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ABSTRACT

In this study, the effect of applied pressure levels and calcium contents on the 

microstructure and tensile properties of squeeze cast magnesium alloys AMC50X has 

been investigated. The results indicate that the tensile properties of AMC501 alloy 

including ultimate tensile strength (UTS), yield strength (YS), and elongation (Ef) 

increase as the applied pressure increases from 3 MPa to 90MPa. The improvement in 

tensile properties can be attributed to casting densification. As the calcium content of 

AMC50X increases from 0 to 4%, the UTS and Ef decrease dramatically at room 

temperature, but the yield strengths of the alloys improve slightly. At 150 °C, however, 

the UTS of the alloys increases with increasing the Ca content. The variation of Ef and 

YS of the alloys at 150 °C are similar to those at room temperature. The results of 

microstructural analysis indicate that calcium addition has a grain refining effect on the 

base alloy AM50A.

in
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CHAPTER I 

INTRODUCTION

1.1 Background

Squeeze casting is a process by which molten metal solidifies under pressure 

within closed dies positioned between the plates of a hydraulic press. The applied 

pressure and the instant contact of the molten metal with the die surface produce a rapid 

heat transfer condition that yields a pore-free fine-grain casting with mechanical 

properties approaching those of a wrought product [1-11]. Although squeeze casting is 

now the accepted term for this process, squeeze casting also known as liquid pressing 

[12], extrusion casting [13], liquid forging [14], pressure crystallization [15], and squeeze 

forming [16].

Although squeeze casting and its variants have been used as a commercial process 

in the USSR for some time, the process has only recently found commercial applications 

in the western industrialised world [2-4].

Squeeze casting has its origin in work by Chernov [17], which in 1878 suggested 

that steam pressure might be applied to molten metal during solidification in a permanent 

mold. However, the first recorded attempt to study the effect of pressure on the 

solidification behaviour of liquid metals and alloys was not carried out until 1931 by 

Welter [18] on Al-Si alloys. The possibility o f combining traditionally casting and 

forging was initially examined in details in the U SSR  during the late 1930’s, principally 

by Plyatskii [13]. After extensive work, the process parameters governing the technique 

were successfully resolved, and by the mid 1960’s 150 large batch plants were operating 

in the USSR [2]. After the publication of Plyatskii’s authoritative book on squeeze casting

1
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in 1965, western interest in the process was awakened, which resulted in active research 

and commercial production in many countries including the USA, Japan and Britain [2].

The squeeze casting process is easily automated to produce near-net to net-shape 

high quality components. Aluminium, magnesium, and copper alloy components are 

readily manufactured using this process. Several ferrous components with relatively 

simple geometry-for example, nickel hard crusher wheel inserts- have also been 

manufactured by squeeze casting processes. Despite the shorter die life for complex 

ferrous castings requiring sharp corners within the die or punch (tooling), the process can 

be adopted for products where enhanced properties and/or saving in labour or material 

costs are desired [1,2].

Squeeze casting is simple and economical, efficient in its use o f raw material, and 

has excellent potential for automated operation at high rates of production. The process 

generates the highest mechanical properties attainable in a cast product [2].

Magnesium is a plentiful element, comprising 2.7% of the earth's crust, one of the 

lightest among all the engineering materials with a density o f 1.74g/Cm3; 35% lighter 

than aluminum and over four times lighter than iron or steel. Magnesium is frequently 

used as an alloying element in aluminum to improve the corrosion resistance and 

machinability. Recent attention has focused on the use of magnesium alloys for weight 

saving in the transportation and aerospace industries, but still keeping the high strength to 

weight ratio.

Magnesium alloys meet the demand for a combination of light weight, good 

machinability and handling, high recycling potential, and are designed as engineering 

materials. Magnesium has been increasingly used for various automotive applications in

2
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the past decade [19]. To increase the use of magnesium to further reduce the weight of 

vehicles, the next generation of magnesium automotive applications needs to be expanded 

in a more aggressive sense [19]. One of the potential areas is in the powertrain system 

where the operating temperature could approach or exceed 200 °C with the presence of 

cyclic thermal and mechanical loadings. However there is a major limitation on the use of 

magnesium in power train system. This is primarily due to the inadequate creep resistance 

and the poor corrosion resistance that the conventional die casting magnesium AM and 

AZ alloys inherently provide. Efforts to improve the creep strength of magnesium die 

casting alloys at temperature exceeding 120 °C have resulted in the introduction of alloy 

containing Si, RE, Ca and Sr elements or mixture o f them. These alloying elements form 

inter-metallic constituents that stabilize the grain boundaries. In these alloys, Aluminum 

must be kept at relatively low levels [20].

Ca is a cheap and light element which can contribute to high temperature 

properties [21-25]. Small addition of calcium significantly improves the creep and stress 

resistance o f AM50 [26-28]. The addition of 1.7% Ca dramatically lowers the creep rate 

of the die-cats AM50 magnesium alloy for about three orders o f magnitude [29, 30].

But the addition of calcium to magnesium alloy is not trouble free. The addition 

o f calcium increases the casting defects such as sinks, solder drag and cracks in high 

pressure die casting [31, 32].

Therefore it seems necessary to develop alternative manufacturing processes for 

potential high temperature magnesium-aluminium-calcium (Mg-Al-Ca) alloys, such as 

squeeze casting. Hence process-related casting defects can be minimized while the 

advantages of Mg-Al-Ca are made full use.

3
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1.2 Objectives of the research

This project is divided into two sections. In an effort to develop a squeeze casting 

process for potential high temperature magnesium-aluminium-calcium alloy, the first 

objective o f this study was to investigate the effect of applied pressure levels on 

microstructure, mechanical properties and soundness o f castings (including porosity and 

cracks). The other objective of this work are to investigate the effect of calcium contents 

on microstructure and tensile properties of Mg-Al-Ca alloys in room and elevated 

temperature for determining Ca role in the squeeze cast alloys.

1.3 Organization of the thesis

This thesis contains six chapters. Chapter 1 has provided a general background of 

squeeze casting. Chapter 2 is the literature review which looks into the process of squeeze 

casting and metallurgical aspect of magnesium alloys, especially those with high potential 

for high temperature applications. The experimental procedures used in this research 

work are described in chapter 3. Chapter 4 reports and discusses the results of the effect 

of pressure levels and calcium contents on microstructure and tensile properties o f Mg- 

Al-Ca alloys. The conclusions of the present study are summarized in chapter 5. Finally, 

chapter 6 wraps up the thesis with recommendation for future work.

4
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CHAPTER II 

LITERATURE REVIEW 

2.1 Squeeze casting

2.1.1 Process description

Squeeze casting has been developed based on the principal of pressurized 

solidification, in which finished castings can be produced in a single process from molten 

metal to solid components within reusable dies. As shown in Figure 2.1, squeeze casting 

involves several steps:

1- A suitable die set is installed on the bed of a hydraulic press. The die set is 

preheated to the required working temperature. During the heating-up period, the 

die set is usually sprayed with a commercial graphite lubricant.

2- A metered quantity of molten metal is poured into an open female die cavity. 

Then, an upper male die or punch is lowered, coming into contact with the liquid 

metal.

3- The pressure is applied shortly after molten metal begins to solidify and 

maintained until all the molten metal has solidified. The upper punch returns to its 

original position and the casting is ejected.

The high pressure applied (typically 50 to 200 MPa) is enough to suppress gas 

porosity except in extreme cases, for which standard degassing treatments are used [1-3, 

9, 10, 14]. The tendency toward shrinkage porosity is limited by using a bare minimum of 

superheat in the melt during pouring. This is possible in squeeze casting because of melt 

fluidity, is not necessary for die filling. In heavy sections o f the casting, which are 

particularly prone to incidence of shrinkage porosity, the applied pressure squeezes liquid
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or semi-liquid metal from hot spots into incipient shrinkage pores to prevent pores from 

forming. Alloys with wide freezing ranges accommodate this form of melt movement 

very well, resulting in sound castings with a minimum of applied pressures [1].

Because of the magnitude of pressures involved, squeeze casting takes place in metal 

dies sufficiently thick to withstand the applied pressures. The dies are usually made from 

high quality die steels, which are heated and lubricated [3,4]. Currently H I3 tool steel is 

a widely used material for die construction; but generally dies should have good hot 

hardness, high temper resistance, adequate toughness, and especially a high degree of 

cleanliness and uniform microstructure [4, 33]. To facilitate release o f the casting, draft 

angles are chosen to be 0.5 degrees on external walls of the die, and 1 to 2 degrees on the 

punch surface and on die details around which the casting tends to contract after 

solidification [33].

2.1.2 Types of squeeze casting

In general, two different kinds of squeeze casting techniques, known as “direct” 

and “indirect”, have been developed based on different approaches of metal metering and 

metal movement.

2.1.2.1 Direct squeeze casting

The direct squeeze casting technique is characterized by a direct pressure imposed 

onto the casting without any gating system as illustrated in Figure 2.1. The pressure is 

applied in two stages to prevent the melt from spraying out through the necessary gap 

between the piston and mold. A few seconds after the pressure is applied, all pores in the

6
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solidifying material are closed [7]. Since the pressure is directly applied to the entire 

surface of the molten metal during solidification, this technique gives fully densified 

components and extremely fast heat transfer, which yields fine grain structure [1-3, 9, 

10]. It means that the cycle times for squeeze castings are generally much shorter than 

those for either gravity or low pressure die castings. For instance it has been reported that 

a cycle time of only two minutes is required for the production of an aluminium alloy car 

wheel, in comparison with six minutes for low pressure process [3]. As a result of high 

heat transfer, enhanced mechanical properties are attained.

The process is mainly suited to chunky components having a small aspect ratio i.e. 

the width and height of the casting are of similar dimensions [2], The major advantages of 

direct squeeze casting over other processes can be itemized as follows [5, 34]:

Material having neither gas porosity nor shrinkage porosity is produced;

No feeder or risers are required and therefore no metal wastage occurs;

- The inherent “castability” o f the alloy is of little or no concern since the applied 

pressure obviates the need for the customary high fluidity, which enables both 

common casting and wrought alloys to be squeeze cast to finished shape;

Control o f the microstructure is possible solely by control of the dominant process 

parameters such as the pouring temperature and mould temperature;

- Because there are no internal (or external) defects on a properly produced squeeze 

cast component; costly post-solidification examination by non-destructive testing 

techniques is of very limited value;

Squeeze castings can have mechanical properties as good as, and in some cases 

even better than, wrought products of the same composition; and
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Squeeze castings provide the most effective and efficient route to produce near- 

net-shape composite components for engineering applications.

Punch■ p i—  ----- runcn ^  m

Crucible — \  *

g-««----------- Ejector 1

I
(c) (d)

Figure 2.1: Schematic diagram of direct squeeze casting process[6]

a) stepl, preheated, lubricating tooling ;

b) step2, transfer melt into die cavity;

c) step3, solidify melt under pressure; and

d) step 4, eject casting.
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2.1.2.2 Indirect squeeze casting

In the indirect technique as shown in Figure 2.2, the pressure is exerted on a gate, 

which transmits the load to the component. This technique is really a hybrid process 

between low pressure die casting and high pressure die casting. The melt is pushed 

through a relatively large feeder compared to pressure die casting [7, 9 and 10]. The gate 

velocity of the melt is usually between 0.5 m/sec [7] and 3 m/sec [10] compared to 30 

m/sec for pressure die casting. This requires a gate three to five times larger than in 

conventional high pressure die casting [2], The low flow rate ensures a controlled filling 

o f the mould without trapping air [7, 9 and 10]. Due to the fact that the pressure is 

imposed at a distance from the component, it is difficult to maintain high pressure on the 

component throughout its solidifying and cooling periods. This indicates that it is difficult 

to cast long freezing range alloys with the indirect technique. Also, metal yield is much 

lower than that achievable with direct squeeze casting owing to the necessity of using a 

gating system. The advantage o f the indirect technique is that, due to presence of a gating 

system, a highly accurate external metering system is not necessary. Variations in metal 

volume are adjusted in the gate. Although it seems that the direct squeeze cast offers 

more opportunities for a wide range of alloys for the production of high strength, full 

integrity metal casting and metal matrix composite components but more indirect squeeze 

casting machines presently is in operation than direct. This is probably because the 

indirect process has been successfully commercialized. To achieve a sound structure the 

aspect ratio is usually kept below 5:1 [2].

The major advantage o f indirect squeeze casting is that, because the casting forms 

inside a closed die, the dimensions of the casting are relatively easier to control than in
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direct process. Thus, the use of a highly accurate external metering system is not 

necessary [3]. The slow filling of the die enables the use of lost cores, which in the case 

o f pressure die casting are often broken or washed away [7]. In practice, indirect squeeze 

casting has two disadvantages [3,5]:

Material utilisation is inefficient and very much less than the high levels 

achievable with direct squeeze casting because of the necessity o f using a runner 

and gating system [5, 7]. The biscuit and runners have to be machined off the 

casting and internally recycled in the same manner as high pressure die casting 

practice.

Because of the complexities of the necessary runner systems and due to the fact 

that the external pressure on the metal is applied at a great distance from the 

casting, it follows that it is difficult to maintain a high pressure on the casting 

throughout its freezing and cooling periods. This means that long freezing range 

alloys cannot be cast by indirect squeeze casting, which limits the process to 

conventional casting alloys. The high strength, ‘wrought’ aerospace alloys are 

extremely difficult, if  not impossible, to cast defect-free using the indirect squeeze 

casting process.

O f the two philosophies for squeeze casting (direct and indirect), it appears that 

the direct process offers more opportunities for utilisation o f a wide range of alloys for 

production o f high strength, full integrity castings, and metal matrix composite 

components.

10
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Charge shot Dock Fill Squeeze

Figure 2.2: Schematic diagram showing the operation of a typical vertical injection 

indirect squeeze casting machine [4].

2.1.3 Process Parameters

There are a number of variables that are generally controlled for the soundness 

and quality of the castings. The variable ranges discussed in the following sections may 

differ with alloy system and part geometry being squeeze cast.

2.1.3.1 Alloy composition

The most important process parameter is the alloy itself. The composition and 

physical characteristics o f the alloy are of paramount importance due to their direct 

effects on the die life. These include the melting temperature and thermal conductivity of 

the alloy together with the combined effect of the heat-transfer coefficient and soldering 

onto the die material. Furthermore, the alloy dictates the selection o f casting parameters 

such as die temperature, which has a direct consequence on the die life [4],
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2.1.3.2 Melt volume and quality

In the direct process, due to lack of runners and gating to accommodate any 

excess metal, precision control of the metal volume is required when filling the die cavity, 

which ensures dimensional control [1, 2]. However this has appeared to be difficult even 

by using automatic ladling or commercial metering pumps, especially for small 

components or multi-dies. A technique suggested to solve the problem is to pour excess 

metal into the die and allowing the component to be oversized in a non-critical direction 

or to include an overflow system [2]. In addition for the same reason, that is, no gating 

system, more attention has to be paid to the melt quality, in terms of dross, in the direct 

than in the indirect processes. However, in both direct and indirect squeeze castings, the 

presence of absorbed gases in the melt is less critical than that in any other casting 

processes, owing to the nature o f squeeze casting where the imposed pressure is usually 

sufficiently high to suppress gas evolution and retain gases solution.

2.1.3.3 Pouring temperature

Pouring temperature depends on several factors, such as liquidus temperatures, 

freezing ranges of metals and die complexity. Normally, high superheat above the 

liquidus is required for narrow freezing range metals due to their relatively fast 

solidification rates. In general, a low pouring temperature for wide freezing range alloys 

is more effective in yielding good metallurgical quality [3, 33]. However, too low pouring 

temperatures can result in the insufficient fluidity, which leads to incomplete die fill and 

cold laps. On the other hand, too high pouring temperature might cause extrusion of 

liquid metal between the interfaces of die, punch and casting, which jams the tooling.
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Also shrinkage porosity might occur in thick sections of the casting. A high pouring 

temperature can reduce the die life significantly [35].

At pouring temperatures above the liquidus temperature, columnar grain structure is 

reported in Al-Si alloys; grains are equiaxed when poured at the equilibrium temperature. 

This refinement is attributed to the under-cooling that is a result of increasing the liquidus 

temperature with pressure, via the Clapeyron effect [11].

Ha [36] reported an equiaxed grain structure for squeeze cast AZ91 Mg poured at 

680 °C and an ingot-type structure for squeeze castings at 730 °C. Rozak [20] observed a 

finer equiaxed grain size in squeezed cast AZ91 Mg at 735 °C than at 700 °C, attributed to 

changes in the inoculation efficiency.

