
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

1-1-2006 

Electrical transients in permanent magnet synchronous Electrical transients in permanent magnet synchronous 

machines. machines. 

Shahram Najafi 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Najafi, Shahram, "Electrical transients in permanent magnet synchronous machines." (2006). Electronic 
Theses and Dissertations. 7090. 
https://scholar.uwindsor.ca/etd/7090 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7090&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7090?utm_source=scholar.uwindsor.ca%2Fetd%2F7090&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


ELECTRICAL TRANSIENTS IN PERMANENT MAGNET 
SYNCHRONOUS MACHINES

by

Shahram Najafi

A Thesis
Submitted to the Faculty of Graduate Studies and Research 

through Electrical and Computer Engineering 
in Partial Fulfillment of the Requirements for the 

Degree of Master of Applied Science at the 
University of Windsor

Windsor, Ontario, Canada

2006

© 2006 Shahram Najafi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1*1 Library and 
Archives Canada

Published Heritage 
Branch

Bibliotheque et 
Archives Canada

Direction du 
Patrimoine de I'edition

395 Wellington Street 
Ottawa ON K1A0N4 
Canada

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 978-0-494-35951-8  
Our file Notre reference 
ISBN: 978-0-494-35951-8

NOTICE:
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

When permanent magnet synchronous machines are subjected to short-circuit, voltage 

sags, or voltage swells at their terminals, the accurate calculation of the machine transient 

performance depends on the short-circuit, voltage sag, or voltage swell profile and the 

saturation condition of their main flux paths. In this research work, computer models for 

permanent magnet synchronous machines have been developed using the machine flux 

and current differential equations considering saturation. A voltage profile due to fault at 

the machine terminal is proposed. The machine terminal voltage takes a certain period of 

time to fall to final fault value and preceding the fault clearing, to recover to final post­

fault value. The effect of the main flux saturation both in the direct and quadrature axes 

on the determination of the transient performance of permanent magnet synchronous 

machines employing the proposed voltage profile is demonstrated in this research work.
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1. INTRODUCTION

1.1 Background

1.1.1 Permanent Magnet Synchronous Machine Review

Permanent magnet synchronous machines (PMSM) have attracted increasing interest 

in recent years and are being used increasingly in a wide range of industrial drives and 

servo applications [1]. The main advantages of permanent magnet synchronous machines 

over other machines [2]-[6] are as follows:

• There are no brushes and slip rings

• The absence of rotor excitation windings eliminates the field winding copper loss

• More efficient

• Posses higher power density

• Smaller frame size

• Higher torque to inertia ratio

• Lower rotor inertia for a given output.

The disadvantages of the permanent magnet synchronous machines [7] are:

• The higher costs of material and manufacture of their rotor

• Higher cost of maintenance

• Possible loss of permanent magnet magnetization

• Thermal limitation

• There is no control over the permanent magnet flux which leads to less flexibility.
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However, developments in rare earth based permanent magnets are continually 

leading to both reduced material cost and higher stored energy characteristics and, thus, 

reducing the amount of material required. In this thesis, only interior permanent magnet 

synchronous machines which have the permanent magnets buried inside the rotor are 

considered. The interior magnet design offers the advantages of mechanical robustness 

and a smaller air gap [8]-[10]. The standard two-axis (d- and q-axis) theory with fixed 

rotor reference frame will be used, since when viewing the machine from the d- and q- 

axis fixed on the rotor, the reluctances along the direct and quadrature axes are constant 

regardless of the rotor position. The machine quantities in the abc reference frame can be 

converted into d- and q-axis quantities by using the Park’s transformation [11], [12]. The 

d-q model of permanent magnet synchronous machine is shown in Fig. 1.

Armature q-axis

q-axis damper, 
winding , - 'stator

d-axis damper 
winding

Armature
.winding

winding S

d-axis

Fig. 1. d-q model of permanent magnet synchronous machine.

2
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Damper windings can be added to the rotor of the machine to increase performance 

and dampen out speed oscillations, as well as aid in starting. However, damper winding 

effects (because of the induced eddy current in the rotor [13]) can still be present in a 

permanent magnet synchronous machine that does not have physical damper windings.

1.1.2 Existing Models of Permanent Magnet Synchronous Machines

The wide field of applications of the permanent magnet synchronous machine 

includes those areas where dynamic performance is critical. In such cases, it is important 

to model the machine behavior to sufficient accuracy [14]. So, it is essential to predict 

synchronous and dynamic performances of a permanent magnet synchronous machine in 

order to avoid the design misjudgment that can prove costly once the motor is 

manufactured and to have better understanding of the permanent magnet synchronous 

machine dynamic performance [8].

Various mathematical models are available to describe the transient behavior of 

permanent magnet synchronous machines. Although they may differ in degree of 

complexity and accuracy, most of them are based on the well known two-axis (d- and q- 

axis) theory, and are solved by numerical integration. But modeling of permanent magnet 

synchronous machines presents difficulties due to permanent magnet excitation and 

machine’s magnetic parameter variations due to saturation. Since there is no unified 

method of modeling permanent magnet synchronous machines, some researchers in the 

machine modeling ignore the need and effect of damper winding [15] and some 

researchers consider damper winding in the rotor [16], In [17] iron and core losses are 

neglected, while in [18], iron and core losses are incorporated. Some researchers ignore

3
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the effect of cross-magnetization [4] and some researchers account for the effect of cross­

magnetization [19]. The effect of the saturation is neglected in [20], [21] while the 

authors in [22], [23] have taken the effect of saturation along the quadrature axis into 

account and disregarded saturation along the direct axis.

1.1.3 Saturation

In the analysis of the transient performance of saturated permanent magnet 

synchronous machines using the two-axis (d- and q-axis) frame model, particularly 

during the first few cycles after the occurrence of the fault (the subtransient period), the 

accurate calculation of the stator and rotor damper winding currents, the air-gap torque 

and the load angle depends on the saturation condition of their main flux paths [24], [25], 

Interior permanent magnet synchronous machines have larger ferromagnetic path along 

the quadrature axis and, as a result, the q-axis magnetizing reactance saturates 

significantly under normal operating conditions [26]. On the other hand, the effect of 

saturation along the direct axis is usually ignored as the effective air-gap path length 

along the direct axis is large [1], [22], [27]. Since the relative magnetic permeability of 

the permanent magnet is close to unity, the magnetic reluctance along the quadrature axis 

is considerably smaller compared with the magnetic reluctance along the direct axis [28]. 

Consequently, the interior permanent magnet synchronous machines present inverse 

saliency and the q -axis m agnetizing reactance is larger than the d-axis m agnetizing  

reactance such as Xmd < Xmq. However, since there is saturation along the direct axis up to 

a certain level, it is important to include direct axis saturation in addition to the 

quadrature axis saturation for more accurate transient behavior analysis.

4
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In this research work, the effect of the main flux saturation both in the direct and 

quadrature axes on the determination of the transient performances of permanent magnet 

synchronous machines has been demonstrated

1.1.4 Electrical Transients

The term ‘transients’ has been used in the analysis of power systems for a long time. 

Its name immediately conjures up the notion of an event that is undesirable but 

momentary in nature. The primary definition uses the word rapid and talks of frequencies 

up to 3 MHz. Other definitions simply state that a transient is “that part of the change in a 

variable that disappears during transition from one steady-state operating condition to 

another.”

Broadly speaking, transients can be classified into two categories; impulsive and 

oscillatory [29]. These terms reflect the waveshape of a current or voltage transient. An 

impulsive transient is a sudden, nonpower frequency change in the steady-state condition 

of voltage, current or both, that is unidirectional in polarity (primarily either positive or 

negative). The most common cause of impulsive transients is lightning. Fig. 2 illustrates a 

typical current impulsive transient caused by lightning.

An oscillatory transient consists of a voltage or current whose instantaneous value 

changes polarity rapidly. It is described by its spectral content (predominant frequency), 

duration, and magnitude as shown in Fig.3.

5
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Fig. 2. Lightning stroke current that can result in impulsive transients on the power

system [29].
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Fig. 3. Oscillatory transient caused by back-to-back capacitor switching [29].
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Electrical transients can include other terms such as short duration variations. This 

category encompasses voltage sags or swells, and each type can be designated as 

instantaneous, momentary, or temporary depending on its duration as shown in Figs. 4-6.

