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ABSTRACT

This research focuses on comparing the kinematic response of the head and neck 

of the Hybrid III three-year-old anthropometric test device finite element model and 

pediatric cadaver data under tensile distraction and flexion-extension bending loading 

conditions. In this work, an explicit finite element code (LS-DYNA) and the Hybrid III 

finite element model were used to numerically simulate previous experimental cadaver 

tests. Significant differences in linear and rotational stiffness were found between the 

Hybrid III and the pediatric cadaver data. The pediatric cadaver data was implemented 

into the Hybrid III model and loaded with a crash pulse obtained from experimental child 

cadaver sled test. Comparisons of kinematic were made and it was found that the altered 

model exhibited a 31 percent greater degree of head rotation, a 141 percent greater degree 

of chest deflection, and the head trajectory more closely resembled that of the 

experimental pediatric cadaver sled test.
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1. INTRODUCTION

1.1 Statement of the Problem

Motor vehicle accidents are the third leading cause of premature death and long 

term disability for persons of all age groups in Canada. In 2001, Transport Canada 

reported 2,778 deaths due to motor vehicle accidents, 24,403 hospital admissions and a 

total estimated annual cost of $25 billion dollars (Transport Canada, 2004). In the same 

year, 523 child fatalities were attributed to transport accidents (Statistics Canada, 2006). 

Motor vehicle accidents are the leading cause of death for children in Canada (Statistics 

Canada, 2003).

Similarly, in the United States, the National Highway Traffic Safety 

Administration (NHTSA) has found that motor vehicle accidents are the leading cause of 

death for persons aged 3 through 34. When measured by years of life lost, motor vehicle 

accidents rank third as cause of death for all age groups, trailing behind only cancer and 

cardiovascular disease. The number of years of life lost measure highlights the 

disproportionate impact motor vehicle accidents have on the younger demographic of the 

population. It is evident from these statistics that the younger population is at an 

increased risk of death and loss of life expectancy (NHTSA, 2006).

Williamson, Irvine, & Sadural, (2002) found that children in the 3 to 4 year age 

group account for a greater number of passenger fatalities (45.5 percent) than any other 

age group. The most common body part injured for children involved in motor vehicle 

frontal impact crashes is the head and the neck, followed by injuries of the torso and 

extremities (King, 2000). Injuries to the head and neck account for a greater number and 

severity of abbreviated injury scale (AIS) 2+ injuries (Arbogast, Cornejo, Kalian,

1
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Winston, & Durbin, 2002). When ranked by specific age, motor vehicle accidents are the 

leading cause of death for children aged 3 years old (NHTSA, 2006).

Research and development on child occupant crash protection relies heavily on 

the biofidelity of anthropomorphic test devices (ATD’s) and the ability to relate measured 

parameters on the ATD to injury (Yannaccome, Whitman, Sicher, & D’Aulerio, 2005). 

The Hybrid III three-year-old ATD is the only official device recognized by the 

International Standards Organization (ISO), NHTSA, Insurance Institute for Highway 

Safety (IIHS), Transport Canada and European regulations for frontal impact compliance 

testing (General Motors, 2006). In previous studies comparing the head-neck responses 

of the Hybrid III adult-male ATD and adult human cadaver, the neck of the Hybrid III 

adult-male ATD was found to be between 2 and 4 times stiffer and transmitted 

approximately 48.5 percent more force to the lower neck under axial compression as 

compared to the adult human cadaver (Sances & Kumaresan 2001; Sances, Carlin & 

Kumaresan, 2002). In addition it has been shown that the thoracic spine of the Hybrid III 

six-year-old ATD is overly stiff and results in high neck forces and moments that are not 

representative of the true injury potential (Sherwood, Shaw, Van Rooij, Kent, Crandall, 

Orzechowski, Eichelberger, & Kallieris 2003).

There have been no documented studies comparing the stiffness of the Hybrid III 

three-year-old ATD model neck under axial tensile loading and flexion to human 

pediatric cadaver tests. However, previous research suggests that there is a strong need 

for improving the biofidelity of the neck of the Hybrid III three-year-old child ATD 

model. Therefore, the specific purpose of the proposed study is to compare the kinematic 

neck response of the Hybrid III three-year-old child finite element model with known

2
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real-life pediatric cadaver data from three-year-old subjects. The biomechanical response 

of the human cervical spine under flexion and tensile loading conditions has recently 

been provided through human pediatric cadaver research (Ouyang, Zhu, Zhao, Xu, Chen, 

& Zhong, 2005). It follows that this new invaluable information on the biomechanical 

response and tolerance of the pediatric cervical spine be compared to that of the Hybrid 

III three-year-old child finite element model and if  warranted, be incorporated in the child 

models design to improve its biofidelity and usefulness as a research tool. With more life

like child surrogates, researchers will be better able to evaluate the efficacy of child 

restraint systems and other interventions to mitigate the risk of injury and death.

1.2 Operating Definitions

Dummy: refers to the Hybrid III three-year-old child anthropometric test device.

Model: refers to the Hybrid III three-year-old finite element model.

Injury Protection Reference Values: the lower threshold for which an injury is likely to 

occur. Applies to dummies.

Injury Criteria: an assessment of the probability of a known acceleration, force or 

moment to cause injury. Applies to humans.

Global Coordinate System: denoted as X, Y and Z, and defined by the right-handed 

cartesian coordinate system convention.

Local Coordinate System: the coordinates are referenced to the centre of mass of the head 

and chest of the model and defined as positive x, being forward, positive y, originating 

from the models left shoulder and directed toward the right shoulder, and positive z, 

defined by the right-handed cartesian coordinate system convention.

3
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1.3 Hypotheses

Hypothesis 1 - The neck of the Hybrid III three-year-old child finite element model is 

significantly stiffer than that of the pediatric cadaver cervical spine data.

Hypothesis 2 - The Hybrid III three-year-old child finite element model does not 

adequately predict the failure tolerance of the pediatric cadaver cervical spine data under 

axial tensile loading conditions.

Hypothesis 3 - The Hybrid Eli three-year-old child finite element model does not exhibit 

the same kinematic response of the pediatric cervical spine data under flexion loading 

conditions.

Null Hypothesis -  There will be no difference in stiffness, failure tolerance or kinematic 

response under flexion between the neck of the Hybrid III three-year-old child finite 

element model and that of the pediatric cadaver cervical spine data.

4
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2. LITERATURE REVIEW

2.1 Automotive Crash Statistics

2.1.1 Canada

Unintentional injury is the leading cause of death for persons between the ages of 

1 through 34 years of age in Canada (Public Health Agency of Canada, 2006). The 

majority of unintentional fatal injuries (60.9 percent) are attributed to motor vehicle 

accidents (Public Health Agency of Canada, 1996). Statistics from Health Canada (2003) 

confirm that motor vehicle accidents account for the greatest number of child fatalities in 

Canada. In the year 2000 alone, there were 32 deaths and 3,148 injuries attributed to 

motor vehicle accidents for children aged 0 through 4 years of age in Canada (Statistics 

Canada, 2003).

2.1.2 United States

Similar statistical data reported by NHTSA (2002) confirms that motor vehicle 

accidents are the leading cause of child mortality in the United States. Statistics from the 

year 2004 indicate that every day, an average of 7 children between the ages of 1 through 

13 were killed, and 800 more injured in motor vehicle accidents. In addition, in the same 

year, 9,078 child motor vehicle occupants were involved in fatal motor vehicle accidents 

(NHTSA, 2006). Further, the National Centre for Statistics and Analysis (NCSA) 

determined that in the year 2002, motor vehicle accidents accounted for 607 deaths and 

62,000 injuries to children aged 0 through 5 years (NHTSA, 2006). It is evident from 

these statistics that motor vehicle accidents present a significant risk of injury and death 

for children in both Canada and the United States.

