 

mm. The CuZr achieved the longest life of 8500 welds, followed by the M at 7500 

welds, and the FIN at 7000 welds.

Table 7 provides the line of best-fit equations and R value for each of the 

electrodes. The intercept of the best-fit line, called the start current, represents the weld 

current once 500 amperes was added to the minimum button size current. The slope of 

the best-fit line, called the stepper, corresponds to the average current increase per weld 

necessary to maintain minimum button size. The R2 value is an indication of how well 

the line of best-fit corresponds to the actual weld current data and thus gives a measure of 

the consistency of current increases.

The key evaluation criteria are the frequency, magnitude, and consistency of weld 

current increases. In terms of lowest final current and lowest stepper rate, the CuZr 

ranked first followed by the M and then the FIN. However, it is noted that the M 

demanded the lowest current levels for the first 5000 welds. The FIN provided the most 

consistent current mcreases as measured by the R value.

Figures 13 to 15 show the button size measurements for each of the electrodes. A 

measurement of 0 mm corresponds to a no-weld condition. The baseline CuZr provided 

the most consistent button sizes and experienced only two no-weld dropouts. The M 

electrode produced six no-weld dropouts and displayed significant button size variability 

in the second half of the test; however, it did not produce its first no-weld until the 4300
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weld checkpoint. The severity of the no-weld dropouts was most prevalent for the FIN 

electrode. Consecutive no-weld conditions were experienced on four occasions. At 5300 

welds, eight peel tests were required, representing an increase of 800 A, to re-obtain 

minimum button size.
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Figure 12: GM stepper tests results on hot-dipped galvanized steel showing the weld 

current vs. weld number data and line of best-fit for each electrode

Electrode
Y = start current (A) + stepper (A/weld) 

x = number of welds
R2

CuZr Y = 8100 + 0.69x 0.8795

M Y = 8200 + 0.75x 0.9187

FIN Y = 7800 + 0.99x 0.9726

Table 7: Line of best-fit equations and R2 values for the GM stepper tests
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Figure 13: GM stepper test button size measurements for the CuZr electrode
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Figure 14: GM stepper test button size measurements for the M electrode
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Figure 15: GM stepper test button size measurements for the FIN electrode

4.2 DCX Beta-Site Trials Results

The DCX beta-site trials represent the last step in qualifying the two prototype 

electrodes. The electrodes were required to show repeatable production welding 

performance in an automotive assembly plant.

Prior to the testing, electrode force was increased from 330 to 380 lbf and weld 

time decreased from 12 to 10 cycles as initial adjustments to the existing weld schedule. 

Both of these adjustments were made prior to the current range and in consultation with 

DaimlerChrysler Process Standard 9471 and American Welding Society Standard D8.9.

4.2.1 Current Range Results

The button size measurements for the current range test are shown in Figure 16. 

The expulsion current from the current range was used as a reference in determining an 

appropriate starting current. The first instance of interfacial expulsion was noted to occur 

at 7750 and 8250 A for the WAP and M electrodes respectively. For the FIN electrode, a 

very light expulsion, possibly surface expulsion, was observed at 8000 A with a more 

severe expulsion occurring at 8250 A. It is noted that each of these currents was below 

the starting current for the existing production weld schedule.
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Figure 16: Button size measurements for the DCX beta-site trials current range test

4.2.2 Expulsion Observations - M Electrode

Figures 17 to 19 present the expulsion observations for the M electrode. Several 

abbreviated trials were initially conducted to determine the appropriate combination of 

starting current and stepper rate. The trials were terminated at different lengths due to 

electrode replacement feasibility. Decreases in starting current and stepper rate are 

shown to reduce expulsion frequency.

The weld schedule for the first trial consisted of a starting current of 8500 A and a 

conservative stepper rate of 2 A per weld. As expected, severe expulsion was 

experienced with these settings, as shown in Figure 17. For the second trial, the starting 

current was maintained at 8500 A while the stepper rate was lowered to 1 A per weld. 

These settings resulted in reduced expulsion frequency compared to the 2 A per weld 

stepper. The starting current and stepper rate were further adjusted downward for the 

following two trials. The lowest expulsion frequency was observed with a starting 

current of 8000 A and a stepper rate of 0.5 A per weld.

The trials with starting currents below 8500 A exhibited a running average below 

one expulsion within the first 125 assemblies. In order to increase the number of
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expulsions while maintaining a reduced stepper schedule, an 8500 A starting current was 

selected in conjunction with a stepper rate of 0.75 A per weld. Two trials were conducted 

using these parameters. The expulsion graphs for the two trials, Figure 18, exhibit good 

correlation between 150 and 250 assemblies. In the second trial, die running average 

declined abruptly around 400 assemblies and remained low for the duration of the trial.

Based on an analysis of the results of the two trials, the mean stepper rate was 

adjusted to avoid the expulsion drop-off that occurred near the end of the second trial. To 

maintain current density in the final stage and limit initial thermal degradation of the 

electrode, the weld stepper was divided into three stages: 0.65 A per weld for the first 

2500 welds, 0.75 A per weld for welds 2501-5000 and 0.85 A per weld for welds 5001- 

7500. In this way, the mean stepper rate was maintained at 0.75A per weld. Figure 19 

displays the three 12-hour production trials carried out with the enhanced stepper 

schedule. The expulsion graphs display relatively consistent results with the running 

average decreasing gradually in the beginning stage, remaining moderate in the middle 

stage, and steadily increasing in the final stage. This provided evidence of the 

effectiveness of the weld schedule to maintain current density late in life.
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Figure 17: Expulsion observations for the preliminary M electrode trials
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Figure 18: Expulsion observations for the M electrode trials conducted with an 8500 

A start current and 0.75A per weld stepper rate
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Figure 19: Expulsion observations for the M-12hr trials
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4.2.3 Expulsion Observations - FIN Electrode

The starting current for the FIN electrode was selected as 8300 A based on the 

current range results. The first step in the development of a weld schedule was expulsion 

observations using the 0.65, 0.75, 0.85 stepper schedule developed for the M electrode. 

