
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2006

Rational hierarchical planning and coordination in multi-agent Rational hierarchical planning and coordination in multi-agent

systems. systems.

Dong Liang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Liang, Dong, "Rational hierarchical planning and coordination in multi-agent systems." (2006). Electronic
Theses and Dissertations. 7069.
https://scholar.uwindsor.ca/etd/7069

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7069?utm_source=scholar.uwindsor.ca%2Fetd%2F7069&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RATIONAL HIERARCHICAL PLANNING AND COORDINATION IN MULTI
AGENT SYSTEMS

by

Dong Liang

A Thesis
Submitted to the Faculty of Graduate Studies and Research

through Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

©2006 Dong Liang

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-35930-3
Our file Notre reference
ISBN: 978-0-494-35930-3

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Multi-agent planning involves agents planning to achieve a set of common goals.

In dynamic environments, agents are required to make autonomous decisions at execution

time. Coordination is necessary to manage the interdependencies between activities

performed by all agents and to achieve intended goals. This thesis uses a framework that

incorporates notions from game theory and Hierarchical Task Network planning to

achieve a degree of coordination and ensure that the agents exhibit som e form of rational

behavior. The utility-based approach incorporates spatiotemporal factors in assessing the

utility of various desired goals, and in selecting the appropriate intentions.

To test the proposed approach, a multi-agent urban disaster simulation

environment is used where rescue agents cooperate to extinguish fires, save injured

agents, and clear blocked roads.

These tests show that in many cases, the proposed approach has outperformed

other approaches that rely on different heuristics in planning and coordination.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I would like to give my thanks to Dr. A. Tawfik, my supervisor, for giving me

such a great chance to participate in Robocup 2004 (Lisbon), and his guidance and

suggestions.

I am very grateful to the contributions of other ARK Team members: Zina

Ibrahim, Robert Price, Li Qin and Zhiwen Wu.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT... iii

ACKNOWLEDGEMENTS... iv

TABLE OF CONTENTS... v

LIST OF FIGURES.. vii

Chapter 1 Introduction to MAS... 1

1.1 MAS Motivations.. 1

1.2 What is an Agent?... 5

1.3 Environment.. 8

1.4 MAS Coordination... 9

1.5 Overview... 10

Chapter 2 Multi-agent Coordination .. 11

2.1 Game Theory .. 11

2.1.1 Cooperative and Non-Cooperative.. 12

2.1.2 Optimal Decision Making... 15

2.1.3 Iterated Elimination of Strictly Dominated Actions (IEADA)................ 19

2.1.4 Nash Equilibrium... 22

2.2 Agent Coordination.. 24

2.2.1 Formal Coordination.. 24

2.2.2 Agent Communication.. 26

2.2.3 Social Conventions.. 27

2.2.4 Role Play.. 29

2.2.5 Coordination Graphs.. 31

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Multi-agent Learning.. 35

2.3.1 Single-agent Reinforcement Learning............................ 37

2.3.2 Multi-agent Reinforcement Learning.. 39

2.4 Multi-agent Planning.. 41

2.4.1 Single-agent Planning (SA P)... 42

2.4.2 Multi-agent Planning (M AP)... 48

2.5 Conclusions of MAS Coordination.. 53

Chapter 3 Robocup Rescue Simulation System Introduction...................................... 55

3.1 RCRSS Introduction... 55

3.2 Structure of RCRSS... 56

3.3 Agents Development Tool-Yap API... 59

Chapter 4 Multi-agent Hierarchical Planning... 63

4.1 Hierarchical Planning.. 63

4.2 Spatiotemporal Utility... 72

Chapter 5 Robocup Rescue Implementation, Results.. 84

5.1 Communicative Actions.. 84

5.2 Implementation Results.. 85

Chapter 6 Conclusion and Future Work... 92

6.1 Recommendations for Future Research.. 94

Bibliography... 94

Vitae Auctoris.. 98

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 1-1 A Single Agent System Framework... 2

Figure 1-2 A General Multi-agent Framework... 3

Figure 1-3 A General Autonomous Agent 6... 6

Figure 1-4 Flowchart of Reasoning from Sensors to Effectors............................ 7

Figure 2-1 The Gunners Dilemma (Cooperative Gam e)...................................... 13

Figure 2-2 Match Penny (Competitive Game).. 14

Figure 2-3 Crossroad (Coordination Game)... 17

Figure 2-4 The Outcomes from the Bargaining A rea.. 17

Figure 2-5 A World with One Desired (+1) and Two Undesired (-1) States.... 18

Figure 2-6 IESDA Not Predict... 22

Figure 2-7 Bach or Stravinsky... 25

Figure 2-8 Coordination by Social Conventions.. 28

Figure 2-9 Role Assignment... 30

Figure 2-10 A Coordination “Graph for a 4-agent Problem................................... 32

Figure 2-11 Coordination Graph Algorithm.. 33

Figure 2-12 Block World Model.. 47

Figure 2-13 Planner Representation.. 48

Figure 3-1 Structure of the RCRSS.. 57

Figure 4-1 Plan Refinement... 67

Figure 4-2 Abstract Actions Upper Layer....................................... 68

Figure 4-3 Example of Mapping Abstract Actions to Concrete Actions............... 70

Vll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-1 RCRSS Viewer Shows the Kobe Map.............................. 86

Figure 5-2 The Scores of Kobe Map Round 1.. 87

Figure 5-3 The Safe Building Area of Kobe Map Round 1................................... 87

Figure 5-4 The Scores of Kobe Map Round 2 .. 88

Figure 5-5 The Safe Building Area of Kobe Map Round 2 88

Figure 5-6 The Scores of Kobe Map Round 3 .. 89

Figure 5-7 The Safe Building of Kobe Map Round 3 ... 89

Figure 5-8 The Scores of Foligno M ap .. 90

Figure 5-9 The Scores of Virtual City Ma 90... 90

vm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1 Introduction to MAS

The study of multi-agent systems (MAS) is a subfield of Artificial Intelligence that aims

at providing both principles for construction of complex systems involving multiple

agents, and mechanisms for coordinating the behaviour of independent agents. In MAS,

an agent has incomplete information or capabilities for solving a problem. Usually, there

is no centralized control, and computation in MAS is asynchronous (Sycara, 1998).

Since the 1980s, MAS have become more popular. MAS have been used in a variety of

application domains, ranging from industry to space, and military. Industrial applications

include manufacturing process control, air traffic control, multi-armed robots and mobile

robots, which were the initial motivators of MAS research. Web agents and grid

computing agents are examples of information management agents, composing queries or

providing services, and controlling workflows on computational grids. Simulation

environments examples are goal-directed agents for training or electronic games.

Managing crisis situations examples include the cleanup of toxic waste, nuclear power

plant decommissioning, fire fighting, search and rescue missions, security, and

surveillance.

1.1 MAS Motivations

While single-agent systems are more intuitive than multi-agent ones as single-agent

systems are more efficient than multi-agent systems when they deal with sequential tasks.

A single-agent communicates only for two reasons: to gather problem information or to

present results. Therefore, in single agent systems communication requirements are

simpler than in MAS. However, when dealing with complex tasks, multi-agent systems

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have more advantages over single-agent systems. Multi-agent systems are more efficient

due to the parallel execution of asynchronous computations; and more robust because the

functionality of the whole system does not rely on a single agent.

In a single-agent system as illustrated in Figure 1-1, there are three kinds of

constituents: the agent, the environment, and their interactions. The agent is an

independent entity with its goals, actions, and knowledge that is situated in the

environment. In a single-agent system, no other such entities are recognized by the

agent. Therefore, even if there are indeed other agents in the world, they are not modeled

as having goals, actions, and knowledge. They are just considered part of the

environment.

Environment Agent

Effectors

Sensors□ a
• Goals
• Actions
• Knowledge

Figure 1-1 A Single Agent System Framework

There are many different kinds of multi-agent systems, some have competing

objectives (e.g. self-interest agents), some have distributed control, some have

communication constraints (e.g. delay, privacy), and some have computation constraints

(e.g. processing power, concurrency). In many situations, there are different

heterogeneous agents (robots) or teams with different goals, capabilities and knowledge,

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that have to interact as part of a MAS. Despite their diversity, MAS share some common

properties.

The difference between Multi-agent systems and single-agent systems is that several

agents exist in the MAS model and each agent has a set o f goals and actions. As

illustrated in Figure 1-2, in the general multi-agent scenario, there may be direct

interactions among agents (communication). From an individual agent’s perspective, the

environment can be affected by other agents. All multi-agent systems can be viewed as

having dynamic environments and each agent is both part o f the environment and

modeled as a separate entity.

Environment Agent
Effectors • Goals

• Actions
• KnowledgeSensors

Effectors
Communication

Sensors Agent

• Goals
• Actions
• Knowledge

Figure 1-2 A General Multi-agent Framework

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The motivations for the increasing interest in MAS include (Sycara 1998):

(1) Resource constraints. Some problems are too large for a single-agent to handle

because of resource limitations. Moreover, the risk of having one centralized

system could lead to a performance bottleneck or critical failures.

(2) Business needs. MAS can interconnect and interoperate with multiple existing

legacy systems. To keep pace with business needs, legacy systems must

periodically be updated. It is too expensive to completely rewrite such software.

Incorporating legacy systems into an agent society can be done, for instance, by

wrapping an agent around the software to enable it to interoperate with other

systems. Therefore, in the short to medium term, the best way that such legacy

systems can remain useful is to incorporate them into a wider cooperating agent

community in which they can be exploited by other pieces of software.

(3) Society needs. MAS can provide solutions to problems that can naturally be

regarded as a society of autonomous interacting agents. For example, in meeting

scheduling, a scheduling agent that manages the calendar of its user can be

regarded as autonomous when it interacts with other similar agents that manage

calendars of different users. Such agents also can be customized to reflect the

preferences and constraints of their users. Other examples include air-traffic

control and multi-agent bargaining for buying and selling goods on the Internet.

(4) Distributed information sources. MAS can provide solutions that efficiently use

spatially distributed information sources. Examples of such domains include

sensor networks, seismic monitoring and information gathering from the internet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(5) Distributed expertise. MAS can provide solutions in situations where expertise

is distributed. Examples of such problems include concurrent engineering, health

care, and manufacturing.

1.2 What is an Agent?

As shown in Figure 1.2, agents can sense, perceive and affect the environment; and they

interact with other agents within their environment. Then, what is an agent in MAS? “An

agent is anything that can perceive its environment through sensors, and can act upon

that environment through effectors” (Russell and Norvig, 2003). An agent could be an

entity, such as a robot, with goals, actions, and domain knowledge, situated in an

environment. There are many different kinds of agents. This thesis deals mostly with

autonomous agents. An autonomous agent is an agent whose decision-making relies on

its perceptions as well as on prior knowledge (Vlassis, 2003). An autonomous agent is

able to rationally balance proactive and reactive behaviors. For example, humans, robots,

or software agents can be considered autonomous when they independently make their

own decisions. A reactive agent’s decision making does not rely on reasoning. It chooses

the actions based on some prior knowledge, the decision making goes from Percepts to

Events, and then Actions. A purely reactive agent has no representation of their

environment, no reasoning based on perceptions. Decision making is implemented in

some form of direct mapping from events to actions, in other words, it is a stimulus-

response pattern of behavior. Unlike a reactive agent, a reasoning agent has beliefs, goals,

and plans.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Agent

Environment
EventsSensors

Effectors Actions

Beliefs

f
GoaIs

Plans

Figure 1-3 A General Autonomous Agent

As illustrated in Figure 1-3, agents are situated in an environment. Actions and percepts

form the interface between the agent and its environment. In order to interact with

environment, an agent must recognize significant things when they happen. These

significant things are termed events. Beliefs represent the information generated from the

perception of the environment. Goals are what agent strives for. In general goals yield

autonomy and proactiveness, and also used to measure progress and detect errors. Plans

are defined as the way of achieving goals. Decisions are modeled in a range of ways

including explicit commitment. At the last step of the interaction with the environment,

the agent has to take some action(s).

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2,Update>

Interpret

mjmWmgmm
_ _ _ _ _ _ _ i

/
Schedule

4 Updated
Goal

: ? ,s| |-f

5 Choose
Plans

Select
Action

Figure 1-4 Flowchart of reasoning from sensors to effectors

In order to illustrate the agent and environment interaction more clearly, consider Figure

1-4 (Winikoff et al, 2001) as a flow chart:

1. Percepts by Sensors are interpreted to events.

2. Beliefs are updated from percepts and current belief.

3. Events and updated beliefs can yield reflexive actions.

4. Goals can be updated with current goals, beliefs and events.

5. Plans can be generated with goals, current state. This is decision making.

6. Plans yield actions.

7. Actions are scheduled and performed.

Usually a reactive agent goes from 1, 3 to 7. A reasoning agent goes through the steps

1, 2,4, 5, 6, and 7. A rational agent refers to an agent that always selects an action which

optimizes an appropriate performance measure. An optimal decision making problem for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an agent is how the agent can choose the best possible action each time, given what it

knows about the world around it. For example, a fire brigade agent must decide optimally

when it chooses a fire to extinguish among a set of raging fires, it also has to decide

optimally on how to use the current supply of water, when to refill, and which route to

take. The performance measure is typically defined by the designer of the agent and

reflects what the user expects from the agent with respect to the task at hand.

Homogeneous agents are designed in an identical way and have a priori the same

capabilities. In contrary, heterogeneous agents have different designs that may involve

different hardware, (for example, soccer robots based on different mechanical platforms)

or software (for example, software agents running different operating systems) or the

agents that are based on the same hardware and software but implement different

behaviors (for example, in Robocup Rescue, ambulance agents, fire brigades agents and

police force agents have different action sets). Agent heterogeneity in multi-agent

systems can affect all functional aspects of the agent from perception to decision making,

while in single-agent systems the issue is simply nonexistent.

From the communication perspective, agents can be divided into communicative

agents and non-communicative agents. From the goal perspective, agent interactions

can be either cooperative, meaning that the agents can share a common goal or selfish

(self-interest), means agents can pursue their own interests.

1.3 Environment

The environment that agents interact with is either static or dynamic. Static

environments (time invariant) are easier to handle and allow for a more rigorous

mathematical treatment. For example, chess games are static while dynamic

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

environments (time variant) change with time as in RoboCup Rescue. The presence of

multiple agents makes the environment appear dynamic. This can be a source of

difficulties, since the environment changes while the agent reasons about it.

A dynamic real-time environment is one that changes with time even without the

influence of agents. A real-time change in the environment is only relevant to a group of

agents. This group has to respond to the change by adjusting their goals, plans, actions, or

schedules.

The information that can be sensed by the agents in a dynamic MAS environment is

typically spatially distributed (appear at different locations) and temporal (arrive at

different times). This automatically makes the world state partially observable to each

agent. Therefore, agents have to use some spatiotemporal reasoning.

1.4 MAS coordination

A bunch of agents work in a dynamic environment, to achieve their goals, it is essential

for agents to decide on an appropriate course of actions, allocate their limited local

resources, and finally execute their actions. Sometimes, it is necessary for agents to work

together to solve a problem. If the agents work together, they can achieve their common

goals faster, and some goals are even impossible to achieve without collaboration.

However, in other circumstances, it is more productive for the agents to separate or work

in small teams. For example extinguishing a larger fire may require several fire brigades

to collaborate, while it is better for rescue agents looking for injured civilians to work

individually. The problem of managing interdependencies between agents arises

whenever coordination is necessary.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.5 Overview

The remaining chapters are organized as follows: Chapter 2 introduces game theory as it

applies to multi-agents, MAS coordination mechanisms, multi-agent learning and multi

agent planning (MAP). Chapter 3 presents the contribution to MAP based on hierarchical

planning and spatiotemporal utilities. Chapter 4 demonstrates the viability of the

proposed MAP approach using the RoboCup rescue simulation as a test bed and

evaluates these results. The last chapter presents some conclusions and future research.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 Multi-agent Coordination

Multi-agent coordination has been defined as “the act of managing interdependencies

between activities performed to achieve a goal” (Malone and Crowston, 1990). Solutions

to the coordination problem can be divided into three general classes: solutions based on

communications, others based on conventions, and a third class based on learning

(Boutlier, 1996). This Chapter starts from the basics of Game Theory, and then shows

what the Optimal Joint Action is. Different approaches used in MAS coordination are

also presented.

