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ABSTRACT

The results o f a parametrical experimental investigation o f the energy separation 

performance o f a micro-scale Ranque-Hilsch vortex tube are presented. The tube is 2 mm 

in diameter and constructed using a layered technique from multiple pieces of Plexiglas 

and aluminum. Four inlet slots, symmetrically located around the tube, form the vortex 

flow. The hydraulic diameter o f each inlet slot is 229 microns. Three different orifice 

diameters for the cold exit are used in this experiment. They are 0.5, 0.8 and 1.1 mm. The 

multilayer technique enables the researcher to simply extend the length of the micro-scale 

vortex tube to any size ranging from 20 to 120 mm. The working fluid is filtered and 

dehumidified compressed air approximately at room temperature. The rate o f the hot gas 

flow is varied by means of a control valve to achieve different values o f cold mass 

fraction. The mass flow rates, temperatures and pressures o f the supply and outlet flows 

are measured and the performance o f the device presented in a dimensionless manner. 

The supply channel Reynolds numbers is varied over a considerable range which extends 

into the laminar regime in order to determine the minimum conditions for cooling.

Experiments conducted on a micro-scale vortex tube, for a fixed geometry and 

control valve setting, at low Reynolds numbers, based on the inlet tube hydraulic 

diameter and average velocity, exhibit an increase in dimensionless temperature in both 

the hot and the cold outlets as the Reynolds number increased from zero reaching 

maximum values before a Reynolds number o f 500 and 800 respectively. In the case of 

the hot outlet, the dimensionless temperature decreases after reaching its maximum and 

achieves a minimum value at a Reynolds number below 1500. It then increases steadily 

with further increases in Reynolds number. The cold outlet dimensionless temperature 

decreases steadily after the maximum to become negative at a Reynolds number o f 

approximately 1800. This implies that there is cooling effect at Reynolds numbers 

consistent with laminar flow. Except for very low Reynolds numbers the cold mass 

fraction is approximately constant as the Reynolds number increases for a fixed geometry 

and control valve setting. For smaller orifice diameter and hence smaller dc/D  ratio, the 

cold air mass fraction is decreased due to the increase o f the resistance in the cold flow.

iii
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The cold air mass fraction also reduced with higher L/D ratio due to high resistance in the 

cold flow.

The performance of the micro-scale vortex tube is also investigated at a number 

o f higher inlet pressures for different values of the cold air mass ratio. The inlet pressures 

considered are 200, 300 and 400 kPa at an average inlet temperature o f 293.6 K and the 

cold air mass ratio is systematically varied from 0.05 to 0.95. An increase in the inlet 

pressure causes the values o f the dimensionless cold temperature difference to increase 

over the whole range of the cold air mass fraction. Unstable operation is observed at 

small L/D that causes the shape o f the dimensionless cold temperature difference versus 

cold mass flow fraction plot to be different than the conventional plot.

The effect o f dimensionless tube length and cold exit orifice diameter on micro­

scale vortex tube performance is found to be similar to that in the conventional devices.

iv
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CHAPTER 1 -  INTRODUCTION

The development of new micro-fabrication techniques has led to a resurgence 

o f research in micro-fluidic devices. The devices that have received most attention in 

the literature include pumps, valves, flow sensors and heat exchangers [1]. The 

performance o f micro-scale Ranque-Hilsch tubes, non-moving part pneumatic 

devices that separate cold fluid from hot fluid for the purpose o f cooling, has not 

received much attention. Traditionally, the vortex tube has been used in many low 

temperature applications where the efficiency is not the most important factor. A 

micro-scale Ranque-Hilsch tube in combination with a micro-fluidic pump has 

potential application in the cooling of electronic chips.

1.1 Background

The phenomenon of temperature separation occurring inside a cylindrical tube 

was reported for the first time by a French physicist, George J. Ranque who applied 

for a US patent in December 1932 [2] and subsequently presented a paper to the 

French Society o f Physics in 1933 [3]. The discovery was further advanced, in 1947, 

by R. Hilsch [4] who published some details o f the construction o f the vortex tube 

along with the performance o f the device for different tube diameters at various 

operating conditions. The vortex tube is a very simple device without moving parts 

(i.e. diaphragm, pistons, shafts, etc.) as shown in Figure 1.

In this arrangement a stream of a compressed gas (i.e.: air) is injected 

tangentially into the vortex tube having diameter D using one or more nozzles 

symmetrically located around the tube. The injected flow expands and accelerates at 

the entrance establishing a strong swirl flow which causes a region o f increased 

pressure near the wall and a region o f decreased pressure near the axis. The presence 

o f an end wall alongside the inlet nozzles forces some of the injected gas to flow 

axially in a helical motion toward the far end of the tube (the hot end) where a control 

valve is located. If the control valve is open too much, a certain amount o f out air is

1
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drawn into the tube through the cold end opening and leaves the tube through the hot 

end. This is obviously not a desirable operating condition.

Flow inlet Control valve

End plate
Cold
end

Hot
end

Figure 1 Vortex tube schematic drawing

In the usual operation of this device, the flow through the hot end is restricted 

by partially closing the control valve. This causes some of the flow that had been 

directed to the far end o f the tube to reverse direction along the center o f the tube and 

leave the tube through the central orifice (Figure 2). The partial restriction o f the flow 

leaving through the hot end causes even the low pressure at the center o f the tube to 

be higher than atmospheric and hence flow exits the central orifice in the end wall. 

The gas escaping near the tube wall at the far end of the inlet nozzles has higher 

stagnation temperature than the incoming gas and the gas exiting through the central 

orifice has a lower stagnation temperature than the inlet gas.

Stagnation point

Hot gas flowCold gas flow

Figure 2 Hot and cold rotating streamlines in a counter flow vortex tube

2
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A possible flow pattern o f the counter flow vortex tube proposed by Fulton [5] 

is shown in Figure 3. The outward flow of energy is represented by the radial arrows. 

The stagnation point that exists on the axis o f the vortex tube indicates the starting 

point of reverse flow that represents the cold air stream which eventually leaves the 

tube through the orifice.

Flow inlet
Stagnation point

Cold flow Hot flow

Flow inlet

Figure 3 Sketch of the supposed flow pattern in a counter flow vortex tube

A very low temperature flow can be made to exit from the cold end by 

operating the device at a supply pressure o f a few atmospheres. For example, Hilsch 

[4] operated a 9.6 mm diameter tube using compressed air at approximately 600 kPa 

inlet pressure and 293 K inlet temperature to produce a cold stream temperature, Tc, 

o f 245 K and a hot stream temperature, 7*, o f 353 K. The temperatures o f the hot and 

the cold stream are varied by properly changing the ratio of the cold mass flow rate to 

the total inlet mass flow rate, y c, which can be regulated using the control valve 

located at the hot exit. The temperature difference of the hot flow, ATh= Th- T0, and 

the cold flow, ATC = TC- T0, can be plotted versus the cold mass fraction, y c, to obtain 

the performance curve of the vortex tube as indicated in Figure 4.

An alternate design o f the vortex tube is shown in Figure 5. Both the hot and 

the cold gas flow are exhausted through one side o f the tube. The end wall adjacent to 

the inlet nozzles is completely sealed and the cold flow leaves the other end of the 

tube either through the same opening of the hot gas or from an opening within the 

control valve. The former type was used for flow field investigation only. However, it

3
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has been observed by many investigators that this type of vortex tube, which is also 

called “uniflow”, has a poor performance compared to the equivalently proportioned 

counter flow vortex tube type.

0.0 1.0Cold mass flow rate
Total mass flow rate

Figure 4 Typical performance curves of the vortex tube

Flow inlet

End plate

Control valve

Orifice opening

Hot
exit

Cold
exit

Hot
exit

Figure 5 Uniflow vortex tube with one opening at the hot end

Most of the previous investigators referred to the Ranque-Hilsch vortex tube effect as 

a temperature or energy separation process. This term will also be used in this work

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



although the terminology might not be quite accurate to describe the process. It is 

important to note that there are no hot and cold molecules to be separated from each 

other as imagined by James Clerk Maxwell [6]. In his thought experiment, Maxwell 

imagined a container filled with gas and separated by a wall into two compartments. 

A little “demon” guards a trap door between the two compartments, looking at 

oncoming molecules on both sides. Depending on their speeds, the demon opens or 

closes the door so that when a faster than average molecule flies from one 

compartment toward the door, the demon opens it, and the molecule will fly to the 

other compartment. Eventually, the molecules faster than average will be collected in 

one compartment and the slower one will be collected in the other compartment. 

Since average molecular speed corresponds to temperature, this will result in a 

temperature difference between the two compartments. The result is a hot, high 

pressure gas on one side, and a cold, low pressure gas on the other. Although the net 

effects o f the Ranque-Hilsch vortex tube are similar to Maxwell demon, the effect of 

the former is to establish a total radial temperature gradient produced by energy 

transfer from the axis o f the tube to the periphery and not to separate hot, fast moving 

molecules from slower, cold ones.

1.2 Applications of Vortex Tube

Despite its low efficiency, the simplicity, robustness and the feature o f no 

moving parts makes the vortex tube attractive for many low temperature applications 

(below zero degree Celsius) where the use o f conventional cooling processes is not 

viable due to technical requirements. Such low temperature applications would 

include cooling machine parts, dehumidification o f gas samples as well as cooling o f 

electronic control enclosures and environmental chambers. There has also been an 

attempt [7,8] to replace the conventional expansion valve in a refrigeration cycle with 

the vortex tube.

5
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1.3 Thesis Outline

In Chapter 2, a literature review is presented covering the experimental, 

theoretical and numerical work previously conducted. Chapter 3 describes the design 

of the micro-scale vortex tube, the component details, the instrumentation used and 

the experimental setup as well as experiment methodology. The experimental results 

are presented in Chapter 4 followed by an extensive thermodynamic analysis and 

discussion. Detailed designs drawings o f the micro-scale vortex tube, an uncertainty 

analysis as well as flow rate and Reynolds number calculations are included in the 

appendices.

6
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CHAPTER 2 - LITERATURE REVIEW

The most recent review of the literature related to the Ranque-Hilsch vortex tube 

is given in the dissertation by Gao [9]. Previous reviews [10,11 and 12] reveal 

hundreds o f papers dealing with this topic.

In spite o f the large volume o f research that has been devoted to this subject over 

the years, there is still disagreement regarding the mechanism that accounts for the 

operation o f this device. Although it has been shown that energy separation can occur 

in laminar flow [13,14 and 15] most explanations involve turbulent fluctuations [16]. 

Kurosaka [17] gives an acoustic streaming explanation while others claim that the 

operation is based on secondary flows and a thermodynamic refrigeration cycle [18].

The only study that was specifically directed towards micro-scale vortex tube 

devices was that o f Dyskin and Kramarenko [19]. They reported experimentally 

determined performance characteristics (adiabatic efficiency) for vortex tubes 

operating with a pressure ratio, fV P c, o f 6 with diameters o f 1, 2 and 3 mm. The
c c c

corresponding mass flow rates were 14.3 x 1 0 ', 40.0 x 10' and 94 x 10 kg/sec 

respectively. Although details o f the geometry are not given, an estimate o f the inlet 

Reynolds numbers used for these cases yield values greater than 6000. It was, 

however, noted that the cooling effect decreased with decreasing flow rate. This is 

consistent with the speculation o f Negm et al. [20] that the cooling effect should 

decrease with decreasing Reynolds number.

The previous investigations o f the Ranque-Hilsch vortex tube can be divided 

basically into three main groups. These groups are experimental, theoretical, and 

numerical studies and they will be discussed briefly in the following sections.

2.1 Experimental Studies

The experimental studies are concerned with the effects of varying the 

geometry of the vortex tube components; focus on the details o f the flow field inside 

the vortex tube and investigating the effect o f using different working fluids other 

than air. Most o f the experimental studies aim to determine the physical geometry of 

the tube required for optimum performance.

7
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2.1.1 Vortex Tube Geometry

Following Hilsch’s publication in 1947 [4], many investigators studied the 

effects o f varying the vortex tube geometry such as tube diameter (£)), tube length 

(Z), orifice diameter (dc) and nozzle diameter (dn).

Dyskin and Kramarenko [19] found that by using a conical tube having 3° of 

tapered angle, the adiabatic efficiency was 10-12% lower than that when a cylindrical 

tube is used. Piralishvili and Polyaev [21] use what they called a “double circuit 

vortex tube” with a larger conical angle tube to improve the performance.

Keyes [22] found that the tube diameter is the most important geometrical 

variable influencing the vortex strength as the periphery Mach number increases with 

the reduction of the tube diameter. He reported that this improvement is due to a 

decrease in the turbulent wall shear as a result of the decrease in the tangential 

peripheral Reynolds number. The vortex tube diameters used in the study were 16, 25 

and 50 mm.

Negam et al. [20] stated that the vortex tube performance depends only on 

Reynolds number for geometrically similar tubes and for the same operating 

conditions. They found that a vortex tube diameter gives the maximum cold 

temperature drop at different inlet pressures of 16 mm. Their finding agrees well with 

Hilsch [4] experiment conducted on 4.6, 9.6 and 17.6 mm tube diameters. They 

concluded that the tube performance improves with an increase in its diameter.

Many investigators reported that the tube length should be many times longer 

than the tube diameter for better temperature separation. Hilsch [4] for example found 

that the L/D  ratio should be 50 for optimum performance. Saidi and Valipour [23] 

found that the optimum value for the tube length to the tube diameter ratio is 20 < 

L/D  < 55.5. Furthermore, they found that for L/D < 20 the energy separation 

decreases leading to a decrease in both cold air temperature difference and efficiency. 

In the case o f the micro-scale vortex tube, the optimum L/D  ratio found by Dyskin 

and Kramarenko [19] was around 60. Contrary to what other investigators reported, 

Dombrand [14] found that tube length need not be as long as what was believed 

necessary. Although for certain tube geometry, the L/D ratio used by him was 1.4, 2.6

8
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and 3.8, he found, however, that the maximum efficiency would occur at L/D greater 

than 20-25.

There is more agreement on the orifice diameter, dc, which should be around 

0.5D for maximum cold air temperature difference. Most o f the previous studies 

found that the optimal orifice diameter and hence the d /D  ratio would be in the range 

o f 0.4 to 0.6. Dombrand [14] found that if  a shorter tube length is used with greater 

cold air mass ratio, a larger orifice diameter should be used to obtain maximum 

efficiency and a smaller orifice diameter to be used in case of low cold air mass ratio. 

He further investigated the effect of using a tapered orifice in diffusing the rotating 

flow to lower the back pressure. The results he obtained, however, do not show any 

appreciable gain in vortex tube performance. In explanation, he stated that either the 

rotating flow through the orifice diffuses efficiently without tapering it or the tapered 

orifice does not diffuse the rotating air.

Sublikin [24] concluded that the cold orifice diameter, dc, is not an important 

parameter and has little effect on vortex tube performance.

The other parameter that influences the performance o f the vortex tube is the 

inlet nozzle. Dombrand [14] investigated five different types o f nozzles. Among them 

are round tangent, round offset, and rectangular tangent. The round tangent nozzle 

gave the best results and a similar round nozzle which is offset by a very slight 

amount was the poorest. The optimum vortex tube performance was obtained at an 

equivalent nozzle diameter ratio, d„/D, between 0.25 and 0.27. Sibulkin [24] reported 

that the inlet nozzle height is one of the important geometrical parameters having a 

significant effect on the vortex tube performance. He noticed that by increasing the 

inlet nozzle height both hot and cold temperature differences increase.

Soni and Thomson [25] conducted an extensive parametric study to describe 

the optimal performance. They utilized an empirical regression analysis to derive a 

functional relationship between maximum cold temperature drop and the independent 

design variables. Optimal design parameters obtained by them are shown in Table 1. 

They reported that to obtain maximum cold temperature drop a smaller nozzle 

diameter with a larger orifice diameter should be used.

9
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Table 1 Optimum design parameters for Soni and Thomson [25]

Design Parameter 

Tube performance nozdearea orificearea J

tube area tube area D

Maximum ATC 0.11 ±0.01 0.08 ±0.01 >45 26 mm

Maximum q 0.084 ±0.001 0.145 ±0.035 > 45  18 mm

Different types of material were used to construct the vortex tube. The most 

important factor in selecting the material is the surface roughness o f the inner tube 

wall. As reported by Dombrand [14], the vortex tube performance would decrease 

with an increase of the surface roughness. The material of construction o f the vortex 

tube can be either steel, copper and aluminum or even a plastic or glass to allow flow 

visualization.

2.1.2 The Internal Flow Field

The desire to optimize the tube parameters for maximum cold temperature 

drop led to investigations regarding the mechanism behind the temperature separation 

inside the vortex tube. Investigations o f the internal flow pattern and measurements o f 

the velocity vector components, pressure and temperature distribution inside the 

vortex tube were conducted to shed some light on the mechanism of the energy 

separation. These can be used, at the same time, as a basis for the theoretical analysis 

o f the vortex tube phenomenon. The earliest investigation of the flow field inside the 

vortex tube was the one conducted by Dombrand [14] in 1948. He uses a 1 mm close 

end tube with a very small hole drilled on the wall near the closed end. A number of 

these tubes were inserted at specific locations along the tube length with the ability to 

be moved radially inside the vortex tube. This technique enabled a qualitative 

indication of the velocity field. He reported that the insertion of too many probes 

broke the vortex pattern. Other major investigations o f this type were published by 

Hartnett and Eckert [26], Keyes [22] and Bruun [27]. The vast majority o f this type of 

experiment utilize probes such as thermocouples to measure the temperature
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distribution inside the vortex tube. To obtain the pressure distribution inside the 

vortex tube, a number o f Pitot tubes are inserted at different sections along the length 

o f the vortex tube with the capability to move the Pitot tube radially toward the axis 

o f the vortex tube. Some investigators, such as Ahlbom and Groves [28], developed a 

technique to rotate the Pitot tube 360° around its axis to obtain the flow angles (or 

velocity vectors). In order to reduce the error caused by inserting these probes inside 

the vortex tube, most o f the internal studies of the flow field were conducted on a 

relatively larger tube diameter. It should be noted, however, that the swirling flows 

are very sensitive to the disturbance created by inserting relatively large pressure 

probes. Furthermore, when these probes are inserted in a turbulent flow, they are 

subject to errors caused by turbulent fluctuations [29]. Therefore, more recent internal 

investigations by [9 and 29] utilize hot-wire anemometers to measure the velocity 

components. The advantages of the hot-wire probes over the pressure probes are its 

small size (causing minimal disturbance to the flow), excellent spatial resolution, 

good signal sensitivity and high frequency response which enables the study of 

turbulence [30]. Sibulkin [24] was the earliest investigator to utilize the hot-wire 

anemometer to measure the velocity in a uniflow and a counter flow vortex tube but 

could not obtain the circumferential velocity components. Fitouri et al. [29] utilized a 

single yaw hot-wire anemometer to measure the three velocity components and the 

turbulence intensity.

