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ABSTRACT

The Devonian Upper Stettler Formation and the underlying Crossfield Member are 

mixed evaporite/carbonate assemblages that were cyclically deposited on carbonate ramps 

during the Famennian. Lithofacies include mudstones, peloidal grainstones, stromatoporoid 

floatstones, bioclastic packstones/rudstones, and dolostones.

The following events are identified as the most important in the diagenetic alteration 

o f facies in the Upper Stettler and Crossfield: (1) early pervasive dolomitisation from Mg2+ - 

rich refluxing brines; (2) chemical compaction; (3) recrystallisation o f early matrix dolomites 

with changing pore-fluid chemistry; (4) secondary anhydrite, blocky calcite II, and saddle 

dolomite cements; (5) Deep-burial TSR reactions.

Isotopic values (8180  and 8 13C) and 8 7Sr/86Sr ratios suggest progressive diagenetic 

alteration for both calcite and dolomite phases with increasing burial. These values reflect 

increasing temperatures, interaction with organic carbons, mixing pore-fluids with depth, and 

TSR processes that have occurred within the Upper Stettler Formation and more particularly, 

the Crossfield Member.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For my father,
In his lifelong quest for the elusive truth. 

You are always with me.

D.W. (Ray) Raymus 
(1942-1999)

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

First o f all, I would like to thank Dr. Ihsan S. Al-Aasm for the opportunity to work on 

this project. Without the financial support and constructive advice and encouragement he 

provided, this thesis would not have been completed. Thank you also to my committee 

members, Dr. Maria Cioppa and Dr. N. Biswas.

I would also like to thank Dr. Jeff Packard and Dr. Bill Martindale for their help at 

the Core Research Centre in Calgary, and more specifically, for their support and advice 

during the research process.

On a more personal note, thank you to Melissa Price for all her help in the isotope lab 

and for all the great conversations. Thank you also to the very efficient Sharon Home for her 

advice, encouragement, and help during my time in Windsor.

I am also indebted to JoAnn Adam for always being there for me, encouraging me 

and making me laugh, even when I didn’t feel like laughing. You have been an invaluable 

friend. I would also like to thank my family for listening to me when I needed to talk and for 

all their encouragement and support, my mother Florence, and my favourite sister, Lauri-Ann.

Finally, I would like to thank the most important person in my life, my future 

husband, Bill Gulenchin. When I felt discouraged, he reminded me of the most valuable 

things in life: our mutual faith in God, our love for each other, our friends and family, and 

breathing in the beauty o f life because you never know when one day will be your last. 

Ultimately, nothing else is that important.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

ABSTRACT............................................................................................................. iii

DEDICATION........................................................................................................  iv

ACKNOWLEDGEMENTS..................................................................................  v

LIST OF TABLES...............................................................................................  xi

LIST OF FIGURES.................................................................................................  xii

LIST OF PLATES.................................................................................................  xiii

CHAPTER I: INTRODUCTION....................................................................... 1

1.1 Purpose of Study................................................................................  1

1.2 Previous Studies.................................................................................  3

1.3 Sampling Methods and Procedures................................................ 5

CHAPTER II: REGIONAL FRAMEWORK................................................. 10

2.1 The Wabamun Group in the Western Canada Sedimentary

Basin (WCSB).............................................................................  10

2.2 Stratigraphy....................................................................................... 12

2.2.1 Stettler Formation............................................................  12

2.2.2 Crossfield Member...........................................................  13

2.2.3 Palliser Formation...........................................................  13

2.3 Regional Structure of the Western Canada Sedimentary

Basin (WCSB)............................................................................  14

CHAPTER III: SEDIMENTOLOGY OF THE UPPER STETTLER

FORMATION AND CROSSFIELD MEMBER.................  16

3.1 Introduction.....................................................................................  16

3.2 Facies.................................................................................................  16

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2.1 MudstonesAVackestones................................................ 17

3.2.1.1 Mudstone/Wackestone Facies......................  17

3.2.2 Packstone/Grainstones.................................................. 24

3.2.2.1 Packstone/Grainstone Facies........................ 25

3.2.3 Floatstone/Rudstones....................................................  25

3.2.3.1 Floatstone/Rudstone Facies.........................  28

3.2.4 Dolostones....................................................................... 29

3.3 Depositional Model....................................................................... 29

CHAPTER IV: DIAGENESIS OF THE UPPER STETTLER

FORMATION AND CROSSFIELD MEMBER.........................  32

4.1 Introduction.................................................................................  32

4.2 Micritisation................................................................................  33

4.3 Neomorphism..............................................................................  33

4.4 Compaction.................................................................................  36

4.4.1 Mechanical Compaction...........................................  37

4.4.2 Chemical Compaction............................................... 40

4.5 Evaporite Formation................................................................  41

4.5.1 Anhydrite.................................................................... 46

4.5.2 Gypsum......................................................................  46

4.6 Calcite Cementation................................................................  49

4.6.1 Dogtooth Cement...................................................... 49

4.6.2 Drusy Mosaic Cement.............................................  49

4.6.3 Syntaxial Cement......................................................  50

4.6.4 Blocky Cement.......................................................... 50

4.6.5 Bladed to Equant Cement.......................................  50

4.7 Silicification............................................................................... 51

4.8 Dolomite....................................................................................  51

4.8.1 Dolomicrite................................................................  54

4.8.2 Fine- to Medium- crystalline Matrix Dolomite... 57

4.8.3 Coarse-crystalline Matrix Dolomite......................  57

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.8.4 Dissolution Seam Dolomite......................................  57

4.8.5 Pore-Lining Dolomite................................................ 58

4.8.6 Saddle Dolomite.......................................................  58

4.9 Dissolution................................................................................  58

4.10 Fracturing...............................................................................  61

4.11 Sulphide Mineralisation.......................................................  61

4.12 Pyrobitumen/Asphaltene......................................................  66

4.13 Porosity...................................................................................  66

4.13.1 Primary Porosity....................................................  66

4.13.2 Secondary Porosity................................................. 69

CHAPTER V: ISOTOPE GEOCHEMISTRY OF THE UPPER

STETTLER FORMATION AND CROSSFIELD MEMBER... 71

5.1 Introduction................................................................................  71

5.2 Stable Isotope Theory................................................................ 71

5.3 Carbon (13C/12C) and Oxygen (180 / 160 )  Isotope Results  74

5.3.1 Calcites.............................................................................  74

5.3.2 Dolomites.........................................................................  76

5.4 Sulphur Isotopes............................................................................  78

5.4.1 Sulphur (34S/32S) Isotope Results................................. 79

5.5 Strontium (87Sr/86Sr) Theory.......................................................  79

5.5.1 Strontium (87Sr/86Sr) Isotope Results........................  82

CHAPTER VI: DISCUSSION AND INTERPRETATION:

DIAGENESIS IN THE UPPER STETTLER FORMATION

AND CROSSFIELD MEMBER.......................................................  84

6.1 Introduction...................................................................................  84

6.2 Early Diagenesis............................................................................  84

6.3 Calcite Cementation...................................................................... 86

6.3.1 Dogtooth, Drusy Mosaic, and Bladed to Equant

Cements........................................................................  86

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.3.2 Syntaxial Calcite Cement.............................................  87

6.3.3 Blocky Calcites I-II........................................................  87

6.4 Dolomitisation...............................................................................  90

6.4.1 Characteristics of Pervasive Matrix Dolomite  90

6.4.2 Pore-Lining Dolomite Cement....................................  91

6.4.3 Dissolution-Seam Associated Dolomite.....................  92

6.4.4 Saddle Dolomite Cement.............................................  93

6.5 Dolomite Recrystallisation Features.........................................  93

6.6 Well Comparison of Diagenetic Alteration.............................. 94

6.7 Dolomitisation Models................................................................. 97

6.7.1 Sabkha Model...............................................................  98

6.7.2 Seepage-Reflux Models................................................ 99

6.7.3 Seawater/Tidal Pumping (Kahout) Models..............  100

6.7.4 Mixing Zone Models...................................................... 102

6.7.5 Burial/Hydrothermal Models......................................  103

6.8 A Dolomitisation Model for the Upper Stettler Formation

and Crossfield Member..........................................................  105

6.9 Anhydrite Formation........................................................................  108

6.10 Sulphide Mineralisation and Thermochemical Sulphate

Reduction (TSR)...................................................................... 108

6.11 Effect of Diagenesis and Dolomitisation on Porosity and

Permeability.............................................................................  112

6.12 Diagenetic Model for Upper Stettler Formation and

Crossfield Member................................................................. 115

CHAPTER VII: CONCLUSIONS...............................................................  120

REFERENCES.................................................................................................  122

APPENDIX I: Well Locations........................................................................ 133

APPENDIX II: Abbreviations & Symbols.................................................  134

APPENDIX III: Graphic Core Logs.............................................................  135

APPENDIX IV: Oxygen and Carbon Isotope Results............................... 146

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA AUCTORIS

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

Table

5.1 Table o f sulphur (534S) results

5.2 Table o f strontium (87Sr) results

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure

1.1 Map o f Alberta and study area 2

1.2 Location o f well #1 (Giroux Lake) 6

1.3 Map o f well locations 2 to 11 7

2.1 Stratigraphy of the Upper Stettler Formation and Crossfield Member 11

3.1 Depositional Model for the Upper Stettler Formation and Crossfield Member 30

5.1 Carbon and oxygen stable isotope compositions for calcite phases 75

5.2 Carbon and oxygen stable isotope compositions for dolomite phases 77

5.3 Plot o f sulphur (8 3 4 S) values with seawater curve 81

5.4 Plot o f strontium (8 7Sr/8 6Sr) values with seawater curve 83

6.1 Paragenetic sequence o f diagenetic events in study area 85

6.2 518Owater (SMOW) versus Temperature °C for Calcite and Dolomite Phases 8 8

6.3 Plot o f strontium (8 7Sr/8 6Sr) versus oxygen (8180 )  95

6.4 Comparison of isotopic compositions o f dolomites between wells 2-7 and 8-11 96

6.5 Diagenetic Model 118

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF PLATES
Plates

1 Lithofacies 20

2 Lithofacies 22

3 Lithofacies 26

4 Micritisation and neomorphism 34

5 Mechanical and chemical compaction 38

6 Core photographs o f evaporites 42

7 Photomicrographs o f evaporites 44

8 Calcite cements 47

9 Pervasive matrix dolomite 52

10 Dolomite phases 55

11 Dissolution and fracturing 59

12 Sulphide mineralization and asphaltenes 62

13 Other fabrics and minerals 64

14 Porosity 67

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER I

INTRODUCTION

1.1 Purpose of Study

The dolomitisation o f Devonian sequences in the Western Canada Sedimentary Basin 

(WCSB) has been examined in numerous studies in recent years (Machel and Mountjoy, 

1987; Mountjoy et al., 1991; Mountjoy et al., 1992; Shields and Brady, 1995; Lonnee and 

Al-Aasm, 2000; Al-Aasm and Clarke, 2004; among others). Dolomitisation is important for 

the development o f  hydrocarbon reservoirs because it can enhance or destroy porosity and 

permeability characteristics (Machel, 2004). In spite o f the importance o f dolomitisation on 

reservoir development, petrographic and geochemical evidence for many o f these dolostone 

reservoirs in the WCSB remains scarce. The Upper Stettler Formation and Crossfield 

Member are extensively dolomitised in south-central Alberta, and with the aid o f 

petrographic and isotopic techniques, the mechanisms of dolomitisation and the impact on 

reservoir development will be examined.

The Crossfield Member is a porous, biostromal unit within the Stettler Formation of 

the Upper Devonian Wabamun Group in southern Alberta. This oil and gas-producing 

Crossfield unit extends in a north-south trending belt from the Olds/Garrington area in the 

north to the Okotoks region in the south in close proximity to the Fifth Principal Meridian 

(Fig 1.1). The entire Crossfield trend has been significantly affected by diagenetic alteration. 

The precursor fabrics are further altered within each individual facies through the extensive 

dolomitisation o f the unit.

The main purpose o f this study is to characterise dolomitisation processes and 

determine dolomite genesis in the Crossfield Member and overlying Upper Stettler 

Formation. Core samples were examined from a total o f 11 wells. Seven o f these wells were 

selected to encompass the entire Crossfield trend from the north to the south (townships 

ranging from 21 through 32) and four wells were chosen to examine Crossfield-equivalent 

strata west o f  the main Crossfield trend. The four Crossfield-equivalent wells are in the 

Moose Mountain, Benjamin (Ghost), Burnt Timber, and Panther River areas. These core 

samples were examined to determine any lateral alteration away from the Crossfield trend 

and to compare the extent and types o f dolomitisation farther west towards the Jura Creek 

outcrop (Palliser Formation) in the southern Rocky Mountain Foothills. In order to study 

original precursor fabrics prior to fabric-destructive dolomitisation within the Crossfield

1
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Member, core samples were also examined from Crossfield-equivalent strata in one well NW 

o f the main study area in the Giroux Lake region (township 6 6 ) that is not pervasively 

dolomitised.

In the context o f accomplishing the overall purpose o f understanding dolomite genesis 

within the Crossfield Member and Upper Stettler Formation, the primary objectives o f this 

study are:

(1) To test the current proposed dolomitisation models in the Crossfield Member through an 

examination o f dolomites within the Crossfield trend and in the Crossfield-equivalent 

wells. This will be accomplished by an examination o f the distribution and occurrence of 

secondary dolomites using petrologic methods and stable and radiogenic isotope 

geochemistry to determine the origin and isotopic signature o f dolomitising fluids, and 

to explain other diagenetic events within the study areas;

(2) To examine the different porosity types within the study area and determine the effects 

o f dolomitisation and other diagenetic events on the creation, preservation and/or 

destruction o f  porosity within the Crossfield Member;

(3) To determine the timing o f diagenetic events and cementation and develop a paragenetic 

sequence for the Crossfield Member;

(4) To identify the different lithofacies within the Crossfield trend and examine the timing 

and relationship o f the evaporite phases within the Crossfield Member and the overlying 

Upper Stettler Formation.

1.2 Previous Studies

Focus on the Stettler Formation and Crossfield Member was most significant in the 

1960’s in response to the discovery o f gas-producing pools along the Crossfield trend. Gas 

production in the Crossfield area began in the late 1950’s, and by the late 1990’s, the 

Crossfield was regarded as mature. After 1995, the discovery o f gas along the eastern margin 

o f the Crossfield trend resulted in increased interest in the area (Martindale et al., 2004).

There are few published papers directly related to the Crossfield Member and much o f 

the early focus in the 1950’s and 1960’s is on the lithofacies and overall geologic history of 

the Stettler area in Alberta with some research also on faunal succession (Raasch, 1956).

Most early work on the Stettler area was by Andrichuk and Wonfor (1954, 1956) and 

Andrichuk (1958), and this research was the basis for more detailed work by Andrichuk in 

1960. Andrichuk (1960) published a paper that presented a thorough description o f the 

different facies in the Wabamun Group in Alberta and the different dolomite types within the

3
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Wabamun Group. Furthermore, this was the first paper to suggest a reflux dolomitisation 

mechanism for the formation o f dolomite within the Wabamun Group o f  Alberta.

By the late 1960’s, more detailed work was conducted on sedimentary features within 

facies from the Stettler area. Descriptions o f evaporite deposits within the Crossfield 

Member and Stettler Formation were published by Workman and Metherell (1969),

Metherell and Workman (1969) and Fuller and Porter (1969). Workman and Metherell 

(1969) also described the lithology o f  the Upper and Lower Stettler Formation surrounding 

the Crossfield Member and attributed the main source of gas in the Crossfield East to the 

Labechiid stromatoporoid and gastropod mud bank associated with the Crossfield Member.

In the 1980’s, the Crossfield Member was examined by Eliuk (1984) who focussed 

on thermochemical sulphate reduction (TSR) and other diagenetic features observed in facies 

from core o f the Limestone/Burnt Timber area (Twp 32,west of the Crossfield trend). Eliuk 

and Hunter (1987) also studied facies from the Limestone/Burnt Timber wells and based on 

their observations, they described the Crossfield Member as a relatively porous dolomite 

interval surrounded by anhydrites and other evaporites o f the Stettler Formation (or 

equivalent). The study by Eliuk and Hunter (1987) further discussed the Crossfield Member 

as a reservoir for hydrogen sulphide-rich gas. Halbertsma and Meijer-Drees (1987) briefly 

discussed the Crossfield gas field trend in the Southern Alberta plains where the Crossfield 

Member forms a stratigraphic trap as it wedges into the Stettler Formation.

In a project for Pan Canadian Petroleum Ltd., Packard and Mcnab (1994) examined 

the facies, porosity, depositional and diagenetic fabrics o f the Crossfield and Stettler 

evaporites and dolomites in order to evaluate reservoir quality and relationships between 

dolomite and anhydrite. This study was part o f a project to examine the reservoir potential of 

the eastern margin o f the Garrington-Okotoks Wabamun gas trend. In a similar study, 

Erickson et al. (1994) examined the regional Wabamun Group in the Alberta Foothills 

subsurface and this project included studies o f the stratigraphy, facies, reservoir potential, 

porosity and fractures, structural style, and other features o f the Crossfield trend. Limited 

geochemistry o f the Foothills region was also used in this project.

More recent work on the Crossfield Member and Crossfield-equivalent strata was 

conducted by Yang et al. (2001) who examined thermochemical sulphate reduction (TSR) 

features using fluid inclusion and stable isotope techniques on Burnt Timber and Crossfield 

East gas fields. The most recent published work is by Martindale et al. (2004) that described 

the different depositional facies and divided these lithofacies into 18 facies types within the 

Crossfield Member and Upper Stettler Formation. Dolomites and other diagenetic features

4
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were also examined in this study and a few geochemical analyses were conducted on finely 

crystalline dolomites for trace elements, oxygen and carbon isotopes, and radiogenic 

strontium isotopes. Based on petrographic evidence and this limited geochemistry, the 

authors suggested that a reflux mechanism was responsible for pervasive dolomitisation 

within the Crossfield Member.

Overall, with limited published work on the Crossfield Member, there have been no 

extensive studies using isotope geochemistry on a more regional scale along the Crossfield 

trend and farther west on Crossfield-equivalent strata. There has also been limited focus on 

the geochemistry and significance o f the evaporites in the Crossfield Member, and more 

significantly, within the Upper Stettler Formation.

There is only one B.Sc. thesis available that examined the Crossfield Member in 

detail (Ostrom, 1985). Ostrom (1985) described the lithofacies and porosity o f the Crossfield 

Member in the Olds area o f the Crossfield trend in southern Alberta. In an MSc thesis by 

Halim-Dihardja (1986), six samples o f sabkha dolomite were examined for oxygen and 

carbon isotopes from a well in the Okotoks field at the southern end o f the Crossfield trend. 

The focus o f this thesis however was not specifically on the Crossfield but examined the 

lithofacies within the Wabamun Group on a broader scale. Two other theses are important to 

this study but do not directly pertain to the Crossfield Member: an MSc. thesis by Kaylor 

(1988) that described the lithofacies and other diagenetic features o f the Crossfield- 

equivalent Palliser Formation in the southern Foothills west o f the Crossfield trend and 

secondly, a Ph.D by Wenbin (1998). Wenbin (1998) examined the diagenesis and 

sedimentology o f  several Upper Devonian formations, including the Wabamun Stettler 

Formation. The study area o f the Wenbin (1998) thesis is southeast o f the Crossfield trend 

and gave a detailed description o f evaporites and the geochemistry o f pervasive dolomites 

from this particular area o f the Stettler Formation. Wenbin (1998) interpreted the pervasive 

dolomites as forming from downward refluxing brines.

1.3 Sampling Methods and Procedures

A total o f 11 wells were selected for this research (Figs 1.2 & 1.3). The chosen cores 

were from wells north and west o f the Crossfield trend and wells along the entire extent o f 

the Crossfield trend. In January and May 2005, 11 wells were described and photographed at 

the Energy and Utilities Board (EUB) core research facility in Calgary, Alberta. In 

conjunction with descriptions and photographs, 173 core samples were collected, with 120 

samples from the Crossfield Member and Upper Stettler Formation within the

5
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Moose Mountain, Burnt Timber, Benjamin Ghost and Burnt
Timber areas*
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Crossfield trend and 53 samples from Crossfield-equivalent strata. Core was sampled for 

obvious diagenetic features and for specific lithofacies that contained suitable features for 

geochemical analysis such as primary and secondary cements, clean muds in fenestral and 

laminated mudstones, and crinoidal grains from fossiliferous samples. The samples were also 

taken from the entire cored intervals to evaluate any depositional or diagenetic changes with 

depth.

O f the 173 samples collected, thin sections were made from 127 core samples. After a 

preliminary examination o f the thin sections under a standard petrographic microscope, 

cathodoluminescence microscopy (CL) was conducted using a Technosyn™ cold 

cathodoluminescence stage with a 12-18 kV beam and a current intensity o f 400-430 pA. 

Cathodoluminescence microscopy was used to determine zonation in cements and changes in 

textures and fabrics not visible with a standard petrographic microscope. The thin sections 

were then stained with a mixture o f Alizarin Red-S and potassium ferricyanide following the 

procedure outlined by Dickson (1966). Staining with this method distinguishes between 

carbonates according to their composition, with distinctions between ferroan and non-ferroan 

calcite and dolomite. With staining, ferroan dolomite stains blue and non-ferroan dolomite 

remains unstained, whereas ferroan calcite stains purple and non-ferroan calcite stains red to 

pink. Finally, the thin sections were examined under a standard petrographic microscope 

with a Nikon EPI Fluorescence™ stage attachment for the description o f lithofacies, 

diagenetic features and cements, porosity types, and overall textural relationships. The Nikon 

EPI Fluorescence™ attachment was also used for distinguishing textural characteristics and 

for analysing features in cements such as zonation and possible recrystallisation fabrics.

Powdered samples o f dolomite, calcite and anhydrite were selected for stable and 

radiogenic isotope analysis and extracted from core samples using a microscope mounted 

drill assembly. A total o f 82 samples of dolomite and calcite were chosen for oxygen and 

carbon isotope extractions using the chemical separation method o f Al-Aasm et al. (1990). 

The powdered samples were reacted in vacuo with 100% pure phosphoric acid (H3PO4 ) for a 

minimum o f four hours at 50°C for dolomite extraction and 25°C for calcite. The CO2 gas 

that was produced during the reaction was then analysed for isotopic ratios on a Thermo 

Finnigan DeltaPlus isotope ratio mass spectrometer (IRMS) at the University o f Windsor. 

Carbon and oxygen isotope values are given in per mil (%o) relative to the VPDB (Vienna 

PeeDee Belemnite) standard. The overall precision for the analysis was 0.03 %o for 513C and 

0.07 %o for S180 .
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For sulphur isotope (534S) extractions, 15 powdered samples of primary and 

diagenetic anhydrite and two samples o f native sulphur were selected for analysis. The 

extractions were conducted at the University o f Ottawa using a VarioEL III elemental 

analyser and flash combusted at 1800°C using helium as a carrier gas. The SO2 gas produced 

was then analysed on a Thermo Finnigan DeltaPlus isotope ratio mass spectrometer (IRMS). 

The sulphur isotope values are reported in per mil (%o) relative to the CDT (Canyon Diablo 

Troilite) standard and have an overall precision of ±0.2 %o CDT.

A total o f 17 powdered samples o f dolomite, calcite, and anhydrite were selected for 

strontium (8 7 Sr/8 6Sr) isotope analysis. Strontium isotopic ratios were analysed in a static 

multi-collector mode with Re filaments with standard references o f NBS and ocean water. 

The strontium isotope values were normalised to 8 7 Sr/86Sr = 8.375209 with the mean 

standard error for NBS-987 o f 0.00003.
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Chapter II 

Regional Framework

2.1 The Wabamun Group in the Western Canada Sedimentary Basin 

(WCSB)

Sedimentation in the Famennian Wabamun Group o f the Western Canada 

Sedimentary Basin is considered to represent an overall regressive sequence with several 

important episodes o f transgression (Halbertsma, 1994). The Wabamun cycle was initiated 

by an increase in the rate o f relative sea-level rise that resulted in marine flooding across 

most o f Alberta. As part o f the Kaskaskia sequence explaining transgressive/regressive 

patterns, two major marine transgressions occurred during the Famennian (Richards, 1989; 

Price, 1994). The first transgression resulted in the development o f the 

stromatoporoid/gastropod carbonates o f the Crossfield Member o f the Stettler Formation in 

the southern part o f Alberta. In central/northern Alberta, equivalent carbonates to the 

Crossfield Member were deposited as the Normandville sequence in the Peace River Arch 

area. The second major transgression resulted in the deposition o f open marine, fossiliferous 

limestones (Big Valley Formation) over much o f Alberta (Burrowes and Krause, 1987), 

which has been eroded north o f the Peace River Arch but is observable in the surface and 

subsurface o f central and southern Alberta (Halbertsma, 1994).

This first o f the major transgressions occurred after the high sedimentation and 

infilling associated with the deposition of the underlying Winterbum Group (Fig 2.1). The 

infilling o f the Western Canada Sedimentary Basin (WCSB) during the deposition o f the 

Winterbum Group, resulted in a fairly uniform topography with the exception o f the 

topographic high o f the Peace River Arch in the north o f Alberta (Stoakes, 1992). Partly as a 

result of a lack o f precursor topography, the Famennian Wabamun Group in the subsurface 

o f the southern Foothills o f Alberta comprises a series o f both evaporitic (in the south) and 

open shelf lithofacies that are deposited on a succession o f fairly monotonous carbonate 

ramps that gently dip and deepen westward and northward. The thickness o f the Wabamun 

Group ranges from approximately 150 m in southern Alberta to over 500 m in sections o f the 

Rocky Mountains o f Alberta (Andrichuk, 1960).

Strata o f the Wabamun Group generally consist o f relatively shallow marine 

bioclastic and peloidal limestones in southeastern sections o f Alberta and mud-rich, 

burrowed pelletal limestones to grainstones in northwestern Alberta (Burrowes and Krause,
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1987). The pelletal and peloidal packstones to wackestones o f Wabamun reservoirs in central 

and northern Alberta are pervasively dolomitised (Green and Mountjoy, 2005).

Pervasive dolostone intervals are also prevalent in the southern regions o f the Wabamun 

Group. Burrow mottling is another common feature observed in the Wabamun strata o f the 

Alberta Basin and in the Palliser equivalent strata o f the Rocky Mountain Foothills (Kaylor, 

1988; Kent, 1994).

2.2 Stratigraphy

The subsurface Wabamun Group in southern Alberta has been subdivided into two 

major units by Wonfor and Andrichuk (1956): the upper (more open marine) Big Valley 

Formation which consists o f argillaceous and fossiliferous limestones and shales (Johnston 

and Chatterton, 2001) and the lower (more evaporitic) Stettler Formation. The Stettler 

Formation was further classified by Andrichuk (1960) into four units which divided the 

formation into the evaporites and marine carbonates below the Crossfield Member from the 

evaporites above this member, all overlain by the Big Valley Formation, which in turn, is 

unconformably overlain by the Exshaw shale. This sharp unconformity between the units is 

indicated by a distinct signature on gamma ray logs that were conducted for a study by 

Geldsetzer and Meijer Drees in 1984.

2.2.1 Stettler Formation
The Stettler Formation in central/southern Alberta overlies the silty strata o f the 

Graminia Formation. Between the two formations is a gradational contact that resulted from 

a reworking o f the Graminia strata during the Wabamun transgression (Halbertsma, 1994). 