5
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2.2 Injury

2.2.1 Patterns of Injury

Clinical observations documented from the Crash Injury Research Engineering 

Network (CIREN) calculated that motor vehicle accidents account for 50 percent of all 

pediatric trauma and 30-40 percent of pediatric cervical spine injuries (Brown, Brunn & 

Garcia, 2001; Kokoska, Leller, Rallo, & Weber, 2001; Patel, Tepas, Mollitt, Pieper, 

2001; Brown, Ping, Wang, & Ehrlich, 2006). Approximately 50 percent of injuries to the 

pediatric cervical spine sustained in motor vehicle collisions (MVC’s) are fatal (Patel et 

al., 2001). For children under 11 years of age, motor vehicle accidents account for 38 

percent of all cervical spine injuries (McGrory, Klassen, & Chao, 1993). Paravertebral 

soft tissue injuries are the most common type of injury to the cervical spine, accounting 

for 68 percent of all spinal injuries. The most common spinal injury level was the high 

cervical spine, the occiput through the fourth cervical vertebrae (Cirak, Ziegfeld, Knight, 

Chang, Avellino & Paidas, 2004). More specifically, injuries of the Occipitoatlantoaxial 

(Occ-C2) complex (also known as atlanto-occipital injuries) are the most common form 

of cervical spine injury in children aged 10 years and younger (Sochor, Faust, Garton & 

Wang, 2004). Approximately 80 percent of all cervical spine injuries in children occur at 

levels above C2. In contrast, 84 percent off all cervical spine injuries to adults occur in 

the C3-C7 region (Dai, Ni, & Yuan, 1999; Hause, Hoshiro, & Omata, 1974). Traumatic 

cervical spine injuries to children include atlanto-occipital dislocations, fractures to the 

odontoid process and spinal cord lesions (Steinmetz, Lechiner, & Anderson, 2003; Cirak, 

et al., 2004; Mousny, Saint-Martin, Danse, & Rombouts, 2001).

6
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2.2.2 Case Studies

Due to the prevalence of cervical spine injuries in children involved in motor 

vehicle collisions, the primary area of improvement in the Hybrid III ATD over its 

predecessor (the Hybrid II) was neck biofidelity and response. Several investigators have 

previously studied ATD neck biofidelity by comparison of case studies of real world 

motor vehicles accidents and experimental crash tests (Howard, McKeag, Rothman, 

Mills, Blazeski, Chapman & Hale, 2005; Yannaccone et al., 2005; Sochor et al., 2004). 

The goal of the research is to identify real world motor vehicle accidents in which the 

following criteria are met; the child occupant(s) approximate the size and mass of the 

Hybrid III three-year-old ATD, injuries sustained in the crashes are well documented, and 

delta velocity (v) of the accident are known. Cervical spine injuries resulting from the 

accident are then compared to experimental crash tests run with the Hybrid III ATD 

under simulated crash conditions. Results are compared to determine if there is a 

difference in the ATD predicted injury verses the actual injury sustained. This has 

enabled researchers to validate ATD response and biofidelity.

A case study of interest is one in which three children ages 3, 6 and 7 were 

involved in a frontal motor vehicle crash. The MVC involved a 1994 Sport Utility 

Vehicle (SUV) which collided with a 1995 mid-sized sedan. The sedan had lost control 

on a wet road and presented it’s passenger side to the case vehicle.

7
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Speed Limit SS mph <09 kph)

Vehicle 1 tolls 1<4 tom v-r '̂  
onto rtgntsk»»tlinal rest

Figure 1. Accident reconstruction diagram (Sochor et al., 2004). 

The delta v of the crash was approximately 45 km/h.

Figure 2. Case vehicle, a 1994 SUV (Sochor et al., 2004).

The child occupants were restrained with only a lap belt and all survived the crash. All 

three children had varying degrees of Occ-C2 injury without permanent neurological

8
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damage leading the researchers to believe that the children were at the lower threshold of 

serious neck injury. Similar research previously conducted by Mertz, Driscoll, Lenox, 

Nyquist & Weber (1982) on porcine subjects established the presence of an AIS 3 

(serious) injury based upon the presence of hemorrhage in the synovial fluid of the 

occipital condylar joint capsule. All three child occupants had varying degrees of 

hemmorhagic rupture in the vicinity of the ligaments which encase the occipital condylar 

joint. It was concluded by Sochor et al., (2004) that all three children experienced loading 

close to their individual neck tolerance limits.

Figure 3. Slight hemmorhage at the tectorial membrane (Sochor et al., 2004).

9
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Sochor et al., (2004) reconstructed the crash using MADYMO computer 

modeling simulation software. The SUV/Hybrid III ATD model was run on the 

deceleration pulse specified in the Federal Motor Vehicle Safety Standard (FMVSS) 208 

(125 ms 48 km/h sled pulse) which was close to the delta v for the MVC. The modeled 

neck loads were near the neck injury criteria specified by the FMVSS 208 for 3 and 6 

year-old ATD’s. Non-contact NIJ values peaked prior to significant head rotation and 

peak neck tension. The model injury criteria predicted a 3-5 percent risk of an AIS 3 

injury. The injury assessment reference values (IARV) of the model correlate well with 

the actual AIS 2 (moderate) injuries the children sustained in the MVC indicating that the 

IARV appear to be appropriately set. The study conducted by Sochor et al. (2004) is 

limited by the fact that analysis was based on only one acceleration pulse of moderate 

intensity. The full range of acceleration intensity form minor to failure was not 

considered. Due to the viscoelastic response of human tissue to loading, the response and 

correlation to other acceleration pulses are unknown.

Several other case studies support a non-contact mechanism of injury. Howard et 

al., (2005) analyzed a case study in which a 23 month-old-child was properly restrained 

in a forward facing CRS and was involved in a MVC with a delta v of 40 km/h. The child 

suffered a fatal Occ-Cl dislocation. In a second case, a 35 month-old-child who was 

properly restrained in a forward-facing CRS was involved in a MVC with a delta v of 80 

km/h and suffered a fracture to C2. The child recovered from the injury. Further analysis 

by Howard et al. (2005) of 5,000 MVC’s from the National Automotive Sampling 

System Crashworthiness Data System revealed that adult occupants seated in the front 

seat sustained less severe injuries than child occupants in CRS’s seated in rear seats. In

10
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all cases, the children were the furthest occupants from the point of impact, yet received 

the more serious of injuries. It is thus evident that children are at an increased risk of 

injury in MVC’s as compared to adults. Researchers have cited the fragile pediatric 

cervical physiology as a mechanism for increased injury (Weber, 1995).

2.3 Injury Mechanism and Biomechanics

2.3.1 CRS as a Mechanism to Reduce Injury

Forward facing CRS’s reduce1 the risk of serious injury and hospitalization by 78 

percent for children 1 through 4 years of age involved in a MVC as compared to children 

restrained only by a seat belt. The biomechanical principal of a CRS is to distribute the 

crash forces over the shoulders and hips, as well as to control head excursion during the 

crash event (Arbogast, Durbin, Cornejo, Kalian, & Winston, 2004). CRS’s that are 

secured to the vehicle by Lower Anchors and Tethers for Children (LATCH), and Top 

Tethers, rigidly couple the CRS to the vehicle body allowing the CRS and child occupant 

to effectively “ride-do\vn” the rapidly changing velocity of the crash. Coupling the CRS 

to the vehicle body allows the deceleration pulse of the MVC to be coupled with the 

energy absorbing crumple zones on the vehicle. This dissipates the energy of the crash 

Over a longer period of time thereby reducing the impact forces on the occupant 

(Arbogast et al., 2002). This research concludes that attenuating the rate of change of 

velocity a child experiences in a MVC reduces their risk of injury.

2.3.2 Velocity and Time Duration as Injury Mechanisms

Nance, Elliott, Arbogast, Winston, & Durbin (2006) examined the association 

between delta v and risk of injury to children involved in frontal motor vehicle crashes. 

Nance et al., defined delta v as the difference in initial v at the instant prior to impact and
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the final v, assumed to be zero, for the MVC. The probability of an AIS 2 injury 

increased on average 56 percent for each 10 kph increase in delta v. The delta v at which 

50 percent of child occupants would be expected to sustain an AIS 2 injury was 37 kph 

and that of an AIS 3 injury was 63 kph. The researchers concluded that delta v is strongly 

positively correlated with and predictive of injury risk for child occupants.