The results obtained from the internal study enabled the investigators to draw 

a map of the flow field inside the vortex tube. As reported by many investigators such 

as [26, 27 and 29], the tangential velocity distribution determined at different 

locations inside the vortex tube show that the flow in the inner region rotates like a 

rigid body (forced vortex). The magnitude of the velocity is constant at any point and 

is a function of the radius:

W
—  = constant (1)
r

where W is the tangential velocity and r is the distance from the center o f the flow. In 

the outer region, the tangential velocity decreases due to wall shear stress and reaches 

zero at the wall. This region is referred to a “wall bounded” region.

11
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Figure 6 Swirl velocity variations with radius

It should be recalled, however, that the flow inside the vortex tube is three 

dimensional, confined and rotating at a high velocity so that inserting probes at any 

location could alter the flow field significantly causing inaccurate readings. As 

reported by Bruun [27], for instance, inserting any probe 30 to 40 mm radially in any 

o f the ten cross sections along the vortex tube increased the total temperature o f the 

cold stream measured in the cold outlet by 4 °C. Keys [22] mentioned that the data 

obtained by inserting a probe directly in the flow field is of uncertain validity due to 

the influence o f the probe itself. An alternate solution to this problem is the use of 

non-contact measurement technique such as laser Doppler anemometer (LDA). This 

method requires the flow to be seeded in order to produce the necessary Doppler burst 

signals that are used to deduce the flow velocity. The ideal particles are small enough 

to accurately track the flow, yet large enough to produce an adequate signal to noise 

ratio (SNR) [31]. Real seed particles, however, are seldom ideal. By using the largest 

particles, the data is much more easily obtained and the measurements o f the particle 

velocities are more accurate because o f the improved SNR but the particles velocities 

are not representative o f the fluid velocity. Although this technique constitutes some 

technical difficulties such as distortion o f the optic beam due to it’s interaction with 

the curved surface o f the cylindrical chamber and the time required in setting up the

12
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equipment, it is still considered the more accurate method of measuring the velocity 

components inside the tube.

2.1.3 Effect of Working Fluid

The vast majority o f the work concerning the vortex tube used compressed air 

as the working fluid. A number o f investigators, however, studied the effect of gas 

other than air. Keys [22] used nitrogen and helium instead of air. Linderstrom [32] 

used the vortex tube as a gas separator to separate a different composition o f gas 

mixtures. He injected a mixture o f oxygen and nitrogen, a mixture o f oxygen and 

carbon dioxide and a mixture of oxygen and helium. A mixture o f compressed gases 

flown into the vortex tube separate into individual gas streams by the effect of 

differential centrifugal forces acting on them. In their attempt to separate methane and 

nitrogen gases using vortex tubes, Kulkami and Sardesai [33] found that there was 

partial gas separation leading to a higher concentration of methane at one exit in 

comparison to the inlet and a lower concentration at the other exit.

Ambrose [7] injected a saturated liquid o f carbon dioxide in the vortex tube in 

an attempt to replace it with the throttling device used in the refrigeration cycle in 

order to increase the coefficient o f performance o f the refrigerator. He proposed a 

refrigeration cycle utilizing CO2 as a refrigerant instead o f Freon due to its high 

potential refrigeration gain at a fairly low pressure ratio. A large temperature 

difference was generated by expanding a saturated liquid carbon dioxide in the vortex 

tube but the temperature o f the hot flow was not sufficiently high to permit heat 

rejection through the gas cooler.

In the experiment conducted by Stephan et al. [34], no temperature difference 

was found in the cold flow when air or oxygen is used as a working fluid. The results 

o f their experiment, however, indicated that the cold temperature drop when helium is 

used as a working fluid is larger than that when air or oxygen is used. This is due to 

the fact that the molecular weight o f the helium is much smaller than the molecular 

weight o f air or oxygen.

13
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The correlation mentioned in Figure 7 by Negam et al.[20] to predict the 

maximum cold temperature drop indicates that the specific heat ratio, c /c v, has a 

significant influence on the performance of the vortex tube. It was found that gases 

with a higher specific heat ratio, k, have a better performance than the gases having a 

lower specific heat ratio.

0.25
( a - S ,l (k-S )  I k(Te ~ Tc)ma.x ~ Tff(I-n

0.20  -

0.15 -
A T

0.10  -

k =  1.66 
k =  1.40 
* = 1 .3 3

0.05 -

0.00

2 3 4 5 61

Pressure ratio, Pe/Pe

Figure 7 Effect of specific heat ratio, k, on the maximum cold temperature

drop [20]

In the equation indicated in Figure 7, n is the pressure ratio, P JP C, « is the 

minimum change o f specific entropy, , reported by them to equal 0.67 and ks
c

is the specific heat ratio o f the working fluid, — .

Balmer [35] injected liquid water at high inlet pressure (50 MPa) into a 

commercially available vortex tube. Although the results showed a significant 

temperature difference of about 15 °C between the cold and the hot flows, both flows 

temperature, however, was above the inlet water temperature. From his work, Balmer
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concluded that the energy separation in these devices is not limited to compressible 

gases. Using the second law of thermodynamics, theoretical analysis establishes that 

net entropy producing temperature separation effect is also possible when 

incompressible liquids are used in the vortex tube.

2.2 Theoretical Studies

It is important to distinguish a change in the temperature o f a fluid that is

associated with a change in the fluid velocity from that due to work done or heat

transfer from the fluid.

Consider the portion of fluid entering the vortex tube that is emitted from the 

cold exit. If there is no work done or heat transfer involved in the flow, application o f 

the energy equation yields:

internal flow  kinetic
energy + work + energy ~

I n n p t i r
enthalpy + energy = constant (2)

u 2
n + —  = constant (3)

For a perfect gas:

h = cp T  (4)

where cp is the specific heat of the inlet air at constant pressure, taken as 1005 J/kg K. 

Or:

u 2T  + -------= constant (5)

The thermodynamic (or static temperature) T  can therefore be seen to change 

if the fluid velocity changes even though no heat is transferred or work is done on the 

fluid.
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The temperature change that is important in the vortex tube is one that is only 

due to heat transfer. Defining the total temperature as:

T = T  +
2 c .

(6)

the energy equation becomes T0 = constant. It will only change if heat is transferred 

or work done on the working fluid.

Following the qualitative description o f Hilsch [4], many theoretical 

approaches were published in an attempt to analytically predict the distribution of 

velocity and temperature, and explain the energy transfer process. The theoretical 

analyses reported are either based on analytical simulations or on results obtained 

from the experimental work.

The explanation given by Ranque [2] attributes the energy separation process 

to the expansion of gas from a region of high pressure near the periphery to a low 

pressure in the region near the axis. Hilsch [4] presented the same thought in 

explaining the mechanism of the energy separation. He included the effect of the 

internal friction which causes the energy to flow from the axis region in the outward 

direction causing the temperature to increase in the periphery. Kassner and 

Knoemschild [13] explained that the cold temperature drop in the center region is due 

to the gas expansion and the hot temperature in the outer region due to the shear 

stresses that cause the flow in the inner region to be a forced vortex. A number of 

earlier theories suggested that the energy separation can occur in laminar flow as in 

the work presented by [14 and 15]. They considered the radial velocity instead of the 

tangential velocity in determining the Reynolds number.

In the two dimensional analytical model presented by Deissler and Perlmutter 

[16] and Reynolds [36] it was concluded that the turbulent mixing and turbulent shear 

work done on elements causes the heat transfer between flow layers by temperature 

and pressure gradients and hence causes the energy separation inside the vortex tube.

Kurosaka [17] suggested that the acoustic streaming of the vortex whistle is 

responsible for the Ranque-Hilsch effect. He explains that when the whistle is
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inaudible, the steady state tangential velocity distribution in the radial direction is not 

in the form o f a forced vortex and the steady state temperature is uniform. As the 

whistle becomes audible, the velocity profile converted to a forced vortex causing the 

temperature distribution to be separated into cold stream near the axis and hot stream 

near the periphery.

Ahlbom et al. [18] describe the Ranque-Hilsch energy separation phenomenon 

as a heat pump mechanism which is enabled by a secondary circulation flow 

imbedded into the primary vortex. There are three processes in the heat pump. All 

these processes exist in the vortex tube. These are the working fluid (1) as indicated 

in Figure 8 which moves heat between a high pressure region and a low pressure 

region, the fluid is compressed at a temperature higher than the surrounding 

temperature to give off heat (2) and the expanded working fluid is colder than it’s 

surrounding to absorb heat (3). The processes o f compression (4) and expansion (5) 

occurred due to random fluctuations.

Flow inlet

Secondary
circulationHeat transfer 

region —
Hot
end

Cold
end

........  nn nm niiiH iiiHii i imu)

Figure 8 Secondary flow of the vortex tube [18]

Braun [27] and Hinze [37] explained that the mechanism of the energy 

separation is mainly caused by adiabatic contraction and expansion of turbulent 

eddies in a centrifugal field. To explain this mechanism, particles are considered 

fluctuating between the high pressure and the low pressure region as shown in Figure 

9. As the particles move from a low pressure region A to a higher pressure region B,
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it will undergo an adiabatic compression and the temperature o f the particles would 

increases to a level above the surrounding temperature. As a result, heat transfer will 

take place from the particles to the surrounding region at B increasing its temperature. 

At the same time, equivalent particles from the high pressure region B undergo an 

adiabatic expansion while moving to a lower pressure region A lowering its 

temperature to a level below the surrounding’s temperature, causing the flow at that 

region to have a lower temperature. This process o f adiabatic compression and 

expansion is similar to that which occurs in an ideal reverse Brayton cycle as shown 

in the T-s diagram in Figure 10. With the higher pressure difference between the axis 

o f the tube and its periphery and with the higher level of fluctuation, the level of 

cooling would increase, lowering further the temperature of the flow leaving through 

the center o f  the tube.

Low < ........... Pressure ■■■■■........High

Figure 9 Expansion and contraction of turbulent eddies as they move
radially
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T P = const.
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Figure 10 Ideal reversed Bray ton cycle

2.3 Numerical Studies

In the numerical studies conducted on vortex tubes, one o f the computational 

fluid dynamics (CFD) packages such as FLUENT, CFX or STAR CD is used to solve 

the continuity, Navier-Stokes and energy equations. This allows prediction of the 

internal flow pattern, as well as temperature and pressure distribution inside the tube.

Cockerill [10] uses a two dimensional numerical model to investigate the flow 

field inside a uniflow and a counter flow vortex tube. The flow is assumed to be an 

axis-symmetry. He applied a number o f  modifications to the k-e model to account for 

the anisotropic flow inside the vortex tube. The computations give results for the 

swirl profiles that qualitatively comparable with the experiments conducted by him. 

The energy separations, however, are not predicted well. His numerical solutions 

show that the flow near the axis becomes warmer than the periphery.

Frohlingsdorf and Unger [38] investigate the compressible and turbulent 

vortex tube flow numerically by modeling the Braun experiment [27]. The numerical 

code used is CFX. The use o f the k-e turbulence model leads to significant differences 

between measured and calculated tangential velocity profiles. By replacing the k-e 

turbulence model with the correlation reported by Keyes [22] in calculating the ratio
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of the turbulent to laminar viscosity, — , a better approximation of the measured
Ml

results were achieved. They found that by increasing the turbulent Prandtl number 

from 0.9 to 9.0 produces the same cold gas total temperature difference as in Braun’s 

experiment [27].

Bezprozvannykh and Mottl [39] report that various levels o f complexity in 

turbulence modeling are suitable for vortex tube analysis. They use a three 

dimensional numerical model to investigate the energy separation for incompressible 

and compressible flows for water and air cases correspondingly. The commercial 

code used is FLUENT. For air as a working fluid, the maximum total temperature 

difference obtained, AT = Tc -  T0, is 1 K only. For water, however, no temperature

differences were obtained.

Behera et al. [40] implement a three dimensional numerical model in an 

approach o f optimizing the design of the vortex tube using the k-e turbulence model and the 

Star-CD commercial code. The numerical investigations enable them to obtain the three 

velocity components of the flow which is difficult to obtain experimentally due to disturbance 

of flow by measuring probes. The analyses show that the flow has forced and free vortex 

components. Optimum L/D ratio that delivered maximum cold temperature difference is 

found to be in the range of 20 to 30 and for optimum dc/D is found to be 0.5.

2.4 Research Objective

The objective o f this study is three fold:

1. To investigate the characteristics o f a micro-scale vortex tube at low 

inlet pressure ranging from approximately 2.5 to 75 kPa and to obtain 

the critical inlet Reynolds number at which the cooling effect will be 

established.

2. To obtain the performance curves o f the micro-scale vortex tube as a 

function o f cold air mass ratio at higher inlet pressure values o f 200, 300 

and 400 kPa.

3. To determine the effect o f L/D  and dc/D  ratio on the performance o f the 

micro-scale vortex tube.
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CHAPTER 3 -  EXPERIMENTAL METHODOLOGY

This research is an investigation o f a micro-scale vortex tube as an alternative 

cooling method for electronic micro-chip devices. To achieve this goal, a micro-scale 

vortex tube is designed, fabricated and tested. The setup is designed for flexible 

geometrical adjustment. This work provides detailed discussion on the various design 

parameters. Therefore, the main objective of this research is to experimentally 

investigate the characteristics o f a micro-scale vortex tube at supply channel 

Reynolds numbers that extend from the laminar into the turbulent flow regime in 

order to determine the minimum operating conditions o f these devices for cooling 

applications. In addition, the effects o f tube length and cold outlet orifice size on the 

performance characteristics o f micro-scale vortex tubes are determined. The 

experiments are conducted to determine the differences, if  any, o f the micro-scale 

vortex tube characteristics to conventional vortex tubes.

3.1 The Micro-Scale Vortex Tube

Most o f the previous experimental studies are conducted on fairly large tube 

diameters (i.e.: 1 0 - 2 5  mm) [10,20]. To reduce the effect o f inserting measurement 

probes on the vortex flow pattern in the case o f the internal studies, the diameter of 

the vortex tube used is even as large as 50 - 96 mm in some studies [22,26 and 27]. 

Investigating a micro-scale vortex tube has not been reported in detail yet. The only 

study that is specifically directed towards micro-scale vortex tube devices is that o f 

Dyskin and Kramarenko [19]. They report experimentally determined performance 

characteristics (adiabatic efficiency) for vortex tubes operating with a pressure ratio 

o f 6 with diameters o f 1 ,2  and 3 mm.

3.2 Apparatus Description

For the purpose o f this study, a 2 mm diameter vortex tube is designed and 

manufactured at the Technical Service Center (TSC) o f the University o f Windsor. 

The tube diameter is chosen to be the smallest possible that existing manufacturing
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techniques permit. The design and the fabrication of such small a size vortex tube is 

necessarily different than the conventional one. A layered technique using multiple 

pieces o f Plexiglas and aluminum is used for accurate machining of the inlet, orifice 

and control valve assembly. The design allows length increment changes hence 

different L/D  ratios. The cross-sectional area of each piece has a dimension of 30 mm 

by 30 mm. The length o f each piece varies according to its location within the 

assembly. In the following paragraphs, a detail description o f the main parts of the 

micro-scale vortex tube is presented.

3.2.1 Nozzle Section

As the scope of this research is to investigate the vortex tube characteristics at 

supply channel Reynolds numbers that extend from the laminar into the turbulent 

flow regime, the supply air slots are designed to be very small to ensure a laminar 

flow in that region at low supply pressure. The hydraulic diameter o f the supply 

channel is 229 microns. This is the smallest possible dimension that can be machined 

in the TSC of the University of Windsor. This gives a ratio o f nozzle area, A„, to the 

tube area, Ad, o f 0.11 which is similar to that suggested by Soni and Thompson [25] 

to obtain a maximum cold temperature difference ATC.

The main inlet nozzle section is machined from one piece made o f Plexiglas 

material and having square cross section area o f 30 by 30 mm and 20 mm length. As 

depicted in Figure 11, this piece consists o f the inlet nozzle for the compressed air 

line (1) attached to the body of this section o f the vortex tube. A 4 by 3 mm channel 

(3) is connected to the inlet nozzle (1) through a longitudinal hole (2). The channel

(3) is provided to act as a pressurized manifold so that the flow enters the inlet slots

(4) at a pressure and temperature very close to that measured at the inlet nozzle (1). 

The vortex is formed by four inlet slots (4) that are symmetrically located around the 

2 mm tube diameter (5). The dimensions of each inlet slot (4) are 0.382 mm wide and 

0.164 mm in height. The hydraulic diameter o f the inlet slot, d„, is calculated using 

the following formula:

<f„ = --------^ --------  (7)
wetted perimeter
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where A  is the cross-sectional area of the inlet slot. The hydraulic diameter is found to 

be equal to 229 microns.

©  " ,

®j
(a) Front view o f the inlet nozzle (b) Perspective view showing the details

section o f the inlet nozzles

Figure 11 Inlet nozzle section

3.2.2 Cold End Orifice Section
Three different sizes o f the cold orifice diameter are used in this research to 

investigate its effect over the vortex tube performance. These sizes are 0.5, 0.8 and

1.1 mm and give dJD  ratios o f 0.25, 0.4 and 0.55 respectively. The cold orifice piece 

forms one end o f the vortex tube while the control valve piece forms the other end of 

the vortex tube. The material o f construction is aluminum.

(a) Front view o f the orifice section (b) Side view o f the orifice section

Figure 12 Cold end orifice section
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Figure 12 shows the front and the side views of the cold end section. The three 

pieces are identical except for the size o f the orifice diameter.

3.2.3 Extension Pieces

A number of extension pieces are fabricated to allow adjustment o f the tube 

length. The material o f construction for all pieces is Plexiglas. The lengths o f the 

extension pieces are 5, 10 and 20 mm to give flexibility in selecting the tube length 

and hence the L/D  ratio as shown in Figure 13.