Figure 20 shows that significant expulsion was experienced with these settings. 

Lowering the stepper rate to 0.5 A per weld resulted in no appreciable decline in the 

expulsion frequency.

The stepper rate was further reduced to an average of 0.4 A per weld. Similar to 

the M stepper schedule, the first 2500 welds were set at 0.35 A per weld to reduce 

thermal degradation initially, and the last 2500 welds set at 0.45 A per weld to maintain 

current density. Figure 21 displays the four 12-hour trials that were conducted with these 

settings. In all four trials, the expulsion data exhibits moderate scatter about the running 

average for the first 200 assemblies. Scatter about the average is high beyond 200 

assemblies, but expulsion remained largely at a moderate level with no periods of a zero 

running average.
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Figure 20: Expulsion observations for the preliminary FIN electrode trials
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Figure 21: Expulsion observations for the FIN-12hr trials
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A 24-hour trial was conducted with the 0.35, 0.40, 0.45 stepper schedule adjusted 

to account for the extra number of welds. The first 5000 welds were set at 0.35 A per 

weld, welds 5001-10000 at 0.4 A per weld, and the final 5000 welds set at 0.45 A per 

weld. Similar to the 12 hour trials, a moderate level of expulsion was maintained for the 

duration of the trial, as shown in Figure 22, with scatter about the average expulsion 

value.
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Figure 22: Expulsion observations for the FIN-24hr trial

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2.4 Expulsion Observations - WAP Electrode

The first step in developing a stepper schedule for the baseline WAP electrode 

was observing the expulsion behaviour for the existing weld schedule. The expulsion 

observations were documented on two separate occasions, as shown in Figure 23. It is 

noted that the two observations produced significantly variable results. During one 

production run, the running average gradually decreases for the first 150 assemblies and 

then remains below two. During another production run, nearly full expulsion was 

experienced for the first 150 assemblies followed by a decrease to a more moderate level.

For the WAP electrode trials, the starting current was programmed to 8250 A 

following the current range results. Based on the M electrode results, the first trial for the 

WAP electrode was conducted with the 0.65, 0.75, 0.85 stepper schedule. The expulsion 

graph, as shown in Figure 24, illustrates that the running average gradually decreases 

initially followed by several peaks and bottoms. Throughout the duration of the trial, 

blue flashes were consistently noted after the completion of hold time. It was believed 

that the flashes may have been caused by an insufficient hold time. As well, the electrode 

exhibited signs of extreme pitting and wear upon removal at the end of the trial. 

Subsequently, the hold time was increased to 4 cycles for the following trials. This 

change was not expected to have an effect on the number of interfacial expulsions. The 

blue flashes were not apparent during any of the remaining trials.

For the following trial, the starting current was lowered to 8000 A. The expulsion 

frequency showed an initial monotonic decrease, followed by periods of several 

assemblies without any instances of expulsion. The slight increase in expulsions near the 

end of the trial was a result of two manual current increases of 250 A each. The weld 

quality checks during this period were satisfactory.

Subsequent to the results of the previous trial, the starting current was increased to 

a more conservative 8500 A. Inconsistent performance was noted for the three trials 

conducted with this starting current, as shown in Figure 25. The WAP3 trial experienced 

the earliest expulsion drop-off and the running average largely remained below two 

expulsions for the rest of the trial. The WAP4 did not experience an abrupt expulsion 

decrease until 175 assemblies and then remained at moderate levels. The WAP5 

displayed an expulsion drop-off around 100 assemblies followed by periods of several
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assemblies without expulsion. Another inconsistency between the trials was the 

behaviour of the expulsions themselves. The expulsions for the WAP4 trial were noted to 

be very light in comparison to the other two trials.
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Figure 23: Baseline expulsion observations for the WAP electrode
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Figure 24: Expulsion observations for the preliminary WAP electrode trials
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Figure 25: Expulsion observations for the WAP electrode trials conducted with an 

8500 A start current and 0.65,0.75,0.85 A per weld stepper schedule
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4.3 Electrode Face Images

Following both the laboratory and production testing, the electrodes were 

examined at low magnification to observe the topography of the electrode face. The final 

condition of the electrode face was recorded through digital imaging. Each of the 

electrodes showed a significant increase in face contact area at the completion of testing. 

The final electrode face diameter was determined from the digital images using a circle of 

best-fit method.

The electrode face images for the GM stepper tests are presented in Figure 26. 

All of the electrodes exhibited centralized pitting and alloy layer build-up at the periphery 

of the electrode face. The coarse topography of the electrode faces is evident in each of 

the images. The electrodes are also characterized by an annular groove at the outer 

diameter of the electrode face. The final electrode face diameters for the GM stepper 

tests are provided in Table 8. The measurements reveal that the FIN had the largest face 

diameters of the three electrode sets. The M electrode displayed the least variation in 

diameter between the top and bottom electrodes.