Ucn
o
o>

1 0

100

— I— I
0 25 50 75 100 125 150 175 200

Time (ms)

Fig. 4. Instantaneous voltage sag caused by a SLG fault [29].

cn
o
O>

- 5 0 -  

- 1 0 0 -  

-150  —

0 25 50 75 100 125 150 175
Time (ms)

Fig. 5. Momentary interruption due to a fault and subsequent recloser operation [29].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



RMS V aria tio n

1 0 5

100
95
90
85
80
75

cr*O
O

0 0.5 1 1.5 2 2.5 3 3.5 4
Tim* M

Fig.6. Temporary voltage sag caused by motor starting [29].

As mentioned above electrical transients can be classified according to the duration

1) Instantaneous

1.1) sag for a duration of 0.5-30 cycles

1.2) swell for a duration of 0.5-30 cycles

2) Momentary

2.1) sag for a duration of 30 cycles-3 sec

2.2) swell for a duration of 30 cycles-3 sec

3) Temporary

3.1) sag for a duration of 3 sec-1 min

3.2) swell for a duration of 3 sec-1 min

8
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Modeling of permanent magnet synchronous motors has been examined and useful 

results have been reported in [30]-[35]. However, the effect of electrical transient and the 

dynamic performance have not been widely investigated on the permanent magnet 

synchronous machine [2]. In this research work electrical transients such as short-circuit, 

sag, and swell will be applied to a typical permanent magnet synchronous machine to 

study and analyze the effect of the electrical transients on the performance of permanent 

magnet synchronous machine.

Sag magnitude is the net root mean square (r.m.s) voltage available during the fault 

expressed in percent or in per unit of nominal voltage. Voltage sag is defined as 

momentary decrease in the r.m.s (rated) AC voltage (10%-90%), with a duration ranging 

from 0.5 cycle to 30 cycles [29]. Some common reasons for voltage sags are fault 

conditions within the plant or power system, short-circuits and starting of large motors 

that require high starting currents, large load changes, equipment failures, accidental 

contact with power lines, or intermittent loose connections in power wiring and it lasts 

until the fault is cleared [36]-[43]. Severe sags can result in the malfunctioning of some 

sensitive loads, cause large torque peaks in electrical machines or may cause tripping of 

the machine by the action of the undervotlage protection or overcurrent protection relays 

and the longer the voltage sag lasts, the more probable the chances of malfunction [44], 

[45]. Voltage sags can be characterized by their magnitude (voltage during the fault) and 

their duration [46]-[48]. The magnitude is determined by the electrical distance to the 

fault and duration by the fault clearing time. Magnitude and duration are two essential 

and important sag characteristics which determine the equipment behavior. Figure 7 

illustrates typical instantaneous voltage sag of duration of 3 cycles (50 ms). In this figure

9
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the voltage amplitude during the sag drops to a value of 20% (80% reduction) of die pre­

sag voltage and post-sag voltage returns after the sag duration to its pre-sag value [49], 

[50].

 Phase Voltage

 rms voltage

0 02 .08

-0.5 • •

Time (Sec)

Fig. 7.Voltage sag in one phase for duration of 50 ms

When a three-phase permanent magnet synchronous machine is subjected to a sudden 

three-phase-to-ground short-circuit at its terminals, asymmetrical, short-circuit currents 

will flow in its stator and rotor damper windings. The resulting transient short-circuit 

currents are determined by the internal voltage of the motor and by the system impedance 

between the machine internal voltage and the fault. These asymmetrical transient short- 

circuit currents may be several orders of magnitude larger than normal operating currents 

and if allowed to persist may cause the motor thermal damage. These transient short- 

circuit currents have mainly two components: a symmetrical ac component and a dc 

component. While the fundamental frequency ac component decays to the sustained ac

10
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steady-state short-circuit current, the dc component decays to zero at a relatively faster 

rate. The initial values of the dc components of the stator currents differ in magnitude in 

the three phases of the stator winding, but they decay at the same exponential rate. The 

unequal dc currents in the three stator phases give rise to fundamental component 

currents in the rotor damper windings. The values of the dc components in the three stator 

phases depend on the particular point in the cycle at which the short circuit occurs 

[36],[51].

Instantaneous voltage swells are short duration increase (110% - 180%) in the root 

mean square (rms) voltage magnitude and lasting from 0.5 cycle to 30 cycles, and are 

usually associated with systems disturbances such as switching off a large load or 

energizing a large capacitor bank or by faults produced within power systems [35]. 

Voltage swells are usually characterized by the swell magnitude and the duration of the 

swell [52]-[54]. If a permanent magnet synchronous machine is subjected to 

instantaneous voltage swell, high torque peaks may damage the machine shaft or 

equipment connected to the shaft. Also, it is possible that the voltage swell may cause 

overheating, destruction of equipment or even tripping and machine shut down by the 

action of the overvoltage protection or overcurrent protection relays. Voltage swells 

might not be as common as voltage sags, however are much more harmful to some power 

equipments. Figure 8 illustrates a typical instantaneous voltage swell of duration of 3 

cycles (50 ms). In this figure, the voltage amplitude during the swell increases to a value 

of 150% of the pre-swell voltage and the post-swell voltage returns after the swell 

duration to its pre-swell value.

11
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Fig. 8.Voltage swell in one phase for duration of 50 ms.

1.1.5 Voltage Profile

Transient voltage profile at the terminal of an electrical machine is usually 

represented by a rectangular shape [55]. In this case, the occurrence of the fault is 

represented by an immediate fall of the machine terminal voltage from its pre-fault value 

to the fault value (short-circuit/sag/swell) and the clearing of the fault is represented by 

an immediate recovery of the terminal voltage from fault (short-circuit/sag/swell) value 

to a post-fault value. However, in reality, when fault occurs or when it is cleared, the 

machine terminal voltage does not change instantly, but rather it takes a certain period of 

time to reach to fault or a post-fault value due to the reactive elements of the system. In 

their effort to prevent instantaneous changes in voltage (due to  capacitors) and current 

(due to inductors), the network reactive elements establish voltage fall/recovery periods 

[56]-[58]. In the analysis of voltage profile, one of the severest fault types will be applied 

to the machine, namely three-phase short-circuit fault.

12
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1.2 Objective

The aim of this research work is to demonstrate the importance of the inclusion both 

d- and q-axis saturation on the transient behavior of permanent magnet synchronous 

machines in the case of a fault (i.e. bolted three-phase symmetrical short circuit, voltage 

sag, and voltage swell).

Moreover, this research work proposes a voltage profile due to fault at the machine 

terminals considering the terminal voltage fall and recovery durations. Also, the effect of 

the proposed transient voltage profile on the performance of saturated permanent magnet 

synchronous machines will be demonstrated.

In addition, the goal of the work presented in this research is to demonstrate that the 

impact of voltage sag/swell magnitude and duration on the transient behavior of saturated 

permanent magnet synchronous machines.

1.3 Scope

For a specific known load toque, frequency, real and reactive power, and terminal 

voltage; it is required to predict the current that will flow in the stator winding as well as 

the electromagnetic torque for machine analysis. In this case, there is no direct solution to 

the equations that describe the phasor diagram and instead a solution can only be 

obtained by using a step by step integration method. A computer program has been 

developed to solve the nonlinear equations using a standard numerical integration 

technique with an iterative procedure based on Runge-Kutta algorithm. Therefore, a 

general model (with two methods) of interior permanent magnet synchronous machines

13
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has been developed using the permanent magnet synchronous machine equations. The 

back electromotive force produced by a permanent magnet synchronous machine can be 

assumed to be equivalent to the one produced by an excitation coil. Hence the 

mathematical model of a permanent magnet synchronous machine is similar to that of the 

conventional synchronous machine [16]. As mentioned above the developed general 

unsaturated model, can be solved using two methods. In the first method, flux differential 

equations have been used and in the second method, current differential equations have 

been used.