For aluminium alloys, the casting temperature may range between 10 to 100 °C 

above liquidus temperatures, with the lower limit applicable to alloy like 7075 and A390 

aluminum that have extended freezing ranges, and the upper limit to narrow freezing 

range alloy such as 3003 and A413 aluminium [33]. The value for magnesium may be 

higher than aluminium due to a lower specific heat capacity [2]. Superheats varying from 

30-140 °C have been used in the previous study for magnesium alloys [6].

2.1.3.4 Tooling temperature

Operating die temperatures need to strike a balance between the need for 

sufficient heat to prevent premature solidification of metals, thermal fatigue in the 

tooling, and cold laps on the surface of the casting. There is a tendency for welding to 

occur between the casting and the mould if the die temperature is too high. Ranging from 

200 to 300 °C is normally used [1-4, 6]. The lower range is more suitable for thick section 

casting. In general, the smaller die castings require the higher die temperatures [9].

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Temperatures above 300 °C are not recommended for aluminium alloys. Although it has 

been reported that, although a low die temperature around 150 °C can result in an 

equaxied grain structure for magnesium alloy AZ91D, the detailed values for magnesium 

alloys are still unknown [36]. To provide a stable die temperature during production, 

water or oil cooling line in the die may be necessary [2],

The punch temperature is often kept 15 to 30 °C below the die temperature to 

maintain sufficient clearance between them for adequate venting. Excess punch-to-die 

clearance allows molten metal to be extruded between them, and therefore eroding the 

surface o f die [1].

2.1.3.5 Time delay and temperature for pressure application

Time delay is the duration between the actual pouring of the metal and the instant 

at which the punch contacts the molten pool and starts the pressurization. Because 

increased pouring temperatures may required to fill these sections adequately upon 

pouring, a time delay allows for cooling of the molten pool before closing of the dies to 

avoid shrink porosity [1]. This time varies depending on melt temperature and component 

geometry. Times differ greatly but generally range from a few seconds for small ferrous 

components to approximately one minute for large aluminium alloy components [2]. For 

magnesium alloys, the effect of this time delay on the properties and structures of the 

castings is still unknown and needs to be investigated [6].

There is no universal agreement regarding the temperature for pressure 

application, i.e. if  the metal should be fully liquid or partially solid. Bidulya [38] and 

Weinberg [39] suggested that pressure should be applied when the metal is near the “zero 

fluidity temperature”, i.e. at dendiritic coherency when the melt loses its fluid flow
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properties. However, the melt should be mainly liquid according to Williams et al [34] for 

squeeze casting to be fully effective.

2.1.3.6 Pressure level

The density o f the squeeze casting is increased by applied pressures exerted on 

solidifying metal [10, 14]. Pressure levels of 50 to 200 MPa are normally used as 70 MPa 

is generally applied, depending on the part geometry and required mechanical properties. 

The improvement in mechanical properties with pressure is expected to level off as 

porosity is eliminated and maximum structural refinement occurs; e.g., grain size 

approaches minimum. Hence there is an optimum pressure for each of the systems after 

which no additional advantages in mechanical properties obtained [1,4, 14, 40 and 41], 

Factors affecting the pressure are: [33]

flow stress o f the alloy near its freezing temperature; 

the growth morphology of the alloy crystallites; and 

the freezing range of the alloy.

2.1.3.7 Pressure duration

Pressure duration varying from 30 to 120 second has been found to be satisfactory 

for castings weighing 9 Kg (20Lb) [1], Franklin and Das [42] recommend pressurization 

time of about 1 second per mm of the section thickness. However, the pressure duration is 

dependent on part geometry, alloy type and heat transfer condition [2]. As the time of 

pressure application is increased, finer dendrite is produced [14], However applied 

pressure after complete solidification does not contribute any property enhancements and 

only increases cycle times [1]. It is only necessary to apply pressure until the
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solidification is completed, since slightly longer times may be used to avoid hot tearing. 

Prolong holding times provide little benefit, and may cause wall cracking or problems 

with punch redrawal, due to thermal contraction of the casting on the rigid punch [2].

2.1.3.8 Lubrication

Lubrication for aluminium, magnesium, and copper alloys, a good grade of 

colloidal graphite spray lubricant has proved satisfactory when sprayed on the warm dies 

prior to casting. Excess build-up on narrow webs and fin areas should be avoided where 

vent holes or slots are used [1, 2, 4]. Care must be taken to prevent plugging these vents. 

At the pressure applied during squeeze casting, the coat may strip from the die surface 

and cause surface contamination in the component. Limiting the lubricant thickness to 50 

microns, should prevent this to occur [2].

For ferrous castings, ceramic-type coatings are required to prevent welding 

between the casting and the metal die surfaces [1, 33].

2.1.3.9 Press speed

Press speed in most practical purposes, a punch impact speed o f 0.5m/sec may be 

used without detrimental effects. In the situation where there is a large distance between 

punch and die, a two speed action may be used, i.e., a rapid approach o f the punch to the 

metal surface followed by a slower impact speed.

2.1.3.10 Ingate size (indirect squeeze casting)

The ingate size for indirect squeeze casting is an important consideration since it 

must remain open until the casting is solidified and pressure is maintained on the
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solidifying casting. The volume of metal entering the die cavity has to be sufficient to fill 

the cavity before localized solidification occurs. This is best accomplished with a larger 

ingate to attain rapid filling without excessive velocity and the inertial type of flow that 

occurs at high metal velocities. The fan type of ingate helps to accomplish this rapid fill 

without high velocity [9]. The velocity of the melt at ingates is usually between 0.5 m/sec 

[7] to 3 m/sec [10] compared to 30 m/s for pressure die casting [7]. The low flow rate 

ensures a controlled filling of the mould without trapping air with a proper venting [7, 9 

and 10].

2.1.4 Effect of Applied pressure

2.1.4.1 Reduction of porosity

Pressure applied to liquid metal prior to and during solidification tends to reduce 

or eliminate the gas related porosity. Increased pressure increases the solubility of gases 

in the melt. These gases do not evolve during solidification, due to the difficulties in 

nucleation o f bubbles against the pressure [2]. For the other main cause of void related 

defects, solidification shrinkage, the effect of pressure is to force feed the liquid or semi­

solid metal into the voids, producing a fully dense material [2].

2.1.4.2 Equilibrium diagrams

Equilibrium phase diagrams depict conditions of slow cooling rates under 

atmospheric pressure. However, these are not the conditions encountered during squeeze 

casting. The application of pressure causes the melting point o f most alloys to increase in 

a manner which obeys the Clasius-Clapeyron equation:
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AT _ Tf(Vi- V.)
AP “  AHr

where AHf is latent heat of fusion, Vs and V] are specific volume of solid and liquid 

phases, Tf is melting temperature at atmospheric pressure, AT and AP are the variation of 

temperature and pressure, respectively.

The majority of metals show a rise of 2-6 °C for every 100 MPa o f external 

pressure applied [43]. For pure magnesium, Sekhar [44] calculated dT/dP which is about 

0.0647 °C/MPa. Such change in freezing temperature is expected due to reduction in 

interatomic distance with increasing pressure and thus restriction of atomic movement, 

which is prerequisite for melting/freezing [4], The inter-solubility o f constituent elements 

together with the solubility of impurity and trace elements is also expected to increase 

with pressure [4].

Pressure application also distorts phase diagrams. Figures 2.3 and 2.4 illustrate the 

distortion o f Mg-Al and Al-Si phase diagrams due to pressure application and rapid 

cooling rates. When the melting point of a component in an alloy is changed by pressures, 

the eutectic point is shifted in the direction of higher concentrations of the component 

whose melting point is least affected [45]. In the case of Al-Si alloys (Figure 2.3), it 

moves towards the higher silicon content [46], while in Mg-Al alloys (Figure 2.4), the 

eutectic moves towards the Mg concentration [2], Lipchin [47] and Taha et al [48] 

reported that the solubility of silicon in aluminium increased by squeeze casting. The 

volume fraction o f silicon in an aluminium dendrite increased from 3 to 7.8% with an 

increase in solidification pressure from 41 to 69 MPa [48]. Recent experiments on pure
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binary Al-Si alloys of compositions 7% and 14% squeeze cast at 150 MPa have indicated 

an upward movement o f the liquidus and eutectic temperatures o f 9 K and 2.25 K 

respectively at a pressure o f -150 MPa [3, 4].

2.1.4.3 Reduction of grain size

The effect o f solidification under pressure on grain size can be illustrated by 

reference to Figure 2.4. Alloy X is well above the liquidus line at T1 at atmospheric 

pressure. The application of pressure causes the liquidus line to move (dotted line) but it 

still is below the T l, and the melt does not start to solidify until the temperature has 

reached the new liquidus line. Nucleation and growth processes commence at the new 

liquidus line, but without significant grain refinement. If, however, the initial alloy 

temperature is at T2 when pressure is applied, the liquidus line moves above this point 

and super-cooling occurs. The grain refining effect is proportional to the degree of under­

cooling, and a true squeeze casting consists of fine equiaxed grains as a result o f correct 

pressurisation applied at the appropriate time. Further, the dendrite arm spacing becomes 

smaller, constituent particles tends to remain small and a more homogeneous distribution 

of structural components takes place [14, 42], Also the applied pressure has a marked 

effect on heat transfer during the solidification of the castings (which will be discussed in 

details in the following subsection) [4, 6],
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Figure 2.3: Deviation from equilibrium conditions in the Mg-Al phase diagram due to 

high applied pressure [44].
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Figure 2.4: Effect o f pressure (100 MPa) on the Al-Si phase diagram [46].
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2.1.5 Effect of applied pressure on microstructure

The effects o f squeeze casting on solidification are manifested in the 

microstructural refinements: grain structure, porosity, segregation, and secondary phases. 

In addition to the densification achieved, there are several reasons why squeeze casting 

produces casting with superior properties. The applied pressure has a marked effect on 

heat transfer during the solidification of the castings. Due to contraction of most metals 

and thermal expansion of the mold during solidification, the detachment o f the casting 

from the die wall takes place once the initial solid shell o f the casting has sufficient 

strength to hold the remaining molten metal. Consequently, an air gap is formed between 

the die walls and casting, which considerably increases resistance to heat transfer. In 

squeeze casting, the applied pressure on the casting forces the initial solid shell to remain 

in contact with the die for a certain period of time before any detachment could occur. If 

the applied pressure is sufficiently high, the intimate metal-die contact can be maintained 

via the plastic deformation of the casting throughout solidification. This leads to very fast 

heat transfer, high cooling rates and an increase in casting temperature gradients [4, 6]. 

Murthy and Satyanarayan [49] found an increase in the cooling rate from 6 K/sec in 

permanent mould casting to 300 K/sec in squeeze casting. Due to higher cooling rate in 

squeeze casting, dendrite arm spacing is much finer in comparison with that resulting 

from other casting process [9, 14]. The study by Fujii et al [50] on squeeze casting of an 

aluminium alloy indicates that the solidification time is only a half the time in gravity 

castings; the heat transfer coefficient is four times higher than that in gravity castings; and 

temperature gradients in the casting increase with applied pressure. Even moderately 

applied pressure causes intimate contact between the solidifying casting and the die for a
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tenfold increase in heat transfer rate over permanent mold casting. This results in 

relatively fine grains in the casting. Fine grain size is also promoted by the large number 

of nuclei formed because o f the low pouring temperature and the elevated pressure [1,2, 

and 4]. Furthermore, because die filling in squeeze casting does not require high melt 

fluidity, a number o f wrought alloys can be squeeze cast. Again, pressurized solidification 

with rapid heat transfer tends to minimize the segregation that wrought alloys are usually 

prone to [2, 34].

The high solidification rate also distorts the equilibrium phase diagram by 

modifying the solubility of solute atoms. Lipchin observed that pressure during 

solidification increase the solubility of the second component during solidification. Only 

in the Al-Mg, Al-Zn, and Mg-Al systems does the solid solubility o f the second phase 

decreased with an increase in applied pressure o f squeeze casting [47],

2.1.5.1 Aluminum alloys

In the case o f Al-Si alloys, fibrous silicon is the likely morphology. A typical 

squeeze cast microstructure of LM24 Al-Si alloys (Al- 8.5wt.%Si-3.5wt.%Cu) is shown 

in Figure 2.5, together with conventionally cast to highlight the differences in silicon 

morphology and grain structure [4],

Reddy and Murthy [14] reported a low pouring temperature, high specific pressure 

and minimum dwell time results in high densities, fine dendrites arm spacing, isotropic 

microstructure o f squeeze castings compared to those o f sand or metal mould castings.

Pressurised solidification modifies eutectic silicon in aluminium-silicon alloys. 

Taha et al [48] reports a decrease in the size and number of eutectic silicon particles with 

increases in pressures up to 69 MPa. The eutectic silicon in a squeeze cast unmodified
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A356 Al alloy was a globular shape; but the shape was elongated when sand cast [51]. 

Sobczak [52] also reportd a globular shape of eutectic silicon in squeeze cast Al-12%Si 

alloy without modifiers after a 3-hr, 300 °C heat treatment.

Murthy [49] reported that, in case of aluminum-silicon alloys, pressure 

solidification leads to (a) an increase in volume fraction of a-phase with an increase in 

pressure, (b) fragmentation o f primary dendrites, (c) decrease in the volume fraction of 

eutectic, and (d) refinement of |3-silicon of the eutectic.

Balan [53] showed that microstrucre refinement takes place when pressure is 

applied to the solidifying metal. The primary dendrites become finer for aluminum LM6 

alloy (Al-11.5wt.%Si) with increasing pressure. The volume fraction of the primary 

dendrites increases from 34.0 to 39.8% when the pressure is increased from 0 to 75 MPa. 

The dendrite arm spacing similarly decreased from 30 to 5 pm over the same pressure 

range.

Chemical grain refinement has no significant effect on squeeze casting. However, 

by the addition o f modifier, i.e. in an Al-Si alloy, uniform and much smaller silicon 

particles can be obtained [2],

2.1.5.2 Magnesium alloys

Yong et al [41] reported a sixfold reduction in cell size for RZ5 (Zn4.2%, RE 1%, 

Zr 0.7%) magnesium alloy as the pressure increases from 0.1 to 60 MPa. The reduction in 

cell size was attributed to the intimate contact between the melt and die wall that 

promoted rapid heat transfer, as the applied pressure was increased.
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Figure 2.5: Optical micrograph showing the as cast structure of LM24 Al-Si alloy [4] 

(a) Squeeze cast LM24 and (b) conventional as-cast LM24.
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2.1.6 Mechanical properties

Squeeze casting is amenable to the use of a very wide range of alloys. Alloys that 

respond to heat treatment can quite successfully be put through the necessary solution 

treatment and age hardening.

It should be noted that the squeeze cast properties are superior in all respects to 

those given by conventional casting processes. The proof stresses are improved by 

squeeze casting, and o f particular significance is marked improvement in the elongation 

to failure [2, 4, and 40]. In general, the fine structure and superior mechanical properties 

of squeeze casting components are due to the following factors: (i) changes in under­

cooling o f the molten alloy, (ii) changes in the composition and percentages o f the 

forming phases o f the solidifying alloy, (iii) changes in the heat transfer coefficient 

between the metallic mould and solidifying alloy, and (iv) changes in the density o f the 

alloy due to reduction of porosity [4]. These improvements reflect both the fine-grained 

structure and more importantly the elimination of microporosity in the squeeze cast 

material. In general, a squeeze cast component compares extremely well forgings. In the 

most cases, there is a good comparison between the isotropic squeeze cast property and 

the longitudinal forging property [34].

The mechanical properties improvement with pressure is expected to level off as 

porosity is eliminated and maximum structural refinement occurs; e.g., grain size 

approaches minimum. The increase in strength and ductility beyond these refinements 

must occur via refinement at the substructural level, e.g., at higher dislocation densities 

with increasing squeeze cast pressures. Lipchin and Bykov [43] observe higher 

dislocation densities in squeeze casting with higher applied pressures.
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2.1.6.1 Aluminum alloys

Squeeze cast commercial Al alloys are assessed and compared with sand cast 

gravity die cast, and die forged material of the same composition by Yue and Chadwick 

[5]. Table 2.1 gives typical mechanical properties for Al-Si casting alloys. Tremendous 

improvements in properties can be achieved with fully heat treated squeeze castings. For 

instance, the cheap LM24 alloy (Al-8.5wt.%Si-3.5wt.%Cu) can provide better mechanical 

strength than the more expensive LM25 (Al-7wt.%Si -0.3wt.%Mg) and A357 (Al- 

7wt.%Si-0.5wt.%Mg) alloys when squeeze cast and fully heat treated, However the 

elongation shows the opposite [5]. For LM24 (Al-8.5wt.%Si-3.5wt.%Cu) in particular, 

which is normally considered to be non-heat treatable, the fully heat treated squeeze cast 

material exhibits a 0.2% proof stress three times higher and ultimate tensile strength 

(UTS) twice as high as the specified standard requirements [3]. Using the squeeze casting 

technique, the usually deleterious iron aluminide crystals do not grow into massive plate 

like forms but remain very small and uniformly distributed throughout the matrix and 

hence do not exhibit their usual embrittling effects [3, 5, and 34].