The shallow water carbonates o f the Stettler Formation interfinger with the Besa River shales 

farther eastward and represent a ramp-style setting (Moore, 1989a). In general, western 

portions o f the Stettler Formation consist o f predominantly open-marine limestone (Eliuk 

and Hunter, 1987) and grade into evaporite-dominated sediments farther southeastward, 

particularly anhydrites and gypsums, with halite deposits in southwestern Saskatchewan. The 

Stettler Formation in central/southern Alberta is divided into the Upper Stettler Formation 

and the Lower Stettler Formation, both o f which consist o f laminated and nodular anhydrites 

and anhydritic dolomudstones interpreted to be o f subaqueous hypersaline origin (Martindale 

et al., 2004).
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2.2.2 Crossfield Member

The Crossfield Member is a porous wedge-shaped unit within the Stettler Formation. 

In early research by Metherell and Workman (1969) the unit is described as a shallow shelf 

deposit between open marine sediments o f the Stettler Formation to the west and evaporitic, 

supratidal/intertidal sediments to the east. The unit was further divided into three zones that 

included an algal base underlying a stromatoporoid/gastropod bank, which is in turn, 

overlain by another algal bank. The Crossfield Member occurs in roughly a north-south 

trending belt that varies in thickness from 0 m to over 25 m thick from the Olds/Garrington 

region in central/north Alberta to the Okotoks in the south (Martindale et al., 2004). Along 

the eastern edges o f the unit, the thickness varies from 15-5 m and in the Acme, Gladys, and 

Irricana pools (Martindale et al. 2004). The western depositional edges contain the main 

producing pools (Crossfield East and Okotoks) and the thickness of the unit varies from 15 -  

25 m and consists o f  shallowing-upward cycles o f subtidal origin. The Crossfield Member is 

capped by laminated mudstones (similar to that o f the Stettler Formation surrounding the 

Crossfield Member) (Martindale et al., 2004). It has been determined that the sediments 

along the eastern edge are o f a different age than the sediments along the western margin, 

and this interval (termed the McDonald Member) is believed to represent a second major 

transgression o f marine waters during the deposition o f the Wabamun. The sediments 

deposited are similar to those o f the Crossfield Member, and are o f subtidal to peritidal in 

origin (Martindale et al., 2004).

2.2.3 Palliser Formation

The Palliser Formation that is exposed in the Alberta-British Columbia Front Ranges 

is the equivalent o f the subsurface Wabamun Group in south-central Alberta. Palliser 

Formation outcrop extends from northwestern Montana to northeastern British Columbia, 

and similar to the subsurface Wabamun Group, the unit thickens westward (Johnston and 

Chatterton, 2001). With the exception o f the Rocky Mountain Trench area (about 100 m 

thick), the thickness ranges from about 300 m in the Foothills and Front Ranges to over 600 

m in the western Front and Main Ranges o f the Rocky Mountains. The Palliser Formation is 

subdivided into two members: the basal Morro and the overlying Costigan. These units 

correspond to the Stettler Formation and the Big Valley Formation o f southern Alberta 

respectively (Halbertsma, 1994). Underlying the Morro carbonates is a major unconformity 

wherein the Morro carbonates overlie Famennian Sassenach sandstones in the southern
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Rocky Mountains and Frasnian Simla limestones in the more northern areas exposed in 

outcrop (Halbertsma, 1994).

2.3 Regional Structure of the Western Canada Sedimentary Basin (WCSB)
Along with the eastern Canadian Cordillera, the Western Canada Sedimentary Basin 

(WCSB) consists o f two major sedimentary basins, the Alberta Basin and the cratonic 

Williston Basin that are separated by the northeast-trending Bow Island Arch (a slight 

topographic high during the Late Devonian) (Wright et al., 1994).

At the end o f the deposition o f the Winterbum Group and prior to the deposition of 

the Famennian Wabamun Group, the WCSB throughout the Alberta Basin was infilled with 

sediments with relatively low relief (Stoakes, 1992). Significant tectonic features present in 

the Late Devonian during the deposition of the upper Kaskaskia sequence was the 

topographic high o f the Peace River Arch [although there is no evidence that it was 

tectonically active during the deposition o f the Stettler Formation (Halbertsma, 1994)], as 

well as the north-south trending Prophet Trough and the cratonic platform (Richards 1989).

The Peace River Arch was a prominent east-northeast trending topographic high 

through to the Late Devonian and a faulted basin known as the Peace River Embayment from 

the Mississippian to Permian (Wright et al., 1994). The Prophet Trough was named for the 

downwarped and downfaulted western margin o f North America during the Late Famennian 

and Early Toumaisian o f the Carboniferous (associated with the Antler Foreland Basin) with 

periods o f widespread block faulting and loading and subsidence associated with the Antler 

Orogeny (Richards, 1989).

Throughout most o f the Paleozoic, much o f the western margin o f the continental 

margin o f North America was a passive continental margin accumulating miogeoclinal 

sediments and although deformation occurred during orogenic events, the miogeocline fold 

and thrust belt did not develop until the Cordilleran orogeny beginning in the Jurassic. At the 

present time, the western boundary o f the WCSB consists o f exposed and deformed 

sediments o f the ancestral North American margin and the eastern limits o f the allochthonous 

terranes accreted to the North American margin (Wright et al., 1994). The Cordilleran 

Orogeny during the Jurassic through Early Tertiary resulted in the accretion o f oceanic-arc 

related crust to western Canada with associated imbrication, shortening, and metamorphism 

o f the pre-accretionary miogeoclinal wedge o f western Canada (Ross et al., 2005). Regional 

facies in the foreland basin east o f the orogen, including Upper Devonian strata, must
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therefore be considered in the context o f altered spatial distribution o f depositional and 

diagenetic facies. Due to crustal shortening and the structural juxtaposition o f once distant 

sediments or units, each thrust sheet must be palinspastically restored to its depositional 

position prior to episodes o f extension and compressive deformation (Erickson et al., 1994). 

As a result o f the structural complications associated with periods o f compression and 

extension, thickness trends for the Wabamun Group in the Alberta Basin are not projected 

into the disturbed belt, making it difficult to determine original thicknesses and depths 

(Halbertsma, 1994).
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Chapter III 

Sedimentology of the Upper Stettler Formation and Crossfield Member 

3.1 Introduction
The sedimentology o f the Crossfield Member and Upper Stettler Formation will be 

discussed using the concept o f facies analysis. Facies are based on similarities in lithology 

and depositional structures within a rock unit and how these characteristic features are 

spatially altered both vertically and laterally within a succession (Walker, 1992). The 

relationship both between individual facies and within successions o f facies will be used in 

the development o f a depositional model for the Upper Stettler Formation and Crossfield 

Member.

3.2 Facies

The definition o f a facies is that o f a body or packet o f a sedimentary rock with 

distinctive features from those o f other facies (Tucker, 2001). Different features are used to 

separate units o f rocks into specific facies, and these include the basic lithology and colour of 

the unit, depositional textures and structures, grain sizes and fossil content and abundance 

(Tucker and Wright, 1990). Facies within the Upper Stettler Formation and Crossfield 

Member were determined both through the examination o f core and detailed petrographic 

analysis o f thin sections. The facies within the study area are for the most part, interpreted to 

be dolomitised limestones and in rare cases, limestones. As a result o f  the pervasive 

dolomitisation o f  the area, the precursor fabrics o f some o f the facies have been obliterated, 

making a determination o f the original depositional fabrics difficult to impossible. In these 

cases, the facies that have been significantly affected by non-mimetic dolomite replacement 

have been described as dolostones.

The limestone classification scheme used in the description o f the limestone facies is 

that o f Dunham (1962) and includes the subsequent modified versions o f Embry and Klovan 

(1971) and Wright (1992). Based on this classification scheme, a number o f facies have 

been identified and described for both the Upper Stettler Formation and the Crossfield 

Member. These facies include: mudstones, peloidal mudstone-wackestones, peloidal 

(fenestral) grainstones-packstones, bioclastic floatstone-rudstones, and stromatoporoid
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floatstones. These major facies are further subdivided into other subfacies that will be 

discussed in the following sections.

3.2.1 Mudstones/Wackestones

Hand samples of mudstones vary in colour from a light to medium grey and mottled 

dark brown to tan. The mudstones have variable depositional fabrics including nodular, 

laminar, massive, burrowed, and peloidal fabrics. Nodular (anhydritic) mudstones are 

prevalent throughout the Upper Stettler sediments in association with both anhydrite and 

gypsum but are less significant within the Crossfield sediments. I f  laminations are present, 

they are typically thin, wavy and associated with evaporites or algal growth. Bedding is on 

the scale of tens o f centimetres to rare millimetre-scale beds. Fossils are not prevalent in the 

majority o f the laminated mudstone subfacies with the exception o f  microbial mats and 

algae. In burrowed and peloidal mudstones, fossils in decreasing order include calcispheres, 

ostracodes, brachiopods, stromatoporoids, and gastropods.

There are several types o f porosity identified in the mudstones facies, including 

interparticle, intercrystalline, moldic, fracture, pinpoint, and most dominantly, fenestral 

porosity. O f these types, primary porosities include growth framework in areas o f abundant 

stromatoporoid growth, fenestral (and birdseye structures) in mudstones with microbial 

growth, intraparticle (intraskeletal) porosity in bioclastic mudstones, interparticle porosity in 

peloidal fabrics and finally, porosity as a result o f burrowing episodes. Both the primary and 

secondary porosity types (with the exception of intercrystalline porosities associated with 

pervasive dolomitisation and rare vuggy porosity resulting from leaching events) have been 

occluded by episodes of cementation, and as a result, the mudstones appear relatively tight 

and non-porous. In particular, both the laminated and more massive (fissile) mudstones are 

the most non-porous o f the mudstones, with the exception of extensively fractured areas 

within the massive mudstone subfacies.

3.2.1.1 Mudstone/Wackestone Facies

1) Nodular mudstones consist of two types. The first type (already mentioned) includes 

the nodular fabric created through the development o f distinct nodules (with crenulated 

edges) o f  anhydrite in a mudstone matrix (Plate 1-4, 1-5). This type o f mudstone is 

dominant in the Upper Stettler Formation units and occurs in wells 1 through 11.
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Nodules are generally ivory to grey in colour, relatively translucent, and are mostly 

composed o f anhydrite cement (and in some cases, minor diagenetic gypsum). The 

mudstone matrix surrounding nodules is pale grey or light brown to tan. The presence of 

soft sediment deformation (enterolithic folding) o f surrounding muds due to the 

displacive nature o f  the anhydrite crystallisation indicates that the development of 

nodules occurred relatively early in the depositional process (pre-lithification). This 

primary nodular anhydrite is a significant facies in the study area and occurs in 

association with both massive and laminated sediments. The nodular fabrics in most of 

the more massive mudstones is however primarily o f a secondary nature and tends to 

occur as a void-filling cement (Plate 1-3), whereas when in association with laminated 

mudstones, it is o f a primary nature.The second type o f nodular mudstone is the 

development o f nodules as a result o f  chemical compaction and the development o f 

stylobrecciated fabrics. This type o f mudstone is not as abundant as the nodular 

(anhydritic) mudstone but is often observed in wells 3 and 5 in the Crossfield trend and 

is significantly more abundant in wells 9 and 10. Unoccluded porosity in the primary 

nodular (anhydritic) mudstones is rare and occurs as a result o f  diagenetic processes in 

the form o f fractures. Minor vuggy porosity occurs in association with vug-filling 

cements in the more massive nodular mudstones with secondary cement occlusion. 

Within the second type o f nodular mudstone associated with chemical compaction 

features porosity is minor, with secondary porosity identified in association with 

diagenesis. The most significant porosity is vuggy porosity that occurs as small vugs 

along stylolites created by dissolution and leaching episodes and subsequently, partly- 

occluded with secondary cements. In the sediments surrounding nodules there is also 

fracture, interparticle, and intercrystalline porosity in pervasive dolomite fabrics.

2) Laminated (& algal) mudstone occurs mostly in the Upper Stettler Formation and to a 

lesser degree, in Crossfield Member units (Plate 2-1,2-2). The laminated mudstones are 

grey to tan in colour. Laminations are generally thin (millimetre scale) and are relatively 

planar to slightly undulose in appearance. As previously mentioned, laminated 

mudstones are often identified in association with nodular (anhydritic) mudstones. With 

the exception o f algal growths and the development o f microbial mats, there are no other 

types o f  bioclastic material identified in the laminated mudstones. The growth of 

microbial mats in laminated mudstones is relatively minor, occurring as thin laminations 

within laminated muds and evaporites. The growth o f algae is also apparent in massive
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and peloidal mudstones and forms a thrombolitic pattern associated with shallow marine 

waters. In terms o f  primary porosity, the laminated mudstones are tight and non-porous 

with rare fenestral porosity in the vicinity o f microbial mat growth. In this facies, 

secondary porosity includes fracture and intercrystalline porosity. Minor fracture 

porosity occurs in cross-cutting fractures through laminated sediments, and is partly 

occluded with secondary cements. Intercrystalline porosity is the most abundant 

secondary porosity and has developed between dolomite crystals in pervasive dolomite 

fabrics and between secondary diagenetic gypsum crystals in association with primary 

laminated anhydrites. Since the precursor fabric is tightly-woven, the pervasive dolomite 

tends to mimic this texture, explaining the minor occurrence o f this porosity, such that 

intercrystalline porosity is low in this facies, and is significantly more apparent in fabrics 

with coarser precursor grain sizes.

3) Peloidal bioclastic mudstone/wackestone (Plate 2-3) is most abundant in wells 1, 8,

10 and 11. Since well 1 has not been pervasively dolomitised, the precursor fabric is 

relatively intact and identification o f bioclasts is uncomplicated. This facies is 

destructively dolomitised however in wells 8, 10, and 11 where pervasive dolomitisation 

has occurred, and as a result, were identified using a white card technique (Folk, 1987). 

Pervasive dolomitisation resulted in the destruction o f some features within these wells, 

and with the exception o f well 11 where most o f the precursor fabric has been 

diagenetically altered, the dolomitisation mimics some of the original textures and 

bioclasts (ghost fossils), allowing for identification o f the facies. Peloidal bioclastic 

mudstone/wackestones range in colour from light brown to dark grey. Peloids in this 

facies are generally rounded, suggestive o f a fecal or microbial origin (Flugel, 2004). To 

a lesser degree there are also mud peloids that have developed from the reworking of 

sediments that are larger (up to 1mm) irregularly shaped grains that are deposited as 

poorly sorted sediments. Mud peloids in this facies and in the peloidal 

grainstone/packstone facies are commonly identified with intraclastic material deposited 

in an intertidal setting. The presence o f bioclasts within this facies is variable, ranging 

from a common to rare occurrence. Fossils (in order o f abundance) include: calcispheres, 

ostracodes, algae, echinoderms (crinoids), brachiopods, gastropods, rare bivalves, and 

unidentified skeletal fragments. Also present within this facies are mottled burrowed 

sections that have been selectively dolomitised. Primary porosity includes interparticle 

porosity within the peloidal fabric and rare fenestral porosity occluded with calcite
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PLATE 1: Lithofacies

(1) Core photograph of burrowed and nodular mudstone: Well location 10- 
13-26-8W5 (3582.4m). Red arrow indicating up direction. Black arrow 
pointing to burrow structures.

(2) Photomicrograph o f burrowed fabric with Epi-Fluorescence: Well 
location 5-22-32-1W5 (2595.6m) Scale = 100pm.

(3) Core photograph of massive mudstone with secondary anhydrite: Well 
location 5-22-32-1W5 (2589.1m). Red arrow indicating up direction. 

(A) for anhydrite in nodules.
(4) Core photograph o f nodular and laminated mudstone: Well location 10- 

18-21-28W4 (2616.4m). Red arrow indicating up direction. (A) for 
anhydrite in nodules

(5) Photomicrograph of anhydrite in nodular mudstone (xpl): Well location 
13-12-29-27W4 (2254.5m) Scale = 100pm. (A) for anhydrite in 
nodules.

(6) Core photograph of burrowed peloidal mudstone: Well location 10-5- 
23-6W5 (2583.7m). Red arrow indicating up direction.
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Plate 1 Lithofacies
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PLATE 2: Lithofacies
(1) Core photograph o f algal mudstone: Well location 5-22-32-1W5 (2574.4m). Red 

arrow indicates up direction.
(2) Core photograph o f laminated mudstone: Well location 13-12-29-27W (2247.2m) 

Red arrow indicates up direction. Black arrows indicating laminae o f anhydrite.
(3) Photomicrograph o f fenestral bioclastic mudstone (ppl) (scale = 100pm): Well 

location 10-9-66-21W5 (2400.5m). Yellow arrow indicating calcite-occluded 
fenestrae.

(4) Core photograph o f fenestral peloidal grainstone: Well location 10-23-30-28W4 
(2397.3m). Red arrow indicates up direction. Black arrow showing fenestrae. Small 
Round fossils are crinoid fragments.

(5) Photomicrograph o f peloidal grainstone fabric (ppl) (scale = 100pm): W ell 
location 10-9-66-21W5 (2408.5m ). Sparry calcite betw een dom inantly  round 
peloids. Peloids indicated by yellow  arrows.

(6) Photom icrograph o f  peloidal fabric w ith intraclasts in packstone m atrix  w ith 
F luorescence. Peloids indicated by yellow  arrows.
(EpiFl) (scale = 100pm): W ell location 10-21-32-2W 5 (2750.4m )
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Plate 2 Lithofacies
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cements. Secondary porosity occurs mostly as intercrystalline porosity between pervasive 

dolomite crystals and minor amounts o f vuggy and moldic porosity associated with 

dissolution that are for the most part occluded with secondary cements.

4) Fenestral mudstone is massive and non-skeletal. Fenestrae are irregular to laminoid 

and abundant to minor in occurrence. This facies is pervasively dolomitised, grey and tan 

through medium brown in colour and occurs in wells 2 through 7. With the exception of 

well 2, the fenestrae in wells 3 through 7 are 70-80% occlusion-free o f secondary 

cements. In well 2, the larger (> 1.25 mm) fenestrae are cemented with secondary 

anhydrite/gypsum and calcite cements and the fabric in sections appears weakly 

burrowed. Fenestral porosity in the most abundant porosity type in this facies. Secondary 

porosity types are mainly interparticle (between dolomite crystals o f pervasive fabric), 

fracture and rare vuggy porosity. Vuggy porosity occurs mainly in well 3, and is 

associated with dissolution seams.

5) Burrowed mudstone is massive to peloidal (Plate 1-1, 1-2, 1-6) and is commonly 

mottled medium brown through greenish - tan in colour. As a separate facies, massive 

burrowed mudstones are a minor occurrence in wells 2-7 and occur to a slightly greater 

degree in wells 8-11. Mottled (burrowed) fabrics are also apparent to varying degrees in 

all o f the peloidal and bioclastic mudstone facies. Dolomitisation events have contributed 

to the mottled appearance o f the bioturbated fabric through the creation o f a lighter 

colour (greenish-tan) replacement o f burrows in comparison to the surrounding 

mudstone matrix. The mottled colour may be partly related to the finer grain-size fill of 

the burrowed areas in comparison to the surrounding micrite that resulted in the selective 

dolomitisation o f burrow fills. Discrete burrows in the more massive and peloidal 

(bioclastic) grainstone/packstones have been interpreted to be from the Thallasinoides 

(Erickson et al, 1994) and Paleophycus (Packard and McNab, 1994). Besides 

dolomitised primary burrow porosity, other porosities are secondary and include: vuggy, 

fracture, and intercrystalline (between dolomite crystals o f pervasive fabric).

3.2.2 Packstone/Grainstones

The only units classified as a packstone/grainstone are peloidal (fenestral) 

packstone/grainstones (Plate 2-4, 2-5, 2-6). This facies is one of the most abundant facies 

within the Upper Stettler Formation and Crossfield Member and is identified in all the wells 

1 through 11. The amount o f peloidal material within the facies is variable ranging from
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<10% to > 50% and some of the units within this classification contain minor bioclastic 

material. Fenestral porosity is also variable, ranging from weakly fenestral to moderately 

fenestral.

3.2.2.1 Packstone/Grainstone Facies
Peloidal (fenestral) grainstone/packstone is dominantly pale brown (tan) through light 

to dark grey in colour. Peloids are mainly fecal pellets (round and rod), mud peloids (in 

association with intraclasts) and to a rarer extent, o f clotted microbial origin. The complete 

micritisation o f  fossil fragments has also contributed to the development o f the peloidal 

fabric. Fenestrae are variable in occurrence throughout this facies ranging from <10% to 60- 

70% o f the overall fabric. The fenestrae are irregular shaped and with the exception o f wells 

5-7, are mostly occluded with secondary calcite and anhydrite cements. In units with 

bioclasts (wells 1, 2 and 8), the order o f abundance for fossils is: echinoderms (crinoids), 

brachiopods, calcispheres, and rare bivalves. Porosity in this facies includes fenestral and 

interparticle (within peloidal matrix) primary porosities, and vuggy, fracture, intercrystalline, 

and moldic secondary porosities. Vuggy porosity is the most abundant and represents 70% of 

the secondary porosity in this facies. Vugs are typically occluded with calcite cements and to 

a lesser degree, anhydrite and dolomite. Microffactures cross-cut units and are typically also 

occluded with calcite cements.

3.2.3 Floatstone/Rudstones

Two types o f facies are identified as floatstone/rudstones: stromatoporoid floatstones 

and bioclastic floatstone/rudstones (Plate 3: photos 1- 6). Floatstone/rudstones vary in colour 

from dark to medium brown through tan in hand sample. Fossils include (in order o f 

abundance): Stromatoporoids (tabular and Labechiid), echinoderms (crinoids), brachiopods, 

ostracodes, bivalves, and rare gastropods. Porosities in the two floatstone/rudstone facies 

include growth framework, pin-point, vuggy, fracture, intercrystalline, intraparticle, and 

moldic porosity. Identified within both these facies are sections o f asphaltene-stained 

intercrystalline porosity.
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PLATE 3: Lithofacies
(1) Core photograph o f stromatoporoid (Labechiid') floatstone in mudstone matrix: Well 

location 13-12-29-27W4 (2258.7m). Red arrow indicates up direction. Black arrow 
indicates stromatoporoid framework. (A) = Anhydrite.

(2) Core photograph o f bioclastic rudstone: Well location 10-18-21-28W4 (2639.5m). 
Red arrow indicates up direction. Bioclasts indicated by yellow arrows.

(3) Core photograph o f  bioclastic floatstone: Well location 10-21-32-2W5 (2756.3m). 
Red arrow indicates up direction.

(4) Photomicrograph of stromatoporoid in mudstone/wackestone matrix with 
fluorescence (EpiFl) (scale = 100pm): Well location 10-9-66-21W5 (2403.2m). 
Black arrows indicate stromatoporoid framework. (C) = blocky calcite cement.

(5) Photomicrograph o f bioclastic rudstone with crinoid spine in centre (Cr) (xpl) 
(scale = 100pm): Well location 5-19-30-10W5 (2606.0m)

(6) Photomicrograph o f crinoidal floatstone (ppl) (scale = 200pm): Well location 
11-23-25-29W4 (2670.6m). (Cr) = Crinoid.
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Plate 3 Lithofacies
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3.2.3.1 Floatstone/Rudstone Facies
1) Stromatoporoid floatstones are most significant in wells 1, 2, 9 and 10. 

Stromatoporoids form a bindstone structure in a mudstone matrix. Colour in hand 

samples range from medium to dark brown and tan. Along with the stromatoporoid 

framework o f  tabular and irregular (Labechiid) stromatoporoids, these floatstones 

typically also contain minor bioclasts o f echinoderm (crinoids) and rare bivalves. Other 

identifiable features are intraclasts within the mudstone matrix. Porosity is this facies 

includes growth framework and pin-point (with calcite cement between stromatoporoid 

fabric), intercrystalline in pervasive dolomite fabric, vuggy, and fracture porosity. Large 

(mm-scale) vugs are partly occluded with blocky calcite cements and smaller vugs are up 

to 70% occlusion-free. Microfractures are also occluded with secondary calcite and 

dolomite cements.

2) Bioclastic floatstone/rudstone is identified in wells 1-4 and 8-10. Hand samples are 

grey and dark brown to tan in colour. This facies contains both peloidal (fecal pellets) 

and intraclastic grains surrounded by calcite spar cements. Within larger (>lm m) 

intraclasts are fragments o f bioclasts and peloids. There is a diverse range o f bioclasts 

identified including (in order o f abundance): echinoderms (crinoids), brachiopods, 

bivalves, tabular and irregular stromatoporoids, ostracodes, foraminifera, gastropods, and 

rare coral. Also present in this facies are thrombolitic stromatolites and minor burrow 

structures. Primary porosity types are growth framework, intraparticle, and minor burrow 

porosity. Growth framework and intraparticle porosities are occluded to partly-occluded 

with secondary cements o f calcite and minor dolomite. Burrow sediments are replaced 

with matrix pervasive dolomite. Secondary porosities include intercrystalline (in 

pervasive dolomite matrix) and vuggy porosity, and minor fracture and moldic porosity. 

Subvertical microfractures are mostly occlusion-free or occluded with calcite cements. 

Dissolution-seam associated vuggy porosity is partly-occluded with blocky calcite 

cements. Asphaltene-staining is present in interparticle porosity and along small vugs 

throughout the facies (Erickson et al., 1994).
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3.2.4 Dolostones
As all facies in wells 2-11 have been pervasively dolomitised, certain units have 

been classified as dolostones. This dolostone facies includes all o f the units that have an 

unidentified precursor fabric due to the destruction o f the original fabric during pervasive 

dolomitisation episodes. Classified within this facies are also units that have some visible 

components (such as ghost fossils) that are identifiable but the entire fabric cannot be 

classified into a specific facies. Dolostones are most abundant in wells 8-11. Units within 

these wells appear to be more affected by diagenetic alteration and the effects o f burial than 

wells 2-7 in the Crossfield trend. This facies is predominantly light to dark grey and light 

brown to tan in colour. In terms o f porosity, the most abundant porosity types are secondary 

porosities o f fracture and vuggy porosity with minor amounts o f breccia porosity. The most 

abundant fracture porosity is identified in dolostone facies from wells 8-11. Cross-cutting, 

subvertical fractures (calcite veins) are partly filled with calcite and to a minor degree, 

dolomite cements. Vugs are occluded with secondary cements of calcite, saddle dolomite, 

and anhydrite.

3.3 Depositional Model

Shallow marine carbonates deposited in the Alberta Basin are generally o f two major 

geologic settings (Machel and Hunter, 1994); first, a shallow shelf with a shelf margin reef 

and second, a gently sloping ramp with peritidal to supratidal facies and evaporitic intervals. 

Different attributes o f facies are indicators o f depositional processes and their associated 

environments. Facies can be further grouped into specific zones based on factors such as 

water energy, fossil assemblages and indicator fossils, textures o f sediments and abundance 

o f micrite, and porosity (Machel and Hunter, 1994). The identified facies in the Upper 

Stettler Formation and Crossfield Member are characteristic o f a sloping ramp from peritidal 

to shallow subtidal carbonates with restricted supratidal sediments and stromatoporoid 

mounds.

Five main mudstone facies were identified: nodular (anhydritic) mudstones, 

laminated (dolo) mudstones, peloidal bioclastic mudstone/wackestones, fenestral mudstones 

and burrowed mudstones. One packstone/grainstone facies was identified as fenestral 

peloidal grainstone and two facies were identified as floatstone/rudstones. The two 

floatstone/rudstone facies are stromatoporoid floatstones and bioclastic floatstone/rudstones.
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Nodular (anhydritic) mudstones developed in supratidal subaqueous environments in 

association with laminated (dolo) mudstones. Laminated mudstones are typical o f upper 

sabkha sediments and were precipitated in ephemeral ponds or salinas (Martindale, 2005). 