Using the proposed unsaturated model; two other models representing the main flux 

saturation are developed. In the second model, one saturation factor is used to modify the 

unsaturated q-axis magnetizing reactance. This q-axis saturation factor can be determined 

from the q-axis saturation characteristic corresponding to the q-axis magnetizing ampere- 

tums. In the third model, two saturation factors are used to modify the unsaturated q- and 

d-axis magnetizing reactances. These q- and d-axis saturation factors can be determined 

from their respective q- and d-axis saturation characteristics corresponding to the q- and 

d-axis magnetizing ampere-tums. A comparison will be made between the results 

calculated by using these three models to demonstrate how important it is to include 

saturation in both d- and q-axis for more accurate dynamic performance prediction of the 

permanent magnet synchronous machine.

Electrical transients are short-circuiting, sag, and swell and generally, caused by fault 

in the electrical system and can cause electrical machine damage if they are allowed to 

persist. Since the effect of electrical transient and the dynamic performance have not been 

widely investigated on the permanent magnet synchronous machine, this research work is

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



an attempt to study and analyze the transient behavior of permanent magnet synchronous 

machines. When a fault (i.e. three-phase symmetrical short-circuit, voltage sag, and 

voltage swell) is occurred at the terminals of the machine, the system reactive elements 

establish fall/recovery durations during the initiation and clearing of the fault. In this 

thesis, the effect of the voltage fall/recovery durations on the transient performance of 

saturated permanent magnet synchronous machines is also investigated.
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2. Problem Definition

2.1 Modeling of Permanent Magnet Synchronous Machines

The published methods of solving the two-axis equivalent circuit are based upon a 

known input of load angle. However, in practice, a permanent magnet synchronous 

machine will be operated at a fixed terminal voltage and frequency, loaded at some 

torque and all other quantities are generally unknown including the load angle. These 

difficulties can be overcome by using analysis techniques that avoid the use of load 

angle. This research work shows that it is possible to accurately model the two-axis 

equivalent circuit without using the load angle technique. Through the use of iterative 

procedure, a solution to the two-axis model of a permanent magnet synchronous machine 

is obtained which does not require an input of load angle but allows for the parameter 

variations. The solution is able to predict machine current, speed, load angle and air-gap 

torque. The assumption that q-axis synchronous reactance Xq, or d-axis synchronous 

reactance Xd, are constant and are unaffected by saturation can lead to significant errors 

in the machine performance predictions [4].

As discussed before, different permanent magnet synchronous machine models have 

been developed by many researchers. Some being complex, not precise, especially that 

the synchronous nature of these machine, has led to problems in obtaining good dynamic 

performance [59]. But in this research work, an original approach to modeling and 

analysis of permanent magnet synchronous machine is presented, with special attention to 

the determination of its dynamic and transient behavior. So, to carry out the 

investigations, a computer model (using two methods) for an unsaturated permanent

16
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magnet synchronous machine has been developed such as:

1) Method 1: Using the machine flux linkage differential equations to calculate 

transient air-gap torque, speed, load angle, stator and rotor currents, etc.

2) Method 2: Using the machine current differential equations to calculate 

transient air-gap torque, speed, load angle, stator and rotor currents, etc.

2.2 Saturation

In interior permanent magnet synchronous machines, since the effective air-gap 

length on the quadrature axis is small, the saturation in this axis is significant. On the 

other hand, the relative magnetic permeability of the permanent magnet is close to unity 

so, the effective air-gap length on the direct axis is large and the variation of the 

corresponding magnetizing reactance X md, due to magnetic saturation, is minimal, but 

there is saturation up to certain extent [60] in this axis. In the two-axis (d- and q-axis) 

frame transient analysis of these machines, usually the impact of the saturation, especially 

the effect of the d-axis saturation is ignored. As rather large values of current flow in the 

stator circuits of a permanent magnet synchronous machine, a sort of flux redistribution 

occurs due to saturation and this happens even at no-load operations. Modification of the 

reluctance of the main flux path especially on the quadrature axis is the most important 

effect of saturation and it can be taken into account by changing X mq according to the 

saturation curve in the quadrature axis [61], [62]. This research work demonstrates the 

effect of the main flux saturation both in the direct and quadrature axes on the 

determination of the transient performances of permanent magnet synchronous machines.

Furthermore, this thesis presents a model that ignores saturation (using two methods) 

in the machine and two more models that consider the effect of the main flux saturation.

17
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So, three models will be investigated such that:

Model 1: saturation is ignored

Model 2: saturation only in the quadrature axis is considered

Model 3: saturation in both the direct and quadrature axes is considered

A comparison will be made between the results calculated by the three models to show 

the importance of inclusion of saturation in both direct and quadrature axes for more 

accurate dynamic performance prediction of the permanent magnet synchronous 

machine.

2.3 Electrical Transients

Electrical transient as described in [29] is an event that is undesirable but could be 

classified as being instantaneous, momentary, or temporarily in nature. Electrical 

transient though is a problem for electrical power systems and could lead to mis- 

operation of electrical equipment in the power system, overheating, damaging of 

electrical machine, tripping of the machine or possible shut down. Even though, 

understanding and being able to predict the dynamic performance of permanent magnet 

synchronous machine subjected to an electrical transient is essential; the effect of 

electrical transients on the machine dynamic performance has not been widely 

investigated.

So, in this research w ork three types o f  electrical transients (such as, short-circuit, 

voltage sag, and voltage swell) will be investigated in order to have better understanding 

and analysis of the transient behavior of permanent magnet synchronous machines.

18
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2.4 Voltage Profile

As mentioned in the introduction, during the occurrence and clearing of fault, the 

machine terminal voltage does not change instantly but rather it takes some time to reach 

fault or a post-fault value. The reactive elements of the system, in their effort to prevent 

instantaneous change in voltage due to the presence of capacitors and instantaneous 

change in current due to the presence of inductors, establish voltage fall and recovery 

durations of the pulse waveform as shown in Figs. 9(a-c). The most commonly used 

transient voltage profile is illustrated in Fig. 9(d) [55]. The voltage fall and recovery 

durations in Figs. 9(a-c) have been represented by exponential function in [56] and by 

immediate fall/recovery then exponential function in [57], [58] as shown in Figs. 9(b) and 

9(c), respectively. In [57], a voltage fall/recovery duration of 90 ms was used, while in 

[58], a voltage fall/recovery duration of 200 ms was used. The effect of the voltage fall 

and recovery durations on the machine performance was not demonstrated in these 

papers. This thesis proposes a transient voltage profile which will be used to investigate 

the effect of the voltage fall and recovery durations on the machine transient 

performance.
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Fig. 9. Numerous voltage profiles to represent the occurrence and clearing of a short-

circuit fault.

1. Voltage fall duration from steady-state value to fault value
2. Voltage recovery duration from fault value to a post-fault value
3. Fault duration
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3. PMSM Modeling for Electrical Transient Analysis

3.1 Equivalent Circuits

The d- and q-axis equivalent circuits of permanent magnet synchronous machine are 

shown in Fig. 10. The machine phasor diagram is illustrated in Fig. 11. One damper 

winding in the direct axis and one damper winding in the quadrature axis have been 

considered.

(Or^q R Xu

+

Rkdl

(a) d-axis

COrVd R Xu

mq

(b) q-axis

Fig. 10. d- and q-axis equivalent circuits.
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•pm

R.I,
q-axis

d-axis

a) Lagging power factor

R.I,
•pm

q-axis

b) Leading power factor 

Fig. 11. Machine phasor diagram

The following assumptions in the development of the models are made:

(a) Effect of iron, stray losses and mutual coupling effects between d- and q-axis are 

assumed negligible.

(b) The m achine perm anent m agnet excitation has been represented by an equivalent 

current source as that presented in reference.

(c) The machine operated from a balanced source.

(d) The machine speed is variation is considered.
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3.2 Unsaturated Model

A model for unsaturated permanent magnet synchronous machines has been 

developed for the following two cases:

1) Using the flux differential equations and

2) Using the current differential equations.

3.2.1 Model Using Flux Differential Equations

The permanent magnet synchronous machine stator and rotor circuit voltage 

equations can be expressed in the following form:

dVd
d t

dy,

- V d + Rid + ®r Vq

q =Vq + R i q - ^ r ¥ d
d t

o  -  R kd\ ikd\ +

® ^kql ikq\

dWkd\
d t

dWhg\
d t

(1)

The mechanical equations can be expressed as

do>r ( Tm ~ Te )
d t

d5_

d t

J

= £0S (0)r -1)

where

T =J- Ae =Wdlq -VqH

(2)

(3)

In the determination of the transient performance due to fault at the machine 

terminals, the initial steady-state values of the machine currents and flux linkages are 

calculated first for a particular loading condition. To simulate the effect of the fault, the
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d- and q-axis components of the terminal voltage Vd and Vq in (1) are made equal to fault 

values. These initial steady-state values of the currents, flux linkages, speed and load 

angle at the beginning of the time step are used to find the flux linkages, speed and load 

angle.