Murthy [49] reported an UTS increase from 157 to 226 MPa while elongation 

values increased from 8 to 18 percent for LM6 (Al-11.5wt.%Si) as the pressure increase 

from 41.2 to 247.2 MPa.

Balan et al [53] studied the effect of applied pressure (0-75 Mpa) on LM6 Al-Si 

alloy (Al-11.5wt.%Si) and reported an increase o f about 3.4% in density, 63% in UTS, 

2.6% in percentage elongation and 50% in hardness with increasing applied pressures. 

Such remarkable improvement was mainly due to microstructural alternation through the
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refinement o f the primary a-phase and modification of the silicon phase [53]. Similar 

results were obtained for pure aluminium [54].

Table 2.1 Typical mechnaincal properties of commercial Al-Si alloys cast by different 

Process [5],

Alloy 0.02% PS [MPa] UTS [MPa] Elongation [%]

A357 Typical chill cast (FHT) 248 313 7

Squeeze cast (FHT) 283 347 9.3

LM24 Minimum requirement 100 180 1.5

Typical chill cast 110 200 2

Squeeze cast(as cast) 126 233 2.7

Squeeze cast(FHT) 330 368 2

LM25 Typical chill cast (as cast) 90 180 5

Squeeze cast (as cast) 104 214 5.3

Typical chill cast (FHT) 240 310 3

Squeeze cast (FHT) 274 331 7

FHT = fully heat treatment

Das et al [55] showed when Al-4.5wt.%Cu and Al-3.75wt.%Mg were squeezed 

cast under a pressure o f 188 MPa, the UTS and percent o f elongation increased 50% and 

128% respectively for Al-4.5wt.%Cu and 38% and 138% for Al-3.75wt.%Mg, in 

comparison with the gravity die cast pressure. In addition to grain refinement and 

freedom from porosity, the improvement in the tensile properties of squeeze cast 

Al-4.5wt.%Cu alloy can be attributed to a fine dispersal of the intermetalic compound
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CuAl2 and the disappreance of the Cu-rich layer around a-Al, which are directly related to 

the influence o f pressures and cooling rates on phase diagram. For Al-3.75wt.%Mg alloy, 

the absence of p constituent, Mg2Al3 , which usually is present in sand casting and gravity 

die casting, is responsible for tensile properties improvement.

The dynamic properties of squeeze cast alloys are also superior to conventionally 

cast material. For example LM24 (Al-8.5wt.%Si-3.5wt.%Cu) in its squeeze cast and fully 

heat treated condition exhibit better fatigue behaviour than the more expensive high 

purity alloy as shown in Figure 2.6. This superior behaviour is again due to a combination 

of the absence of large plates of embrittling (Fe Al Si) compounds, the refinement of the 

primary and eutectic constituents and the total absence of porosity [3].

The dynamic and static properties given above were obtained on direct squeeze 

cast material. The properties of the direct squeeze castings are 25-30% greater than those 

o f the indirect squeeze castings. These differences are due, presumably, to the greater 

refinement o f the microstructure in the direct squeeze casting alloy and to the total 

absence of porosity in the direct squeeze cast alloy [3].

Das et al [55] showed the fatigue life o f the Al-4.5wt.%Cu alloy has an 

improvement o f 75% over the sand cast alloy and the Al-3.75wt.%Mg showed a 30% 

improvement on the sand cast alloy.

It has been observed that squeezed cast and fully heat treated high strength 

aluminium alloys (wrought alloys) exhibit mechanical properties between those of the 

longitudinal (L) and short transverse (ST) properties of wrought material. Unlike the 

direct chill (DC) cast material in which the grain structure is not fully controllable, 

squeeze-cast material can be produced having isotropic behaviour as illustrated in
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Table 2.2. This is due to the fine grain micro-structure and thereby the isotropic yielding 

behaviour [2, 3, and 5], Hashemi et al [40] reported the tensile properties of heat treated 

squeeze cast specimens Al-Zn approaches those of wrought aluminium alloys obtained by 

other processes.

■ 5and cost 357
* Chill cos! 357
o Squeeze cost IM25+I.25 Co
•  Squeeze c<*d 357*
*- Squeeze cos! IM24

*10* 10* to 5 MJ* 107 10^
N cy d t*

Figure 2.6: Fatigue behaviour of some aluminum alloys cast by different techniques [3].

Table 2.2 Comparison of tensile properties of fine grained squeeze cast Al-4.5%Cu with 

wrought alloy of similar composition [2].

Alloy 0.02% PS [MPa] UTS [MPa] Elongation[%]

Al-Cu4.5% Squeeze cast (FHT) 184 346 22

2025 Wrought properties 225 400 19

FHT = fully heat treatment
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2.1.6.2 Magnesium Alloys

Rozak [37] compared the tensile properties of squeeze cast AZ91 magnesium and 

A356 aluminium alloys with those of the permanent mold cast alloys. AZ91 is one of the 

most common magnesium casting alloys, which contains~9% Aluminium and ~1% Zinc. 

The samples were squeeze cast with 138 MPa pressure, heat treated to a T6 condition as 

shown in Table 2.3 [11]. The increase in tensile properties is due to highly refined 

structure.

Table 2.3 Tensile properties of cast A356 and AZ91D [11].

Alloy Casting condition
Yield strength 

(MPa)

Tensile strength 

(MPa)

Elongation

(%)

A356 Squeeze 248 290 5.7

A356 Permanent mold 206 282 10

AZ91D Squeeze 144 303 9.7

AZ91D Permanent mold 124 262 6.2

The variation in properties of AZ91 in the as cast and in the fully heat treated 

condition for sand, gravity die casting and squeeze cast materials is shown in Figures 2.7 

and 2.8. The squeeze cast alloy shows the highest value o f ultimate tensile strength, 0.2% 

proof stress and elongation-to-failure.

A full heat treatment increases the ultimate tensile strength o f the squeeze cast 

material from 200 to 260 MPa with an associated decrease o f elongation o f only 1% [5]. 

Luo and Hu [56] showed that the ductility of the squeeze casting specimens of AZ91D
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has been significantly improved over the die cast parts through the elimination of 

porosity. Yong et al [57] showed the squeeze casting improves the mechanical properties 

of the Mg-4.2%Zn-Re by 15 to 40 % over those obtained by gravity die casting [4]. 

Further improvements can be expected for compositions outside casting specifications, 

which are difficult to cast. Squeeze casting can then make use o f the extra solute content 

to improve the properties by enhanced precipitation hardening in the porosity free matrix.

The extruded magnesium wrought alloy AZ31 (-3%  Aluminium and -1%  Zinc), 

in the longitudinally direction shows an UTS value higher than squeeze cast specimens. 

However, the squeeze cast value is probably better than the properties in the extruded, 

short transverse direction [2].

Yong et al [41], reported an approximately 50% increase in UTS for RZ5 

(Zn4.2%, RE 1%, Zr 0.7%) magnesium alloy as the pressure increase from 0.1 to 60 

MPa. The improvement in tensile properties was attributed to reduction in porosity and 

cell size.

Zhou et al [58] compared the tensile properties o f squeeze cast AM50A 

magnesium with those o f high pressure die cast. She reported a significant improvement 

in elongation (281%) and UTS (75%) of the squeeze cast AM50A over the die cast. The 

improvement in tensile properties was attributed to the extremely low of porosity present 

in the squeeze cast specimens.
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Figure 2.7: Mechanical properties of cast AZ91 in fully heat treated condition 

a) UTS and yield strength, (b) elongation [5].
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Figure 2.8: Mechanical properties of cast AZ91 in the as-cast condition 

a)UTS and yield strength, b) elongation [5].
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2.2 Metallurgical aspects of magnesium casting alloys

2.2.1 Crystal structure of pure magnesium

Magnesium has a hexagonal close-packed structure (hep) with lattice dimensions 

of c= 5.199A and a=3.202A. The axial ratio c/a= 1.6237 is close to the theoretical close- 

packing c/a=1.63 obtained for incompressible spheres. O f all the hep metals, only 

magnesium has an atom that approaches true spherical shape [59].

2.2.2 Mass characteristics

The density of magnesium at 20 °C is 1738 kg/m3. At melting temperature 

(650 °C) the density in the solid state is about 1650 kg/m3 and in liquid state it is about 

1580 kg/m3 [59],

Volume change on freezing

Volumetric shrinkage of 4.2% occurs on freezing (1.5% liner shrinkage) [59].

Volume change on cooling

Volumetric shrinkage of 5% occurs on cooling from the solid form 650 to 20 °C 

(1.7% liner shrinkage)

2.2.3 Effects of alloying elements on magnesium alloys

Pure magnesium has poor mechanical properties and like other structural metals, 

such as Al, Zn or Fe. It has to be alloyed in order to improve its overall mechanical 

properties and make it attractive for engineering applications. Given below is a summary 

of the effect o f some alloying elements and their effect on the metallurgical behavior of 

magnesium [59]:
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Aluminum: improves strength and hardness, and it widens the freezing range and makes 

the alloys easier to cast. When present in amount in excess o f 6% the alloy becomes heat 

treatable, but commercial alloys rarely exceeding 10% aluminum. An alminum content of 

6%  yields the optimum combination of strength and ductility.

Beryllium: Be although only slightly soluble in Mg, adding up to about 0.001% Be 

decreases the tendency for the surface of the molten metal to oxidize during melting, 

casting and welding. It can be used successfully in die-cast and wrought alloys, but must 

be used judiciously in sand casting alloys because of its grain-coarsening effect.

Calcium: Ca is a special alloying ingredient added in very small amounts by some 

manufacturers to assist in metallurgical control. It serves a dual purpose: when added to 

casting alloys immediately prior to pouring, it reduces oxidation in molten condition as 

well as during subsequent heat treatment of the casting, and it improves the roll-ability of 

Mg sheet. The addition of Ca must be controlled to below about 0.3%, however, or the 

sheet is susceptible to cracking during welding. In the following subsection, the effect of 

this element will be discussed more in details.

Copper: Cu adversely affects the corrosion resistance of Mg alloys if present in 

quantities exceeding 0.05%, however it improves high-temperature strength.

Iron: Fe is one o f the more harmful impurities in Mg alloys in that it greatly reduces the 

corrosion resistance if present in even small amounts. In ordinary commercial grade 

alloys, the iron content can average as high as 0.01 to 0.03%. For max resistance to 

corrosion, however 0.005% is specified as the upper limit for Fe content.

Manganese: Mn does not have much effect on tensile strength, but it does increase yield 

strength slightly. Its most important functions are to improve the saltwater resistance of
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Mg-Al and Mg-Al-Zn alloys by removing Fe and other heavy metal elements into 

relatively harmless inter-metallic compounds, some of which separate out during melting. 

Commercial alloys containing Manganese rarely over 1.5% and in the presence o f Al, the 

solid solubility o f Manganese is reduced to about 0.3%.

Nickel: Ni like iron is one of the more harmful impurities in Mg alloys in that it greatly 

reduces the corrosion resistance if present in even small amounts. In ordinary commercial 

grade alloys, the iron content can average as high as 0.01 to 0.03%. To maximize 

corrosion resistance, however, 0.005% is specified as the upper limit for Ni content.

Rare earth metals: RE are added to Mg alloys either as misch-metal or as didymium. 

Misch-metal is a natural mixture of the rare earth containing about 50% Ce, the reminder 

being principally lanthanum and neodymium, didymium is a natural mixture of 

approximately 85% neodymium and 15% praseodymium. Additions o f the rare earth 

increase the strength of Mg alloys at elevated temperature. They also reduce weld 

cracking and porosity in casting because they narrow the freezing range of the alloys. 

Silicon: the addition of Si to Mg alloys has been found to increase fluidity of the metal in 

the molten state. However, it reduces corrosion resistance o f Mg alloys if Fe is also 

present in the alloy.

Silver: Ag addition improves the mechanical properties o f Mg alloys by increasing 

response to age hardening.

Thorium: addition increases the creep strength of Mg alloys at high temperature up to 

370 °C. The most common alloys contain 2 to 3% thorium in combination with Zn, Zr or 

Mn. Thorium improves the weldability of alloys containing Zn.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Tin: Sn is useful when alloyed with Mg in combination with small amount of Al. Sn 

serves to increase the ductility of the alloy and makes it better for hammer forging 

because it reduces the tendency for the alloy to crack while being hot worked.

Zinc: Zn is often used in combination with Al to produce improvement in room- 

temperature strength; however, it increases hot-shortness when added in amount greater 

than 1% in Mg alloys containing 7 to 10% Al. Zn is also used in combination with Zr, 

rare earths or thorium to produce precipitation hardenable Mg alloys having good 

strength. Zn also helps overcome the harmful corrosive effect of iron and Ni impurities 

that might be present in Mg alloys.

Zirconium: Zr has a powerful grain refining effect on Mg alloys. It is thought that 

because the lattice parameters of a-Zr (a = 0.323nm, c = 0514nm) are very close to those 

of Mg (a = 0.32nm, c = 052nm), Zr-rich solid particles produced early in the freezing of 

the melt provide sites for the heterogeneous nucleation o f Mg grains during solidification. 

Zr is added to alloys containing Zn, rare earth, thorium or a combination of the elements 

where it serves as a grain refiner (up to its limit of solid solubility). However, it can not 

be used in alloys containing Al or Mn because it forms stable compounds with these 

elements and thus removed from solid solution. It also forms stable compounds with any 

Fe, Si, C, N, O and mainly it present in the melt. Because only the portion of the Zr 

content available for grain refining is that which is in solid solution, the soluble Zr 

content, rather than the total Zr content, is the value important to the alloy.

Yttrium: Yt has a relatively high solid solubility in Mg (12.4%) and is added with other 

rare earth elements to promote creep resistance at temperatures up to 300 °C. about 4 to 

5% Zr is added to Mg to form commercial alloys such as WE54 (Mg-5wt.%Y-4wt.%RE)
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and WE43 (Mg-4wt.%Y-3wt.%RE) where it imparts good elevated-temperature 

properties up to about 250 °C.

Lithium: Li has relatively high solid solubility (5.5%) in Mg. Because of its low 

relatively density o f 0.54, it has attracted interest as an alloying element in Mg alloys to 

lower the density to values even lower than that of unalloyed Mg. Moreover, only some 

of 11% Li is needed to form the phase, which has a bcc crystal structure (rather than a 

Hep structure), thereby improving formability of wrought products. The addition o f Li 

decreases strength, but increases ductility. Mg-Li alloys are also amenable to age 

hardening although they tend to overage at only slightly elevated temperature 

(e.g. 60 °C).

2.2.4 Conventional magnesium alloys for die casting

Table 2.4, shows the nominal compositions of Mg alloys for die castings. The 

current commercial Magnesium die-casting alloys contain aluminum as the main alloying 

element, which improves the cast-ability, strength, and corrosion resistance. In addition, 

they also contain manganese to improve their corrosion resistance. Zinc additions to one 

o f the most common die casting alloys, AZ91, around 0.7% result in minor improvement 

in strength and corrosion resistance. AZ91 has excellent cast-ability and high strength 

combined with moderate ductility, and it should always be considered the first choice for 

an application unless it is ruled out by specific property requirements [59].

Because ductility and fracture toughness are gradually reduced with increasing Al 

content, the AM series o f alloys with reduced aluminum content and reduced Zn contents 

are now used extensively for automotive safety-related components. To some extent,
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since the castability is diminished as the Al content is reduced, the alloys having the 

highest Al content with the required mechanical properties should be chosen [59].

A high purity version of AZ91, i.e., AZ91D, is also now available for die casting. 

Because tight limits have been placed on levels of Cu, Ni, and Fe impurities allowed in 

AZ91D, this alloy has saltwater corrosion rates 100 times lower than sand cast AZ91C, 

making it comparable to the rates of aluminum casting alloys [59],

Table 2.4 Nominal compositions (wt.%) of Mg alloys for castings [59].

AE42 AM 20 AM 50A AM 60A AS21 AS41A AZ91A AZ91B AZ91D(a)

Al 4 2.1 4.9 6 2.2 4.25 9 9 9

Zn - - - - - - 0.7 0.7 0.7

Mn 0.2 0.4 0.4 0.4 0.2 0.2 0.15 0.15 b

Si - - - - 1.0 1.0 - - -

Rare
2.5 . .

earth

a) high purity alloy having very low limits for Cu, Ni and Fe

b) if  Fe>0.005 then the iron to Mn ratio must be <0.032

Higher levels of Cu are allowed in AM60A than in AM60B. Therefore, AM60B 

has better saltwater corrosion resistance than AM60A. The only difference between 

AZ91A and AZ91B is that a higher level of Cu is allowed in AZ91B than AZ91A.