Inlet slot

Cold exit

Manifold

Hot exit

Control valve

Hot exit

Figure 13 Longitudinal cross-sectional view of the vortex tube assembly

3.2.4 Hot End and Control Valve Section

The hot section, as shown in Figure 13, consists o f the control valve to adjust 

the amount of flow leaving the tube through that end. The block section is made of 

aluminum and the control valve is made of steel. The end of the control valve is 

tapered at 60°. A lock nut is provided to prevent the movement o f the valve at a 

certain opening where desired.

3.2.5 Assembly

The most important point to be considered at this juncture is the alignment o f 

the different parts o f the vortex tube. The minimum number of pieces that can be used
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to form a vortex tube with smallest length o f 20 mm is three pieces - the main inlet 

nozzle piece, the cold and the hot end piece. The maximum numbers o f pieces that 

can be used is seven to form a net tube length of 100 mm. Any eccentricity in the 

position o f the cold end opening or the extension pieces may cause a significant 

disruption to the rotating flow. To avoid this problem, two stainless steel guide pins 

are used to align the multi-layers forming the vortex tube. The Plexiglas layers are 

sandwiched between two aluminum pieces which represents the hot and the cold end 

o f the vortex tube as shown in Figure 14. Four bolts and nuts are used to hold the 

different pieces o f the vortex tube and are passed through longitudinal holes at the 

comers o f each piece. Design drawings showing the details o f the micro-scale vortex 

tube using the multi-layer technique are shown in Appendix A.

Nozzle
section

F.xtension
pieces

Control
valve

Figure 14 Expanded view of the micro-scale vortex tube
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3.3 Instrumentation

The vortex tube in this case is considered as a control volume having three 

boundaries as shown in Figure 15. The variables to be evaluated are the pressure, 

temperature, and mass flow rate o f the inlet flow, cold and hot boundaries. The 

subscripts o, c and h denotes for the inlet flow, cold and hot exit respectively.

Tt

P<

P c

me

K

Flow
inlet

Cold
exit

Micro vortex tube

Hot
exit

Figure 15 Vortex tube control volume

The three important inlet and exit flow quantities that need to be recorded 

during the experiment are the pressures, temperatures and the flow rates. The results 

obtained are eventually used to determine the performance of the vortex tube and to 

investigate the effect o f geometry on the cold temperature drop. The following 

paragraph discusses the instrumentation used during the tests and the applicable 

calibration procedure.

3.3.1 Pressure Measurement

Low supply inlet pressures ranging from 2 to 17.5 kPa are measured using a 

water manometer with an uncertainty o f ± 0.01 kPa. Pressures in the range of 17.5 to 

82 kPa are measured using a Bourdon tube gage with an uncertainty o f ± 1.7 kPa and 

for higher supply pressures o f 200, 300 and 400 kPa, a different Bourdon tube 

pressure gage is used that had an uncertainty o f ± 3.4 kPa. The hot and cold flow
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pressure measurements are obtained using a digital manometer with an uncertainty of 

± 0.01 kPa.

3.3.2 Temperature Measurement

For the process o f the energy separation in the vortex tube, the temperature of 

the cold and hot exit flow is the most important variable required as these values will 

be used to find the performance of the micro-scale vortex tube. The temperatures of 

the inlet, cold and hot air are measured using type - T (Copper Constantan) 

thermocouple probes. These thermocouples are calibrated using an ice bath and 

boiling water as temperature standards. The correction factors obtained from the 

correction curves are used to adjust the readings o f the temperatures measured as 

shown in Table 2.

Table 2 Correction used for temperature measurements 

Temperatures to be corrected Correction factor

Temperature o f the inlet flow, T0 

Temperature o f the cold flow, Tc 

Temperature o f the hot flow, Th

3.3.3 Flow Rate Measurement

The volumetric flow rate, Q , o f air exiting the cold and the hot openings are 

measured using separate rotameters. The rotameters are calibrated while connected to 

the apparatus as shown in the experiment setup in Figure 16 so that both are subjected 

to the same working pressures as encountered in the experiment to avoid the need for 

corrections. The results o f the cold and the hot exit flow are obtained. Assuming an 

ideal gas, the density o f the hot and the cold gas are calculated using the equation o f 

state:
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(8)

The mass flow rate, m , leaving the cold and the hot ends are calculated from:

m = Qp  (9)

The total flow rate entering the apparatus is determined by the summation of 

the cold and the hot flow.

3.4 Experimental Facility

The experimental test facility used for this study is shown schematically in 

Figure 16. Dry and filtered compressed air is used throughout this experiment to 

avoid any condensation o f the moisture in the compressed air due to the low cold air 

temperature exiting through the orifice. The air is dehumidified with a refrigerant 

dehumidification system. As indicated in Figure 16, the compressed air passes 

through a control valve (1), 5-micron air filter (2) and a pressure-regulating valve (3) 

before entering the vortex tube. A water manometer (4) is used to accurately measure 

the low supply pressure which ranges from 2 to 17.5 kPa. A pressure gage is used for 

the pressures above this range.

Dehumidifier

Compressed

air line

16.45 1

Hot exitCold exit

Figure 16 Schematic of the experiment setup
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The temperatures o f the inlet, cold and hot air are measured using type T 

thermocouple probes located at (5), (8) and (11) respectively. The compressed air is 

injected into the vortex tube through the manifold (6) and then the inlet slot (7). The 

cold exit pressure, Pc, and hot exit pressure, Ph, are measured using digital 

manometers (9) and (12). The volumetric flow rate o f air exiting the cold and the hot 

openings are measured using rotameters (10) and (13).

3.5 Experimental Methodology

Two types o f experimental tests are conducted to investigate the characteristic 

o f the micro-scale vortex tube in this research. These are the low pressure test and the 

high pressure test. Each test is conducted at different tube length, L, orifice diameter, 

dc and inlet pressure, P0. A set o f nine combinations o f vortex tube geometrical 

parameters consisting o f three different L/D  ratios (10, 30 and 50) with three different 

d /D  ratios (0.25, 0.4 and 0.55) form the geometry of the devices under investigation. 

The following paragraphs discuss the methodology and the aim o f each test.

3.5.1 Low Pressure Tests

In the first series o f tests, the performance characteristics o f the micro-scale 

vortex tubes are determined at low supply pressure and fixed geometry. This means 

that the control valve is arbitrarily opened to a certain setting and kept constant 

throughout the entire set of tests as the supply pressure is varied. The low supply 

pressures range from approximately 2.5 to 82 kPa.

The measured cold and hot air dimensionless temperatures leaving the vortex 

tube for various Reynolds numbers, based on the inlet slot o f the supply air, are

T — j  'f  _ j
determined using the expression, —------  and —-----  respectively. These parameters

To Ta

are chosen to eliminate the effect o f the inlet air temperature.

The aim o f this test is firstly to determine the critical Reynolds number at 

which a cold temperature drop will be established and secondly to observe changes in 

the cold mass fraction, yc, with changes in Reynolds number for different tube
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geometry with a fixed hot end valve setting. The inlet Reynolds number is determined 

from:

Re = (10)
4  A ft

where m is the air mass flow rate entering the vortex tube through one slot calculated 

using Equation (9), dn is the equivalent diameter o f the inlet slot and it is equal to 229 

microns, A is the cross-sectional area of one inlet slot and found to be 6.25 x 10‘8 m2 

and jj. is the viscosity o f the inlet air taken as 1.82 x 10‘5 kg/m.s.

The resistance o f the rotameters located at each of the hot and cold outlets 

combined with the low operating pressures in the experiments significantly alter the 

exit pressures o f the cold and hot exits. Each is altered by a different amount which 

effectively creates a different exit pressure in each case. To avoid this problem, the 

flow o f the cold or the hot stream is restricted using a flow restriction device in such a 

manner that the pressure of the cold and hot air exit is approximately equal.

3.5.2 High Pressure Tests

The second series of tests is conducted using the same tube geometrical 

combinations as in the low pressure test. In this case, however, the characteristic 

performance o f the micro-scale vortex tube at higher inlet pressures and at different 

cold air mass ratio, yc, is determined. The inlet pressure o f the supply is 200, 300 and 

400 kPa and the value o f y c varied from approximately 0.05 to 0.95 by adjusting the 

control vale at the hot end.
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CHAPTER 4 - RESULTS AND DISCUSSION

The results obtained from the low and high pressure tests are presented and 

discussed in this chapter. The uncertainties in the figures are indicated by the error 

bars unless they are less than the size o f the symbol. Detailed calculations o f the 

uncertainties are presented in Appendix B for reference. Details o f the experimental 

results for low and high pressure tests are presented in Appendix C and Appendix D 

respectively.

4.1 Results of Low Pressure Tests

The temperatures measured using the thermocouples are assumed to be equal 

to the total temperature which can be justified as follows. The total temperature 

defined in Equation 6, the term u2/2 cp represents the dynamic temperature o f the flow. 

Within the range of the working pressure used in this experiment which is 

approximately 2.5 to 75 kPa, the cold and the hot exit velocities are found to be in the 

range o f 0.15-1.84 m/s and 0.14 - 1.08 m/s respectively. The maximum dynamic 

temperatures calculated for both cold and hot temperature are found to be 1.7x1 O'3 

and 5.8 x 10-4 K respectively and hence negligible compared to the static temperature.

The plots o f dimensionless cold and hot air temperature as a function o f the 

inlet Reynolds number for L/D -  10, 30 and 50 are presented in Figures 17,18 and 19 

respectively. The minimum total flow rate is 9.72 x 10 '6 kg/s which results in a 

Reynolds number o f approximately 500. It can be seen that, at this low Reynolds 

number, both hot and cold exit temperatures are higher than the inlet temperature, T0. 

The trend of the curves at Reynolds number below 500 is estimated as shown in the 

dashed line as it is known that all temperatures must be equal for the case o f no flow. 

At this low Reynolds number, the vortex motion is not likely well established and the 

effect o f the viscous term is the dominating factor. The viscous dissipation, therefore, 

causes the rise in the temperatures o f both outlet streams. In the case o f the hot outlet, 

the dimensionless temperature decreases after reaching its maximum at a Reynolds 

number o f about 500 after which it achieves a minimum value at a Reynolds number 

o f approximately 1200, 1300 and 1500 for L/D  = 10, 30 and 50 respectively. The
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curve then increases steadily with further increase in Reynolds number. The cold 

outlet dimensionless temperature decreases steadily after reaching the maximum at a 

Reynolds number of about 800 to become negative at a Reynolds number of 

approximately 1800. In both the cases of hot and cold flow, the trend o f increasing 

temperatures with Reynolds number is reversed at Reynolds numbers (approximately 

500 for the hot flow and 800 for the cold flow) consistent with the critical Reynolds 

number estimated for tube length shorter than that required for fully developed flow 

which is common to micro-fluidic devices [1]. It is speculated that the reversal o f 

temperature increase is due to the initiation o f turbulence either in the supply nozzle 

or in the je t that forms in the vortex chamber just downstream of the supply nozzle.

The uncertainties in the Reynolds number are in the range o f ± 73 to 196. 

While the uncertainty in both the dimensionless cold and hot temperature is found to 

be ± 0.0019. It can be seen from Figures 17 through 19 that the cross-over Reynolds 

number and the curve shapes are approximately the same and they are within the data 

uncertainty. It can be concluded that the inlet nozzle geometry is most important 

factor as it affects the Reynolds number.
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Figure 19 Dimensionless cold and hot temperatures vs. Reynolds number for
L/D = 50

The effects o f the orifice diameter and the tube length on the cold air mass 

ratio are shown in Figures 20 to 22. It should be recalled that this part o f the test is 

conducted at an arbitrary fixed hot control valve opening. One would expect that the 

cold air mass fraction, yc, for such a case would remain the same if the resistance to 

flow out the cold and hot end is constant. It is clearly shown from the data obtained, 

however, that:

• For Reynolds number below approximately 2000, the value o f cold air mass 

fraction, y c, decreases with an increase of the Reynolds number due to flow 

resistance changing. It is constant for Reynolds number values above 2000. 

This is similar to the behavior o f other fluid mechanic quantities such as drag 

coefficient and friction factor.

• For smaller orifice diameter and hence smaller dJD  ratio, the cold air mass 

fraction is decreased. This is likely due to the increase o f the resistance in the 

cold flow.
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• The cold air mass fraction also reduced with higher values o f L/D  ratio. This 

variation is not as obvious as in the case o f d /D . An increase in the L/D  value 

changes the internal flow pattern allowing the cold air to travel toward the hot 

end before reversing direction and passing through cold exit. This increased 

cold flow path would an increase in resistance.
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Figure 20 Cold mass ratio, y c, vs. Reynolds number for L/D = 10
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The change o f the inlet Reynolds number with increasing supply pressure is 

shown in Figures 23 to 25. They are as expected with supply pressure increasing with 

Reynolds number. This reflects the total resistance of the flow through both hot and 

cold air outlets. In general, for the same inlet pressure, there was a slight shift to the 

right o f the curve in the Reynolds number as the dJD  increases. This is as expected as 

decreasing dc has the effect o f increasing the total resistance. It would be expected 

that increasing the L/D  ratio would also increase the pressure required for any 

Reynolds number. For the shortest L/D ratio, a higher pressure is however required to 

achieve the same Reynolds number value obtained for longer L/D  ratio. This anomaly 

may be due to the pressure fluctuation observed for this case and mentioned later.
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Figure 23 Reynolds number as a function of the inlet pressure for L/D=10
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4.2 Results of High Pressure Tests

When investigating the vortex tube as a cooling device, researchers are more 

interested in obtaining the value o f the cold flow temperature. However, both the cold 

flow as well as the hot flow temperature measurements will be presented in this 

research. The objective of the second part o f the experiment is to investigate the 

operating characteristics of the micro-scale vortex tube utilizing the same tube 

geometry for the first part of the test at a higher inlet supply pressure and by varying 

the cold air mass fraction. The inlet pressures considered here are 200, 300 and 400 

kPa. Details of the experimental results are presented in Appendix D. The cold air 

mass ratio is systematically varied from approximately 0.05 to 0.95 by means o f the 

control valve located at the hot end exit. The cold and hot air flow dimensionless 

temperatures are presented in Figures 26 to 34. The cold flow dimensionless 

temperature is represented by the lower curves while the upper curves for the hot flow 

dimensionless temperature.

For the smallest L/D ratio, the dimensionless hot and cold temperature as a 

function of the cold air mass ratio and the inlet pressure as a parameter are shown in 

Figures 26 to 28. The symbols in these particular sets o f curves represent data points 

collected at different cold air mass ratio and different inlet pressures and the lines are 

interpolating splines. The best fit curve is found not to be a good choice to represent 

the variation in the cold and the hot flow temperatures for this particular tube 

geometry. It can be clearly seen for L/D  = 1 0  and for the three different dc/D ratios, 

for the value o f the cold mass fraction o f approximately 0.05, which represents the 

lowest cold flow rate leaving the orifice opening, the temperature measured is lower 

than the inlet air temperature due to the effect o f the energy separation. From Figure 

26 at 200 kPa inlet pressure, when the value o f y c is increased, the temperature o f the 

cold flow drops until it reaches its lowest value at y c = 0.38. With the slight increase 

o f yc, a sharp increase in the cold flow temperature is observed (which is more 

obvious with the 300 and 400 kPa inlet pressure) is also associated with a slight drop 

in the hot flow temperature. The sharp increase occurs at larger values o f the cold air 

mass fraction as the inlet pressure increases. This is associated with an increase in 

fluctuations in the measured pressures and flow rates. It is believed that the flow
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instability phenomenon which occurs at a certain value of y c causes radial mixing 

between the cold and hot flow temperatures. The instability needs further 

investigation for proper explanation. This case is only observed with the shortest tube 

length o f L/D  equal to 10. By further increasing the value of y c, the cold flow 

dimensionless temperature increases and approaches zero asyc approaches 1.
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Figure 26 Vortex tube performance for L/D =10 and d</D = 0.25
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The results obtained for larger L/D  ratios (Figures 29 to 34) show a smooth variation 

o f the cold and the hot flow temperature for different inlet pressures and different 

values o f y c. No sharp increase in the cold flow temperature is observed. As a general 

observation, an increase in the inlet pressure is seen to cause the values o f the 

dimensionless cold temperature difference to increase over the whole range of the 

cold air mass fraction. Furthermore, it is found that the cold air mass ratio 

corresponding to the lowest cold air stream temperature decreases with the increasing 

of the supply pressure for similar tube geometry. Except for d</D = 0.25, it is not 

expected for yc to reach the value o f 0.3 as observed in conventional vortex tubes [41 

and 42]. When the smallest orifice diameter is used, however, the yc value obtained is 

found to be in the range o f 0.2 to 0.4. This difference in the value o f yc appears to be 

related to the relative size o f the inlet nozzle hydraulic diameter to the size o f the 

orifice diameter used. Similarly, the maximum hot air temperatures seen to be at 

values o f cold mass ratio different than those for the conventional devices.
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Figure 29 Vortex tube performance for L/D = 30 and dc/D  = 0.25
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The optimum values of the cold air mass fraction, y c, correspond to the lowest 

cold flow temperature and are presented in Figures 35 through 37. For L/D  = 10 and 

dc/D = 0.25 and 1.1, the trend of the optimum cold air mass fraction change is similar 

(Figure 35). For dJD  = 0.4, the value o f the optimum cold air mass fraction is within 

the error bar o f that for d /D  -  1.1 at 200 and 300 kPa inlet pressure, however, is 

different at an inlet pressure o f 400 kPa. This may be due to the instabilities 

mentioned previously.

Inlet pressure

■*— 400 kPa------ 1---------r
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Figure 35 Optimum cold air mass fraction vs. inlet pressure for L/D = 10

For L/D  = 30, the optimum cold air mass fraction value changes in an 

approximately linear manner with the inlet pressure (Figure 36). The cases 

corresponding to L/D = 50 are shown in Figure 37. The trends are also approximately 

linear with the slope approaching zero for large dJD  values.
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4.3 Effect of Orifice Diameter

Figures 38 to 40 show the optimum dimensionless cold temperature 

performance o f the micro-scale vortex tube for different sizes o f the orifice diameter. 