The calculated flux linkages at the beginning of the step are then used to calculate the 

armature (stator) and damper winding (rotor) currents at the end of the step by using 

following the permanent magnet synchronous machine current equations:

id ~(X mdu+ X ll) 0 X mdu 0
-1

V pm
i<t 0 ~ (X mqu + X ll) 0 X  mqu Vq 0

ikdl ~ X mdu 0 (X mdu+ X kd\) 0 Vkdl V pm
ikq\ 0 ~ X mqu 0 (X mqu+ X kq\)_ Vkql _ 0

3.2.2 Model Using Current Differential Equations

The permanent magnet synchronous machine stator and rotor circuit current 

differential equations can be expressed in the following form:

d id
d t

d i g ~  (X  mdu +  X l l )  0  X mdu 0

d t 0 — (X mqu X ll)  0  X mqu

dikd\
= (as

~ X  mdu o  p m* + x u i )  0
d t 0 ~  X mqu ® (X mqu X kq\)

dikql

dt
Vd + R.id -cor(Xmgu + X n)iq +corX mgu.ikd\

Vq R- ig (fir(Xmdu X II)*d ~ rX mdu kd\ ~ a)rX mdu-ipm 
~ Rkd\'kdl 
~ ^kqdkql
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The mechanical equations and electromagnetic equations are given in (2) and (3), 

respectively.

In the determination of the transient performance due to fault at the machine 

terminals, the initial steady-state values of the machine currents and flux linkages are 

calculated first for a particular loading condition. To simulate the effect of the fault, the 

d- and q-axis components of the terminal voltage Vd and Vq in (1) are made equal to fault 

values.

The differential equations in (2) and (5) are solved using the 4th-order Runge-Kutta 

method. These calculated current differential equations at the beginning of the step are 

then used to calculate the armature (stator) and damper winding (rotor) flux at the end of 

the step by using following the permanent magnet synchronous machine flux equations:

Vd ~(Xmdu + X u)  0 X mdu 0 id XmdVpm
vq 0 (Xmqu + Xu)  0 X mqu lq

+
0

Vkdl -Xmdu 0 (Xmdu +  X m )  0 *kd\ X  mdVpm
Vkql 0 — Y mqu 0 (Xmqu +X kq\)_ }kq\ _ 0

The calculated currents, flux linkages, speed and load angle at the end of the step can 

be used to find the transient performance for the next time step. Upon restoration of the 

normal voltage, Vd and Vq in (1) are calculated using the new post-fault voltage and the 

machine load angle. The calculation of the motor dynamic performance continues for the 

post-fault condition.
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3.3 Saturated Machine Models

Models of permanent magnet synchronous machines considering the saturation along 

the direct and quadrature axes have been obtained by modifying the unsaturated model 

that was described in the previous section.

3.3.1 Model Considering only q-Axis Saturation

In this approach, the unsaturated q-axis magnetizing reactance (.Xmqu) is replaced by 

its corresponding saturated value. This q-axis saturated magnetizing reactance Xmqs, is 

obtained by modifying the corresponding unsaturated value, Xmqu, with saturation factor 

Kq, corresponding to the saturation condition along the quadrature axis as in (7). The q- 

axis magnetizing ampere-tums is used to locate the operating points on the q-axis 

saturation characteristics,

Xmqs =KqX mqu- (7)

3.3.2 Saturated Model Considering both d- and q-axis Saturation

In this case, both d- and q-axis saturation are considered. The unsaturated d- and q- 

axis magnetizing reactances are replaced by their corresponding saturated values. These 

d- and q-axis saturated magnetizing reactances, Xmds and Xmqs, are obtained by modifying 

the corresponding unsaturated values, Xmdu and Xmqu, with two saturation factors, Kd and 

Kq, corresponding to the saturation conditions along the direct and quadrature axes, 

respectively as in (8). The d- and q-axis magnetizing ampere-tums are used to locate the 

operating points on the d- and q-axis saturation characteristics, respectively.
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By applying the procedure described above, the transient performance of permanent 

magnet synchronous machines considering the saturation along the direct and quadrature 

axes can be calculated. However, in this case, an iterative technique has to be applied to 

determine the transient performance as the saturated d- and q-axis magnetizing reactances 

in (4) and (6) depend on the saturation level.
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4. Numerical Investigation

4.1 System Studied and Machine Parameters

The three-phase permanent magnet synchronous machine under investigation is 

connected to the infinite bus through a transmission line as shown in the one line diagram in 

Fig. 12. A fault (i.e. three-phase short-circuit, voltage sag, or voltage swell) at the terminal of 

the machine occurs at 4.167 ms (or 12.5 ms) and remains for 33.33 ms.

4.1.1 Machine Parameters

To investigate the effect of the faults applied (short-circuit, voltage sag, or voltage swell) 

on the transient performance of saturated permanent magnet synchronous machines, the 

proposed models have been applied to a three-phase, 4-pole, 37.5 V, 7 A permanent magnet 

synchronous machine [14]. The transient performance have been calculated considering and 

ignoring the saturation for a loading condition corresponding to active power 0.75 pu and

PMSM \  Infinite Bus

3-<}> fault

Fig. 12. Single line diagram for the system studied.
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reactive power 0.5 pu under both lagging and leading power factor conditions at the terminal 

of the machine. The time step used in the numerical investigations is 1/2400 sec.

Table 1. Machine parameters

Rated power 0.46 kVA

Rated voltage 37.5 V

Rated current 7.0 A

Unsaturated d-axis reactance 0.366 PU

Unsaturated q-axis reactance 0.83 PU

Magnetizing d-axis reactance 0.26 PU

Magnetizing q-axis reactance 0.724 PU

Leakage reactance 0.106 PU

d-axis damper reactance 0.06 PU

q-axis damper reactance 0.06 PU

Armature (stator) resistance 0.04 PU

d-axis damper resistance 0.148 PU

q-axis damper resistance 0.148 PU

Table 2: Operating Conditions

Terminal voltage 1.0 PU

Terminal real power 0.75 PU

Terminal reactive power 0.5 PU
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4.1.2 Machine Saturation Characteristics

The d- and q-axis saturation characteristics of the permanent magnet synchronous 

machine used in the investigations are shown in Fig. 13.

0.6  - •

Linear q-axis air-gap line •'

q-axis saturation curve

Linear d-axis air-gap line

d-axis saturation curve

2.80.4 2.4
d & q-Axis Ampere-tums (p.u)

Fig. 13. d- and q-axis linear and open circuit characteristic curves.

4.2 Simulation Flowcharts

4.2.1 Procedures of Simulation

In this section, the basic procedures used to perform the initial value calculation and 

transient simulations by the proposed models are explained.