The laminated mudstones with microbial mat development is also indicative o f a supratidal 

depositional setting (Fliigel, 2004) and microbial mats developed in massive (algal) 

mudstones are suggestive o f upper intertidal sediments. Facies with significant fenestral 

porosity are commonly associated with upper intertidal to supratidal environments. Fenestral 

(weakly burrowed) mudstone is most likely therefore to be deposited in an upper intertidal 

setting. Burrowed fabrics are significant in both shallow intertidal muds and subtidal facies. 

Massive burrowed mudstones were deposited in the intertidal zone and also in shallow 

subtidal lagoons. The bioclast diversity, weak burrowing and peloidal fabric indicate that the 

peloidal bioclastic mudstone/wackestone facies is characteristic o f lower intertidal to shallow 

subtidal settings (including shallow lagoonal environments). Peloidal (fenestral) grainstones 

are deposited in the lower intertidal zone with units in this facies with minor to rare fenestrae 

, more sandy peloidal grainstones were deposited slightly further seaward in the shallow 

subtidal. The bioclastic diversity o f  the bioclastic floatstone/rudstones is typical o f a shallow 

subtidal environment, protected to a certain degree from high energy events but periodically 

exposed (with a reworking o f muds and the development o f intraclasts). Stromatoporoid 

floatstones were deposited in mounds on the gently-sloping ramp with peloidal (mud peloid) 

grainstones surrounding these in a shallow subtidal environment. On the landward side of the 

stromatoporoid mounds, shallow lagoons developed where the deposition o f the majority of 

the burrowed, peloidal, and bioclastic facies occurred. Seaward o f the stromatoporoid 

mounds are greenish-grey mudstones deposited in deeper subtidal to open marine 

depositional settings. These greenish-grey mudstones are massive and are rare in occurrence 

in the Upper Stettler and Crossfield sediments, and therefore have not been discussed in 

detail as a separate facies.
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Chapter IV

Diagenesis of the Upper Stettler Formation and Crossfield Member

4.1 Introduction

Diagenesis is defined as all the processes that affect the character and composition of 

sediments from just after deposition through to the realm of increased temperature and 

pressure associated with metamorphism (Morrow and Mcllreath, 1990). Diagenetic processes 

affecting carbonates occurs in the meteoric, marine, and subsurface realms. All o f these 

realms have characteristic pore fluids that affect diagenetic processes such as marine and 

meteoric fluids near the surface and mixtures o f marine-meteoric waters and basinal-derived 

brines with increasing depth (Moore, 2001). These fluids (along with changes in pressure and 

temperature with burial) essentially define the characteristic diagenetic features observed in 

sediments and the changes in porosity and permeability from surface deposition through 

deep burial processes. Diagenesis is a ubiquitous process and includes all the changes in 

sediments due to compaction (both mechanical and chemical), cementation, dolomitisation, 

dissolution and leaching, and recrystallisation.

The Upper Stettler Formation and Crossfield Member have been significantly affected 

by diagenetic processes. The most dominant processes affecting the study areas are 

dolomitisation, cementation, and recrystallisation, although other diagenetic alterations o f the 

original precursor fabrics have also occurred. Besides the most dominant diagenetic 

processes o f dolomitisation, cementation, and recrystallisation, sediments have also been 

altered by both mechanical and chemical compaction, episodes of fracturing, and changes in 

original primary porosity and permeability characteristics as a result o f  variabilities in 

diagenetic fluids, and burial temperatures and pressures. Original fabrics have been affected 

by changes in pore water chemistry associated with burial diagenesis that contributed to the 

destructive (mimetic and non-mimetic) replacement o f precursor mineralogy. The diagenetic 

processes or evolution o f the sediments in the Upper Stettler Formation and Crossfield 

Member have been identified using petrographic methods, including Epi-Fluorescence and 

Cathodoluminescence (CL) microscopy. The following sections describe the diagenetic 

features identified in the Upper Stettler Formation and Crossfield Member using these 

petrographic methods.
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4.2 Micritisation

Micritisation is the process whereby the original fabrics o f carbonate grains are 

altered to cryptocrystalline textures (Reid and Macintyre, 2000). This is a shallow subsurface 

or seafloor process that involves the boring o f bioclastic material by endolithic algae, fungi, 

or bacteria resulting in the development o f holes around skeletal margins (Tucker and 

Wright, 1990). During the process of micritisation, the holes are then subsequently filled 

with fine-grained sediments that results in the development o f fabrics ranging from micritic 

envelopes surrounding bioclasts to the complete micritisation o f bioclasts. Early micritisation 

processes have altered bioclastic material in peloidal bioclastic mudstones/grainstones and 

bioclastic floatstone/rudstones in the Upper Stettler Formation and Crossfield Member. A 

study conducted by Peterhansel and Pratt (2001) on the geologically equivalent Palliser 

Formation suggests that this region (during the Late Famennian) had a prolific increase in 

microendoliths that obliterated bioclasts (especially crinoids) through processes such as 

micritisation and encrustation. This early micritisation process is the first type o f diagenetic 

alteration identified in the facies o f the Palliser-equivalent Crossfield and Upper Stettler 

(Plate 4; 1-3). Lithofacies in wells 1-10 have been affected by micritisation processes by the 

development o f micrite envelopes and the infilling o f bioclastic material with micrite. The 

effect o f  micritisation is not evident in the lithofacies in well 11. This lack o f evidence is 

possibly a result o f the extensive dolomitisation and diagenetic alteration that has affected 

the sediments in this well. The same facies are present in well 11 as in the other wells (1-10), 

and consequently, micritisation probably also affected the lithofacies in well 11 prior to 

extensive dolomitisation episodes.

4.3 Neomorphism

Neomorphism is described as the process o f mineral transformations occurring in the 

presence o f water and results in the replacement, inversion, or recrystallisation o f a carbonate 

rock (Folk, 1965; Fliigel, 2004). Replacement fabrics result from the dissolution o f one 

mineral and the simultaneous precipitation o f another. Machel (1997) uses the term 

‘significant recrystallisation’ as an alternate genetic term to explain the changes occurring 

during recrystallisation processes specifically affecting dolomites/dolostones. This type o f 

recrystallisation occurs relatively late in the diagenetic process for the Upper Stettler

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PLATE 4: Micritisation and Neomorphism

(1) Photomicrograph of the effects o f micritisation on a gastropod shell (scale 
= 100pm). Well 10-9-66-21W5 (2410.8m). Yellow arrows showing 

micritisation.
(2) Photomicrograph of micritisation of fabric with large intraclast (scale = 

100pm). Well 10-23-30-28W4 (2412.2m). Yellow arrow indicating 
intraclast.

(3) Photomicrograph of micritised stromatoporoid framework (scale =
50pm).Well 10-9-66-21W5 (2406.1m). Black arrow show stromatoporoid 
Framework with calcite (c) in growth framework.

(4) Photomicrograph of gypsum (G) replacing fine laths o f anhydrite 
(scale = 50pm). Well 11-23-25-29W4 (2647.3m). Red arrow shows 
replacement o f anhydrite with gypsum.

(5) Photomicrograph of etched and dissolved dolomite crystals suggestive o f
recrystallisation textures (scale = 200pm). Well 5-22-32-1W5 (2589.8m). 
Red arrow showing dissolved rims, and black etched cores indicated by 
yellow arrows.

(6) Photomicrograph of planar-e dolomite showing evidence of 
recrystallisation with fluorescence (fl) (scale = 100pm). Well location 10- 
9-66-21W5 (2406.85m). Red arrows show recrystallised dolomite rhombs

(7) Photomicrograph o f planar-e dolomite rhombs with cloudy cores and clear 
rims under fluorescence (fl) (scale = 200 pm). Well location 7-23-31-9W5. 
Red arrow indicates recrystallised dolomite rhomb.
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Formation and Crossfield Member and will be discussed in greater detail when 

dolomitisation processes are examined (plate 4:5-7). There are also other neomorphic 

processes that have occurred in an earlier context in the diagenetic history o f the Upper 

Stettler Formation and Crossfield Member (plate 4: 4-7). One early neomorphic feature is 

the formation o f neomorphic spar through aggrading recrystallisation. Aggrading 

recrystallisation (neomorphism) results in crystal enlargement, wherein carbonate minerals 

increase in size from micrite to spar (Chillingar et al., 1967). In the study area, the 

development o f neomorphic spar is most apparent in grainstone and floatstone/rudstone 

facies in wells 1-10 but is relatively minor in occurrence. This spar is most prevalent in the 

peloidal grainstone and floatstone/rudstone facies where peloids and bioclasts can be seen 

essentially floating within the spar. The spar itself is relatively cloudy, irregular, and o f 

variable-size, distinguishing it from other calcite cements. The process o f stabilisation is also 

an early diagenetic feature in the Upper Stettler Formation and Crossfield Member and is 

defined as the process whereby unstable minerals invert to a more stable form with the same 

chemical composition. This process includes the replacement o f a mineral with its more 

stable polymorph such as the alteration o f aragonite to calcite or Mg-calcite to calcite 

(Tucker and Wright, 1990). A widespread example o f neomorphism within the Upper 

Stettler Formation and Crossfield Member, and present within all o f the wells, is the 

transformation o f anhydrite to gypsum and gypsum to anhydrite (Plate 4-4). Often seen 

within gypsum crystals are fragments o f anhydrite laths, and to a lesser degree, blocky 

anhydrite contains remnants o f gypsum. This process began relatively early in the diagenetic 

history of the study area and continued throughout the burial process and occurred further 

during subsequent episodes o f sediment uplift, suggested by the recrystallisation o f anhydrite 

to gypsum with uplift.

4.4 Compaction

Although it has been suggested that chemical compaction is a significantly more 

important process than mechanical compaction (Wanless, 1979), compaction processes as a 

whole can produce extensive diagenetic alteration o f carbonate sediments. Compaction 

initially affects carbonates in the shallow subsurface as a result o f the stresses associated 

with an increasing overburden. As sediments are buried, increasing overburden pressure 

causes the development o f mechanical (physical) compaction features. Later in the burial 

process, chemical (pressure-solution) compaction also begins to affect the buried carbonates
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(Tucker, 2001). During progressive burial, both mechanical and chemical compaction has 

occurred within the Upper Stettler Formation and Crossfield Member, resulting in the 

development o f  compactional features and an overall decrease in sediment thickness.

4.4.1 Mechanical compaction

The process o f mechanical compaction begins during the shallow burial process o f 

carbonates. Mechanical compaction causes the closer packing o f grains and the brittle or 

ductile transformation o f grain boundaries within sediments (particularly in grainier 

samples), and also compresses features such as burrows, pellets, bioclasts and micritic 

envelopes (Tucker, 2001). In conjunction with the closer packing o f grains and the 

compression o f allochems and sedimentary structures, there is also a significant reduction in 

porosity and permeability. In experiments by Shinn and Robbin (1983), porosity (as a result 

o f grain reorientation and dewatering) in mud-dominated sediments decreased from 

approximately 70% to 40% with further losses in porosity during subsequent chemical 

compaction processes. Uncemented, mud-dominated sediments also tend to be more greatly 

affected during very early compaction as sediments dewater and grain-supported sediments 

by contrast, may have a slightly different compactional history (Moore, 2001).

Within the Upper Stettler Formation and Crossfield Member, the most prominent 

mechanical compaction features occur in facies that are dominantly mud-supported (Plate 5: 

1-3). Common features present within mudstone and wackestone facies include: (1) slightly 

compacted burrow structures in burrowed mudstones; (2) minor compression of fenestrae in 

fenestral mudstones in all o f the wells (1-10) that have not been exposed to completely 

destructive dolomitisation processes as observed in the facies in well 11; (3) the bending and 

reorientation o f allochems (particularly bivalves and brachiopod fragments) (Plate 5: 1-2);

(4) minor clumping o f bioclastic material, and; (5) the clotting o f peloidal material within 

peloidal mudstones. In peloidal grainstone facies, peloids are dominantly uncompressed. 

However, in instances o f minor compression, slightly compressed fabrics consist o f flattened 

or elongated peloids. The overall lack o f compaction seen in the peloidal grainstone facies 

suggests that this facies was probably exposed to episodes o f cementation fairly early in its 

depositional history.
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PLATE 5: Mechanical and Chemical Compaction

(1) Photomicrograph o f bent/broken bioclasts resulting from mechanical 
compaction (xpl) (scale = 100pm). Well 10-9-66-21W5 (2408.1m). Red 
arrow indicating bent bioclast from mechanical compaction.

(2) Photomicrograph o f broken bioclast with calcite cement between 
fragments (scale = 200pm). Well 10-9-66-21W5 (2408.53m). Red 
arrow shows broken bivalve fragment from mechanical compaction.

(3) Photomicrograph o f stylolitisation in dolomicrite between fossil 
fragments; mechanical compaction (offset fragments) and evidence of 
pressure solution (xpl) (scale = 50pm). Well 10-21-32-2W5 (2751.7m). 
Red arrow shows thin dissolution seam developed through pressure 
solution.

(4) Photomicrograph o f stylobrecciated fabric forming a nodular mudstone 
texture (scale = 100pm). Well 10-9-66-21W5 (2403.2m).

(5) Photomicrograph o f high-amplitude stylolites with fitted fabric in 
stromatoporoid floatstone with coarse blocky calcite cement (C)(scale = 
100pm). Well 10-9-66-21W5 (2404.14m). Red arrow shows high 
amplitude stylolite.

(6) Photomicrograph o f stylolites cross-cutting crinoid ossicle (Cr) in fitted 
fabric texture (fl) (scale = 100pm). Well 11-23-25-29W4 (2670.6m).

(7) Photomicrograph o f stylolaminated fabric with horsetail stylolites (fl) 
(scale = 50pm). Well 10-23-30-28W4 (2397.3m). Red arrow pointing to 
horsetail stylolite at end of anastomosing stylolite.

(8) Photomicrograph o f stylobrecciated fabric in recrystallised dolomitised 
mudstone under fluorescence (fl) (scale = 100pm). Well 10-13-26-8W5 
(3574.9m).
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Plate 5: Mechanical and Chemical Compaction
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4.4.2 Chemical compaction
Chemical compaction occurs as a result o f increased solubility along grain contacts 

and is commonly initiated at burial depths between 200 to 1500 metres (Boggs, 1995;

Buxton and Sibley, 1981). This solubility (pressure-solution) develops in carbonates during 

these late burial stages as a result o f overburden pressure and tectonic stresses (Tucker, 

2001). Pressure-solution also causes the liberation of moles o f C aC 03 in solution which may 

be precipitated in close proximity as calcite cements or carried in pore waters to be 

precipitated at distant sites from the original region o f pressure-dissolution (Choquette and 

James, 1990). The common chemical compaction features present in the Upper Stettler 

Formation and Crossfield Member are fitted fabrics, stylolites, and the development of 

pressure-dissolution seams (Plate 5: 4-8).

Fitted-fabrics are defined as a framework o f interpenetrant grains with sutured to 

planar or curved surfaces between grains (Tucker and Wright, 1990). In terms o f fitted 

fabrics, the most common example o f this type o f diagenetic feature is identified in the 

bioclastic mudstone facies, where large crinoid fragments are cross-cut and fitted with mud- 

rich sediments or bioclastic and peloidal fabrics are cross-cut and fitted with dissimilar 

fabrics (Plate 5-3; 5-6).

The two most significant diagenetic features identified in the facies o f the Upper 

Stettler and Crossfield carbonates, that occurs in all wells (1-11), is stylolitisation and the 

development o f pressure-dissolution seams.

Stylolites are sutured surfaces that cross-cut grains, cement, or matrix and are richly 

concentrated in insoluble residue (clays, organics, and iron-rich residue) that is produced 

from carbonate dissolution processes (Tucker, 2001). Types o f stylolites and pressure- 

dissolution structures identified in the study area include: parallel, anastomosing stylolites 

producing stylolaminated fabrics that generally follow bedding structures; low- and high- 

amplitude stylolites; columnar stylolites; horsetail stylolites; and the development o f 

stylobrecciated structures o f irregular, anastomosing stylolites creating nodular-mud type 

fabrics (Plate 5-4 to 5-8). Stylolitisation in the Upper Stettler and Crossfield carbonates 

occurred in more than one stage in the burial process. The first significant period o f stylolite 

development occurred relatively early and resulted in the formation o f thin, anastomosing 

stylolites that were subsequently healed by matrix dolomite. This episode o f stylolitisation 

occurred after early calcite cementation but prior to pervasive dolomitisation of the matrix 

and along with wells 2-11, is also evident in the non-dolomitised mudstone facies in well 1. 

The second stage o f stylolitisation occurred much later in the burial history o f the Upper
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Stettler and Crossfield carbonates. Stylolites o f this stage formed after early calcite 

cementation and pervasive dolomitisation, but prior to the precipitation o f late- stage blocky 

calcite and saddle dolomite cements. These stylolites are also more variable in terms o f types 

and fabrics and include both high- and low-amplitude stylolites. They are also either bed- 

parallel (along bedding planes) or irregular (cross-cutting precursor fabrics), and have 

developed as singular seams or as swarms of multiple stylolites.

Pressure-dissolution seams have been identified in all o f the facies in wells (1-11) 

within the study area. These dissolution seams are typically anastomosing and like stylolites, 

are composed o f insoluble residues o f organics, clays, and iron-rich sediments. Mudstone, 

grainstone, and floatstone/packstone facies in the Upper Stettler and Crossfield carbonates all 

have dissolution seams that either cross-cut fabrics (destroying precursor fabric) or develop 

around existing grains and bioclasts forming stylonodular fabrics.

4.5 Evaporite formation
The precipitation o f evaporites occurs throughout the diagenetic history o f the Upper 

Stettler Formation and Crossfield Member (Plate 6 & Plate 7). The recrystallisation o f 

evaporites is a continuous process that can occur both at the onset o f deposition and during 

diagenetic alteration as the evaporites are exposed to changes in temperature, pressure, and 

salinity. Gypsum precipitation is favoured by conditions o f lower temperature and pressure, 

and relatively lower salinities than anhydrite, which in turn, is commonly precipitated in 

higher temperature and pressure environments with higher salinity (Warren, 1989). Since 

both anhydrite and gypsum can pseudomorphically replace each other, anhydrite may 

develop syndepositionally with gypsum as a primary phase and also precipitate as the 

anhydritisation o f gypsum during early to late diagenesis (Kasprzyk, 2003). The anhydrite to 

gypsum transformation that occurs as buried sediments are exposed to uplift (which involves 

an increase in volume o f more than 50% during hydration processes) can also mask any 

earlier formed deformational fabrics within the evaporites. Deformational features may in 

some cases resemble primary depositional features, which may further exacerbate the 

problem o f distinguishing whether the realm of precipitation o f anhydrite-gypsum deposits is 

o f primary origin or the product o f secondary diagenetic alteration (Shreiber and Helman, 

2005).

Fine-crystalline laths o f anhydrite and fine-crystalline lenticular or tabular gypsum 

have been interpreted to be products o f primary precipitation within sediments o f the Upper
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PLATE 6: Core photographs of evaporites
(1) Core photograph of nodular mosaic (primary) anhydrite (A) in Upper 

Stettler laminated and nodular anhydrite facies. Well 7-23-31-9W5 
(3636.9m). Red arrow at bottom -  up direction.

(2) Core photograph of secondary anhydrite (A) in nodules, surrounded by 
laminated anhydrites and displacement o f muds surrounding nodules 
during anhydrite growth. Well 10-23-30-28W4 (2388.3m). Red 
arrows indicate up direction.

(3) Core photograph of mud deformation during precipitation o f primary 
Anhydrite (A). Well 10-18-21-28W4 (2619.5m). Small red arrows 
show development of small mud lithoclasts. Red arrow at bottom 
indicates up direction.

(4) Core photograph of late-stage secondary anhydrite (A)with inclusions 
and crenulated margins. Well 10-5-23-6W5 (2578.5m). Red arrow -  up 
direction.

(5) Core photograph of extensive secondary anhydrite (A) precipitation in 
large dissolution vugs and fractures. Well 7-23-31-9W5 (3650.9m).

(6) Core photograph of secondary anhydrite (A) in dissolution vugs with 
porous dolomite and carbonaceous rims (indicated by small red arrow). 

Well 10-18-21-28W4 (2633.1m). Large red arrow shows up direction.
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Plate 6: Core photographs of Evaporites
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PLATE 7: Photomicrographs of evaporites
(1) Photomicrograph o f gypsum overlain by laminated anhydrite (xpl)

(scale = 50pm). Anhydrite (A). Well 7-23-31-9W5 (3636.9m). Red arrow 
indicating gypsum crystals.

(2) Photomicrograph o f gypsum precipitating in leached intercrystalline pore 
spaces o f matrix dolomites (xpl) (scale = 100pm). Well 11-23-25-29W4 

(2663.3m). Red arrow indicating leached areas with gypsum occlusion.
(3) Photomicrograph o f nodular anhydrite (A) laths in dolomudstone matrix 

(xpl) (scale = 50pm). Well 5-22-32-1W5 (2574.4m).
(4) Photomicrograph o f anhydrites (A) precipitated in fractures through 

dolomitised and deformed laminated mudstones (xpl) (scale = 50pm). Well 
10-18-21-28 W4 (2616.0m).

(5) Photomicrograph o f coarser secondary anhydrite laths (felty anhydrite) (A) 
replacing earlier evaporites in vugs (xpl) (scale = 100pm). Well 11-23-25- 
29W4 (2656.3m).

(6) Photomicrograph o f secondary felty anhydrite replacing earlier evaporite 
phases in nodules (xpl) (scale = 50pm). Well 13-12-29-27W4 (2248.2m).

(7) Photomicrograph o f coarse replacement gypsum surrounded by blocky 
calcite (pseudomorphic after anhydrite) and saddle dolomite in vug (xpl) 

(scale = 100pm). Gypsum (G), Calcite (C), Dolomite (D) Well 11-23-25- 
29W4 (2650.5m).

(8) Photomicrograph o f pile-of-brick anhydrite being replaced by blocky II 
calcite (xpl) (scale = 100pm) Calcite (C), Dolomite (D). Well 11-23-25- 
29W4 (2650.5m). Red arrow pointing at anhydrite crystals.
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Plate 7: Evaporite Cements
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Stettler Formation and Crossfield Member. These evaporites were deposited as either 

laminated sediments or within nodules in mudstone fabrics in shallow, hypersaline 

environments. By contrast, secondary evaporites also consist o f a mixture o f anhydrite and 

gypsum but were precipitated as coarser, often inclusion-rich cements within vugs or 

fractures. Secondary phases o f primarily anhydrite and to a lesser degree, gypsum have been 

identified in all o f  the facies in wells 1-11.

4.5.1 Anhydrite

Anhydrites in the Upper Stettler Formation and Crossfield Member are typically 

either o f primary origin (or as an early replacement o f gypsum) prior to the main burial 

process, or as intermediate and deep burial cements within dissolution vugs and fractures. 

Primary anhydrite is identified as dominantly fine- to medium -  grained (30-400 pm), 

subhedral to euhedral mosaic laths (within laminations or nodules in laminated and nodular 

mudstone facies) and is present within all o f  the examined wells (Plate 6: 1-6). Felted mat 

textures are also a common primary anhydrite fabric within early nodules (Plate 7-6).

Two main types o f  secondary anhydrite cement fabrics are identified in the Upper 

Stettler and Crossfield. The most dominant cement texture is in the form o f  blocky tabular 

anhydrite (ranging from 500-1000 pm) that is seen occluding vugs and fractures. The second 

type o f texture is in the form o f coarse anhydrite lath mosaics (up to several mm’s) that are 

typical o f late, vug-filling cements (Plate 7-5). Both types o f secondary cements are 

identified in association with both saddle dolomite and late-stage blocky calcite cements. In 

hand sample, there also appears to be two different textures with a more ‘intermediate’ stage 

anhydrite that is often slightly opaque and crenulated along the edges (Plate 6-2), and 

secondly, a milky white anhydrite that is typical o f much later-stage cements (Plate 6-5; 6-6). 

The presence o f both types o f secondary anhydrite confirms that the precipitation o f 

anhydrite is a continuous process that begins at shallow burial and continues with increasing 

burial depth.

4.5.2 Gypsum
Gypsum in all o f  the wells (1-11) is typically replaces anhydrite, and often has inclusions of 

fine-grained anhydrite laths. This type o f gypsum has either developed as: large subhedral to 

euhedral tabular laths (1-2 mm) (Plate 7-7); as subhedral to euhedral lenticular crystals (up to 

1mm) with many inclusions o f fine-grained anhydrite; or as small tabular laths (50-100 pm) 

within leached matrix dolomite fabrics (Plate 7-2). In wells 5 & 6 there also appears to
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PLATE 8: Calcite Cements

(1) Photomicrograph o f bladed/equant calcite cement surrounding bioclast 
fragments (xpl) (scale = 200pm). Well 10-9-66-21W5 (2408.1m).

(2) Photomicrograph o f drusy mosaic calcite cement (DM) within bioclast 
fragments (xpl) (scale = 200pm). Well 10-9-66-21W5 (2408.1m). Red arrow 
pointing to drusy mosaic cement.

(3) Photomicrograph o f bladed calcite cement (BC) surrounding edges o f vug 
with twinned blocky calcite in centre portion (xpl) (scale = 200pm). Well 10-
9-66-21W5 (2406.8m).

(4) Photomicrograph o f neomorphic spar (NS) between peloids and bioclast 
fragments (xpl) (scale = 200pm). Well 10-9-66-21W5 (2408.5m).

(5) Photomicrograph o f syntaxial calcite cement (SC) on crinoids and surrounding 
fabric (xpl) (scale = 100pm). Well 10-9-66-21W5 (2410.8m).

(6) Photomicrograph o f drusy mosaic/equant calcite (DM) within brachiopod 
mold (xpl) (scale = 100pm). Well 10-9-66-21W5 (2410.8m).

(7) Photomicrograph o f stromatoporoid framework with equant to blocky calcite 
(C) within structure and more fibrous calcite lining framework (fl) (scale = 
100pm). Well 10-9-66-21W5 (2406.9m).

(8) Photomicrograph o f blocky I calcite in dissolution vug with saddle dolomite, 
calcite (C), dolomite (D) (ppl) (scale = 100pm). Well location 11-23-25-29W4 
(2663.3m).
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Plate 8: Calcite Cements
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be remnants o f  gypsum in graded beds that have been subsequently altered to anhydrite lath 

mosaics.

4.6 Calcite cementation

Calcite cementation has occurred throughout the diagenetic history o f the Upper 

Stettler Formation and Crossfield Member from early shallow-burial to late-stage vug-filling 

calcites (Plate 8). Since cement develops in pores as a chemical precipitate from solution, it 

requires supersaturation o f the pore fluids with respect to the particular mineral precipitating 

(Fliigel, 2004). The composition and textures o f calcite cement is characteristic o f the pore 

fluids from which they precipitated and are as a result, indicative o f the diagenetic 

environment from which they formed. The types o f calcite cement identified in the Upper 

Stettler Formation and Crossfield Member include: dogtooth, drusy mosaic, syntaxial, 

multiple stages o f  blocky, and bladed to equant cement.

4.6.1 Dogtooth cement

Dogtooth cements are relatively rare, but occur to a minor degree along the edges of 

bioclasts and are generally found surrounded by equant cement fabrics (Plate 8-1). This 

cement consists o f roughly scalenohedral crystals (30-60 pm) that are non-ferroan, non- 

luminescent/fluorescent, relatively clear and with pointed terminations. The precipitation of 

this cement is indicative o f  a marine phreatic zone or shallow burial (Fliigel, 2004).