2.1 Game Theory

Game theory is the systematic study of rational players who interact with each other and

make choices based on utilities associated with different choices. In multi-agent systems,

game theory is used for formal study of conflicts and cooperation between agents as well

as in making that potentially affect the interests of the other agents. Game theory can be

applied wherever the actions of several agents are interdependent. While, this thesis treats

game theory as it applies to autonomous intelligent agents, the theory applies to other

situation where the agents may be individuals, groups, firms, or any combination of

these. The concepts of game theory provide a language to formulate, structure, analyze,

and understand strategic scenarios.

The notion of equilibrium points in n-player games as introduced by Nash (1950)

complements the mathematical foundations of game theory as defined by von Neumann

and Morgenstem (1944). Game theory has been used to model interactions in political

science, economics, and multi-agent coordination. Games can be roughly divided into

1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two broad areas: non-cooperative (or strategic) games and co-operative (or coalitional)

games. • :.

2.1.1 Cooperative and Non-Cooperative

Strategy is a complete sequence of actions for a player. A strategic game, also known as

a game in normal form, is a game in which players simultaneously choose their strategies.

The utility in game theory is a measure of the happiness or satisfaction to the goods and

services gained. The payoff in game theory represents the utility of individual players.

There are three constituents comprising a strategic game: a list of participants, a list of

strategies for each player, and a utility function (or a list o f payoffs) for each player in

each combination of strategies.

In a strategic game, each agent chooses a single action and then receives a payoff

that depends on the selected joint action. The resulting payoffs are presented in a table

with a cell for each strategy combination. The joint action is called the outcome of the

game. The important point to note is that, although the payoff functions of the agents are

common knowledge, an agent does not know in advance the action choices of the other

agents. The best an agent can do is to try to predict the actions of others. A solution to a

game is a prediction of the outcome of the game using the assumption that all agents are

rational and strategic. Pure strategy means the plan of action is completely determined. A

specific action is prescribed for each situation. While mixed strategy has a probability

distribution over the player’s pure strategies.

A classic example is that two gunners face the choice to flee from the advancing

enemy or stay and operate their gun. They are stationed at a strategically important, but

dangerous, pass. If they both stay, they can assure the enemy's advance will be halted.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, they each face a significant risk of injury. If they both flee, they will lose the

strategic pass, and their capture by the enemy is assured. If just one stays, that soldier

will die in battle, while the cowardly soldier escapes unharmed. If each soldier's goal is

to survive the attack, preferably unharmed, then each soldier has reason to flee. (Verbeek

et al, 2004)

Gunner 2

Stay Flee

Gunner 1 Stay

Flee

Figure 2-1 The Gunners Dilemma (Cooperative Game)

The above diagram in Figure 2-1 is called payoff matrix. This diagram shows that

the payoff a gunner expects depends on the choices made by both agents. Each gunner

has the choice between fleeing and staying. This choice is represented in the rows for

gunner 1 and the columns for Gunner 2. Each cell has a pair of payoff numbers, the

number on the left side is Gunner 1 ’s payoff, and the number on the right side is Gunner

2’s payoff. Games like the Gunner’s dilemma, where the agents may or may not collude

are called cooperative games. In strictly cooperative games, the payoff matrices are

identical.

Consider the case for Gunner 1. Suppose Gunner 2 decides to stay, Gunner l ’s best

choice is Flee and survive without getting hurt. In the formal representation of the matrix,

this choice secures a higher payoff (3 rather than 2). Suppose Gunner 2 decides to Flee.

Again, Gunner l ’s best choice is Flee and survive the battle, although there is a risk of

imprisonment for the duration of the war. If Gunner 1 were to stay, fight, and then die the

13

2,2 0,3

3,0 1,1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

payoff would be lower (0 rather than 1). Gunner 2 is in the same position as Gunner 1, no

matter what the other gunner does, the best choice is Fleeing. In short, each individual

gunner would be better off fleeing, regardless of what the other does. However, it

remains true that the joint payoff would be greater if both stood their ground.

Player 2

Head Tail

Player 1 Head

Tail

Figure 2-2 Match Penny (Competitive Game)

If the agents (players) are strictly competitive (play against each other), the game is

called non-cooperative. In non-cooperative game the payoffs are different for each

player. In Figure 2-2 player 1 wins if both agents choose the same coin face while player

2 wins if the two choices are different. Each cell of the payoff matrix corresponds to one

player wining and the other loosing. It is a zero-sum or strictly competitive game.

Car 2

Cross Stop

Car 1 Cross

Stop

Figure 2-3 Crossroad (Coordination Game)

Consider another coordination game example (Vlassis, 2003). The game in Figure2-3

represents two car drivers meeting at a crossroad; each agent wants to cross first and get a

14

- 1,-1 1,0

0 , ! 0,0

1,-1 - 1,1

- 1,1 1,-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

payoff 1. However, if they both cross they will crash and both get -1 for payoff. Here,

the agents have conflicting interests yet it is in the best interest o f both agent to avert an

infinite wait or a crash.

2.1.2 Optimal Decision Making

Contrary to single-agent systems, usually there is no central controlling agent that decides

what each agent must do at each time; control in a MAS is typically distributed. The

decision making of each agent lies to a large extent within the agent itself, this is called

distributed decision making. Distributed decision making is advantageous for multi

agent systems as there is no need for a central entity that collects information from all

agents and then decides what action each agent should take. Each agent is responsible for

its decisions. The main advantages of such a decentralized approach over a centralized

one are efficiency, and robustness. Efficiency is due to the asynchronous computation. As

the functionality of the whole system does not rely on a central agent, robustness is

improved (Vlassis, 2003).

Coordination ensures that the individual decisions of the agents result in good joint

decisions for the group. The world changes when an agent takes an action. A transition

model specifies how the world changes after an action is taken. There are two types of

transition models, one is based on a deterministic world model, and the other considers

the world as a stochastic system.

Goal is a desired state of the world. Planning is the process of searching through the

state space for an optimal path to the goal. Some games with no states are called matrix

games. When the world is deterministic, agent planning comes down to a graph search

problem where a variety of methods exist and the game is called Markov game. If each

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

agent has a deterministic action choice, the game is also called a pure strategy game.

When the world is stochastic, planning cannot be done by simple graph search because

transitions between states are nondeterministic. The agent must now take the uncertainty

of the transitions into account when planning. If an agent has non-deterministic action

choices, the game is called mixed strategy game.

In mixed strategy games, there is a probability distribution over the available

strategies of each individual. For example, the gunners could decide to flee with a

probability of, say, 1/3 and stay and fight with a probability o f 2/3. Whereas before the

numbers in the matrix (0, 1,2 and 3) only signified a ranking of the outcomes, here it is

assumed that the numbers provide some information to assess an expected payoff. For
r

example, the utility of “2” of the cooperative outcome means that the agent is indifferent

between this outcomes and a gamble which offers a ”0” payoff with probability 1/3 and

“3” with probability 2/3.

Let’s use the Gunners’ dilemma example, suppose that the gunners have a pair of

dice. Now they can realize cooperative distributions other than 2 each. If they agree to

throw both dice and if a total of 6 or less comes up Gunner 1 will flee (thus realizing a

utility value of 3). However, if the total of both dice is more than 6, Gunner 1 will stay

and fight the enemy (realizing his worst outcome of 0). The expected utility of this deal

for Gunner 1 is

3 (S/ i2) + 0 (?/]2) ~ 1.25,

while Gunner 2 can expect 1.75 from this deal. In this way the gunners can realize a

whole range of outcomes by varying the chances that improves on the non-cooperative

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outcome. These outcomes form the bargaining area (see Figure 2-4)(Verbeek et al.,

2°°4).

(0.3)

(2,2)

Utility #1

(1.1)

(0 ,0) (3,0)Utility # 2

Figure 2-4 The outcomes form the bargaining area

To formalize the notion of state preferences for a specific agent, utility of state s U(s)

is used for assigning to each state s a real number. If two states s and s ' are possible and

U(s) > U(s ’), then the agent prefers state s to state 5 and if U(s) = U(s ’), then there is no

difference between s to state s The utility of a state expresses the desirability of that

state for a specific agent. The larger the utility of the state, the better the state is for that

agent. For instance, in Figure 2-5, an agent would prefer state c3 than state b2 or c2.

1 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 —- — ----- -------------

3 +1

2 -1 -1

1 Start

a b c

Figure 2-5 A world with one desired (+1) and two undesired (-1) states

In non-cooperative games, a state may be desirable to a specific agent at a specific

time and undesirable to another agent. For example in soccer, scoring is rewarding to one

team of agents, and obviously unpleasant to the opponent agents.

In a stochastic world, each action could result in one of a set of possible outcomes.

Each possible outcome occurs with a certain probability and has an associated utility. To

make a decision, the agent has to consider the transition model P(st+i\st, at), where the

state st is the agent’s current state, au is an action, and sc+! is a possible future state after

the action. Let P(st+j\st, a j be the probability o f the transition and let U(s) be the utility

of state s for a specific agent. The expected utility (Russell and Norvig, 2003) is:

EU(a,\s,)= £ P (s (+ l \s(, a t)U (s t+l) (2-1)
S<+1

Utility-based decision making is based on the premise that the optimal action a* of

the agent should maximize expected utility. Therefore,

a" = arg max I P (s t+X\st , a t) U (s l+i) (2‘2)
a t s t + i

where possible states s,+J e S are the states the agent may transit to, given that the

current state is st and the agent takes action a*. To evaluate the optimal action a*, the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

agent has to multiply the utility of each possible resulting state st+i with the probability of

actually reaching that state, and sum up the resulting terms. Then the agent chooses the

action which gives the highest sum.

A policy specifies an action selection criterion such that by applying the policy, a

complete mapping from states to actions is obtained. Therefore, choosing the action in

each state that result in the largest possible utility value, (as specified in Equation 2.2)

constitutes a greedy policy. This policy ir maps states to actions in an optimal sense. By

choosing the optimal action a* every time, the agent expects a set of optimal utilities

U*(st) with respect to a given task. This is also called the optimal policy for the agent

(Vlassis, 2003).

The action value function for a state st and an action au also known as the Q-value

Q(st,at) measures the goodness of action at in state st for that agent. The maximum Q-

value for state st and action a, for a specific agent is: u’(s.)=a.r§ maxQ(st->at)
at

Consequently, an optimal policy 7r* maximizes the Q-values.

= arg max Q (s t , a t) (2-3)
at

The advantage of using Q-values is that they do not require a transition model (Vlassis,

2003). It is enough to have a ranking of the actions in each state.

2.1.3 Iterated elimination of strictly dominated actions (IEADA)

As mentioned in Subsection 2.1.1, the strategic form is the normal type of game studied

in game theory. A game in strategic form lists each player’s strategies, and the outcomes

that may result from each possible combination of choices. The outcome of combination

of actions by all players is represented by a separate payoff for each player. In another

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

words, choosing a strategy means making a decision about what to do at each decision

point in the game. ‘ ___

In a multi-agent context, it is important to associate an action with the agent taking

the action. We use the notation a,(i) to indicate that agent i takes action a at time t.

Furthermore, the notation at(-i) refers to the actions taken by agents other than agent i.

We say that a,(i) is strictly dominated by another action a \(i) of agent i if

m (a ,(-i), a \(i)) > Ui(at(-i), a,(i)) (2.4)

In equation 2.4, s, represents the state of the world including actions taken by other agents

at(-i). So, provided that the payoff that agent i receives in state st by taking action a is

always superior to that resulting for action a,.

Iterated elimination of strictly dominated actions (IESDA) is an intuitive technique

used in game theory, which removes strictly dominated actions iteratively for all agents,

until no more actions are strictly dominated. It is based on the following two

assumptions: 1.Every agent is rational and can predict the outcome using a mechanical

procedure; 2. A rational agent would never take a strictly dominated action (Vlassis

2003).

In the Gunners dilemma, as Gunner 1, can see by examining the payoff matrix that

payoffs in each cell of the bottom row are higher than the payoffs in each corresponding

cell of the top row. Therefore, it can never be rational for the Gunner to play top row

strategy (Stay), regardless of what the other does. Since the top row strategy will never be

played, we can simply delete the top row from the matrix. Now it is obvious that Agent 2

will flee, since his payoff from fleeing in the two cells that remain is higher than his

payoff from staying. So, once again, we can delete the one-cell column on the left from

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the game. We now have only one cell remaining (Flee, Flee). Since the reasoning that led

us to delete all other possible outcomes depends at each step only on the premise that

both players are economically rational, prefer higher payoffs to lower ones, there are

strong grounds for viewing joint fleeing as the solution to the game, or the outcome on

which its players must converge. The order in which strictly dominated rows and columns

are deleted doesn't matter. Had we begun by deleting the right-hand column and then

deleted the bottom row, we would have arrived at the same solution.

As an example, in the Gunners dilemma (Figure 2-1), Stay is a strictly dominated

action for Gunner 1\ no matter what Gunner 2 does, the action Flee always gives Gunner

1 a higher payoff than the action Stay. Similarly, Stay is also a strictly dominated action

for Gunner 2.

When we apply IESDA to the Gunners dilemma, the action Stay is strictly dominated

by the action Flee for both agents. Let us start from agent 1 by eliminating the action Stay

from his action set. Then the game reduces to a single-row payoff matrix where the action

of Gunner 1 is fixed (Flee) and Gunner 2 can choose between Stay and Flee. Since the

latter gives higher payoff to Gunner 2 (1 as opposed to 0 for Stay), Gunner 2 will prefer

Flee to Stay. Thus IESDA predicts that the outcome of the Gunners dilemma will be

(Flee, Flee).

The agents do not need to maintain beliefs about the other agents' strategies in order

to compute their optimal actions in the IESDA algorithm. The only thing that is required

is the common knowledge assumption that each agent is rational. Moreover, it can be

shown that the algorithm is insensitive to the speed and the elimination order; it will

always give the same results no matter how many actions are eliminated in each step and

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in which order. However, IESDA sometimes cannot make accurate predictions for the

outcome of a game', if IESDA cannot eliminate an action from the action table (Vlassis

2003). For example:

Player 2

C D

Player 1 A

B

Figure 2-6 IESDA not predict

In Figure 2-6, IESDA cannot eliminate any action from the table.

2.1.4 Nash Equilibrium

Strategy tells player what action to take at each point of game. Nash equilibrium is a

kind of optimal strategy for games involving two or more players, where no player has

anything to gain by changing only one's own strategy. The theorem can be stated as: In

the n-player normal form game G={Si,...S„; uj,...un}, if n is finite and <Sy is finite for

every i then there exists at least one Nash Equilibrium, possibly involving mixed

strategies (Nash 1950). In other word, if there is a set of strategies with the property that

no player can reward by changing his strategy while the other players keep their

strategies unchanged, then that set of strategies and the corresponding payoffs constitute

a Nash equilibrium. Equilibrium represents the mutual and joint action in a shared

environment. Every player shares the strategy described in the Equilibrium. Pure strategy

Nash equilibrium (NE) is the utility of the new joint action is bigger than or equivalent to

any other joint action (2.5).

ui(a*,(-i) , a *t(i)) > ui(a *t(-i), a ,(i)) (2.5)

22

2,2 1,2

1,2 1,1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Where a*t(i) is the optimal action agent i will take at time t, a*,(-i) is the optimal joint

action taken by the rest of agents, a t(i) is the any other action agent / can take at time t.