Figure 14 shows flowchart to calculate the initial values, where, terminal voltage, real 

and reactive power are given as an input. Then, the load angle (8) of the machine can be 

calculated. Then, the d- and q axes components of the stator voltage and current, fluxes and 

electromagnetic torque of the machine are determined. Both method land 2 in model 1 will 

have the same flowchart for initial value calculation.
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Yes No
Go to 

Transient

Read P,, V,, andPF

tn + 1 = tn + At; At: time step

It = Pt/(Vt*PF), 6 = c o s (PF)
X d = Xu + Xmcju, X q = Xff + XmqU

S = tan Vt + If .Xq. sin 6 + It.R. cos Q

Modes of Operation:
Motor Under Lagging/Leading Power Factor Condition 
Generator Under Lagging/Leading Power Factor Condition

Vd = K/.sin <5 

Vq  =  Vf. cos  S  

id =  I t .sin (6 + 5) 
i q = J f . co s ( 0  + S )

Vq + R . i q + X d - i d
lpm ~ X md 
iMX = >kql =  0 
Epm = X md ■ipm 
cor = 1

d —■ — XJ -iu + X mqu + X mcfu -ipm

W q ~~ ~ X q  <iq "F  X mqu

Wkd\ ~~ ~ X mcfu dd  +  (^Xmcfu +  Xfajf kd l "F X m(ju .ipm

V k q \  =  ~ X mqxl . iq 

V pm
Te =  V d - i q  - V q - i d

pm
mqu

Fig. 14. Initial value calculation for the unsaturated model (methods 1 and 2 in model 1).
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In general, there are two methods for the integration of differential equations in power 

system simulation; one is an explicit method, such as the 4th order Runge-Kutta method, and 

the other is an implicit one, such as the trapezoidal rule. The flowcharts shown in Figs. 15, 

16, and 18 are for the explicit method. Figures 15 and 16 show flowcharts of step-by-step 

simulation for the calculation of transient values, such that in each of these flowcharts, fault 

is initiated and then sustained for a few cycles before the fault is cleared. For the method that 

uses flux differential equations as shown in Fig. 15, after applying Runge-Kuatta algorithm, 

the new values of fluxes are calculated, then, using the calculated flux values and the 

unsaturated reactances, current values are determined. In the case of the method using the 

current differential equations as shown in Fig. 16 the new values of currents are calculated, 

then, using the calculated current values and the unsaturated reactances, flux values are 

determined. The calculation of the motor dynamic performance continues for the post-fault 

condition.

Figure 17 illustrates the flowchart for the saturated case. The same procedures will be 

followed as for Fig. 14 to calculate the initial values of the d and q axes components of the 

stator voltage and current, fluxes and electromagnetic torque of the machine. However, in 

Fig. 17 for the saturated model, determination of the initial values of currents and fluxes 

involves an iterative process because X j  and Xq depend on the saturation level. So, after the 

currents converge, initial values of currents, load angle, flux linkages, etc. are determined.
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V d > Vq> V kd \’ Vkqi have already been obtained

id ’ iq. ikd \’ ikq\’ 'pm  have already been obtained

tn+\ = tn + Ai; At: time step

reclose

Vd =0

Yes

Vd = Vt sin<?

va = vt cos <5

Calculate fluxes for the next time step by solving 
the following differential equations.

dWd/d t = as-(vd + Rs ‘d + °>Vq) 
dwa /

y d t =(Os .{Vq+Rs-iq-a)V d ) 

dy/kdy dt = a)s-(rRkdl-ikdl)

dy/kqy dt = ^-{-RkqUkqX)

- 1
id (X m du + X n )  0 X mdu 0 V d V pm

lq 0 -  (Xmqu + ̂ 11) ® X mqU V q 0

ikd\ ~ X m du H (Xmdu + X k d \ )  0 V kd\ V pm

ikql 0  -  X mqU 0 (X mqU + X t y i ) V kq\_ 0

n=n+\

STOP

Fig. 15. Calculation of transient values using flux differential equations (method 1).
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Vd> Vq< Wkdi> V kq\ have already been obtained

id ’ iq■ hd\> ikqb ipm  have already been obtained

tn+\ =tn+At; At: time step

reclose

Vj = Fault Value 
V„ = Fault Value

Vd = Vt sin 8

vd = Vt cos 8

Calculate currents for the next time step by solving the following current differential equations.

djd_
dt

di„<?
d t

dikd\
dt

di.lkq\

dt

= co<
~ (X mud + Xu) 0 0

-1 Vd + R'ij CO.Xq. iq 4- CO.ACmqU ifcjy
0 ~(X mqu + Xll) 0 X mqu Vq +R.iq +  co.Xd. id -  0).Xmdu ikd] - co.Xmdu ipm
ymdu 0 (Xmdu+ X kd\) 0 -  R-kdV i/cdl
0 " X mqu 0 f t  mqu + X kq\)_ ~ fycqY ikq\

\vd (x  mdu + x l l ) 0 x mdu H x mdu 'id  1
Vq 0 ~ (x mqu + x l l )  0 x mqu 0 l<i
Vkd\ ~ x mdu 0 (x m du+ x k d l) ® x mdu ikd\

\Vkq\ __ 0  ~  x mqu 0 (x m qu+ x kq\) 0 ikql

n=n+\

Fig. 16. Calculation of transient values using current differential equations (method 2).
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Read Pt , Vt and PF

tn+1 = tn + A t; A t : time step

It =  P, /(Vt * PF ), 0  =  cos'1 ( P F )

X  d ~ Xll + Xmds i Xq  = Xu + XmqS

8  =  tan
V( + If.Xq.sinO  + Ij.R.cos 0

I t -X a .cos 0  -  h .R .s in O

Modes of Operation:
Motor Under Lagging/Leading Power Factor Condition 
Generator Under Lagging/leading Power Factor Condition

V =  V(.sin 8 

Vq =  V[. cos 8  

id  =  I( .s in ( 6 + 8 )  

iq  =  I t . cos( 6 + 8 )

Vq + R . iq + X d - i d

lpm  =  Xm ds

ikdl  =  ikq 1 =  0  

V- pm  =  X  mds ipm

K q is calculated using the q - axis saturation characteristics corresponding to the ATe

ATd j id  + ikdl + ipm  |

K d  is calculated using the d  - axis saturation characteristics corresponding to the ATd

Fig. 17. Initial values calculation for models considering saturation (cont’d).
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Wq ~ ~ X q -iq + X mqS .ifcgl

Vkd\  ~  ~ X ml]s -itf +  { X mc/s +  X ^ - i / c d X  X m(js -ipm

Wkq\  ~  ~ X m q s  •iq  +  ( X mqS +  X ^

Y p m  =  E pm / o } s 

Te =Vd-iq - Y q i d

Fig. 17. Initial values calculation for models considering saturation.

Figure 18 shows flowchart of step-by-step simulation. Fault is initiated and sustained for 

a few cycles before it is cleared and machine terminal voltage goes back to normal value. For 

the method that uses flux differential equations as shown in Fig. 18, after applying Runge- 

Kutta algorithm, the new values of fluxes are calculated, then, currents values are 

determined. However, the mathematical model will be modified to take the d- and q-axis 

saturation (the changing of X<j and Xq) into consideration in the iteration process in order to
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calculate new magnetizing reactances and currents in each time step. Then at the end of 

iteration process the fluxes and currents values are determined and the program is ready to go 

to the next time step. The calculation of the motor dynamic performance continues for the 

post-fault condition.

Wd- V  q> Vkd\< Vkq\ h ave already been obtained 

id, iCJ, ikdl, ikqX, ipm have already been obtained

tn + 1  = tn + At; At: time step

reclose

Vd = Vt.sinSFault Value
Vq = Vf.cosoV = Fault Value

Calculate fluxes for the next time step by solving the 
following differential equations.

dVd/dt = as (Vd + Rid + a>Vq) 
dwa /y dt=0)s.(Vq+R.iq-(Oi/d) 

d¥kdX/dt = as(-Rkd\‘kd\)
dVk,Ydt = ^(-RkqUkqX)

[ '  d (X mds + %ll) 0 Xmds 0 - 1 ~Vd V pm
-i

‘q 0 ~ ft mqs + ̂ 11) 0 X mqs Vq 0

‘kdl ~ Xmds 0 (Xmds + Xkd\ ) 0 Vkdl V pm
lkq\ 0 _  Xmqs 0 (X m qS + Xfcj j ) Vkql _ 0

D

Fig. 18. Transient value calculation using flux differential equations using saturated model (cont’d).
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\id(k + \)-id (k )\  >  1 °  4  

I ig (k + \ ) - i g (k ) \> \0 -4 
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K  q is calculated using the q - axis saturation characteristics corresponding to the A Tt

ATd = \~ id  + i k d l + i p m \

Krf is calculated using the d  - axis saturation characteristics corresponding to the AT £

Fig. 18. Transient value calculation using flux differential equations using saturated model.
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4.3 Numerical Calculation

4.3.1 Comparison of the Results Calculated by Methods 1 and 2.

To investigate the performance of the machine using model 1 (unsaturated); the proposed 

two methods in model 1 have been applied to a typical permanent magnet synchronous 

machine. In these investigations, the following are assumed:

1. A symmetrical three-phase short-circuit (SC) has been considered.

2. Upon voltage restoration, the post-SC terminal voltage comes back to the pre-short 

circuit voltage level 1.0 pu immediately.