4.6.2 Drusy mosaic cement

This cement is relatively common and occludes fabrics within ostracodes, 

brachiopods, gastropods, and calcispheres in the bioclastic mudstone/wackestone and 

peloidal grainstone facies in all o f the wells (1-11) (Plate 8-2 & 8-6). Drusy mosaic cement is 

also seen to a rarer degree as pore-occluding cements in intergranular pore spaces. Crystals 

within bioclasts are typically clear, equant to slightly elongate, non-ferroan, subhedral, and 

range from 20 -  80 pm, with coarser grains characteristically in the centre o f void spaces and 

bioclasts. Cements o f this type are also non-luminescent/fluorescent.
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4.6.3 Syntaxial cement
Syntaxial cements (Plate 8-5) are common within all the bioclastic facies (most 

significantly in the packstone/floatstones) and are typically identified as overgrowths on 

echinoderm fragments. All the syntaxial cements are non-luminescent/fluorescent and non- 

ferroan. Typical crystals are relatively cloudy and moderately twinned, with surrounding 

fabrics destroyed by syntaxial cement precipitation, creating large crystals that not only 

include the echinoderm ossicles but also other adjacent fabrics. In several examples, 

particularly in well #1, syntaxial precipitation appears to postdate minor mechanical 

compaction features, wherein the cement fills pore spaces between broken bioclasts. The 

presence o f mechanical compaction features would suggest that cementation occurred at the 

very least, in the shallow subsurface.

4.6.4 Blocky cement

Blocky calcites are the most abundant type o f pore-filling calcite cement and have 

been identified in all the examined wells in the Upper Stettler and Crossfield (Plate 8-7 & 

Plate 8-8). This cement was precipitated in two stages: blocky I is a shallow to intermediate- 

stage cement within fractures and vugs, and blocky II is a late-stage cement that is also found 

occluding vugs and fractures. Crystals o f blocky I are relatively clear, ranging from 400 - 

800pm (quite coarse), non-ferroan, non-luminescent/fluorescent, and with only minor 

inclusions o f gypsum and anhydrite. In contrast, blocky II tends to be coarser (up to 1.2 mm), 

cloudier, often twinned, and with many inclusions o f blocky and lath anhydrite. This cement 

is also non-ferroan, and non-luminescent/fluorescent. Quite typically blocky II is found 

replacing secondary blocky anhydrite in late-stage fractures and large (mm-scale) dissolution 

vugs and in close proximity to saddle dolomite cements. Sulphide minerals are also seen in 

close association with late blocky II calcites.

4.6.5 Bladed to equant cement
Bladed to equant cements are relatively minor pore-occluding cements seen as pore- 

lining cements in vugs and fractures in the mudstone and grainstone facies (Plate 8-3). In 

these vugs, central portions are often occluded with blocky calcite. Crystals sizes are quite 

variable, ranging from relatively small, more equant crystals (1 0 0 -  150 pm) to larger (500 -
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800 pm) bladed crystals with slightly pointed to tabular terminations. This cement is also 

non-ferroan and non-luminescent/fluorescent.

4.7 Silicification

This is a rare phase in the paragenesis of the Upper Stettler Formation and Crossfield 

Member (Plate 13-4) and developed relatively early (in the eogenetic realm). As a phase, it is 

not seen in any o f  the pervasively dolomitised wells and must have occurred prior to any 

major dolomitisation episodes. It occurs primarily as microquartz in nodular fabrics in well 1 

within stromatoporoid floatstone facies where Labechiid frameworks are preferentially 

silicified. Silicification also occurs in minor amounts in well 9, in undolomitised strata, 

where it also forms chert nodules with slightly larger crystal sizes (up to 50 pm) in radial 

structures. Due to the very rare occurrence o f this phase, it has not been determined to be a 

significant process in the diagenetic history o f the Upper Stettler and Crossfield.

4.8 Dolomite

In terms o f importance, dolomitisation is the most significant and widespread 

diagenetic process that affected the Upper Stettler Formation and Crossfield Member. 

Evidence o f dolomitisation is present in all the facies in wells (1-11). In facies within the 

Crossfield and farther west o f the main Crossfield study area (wells 2-11), dolomite fabrics 

range from minor pore-lining cements to the complete pervasive alteration o f the precursor 

matrix. In the facies o f well 1, only minor dolomitisation has occurred in the form of 

dissolution-seam related dolomite and rare pore-lining cements. A close examination o f all 

the dolomitisation processes and fabrics identified in the study area is crucial for the 

development o f an understanding o f how dolomitisation phases affect overall reservoir 

quality, and in particular, porosity and permeability characteristics. Interpreting the timing, 

overall distribution, and mechanism(s) o f dolomitisation based partly on petrographic 

evidence is therefore an important undertaking in assessing the overall quality o f the 

reservoir rocks for future exploration potential.

There are six types o f dolomite identified in the facies o f the Upper Stettler Formation 

and Crossfield Member. They are, in approximate order o f occurrence (oldest phase first):

(1) dolomicrite (Plate 9-1; 9-2); (2) fine- to medium-crystalline matrix dolomite (Plate 9-3);

(3) coarse-crystalline matrix dolomite (Plate 9-4); (4) dissolution-seam associated dolomite 

(Plate 10-1; 10-2); (5) fracture-lining dolomite (Plate 10-7); (6) saddle dolomite (Plate 10-5;
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PLATE 9: Pervasive Matrix Dolomite

(1) Dolomicrite with original peloidal fabric identified with a white card (ppl) 
(scale = 40pm). Well 11-23-25-29W4 (2671.9m). Small black arrows pointing 
to precursor fabric.

(2) Dolomicrite to fine-crystalline matrix dolomite o f micritic precursor (ppl) 
(scale = 40pm). Well 13-12-29-27W4 (2248.2m).

(3) Fine- to medium-crystalline matrix dolomite with interparticle porosity (xpl) 
(scale = 50pm). Well 10-18-21-28W4 (2639.5m).

(4) Coarse-crystalline matrix dolomite (planar-e) (xpl) (scale = 100pm). Well 7- 
23-31-9W5 (3670.4m).

(5) Stylolite dividing fine-crystalline planar-s matrix dolomite from medium- 
crystalline matrix dolomite (fl) (scale = 50pm). Well location 10-18-21-28W4 
(2633.0m).

(6) Coarse-crystalline replacement dolomite with sutured textures associated with 
burial, mostly nonplanar fabric (ppl) (scale = 200pm). Well location 11-23-25- 
29W4 (2665.4m).

(7) Cloudy, coarse-crystalline sucrosic texture o f planar-e to nonplanar dolomite, 
with bitumen-staining (xpl) (scale = 50pm). Well 5-19-30-10W5 (2519.5m).

(8) Cloudy, coarse-crystalline matrix dolomite with sieve texture and blocky 
calcite cement (C) in intercrystalline pores (xpl) (scale = 50 pm). Well 7-23-31- 
9W5 (3637.5m).
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Plate 9: Pervasive Matrix Dolomite
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10-6). Dolomites (1) -  (3) are essentially a single phase wherein they represent a continuous 

process of pervasive dolomitisation. These dolomites have been divided into three different 

types based on crystal-size, although they are genetically related and represent this 

continuous process o f dolomitisation and subsequent recrystallisation. Fine- and medium- 

crystalline matrix dolomite have been categorised as one type on the basis that they are very 

similar and only vary slightly in crystal-size. Dolomicrite has been categorised in a separate 

category as well in that it is significantly finer than either the fine- or medium-crystalline 

matrix dolomite. Following this rationale, coarser fabrics have also been categorised 

separately. The coarse-crystalline matrix dolomite textures are slightly different than the 

finer grained equivalents, which may be related to the effects o f recrystallisation processes 

with depth. All o f  these pervasive matrix types however may simply vary in crystal-size due 

to mimic-replacement o f the original textures and crystal-sizes of the precursor fabric.

The textural classification o f dolomite follows Randazzo and Zachos (1983), and 

Gregg and Sibley (1984) and Sibley and Gregg (1987). In extensively dolomitised sections 

where the precursor fabric has been unidentifiable, both a white card technique (Folk, 1987) 

and fluorescence microscopy (Dravis and Yurewicz, 1985) have been used to identify the 

precursor fabrics, which in some cases proved unsuccessful. Peloidal and bioclastic facies 

however, were more successfully identified with these methods, particularly using the white 

card technique.

4.8.1 Dolomicrite

Dolomicrite is the least abundant phase (approximately 25% of total matrix 

dolomite) in comparison to the other pervasive matrix dolomites (Plate 9-1) and generally 

occurs in the mudstone facies, particularly in the Upper Stettler Formation. This dolomite is 

mostly identified in facies in wells 3-7 and 9, with a minor occurrence in well 11. 

Predominantly, dolomicrite is identified in peloidal, nodular, and laminated mudstones, from 

supratidal to upper intertidal depositional settings. The prominence o f this cement in these 

facies suggests that the development o f dolomicrite in place o f coarser-crystalline textures is 

related to the overall finer crystal size of the precursor fabric. This dolomite consists of 

typically cloudy, very fine-crystalline (2- 25 pm), subhedral to anhedral, tightly-woven, 

interlocked planar-s crystals. Crystals are non-luminescent with cathodoluminescence (CL) 

and very weakly fluorescent (pale green) using Epi-Fluorescence (Epi-Fl) with pinpoint areas 

o f brighter green/yellow in areas o f higher organics.
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PLATE 10: Dolomite Phases
(1) Dissolution-seam dolomite precipitated between stromatoporoid 

framework (ppl) (scale = 100pm). Well 10-9-66-21W5 (2406.9m). Red 
arrow indicating euhedral dolomite rhombs between stromatoporoid 
framework.

(2) Dissolution-seam dolomite within dolomicrite (ppl) (scale = 100pm). Well
11-23-25-29W4 (2645.9m). Red arrow pointing to dolomite surrounded by 
insoluble residues.

(3) Zoned planar-e dolomite in association with dissolution seams with 
cathodoluminesence (cl) (scale = 100pm). Well 13-12-29-27W4 

(2249.1m). Red arrow pointing toward zoned euhedral rhomb.
(4) Coarse, zoned, planar-e dolomite in dissolution area (fl) 10-9-66-21W5 

(2412.2m). Red arrow pointing towards planar-e dolomite.
(5) Saddle dolomite (SD) with undulose extinction and curved crystal 

boundaries (xpl) (scale = 50pm). Well 10-5-23-6W5 (2582.3m).
(6) Saddle dolomite (SD) with twinned late-stage blocky II calcite (C) in 

dissolution vug (xpl) (scale = 100pm). Well 11-23-25-29W4 (2663.3m).
(7) Pore-lining dolomite with blocky calcite in centre o f vug (Calcite (c)) (xpl) 

(scale = 50pm). Well 10-5-23-6W5 (2571.8m).
(8) Pore-lining dolomite with zonation, blocky calcite in centre o f vug with 

fluorescence (Calcite (c)) (fl) (scale = 100pm). Well 11-23-25-29W4 
(2650.5m).
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4.8.2 Fine- to Medium - crystalline matrix dolomite
Fine- to Medium- crystalline matrix dolomite is the most abundant type o f dolomite 

in the Upper Stettler Formation and Crossfield Member and forms approximately 45% o f the 

total pervasive dolomite (Plate 9-2 -3 & 9-5). It is commonly seen in facies in wells 2-6 and 

10 with very rare occurrences in well 7. It is present in the peloidal and bioclastic 

mudstones, peloidal grainstones (to a lesser degree), and within the floatstone/packstone 

facies. Once again, the ciystal-size o f the dolomite is a reflection o f the precursor fabric and 

all other characteristics and textures are similar. Crystal sizes range from 50-100 pm for the 

fine crystals to 100-200 pm for medium crystal sizes. This dolomite consists o f planar-s to 

non-planar, tightly-woven, interlocked mosaics o f subhedral to anhedral ciystals, and is 

typically non-luminescent with CL and pale yellow/green with Epi-Fluorescence.

4.8.3 Coarse- crystalline matrix dolomite
Coarse- crystalline matrix dolomite comprises approximately 30% of the total 

pervasive dolomite within the Upper Stettler Formation and Crossfield Member (Plate 9-4;

9-6-8). This is the most prominent dolomite type in well 11, which contains zoned and 

etched crystals suggestive o f recrystallisation textures. Coarse- crystalline matrix dolomite is 

also identified in facies in wells 8-11 further west o f the Crossfield trend and in facies in 

wells 2, 4 & 7 along the Crossfield trend. Development o f most o f the coarse- crystalline 

textures has been fabric destructive with precursor fabrics in some cases unidentifiable. In 

many cases, the samples have simply been referred to as dolostones. Crystals are 

unequigranular, cloudy and coarse (200-450 pm) with planar-e and nonplanar sucrosic 

textures. Under CL, the crystals are for the most part, non-luminescent but fluorescent, with 

cloudy bright centres and clear, darker etched crystal rims. Most o f the coarser crystals, 

particularly in wells 8-11 are also asphaltene-stained.

4.8.4 Dissolution seam dolomite

This dolomite is the second most abundant dolomite after the pervasive matrix 

dolomite (Plate 10 -1-4) and is identified in variable amounts cross-cutting units in all o f  the 

wells (1-11). It occurs in association with dissolution-seams o f insoluble residues o f clays, 

organics, and iron-rich residues and forms planar-e crystals ranging from 50-250 pm. 

Crystals are often zoned with CL (Plate 10-3) and with Epi- Fluorescence (Plate 10-4). As 

this dolomite is only found in association with cross-cutting dissolution-seams, it tends to be 

fabric-destructive. The presence of zoned crystals suggests that it developed in more than

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



one stage in the diagenetic history o f the Upper Stettler and Crossfield, but for the most part, 

it is an intermediate to late diagenetic event that occurred with deeper burial.

4.8.5 Pore-lining dolomite
This cement is a relatively minor occurring phase (in comparison to the previously 

discussed dolomite types) in wells 2-10. Pore-lining dolomite is identified along the edges of 

fenestrae and late-stage vugs and fractures (Plate 10-7 & 10-8), and consists of euhedral to 

subhedral crystals (40 -  250 pm) with cloudy cores and clear rims. Crystals are non- 

luminescent to very dull-luminescent and have yellow/green cloudy cores and darker-green, 

clearer rims under Epi-Fluorescence. Blocky calcite often fills the central portions o f vugs 

with pore-lining dolomite developing along the edges.

4.8.6 Saddle dolomite

Saddle dolomite is one o f the latest diagenetic events in the diagenetic history o f the 

Upper Stettler Formation and Crossfield Member (Plate 10-5 & Plate 10-6). It occurs in a 

minor amount in the facies o f wells 5-8, and with greater abundance in the facies o f wells 10 

& 11. Saddle dolomite crystals are typically cloudy with curved crystal faces, anhedral to 

subhedral, and coarse (up to 2 mm) with undulose extinction. This dolomite is often found 

lining late-stage fractures and vugs in association with sulphides, secondary anhydrites, and 

blocky II calcites. In many cases, both the blocky calcites and saddle dolomite are 

extensively asphaltene-stained. In wells west o f the Crossfield (10 & 11), which appear to 

have been more affected by diagenetic alteration, some o f the coarse-grained pervasive 

matrix dolomite fabrics also have characteristic undulose sweeping extinction indicative o f 

late-stage recrystallisation processes. Saddle dolomite in these wells is non-luminescent to 

dully luminescent, and surprisingly, does not show zonations under either CL or Epi- 

Fluorescence.

4.9 Dissolution

Dissolution affects all o f the facies in all of the wells (1-11) and has occurred both 

early and late in the diagenetic history o f the study area (Plate 11). Early dissolution resulted 

in the formation o f fossil voids (particularly in ostracodes, brachiopods, and gastropods) that 

were subsequently filled with calcite cements. Intermediate to late dissolution created 

secondary porosity fabrics that are greater in abundance than porosity created early in the
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PLATE 11: Dissolution and Fracturing
(1) Leached pore spaces along stylolite in dolomicrite matrix (ppl) (scale =

50pm). Well 13-12-29-27W4 (2258.7m). Red arrow pointing to leached areas 
along stylolite.

(2) Leached cements cross-cutting micritic intraclast (xpl) (scale = 100pm). Well 
10-9-66-21W5 (2415.9m).

(3) Dissolution of fabrics along thick dissolution seams. Asphaltene-staining 
between matrix dolomite crystals in interparticle pore spaces (ppl) (scale = \ 
50pm). Well 10-5-23-6W5 (2575.8m). Red arrow pointing towards 
asphaltene-stained intercrystalline pore spaces.

(4) Dissolved edges o f  bioclast shell with non-fluorescent drusy mosaic calcite 
(DM) in fossil mold with fluorescence (fl) (scale = 100pm). Well 10-9-66- 
21W5 (2402.9m). Red arrow indicating dissolved edges o f bioclast.

(5) Dissolved and leached matrix dolomite visible under ppl, seams visible with 
fluorescence (fl) (scale = 50pm). Well 10-5-23-6W5 (2578.5m).

(6) Core photograph o f pin-point vugs in stromatoporoid floatstone with late-stage 
dissolution episode. Well 10-21-32-2W5 (2756.3m). Red arrow at bottom of 
photograph indicates up direction. Small arrow indicates vugs in
fabric.

(7) Core photograph o f subvertical and horizontal fractures. Well 10-5-23-6W5 
(2575.5m). Red arrow indicates up direction.

(8) Photomicrograph o f horizontal and subvertical fracture network. Well 10-18- 
21-28W4 (2640.2m).
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Plate 11: Dissolution and Fracturing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



diagenetic history o f the study area. Late dissolution formed large vugs (mm- to cm- scale) 

that were later filled with secondary anhydrites, blocky calcites, pore-lining dolomites, and 

saddle dolomite. Leached areas within pervasive dolomite fabrics and along dissolution 

seams and stylolites is further evidence o f the intermediate to late timing o f dissolution.

More than one late dissolution event is seen in the diagenetic history o f the Upper Stettler 

and Crossfield, with evidence o f the dissolution of some secondary cements and the 

precipitation o f new cements very late in the diagenetic process. There is also evidence o f 

etching within larger dolomite rhombs particularly in coarse- crystalline matrix dolomite and 

within dissolution seam dolomites, that are further indicative o f the occurrence o f 

intermediate to late dissolution episodes.

4.10 Fracturing

More than one generation o f fractures is evident in the Upper Stettler and Crossfield 

Member (Plate 11). Early fractures (fracture I) are thin, anastomosing, and approximately 

horizontal that follow along lamination and bedding planes and occur prior to pervasive 

dolomitisation episodes. Matrix dolomite occluded many o f the fractures which are not 

visible under plane-polarised light but can be seen using Epi-Fluorescence. The second 

generation o f fractures are subvertical microfractures that cross-cut matrix dolomites and 

early calcite cements. A third generation o f subvertical fractures cross-cuts secondary 

anhydrites as well as late-stage blocky calcite II and pore-lining dolomite in vugs, but these 

fractures are relatively rare. There is also evidence o f late-stage vertical and horizontal 

fracturing in many o f the facies in wells 8-11, that may be evidence o f larger-scale 

compressional and tensional forces.

4.11 Sulphide mineralisation

Sulphide mineralisation is generally a very late process in the diagenetic history o f the 

Upper Stettler and Crossfield Member (Plate 12). With the exception o f rare framboidal and 

more common, cubic pyrite (50-100 pm) identified in wells 1 & 5, most sulphide 

mineralization although rare volumetrically, occurs as elemental sulphur in small 

concentrations within vugs in association with blocky II calcite, blocky secondary anhydrite, 

and saddle dolomite. The highest concentrations o f sulphur are seen in dolostone facies in 

wells 10 & 11, however facies in wells 4-7 also contain scattered crystals o f sulphur within 

small vugs and intercrystalline pore spaces.
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PLATE 12: Sulphide Mineralisation and Asphaltene

(1) Core photograph o f elemental sulphur in association with secondary 
anhydrite. Well 10-13-26-8W5 (3575.9m). Red arrow at bottom indicates up 

direction. Small red arrow pointing to elemental sulphur.
(2) Core photograph o f secondary anhydrite in association with elemental sulphur 

in dissolution vug. Well 5-19-30-10W5 (2519.5m). Red arrow at bottom 
indicating up direction.

(3) Pyrite (P) in microbial mat sediments (ppl) (scale = 100pm). Well 5-22-32- 
1W5 (2589.8m).

(4) Sulphides (S) in association with blocky I calcite cement in stromatoporoid 
floatstone (ppl) (scale = 100pm). Well 10-9-66-21W5 (2406.9m).

(5) Elemental sulphur and iron sulphides developed during TSR reactions, 
fracturing is the result o f minor heat produced during TSR (exothermic) in 
association with secondary anhydrites (ppl) (scale = 50pm). Well 10-13-26- 
8W5 (3581.5m).

(6) Pile-of-brick, dissolved anhydrite (A) in late-stage vugs, surrounded by 
asphaltene-stained blocky II calcite (not in FOV) (ppl) (scale = 50pm). Well
10-13-26-8W5 (3581.5m).

(7) Medium- to coarse-crystalline planar-e matrix dolomite with asphaltene 
within intercrystalline pore spaces (xpl) (scale = 50pm). Well 10-5-23-6W5 
(2575.8m). Red arrow pointing to asphaltene-stained intercrystalline pore 
spaces.

(8) Late-stage dissolution vugs with occluding cements o f blocky II calcite (C) 
surrounded by saddle dolomite (SD), cements are asphaltene-stained related to 

TSR reactions (xpl) (scale = 200pm). Well 10-5-23-6W5 (2582.3m).
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Plate 12: Sulphide Mineralisation & Asphaltene
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PLATE 13: Other Fabrics and Minerals
(1) Photomicrograph o f unusual fabric identified in the Upper Stettler and 

Crossfield, replaced by fine-crystalline matrix dolomite with fluorescence (fl). 
Matrix dolomite replacing primary anhydrites (scale = 100pm). Well 10-23- 
30-28W4 (2397.9m).

(2) Photomicrograph o f another unusual fabric identified in well 2 (fl) (scale = 
100pm). Well 11-23-25-29W4 (2665.4m).

(3) Photomicrograph o f fluorite precipitated as an early diagenetic feature from 
seawater, seen only in well 1 (fl) (scale = 50pm). Well 10-9-66-21W5 
(2406.1m). Red arrow pointing to fluorite crystal.

(4) Photomicrograph o f rare chert precipitated in nodules (xpl) (scale = 100pm). 
Well 5-19-30-10W5 (2519.5m).

(5) Photomicrograph o f bitumen-staining of matrix dolomites with fluorescence 
(fl) (scale = 100pm). Well 11-23-25-29W4 (2663.3m). Red arrow pointing to 
bitumen developing in intercrystalline pore spaces between matrix dolomite 
fabric.
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Plate 13: Other Fabrics & Minerals
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4.12 Pyrobitumen/Asphaltene
Pyrobitumen is a common feature in all o f the facies, it is found within intercrystalline 

pore spaces between pervasive matrix dolomite and within blocky I calcite filled vugs, 

indicating that it occurred both after the precipitation of blocky I calcite and the 

dolomitisation o f the matrix (Plate 13-5). Asphaltene primarily occurs in wells 8-11, and is 

most abundant in wells 10 & 11 (Plate 12-7 & 12-8). It is a very late diagenetic event, as it is 

found staining late-stage blocky II calcite, secondary blocky anhydrite, saddle dolomites and 

sulphides in large (several mm) vugs. Asphaltene also occurs in interparticle pore spaces 

between coarse-crystalline matrix dolomite fabrics (Erickson et al., 1994)..

4.13 Porosity
Many diagenetic processes have affected the porosity and permeability o f the Upper 

Stettler Formation and Crossfield Member with the most significant process being the 

extensive dolomitisation o f the study area (Plate 14). Porosity and permeability values were 

obtained for facies from wells 2-11 from core analysis microfiche at the Core Research 

Centre in Calgary. Porosity values on average range from 4-5% for all the wells, with the 

lowest values at 1% and the highest values at 16% for wells 2-7, and <1% to 11.2 % for 

wells 8-11. Permeability is in the range o f <.01 to 4.88 millidarcies (mD). These values are 

based on all the cumulative values within the wells and not solely on any specific facies, so 

that individual facies values may be higher or lower than average values. In terms o f 

porosity, most o f the primary porosity has been occluded or reduced through diagenetic 

alteration during the burial process. Secondary porosities are significantly more common, 

with increased porosity and permeability characteristics developed through the creation o f 

vuggy, intercrystalline, and fracture porosities. The classification o f both primary and 

secondary porosities is based on the scheme by Choquette and Pray (1970).

4.13.1 Primary Porosity

Primary porosity is considered to be any porosity that exists in a rock at the end of 

the depositional process (Moore, 1989b). It develops during either the predepositional phase 

(such as in the development o f intragranular pores in fossils) or in the depositional phase 

(such as intergranular and growth framework porosity) (Flugel, 2004). Primary porosities 

observed in the Upper Stettler Formation and Crossfield Member includes: growth

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PLATE 14: Porosity

(1) Core photograph o f fenestral porosity with slightly-compressed 
fenestrae in association with microbial mat (MM) sediments. Well 13-
12-29-27W4 (2253.3m). Red arrow at bottom indicates up direction.
Small arrow pointing to fenestral fabric.

(2) Photomicrograph o f fenestrae with blocky calcite cements (C) 
surrounded by peloidal micritic matrix sediments (xpl) (scale = 50pm).

Well 10-9-66-21W5 (2400.5m). Red arrow pointing to fenestrae.
(3) Core photograph o f burrow porosity (B) that is selectively dolomitised and 

fractured. Well 10-13-26-8W5 (3582.6m). Red arrow at bottom of 
photograph indicates up direction.

(4) Core photograph of moldic porosity from leached gastropods. Well 10-21- 
32-2W5 (2756.7m). Red arrow at bottom of photograph indicates up 

direction. Small arrows pointing to vugs from leached gastropods.
(5) Photomicrograph o f interparticle porosity in stylobrecciated mudstone with 

fluorescence (fl) ((scale = 100pm). Well 10-9-66-21W5 (2403.2m).
(6) Photomicrograph o f moldic porosity that has been occluded with mosaic 

calcite cement (C) in bioclastic floatstone (ppl) (scale = 50pm).
(7) Core photograph of vuggy porosity in peloidal grainstone. Well 10-13-26- 

8W5 (3574.8m). Red arrow at bottom o f photograph indicates up direction. 
Small arrow pointing to vug.

(8) Photomicrograph o f intercrystalline porosity between matrix dolomite fabric 
with fluorescence (fl) (scale = 100pm). Well 10-18-21-28W4. Red arrow 
pointing to intercrystalline pore space.
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Plate 14: Porosity
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framework, intraparticle, fenestral, and interparticle porosity (Plate 14). These porosity types 

are identified in limestone intervals within all the facies but primarily in wells 1, 8, & 9.

Within bioclastic facies, growth framework porosity (that has been subsequently 

filled with calcite cements) is seen mainly in stromatoporoid floatstones and bioclastic 

floatstone/rudstones within the stromatoporoid framework. Intraparticle porosity consists of 

the pore spaces within the individual skeletal frameworks o f brachiopods, gastropods, 

ostracodes, and calcispheres in the study area. This intraparticle porosity was subsequently 

occluded with calcite cements or partly to completely micritised.

Fenestral porosity is the most significant primary porosity and it occurs in both 

laminated and algal mudstones in intertidal facies, forming as a result o f  degassing processes 

during microbial growth. This type o f porosity has been affected by compaction, in that 

many o f  the fenestrae have been flattened. Cementation has also occurred, so that fenestrae 

are for the most part, filled with pore-lining dolomite and calcite cements. Within wells 

2,5,6, and 9 however, the fenestrae are at least 40-50% occlusion-free.