Research done by Desantis-Klinich, Saul, Auguste, Backaitis, & Kleinberger 

(1996) found an inversely proportional relationship between the duration of time a load 

was applied for and the critical load to cause injury. As the time duration increases, the 

critical load to cause injury decreases. As an example, axial tensile neck loads of 

approximately 2,500 N imparted on the neck of a three-year-old can be sustained from 0 

to approximately 20 ms. After 20 ms, the critical load that can be sustained is greatly 

reduced. For example, after 30 ms, the critical load that can be sustained without causing 

injury is approximately 1,000 N.

2.3.3 Pediatric Cervical Spine Anatomy

To fully understand the injury potential and affects on the pediatric cervical spine, 

we must first understand the anatomy of the spine. The occipital condyles are found at the 

posterior base of the skull and articulate with the atlas. The condyles are seated in 

concavities in the lateral mass of the atlas. These concavities develop with age and are 

absent in the pediatric cervical spine. A lax ligamentous capsule surrounds the 

atlantooccipital articulation and provides most of the stability of the occipital cervical 

junction. The most important ligaments for stability are the tectorial membrane, cruciate 

ligament and the alar and apical ligaments. Many of these ligaments are underdeveloped 

in children (Steinmetz et al., 2003). Anatomical and developmental differences between
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the pediatric and adult cervical spine result in a greater mobility of the pediatric cervical 

spine due to greater ligamentous laxity, shallow angulations of the facet joints, immature 

development of the neck musculature and incomplete ossification of the vertebrae (Roche 

& Carty, 2001).
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Figure 4. Posterior view of the Occ-C2 complex and tectorial membrane (Gray, 1860). 

In addition, the comparative anatomy of the pediatric head lends to cervical spinal injury. 

This is due primarily to the relative size and mass of a child’s head as compared to the 

rest of the body. The ratio of head to body mass is 1:3 for newborns and 1:15 for adults. 

Therefore, the mass of a child’s head is proportionately greater than that of an adult 

(Cassan, Caillieret, & Tarriere, 1992). The greater mass of the pediatric head along with 

the reduced structural integrity of the pediatric neck lend to cervical spine injuries in 

MVC’s.
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Figure 5. Medial sagital plane of the Occ-C2 complex (Gray, 1860).

2.3.4 Biomechanics of the Pediatric Cervical Spine

The relative biomechanical contribution of the Occ-C2 complex to flexion and 

axial distraction of the human spine can be summarized as follows. The atlantooccipital 

complex contributes to 25 degrees of flexion-extension, 5 degrees of lateral bending and 

5 degrees of rotation (Anderson, 1988; Anderson & Montesano, 1992; Bools & Rose 

1986). Extension is limited by the tectorial membrane and flexion is limited by contact of 

the dens and the basion. Lateral bending is counteracted by the alar ligaments. Distraction 

is opposed by the tectorial membrane and the alar ligaments.
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The biomechanical structure and biomaterial properties of the pediatric cervical 

spine place children at an increased risk of acceleration induced injury as experienced in 

MVC’s (Huelke, Mackay, Morris, & Bradford, 1991; Myers & Winkelstein, 1995; 

Weber, 2002; Yoganandan & Kumaresan, 2002). The ligaments of the pediatric cervical 

spine are lax and do not effectively contribute to the structural integrity of the cervical 

column. The cervical vertebrae are not yet completely ossified making them more prone 

to separation. The facets are predominately horizontal which provide little restriction to 

dislocation and the posterior-lateral contours of the vertebral bodies are not developed 

and therefore can not restrict flexion-rotation forces (Fuchs, Barthel, Flannery, & 

Christoffel, 1989; Janssen, Nieboer, Verschut, & Huijskens, 1991; Weber, 2002; 

Yoganandan et al., 2002). In addition, the relatively large head and shorter neck of 

children places the fulcrum of the cervical spine within the Occ-C2 complex increasing 

the risk for Occ-C2 dislocation injuries (Steinmetz et al., 2003). As a result of these 

biomechanical factors, 60-80 percent of all pediatric vertebral injuries are-in the cervical 

region.

2.3.5 Resultant Mechanism of Injury and AOD

Anatomical, physiological and developmental differences between children and 

adults place children at an increased risk of head and neck injury as compared to adults. 

Mechanisms of neck injury include extreme hyperflexion which leads to rupture of the 

tectorial membrane and separation of vertebrae which leads to atlantooccipital dislocation 

(AOD) (Dublin, Marks, & Weinstock, 1980). Separation occurs in the immature pediatric 

cervical spine due to the column not yet having formed a contiguous interlocking 

structure through the normal processes of growth and development such as ossification
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and geometric changes. This structural inadequacy in high axial tension-forward flexion 

environments as experienced in MVC’s damages the spinal cord by placing it in a state of 

tension or complete transaction (Arbogast et al., 2002). The disproportionate size of the 

child’s head relative to the rest of the body increases the relative moment of inertia per 

unit of acceleration for children as compared to adults. This in combination with the 

under developed musculoskeletal pediatric cervical spine put children at an increased risk 

for cervical injuries in MVC’s.

The combination of tension and forward flexion in and of itself is an injury 

mechanism for Occ-C2 dislocation injuries. Research conducted on primates has 

determined the tolerance of the cervical spine to Occ-C2 dislocation injures is estimated 

to occur at approximately 120 g’s (Thomas & Jessop 1983). Occ-C2 dislocations occur 

more frequently in children due to their relatively small occipital condyles, ligamentous 

laxity and flat articulation between the occiput and the atlas.

2.4 Head and Neck Injury

2.4.1 Head Injury

Approximately 19 percent of children involved in MVC’s sustain injuries to the 

head. Head injuries include both contact and non-contact injuries and are primarily 

induced from acceleration forces. Contact injuries include skull fracture, epidural 

hematoma and fontal lobe contusion and are the result of head excursion and impact with 

the vehicle interior (Gennarelli, 1986, 1993). The primary concern of head injury is injury 

to the brain caused by acceleration induced contusions to the cerebral cortex.

The major concern in head injury is injury to the brain. The major mechanisms of 

brain injury are positive pressure, negative pressure and shear due to pressure gradients.
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When the head is impacted, positive pressure is developed as a result of compressive 

stress. Similarly, at the site opposite to the location of injury, negative pressure develops

result in contusions on the surface of the brain which are attributed to shear caused by 

pressure gradients. Shear injuries are often the result of large angular accelerations of the 

head (King, 2000).

Research conducted at Wayne State University has developed the Wayne State 

Tolerance Curve (WSTC) for linear head acceleration. The curve shows that the brain is 

able to tolerate higher accelerations if the acceleration pulse is shorter in duration. Gadd 

(1966) advanced the WSTC by approximating a straight line with a slope of -2.5 would 

fit the data when plotted on a logarithmic scale. This curve became know as the Gadd 

Severity Index (GSI). Versace (1971) furthered the work of Wayne State and Gadd by 

modifying the WSTC and GSI to the Head Injury Criterion (HIC) which has been 

adopted by the FMVSS 208.

Where:

a is the resultant acceleration of the centre of gravity of the head (g) and numerically is 

equal to the sum of the squares of the local x, y  and z components of acceleration.

ti, t2 are points in time of interest during the crash event (s)

The HIC measures the effects of head acceleration and duration. These parameters are 

easily measured by accelerometers on ATD’s. The criteria is valid for linear acceleration

due to tensile loading. Injuries to the brain due to motion of the brain relative to the skull

C
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impacts. In most MVC’s, both linear and angular acceleration are present, however, due 

to lack of another acceptable measure, the criteria is accepted by researchers and 

government regulatory agencies in frontal crash vehicle compliance testing.

2.4.2 Neck Injury

It has been shown that neck injury is an obvious concern for children involved in 

MVC’s. The Normalized Neck Injury Criterion (Nij) is used in experimental testing to 

predict the injury potential in frontal impact crashes. The Nij is simply the sum of the 

forward rotational moment and the axial tensile load for the cervical spine. Both are 

normalized to a critical value and are ATD specific. ATD’s are fitted with accelerometers 

that measure the rotational moment and load cells that measure axial tension. Unlike the 

HIC, and due to lack of knowledge on pediatric cervical spine trauma, NHTSA decided 

not to incorporate the NIC into FMVSS and suggested further research into this area is 

required.