3. The rotor speed remains constant and is equal to 1.0 pu.

The transient performance has been calculated ignoring the saturation for a loading 

condition (both generating and motoring modes of operation) corresponding to active power 

P = 0.75 pu and reactive power Q = 0.5 pu under different power factor conditions at the 

terminal of the machine. The pre-SC terminal voltage V, is 1.0 pu and during the short-circuit 

the terminal voltage amplitude drops to 0 pu and the short-circuit continues for 41.67 ms 

(100 time steps). After the resumption of normal operation, the post-SC terminal voltage 

comes back to 1.0 pu. Figures 19 to 30 show some of the results of these investigations.

The produced air-gap torque values for the short circuit duration of 41.67ms for different 

machine operating conditions are shown in Figs. 19 to 22. As it can be seen from these 

figures, the two modeling methods produce the same air-gap torque. The post-SC  peak air- 

gap torque has a higher negative average value for motor under leading power factor 

condition as shown in Fig. 20, while it has a higher positive average torque value for the 

same short circuit duration for generator under lagging power factor condition as shown in

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig. 21. Also it is noticeable that when the machine is operating as a motor, the steady-state 

torque has negative values, since power is being absorbed from the grid. While when 

machine is operating as a generator, the steady-state torque has positive values, since power 

is being delivered to the grid.

Torque by Method 1

Torque by Method 2

Q.

0.0. .08i.02 0.12 0.14

-2  - ■

Time (Sec)

Fig. 19. Electromagnetic torque for motor under lagging power factor condition and short-

circuit duration of 41.67ms.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Torque by Method 1

■ Torque by Method 2

Q,

CT

.02 0.0 1.08 0.12 0.14

Time (Sec)

Fig. 20. Electromagnetic torque for motor under leading power factor condition and short-

circuit duration of 41.67 ms.

Torque by Method 1

Torque by Method 2

Cl

p.

0.02 0.04 0.08 0.12 0.14

T im e  (S e c )- 2  -L

Fig. 21. Electromagnetic torque for generator under lagging power factor condition and

short-circuit duration of 41.67ms.
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Torque Method 1

•Torque Method 2

2  -

0.080.02 0 .0 ' 0 .0 ' 0.12 0.14

Time (Sec)

Fig. 22. Electromagnetic torque for generator under leading power factor condition and short-

circuit duration of 41.67 ms.

It can be noticed from Figs. 19 to 30 for permanent magnet synchronous machine operating 

as motor or generator under both lagging and leading power factor conditions that method 

using flux differential equations yields the same results as the method using current 

differential equations. In order to save time and effort, only the method using flux differential 

equations will be used in the rest of the analysis.
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id by Method 1

iq by Method 1

id by Method 2

iq by Method 2

iU 4>.02

o*

-o

Time (Sec)

Fig. 23. d- and q-axis stator currents for motor under lagging power factor condition and

short-circuit duration of 41.67 ms.

ikdl by Method 1

ikql by Method 1

•ikdl by Method 2o.

ikql by Method 2

T in ■
0.1 0.12 0.14

cr

Time (Sec)

Fig. 24. d- and q-axis damper winding currents for motor under lagging power factor 

condition and short-circuit duration of 41.67 ms.
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id by Mehtod 1

iq by Mehtod 1

• id by Mehtod 2o.

id by Mehtod 2

0.14'.02

Time {Sec)

Fig. 25. d- and q-axis stator currents for motor under leading power factor condition and

short-circuit duration of 41.67 ms.

ikdl by Method 1

ikql by Method 1

a . • ikdl by Method 2

ikql by Method 2

0.12 .14

T im e  (S e c )

Fig. 26. d- and q-axis damper winding currents for motor under leading power factor 

condition and short-circuit duration of 41.67 ms.
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- id by Method 1

- iq by Method 1 

• id by Method 2

iq by Method 2o.

0.02 0.12 0.140.0 0.08
c r

Time (Sec)

Fig. 27. d- and q-axis stator currents for generator under lagging power factor condition and

short-circuit duration of 41.67 ms.

ikdl Method 1

ikql Method 1 

ikdl Method 2

• ikql Method 2o .

' 0 . C  1 .12 0.14

Time (Sec)

Fig. 28. d- and q-axis damper winding currents for generator under lagging power factor 

condition and short-circuit duration of 41.67 ms.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



id by Method 1

iq by Method 1

id by Method 2D.

iq by Method 2

0.08 0.1
o-

0 .02 ' 0.12 0.14

Time (Sec)

Fig. 29. d- and q-axis stator currents for generator under leading power factor condition and

short-circuit duration of 41.67 ms.

ikdl by Method 1

ikql by Method 1

ikdl by Method 2C l

ikql by Method 2

0.12 0.14

O"

Time (Sec)

Fig. 30. d- and q-axis damper winding currents for generator under leading power factor 

condition and short-circuit duration of 41.67 ms.
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4.3.2 Short-Circuit Analysis

To analyze the effect of three-phase short-circuit fault on the motor transient 

performance, the developed unsaturated and saturated models have been applied for the same 

loading conditions mentioned in section 4.1.1 and under lagging power factor condition.

The pre-short-circuit (steady-state) terminal voltage is 1.0 pu and the short-circuit 

occurred at 12.5 ms (30 time steps) and after a voltage fall duration of 2.5 ms, the terminal 

voltage becomes zero. Short-circuit continues for two cycles. After the resumption of normal 

operation, the post-short-circuit terminal voltage comes back to 1.0 pu following a 2.5 ms 

recovery duration. Figures 31 to 33 show some of the results of these investigations.

The produced air-gap torque and phase ‘a’ current calculated by considering and ignoring 

the saturation for fault duration of 33.33 ms are shown in Figs. 31 and 32, respectively. 

Voltage fall and recovery durations are 2.5 ms each. It can be seen from these figures that 

there are considerable discrepancies between the results calculated by the model ignoring 

saturation and the ones calculated by the models that consider saturation. Moreover, as 

illustrated in these figures, the effect of the inclusion of saturation along the direct axis on the 

air-gap torque and phase ‘a’ current is significant.

The dynamic performance of the permanent magnet synchronous motor during and after 

fault is illustrated in Fig. 33 for different saturation conditions. The amplitude of the load 

angle swings is relatively smaller in the case of the models that consider saturation. It can be 

seen from Fig. 33 that the saturation contributes negative damping and higher synchronizing 

torque (higher frequency of load angle swing) as compared to the ones by the model ignoring 

saturation. Moreover, there are discrepancies between the results calculated by the models 

considering saturation.
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Unsaturated model

-  - q-axis saturatuion model

—  d- & q-axis saturation model

0.02 0.080.04

-2  - -

Time (Sec)

Fig. 31. Air-gap torque by the three saturation models under lagging power condition for 

short-circuit duration of 33.33 ms and voltage fall/recovery duration of 2.5 ms.

Unsaturated model

-  -  q-axis saturation model

—  d- & q-axis saturation model

o.

0.02 0.04

-3 ••

T im e  (S e c )-7 x

Fig. 32. Phase ‘a’ current by the three saturation models under lagging power condition for 

short-circuit duration of 33.33 ms and voltage fall/recovery duration of 2.5 ms.
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Fig. 33. Load angle by the three saturation models under lagging power condition for short- 

circuit duration of 33.33 ms and voltage fall/recovery duration of 2.5 ms.

4.3.3 Voltage Sag Analysis

To investigate the effect of voltage sag on the transient performance of saturated 

permanent magnet synchronous motors, the proposed models have been applied to a typical 

permanent magnet synchronous motor. In the simulations the impact of voltage sag 

magnitude and duration are investigated. The following are assumed:

1) A symmetrical three-phase voltage sag of constant magnitude of 0.2 pu (80%

reduction) has been considered.

2) Upon voltage restoration, the post-sag terminal voltage comes back to the pre-sag 

voltage level 1.0 pu while considering a fall/recovery duration of 2.5 ms.

3) Voltage sag is initiated at 12.5 ms (30 time steps).
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The transient performance has been calculated ignoring and considering the saturation for 

a loading condition corresponding to active power 0.75 pu and reactive power 0.5 pu under 

lagging power factor condition at the terminal of the motor. The transient performances of 

the saturated motor have been determined for voltage fall and recovery durations equal to 2.5 

ms. Figures 34 to 41 show some of the results of these investigations.