The final electrode face diameters for the DCX beta-site trials electrodes are 

presented in Table 9. The diameters of the top electrodes were larger than the bottom 

electrodes in every case. The electrode face images for the DCX beta-site trials are 

presented in Figures 27 to 29. The M-12 electrodes were characterized by centralized 

pitting, a concave electrode face, and a coarse topography. Evident in the images is the 

non-circular nature of the outer diameter in certain segments around the face. The FIN- 

12 electrodes were much more flat and smooth compared to the other electrodes. Smaller 

delocalized pits can be seen across the electrode face as well as mushroomed wings at the 

periphery. The FIN-24 electrodes displayed a rougher topography and more significant 

pitting compared to the FIN-12 electrodes. The WAP1 electrodes exhibited the most 

severe form of centralized pitting. The face of the WAP1 top electrode was covered with 

copper-containing debris at two locations along the periphery extending in a radial 

direction toward the centre of the face.
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Figure 26: GM stepper tests end-of-life electrode face images: CuZr (A) Top (B) 

Bottom; M (C) Top (D) Bottom; and FIN (E) Top (F) Bottom

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Electrode # welds Top
Diameter

Bottom
Diameter

CuZr 8500 9.319 9.816
M 7500 9.675 9.591

FIN 7000 9.821 10.173

Table 8: Summary of electrode face diameters (mm) for the GM stepper tests

Electrode # welds Top
Diameter

Bottom
Diameter

M-12A 6501 7.769 7.574
M-12B 6171 7.490 7.267
M-12C 6072 7.493 7.271

FIN-12A 5984 7.445 6.942
FIN-12B 5929 7.546 7.071
FIN-12C 5874 7.295 6.848
FIN-12D 5599 7.350 6.681
FIN-24 12078 9.033 8.677
WAP1 6490 8.255 7.640
WAP3 5016 7.494 6.936

Table 9: Summary of electrode face diameters (mm) for the DCX beta-site trials

The electrodes from the GM stepper tests exhibited more significant pitting and 

wear compared to the DCX beta-site electrodes. This can be attributed to the more severe 

condition of welding hot-dipped galvanized steel compared to galvannealed steel. The 

rate of electrode face enlargement is addressed in the discussion.
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Figure 27: Electrode face images for the M electrode trials: M-12A (A) Top (B) 

Bottom; M-12B (C) Top (D) Bottom; M-12C (E) Top (F) Bottom
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Figure 28: Electrode face images for the FIN electrode trials: FIN-12A (A) Top (B) 

Bottom; FIN-12B (C) Top (D) Bottom; FIN-12C (E) Top (F) Bottom;
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Figure 28 continued: FIN-12D (G) Top (H) Bottom; FIN-24 (I) Top (J) Bottom

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(A) (B)

it

s
(C) (D)

Figure 29: Electrode face images for the WAP electrode trials: WAP1 (A) Top (B) 

Bottom; WAP3 (C) Top (D) Bottom
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4.4 Metallographic Evaluation

Following laboratory and production testing, the electrodes were examined using 

standard metallographic techniques. Vickers microhardness testing was conducted to 

determine the depth of softening beneath the electrode face. The average thickness of the 

individual brass-alloy layers was determined via optical microscopy. Etching was 

completed to reveal the microstructure and any evidence of recrystallization near the 

electrode face.

4.4.1 Microhardness Results

Electrodes lose their hardness at the face as a result of prolonged thermal 

degradation. Softening in precipitation hardened electrode materials can be attributed to 

dissolution or overaging of precipitates and or recrystallization. Less softening is 

experienced by oxide dispersion strengthened materials because the dispersoids used to 

strengthen the base copper are stable at elevated temperatures. However, the welding 

heat does provide enough energy to allow dislocation climb to defeat the dispersion 

strengthening mechanism and cause some softening [7].

Room temperature hardness traces for the GM stepper electrodes are shown in 

Figures 30 and 31. The hardness drop for each of the electrodes is greater at the centre 

than at the edge of the face. The most significant hardness drop was exhibited by the 

CuZr and FIN electrodes. At the centre, the depth of softening for both electrodes 

extends 2 mm into the electrode body with the hardness of the FIN on average 12 HV 

below that of the CuZr. At the edge, the CuZr has maintained its hardness up to 0.5 mm 

from the electrode face while the FIN shows the same 2 mm softening depth. The M 

experienced only a slight hardness drop at either the centre or the edge.

Hardness values from the DCX beta-site trials are displayed in Figures 32 and 33. 

Again, the hardness drop at the centre of the face is greater than at the edge. At the 
centre, the FIN-24 is about 10 HV softer than the FIN-12 up to a depth of 1 mm. At the 

edge, the FIN-24 exhibited more significant softening than the FIN-12 up to a depth of 

0.3 mm. Similar to the GM stepper test, the M-12 experienced only a slight hardness 

drop at either the centre or edge. The WAP1 electrode was best able to maintain its 

hardness and did not experience any softening at either the centre or edge.
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Figure 30: Hardness values at the face centre for the GM stepper tests electrodes
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Figure 31: Hardness values at the face edge for the GM stepper tests electrodes
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Figure 32: Hardness values at the face centre for the DCX beta-site trials electrodes

WAP1

FIN-12
FIN-24

Distance from the Electrode Face (mm)

Figure 33: Hardness values at the face edge for the DCX beta-site trials electrodes
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4.4.2 Alloy Layer Thickness Measurements

Alloy layer thickness measurements for the GM stepper tests electrodes are 

presented in Figure 34. There was little variation among the electrodes in the thickness 

of the individual alloy layers. The total thickness of the two brass layers was found to be 

approximately 15 pm for each electrode. The thickness of the parting layer was more 

variable than the brass-alloy layers. The M electrode displayed the thickest parting layer 

of the three electrodes. The optically distinct beta-brass, gamma-brass, and parting layers 

are shown in Figure 35.