Recent research conducted by Yannaccone et al., (2005), compared the dynamic 

response of the Hybrid III three-year-old ATD in an experimental crash to a real-world 

crash in which the child occupants sustained serious cervical injuries. A neck injury 

assessment was calculated based on the data from the ATD using the Nij (NHTSA 

version 10). Nij combines the flexion-extension moment with the tension/compression 

axial force while making a correction for the offset of the moment axis in the load cell 

from the occipital condyle. The Nij makes no such correction for the moment arm for the 

occipital condyle.

Nij = ( F ' } f
+

U c ) V

m , + ( o c f J
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Where:

Fz is axial force

Fzc is critical values for axial force

My is the fore/aft moment

Myc is critical values for fore/aft moment

OC is occipital condyle offset

Fx is fore/aft shear force

The study revealed that children exhibit a greater degree of flexibility in the lumbar and 

thoracic spine which is consistent with previous findings by Cassan, Page, Pincemaille 

Kallieris, & Tarriere (1993) in a study comparing child cadavers to ATD’s. The 

researchers also suggested that the lack of bending in the torso may increase the 

extension of the upper neck as similarly reported by Sherwood et al., (2003) with the 

Hybrid III six-year-old ATD. The results of the current study suggest that the kinematics 

and dynamic response of the experimental tests appear relatively consistent with the 

injuries sustained by the children in real world crash events. Inconsistencies with 

previous studies (Hendersen, Brown, & Paine, 1994) suggest that the current Nij 

reference value may be too conservative or the neck of the Hybrid III three-year-old ATD 

is not sufficiently biofidelic, particularly, in the rotational flexibility of the Occ-Cl joint. 

The findings of Hendersen et al., are consistent with findings of other researchers on the 

neck of the Hybrid III six-year-old, concluding the stiffness of the Hybrid III may be 

inducing high neck forces and moments that are not indicative of the true injury potential 

(Sherwood et al., 2003; Mallot, Arbogast, Cooper, Murad, Ridella, Barnes, Kalian, &, 

Winston 2003; Menon, Cooper, Murad, Ridella, Barnes, Kalian, & Winston 2003).
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2.4.3 Chest Injury

The Combined Thoracic Index (CTI) in an injury criterion used for the chest in 

case of frontal impacts. The CTI is evaluated using the peak average 3 ms value for 

resultant acceleration of the spinal cord and chest deflection.

CTI =
f  A ^

m ax

A
V  int

+
V An, ,

Where:

Amax = 3 ms value (single peak) of the resultant acceleration of the spinal cord (g)

Ajnt = Critical 3 ms value (g)

Dmax= Deflection of the chest (mm)

Dim = Critical deflection (mm)

Note: Ajnt and Dint for the Hybrid III three-year-old are 70 g and 57 mm respectfully.

2.5 Overview of Testing Methodologies Applicable to the Problem

2.5.1 Experimental

Experimental testing on the response and tolerance of human tissue under 

dynamic loading conditions is difficult, due to obvious moral and ethical issues. Research 

must be conducted on adult volunteer subjects and limited to sub injurious levels. While 

this type of live volunteer testing may be useful in determining the lower threshold of 

discomfort or pain, the data can not easily be extrapolated to draw conclusions for 

injurious levels or predict child injury potential and tolerance. Alternatives to this form of 

experimental testing include analysis of MVC case studies as described in previous 

sections, analysis of accidental free falls of children, cadaver studies and studies on 

isolated primate and adult human cadaver structures. The following provides an overview
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of previous experimental studies conducted on the dynamic response and injury tolerance 

of the pediatric head and neck.

Early research conducted by Mohan Mohan, Bowman, Snyder, & Foust (1979) 

studied head impact injuries for children involved in accidental free falls. The study 

consisted of a summary of the data for 30 children aged 1 to 10 years who were involved 

in an accidental free fall for which the conditions were documented in medical reports. 

The study yielded initial estimates of pediatric tolerance limits for moderate head injuries 

(AIS 2). The tolerance was determined to be in the range of 200-250 g’s for peak 

acceleration and 150-200 g’s for a 3 ms average head acceleration. The researchers 

concluded that acceleration based measures are suitable as predictors of head injury 

severity.

Other preliminary research on pediatric response and tolerance to frontal MVC’s 

was performed by Kallieris, Barz, Schmidt, Heess, & Mattem (1976). Experimental 

frontal crash tests were conducted with four child cadavers and one child ATD restrained 

in CRS’s. Comparison of the kinematics of the child cadavers and child ATD revealed 

that the movement of the head, neck and shoulders were practically identical. The 

difference was in the response of the spinal column, the child ATD was stiffer in the 

thoracic and lumbar spinal regions. The child cadavers exhibited a greater degree of 

flexion, up to 90 degrees, in the thoracic and lumbar regions whereas the child ATD 

flexion reached a maximum of 25 degrees.

Cassan et al., (1993) later compared the kinematic and dynamic responses of child 

cadavers and child ATD’s in experimental frontal vehicle crashes utilizing 

accelerometers and force transducers. Maximum axial tensile forces in the neck of 1570-
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1600 N were recorded from the ATD. The cadaver subject sustained AIS 3 neck injuries 

consisting of a fracture to the dens axis and hemorrhages of the intervertebral disks. The 

maximum head acceleration on the ATD was found to be 116 g. There was no 

corresponding injury observed on the child cadaver subjected to identical experimental 

testing conditions. The sub injurious head acceleration of 116 g is consistent with the 

tolerance calculated by analysis of accidental child free fall.

There is a general paucity of child cadaver research on the response and tolerance 

to bending moments and axial loading. To compensate for this, researchers have utilized 

primates as human surrogates to study the effects of dynamic loading on the pediatric 

cervical spine. Nuckley, Hertsted, Eck, & Ching., (2005) studied the effect of the 

displacement rate on the tensile mechanics of pediatric baboon cervical spines. The 

tensile stiffness and failure load significantly increased with displacement rate. A two

fold increase in stiffness and a four-fold increase in failure load were observed when the 

displacement rate was changed from 0.5 mm/s to 5000 mm/s. The results of the study are 

consistent with other researchers (Yoganandan, Pintar, Maiman, Cusick, Sances, & 

Walsh, 1996; Van Ee, Nightingale, Camacho, Chancey, Knaub, Sun, & Myers, 2000; 

Ching, Nuckley, Hertsted, Mann, & Sun, 2001) who reported a three-fold increase in 

failure load. Utilizing the rate dependant mechanics of cervical spine tissue is important 

for accurate modeling of the spine under dynamic loading conditions.

Additionally, research performed on the adult female cervical spine provided a 

theory explaining the prevalence of upper cervical spine injury. Nightingale, Winkelstein, 

Knaub, Richardson, Luck, & Myers (2002) compared the strengths and structural 

properties of the adult female upper and lower cervical spine in flexion and extension. It
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was concluded that the ligamentous upper cervical spine was significantly stronger than 

that of the lower cervical spine despite the prevalence to upper cervical spine injuries. 

Van Ee et al., (2000) attributed this discrepancy to the effects of active musculature. The 

muscles of the cervical spine share tensile loads with the ligaments. This load sharing 

increases the overall strength of the cervical spine. This effect is greater for the larger size 

and number of muscles in the lower cervical spine (Van Ee et al., 2000).

Further, research suggests that occipito-atlanto and atlanto-axial dislocation 

injuries may occur by identical loading mechanisms that result in two different structural 

failures along a common load path. In occipito-atlanto dislocation injuries, tensile 

stresses cause the alar ligaments and the superior cruciform ligament to fail. This results 

in rapid failure of the remaining ligaments. Atlanto-axial dislocation injury occurs when 

the same tensile stress causes an avulsion of the dens from the body of C2. The failed 

dens and the superior cruciform ligament cause Cl and the odontoid to separate from C2 

(Nightingale et al., 2002). The likelihood of each failure mode is dependant on 

anatomical differences of the subject (Ryan & Henderson, 1992). This research identifies 

an important finding in the load sharing ability of skeletal muscle and highlights the 

limitations of experimental studies utilizing isolated cervical spines.