In all cases the dimensionless cold temperature decreases with increasing dJD  ratio 

reaching constant values at d<JD in the range of 0.5 to 0.55. All the results obtained in 

optimizing the orifice diameter, dc, are in good agreement with the conventional 

vortex tube [10,23]
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Figure 38 Optimum conditions vs. dimensionless orifice diameter
for L/D = 10
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4.4 Effect of Tube Length

The effects the L/D ratio on optimum dimensionless cold temperature are 

shown in Figures 41 to 43. Except for a vortex tube with d /D  = 0.25 operated at 400 

kPa inlet pressure, it can be generally observed that the maximum L/D  ratio of 50 

gives the maximum cold temperature drop. Although the curves do not indicate a 

mathematical optimum tube length, by looking to curve’s trend, it can be inferred that 

increasing the L/D ratio beyond 50 will not be o f great advantage. The results o f the 

L/D  value obtained are in a close agreement to that reported by Dyskin and 

Kramarenko [19] who also conducted their experiment on a micro-scale vortex tube.
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Figure 41 Optimum conditions vs. dimensionless tube length for d,/D = 0.25

The cold temperature drop obtained at 400 kPa inlet pressure, 0.25 dc/D and 

10 L/D ratio was lower than that obtained for a larger L/D  ratio. This inconsistency 

with the other results obtained at different tube’s geometry may be attributed to the 

higher level o f fluctuation taking place with that tube geometry as mentioned 

previously.
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CHAPTER 5 -  CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The performance characteristics of a micro-scale vortex tube are presented 

over a wide range o f working pressure, different cold air mass ratio as well as 

different vortex tube length and orifice diameter. The following conclusions may be 

drawn:

1. Experiments conducted on the micro-scale vortex tube with fixed geometry at

low Reynolds numbers have shown that:

• Dimensionless temperature increases in both the cold and the hot air flows 

as the Reynolds number increases from zero and reaches maximum values 

before a Reynolds number o f approximately 500 and 800 for the hot and 

cold flow respectively.

•  The cold outlet dimensionless temperature decreases steadily after the 

maximum to become negative at a Reynolds number in the order o f 2000. 

This implies that the cooling effect occurs at inlet Reynolds numbers 

consistent with turbulent flow.

• Except for low Reynolds numbers (i.e.: less than 2000) the cold mass 

fraction is approximately constant as the Reynolds number increases.

2. The experiment conducted to determine the performance curves o f the micro­

scale vortex tube at high inlet pressure indicate:

• The optimum cold air mass fraction, y c, is not constant and tends to be 

higher when compared with the conventional vortex tube.
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•  The effects o f L/D  and dJD  ratios are similar to that in the conventional 

devices.

•  Unstable operation is observed at small L/D and high inlet pressure.

5.2 Recommendations

A further investigation o f the flow instability noticed at small L/D  and high 

inlet pressure is recommended in order to obtain more information on its nature of the 

flow.

It would be useful to instrument the micro-scale vortex tube with pressure 

transducer capable o f measuring the pressure fluctuations that occur during that 

instability.
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Appendix A -  Micro-Scale Vortex Tube Design Drawing

General Assembly Drawing
Note: 1. Male-female guide pin to be provided for every piece 

2. All dimensions are in mm
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Appendix B -  Experimental Uncertainty Analysis Calculations

All major factors affecting the measurement accuracy are discussed in this 

section. With the precision o f the measuring devices for each variable such as 

temperature, pressure and flow rates are known; the measurements uncertainty 

associated with each variable can be estimated. This method is based on the 

theoretical relationship of each variable.

The uncertainties of the instruments used are calculated using the formula 

given by Figiola and Beasley [44]:

where uc is the summation o f errors in the instrument and are calculated using the 

following formula:

The method o f Kline and McKlintock [45] is used to determine the 

propagation of uncertainties.

1. Pressure Instruments

Three pressures gages having different ranges are used in this experiment. The 

low range (0 -  17.5 kPa) has an uncertainty o f ± 0.01 kPa, the medium range (0 - 

206.0 kPa), an uncertainty of ± 1.7 kPa and the high range pressure gage ( 0 - 4 1 3  

kPa), an uncertainty o f ± 3.4 kPa. The uncertainty o f the barometric pressure gage is 

± 0.07 kPa.

(11)

(12)
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2. T emperature Instruments

The temperatures of the inlet, cold and hot air are measured using type - T 

(Copper Constantan) thermocouple probes. The increment and the accuracy o f these 

devices are ± 0.1 °C and ± 0.4°C respectively. The resolution, u„, is calculated from:

u„ = ± —increment 
2

(13)

Therefore, the uncertainty for each o f these devices is:

= ± V 0.052 + 0 .42 ± 0.4 °C

3. Uncertainty in Dimensionless Temperature

In order to estimate the uncertainty in dimensionless cold flow temperature,

T - T- ,  the Kline and McClintock method [45] is used:

U,Uc
dU<

V 8 T c

\2 f
U Tc +

dUc
V 8 T o

\ 2

UTo (14)

u Uc =
r y  f

\ xo )
T c X U To

\ 2

(15)

Tc - T 0 Tc dUc 1
where U. = —   = —  - 1 ,  and — -  = —

T„ T dT T

Equation 23 can also be used to calculate the uncertainty in the hot flow 

dimensionless temperature. The estimated uncertainty values for the hot and cold 

flow dimensionless temperature are presented in Appendix B and C. They are also
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indicated in the graphs for the low and high pressure tests in forms of error bars. For 

the low and high pressure tests, however, the uncertainty in the cold and hot 

dimensionless temperature is ± 0.0019.

4. Uncertainty in Flow Rate Measurements

Four rotameters are used in measuring the hot and cold flow rate. The 

uncertainties in each o f them are:

• Rotameter 1 = ± 8.33 x 10"7 m3/sec

• Rotameter 2 = ± 8.33 x 10'7 m3/sec

• Rotameter 3 = ± 1.67 x 10'6 m3/sec

• Rotameter 4 = ± 5.83 x 10"6 m3/sec

Rotameters 1 and 2 were used together to measure the total flow rate entering the

micro-scale device in the low pressure tests. Therefore, the uncertainty is:

ud = +-y/(8.33jcl0”7)2 +(8.33xl0~7)2

= ± 1.178 x 1 0 ’6 m3/sec

For the high pressure tests, rotameters 3 and 4 are used together to measure the total 

flow rate. Therefore, the uncertainty is:

ud =±7(1.67x10-6) 2 +(5.83x10-6)2 

= ± 6.06 x 10 ’6 m3/sec

5. Uncertainty in Tube Geometry Measurements

The micro-scale vortex tube, manufactured at the University o f Windsor, has a 

tolerance o f  ±0.013 mm. Therefore, the uncertainty in dJD  ratio is:
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The uncertainty in the dJD  ratio is found to be ± 0.007. They are not indicated 

in Figures 37 through 39 because they are within the size of the symbol o f the d</D. 

Applying the same above method, the uncertainty in the L/D ratio is:

U
(17)

The uncertainties in the L/D  ratio are found to be in the range of ± 0.065 to

0.325 mm. There is also no indication of the uncertainties in Figures 40 through 42 

because the error bars for such a small values are smaller than the symbol 

representing the L/D  values.

6. Uncertainty in Air Viscosity Calculations

From viscosity data taken from Moran et al. [43], the variation o f viscosity
o

with temperatures was found to have a slope o f 5 x 10 ' kg/m.s. K in the temperature 

range o f these experiments. Since the temperature o f the inlet air varied within 4 K, 

then the uncertainty in viscosity is:

4 x 5 x  10 ’8 = ± 2 x 10‘7 kg/m.s

7. Uncertainty in Air Density Calculations

P
The uncertainty in the inlet air density, p  = — — , is calculated as follow:

(18)
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Assuming that the uncertainty in the gas constant, R, is negligible this gives an 

uncertainty in density of ± 2.3 x 10* kg/ m .

8. Reynolds Number calculations, Re

The Reynolds number is defined as:

m d n
R e =— r ~  (20)

4 A n

where dn is the hydraulic diameter o f the inlet nozzle and A is the cross- 

sectional area o f the inlet nozzle. The propagation o f uncertainties to Reynolds 

number is calculated using the method o f Kline and McKlintock [45]:

^Re _ f UP 1
2 •O

il.1

2
( u ^U  dn

2 (U  \
+ + +

Re ^ I  P \ dn ) , p  ,

The uncertainties to Reynolds number are presented in Appendix C and D. It 

is also indicated as an error bars in the graphs o f the Reynolds number versus 

dimensionless temperature, inlet pressure and the cold air mass fraction. They are 

found in the range o f ± 74 to 196.

9. Uncertainty in Cold Air Mass Fraction

The uncertainty in the cold mass flow rate, mc, as a function o f the air flow 

rate, Qc , and the gas density, p is:
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^ u t
y dQc y

\ 2
+

dmc

dp,

\2
u Pc 

V ''t'c

{ I T )

For the low pressure tests, the value is ± 10'6 kg/s and for the high pressure

tests it is ± 2 x 10 ‘6 kg/s.

The uncertainty in the inlet mass flow rate, m0, is:

—T2- U a
SQ. &

\2
+

dm
\2

dp, Pc
V r'o  y

(23)

It is found to be ± 1.4 x 10 ’6 kg/s for the low pressure tests and ± 7.3 x 10 '6 kg/s for 

the high pressure tests. Therefore, for the cold air mass fraction, y c, it is:

Uyc =
f  dyc >2

+
/ a  A

y ° U m I
I***

ffif
l a * .  m° )

(24)

m
Since y c = —r ~, then the above equation can be written in

m„

U > c = -
y drho y

+
ydm]

(25)

The uncertainties in the cold air mass fraction for the low and high pressure tests are 

presented in Appendix C and D respectively. The values for the low pressure tests are 

within ± 0.01 to 0.13 while for the high pressure tests are within ± 0.007 to 0.046.
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Table C.l Low pressure test for tube length, 1  = 20 mm and tube orifice diameter, dc = 0.5 mm

Inlet condition Cold exit Hot exit

Yc

Uncertainty results

Po
(kPa)

T0
<°K)

Flow 
(kg/s) 
x 10’5

Re
Flow 
(kg/s) 
x 10*

Pc
(kPa)

Tc
CK)

T c-T . Flow 
(kg/s) 
x 10*

Ph
(kPa)

Th
CK)

Th ~ T 0 TC~T 0 Th ~ T 0
Yc Re

T„ T0 T0 T0

2.8 298.1 1.04 522 0.69 0.16 298.2 0.0004 0.35 0.16 298.4 0.0011 0.66 0.0019 0.0019 0.131 74

5.5 298.1 1.53 772 0.97 0.16 298.2 0.0004 0.56 0.16 298.4 0.0013 0.64 0.0019 0.0019 0.087 78

7.9 298.1 1.89 952 1.21 0.17 298.2 0.0004 0.68 0.17 298.5 0.0014 0.64 0.0019 0.0019 0.071 82

12.5 298.1 2.41 1214 1.53 0.17 298.2 0.0004 0.88 0.17 298.5 0.0014 0.63 0.0019 0.0019 0.055 88

17.5 298.1 2.93 1475 1.87 0.18 298.1 0.0003 1.06 0.17 298.5 0.0016 0.64 0.0019 0.0019 0.046 95

24.1 298.1 3.52 1774 2.25 0.18 298.0 -0.0001 1.28 0.17 298.5 0.0016 0.64 0.0019 0.0019 0.038 104

34.5 298.1 4.40 2215 2.83 0.35 297.9 -0.0004 1.57 0.35 298.6 0.0019 0.64 0.0019 0.0019 0.031 119

41.4 298.1 4.93 2481 3.17 0.35 297.7 -0.0011 1.76 0.35 298.7 0.0023 0.64 0.0019 0.0019 0.027 129

48.3 298.1 5.30 2670 3.34 0.36 297.5 -0.0018 1.96 0.36 298.8 0.0026 0.63 0.0019 0.0019 0.025 135

55.2 298.1 5.79 2915 3.68 0.36 297.4 -0.0021 2.11 0.36 298.8 0.0026 0.64 0.0019 0.0019 0.023 145

62.1 298.1 6.17 3108 3.89 0.37 297.2 -0.0028 2.28 0.37 299.0 0.0033 0.63 0.0019 0.0019 0.022 152

68.9 298.1 6.64 3344 4.20 0.38 297.1 -0.0031 2.44 0.37 299.1 0.0036 0.63 0.0019 0.0019 0.020 161

75.8 298.1 7.11 3581 4.51 0.38 297.0 -0.0035 2.60 0.37 299.2 0.0040 0.63 0.0019 0.0019 0.019 170

82.7 298.1 7.66 3856 4.90 0.39 296.8 -0.0042 2.77 0.39 299.3 0.0043 0.64 0.0019 0.0019 0.018 181
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Table C.2 Low pressure test for tube length, L = 20 mm and tube orifice diameter, dc -  0.8 mm

Inlet condition Cold exit Hot exit

Yc

Uncertainty results

Po
(kPa)

To
(°K)

Flow 
(kg/s) 
x 10*

Re
Flow 
(kg/s) 
x 10 s

Pc
(kPa)

Tc
(°K)

TC~ T 0

T0

Flow 
(kg/s) 
x 10*

Ph
(kPa)

Th
CK)

Th - T 0

T0

Tc -T„

T0

Th ~ T 0

T0
Yc Re

5.7 298.5 1.68 846 1.33 0.17 298.7 0.0008 0.35 0.16 298.8 0.0011 0.79 0.0019 0.0019 0.088 79

8.0 298.5 2.06 1039 1.61 0.17 298.7 0.0008 0.45 0.17 298.8 0.0013 0.78 0.0019 0.0019 0.071 84

12.5 298.5 2.67 1342 2.07 0.18 298.6 0.0006 0.59 0.17 298.8 0.0013 0.78 0.0019 0.0019 0.055 91

17.4 298.5 3.20 1612 2.50 0.18 298.6 0.0006 0.70 0.18 298.8 0.0013 0.78 0.0019 0.0019 0.046 99

24.1 298.5 3.86 1941 2.99 0.35 298.5 0.0003 0.86 0.35 298.8 0.0013 0.78 0.0019 0.0019 0.038 110

34.5 298.5 4.53 2280 3.50 0.36 298.2 -0.0008 1.03 0.36 298.8 0.0013 0.77 0.0019 0.0019 0.033 121

41.4 298.5 5.40 2717 4.19 0.37 297.9 -0.0018 1.21 0.37 299.0 0.0019 0.78 0.0019 0.0019 0.027 137

48.3 298.5 5.87 2954 4.54 0.38 297.7 -0.0026 1.33 0.37 299.1 0.0023 0.77 0.0019 0.0019 0.025 146

55.2 298.5 6.32 3180 4.88 0.39 297.5 -0.0031 1.43 0.39 299.2 0.0026 0.77 0.0019 0.0019 0.023 155

62.1 298.5 6.78 3415 5.24 0.40 297.2 -0.0041 1.55 0.40 299.2 0.0026 0.77 0.0019 0.0019 0.022 164

68.9 298.5 7.21 3631 5.59 0.41 297.0 -0.0048 1.62 0.41 299.3 0.0030 0.78 0.0019 0.0019 0.021 172

75.8 298.5 7.70 3877 5.95 0.42 296.7 -0.0058 1.75 0.42 299.4 0.0033 0.77 0.0019 0.0019 0.019 182

82.7 298.5 8.2 4126 6.31 0.43 296.4 -0.0069 1.89 0.42 299.6 0.0040 0.77 0.0019 0.0019 0.018 192
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Table C.3 Low pressure test for tube length, L = 20 mm and tube orifice diameter, dc = 1.1 mm

Inlet condition Cold exit Hot exit

yc

Uncertainty results

Po
(kPa)

To
(°K)

Flow 
(kg/s) 
x 10

Re
Flow 
(kg/s) 
x 10

Pc
(kPa)

Tc
(°K)

TC~T 0 Flow 
(kg/s) 
x 10

Ph
(kP
a)

Th
CK)

Th ~ T 0 TC~ T 0 Th ~ T 0
Vc Re

T0 T0 T0 T0

7.3 298.7 1.97 994 1.63 0.17 298.9 0.0008 0.35 0.17 299.0 0.0013 0.82 0.0019 0.0019 0.077 83

9.9 298.7 2.38 1200 1.93 0.18 298.9 0.0008 0.45 0.17 299.0 0.0013 0.81 0.0019 0.0019 0.063 87

12.4 298.7 2.71 1364 2.18 0.18 298.8 0.0004 0.53 0.18 299.0 0.0013 0.80 0.0019 0.0019 0.055 92

17.5 298.7 3.29 1659 2.63 0.19 298.7 0.0003 0.66 0.19 299.0 0.0013 0.80 0.0019 0.0019 0.045 101

24.1 298.7 3.97 1997 3.16 0.35 298.7 0.0001 0.81 0.35 299.1 0.0014 0.80 0.0019 0.0019 0.038 112

34.5 298.7 4.87 2450 3.84 0.37 298.3 -0.0011 1.03 0.37 299.1 0.0016 0.79 0.0019 0.0019 0.031 127

41.4 298.7 5.34 2686 4.19 0.38 298.1 -0.0018 1.15 0.37 299.1 0.0016 0.78 0.0019 0.0019 0.028 136

48.3 298.7 5.97 3005 4.70 0.38 297.9 -0.0024 1.27 0.39 299.2 0.0019 0.79 0.0019 0.0019 0.025 148

55.2 298.7 6.43 3238 5.06 0.39 297.6 -0.0035 1.38 0.40 299.3 0.0023 0.79 0.0019 0.0019 0.023 157

62.1 298.7 6.90 3472 5.41 0.40 297.4 -0.0041 1.49 0.40 299.4 0.0026 0.78 0.0019 0.0019 0.022 166

68.9 298.7 7.35 3699 5.77 0.41 297.1 -0.0052 1.58 0.41 299.6 0.0033 0.78 0.0019 0.0019 0.020 175

75.8 298.7 7.87 3962 6.21 0.42 296.9 -0.0058 1.66 0.42 299.7 0.0036 0.79 0.0019 0.0019 0.019 186

82.7 298.7 8.4 4229 6.63 0.44 296.6 -0.0068 1.77 0.44 299.8 0.0040 0.79 0.0019 0.0019 0.018 196



Reproduced 
with 

perm
ission 

of the 
copyright owner. 

Further reproduction 
prohibited 

without perm
ission.

Table C.4 Low pressure test for tube length, L = 60 mm and tube orifice diameter, dc = 0.5 mm

Inlet condition Cold exit Hot exit

yc

Uncertainty results

Po
(kPa)

To
CK)

Flow 
(kg/s) 
x 1CT5

Re
Flow 
(kg/s) 
x 10 s

Pc
(kPa)

Te
fK)

T '-T .