Ui(a *t(-i), a *t(i)) > ut(a *,(-i), a ,(i)) (2.6)

Equation 2.6 is called strict pure strategy NE. NE makes a joint action that no agent

can individually improve his payoff, and therefore no agent has any reason to change the

NE from an overall perspective. This is quite different to IESDA which is just an

algorithm that agent just does take denominated action.

There is an alternative definition of a NE, called best response function. This has been

defined as:

B i[a t(- i)] = {U i[a t(- i) ,a t(i)] > U i[a t(- i) ,a t(i)] (2.7)

Where at(i) eAt(i), at(i) ’ eA t(i), at(i) ’ is any other action a(i) can take other than at(i),

at time / . Bi[at(-i)] is the agent f s best response to joint action at(-i) taken by the rest

agents other than agent i at time t. Bi[at(-i)] can be a set containing many actions. Using

the definition of a best-response function, we can now formulate the Nash equilibrium as:

a joint action a* with the property that for every agent i holds (2.8)

a * eBi[at(-i)*J (2.8)

That is, at a NE, each agent's action is an optimal response to the other agents'

actions. In the Gunner's dilemma, for instance, given that B1 (Flee) - Flee, Bl(Stay) =

Flee,B2(Flee) = Flee and B2(Stay) = Flee, we conclude that (Flee, Flee) is a NE.

Both (2.8) and (2.6) algorithms enumerate all possible joint actions, and then verify

which ones meet the condition. The two equilibriums 2.8 and 2.6 of a NE are equivalent.

The complexity of both of the algorithms is exponential to the number of agents (Vlassis

2003).

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The number of Nash equilibria in a strategic game could be a variant. For example,

(Flee, Flee) is the only NE in the Gunner's dilemma. We can also easily find that the

zero-sum game in Figure 2-2 does not have a NE, while the coordination game in

Figure2-3 has two Nash equilibria (Cross, Stop) and (Stop, Cross).

NE is a stronger solution concept than IESDA because it produces more accurate

predictions o f a game. If use IESDA algorithm eliminates all but a single joint action at,

then at is the only NE of the game. A joint action at is Pareto optimal, if there is no other

joint action a / for which Ui(at ’) > ui(at) for all agents. Pareto Optimal assumes that each

agent i will choose his action deterministically from his action set A,-. However, this is not

always true, since sometimes an agent i may choose actions a,(i) with some probability

distribution Pi[at(i)] which can be different for each agent.

2.2 Agent Coordination

Coordination is defined by (Vlassis 2003) as “the process in which a group of agents

choose a single Pareto optimal Nash equilibrium in a strategic game”, which manages the

activities performed by agents to achieve a goal, and makes the agents capable of taking

their own decisions in a distributed manner. A typical situation where coordination is

needed is among cooperative agents that form a team, and through this team they make

joint plans and pursue common goals. In other words, agents do not obstruct each other

when taking coordinated actions.

2.2.1 Formal Coordination

A formal way to solve a coordination problem is to first model it as a strategic game and

solve it according to some coordination mechanism. Then use Nash equilibrium serve as

coordination, mechanisms. Nash equilibrium is defined in terms of the conditions that

hold at the equilibrium point as the payoff that dominates all other equilibria, and ignores

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the issue of how the agents can actually reach this point. Therefore, coordination asks

how the agents can actually agree on a single equilibrium in a strategic game that

involves more than one such equilibrium. Theoretically, we can reduce a coordination

problem to the problem of equilibrium selection in a strategic game using game theory.

In the example in Fig 2.3, two cars meet at a crossroad and the drivers have to decide

what action to take. If they both cross they will crash, and it is not in their interest to stop.

Only one driver is allowed to cross and the other driver must stop. Who is going to cross

then? This is an example of a coordination game that involves two agents and two

possible solutions: (Cross, Stop) and (Stop, Cross). As we known, these two joint actions

are Nash equilibriums of the game and they are both Pareto optimal.

In the case of fully cooperative agents, all n agents in the team share the same utility

function uj(a) = ... = un(a) = u(a) in the corresponding coordination game.

For example, a coordination game is between two cooperative agents. Two agents

wish to go out together to a concert. Each agent has a choice between two types of

concerts either Bach or Stravinsky. (Figure 2-7)

Bach

Stravinsky

Each agent has no prior information what concert the other agent will choose, and the

agents choose independently and simultaneously. Choosing the same concert gives them

payoff 1, otherwise they get payoff 0. In this game the agents have to coordinate their

25

Bach Stravinsky

1,1 0,0

0,0 1,1

Figure 2-7 Bach or Stravinsky

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

actions in order to maximize their payoff. As in the previous example, the two joint

actions where the'agents choose the same musician are two Pareto optimal Nash

equilibriums of the coordination game.

2.2.2 Agent Communication

Communication can be used in coordination among cooperative agents or negotiation

among self-interested agents. Communication, in the sense of making something known

or to exchange information with somebody, is a linguistic activity. Communication

languages involve syntax, semantics, and must be earned out between parties that have

the ability to transmit ideas. Communication between computerized agents should be

carefully distinguished from communication in the human sense and restricted to using

signals with fixed interpretation.

Computerized agents’ communication can be viewed as an action that changes the

knowledge state in a MAS. To better achieve the goals of the agents or of the system in

which the agents exist, to maintain global coherence without explicit global control, to

determine common goals and common tasks, to avoid conflicts, and to pool knowledge

and evidence.

Communication methods could be active, passive or both. In other words, an agent

could act as a master, a slave or a peer. Communication in a MAS is a two-way process.

Message route could be binary (agent to agent), multicast (one agent to multiple agents)

and broadcast (one agent to every agent). All agents are both senders and receivers of

messages. There are two message types in communication: assertions and queries. All

agents accept information by means of assertions. A passive agent accepts queries and

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sends replies. An active agent issues queries and makes assertions. A peer agent can do

all the above.

Communication is also closely related to network protocols which are used for the

exchange of information safely and timely. Protocols define the language the agents must

speak in order to understand each other and enable agents to have communication. For

example, Agent A1 proposes an action to agent A2, agent A2 evaluates the proposal and

sends back to agent A l\ acceptance, counterproposal, or rejection. Communication

protocols enable agents to exchange and understand messages including: propose, accept,

reject, retract, disagree, and counter-propose.

There are three aspects to the formal study of communication: Syntax which means.

how the symbols of communipation are structured, Semantics which means what the

symbols denote, and Pragmatics which means how the symbols are interpreted. The

structure of a protocol includes: Sender, receiver(s), language, encoding and decoding

functions.

2.2.3 Social conventions

Social conventions achieve coordination in a large class of systems and are easy to

implement. The conventions assume a unique ordering scheme of joint actions that is

common knowledge among agents. As the agent designer, we can specify some rules for

agents that will instruct the agents how to choose a single equilibrium in any game. A

social convention (or social law) (Boutilier 1996) is a set of rules that places constraints

on the possible action choices of agents. It can be regarded as a rule that dictates how the

agents should choose their actions in a coordination game in order to reach an

equilibrium.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In a particular game, each agent first computes all equilibriums of the game, and then

selects the first equilibrium according to this ordering scheme. For instance, a

lexicographic ordering scheme can be used. In the coordination game of Figure 2-6, for

example, we can order the agents lexicographically by A1 >- A2 (>- meaning that agent 1

has ‘priority’ over agent 2), or the actions can be ordered by a convention Bach y

Stravinsky. The first equilibrium in the resulting ordering of joint actions is (Bach, Bach).

Social conventions algorithm can be presented in Figure 2-8. Every agent can first

computer all the equilibria in the game, and then choose the action with the biggest

equilibrium.

For each agent /

{
Compute all the equilibriums in the game.
Sort these equilibriums based on a unique ordering scheme.
Choose action a*(i) with biggest equilibrium a* = [a*(-i), a*(i)] in the
ordered list.

}

Figure 2-8 Coordination by social conventions

There are some more elaborate ordering schemes for coordination, which can

dramatically improve the speed in some complex world states. Consider one easy

example, the traffic game of Figure 2-3. If traffic lights are available, the driver who

sees the red light must stop, the driver who sees the green light will go. If there is no

traffic light, but the state contains the relative orientation of the cars in the physical

environment and the perception of the agents fully reveals the state, then a simple

convention is first come first go, straight going driver has priority over left turn driver,

the driver coming from the left gives right of way to the driver coming from the right.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ordering the actions by Cross >- Stop, then coordinate by these social conventions

implies that the driver from the right will cross the road first.

2.2.4 Role Play

Agents compute all equilibriums in a game, and then choose an action. However,

computing equilibriums can be expensive when the action sets of the agents are large

(Vlassis 2003), therefore one would like to reduce the size of the action sets first. Such a

reduction can have computational advantages, and more importantly, it can simplify the

equilibrium selection problem.

Assigning roles to the agents can reduce the action sets of the agents (Stone and

Veloso, 1999) (Nair et al., 2003). Formally, a role can be regarded as a masking operator

on the action set of an agent. For example in soccer game, if a player plays offender and

possesses the ball, then he has action passing the ball, shooting the ball or making a

header. If an agent is assigned a role at a particular state, then some of the agent's actions

are deactivated at this state. Again in soccer games, an agent that is currently in the role

of defender cannot attempt to do the same things as offender. The actions he can make

are tackling the opponents, stealing the ball, etc. In this way, roles can facilitate the

coordination game by reducing the action set and making it easier to find equilibriums.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For each agent

{

}

/ = D -
For each role j - 1,... ,m
{ -

For each agent i - 1 , ... , n with / 0 1
{

Compute the potential role value rj of agent / for role j.
}
Assign role j to agent /'* = arg maxifrj}.
Add/* to/.

}

Figure 2-9 Role Assignment

The algorithm shown Figure 2-9 (Vlassis 2003) assigns a role j to agent i. The agent

can compute the role equilibrium, and select the role, then agent i is eliminated from the

role assignment process. A new role is assigned to another agent, and so on so forth, until

all agents have been assigned roles. After all roles have been assigned, the original

coordination game is reduced to a subgame that can be further solved using coordination

algorithms like, social conventions. For example, if Agent 2 is assigned a role that forbids

selecting the action Bach, then Agent 1, knowing the role of Agent 2, can safely choose

Stravinsky resulting in coordination. Then there is only one equilibrium left in the

subgame formed after removing the action Bach from the action set of Agent 2.

The algorithm (Figure 2-9) time complexity is polynomial in the number of agents

and roles (Vlassis 2003). Furthermore, its precondition is full observability of the state

providing that each agent can compute the potential role of other agents. After all roles

have been assigned to agents, the original coordination game is reduced to a subgame that

can be further solved using coordination by social conventions.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Moreover, the role assignment algorithm can be applied to the game where the state is

continuous (Vlassis12003). If in this case, the algorithm requires a function that computes

potential roles, and such a function can have a continuous state space as domain. For

example, suppose that in robot soccer we can assign a particular role j (e.g., attacker) to

the robot that is closer to the ball than any other teammate.

2.2.5 Coordination graphs

Using coordination graphs (Guestrin et al. 2002) is another method which focuses on

reducing the number of agents involved in a coordination game.

The basic idea of coordination graph is to decompose a coordination game into

several smaller subgames that are easier to solve. In this framework, a subgame involves

a small number of agents, and we can use simpler algorithms to solve it. In this

decomposition framework, we assume that the global payoff function u(at) can be written

as a linear combination of k local payoff functions f j , each involving only few agents .

For example, suppose that there are n = 4 agents and k - 4 local payoff functions, each

involving two agents (in 2.9):

u(at) = fi[at(Al), at(A2)J + f2[at(Al), a,(A3)] + f3[at(A3), a,(A4)J +f4[at(A2), at(A4)] (2.9)

In this equation, for instance, f 2[at(Al), at(A3)] involves only agents 1 and 3, with their

joint action at. This decomposition of coordination can be graphically represented by a

graph, where each node represents an agent and each edge corresponds to a local payoff

function. The decomposition (2.9) can be represented by the graph of Figure 2-10.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

Figure 2-10 A coordination graph for a 4-agent problem

Coordination graphs use this kind of linear decomposition, and can apply utility

maximization procedure (as shown in Section 2.1.4 Pareto Optimal Nash Equilibrium)

iteratively in this way agents are eliminated one after the other. For example, to eliminate

agent 1 in equation 2.9, we maximize all local payoff functions that involve agent A l (i.e.

f l and f2.) After the inner maximum of u(at) over the actions of agent A l equation 2.9

becomes:

max u(at)= max {f3[at(A3),at(A4)]+f4[a,(A2),at(A4)]}+
a a { A 2) ,a (A 3) ,a (A 4)

max { f <[at(Al),at(A2)] +f2[at(Al),at(A3)]} (2.10)
a (A l)

In this equation agent A l choose an action that maximizes fi+ f2, no matter what the

combination actions of agents A2, A3 and A4 will be. This equation essentially involves

computing the best response function Bl[a,(A2), at(A3), at(A4)] of agent A l in the

subgame formed by agents A l, A2, A3 and A4, and the sum of payoffs f i + f 2. The

function Bl[at(A2), at(A3), at(A4)J can be thought of as a conditional strategy for agent 1,

given the actions of agents A2, A3 and A4.

If we define a new payoff function f 5[at(A2), at(A3)] = m axa(Ai) {fi[at(Al), at(A2')] +

f 2[at(Al), a,(A3)]} that is independent of at(Al). Then, ag en ts / has been eliminated. The

equation 2.10 becomes:

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

maxu(a)= max {f3[at(A3),a,(A4)] +f4[at(A2),a,(A4)]}+ f 5[a,(A2),at(A3)]} (2.11)
a a(A2),a (A2),a(A4)

Next we can eliminate agent A2, using the same technique as we did with agent AL In

(2.11), f4 and f5 involves at2, and maximization of f 4, f$ over at(A2) gives the best-

response function B2[a, (A2),at(A4)] of agent A2 which is a function of at(A3), at(A4). For

this, we can define a new payoff function f 6[at(A3),at(A4)], and agent A2 is eliminated.

Now we can write:

max u(at)= max { f3[a,(A3),a,(A4)]}+f6[at(A3),at(A4)] (2.12)
o4 a(A 3),a(A4)

Then, agent A3 can simply choose the action at(A3) that maximizes max u(at). Agent

A3 is eliminated, resulting in B3[at(A4)J and a new payoff function f 7[at(A4)J. Finally,

maxc u(at) = maxa4 f 7[at(A4)], and since all other agents have been eliminated, agent A4

can simply choose an action a*(A4) that maximizesf 7.The result at this point is a Nash

Equilibrium, which is the desired maximum number over at(Al), at(A2), a,(A3), and

at(A4).

For each agent

F = [f i , . . . , fk].
For each agent i - 1 , 2 , . . . , n
{

Find all fj[at(-i), at,(i)] e F th a t invo lve at(i)
Compute Bi[at (-i)] = arg m axat Sy fj[at(-j), a t(j)]
Compute fk+i[at(-i)] = m axat Ey fj[at(-i),at (i)].
Remove all fj[a(-)i, at(i)] from F and add fk+j(at(-i)) in F.

}
For each agent / = n, n-1,... ,1
{

Choose a*(i) e B i[a*(-i)] based on a fixed ordering of actions.
}

Figure 2-11 Coordination graph algorithm

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2-11 (Vlassis 2003) is the summarization of coordination graph algorithm.

Where -i in fj[at(-i), at (i)J refers to all agents other than agent i that are involved in fj, and

it does not necessarily include all n-1 agents. Similarly, in the best-response functions

Bi[at(-i)] the action set at(i) may involve less than n-1 agents. In this algorithm, an

optimal action is computed for the last eliminated agent, and conditional strategies are

computed for the other agents. Therefore, in the above example, plugging a *4 into

B3[at(A4)J gives the optimal action a*(A3) of agent 3. Similarly, we get a*(2) from

4c 4c

B2[at(A3)] and at*(l) from Bl[at (A2) , at (A3)], and thus we have computed the joint

optimal action at* = [a* (Al) , a* (A2), a* (A3), a* (A4)]. Note that one agent may have

more than one best-response actions, in which case the first action can be chosen

according to an a priori ordering of the actions of each agent that must be common

knowledge.