Manganese content in Magnesium die-casting alloys varies from one alloy to 

another, depending on the mutual solubilities of iron and manganese in presence of other
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elements. A basic requirement for the high-purity alloys is that the iron content of die cast 

parts is limited to a max of 0.005 wt.%.

Be is added to the Mg die casting alloys to level of 5 to 15 ppm to reduce the 

oxidation in molten metal.

2.2.5 Magnesium alloys for high temperature applications

The most commonly used magnesium AM and AZ alloys exhibit poor creep 

resistance. The previous work [20] attributes the poor elevated temperature creep 

resistance o f both AM and AZ alloys to the discontinuous precipitation of the M gnA l^ 

(P-phase). This is because the Mgi7Ali2  (p-phase) with relatively low melting temperature 

o f 455 °C is metallurgically unstable and may soften considerably at operating 

temperature o f powertrain components over 150 °C. Dargusch et al [60] 

metallographically observed that the grain boundary sliding in these alloys and suggested 

that the decomposition o f supersaturated a-Mg solid solution is mainly responsible for the 

poor creep resistance of the alloys. The discontinuous precipitation of the P-Mgi7 A l | 2  

phase resulting from decomposition triggers and promotes grain boundary processes such 

as sliding and migration [19].

Efforts to improve the creep strength of magnesium die casting alloys at 

temperature exceeding 120 °C have resulted in the introduction o f alloy containing Si, RE, 

Ca and Sr elements or mixture of them. These alloying elements form inter-metallic 

constituents that stabilize the grain boundaries. In these alloys, aluminum must be kept at 

relatively low levels [19]. In the following sections, each of these alloy systems will be 

discussed.
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2.2.5.1 Mg-Al-Si alloy

The first development in creep resistant Mg die-casting alloys for automotive 

applications was the development of Mg-Al-Si die casting alloys for air cooled engines 

by Volkswagen in the 70's. Silicon addition in AS alloys leads to the formation of the 

Mg2 Si precipitates that has low density(l .9 g/cm3), high hardness(460HVo.3), low thermal 

expansion coefficient(7.5xl0 ‘6 k '1), and perhaps most importantly, unlike the P-MgnAli2  

phase, it has a high melting temperature (1085 °C). Si lacks the ability to tie up Al 

rendering it ineffective in hindering the formation of P-phase and discontinuous 

precipitation for a given level of Al. These alloys hence have two types o f intermetallics, 

the P-M gnAln and the Mg2 Si phase with high temperature stability, which is deemed to 

pin dislocations and grain boundaries, thereby imparting increased creep resistance to the 

alloy [20]. The Mg2 Si that has a face centered cubic crystal structure [61] and is a 

metallurgically stable phase that forms in Chinese script morphology under slow cooling 

conditions, which would exhibit very low ductility. In the diecast alloy, a fine distribution 

of the strengthening phase, Mg2 Si, is achieved with resultant high temperature resistance 

and a satisfactory level of toughness [62]. Despite that the creep resistance achieved is 

moderate, the alloys are difficult to diecast.

The AS41 (Mg-4wt.%Al-lwt.%Si) and AS21 (Mg-2wt.%Al-lwt.%Si) alloys are 

the two standardized Mg-Al based heat-resistant alloys in use that display some 

improvement in creep properties in the range 130-150 °C. Both the alloys rely on the 

reduced Al content (reduced presence of low-melting M gnA l^). AS41 offers better heat 

and wear resistance than AZ91D, but with reduced fluidity o f its melt. AS41 has 

moderate castability, but due to lower Al content, the castability of AS21 becomes even a
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bigger problem [63]. Forester [64] suggested that silicon improves the fluidity of Mg 

alloys when 4% Al is present, making AS41 more castable than AS21. Considerable 

amount o f data on the Mg2 Si has reported by Beer et al [61]. However, silicon addition 

must be accompanied by a reduction in Al content to lower the amount o f M gnAli2 in the 

microstructure in order to improve the creep resistance. Creep mechanisms for alloy 

AS21 were studied by Dargush et al [60, 65].

The improved creep resistance of the AS21 over AZ91D was attributed to the 

smaller amount o f creep-induced precipitates and grain boundary pinning provided by the 

Mg2 Si precipitates.

Blum et al [6 6 ] have reported that, at high stresses, AS21 displays smaller 

maximum deformation resistance compared to AZ91 whereas under low stress the 

opposite is true. It is also interesting to note, as reported by Aune and Ruden [67], that up 

to 200 °C, alloys of the AZ, and AS series all appear to exhibit the same relative decrease 

in strength as the temperature is increased, and that at all temperatures, AZ91 shows 

superior yield strength. It is also revealed that, as 200 °C is approached except for AS41, 

these alloys would display similar levels o f ductility. It is possible to obtain a compromise 

between castability and creep resistance in this alloy system by going to an AS31 

composition. Recently a modified version of AS21x with small additions of rare earth 

elements has been developed. Rare earth additions at trace levels do not affect the creep 

resistance but improve the corrosion resistance as well as castability [6 8 ],

2.2.5.2 Mg-AI-RE alloys

A major development in creep resistant Mg alloys has been the emergence of rare- 

earth (RE) containing alloys (AE42 and AE41). This group o f Mg-AI-RE alloys involves
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at least one, and in general a mixture of the REs as precipitates forming alloying addition 

in their composition. Rare earth alloying additions are expensive and therefore a cheaper 

substitute known as misch metal, a mixture o f several rare earth elements that is enriched 

in one o f the constituents is generally used. This alloy system exhibits major 

improvement in creep resistance due to the complete suppression of the formation of the 

p-M gnAln phase and the presence, instead, of the Al-RE containing intermetallics [69]. 

In a review by Aune and Westengen on mechanical properties of various Mg alloys, it has 

been shown that the ultimate strength increases with Al and RE content in the alloy, and 

that tensile yield strength primarily depends on the amount o f RE and attains a limiting 

maximum level [69]. For a given RE content, the creep strength decreases with increasing 

Al content, while for a given Al content it increases with increasing amount of RE 

addition [70].

There have been a number of studies aimed at identifying the second phases in AE 

alloy family. Polmear [71] has claimed that Mg-Al alloys containing RE addition are 

suitable only for diecasting since slow cooling rates lead to the formation o f coarse AI2 RE 

particles. M g^Ce type particles were also detected at grain boundaries during creep. Both 

o f these precipitates, unless they coarsen, are considered to inhibit grain boundary sliding 

and thus being beneficial for creep resistance [71]. Precipitation of AI4 RE compound in 

the alloy AE42 has also been reported [64, 72-74].

Depending on the composition, precipitates o f other types of compounds have also 

been mentioned in the literature. Pettersen et al [74] suggested that, when RE/A1 weight 

ratio is above 1.4, all o f the aluminum is tied up as AI11RE3 in which case further 

precipitation o f other phases such as another type o f Al-Re phase or M g^RE becomes
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possible. In samples produced by cold chamber diecasting, they observed AI11RE3 and 

AlioRE2 Mn7 formation at grain boundaries. Their TEM observation has revealed that the 

major phase was A lnRE 3 (a body-centered orthorhombic cell with lattice parameters 

a=4.5A b= 13.2A and C=9.9A.). No special orientation relationship was found between 

this phase and Mg-matrix. EDS measurements gave an atomic ratio A1:RE= 3.3±0.6 

which is claimed to be in good agreement with the proposed stoichiometric ratio 11:3. 

The relative amounts of REs were reported to be (at %) La27±2, Ce51±2, Pr6 ± l, 

N d l6 ± l. This phase (AlnRE3) was found to co-exist with a minor phase A lioI^M ny. 

Diffraction patterns from this phase were indexed according to a hexagonal system with 

lattice parameters a=9 A 0 and c—13.1 A0. This structure was found in agreement with the 

published data for AlioCe2 Mn7 phase.

Dargusch et al [60] studied creep in AE42 alloy and have observed that just as 

AZ91 and AS21 alloys, the activation energy was in the range of 30-40 kJ/mol, indicating 

the same creep mechanism of creep-induced-precipitation resulting in grain-boundary 

migration. M gnA l^ was not observed but Al-super-saturation was noted. The difference 

between AZ and AS alloys and the AE was that the onset of the second creep mechanism 

at the high stress region at 150 °C was not seen in AE42 up to 100 MPa and that the creep 

strain was lower than AZ91 and AS21.

In a more recent paper by Powell et al [75] on the microstructural evolution of 

AE42, it was reported that two intermetallics AI11RE3 , AI2 RE and particularly no 

Mgi7Ali2 where present in the diecast structure. Creep testing at 150 °C and 175 °C 

showed a change in microstructure and in the relative amounts of these phases (Table 

2.5). These are consistent with the reaction by which A I11RE3 decomposes to AI2 RE and
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frees Al, which then reacts with Mg to form M gnAli2 , which is accepted as being 

responsible for poor creep resistance in Mg alloys [75]. To see if  stress played a role on 

the decomposition o f A1hRE3j samples were exposed to the same thermal history but 

without the applied stress [74]. The same microstructural changes were observed and it 

was concluded that AI11RE3 suffered merely from thermal instability at 175 °C. A 

relationship was discovered between the relative amounts of Ain RE and AI2RE and the 

La:Nd (below 0.7 AI2RE was seen and above 0.7 AI11RE3 seemed to form).

Formation of either AI11RE3 or AI2 RE maybe sensitive to individual rare earth 

elements and that this might influence the stabilization of the A lnRE 3 phase in AE42 

alloy. AE42 alloy was perceived to have issues with cost, castability and fatigue strength 

and was not considered for widespread automotive use for long time.

Table 2.5 Change in amounts o f phases [75],

Temperature

(°C)
M g (%) A ln RE3 (%) A12RE (%) Mgi7Ali2 (%)

As-cast 25 97.5 1 . 8 0 . 8 0

150 97.7 1.5 0 . 8 0

175 97 1 . 2 1.3 0 . 6

2.2.5.3 Mg-Al-Ca alloy

Ca addition, as a cheaper and lighter alternative to RE elements, also contributes 

to high temperature properties [76, 21-25]. When Ca is added to Mg-Al binary alloys, the 

type of precipitating compound is found to depend on the Ca/Al mass ratio. When this
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ratio is more than -0 .8  presence of both Mg2 Ca and A fC a were detected that resulted in 

considerable increase in hardness, while below this ratio only A ^Ca was observed to have 

formed. Both types o f precipitates were observed to form along the grain boundaries with 

an increasing volume fraction as the Al and Ca content increases [24].

Sohn et al [26, 27] mentioned that, in addition to the a-Mg solid solution phase, 

the microstructure o f AMC alloys contain AhCa phase. EDS analysis results for the 

AMC5009 alloy indicated that the gray area (B) in Figure 2.9 contained calcium 

(~2 wt.%) as well as aluminum. Higher calcium concentration (~3 wt.%) was detected as 

the width of secondary phase becomes narrower (C). As the calcium concentration 

increased, the proportion of sharp, well-defined phase boundaries in AMC alloys 

increased. This suggests that calcium segregated at the phase boundaries that are 

characterized by well-defined image and sharp contrast change in an etched specimen. By 

X-ray diffraction and TEM for the as-cast AMC5009 alloy, thin films (200~500nm) of 

A^Ca phase were identified at grain boundaries of a-Mg solid solution. The rounds, 

white particles observed within matrix were identified as an intermetallic phase 

containing aluminum and manganese.

Powell [77] reported that below 1 wt.% Ca addition to AM50, only a-Mg was 

identified in the XRD pattern. At the above 1 wt.% Ca, a secondary phase was also 

identified, Mg2 Ca, with certain shifts in both a and c parameters. The amount increased as 

the Ca level in the melt was increased. The formation of (Mg, A l^C a has been reported 

for AC53 alloy (Mg-5wt.%A1-3wt.%Ca), in which no other phases were identified and no 

evidence o f AUCa or M gnA l^ was detected [78].
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Figure 2.9: SEM micrograph showing as-cast microstructure of AMC5009 [26].

2.2.5.3.1 Effect of calcium on Creep resistance of Mg-Al-Ca alloy

Hollrigl-Rosta et al [21] attempted the use o f Mg-Al-Ca alloys in 1970's, and 

claimed an improvement in creep resistance with addition o f about 1 % calcium to 

magnesium alloy AZ81. Small addition of calcium significantly improves the creep and 

stress resistance o f AM50 [26-28]. The addition of 1.7% Ca dramatically lowers the creep 

rate of the die-cats AM50 magnesium alloy for about three orders o f magnitude [29, 30]. 

As shown in Table 2.6, 100 hours tensile creep extensions o f the AC52 (Mg-5wt.%Al- 

2wt.%Ca) and AC53 (Mg-5wt.%A1-3wt.%Ca) alloys range from 40 to 80% less than that 

of AE42 at 150 °C [77]. AC52 has slightly better creep resistance than AC53 [77]. The 

improvement in creep was related to presence of calcium intermetallic. The formation of 

low  melting point eutectic phase, Mgi7Ali2, which is generally present in aluminum  

containing magnesium alloys, is completely suppresses in the presence o f calcium. The 

M gnA ln is not seen either in the as-cast structure or in the creep deformed microstructure 

of the alloys. AECa is generally present along the grain boundary in the diecast
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microstructure. It is likely that thermally-stable phase at grain boundaries impedes grain 

boundary sliding and diffusion related dislocation climb at high temperatures, and can 

partly explain the improved creep resistance in the new AC series alloys [27-29].

Table 2.6 Total 100-hour creep extension (%) of magnesium alloys [77].

alloy 150 °C, 82 MPa 175 °C, 82 MPa 200 °C, 82 MPa

AE42 0 . 1 1 0 . 1 2 ----

AC2 0.05 0.06 0.26

AC3 0.07 0.09 0.28

2.2.5.3.2 Effect of calcium on mechanical properties of Mg-Al-Ca alloy

Berkmortel et al [31] investigated the effect of calcium content on mechanical 

properties o f the die cast AM50 alloy at room temperature. As demonstrated, the addition 

o f calcium into the alloy slightly increases its yield strength but decreases the ultimate 

strength. The effect o f calcium on elongation is more complex. A small amount of 

calcium (<0.3%) had no obvious effect on the elongation. The elongation value decreases 

sharply with increasing calcium content above 0.3%. When the calcium content reaches 

0.8%, the elongation decreases to less than 50% of that of AM50 alloy (Figure 2.10).

Pekguleryuz and Renaud [28] investigated the effect of calcium content on 

mechanical properties o f AM50 at elevated temperature and compared them with AZ91D 

and AE42. Their results (in table 2.7) show that the strength o f the AC alloys increases 

with increasing calcium content. AC508 (5%A1, 0.8%Ca) and AC51 (5%A1, l%Ca) have
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(at 150 °C) ultimate tensile strength and yield strength values comparable to AE42 and 

AZ91D alloys. Elongation at 150 °C is better than AZ91D and but less than AE42.

Powell et al [77] studied the tensile properties o f AC52 (Mg-5wt.%A1-2wt.%Ca) 

and AC53 (Mg-5wt.%A1-3wt.%Ca) and compare it with AM50. The results are shown in 

Table 2.8. All of the ACX alloys have a higher yield and tensile strength than AM50, due 

to the calcium addition; AC53 is stronger than AC52 at both room and 175 °C. However 

calcium addition reduces the total elongation of the alloys.

200 -

-  8
1Si

100 - •

0.2 0.6 0.8

Figure 2.10: Effect o f calcium content on mechanical properties o f AC alloys (note 

the AC (0%Ca) is the AM50 alloy) [31],
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Table 2.7 Tensile properties of AC51 at 150 °C [29].

Property
Alloys

AC506 AC508 AC51 AZ91D AE42

Yield strength 

(MPa)

95 1 0 2 1 1 2 1 1 0 107

Ultimate 

Tensile (MPa)

156 161 165 159 160

Elongation

(%)

8.4 7.4 8.4 6.7 36

Table 2.8 Mechanical properties of AM50 and ACX alloy at room temperature

and 175 °C [77],

Alloy Temperature
Ultimate tensile 

strength (MPa)

Yield strength 

(Mpa)
Elongation (%)

AM50
Room 214 116 17

175 126 90 14.2

AC52
Room 228 161 13.3

175 171 133 22.6

AC53
Room 240 186 9.1

175 190 151 14.5
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2.2.5.3.3 Effect of calcium on diecastability of Mg-Al-Ca alloy

Berkmortel et al [31] found that casting defects in the AC series alloy casting 

increased with increasing calcium content from zero to 0.8%Ca. Above 0.3% calcium, 

visual defects were far more predominant. Through the visual analysis they found that the 

most prominent defects were sinks, solder drag and cracks. Figures 2.11 and 2.12 show 

crack and solder drag defects in production of transfer case [31]. Very few flow/fill 

related defects, such as cold shut, were observed. This indicates that Ca-alloyed AM50 

alloys have certain fluidity and are capable of filling the die cavity. In their research, they 

observed that AZ91D casting have the least defect, closely followed by AE42. AM and 

AC series alloys have more defects, especially cracks. The tendency of forming primarily 

cracks in the AC alloys is greatly affected by the calcium content. A small addition of 

calcium (0.2-0.3 wt.%) to AM alloy may decrease its tendency of forming cracks. But 

additions of calcium greater than 0.4% appears influences on crack formation 

significantly.