The produced air-gap torque for the two sag durations (28.33 ms and 38.33 ms) and sag 

magnitude equal to 0.2 pu are shown in Figs. 34 and 35. As it can be seen from these figures, 

the post-sag peak air-gap torque has a higher negative magnitude for the sag duration of

38.33 ms in comparison to the one for a sag duration of 28.33 ms. Also, it can be seen that 

there are discrepancies between the results calculated by the three models.

This negative peak value of the air-gap torque also changes as a function of the sag 

magnitude as demonstrated in Fig. 36 for the case of the sag duration o f 38.33 ms. In this 

figure it can be seen that there are discrepancies between the results calculated by the three 

models which show the importance of including both the d- and q-axis saturation in the 

transient analysis of interior permanent magnet synchronous machines. So, as it can be seen 

from Figs. 34-36, the effect of the sag magnitude and duration on the post-sag air-gap torque 

is appreciable. Moreover, there are discrepancies between results calculated by the three 

models.
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Fig. 34. Motor air-gap torque calculated by various models under lagging power factor

condition for sag duration of 28.33 ms.

• Unsaturated model

—  Only q-axis satuation model

—  d- & q-axis saturation model
2

0.02 0.04 0.06 0.08&

-2  - ■

T im e  (S e c )-3 -L

Fig. 35. Motor air-gap torque calculated by various models under lagging power factor

condition for sag duration of 38.33 ms.
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 Only q-axis saturation model

 d- & q-axis saturtion model
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0.2 0.4
Sag M agnitude (pu)

0.6 0.8

Fig. 36. Peak torque vs sag magnitude calculated by the various models under lagging power

factor condition for sag duration of 38.33 ms.

The pattern of the changes of the peaks of the various post-sag phase currents with the 

sag duration and magnitude is similar to the change of the peaks of the post-sag air-gap 

torque. For example, the post-sag peak phase ‘a’ current has a high positive magnitude for 

the sag duration of 38.33 ms, while it has a relatively smaller value for the sag duration of

28.33 ms as shown in Figs. 37 and 38. The peak value of the phase ‘a’ current also changes 

with the sag magnitude as demonstrated in Fig. 39 for the case of the sag duration of 38.33 

ms. As can be seen from Figs. 37-39, the effect of the sag magnitude and duration on the 

post-sag phase ‘a’ current is appreciable. As well there are noticeable discrepancies between 

the results calculated by the three saturation models as shown in Figs. 37-39.
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■ Unsaturated model

 Only q-axis saturation model

 d- & q-axis saturation model

08 n0.04
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Fig. 37. Motor phase ‘a’ current calculated by various models under lagging power factor

condition for sag duration of 28.33 ms.

Q.

0.02 0.04 0.06

—  Unsaturated model

— - Only q-axis saturtion
—  d- & q-axis saturtion model

Time (Sec)

Fig. 38. Motor phase ‘a’ current calculated by various models under lagging power factor

condition for sag duration of 38.33 ms.
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Fig. 39. Motor peak phase ‘a’ current vs sag duration calculated by the various models under 

lagging power factor condition for sag duration of 38.33 ms.

The dynamic performance of the permanent magnet synchronous motor during and post­

sag durations are illustrated in Figs. 40 and 41 for the two sag durations 28.33 ms and 38.33 

ms and sag magnitude of 0.2 pu and a voltage fall and recovery durations of 2.5 ms. As can 

be seen from these figures, the magnitude and frequency of the load angle swings are 

relatively higher in the case of the sag duration of 38.33 ms in comparison to the ones for the 

sag duration of 28.33 ms. It can be seen from Figs. 40 and 41 that the models that consider 

saturation contribute to more negative damping and higher synchronizing torque (higher 

frequency of load angle swing) as compared to the ones by the model ignoring saturation. 

Among the two saturation models, the model considering saturation in both d- and q-axis 

introduces the more negative damping and the higher synchronizing torque.
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Fig. 40. Motor Load Angle calculated by various models under lagging power factor

condition for sag duration of 28.33 ms.
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Fig. 41. Motor Load Angle calculated by various models under lagging power factor

condition for sag duration of 38.33 ms.
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4.3.4 Voltage Swell Analysis

In the analysis of the transient performance of permanent magnet synchronous motors 

during and after the swell, the accurate calculation of the stator and rotor currents, load angle 

and air-gap torque depends on the saturation conditions. So to investigate the effect of 

voltage swells on the transient performances of saturated permanent magnet synchronous 

motors, the proposed models have applied to a typical permanent magnet synchronous motor. 

In these investigations, the following are assumed:

1. A symmetrical three-phase voltage swell of magnitude 1.5 pu has been considered.

2. Upon voltage restoration, the post-swell terminal voltage comes back to the pre-swell 

voltage level 1.0 pu while considering a fall/recovery duration of 2.5 ms.

3. Voltage swell is initiated at 12.5 ms (30 time steps).

The transient performance has been calculated considering and ignoring the saturation for 

a loading condition corresponding to real power = 0.75 pu and reactive power = 0.5 pu under 

lagging power factor condition at the terminal of the motor. The pre-swell terminal voltage Vt 

is 1.0 pu and the terminal voltage amplitude increases to 150% (1.5 pu) of the pre-swell 

voltage at 12.5 ms and the voltage swell continues for either 28.33 ms or 38.33 ms and 

voltage fall and recovery durations are 2.5 ms each. After the resumption of normal 

operation, the post-swell terminal voltage comes back to 1.0 pu. Figures 42 to 50 show some 

of the results o f  these investigations.

The proposed air-gap torque for the two 28.33 ms and 38.33 ms swell durations are 

shown in Figs. 42 and 43. As can be seen from these figures, the peak values of the post­

swell air-gap torque have larger positive magnitudes for the swell duration of 28.33 ms in
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comparison to the one for a swell duration of 38.33. Moreover, The largest positive peak 

values of the post-swell air-gap toque also change as a function of the swell magnitude as 

demonstrated in Fig. 44 for the case of a swell duration of 38.33 ms. As it can be seen from 

Figs. 42 to 44 the effect of the swell magnitude and duration on the post-swell air-gap torque 

is appreciable. Also, the saturation representation (both d- and q-axis saturation model & 

only q-axis saturation model) in the permanent magnet synchronous motor modeling can 

affect the accuracy of calculating this torque.

2  - -

Time (Sec)Q.

o-
'.06

-2

• Unsatuated model

-3 -- —  Only q-axis saturation model

—  d- & q-axis saturation model

Fig. 42. Motor air-gap torque calculated by the various models under lagging power factor 

condition for voltage swell duration of 28.33 ms.
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 Only q-axis saturation model
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Fig. 43. Motor air-gap torque calculated by the various models under lagging power factor 

condition for voltage swell duration of 38.33 ms.

3.5 T Unsaturated model

—  Only q-axis saturation model

—  d- and q-axis saturation model

o*

Swell M agnitude (pu)

Fig. 44. Largest positive peak value of the post-swell air-gap torque vs swell magnitude 

calculated by the various models under lagging power factor condition for voltage swell

duration of 38.33 ms.
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The changes of the peaks of the post-swell phase currents depend also on the swell 

duration and magnitude. For example, the peaks of the post-swell phase ‘a’ current have 

larger positive magnitudes for the swell duration of 28.33 ms in comparison to the one for a 

swell duration of 38.33 ms as shown in Figs. 45 and 46. It can also be Fig. 47 that the change 

of the largest negative peak value of the phase ‘a’ current changes with the swell magnitude 

for the case of a swell duration of 28.33 ms. So, as it can be seen from Figs. 45-47, the effect 

of the swell magnitude and duration on the post-swell phase ‘a’ current is appreciable. Also it 

is noticeable from Figs. 45-47 that there are discrepancies between the results calculated by 

the three saturation models.

0.06 V

Time (Sec)

a.
-3 --

• Unsaturated model

-4  Only q-axis saturation model

 d- & q-axis saturation model

Fig. 45. Motor phase ‘a’ current calculated by the various models under lagging power factor 

condition for voltage swell duration of 28.33 ms.
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Fig. 46. Motor phase ‘a’ current calculated by the various models under lagging power factor 

condition for voltage swell duration of 38.33 ms.