Despite the previously identified limitation, conducting experimental tests on 

cervical spines with intact skeletal muscle raises issues due to the variability that muscle 

mass, tone or activation will induce. Ouyang et al., (2005) performed a biomechanical 

assessment on isolated pediatric cervical spine complexes obtained from pediatric donors 

aged 2 though 12 years. The pediatric cervical spines were subjected to flexion-extension 

bending and tensile loading tests to characterize their biomechanical response and
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tolerance. With the exception of a study completed in the 1874 by Duncan, there have 

been no other documented cadaver studies on the tolerance of the pediatric cervical spine. 

Ouyang et al., (2005) found the average rotational Occ-C2 stiffness to be 0.72 and Occ- 

T2 0.04 N-m /degree. Tensile failure occurred for the 2 though 4 year-old specimens at 

average distraction force of 595 N. Duncan found the average cervical tensile failure load 

for a sample of 4 stillborn infants to be 470.5 N. The average linear stiffness in tensile 

loading was 34.7 N/mm. Both average rotational stiffness and average tensile stiffness 

were independent of pediatric age (Ouyang et al., 2005).

2.5.2 Theoretical

Theoretical forms of testing employ the application of physical laws of motion 

and contact to a hypothetical impact or crash. Principals of Newtonian physics like 

impulse-momentum may be used to formulate free body diagrams and estimate 

accelerations or loads. The lumped mass model is an example of a theoretic model and 

has been shown to correlate with human cadaver testing. The model consists of rigid 

body elements assigned a mass connected by spring and damper elements. The mass 

elements represent body structures, such as bone, and the spring and damper elements 

represent the soft tissue (Wismans, 2004). The limitation of theoretical models, such as 

the lumped mass model, emphasizes the fact that vehicle crashworthiness and the 

mechanical response of human tissue is a complex problem. The theoretical approach to 

modeling does not adequately allow for the quantification of non linear phenomenon such 

as contact, material properties or geometry.
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2.5.3 Numerical

Recent technological advancements in computer processor speeds enabled the use 

of numerical methods such as finite element analysis which has proved to be an 

invaluable tool in vehicle crashworthiness and occupant protection research. Finite 

element analysis, simply put, is an approximation to governing equations of inertia, 

viscosity and dampening, which defines the material properties of matter. Finite element 

analysis software performs the simultaneous solution of coupled second order differential 

equations. These equations define the material properties of each finite element of the 

model. The inputs to the model are approximations to acceleration, velocity and 

displacement. A more detailed explanation of finite element analysis and modeling is 

presented in the appendices.

The advantage of finite element analysis over other numerical methods is the 

ability to predict local structural deformations and stresses. The disadvantages of the 

finite element method include the time required to create a representative model with 

accurate and correct geometry, limited material property data for biological tissues and 

computation time for complex simulations may be on the magnitude of several days.

Dupuis, Meyer, & Willinger (2005) attempted to resolve the issue of model 

geometry by using a medical scanner to image the cervical spine of a three-year-old 

child. The image geometry was compared to that of an existing adult model and 

remeshed to create a finite element model of the pediatric cervical spine. The model 

included the anatomical structures of the head, Cl through C7, the first thoracic vertebrae 

(Tl), the intervertebral disks and the principal ligaments. The intervertebral disks were 

scaled from data obtained from Yoganandan, Pintar, Kumaresan, & Gennarelli (2000)
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and the material properties for the ligaments from complimentary research done by 

Myklebust, Pintar, Yoganandan, Cusick, Maiman, Myers & Sances (1988), Chazal, 

Tanguy, Bourges, Gaurel, Escande, Guillot, & Vanneuville (1985) and Yoganandan et 

al., (2000). The response of the model was tuned to fit the results of experimental frontal 

and rearward impact test of the head and neck of a Q3 ATD. The limitations of the study 

lie in the inherent problem of validating the finite element model to the response of a 

child ATD, as opposed to actual human tissue response.

Other researchers have used finite element modeling and have established an 

acceptable correlation between numerical simulations and experimental crash tests. 

Turchi, Altenhof, Kapoor, & Howard (2004) compared the head and chest accelerations 

of experimental crash tests and numerical simulations. In the experimental tests, the 

Hybrid III three-year-old dummy was positioned in a CRS in accordance with FMVSS 

213 in a five point harness. The CRS was attached to the test apparatus via the LATCH 

system. The numerical model of the Hybrid III three-year-old dummy was provided by 

First Technology Safety Systems (FTSS). The dummy model was positioned in a finite 

element model of a CRS provided by the Graco Corporation. The child dummy/CRS 

model was loaded under FMVSS 213 conditions.

Validation of the numerical model was completed by a comparison of the 

experimental test data and the numerical simulation data. The head and chest acceleration 

data verses time were plotted and compared and it was observed that an acceptable 

correlation existed. The head and chest acceleration profiles were similar. The local x  and 

z head acceleration occurred when the head reached the greatest degree of flexion 

rotation for both the numerical and experimental tests.
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Kapoor, Altenhof, & Howard, (2005) used the finite element model of the Hybrid 

III three-year old child dummy and CRS to investigate the effect of CRS anchorage 

method on the injury potential for children in frontal crash. The sensitivity of the 

numerical model was sufficient in determining the difference in anchorage method. 

Further numerical model validation was completed by Kapoor, Altenhof, Wang, & 

Howard. (2006). Similar to Turchi et al., (2004), experimental test data was compared to 

numerical simulation data, however, in addition to head and chest acceleration data, neck 

force and moment data were incorporated into the research design. Experimental crash 

tests were conducted by Transport Canada with the Hybrid III three-year old child 

dummy positioned in a CRS in a 2004 Mitsubishi Lancer in accordance with CMVSS 

208. The numerical model of the Hybrid III three-year-old child and CRS were 

prescribed an acceleration pulse consistent with that of the experimental test.

Turchi et al., (2004) concluded similar local x and z head accelerations 

components were observed for the experimental and numerical dummies. The time to 

peak local x head acceleration was similar with the maximum local x and z head 

acceleration being a minimum at maximum head flexion. Kapoor et al., (2006) found the 

upper and lower neck forces exhibited similar time profiles. Higher magnitudes of neck 

forces were found in the upper neck load cell as compared to the lower neck load cell. 

This finding is consistent with research done by Sances et al., (2002) who found that the 

upper neck and head transmits approximately 75 percent of forces to the lower neck. 

Both dummies exhibited similar time profiles for upper and lower neck moments. The 

neck moments were higher for both dummies in the lower neck region. Head and neck 

injury criteria were calculated for the experimental and numerical dummies. The
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maximum percentage error between experimental peak values and numerical predictions 

was calculated to be no more than 15 percent.
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3. FOCUS OF RESEARCH

The current state-of-the-art Hybrid III three-year-old child dummy and model are 

used by governments and industry in experimental vehicle frontal crash tests to evaluate 

the effect of varying vehicle or safety equipment design on the injury potential of child 

occupants. The Hybrid III utilizes a braided steel cable to model the response of the 

human pediatric cervical spine under bending and tensile loading conditions. The 

literature review has shown that previous researchers have found the response of the 

Hybrid III dummy to overstate the stiffness of the human cervical spine under 

compression loading conditions. No research has made comparisons to stiffness of the 

Hybrid III dummy neck under axial tensile or flexion loading conditions. Moreover, no 

research has attempted to compare the response of the Hybrid III three-year old child 

finite element model under axial tensile or flexion loading conditions to pediatric cervical 

spine cadaver data. In addition, precise failure tolerances for the neck of the Hybrid III 

dummy and model are lacking and attempts to incorporate the material properties of the 

human cervical spine obtained from pediatric cadaver research into the Hybrid III three- 

year old finite element model have not yet been made.

The focus of this research is specifically to:

1) Determine if there is a difference for the stiffness of the neck of the Hybrid III 

three-year-old child finite element model and human pediatric cadaver 

cervical spine specimens.

2) If a difference exists, incorporate an axial tensile load failure tolerance curve 

for the pediatric cervical spine in the Hybrid III three-year-old finite element 

model.
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3) Improve the response of the neck of the Hybrid III three-year-old finite 

element model when subjected to flexion and tensile loading to enable the 

model to better predict peak neck loads and moments.