Figure 2.11: Casting defect (cracking) present in a die cast transfer case [31].
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Figure 2.12: Casting defects, solder drag/tear, present in a die cast transfer case [31].

Limited studies revealed that the cracks were mainly inter-granular. In addition, it 

was found that cracks were initiated from the magnesium grain boundaries where a large 

amount o f second phase (MgO and/or ALCa) was presented. It is therefore proposed that 

cracks were initiated by the thermal stress caused by the difference in shrinkage rate 

between the second phase material and the magnesium matrix during solidification. This 

is further compounded by an increased susceptibility to hot cracking [31].

Pekguleryuz [24] revealed that calcium additions greater than 0.8% adversely 

affected die-castability due to extensive hot-cracking and die-sticking. Also, it was 

reported some die-sticking problems when the Ca level reached 1%. Die-sticking at that 

level was eliminated by the use of die lubricants and the proper casting temperature [28]. 

Powell et al [77] reported excellent diecastability for AC52 and AC53 alloys for small 

parts and simple shapes. All casting showed smooth surfaces and no evidence of
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cracking. Also it was mentioned that resistance to ignition o f ACX alloys during melting 

is greater (compared to AZ91D and AE42) and casting could reduce the need to use 

sulfur hexafluoride as a protective gas.

Powell et al [32] studied the die castability of Mg-Al-Ca-Sr alloys (AXJ) and 

compared with that of AM50. The optimum overall castability o f the AXJ alloys was 

found to occur at nominally 2%Ca. at lower Ca levels (0.9%), cold shuts, staining, hot 

cracking, die sticking, and soldering defect ratings returned to AM50 levels. When the Ca 

level was increased to 2.6% Ca, hot cracking and die sticking ratings also improved. At 

all levels, Ca increased the occurrence of hot cracking slightly above that o f AM50. The 

effects o f Al and Sr content on casting quality were negligible. The excellent fluidity of 

the AXJ compared with that of AM50 was also shown by the extensive flash that was 

observed during casting.

2.2.S.4 Mg-AI-Sr system

Mg-Al-Sr alloys are a new addition to the creep-resistant magnesium alloys. The 

resistance to creep deformation of the Mg-Al-Sr alloys seems to be due to dispersoid 

(second phase) strengthening. SEM and EDX analysis shows that strontium in the alloy 

combines with Al, which impedes the formation of the M gnAli2 phase. The absence of 

M g|7Ali2  in microstructure is probably one of the main reasons for the superior creep 

resistance of the Mg-Al-Sr alloys [79].

Various alloy compositions such as AJ51 (Mg-5wt.%Al-lwt.%Sr), AJ52 (Mg- 

5wt.%Al-2wt.%Sr) and AJ62 (Mg-6wt.%Al-2wt.%Sr) have been studied. AJ52 shows the 

highest creep resistance, while AJ62x gives an excellent combination o f creep 

performance and castability [80].
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Pekguleryuz et al [79, 81] report that the alloys show different microstructures 

based on the Sr/Al ratio. For Sr/Al ratio below about 0.3, AL»Sr intermetallic is the only 

secondary phase in the structure. When the Sr/Al ratio is higher, a secondary intermetallic 

phase (a ternary Mg-Al-Sr) is also observed. Sr/Al controls the formation of M g^A l^ as 

well. When the Sr/Al ratio is very low, there would be insufficient amount of Sr to bind 

all Al and excess Al would form the M gnAl^phase. Further studies on the ternary Mg- 

Al-Sr phase are needed. The superior creep resistance of the AJ52 and AJ62 alloys is 

attributed to the existence of the secondary phase in addition to A fSr. A fS r is a 

tetragonal phase and no phase coherency with the primary Mg phase has yet been 

reported.

Table 2.9 Tensile properties of diecast magnesium alloys [79].

alloy
Tensile strength (MPa) Yield strength (MPa) Elongation%

R.T 150 °C 175 °C R.T. 150 °C 175 °C R.T. 150°C 175 °C

AZ91 239 170 138 157 105 89 4.7 18 20.5

AE42 226 142 1 2 1 135 87 81 9.2 22.5 23.1

AS41 249 153 127 132 94 85 8.9 16.8 18

Mg-5%A1

1.8%Sr
2 0 2 164 148 145 108 103 4 13.6 14.8

Mg-5%A1-

1.2%Sr
233 149 133 138 1 0 2 97 8 . 8 16.4 21.4

A380 290 255 248 155 149 154 3.2 6.4 7.1

R .T : Room Temperature.
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Tensile yield strength and the ultimate strength of Mg-Al-Sr At 150-175 °C were 

reported to be higher than AE42 [79, 84] and AS41 [79], Tensile yield and ultimate 

strength of the alloys at 175 °C also surpassed AZ91D. Ductility of the Mg-5wt.%Al- 

1.8wt.%Sr was comparable to AZ91D. The results are summarized in Table 2.9 [79]. 

These alloys also show higher creep resistance than all magnesium alloys and aluminum 

alloy A380 at 150 °C and 175 °C and under 35 MPa tensile loading. The Mg-5wt.%Al- 

1.8wt.%Sr showed the most creep resistance [79].

The Mg-Al-Sr alloys exhibited better creep resistance than AS41 and AZ91D. The 

performance is comparable to the AE42 and A380 for temperature up to 175 °C 

[79, 82],

The Mg-5wt.%Al-1.4wt.%Sr alloy shows slightly higher defect content than the 

AZ91D counterparts in die castings. The physical properties o f the Mg-Al-Sr 1.4% 

presented a real challenge to the die cast industry. Compared to traditional alloys such as 

AM50, the alloy requires less energy to cool from liquidus to solidus. This caused 

continuous problems with metal transfer and when in production would require additional 

energy in the form of heat to be present in the transfer o f metal from the holding furnace 

to the shot sleeve. High shot speeds in an attempt to offset the limited solidification time 

led to soldering problems. In fact, slow shot speeds seemed to help metal flow but further 

compounded the need for additional heat. Nevertheless good castability is attainable with 

process optimization for Mg-5wt.%Al-1.4wt.%Sr alloy. Mg-5wt.%Al-2.1wt.%Sr has a 

better dicastability than Mg-5wt.%Al-1.4wt.%Sr alloy [82],

Argo et al [83] investigated the diecastability of Sr-alloyed Mg-5wt.%Al alloys by 

die casting valve covers. It has been indicated that die casting o f the 1.4wt.%Sr-alloyed
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Mg-5wt.%Al alloy required a die temperature of 30 °C to 50 °C, a melt temperature of 40 

°C to 70 °C higher than those in normal operation of diecasting alloy AM50. Examination 

of casting quality manifests that hot tears and cold shuts occurred in the geometry 

transition areas such as ribs and boltholes, as well as the flat surface o f castings. The 

observation also showed that casting defects tended to disappear as die temperature 

increased. However, the high die and melt temperature may lead to a shorten tool life. 

Despite the quality issue present in the castings, the study concluded that the alloy is 

castable in a production die-casting environment with the optimized die design and 

process parameters.

2.2.S.5 Mg diecasting alloys with combined additions of alkaline earth and/or rare 

earth elements

In recent years, many Al-containing Mg alloy systems have been developed with 

combined additions o f rare-earth and alkaline earth elements. Nissan patent on an Mg-Al- 

Ca-RE alloy and later a Honda alloy [84] ACM522 (Mg-5wt.%Al -2wt.%Ca -2wt.%RE) 

both claim improved creep resistance over AE42 alloy. ACM522 is based on specific 

Al/RE/Ca ratios to ensure Al-RE precipitates in addition to Al-Ca intermetallics. This 

alloy is used by Honda in oil pans for their hybrid car. The microstructures of these alloys 

exhibit a combination o f Al-RE and Al-Ca intermetallic mixtures. The Mg-8 wt.%Al- 

2.5wt.%RE-1.6wt.%Ca-1.3wt.%Mn alloy AhCa coupled eutectic phase as well as needle 

shaped Al-RE (Ca, Mn) itermetallics and Al-Mn-RE intermetallics[84]. Another alloy 

system based on Mg-Al-Ca-RE with optional additions o f Sr and Zn is a patent by Dead 

Sea Magnesium [8 6 ]. Two alloy formulations code-named MRI153 MRI230 were 

reported to exhibit good elevated temperature performance [8 6 ] at 150 °C and 180 °C
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respectively. Furthermore MRI153 exhibits good diecastability similar to AZ91 alloy. The 

alloy system of this patent is quite complex, having a number o f elements and would lend 

itself to further development to find optimum combinations of strength, creep resistance 

and castability.

2.2.6 Summary

From the literature review, it can be seen that the addition of calcium significantly 

improves the creep and stress resistance of Mg-Al alloys. But serious casting defects 

present in the Mg-Al-Ca alloys, produced by conventional high pressure diecasting 

processes limits its potential for high temperature automotive applications.

In terms of manufacturing, little research work has been carried out to produce 

Mg-Al-Ca alloys by other promising casting processes, such as squeeze casting. Also 

limited studies have been done on microstruicture and mechanical properties o f squeeze 

cast Ca-containing magnesium alloys. Therefore a systematic research in understanding 

the castability, microstructure and mechanical properties of squeeze cast Mg-Al-Ca alloys 

are needed for potential applications of the alloys.
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CHAPTER III 

EXPERIMENTAL PROCEDURE

3.1 Casting

3.1.1 Melting unit

Melting of magnesium alloy AM50A was carried out in a 2.6 KW, 50/60 HZ 

electrical furnace with a maximum temperature of 1200 °C (Figure 3.1). Raw materials 

supplied in bar ingot form were cut into smaller pieces and melted in a crucible made of 

mild steel with a maximum holding capacity of 1.4 liters o f molten metal (Figure 3.2). 

The temperature o f the melt was closely monitored by both the control panel of the 

furnace and a hand held digital thermometer. To minimize temperature drop, the molten 

metal was poured directly from the crucible into the mould cavity.

■ ■ ■ ■ I

Figure 3.1: Melting furnace.
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3.1.2 The Die sets

The aim of this project was to study the effects of pressure levels and calcium 

contents on the microstructure and mechanical properties of Mg-5wt.%A1-Xwt.%Ca 

alloy. A simple cylindrical configuration of casting coupons was adopted for this purpose. 

A set o f cylindrical male and female dies was used to produce coupons with a diameter of

0.1 m and height o f 0.15 m. Figure 3.3 shows the geometry o f a squeeze cast cylindrical 

coupon. Both the die and its insert were made of grade H I3 chromium molybdenum hot 

work steel due to its strength at high temperature and its wear resistance. The plunger and 

its head were made of steel grades 4140 and D 8  respectively. A close tolerance o f 0.1 mm 

was designed for the gap between the plunger head and the die in order to prevent any 

flash of molten metal during squeeze casting.

Figure 3.2: Mild steel crucible.
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Figure 3.3: Schematic diagram showing a squeeze cast cylindrical coupon.

Die sets were preheated by Acrolab ceramic band heaters (Acrolab Ltd. Windsor, 

Ontario, Canada) prior to squeeze casting. Both the top and bottom dies were heated by 

two separate band heaters with electric powers of 220V, 6 KW and 2KW, respectively at 

220V. During heating, the die was kept being closed to reduce heat loss.

3.1.3 The hydraulic press

A 75 ton, vertical hydraulic press was used for direct squeeze casting. Figure 3.4 

shows the hydraulic press, together with die set in position.

The die which was mounted on the bottom base platen is approximately 1.1 

meters above the floor level. This height facilitated the pouring o f  molten metal during 

casting. For safety, a transparent polycarbonate shield was built around the press to 

protect operators from any injury resulting from the spill of molten metal during pressing.
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Figure 3.4: Squeeze cast machine and die.

When the press was activated, the bottom platen attached to the main ram 

(plunger) moved upwards and closed the die. Upon the completion o f pressure build up in 

the hydraulic system, the plunger applied a pre-selected pressure to melt in the die cavity. 

The operation can be controlled either automatically or manually.

The press is also equipped with several level sensors to control the closing speeds 

of the platens.

3.1.4 Melting and pouring of molten metal

A magnesium alloy designated as AM50A was used in the study as parent alloy; it 

was provided by Ford Motor Company. A master alloy of magnesium-calcium 

(70wt.%Mg- 30wt%Ca), supplied by Timminco, was used to produce the desired alloy 

with different percentages of calcium. Raw materials were supplied in cast ingot bars.
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Sufficient metal for each melt was prepared from these bars; initially melting was carried 

out in a mild steel crucible. The results of chemical analysis o f the alloy samples taken 

from the squeeze cast coupons with different levels o f calcium content are summarized in 

Table 3.1.

During the course o f melting, no flux was used either to protect or to refine the 

melt. However, to protect the melt from any excessive oxidation or possible burning, a 

protective gas mixture o f sulfur hexafluoride, SF6 , in a carrier gas of carbon dioxide, CO2 , 

was used.

Table 3.1 Chemical compositions o f the squeeze cast alloys.

Alloy Symbol
Aluminum

(wt.%)

Calcium

(wt.%)

Manganese

(wt.%)

Mg-A15%-Ca0% AM 50A 4.8 0 0.32

Mg-A15%-Ca 1 % AMC501 4.71 0.98 0.28

Mg-A15%-Ca2% AM C502 4.7 1.78 0.3

Mg-A15%-Ca3% AM C503 4.5 2.7 0.31

Mg-A15%-Ca4% AM C504 4.4 3.6 0.31

The molten metal was heated to a temperature of 760 °C, which is higher than the 

pouring temperature (720 °C) to have sufficient superheat for skimming and transferring. 

The molten metal temperature was closely monitored by a hand held digital thermometer. 

Once the melt temperature reached the desired temperature o f 760 °C, the crucible was
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moved out o f the furnace and transferred to the die. The molten metal was poured directly 

from the crucible into the die cavity to avoid any large temperature drop. Transferring and 

pouring o f the molten metal were done manually and attempts were made to pour at an 

equal and fairly rapid rate.

3.1.5 Casting conditions

The casting procedure can be summarized as follows:

1) Pre-heating the die set to the required casting temperature (300 °C). Before its 

course of heating up, the die set was normally brushed with a die release agent,

i.e., a water based graphitic die spray, supplied by Acheson Colloids Company;

2) Selecting the pressure level;

3) Installing the safety transparent shield;

4) Skimming the melt in the crucible and install a plate in crucible to allow the 

pouring of melt. This plate reduces the possibility of surface oxide entering the die 

cavity;

5) Pouring molten metal into the die cavity;

6 ) Activating the press by pushing the automatic cycle button. The bottom platen

ascended rapidly until reaching a point, at which the top and bottom die was ready

for closing;

7) Changing the platen movement with slow pressing speeds for die closing;

8 ) Building up pressure to a desired level in the hydraulic system upon die closing;

9) Holding up for a preset dwell time (60 seconds);

10) Retracting the punch to its original position;
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11) Ejecting the casting from die; and

12) Repeating the cycle.

Two process parameters were investigated in this research: the pressure levels, and 

the calcium contents o f the alloys.

The first series of experiments was aimed at investigating the effect o f applied 

pressure on microstructure and mechanical properties. In the first series of experiments, 

applied pressures o f 3, 10, 30, 60 and 90 MPa were employed to squeeze cast the alloys 

with the calcium content of 1 wt.%.

In second series, the effects o f calcium contents were investigated on 

microstructure and mechanical properties. The alloys with various calcium contents of 0, 

1, 2, 3, and 4% were squeeze cast under a constant applied pressure of 30 MPa.

3.2 Mechanical Testing

The mechanical properties of squeeze cast Mg-Al-Ca alloys were evaluated by 

tensile testing, which was performed at both ambient temperature and 150 °C on an 

Instron machine equipped with a computer data acquisition system. Following ASTM 

B557 [87], subsize flat tensile specimens (25 mm in gage length, 6  mm in width, and 6  

mm in thickness) were machined from the center of squeeze cast disc as shown in Figure 

3.5. Figure 3.6 shows schematically the dimensions o f tensile specimen. The tensile 

properties, including 0.2% yield strength (YS), ultimate tensile strength (UTS), and 

elongation to failure (Ef), were obtained based on the average of three tests.
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a) Top view

b) Side view

Figure 3.5: Schematic diagram showing the location of die cast coupons from in which 

the samples were taken for tensile test, a) top view and b) side view.
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Figure 3.6: Schematic illustration of Tensile Test Specimen.