It is assumed that all local payoff functions and an a priori ordering of the action sets

of the agents are common knowledge among agents. The latter assumption is needed

because each agent will finally compute the same joint action. This algorithm runs

identically for each agent in parallel. The main advantage of this algorithm compared to

social conventions is that we need to compute best-response functions in subgames

involving only few agents, while computing all equilibria in social conventions requires
\

computing best-response functions in the complete game which involves all n agents.

When n is large, the computational complexity of coordination graph would be

significantly less than that of social conventions.

By using this algorithm, we can choose a different agent elimination order, the

resulting joint action should always be the same. However, the total runtime of the

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm will be different. In other words, different agent elimination orders produce

different intermediate procedures and subgames. However, the time complexity of

computing the coordination graph remains NP-complete (Vlassis 2003).

There are some other heuristics for multi-agent coordination. The common things

among all heuristic algorithms are that they reduce the size of agent action set, or divide

the game into a set of smaller subgames which could be more efficient to implement, so

the agents can coordinate their actions with limited communication and each agent runs

an identical algorithm.

2.3 Multi-agent Learning

Multi-agent learning, another popular technique for Multi-agent coordination, helps

agents to identify environment information which map directly to coordinated actions.

Machine Learning is concerned with computer acquiring new knowledge or updating

existing knowledge. Multi-agent Learning (MAL) algorithms are based on Single-agent

Learning (SAL) algorithms. The important distinction between MAL and SAL is that an

agent in MAS can either learn knowledge from other agents or from the MAS

environment.

Since MAL is based on SAL, MAL algorithms could extend SAL algorithms. There

are several different approaches in MAL; some popular ones are Multi-agent neural

networks, genetic algorithm (GA) and Multi-agent reinforcement learning (MARL).

The idea of neural networks (Hebb, 1949) has its origins in the biological neurons

forming the human nervous system. An artificial neural network consists of a set of

processing elements organized in layers and joined together by connections known as the

synaptic junctions. Each connection has a weight associated with it and the neuron fire if

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the weighted sum of it inputs exceeds a set threshold. Current NN models work well in

classification, function approximation and pattern recognition. As regard to application of

neural network in Multi-Agent systems, agents learn from the input generated from the

environment and other agents, or learn from observing other agents. There is no central

controller or direct interaction among them. Multi-agent NN applications include voice

recognition systems, image recognition systems, industrial robotics, medical imaging,

data mining, and aerospace.

The idea of genetic algorithms (GAs) comes from biology also (Holland 1975).

People want programs that can evolve like biological entities using combination or

mutation of chromosomes to breed new programs. GAs are a good search technique for

optimization problems. They work well in many application domains, which have natural

and rational encoding formats and fitness functions. GAs could be applicable to multi

agent coordination if the fitness function could be defined in multi-agent settings, thus,

GA is a powerful method for artificial life and swarm systems.

MARL is an extension of single-agent reinforcement learning (RL) (Kaelbling et al.,

1996). First RL researchers have studied animal behavior under the influence of external

stimuli since 1980’s. Therefore, reinforcement learning also has some relationship to

biology. Reinforcement learning (RL) is a kind of machine learning technique which

focuses on finding a policy that maximizes an agent’s reward by interacting with the

environment. RL emphasis is on how agents can improve their performance in a given

task by perception and trial-and-error. The technique of single-agent RL is quite mature.

However, the field of MARL is less mature. The main reason is that single-agent RL

theoretical results cannot be directly applied in multi-agent systems. MARL can be

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implemented in different ways. Some of MARL implementations use state action pairs

representation, and some of MARL extend the scope of environment, so that an agent

considers other agents’ behavior as part of its environment. Some examples like (Hu and

Wellman, 2003) present well-understood and practical results. Because of the popularity

of MARL, additional information about is presented in the next subsection.

2.3.1 Single-agent reinforcement Learning

The basic reinforcement learning model formally has three parts: a set of environment

states S; a set of actions A; and a set of scalar rewards. There are two basic reinforcement

learning algorithms: value iteration and Q-leaming.

A Markov Decision Process (MDP) uses Markov chains to find the transition matrix

based on calculated action-reward pairs available to the agent at each time step. The

reward that an agent receives is based on the action and the state. The goal of

reinforcement learning is to find a function or a policy, which specifies which action to

take in each state, so as to maximize the reward function. At each system time t, the agent

perceives its state st^ S and the set of possible actions A(st). It chooses an action a &A(st)

and reaches the new state .sv+i and gets a reward R(st+ \) as a result. Based on many such

attempts, the intelligent agent learns how to maximize the rewards by developing a policy

j :S~* A. The reward the agent receives is also called reinforcement from the environment.

The task of the agent to maximize its total discounted future reward and can be expressed

as

R(st)+yR(st+i)+ l?R(st+2) +- ■ ■ 'f~,R(st+k) ,

where 0 is future reward discounting, t is current time, k is the time starting at t.

If this expression is finite, then MDP has a terminal state. If this expression is infinite,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then MDP has no terminal states. The optimal utility is obtained by a policy that

maximizes the expected reward.

U*(s,) = m axE
t+k

Y , r x~'R(sx) \ n , sx =s, (2.13)

Where R is reward function, y is future reward discounting factor, E() is the

expectation operator which calculate the average value of rewards and stochastic

transition rewards, x is the policy, x is a variable of time, t is the current time, k is the

time from the t, usually is the end time. An optimal policy j*(st) maximizes the utility of

the above expression. From this discounted future reward function, we know that the sum

will always be finite even with infinite sequences, and the sum will depend on the

particular policy of the agent, because different policies result in different paths in the

state space (Vlassis 2003).

We can combine (2.13) with (2.3), and get a recursive optimal utility. This is also

called the Bellman equation:

U * (st) = R(st) + y max (2.14)

The solutions of this set of equations define the optimal utility of each state. Because

in 2.1.2, we can use Q*(st,at) measure the goodness of action a in state s. We can use a

recursive Q-value expression to replace the action values in 2.14:

Q*(sn al) = R(sl) + y Y , P(s l+l\s„al)mzxQ*(s l+l,aM) (2.15)

Where Q*(st, at) is optimal action value which is the maximum discounted future

reward that the agent can receive after taking action a, in state st. There can be many

policies in a given task, but they all share a unique U*(st) and Q*(st,ai).

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

What we have seen above is value iteration. The major disadvantages of value

iteration is that it assumes that agents know the transition model P(st+i\st, a j. However,

in many applications the transition model is unavailable and unobservable. We would

like to have a Q-Leaming method that does not require a transition model.

With Q-leaming, the agent starts with random estimates Q(st, a j for each state-action

pair, and then begins exploring the environment by interacting with the environment

repeatedly and tries to estimate the optimal Q*(st, at) by trial-and-error. This is a model-

free method. During exploration, the agent forms tuples in the form (st, R, au st+]) where

st is the current state, R is the reward function, at is an action taken in state st, and st+j is

the resulting state after executing at. Finally, the agent gets its final action value

estimation as

Q*(st,at) = (\ -X)Q(s t,at) + y[R + y m 3x Q * (s M,aM)] (2.16)

2.3.2 Multi-agent reinforcement learning

Applying Single-agent reinforcement learning to multi-agent systems raises is much

complicated than Single-agent Reinforcement Learning. Because of the communication

reason, they may not observe each other, so they may not model each other correctly.

Because of the spatial-temporal factors, the agents may not receive the same rewards, and

the agents may not know the payoffs of others.

For simplicity, in cooperative multi-agent systems, we can make several assumptions:

Agents can receive the same reward in each time step. Each state is fully observable to all

agents. There is a predefined payoffs and joint action table of the agents. Here, we only

focus on cooperative systems. The true payoff of a joint action is assumed to be the same

for all agents, reflecting average discounted future reward if this action is taken from the

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

particular state. The world states has a stochastic transition modelp(st+i\st,a(), where st is

the current state, ar is the joint action of the agents, and st+i is the resulting state after at is

executed. The transition model is unknown to the agents. Like in single-agent

Reinforcement Learning, the task of the multi agents is to compute an optimal joint

policy that maximizes discounted future reward in the specific environment p(st+1\st,at).

The payoffs are also unknown to agents, and this is what he must learn. The main task in

multi-agent Reinforcement Learning is to guarantee that the individual optimal policies

7T*(Sf) are coordinated, they indeed define an optimal joint policy ir*(sf) (Vlassis 2003).

There are mainly two different approaches in Multi-agent reinforcement learning, one

is Independently Learning and the other is Joint Action Learning.

Independently Learning is the simplest case of multi-agent reinforcement learning.

The difficult part of multi-agent learning is that knowledge of p(st+i\st, a,) does not imply

knowledge of p(st+i\st, a#), where a,- is the action of agent i. Therefore, it is reasonable for

an agent to use Q-leaming to compute its optimal policy it*(sj, each agent can treat the

other agents as part of the environment, and does not attempt to predict their actions. The

world changes when agent i takes action a,- in state s. What the world will be changed

depends on the actions of the other agents in st, and since agent i does not model the other

agents there is no way for him to computep[st+i\st, at(i)]. However, even Q-leaming may

not result in coordinated individual policies because its convergence relies on an

underlying transition model that is stationary.

Joint Action Learner (JAL) was introduced by (Claus and Boutilier 1998). JAL has

better results than independent learning, since the agents attempt to model each other,

predict other agents’ actions in JAL. Each agent maintains an action value function Q(i)(st,

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a) for all state and joint action pairs, which reflects the value of joint action a in state s as

modeled by the particular agent. Every time a joint action a is taken in state s and a new

state s ’ is observed, each agent i updates his Q(i)(st, a). In JAL, each agent has to observe

the taken joint actions of whole system. JAL may make the convergence to a Nash

equilibrium in multi-agent coordination. However, this equilibrium is not guaranteed be

optimal also. The same problem exists in other equilibrium-selection approaches of the

game theory.

2.4 Multi-agent Planning

The concept of multi-agent planning (MAP) covers the methodologies and formalizations

involved in finding a sequence of actions that can transform some initial state into some

state where a given goal is satisfied in the domain of multiple agents having to act

together. It is an extension of single-agent planning (SAP), where reaching the goal state

is the aim of a single agent, not a group.

The Multi-agent framework has been extended beyond the deterministic plan

generation problem along many other dimensions, specifically those involving

nondeterministic actions. The MAP domain involves agents planning for a common goal,

an agent coordinating the plans of others, or agents refining their own plans while

negotiating over tasks or resources, etc.

Multi-agent planning is often associated with another common term, which is multi

agent scheduling. It is important to clarify the difference between these two terms. While

in planning agents choose an appropriate course of actions to achieve their goals,

scheduling means that agents integrate actions in service of multiple goals and share their

limited local resources and finally execute the actions. The tasks that need to be

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performed in scheduling are already decided, and scheduling mainly focuses on

algorithms for specific problem domains. Because of the overlap in the fields, we will not

distinguish them and will use "planning" to refer to both planning and scheduling.

Planning and scheduling can be incorporated to help agents improve their coordination

behaviors.

Multi-agent planners make action policies for a set of agents that share tasks and

results. The key aspect of MAP is that each agent aims to find a plan that has the highest

payoff given the plans of the other agents, resulting coordination among the actions of the

agents so the highest equilibrium can be achieved in a timely manner.

The above makes clear that the problem of multi-agent planning falls squarely within

the setting of n-person cooperative game theory. From the perspective of game theory,

the players have a shared or joint utility function in n-person games. Any outcome of

the game has equal value for all players. Assuming the game is fully cooperative in this

sense, it becomes more like a standard (one-player) decision problem where the
'i

collection of the n players can be viewed as a single player trying to optimize its behavior

to obtain the largest equilibrium against environment.

This section aims to presenting an overview of the formalization of multi-agent

planning. We start by presenting an overview of single-agent planning and its

methodologies and will then shift to multi-agent planning and its formalization.

2.4.1 Single-agent Planning (SAP)

A plan is a sequence of actions that an agent should follow in order to achieve one or

more goals (Bowling et al 2002). The process of generating a plan is called planning and

is performed via an algorithm called a planner.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order for a planner to come up with a complete plan, it requires as input the initial

state o f the world (I), a set of possible actions the agent can make to change the world

(A), and a set of goals it wants to achieve (G).

Given the above, the definition of planning can be restated as the process of finding

a sequence of actions that can transform an initial state of the world to a goal state. As the

planner goes through the space of plans, it searches for actions that makes goal true if

executed.

When the planner searches all the possible situations between the initial state and the

goal states, what is called space searching takes place. There are generally two

approaches to space-search planning, they progression and regression. Progression

(Forward chaining) planning is searching from the initial states to goal state. It starts with

choosing action whose preconditions are satisfied, then searching a space of world states

for the effect, and continues until goal state is reached. The main problem with this

approach is the high branching factor and the thus the huge size of the search space.

As with regression (backward chaining) planning, searching is performed backwards,

in other words, from the goal state to the initial state. It starts with choosing an action

that has an effect that matches an unachieved sub-goal, then adding unachieved

preconditions to the set of sub-goals, then continuing until set of unachieved sub-goals is

empty.

An alternative to situation space search is to search through the space of plans rather

than the space of situations. This approach, called plan-searching, usually starts with a

simple incomplete plan called a partial plan. The partial plan is continuously expanded

until a complete plan is reached where the problem is solved. The operators in this search

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are operators on plans: adding a step, imposing an ordering, instantiating a previously

unbound variable, hnd so on. Plan-space search includes partial-order planning, HTN and

etc.

Classic planners consist of only primitive actions and keep their goals in a stack and

performed an ordered depth-first search through the space of possible plans. Classic

Planners are normally represented by STRIPS (Stanford Research Institute Problem

solver), o f which we give an overview at the end of the section.

Often it is convenient to group sequence of actions into macro actions to reduce the

search space. In planning with macro actions both goals and action nodes can be

expanded either into macro actions or primitive actions. This approach however, can be

insufficient because practically, the designer is the one who plans not the planner. Also

plans constructed by macro actions are less flexible, as the planner is simply repeating

and combining only predefined sequences.

The planning process depends on the order in which goals are selected for achieving.

This is due to the changes that previous actions might have made in the world state. Some

improper ordering may cause searching to last longer or even to end up with no solution

found. There are several solutions to these problems.

One obvious solution is to try to reorder the goals whenever a solution is not reached.

Unfortunately this leads to big computational expenses so instead a hierarchy can be

established on the literals of a domain. The most difficult literals for achieving are

situated at the top while easily reproducible ones are at the bottom of the hierarchy. The

goals in the planner stack are reordered so that higher level ones are achieved prior to

satisfying lower level goals.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Goal protection may also cause problems and even prevent us from finding a solution

for all possible god orderings, The only solution in such situations will be to violate

goals that are already achieved and then re-achieve them. Vere (Vere, 1992, p. 1168) has

proposed a procedure called plan splicing that can be used for conflict resolution and as

an alternative to permutation of goals upon failure as well. Splicing includes violation of

protected goals and recursive deletion of parts of the generated plan. Vere has shown that

splicing is efficient even at execution time as a reaction to unexpected events.

An agent perceives the environment and builds a model of the current world state. It

can call a suitable planning algorithm to generate a set of actions to achieve a given goal.

Single Agent Planning (SAP) explores the state-space of these actions by reasoning about.

actions. A plan exists if there is at least one ordered sequence of actions that satisfies the

goal or goals. Moreover, all ordering constraints should be satisfied. The plan itself could

consist of totally or partially ordered set of actions.