The alloy layer thicknesses for the DCX beta-site trials electrodes are also 

presented in Figure 34. Individual measurements across the entire face diameter revealed 

that the FIN-12 and FIN-24 electrodes exhibited a more consistent point-to-point alloy 

layer thickness than the M-12 or WAP1 electrodes. Comparable to the GM stepper tests, 

the total thickness of the beta- and gamma- brass layers was nearly equivalent for the M- 

12 and FIN-12. The FIN-12 exhibited a slightly smaller beta layer and a slightly larger 

gamma layer compared to the M-12. The thickness of the individual brass alloy layers 

was found to be slightly greater for the FIN-24 compared to the FIN-12. The WAP1 

displayed the thickest alloy layers, particularly the parting layer, of all the electrodes. 

With an average thickness of 30 pm, the parting layer represents over half of the total 

alloy layer thickness for this electrode.

Figure 36 reveals a mixed layer present at the interface of the parting and gamma- 

brass layers in a FIN-12 electrode. This mixed layer was predominant at the central 

portion of the electrode face and was not evident near the edges. The average thickness 

of the mixed layer was found to be 40 pm, much greater than the other alloy layers. This 

observation raises the possibility that the mixed layer represents a protrusion, which is an 

extension of the central portion of the electrode face. Lu et al. [16] also observed the 

formation of a protrusion when welding galvannealed steel with a copper-zirconium 

electrode. The mixing of beta- and gamma-brass layers has been previously noted by 

Athwal [17].
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Figure 34: Alloy layer thickness measurements for both the GM stepper tests 

electrodes and the DCX beta-site trials electrodes
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Figure 35: Optically distinct beta-brass (yellow), gamma-brass (white), and parting 

layers in the FIN-24 electrode

Figure 36: Mixing of the parting and gamma-brass layers in a FIN-12 electrode. 

The mixed layer had an average thickness of 40 pm and was only evident at the 

centre of the electrode face.
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4.4.3 Microstructural Observations

Recrystallization was apparent near the electrode face for the precipitation 

hardened electrode materials, namely the CuZr and FIN electrodes. Recrystallization was 

most prevalent near the centre of the electrode face, but was also observed near the edges. 

This observation is consistent with the lower hardness values noted at the centre of the 

electrode face. The depth of recrystallization varied across the electrode face; the 

average depth of recrystallization was 150 pm. The deepest and most extensive 

recrystallization was found in the FIN-24 electrode. Figure 37 shows the forged 

microstructure of the electrode body giving way to smaller equiaxed grains near the 

electrode face. Significant grain growth does not appear to have occurred due to the 

dispersion of the copper-zirconium precipitates. As expected, the M electrode resisted 

recrystallization at the electrode face, as shown in Figure 38.

Figure 39 shows a double crack intersecting a central pit in an M-12 electrode. 

The current concentration around the crack may have aided in the formation of the pit. 

The larger of the two cracks extends 1.5mm into the electrode body. Alloying was also 

noted to occur along the crack near the electrode face. Cracking has been previously 

noted for this material without an apparent effect on electrode life [17].

The formation of a wing at the edge of the electrode face is shown in Figure 40 

for a FIN-12 electrode. Wing formation at the edge of the electrode face was far more 

extensive for the FIN-12 electrodes than the M-12 electrodes. Optical metallography 

revealed that both the underlying copper material and the brass-alloys layers were 
extruded to form the wing.
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Figure 37: Recrystallization at the centre of the electrode face for the FIN-24 

electrode. The figure shows the forged microstructure of the electrode body giving 

way to recrystallized grains near the face.

Figure 38: Deformation pattern of an M-12 electrode which shows no evidence of 

recrystallization at the edge of the electrode face
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Figure 39: A double crack intersecting a central pit in an M-12 electrode. The 

larger of the two cracks extends 1.5 mm into the electrode body.

Figure 40: Extensive wing formation in a FIN-12 electrode showing both brass-alloy 

extrusion and copper extrusion at the edge of the electrode face
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V. DISCUSSION

This section first discusses the overall results from the laboratory and production 

tests. The rate of electrode face enlargement is then discussed along with the associated 

current density requirements for maintaining weld quality. A detailed analysis of 

electrode cooling is given to highlight its importance in limiting thermal degradation and 

electrode face enlargement. Finally, a methodology for developing production weld 

schedules along with its associated benefits is presented.

5.1 Comparison of Test Results

The results from the GM stepper tests reveal the baseline CuZr to have the longest 

electrode life of 8500 welds, followed by the M and FIN at 7500 and 7000 welds 

respectively. The CuZr also required the lowest stepper rate and produced the least 

number of no-weld dropouts of the three electrodes. Overall, for the given laboratory test 

conditions, the developmental electrodes were outperformed by the CuZr, a widely used 

electrode in the automotive industry.

The results from the DCX beta-site trials showed that both the M and the FIN 

were able to show repeatable performance in a production environment. The electrodes 

consistently maintained moderate levels of expulsion dining consecutive trials with the 

same weld schedule. In terms of lower current levels, both of the developmental 

electrodes were able to outperform the baseline WAP electrode. The FIN was the best 

performing electrode, as it required a significantly lower stepper rate than its competitors.