4) Thus improve the biofidelity of the neck of the Hybrid III three-year-old child 

finite element model thereby increasing its efficacy as a research tool.

Such a contribution to knowledge will allow researchers to better predict the effect of 

vehicle safety equipment design iterations on the injury potential of children in motor 

vehicle accidents.

3.1 Limitations of the Proposed Study

Due to the lack of available pediatric cadaver research, this study is based on data 

obtained from a small sample of 5 pediatric cadaver cervical spine donor’s biomechanical 

responses to bending and tensile loading. The small sample size is not representative of 

response variability of the entire population. It is also possible that damage to the 

pediatric cervical spines occurred during their disarticulation from whole body tissue or 

during the preceding non destructive tests. A limitation of using human cadaver data is 

the problem of applying human data to anthropometric test devices. It is probable that 

this study will be limited in that the contribution of cervical spine skeletal muscle to the 

tensile response is lacking due to removal of such tissues during the specimen 

preparation. Skeletal muscle shares the tensile load with the ligaments of the cervical 

spine providing a parallel load path. Such load sharing increases the overall strength and 

stability of the cervical spine (Van Ee et al., 2000). In addition, this study is only 

applicable to the response under flexion and axial tension loading conditions, extension 

and axial compression will not be considered. This study is also only applicable to the
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Hybrid III ATD model and not other models such as the THUMS. Lastly, the 

displacement rate and dynamic characteristics of the material is similar to quasi static 

state in that the velocities are less than 10 m/s. Despite these limitations, the author is 

confident that the data used in this experimental procedure is both reliable and valid.
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4. EXPERIMENTAL PROCEDURE OR METHODS

4.1 Experimental Procedure

The experimental procedure to determine the biomechanical response of the 

pediatric cervical spine under bending and tensile loading was conducted by Ouyang et 

al., (2005). Briefly, cervical head and neck complexes were obtained from pediatric 

donors aged 2 through 12 years of age. Neck musculature was removed and the cervical 

spines were subjected to quasi-static tensile load tests. A pure tensile load was applied by 

the test apparatus that allowed for full anterior-posterior translation and flexion-extension 

rotational degrees for freedom. The head-neck complex was subjected to a destructive 

test in which the displacement was increased at a rate of 5 mm/s until a 10 percent 

reduction in axial tensile load was observed. Axial tensile force data was collected via a 

load cell at the base of T2. The average linear stiffness for tensile loading was calculated 

to be 34.7 N/mm with no statistically significant difference found for pediatric age.

For the purposes of this project, data from a subset of 5 of the original 10 subjects 

studied by Ouyang et al., (2005) was used. The age range for the subset of subjects was 2 

through 5 years of age. The force-displacement data from the five subjects has been 

provided by Ouyang et al., (2005) and was cross plotted using Mathcad 13 (Parametric 

Technology, Needham, MA). A cubic spline interpolation was performed for each 

subject to produce a polynominal function with continuous values for derivatives of 

displacement. The 5 curves can then be fitted and averaged to produce an average load- 

deflection curve for the 5 subjects of interest and subsequent calculation of the linear 

tensile stiffness (k). The slope of the resultant load-deflection curve is the stiffness 

(N/mm).
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4.2 Numerical Procedures

A comprehensive explanation of the finite element method (FEM) is beyond the 

scope of this thesis. An overview of the finite element method is provided in appendix A. 

Validation of the Hybrid III three-year-old finite element model has been completed by 

previous research which established an acceptable correlation between the mechanical 

response of the Hybrid III three-year-old child dummy and the Hybrid III three-year-old 

child finite element model (Turchi et al., 2004; Kapoor et al., 2006). The results of these 

studies were presented previously in section 2.5.3 of this manuscript.

4.2.1 Preparation of the Finite Element Model Head-Neck Complex

For the initial part of this study the hypothesis that the neck of the Hybrid III 

three-year-old finite element model is stiffer than that of the pediatric cadaver cervical 

spine was tested. A finite element head-neck complex was obtained by disarticulating the 

Hybrid III model at the adapter plate just caudal to C7. By importing the Hybrid III 

model obtained from FTSS into the finite element model builder (FEMB), all superfluous 

parts were removed. In addition, material properties of the cervical vertebrae will be 

assigned a null material property to ensure they did not contribute to axial tensile forces. 

The intent of this research was to measure the response of the braided steel neck cable to 

tensile loading as compared to that of the pediatric cervical spine. In addition, single 

point constraints (SPC) were applied to the C7 to prevent translation when the tensile 

load was applied to the top of the model head.

Once complete, the FE head-neck complex can then be exported and numerical 

simulations completed using the explicit finite element code LS-DYNA version 970 

revision number 5434a (Livermore Software Technology Corporation, Livermore, CA)
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on a personal computer with a single 1.86 GHz Intel Pentium processor with 512 MB of 

random access memory. A displacement rate of 50 mm/s was applied to a node on the top 

of the head to mimic the time duration loading experienced in a MVC. It is important to 

note that a similar displacement rate as used by Ouyang et al., (2005) is not required as 

the braided steel cable for the rates of loading will not exhibit any rate dependence 

(Jones, 1989).

To test the hypothesis that the neck of the Hybrid III three-year-old child finite 

element model does not adequately predict the failure tolerance of the pediatric cadaver 

cervical spine data, the maximum tensile load of the model prior to failure was compared 

to that of the pediatric data at a similar instant. To test the hypothesis that the Hybrid III 

three-year-old child finite element model does not exhibit the same kinematic response of 

the pediatric cervical spine data under flexion loading conditions, the material properties 

of the pediatric cervical spine data was applied to the braided steel neck cable.

4.2.2 Extraction of Data from the Hybrid III Finite Element Model

Head acceleration data was acquired through kinematic observation of nodes 

located at the centre of gravity of the head of the Hybrid III model that represent 

accelerometers. The nodes acquire acceleration data in the local x, y  and z directions. 

Acceleration data was filtered in accordance with the Society of Automotive Engineers 

(SAE) J211 class 1,000 second order Butterworth filter.

Upper and lower neck forces and moment data were acquired via finite element 

upper and lower neck load cells located in the upper and lower neck at locations that 

approximate the location of the load cells in the child dummy. Zero length beam elements 

modeled using material type 66 (linear elastic discrete beam) act as stiff translational and
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rotational springs. Data were filtered in accordance to SAE J211 class 1,000 and 600 

filters for the neck force and moment respectively.

Chest deflection will be measured by the relative displacement of two nodes in 

the chest region of the Hybrid III model that approximate the location of the chest 

deflection potentiometer in the child dummy.

4.2.3 Incorporation of the Pediatric Data into the Finite Element Model

One of the objectives of the current study was to compare the kinematic response 

of the pediatric cadaver cervical spine with that of the Hybrid III three-year-old child 

finite element model. In the event of significantly differing responses, the material 

properties of the pediatric cervical spine were incorporated into the neck of the Hybrid III 

model in an attempt to improve the biofidelity of the neck response. To accomplish this, 

material type 67 (*MAT_NONLINEAR_ELASTIC_DISCRETE_BEAM) was used. This 

material model is appropriate for simulating the linear and non-linear elastic and viscous 

characteristics of material and allows for translational and rotational stiffness to be 

modeled. Then material model allows the use of tensile force verses displacement curves 

to define the tensile force verses displacement response. As such, we used the tensile 

force verses displacement data previously obtained by averaging the pediatric cadaver 

cervical spine response to tensile loading.

Implementation of pediatric cadaver data would result in a more appropriate 

biofidelic neck of the Hybrid III model. These two Hybrid III three-year-old finite 

element models could be then subjected to frontal impact crash conditions consistent with 

those used by Kallieris et al, (1976). The resultant head and chest acceleration time 

profiles, upper and lower neck loads and moments and HIC was compared to determine
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the degree of agreement between the two models and the models to experimental 

pediatric cadaver data from Kallieris et al. (1976).
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5. RESULTS

5.1 Head and Neck Component Test Analysis

5.1.1 Linear Stiffness

Head and neck component testing was performed for the Hybrid III three-year-old 

altered and unaltered FE models under conditions similar to the axial distraction 

experimental procedure outlined by Ouyang et al. (2005) to validate the kinematic 

response of the altered model. Results of axial distraction loading are illustrated in 

Figures 6  and 7. Figure 6  contains the altered, unaltered and pediatric data whereas 

Figure 7 contains only the altered and pediatric data. A load verses deflection curve 

yields a maximum load at 13 mm displacement of 185 kN for the unaltered model, 450 N 

for the altered model and 425 N for the average pediatric cadaver data.