The basic elements in a plan are goals, states and actions. The action selection is a

central issue in planning. A common approach relies on representing the planning

problem as a constraint satisfaction problem (CSP) that can be solved using forward

state-space search and/or backward state-space search. The traditional planning algorithm

adopted in MAP is based on distributed constraint satisfaction which could be solved by

using a search algorithm, like death first search, to find joint action.

However, the CSP approach has some serious drawbacks. First, the number of joint

actions increases exponentially with the number of agents. Second, it fails to react in real

time to dynamic changes in the environment.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STRIPS uses a representation that includes the initial world state I, goal state G, a set

of deterministic actions 0 . Each action a eQ has a list of preconditions and an effect list,

denoted by Prec(a), Ejf(a) respectively. The planning problem involves finding a plan

that when executed from the initial state I will achieve the goal G. According to this, a

plan can be represented by three-tuple: P —(A, 0,L) where Acz 12 is a set of actions {«,}, O

is a set of ordering constraints over A, like {a,->aj), and L is a set of causal links over A.

A causal link is a structure with three fields: a set of causal links over A, a set of open

conditions, and a set of unsafe links. Finally, an open condition is of the form (p,a),

wherep ePrec(a) and a eA.

A generally accepted method of action representation is the one using preconditions
r~

and postconditions, both of which are conjunctions of literals. Preconditions define the

conditions that should be true in the current state of the world in order to perform an

action. Postconditions represent the conditions that will be valid after the action is

performed. If we need to model changes in the world that will occur when the action is

performed, then this is not a primitive but a macro action that should be further

decomposed.

The same model can be used to represent simple events. Their preconditions will

contain the causes of the event, and postconditions will show its effects. Events can be

inserted into plans using the same backward-chaining mechanism. There is only one

difference between actions and events in this representation and it is that the event’s rules

must be allowed to chain forward whenever their preconditions are satisfied.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Search control, action representation, goal protection, time modeling and goals

ordering are crucial issues to planning. To illustrate these concepts we will use the well

known Blocks world model.

Initial State: Goal:

B

B

Figure 2-12 Block World Model

In Figure 2-12 above, three blocks A, B, and C are on table as initial state on the left.

If putting the blocks one by one as the goal state, the resulting state is what is shown on

the right of the figure. The STRIPS representation of the initial state of this example is

given below.

Initial State: (on-table A) (on C A) (on-table B)

Preconditions: (clear B) (clear C)

Goal: (on-table C) (on A B) (on B C)

Actions: Pickup(x), Putdown(x, y)

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2-13 Planner representation

By looking at planning as a graph-search problem, planning the problem of going

from the first state of Figure 2-12 to the second can be represented by a graph as in

Figure 2-13. Nodes are used to represent the individual world states, arcs to represent

actions, and the solution is the path from the initial state to the one that satisfies the goal

(Russell and Norvig 2002).

2.4.2 Multi-agent Planning ('MAPI

As apposed to SAP, Multi-agent planning distributes a global plan among several agents.

Multi-agent plan has been generated for multiple executing agents, and the process of its

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

construction is called multi-agent planning. The plan itself may be built up by one or

more agents. MAP generally has two approaches. The first is where one agent creates the

multi-agent plan and is called centralized multi-agent planning. The second on the

other hand is when more than one agent creates the multi-agent plan, and is called

distributed multi-agent planning.

Centralized MAP has several drawbacks due to its structure. First, the communication

infrastructure can have a big impact on the allocation of the global plan. Second, the

security and bandwidth of the communication limit the allocation of sub-plans. (E.

Durfee 1999). In centralized MAP, global plan is decomposed into sub-plans, sub-plans

are allocated to each agent, each agent executes the tasks, and then synthesize global

plan. Since the availability of the agents for the sub-plans is not easy to determine

without first having devised the sub-plans, allocating the global plan to any current

context is not certain. Hence, if there is no agent with a global view of the group

activities, each agent should generate the sub-plans alone. Due to all of these issues, we

focus on distributed MAP in this thesis.

Because MAP involves more than just the agents planning for a common goal, the

tasks include the problems of coordinating the plans and replanning. Consideration must

also be given to the constraints placed by the agents and the fact that an individual plan

should take concurrent actions into account.

Actions are selected via a specific action-selection mechanism (ASM), which is

influenced by the agent's commitments to others, the activities of other agents that may

change the environment and the hardly predictable evolution of the world. MAP

algorithm has to ensure that the appropriate joint actions are executed at the same time or

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in a specific sequence. In MAP, agents need to actually perform the planned actions in
i

order to achieve their goals. Multi-agents coordination problem could be regarded as a

planning problem, more specifically, action selection mechanism (ASM) for the multi

agents.

In what follows we present an overview of terms that are necessary to understand the

concept of multi-agent planning and its entailments.

Multi-agent Planning Domain (Bowling et al 2002)

A multi-agent planning domain D is a tuple <P, S ,n ;A i=L„n, R> where,

1 P is the finite set o f propositions,

2 Scz2p is the set o f valid states,

3 n is the number o f agents,

4 Ai is agent i ’s finite set o f actions, and

5 Rc:S*A*S is a nondeterministic transition relation, where A = Aj*...*An and

must satisfy the following condition. I f <s, a, s ’> e R and, <s, b, s ”> e R

th e n y i there exists s ’” eS, <s, <aj, . . . , a ^ , bit ai+;, . . . , an> , s ” ’> e R.

I.e., each agent’s set o f actions that can be executed from a state are

independent.

Multi-agent Planning Problem (Bowling et al 2002)

Let D = <P, S, n, Aj=i...„ , R> be a multi-agent planning domain. A multi-agent

planning problem P for D is a tuple <D, I, Gi=j...n>, where I c S is the set o f possible

initial states and G ,c S is the set of goal states for agent i .

In MAP research domain, researcher aims at reducing the searching space. Some

techniques examples are plan coordination, Hierarchical Task Network (HTN), plan

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reconciliation and etc.

Plan coordination means synchronization of plans which may take place at several

points, can be done during task decomposition, at the time of plan generation or after the

plan is created. Conflicts may appear due to incompatible states, incompatible order of

actions or incompatible use of resources during distributed planning. Repeating the multi

agent planning and coordination of individual plans activities can be quite ineffective in

uncertain domains and can cause significant delays at execution time. Plan coordination

is based on the assumption that some restrictions can be considered by agents before they
»

start planning. Some researchers attempt to impose social conventions on agents, which

are prohibited against particular choices of action in particular context (Durfee, 1999).

The Hierarchical Task Network (HTN) captures the possible decompositions of

abstract plan steps into more detailed concrete plans. The hierarchical behavior-space

search repeating coordination can be avoided by resolving conflicts on abstract (higher)

levels of plan representation. Abstract plans can help coordinating with other agents and

allows agents to replan in case of failure without affecting the multi-agent plan.

Technique of plan reconciliation is used to assign agent tasks after reasoning through

the consequences of doing these tasks in particular orders. Then, align behavior of agents

toward common goals, with explicit division of labor achieving greater coordination.

In MAS, planning is difficult, since execution failures and unexpected results of

actions complicate the coordination task, besides uncertainty about effects of actions,

world states and perception. The external factors can affect goal achievement. The

complete multi-agent plan may be invalidated by some unexpected events or outcomes of

actions. For internal factors, the number of joint actions increases exponentially with the

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of agents. There are also time and resource constraints as it is difficult react in

real time to dynamic changes in the environment. What can also complicate matters

further is the difference in preference among agents. For instance, the utility of an agent

may give contradicting preference to that of another agent.

Collaboration makes agents cooperate with each other and willing to assist or join

with others. There are mainly two mechanisms to make agents collaborate with each

other: task sharing and result sharing. Primary task can be decomposed into a number of

sub-tasks, called task sharing. Solution synthesis is called result sharing.

According to Boutlier (1996), MAP problem can be solved using simple extensions to

SAP. MAP problem can take advantage of characteristics of the problem to make the

search simpler, use some flexible search strategies, like ordering tasks in which plan is

executed. MAP problem can also use Divide and Conquer strategy, like goal

decomposition, if we can assume conjunctive goals achieved independently.

To solve a planning problem, there are some concepts need to be defined to formalize

MAP. Some of the definitions are: the possibility of reaching the goal, the possibility of

reaching the goal in a finite number of steps. These concepts and their formalization are

inspired and highly related to Cimatti and colleagues’ single-agent solution concepts

(Cimatti et al. 2000), and are formalized by Bowling et al with STRENGTH concept, in

2002.

Multi-agent Planning Solutions(Bowling et al 2002)

Let D be a multi-agent planning domain and P =< D, I, Gi=l...n> be a multi-agent

planning problem. Let 7 be a complete joint state-action table for D. Let K = <Q, T> be

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the execution structure induced by r from I. The following is an ordered list of solution

concepts increasing in STRENGTH;

1. t is a weak solution for agent i if and only if for any state in I some state in G, is

reachable.

2. t is a strong cyclic solution for agent i if and only if from any state in Q some

state in Gi is reachable.

3. t is a strong solution for agent i if and only if all execution paths, including

infinite length paths, from a state in Q contain a state in G,.

4. t is a perfect solution for agent i if and only if for all execution paths sO, si, s2,

. . . from a state in Q there exists some n>0 such that V i > n, si e Gi.

Multi-agent Planning Equilibriums (Bowling et al 2002)

Let D be a multi-agent planning domain and P = <D, I, Gi=l...n> be a multi-agent

planning problem. Let rb e a complete joint state-action table for D. Let K = <Q, T> be

the execution structure induced by r from I. t is an equilibrium solution to P if and only if

for all agents i and for any complete joint state-action table t ’ such that t) ^ = Tj ,

STRENGTH(D,P, I, t) > STRENGTH(D,P, I, t ’) .

I.e., each agent’s state-action table attains the strongest solution concept possible given

the state-action tables of the other agents.

2.5 Conclusion of MAS Coordination

In order for the individual decisions of the agents result in good joint decisions for the

group, working together harmoniously, agents can use communication to achieve a joint

plan. Also, agents may communicate in order to determine task allocation. Social laws

and conventions place constraints on the possible action choices of the agents. Social

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

laws may be imposed by the system through designed rules that dictate how the agents

should choose their actions in a coordination game. However, social conventions could

not dynamically anew for each problem, thus can lead to inflexibility and breakdown,

have limited effects in large dynamic environment (Russell and Norvig, 2003). Multi-
*

agent learning algorithm like Multi-agent Reinforcement Learning (MARL), genetic

algorithms, neural networks and etc. improves individual performance as each agent

learns. However, the complexity becomes prohibitive in many cases.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 RoboCup Rescue Simulation System Introduction

RoboCup Rescue Simulation System (RCRSS) is designed as a testbed for multi-agent

technologies. It simulates a city soon after a large earthquake as buildings bum and

collapse. Many civilians are buried in the collapsed buildings. Roads are blocked in the

disaster space which slows down ambulance teams and fire brigades as they try to reach

injured civilians and buildings on fire. Communications are interrupted, and civilians

cannot call for help. However, an emergency communications system allows rescue

agents to communicate among themselves and with central stations. With time, fires

spread and injured civilians get weaker and start to die. It is an example of a crisis

situation management environment with real-time, decision making in unpredictable

dynamic world.

3.1 RCRSS Introduction

RoboCup Rescue Simulation was developed following the Hanshin-Awaji

earthquake. At 5:47 AM of January 17, 1995, Hanshin-Awaji Earthquake hit Kobe,

Japan. It registering 6.9 on the Richter scale, the earthquake destroyed buildings, trapped

civilians, and started fires throughout the city. The roads became difficult to navigate as

they were blocked by debris. Over six thousands people were killed, over one fifth of the

cities 1.5 million houses were destroyed, and eighty percent of the city’s buildings were

unusable. The infrastructure damage exceeded 100 billion US dollars, and total property

loss well exceeded 300 billion US dollars.

One of the main reasons for this kind of damage after a large earthquake is fire.

Buildings and houses collapse and bum, and many people get buried in the collapsed

buildings. As fires propagate, people who could not move are burned. Since roads are

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

blocked in the disaster space, rescue team such as fire brigade and ambulance can not

move through the debris soon enough to carry out rescue missions.

RoboCup Rescue project aims at simulating rescue agents such as ambulance teams,

police forces, and fire brigades as they act in the simulated disaster space. Many civilian

agents are dead or injured. In order to minimize damage resulting from a disaster, rescue

agents have to accomplish their rescue missions. This requires information management

to effectively share information, reliable and robust coordination in the distribution of

tasks between rescue systems, and immediate transition from ordinary operations to

emergency measures (Morimoto et al 2001).

3.2 Structure of RCRSS

According to the RCRSS manual (Morimoto 1999), RCRSS is a real-time distributed

simulation system that consists of several modules. Module communication uses sockets

to allow modules to run on a set of hosts interconnected by a network (Figure 3-1). Each

module can run on a different computer as a separate process. Sub-simulators are

modules which simulate disaster phenomena such as road blockade, collapse of buildings

and the spread of fires. Ambulance teams (AT), Police Forces (PF), and Fire Brigades

(FB) are independent RCR agents. The geographical information system (GIS)

communicates with viewers and provides initial conditions of the disaster space, and the

viewer visualizes conditions of the disaster space. The kernel is the central controller

which manages communications among the modules and integrates all modules into

RCRSS (Morimoto 1999).

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RCR agents

ViewerKernelSub-simulators

GIS

Figure 3-1 Structure of the RCRSS

After RCRSS starts and before the system cycles, first, the kernel connects to the

GIS, and the GIS provide the kernel with the initial conditions of the disaster space. The

initial conditions are loaded from a configuration file and a map of the disaster space is

also specified. The map has a specific format that allows the representation of roads and

buildings. Subsequently, sub-simulators and the viewer connect to the kernel, and the

kernel sends them the initial condition; Third, RCR agents connect to the kernel with

their agent type. The kernel assigns a unique id (9 or 10 digit number) to each rescue

agent or civilian. Each agent can hear and see objects within a specified distance from its

self. The visual and auditory ranges are initialized by the kernel at this stage.

After the initialization of the agents and the RCRSS is finished, the cycles start. Each

cycle in the RCRSS is one second, but corresponds to one minute in the disaster space.

There are 300 cycles in each RCRSS run, which simulate the first five hours after the

earthquake. In each cycle, RCRSS performs the six steps in Figure 3-2 (except for the

first cycle of the simulation where steps 1 and 2 are skipped).

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. The kernel sends individual vision information to each RCR agent.

2. Each RCR agent submits an action command to the kernel individually.

3. The kernel sends action commands of RCR agents to all sub-simulators.

4. Sub-simulators submit updated states of the disaster space to the kernel.

5. The kernel integrates the received states, and sends it to the viewer.

6. The kernel advances the simulation clock of the disaster space.

Figure 3.2 The Six Steps in Each Simulation Cycle

The kernel is designed to wait half a second at steps 2 and 4. However, the actual

waiting time depends on the scale of simulation and the speed of the machine. Therefore,

all RCR agents must select an action within half a second.

At the first 2 cycles of the simulation, the agents cannot make any action, because the

modules of the RCRSS work on sub-simulations. In the 1st cycle, a collapse sub

simulator simulates building collapse, and a fire sub-simulator starts simulating fire

spread. In the 2nd cycle: A blockade sub-simulator simulates road blockade based on the

result of the collapse simulator, and a miscellaneous sub-simulator starts simulating

humans who are buried and injured. Only then, RCR agents start acting.

Evaluation Rule:

To evaluate the performance of agents during a simulation run, the following

performance function V is used. The function tries to capture all aspects of rescue agent

performance such that higher the return value, the better rescue operation.