Both testing evaluations involved increasing the weld current as the electrode face 

enlarged from repeated welding. A mean stepper rate of 0.75 A per weld was achieved 

for the M electrode in both the laboratory and production testing. For the FIN electrode, 

a substantially lower stepper rate of 0.4 A per weld was required in the production trials 

compared to the 0.99 A per weld for the laboratory tests. However, there were several 

key differences between the two tests including the type of steel welded, cooling-water 

flow rate, weld time, electrode force, and number of welds. Each of these factors would 

play a significant role in electrode wear and subsequently electrode performance.
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5.2 Electrode Face Enlargement
Electrode face enlargement when welding galvanized steels occurs from a 

combination of chemical and mechanical erosion. Mechanical erosion occurs from the 

extrusion of both brass alloys and base copper to the periphery of the electrode face. 

Chemical erosion occurs from the loss of copper material as it is transferred onto the 

sheet surface in the form of brassing. The electrode face diameter increases from 

chemical erosion as a consequence of electrode geometry. When mechanical erosion 

and/or chemical erosion are limited, the rate of electrode face enlargement is reduced.

The rate of electrode face diameter increase is provided in Table 10 for the two 

testing conditions. The production values represent an average taken from the 12-hour 

trials. The rate of electrode face diameter increase was much greater for the GM stepper 

tests. This can be attributed to higher levels of mechanical and chemical erosion given 

the welding conditions of the laboratory tests. Holliday et al. [38] have shown that the 

loss of copper material from the electrode face, and thus chemical erosion, is greater for 

hot-dipped galvanized than for galvannealed steel. Greater mechanical erosion would 

occur given the higher electrode force of 670 lbf compared to 380 lbf for the production 

trials. Furthermore, a longer weld time and lower cooling-water flow rate would have 

exposed the electrodes to higher levels of thermal degradation. The total combination of 

these conditions would clearly lead to a higher rate of electrode face diameter increase.

Electrode
Rate of Electrode Face Diameter Increase 

(pm/weld)
GM Stepper Tests DCX Beta-Site Trials

M 0.644 0.428
FIN 0.742 0.401

Table 10: Rate of electrode face diameter increase for each testing condition

Howes and Lake [35] have noted that electrode life during production welding is 

governed by the rate of electrode face enlargement with increasing numbers of welds. 

The improved performance of the FIN in the production trials can be attributed to a much 

lower rate of electrode face enlargement than for the laboratory tests. Any limitation in
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thermal degradation would be expected to have a greater effect on the FIN than the M, 

because the FIN has a lower strength and thereby a greater propensity for mushrooming.

The formation of wings was far more extensive for the FIN-12 electrodes in spite 

of their lower rate of electrode face enlargement in the production trials. Given that the 

formation of wings represents mechanical erosion, this may point to chemical erosion as 

being the dominant electrode wear mechanism, as previously noted by Gallagher [7]. 

This may also reveal that improved electrode cooling more significantly limits chemical 

erosion than mechanical erosion.

5.3 Current Density Requirements

While resistive heat generation is directly related to the square of the weld 

current, melting at the faying interface will not occur without a concentration of the 

current. The electrode wear process is marked by elevated levels of thermal degradation 

leading to a substantially enlarged electrode face. An increased electrode face diameter 

requires that weld current be increased to maintain the necessary current density.

In the GM stepper tests, weld current was increased when minimum button size 

was not achieved in the 100-weld interval check. These increases in weld current were a 

response to the enlarged electrode face. For the DCX beta-site trials, a pre-programmed 

start current and stepper rate were employed to anticipate electrode face enlargement. In 

both cases, weld current was increased to accommodate for the larger face diameter and 

maintain a certain current density.

Peterson [1] has noted that the balance between achieving acceptable rates of 

electrode wear while maintaining insensitivity to current density fluctuations is best met 

at or just below the expulsion current. If current levels are set excessively below 

expulsion, even small increases in electrode face diameter reduce current density enough 

to lead to weld size dropouts. Higher than necessary currents, with severe expulsion, 

subject the electrodes to increased thermal degradation and accelerated electrode wear 

rates. For the production testing, welding with moderate expulsion was utilized to protect 

against weld size dropouts. These current levels could sustain suitable weld nugget sizes, 

even if the electrode face were subject to rapid enlargement.
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Table 11 displays the average current density of the top and bottom electrodes at 

the end-of-life for each of the testing conditions. The values from the production testing 

represent an average taken from the 12-hour trials. The current density was calculated 

from the final testing current and the final face diameter. As expected, the current density 

required to maintain expulsion in the production trials was on average 86 A/mm2 higher 

than that required to maintain minimum button size during the laboratory testing. The 

values also show that the current density of the M was on average 31 A/mm2 greater than 

the FIN. The lower required current density for the FIN may be a consequence of its 

higher electrical conductivity.

The minimum current density to produce acceptable minimum sized welds was 

noted by Gallagher [7] to be at least 200 A/mm2. As well, Peterson [2] found that 

electrodes tend toward a 225 A/mm2 current density limit as electrode wear progresses. 

The current density for the M agrees quite well with the above values; the current density 

of the FIN is lower than expected. This lower value may be a result of the different 

techniques used to determine the electrode face diameter. For the above current density 

values, carbon imprints of the electrode face were used to determine the face diameter. In 

this study, digital images of the electrode face were used to determine the face diameter. 

It was noted that when compared to the carbon imprints, the face diameters from the 

digital images were slightly greater. This discrepancy would result in a lower calculated 

current density.

Electrode Current Density (A/mm2)
GM Stepper Tests DCX Beta-Site Trials

M 210 298
FIN 181 265

Table 11: End-of-life current density comparison

5.4 The Importance of Electrode Cooling

Electrode cooling is achieved via heat diffusion in the copper through conduction 

and heat extraction by the cooling-water through convection. Heat from the welding 

operation is conducted through the electrode and is coupled with the cooling-water at the
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water channel interface. Thermal degradation of the electrode is related to the maximum 

temperature experienced by the electrode as well as the time spent at maximum 

temperature. Enhanced cooling limits thermal degradation by restricting chemical 

erosion from brassing and mechanical erosion from elevated-temperature mushrooming.