The altered model and pediatric data exhibited similar linear load-deflection 

profiles and the maximum values were within 6  percent difference of one another. Least 

Squares Linear Regression Analysis was utilized to compare the slopes (stiffness) of the 

unaltered, altered and pediatric load-deflection curves. The resulting slopes (stiffness) 

were 14,413 N/mm for the unaltered model, 34.5 N/mm for the altered model and 32.5 

N/mm for the pediatric data. The numerically calculated stiffness for the altered model 

and the sub set of pediatric data used in this research are both in good agreement with the 

average stiffness calculated by Ouyang et el. (2005) of 34.7 N/mm.
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Figure 6. Axial neck force load-deflection curve for altered, unaltered and pediatric data.
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Figure 7. Axial neck force load-deflection curve for altered and pediatric data.

5.1.2 Angular Stiffness

Further head and neck component testing validation was performed for the Hybrid 

III three-year-old altered and unaltered FE models under conditions similar to the flexion- 

extension bending experimental procedure outlined by Oyuang et al. (2005). Analyses of 

the kinematic response under flexion-extension bending are illustrated in Figures 8  and 9. 

Figure 8  contains the altered, unaltered and pediatric data whereas Figure 9 contains only 

the altered and pediatric data. The unaltered model exhibited the greatest flexion- 

extension bending moments, 29.7 N m for flexion and 11.4 N m  for extension. The 

unaltered model percentage difference was 168 percent and 128 percent greater for 

flexion and extension respectfully as compared to the pediatric data.
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Conversely, the results of the altered model as compared to the unaltered model 

were in excellent agreement with those of the pediatric data. The altered model exhibited 

flexion-extension bending moments of 2.6 N-m for flexion and 2.4 N m for extension. 

The percentage differences were 8  percent and 4 percent greater for flexion and extension 

respectfully as compared to the pediatric data. The experimentally obtained flexion 

extension bending moments for the pediatric data were 2.4 N-m for flexion and 

extension. In addition, the average rotational stiffness was calculated using Least Squares 

Regression Analysis for the altered model and was 0.04 N m/deg which was identical to 

the calculated value of 0.04 N-m /deg for the experimental pediatric cadaver data as 

reported by Ouyang et al. (2005).
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Figure 8. Angular neck moment load vs. rotational displacement curve for altered, 
unaltered and pediatric data under flexion and extension bending.
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Figure 9. Angular neck moment load vs. rotational displacement curve for altered and 
pediatric data under flexion and extension bending.

5.2 Qualitative Kinematic Crash Analysis

A qualitative frame by frame analysis of the kinematic response of the altered and 

unaltered Hybrid III three-year-old FE models was completed. The results are illustrated 

in Figures 10 (side view) and 11 (cross sectional view). Both models exhibited a similar 

response, however, a greater degree of head rotation, neck flexion and chest deflection 

were observed for the altered model as compared to the unaltered model. Examination of 

the frames at 72 ms indicate the most notable difference was the degree of head rotation. 

This greater degree of head rotation observed in the altered models is more consistent 

with observations from other child dummy models such as the child finite element model 

and the Q3 finite element model.
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Figure 10. Frame by frame comparative analysis of unaltered (left) vs. altered (right) 
models.
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models.
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5.3 Quantitative Kinematic Crash Analysis

5.3.1 Head Acceleration

The local x component of the head acceleration verses time for the altered and 

unaltered models are illustrated in Figure 12. Both models exhibited a similar 

acceleration profile with the most notable difference being a rapid change in acceleration 

for the altered model at 60 ms and a prominent maximum peak for the unaltered model at 

130 ms. The minimum peak local x acceleration of the head was -47 g for the altered 

model and -40 g for the unaltered model. The time to peak for the local x acceleration 

minimum value was 67 ms for the altered model and 65 ms for the unaltered model. A 

phase shift of 2  ms for the altered model was observed for the time to reach minimum 

peak values. The duration of the peaks were approximately 14 ms which was followed by 

an upward ramp to a value of -21 g at 76 ms. The maximum peak occurred at 128 ms 

with a magnitude of 6  g for the altered model and at 137 ms with a magnitude of 37 g for 

the unaltered model.
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Figure 12. Head acceleration in the local x direction.

The local z component of the head acceleration verses time for the altered and 

unaltered models are illustrated in Figure 13. Both models exhibited a similar 

acceleration profile with the exception of a greater maximum peak value for the altered 

model. The maximum peak local z acceleration of the head was 82 g for the altered 

model and 25 g for the unaltered model. The time to peak for the local z acceleration 

minimum value was 58 ms for the altered model and 69 ms for the unaltered model. A 

phase shift for the unaltered model of 11 ms was observed for the time to reach maximum 

peak. The duration of the peak was approximately 5 ms for the altered model followed by 

a downward ramp starting at 69 ms to a value of 35 g. The duration of the peak for the 

unaltered model was 30 ms followed by a downward ramp starting at 70 ms. A second
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peak occurred at 142 ms with a magnitude of 16 g for the altered and at 132 ms with a 

magnitude of 18 g for the unaltered model. The direction of the phase shift for the second 

peak was consistent with that of the first peak and the magnitude was 1 0  ms.
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Figure 13. Head acceleration in the local z direction.

The resultant head acceleration verses time for the altered and unaltered models 

are illustrated in Figure 14. Both models exhibited a similar acceleration profile with the 

exception of a greater maximum peak value for the altered model and a greater second 

maximum peak for the unaltered model. The maximum resultant peak acceleration of the 

head was 82 g for the altered model and 47 g for the unaltered model. The time to peak 

for the local x  acceleration minimum value was 58 ms for the altered model and 65 ms 

for the unaltered model. A phase shift of 7 ms was observed for the unaltered model. The
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duration of the peak was approximately 5 ms for the altered model followed by a 

downward ramp starting at 69 ms to a value of 35 g. The duration of the peak for the 

unaltered model was 30 ms followed by a downward ramp starting at 70 ms.
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Figure 14. Resultant head acceleration.

5.3.2 Chest Acceleration

The local x  component of the chest acceleration verses time for the altered and 

unaltered models are illustrated in Figure 15. The curves exhibited similar acceleration 

profiles with the most notable difference again being a rapid acceleration change for the 

altered model occurring at 58 ms and a more prominent maximum peak for the unaltered 

model occurring at 113 ms. The minimum local x  acceleration for the altered model was 

-40 g and -29 g for the unaltered model. The time to minimum peak was 52 ms and the
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duration of the peak was 5 ms for both models. The local x acceleration maximum peak 

chest acceleration for the altered model occurred at 9 ms and was 16 g in magnitude 

while the maximum local x chest acceleration for the unaltered model occurred at 1 1 2  ms 

and was 18 g in magnitude.
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Figure 15. Chest acceleration in the local x direction.

The local z component of the chest acceleration verses time for the altered and 

unaltered models are illustrated in Figure 16. The curves followed similar acceleration 

profiles. The altered model exhibited greater minimum and maximum values and 

oscillated about the unaltered model. The minimum local z acceleration for the altered 

model was -38 g and -26 g for the unaltered model. The time to minimum peak was 58 

ms for the altered model and 48 ms for the unaltered model. The duration of the peak was

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 ms for both models. The local z acceleration maximum peak chest acceleration for the 

altered model occurred at 67 ms and was 17 g in magnitude while the maximum local z 

chest acceleration for the unaltered model occurred at 141 ms and was 10 g in magnitude.
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Figure 16. Chest acceleration in the local z direction.

The resultant head acceleration verses time for the altered and unaltered models 

are illustrated in Figure 17. The models exhibited similar acceleration profiles with the 

exception of the second set of sub maximum resultant peaks occurring at differing times. 