Interparticle porosity is found within undolomitised peloidal grainstone facies 

between peloidal grains. Some of these grainstones have also been cemented with calcite 

spar between grains and the interparticle porosity has been destroyed. This is particularly 

noticeable in well 1.

4.13.2 Secondary Porosity

Secondary porosity is the porosity that develops at any time after the end of 

deposition. This secondary porosity is commonly created as a result o f diagenesis by 

dissolution, dolomitisation or dedolomitisation, fracturing, or brecciation processes (Fltlgel, 

2004). The identified secondary porosities in the Upper Stettler Formation and Crossfield 

Member are: burrow, moldic, fracture, vuggy, pin-point, intraparticle and intercrystalline 

(Plate 14).

Dolomitised burrow structures within mudstone facies are seen in most o f the wells 

and appear most prevalent in wells 8-11. Burrow porosity has not only been affected by 

dolomitisation, but also appears to have been affected by mechanical compaction as the 

burrows are slightly flattened in most o f the wells.

Moldic porosity was created as a result o f dissolution processes affecting the internal 

fabrics within bioclast shells. This type o f porosity is most apparent in well 7, where 

numerous gastropod shells within bioclastic floatstones are either occlusion-free or filled
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with calcite cements. This porosity however is often occluded with calcite cements overall, 

and it occurs to a minor degree in bioclastic facies in all o f  the wells. Both moldic and 

burrow porosities are minor components within the Upper Stettler and Crossfield Member 

study area.

Intraparticle, intercrystalline, and pin-point porosities are prominent in pervasive 

dolomite matrix fabrics in all of the wells. Intraparticle and pin-point porosities often occur 

within dolomite rhombs, particularly the coarser matrix dolomites in wells 10 & 11. 

Dissolution and recrystallisation processes have been observed in these coarse-crystalline 

matrix dolomites resulting in the development o f open spaces within dolomite rhombs. 

Intercrystalline porosity is one o f the most abundant secondary porosity types and is 

identified in all o f  the dolomitised intervals within all o f  the wells. This porosity occurs 

between dolomite crystals within pervasive dolomite fabrics. In wells 10 & 11, 

intercrystalline porosity often appears asphaltene-stained. Facies in wells 8-11 have more 

extensive intercrystalline porosity in association with coarse-crystalline matrix dolomite, 

which is seen as sieve textures between dolomite crystals.

Fracture porosity is identified in all the wells (1-11) and within all the facies. 

Fractures are often infilled with blocky to equant calcite cements, secondary anhydrites and 

pore-lining dolomites. Many o f the fractures should be considered microfractures and often 

appear without cement occlusion, particularly the late-stage horizontal fractures. The wider 

(a few centimetres), late-stage fractures in wells 10 & 11 are often occluded with secondary 

anhydrite or calcite containing inclusions o f anhydrite.

The most prominent porosity within the study area is vuggy porosity. This porosity 

is relatively abundant in all the wells (1-11) and present within all o f  the facies. Vuggy 

porosity (and pinpoint porosity) are products o f dissolution processes and generally occur as 

both small and large (several mm) unconnected vugs that are either occlusion-free or 

occluded with blocky calcite, anhydrite, saddle dolomite, and/or sulphides. Many of the vugs 

in wells 10 & 11 are asphaltene-stained, and when occluded with secondary anhydrite, they 

appear to have slightly paler reaction rims along the edges o f the vugs.
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Chapter V

Isotope Geochemistry of the Upper Stettler Formation and Crossfield Member 

5.1 Introduction
The carbonates and evaporites o f the Upper Stettler Formation and Crossfield 

Member were analysed for stable isotopic ratios o f carbon (13C/I2C), oxygen (180 / 160 ), 

sulphur (34S/32S) and radiogenic strontium (87Sr/86Sr). These values will be used in 

conjunction with petrographic evidence to determine the chemistry and source o f 

dolomitising fluids within the study area. The following sections present the data obtained 

from these analyses with a brief description o f the theory behind the chosen methods.

5.2 Stable Isotope Theory

Isotopes o f  an element differ from an isotope o f the same element by the number of 

neutrons in the nucleus (Sharp, 2007). The observed differences in the isotopic compositions 

o f oxygen and other elements o f low atomic number (including H, C, N, and S) are caused 

by processes referred to as isotopic fractionation (Faure, 1991). There are three naturally 

occurring isotopes o f Oxygen (160 , 170 , 180 ), two isotopes o f carbon (13C and 12C), and four 

isotopes o f sulphur (32S, 33S, 34S, 36S) (Sharp, 2007). The magnitude at which isotopic 

fractionation occurs is dependent on differences between the masses o f the isotopes, the

chemical bonds which are formed, and the temperature o f the formation o f these compounds

in which the isotopes fractionate (Faure, 1991). Ratios o f these elements forming from 

isotopic fractionation can occur as a result o f (1) isotopic exchange reactions, (2) kinetic 

processes (Rollinson, 1993), and (3) natural physio-chemical processes such as evaporation, 

condensation, photosynthesis, and transformations (Moore, 2001). The fractionation factor

(a) is the ratio between isotopic proportions with different phases o f a particular system with 

these phases forming in equilibrium (Bowen, 1988). The fractionation factor is defined by 

the following equations (Hoefs, 2004):

„ a   R /R / 1 \
f l  b a '  b 0 )

and

103 In aab= (A X 106) /T2 + B (2)
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In equation (1), Ra is the ratio o f the heavy to the light element in a phase a, and Rb is the 

same in phase b, with a reaction in equilibrium at a specific temperature (Faure, 1991). 

Equation (2) further defines isotope fractionation by taking into account temperature 

variations for specific exchange reactions, where A and B are constants and T is the 

temperature in Kelvins (Faure, 1991). The values for both A and B (fractionation factors) for 

different mineral-water systems were determined and compiled by numerous workers over 

the last few decades (O’Neil, 1986; Northrop and Clayton, 1966, among many others).

Because o f the difficulty in measuring differences in small ratios, the isotope 

composition is commonly expressed as the per mil difference in the isotope ratios o f the 

standard (std) and the sample (spl). This is used to express differences in isotopes o f sulphur, 

oxygen, and carbon that are analysed in this study, and it is written as (with sulphur as an 

example):

834S = (Rsp, -  Rs,y Rsta) x 103 %0 (3)

In this particular equation, R is the ratio o f the heavy to the light isotope (Faure, 1991). The 

standard used to express sulphur isotope results is CDT (Canon Diablo Troilite). The 

standards used to express oxygen and carbon isotope ratios are PDB (Pee Dee Belemnitella) 

from the Peedee Formation in South Carolina and SMOW (standard mean ocean water), 

with PDB generally used for carbonates o f low-temperature origin (and in studies o f 

diagenesis) (Sharp, 2007). The standard VPDB is a newer reference standard to replace PDB 

and it is also taken from the rostrum o f a belemnite from the Pee Dee Formation. All the 

results for oxygen and carbon isotopes in this study are relative to VPDB. The conversion of 

SMOW and PDB scales for oxygen is:

S,80  SMOW = 1.03091 (Sl80  PDB) + 30.91 (4)

Isotopic fractionation occurs for a number o f reasons, and in the case o f diagenesis, 

ratios o f stable isotopes can be used to identify the contributing source o f fluids to diagenetic 

processes. Some o f the suitable conditions and processes that affect isotopic fractionation 

during the diagenesis and dolomitisation o f carbonates include (Brand and Veizer, 1981; 

Land, 1980):
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(1) The water-rock ratio (the openness o f the system), in that an open-system would 

allow for the renewal o f isotopes in fluids, whereas a closed system would involve a 

recycling effect between the fluids and associated rocks. With the dissolution o f 

carbonates at depth, a closed system would only allow for small-scale dolomitisation 

processes, just as there is no influx o f cations and anions, 180  will not sufficiently enter 

the system either (Land, 1980).

(2) Temperature variations that may contribute to the fractionation o f a system, for 

example, temperature changes with depth.

(3) The composition o f diagenetic fluids and associated variations in salinity which 

are characteristic o f these fluids. The exposure o f carbonates with burial to increasing 

salinity conditions and also, the effect o f dissolved evaporitic material contributes to 

more negative 8lsO and to a lesser degree, S13C values.

(4) The secular variation o f oceans over time and the related isotopic values o f 

seawater from which the carbonates precipitated. The oxygen isotopic composition of 

carbonates becomes more depleted in SI80  with the increasing age o f the rocks (Veizer et 

al., 1999). In general, significant climate conditions affect the global ocean systems at 

any given time, and positive changes in 5 I80  are often ascribed to changes in polar ice 

and the overall climate o f the Earth at the time (Immenhauser et al., 2003).

(5) Biological fractionation (vital effect) occurring when an organism develops out of

equilibrium with the surrounding seawater, with the exception o f brachiopods and some 

bivalves that tend to reflect conditions at the time o f original precipitation (Brand and 

Veizer, 1981; Popp et al., 1986).

(6) Changes in latitude, altitude, as well as seasonal variations also affect 

fractionation effects and the 8180  composition o f fluids (Tobin et al, 1999; Goodfriend, 

1999; and Clarke and Jenkyns, 1999).

All of the above factors variably influence the isotopic composition o f fluids and this 

has a direct effect on the isotopic composition o f the minerals that precipitate from these 

fluids. The main fluids that contribute to the formation o f dolomite include seawater, brines 

associated with evaporation from seawater, meteoric fluids, and water with an isotopic 

composition that has been altered through isotopic fractionation during water/rock reactions 

(Allan and Wiggins, 1993). Marine water at the time o f the precursor mineral formation and 

each of theses fluids has a characteristic isotopic signature in relation to oxygen and carbon
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and can therefore, be used to understand diagenetic processes that have occurred during 

secondary alteration events.

5.3 Carbon (13C/I2C) and Oxygen (180 /160 )  Isotope Results

A total o f 83 samples were analysed for oxygen and carbon values and the data was 

collected with an isotope ratio mass spectrometer (IRMS) (Appendix 4). The following 

sections are the results o f these analyses. The calcites examined include micrite, syntaxial 

calcite, blocky calcite (I & II), and late-stage blocky to equant fracture calcite. Other calcite 

cements (dogtooth, bladed, and drusy mosaic) present in the Upper Stettler Formation and 

Crossfield Member were not examined due to their close spatial relationship with the 

surrounding micrite, the samples would have been likely contaminated. In terms o f 

dolomites, all the pervasive matrix dolomite phases, pore-lining dolomite, saddle dolomite, 

and dissolution-seam related dolomite were examined.

5.3.1 Calcites

(1) Limestone micrite (n=9) have values ranging from -3.96 to -7.28 %o (VPDB) for 

5l80  and -1.14 to 1.27 %o (VPDB) for 813C. These values are slightly depleted with respect to 

Late Devonian calcite phases that would have precipitated from Famennian seawater (Fig 

5.1). Famennian seawater values are in the range o f 5180  = -4.5 (±0.5) %o and 813C = +2.0 

(±0.5) %o (Hurley and Lohmann, 1989).

(2) Syntaxial calcite (n=3) have values ranging from -4.38 to -6.05 %o (VPDB) for 

8180  and 0.44 to 2.00 %o for S13C (VPDB).

(3) Blocky calcites I & II, and late-stage fracture calcite have values ranging from -

5.65 to -11.13 %o (VPDB) for 8I80  and -0.39 to -22.60 %o for S13C (VPDB). These values 

indicate a steady depletion in 813C values with a less pronounced, but significant depletion in 

8lsO values. Depleted values are representative o f a continuum o f blocky calcite cements that 

precipitated from shallow burial through to deep burial regimes. The most depleted calcite 

values are characteristic o f  late-stage blocky calcite cements that precipitated in vugs in 

association with saddle dolomite and late-stage secondary anhydrite. Blocky II calcites are 

interpreted to have occurred very late in the diagenetic history of the Upper Stettler 

Formation and Crossfield Member.
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Figure 5*1: Plot of oxygen and carbon stable isotope results for 
calcite phases of micrite, syntaxial calcite, Blocky I calcite, 
and Blocky li calcite. Red box represents postulated calcite values 
precipitating in equilibrium with Famennian seawater. Values are from 
Machel et al. (1996).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

(aa
d/\

)°%
 

oE
e



5.3.2 Dolomites
(1) Dolomicrite (n=6) values range from -5.10 to -5.81 %o for 8180  (VPDB) and - 

0.91 to 1.30 %o for 813C (VPDB). Dolomicrites have slightly lighter isotopic values with 

regard to both S180  and 813C (VPDB), and indicate a deviation from Famennian seawater 

values (Fig 5.2).

(2) Fine- to medium- crystalline matrix dolomites (n= 12) have similar values to 

dolomicrites with -2.82 to -6.17 %o for 5I80  (VPDB) and 0.22 to 1.08 %o for 8I3C (VPDB), 

with the closest value to carbonates precipitated in equilibrium with Famennian seawater o f - 

2.82 (8lsO) and 0.22 (813C) (VPDB).

(3) Coarse- crystalline dolomite (n=25) has values which vary the most from the 

values of carbonates precipitated in equilibrium with Famennian seawater, but are still close 

to the other pervasive matrix dolomites in overall values. The values range from -4.42 to - 

8.32 %o for 8lsO (VPDB) and -1.14 to 1.19 %o for 813C (VPDB), with covariant depletion of 

slightly depleted carbon and more significantly depleted oxygen values.

(4) Dissolution-seam related dolomite (n=5) have similar compositions to the coarse- 

crystalline pervasive dolomite but with slightly higher carbon (S13C) values.The composition 

range is from -4.49 to -6.51 %o for S180  (VPDB) and -1.09 to -2.14 %o for S13C (VPDB).

(5) Saddle dolomite cement (n=4) varies from -5.16 to -6.99 %o for SI80  (VPDB) and 

-3.43 to -1.32 for %o for 813C (VPDB). Although many isotopic values cited for saddle 

dolomite have characteristically high depletions in Sl80  and to a slightly lesser degree in 

813C values, these compositions correspond with other values cited for the Wabamun Group 

in Alberta (Mountjoy and Halim-Dihardja, 1991; Packard et al., 1992). The composition of 

the saddle dolomite cements are slightly depleted in S13C and are more significantly depleted 

in S180  (relative to Famennian seawater).

(6) Pore-Lining dolomite (n=l) yielded results similar to matrix dolomites, with -6.23 

%o for 8lsO (VPDB) and 0.93 %o for 813C (VPDB) relative to carbonates precipitating from 

Famennian seawater. Only one sample was analysed for pore-lining dolomite due to its close 

spatial relationship with surrounding matrix dolomites. As a result, there is the possibility of 

contamination by other dolomite phases.
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■ Dissolution-Seam Dolomite
♦  Dolomicrite
A Fine- to Medium- Crystalline Matrix Dolomite 
▼ Coarse- Crystalline Matrix Dolomite
•  Saddle Dolomite

5 O %o (VPDB) o

-1

-2

-3

Figure 5*2: Plot of Oxygen and carbon isotope results for dolomite 
phases: dissolution-seam dolomite, dolomicrite, fine- to 
medium-crystalline matrix dolomite & coarse-crystalline 
matrix dolomite. Blue box represents postulated values 
of dolomite precipitating in equilibrium with Famennian 
seawater. Values from Machel et al. (1996).
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5.4 Sulphur Isotopes
The 834S values o f marine evaporites correspond with the isotopic composition of 

dissolved ocean sulphate at the time o f their formation and are reported relative to the Canon 

Diablo Troilite (CDT). The secular seawater curve for 834S values ranges from less than 10%o 

to over 35%o, with the overall characteristics o f the curve explained in terms o f the addition 

or removal o f reduced sulphur to the oceans (Sharp, 2007). Marine evaporites that have 

formed as inorganic precipitates from these oceans will therefore be a reflection o f seawater 

compositions at the time o f formation (with slightly displaced values through fractionation 

processes o f 0 to +2.4%o) (Strauss, 1999). Factors that affect the sulphur compositions o f the 

ocean at any given period are consequently reflected in the evaporites that precipitate during 

that particular period. Variations in the ocean values o f 834S occur as a result of:

(1) The dissolution o f  older evaporitic material that may have been previously buried 

and then exposed through uplift and subsequently weathered. The sulphur in these evaporites 

will increase the ocean values o f 834S significantly (Bottrell and Newton, 2006).

(2) The effects o f  high biological activity (by sulphate-reducing bacteria), wherein 

sulphate-reducing bacteria tend to produce sulfides depleted in S34S during their metabolism, 

resulting in the removal o f depleted 834S sulphur as sedimentary sulphides (Canfield, 2001). 

Overall, this will increase the 834S o f oceans (and evaporites formed from these oceans) 

(Sharp, 2007). Bacterial sulphate reduction (BSR) and thermochemical sulphate reduction 

(TSR) are significant processes in the reduction o f sulphates, with S34S variations from TSR 

reactions reported by Machel (2001) as +2.4 to +24.1 %o in relation to ocean values.

(3) Weathering processes lower the 834S o f the oceans, evaporites precipitating from 

these oceans would therefore have lower values (Sharp, 2007).

The secular ocean curve is developed from the compiled values o f evaporites from 

specific time periods, which indicate that values in the late Proterozoic are similar to that of 

today (in the mid-range o f values) and S34S values were high in the Cambrian through the 

Devonian, decreasing to a minimum in the Permian (Veizer et al., 1980). Claypool et al. 

(1980) suggest a considerable decrease in 834S in the early Devonian with a sharp rise into 

the late Devonian, with values in the Famennian up to +30 %o to +34 %o.
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5.4.1 Sulphur (34S/ 32S) Isotope Results
A total o f 17 samples were examined for sulphur isotope ratios. O f this total, results 

were obtained for: native sulphur (n=2), primary anhydrite (n=7), and secondary anhydrite 

(n=8) (Table 5.1). The results indicated a progressive increase in %o 534S (CDT) values from 

primary anhydrites to secondary anhydrites (Fig 5.3). One primary anhydrite sample was 

close to the seawater curve, with the other 6 samples as slightly enriched in comparison to 

Devonian seawater. Native sulphur samples were also enriched, with one native sulphur 

sample having the highest value o f 29.7 %o S34S (CDT), suggesting it formed significantly 

later in the diagenetic process. The progressively higher values for secondary anhydrite 

suggests a continuous process o f secondary precipitation through intermediate to late 

diagenesis.

5.5 Strontium (87Sr/86Sr) Theory

In contrast to stable isotopes, a radiogenic isotope is a daughter isotope that is 

produced from the decay o f a radioactive parent isotope (Banner, 2004). There are four 

isotopes o f strontium: 84Sr, 88Sr, 87Sr, 86Sr, with 84Sr being the most rare isotope and 88Sr the 

most common (Allan and Wiggins, 1993). 86Sr is non-radiogenic, and 87Sr is radiogenic and 

formed from the radioactive decay o f 87Rb (Faure, 1991). Prior to diagenetic processes, 

fluids in carbonates should reflect or have similar ratios to that of marine water during 

original precipitation o f the carbonate mineral. If  the carbonate mineral has not been 

contaminated through the interaction o f clays that have a high 87Rb content (87Sr is the 

daughter product o f 87Rb), then the original 87Sr incorporated into the carbonate mineral will 

remain constant (Moore, 1989). Interaction with certain non-carbonate phases may therefore 

be a useful indicator o f fluid pathways. Non-carbonate phases can significantly contaminate 

carbonate isotopic signatures however and purity is an important consideration when 

analysing carbonates (Bailey et al., 2000).

The 87Sr/86Sr ratio is derived from seawater at the time o f original precipitation, and 

this seawater is influenced by the effects of chemical weathering on the continents and in 

ocean basins, and has therefore varied through time in response to global tectonics (Moore,

1989). Strontium can be used for the dating and correlation o f sediments as seawater curves 

have been developed by numerous workers to indicate the relative ratios o f 87Sr/86Sr for 

seawater throughout the Phanerozoic (Denison et al., 1997; Veizer et al., 1999; Brand, 2004). 

If  the value o f  a carbonate differs from that o f the original marine signature for any particular
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Table 5 .1 : Sulphur 5 34S CDT

Sample Depth Well # Phase Sulphur Values

SR115NS 3581.48m Well 11 Sulphur 26.1
SR095NS 2519.53m Well 9 Sulphur 29.7
SR064PA 2387.12m Well 6 Anhydrite 26.4
SR410PA 2619.54m Well 4 Anhydrite 26.1
SR023PA 2647.28m Well 2 Anhydrite 26.7
SR034PA 2247.19m Well 3 Anhydrite 26.2
SR117PA 3582.59m Well 11 Anhydrite 26.6
SR015PA 2406.06m Well 1 Anhydrite 22.1
SR082PA 3636.98m Well 8 Anhydrite 26.5
SR078SA 2756.74m Well 7 Secondary Anhydrite 24.6
SR101SA 2571.80m Well 10 Secondary Anhydrite 27.1
SR514SA 2589.10m Well 5 Secondary Anhydrite 26.1
SR092SA 2513.71m Well 9 Secondary Anhydrite 27.8
SR432SA 2644.65m Well 4 Secondary Anhydrite 27.6
SR314SA 2258.93m Well 3 Secondary Anhydrite 26.8
SR613SA 2397.91m Well 6 Secondary Anhydrite 27.5
SR029SA 2653.07m Well 2 Secondary Anhydrite 26.7

Table 5 .2 : Strontium  8,Sr/“ Sr Results
Sample Depth Well# Phase Strontium Values

R092SA 2513.71m Well 9 Anhydrite 0.708042±14
R031PA 2245.45m Well 3 Anhydrite 0.708158±13
R214VC 2663.24m Well 2 Blocky Calcite 0.710289±18
R428VC 2639.47m Well 4 Blocky Calcite 0.708747±11
R106LC 2575.97m Well 10 Blocky Calcite 0.708408+10
R113LC 3575.86m Well 11 Blocky Calcite 0.709956±15
R113FD 3575.86m Well 11 Pore-Lining Dolomite 0.709690±70
R059LD 2584.22m Well 5 Dolomicrite 0.708229±10
R415FD 2624.81m Well 4 Fine- to Medium Crystalline Matrix Dolomite 0.710872±10
R518FD 2591.03m Well 5 Fine- to Medium Crystalline Matrix Dolomite 0.708426±15
R078SF 2756.74m Well 7 Fine- to Medium Crystalline Matrix Dolomite 0.708330±18
R093PG 2515.62m Well 9 Fine- to Medium Crystalline Matrix Dolomite 0.708448±11
R109PG 2583.69m Well 10 Fine- to Medium Crystalline Matrix Dolomite 0.708394±16
R037FD 2251.24m Well 3 Coarse-Crystalline Matrix Dolomite 0.710222±10
R615PG 2401.77m Well 6 Coarse-Crystalline Matrix Dolomite 0.709492±13
R087FD 3659.18m Well 8 Coarse-Crystalline Matrix Dolomite 0.709211 ±10
R112SG 3574.75m Well 11 Coarse-Crystalline Matrix Dolomite 0.710532±26
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time period, then this difference can be attributed to diagenetic alteration by younger 

seawater or to diagenesis by non-marine fluids. The 87Sr/86Sr ratio can therefore be used to 

date diagenetic events such as dolomitisation (if seawater is the source o f the fluids) and no 

recrystallisation has occurred since this event (Moore, 1989).

5.5.1 Strontium (®7Sr/86Sr) Isotope Results

A total o f 17 samples were analysed for strontium (87Sr/86Sr) ratios (Table 5.2) and 

were plotted against Famennian seawater values (Fig 5.4). Strontium values for carbonates 

precipitating from Famennian seawater are estimated at 0.70805 to 0.70830 (Veizer et al., 

1999). The values for primary anhydrites (n=2) are 0.70804 and 0.70816. These values are 

roughly coeval with Famennian seawater values. Blocky calcite values (n=4) range from 

0.70841 to 0.71029 with values that are within the range o f Famennian seawater and values 

that are significantly enriched with respect to Famennian seawater. These values reflect the 

different stages o f precipitation o f calcite cements within the Upper Stettler Formation and 

Crossfield Member. Dolomites (n=l 1) range from 0.70823 to 0.71087, with slightly enriched 

to significantly enriched isotopic values. The most radiogenic samples are the medium- 

crystalline and coarse-crystalline matrix dolomites that may have been the product o f 

recrystallisation processes that produced overall coarser dolomite fabrics. The fine- 

crystalline matrix dolomites and dolomicrites appear to have precipitated in fluids closer to 

Famennian seawater values. Recrystallisation processes may therefore have essentially reset 

the original signatures o f  medium- and -coarse- crystalline matrix dolomites whereas the 

fine-crystalline dolomites represent closer to original precipitation conditions. An alternative 

explanation is that the coarse-crystalline matrix dolomites may have precipitated from more 

radiogenic pore fluids with increasing depth. The one sample o f saddle dolomite is also 

characteristically more radiogenic than Famennian seawater.
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Chapter VI

Discussion and Interpretation:
Diagenesis in the Upper Stettler Formation and Crossfield Member 

6.1 Introduction

The diagenesis and dolomitisation o f the Upper Stettler Formation and Crossfield 

Member began soon after deposition and continued into the deep burial realm. The 

diagenetic features observed in the study area through the use o f petrography and isotope 

geochemistry are discussed in the following sections. An outline o f the diagenetic processes 

that occur from deposition through to deep burial is explained in terms o f burial depths, 

timing, and the composition o f pore-fluids. The interpretation of this diagenetic history and 

the relationships between diagenetic events is summarised in the form o f a paragenetic 

sequence (Fig 6.1).

6.2 Early Diagenesis

Shortly after deposition there is evidence o f the possibility o f  early lithification in 

sediments deposited in supratidal and upper intertidal environments. Finely laminated 

sediments have little intercalation between laminations and although there exists minor 

truncations o f evaporite cements, for the most part, laminae are intact (James and Choquette, 

1990). In the upper intertidal realm, there is evidence o f intraclastic material in fine peloidal 

mudstones that is further suggestive o f early lithification (Erickson et al, 1994). In lower 

intertidal through subtidal settings, there is however, little evidence o f early lithification.

Cementation is limited to minor calcite cements (which will be discussed in the 

following sections) within lower intertidal through shallow subtidal realms but this 

cementation does not occur on an extensive scale within either depositional setting. The 

precipitation o f evaporites is documented within some upper intertidal areas that may have 

been periodically exposed. The formation of evaporites in supratidal settings, with extensive 

precipitation o f primary anhydrite and gypsum, is commonly deposited as nodules or thin 

laminations.

Micritisation is the earliest diagenetic feature that can be observed within all o f  the 

wells (1-11) (Plate 4-1). These micritisation processes are limited to bioclastic and peloidal 

grainstones through floatstone/rudstones that are interpreted to have developed in the lower
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Diagenesis Early ► Late
Micritisation
Dogtooth ca lcite T  I I
Drusy Mosaic ca lcite - - - - - h -  I I
Dissolution I I- - - - - - -  I I
Syntaxial ca lcite I- - - - - -  I I
Early Stylolitisation
Fracture I I I I
Pervasive matrix dolomite I - - - - - - - - - - 1- - - - - -  1
Blocky ca lcite  I 1 1 -  1 i i i
Dissolution seam s i i 1

■ ■ I
Dissolution-seam dolomite 1 I 1

i i i
Fracture II l i 1
Dissolution II i i 1

I t . . . . . . . . . . . . . . . . .  I
Recrystallisation 1 ■ 1 

1 1 1Secondary Anhydrite
Fracture-lining dolomite 1 1 J _
Chemical Com paction II 1 1 1
Dissolution III 1 1 1
Fracture III 1 I ■ T S RSecondary Late Anhydrite I I I I
Elemental sulphur I i I )
Saddle dolomite I I i 1
Blocky Calcite II i I i 1
Dissolution IV
Asphaltene/bitumen
Fracture IV I I I —

ON SET O F  OIL W IN D O W

Sea floor Shallow burial intermediate Deep Burial 
(600-1000 m) (2000-3000 m) (3000 + m)

Figure 6*1: Paragenetic sequence of early through late diagenetic 
events and calcite, dolomite, and anhdyrite/gypsum phases in the Upper 
Stettler Formation and Crossfield Member. Depth adapted from Machel (1999).
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intertidal through shallow subtidal depositional realms. Micritisation features include 

micritic envelopes developed around bioclastic material, clumping o f peloidal grains, and the 

complete micritisation o f bioclastic material.