T0

Flow 
(kg/s) 
x 10 s

Ph
(kP
a)

Th
CK)

Th ~ T 0

T0

TC~ T 0

T0

Th ~ T 0

T0
Yc Re

2.5 298.6 1.01 510 0.46 0.17 298.9 0.0009 0.56 0.17 299.1 0.0016 0.45 0.0019 0.0019 0.116 74

5.0 298.7 1.54 777 0.70 0.18 298.9 0.0008 0.84 0.17 299.1 0.0014 0.45 0.0019 0.0019 0.076 78

7.5 298.7 1.93 970 0.87 0.18 298.9 0.0008 1.06 0.19 299.0 0.0013 0.45 0.0019 0.0019 0.061 82

12.5 298.7 2.53 1275 1.12 0.20 298.8 0.0006 1.41 0.20 299.0 0.0013 0.44 0.0019 0.0019 0.046 89

17.5 298.7 3.08 1552 1.35 0.22 298.7 0.0003 1.74 0.22 299.0 0.0013 0.44 0.0019 0.0019 0.038 97

24.1 298.7 3.75 1885 1.63 0.23 298.6 -0.0002 2.12 0.24 299.1 0.0014 0.44 0.0019 0.0019 0.031 108

34.5 298.7 4.65 2340 2.01 0.26 298.3 -0.0011 2.64 0.26 299.1 0.0016 0.43 0.0019 0.0019 0.025 123

41.4 298.7 5.23 2633 2.22 0.29 298.1 -0.0019 3.01 0.29 299.2 0.0018 0.42 0.0019 0.0019 0.022 134

48.3 298.7 5.74 2890 2.44 0.31 297.8 -0.0028 3.30 0.30 299.2 0.0019 0.42 0.0019 0.0019 0.020 144

55.2 298.7 6.20 3121 2.64 0.32 297.6 -0.0035 3.56 0.32 299.3 0.0023 0.43 0.0019 0.0019 0.019 152

62.1 298.7 6.76 3403 2.90 0.35 297.3 -0.0045 3.86 0.35 299.5 0.0030 0.43 0.0019 0.0019 0.017 163

68.9 298.7 7.29 3670 3.18 0.36 297.1 -0.0052 4.11 0.35 299.6 0.0033 0.44 0.0019 0.0019 0.016 174

75.8 298.7 7.73 3890 3.35 0.36 296.7 -0.0065 4.38 0.36 299.7 0.0036 0.43 0.0019 0.0019 0.015 183
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Table C.5 Low pressure test for tube length, L  = 60 mm and tube orifice diameter, dc = 0.8 mm

Inlet condition Cold exit Hot exit

yc

Uncertainty results

Pc
(kPa)

To
fK)

Flow 
(kg/sI 
x 10 s

Re
Flow 
(kg/s) 
x 10’5

Pc
(kPa)

Te
fK)

TC~T0

To

Flow 
(kg/s) 
x 10*

Ph
(kPa)

Th
fK)

Th ~ T 0

T0

TC~ T 0

T0

Th ~ T 0

T0
Yc Re

2.6 298.8 1.09 550 0.75 0.17 299.0 0.0008 0.35 0.17 299.1 0.0011 0.68 0.0019 0.0019 0.126 74

5.1 298.8 1.63 819 1.03 0.19 299.0 0.0008 0.59 0.19 299.1 0.0011 0.64 0.0019 0.0019 0.082 79

7.5 298.8 2.00 1009 1.27 0.20 298.9 0.0006 0.74 0.20 299.0 0.0009 0.63 0.0019 0.0019 0.066 83

12.5 298.8 2.69 1352 1.66 0.22 298.9 0.0006 1.02 0.22 299.0 0.0009 0.62 0.0019 0.0019 0.049 92

17.4 298.8 3.24 1632 1.99 0.24 298.8 0.0003 1.26 0.24 299.1 0.0011 0.61 0.0019 0.0019 0.040 100

24.1 298.8 3.92 1971 2.37 0.27 298.6 -0.0004 1.55 0.26 299.1 0.0013 0.61 0.0019 0.0019 0.033 111

34.5 298.8 4.76 2394 2.83 0.35 298.4 -0.0013 1.93 0.35 299.2 0.0014 0.59 0.0019 0.0019 0.027 125

41.4 298.8 5.33 2683 3.17 0.36 298.1 -0.0021 2.16 0.36 299.2 0.0016 0.59 0.0019 0.0019 0.024 136

48.3 298.8 5.95 2994 3.51 0.36 297.9 -0.0028 2.44 0.36 299.3 0.0019 0.59 0.0019 0.0019 0.022 148

55.2 298.8 6.49 3269 3.85 0.37 297.5 -0.0041 2.64 0.37 299.4 0.0023 0.59 0.0019 0.0019 0.020 158

62.1 298.8 7.06 3556 4.20 0.37 297.2 -0.0052 2.87 0.37 299.5 0.0026 0.59 0.0019 0.0019 0.018 169

68.9 298.8 7.49 3772 4.44 0.38 296.9 -0.0062 3.05 0.38 299.7 0.0033 0.59 0.0019 0.0019 0.017 178

75.8 298.8 7.98 4018 4.73 0.38 296.6 -0.0072 3.26 0.39 299.8 0.0036 0.59 0.0019 0.0019 0.016 188
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Table C.6 Low pressure test for tube length, L = 60 mm and tube orifice diameter, dc = 1.1 mm

Inlet condition Cold exit Hot exit

yc

Uncertainty results

Po
(kPa)

To
fK)

Flow 
(kg/s) 
x 10

Re
Flow 
(kg/s) 
x 1Cfs

Pc
(kPa)

To
fK)

TC~ T 0 Flow 
(kg/s) 
x 1a 5

Ph
(kP
a)

Th
(°K)

Th ~ T 0 TC~ T 0 Th ~ T 0
Yc Re

To T0 T0 T0

3.0 298.6 1.21 611 0.87 0.17 298.7 0.0006 0.35 0.17 298.8 0.0009 0.71 0.0019 0.0019 0.116 75

5.5 298.6 1.69 853 1.14 0.19 298.7 0.0006 0.55 0.19 298.9 0.0011 0.67 0.0019 0.0019 0.081 80

8.0 298.6 2.10 1056 1.40 0.20 298.7 0.0006 0.70 0.20 298.9 0.0011 0.67 0.0019 0.0019 0.065 84

12.5 298.6 2.69 1356 1.80 0.22 298.7 0.0006 0.90 0.22 298.9 0.0013 0.67 0.0019 0.0019 0.051 92

17.4 298.6 3.28 1651 2.14 0.25 298.6 0.0003 1.14 0.25 299.0 0.0014 0.65 0.0019 0.0019 0.041 100

24.1 298.6 3.98 2001 2.58 0.28 298.5 -0.0001 1.40 0.29 299.0 0.0016 0.65 0.0019 0.0019 0.034 112

34.5 298.6 4.90 2468 3.16 0.35 298.2 -0.0011 1.74 0.35 299.0 0.0016 0.65 0.0019 0.0019 0.027 128

41.4 298.6 5.47 2756 3.50 0.36 298.0 -0.0018 1.97 0.36 299.1 0.0018 0.64 0.0019 0.0019 0.025 139

48.3 298.6 6.04 3039 3.85 0.37 297.7 -0.0028 2.19 0.37 299.1 0.0019 0.64 0.0019 0.0019 0.022 149

55.2 298.6 6.57 3307 4.19 0.37 297.4 -0.0038 2.37 0.37 299.2 0.0023 0.64 0.0019 0.0019 0.020 160

62.1 298.6 7.07 3560 4.51 0.38 297.1 -0.0048 2.56 0.37 299.3 0.0026 0.64 0.0019 0.0019 0.019 170

68.9 298.6 7.57 3812 4.81 0.38 296.8 -0.0060 2.76 0.39 299.5 0.0033 0.64 0.0019 0.0019 0.018 180

75.8 298.6 8.00 4029 5.08 0.39 296.4 -0.0072 2.93 0.39 299.6 0.0036 0.63 0.0019 0.0019 0.017 188
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Table C.7 Low pressure test for tube length, L = 100 mm and tube orifice diameter, dc = 0.5 mm

Inlet condition Cold exit Hot exit

yc

Uncertainty results

Po
(kPa)

To
(°K)

Flow 
(kg/s) 
x 10 s

Re
Flow 
(kg/s) 
x 1(f5

Po
(kPa)

Tc
CK)

TC~ T 0

T0

Flow 
(kg/s) 
x 10*

Ph
(kPa)

Th
fK)

Th ~ T 0

T0

TC~ T 0

T0

Th - T 0

T0
Yc Re

2.5 298.9 0.97 489 0.56 0.16 299.1 0.0008 0.42 0.17 299.2 0.0011 0.57 0.0019 0.0019 0.131 73

5.1 298.9 1.50 757 0.80 0.18 299.1 0.0008 0.70 0.17 299.2 0.0011 0.54 0.0019 0.0019 0.082 78

7.5 298.9 1.86 939 0.99 0.19 299.2 0.0009 0.88 0.19 299.3 0.0013 0.53 0.0019 0.0019 0.066 81

12.5 298.9 2.45 1234 1.30 0.20 299.1 0.0008 1.15 0.20 299.3 0.0014 0.53 0.0019 0.0019 0.050 88

17.5 298.9 2.97 1493 1.56 0.22 299.0 0.0004 1.40 0.22 299.3 0.0013 0.53 0.0019 0.0019 0.042 96

24.1 298.9 3.58 1804 1.89 0.24 298.9 0.0001 1.70 0.24 299.3 0.0013 0.53 0.0019 0.0019 0.034 105

34.5 298.9 4.43 2228 2.32 0.27 298.7 -0.0006 2.10 0.26 299.3 0.0014 0.52 0.0019 0.0019 0.028 119

41.4 298.9 5.02 2525 2.62 0.29 298.5 -0.0013 2.40 0.29 299.3 0.0014 0.52 0.0019 0.0019 0.025 130

48.3 298.9 5.47 2754 2.83 0.35 298.2 -0.0023 2.64 0.35 299.4 0.0018 0.52 0.0019 0.0019 0.023 138

55.2 298.9 6.05 3048 3.17 0.36 297.9 -0.0033 2.89 0.36 299.4 0.0018 0.52 0.0019 0.0019 0.020 150

62.1 298.9 6.66 3354 3.51 0.36 297.7 -0.0040 3.15 0.36 299.5 0.0021 0.53 0.0019 0.0019 0.019 161

68.9 298.9 7.09 3568 3.68 0.36 297.4 -0.0050 3.41 0.36 299.6 0.0023 0.52 0.0019 0.0019 0.017 170

75.8 298.9 7.45 3752 3.86 0.37 297.1 -0.0060 3.60 0.37 299.6 0.0024 0.52 0.0019 0.0019 0.017 177
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Table C.8 Low pressure test for tube length, L = 100 mm and tube orifice diameter, dc = 0.8 mm

Inlet condition Cold exit Hot exit

yc

Uncertainty results

Po
(kPa)

To
<°K)

Flow 
(kg/s) 
x 10 s

Re
Flow 
(kg/s) 
x 10

Pc
(kPa)

Tc
<°K)

Tc - T 0 Flow 
(kg/s) 
x 10'5

Ph
(kPa)

Th
(°K)

Th - T B TC~T0 Th ~T0
yc Re

T0 T0 T0 T0

2.6 298.1 1.09 547 0.70 0.18 298.2 0.0006 0.38 0.179 298.4 0.0013 0.65 0.0019 0.0019 0.124 74

5.0 298.1 1.59 800 0.96 0.19 298.2 0.0006 0.63 0.189 298.4 0.0013 0.60 0.0019 0.0019 0.082 79

7.5 298.1 1.99 1000 1.16 0.20 298.2 0.0006 0.83 0.199 298.4 0.0013 0.58 0.0019 0.0019 0.065 83

12.5 298.1 2.65 1336 1.50 0.22 298.2 0.0004 1.16 0.217 298.4 0.0011 0.56 0.0019 0.0019 0.048 91

17.4 298.1 3.19 1607 1.76 0.23 298.1 0.0003 1.44 0.234 298.3 0.0009 0.55 0.0019 0.0019 0.039 99

24.1 298.1 3.81 1920 2.04 0.25 298.0 -0.0001 1.77 0.254 298.4 0.0011 0.54 0.0019 0.0019 0.033 109

34.5 298.1 4.68 2358 2.48 0.29 297.7 -0.0011 2.21 0.286 298.5 0.0014 0.53 0.0019 0.0019 0.027 124

41.4 298.1 5.43 2731 2.84 0.35 297.3 -0.0025 2.59 0.354 298.5 0.0016 0.52 0.0019 0.0019 0.023 138

48.3 298.1 6.05 3046 3.18 0.36 297.0 -0.0035 2.87 0.359 298.6 0.0019 0.53 0.0019 0.0019 0.021 150

55.2 298.1 6.59 3320 3.45 0.36 296.7 -0.0045 3.14 0.364 298.7 0.0023 0.52 0.0019 0.0019 0.019 160

62.1 298.1 7.05 3551 3.66 0.37 296.4 -0.0055 3.39 0.369 298.8 0.0026 0.52 0.0019 0.0019 0.018 169

68.9 298.1 7.48 3763 3.87 0.37 296.0 -0.0069 3.61 0.374 298.9 0.0030 0.52 0.0019 0.0019 0.017 178

75.8 298.1 8.07 4064 4.22 0.38 295.6 -0.0082 3.85 0.376 299.1 0.0035 0.52 0.0019 0.0019 0.015 190
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Table C.9 Low pressure test for tube length, L = 100 mm and tube orifice diameter, d c -  1.1 mm

Inlet condition Cold exit Hot exit

yc

Uncertainty results

Po
(kPa)

To
fK)

Flow 
(kg/s) 
x 10 s

Re
Flow 
(kg/s) 
x 10

Pc
(kPa)

Tc
fK)

TC~ T 0

T0

Flow 
(kg/s) 
x 10'5

Ph
(kPa)

Th
fK)

Th ~ T 0

To

TC~ T 0

T0

Th ~ T 0

T0
yc Re

2.5 298.2 1.10 552 0.75 0.17 298.3 0.0004 0.35 0.17 298.5 0.0011 0.68 0.0019 0.0019 0.126 74

5.0 298.2 1.62 814 1.00 0.18 298.3 0.0006 0.61 0.18 298.5 0.0013 0.62 0.0019 0.0019 0.082 79

7.5 298.2 2.02 1015 1.21 0.19 298.3 0.0004 0.81 0.19 298.5 0.0011 0.60 0.0019 0.0019 0.064 83

12.5 298.2 2.70 1360 1.56 0.21 298.3 0.0004 1.14 0.21 298.5 0.0011 0.58 0.0019 0.0019 0.047 92

17.4 298.2 3.27 1646 1.87 0.23 298.2 0.0001 1.40 0.23 298.5 0.0013 0.57 0.0019 0.0019 0.039 100

24.1 298.2 4.00 2012 2.22 0.26 298.0 -0.0004 1.78 0.26 298.5 0.0013 0.56 0.0019 0.0019 0.032 112

34.5 298.2 4.96 2499 2.72 0.30 297.8 -0.0011 2.25 0.30 298.5 0.0013 0.55 0.0019 0.0019 0.025 129

41.4 298.2 5.53 2784 3.00 0.35 297.5 -0.0021 2.53 0.35 298.5 0.0013 0.54 0.0019 0.0019 0.023 140

48.3 298.2 6.14 3093 3.34 0.35 297.3 -0.0030 2.80 0.35 298.6 0.0016 0.54 0.0019 0.0019 0.021 151

55.2 298.2 6.50 3274 3.57 0.36 296.9 -0.0042 2.94 0.36 298.7 0.0018 0.55 0.0019 0.0019 0.019 158

62.1 298.2 7.13 3590 3.86 0.37 296.6 -0.0052 3.27 0.37 298.7 0.0019 0.54 0.0019 0.0019 0.018 171

68.9 298.2 7.73 3891 4.21 0.37 296.3 -0.0062 3.52 0.37 298.9 0.0026 0.54 0.0019 0.0019 0.016 183
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Table D.l High pressure test for tube length, L = 20 mm and tube orifice diameter, dc = 0.5 mm
Inlet condition Cold exit Hot exit Uncertainty results

Po
To

fK )

Flow 
(kg/s) 
x  1Cf4

Re
Flow 
(kg/s) 
x 10‘s

Pc
(kPa)

Tc
fK )

TC~ T 0 Flow 
(kg/s) 
x  10 s

Ph
(kPa)

r„
fK )

Th ~ T 0 Y c TC~ T 0 Th ~ T 0 mc 
x 1CT6

m0 
X 1 0 6 yc

T0 To T0 T0
296.7 1.59 7989 0.86 1.22 296.1 -0.0021 15.00 1.25 298.9 0.0074 0.05 0.0019 0.0019 2.022 7.281 0.013
296.7 1.64 8249 2.55 1.16 293.8 -0.0100 13.83 1.15 300.2 0.0118 0.16 0.0019 0.0019 2.037 7.263 0.014

(0a. 296.7 1.58 7948 4.64 1.02 292.7 -0.0137 11.15 1.05 300.3 0.0121 0.29 0.0019 0.0019 2.044 7.283 0.019
*'w ' 296.7 1.57 7924 5.89 0.99 292.6 -0.0141 9.85 0.97 299.7 0.0101 0.37 0.0019 0.0019 2.045 7.304 0.022
o
CM 296.7 1.51 7617 7.84 0.85 294.3 -0.0083 7.29 0.85 299.2 0.0084 0.52 0.0019 0.0019 2.033 7.303 0.028

296.7 1.25 6283 10.10 1.04 295.2 -0.0052 2.34 1.00 298.7 0.0067 0.81 0.0019 0.0019 2.034 7.334 0.05
296.7 1.18 5925 10.90 0.97 295.7 -0.0035 0.86 0.97 298.3 0.0054 0.93 0.0019 0.0019 2.031 7.329 0.06
296.7 2.21 11144 1.05 1.86 293.5 -0.0110 21.09 1.87 298.7 0.0067 0.05 0.0019 0.0019 2.053 7.338 0.009
296.7 2.25 11343 3.30 1.68 289.7 -0.0236 19.23 1.67 299.9 0.0108 0.15 0.0019 0.0019 2.077 7.326 0.01
296.7 2.18 10988 4.47 1.56 291.8 -0.0168 17.36 1.59 300.1 0.0115 0.2 0.0019 0.0019 2.061 7.319 0.012