G- Gage length: 25±0.1 mm W- Width: 6±0.1 mm

T- Thickness 6±0.1 mm R-Radius o f fillet, min: 6  mm

L- Overall length, min: 100 mm A-Length o f reduced section: 32 mm

B- Length o f grip section, min: 30 mm C-Width o f grip section: 10 mm

3.3 Metallography

3.3.1 Specimen preparation

The castings were sectioned, mounted, and polished from the center of the 

squeeze cast disc and prepared following the standard metallographic procedures. 

Samples were cut from the castings and were mounted by Buehler Simplimet 3 mounting 

press. Mounted samples were ground on series of SiC papers in the sequence: 180, 320, 

400 and 600 grit. Samples were then polished on a DP-PAN polishing cloth with 1pm 

AI2 O3 suspension. Polished specimens were washed with water, liquid soap and ethyl 

alcohol, and then dried using cold air; hot air is noted to leaves a brownish oxide on the 

surface.

Considerable time was spent optimizing the polishing and etching conditions. The 

best etchant used was the glycol, consisting of 1 ml H NO 3 , 75 ml di-ethylene glycol, and 

25 ml H2 O. Etching was performed by swabbing the sample for 10 to 15 seconds, and

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



then washing the specimen surface with running water and ethanol. Figure 3.7 shows the 

location o f squeeze cast discs from which metallographic samples were taken for 

microstructural analysis.

3.3.2 Optical and Electron Microscopy

A Buehler optical image analyzer 2002 system was used to determine the primary 

characteristics o f the specimens. Figure 3.8 shows the Buehler optical image analyzer 

2002 system. The grain size was measured by image analyzer according the ASTM El 12- 

96 [8 8 ],

The detailed features of the microstructure were characterized at high 

magnifications by A JSM-5800LV scanning electron microscope (SEM) with a maximum 

resolution of lOOnm in a backscattered mode/ lpm  in X-Ray diffraction mapping mode, 

and maximum useful magnification o f 30,000. In order to maximize composition reading 

o f the Energy Dispersive Spectroscopy (EDS) data, etchant was applied to specimen for 

microscopy examination. Fractured surfaces of tensile specimens were also analyzed by 

the SEM to ascertain the nature of fracture mechanisms. In addition, the longitudinal 

section of tensile tested specimen passing through the fractured surface were polished and 

examined in an effort to understand the extent o f damage beneath the fractured surface. 

Figure 3.10 shows scanning Electron Microscope (Joel Model JSM-5800LV).
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Figure 3.7: Schematic diagram showing the location of die cast coupons from which 

the samples were taken for microstructural analysis.

Figure 3.8: Buehler optical image analyzer model 2002
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Figure 3.9: Scanning electron microscope (Joel Model JSM-5800LV).

3.4 Density Measurement

Specimens for density measurement were taken from the place close to which 

metallographic samples were taken from. Following the measurement o f specimen weight 

in air and distilled water, the actual density (Da) o f each specimen was determined using 

Archimedes principle based on ASTM standard D3800 [89]:

D a= W a D w/(W a-W w)

Where Wa and Ww are the weight of the specimens in air and in water, respectively, and 

Dw is the density o f water. Figure 3.10 shows the lab set up o f the density measurement. 

The porosity o f each specimen was calculated by the following equation:

%Porosity= [(Dt-Da)/Dt] 100% 

where Dt is the density o f alloy AMC501 squeeze cast under 90MPa, since the standard 

density o f densified AMC alloys is not available.
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Figure 3.10: Experimental setup for density measurement.
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CHAPTER IV 

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the results of the microstructural analysis and tensile properties of 

squeeze cast Mg-Al-Ca alloy are presented. The influence o f both pressure levels and 

calcium contents on tensile properties are discussed.

The results in this chapter will be presented in the following sequence:

1. Microstructure analysis including optical microstructure and SEM;

2. Tensile test results; and

3. SEM-based microstructural studies of tensile fracture regions and fracture 

surfaces.

4.2 Effect of Pressure Levels on Tensile Properties and 

Microstructure of Squeeze Cast Mg-Al-Ca Alloys

To investigate the effect o f applied pressures on microstructure and mechanical 

properties o f squeeze cast Mg-Al-Ca alloys, five different levels of applied pressures, 3, 

10, 30, 60 and 90 MPa, were employed while the calcium content o f the alloys was kept 

constant at 1 wt.%. It should be mentioned that the lowest hydraulic pressure, available in 

the squeeze cast machine used in this study, was 3 MPa.
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4.2.1 Surface cracking of Mg-Al-Ca alloys

As discussed in the preceding section, Ca addition to magnesium alloys enables 

them to easily form surface cracks [24, 28, 31, and 32], In attempt to understand the effect 

of pressure levels on the formation of surface cracks, direct observations on the surfaces 

of cast Mg-Al-Ca alloys with and without applied pressures were made.

Figure 4.1 clearly shows evidently that surface cracks in a star shape formed in the 

AMC501 alloy when no external pressure was applied. However, an applied pressure, as 

low as 3 MPa, tended to eliminate the occurrence of surface cracking in the alloy as 

illustrated in Figures 4.2 and 4.3. Examination of squeeze cast AMC501 alloy reveals that 

the elimination o f surface cracks taking place in the AMC501 alloy becomes achievable 

with the help o f an applied external pressure.

Figure 4.1: Crack formation in AMC501 alloy solidified under no applied pressure.
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Figure 4.2: No Crack foramtion in AMC501 alloy solidified under 3 MPa applied

pressure.

Figure 4.3: No crack formation in AMC501 alloy solidified under 30 MPa applied 

pressure.
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4.2.2. Microstructure Analysis

Figures 5.4 to 5.8 show the optical microstructure of the Mg-5%Al-l%Ca alloy 

squeeze cast under the pressure of 3, 10, 30, 60, 90 MPa in the as-cast condition, 

respectively. It can be seen that the secondary phase (intermetallic A ^Ca particles) are 

precipitated around grain boundaries. The third phase present is an intermetallic o f Al-Mn 

which has round shape.

As the pressure increases from 3 to 90 MPa, the grain sizes of the alloy were 

noted to vary only from 40.2pm to 39pm. This experimental observation indicates that 

an increase in applied pressure leads to no reduction in grain size, which is on the 

contrary to the results given in references 9, 14, 41 and 50. However, no effect of applied 

pressure on grain size may be attributed to casting geometry-related heat transfer taking 

place during squeeze casting.

The heat transfer at the casting /die interface can be determined by:

Q = h (T c-Td)A  [5-1]

where Q is the heat transferred in time unit

h is heat transfer coefficient (W m ' 2 K '1);

Tc is the casting temperature at the casting-die interface;

Td is die temperature; and

A is contact area o f the interface between casting and die.

In general, during squeeze casting heat transfer coefficient (h) across the interface 

between the casting and die is enhanced with applied pressure which eliminates air gaps 

at casting/die interface. However, due to high aspect ratio (the ratio o f casting diameter to
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its height) o f the current casting, the side surface area of the casting is much smaller than 

its top and bottom surface area. According to Equation 5-1, the top and bottom surfaces 

of the casting play a dominating role in heat transfer during the process compared to its 

side surface. Despite the application of external pressure eliminating the air gap present 

between the casting side surface and die wall, the resulting enhancement on heat transfer 

at the side interface is limited due to its high aspect ratio.

Figure 4.4: Optical micrograph showing microstructure of alloy AMC501 squeeze cast 

under 3 MPa.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.5: Optical micrograph showing microstructure of alloy AMC501 squeeze cast

under 10 MPa.

¥

Figure 4.6: Optical micrograph showing microsturcture o f alloy AMC501 squeeze cast 

under 30 MPa.
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Figure 4.7: Optical micrograph showing microstructure of alloy AMC501 squeeze cast 

under 60 MPa.

Figure 4.8: Optical Micrograph showing microstructure of alloy AMC501 squeeze cast 

under 90 MPa.
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4.2.3 Material densification

Figures 4.9 and 4.10 present the density and porosity measurements of alloy 

AMC501 samples squeeze cast under different pressure levels o f 3, 10, 30, 60, and 90 

MPa. It is evident from Figures 4.9 and 4.10 that the density of squeeze cast AMC501 

samples increases and its porosity decreases with an increase in applied pressures. The 

densification and porosity reduction of squeeze cast AMC501 should be attributed to the 

fact that the applied pressure enables the melt to feed the microshrinkage forming in the 

last solidifying region o f casting, capable of deforming the solidifying metal, and also 

suppresses gas nucleation, and significantly decreases the size o f entrapped gas. As a 

result, the alloy becomes highly densified with considerable low amount of porosity.

The SEM results given in Figures 4.11-4.14 further support the porosity 

measurement. Relatively low pressures (3 and 10 MPa) are incapable o f completely 

eliminating porosity in the alloy as depicted in Figures 4.11 and 4.12. As the applied 

pressure increases to and beyond 30 MPa, no porosity was observed in the squeeze cast 

alloy (Figures 4.13 and 4.14).
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Figure 4.10: Porosity versus applied pressure.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.11: Shrinkage porosities in samples cast under 3MPa.

Figure 4.12: Shrinkage porosities in samples cast under lOMPa.
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Figure 4.13: No shrinkage porosities in samples cast under 30MPa.

Figure 4.14: No shrinkage porosities in samples cast under 60MPa.
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4.2.3 Tensile properties

Figure 4.15 shows representative engineering stress and strain curves of squeeze 

cast Mg-5wt,%Al-lwt.%Ca alloy under the applied pressures of 3 and 90 MPa at room 

temperature. For these two pressures, the stress variation with the strain follows almost 

the same pattern. Under tensile loading, the alloy deformed elastically first. Once yield 

points reaches, plastic deformation of the alloy starts. However, the ultimate tensile 

strength (UTS) and elongation of the sample cast under 3 MPa are much lower than those 

cast under 90MPa.

The effect o f applied pressures on tensile properties of squeeze cast AMC501 

alloy, is shown in Table 4.1 and Figure 4.16. It is observed from the results that an 

increase in pressure levels brings a significant improvement in the ductility and some 

improvement in UTS and yield strength (YS). The elongation, UTS and YS of the alloy 

for 90 MPa is 5.42%, 183.7MPa and 90.2 MPa, respectively, which result in increases of 

6 6 % in elongation, 20% in UTS and 13% in YS over those specimens cast under 3 MPa. 

Since no significant microstructural change was observed under different pressure levels, 

the improvement in mechanical properties by the pressure increase should be attributed to 

materials densification and porosity reduction. The slight increase in yield strength might 

be attributed to higher dislocation densities in samples squeeze cast under higher applied 

pressures, as suggested in reference 29.

One o f the major characteristics of the plastic deformation of metals is the fact 

that the shear stress required to produce slip continuously increases with increasing shear 

strain. The increase in the stress required to cause slip because of previous plastic 

deformation is known as strain hardening or work hardening. Strain hardening is
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attributed to the interaction of dislocations with other dislocations and with other barriers 

to their motion through the lattice [93]. Figure 4.17 gives true strain stress curves of 

AMC501 cast under 3 and 90 MPa. To elucidate the strain-hardening behaviour of the 

AMC501 alloy cast under 3 and 90 MPa, a plot of strain-hardening rate (dS/ds) versus 

true plastic strain (s), is given in Figure 4.18, which is derived from true strain-stress 

curves. It can be seen from Figure 4.18 that as the applied pressure in casting process 

rises, the strain hardening rate of the alloys increases. It suggests that AMC alloys cast 

under high pressure content are able spontaneously to strengthen themselves increasingly 

to certain extent, in response to large plastic deformation prior to fracture. The high strain 

hardening rates o f the alloy cast under higher applied pressure may be attributed to high 

dislocation densities in samples squeeze cast under high applied pressures, suggested in 

reference 29.
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Figure 4.15: Engineering stress-strain curves o f AMC501 under 3 and 90MPa.
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Table 4.1 Effect of pressure levels on UTS, YS and Elongation.

Pressure level(MPa) UTS(MPa) 0.2%YS(MPa) Elongation (%)

3 153.7±6.6 80±2 3.26±0.6

1 0 169±3 83.5±3.75 4.37±0.45

30 176.9±0.8 8 6 ± 1 5.02±0.1

60 180±3.5 88±4.5 5.16±0.05

90 183.7±0.95 90.5±2.5 5.42±0.05
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Figure 4.16: Effect o f pressure levels on UTS, YS and Elongation of AMC501 alloy.
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Figure 4.18: Strain hardening rate versus strain of AMC501 cast under 3 and 90MPa.
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4.2.5 Fracture behaviour

The tensile fractured surfaces o f squeeze cast AMC501 are shown in Figures 4.19 

and 4.20. The observed fracture mode of the samples under 3 and 90 MPa is dimple 

rupture. In this mechanism the alloy fail by microvoid coalescence when fractured under 

a continual rising load. The microvoids nucleate in the material at areas of localized high 

plastic deformation such as that associated with second phase particles, inclusions, and 

grain boundaries. As the load on the material increases, the microvoids grow, coalesce, 

and eventually form a continuous fracture surface. A considerable amount o f energy is 

consumed in the process of the formation of microvoids, eventually leading to creation of 

cracks.

The analysis of the SEM fractography shows that the fracture behavior of squeeze 

cast AMC501 is influenced by applied pressure levels. As the pressure level increases, the 

fracture of the alloy tends to transition from brittle to ductile. The fracture surface of the 

90 MPa specimen is ductile in nature, and is characterized by the presence of deep 

dimples compared with 3 MPa samples (Figure 4.20). The brittle behaviour of samples 

squeeze cast under 3 MPa can be attributed to high porosity percentage. The porosity 

presence cause stress concentrations where cracks form and spread rapidly over the 

section.

The brittle A^Ca segregation along the grain boundaries might be the main cause 

of the intergranular fracture. The damaged microstructure underneath the fractured 

surfaces presented in Figures 4.21 and 4.22, at least in part, supports this interpretation. 

Overall, the SEM observations of the fracture surfaces show a good agreement with the 

tensile properties o f the alloy presented in sections 4.2.4.
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b)

Figure 4.19: SEM fractographs of squeeze cast AMC501 under 90 MPa, 

a) low magnification and b) high magnification.
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Figure 4.20: SEM fractographs of squeeze cast AMC501 under 3 MPa, 

a) low magnification and b) high magnification.
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Figure 4.21: Optical micrograph showing crack origin in AMC501 squeeze cast under

3 MPa.
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Figure 4.22: Optical micrograph showing crack origin in AMC501 squeeze cast under 

90 MPa.
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4.2.6 Summary

The effect o f pressure was investigated on microstructure and mechanical 

properties o f squeeze cast AMC501 alloy. The microstructure for all samples contain 

primary a-Mg, A ^Ca intermetallic and Mn-Al intermetallic. Due to high aspect ratio of 

the casting geometry no significant improvement in grain structure was observed as the 

applied pressures increase.

The results o f tensile testing indicate that the mechanical properties, UTS, YS, and 

elongation, increase with an increase in applied pressures during solidification. The 

material densification and porosity reduction should be responsible for the increase in 

tensile properties.

The observation via SEM fractography and tensile results indicates that, as the 

applied pressures increase, the fracture mode o f the alloy transits from brittle to ductile.
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4.3 Effect of Calcium Contents on Tensile Properties and 

Microstructure of Squeeze Cast Mg-AI-Ca Alloy

To investigate the effect of calcium content on microstructure and mechanical 

properties, the AM50A alloys with different percentages of calcium addition, 0, 1, 2, 3, 4 

wt.%, were squeeze cast under a constant pressure of 30 MPa in the second series of 

experiments. It was observed that the resistance of melt to ignition increased with 

addition o f calcium to AM50A and the need for sulfur hexafluoride to protect the melt 

could be reduced, but more dross formed during alloying.

4.3.1 Microstructure Analysis

Figures 4.23 to 4.27 present the optical microstructure o f the squeeze cast 

specimen o f AM50A alloy with different calcium contents 0, 1, 2, 3, 4 wt.% in as-cast 

condition, respectively. The grain size of alloys was measured by image analysis 

according to ASTM El 12-96. The results show that addition o f calcium to AM50A alloy 

causes a grain refinement (Figure 4.28). The grain size decreases from 47 to 39 pm with a 

calcium addition o f 1 wt.%, and further reduces to 35 pm with an increase in the calcium 

to 2 wt.%. As the calcium content increases to 3 wt.%, however its influence on grain 

refinement becomes limited (Figure 4.28). It appears that, increasing calcium to 4 wt.% 

has no further effect on grain size of Mg-AI-Ca alloys (Figure 4.28).

The optical microstructural analysis of AM50A (Figure 4.23) shows that a visible 

white network and an irregularly shaped black dispersoids are continuously present 

around grain boundaries, and gray particles reside in grains. The results o f SEM analysis 

given in Figure 4.29 reveals that the white networks are just the light reflection of grain
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boundaries in optical microscopy and only the black dispersoids are the secondary 

eutectic phase.