Reducing the electrode face thickness positions the water channel closer to the 

highest temperatures experienced at the electrode face. Maximum cooling occurs when 

the balance between conduction and convection is optimized through the electrode face 

thickness. When the face thickness is larger than necessary, less cooling is achieved by 

the cooling-water since the heat must diffuse a longer distance before it reaches the water 

channel [46]. If the face thickness is too thin, heat builds up near the electrode face as a 

result of the reduced thermal mass of the copper electrode.

A low cooling-water flow rate, such as the 0.5 gpm used in the GM stepper tests, 

combined with a small face thickness can result in electrode overheating. Evidence of 

boiled cooling-water was apparent for the M electrode at the end of GM stepper test. A 

white residue, as shown in Figures 41 and 42, was deposited on the inside face of both the 

top and bottom electrodes. In addition, a reverberating noise characteristic of boiling 

cooling-water was noted by the welding technician during the test. This residue was not 

evident for either the CuZr or FIN electrodes, each of which had larger face thicknesses. 

Furthermore, the white residue was not found on any of the M electrodes tested during 

the DCX beta-site trials. This observation suggests that the optimum face thickness for 

electrode cooling is greater than 6 mm for a cooling-water flow rate of 0.5 gpm and that 

the optimum thickness decreases with higher cooling-water flow rates.

The addition of fins inside the water channel increases the rate of convective heat 

transfer in two ways. Primarily, the fins increase the water channel surface area that is 

available for convective heat transfer. For the FIN electrode, the fins increased the 

surface area by approximately 50 percent, resulting in a proportional increase in the rate 

of convective heat transfer. Secondly, the fins also promote turbulent flow of the 

cooling-water, significantly increasing the convection heat transfer coefficient [47].

Another important variable affecting electrode cooling is the flow rate of the 

cooling-water. Higher cooling-water flow rates promote turbulent flow and significantly 

enhance convective heat transfer. The results clearly illustrate that the enhanced cooling

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



properties offered by the FIN electrode were far more beneficial at the higher water flow  

rates o f the production testing. This correlates with the results from a study by Kim and 

Eagar [46] which indicated that water flow rate had a greater effect on electrode cooling 

when the face thickness, and thus the balance between conduction and convection, was 

optimized.

Experimental and analytical analysis would provide further insight to the 

enhanced cooling offered by internal fins. Experimental testing could be conducted using 

two identical electrodes, with and without fins, at various water flow rates to help 

determine the optimal cooling conditions for electrode life. The analytical analysis could 

include computer modelling to evaluate the performance of the fins on the basis of 

enhanced heat transfer relative to a no-fin case.

Figure 41: An untested M electrode (I) and one exhibiting white residue from boiled 

cooling-water (r). The white residue was not evident for the CuZr or FIN 

electrodes.

Figure 42: An up-close (29.5X) of the white residue found on the inside face of the M 

electrode
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5.5 Candidate Electrode Material

The results for the M electrode reveal the potential for a new material that has 

shown consistent performance in both the laboratory and production testing. Although 

the total electrode life in the GM stepper test was less than the baseline CuZr, this new 

material did not experience its first no-weld condition until 4300 welds. The CuZr and 

FIN electrodes, each manufactured from an industry standard copper-zirconium alloy, 

exhibited no-weld dropouts at 2000 and 1800 welds respectively; this occurrence would 

represent an effective end-of-life condition in a production environment. The button size 

stability exhibited by this electrode material was also noted by Athwal [17] for both the 

AWS endurance test and sequential life testing. Button size consistency is important in a 

production environment, where predictability in scheduling and maintenance translate 

into increased productivity. The button size consistency also promotes enhanced weld 

quality through reliability, and cost savings through a decrease in the over-welding of 

assemblies.

The results from the production testing provide further evidence of the 

consistency of the M electrode material. This consistency is readily shown by the 

expulsion behaviour for the replicate trials conducted with the final developed weld 

schedule. The expulsion graphs for the M exhibit better correlation than for either the 

FIN or WAP.

The advantage of the M electrode material is that it is strong enough at low 

temperatures to limit bulk extrusion, while softening just slightly at higher temperatures 

to promote localized plasticity at the electrode face [2]. This localized plasticity reduces 

contact resistance, and thereby heat generation, at the electrode/sheet interface. Due to 

the proprietary nature of the material, the role of the individual oxides in producing this 

softening is not known.
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5.6 Evolutionary Operation of Weld Schedules

Similar to other industrial processes, weld schedules pass through stages of 

development. Laboratory results provide a preliminary estimate of feasibility and give 

ballpark estimates for weld parameters such as weld current, electrode force, and weld 

time. These laboratory results are incorporated into company process standards that 

provide weld size requirements and weld set-up recommendations based on the type of 

steel, coatings, and sheet thicknesses.

Evolutionary Operation (EVOP) is an iterative strategy for approaching the 

optimum operating conditions of a production process [48,49, 50]. It is often performed 

using small changes in parameter settings and large sample sizes [49]. The advantage of 

EVOP is that it is non-disruptive to the manufacturing process and allows the continued 

production of saleable product during the procedure. EVOP has been successfully 

applied to a myriad of industrial processes including the submerged arc welding process 

[50,51].