<0Q_ 296.7 2.19 11023 6.66 1.39 291.5 -0.0178 15.24 1.39 300.2 0.0118 0.3 0.0019 0.0019 2.062 7.327 0.014
'•o.o' 296.7 2.18 10976 7.95 1.26 291.4 -0.0182 13.86 1.27 300.1 0.0115 0.36 0.0019 0.0019 2.061 7.333 0.015
o
CO 296.7 2.02 10157 9.65 1.05 293.4 -0.0113 10.53 1.05 299.3 0.0087 0.48 0.0019 0.0019 2.046 7.327 0.02

296.7 1.89 9514 11.60 0.91 294.5 -0.0076 7.30 0.9 299.1 0.0081 0.61 0.0019 0.0019 2.039 7.32 0.026

296.7 1.62 8172 13.90 1.05 295.7 -0.0035 2.34 1.05 299 0.0077 0.86 0.0019 0.0019 2.039 7.331 0.041

296.7 1.51 7626 14.30 1.02 296 -0.0025 0.86 1.02 298.1 0.0047 0.94 0.0019 0.0019 2.037 7.329 0.048

296.9 2.91 14626 0.89 2.83 293.9 -0.0103 28.17 2.79 298.2 0.0043 0.03 0.0019 0.0019 2.069 7.422 0.007

296.9 2.89 14524 3.17 2.55 288.4 -0.0287 25.69 2.52 299.2 0.0077 0.11 0.0019 0.0019 2.104 7.404 0.008

296.8 2.91 14656 4.27 2.40 286.0 -0.0365 24.85 2.39 299.8 0.0101 0.15 0.0019 0.0019 2.119 7.401 0.008

296.8 2.87 14454 6.23 2.19 284.0 -0.0434 22.48 2.17 300.7 0.0132 0.22 0.0019 0.0019 2.132 7.402 0.009
y«—V
CO 296.8 2.80 14098 7.70 1.92 288.4 -0.0284 20.30 1.92 299.7 0.0098 0.28 0.0019 0.0019 2.095 7.395 0.01

296.8 2.72 13671 9.76 1.65 288.9 -0.0267 17.40 1.64 299.6 0.0094 0.36 0.0019 0.0019 2.089 7.395 0.012
o
o 296.8 2.48 12485 12.00 1.30 291.7 -0.0175 13.24 1.30 298.8 0.0067 0.47 0.0019 0.0019 2.066 7.375 0.016

296.8 2.40 12081 13.00 1.09 293.0 -0.0130 10.55 1.10 298.7 0.0064 0.56 0.0019 0.0019 2.057 7.359 0.019

296.8 2.29 11534 16.00 0.96 293.8 -0.0103 7.32 0.95 298.5 0.0057 0.68 0.0019 0.0019 2.054 7.353 0.024

296.8 1.95 9793 17.30 1.06 295.2 -0.0055 2.18 1.07 298 0.0040 0.89 0.0019 0.0019 2.052 7.351 0.035

296.8 1.91 9616 18.00 1.03 295.6 -0.0042 0.86 1.05 297.8 0.0033 0.96 0.0019 0.0019 2.051 7.344 0.038
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Table D.2 High pressure test for tube length, L = 20 mm and tube orifice diameter, dc -  0.8 mm
Inlet condition Cold exit Hot exit Uncertainty calculations

Po To
(°K)

Flow 
(kg/s) 
x 1G4

Re
Flow 
(kg/s) 
x 1CT5

Pc
(kP
a)

Tc
fK)

T,~T0 Flow 
(kg/s) 
x  10 s

Ph
(kPa)

Th
fK)

Th ~T0 Yc TC~T0 Th ~T0 mc 
x nr6

m0 
x 1(Y6 Yc

L T0 T0 T0
296.3 1.63 8193 0.95 1.35 296.1 -0.0008 15.33 1.32 298.2 0.0064 0.06 0.0019 0.0019 2.02 7.30 0.013
296.3 1.64 8275 3.24 1.15 293.2 -0.0107 13.20 1.15 299.4 0.0105 0.20 0.0019 0.0019 2.04 7.29 0.015

/■—N 296.3 1.67 8388 4.85 1.04 290.5 -0.0196 11.81 1.05 300.3 0.0135 0.29 0.0019 0.0019 2.06 7.30 0.018CQQ_ 296.3 1.68 8447 6.30 0.99 290.2 -0.0206 10.48 0.97 300.4 0.0139 0.38 0.0019 0.0019 2.06 7.32 0.020
w 296.3 1.66 8333 7.77 0.92 290.0 -0.0213 8.78 0.92 300.8 0.0152 0.47 0.0019 0.0019 2.06 7.33 0.024
Oo 296.3 1.69 8491 9.62 0.83 289.6 -0.0226 7.25 0.82 301.1 0.0162 0.57 0.0019 0.0019 2.07 7.35 0.028

296.3 1.69 8517 12.15 0.75 290.0 -0.0213 4.77 0.75 301.2 0.0166 0.72 0.0019 0.0019 2.07 7.38 0.034
296.3 1.59 8010 13.92 0.98 292.2 -0.0141 2.00 0.97 300.3 0.0135 0.87 0.0019 0.0019 2.06 7.40 0.043
296.3 1.57 7892 14.83 0.95 293.4 -0.0100 0.85 0.95 299.7 0.0115 0.95 0.0019 0.0019 2.05 7.38 0.046
296.6 2.10 10557 0.87 1.96 295.9 -0.0025 20.10 1.94 298.5 0.0064 0.04 0.0019 0.0019 2.04 7.34 0.010
296.5 2.23 11240 2.59 1.85 291.9 -0.0158 19.74 1.77 299.0 0.0084 0.12 0.0019 0.0019 2.06 7.34 0.010
296.4 2.24 11297 4.37 1.66 289.0 -0.0250 18.07 1.62 300.1 0.0125 0.19 0.0019 0.0019 2.08 7.33 0.011
296.4 2.29 11503 7.16 1.36 286.0 -0.0352 15.69 1.37 302.1 0.0189 0.31 0.0019 0.0019 2.10 7.34 0.014

CO
Q_ 296.4 2.25 11321 9.41 1.18 286.5 -0.0335 13.08 1.20 302.3 0.0196 0.42 0.0019 0.0019 2.10 7.36 0.017

296.4 2.28 11453 11.74 1.07 286.6 -0.0332 11.01 1.07 304.1 0.0257 0.52 0.0019 0.0019 2.10 7.37 0.019
oo 296.4 2.32 11658 14.11 0.95 287.1 -0.0315 9.05 0.95 304.8 0.0281 0.61 0.0019 0.0019 2.10 7.38 0.021
CO 296.4 2.37 11916 15.89 0.88 288.0 -0.0284 7.78 0.87 305.1 0.0291 0.67 0.0019 0.0020 2.09 7.39 0.023

296.4 2.32 11694 17.89 0.98 289.8 -0.0223 5.34 0.97 304.0 0.0254 0.77 0.0019 0.0019 2.09 7.41 0.026
296.4 2.32 11658 19.18 1.03 292.3 -0.0141 3.98 1.02 302.6 0.0206 0.83 0.0019 0.0019 2.08 7.39 0.028
296.4 2.06 10389 19.79 0.97 293.9 -0.0086 0.85 1.00 301.1 0.0159 0.96 0.0019 0.0019 2.07 7.38 0.036
296.2 2.82 14179 0.88 2.42 295.0 -0.0042 27.29 2.44 298.3 0.0071 0.03 0.0019 0.0019 2.05 7.39 0.007
296.2 2.85 14364 3.51 2.20 288.5 -0.0260 25.03 2.23 299.0 0.0094 0.12 0.0019 0.0019 2.10 7.39 0.008
296.1 2.75 13824 6.69 1.92 283.9 -0.0414 20.77 1.92 301.3 0.0176 0.24 0.0019 0.0019 2.13 7.38 0.010
296.1 2.89 14550 8.85 1.75 281.5 -0.0493 20.06 1.73 302.9 0.0227 0.31 0.0019 0.0019 2.14 7.39 0.011
296.0 2.92 14701 10.24 1.61 280.7 -0.0517 18.96 1.59 304.0 0.0268 0.35 0.0019 0.0020 2.15 7.39 0.012

to 296.0 2.86 14385 11.97 1.44 284.5 -0.0390 16.61 1.44 303.2 0.0241 0.42 0.0019 0.0019 2.12 7.39 0.013
CL
j* 296.0 2.89 14571 14.21 1.27 284.0 -0.0408 14.74 1.27 304.4 0.0282 0.49 0.0019 0.0020 2.13 7.41 0.015
o 296.1 2.90 14579 16.03 1.19 284.6 -0.0390 12.93 1.17 305.6 0.0319 0.55 0.0019 0.0020 2.12 7.41 0.016
o 296.1 2.91 14633 18.39 1.02 285.4 -0.0363 10.68 1.02 306.0 0.0333 0.63 0.0019 0.0020 2.12 7.42 0.018

296.1 2.91 14650 20.33 1.15 287.3 -0.0298 8.77 1.15 306.3 0.0343 0.70 0.0019 0.0020 2.12 7.43 0.019
296.1 2.92 14720 22.31 1.33 289.2 -0.0233 6.93 1.35 305.5 0.0316 0.76 0.0019 0.0020 2.11 7.44 0.021
296.1 2.85 14323 24.29 1.54 291.5 -0.0158 4.16 1.54 303.9 0.0261 0.85 0.0019 0.0019 2.11 7.45 0.024
296.1 2.65 13335 24.35 0.98 292.7 -0.0117 2.14 0.97 302.7 0.0220 0.92 0.0019 0.0019 2.09 7.40 0.027
296.1 2.58 13011 25.00 0.98 294.0 -0.0073 0.85 0.97 301.1 0.0169 0.97 0.0019 0.0019 2.09 7.38 0.029
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Table D.3 High pressure test for tube length, L = 20 mm and tube orifice diameter, dc = 1.1 mm
Inlet condition Cold exit Hot exit Uncertainty calculations

Po
To

CK)

Flow 
(kg/s) 
x I f f4

Re
Flow 
(kg/s) 
x 10 s

Pc
(kPa)

Tc
CK)

TC~ T 0 Flow 
(kg/s) 
x 10 s

Ph
(kPa)

Th
CK)

Th ~ T 0 Yc TC~ T 0 Th ~ T 0 mc 
x  I f f6

m0
X lff6 Yc

T0 T„ To T0
296.4 1.58 7947 1.03 1.23 296.2 -0.0008 14.80 1.20 298.2 0.0060 0.07 0.0019 0.0019 2.02 7.29 0.013
296.3 1.62 8141 2.55 1.09 294.2 -0.0073 13.60 1.10 298.7 0.0081 0.16 0.0019 0.0019 2.03 7.29 0.014
296.2 1.68 8462 4.31 0.99 291.3 -0.0168 12.50 1.00 299.5 0.0111 0.26 0.0019 0.0019 2.05 7.30 0.017

f t 296.1 1.66 8358 6.13 0.87 289.4 -0.0226 10.50 0.90 300.3 0.0142 0.37 0.0019 0.0019 2.07 7.32 0.020
cl 296.1 1.68 8436 7.98 0.83 288.9 -0.0243 8.78 0.82 300.7 0.0156 0.48 0.0019 0.0019 2.07 7.34 0.024
o 296.1 1.71 8614 9.87 0.77 288.8 -0.0247 7.24 0.75 301.2 0.0169 0.58 0.0019 0.0019 2.07 7.36 0.028
CM 296.1 1.78 8945 11.80 0.71 289.3 -0.023 5.99 0.70 301.6 0.0183 0.66 0.0019 0.0019 2.07 7.38 0.030

296.0 1.72 8635 12.50 0.67 290.4 -0.0189 4.64 0.67 301.7 0.0190 0.73 0.0019 0.0019 2.06 7.37 0.034
296.0 1.64 8235 13.50 0.95 291.2 -0.0165 2.81 0.92 301.4 0.0180 0.83 0.0019 0.0019 2.07 7.41 0.040
296.0 1.58 7969 15.00 0.90 293.0 -0.0104 0.85 0.90 299.7 0.0125 0.95 0.0019 0.0019 2.06 7.39 0.046
296.0 2.21 11112 0.96 1.82 295.5 -0.0018 21.10 1.82 298.2 0.0074 0.04 0.0019 0.0019 2.04 7.34 0.009
296.0 2.22 11167 2.58 1.68 292.4 -0.0124 19.60 1.67 298.6 0.0088 0.12 0.0019 0.0019 2.06 7.34 0.010
296.0 2.22 11151 4.35 1.45 289.8 -0.0209 17.80 1.52 299.6 0.0122 0.20 0.0019 0.0019 2.07 7.33 0.011
296.0 2.21 11132 6.21 1.43 287.0 -0.0305 15.90 1.37 300.6 0.0156 0.28 0.0019 0.0019 2.09 7.35 0.013

f t 296.0 2.26 11361 8.13 1.26 284.9 -0.0375 14.40 1.27 302.2 0.0208 0.36 0.0019 0.0019 2.11 7.36 0.015
CL 296.0 2.27 11425 10.00 1.15 285.4 -0.0358 12.70 1.12 302.3 0.0212 0.44 0.0019 0.0019 2.11 7.38 0.017
o 296.0 2.30 11589 12.00 1.02 285.5 -0.0355 11.00 1.02 303.1 0.0239 0.52 0.0019 0.0019 2.11 7.39 0.019
oCO 296.0 2.34 11774 13.90 0.90 286.3 -0.0327 9.45 0.91 304.1 0.0273 0.60 0.0019 0.0020 2.10 7.40 0.021

296.0 2.38 11962 16.00 0.86 286.7 -0.0314 7.80 0.85 304.2 0.0277 0.67 0.0019 0.0020 2.10 7.42 0.023
296.0 2.40 12061 18.00 0.98 287.9 -0.0274 5.95 0.97 304.1 0.0271 0.75 0.0019 0.0020 2.10 7.44 0.025
296.0 2.25 11322 20.00 0.97 290.4 -0.0189 2.47 0.97 303.1 0.0237 0.89 0.0019 0.0019 2.09 7.44 0.031
296.0 2.19 11016 21.00 0.91 292.7 -0.0114 0.85 0.93 300.7 0.0159 0.96 0.0019 0.0019 2.08 7.41 0.034
296.1 2.82 14201 0.88 2.48 295.2 -0.0032 27.30 2.64 298.4 0.0077 0.03 0.0019 0.0019 2.05 7.40 0.007
296.1 2.93 14742 4.38 2.30 289.9 -0.0209 24.90 2.27 298.8 0.0091 0.15 0.0019 0.0019 2.09 7.40 0.008
296.1 2.88 14512 7.78 1.90 285.4 -0.0363 21.00 1.89 301.6 0.0183 0.27 0.0019 0.0019 2.12 7.38 0.010
296.1 2.92 14677 10.60 1.66 281.5 -0.0493 18.50 1.64 304.1 0.0268 0.36 0.0019 0.0020 2.14 7.40 0.012

f t 296.1 2.89 14555 12.60 1.49 280.5 -0.0527 16.30 1.47 306.0 0.0333 0.44 0.0019 0.0020 2.15 7.41 0.013
CL 296.1 2.91 14661 14.10 1.34 283.3 -0.0435 15.00 1.35 305.3 0.0309 0.49 0.0019 0.0020 2.13 7.41 0.014
O 296.1 2.97 14940 17.40 1.20 283.9 -0.0414 12.20 1.20 306.7 0.0356 0.59 0.0019 0.0020 2.13 7.43 0.016
O 296.1 2.96 14885 19.90 1.10 284.9 -0.038 9.62 1.10 307.4 0.0380 0.67 0.0019 0.0020 2.13 7.45 0.018

296.1 3.03 15249 22.50 1.34 286.3 -0.0332 7.75 1.35 307.5 0.0384 0.74 0.0019 0.0020 2.13 7.48 0.020
296.1 3.00 15092 24.70 1.57 288.5 -0.0257 5.32 1.56 307.0 0.0367 0.82 0.0019 0.0020 2.13 7.49 0.022
296.1 2.81 14159 26.00 1.00 291.4 -0.0162 2.13 1.00 304.6 0.0285 0.92 0.0019 0.0020 2.11 7.44 0.026
296.1 2.75 13824 26.60 0.96 293.0 -0.0107 0.85 0.97 302.6 0.0217 0.97 0.0019 0.0019 2.10 7.41 0.027
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Table D.4 High pressure test for tube length, L = 60 mm and tube orifice diameter, dc = 0.5 mm
Inlet condition Cold exit Hot exit Uncertainty calculations

Po To
CK)

Flow 
(kg/s) 
x 10'*

Re
Flow 
(kg/s) 
x 10 s

Pc
(kPa)

To
CK)

Te ~T0 Flow 
(kg/s) 
x 1<T

Ph
(kPa)

T„
CK)

Th~T0 yc TC~T0 Th ~T0 mc 
x Iff6

m0
X Iff6 Yc

To L T0 T0
297.0 1.61 8125 0.86 1.15 296.7 -0.0011 15.30 1.22 298.9 0.0064 0.05 0.0019 0.0019 2.02 7.28 0.013
297.0 1.60 8051 2.54 1.10 294.6 -0.0083 13.40 1.10 299.6 0.0087 0.16 0.0019 0.0019 2.03 7.27 0.015
297.0 1.61 8104 4.31 1.00 291.6 -0.0185 11.80 1.02 300.6 0.0121 0.27 0.0019 0.0019 2.05 7.28 0.018

CL 297.0 1.60 8065 5.55 0.95 291.1 -0.0198 10.50 0.95 300.7 0.0125 0.35 0.0019 0.0019 2.05 7.29 0.020
O 297.0 1.58 7942 7.25 0.87 291.6 -0.0185 8.53 0.87 300.6 0.0121 0.46 0.0019 0.0019 2.05 7.31 0.025
CM 297.0 1.68 8454 11.00 0.74 293.0 -0.0137 5.77 0.72 299.9 0.0098 0.66 0.0019 0.0019 2.04 7.33 0.031

297.0 1.32 6641 10.70 0.96 294.5 -0.0086 2.50 0.97 299.2 0.0074 0.81 0.0019 0.0019 2.04 7.34 0.048
297.0 1.22 6128 11.30 0.92 295.5 -0.0052 0.86 0.92 298.5 0.0050 0.93 0.0019 0.0019 2.03 7.33 0.058
297.0 2.21 11120 1.04 1.79 294.7 -0.0079 21.00 1.79 299.1 0.0070 0.05 0.0019 0.0019 2.04 7.32 0.009
297.0 2.20 11096 2.66 1.64 292.2 -0.0164 19.40 1.64 299.8 0.0094 0.12 0.0019 0.0019 2.06 7.31 0.010
297.0 2.20 11083 4.71 1.51 289.6 -0.0249 17.30 1.50 300.8 0.0128 0.21 0.0019 0.0019 2.08 7.31 0.012
297.0 2.18 10954 5.90 1.38 288.5 -0.0287 15.90 1.40 301.6 0.0152 0.27 0.0019 0.0019 2.08 7.32 0.013