V—(P + S/Sint) * sqrt(B/Bint) (3.1)

Where P : number o f living agents,

S: remaing Health Point o f all agents,

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sint: total Health Point o f all agents at start,

B: area o f houses that are not burnt;

Bint: total area at start. ,

3.3 Agents Development Tool-YabAPI

The YabAPI (Morimoto 2001) is an open java API for developing RCR agents. YabAPI

consists o f four packages: yab.io, yab.io.object, yab.agent, yab.agent.object described in

Morimoto (2001) as follows:

“The yab.io package provides functions for communication between an RCR agent

and the kernel. The yab.io.object package provides classes of objects in the disaster

space. The yab.agent.object package provides useful classes of objects in the disaster

space for RCR agent developers. They wrap the yab.io.object package’s classes. The

yab.agent package provides the skeletons o f RCR agents and utilities for concisely

describing their intelligence.”

The agent developed with YabAPI is called RCR agent, which controls act of an

object in the disaster space. There are seven classes of object: the Civilian,

AmbulanceTeam, FireBrigade, PoliceForce, AmbulanceCenter, FireStation, and

PoliceOffice. An RCR agent controlling act of a Civilian object is called a civilian agent,

an RCR agent controlling act of an AmbulanceTeam object is called an ambulanceTeam

agent, and so on. In addition, the ambulance team, fire brigade, and police force agent are

called a platoon agent, and the ambulance center, fire station, police office agent are also

called a center agent .Both platoon and center agents are called rescue agents.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An agent always perceives the environment and makes an action. The activity of an

RCR object consists of a repeating cognition of the surrounding circumstances followed

by an action at each cycle. An RCR agent recognizes the surrounding circumstances

based upon visual information and auditory information received from the kernel, selects

an action, and submits the action command to the kernel. Moreover, an RCR agent

communicates with other RCR agents asynchronously.

Different RCR agents have different capabilities for cognition and action, which are

limited by the capability of this kind of agent. An RCR .agent gets cognition information

limited by its visual and auditory capabilities, and sends action commands such as move,

rescue, load, unload, extinguish, and clear according to the agent’s capabilities. The agent.

can utter natural voice (action: say) and speak via telecommunication (action: tell).

Civilian Sense,Hear,Say, Move

Ambulance Team Sense,Hear,Say,Tell,Move,Rescue,Load,Unload

Fire Brigade Sense,Hear,Say,Tell,Move,Extinguish,Fill

Police Force Sense,Hear,Say,Tell,Move,Clear

Ambulance Center S ense,Hear, Say,Tell

Fire Station Sense,Hear,Say,Tell

Police Office S ense,Hear, S ay,Tell

F ig u re 3-3 A ctions ava ilab le fo r each type o f agents

After receiving sensory information (AK_SENSE block), an RCR agent submits an

action command (AK_MOVE, AKJRESCUE ...etc.) at will in each cycle. The kernel

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adopts only one action command every cycle per agent. If the agent submits more than

one command, usually the last command is the one that kernel executes. As stated in

Figure 3-3, in each cycle, an agent first receives a sensory block, and then submits an

action command after half second. In some cases, agents cannot act, for example, delayed

action commands are ignored; also a buried humanoid, whose buriedness is greater than

zero, cannot act.

A humanoid can move in the disaster space by submitting an AK_MOVE command,

which consists of the current position as the origin and a series of objects reaching the

destination. When a humanoid is loaded by an ambulance, the origin is the ambulance’s

position. An ambulance team can progressively rescue buried humanoids under collapsed

buildings by submitting an AK_RESCUE command. Rescuing a humanoid by an

ambulance team in a cycle’ reduces the buriedness of the humanoid by 1 team cycle. If

more ambulance teams work on rescuing a humanoid, the humanoid can be rescued in

less time. The target humanoid must be at the same position as the ambulance team. Fire

brigade agents extinguish fires by summit AK_EXTINGUISH command. However,

single fire brigade agent can hardly extinguish a fire. FB agents need to cooperate with

other FB agents. They also have to cooperate with different type agents, police forces will

help clear the road to a destination. AT and PO can provide fire information.

Rescue agents need to communicate with each other in order to accomplish their

missions efficiently. However the RCRSS only provide very limited communication. The

maximum length of a message is 256 bytes (128 characters). For platoon agents, a

maximum of 4 messages sent and 4 messages received per cycle is specified. For center

agents, the maximum 2*n messages sent and 2*n messages received, where n is the

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number o f platoon agents of the same kind as center. Platoon agents can talk to their

colleagues and their center agent. Center agent can talk to other center agents and his

platoon agents. If several agents use their maximum allowed messages each cycle, other

agents would miss most of these messages. For example, if ten FB agents send four

messages in a cycle, the FS agent will only receive 20 messages; and the FB agents will

only receive 4 of these messages. Therefore, agents are required to cooperate with

minimum communication.

The abilities of each agent are complementary to those of other agents. Thus, an agent

must cooperate with agents of different types. For example, it is crucial at the beginning

the simulation that the fire brigades coordinate with the police force agents to clear

blocked roads leading to fires. Ambulance team agents have the most priority after the

fires are extinguished, but still need other agents to search for injured civilians.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 Multi-agent Hierarchical Planning

Having introduced game theory, utility-based agents, hierarchical task network (HTN)

planning, the formalization of multi-agent planning, and the RCRSS project, we are now

in the position to apply HTN and utility concepts to multi-agent planning in RCRSS. This

chapter introduces techniques that use game theory and exploit efficient hierarchical

planning.

4.1 Hierarchical Planning

Note that planning is effective in highly predictable environments. The basic purpose

behind designing plans is that computing equilibriums could be expensive when the

number o f agents is large, or the action sets of the agents are large. Therefore we would

like to reduce the size of the search space by using two techniques. The first technique

classifies the actions into a smaller number of abstract actions; the second reduces the

number o f agents by grouping them into groups of abstract agents.

The global plan can be described in terms of B Beliefs, D desires and I intentions -

BDI architecture (Rao and Georgeff 1991) (Wooldridge 2002). The Desires are Goals but

can be inconsistent with one another. Goals are chosen from consistent desires. Formally,

1 7 Tagent f s desire is to find itself in the local states: q , q ,•,..., q , such that

Ui{q'i ,q 2i, , qTi) >«,-

Where state q‘ is for agent i at time t. ut is the agent f s utility function, od is the

agent’s minimum accepted utility value.

Beliefs B are modeled in each state s as the set of local states and the set of accessible

worlds that the agent believes to be possible. These accessible worlds can be represented

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with a conventional decision tree. The agent believes to be able to optionally achieve

some goals.

Intentions are similarly represented by sets of worlds that the agent has committed to

attempt to realize. Intentions lead to actions: if an agent has an intention, she believes that

she has such actions which can fulfill her intention.

The compatibility of B, G and /has following relationship (Rao and Georgeff 1991):

1. GOAL(a) 3 BEL(q)

If the agent has the goal a, she also believes it.

2. INTEND(ot) 3 GOAL(a)

If the agent intends a, she has a as a goal as well.

3. INTEND (does (a)) 3 does (a)

If an agent has an intention to do a particular primitive action, she will do that action.

4. INTEND(a) 3 BEL(INTEND(a))

If an agent has an intention, she believes that she has such an intention.

5. GOAL(ol) 3 BEL(GOAL(a))

If the agent has a goal to achieve, the agent believes that she has such a goal.

6. INTEND(q) 3 GOAL(INTEND(a))

If an agent intends to achieve a, the agent must have the goal to intend a.

To achieve real-time performance, it is common to use a library of plans that contains

methods for achieving certain goals. The plans in the library involve a trigger condition

<j> and a body 7T. The plan body 7r may be a sequence of actions, some of which are not

directly specified but are a command to achieve some subgoal. A plan of this form is

represented as [%]<j). Where 7T = a\; ...; an is the sequence of action. If a plan also

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

involves a precondition </> ’, then its representation is of the form (f> ’M <f>. For Example,

locked(door) [turn (key)] unlocked(door)

Generally speaking, BDI agent-oriented system is flexible, responsive and well suited

for real-time reasoning and control environment. However, “BDI frameworks rely

entirely on context sensitive subgoal expansion”. There is “a limitation of these systems

is that they normally do no lookahead or planning in the traditional sense; execution is

based on a user-provided plan library to achieve goals.” (Sardina et al 2006).

Hierarchical Task Network (HTN) (Erol et al., 1994) is an approach to planning

based on the decomposition of upper level compound tasks into lower level primitive task

through a task network. HTN has an on-demand planning mechanism. Hierarchical

planners use task hierarchies to search through all combinations of alternatives to select

an action, and allocate resources and devises with a sequence of steps to achieve goals.

Rather than building a plan from the beginning forward or end backward, hierarchical

planners identify promising classes of long-term activities (abstract plans), and

incrementally refine them to eventually converge on specific actions.

There are two types of HTN tasks. One is called compound task that cannot be

executed directly. The other is called primitive task, an action that can be directly

executed by the agent. A task network d = [T, 4>J is a collection of tasks T that need to be

accomplished and a Boolean formula of constraints 4>. Constraints impose restrictions on

the ordering of the tasks (e < e), or/and on the variables (x = c), or/and on what literals

must be true before or after each task (I, e), (e, I), and (e, I, e). A method (e,\p,d) encodes

a way of decomposing a high-level compound task e into lower-level tasks using task

network d when ip holds. Methods provide the procedural knowledge of the domain. An

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HTN planning problem P is a triple <d, B, D> where d is the task network to accomplish,

B is the initial state (i.e., a set of all ground atoms that are true in B), and D is the plan

domain, D = (II, A), which consists of a methods library II and primitive tasks in STRIPS

style A (Sardina et al 2006).

The key issues in this hierarchical planning are how to maintain the constraints and

how to make the agent rational. In game theory, the agent’s rationality is how they

maximize the utility of the agent relative to its knowledge. Here, we make the agents

choose the highest utility action compatible with the abstract action made at each level of

the hierarchy (Ambroszkiewicz and Komar 1997).

Therefore, the RCRSS agents use a hierarchical planning architecture and a utility-.

based action selection approach. A 2-layered hierarchical planner is adopted as the

architecture for multi-agent planning. The upper layer has a group of abstract agents;

each represents a group of agents defined using abstract payoff and abstract actions. In

each cycle, the top layer calculates the utility o f abstract actions, determines the desired

states, then passes the abstract action to the lower layer. The lower layer agents calculate

the utility of lower level subgoals based the beliefs and the abstract action. Finally, teams

of agents make joint actions involving groups of homogeneous agents. The top layer

makes decisions for the underlying layer and may reset the execution plans developed at

the lower layer. This is important to promptly respond to changes in the environment.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Long-term activities (Abstract Plan)

(^^Abstract agents

Specific actions (Concrete^plan)

Concrete agents

Figure 4-1 Plan Refinement

In this scenario (Figure 4-1), the upper level abstract agents have abstract activities

and use upper level utility function. The upper level planning is responsible for defining

the resources allocation and also defines the goals for the underneath plan (i.e. to

extinguish limited fires or to separate the fired area and safe area). The upper level

planning takes consideration of the overall spatiotemporal information (i.e., how many

fires and how are them located) and available resources. Therefore, we use game

theoretic agents to make the abstract agents. Abstract agents choose the policy by

calculating the abstract utility that achieves a Nash Equilibrium at the abstract level.

After getting their abstract action, concrete agents in the lower level use lower level

utility functions to calculate lower level utility and execute concrete actions. The lower

level planning takes into consideration of the agent’s environment and the current

situation (for example, route selection may consider blockades on the possible routes),

make the concrete action selection decision (choose the best route).

As we know, “the desire is represented as agent’s goal to achieve a maximum level of

its utility. The intentions are determined by some methods that realize this level of utility.

These methods are called rational behaviors.’’(Ambroszkiewicz and Komar 1997)

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, agent characteristics can represented as (B, D, Rb) where Rb is the rational

behavior. Rational behavior is the reasoning process which conveys the knowledge from

upper level into the lower level. The final level determines the final intention.

The upper level planner determines the behavior of the underlying planners, specific

abilities implemented by the lower level may be reused for building different roles. In

particular the layered approach is convenient for sharing low level abilities that all agents

should possess.

The lower level agent maintains a set of task lists. A plan in the lower layer is

generated from the list of unachieved tasks, which dynamically change with events in the

environment. At each cycle, the interpreter of upper layer planner specifies an action in

executable form to the lower layer. The lower layer will generate a plan from the task list.

Upon finishing executing an action, the lower layer requests a new action specification

from the upper layer, which provides another action afterward (Cistemino and Simi

2000). The architecture of the planner is shown in Figure 4-2 and Figure 4-3.

FB:
1 .Extinguish fires
2.Seprate fires
3.Search civilian

PF:
1 .Clear Blockade
2.Search Civilian

AT:
1 .Search Civilians
2.Rescue Civilians

Figure 4-2 Abstract Actions Upper Layer

In Figure 4-2, the upper layer has a global plan for all different types of abstract

agents. In the figure, FB stands for Fire Brigade, PF for Police Forces, and AT for

Ambulance Team.

The FB abstract agent desires to extinguish or control the fires. The intents of the

agents are the present commitments to particular sub-goals that lead to the desire. For a

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fire brigade abstract agent, the intents would include specific high priority fires. As for

the beliefs, they represent the cognitive interpretation that the agent has from combining

available knowledge and current sensory inputs from the environment. The abstract agent

may believe that a particular fire is controllable or uncontrollable, or that a fire is more

important than another. The plan is made by first choosing the intention according to the

FB abstract agent utility function, also based on some success fact.

The global plan would specify how to act based on current beliefs by specifying

abstract actions that represent intentions in response to changing beliefs. For our abstract

fire brigade, an abstract plan may specify that the agents should try to encircle (or

separate) a fire believed to be uncontrollable and try to extinguish a smaller fire.

Similarly, an ambulance team (AT) abstract agent desires to rescue all the injured

civilians, intents specify the injured civilians to commit to rescue or an area to target in

searching for injured civilians depending on the situation, and the beliefs would include

an assessment of the severity of injuries and short term prognosis for each injured agent

according to what the sensor get from the environment. An abstract plan may specify that

the agents should try to rescue the nearest civilians or those that are in more critical

conditions. Figure 4-3 represents the mapping of abstract actions to concrete actions.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Extinguish Fires Separate Fires Search for Civilians

Fillwater?z
Move to Extinguish
the target . —► near fire

Fillwater?z
Move to Extinguish
the target . —► outer fire

Move to
the target

Report
Civilians

Clear Blockades

Clear the
Blockades

Move to
the target

Rescue near civilians

Move to
the target

Rescue
every
civilians

Rescue urgent civilians

Move Rescue the
to the — ► most urgent
target civilian

Figure 4-3 Example of mapping abstract actions to concrete actions

According to above, we construct agent in a tuple <B,D,u,PL,C,Rb>, where B

represents Beliefs, D desires, u the utility function, PL the Plan Library, C is for

constraints, and Rb the Rational Behaviour. The whole planning process could be

expressed in following algorithm

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Upper Level Agents:B = Bo, D~Dq
For(every cycle) {

get next percepts p
B ~ brf(B,p)
D = desirejupdate(D,B)
Rb = C(B,D)
I f (not (empty(Rb) or succeeded (D, B) or impossible(D, B)) {

a = head(Rb)
execute(a){

Lower Level Agents In Same Cycle:
■ { . -

B ’ = B ,D ’=a
D=desire _update(B D)
R d’ - PL (B \ D ’)
a ' = head(Rd)
execute(a’)

}
}

}
}

Figure 4.4 Hierachical Planning Algorithm

Where brf is belief revision, after perceiving the environment, concrete agents send

messages to the abstract agents. Once the abstract agents receive all the information, they

update their beliefs, and send combined message in “newspaper” format to concrete

agents. Therefore all the concrete agents and abstract agents have the same consitent

beliefs correspondingly. Desire_update take current beliefs and current desire, use utility

function u and generate the set of Desires. Rb is deduced from constraints or selected

from the Plan Library.