Through the experience of production testing, a methodology has evolved for 

developing weld schedules based on the elements of EVOP. The methodology relies on 

moderate expulsion, both in terms of frequency and the amount of metal expulsed, as the 

key determinant for weld schedule feasibility. The goal is to reduce the current level, 

represented by the start current and stepper rate, to the lowest feasible yet reliable rate. 

The basic elements of the methodology as applied to current research are:

• running in sequence a set of weld parameters that are minor variants of the 

currently best-known process;

• recording expulsion data in a readily understood form which leads the way to 

appropriate action.

The potential benefits are extended electrode life, lower overall energy consumption, and 

improved weld quality.

The particular welding application is first assessed by identifying the materials 

and coatings, sheet thicknesses, part fit-up, and any other information related to 

weldability. The recommended weld parameters are determined from company process 

standards and any previous laboratory results. The average expulsion current is
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determined from at least two current ranges on the welded assembly and is used to 

establish an appropriate starting current.

A two-variable factorial design is suggested consisting of five operating points, as 

shown in Figure 43. Point 0 represents the average expulsion current from the current 

range and an estimated stepper rate based on similar welding applications. The other 

points represent slight modifications to these values. Trials are conducted at each point 

of the factorial design and expulsion data are collected. After the trials are completed, the 

data are analyzed and the most feasible settings are conjectured. The best-known settings 

become the centre point of the next factorial design as the weld schedule develops.

The mean stepper rate should consider the start current, the maximum current 

available from the transformer, and the desired number of welds. Following the 

determination of the mean stepper rate, the stepper schedule is modified in stages. The 

final stepper schedule should increase the stepper rate for each successive stage to better 

maintain current density late in electrode life. The final weld schedule is one that 

produces consistently moderate expulsion while still maintaining weld quality.

The expulsion frequency will vary from trial to trial due to the inherent variability 

associated with production welding conditions. To ensure that the patterns or trends that 

arise are solely from the deliberately introduced settings, the order of the individual trials 

should be randomized. In addition, the final weld schedule should be monitored and 

evaluated through consecutive production runs. The trial replication assures 

reproducibility of the results.

3 1

0

4 2
Start Current

*
Figure 43: A 2 factorial design for variables start current and stepper rate

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The methodology procedure is best served by providing an example application 

that involves a two-thickness stack-up, 1.1 mm to 1.4 mm, where both parts are hot- 

dipped galvanized high strength steel. For this example, typical parameters may be:

Electrode force - 2980 N (670 lbf) Weld time -16 cycles (60 Hz cycles) 

Hold time - 2 cycles (60 Hz cylces) Weld current -10,500 A 

The above weld parameters are used to conduct a current range on the actual part. The 

initial current for the current range is set below the recommended weld current for this 

application; 8000 A may be considered an appropriate starting point. The current range is 

conducted by increasing the weld current by 250 A after each successive weld until the 

first instance of expulsion occurs. A destructive peel test is performed to determine the 

button sizes of the individual welds. The average expulsion current is determined from at 

least two current ranges and is selected as the start current for the centre point of the 

factorial design, as shown in Figure 44.

An approximate stepper rate is determined by considering other applications with 

similar steel and coating types, and stack-up thickness. This estimated stepper rate, 1.6 A 

per weld for this example, becomes the stepper rate setting for the centre point. Trials are 

conducted at each point of the factorial design and the expulsion behaviour is monitored 

and recorded. In some cases, a high percentage of expulsion will be experienced because 

conservative values have been chosen. If this occurs, further testing at more conservative 

start currents and stepper rates is not necessary.

The best-known settings from the first factorial design, 9800 A start current and 

1.2 A per weld stepper rate, become the centre point for the following factorial design. 

The interval between the parameter settings can be reduced for each successive factorial 

design to further refine the weld schedule. As displayed in Figure 44, the stepper rate 

interval for the first factorial design is reduced from 0.4 A per weld to 0.2 A per weld. 

Trials are conducted at each point and the expulsion behaviour is monitored and 

recorded.

Once a mean stepper rate is determined through testing, the stepper is modified in 

stages. The initial stepper rate is set approximately 10 percent lower than the mean rate 

to limit thermal degradation initially and the final stepper rate is set approximately 10 

percent higher than the mean rate to maintain current density late in life. If the mean
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stepper rate was determined to be 1.4 A per weld, an intitial stepper rate of 1.25 A per 

weld and a final stepper rate of 1.55 A per weld could be used. The expulsion behaviour 

with the modified stepper schedule is then monitored and recorded through several 

consecutive production trials.
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Figure 44: Progression of the factorial design for the example welding application
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5.7 Benefits of Evolutionary Operation

The benefits from weld schedule improvement and electrode life extension 

include cost reductions for electrode replacement and energy consumption. Since energy 

consumption is directly proportional to the square of welding current, total energy per 

weld can be dramatically reduced by lower current levels. Furthermore, since extended 

electrode life has been directly related to lower operating currents [16], the benefits of 

lower current levels also provide for fewer electrode replacements.

Figure 45 and Table 12 display both graphical and numerical summaries of the 

daily current requirements, assuming a three-shift operation, for the M-12, FIN-12, and 

FIN-24 electrodes. The calculations are based on a maximum number of 7500 welds for 

a 12 hour period and a constant weld time. The numbers indicate that both of the 

developmental electrodes were able to reduce energy consumption relative to the baseline 

weld schedule. Most notably, the FIN-12 offered an 18 percent reduction in total 

amperes consumed per day compared to the baseline weld schedule. Although a detailed 

power calculation is not available, any reduction in current is expected to result in an 

energy savings.