CL 297.0 2.18 10973 8.02 1.23 288.5 -0.0287 13.80 1.22 301.8 0.0159 0.37 0.0019 0.0019 2.08 7.33 0.016
O 297.1 2.10 10561 9.88 1.09 289.5 -0.0256 11.10 1.05 301.6 0.0148 0.47 0.0019 0.0019 2.07 7.34 0.019
CO 297.1 1.99 10021 11.60 0.94 291.0 -0.0205 8.26 0.92 301.1 0.0135 0.58 0.0019 0.0019 2.06 7.35 0.024

297.1 1.74 8775 13.60 1.17 293.4 -0.0127 3.84 1.17 299.8 0.0091 0.78 0.0019 0.0019 2.06 7.37 0.035
297.1 1.65 8328 14.00 1.02 294.3 -0.0096 2.59 1.02 299.3 0.0074 0.84 0.0019 0.0019 2.05 7.36 0.040
297.1 1.56 7843 14.70 0.98 295.5 -0.0055 0.86 1.00 298.9 0.0060 0.95 0.0019 0.0019 2.04 7.34 0.046
296.4 2.82 14199 0.89 2.62 292.8 -0.0124 27.30 2.59 298.4 0.0067 0.03 0.0019 0.0019 2.07 7.40 0.007
296.4 2.83 14242 2.63 2.39 288.1 -0.0281 25.70 2.39 299.2 0.0094 0.09 0.0019 0.0019 2.10 7.39 0.008
296.4 2.77 13963 4.44 2.18 285.9 -0.0356 23.30 2.16 299.7 0.0111 0.16 0.0019 0.0019 2.12 7.39 0.009
296.4 2.80 14106 6.30 1.96 284.6 -0.0400 21.70 1.97 300.4 0.0135 0.22 0.0019 0.0019 2.12 7.39 0.010
296.4 2.82 14201 7.44 1.89 284.0 -0.0421 20.80 1.87 301.2 0.0162 0.26 0.0019 0.0019 2.13 7.39 0.010

CL 296.4 2.76 13918 8.94 1.70 284.6 -0.0400 18.70 1.69 301.6 0.0172 0.32 0.0019 0.0019 2.12 7.39 0.012
'W'
o 296.4 2.67 13443 10.80 1.46 285.3 -0.0376 16.00 1.47 301.8 0.0179 0.41 0.0019 0.0019 2.11 7.40 0.014

296.4 2.59 13027 12.40 1.26 286.6 -0.0332 14.00 1.27 301.6 0.0172 0.48 0.0019 0.0019 2.10 7.40 0.016
296.4 2.46 12364 14.50 1.25 288.8 -0.0257 10.00 1.25 301.2 0.0162 0.59 0.0019 0.0019 2.09 7.41 0.020
296.4 2.39 12032 15.80 1.44 290.6 -0.0195 8.07 1.45 300.6 0.0142 0.66 0.0019 0.0019 2.09 7.42 0.022
296.4 2.02 10177 17.70 1.30 293.4 -0.0103 2.51 1.30 299.4 0.0101 0.88 0.0019 0.0019 2.07 7.40 0.034
296.4 1.92 9674 18.40 1.36 294.7 -0.0059 0.86 1.32 298.6 0.0074 0.96 0.0019 0.0019 2.06 7.39 0.038
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Table D.5 High pressure test for tube length, L = 60 mm and tube orifice diameter, dc = 0.8 mm
Inlet condition Cold exit Hot exit Uncertainty calculations

Po To
CK)

Flow 
(kg/s) 
x 10*

Re
Flow 
(kg/s) 
x 1CT

Pc
(kPa)

Tc
fK )

TC ~ T 0 Flow 
(kg/s) 
x 10■*

Ph
(kPa)

Th
(°K)

Th ~ T 0 Yc TC ~ T 0 Th - T 0 mc 
X 10'6

m0 
x 10* Yc

T0 T0 L L
297.4 1.58 7965 0.86 1.41 297.1 -0.0011 14.96 1.42 300.3 0.0097 0.05 0.0019 0.0019 2.02 7.26 0.013
297.4 1.57 7885 2.37 1.33 295.2 -0.0076 13.29 1.31 300.8 0.0114 0.15 0.0019 0.0019 2.03 7.26 0.015

<«“s, 297.4 1.59 8024 4.84 1.19 291.8 -0.0191 11.10 1.17 302.1 0.0155 0.30 0.0019 0.0019 2.05 7.27 0.019
CO
CL 297.4 1.63 8197 6.13 1.12 290.1 -0.0246 10.16 1.12 302.8 0.0179 0.38 0.0019 0.0019 2.06 7.29 0.021

297.4 1.65 8288 7.98 1.05 289.5 -0.0266 8.48 1.05 302.8 0.0179 0.48 0.0019 0.0019 2.07 7.33 0.025
O
o 297.4 1.68 8474 9.87 0.95 289.4 -0.0269 6.97 0.96 302.9 0.0182 0.59 0.0019 0.0019 2.07 7.35 0.028
CM 297.4 1.75 8804 11.75 0.94 289.7 -0.0259 5.73 0.95 302.6 0.0172 0.67 0.0019 0.0019 2.07 7.38 0.031

297.4 1.60 8069 13.54 1.12 291.7 -0.0195 2.49 1.12 301.6 0.0138 0.84 0.0019 0.0019 2.07 7.41 0.041
297.4 1.57 7883 14.81 1.07 294.1 -0.0113 0.85 1.07 300.1 0.0091 0.95 0.0019 0.0019 2.05 7.38 0.046
297.5 2.19 11004 1.21 1.85 295.5 -0.0069 20.66 1.94 301.0 0.0118 0.06 0.0019 0.0019 2.04 7.29 0.010
297.5 2.18 10987 2.66 1.78 293.2 -0.0147 19.17 1.79 301.3 0.0128 0.12 0.0019 0.0019 2.05 7.29 0.010
297.5 2.21 11103 4.82 1.65 289.0 -0.0286 17.24 1.62 302.4 0.0162 0.22 0.0019 0.0019 2.08 7.30 0.012
297.5 2.20 11082 6.21 1.54 287.3 -0.0344 15.80 1.54 303.1 0.0185 0.28 0.0019 0.0019 2.09 7.31 0.013

CO 297.5 2.25 11324 8.11 1.41 285.9 -0.0392 14.38 1.42 303.8 0.0209 0.36 0.0019 0.0019 2.10 7.34 0.015
CL 297.5 2.24 11263 10.06 1.31 285.0 -0.0422 12.32 1.30 304.9 0.0246 0.45 0.0019 0.0019 2.11 7.36 0.018
o 297.5 2.29 11518 12.04 1.19 284.5 -0.0439 10.84 1.20 305.7 0.0273 0.53 0.0019 0.0019 2.12 7.39 0.019
o
CO 297.5 2.32 11666 14.13 1.22 284.5 -0.0439 9.04 1.22 305.9 0.0280 0.61 0.0019 0.0019 2.12 7.43 0.022

297.5 2.34 11773 16.08 1.46 286.3 -0.0378 7.31 1.44 305.7 0.0273 0.69 0.0019 0.0019 2.12 7.46 0.024
297.5 2.36 11883 18.12 1.78 288.4 -0.0307 5.49 1.74 304.9 0.0246 0.77 0.0019 0.0019 2.11 7.49 0.026
297.5 2.18 10984 19.34 1.45 290.9 -0.0222 2.48 1.52 303.8 0.0209 0.89 0.0019 0.0019 2.09 7.46 0.032
297.5 2.11 10598 20.20 1.62 294.0 -0.0120 0.85 1.62 301.7 0.0138 0.96 0.0019 0.0019 2.08 7.42 0.035
296.4 2.81 14147 1.21 2.37 294.9 -0.0052 26.89 2.38 299.1 0.0091 0.04 0.0019 0.0019 2.05 7.37 0.007
296.4 2.82 14185 2.90 2.21 292.4 -0.0137 25.28 2.22 299.6 0.0108 0.10 0.0019 0.0019 2.07 7.36 0.008
296.4 2.83 14221 4.75 2.08 288.9 -0.0253 23.50 2.04 300.6 0.0142 0.17 0.0019 0.0019 2.09 7.35 0.009
296.4 2.83 14258 6.29 1.89 285.0 -0.0386 22.04 1.89 302.0 0.0186 0.22 0.0019 0.0019 2.12 7.36 0.009
296.4 2.87 14456 8.24 1.75 282.4 -0.0475 20.48 1.74 303.1 0.0223 0.29 0.0019 0.0019 2.14 7.37 0.010
296.4 2.88 14474 10.23 1.56 280.7 -0.0530 18.52 1.57 304.3 0.0264 0.36 0.0019 0.0019 2.15 7.39 0.012

CO
Q_ 296.4 2.87 14460 11.66 1.47 280.0 -0.0554 17.07 1.47 304.9 0.0285 0.41 0.0019 0.0020 2.15 7.41 0.013
'w ' 296.4 2.85 14327 13.51 1.33 279.3 -0.0577 14.95 1.32 305.8 0.0315 0.47 0.0019 0.0020 2.16 7.44 0.015
oo 296.4 2.91 14624 14.92 1.22 278.9 -0.0591 14.13 1.22 305.7 0.0312 0.51 0.0019 0.0020 2.16 7.46 0.015

296.4 2.92 14678 17.57 1.55 279.3 -0.0577 11.58 1.57 307.7 0.0380 0.60 0.0019 0.0020 2.17 7.52 0.017
296.4 2.97 14952 19.51 1.82 280.5 -0.0537 10.19 1.82 307.7 0.0380 0.66 0.0019 0.0020 2.18 7.56 0.018
296.4 2.99 15038 21.42 2.17 282.9 -0.0458 8.46 2.17 307.1 0.0359 0.72 0.0019 0.0020 2.17 7.59 0.020
296.4 2.98 14978 22.89 2.47 285.0 -0.0386 6.86 2.42 306.3 0.0332 0.77 0.0019 0.0020 2.17 7.61 0.021
296.4 2.78 13993 24.64 2.13 288.8 -0.0257 3.16 2.12 303.9 0.0251 0.89 0.0019 0.0019 2.14 7.56 0.025

296.4 2.69 13538 25.87 2.42 293.4 -0.0103 1.03 2.34 300.2 0.0128 0.96 0.0019 0.0019 2.12 7.50 0.028
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Table D.6 High pressure test for tube length, L = 60 mm and tube orifice diameter, dc = 1.1 mm
Inlet condition Cold exit Hot exit Uncertainty calculations

Po
To

CK)
Flow 
(kg/s) 
x 1CT4

Re
Flow 
(kg/s) 
x 10 s

Pc
(kPa)

Tc
CK)

TC~T0 Flow 
(kg/s) 
x 10*

Ph
(kPa)

Th
CK)

T , - r 0 y c TC~T0 T„-T0 mc 
x icr6

m0 
x 10* Yc

T0 T0 T„ T0
296.6 1.62 8155 0.87 1.26 296.0 -0.0021 15.33 1.22 297.8 0.0040 0.05 0.0019 0.0019 2.02 7.30 0.013
296.6 1.65 8288 2.55 1.14 293.6 -0.0102 13.91 1.12 298.5 0.0064 0.16 0.0019 0.0019 2.04 7.30 0.014
296.6 1.63 8197 4.31 1.02 291.0 -0.0190 11.97 1.05 299.6 0.0101 0.26 0.0019 0.0019 2.06 7.30 0.017OJ

Q. 296.6 1.65 8293 6.13 0.94 289.3 -0.0246 10.34 0.95 300.6 0.0135 0.37 0.0019 0.0019 2.07 7.32 0.021
w 296.6 1.65 8317 8.01 0.88 288.0 -0.0291 8.51 0.87 301.2 0.0155 0.48 0.0019 0.0019 2.08 7.35 0.025OO 296.6 1.72 8633 9.92 0.79 287.5 -0.0308 7.23 0.78 301.7 0.0169 0.58 0.0019 0.0019 2.08 7.38 0.028

296.6 1.76 8864 11.85 0.94 288.3 -0.0280 5.76 0.95 301.3 0.0159 0.67 0.0019 0.0019 2.08 7.41 0.031
296.6 1.61 8102 13.61 0.94 289.8 -0.0229 2.49 0.93 300.5 0.0132 0.85 0.0019 0.0019 2.08 7.44 0.041
296.6 1.57 7921 14.88 0.98 292.4 -0.0144 0.85 0.90 299.1 0.0084 0.95 0.0019 0.0019 2.06 7.41 0.046
296.6 2.20 11076 0.87 1.93 295.1 -0.0052 21.13 1.79 298.0 0.0047 0.04 0.0019 0.0019 2.04 7.35 0.009
296.6 2.22 11158 2.56 1.66 294.2 -0.0083 19.60 1.66 298.6 0.0067 0.12 0.0019 0.0019 2.04 7.33 0.010
296.6 2.24 11297 4.35 1.52 289.8 -0.0229 18.09 1.51 299.5 0.0098 0.19 0.0019 0.0019 2.07 7.33 0.011
296.6 2.21 11120 6.21 1.38 287.0 -0.0325 15.88 1.37 301.0 0.0149 0.28 0.0019 0.0019 2.09 7.34 0.013

/■"•vCO 296.6 2.25 11340 8.13 1.27 284.9 -0.0396 14.40 1.25 303.0 0.0213 0.36 0.0019 0.0019 2.11 7.35 0.015
CL 296.6 2.24 11288 10.10 1.11 283.3 -0.0451 12.32 1.12 304.2 0.0254 0.45 0.0019 0.0019 2.12 7.38 0.018
O 296.6 2.27 11402 12.10 1.03 282.6 -0.0473 10.55 1.02 306.1 0.0318 0.53 0.0019 0.0020 2.13 7.40 0.020
OCO 296.6 2.32 11658 14.14 1.18 283.0 -0.0461 9.02 1.17 306.6 0.0335 0.61 0.0019 0.0020 2.13 7.45 0.022

296.6 2.38 11956 16.21 1.43 283.9 -0.0430 7.54 1.42 306.4 0.0329 0.68 0.0019 0.0020 2.13 7.50 0.023
296.6 2.40 12090 18.29 1.72 285.5 -0.0376 5.73 1.72 305.3 0.0291 0.76 0.0019 0.0019 2.13 7.54 0.025
296.6 2.21 11135 19.63 1.52 289.0 -0.0257 2.49 1.62 303.0 0.0213 0.89 0.0019 0.0019 2.11 7.51 0.032
296.6 2.16 10872 20.74 1.71 292.9 -0.0127 0.86 1.69 300.0 0.0115 0.96 0.0019 0.0019 2.09 7.46 0.035
296.7 2.84 14280 1.55 2.29 295.5 -0.0042 26.82 2.39 298.2 0.0050 0,05 0.0019 0.0019 2.05 7.39 0.007
296.7 2.83 14263 3.29 2.35 292.7 -0.0137 25.05 2.24 298.8 0.0070 0.12 0.0019 0.0019 2.07 7.38 0.008
296.7 2.83 14257 4.74 2.11 289.6 -0.0240 23.58 2.09 299.7 0.0101 0.17 0.0019 0.0019 2.09 7.37 0.009
296.7 2.84 14292 6.25 1.95 286.9 -0.0332 22.15 1.94 300.6 0.0132 0.22 0.0019 0.0019 2.10 7.37 0.009
296.7 2.83 14244 8.18 1.78 284.4 -0.0417 20.11 1.77 302.2 0.0182 0.29 0.0019 0.0019 2.12 7.38 0.011
296.7 2.83 14254 10.21 1.60 281.5 -0.0512 18.11 1.59 304.2 0.0250 0.36 0.0019 0.0019 2.14 7.39 0.012

<0Q_ 296.7 2.86 14395 12.27 1.42 279.8 -0.0570 16.33 1.44 305.8 0.0305 0.43 0.0019 0.0020 2.16 7.41 0.013
296.7 2.85 14360 14.38 1.31 278.5 -0.0614 14.14 1.30 308.6 0.0400 0.50 0.0019 0.0020 2.17 7.43 0.015

Oo 296.7 2.93 14737 16.48 1.42 279.2 -0.0590 12.80 1.42 309.6 0.0434 0.56 0.0019 0.0020 2.17 7.46 0.016
296.7 2.95 14852 18.66 1.73 279.9 -0.0567 10.85 1.73 310.7 0.0471 0.63 0.0019 0.0020 2.18 7.52 0.018
296.7 2.96 14886 20.85 2.08 281.2 -0.0522 8.72 2.09 310.8 0.0474 0.70 0.0019 0.0020 2.18 7.58 0.020
296.7 3.04 15308 23.25 2.51 283.5 -0.0447 7.16 2.49 309.9 0.0444 0.76 0.0019 0.0020 2.18 7.62 0.020
296.7 3.08 15516 25.09 2.91 286.0 -0.0362 5.74 2.89 308.2 0.0386 0.81 0.0019 0.0020 2.18 7.64 0.021
296.7 2.84 14293 25.91 2.39 289.3 -0.0250 2.49 2.42 305.3 0.0288 0.91 0.0019 0.0019 2.15 7.58 0.026
296.7 2.74 13807 26.57 2.65 293.2 -0.0120 0.86 2.81 301.8 0.0169 0.97 0.0019 0.0019 2.13 7.53 0.028
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Table D.7 High pressure test for tube length, L = 100 mm and tube orifice diameter, dc = 0,5 mm
Inlet condition Cold exit Hot exit

Yc

Uncertainty calculations

Po To
CK)

Flow 
(kg/s) 
x 104

Re
Flow 
(kg/s) 
x Iff5

Pc
(kPa)

To
CK)

TC~T0 Flow 
(kg/s) 
x 1ffs

Ph
(kPa)

Th
CK)

Th~T0 TC~T0 Th~T0 mc 
x Iff6

/7?o 
X Iff6 Yc

To T„ L T0
296.4 1.59 7990 0.87 1.17 295.6 -0.0028 15.01 1.15 298.6 0.0074 0.05 0.0019 0.0019 2.02 7.28 0.013
296.4 1.62 8137 2.56 1.06 292.7 -0.0127 13.61 1.05 299.0 0.0088 0.16 0.0019 0.0019 2.04 7.29 0.015