For example, the Fire Brigades collect the environment information. Then, the Fire

brigades send the messages to fire center agent. The fire center agent also gets messages

from the two other center agents. After fire center agent has all the information, the

center agent updates its beliefs and desires. The Fire center agent makes the abstract plan,

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

execute the abstract action (specific high priority fires). Then send combined information

(called Newspaper,1 including upper layer agent intentions) to FB. All FB update their

beliefs, determine various options to their goals, which are the current intentions. Finally

use utilities to order the subgoals.

In order to achieve coordination, every agent has to take into consideration the actions

of other agents. In addition to satisfying known constraints, it is imperative to appeal to

the decision theoretic notion of utility due to the non-deterministic nature of hierarchical

planning in an uncertain dynamic environment.

For example, the global goal for a fire brigade is to extinguish or control the fires, and

help rescue all the civilians in an urban disaster situation, but this depends on the

spatiotemporal conditions. The lower level is responsible for choosing a concrete action

to execute. Spatiotemporal utilities can be used to guide this choice.

4.2 Spatiotemporal Utility

Utility theory (von Neumann and Morgenstem 1947) is an analytical method for action

selection, given multiple criteria upon which the decision is based. A utility function is a

measure of the desirability of expected outcomes resulting from actions. By weighing the

utility of each outcome by the probability of the outcome, the theory is useful for decision

making under uncertainty (White 1969). Therefore, the utility function guides the

performance o f the agent.

For example, two yogurt companies A and B compete in a particular market. Each

company has fixed daily cost of $5,000, the price is $1 or $2 for each container. If the

price is $2, the company can sell 5000 containers. At a price of $1, a company can sell

20,000. People in this market has the ability of pay $20,000 for yogurt. At a certain time,

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

both sell for $10,000 daily and earn $5000 as the two companies charge the same price

($1), and split market. If one of the companies lowers its price, the lower priced yogurts

dominate the market. Payoff for a company is:

Payoff—sales reward - cost.

Where sales reward is the gross amount of money the company gets from the sales,

and cost is the money spent on the whole process.

Yogurt B
strategy $1

Yogurt B

strategy $2

Yogurt A 5000,5000 15000,-5000
Strategy$l
Yogurt A -5000,15000 5000,5000
Strategy $2

Figure 4-5 The Yogurt company strategies

A payoff change example in Yogurt company: With the developing of the new

markets (or people are realizing that yogurt is a very health food), the demand on yogurt

may increase by 10% every year, and then the reward may also increase by 10% every

year. So the next year payoff matrix may become:

Yogurt B
strategy $1

Yogurt B

strategy $2

Yogurt A 6000,6000 17000,-5000
Strategy$l
Yogurt A -5000,17000 6000,6000
Strategy $2

Figure 4-6 The Yogurt company strategies

In the above examples, we can conclude that both company A and company B have to

strive to lower the yogurt price; otherwise, the higher priced product would lose the

market. We can also conclude that changes in the environment could change the utilities,

but the dominating strategy could remain the same.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In RoboCup Simulation System, different agents have different abilities and

functions. We assign a different utility function to each type of agents such that the utility

function captures a discounted future payoff for that agent’s actions. For fire brigades, the

reward is proportional to the area of the building that the agent extinguishes. The cost .

represents the area o f the buildings lost due to fire, as well as the time that the agent

spends to reach the fire and extinguish it. The payoff is the difference between the reward

and the cost. Therefore, the payoff depends on the targets the agents are working on, their

location with respect to the target, and the potential losses to fire during this period.

In chaotic unpredictable multi-agent system domains, the exact utility can be difficult

to predict as it is dynamic and changes with time and space. For example, for a fire

brigade working on extinguishing a fire, a function of time and space represents the

utility:

Utility=u (t, loc) (4.1)

Where t is the time needed to reach and extinguish the fire, loc is the location of the

building of the building on fire.

The dependence of utility on time and space can take many forms. For example, the

utility may change monotonically with time: increasing or decreasing as time passes. In

general, the change in utility over time and space can be quiet complex. However, we

have identified the following change patterns as useful models in our application.

1. The utility is changing monotonically with time and space. Utility=u (t, loc).

For example, a fire in the center of the city in more likely to spread than a fire

on the perimeter of the city. Similarly, fires are more likely to spread as time

passes. Therefore, the utility o f extinguishing a particular fire has a monotonic

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

future reward term that decreases monotonically with time and increases

monotonically with the distance from the city center.

2. Some utilities change with time only (i.e Utility=u (t)). Common cases of

temporal utilities include utilities for meeting a deadline, utilities for meeting a

temporal order constraint, and utilities that monotonically increase or decrease

with time. In RCRSS, saving injured humanoids is rewarded if the ambulance

teams get to the injured humanoid out alive (death is a deadline that has to be

met). In addition, there is also another monotonic reward for saving humanoids

early as the health point decreases with time, and the sum of the health points

of all humanoids is part of the value function.

3. Some utilities do not depend on time but depend on space (i.e. Utility=u(loc))).

For example, in RCRSS, for civilian agents, the utility of being in a refuge is

that their health point remains constant and does not deteriorate with time.

4. Some utilities are converging to a constant (i.e. Lim t->00u(t,loc)=c, where c is a

constant). In RCRSS, clearing road blockades initially depends on time and

space as roads leading to fires or used to reach injured civilians are more

important to clear. Eventually, these priority roads are clear, and the utility for

clearing more blockades becomes constant.

5. Lastly, some utility do not depend on neither time nor space (i.e. Utility =c

where c is a constant).

For the Fire Brigades the available actions are: Sense, Hear, Say, Tell, Move,

Extinguish, and Fill. Every cycle the agent may sense the environment using the

action: Sense, exchange messages using the communication actions: Hear, Tell, and

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Say, as well as one physical action that affects states in the environment that can be

either Move, Fill, or Extinguish. Note that the Q value of some action changes based

on the conditions of the agent and those of the environment. For example, filling the

tank with water has a high utility for a fire brigade if the tank is empty and there are

buildings on fire.

According to the optimal policy (2.3) maximizes the Q-values. The Fire Brigades

would choose a strategy F , which we call ARK_FB strategy.

F ' = a rg m ax Q (t,lo c ,A) 4^
A

Where t is the current time, loc is current position at time t, A is the list of targets (al,

a2,...ai) which agent would take as subgoals. Subgoals refer to the set of alternatives that

a decision maker has to choose from.

Nash equilibrium is a unique solution to a game-theoretic problem for that no single

player wants to deviate from his or her predicted strategies while the other players keep

their strategies unchanged, everyone must satisfy Nash’s mutual-best-response

requirement. In our model, every player gives the best response to the other players.

Between time t and time 300, the utility is the difference between the total payoff and all

possible losses. Combining those factors into one Q-value function, which becomes:

Q(t,l0C ,A) = pHthal)+ P2(t2,A)-l(i,l) 4,3

Where tl= distance(s,al)/speed ; t2=tl+time necessary to extinguish the al; a l is

the first target in the list of targets (subgoals) A; A is the rest of the subgoals after al; p i

is the profit function for the current target al; p2 is the profit function for the rest of the

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

target; The difference between p i and p2 are: p2 has lower probability than p l\ / i s the

loss function for agent when agent decide to take the first target.

Obviously 300 >t2 > tl >t. Those sub function are all stochastic function, which

means when we calculate the Q-value, we consider probability as a factor.

Utility functions could dramatically change agent behavior. For example, in the

Gunners’ Dilemma: If we design the utility in this way, then the Gunners will be brave

enough to stay and fight instead of fleeing.

Gunner 2 .

Stay Flee

Gunner 1 Stay

Flee

3,3 2,2

2,2 1,1

Figure 4-7 The Gunner's dilemma

How to design the utility function for agents is a crucial technique for developers.

The utility of an action is usually some function of the cost, reward, risk, and other

properties o f the action. Every agent gives the best response to the whole game to

maximize its utility.

Basically for fire brigades, the reward is the building area of not getting any fire with

the probability. The cost is the area of the building would catch fire or bum down with

probability. Every cycle, agent calculates the reward and cost for itself. He knows other

agents positions and targets, he will calculate his the time to get to a target and time

expected to extinguish a fire. Meanwhile, he would calculate the cost to do this, which is

the area of the building, would catch fire and bum down. Therefore, individual decisions

are made in a coordinated way so that a degree of harmony is achieved.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To choose a target among a set of alternatives, the decision maker would rather prefer

an alternative that rtiaximizes expected utility to other ones. The preferences refer to the

ordering relationship among alternatives in the opinion of the decision maker. The

ordering relationship in a planner is an ordered set of preferences over alternative actions

A. A utility-based agent orders elements based on the respective expected utilities taking

into account the desirability (or utility) of each course of action as well as its probability.

By properly setting the utility function to favor achieving common goals, a degree of

coordination can be achieved.

For the Fire Brigade, the payoff is the safe area in the city, according to the in

evaluation function (3.1) V=(P + S/Sint) * sqrt(BZBint) only B/Bint is directly related to .

Fire Brigades, which means more fires, less payoff.

When we design the utility function, spatial and temporal factors are considered in

utility assessment. The fire agent assesses the utility of an action based on a set of factors

including some spatial and temporal ones as illustrated in Figure 4-8.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Time-to-reach

Temporal Factors

Co-worker

Building-area

Dist-to-center

c Within reachSpatial Factors

Has-nutout-Nei

Has-nofire-Nei

Figure 4-8 Utility Decision network for Fire Brigade agent

If a fire is put out, the building will not catch fire again. If the building is bum out, the

building will not catch fire again. Based on these two facts, we can remove the

extinguished buildings and bum-out from the task list, because their utilities are zeroes. If

the fire brigades could cooperate to extinguish a fire building, the efficiency will improve

significantly. If the agents could persistent on the job, they won’t waste their effort.

Quantitative and qualitative factor are considered in the utility function.

To ensure effective use of time, the estimated time to reach a building takes into

account the status of the roads leading to the fire from the agent’s current location. If the

road is known to have been cleared, then the Euclidean distance is used in calculating the

time. If the road is known to be blocked, then the time will be practically infinite. If the

status o f the road is unknown then the Euclidean distance is multiplied by a factor to

account for potential delays. In the current implementation this factor is two. After

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adding up the cost of all the possible routes, the agent chooses the fire with the maximum

expected utility per’unit time. Given a route, the time a Fire Brigade agent will spend to

get to the fire location Eb=Dis(loc,fire)/speed where Dis() is the weighted distance to the

fire on the selected route and speed is the agent’s speed. A lower Eb represents a fire that

can be reached quickly.

In Figure 4-8, persistence represents the amount of time a fire agent has to spend

extinguishing a particular building. If the agent’s target is the same as the last cycle, this

value is increased by one. The factor Co-workers represents the number of coworkers

that will help the agent extinguish the fire. By parsing the messages from the central

agent, fire brigade will find out how many co-workers are working on a specific building.

The larger buildings have more priority than other buildings. However, this utility

must be discounted to take into account the current and future efforts need to put out

larger building. Normally, larger buildings need more firefighters and take longer to

extinguish than smaller buildings. Building ground area is the current reward.

Neighboring area is the future reward and the probability of getting this reward is

assumed to be 50%.

The distance from the target building to the center of city plays an important role in the

utility assessment. First, the fires in buildings closer to the center of city can spread to

more buildings than fires in comer or isolated regions. Second, central locations are

usually more easily reachable by a larger number of agents than remote ones. Therefore,

a building closer to the city center has more payoff than others. In fact, the distance of

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the fire location to the city center R contribute a normalized value Ea=l-Rfire/R to the

utility such that the larger the Ea the higher the utility for extinguishing it becomes.

If the target building is within the fire-brigade’s reach distance, it does not have to

spend anytime on the road. Therefore, it makes sense to just put out the reachable fires

first.

To control the spread of a fire, the fire agents would surround a cluster of buildings on

fire with a rim of put-out buildings. Therefore, extinguishing a building that has put-out

neighbors may help surrounding the fire cluster.

Besides time and space elements, other agents’ subgoals should also be considered in

utility function making. Within the multi-agent decision making framework, a decision

making problem is either a single problem when only one alternative is allowed to be

selected from the set of alternatives at any time, or multiple problems when several

alternatives are allowed to be selected from the set of alternatives at a time. In our test

domain RCRSS, the fire brigades decision making represents the second case.

In addition to the above three elements, agents’ decision making is also based on

whether the information is complete. Perfect information means every agent has complete

information about all previous moves. While imperfect information means some or all

agents have only partial information.

After deciding on subgoals, agents take the necessary actions. Every action has some

preconditions Prec(a) and some effects Eff(a). For example, FB agent’s

prec(move_to(target)) include: not close enough to target, and prec (extinguish(target))

include: close enough to the target and target is on fire. prec(sendMsg) is sense the

environment or/and get message, etc.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the Ambulance team, the payoff depends on the number of agents alive and their

health point. The function used for ambulances in RCRSS uses P + S/Sint, which gives

more weight to P the number of the civilians alive, over the ratio of the remaining health

point total S to the initial health point Sint.

We define that Fire Brigades would take a strategy l'*, which we call ARK_AT

strategy.

t ‘ = arg max Q(t , loc , A) 4-4
A

Where t is the current time, s is current position at time t, A is the list of targets (al,

a2, ...ai) which agent would take as subgoals.

Similarly, every Ambulance Team gives the best response to the other players.

Between time t and time 300, the utility is the difference between the total payoff and all

possible losses. Combining those factors into one Q-value function, which becomes:

Q (t ,S , A) = P m , a l) + P 2 (t 2 , A) - l (t , A) 4,5

Where tl= distance(s.al)/speed; t2=tl+time suppose to rescue next human in al; al

is the first target in the list of subgoals A; A is the rest of the targets after al; p i is the

profit function for the current target al; p2 is the profit function for the rest of the target;

The difference between p i and p2 are: p2 has lower probability than p i; I is the loss

function for agent when agent decide to take the first action.

Obviously, 300 ~>t2 > t l > t and the payoff depends on the number of persons in that

are rescued. Those sub function are all stochastic function, which means that when we

calculate the Q-value, we consider probability as a factor.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After the AT agent makes the subgoal decision, then the AT agent follows the

STRIPS algorithm to choose its action___

For the police force, the payoff is sum blockades_rpt_FB+blockades_rpt_AM. We

define that Police Forces would take a strategy T*, which we call ARK_PF strategy.

t ’ = arg max Q(t , loc , A) ^
A

Where t is the current time, s is current position at time t, A is the list of reported

blockades (targets) (al, a2, ...ai) which agents would take as subgoals.

We also let each PF agent give the best response to the other players. Between time t

and time 300, the utility is the difference between the total payoff and all possible losses.

Combining those factors into one Q-value function, which becomes:

— — 4 7Q (t , S , A) = /»l(tl,«l) + P 2 (t 2 , A) ~ l (t , A)

Where tl= distance(s,al)/speed ; t2=tl+time suppose to reach next blockade; a l is

the first target in the list of subgoals A; A is the rest of the targets after al; p i is the profit

function for the current target al; p2 is the profit function for the rest of the target; The

difference between p i and p2 are: p2 has lower probability than p i; I is the loss function

is the loss associated with other agents failing to use the road.

In summary, this chapter presents the algorithmic and conceptual elements of the

multi-agent framework we propose. The RCRSS is used to exemplify how these concepts

can be applied.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 RoboCup Rescue Implementation, Results

In a dynamic and uncertain environment, the states that justify the agents’ plans may

dynamically change, while the planning process is still going on or during the execution

of the plan. An agent may not know the properties of the environment or other agents

with certainty. The actions of an agent are non-deterministic and could span a range of

possible outcomes. The outcome of an agent’s performing an action might be influenced

by other agents’ behaviour. Their behaviour may be significantly different from what the

agent may have anticipated. This chapter presents the results obtained from applying the

theory developed in previous chapters to develop a multi-agent planning and coordination

system for the RoboCup Rescue Simulation System (RCRSS).