Unsaturated model 

q-axis saturation model 
d- & q-axis saturation model

Swell M agnitude (pu)
0.5

Fig. 47. Largest negative peak value of the post-swell phase ‘a’ current as a function of the 

swell magnitude calculated by the various models under lagging power factor condition for

voltage swell duration of 28.33 ms.
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The dynamic performance of the permanent magnet synchronous motor as affected by the 

voltage swell and the saturation modelling, is illustrated in Figs. 48 and 49 for the two swell 

durations 28.33 ms and 38.33 ms and a swell magnitude of 1.5 pu and voltage fall and 

recovery durations of 2.5 ms. As can be seen from these figures, the amplitude of the load 

angle swings is dependent on the swell duration. For example, this amplitude of the load 

angle swings is relatively larger in the case of 38.33 ms swell duration. The saturation 

representation in the motor modeling can also affect the damping and the frequency of the 

load angle swings as shown in Figs. 48 and 49. For example, the models that consider 

saturation contribute to more negative damping and larger synchronizing torque (higher 

frequency of the load angle swing) as compared to the ones by the model ignoring saturation 

for both the 28.33 ms and 38.33 swell durations.

0.5 2 .5

-10  - U n sa tu ra ted  m odel

 O n ly  q -ax is  sa tu ra tio n  m odel
-20  -

d - and  q -ax is  sa tu ra tio n  m odel

-3 0  -

•g -4 0  -

-5 0  -

-6 0  -

Time (Sec)

Fig. 48. Motor load angle calculated by the various models under lagging power factor 

condition for voltage swell duration of 28.33 ms.
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Fig. 49. Motor load angle calculated by the various models under lagging power factor 

condition for voltage swell duration of 38.33 ms.

4.3.5 Voltage Profile Analysis

As mentioned in the introduction, during the occurrence and clearing of a fault, the 

machine terminal voltage does not change instantly but rather it takes some time to reach 

fault value or a post-fault value. The reactive elements of the system, in their effort to prevent 

instantaneous change in voltage due to the presence of capacitors and instantaneous change 

in current due to the presence of inductors, establish voltage fall and recovery durations of 

the pulse waveform that has been shown in Figs. 9(a-c). However, the effect of the voltage 

fall and recovery durations on the machine performances has not been demonstrated in the 

literatures. In this section, the following are assumed:

1. A three-phase short-circuit at the motor terminals has been considered.

2. Upon voltage restoration, the post-SC terminal voltage comes back to the pre-SC 

voltage level 1.0 pu while considering the delay fall/recovery duration of 2.5 ms.

3. Short-circuit is initiated at 12.5 ms (30 time steps).
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The most commonly used short-circuit voltage profile has been illustrated in Fig. 

9(d). The short-circuit voltage profile which will be used in the investigations of this 

research work is illustrated in Fig. 50. As can be seen from Fig.50 different voltage fall 

and recovery durations will be considered to demonstrate their effect on the motor 

transient performances. In this figure, short-circuit duration of 2 cycles (for a power 

system frequency of 60 Hz) has been considered. Transient results have been calculated 

considering and ignoring the saturation for a loading condition corresponding to real 

power = 0.75 pu and reactive power = 0.5 pu under lagging power factor condition at the 

terminals of the motor.

Post-fault voltage

S. 0.8
oop

Short-circuit duration
—  5 ms 
 3.75 ms
—  2.5 ms
—  1.25 ms
—  0 ms

0.4 -•

0.2

0.06 0.070.01 0.02 0.03
Time (Sec)

0.04 0.05

Fig. 50. Proposed voltage profile due to short-circuit at the motor terminals with different

voltage fall and recovery durations.

1. Voltage fall duration from steady-state value to zero value
2. Voltage recovery duration from zero value to a post-short-circuit value
3. Short-circuit duration
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The effect o f voltage fall/recovery durations on the motor air-gap torque and the phase ‘a’ 

current is illustrated in Figs. 51 and 52, respectively. It is noticeable from these figures that 

the motor transient performances are highly dependent on the durations of voltage fall and 

voltage recovery. The oscillations in the air-gap torque and phase ‘a’ current are the highest 

if the terminal voltage falls to zero value immediately and recovers to the post-short-circuit 

value immediately. On the other hand, as it might be expected, the oscillations in the air-gap 

torque and phase ‘a’ current reduce significantly with the consideration of the voltage 

fall/recovery time. The effects of the saturation modeling and the voltage fall/recovery 

durations on the motor load angle are illustrated in Fig. 53. As can be seen from this figure, 

the load angle swing reduces with the increase of the voltage fall/recovery duration and the 

effect of voltage fall/recovery duration on the load angle swing becomes less if saturation is 

considered in the machine modeling.

The effects of the saturation modeling and the voltage fall/recovery duration on the motor 

critical clearing time are illustrated in Fig. 54. As can be seen from this figure, the motor 

critical clearing time increases with the increase of the voltage fall/recovery durations and the 

effect of the inclusion of saturation in the motor modeling is also to increase the critical 

clearing time.
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0 ms

0.06 0.08

-2  - -

Time (Sec)

Fig. 51. Air-gap torque calculated using model considering both d- and q-axis saturation for 

short-circuit duration of 33.33 ms and using voltage fall and recovery duration of 0,1.25,2.5,

3.75 and 5 ms each.

Q.

0.02

—  5 ms
—  3.75 ms 
 2.5 ms
—  1.25 ms 
 0 msTime (Sec)

Fig. 52. Phase ‘a’ current calculated using model considering both d- and q-axis saturation 

for short-circuit duration of 33.33 ms and using voltage fall and recovery duration of 0, 1.25,

2.5, 3.75 and 5 ms each.
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Considering only q-axis saturation 

Considering both d- and q-axis saturation-75

-100
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Fig. 53. Load angle calculated using the three saturation models for short-circuit duration of 

33.33 ms and using voltage fall and recovery duration of 0, 1.25, 2.5, 3.75 and 5 ms each.

■ Unsaturated model
—  Only q-axis saturation model 
 d- & q-axis saturation model

49

46

Voltage Fall/Recovery Duration (sec)

0.001 0.002 0.003 0.004 0.005 0.006 0.007

Fig. 54. Motor critical clearing time as a function of voltage fall/recovery duration calculated

by the three saturation models.
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5. Conclusion

This research work is an attempt to develop mathematical models of interior 

permanent magnet synchronous machine considering machine magnetic parameter 

variations due to saturation to predict the machine transient performance accurately. The 

following conclusions can be made from the finding of these investigations:

1. The flux differential equations method and the current differential equations 

method give the same results. So modeling the permanent magnet synchronous 

machines using either of these methods will produce the same result.

2. The use of the unsaturated values of the d- and q-axis magnetizing reactances can 

lead to significant errors in the machine transient performance predictions.

3. There are noticeable discrepancies between the results of the air-gap toque, load 

angle and the current values calculated by the models considering saturation and 

those calculated by the model ignoring saturation.

4. The effect of inclusion of d-axis saturation on the motor transient performance is 

significant.

5. Saturation contributes negative damping and results in an increased frequency of 

the load angle swings.

6. Deeper voltage sags generally cause larger torque peaks.

7. Deeper voltage sags generally cause higher current peaks.

8. The effect of the voltage sag magnitude and duration on the transient performance 

of saturated permanent magnet synchronous motor is extremely large.

9. The effect of the voltage swell magnitude and duration on the transient 

performance of saturated permanent magnet synchronous motors is large.
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10. There are also discrepancies between the results of the air-gap torque and the 

stator current calculated by saturation models and unsaturated model.

11. The dynamic performance (the load angle swing) is dependent on the swell 

duration and the saturation representation in the permanent magnet synchronous 

motors modeling.

12. The damping and the frequency of the load angle swings are dependent on the 

saturation representation in the permanent magnet synchronous motors modeling.

13. The effect of the voltage fall/recovery duration on the transient performance of 

saturated permanent-magnet synchronous motor is significant.

14. The amplitudes of the motor transient oscillations reduce with the increase in the 

voltage fall/recovery duration.

15. Critical clearing time increases with the increase of the voltage fall/recovery 

duration and with the inclusion of saturation in the motor modeling.
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