With an addition o f 1 wt.% calcium to AM50A, a semi-continuous network of 

secondary phases forms around grain boundaries. As calcium content increases, the 

amount o f secondary phases present around grain boundaries become massive. As a 

result, a continuous network of secondary phases forms at grain boundaries. In an effort 

to quantitatively determine the role of calcium on phase formation, the fraction area of 

secondary phases in AMC alloys was measured. It can be seen from Figure 4.30 that, as 

the calcium contents of the alloys increase from 1 wt.% to 4 wt.%, the fraction of 

secondary phase increases from 9.9% to 19.5%.

SEM and EDS were utilized for the elemental analysis o f microstructural features 

observed in this study. Figures 4.31 - 4.34 present the results o f SEM and EDS analysis 

for AM50A. As it can be seen the P-MgnAli2  eutectic phase (bright contrast) presents in 

a matrix (dark contrast) of the primary a-Mg solid solution tends to form a discontinuous 

network (Figure 4.31). Figures 4.32 to 4.34 show the EDS spectra for J, which is the 

a-Mg matrix, K and N as P-M g^Alo phase, and M, L and O as Al-Mn intermetallics 

almost identical to AlgMns identified by Wang et al [90]. Oxygen peak which appeared 

on many spectra should be resulted from surface oxidation during and after sample 

preparation.

The SEM and EDS results for AMC502 are shown in Figures 4.35 - 4.38. Figures 

4.36 - 4.38 give the EDS spectra for A, which is the a-Mg matrix, B, F, H and G as A fC a 

phase which precipitates around grain boundaries, and C and D, the rounds, white 

particles, as an intermetallic phase containing aluminum and manganese. Again oxygen
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peak which appeared on many spectra should be resulted from surface oxidation during 

and after sample preparation.

EDS mapping was performed on AMC502 and AM50A squeeze cast under 30 

MPa to illustrate elemental distribution (Figures 4.39 -  4.45). It can be seen from Figure 

4.40 and 4.41 that, in AMC502 the calcium and aluminum mostly precipitated on grain 

boundaries. However, manganese precipitates in the matrix (Figure 4.42). In AM50A the 

aluminum also precipitate mostly on grain boundaries and the manganese precipitate in 

the matrix (Figures 4.43 - 4.45).

Figure 4.23: Optical micrograph showing microstructure of squeeze cast AM50A under 

30 MPa.
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Figure 4.24: Optical micrograph showing microstructure of squeeze cast AMC501 under

30 MPa.

t i

Figure 4.25: Optical micrograph showing microstructure of squeeze cast AMC502 under 

30 MPa.
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Figure 4.26: Optical micrograph showing microstructure of squeeze cast AMC503 under

30 MPa.

Figure 4.27: Optical micrograph showing microstructure of squeeze cast AMC504 under 

30 MPa.
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Figure 4.28: Effect o f calcium content on grain size.

Figure 4.29: SEM micrograph showing discontinuous precipitation of secondary phases 

in squeeze cast AM50A under 30 MPa.
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Figure 4.31: SEM micrographs showing microstructure of squeeze cast AM50A under 

30MPa.
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Figure 4.32: EDS spectrum from the region marked "J" in Figure 4.31.
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Figure 4.33: EDS spectrum from the region marked "K and N" in Figure 4.31.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5

Mn

Mn

0L/iJ
0.5-

Mn

La
keV

Figure 4.34: EDS spectrum from the region marked "M, L and O" in Figure 4.31.

Figure 4.35: SEM micrographs showing microstructure o f squeeze cast AMC502 under 

30 MPa.
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Figure 4.37: EDS spectrum from the region marked "B, F, H and G" in Figure 4.35.
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Figure 4.38: EDS spectrum from the region marked "C, D and E" in Figure 4.35.

Figure 4.39: Location which the EDS mapping performed on AMC502.
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Figure 4.40: Distribution of Calcium in AMC502.
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Figure 4.41: Distribution of Aluminum in AMC502.
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Figure 4.42: Distribution of manganese in AMC502.

Figure 4.43: Location which the EDS maps was taken from AM50A.
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Figure 4.44: Distribution of aluminum in AM50A.
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Figure 4.45: Distribution of manganese in AM50A.
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4.3.2 Tensile properties

4.3.2.1 Tensile properties at ambient temperature

Figure 4.46 shows the typical engineering stress-strain curves for AMC alloys. It 

is evident that the slopes o f the liner portion of the curves are almost identical for all the 

alloys, which indicate the addition of calcium to magnesium alloy AM50 does not alter 

the elastic modulus o f the alloy. Table 4.2 summarizes the UTS, YS and elongation of 

AMC alloys squeeze cast under 30 MPa.
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Figure 4.46: Engineering stress-strain curve for Mg-AI-Ca alloys at room temperature.

The effect o f calcium contents on tensile properties o f squeeze cast AMC alloy at 

room temperature is shown in Figure 5.47 o f which data are given in Table 4.2. As the 

calcium content increases from 0% to 4%, the elongation and UTS at ambient 

temperature decrease significantly. The elongation and UTS of the alloy with 4 wt.%Ca 

are only 2% and 162 MPa which decrease by 325% and 27% respectively, over that of
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alloy with 0 wt.% Ca. However the yield strength shows a slight increase. The slight 

increase in yield strength may be attributed to reduction in grain size and increase in k 

parameter due to increase in ratio of secondary phases as calcium increases, according to 

Hall-Petch equation relation:

50 = 5i + k D"1/2

where 8 0  is the yield stress, 8 j is friction stress opposing motion of dislocation, k is " 

unpinning constant" measuring the extent to which dislocations are piled up at barriers, 

and D is the grain diameter.

Despite AMC502, AMC503 and AMC504 have the same grain size but the yield strength 

of AMC alloys increases as the calcium content increases. The higher yield strength as 

the calcium increases could be attributed to higher the fraction of secondary phases.

Table 4.2 Effect o f calcium content on tensile properties at room temperature.

Calcium content UTS(MPa) Yield strength(MPa) Elongation (%)

0 % 206±4.2 82.6±1.5 8.5±0.35

1 % 176.9±0.8 8 6 .0 ± 1 5.0±0.1

2 % 168.1±3.7 87.6±3.2 2.6±0.3

3% 165±2.9 91.0±3.6 2 .2 ±0 . 2

4% 162±1.7 93.6±0.6 2 .0 ±0 . 2
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Figure 4.47: Effect o f calcium content on tensile properties of squeeze cast AM50 alloy 

at room temperature.

The decrease in UTS and elongation may be due to constituents, area fraction and 

distribution o f secondary phases in the alloys. As discussed in section 4.3.1 in AM50A 

alloy, the divorced secondary phase of M gnA ln uniformly distributes but 

discontinuously around grain boundaries. However, in the Ca-containing alloys, the 

calcium addition encourages the precipitation o f a different type of secondary phase 

AhCa instead of M gnAl^. The addition of 2 wt.% and more calcium leads to the 

formation of a continuous network of the secondary phase of AhCa. From Al-Ca and Mg- 

A1 phase diagrams [91] as shown in Figures 4.48 and 4.49, Al^Ca identified as an 

intermetallic compound but M gi7A li2 as an electron compound. Intermetallic compounds 

are an intermediate phase which has a narrow range o f composition, and is represented on 

the diagram as a vertical line and labelled with the chemical formula o f the compound 

[92]. They are generally formed between chemically dissimilar metals and are combined
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by following the rules of chemical valance. Since they generally have strong bonding 

(ionic or covalent), their properties are essentially nonmetallic. They usually show poor 

ductility and poor electrical conductivity. If the intermediate phase exists over a range of 

composition, it is usually an electron compound and is labelled with a Greek letter. Many 

electron compounds have properties resembling those of solid solutions, including a wide 

range of composition, relatively high ductility, and low hardness [92].

The mechanical properties of an alloy consisting of a ductile phase and a hard 

brittle phase often depend on how the brittle phase is distributed in the microstructure. If 

the brittle phase is present as a grain boundary envelope, the alloy is brittle. If the brittle 

phase is in the form of discontinuous particles at grain boundaries, the brittleness o f the 

alloy is reduced somewhat. When the brittle phase is present as a fine dispersion 

uniformly distributed throughout the softer matrix, a condition o f optimum strength and 

ductility is obtained [93].

Therefore the presence o f continuous network o f brittle secondary phase in nature 

in Mg-Al-Ca alloy is concluded to be responsible for their low UTS and elongation. The 

decreasing UTS and elongation with increasing calcium content are due to the increase in 

fraction area o f secondary phase and the change in the distribution o f A^Ca from a semi- 

continuous to continuous network around grain boundaries. The higher tensile properties 

(UTS and elongation) o f AM50A at room temperature can be attributed to fine dispersion 

o f P-Mgi7Ali2 in the soft a-Mg matrix.
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Figure 4.50 gives the true stress-strain curves of AMC alloys. To elucidate the 

strain-hardening behaviour of the alloys, a plot of strain-hardening rate (d8 /de) versus true 

plastic strain (s), is given in Figure 4.51. It can be seen from Figure 4.51 that as the 

calcium content rises, the strain hardening rate o f the alloys increases. It suggests that 

AMC alloys with high calcium content are able to strengthen themselves increasingly in 

response to increasing levels of plastic deformation prior to fracture. The high strain 

hardening rates for the alloys with high calcium contents may be attributed to smaller 

grain size and to a larger fraction area of secondary phases present in the alloy, which 

increases the resistance to slip in the magnesium matrix. The large volume fraction of 

secondary phases phase provides excessive barriers against dislocation slip during 

deformation and consequently increases strain hardening rate.

Despite the high fraction o f secondary phases in AM50A the strain rate hardening 

of AMC50A and AMC501 are almost the same. This may be explained by the nature of 

secondary phases in AMC50A and AMC501. Secondary phase particles act in two 

distinct ways to retard the motion of dislocations. The particles could be cut either by the 

dislocations or the particles resist cutting and the dislocations are forced to bypass them. 

When particles are small and/or soft, dislocations cut and deform the particles. When the 

dislocation can not cut the second phase and they are forced to bypass the particles [93], 

As discussed early, the secondary phase in AMC501, A^Ca, is identified as an 

intermetallic compound which should has a high hardness. But in AM50A, M gnAln, is 

identified as an electron compound which should has a low hardness. The low rate of 

strain hardening in AM50A suggests that dislocations may cut the secondary phases once 

the stress reaches a high enough value.
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Figure 4.50: True stress-strain curve for Mg-Al-Ca alloys at room temperature.
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4.3.2.2 Tensile properties at elevated temperature

Figure 4.52 shows the typical engineering stress-strain curves for AMC alloys at 

150 °C. Table 4.3 summarizes the UTS, YS and elongation o f AMC alloys squeeze cast 

under 30 MPa. The effect of calcium contents on tensile properties o f squeeze cast AMC 

alloy at 150 °C is shown in Figure 5.53.

The yield strength o f the Mg-Al-Ca alloys at 150 °C was lower than that at room 

temperature. The yield strength o f AMC501 is, only 80.3 MPa in comparison with 

86.0 MPa at room temperature. Also the UTS of the Mg-Al-Ca alloys decreases with 

increasing testing temperature. The UTS value of AMC501, 131.3 MPa, is lower than that 

(176.9 MPa) at room temperature. The strain data shows that the ductility of Mg-Al-Ca 

alloys improve significantly at high temperature. The elongation value o f AMC501 is 

18.5%, while at room temperature this value is only 5.0%. Changes in strength and 

ductility with temperature generally can be related to the effect o f temperature on slip 

[94], At high temperatures (between 0.3 and 0.5 homologous temperature), thermally 

activated processes such as multiple slip and cross slip allow the high local stresses to be 

relax, and strength is decreased. For sufficiently high temperatures in excess of half of the 

homologous temperature, diffusion processes become important, and mechanisms such as 

recovery, dislocation climb, recrystalisation, and grain growth can reduce the dislocation 

density, prevent pileups, and further reduce strength [94]. Also certain metals show 

additional slip systems with increased temperature. Aluminum deforms on the {110} 

plane at elevated temperature, while in magnesium the {1011} pyramidal plan plays an 

important role in deformation by slip above 225 °C [93],
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As the calcium content increases from 0% to 4%, the elongation at 150 °C 

decreases significantly. The elongation of the alloy with 4 wt.% Ca is 10.7% which 

decreases by 122%, over that of alloy with 0%Ca. However the yield strength and UTS 

show a slight increase with increasing Ca content. The slight increase in yield strength, 

may be attributed to reduction in grain size (according to Hall-Petch equation) and higher 

the fraction o f secondary phases as calcium contents increase.

The decrease in elongation and increase in UTS, as the calcium contents increase, 

may be due to constituents, area fraction and distribution o f secondary phases in the 

alloys.

As it was discussed in previous section the presence o f continuous network o f a 

secondary phase with a brittle nature in Mg-Al-Ca alloy should be responsible for their 

low elongations. The decreasing elongation with increasing calcium content should be 

due to the change in the distribution behaviour o f A^Ca from a semi-continuous to 

continuous network around grain boundaries and increase in their fraction area. The high 

UTS value of Mg-Al-Ca alloys compare with AM50A at 150 °C should be attributed to 

the presence o f thermally-stable phase, A^Ca, with a high melting temperature o f 1073 

°C, which can keep its strength to a high extent at this temperature. However, in AM50A, 

Mgi7AI12 (P-phase) with relatively low melting temperature o f 455 °C is metallurgically 

unstable and may soften considerably and lose its strength at 150 °C.

Figure 4.54 gives the representative true stress-strain curves o f AMC alloys at 

150 °C. To elucidate the strain-hardening behaviour o f the alloys, a plot of strain- 

hardening rate (dS/ds) versus true plastic strain (s), is given in Figure 4.55, which is 

derived from true strain-stresses curves. It can be seen from Figure 4.55 that, as the
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calcium contents rises, the strain hardening rate of the alloys increases. It means that 

AMC alloys with higher calcium contents are able spontaneously to strengthen 

themselves increasingly to large extent, in response to extensive plastic deformation prior 

to fracture. The higher strain hardening rate for the alloys with higher calcium contents 

may be attributed to larger percentage o f secondary phases present in the alloy, which 

increases the resistance to slip in the magnesium matrix. The larger volume fraction of 

secondary phases provides more barriers against dislocation slip during deformation and 

consequently increases strain hardening rate.

It can be observed that the strain hardening of Mg-Al-Ca alloys is much lower in 

150 °C than those at room temperature. It may be due to the effect o f temperature on slip 

during plastic deformation. At elevated temperature, thermally activated processes such 

as multiple slip and cross slip allow the high local stresses to be relax, which decreases 

strengths.. Meanwhile, diffusion processes become important, and mechanisms such as 

recovery, dislocation climb, recrystalisation can reduce dislocation density and therefore 

decrease the strain hardening rate [94].
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Figure 4.52: Engineering stress-strain curves for Mg-Al-Ca alloys at 150 °C.

Table 4.3 Effect o f calcium content on tensile properties at elevated temperature.

Calcium content UTS(MPa) Yield strength(MPa) Elongation (%)

0 % 124± 1 73±2 23.8±0.35

1 % 131.3±2.1 80.3±1.1 18.5±2.2

2 % 136.6±2.9 85±1 14.6±1.8

3% 142±2.6 87±1.5 12.7±1

4% 145±2.5 91±1.5 10.7±2.7
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4.3.3 Fracture behaviour

4.3.3.1 Fracture behaviour at room temperature

The tensile fractured surfaces of squeeze cast AM50A are shown in Figure 4.56. 

The observed fracture mode of the AM50A alloy is dimple rupture. Dimpled rupture is 

characterized by cup-like depressions that may be equiaxial, parabolic, or elliptical, 

depending on the stress state. Microvoids are initiated at secondary-phase particles, the 

growth of results in the fracture o f ligaments between the microvoids. A considerable 

amount o f energy is consumed in the process of the formation of microvoids, eventually 

leading to the creation o f cracks.

The SEM fractography reveals the fractured surfaces o f  squeeze cast AMC alloys 

with 1 wt.% and 4 wt.% Ca contents as shown in Figure 4.57 and 4.58, respectively. The 

results indicate that the fracture behaviour of AMC alloys is influenced by the levels of 

Ca addition. The fracture surface o f calcium AMC501 alloy shows somewhat ductile in
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nature, which is characterized by the presence of dimple features compared with samples 

containing 4 wt.% Ca. As the calcium contents increases, the fracture o f the alloys tends 

to transit from ductile to brittle.