Neomorphic alteration o f aragonitic and high-magnesium calcite within bioclasts 

occurred early in the diagenetic history. Two other significant neomorphic alterations 

occurred within the study area and were continuous processes throughout the diagenetic 

history o f the Upper Stettler Formation and Crossfield Member: (1) the first detailed 

nemorphism is the pseudomorphic alteration o f anhydrite to gypsum and gypsum to 

anhydrite, and (2) the recrystallisation o f fine- to medium-crystalline matrix dolomites (Plate 

4). Both o f these processes will be discussed in greater detail in the following sections.

6.3 Calcite Cementation
With the exception o f blocky calcite cements that precipitated throughout the 

diagenetic history o f the study area, there are few examples o f other types o f calcite cements. 

Other calcite cements are minor to rare and in many cases, are only visible within the Giroux 

Lake area (well 1). The only calcite cements that were geochemically sampled for isotopic 

analysis are the blocky and the syntaxial calcites. The other calcite cements that have been 

identified were too fine to be sampled without risk o f contamination. As a result, the timing 

o f dogtooth calcite, bladed to equant calcites, and drusy mosaic calcites are derived solely 

from petrographic evidence from limited undolomitised strata.

6.3.1 Dogtooth, Drusy Mosaic, and Bladed to Equant Cements

Dogtooth cement is very fine-crystalline and evident along the edges of fossil 

fragments in interparticle pore spaces and can be characterised as meteoric, marine-phreatic 

or shallow burial (Fliigel, 2004). This type o f cement most likely developed in the shallow 

subsurface in conjunction with the precipitation of drusy mosaic calcites within interparticle 

pore spaces. Both cements infill interparticle/intraparticle pore spaces within fossil molds 

created from shallow dissolution processes (Plate 8). Unfortunately, the lack o f isotopic data 

makes a more precise determination o f timing difficult.

Bladed to equant cements are typically marine cements (Carpenter and Lohmann,

1989), however this can also be interpreted to be a burial cement (Choquette and James,

1990). This cement precipitates in vugs with blocky I calcite cement, and as a result, it is
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interpreted to have precipitated at moderate burial at early/intermediate stages in the burial 

history.

6.3.2 Syntaxial Calcite Cement

Syntaxial calcite cements are typically cloudy and twinned in the Upper Stettler and 

Crossfield (Plate 8). Generally, syntaxial cements precipitated in marine vadose or phreatic 

environments tends to be cloudy (and may be inclusion-rich), whereas syntaxial cements 

formed with burial depth are clear (Fliigel, 2004). However, the growth o f syntaxial cements 

has also been interpreted to be o f meteoric, marine, or deep-burial origin (Walker et al.,

1990). The cloudy nature o f the crystals o f syntaxial calcite in the Upper Stettler and 

Crossfield suggest that it precipitated from marine or meteoric-marine waters. The isotopic 

signatures o f oxygen and carbon for syntaxial cements (8180  = -4.38 to -6.05 %o VPDB and 

813C = 0.44 to 2.00 %o VPDB) suggest that it precipitated in fluids that were slightly depleted 

in 8lsO from typical Famennian seawater (Famennian seawater: 8lsO = -4.5 and 813C= +2.0 

%o), but are consistent with precipitation from Famennian seawater for 813C values. The 

signatures suggest that the syntaxial cements have precipitated from Famennian seawater and 

the slightly lighter 8lsO values are the result o f modified pore fluids with shallow burial. 

Evidence for shallow burial is further corroborated with the identification o f syntaxial 

cements forming between bent/broken bioclasts. Precipitation between bent/broken bioclasts 

indicates that some mechanical compaction had occurred with burial prior to the 

precipitation o f syntaxial cements. The syntaxial crystals have also been affected by 

mechanical compaction processes with the development of mechanically twinned crystals.

6.3.3 Blocky Calcites I -  II

Volumetrically, blocky calcites are the most abundant calcite cement and have 

precipitated during various stages in the diagenetic history o f the Upper Stettler and 

Crossfield (Fig 6.2). Blocky I calcites precipitated in the intermediate burial stages o f the 

units, developing in dissolution vugs and fractures (Plate 8). This calcite is often relatively 

clear and inclusion-free (although there are some examples o f  rare anhydrite replacement), 

and forms medium through coarse (up to 800pm) crystals. Isotopically, they are depleted in 

8lsO (values o f -5.65 to -7.90 %o VPDB) and more significantly depleted in S13C (values o f - 

0.39 to -10.90 %o VPDB). With increased temperature associated with burial, 8lsO values 

tend to become isotopically lighter (Coniglio et al., 1994). The 8lsO values o f the cements 

are probably depleted as a result o f increasing temperatures from precipitation at
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intermediate depths through the burial process. Depletion in 813C is often an indication o f the 

effects o f increased organic matter with burial (Yang et al., 1995). The progressive depletion 

o f S13C values is therefore most likely an indication o f the interaction o f sediments during 

burial with pore fluids that have a higher organic content. The strontium 87Sr/86Sr values 

(0.70841 -  0.70875) for blocky I calcite are slightly more enriched than that o f Famennian 

seawater (values o f  0.70805 to 0.70830 ffomVeizer, 1997), which indicates that original 

signatures have not been significantly altered, suggesting that the blocky I calcites 

precipitated fairly early in the diagenetic history o f the Upper Stettler Formation and 

Crossfield Member.

Blocky II calcite cements are interpreted to be late-stage burial cements and 

represent the latest diagenetic cement in the Upper Stettler and Crossfield. They are vug and 

fracture-occluding cements that are typically cloudy, asphaltene-stained, and coarser than 

blocky calcite I (forming up to 1.2 mm crystals). These calcites are often identified replacing 

secondary anhydrites and in association with elemental sulphur and saddle dolomite cements. 

The isotopic composition o f the cements is significantly depleted in both oxygen and carbon 

(8lsO = -8.24 to -11.1396o VPDB and 8,3C = -9.14 to -22.60 %o VPDB) (Fig 5.1). In terms o f 

strontium 87Sr, blocky II calcites represent one o f the most radiogenic phases (with values o f 

0.70996 to 0.71029) relative to the typical strontium 87Sr/86Sr values o f Famennian seawater.

Depleted 8lsO may be a result o f increased temperatures with burial in conjunction 

with changes in the S180  o f the formation fluids from which the calcites precipitated from 

(Mountjoy et al., 1999). The 8I3C values of calcite cements can be used to identity the 

influence o f meteoric fluids to the pore fluids, the oxidation o f thermogenic or biogenic CH4, 

whether or not CO 2 from microbial processes or the maturation o f organic matter affected 

pore fluids, or whether thermochemical sulphate reduction occurred (Machel and Cavell, 

1999).The significantly depleted 813C of the blocky II calcite is most likely related to high- 

temperature TSR processes [as a reflection o f the generation o f CO2 by the oxidation o f 

hydrocarbon gases (Krouse et al., 1988)]. Temperatures at which the calcite cement 

precipitated were probably greater than 150”C, as this is the minimum temperature at which 

late-stage calcites replace late diagenetic anhydrites in wells that have been affected by TSR 

reactions (Heydari and Moore, 1989). The strontium 87Sr /86Sr ratios further support 

precipitation from pore fluids mixed with low fluxes of increasingly radiogenic fluids that 

may be the result of tectonic loading and basin evolution or compactional processes related 

to the Late Devonian- Early Mississippian Antler Orogeny, but more likely related to the 

Laramide Orogeny in the Late Cretaceous to Early Tertiary. This rationale is based on
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studies o f similar Devonian carbonates in the Alberta Basin that have precipitated vug- 

occluding late-stage blocky calcites with comparable isotopic signatures and petrographic 

characteristics (Machel and Cavell, 1999; Buschkuehle and Machel, 1999).

6.4 Dolomitisation

Dolomitisation is one o f  the most significant diagenetic events to occur in the Upper 

Stettler Formation and Crossfield Member (Plates 9 & 10). In terms o f diagenetic alteration, 

it has affected all the facies in wells 1-11 and is an important factor in understanding the 

changes in porosity and permeability that have occurred in the study area. Ultimately, 

porosity and permeability characteristics are greatly affected not only by pervasive matrix 

dolomitisation processes but also by the development o f dolomite cements that have 

precipitated throughout the burial process.

6.4.1 Characteristics of Pervasive Matrix Dolomite
It is likely that all o f  the matrix dolomite in wells 2-11 was precipitated from a similar 

dolomitisation mechanism early on in the diagenetic history o f the Upper Stettler Formation 

and Crossfield Member. The criteria for early pervasive dolomitisation events occurring in 

the shallow burial diagenetic realm and the characteristic features o f these matrix dolomites 

include:

(1) Dolomitisation occurs in sediments that are relatively unlithified, and the degree 

o f preservation o f  the original fabrics (such as fenestrae and peloidal grains) is quite 

significant in the dolomicrite and fine- to medium- crystalline matrix samples. The 

preservation o f precursor depositional fabrics indicates that the dolomitisation o f sediments 

occurred prior to any fabric-destructive diagenetic processes associated with increased burial.

(2) The development o f sub-parallel, anastomosing microstylolites that were 

subsequently healed by matrix dolomitisation processes suggests that the sediments 

underwent shallow burial prior to dolomitisation. However, subsequent fabric-destructive 

episodes o f  stylolitisation and the development of dissolution seams cross-cut dolomite 

matrix fabrics and indicate that most major chemical compaction events occurred with 

increasing depth and after the pervasive dolomitisation o f the precursor matrix.

(3) Matrix dolomite is relatively fine- to medium- crystalline and ranging from (<10 

pm -  200pm) with the mean size range o f <100pm. Coarse- crystalline dolomite ranges from 

200pm to 450pm and is most significant in wells 8-11, these coarse- crystalline dolomites
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indicate that recrystallisation processes have occurred with burial and they will be further 

discussed in section 6.7.

(4) The fabric o f the matrix dolomite ranges from planar-s to nonplanar, is typically 

non-luminescent to very dully luminescent and is pale to dull green to non-fluorescent. 

Replacement o f precursor limestone is generally mimetic, with most original depositional 

structures preserved. Within the coarse- crystalline dolomites, dolomitisation is often fabric- 

destructive and the identification o f precursor fabrics is difficult (precursor fabrics are 

especially difficult to determine in wells 8 ,9 , and 11).

(5) The isotopic (oxygen and carbon) composition o f the dolomites ranges from 5I80  

o f -4.79 to -6.17 %o (VPDB) (with one outlier o f -2.82 %o) and 813C values o f 0.22 to 1.47 %o 

(VPDB) (mean value o f -5.33 and with one outlier o f -0.91) for all o f  the dolomicrite and 

fine-crystalline dolomite matrix samples. These values are slightly more depleted 

isotopically than Famennian carbonates precipitating in equilibrium with seawater (the 

values would also be expected to be slightly more positive as a  result o f  the effects o f 

evaporation). The amount o f depletion is likely the result o f recrystallisation processes that 

have affected the matrix dolomite during subsequent burial diagenesis. Coarse-crystalline 

matrix dolomites reflect this recrystallisation by a further depletion in oxygen isotopic values 

and a slight depletion in carbon values. The composition o f coarse-crystalline dolomites 

range from -4.22 to -8.32 %o (VPDB) for 8180  (with a mean value o f -5.65) and from -1.14 to 

1.19 96o (VPDB) for 513C values (Fig 5.2).

(6) Strontium 87Sr/86Sr values o f the matrix dolomites indicate that the dolomicrite 

and fine-crystalline dolomite precipitated from Famennian (or evaporated) seawater, these 

values are close to values for Famennian seawater o f 0.70805 to 0.70830 (Veizer et al., 1999) 

(Fig 5.4). The primary evaporite values are also close to Famennian seawater values which 

further suggests that the dolomicrite and fine-crystalline matrix dolomite precipitated from 

Famennian seawater. Coarse-crystalline and medium-crystalline matrix dolomites are 

slightly more radiogenic and in conjunction with oxygen/carbon values, may further confirm 

that recrystallisation processes have diagenetically altered matrix dolomites during the burial 

process.

6.4.2 Pore-Lining Dolomite Cement

Pore-lining dolomite is a very minor phase in the Upper Stettler Formation and 

Crossfield Member. It typically occurs in wells 2 through 10 as a pore-lining cement in
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fenestrae and as a intermediate vug-occluding cement. The isotopic composition o f this 

cement is relatively depleted with regard to oxygen values but is in a similar range to values 

o f coarse-crystalline dolomites [5I80  = -4.42 to -8.32 %o and S13C= -1.14 to 1.19 %o (VPDB)] 

(Fig 5.2). The oxygen values suggest that this cement precipitated at some depth, but the 

carbon values indicate fluids that have not been affected by deep burial processes and 

organic reactions. The carbon values are similar to what would be expected from Famennian 

seawater (Veizer et al., 1999), and as a result, the lack o f diagenetic alteration o f carbon 

values with depth combined with slightly depleted oxygen values are suggestive o f an 

intermediate burial after initial pervasive dolomitisation episodes that reflect values 

associated with the timing o f coarse-crystalline matrix dolomite. There is also the possibility 

that the correlation o f these dolomites with coarse-crystalline matrix dolomites may be a 

result o f  contamination during extraction as a result o f the close spatial relationship between 

the two dolomite types.

6.4.3 Dissolution-Seam Associated Dolomite

This dolomite began to precipitate after the first episodes o f pervasive dolomitisation 

and continued to precipitate with continued burial. Its occurrence with dissolution-seams of 

insoluble residues o f  clays, organics, and iron-rich residues indicates that chemical 

compaction had already started to alter the sediments. Chemical compaction begins to affect 

sediments at subsurface burial depths o f at least 10’s to 100’s metres (Tucker, 1988). The 

destruction o f fine- to medium- crystalline matrix dolomite by dissolution-seam dolomite 

indicates that this dolomite must have developed with some depth and after initial pervasive 

dolomitisation had occurred.

The oxygen and carbon isotopic compositions o f dissolution-seam dolomite (8lsO = -

4.66 to -6.51 %o and S13C = -1.09 to 2.14 %o VPDB) suggest that it occurred during multiple 

pressure solution events throughout the diagenetic history o f the study area. Oxygen and 

carbon values (Fig 5.2) reflect two trends: first, relatively early burial signatures with slightly 

depleted values from Famennian seawater, and secondly, more significantly altered carbon 

values that suggest interaction with more carbon-depleted fluids with slightly higher organic 

content. Isotopic values are notably higher in well 10 outside o f the Crossfield trend whereas 

Crossfield trend wells tend to have values more compatible with Famennian seawater. This 

discrepancy is most likely the result o f the greater diagenetic alteration in the wells west o f 

the Crossfield trend that has been observed both petrographically and geochemically in all of
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the wells 8 through 11. This dolomite therefore developed in more than one stage in the 

diagenetic history o f the Upper Stettler and Crossfield, but for the most part, it is an 

intermediate to late diagenetic event that occurred with deeper burial. Its isotopic signature 

suggests however, that it is not one o f the latest diagenetic features in the diagenetic history 

o f the study area.

6.4.4 Saddle Dolomite Cement

Saddle dolomite is a late-stage diagenetic cement in wells 5 through 8 and 10 & 11 

(Fig 6.1). This dolomite is also significantly more abundant in wells 10 & 11. In all o f  these 

wells, saddle dolomite is a fracture and vug-occluding phase that is commonly associated 

with blocky calcite and secondary blocky anhydrite, and is often asphaltene-stained. The 

significance o f this cement is that it typically precipitates at high temperatures, and is often 

associated with sulphide mineralization and hydrocarbon occurrences (Radke and Mathis, 

1980), further substantiating that it is a high temperature and/or late burial cement. The 

texture o f saddle dolomites occurring in the Upper Stettler Formation and Crossfield 

Member are predominantly coarse (up to 2mm crystals), subhedral to anhedral crystals, with 

undulose extinction and curved crystal faces. The presence o f saddle dolomite is an 

indication o f the high temperatures o f precipitation, suggested temperatures o f 60 - 150°C or 

within the oil window (Searl, 1989), and the high salinity o f  pore fluids (Machel, 1987).

The oxygen and carbon isotopic values for saddle dolomite samples are relatively 

similar to that o f  pervasive dolomites, but with slightly more depleted oxygen (S180 )  values 

[mean of

-6.30 %o (VPDB)] and more significantly depleted carbon (813C) values [mean o f -2.40 %o 

(VPDB)]. Lower values are expected with higher salinity pore fluids associated with burial 

(Machel, 1987). The formation o f hydrocarbons and TSR reactions in the presence o f organic 

matter will lower the overall SO42' content of the fluids, increasing the alkalinity and aiding 

in the precipitation o f saddle dolomite (Davies, 2000). These factors will also contribute to 

the overall depleted oxygen and carbon isotope values.

6.5 Dolomite Recrystallisation Features

Characteristics o f recrystallisation fabrics include: (1) a negative shift in 8lsO and an 

enrichment in 87Sr/86Sr values (Al-Aasm and Packard, 2000), (2) an increase in overall 

crystal size and nonplanar over planar crystal faces (Kupecz et al., 1995), (3) crystal
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overgrowths (identified with CL) and etched cores (Al-Aasm, 2000), (4) Increasing dolomite 

stoichiometry and ordering with increased depth (Kupecz et al., 1995).

There are two distinctive size ranges o f pervasive matrix dolomite crystals, the first 

size range (<10 -  200pm) and the second size range (>200pm- 450pm) are indicative of 

crystallisation from different types o f pore fluids. Typical coarse-crystalline dolomite in the 

study area has etched cores and partially-dissolved edges, and appears to have bright, clear 

rims and cloudy cores under both CL and Epi-Fluorescence. The 87Sr/86Sr ratios plotted 

against 8180  indicate that coarse-crystalline dolomites have undergone a degree of 

recrystallisation in contact with more radiogenic pore fluids that are enriched in 87Sr (Figure 

6.3). In this same plot, oxygen values are isotopically heavier with increasing87Sr 

enrichment. Two possible explanations may be given for this: (1) with increased burial 

(typically 8180  values would become lighter) the more positive values may be an indication 

o f relatively low water-rock interaction in which recrystallisation processes are 

occurring.The dilution o f pore waters with slightly-increased 8lsO compositions may be 

reflected in the recrystallised dolomite, (2) the system may have been affected by isotopic re

equilibration during recrystallisation that was essentially a continuous process after early 

pervasive dolomitisation and occurred through to deep burial (Erickson et al., 1994).

6.6 Well Comparison of Diagenetic Alteration

The dolomitisation o f wells along the Crossfield trend (wells 2-7) were compared 

with the wells west o f the Crossfield trend (wells 8-11) in terms o f the degree o f 

dolomitisation observed and the nature o f the dolomite fabrics (Fig 6.4). The following 

differences were observed:

(1) Dolomite crystal sizes tend to be coarser, with predominantly coarse-crystalline 

dolomites in wells 8-11. The dolomite fabric in these wells also tends to be planar-e, 

whereas in wells 2-7, the typical fabric is planar-s to nonplanar.

(2) There are undolomitised intervals within wells 8- 11 (particularly in wells 8-10), that 

may be indicative o f the edges o f a variable dolomitisation front that has developed 

through episodic dolomitisation processes. In contrast, all o f wells 2-7 have been 

completely dolomitised and there are no intervals of undolomitised strata.

(3) Within wells 8-11, there is significantly less anhydrite observed in the Upper Stettler 

evaporites in comparison to wells within the Crossfield trend (2-7).
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(4) The oxygen and carbon isotope values show some variation between wells 2-7 and 8-11 

(Figure 6.3). Isotopic values show slightly more depleted 5180  and 8 13C in wells 8-11 

indicating more progressive diagenetic alteration and recrystallisation with burial in 

these wells.

(5) Porosity characteristics within pervasive matrix fabrics in well 8-11 indicate the 

presence o f more extensive dissolution processes with increased vuggy porosity that 

cross-cuts matrix dolomite fabrics. Within these vugs are asphaltene-stained cements of 

late-stage sulphides, saddle dolomite, and blocky II calcite. Within wells 2-7, vugs within 

matrix dolomite fabrics are commonly not asphaltene-stained and with the exception of 

well 4, there is a limited occurrence o f elemental sulphur.

(6 ) There is an abundance o f H2 S within the wells outside o f the Crossfield trend in 

comparison with the region where wells 2 to 7 are drilled (Eliuk, 1984). This disparity 

may be directly related to the degree o f TSR reactions occurring within these wells.

Characteristics o f greater diagenetic alteration and dolomites precipitated from 

modified pore waters are more evident in wells 8-11 than along the Crossfield trend. In well 

1 1  in particular, significant generations o f fractures suggest that this well at least has been 

exposed to larger-scale tensional or compressional processes. These networks of 

compressional fractures are relatively well-developed in well 1 1  and probably developed 

with significant burial. The timing o f late-burial fracturing may be related to episodes of 

compression associated with the Laramide Orogeny (Al-Aasm and Clarke, 2004; Erickson et 

al., 2004)

6.7 Dolomitisation Models

Most modem dolomite precipitation is penecontemporaneous, and forms patchy 

concentrations comprising units less than lm  thick. In contrast, ancient dolomites are found 

to be much more laterally extensive and can form units that are hundreds o f metres thick 

(Warren, 1989). Several conditions must be met in order for large-scale dolomitisation, 

similar to those formed in ancient settings to occur (Morrow, 1990): (1) There must be a 

sufficient supply o f Mg2+ ions available for the development o f any significant amount of 

dolomite; (2) A delivery mechanism is necessary to transfer the Mg2+ ions to the site of 

dolomitisation; and, (3) The composition o f the dolomitising fluids must be conducive to 

dolomitisation ie. the fluids must be able to overcome any kinetic inhibitions to
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dolomitisation (Machel, 2004). Any proposed dolomitisation models for large-scale 

dolomitisation processes will be viable only if the above conditions are met.

Proposed models for dolomitisation involve many different types o f fluids, including 

marine brines, continental brines, normal seawater, and modified seawater (from 

evaporation, sulphate reduction, or mixing with meteoric water) (Warren, 1989). There are a 

number o f proposed dolomitisation models for large-scale dolomitisation processes that 

involve each o f these fluid types. These dolomitisation models will be discussed briefly in 

the following sections, and a mechanism will be suggested for the dolomitisation o f the 

Upper Stettler Formation and Crossfield Member. The dolomitisation models that will be 

discussed include: (1) Sabkha (evaporative) model; (2) Seepage-Reflux model; (3) Seawater 

(Kohout) models; (4) Mixing-zone models; (5) Burial Compaction models and 

hydrothermal/tectonic models. The basic description o f these models is taken from Machel 

and Mountjoy (1986), Tucker and Wright (1990), Warren (1989 & 2000), Morrow (1990), 

Machel (2004), and Fliigel (2004).

6.7.1 Sabkha Model

Modem dolomitisation in the Arabian Gulf sabkhas involves flood (marine) recharge 

processes during the winter and spring through storm, wind, and tidal action on to supratidal 

flats (Tucker and Wright, 1990). Dolomitisation occurs along tidal channels and lagoons, in 

areas that have been exposed to the maximum flux o f seawater through the sabkha and due to 

intense evaporation, hypersaline brines develop (Warren, 1989; Muller et al., 1990). Since 

areas o f  dolomite growth follow both the strandline and inland along tidal channels, whilst 

forming seaward in the vicinity o f tombolo islands, a specific pattern o f growth develops 

(Warren, 1989). Although this is not an agreed upon mechanism based on possible mass- 

balance problems (Hardie, 1987), a dolomitisation mechanism referred to as “evaporative 

pumping” may result after the flood recharge on to the sabkha leads to the downward 

movement o f water through the sediments (Hsii and Siegenthaler, 1969). This downward 

flow connects with seaward-flowing groundwater. Evaporative pumping occurs when 

evaporation takes place from the capillary zone above the water table, which induces an 

upward flow in groundwater to the capillary zone, until the water-table falls below the 

capillary zone (Sanford and Wood, 2001). It has been suggested that there exists two 

different fluid sources for sabkha dolomitisation, a seawater source on the seaward side and a 

continental source on the landward side (Mckenzie et.al, 1980). Changes in porewater
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chemistry are the result o f  the evaporation and precipitation o f minerals and the mixing of 

marine-derived fluids with these continental brines (Hardie, 1987).

Dolomite precipitated in sabkha environments has some o f the following 

characteristics:

(1) Although there is dispute over whether dolomite develops as a primary mineral, 

or as a secondary replacement o f fine-grained aragonite muds (Hardie, 1987), most sabkha 

dolomite is considered to be o f secondary origin (Machel and Mountjoy, 1986).

(2) The crystal size o f the dolomite is typically fine (l-20pm ) and tends to increase 

inland across the sabkha (Tucker and Wright, 1990) and although there are rare sources o f 

calcium-deficient dolomite (Gunatilaka et al., 1987), most sabkha dolomite is calcian-rich 

and poorly-ordered (Patterson and Kinsman, 1982).

(3) Typical dolomite (protodolomites) form in thin beds or crusts replacing 

aragonitic and gypsum sediments and are associated with a variety o f evaporite minerals 

(mainly calcium sulphates) (Machel and Mountjoy, 1986).

(4) Due to repeated eustatic and/or relative sea -level changes, sabkha sediments are 

commonly formed in distinctive shallowing-upward cycles with undolomitised shallow- 

marine or lagoonal sediments at the base, overlain by dolomitised intertidal sediments 

grading into sulphate-rich dolomitised supratidal sediments (Machel, 2004).

(5) The 8 lsO o f  sabkha waters (of marine origin) tend to vary and become 

isotopically lighter with distance from the lagoon (following evaporation trends). This 

pattern is explained by the circulation of waters within the lagoon and the influence o f wind 

strength and direction on salinity distribution (Mckenzie et al, 1980).

6.7.2 Seepage-Reflux Models

This model is quite similar to the mechanism associated with the sabkha model but 

the reflux model is often used to explain the thicker, larger-scale dolomitisation patterns 

(associated with evaporites) in the ancient record (Warren, 1989). Seepage-reflux models 

simply involve the evaporation o f marine water as it passes landward across a hypersaline 

lagoon, increasing the density o f the evaporated waters. These dense hypersaline fluids 

infiltrate underlying sediments and move seaward by seepage (reflux) through the underlying 

beds (Morrow, 1990). Reflux systems develop as a result o f differences in fluid density 

created by the development o f spatial salinity differences (Jones and Xiao, 2005). This 

density instability is what causes the brine to displace the underlying marine waters that are
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o f lower density (Shields and Brady, 1995). If  the platform is isolated due to a barrier (such 

as a reef mound), this barrier can effectively aid in the generation o f brines due to the 

increased isolation and subsequent evaporation o f seawater (Jones and Xiao, 2005).

Suitable fluids that are conducive to the dolomitisation o f the underlying sediments 

occurs as a result o f  the precipitation o f gypsum and anhydrite (that effectively removes 

sulphate from the fluid source) in conjunction with the large source o f Mg2+ ions in the 

evaporated seawater (Morrow, 1990).