5.1 Communicative actions

In order to obtain as much as possible information about the uncertain environment, the

agents exchange as much information as possible, especially at the early stages of the

RCRSS simulation session.

An agent may hold many desires that conflict with each other. Different agents may

have conflicting goals as well and the outcome of an agent’s action may be influenced by

the actions of other agents. Thus an agent needs to know about other agents and decide

how to collaborate with others, which makes the agent’s planning process in a multi

agent system more complex than in a single agent environment.

In our approach, the communicative action is mostly an action within a collaborative

multi-agent team. Each agent reports its current percepts to central agents. The central

agents remove all redundancies and reports back to all agents. The agents report the

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

status o f buildings on fire, the status of blocked roads and cries for help from injured

civilians. Agents also report which tasks they have successfully accomplished. Fire

agents send messages when they put-out a fire. Police agents announce when a blocked

road has been cleared and ambulance agents report when they rescue an injured agent.

Agents reduce redundancy in their communications by remembering what they have

previously reported. Agents also need to notify others of the action they are taking, so

one of the messages they need to pass is the agent’s action target. The format of the

message exchanged between agents is as follows:

Current Task \ buildings on fire \extinguished buildings\ blocked roads\ cleared roads\

building with trapped agents \ injured agent information

Every object in the RCRSS has a unique id. This id is 8 or 9 digits long, which takes a

lot of message space. Because of the limit of the message length (256 bytes), we have to

find an efficient way to represent the information. At the beginning of the simulation, we

assign each object a unique short 3 digits id. A set of special characters act as the field

separators. The center agent filters redundant information. Thus, the messages become

shorter and easy to parse. Moreover, in some runs, messages longer than 256 bytes are

generated. These messages are cut into 2 or 3 messages.

5.2 Implementation Results

To assess the performance of rational hierarchical utility-based agents, I compare with

two greedy implementations. One implementation, the priority agents, is based on a set of

rules for deciding on the next target building. These rules are designed to generate

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

priority class and each agent chooses the closest highest priority target (Tawfik et al

2004). The second implementation, the sample agents, uses a greedy selection rule to

select a target from the task list. The reported results represent the average of 4 runs in

each map. I used three maps Kobe, Foligno and Virtual City (VC). The use of these two

heuristics for comparison is based the relatively good performance of these heuristics; the

sample agents were the winner of the 2003 RoboCup competition, and the priority agents

were semifinalists at the 2004 RoboCup competition. Moreover, it was possible to gain a

deep understanding of the inner workings of these agents.

L - iis .]
Team: ARK-Kobe-City-Round Time: 28 Score: 96.994163

Figure 5-1 RCRSS viewer shows the Kobe map

Figure 5-1 shows the RCRSS Kobe city map. For the map of the city of Kobe, Three

versions of the map are used. Map 2 and 3 has more fires, more blockades, and more

injured civilians than Map 1. The results in Figures 5-3, 5-4, 5-5, 5-6, 5-7, and 5-8 show

the average performance for the three variations of the Kobe map. Figure 5-3 shows the

overall score as calculated using the evaluation function (3.1). From the figure, it appears

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that the proposed approach outperforms the other two heuristics. Figure 5-4 gives a

plausible justification of the improved performance. It is clear that the spatio-temporal

agents are more successful that the other agents in extinguishing the fires in this map.

Kobe Map1

120

100

80
£
o 60o
in

40

20

0 44

- Priority agent
- Sample agent
- Spatiotemporal

“ 1 1 1 1 1 1“

0 30 60 90 120 150 180 210 240 270 300

Time

Figure 5-2 The scores of Kobe map round 1

Kobe Map1

160,000
140.000
120.000
100,000
80,000
60,000 4
40.000
20.000 4

0

- Priority agent
-Sample agent
- Spatiotemporal

0 30 60 90 120 150 180 210 240 270 300

Time

Figure 5-3 The safe building area of Kobe map round 1

The improved fire fighting performance of the spatio-temporal agents is also evident for

Kobe Map2, according to Figure 5-6. However, Figure 5-5 shows that this performance

improvement was not translated into a significantly better score. The reason for this

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

apparent discrepancy is that a higher number of death among injured agents resulted as

Kobe Map 2 has more blocked roads and some traffic jams delayed ambulance agents

trying to rescue injured civilians. In addition, some rescue agents were buried by the

initial earthquake in Kobe Map 2. Figures 5-7 and 5-8 show improved performance in

fire fighting and overall score for the spatio-temporal agents in Kobe Map 3.

Kobe Map2

140 -I

120 -

100 -

£
I 60-

40 -
20 -

Priority agent
Sample agent
Spatiotemporal

0 30 60 90 120 150 180 210 240 270 300

Time

Figure 5-4 The scores of Kobe map round 2

160,000
140.000
120.000
100,000
80,000 -
60,000
40.000
20.000 -

0

Kobe Map2

- Priority agent
- Sample agent
- Spatiotemporal

30 60 90 120 150 180 210 240 270 300

Time

Figure 5-5 The safe building area of Kobe map round 2

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

100 -

80-

Spatiotemporal
Priority Agent
Sample Agent

w

20 -

Time

Figure 5-6 The scores of Kobe map round 3

160,000
140.000
120.000 -

100,000 -

80,000
60,000
40.000 -
20.000 -

- SpatioTemporal
- Priority Agent

- Sample Agent

0 30 60 90 120 150 180 210 240 270 300

Time

Figure 5-7 The safe building of Kobe map round 3

From performance of the agents on the three maps for Kobe, it is clear that the spatio-

temporal fire brigades performance has been consistently better that the sample and the

priority agents. However, it was necessary to test on other cities because some techniques

may perform better on a specific map and perform poorly elsewhere.

Two additional maps are available for RCRSS: Foligno and Virtual City (VC). Foligno

map have lots of blocks, the fires are difficult to extinguish in a short time. In the tests,

the spatiotemporal agents did not extinguish the fires (like most implementations), but try

to control the fire, and reduce the damage. For VC, there are more fires, but few blocks.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the tests, the spatiotemporal agents have extinguished the fires in a relatively short

time. ------------------------------- --- - -. -..........

120 i

100 -

80 -

Spatiotemporal
Priority Agent
Sample Agent

40 -

20 -

Time

Figure 5-8 The scores of Foligno Map

120 -i

100 -

80 -

60 -
Spatiotemporal
Priority Agent
Sample Agent

40 -

20 -

Time

Figure 5-9 The scores o f Virtual City Map

The kuwata viewer that provides continuous performance statistics during each run is

not fully compatible with these two maps. The available viewer for Foligno and Virtual

City only reports the overall score as shown in Figures 5-9 and 5-10. It appears that the

spatio-temporal agents did slightly better in Foligno than the other two agents and did

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

slightly worse than the priority agents in Virtual City but still better that the sample

agents... ..

In summary, the use of the hierarchical planning and spatio-temporal utilities proved to

be beneficial and effective in multi-agent systems. In the RCRSS, it outperformed

heuristics designed for this particular environment.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6 Conclusion and Future Work :__________

The approach presented in this thesis integrates elements from game theory, decision

theory, BDI rational agent and Hierarchical Task Network planning. The combination

uses utilities to guide action selection at each level of the Hierarchical Task Network

planning and cope with changes in the environment. The main contributions of this thesis

are:

■ An approach for multi-agent hierarchical planning for heterogeneous and

homogeneous agents.

■ The use of spatio-temporal utility functions in action selection and

Hierarchical Task Network (HTN) planning.

* Demonstrating a technique for mapping BDI desires and intentions between

various levels in the HTN planner.

■ Implementing the proposed techniques using a multi-agent simulation

environment: RoboCup Rescue Simulation System. The test results are

encouraging. Fire extinguishing is pretty fast and efficient. The performance

of the police agents clearing road blockades has also improved. However,

there has not been a significant improvement for ambulance teams. Further

investigation is needed.

Our Rational Hierarchical Planning can be applied to a variety of complex dynamic

multi-agent environments. For example, a group of military robots fighting against a

group of enemy agents in a building have to assemble in nearby buildings, and coordinate

their attack on the enemy.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Recommendations for Future Research

The framework presented here provides a basis for exploring the role of Game Theory

and Decision Theory in multi-agent planning. Some of the open questions in this regards

include how deal with dynamically changing payoffs in a planning context. Some special

cases of dynamic payoffs have been analyzed. For example, Musacchio (2005) examines

monotonically increasing payoff in the context o f wireless session pricing and shows that

there exists a perfect Bayesian equilibrium in this special case. However, a planning

oriented formulation is necessary for multi-agent systems.

Second, in the hierarchical task network planning, the issue of commitment needed

remains to be an issue worth investigating. Some types of commitment like blind

commitment, single-minded commitment and open minded commitment have been

proposed. However, our experience with RCRSS shows that a better solution for the

commitment problem is still needed.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[Ambroszkiewicz and Komar 1997] S. Ambroszkiewicz, J. Komar, A Model of BDI-

Agent in Game-Theoretic Framework. Model Age Workshop, 1997

[Bowling et al 2002] M. Bowling, R. Jensen, and M. Veloso, A formalization of

equilibria for multi-agent planning Proceedings of the AAAI-2002 Workshop on

Multi-agent Planning, August, 2002

[Cavedon and Rao 1996] L. Cavedon, A. Rao, Bringing About Rationality: Incorporating

Plans Into a BDI Agent Architecture. PRICAI1996: 601-612

[Cistemino and Simi 2000] A. Cistemino, M. Simi. Layered Reactive Planning in the

IALP Teamin. in RoboCup-99: Robot Soccer World Cup III, Veloso, M., Pagello,

E., Kitano, H. (Eds.), LNCS, Vol. 1856:263-273,2000

[Claus and Boutilier 1998] C. Claus and C. Boutilier, The Dynamics of Reinforcement

Learning in Cooperative Multi-agent Systems. AAAI, pp 746-752,1998.

[Erol et al. 1994] K. Erol, J. Hendler, D. S. Nau, and R. Tsuneto, HTN Planning:

Complexity and Expressivity. In Proc. o f AAAI-94, pages 1123-1228,1994.

[Erol et al. 1995] K. Erol, J. Hendler, D. S. Nau, and R. Tsuneto. A critical look at critics

in htn planning. In IJCAI-95,1995.

[Holland 1975] J. Holland, Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, 1975.

[Guestrin et al 2002] C. Guestrin, M. Lagoudakis, and R. Parr. Coordinated

reinforcement learning. In Proceedings of the 2002 AAAI Spring Symposium

Series: Collaborative Learning Agents, Stanford, CA, March 2002.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Kaelbling et al 1996] L. P. Kaelbling, M. L. Littman and A. W. Moore. Reinforcement

Learning: A purvey. Journal of Artificial Intelligence Research, vol 4, pp. 237-285,

1996.

[Li and Soh 2004] X. Li and L. -K. S oh . Learning How to Plan and Instantiate a Plan in

Multi-Agent Coalition Formation, to appear in Proceedings o f the 2004 EEEE/WIC

International Conference on Intelligent Agent Technology (IAT2004), Beijing,

China, September 20-24,133-139,2004.

[Malone and Crowston 1990] T.W. Malone and K. Crowston. What is coordination

theory and how can it help design cooperative work systems. Proceedings of the

1990 ACM conference on Computer-supported cooperative work, Los Angeles,

California, United States, 1990.

[Morimoto 1999] How to Develop a RoboCup Rescue Agent for RoboCup Rescue

Simulation System version 0.

[Morimoto et al 2001] T. Morimoto, K. Kono, and I. Takeuch. YabAI The first Rescue

Simulation League Champion. RoboCup 2001, Team Description paper.

[Morimoto 2002] T. Morimoto. YabAPI: API to develop a RoboCup Rescue Agent in

Java, http://ne.cs.uec.ac.jp/~morimoto/rescue/yabapi

[Musacchio 2005] J. Musacchio, Pricing and Flow Control in Communications

Networks, PhD Dissertation, Dept, of EECS, UC Berkeley, January 2005.

[Nair et al 2003] R. Nair, M. Tambe and S. Marsella. Role and resource allocation in

MAS: Role allocation and reallocation in multi-agent teams: towards a practical

analysis. Proceedings of the second international joint conference on Autonomous

agents and multi-agent systems, July 2003.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ne.cs.uec.ac.jp/~morimoto/rescue/yabapi

[Rao and Georgeff 1991] A. Rao, and M. Georgeff. Modeling rational agents within a

BDI-architecture. In Second International Conference on the Principles of

Knowledge Representation and Reasoning, 1991

[Russell and Norvig 2003] S J . Russell and P. Norvig. Artificial Intelligence: a modem

approach (2nd Edition). Prentice-Hall, 2003.

[Sen and Sekaran 1996] S. Sen and M. Sekaran. Multi-agent Coordination with Learning

Classifier Systems. Proceedings o f the IJCAI Workshop on Adaptation and

Learning in Multi-Agent Systems, vol 1042, pp 218-233. editor, Gerhard Wei and

Sandip Sen, 1996.

[Stone and Veloso 1999] P. Stone and M. Veloso. Task Decomposition, Dynamic Role

Assignment, and Low Bandwitdth Communication for Real Time Strategic

Teamwork. Artificial Intelligence, 1999.

[Sardina et al 2006] S. Sardina, L. de Silva and L. Padgham. Hierarchical Planning in

BDI Agent Programming Languages: A Formal Approach. Proceedings of the 5th

Autonomous Agents and Multi-Agent Systems Conference (AAMAS-2006).

[Segerberg 1989] K. Segerberg. Bringing it about. Journal of Phil. Logic, 18,1989

[Sycara 1998] K. Sycara. Multi-agent System. Al Magazine 19(2), 1998.

[Tan 1997] M. Tan. Multi-Agent Reinforcement Learning: Independent vs. Cooperative

Learning. Readings in Agents, Morgan Kaufmann, San Francisco, CA, USA, 487—

494,1997.

[Tawfik et al 2004] A. Y. Tawfik, Z. Ibrahim, D. Liang, R. Price, L. Qin, and Z. Wu.

ARK Team Description: A Change-based Approach to Urban Rescue, Proceedings

of Robocup: The 8th RoboCup International Symposium. Lisbon, Portugal, 2004.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Verbeek et al, 2004] B. Verbeek and C. Morris. Game Theory and Ethics, The Stanford

Encyclopedia of Philosophy (Winter 2004 Edition), Edward N. Zalta (ed.), URL =

http://plato.stanford.edu/archives/win2004/entries/game-ethics/

[Vlassis 2003] N. Vlassis. A Concise Introduction to Multi-agent Systems and

Distributed Al. Informatics Institute, University of Amsterdam, September 2003.

[von Neumann and Morgenstem 1947] J. von Neumann and O. Morgenstem. Theory of

Games and Economic Behavior. Princeton University Press, 1947.

[White 1969] D. J. White Decision Theory. Chicago: Aldine Pub. Co. 1969.

[Winikoff et al 2001] M. Winikoff, L. Padgham, and J. Harland. The concepts are

described in Simplifying the Development of Intelligent Agents. In proceedings of

the 14th Australian Joint Conference on Artificial Intelligence (AI'01), Adelaide,

2001 .

[Wooldridge 2002] M. Wooldridge. Introduction to Multi-agent Systems. John Wiley and

Sons, Chichester, England

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://plato.stanford.edu/archives/win2004/entries/game-ethics/

VITAE AUCTORIS

Dong Liang joined the Temporal Inference Project (TIP) in April 2002. Since then he has

been working on many aspects of Multi-agent planning. Along with his teammates in the

research groups, he has participated in the Robocup Championship in 2004 in Lisbon,

Portugal. He is now working in Chicago, U.S.A. after the completion of this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Rational hierarchical planning and coordination in multi-agent systems.
	Recommended Citation

	tmp.1507664919.pdf.ZUTg_