In an effort to locate the crack origins o f squeeze cast AM50A and AMC504, the 

region of the fractured specimens underneath the fracture surface were examined with 

optical microscopy in a direction normal to tensile loading, which is shown in Figures 

4.59 and 4.60 . The failure in both the alloys should be mainly attributed to the 

intergraular fracture. The fracture starts with the initiation o f voids, most commonly at 

second phase particles. It has been pointed out [93] that the high stresses produced at the 

head o f a dislocation pile up behind of second phases or grain boundaries could produce 

fracture. The shear stress acting on the slip plane squeezes the dislocation together. At 

some critical value of stress the dislocations at the head o f the pile-up are pushed so 

closed together that they coalesce into an embryonic crack or cavity dislocation. From the 

appearance o f the fracture surface it is clear that the fracture mode o f AMC504 is 

intergranular brittle. The intergranular brittle fracture behaviour o f AMC504 should be 

attributed to precipitation o f brittle phase, A^Ca, with a high volume fraction, on grain 

boundaries.

Overall, the SEM observations on the fractured surfaces are in good agreement 

with the results o f tensile testing presented in the previous section.
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Figure 4.56: SEM fractographs of squeeze cast AM50A fractured at room temperature, 

a) low magnification and b) high magnification.
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Figure 4.57: SEM fractographs of squeeze cast AMC501 fractured at room temperature, 

a) low magnification and b) high magnification.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.58: SEM fractographs of squeeze cast AMC504 fractured at room temperature, 

a) low magnification and b) high magnification.
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Fractured
surface

Figure 4.59: Optical micrograph showing crack origin in AM50A fractured at room 

temperature.

Figure 4.60: Optical micrograph showing crack origin in AMC504 fractured at room 

temperature.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3.4.1 Fracture behaviour at 150 °C temperature

The fractography results for high temperature tensile tests for AM50A and 

AMC504 are presented in Figures 4.61 and 4.62. The observed fracture mode o f the 

AM50A and AMC504 samples at 150 °C is dimple rupture.

The analysis o f SEM fractography shows the fracture behavior o f squeeze cast 

AMC alloys is influenced by calcium contents. As the calcium content increases, the 

fracture o f alloy tends to be less ductile. The fractured surface o f AM50A shows 

evidently ductile in nature, which is characterized by the presence of massive deep 

dimples compare with AMC504 samples. The presence of brittle phase, AhCa, in the 

grain boundaries, should be responsible for the relatively less ductile behaviour of 

AMC504 even at 150 °C.

In an effort to locate the crack origins o f squeeze cast AM50A and AMC504, the 

region of the fractured specimens underneath the fracture surface were examined with 

optical microscopy in a direction normal to tensile loading, which is shown in Figures 

4.63 and 4.64. The failure in the both alloys should be considered intergraular fracture. 

The fracture starts with the initiation of voids, most commonly at second phase particles.

Overall, the SEM observations o f the fracture surfaces show a good agreement 

with the tensile behaviour of the alloy at elevated temperature as discussed in sections 

4.2.4.
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Figure 4.61: SEM fractographs o f squeeze cast AM50A fractured at 150 °C, 

a) low magnification and b) higher magnification.
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Figure 4.62: SEM fractographs of squeeze cast AMC504 fractured at 150 °C,

a) low magnification and b) higher magnification.
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Figure 4.63: Optical micrograph showing crack origin in AMC504 at 150 °C.

Fractured
surface

Figure 4.64: Optical micrograph showing crack origin in AM50A at 150 °C.
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4.3.5 Summary

The effect o f calcium contents was investigated on microstructure and tensile 

properties o f squeeze cast Mg-Al-Ca magnesium alloy at both room and elevated 

temperatures. The addition o f calcium refines the grain structure of Mg-Al-Ca magnesium 

alloys. The microstructure o f all the AMC alloys with different calcium contents consists 

o f the primary a-Mg, AhCa intermetallic, and Mn-Al intermetallic. But for the base alloy, 

AM50A, they are the primary a-Mg, M g^A l^ and Mn-Al intermetallic.

The results o f tensile testing indicate that, the room temperature tensile properties, 

UTS and elongation, decrease with an increase in calcium contents. But at 150 °C, as the 

calcium contents increase, their UTS increases but still the elongation decreases. This 

may be due to the presence of brittle phase, AhCa in the AMC alloys. The addition of 

calcium increases the strain hardening rate of Mg-Al-Ca alloys at both room and high 

temperature.

The observation o f SEM fractography indicates that the fracture mode o f the 

AMC alloys transit from ductile to brittle as their calcium contents increase, which is 

consistent with the tensile results.
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CHAPTER V 

CONCLUSIONS

The conclusions drawn from this study can be classified into two categories based 

on two research objectives:

I. Effect of pressure levels on tensile behaviour and microstructure of squeeze 

cast magnesium alloy AMC501:

1. The microstructure of the alloy contains of the primary a-Mg, Al2Ca intermetallic

and Mn-Al intermetallic;

2. Due to the high aspect ratio of the casting geometry, no significant microstructal 

change was observed as the applied pressures increase;

3. The results o f tensile testing indicate that the mechanical properties, UTS, YS, and

elongation, increase from 153.7, 80 MPa and 3.26% to 183.7, 90.5 and 5.42% 

with an increase in the applied pressures from 3 to 90 MPa. The material 

densification and porosity reduction should be responsible for the increase in 

tensile properties.

II. The effect of calcium contents was investigated on microstructure and 

tensile properties of squeeze cast Mg-AI-Ca magnesium alloys:

1. The addition o f calcium refines the grain structure o f Mg-Al-Ca magnesium 

alloys. But the grain refining effect diminishes as Ca content increases to and 

beyond 2  wt.%;

2. The microstructure o f all the AMC alloys with different calcium contents consists

of the primary a-Mg, Al2Ca intermetallic and Mn-Al intermetallic;
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3. As the calcium content increases, the fraction area o f secondary phases increases 

in the microstructure;

4. EDS mapping shows that, in alloy AMC502, the calcium and aluminum mostly 

precipitated on grain boundaries; however manganese precipitates in the matrix. 

Similarly in AM50A, the aluminum precipitates mostly on grain boundaries and 

the manganese precipitate in the matrix.

5. The results of tensile testing at room temperature indicate that the tensile 

properties, UTS and elongation, decrease from 206 MPa and 8.5% to 162 MPa 

and 2.0%, with an increase in calcium contents from 0 to 4 wt.%. This may be 

due to the presence of continuous network o f AUCa in the AMC alloys;

6 . unlike the room temperature results, the results o f tensile testing at 150 °C indicate

that UTS increases from 124 to 145 MPa as the calcium content increases from 0 

to 4 wt.%. This is due to presence of A^Ca which can keep its strength to a high 

extent at 150°C. But elongation decreases from 23.8% to 10.7% with an increase 

in calcium contents from 0 to 4 wt.%, this maybe attributed to presence of 

continuous network o f A^Ca in the AMC alloys;

7. As the calcium content increases from 0 to 4 wt.%, the yield strengths o f Mg-Al-

Ca alloys increase from 82.6 and 73 to 93.6 and 91 MPa both at room and high 

temperature, respectively. This is due to reduction in grain size and increase in 

fraction area o f secondary phases as calcium content increases.

8 . The addition o f calcium increases the strain hardening rate o f Mg-Al-Ca alloys at

both room and high temperatures. This could be attributed to increase in fraction 

area o f secondary phases as calcium content increases.
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CHAPTER VI 

FUTURE WORK

The future work for this study can be classified into two primary research areas:

I. Effect of process parameters and geometry of squeeze casting on tensile 

behaviour and microstructure of squeeze cast Mg-Al-Ca alloys:

1 . the effect o f die and pouring temperatures should be investigated; and

2 . the effect o f casting geometry such as aspect ratio and section thicknesses on 

tensile behaviour and microstructure of squeeze cast magnesium alloy AMC 

alloys should be studied.

II. The effect of calcium contents was investigated on microstructure and tensile

properties of squeeze cast Mg-Al-Ca magnesium alloy:

1. Tensile behaviour of squeeze cast Mg-Al-Ca magnesium alloy should be 

investigate at temperature over 150 °C;

2. TEM technique also needs to be employed to characterize microstructural features 

o f squeeze cast Mg-Al-Ca magnesium alloy in details; and

3. The effect o f heat treatment, in T4 and T6  conditions, on microstructure and 

tensile properties o f squeeze cast Mg-Al-Ca magnesium alloys should be 

investigated.
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APPENDIX I: Table of data

Table A p l.l Grain size of squeeze cast AMC501 under different pressure levels

No Grain size

3 1 0 30 60 90

1 40.96425 39.72525 38.47323 39.55371 37.98706

2 41.11863 39.58246 39.68099 39.26833 39.08299

3 38.77705 39.15407 39.55003 40.05314 38.9122

4 40.21664 37.72612 39.02618 39.91044 38.84103

5 39.34918 39.82521 38.34227 38.94014 38.53503

6 38.82128 38.89704 39.12804 40.03887 38.20056

7 41.43936 39.0684 39.21535 39.69641 39.49574

8 38.87835 39.56818 39.55003 39.63933 39.52421

9 40.76165 38.76853 38.53144 39.68214 39.16839

1 0 40.87579 39.45394 40.05932 38.96868 38.59907

1 1 41.21821 39.19691 40.10298 39.15418 39.35342

1 2 39.93414 40.12508 40.07388 39.23979 39.31072

13 39.86281 41.05325 39.36086 38.08399 39.19685

14 40.13389 39.33971 39.37541 38.16961 39.29648

15 40.07682 40.45351 38.1531 38.1268 39.42458

16 41.16114 39.6253 40.62683 38.26949 38.71294

17 39.90561 39.89661 39.75375 40.32425 39.52421

18 40.26229 39.71098 39.47727 38.59768 38.88373

Average 40.20564 39.50021 39.35388 39.20107 39.0012
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Table A pl.2  Density measurement of samples cast under different pressure levels

Sample

number
Wa Ww Wa-Ww density

Average

density

3-1 2.19445 0.95395 1.2405 1.769

1.76683-2 1.3101 0.5671 0.743 1.7632

3-3 1.756 0.763 0.993 1.7683

1 0 - 1 2.141 0.9385 1.2025 1.7804

1.77721 0 - 2 1.778 0.779 0.999 1.7797

10-3 1.628 0.709 0.919 1.7715

30-1 2.533 1.1155 1.4175 1.7869

1.789330-2 2.328 1.028 1.30 1.7907

30-3 1.7715 0.7835 0.988 1.7903

60-1 1.417 0.631 0.786 1.8027
1.7968

60-2 1.4715 0.6505 0.821 1.7923

60-3 1.168 0.5175 0.6505 1.7955

90-1 1.4155 0.6315 0.784 1.8054

1.808590-2 1.169 0.5225 0.6465 1.8081

90-3 0.743 0.333 0.41 1.8121
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Table A pl.3 Tensile properties of samples cast under different pressure levels

Pressure level Sample No. UTS (MPa) YS (MPa) e (%)

3

3-1 160 80 3.91

3-2 146.8 78 2.73

3-3 154.5 82 3.15

1 0

1 0 - 1 167.7 81 4.36

1 0 - 2 172.5 82 4.83

10-3 166.9 8 8 3.94

30

30-1 177.8 85 5.15

30-2 176.6 87 4.91

30-3 176.3 8 6 5

60

60-1 183 93 5.21

60-2 176.1 84 5.13

60-3 180.8 87 5.15

90

90-1 184.6 8 8 5.45

90-2 182.7 90 5.45

90-3 183.8 93 5.38
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Table A pl.4  Grain size of squeeze cast AMC alloys squeeze cast under 30 MPa

No Grain size

AM50A AMC501 AMC502 AMC503 AMC 5 04

1 46.94458 38.47323 34.73514 35.75676 35.64324

2 48.30662 39.68099 35.18919 35.52973 34.96216

3 48.76063 39.55003 34.73514 35.64324 35.41622

4 48.00395 39.02618 34.39459 35.18919 35.3027

5 48.15528 38.34227 34.96216 36.0973 36.21081

6 48.45796 39.12804 35.18919 35.64324 34.73514

7 48.76063 39.21535 34.84865 34.28108 35.18919

8 48.15528 39.55003 34.84865 36.32432 36.66486

9 47.85261 38.53144 35.75676 34.84865 35.98378

1 0 47.09592 40.05932 36.0973 34.84865 35.87027

1 1 47.24726 40.10298 36.32432 35.75676 35.41622

1 2 45.12853 40.07388 36.0973 34.62162 35.3027

13 46.18789 39.36086 36.21081 34.96216 36.55135

14 45.12853 39.37541 36.43784 34.62162 35.52973

15 46.6419 38.1531 36.55135 34.84865 35.98378

16 46.33923 40.62683 35.41622 35.41622 35.64324

17 46.03655 39.75375 36.21081 35.64324 36.21081

18 44.2205 39.47727 36.21081 35.41622 35.98378

Average 47.01 39.35 35.56 35.3 35.7
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Table Apl.5 Tensile properties AMC alloys at room temperature

Calcium level Sample No. UTS (MPa) YS (MPa)
Elongation(%)

0 %

0 %-l 205.5 81 8.38

0 % - 2 210.5 83 8.9

0%-3 2 0 2 84 8.17

1 %

1 % - 1 177.8 85 5.15

l % - 2 176.6 87 4.91

l%-3 176.3 8 6 5

2 %

2 %-l 170 84 2.91

2 % - 2 163.8 89 2.30

2%-3 170.6 90 2.58

3%

3%-l 167.4 8 8 2.28

3%-2 161.8 90 2

3%-3 166 95 2.38

4%
4%-l 163.9 94 2.14

4%-2 162.5 94 1.77

4%-3 159.5 93 2.09
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Table A pl.6 Tensile properties AMC alloys at 150 °C

Calcium level Sample No. UTS (MPa) YS (MPa) Elongation (%)

0 %

0 %-l 123 73 24.2

0 % - 2 124 71 23.7

0%-3 125 75 23.5

1 %

1 % - 1 133 81 17

l % - 2 129 81 2 1

1 %-3 132 79 17.5

2 %

2 %-l 135 85 12.5

2 % - 2 140 84 15.2

2%-3 135 8 6 16

3%

3%-l 139 85 13.2

3%-2 143 87 11.5

3%-3 144 8 8 13.4

4%

4%-l 143 90 7.6

4%-2 148 93 12.4

4%-3 144 91 1 2 . 2
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APPENDIX II: Tensile curves of squeeze cast Mg-AI-Ca alloys
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Figure Ap2.1: Tensile curves of squeeze cast AMC501 under applied pressure of 

3 MPa at room temperature.
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Figure Ap2.2: Tensile curves of squeeze cast AMC501 under applied pressure of 

10 MPa at room temperature.
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Figure Ap2.3: Tensile curves of squeeze cast AMC501 under applied pressure of 

30 MPa at room temperature.
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Figure Ap2.4: Tensile curves o f squeeze cast AMC501 under applied pressure of 

60 MPa at room temperature.
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Figure Ap2.5: Tensile curves of squeeze cast AMC501 under applied pressure of 

90 MPa at room temperature.
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Figure Ap2.6: Tensile curves of squeeze cast AM50A under applied pressure of 

30 MPa at room temperature.
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Figure Ap2.7: Tensile curves of squeeze cast AMC502 under applied pressure of 

30 MPa at room temperature.
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Figure Ap2.8: Tensile curves o f squeeze cast AMC503 under applied pressure of 

30 MPa at room temperature.
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Figure Ap2.9: Tensile curves of squeeze cast AMC504 under applied pressure of 

30 MPa at room temperature.
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Figure Ap2.10: Tensile curves of squeeze cast AM50A under applied pressure of 

30 MPa at 150 °C.
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Figure Ap2.11: Tensile curves of squeeze cast AMC501 under applied pressure of 

30 MPa at 150°C.
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Figure Ap2.12: Tensile curves of squeeze cast AMC502 under applied pressure of 

30 MPa at 150 °C.
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Figure Ap2.13: Tensile curves o f squeeze cast AMC503 under applied pressure of 

30 MPa at 150°C.
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Figure Ap2.14: Tensile curves of squeeze cast AMC504 under applied pressure of 

30 MPa at 150 °C.
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Appendix III: Fracture surfaces
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Figure Ap3.1: SEM fractographs of squeeze cast AMC501 under 3 MPa.

Figure Ap3.2: SEM fractographs of squeeze cast AMC501 under 90 MPa.
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Figure Ap3.3: SEM fractographs of squeeze cast AM50A under 30 MPa 

at room temperature.

Figure Ap3.4: SEM fractographs of squeeze cast AMC501 under 30 MPa 

at room temperature.
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Figure Ap3.5: SEM fractographs of squeeze cast AMC504 under 30 MPa

at room temperature.

Figure Ap3.6: SEM fractographs of squeeze cast AM50A under 30 MPa at 150 °C
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Figure Ap3.7: SEM fractographs of squeeze cast AMC504 under 30 MPa at 150 °C.
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