Dolomites suggested to have developed from seepage-reflux systems typically have 

some of the following characteristics:

(1) They are often found in close stratigraphic association with platform interior 

evaporites (Adams and Rhodes, 1960). The top o f the dolomite body lies beneath a 

widespread, evaporitic horizon (Warren, 2000).

(2) Dolomites created by reflux mechanisms tend to be fine to medium crystalline 

[10-100pm (Warren, 2000)], matrix-selective (and mimetic-replacive), non-luminescent 

(Melim and Scholle, 2002) and may be inter-grown with abundant gypsum and anhydrite in 

layers and nodules (Machel, 2004).

(3) The dolomite body that develops in reflux models is both asymmetric and tabular 

and extends downward from the platform surface, thinning basinward and with increasing 

depth (Jones and Xiao, 2005).

(4) If  not reset by the effects o f burial, the 5I80  values o f reflux dolomites (along 

with trace elements o f Sr and Na) tends to increase away from the evaporite dolomite contact 

or the source o f the refluxing brines (Warren, 2000). The overall isotopic signature o f the 

dolomite would however, be expected to be relatively enriched with respect to both trace 

elements and 8 lsO, as a result o f precipitating from evaporated seawater (Tucker and Wright, 

1990).

6.7.3 Seawater/Tidal Pumping (Kahout) Models

There are many seawater-type models that have been used to explain widespread 

dolomitisation processes and these models essentially describe dolomites that have formed 

from marine to slightly modified seawater in marine settings. The basis o f the models is that 

seawater itself is capable o f  dolomitising sediments provided there exists an efficient 

pumping mechanism to move the fluids through the carbonate sediments (Land, 1985;

Flugel, 2004). Mechanisms that have been used to explain seawater dolomitisation include
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tidal pumping through the pumping of large amounts o f seawater through sediments (Caballo 

et al., 1987).

Kohout convection occurs (in water depths ranging from 1-3 km) as a result o f the 

creation o f a horizontal density gradient between cold marine waters that are adjacent to a 

carbonate platform and geothermally heated groundwater within the platform (Fliigel, 2004). 

Seawater is drawn into the platform margin, displacing less dense (and warmer) porewaters 

within the platform which subsequently emerge as springs on the platform (or platform edge) 

(Tucker and Wright, 1990).

Characteristics o f  dolomitisation from seawater to slightly-modified seawater are 

similar to that o f  a mixed origin and include:

(1) Seawater dolomitisation typically occurs at shallow-intermediate depths within 

predicted temperatures at these depths (Machel, 2004).

(2) Some more recent dolomites from Florida indicate that initial dolomite 

precipitates are fine crystals (1-5 pm) that are Ca-rich, poorly-ordered, and euhedral (Caballo 

et al., 1987). Dolomite textures are somewhat variable (although they are typically fine- 

crystalline) due to the wide range o f precipitation conditions for seawater models.

(3) Since the dolomite has precipitated from seawater, the strontium values o f the 

dolomites should reflect seawater at the time o f precipitation (Allan and Wiggins, 1993). 

Stable isotope composition o f  dolomite would be relatively light [positive values o f both 

8 lsO (+2.0 to +4.0 %o PDB approximately) and 513C are seen in most examples, albeit these 

dolomites are typically from the more recent geologic past], also reflecting marine waters at 

the time of precipitation (Warren, 2000).

(4) Ancient units o f dolomite produced from seawater are often part o f a stacked 

peritidal, platform succession. Although seawater could transport dolomitising fluids to more 

central areas o f the platform, dolomitisation would typically occur further from the central 

portions o f large platforms (Warren, 2000).

(5) Dolomites precipitated mostly from seawater or slightly-modified seawater, 

typically do not have spatially-associated evaporitic assemblages (Nicolaides, 1997).
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6.7.4 Mixing Zone Models
The idea behind mixing-zone models (or dorag dolomitisation) is that by mixing 

seawater with freshwater the resulting fluid will be more conducive to dolomitisation as the 

high Mg/Ca ratio is still maintained but the kinetic obstacles associated with the high ionic 

strength o f seawater is overcome (Badiozamani, 1973). In this particular model, the main 

supplier o f Mg2+ is seawater and active groundwater movement acts as the pump to drive 

dolomitising fluids through sediments (Tucker and Wright, 1990). In general, mixing-zone 

models are only viable models in humid areas, as there is not sufficient fresh water to form 

an extensive mixing zone in arid regions and the flow rates are also too sluggish to supply 

the required magnesium (Warren, 1989).

Some characteristics o f dolomites formed in mixing zone environments include:

(1) Dolomites produced in mixing zones are rarely associated with evaporites (or 

their pseudomorphs) (Warren, 1989).

(2) The textures o f dolomites in a zone o f mixing o f seawater with phreatic meteoric 

waters determined by Land (1973) consists o f relatively fine (8-25 pm), subhedral to euhedral 

crystals that are replacing micrite or infilling void spaces. The isotopic composition in this 

particular study was 8 lsO = -1.0 %o and 8 I3C = -8.4 %o. These are relatively low carbon 

values that are a reflection o f heavier groundwater and slightly depleted oxygen values that 

are in the range o f typical seawater signatures. In general, there is a positive covariance 

between 8 lsO and 8 13C compositions (Allan and Matthews, 1982).

(3) Lu and Meyers (1998) suggested a mixing-zone model for the mixing of 

evaporative brines and meteoric fluids in a study in Nijar, Spain. In this particular study, 

dolomite textures and sizes are variable (indicating that the chemistry o f the dolomitising 

fluids developed during the mixing process is an important control on the type o f dolomite 

produced, and as a result, may be highly variable). Dolomites varied from <10-100pm, 

forming as both replacements and cements, with isotopic signatures in the range o f 8 lsO = - 

1.0 to +4.2 %o PDB and 8 13C = -4.0 to +2.0 %o PDB. In other words, the types of dolomite 

precipitated in mixing-zones are highly dependent on the fluid compositions o f each o f the 

contributing fluid sources.

(4) Dolomites tend to develop best along the edges o f sedimentary basins, but when 

evaporitic sediments are in the vicinity, dolomitisation may also be significant in the areas 

connected to these evaporitic facies (Warren, 2000). Mixing-zone dolomites also tend to 

occur on paleotopographic highs, where there is the possibility o f freshwater lenses (Warren, 

1989).
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(5) There is a common association with meteoric diagenetic features such as moldic 

porosity and pre-compaction isopachous calcite spar cement and other vadose cements 

(Tabem erand Santisteban, 1987).

(6 ) In several studies on mixing-zone dolomites, crystals have been determined to be 

inclusion-rich in the early stages o f precipitation, and develop a zoned texture as the 

chemistry o f the porewater evolves during later diagenetic stages (Folk and Land, 1975; 

Machel and Mountjoy, 1986).

6.7.5 Burial Compaction & Hydrothermal/Tectonic Models

In burial compaction models, the main mechanism is the compactional dewatering o f 

basinal shales and the expulsion o f Mg2+- rich fluids into adjacent shelf-edge and platform 

carbonates (Fliigel, 2004). The source o f  the Mg2+ is from porewater (usually a seawater- 

derivative) and changes in clay minerals that occur with increasing depth (Tucker and 

Wright, 1990). Compaction (resulting from burial and tectonic compression) tends to cause 

fluid flow pathways for fluids to travel either laterally or upward, and hydrodynamic head 

and density differences create lateral and downward flow o f formation fluids (Allan and 

Wiggins, 1993).

Tectonic (or squeegee) models are essentially another type o f  burial compaction 

model. In this model, metamorphic fluids are expelled from the crustal sections that are 

affected by tectonic loading causing movement o f fluids towards the basin margins. These 

fluids may then mix with burial compaction and/or topography driven flow resulting in fluid 

mixing (Machel, 2004).

Hydrothermal models involve the interaction o f buried units with circulating 

groundwater which can be explained by convection cells, where dense hypersaline brines are 

recirculated from great depths associated with crustal rocks to shallow depths by convection 

cells (Lovering, 1969; Morrow, 1990). The movement o f hydrothermal fluids may be also 

associated with tectonic compression and sedimentary loading (Qing and Mountjoy, 1994). 

Machel and Lonnee (2002) further suggest that a fluid should not be termed hydrothermal 

but rather geothermal if  it has not formed at a higher than ambient temperature (as the 

driving mechanisms and sources o f these fluids should not be considered in the definition). 

Regardless o f definition, hydrothermal models are essentially burial dolomitisation models 

(and not a separate model) with the added distinction that they are significantly involved in 

the mineralisation o f ore deposits (ie. MVT deposits) (Berger and Davies, 1999).
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Characteristics o f burial compaction and tectonically-associated dolomitisation 

processes and dolomite textures include:

(1) The texture o f dolomites tends to be sparry, nonplanar, and with saddle 

morphologies (suggesting temperatures o f precipitation that are higher than 50°C). Oxygen 

isotope values o f these dolomites shows a marked depletion (due to high-temperature 

precipitation) and carbon isotopes may also show depletion as a result o f hydrocarbon 

processes and the effects o f thermochemical sulphate reduction (TSR) (Warren, 2000).

(2) Other characteristic features seen as a result o f burial dolomitisation include: 

healed microfractures, relict stylolites within dolomite mosaics, dolomite fronts cutting 

across bedding in limestones, and textures where seams o f dolomite enclose millimetre to 

decimetre patches o f limestone as a result o f dolomitisation along stylolites (Zenger, 1983).

(3) There is no specific shape o f dolomite bodies, as dolomitising fluids can flow 

laterally or be cross-formational. Faults and fractures tend to produce narrow, linear dolomite 

bodies whereas lateral flow (often produced from dewatering o f a nearby basin) may produce 

much more extensive tabular bodies (Allan and Wiggins, 1993).

(4) In Alberta, there are several examples o f fracture and fault-controlled burial 

dolomitisation and compaction associated with dewatering (Mountjoy and Halim-Dihardja, 

1991; Green and Mountjoy, 2005; Machel and Anderson, 1989; Nesbitt and Muehlenbachs, 

1994). All o f these examples produce coarse-crystalline dolomites, although the amount of 

dolomite that can occur is significantly variable. In compaction associated with dewatering 

models (such as Machel and Anderson, 1989 and Nesbitt and Muehlenbachs, 1994), only a 

limited amount o f dolomitisation can occur as the fluid source itself is limited. However, the 

fracture and fault-controlled burial models allow for greater fluids to pass along conduits and 

hence, greater dolomitisation potential.

(5) Fluids produced as a result o f squeegee compaction (tectonic loading) may 

produce very hot and fast-flowing fluids that may recrystallise existing dolostones along its 

pathway (Machel and Cavell, 1999; Machel 2004), however, dolomites that are produced in 

this way become highly resistant to future recrystallisation processes (Machel et al., 1996).
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6.8 A Dolomitisation Model for the Upper Stettler Formation and 

Crossfield Member
Based upon the above definitions o f the dolomitisation models in conjunction with a 

petrographic and isotopic examination o f the Upper Stettler Formation and Crossfield 

Member, a seepage-reflux model most adequately explains the pervasive dolomitisation of 

the study area.

In terms o f  the other models, the following characteristics were not compatible with 

information obtained for the Upper Stettler Formation and Crossfield Member:

(1) The Upper Stettler Formation and Crossfield Member have an abundance of 

evaporites (gypsum and anhydrite) in all o f the wells examined which is a characteristic 

feature o f  sabkha models and evaporative depositional settings in general. However, the 

growth o f  evaporites and the patterns o f dolomitisation are much more widespread in 

occurrence both vertically (much greater than 1.5m) and laterally, wherein the study area 

sediments are not found in the typical sabkha pattern o f 1-1.5 metre thick precipitation 

patterns along tidal channels.

(2) There is no evidence o f a progressive increase in crystal size inland which is an 

important characteristic o f the sabkha model.

(3) The isotopic composition o f the matrix dolomites does not indicate a pattern o f 

lighter oxygen values with sediments from the shallow subtidal inland towards lagoonal 

sediments characteristic o f sabkha models.

(4) Although it is not impossible, both seawater and mixing-zone models do not tend 

to have spatially-associated evaporites involved in the precipitation o f dolomite. Since the 

presence o f  evaporites is substantial within the Upper Stettler and Crossfield, these models 

are likely not suitable for an explanation o f the pervasive dolomitisation o f the study area.

(5) The mixing-zone model is often explained with the mixing o f fluids on a 

paleotopographic high which did not exist in the study area, and there are also no 

characteristic meteoric signatures and cements indicating a mixing zone o f marine and 

meteoric fluids.

(6) Burial and hydrothermal dolomitisation tend to produce less widespread 

dolomitisation, with the exception o f lateral flows due to compaction during burial. 

Hydrothermal dolomitisation however, typically develops in the vicinity o f fractures acting 

as fluid conduits. As a result, it is doubtful that the early pervasive matrix dolomites were 

produced in these types o f models. Burial and hydrothermal dolomitisation may have 

diagenetically altered the early pervasive dolomites during the burial process however,
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creating recrystallised textures as well as contributed to the formation o f late-stage saddle 

dolomite cements.

(7) The effects o f burial compaction are clearly evident in the Upper Stettler and 

Crossfield, in the form o f significantly depleted oxygen and carbon values and the 

precipitation and dissolution o f late-stage cements o f blocky calcite, anhydrite, and saddle 

dolomite. The formation o f thick dissolution seams with planar-e dolomite is another 

significant feature associated with burial compaction. Also, the recrystallisation o f early 

formed pervasive dolomite is directly related to the effects o f burial, with the dissolution and 

reprecipitation o f fabrics.

(8 ) A late-stage fracture network is apparent in some o f  the wells (mostly in 8-11) that 

are partially occluded with secondary anhydrites, which could have acted as conduits for 

hydrothermal fluids during episodes o f compression associated with the Laramide Orogeny. 

This observation is also supported by Erickson et al. (1994). This observation however, does 

not adequately explain the widespread occurrence o f pervasive dolomites in the Upper 

Stettler and Crossfield.

Although there are obvious petrographic and geochemical characteristics to support 

burial dolomitisation, a more inclusive model is needed to explain the widespread occurrence 

o f pervasive matrix dolomites in all of the wells (2-11) in the Upper Stettler Formation and 

Crossfield Member. The most suitable mechanism to explain the pervasive dolomitisation is 

the episodic movement o f refluxing brines through the shallow subsurface as a result o f 

gravity and density differences between the dense evaporative brines and the lighter pore 

fluids in the underlying sediments. The following observations support this model based on 

the isotope geochemistry and petrographic characteristics o f the dolomicrite and fine- to 

medium-crystalline dolomite in the study area:

(1)The close spatial relationship o f the dolomitised sediments with the overlying Upper 

Stettler evaporites raises the possibility o f  the development o f  evaporitic brines. There is 

a notable difference in the amount o f anhydrite in the overlying evaporites in wells 8  to

11 in comparison to wells 2 to 7 within the Crossfield trend. Wells 8  to 11 have intervals 

of undolomitised strata surrounded by pervasively dolomitised units. The presence o f 

undolomitised strata may be directly related to the amount of anhydrite in the Stettler 

evaporites, and that the source o f the refluxing brines is further east o f the Crossfield 

trend (which in comparison to wells 8 - 1 1 ) have been completely dolomitised.

(2) There is a subtle gradient towards the west as a result o f  subsidence in the Prophet Trough

and the development o f a foreland basin as a result o f convergence and loading

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



associated with the Antler Orogeny (Erickson et al., 1994). It has been suggested that 

this gradient would further enhance the flow o f Stettler hypersaline brines with 

dolomitising potential.

(3)The presence o f undolomitised strata between dolomitised units may also support the idea 

o f episodic brines travelling through the underlying sediments. The development of 

‘fingers’ o f  dolomite are supportive o f the reflux model, with the development o f the 

edges o f the dolomite front further west o f the Crossfield trend and visible in wells in the 

Panther River/Burnt Timber/Moose Mountain areas. Reflux brines generate a tabular 

body that is thickest closer to the brine source and that thins out basinward (Jones and 

Xiao, 2005). This is clearly visible in the dolomitisation patterns o f the strata west o f the 

Crossfield trend.

(4)Differences in porosity are also apparent within the two groups o f wells. Wells outside of 

the Crossfield trend also have higher porosity and permeability than wells in the 

Crossfield trend. This difference in porosity may simply be a function o f TSR reactions 

and higher dissolution rates in wells 8-11, however it has been suggested by Jones and 

Xiao (2005) that within reflux models, the highest porosity tends to develop in the most 

distal regions o f the dolomitising flow path. The rationale for this conclusion about the 

path o f refluxing brines is that closer to the brine source, the development o f 

overdolomitisation occurs with the precipitation o f dolomite cements (Jones and Xiao, 

2005).

(5)Matrix dolomites are typically fine-crystalline and fabric-selective (mimic replacement), 

and non-luminescing within the study area. The dolomite fabric is similar to the type of 

dolomite typically formed from refluxing brines (Warren, 2000).

(6 )The oxygen and carbon isotopes are slightly more depleted than what would be expected 

from evaporated Famennian seawater, however these slightly lighter values may be a 

reflection o f recrystallisation processes that occurred with burial. Refluxing brines could 

still produce dolomites with the isotopic signatures o f the matrix dolomites in the Upper 

Stettler and Crossfield.

(7)In terms o f strontium values (87Sr/86Sr), the dolomicrite and fine-crystalline dolomites 

reflect values that would be expected if  the dolomites had precipitated from seawater or 

modified seawater during the Famennian.

(8 ) The idea o f episodic brines pervasively dolomitising the Upper Stettler and Crossfield is

supported by the presence o f cycles o f evaporites throughout the study area, which is 

also observed by Erickson et al. (1994).

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



With all o f  these observations, the concept o f episodic refluxing brines most 

adequately explains the pervasive dolomitisation o f the Upper Stettler and Crossfield 

Member.

6.9 Anhydrite Formation

Primary anhydrite/gypsum were deposited as fine-grained laths in laminated and 

nodular mosaic fabrics as supratidal sediments in the Upper Stettler Formation and 

Crossfield Member (Plates 6  & 7). Many o f these anhydrites show enterolithic structures 

with precipitation. The growth o f anhydrites at the centre o f nodules within anhydrite sheets 

creates these enterolithic structures as a result o f the buckling and convolution o f the sheets 

in their attempt to find space between the confining layers o f the host sediment (Shearman 

and Fuller, 1969). With burial (after approximately 200-300 m), primary gypsum is 

recrystallised to anhydrite. Replacement o f gypsum with secondary intermediate burial 

anhydrite is a continuous process that is identified as translucent, grey-white blocky 

anhydrite that forms in dissolution vugs and replaces primary fabrics within earlier 

depositional nodules. The final stage o f anhydrite precipitation forms milky white, pile-of- 

brick type fabrics and secondary blocky textures within dissolution vugs in association with 

blocky II calcite, elemental sulphur, and saddle dolomite. Some o f these late-stage secondary 

anhydrites replace translucent secondary intermediate-type fabrics, but many o f  the 

anhydrites occluding vugs probably precipitated directly from dissolved precursor 

anhydrites. This pile-of-brick anhydrite represents the latest diagenetic anhydrite in the 

Upper Stettler and Crossfield Member, and it is an important contributing factor to TSR 

reactions.

Strontium (8 7Sr/8 6 Sr) analysis indicates that primary and recrystallised anhydrites were 

precipitated from Famennian seawater, this is further supported with the 8 34S values for 

anhydrite that also suggest precipitation from Famennian seawater (Figs 5.3 & 5.4). The 

strontium 8 7Sr/86Sr values are 0.70804 -  0.70816 and 8 34S values range from +21.1 to +27.8 

%, (CDT).

6.10 Sulphide Mineralisation and Thermochemical Sulphate Reduction (TSR)

The process o f the reduction o f sulphate by hydrocarbons occurs either by bacteria 

[bacterial sulphate reduction (BSR)] or inorganically [Thermochemical sulphate reduction 

(TSR)]. Each o f these processes is important in specific diagenetic thermal regimes, with

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BSR occurring in diagenetic settings from 0 to 60-80° C and TSR occurring with 

significantly higher temperatures o f 100-140° C, and some temperatures as high as 160-180° 

C (Machel, 2001). Bacterial sulphate reduction (BSR) can be represented by the following 

reaction (NSth, 1997):

2CH30  + S 0 42' —> 2 HCO3 ' + H2S (6.1)

In this reaction, anaerobic bacteria use sulphate as an oxidant in metabolic processes 

to oxidise organic matter, which results in the production o f small amounts o f H2 S (<3%) 

(Noth,1997). Baumgartner et al. (2006) discussed current views on the role o f sulphate 

reducing bacteria (BSR) in depositional environments with microbial mat systems, and 

summarised that in contrast to past views that BSR’s are mainly anaerobic, there is 

increasing evidence that sulphate reducing bacteria not only survives in the oxic zones o f 

microbial mats, but has some o f  the highest rates o f sulphate reduction during oxic 

conditions (Baumgartner et al., 2006). During early diagenesis or with shallow to 

intermediate burial, although the amount o f reactive iron and organic matter for metabolic 

functions is relatively low (in comparison to shales for example), the generation o f iron 

sulphides may be related to BSR reactions (Machel et al., 1997). Although sulphate 

reduction occurs mainly through TSR reactions in the Crossfield in the deep burial realm, the 

minor presence o f  pyrite in spatial proximity to laminated microbial mat sediments, indicates 

that BSR reactions may have occurred in the study area prior to deep burial, but the very rare 

nature o f its occurrence may also indicate other mechanisms have contributed to its 

precipitation. Petrographic and isotopic evidence indicate that the main sulphate reducing 

mechanism occurred with significant depth by TSR reactions.

Thermochemical sulphate reduction (TSR) can be related by the following reaction 

(NSth, 1997; Machel 2001):

Hydrocarbons + S O 4 2 '

—> altered hydrocarbons + solid bitumen + HCO3 ' (C 02) + H2S (HS') + heat 

(6.2)

In this reaction, organic matter is oxidised and dissolved sulphate ( S O 4 2 ' )  (such as 

from anhydrites) is reduced to form hydrogen sulphide, bicarbonate ions and carbon dioxide 

and numerous organic sulphur compounds (Noth, 1997). The prerequisite conditions for TSR
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reactions are temperatures >100°C, the presence o f organic matter, and a supply o f sulphate 

from host rocks.

Isotopic data combined with trends in depth and temperature indicate that the genesis 

o f H2 S and CO 2 in Devonian rocks is directly related to the thermal reduction of sulphate that 

is originally derived from Devonian anhydrite (Hutcheon, 1999). The by-products o f TSR 

reactions involving the reduction o f anhydrite is the creation o f H2 S, and consequently, the 

S34S o f the H2S will approach that o f the sulphate (Hunt, 1996).

Within the Upper Stettler, sediments are generally tight and non-porous, and as a 

result the facies that have petrologic and geochemical evidence for TSR reactions are 

predominantly within facies deposited within the Crossfield Member. In the Upper Stettler 

and Crossfield, the following isotopic and petrographic characteristics suggest that TSR 

reactions have occurred with increased temperatures at depth:

(1) The main precipitates commonly associated with TSR reactions include saddle 

dolomite cements, blocky calcite cements, and sour gas (Buschkuehle and Machel, 1999; 

Machel, 1987). All o f these products are late-stage features within the facies o f many o f the 

wells in the study area, but particularly in wells 2 -5 and 8-11.

(2) The presence o f elemental sulphur resulting from the reduction o f  secondary “pile 

o f brick” type anhydrites that typically form at depth from solution rather than as the 

recrystallisation o f gypsum cement are an indication o f  TSR (Machel, 2001) (Plate 12). The 

elemental sulphur and presence o f bitumen and asphaltene staining late-stage cements, 

coarse-crystalline matrix dolomites, and lining the edges o f dissolution vugs indicates that 

the elemental sulphur is probably a reactive product of TSR. The existence o f elemental 

sulphur in the system suggests that overall, there are limited hydrocarbons for reaction 

processes to continue (Machel, 1987). If  this is the case, although TSR reactions occurred 

within the study area, they were probably not a widespread and continuous phenomena with 

depth in all o f  the wells.

(3) Along the same line o f reasoning, variations in the H2S content o f gas (since it is 

essentially a limiting agent in reduction reactions) will affect the degree o f TSR reactions. In 

a study by Eliuk (1984), the amount o f  H2S in gases from Olds-Crossfield and Limestone- 

Burnt Timber wells were examined. Variations in the H2S content o f gas ranged from 1.4 to 

45% in the Olds-Crossfield (in the vicinity o f wells 2-7) and 13 to 67% in the Limestone- 

Burnt Timber area (where wells 8-11 are located). The presence o f higher H2S content in the 

Limestone-Burnt Timber area was suggested by Eliuk (1984) to be a function o f the amount 

o f porosity and the amount o f available anhydrite. Another factor affecting the total H2S
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content of gas is that there is the potential for loss or oxidation after generation, which may 

occur when H2S forms at maximum depth and is then exposed to uplift (Yang et al., 2001). 

Uplift may result in fracturing that allows H2S to escape (Yang et al., 2001). In the Upper 

Stettler and Crossfield, the amount o f H2S in gas is more significant in wells 8-11, where 

products o f TSR reactions occur in greater abundance. In terms o f the necessity for porosity 

to exist in conjunction with anhydrite, wells 8 - 1 1  clearly have higher porosity through 

episodes o f dissolution associated with TSR processes. The dissolution o f anhydrites from 

TSR processes can occur from an increase in the overall acidity o f the pore fluids from the 

formation o f products o f TSR such as H2 S(>4 and H C O 3 .  Increased acidity o f the pore fluids 

will further dissolve carbonate phases, creating more porosity for the migration o f 

hydrocarbons, resulting in more anhydrite dissolution and the further creation o f porosity 

(Erickson et al., 1994).

(4) The presence o f reaction rims on anhydrite has been documented by Krouse et al. 

(1988) and Erickson et al. (1994) as related to TSR reactions. The reaction rims surrounding 

anhydrite nodules consists o f porous dolomite separated from late-stage cements by black, 

carbonaceous residues (Krouse et al., 1988) (Plate 6 ). The dissolution process producing 

porous dolomite rims are interpreted by Krouse et al. (1988) to be related to TSR reactions 

because: (i) the dolomite and TSR-associated anhydrite appear to have been exposed to 

similar dissolution processes, (ii) the proximity o f the dolomite to other reaction products o f 

TSR, and (iii) as mentioned in the previous section, there is a direct correlation with 

porosity-thickness in the Crossfield Member and the concentration o f H2S gas in the 

reservoir. In wells 8-11 o f  the study area in particular, there are several examples o f these 

types o f  reaction rims. Although the rims are not a significant petrographic characteristic 

found in association with TSR reactions in the Upper Stettler and Crossfield, the presence of 

them further corroborates that TSR has diagenetically altered the study area.

(5) The isotopic evidence for the occurrence o f TSR in the Upper Stettler and 

Crossfield can be seen in the 8 34S values for both anhydrites and the elemental sulphur. 

Compositions o f  anhydrite cements (+22.1 to +27.8%o) are coeval with marine seawater at 

the time o f precipitation, and the elemental sulphur (+26.1 & +29.7%o) is similar to these 

marine values, suggesting that the source o f elemental sulphur involved in TSR reactions is 

most likely the original anhydrite precipitated from marine waters. This interpretation is 

corroborated by a study undertaken on the Burnt Timber and Crossfield East by Yang et al., 

(2 0 0 1 ), that revealed similar isotopic results.
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(6 ) In terms o f  carbon and oxygen isotopes, the late-stage blocky II calcites 

precipitated in vugs and fractures in association with secondary anhydrites also indicate that 

TSR has occurred, with negative 8 13C values suggestive o f the contributions o f organic 

carbon to the precipitating fluids as a result o f the oxidation o f hydrocarbons (Fig 5.1). The 

values for S180  are also significantly depleted which are a reflection o f precipitation from 

formation fluids that have a substantial contribution o f oxygen from isotopically heavier 

dissolved anhydrites [anhydrites precipitated from evaporated seawater typically have Sl 8 0  

values o f 12.0 to 19.2 %o VSMOW (Yang et al., 2001)].