Although the FIN was capable of successfully completing a 24-hour trial, the 

lowest daily current requirements were offered by replacing the FIN electrode every 12 

hours. Peterson [52] has also noted that when the face diameter to sheet thickness ratio 

becomes significantly out of balance, nugget development and weld quality suffer. When 

considering total energy consumption and weld quality reliability, replacing the FIN 

every 12 hours offered the most feasible choice. A 12-hour replacement period was 

selected, rather than a 16-hour period, to reduce scheduling complexity. The electrodes 

in a 12-hour rotation are replaced at the same time every day as opposed to a 16-hour 

rotation where they are replaced at different times from day-to-day.

The increased electrode life must be considered relative to the price per electrode. 

The cost savings associated with fewer electrode replacements must outweigh any added 

manufacturing costs of a superior electrode. Gallagher [7] noted that the economics of 

electrodes may be adversely affected by the added manufacturing costs associated with 

forming fins.
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Without information related to electrode and energy costs, it is not possible to 

offer a more detailed economic analysis. In 2002 it was estimated that the annual savings 

associated with doubling electrode life, based only on electrode costs and replacement 

labour, was $US 20-million for the three North American automakers alone [1]. Since 

that time, the average price of copper has increased from $US 0.75 per lb to $US 3.50 per 

lb. This represents over a four-fold increase in the price of the base material used to 

manufacture electrodes. Furthermore, the above value does not represent the significant 

savings that can be achieved by lower overall energy consumption. Howe [53] has 

shown that energy costs can be reduced by as much as 50 percent when weld parameters 

are optimized. Any reduction in energy combined with extended electrode life should 

result in a significant financial savings for the company.
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Figure 45: Graph of weld current vs. weld number for the final weld schedules

Electrode Start
Current

Final
Current

Total Amps/ 
7500 welds 

xlO6

Total Amps/ 
Day (Max) 

xlO6

Fraction of 
Baseline 

Amps / Day
M-12 8,500 14,125 83.6 167.2 0.94

FIN-12 8,300 11,300 72.9 145.8 0.82
FIN-24 8,300 14,300 N/A 167.0 0.94

Table 12: Summary of weld currents and total amperes for the DCX beta-site trials
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VI. CONCLUSIONS AND FUTURE WORK

1. The results of the laboratory and production testing reveal the potential of the M 

electrode material given its consistent welding performance. This consistency is 

important in a production environment, where predictability in scheduling and 

maintenance translate into increased productivity. This multiple-oxide dispersion 

strengthened copper material is strong enough at low temperatures to limit bulk 

extrusion, while softening just slightly at higher temperatures to promote localized 

plasticity at the electrode face, thereby limiting heat generation at the 

electrode/sheet interface.

2. The evidence of boiled cooling-water that was apparent for the M electrode at a 

low water flow rate in the laboratory tests was not apparent at the higher water 

flow rates of the production trials. This observation suggests that the optimum 

face thickness for electrode cooling is greater than 6 mm for a cooling-water flow 

rate of 0.5 gpm and that the optimum thickness decreases with higher cooling- 

water flow rates.

3. The performance of the FIN electrode in the production trials provides evidence 

that higher cooling-water flow rates are more beneficial for electrodes with 

cooling properties that enhance convective heat transfer. The addition of fins to 

the water channel enhanced the rate of convective heat transfer by increasing the 

water channel surface area and promoting turbulent flow of the cooling-water.

4. Both of the developmental electrodes were able to show repeatable production 

welding performance in an automotive assembly plant. Most notably, the FIN 

electrode achieved an 18 percent reduction in total amperes consumed per day 

compared to the WAP baseline weld schedule. The FIN electrode also completed 

a successful 24-hour trial, three times the length of the baseline electrode 
replacement period.

5. A measure of electrode performance when welding galvanized steels is the rate of 

electrode face enlargement. In this study, improved electrode performance was 

realized in both the laboratory and production testing when the rate of electrode 

face enlargement was reduced, thus concurring with this accepted guideline.
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6. The current density required to maintain expulsion in the production trials was 

determined to be on average 86A/mm2 higher than that required to maintain 

minimum button size during the laboratory tests.

7. A mixed layer present at the interface of the parting and gamma-brass layers was 

observed on the electrode face. This mixed layer had an average thickness of 40 

pm and was only evident at the central portion of the electrode face. This 

observation raises the possibility that the mixed layer represents a protrusion, 

which is an extension of the central portion of the electrode face and has been 

associated with improved weld consistency.

8. A methodology has been presented to develop weld schedules in production 

operations without risk to the manufacturing process. It also efficiently compares 

different electrodes for a given production welding application. The benefits of 

the methodology include extended electrode life, lower overall energy 

consumption, and improved weld quality.

9. Improvements in electrode life are only effective within the constraints of 

production scheduling. For a three-shift operation, 12-hour schedules are 

preferable to 16-hour schedules despite the ability of the electrode to withstand 16 

hours of production welding.

Future work includes investigating the effect of cooling-water flow rate on the 

performance of the FIN electrode. Computer modeling at various water flow rates would 

evaluate the performance of the fins on the basis of enhanced heat transfer relative to a 

no-fin case. Experimental testing of two identical electrodes, with and without fins, at 

various water flow rates would help determine the optimal cooling conditions for 

electrode life. The optimization of electrode face thickness and cooling-water flow rate 

could also be explored in more detail. Transmission electron microscopy of the M 

electrode material could be conducted to determine the role of the individual oxides in 

producing the softening at elevated temperatures. The use of the EVOP methodology for 

other welding applications would further prove its ability to efficiently develop weld 

schedules in production. Successful production implementation of the M and FIN 

electrodes to other welding applications would validate the results achieved in this study.
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