CO
Q_ 296.4 1.63 8215 4.49 0.95 290.8 -0.0189 11.83 0.95 299.5 0.0105 0.28 0.0019 0.0019 2.06 7.30 0.018

296.4 1.65 8290 6.11 0.85 290.1 -0.0212 10.36 0.85 299.8 0.0115 0.37 0.0019 0.0019 2.06 7.32 0.021
OCM 296.4 1.54 7774 7.91 0.73 291.0 -0.0182 7.53 0.73 299.6 0.0108 0.51 0.0019 0.0019 2.05 7.33 0.028

296.4 1.32 6624 10.32 0.92 293.6 -0.0097 2.84 0.90 298.7 0.0077 0.78 0.0019 0.0019 2.04 7.36 0.047
296.4 1.19 5998 11.06 0.84 295.0 -0.0049 0.86 0.85 298.1 0.0057 0.93 0.0019 0.0019 2.03 7.34 0.060
296.4 2.21 11131 1.05 1.70 293.1 -0.0114 21.07 1.77 298.8 0.0081 0.05 0.0019 0.0019 2.05 7.33 0.009
296.4 2.20 11067 2.43 1.69 289.7 -0.0226 19.56 1.66 299.3 0.0098 0.11 0.0019 0.0019 2.08 7.33 0.010
296.4 2.17 10933 4.39 1.45 287.5 -0.0301 17.33 1.47 300.2 0.0128 0.20 0.0019 0.0019 2.09 7.33 0.012

aT
Q_ 296.4 2.21 11128 6.22 1.35 286.5 -0.0335 15.89 1.35 300.8 0.0149 0.28 0.0019 0.0019 2.10 7.34 0.013

296.4 2.19 11011 8.07 1.17 286.6 -0.0332 13.80 1.17 301.0 0.0155 0.37 0.0019 0.0019 2.09 7.36 0.016
O
CO 296.4 2.10 10595 9.93 0.96 287.7 -0.0294 11.12 0.97 300.8 0.0149 0.47 0.0019 0.0019 2.08 7.37 0.019

296.4 1.98 9979 11.80 0.94 289.6 -0.0230 8.03 0.82 300.2 0.0128 0.60 0.0019 0.0019 2.07 7.38 0.024
296.4 1.65 8298 13.48 0.95 292.6 -0.0131 3.00 0.95 299.1 0.0091 0.82 0.0019 0.0019 2.06 7.38 0.039
296.4 1.56 7874 14.79 0.95 294.2 -0.0076 0.86 0.90 298.3 0.0064 0.95 0.0019 0.0019 2.05 7.37 0.046
296.4 2.90 14595 0.88 2.40 293.6 -0.0097 28.11 2.64 298.4 0.0067 0.03 0.0019 0.0019 2.06 7.41 0.007
296.4 2.90 14594 2.53 2.47 289.9 -0.0219 26.46 2.47 299.0 0.0088 0.09 0.0019 0.0019 2.09 7.40 0.008
296.4 2.92 14678 4.35 2.29 286.3 -0.0342 24.81 2.27 299.9 0.0118 0.15 0.0019 0.0019 2.11 7.39 0.008
296.4 2.87 14468 6.31 2.05 284.4 -0.0407 22.43 2.02 300.9 0.0152 0.22 0.0019 0.0019 2.13 7.39 0.009

CO 296.4 2.84 14277 8.20 1.75 283.7 -0.0431 20.16 1.77 301.4 0.0169 0.29 0.0019 0.0019 2.13 7.39 0.011
296.4 2.76 13913 10.10 1.46 284.3 -0.0410 17.54 1.52 301.7 0.0176 0.37 0.0019 0.0019 2.12 7.40 0.012

oo 296.4 2.65 13330 12.02 1.41 285.7 -0.0363 14.46 1.27 301.7 0.0176 0.45 0.0019 0.0019 2.11 7.41 0.015

296.4 2.50 12598 13.92 1.20 287.5 -0.0301 11.11 1.02 301.3 0.0166 0.56 0.0019 0.0019 2.10 7.41 0.018

296.4 2.43 12239 15.79 0.87 289.9 -0.0219 8.53 0.87 300.7 0.0145 0.65 0.0019 0.0019 2.08 7.39 0.022

296.4 2.06 10368 17.68 0.96 293.0 -0.0117 2.92 0.97 299.2 0.0094 0.86 0.0019 0.0019 2.07 7.39 0.032

296.4 1.92 9649 18.31 0.96 294.3 -0.0073 0.86 0.95 298.6 0.0074 0.96 0.0019 0.0019 2.06 7.37 0.038
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Table D.8 High pressure test for tube length, L = 100 mm and tube orifice diameter, dc = 0.8 mm
Inlet condition Cold exit Hot exit

Yc

Uncertainty calculations

Po To
CK)

Flow 
(kg/s) 
x 1 0 4

Re
Flow 
(kg/s) 
x 10*

Pc 
(kPa)

To
CK)

TC ~ T 0 Flow 
(kg/s) 
x 10*

Ph
(kPa)

Th
CK)

Th ~T 0 TC ~ T 0 Th -T „ mc 
x 10r6

m0 
x 10* Yc

T0 T0 T0 T0
296.4 1.55 7812 0.87 1.38 295.6 -0.0028 14.65 1.37 298.1 0.0057 0.06 0.0019 0.0019 2.03 7.31 0.01
296.5 1.58 7953 2.56 1.29 293.1 -0.0117 13.24 1.27 298.8 0.0077 0.16 0.0019 0.0019 2.05 7.30 0.01
296.5 1.63 8208 4.34 1.17 289.6 -0.0233 11.96 1.15 300.0 0.0118 0.27 0.0019 0.0019 2.07 7.31 0.02CO

Q_ 296.5 1.60 8054 6.17 1.07 288.0 -0.0287 9.83 1.07 300.7 0.0142 0.39 0.0019 0.0019 2.08 7.34 0.02
296.5 1.66 8340 8.04 1.02 287.3 -0.0311 8.53 1.00 301.0 0.0152 0.49 0.0019 0.0019 2.09 7.37 0.02

O 296.5 1.72 8657 9.94 0.93 287.2 -0.0315 7.26 0.92 301.0 0.0152 0.58 0.0019 0.0019 2.09 7.40 0.03
296.5 1.74 8775 11.90 1.17 287.8 -0.0294 5.53 1.15 300.7 0.0142 0.68 0.0019 0.0019 2.09 7.45 0.03
296.5 1.60 8042 13.48 1.07 289.9 -0.0223 2.50 1.07 300.0 0.0118 0.84 0.0019 0.0019 2.08 7.45 0.04
296.5 1.53 7708 14.46 1.01 292.6 -0.0134 0.86 1.02 299.0 0.0084 0.94 0.0019 0.0019 2.06 7.41 0.05
297.0 2.19 11041 0.87 1.86 295.2 -0.0062 21.06 1.74 298.8 0.0060 0.04 0.0019 0.0019 2.04 7.32 0.01
297.0 2.21 11138 2.58 1.65 292.4 -0.0158 19.55 1.64 299.4 0.0081 0.12 0.0019 0.0019 2.06 7.32 0.01
297.0 2.24 11289 4.37 1.51 288.5 -0.0287 18.05 1.52 300.1 0.0104 0.19 0.0019 0.0019 2.08 7.33 0.01
297.0 2.25 11330 6.25 1.39 285.4 -0.0392 16.26 1.39 301.8 0.0159 0.28 0.0019 0.0019 2.10 7.34 0.01»sCO 297.0 2.19 11018 8.16 1.29 284.0 -0.0440 13.73 1.30 303.0 0.0199 0.37 0.0019 0.0019 2.12 7.36 0.02

0_ 297.0 2.26 11371 10.11 1.18 283.1 -0.0471 12.48 1.17 303.9 0.0230 0.45 0.0019 0.0019 2.12 7.39 0.02
o 297.0 2.31 11627 12.10 1.06 282.7 -0.0484 11.00 1.07 304.6 0.0253 0.52 0.0019 0.0019 2.13 7.42 0.02oCO 297.0 2.32 11689 14.15 1.18 282.8 -0.0481 9.07 1.17 304.8 0.0260 0.61 0.0019 0.0019 2.13 7.47 0.02

297.0 2.34 11761 16.18 1.17 283.8 -0.0447 7.19 1.17 304.7 0.0257 0.69 0.0019 0.0019 2.13 7.50 0.02
297.0 2.40 12058 18.20 1.73 287.0 -0.0338 5.76 1.72 303.7 0.0223 0.76 0.0019 0.0019 2.12 7.52 0.03
297.0 2.19 11022 19.40 1.47 290.1 -0.0232 2.49 1.47 301.7 0.0155 0.89 0.0019 0.0019 2.10 7.49 0.03
297.0 2.11 10623 20.25 1.64 293.4 -0.0123 0.86 1.64 300.2 0.0108 0.96 0.0019 0.0019 2.08 7.44 0.04
297.0 2.84 14318 1.22 2.52 294.6 -0.0083 27.23 2.59 299.4 0.0081 0.04 0.0019 0.0019 2.06 7.38 0.01
297.0 2.83 14263 2.60 2.39 292.1 -0.0168 25.74 2.44 300.2 0.0108 0.09 0.0019 0.0019 2.07 7.36 0.01
297.0 2.83 14267 4.41 2.27 288.3 -0.0294 23.94 2.27 301.4 0.0148 0.16 0.0019 0.0019 2.10 7.35 0.01
297.0 2.86 14399 6.29 2.08 285.1 -0.0403 22.31 2.07 302.8 0.0192 0.22 0.0019 0.0019 2.12 7.35 0.01
297.0 2.83 14221 8.23 1.88 283.2 -0.0467 20.02 1.89 303.9 0.0230 0.29 0.0019 0.0019 2.13 7.36 0.01
297.0 2.90 14599 10.22 1.73 281.6 -0.0518 18.78 1.72 305.0 0.0267 0.35 0.0019 0.0019 2.14 7.38 0.01

COQ. 297.0 2.87 14457 12.27 1.52 280.1 -0.0569 16.45 1.57 306.4 0.0315 0.43 0.0019 0.0019 2.15 7.41 0.01
297.0 2.91 14642 14.36 1.41 279.2 -0.0600 14.73 1.42 307.9 0.0365 0.49 0.0019 0.0020 2.16 7.43 0.01

OO 297.0 2.93 14743 16.49 1.42 279.0 -0.0607 12.80 1.42 309.6 0.0423 0.56 0.0019 0.0020 2.17 7.47 0.02
297.0 2.96 14885 18.69 1.72 279.4 -0.0593 10.88 1.71 309.7 0.0426 0.63 0.0019 0.0020 2.18 7.54 0.02
297.0 2.97 14950 20.82 2.07 281.6 -0.0518 8.88 2.07 309.6 0.0423 0.70 0.0019 0.0020 2.18 7.58 0.02
297.0 2.95 14851 22.92 2.50 284.7 -0.0416 6.58 2.49 308.1 0.0372 0.78 0.0019 0.0020 2.17 7.61 0.02
297.0 2.98 15006 25.03 2.91 288.0 -0.0304 4.78 2.91 306.7 0.0325 0.84 0.0019 0.0020 2.16 7.61 0.02
297.0 2.75 13838 25.00 2.25 290.3 -0.0226 2.49 2.27 304.6 0.0253 0.91 0.0019 0.0019 2.13 7.54 0.03
297.0 2.68 13515 25.99 2.44 293.8 -0.0110 0.86 2.47 302.8 0.0192 0.97 0.0019 0.0019 2.12 7.50 0.03
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Table D.9 High pressure test for tube length, L = 100 mm and tube orifice diameter, dc = 1.1 mm
Inlet condition Cold exit Hot exit Uncertainty calculations

Po To
fK )

Flow 
(kg/s) 
x 1 0 4

Re
Flow 
(kg/s) 
x 10 s

Pc
(kPa)

Tc
fK )

TC~T0 Flow 
(kg/s) 
x 10 s

Ph
(kPa)

Th
<°K)

Th -T „ Yc TC~T0 Th~T0 mc 
x Iff6

m0 
x 10 Yo

T0 K T0 T0
296.7 1.62 8180 0.87 1.23 295.9 -0.0028 15.38 1.35 297.2 0.0016 0.05 0.0019 0.0019 2.02 7.33 0.01
296.7 1.65 8296 2.55 1.21 294.5 -0.0076 13.93 1.25 298.4 0.0057 0.15 0.0019 0.0019 2.03 7.30 0.01
296.7 1.61 8122 4.31 1.17 291.5 -0.0178 11.82 1.12 300.2 0.0118 0.27 0.0019 0.0019 2.06 7.29 0.02

CO
a 296.7 1.66 8359 6.13 1.01 289.6 -0.0240 10.48 1.02 300.7 0.0135 0.37 0.0019 0.0019 2.07 7.32 0.02

296.7 1.67 8388 8.03 0.97 287.7 -0.0304 8.64 0.95 301.6 0.0162 0.48 0.0019 0.0019 2.08 7.36 0.02
o
o 296.7 1.72 8645 9.94 0.89 287.3 -0.0318 7.24 0.87 301.7 0.0166 0.58 0.0019 0.0019 2.09 7.39 0.03

296.7 1.73 8688 11.87 0.96 287.9 -0.0297 5.39 0.92 301.2 0.0152 0.69 0.0019 0.0019 2.09 7.43 0.03
296.7 1.63 8183 13.76 1.02 289.6 -0.0240 2.49 1.02 300.5 0.0128 0.85 0.0019 0.0019 2.08 7.45 0.04
296.7 1.57 7919 14.88 0.98 292.5 -0.0144 0.85 0.97 299.1 0.0081 0.95 0.0019 0.0019 2.06 7.41 0.05
296.1 2.21 11101 0.87 1.66 295.2 -0.0032 21.18 1.77 297.2 0.0037 0.04 0.0019 0.0019 2.04 7.36 0.01
296.1 2.22 11173 2.57 1.58 293.4 -0.0093 19.63 1.62 298.1 0.0067 0.12 0.0019 0.0019 2.05 7.34 0.01
296.1 2.25 11310 4.36 1.49 289.1 -0.0237 18.11 1.47 299.1 0.0101 0.19 0.0019 0.0019 2.08 7.34 0.01
296.1 2.21 11149 6.23 1.39 286.3 -0.0332 15.92 1.37 300.2 0.0139 0.28 0.0019 0.0019 2.10 7.36 0.01

CO 296.1 2.26 11379 8.14 1.24 284.3 -0.0401 14.46 1.25 301.7 0.0186 0.36 0.0019 0.0019 2.11 7.37 0.02
Q. 296.1 2.26 11400 10.13 1.13 282.4 -0.0465 12.51 1.12 302.8 0.0224 0.45 0.0019 0.0019 2.13 7.41 0.02
o 296.1 2.32 11657 12.14 1.01 281.5 -0.0493 11.01 1.00 303.9 0.0261 0.52 0.0019 0.0019 2.13 7.43 0.02
o
CO 296.1 2.33 11733 14.20 1.18 281.7 -0.0486 9.11 1.17 303.6 0.0251 0.61 0.0019 0.0019 2.14 7.50 0.02

296.1 2.39 12013 16.29 1.42 282.5 -0.0462 7.57 1.27 304.6 0.0285 0.68 0.0019 0.0020 2.14 7.53 0.02
296.1 2.44 12267 18.37 1.73 284.4 -0.0397 6.00 1.74 303.8 0.0258 0.75 0.0019 0.0019 2.14 7.57 0.02
296.1 2.25 11321 20.00 1.54 288.1 -0.0271 2.49 1.54 302.1 0.0200 0.89 0.0019 0.0019 2.12 7.54 0.03
296.1 2.17 10917 20.83 1.73 291.7 -0.0151 0.86 1.72 300.2 0.0139 0.96 0.0019 0.0019 2.10 7.49 0.03
296.3 2.83 14235 0.88 2.58 295.2 -0.0039 27.40 2.54 297.4 0.0037 0.03 0.0019 0.0019 2.06 7.42 0.01
296.3 2.82 14220 2.58 2.37 294.1 -0.0076 25.67 2.37 299.0 0.0091 0.09 0.0019 0.0019 2.06 7.38 0.01
296.3 2.84 14290 4.39 2.21 289.5 -0.0230 24.00 2.17 300.3 0.0135 0.15 0.0019 0.0019 2.09 7.36 0.01
296.3 2.84 14289 6.27 1.98 286.0 -0.0349 22.12 1.99 301.1 0.0162 0.22 0.0019 0.0019 2.11 7.37 0.01
296.3 2.88 14477 8.21 1.80 283.5 -0.0434 20.55 1.82 302.3 0.0200 0.29 0.0019 0.0019 2.13 7.38 0.01
296.4 2.88 14497 10.24 1.66 280.9 -0.0523 18.56 1.64 303.8 0.0247 0.36 0.0019 0.0019 2.15 7.40 0.01

CO
Q_ 296.4 2.87 14424 12.31 1.49 279.0 -0.0588 16.34 1.49 305.7 0.0312 0.43 0.0019 0.0020 2.16 7.43 0.01

296.4 2.90 14609 14.41 1.33 278.1 -0.0618 14.61 1.33 307.2 0.0363 0.50 0.0019 0.0020 2.17 7.45 0.01
O
O 296.4 2.93 14742 16.56 1.43 277.9 -0.0625 12.73 1.44 308.2 0.0397 0.57 0.0019 0.0020 2.18 7.50 0.02

296.4 2.97 14941 18.77 1.73 278.2 -0.0615 10.91 1.72 308.9 0.0420 0.63 0.0019 0.0020 2.19 7.56 0.02
296.4 3.03 15233 20.99 2.09 279.4 -0.0574 9.28 2.09 309.2 0.0431 0.69 0.0019 0.0020 2.19 7.62 0.02
296.4 3.04 15293 23.20 2.49 281.3 -0.0509 7.19 2.47 308.6 0.0410 0.76 0.0019 0.0020 2.19 7.67 0.02
296.4 3.11 15659 25.35 2.93 284.4 -0.0407 5.76 2.81 306.9 0.0353 0.81 0.0019 0.0020 2.19 7.68 0.02
296.4 2.83 14265 25.84 2.44 288.4 -0.0270 2.50 2.39 304.1 0.0257 0.91 0.0019 0.0019 2.15 7.61 0.03
296.4 2.83 14245 27.44 2.69 292.4 -0.0137 0.86 2.69 301.7 0.0176 0.97 0.0019 0.0019 2.14 7.55 0.03
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