Based upon the above premises, TSR reactions occurred at depth within the examined 

wells from the Upper Stettler Formation and Crossfield Member. These reactions are not 

widespread however, and appear to be more localised and concentrated in wells 2 through 5 

along the Crossfield trend and in wells 8  to 11 in the Burnt Timber/Panther River/Moose 

Mountain region. Current burial depths for the Upper Stettler and Crossfield range from 

2265-2755m in the Crossfield trend and 2615-3670m west o f the Crossfield trend. The 

localisation o f  these processes suggests that any TSR reactions probably occurred within a 

relatively isolated or closed-system. Another important observation about the occurrence of 

TSR reactions is that they are significantly more apparent in the wells west o f the Crossfield 

trend (8-11), and occur almost exclusively in facies from the Crossfield Member with 

relative absence from Upper Stettler facies. The lack o f TSR reactions is a reflection o f the 

presence o f non-porous facies within the Upper Stettler.

6.11 Effect of Diagenesis and Dolomitisation on Porosity and Permeability

Interpretations o f porosity and permeability characteristics are based on both 

petrography and quantitative core analyses from the Core Research Centre in Calgary.

Within the facies o f the Upper Stettler and Crossfield, there appears to be variable 

porosity and permeability characteristics based on the grain-size o f the precursor fabrics. The 

facies with fine-grained precursor fabrics are tighter (such as supratidal facies in the Upper 

Stettler laminates and mudstones in intertidal and shallow subtidal settings). The best

porosity is preserved in coarser facies, such as peloidal and fenestral grainstones in intertidal 

and shallow subtidal realms and the stromatoporoid and bioclastic floatstone/rudstones in 

intertidal/subtidal realms.

In terms o f secondary porosity, the most important types in the Upper Stettler and 

Crossfield were created through diagenetic dissolution processes with increased burial.
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Intercrystalline, fracture, and vuggy porosities, resulting from these processes are the most 

abundant effective porosity types in the study area (Plate 14). The precipitation o f secondary 

cements however, has reduced the effectiveness o f these pore spaces for fluid retention and 

for fluid transport through permeable pore networks. In wells 8-11, where there is greater 

evidence o f the effects o f dissolution, intercrystalline porosity between coarse-crystalline 

recrystallised dolomites is relatively high in dolomitised facies. There are intervals o f 

undolomitised strata within these wells also that have low propensity for fluid retention or 

transport. In contrast, the dolomitisation and subsequent recrystallisation o f  strata within 

intervals in the wells has effectively enhanced the porosity and permeability potential o f the 

wells overall.

The most important processes affecting the porosity and permeability o f the Upper 

Stettler and Crossfield include the following: (1) precipitation of vug and fracture-occluding 

cements o f blocky calcite I & II, secondary-intermediate blocky anhydrites, late-stage pile- 

of-brick and blocky anhydrites, saddle dolomite, and pore-lining dolomite, (2) pervasive 

matrix dolomitisation, (3) the recrystallisation o f early matrix dolomites forming coarse- 

crystalline dolomites, and, (4) the effects o f mechanical and chemical compaction with 

depth.

Anhydrite cementation is one o f the most important porosity-destroying processes 

during diagenesis (Jones and Xiao, 2005; Ehrenberg, 2006). In the Upper Stettler and 

Crossfield, intermediate and late-stage anhydrite cements have effectively reduced porosity 

and permeability by the occlusion o f dissolution vugs and microfractures. In association with 

anhydrite dissolution, TSR reactions are capable o f generating porosity (Machel, 2004). 

These TSR reactions, possibly because they are not widespread and apparent in all o f  the 

wells (1-11) do not significantly contribute to the creation o f porosity in the Upper Stettler 

and Crossfield.

In a sedimentary basin, the average porosity tends to decrease with increasing burial 

depth (Bjorlykke, 1993). In terms o f mechanical and chemical compaction, both o f these 

processes continue to destroy porosity characteristics as the sediments are buried. Initially, 

mechanical compaction (usually in the first 300m) causes significant porosity through 

dewatering o f sediments and grain compaction causing the realignment and breakage o f 

grains and bioclasts (Hiatt and Kyser, 2000). After significant mechanical compaction has 

occurred, pressure solution processes associated with chemical compaction further reduces 

porosity. The dissolution o f calcium carbonate occurs during pressure solution where it 

reprecipitates in open pores (Hiatt and Kyser, 2000). Since carbonates have retrograde

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



solubility, this will continue to occur up to temperatures o f 400°C with burial (Hiatt and 

Kyser, 2000). As a result, chemical compaction is one o f the principle destructive forces of 

porosity in carbonate rocks (Choquette and James, 1990).

The early dolomitisation o f carbonate muds tends to enhance permeability 

characteristics o f reservoirs as this enhancement results in an increase in the crystal size of 

the precursor mudstones, creating more permeable replacement fabrics, so permeability in 

coarser-grained precursor fabrics (such as grainstones) will not be as enhanced by 

dolomitisation processes (Jones and Xiao, 2005). The higher permeability in dolostones in 

comparison with associated limestones is therefore interpreted as reflecting the replacement 

o f microporous lime muds with dolomite that has interciystalline macroporosity (Ehrenberg 

et al., 2006). By contrast, the precipitation o f dolomite or anhydrite cement in interparticle 

spaces will decrease permeability characteristics.

Based on the diagenetic evolution that has occurred in the Upper Stettler Formation 

and Crossfield Member during the burial process, the following observations can be made:

(1) Initially, porosity and permeability networks were enhanced with the onset and 

multiple occurrence o f  early pervasive dolomitisation from reflux brines.

(2) The development o f porosity with very shallow burial is fabric-selective, with 

enhanced porosity in fine-crystalline sediments initially, followed by decreased porosity with 

increased depth as fine-crystalline sediments are more greatly affected by mechanical 

compaction processes. Porosity creation with burial and early dolmitisation is not as 

significant in medium- to coarse-grained sediments, which is purely a factor o f initial grain 

size prior to burial.

(3) Chemical compaction processes and in particular, pressure solution are porosity- 

destructive events with continual burial, dissolving phases and resulting in reprecipitation of 

new phases as pore-occluding cements.

(4) As early matrix dolomites are recrystallised, their overall porosity is enhanced, but 

it is counteracted by the increase in precipitation o f secondary intermediate and late-stage 

cements o f blocky calcite, anhydrite, pore-lining dolomite and saddle dolomite.

(5) Late-stage dissolution processes have increased porosity in wells 8-11, which have 

higher corresponding H2S contents.

(6) TSR reactions have not significantly enhanced porosity and permeability 

characteristics and tend to have had a more localised effect in specific facies within the 

Crossfield Member.
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(7) Late-stage vuggy and fracture porosity that is not fabric-selective are the most 

important secondary porosity types within the study area. Intercrystalline and pin-point 

porosity is also significant in the creation o f permeable networks within sediments. All of 

these porosity types are apparent to a greater extent in the dolomitised intervals in wells 

outside o f the Crossfield trend (ie. 8-11).

(8) The differences in the basic porosity and permeability characteristics between 

undolomitised and dolomitised intervals within wells 8-11 in some cases may act as an 

aquitard for fluid flow. This is due to the basic difference in porosity and permeability 

characteristics between compressed limestones and dolostones, wherein overlying limestones 

may inhibit fluid flow pathways.

In summary, porosity and permeability characteristics initially increased with shallow 

burial and early pervasive dolomitisation processes, and then significantly decreased with 

burial as a result o f  the effects o f mechanical and chemical compaction. The recrystallisation 

o f early matrix dolomites to coarse-crystalline dolomites and the creation o f sucrosic/sieve 

textures through TSR processes resulted in slightly enhanced porosity during the burial 

process. In terms o f  porosity destruction, with the exception o f pressure solution processes, 

the most significant destruction o f porosity is from late cementation events that precipitated 

anhydrites and blocky calcites in vugs and fractures.

6.12 Diagenetic Model for Upper Stettler Formation and Crossfield Member

The diagenetic history o f the Upper Stettler Formation and Crossfield Member is 

characterised by several main diagenetic processes: (1) early pervasive dolomitisation, (2) 

blocky calcite cementation, (3) recrystallisation o f early matrix dolomites, (4) neomorphism 

o f anhydrites/gypsum and the precipitation and dissolution o f secondary anhydrite, (5) 

hydrocarbon emplacement, sulphide mineralisation, and minor TSR reactions, and (6) the 

precipitation o f saddle dolomite cements. The following stages describe the diagenetic 

alteration of the Upper Stettler Formation and Crossfield Member with increasing burial 

depth from shallow marine through to deep burial.

Stage 1: The Upper Stettler Formation and Crossfield Member carbonates and evaporites 

were deposited in a series o f shallowing-upward cycles on west to northwesterly carbonate 

ramps during the Famennian (Late Devonian). Farther west (basinward), the Upper Stettler 

laminated and nodular anhydrites and Crossfield peloidal mudstones and bioclastic 

floatstones/rudstones grade into shallow subtidal facies o f massive mudstones and peloidal
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grainstones. Stromatoporoid (Labechiid) patch reefs also grew on basinward sections o f the 

ramp creating lagoonal systems in shallow intertidal regions. Evaporites, in the form of 

primary fine-crystalline gypsum and anhydrites precipitated in supratidal settings as 

laminated and nodular mosaics o f anhydrite/gypsum by evaporated seawater.

Stage 2: Micritisation processes and early neomorphic alteration occurred 

penecontemporaneously with deposition o f the Upper Stettler Formation and Crossfield 

Member. Some lithification occurred in Upper Stettler laminated evaporites. Early calcite 

cementation with shallow burial includes drusy mosaic calcite and rare dogtooth cements 

precipitating in interparticle/intraparticle pore spaces.

Stage 3: With shallow burial, mechanical compaction o f  peloidal grains, minor 

bending/breakage o f bioclasts and the minor flattening o f burrows occurs. Within 10’s 

metres o f burial, chemical compaction and stylolitisation begins with the development of 

sub-parallel anastomosing microstylolites. Episodic refluxing Mg2+-rich evaporative brines 

flow down through shallow-buried sediments as a result o f  density differences and gravity 

along a gradient towards the west resulting from subsidence and the creation o f a foredeep in 

the southern part o f the Prophet Trough associated with the Antler Orogeny (development o f 

gradient from Erickson et al., 1994). Dissolution associated with chemical compaction 

creates interparticle porosity and vugs within pervasive matrix fabric. Precipitation of 

syntaxial calcite cements that form as overgrowths on crinoidal fragments and surrounding 

dissolved matrix. Beginning o f recrystallisation o f gypsum to anhydrite at depths greater than 

200-300m (depth from Choquette and James, 1990), transformations continue with increased 

depth. Early fracture I cross-cut pervasive dolomites.

Stage 4: Intermediate burial: increasing chemical compaction and dissolution with burial, 

development o f dissolution-seam dolomite cross-cutting pervasive matrix dolomite fabrics. 

Development o f low-amplitude, parallel and horsetail stylolites. Blocky calcite I and bladed 

calcite cements forming in vugs. Recrystallisation begins o f fine-crystalline matrix dolomites 

which continues with burial. Precipitation o f secondary anhydrites associated with 

dissolution and reprecipitation in vugs and fractures.

Stage 5: Chemical compaction and dissolution continues, producing high-amplitude 

stylolites [at depths greater than 600m (Al-Aasm et al., 2002)] and fitted fabrics. With
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continued burial, recrystallisation o f fine-crystalline to coarse-crystalline dolomites continues 

and dissolution o f secondary (intermediate anhydrites) occurs with increased chemical 

compaction. Precipitation o f pore-lining dolomites along fenestrae and within vugs. Fracture 

II cross-cuts matrix dolomites (and some recrystallised matrix dolomite) and blocky I calcite 

cements.

Stage 6: Late burial: Dissolution with increased compaction. Precipitation o f secondary 

anhydrite in vugs and along fractures. Thermochemical sulphate reactions (TSR) occurs with 

the dissolution o f  anhydrites and the precipitation o f elemental sulphur. Continued 

dissolution o f  anhydrites, changing chemical composition o f pore fluids. Precipitation of 

late-stage blocky

calcite II partially replacing secondary anhydrites and elemental sulphur. Asphaltene staining 

o f late-stage calcites, secondary anhydrites, and saddle dolomites. Late-stage horizontal 

fracturing.
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Fig 6.5: D iagenetic Model
Stage 1&2: Deposition & Early Marine Diagenesis
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S t a g e  4  & 5 : I n t e r m e d i a t e  B uria l ( 6 0 0 - 2 0 0 0 m )
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,(2) Blocky I & b lad ed  calc ites forming in vugs, (3) Recrystallisation of early 
matrix dolom ites begins, (4)Precipitation of seco n d ary  anhydrites from 
pore-fluids a n d  recrystallisation of earlier evaporites, (5) Pore-lining dolom ite

S t a g e  6 : D e e p  B uria l ( 2 0 0 0  + m  )
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Anhydrite precipitating from pore fluids,(3) Elemental sulphur
(3) Saddle dolomite, (4) Blocky II ca lc ite ,(5) Asphaltene-staining, (6) Late-stage 

com pressional fracturing (Laramide), (6) Interaction with anhydrites from L.Stettler. 
Solid black arrows represent com pression a n d  tecton ic loading, Blue arrows 
represent interaction with fluids containing dissolved Lower Stettler anhydrites.
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CHAPTER VII

CONCLUSIONS

Based on petrographic and isotopic evidence, the following conclusions can be made 

about the dolomitisation and diagenesis o f the Upper Stettler Formation and Crossfield 

Member:

(1) Six main lithofacies were identified, which include: nodular and laminated 

mudstones, peloidal mudstone-wackestones, peloidal (fenestral) grainstone/packstones, 

bioclastic floatstone/rudstones, stromatoporoid floatstones, and dolostones. These lithofacies 

were deposited in shallowing-upward cycles, in subtidal, intertidal, and supratidal 

depositional settings on a carbonate ramp.

(2) Dolomitisation is one o f the most significant processes in the diagenetic history o f the 

study area. The main types o f dolomite identified are: dolomicrite, fine- to medium- 

crystalline dolomite, coarse- crystalline dolomite, dissolution-seam associated dolomite; 

pore-lining dolomite, and saddle dolomite.

(3) Early episodic pervasive dolomitisation resulted from refluxing evaporitic brines 

beginning in the Famennian. These dolomites have strontium isotopic signatures reflecting 

precipitation from modified Famennian seawater. The oxygen and carbon isotopic values are 

slightly depleted from Famennian seawater, which may be simply a reflection o f the slight 

modification o f values with burial.

(4) Calcite phases include precipitation early in the diagenetic histoiy during shallow 

burial through to late-stage cements that represent the latest cementation event in the Upper 

Stettler Formation and Crossfield Member.

(5) Recrystallisation o f early matrix dolomites occurred with increasing depth and 

dissolution processes, resulting in the precipitation o f planar-e to nonplanar coarse- 

crystalline dolomite with radiogenic strontium and depleted oxygen and carbon isotopic 

signatures, reflecting changes in pore water chemistry with recrystallisation.

(6) Evaporite precipitation is an important component for the pervasive dolomitisation of 

the Upper Stettler and Crossfield. Early precipitated laminated and nodular mosaic 

gypsum/anhydrite is diagentically altered to its more stable form with continued depth. The 

inclusions o f anhydrite within gypsum indicate that the conversion o f anhydrite back to 

gypsum possibly occurred as the result o f  uplift during the diagenetic history o f the study 

area. Anhydrite replaces gypsum at depths greater than 200-300m, and with continued
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burial, the development o f recrystallised anhydrite occurs at intermediate burial. Late-stage 

anhydrite forms out o f solution from dissolved earlier stages rather than as a neomorphic 

replacement o f gypsum. Furthermore, it is commonly associated with saddle dolomite, 

elemental sulphur, blocky II calcite, and asphaltene/bitumen.

(7) Mechanical and chemical compaction has compressed fabrics throughout the study 

area, and pressure solution (chemical compaction) is one o f the most significant causes of 

diagenetic alteration. Alteration resulted in the formation o f broken/bent bioclasts, and 

slightly-flattened peloids, burrow, and fenestrae and the development o f thick dissolution 

seams containing insoluble residues o f clays and organics and associated dolomites.

(8) Pore-lining dolomite is a rare dolomite phase and develops with intermediate burial 

along vugs. The formation o f saddle dolomite in late-stage vugs, along with blocky II calcite, 

anhydrite, native sulphur, and asphaltene/bitumen are indicative o f  the presence o f 

thermochemical sulphate reactions (TSR) at depth.

(9) The porosity and permeability o f the Upper Stettler Formation and Crossfield 

Member was enhanced at shallow burial with the early pervasive dolomitisation o f the study 

area that increased crystal sizes, enhancing pore throats. With continued burial, there was a 

significant loss in effective porosity and permeability by the effects o f mechanical 

compaction (dewatering, reorientation o f grains, and closer grain-packing) and subsequently 

by chemical compaction processes, particularly pressure solution. The precipitation o f 

secondary anhydrites, blocky I and II calcite, and saddle dolomite were significant as 

porosity destructive mechanisms within vugs and fractures.

(10) Several geochemical and textural differences exist between the wells within the 

Crossfield trend (wells 2-7) and those in the Panther River/Moose Mountain/Burnt 

Timber/Benjamin Ghost regions (wells 8-11). These differences are functions o f porosity, 

TSR reactions, FLS content, anhydrite concentration, and distance from the source o f the 

episodic refluxing brines.

(11) Pore water chemistry was possibly influenced by interaction with fluids from the 

underlying Lower Stettler Formation with slightly enriched 8lsO values. The diagenesis of 

the Upper Stettler Formation and Crossfield has also been affected by extensional and 

compressional forces associated with the Antler and Laramide orogenies, respectively. This 

can be seen in the fracture networks at depth in wells 8-11 and the altered pore water fluids 

that precipitated late-stage blocky II calcites.
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APPENDIX I

Well Locations

North of Crossfield Trend;

Well # 1 : 10-9-66-21W5 (Giroux Lake)

Alone Crossfield Trend:

Well # 2 : 11-23-25-29W4 (Jeff Lake/Crossfield) 
Well # 3 : 13-12-29-27W4 (Inverness Acme)
Well # 4 : 10-18-21-28W4 (Canoxy Okotoks)
Well # 5 : 5-22-32-1W5 (Amerada Olds)
Well #6$ 10-23-30-28W4 (Primewest)
Well # 7 : 10-21-32-2W5 (Northstar Garrington)

West of Crossfield Trend:

Well #8* 7-23-31-9W5 (Burnt Timber)
Well # 9 : 5-19-30-10W5 (Panther River)
Well #10 : 10-5-23-6W5 (Moose Mountain)
Well #11 : 10-13-26-8W5 (Benjamin Ghost)
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APPENDIX II

Abbreviations P  Symbols:

Mdst - M udstone 
Wkst - W ackestone  
Grnst - G rainstone 
Pkst - Packstone  
Rdst- Rudstone  
Fist - Floatstone
•  Peloids
/  Intraclasts
#  A lgae
+ Crinoids 
▼ Brachiopods 
ra Strom atoporoids 
s  Bivalves 
L G astropods  
4  Fossil Fragm ents 
«■ Burrows
o N odules  
0  Fenestrae  
^Stylolites 
=  Wavy Laminations 
=  Parallel Laminations

r V ?

-  D olostone

- Dolom itised Lim estone

- Anhydritic Nodular an d  
Lam inated D olom udston es

- Lim estone

- Missing C ore

V V uggy Porosity 

c  Chert
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APPENDIX III: Graphic Cere Less
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JEFF LAKE 
WELL #2 : 11-23-25-29W4
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Panther River 
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APPENDIX IV:
Oxygen and Carbon Results: 51sO %o (VPDB) %• & 513C %o(VPDB)

Sample Well #  Phase Depth (m) Oxygen Carbon
C-1-1-LM Well #  1 Calcite 2400.54 -5.75 1.22
C-1-10-LM Well #  1 Calcite 2412.19 -6.22 0.78
C-1-6-LM Well #  1 Calcite 2406.85 -6.68 1.24
C-1-2-LM Well #  1 Calcite 2402.92 -5.96 1.27
C-1-7-LM Well #  1 Calcite 2408.10 -5.90 1.55
C-6-3-LM Well #  6 Calcite 2385.87 -4.57 0.93
C-9-11-LM Well #  9 Calcite 2614.27 -7.28 0.27
C-9-1-LM Well #  9 Calcite 2511.73 -4.19 -0.09
M-10-1 -CO W e ll#  10 Calcite 2571.80 -3.96 -1.14

M-2-18-CR Well #  2 SYN Calcite 2670.60 -4.38 0.44
C-1-6-SC Well #  1 SVN Calcite 2406.85 -5.56 2.00
C-1-7-SC Well #  1 SYN Calcite 2408.10 -6.05 1.47

C-10-13-BC Well #  10 BLK Calcite 2623.41 -5.65 -9.66
C-2-14-BC Well #  2 BLK Calcite 2663.28 -9.82 -5.95
C-2-15-BC Well #  2 BLK Calcite 2664.13 -11.13 -12.54
C-1-4-BC Well #  1 BLK Calcite 2404.14 -7.74 -1.11
C-4-23-BC Well #  4 BLK Calcite 2635.83 -9.52 -22.60
C-4-29-BC Well #  4 BLK Calcite 2640.18 -10.09 -18.02
C-6-12-BC Well # 6 BLK Calcite 2397.30 -9.77 -15.83
C-8-3-BC Well #  8 BLK Calcite 3637.48 -8.45 -19.42
C-4-22-BC Well #  4 BLK Calcite 2634.99 -8.39 -15.42
C-4-28-BC Well #  4 BLK Calcite 2639.47 -9.63 -17.58
C-10-6-BC Well #  10 BLK Calcite 2575.97 -7.90 -5.50
C-2-6-BC Well #  2 BLK Calcite 2650.51 -9.17 -15.16
C-8-8-BC Well #  8 BLK Calcite 3659.18 -7.14 -10.90
C-10-5-BC Well #  10 BLK Calcite 2575.79 -9.52 -21.64

C-11-3-VC Well #  11 LV Calcite 3575.86 -9.32 -17.28
C-10-5-VC Well #  10 LV Calcite 2575.79 -8.73 -16.66
C-11-3-LV Well #  11 LV Calcite 3575.86 -8.24 -9.14
C-9-9-VC Well #  9 LV Calcite 2607.39 -7.39 -0.39

D-10-5-DS Well #  10 DS Dolomite 2575.79 -4.66 -1.09
D-9-11-DS Well #  9 DS Dolomite 2614.27 -4.49 1.22
D-1-6-DS Well #  1 DS Dolomite 2406.85 -6.02 2.14
D-1-10-DS Well #  1 DS Dolomite 2412.19 -5.97 1.07
D-10-1-DS Well #  10 DS Dolomite 2571.80 -6.51 -0.22

D-5-14-PD Well #  5 Dolomicrite 2589.10 -5.64 0.86
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Sample Well #  Phase Depth (m) Oxygen Carbon
D-2-19-PD Well #  2 Dolomicrite 2671.85 -5.81 0.68
D-6-2-LAM Well #  6 Dolomicrite 2385.09 -5.38 0.72
D-5-15-PD Well #  5 Dolomicrite 2589.23 -5.69 1.11
D-2-11-PD Well #  2 Dolomicrite 2656.30 -5.10 1.30
D-5-9-LAM Well #  5 Dolomicrite 2584.22 -5.31 -0.91

D-4-15-PD Well #  4 F-M Mat Dol 2626.00 -5.47 1.47
D-7-8-PD Well #  7 F Mat Dol 2756.74 -5.72 0.51
D-9-3-PD Well #  9 M Mat Dol 2515.62 -5.35 0.25
D-5-18-PD Well #  5 F-M Mat Dol 2591.03 -5.58 1.08
D-6-10-PD Well #  6 F-M Mat Dol 2394.92 -5.23 0.85
D-3-10-PD Well #  3 F-M Mat Dol 2254.06 -5.58 0.73
D-3-5-PD Well #  3 F Mat Dol 2248.21 -5.73 0.81
M-2-18-CR Well #  2 F Mat Dol 2670.60 -5.34 0.46
D-4-32-PD Well #  4 F-M Mat Dol 2644.65 -5.25 0.93
D-7-4-PD Well #  7 F-M Mat Dol 2750.67 -2.82 0.22
D-3-17-PD Well #  3 F-M Mat Dol 2263.00 -6.17 0.72
D-4-22-PD Well # 4 F-M Mat Dol 2634.99 -4.79 0.76

D-11-1-PD Well #  11 C Mat Dol 3574.19 -5.47 0.64
D-10-5-PD W ell#  10 C Mat Dol 2575.79 -4.99 -0.14
D-10-6-PD Well # 1 0 C Mat Dol 2575.79 -4.46 -1.14
D-2-6-PD Well #  2 C Mat Dol 2650.51 -4.42 1.07
D-11 -2-PD W ell#  11 C Mat Dol 3574.75 -5.75 0.83
D-8-7-PD Well #  8 C Mat Dol 3657.30 -8.32 -0.82
D-6-15-PD Well #  6 C Mat Dol 2401.77 -7.86 -1.09
D-8-8-PD Well #  8 C Mat Dol 3659.18 -6.34 1.00
D-7-5-PD Well #  7 C Mat Dol 2753.82 -5.10 0.55
M-10-1-CO Well #  10 C Mat Dol 2571.80 -4.59 -1.12
D-9-1-PD Well #  9 C Mat Dol 2511.73 -4.73 -0.04
D-4-20-PD Well #  4 C Mat Dol 2633.02 -6.78 1.16
D-3-7-PD Well #  3 C Mat D ol. 2251.24 -6.09 0.67
D-10-9-PD Well #  10 C Mat Dol 2583.69 -5.77 -0.16
D-2-7-PD Well #  2 C Mat Dol 2651.12 -5.30 1.19
D-6-14-PD Well #  6 C Mat Dol 2401.32 -6.54 0.80
D-8-10-PD Well #  8 C Mat Dol 3670.40 -5.20 -0.58
D-11-4-PD Well # 1 1 C Mat Dol 3577.26 -5.64 0.79
D-8-3-PD Well #  8 C Mat Dol 3637.48 -5.41 -0.01
D-11-5-PD Well #  11 C Mat Dol 3581.48 -4.91 -0.36
D-9-2-PD Well #  9 C Mat Dol 2513.71 -4.91 0.02
D-11-3-PD Well #  11 C Mat Dol 3575.86 -6.00 0.91
D-7-9-PD Well #  7 C Mat Dol 2757.81 -5.75 0.74
D-2-7-PD Well # 2 C Mat Dol 2651.12 -5.30 0.85
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Sample Well #  Phase Depth (m) Oxygen Carbon
D-10-8-PD Well #  10 C Mat Dol 2582.27 -5.72 -1.08

D-11-3-SD Well #  11 Sad Dol 3575.86 -6.59 -1.41
D-10-6-SD Well # 1 0 Sad Dol 2575.97 -6.51 -3.43
D-10-8-SD Well # 1 0 Sad Dol 2582.27 -6.99 -1.32
D-10-13-SD Well # 1 0 Sad Dol 2623.41 -5.16 -3.39

D-5-18-D Well #  5 PODol 2591.03 -6.23 0.93
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