The maximum resultant peak acceleration of the chest was 44 g for the altered model and 

36 g for the unaltered model. The time to peak for the resultant acceleration was 52 ms 

for both the altered and unaltered models. The duration of the peaks was 6  ms for both 

models. A second sub maximum peak for the altered model occurred at 95 ms and had a
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magnitude of 14 g. The second sub maximum peak for the unaltered model occurred at 

1 1 2  ms and was 18 g in magnitude.

5.3.3 Chest Deflection

A greater degree of chest deflection was observed for the altered model as 

compared to the unaltered model. The maximum chest deflection for the altered model 

was observed to be 15 mm at 74 ms whereas the unaltered model exhibited a maximum 

chest deflection of 6  mm at 42 ms. The time to peak for the altered model was 74 ms as 

compared to 42 ms for the unaltered model. The altered model CTI was 141 percent 

greater than the unaltered model. The values for the CTI were 0.81 and 0.57 for the 

altered and unaltered models respectfully.

Altered

<o
8 20

40

0

Unaltered

0 25 50 75 100 125 150
Time (ms)

Figure 17. Resultant chest acceleration.
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Figure 18. Chest deflection.

5.3.4 Neck Forces

The resultant upper and lower neck forces as a function of time for the altered and 

unaltered models are illustrated in Figures 19 and 20. The values for the upper neck peak 

maximum forces were 2321 N for the altered model and 1732 N for the unaltered model. 

The values for the lower neck peak forces were 1692 N for the altered model and 709 N 

for the unaltered model. The time to peak for the upper neck forces was 69 ms for the 

altered model and 65 ms for the unaltered model. The time to peak for the lower neck 

forces were 58 ms for the altered model and 49 ms for the unaltered model. The duration 

of the peaks for the upper neck force was 43 ms for the altered model and 33 ms for the
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unaltered model. The duration of the peak for the lower neck forces was 100 ms for the 

altered model and 40 ms for the unaltered model. In addition, the altered model peak 

maximum neck forces were greater than the unaltered model neck forces. The duration of 

the peak neck force was approximately 50 ms for both the upper and lower altered and 

unaltered models.
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Figure 19. Resultant upper neck force.
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Figure 20. Resultant lower neck force.

5.3.5 Neck Moments

The resultant upper and lower neck moments as a function of time for the altered 

and unaltered models are illustrated in Figures 21 and 22. The values for the upper neck 

peak maximum moments were similar, although the upper neck resultant moment profiles 

presented notable differences. The upper neck resultant moments exhibited a time shift of 

approximately 8  ms for the unaltered model and the emergence of relatively large 

secondary and tertiary sub maximal peaks at 116 ms and 138 ms respectfully. The upper 

neck moment for the altered and unaltered models was 31 N-m. The time to peak for the 

altered model upper neck moment was 43 ms and the time to peak for the upper neck 

moment for the unaltered model was 51 ms. The lower neck moments for the altered and
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Figure 21. Resultant upper neck moment.
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Figure 22. Resultant lower neck moment.

5.3.6 Head Injury Criteria

The head injury criteria were calculated over a 15 ms and 36 ms window for the 

altered and unaltered models. The values for the HIC are illustrated in Figure 23. The 

HIC was greater for the altered model than the unaltered model. The HIC 15 for the altered 

model was 286 as compared to 162 for the unaltered model. The HIC36 was 268 for the 

altered as compared to 194 for the unaltered model.
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Figure 23. Head injury criteria.

5.3.7 Head Rotation

The maximum rotation of the centre of gravity of the head was observed to be 

greater for the altered model as compared to the unaltered model. The altered model 

exhibited a maximum head rotation of 8 6  degrees at 75 ms. The unaltered model 

exhibited 60 degrees of rotation at 70 ms.
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Figure 24. Head rotation.

5.3.8 Head Trajectory

Analysis of head trajectory is illustrated in Figure 25 which shows a greater 

degree of displacement for the altered model as compared to the unaltered model which 

more closely resembles the profile of the trajectory of the pediatric cadaver data from 

Kallieris et al. (1976). The local (x,z) displacement ordered pairs for the altered model at 

maximum trajectory are (230 mm, 138 mm) and (196 mm, 85 mm) for the unaltered 

model. The maximum trajectory for the pediatric cadaver data was (364 mm, 227 mm). 

The maximum local x excursion of the head for the models and cadaver data were less 

than the recommended maximum value of 720 mm as cited in Federal Motor Vehicle 

Safety Standard 213.
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6. DISCUSSION

6.1 Head and Neck Component Test Analysis

6.1.1 Linear Stiffness

The purpose of the component testing was to determine if a significant difference 

in axial stiffness exists between the neck of the Hybrid III three-year-old model and the 

pediatric cadaver data. In solid mechanics, Young's modulus (E) is a measure of the 

stiffness of a material. It is defined as the ratio, for elastic strains, of stress to strain. 

Briefly, stress is a measure of force per unit area acting on or within a material. Strain is a 

uniaxial entity, and is the change in length of a material normalized with respect to its 

original length. The stiffness of a material can be experimentally determined from the 

slope of a load-deflection curve during a tensile or compressive test conducted on a 

sample of the material. For the altered and unaltered models a load-deflection curve 

revealed a significant difference in stiffness which supported the directional first 

hypothesis and subsequent calibration of the model to the pediatric cadaver experimental 

test results ensued.

To calibrate the model, the average load-deflection curve for the pediatric cadaver 

data was implemented into the material properties of the neck of the Hybrid III FE model. 

All materials were assumed to be isotropic. Further testing validated the response of the 

model was within 6  percent of the pediatric cadaver data when comparing the load at 13 

mm deflection. The results are illustrated in Figures 6  and 7.

6.1.2 Angular Stiffness

With the linear load-deflection material properties implemented and validated in 

the Hybrid III FE model, initial testing was conducted to determine if a difference existed
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between the Hybrid III altered and unaltered models and the pediatric cadaver data for 

flexion-extension bending. When materials are subjected to bending, a shear stress and 

strain are developed. Shear stresses and strains are developed when the stress or strain 

acts parallel to the face of the material. In materials science, shear modulus, G, is defined 

as the ratio of shear stress to shear strain.

Despite the Hybrid III having the linear load-deflection material properties 

implemented, the model exhibited a significantly greater bending moment for flexion- 

extension bending testing than that of the pediatric cadaver data. An iterative process was 

employed to reduce the material properties of the model, namely, the short time shear 

modulus, long time or infinite shear modulus and decay constant of the neck material to 

scale down the bending moment of the model. After several trials were completed, values 

for the material properties of the neck were identified that produced a flexion-extension 

bending moment that was in good agreement with that of the pediatric cadaver data. 

Load-deflection curves illustrated in Figures 7 and 8  show that at 55 degrees deflection 

the percentage difference was found to be 8  percent for the flexion moment and 4 percent 

for the extension moment. Differences between flexion and extension can be primarily 

attributed to the model geometry of the neck components and experimental error. With 

the linear and new angular material properties implemented in the model, linear 

distraction testing was again completed to ensure the new angular material properties did 

not significantly change the response of the model under axial distraction loading.
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6.2 Qualitative Kinematic Crash Analysis

The Hybrid III three-year-old altered and unaltered models were positioned in a 

child restraint system FE model. Using LS-DYNA, the model was loaded with an 

acceleration pulse used by Kallieris et al. (1976) in an experimental child cadaver sled 

test. Frame by frame qualitative analyses were conducted for the altered and unaltered 

models. Although both models exhibited similar kinematic responses, from the side view 

it was evident that the altered model exhibited a 31 percent greater degree of head 

rotation. The greater degree of head rotation is primarily due to the neck parts having 

reduced material stiffness properties for the altered model.

By examination of the cross sectional views of the altered and unaltered models, it 

is evident that a shearing phenomenon is occurring in the neck of the altered model at the 

onset of head rotation at approximately 36 ms. This biomechanical response exhibited by 

the altered model is more consistent with the injury mechanism of AOD. In addition, it 

was determined from the cross sectional views that the altered model exhibited a 141 

percent greater degree of chest deflection which can be attributed to the head having a 

greater degree of rotational displacement and subsequent contact with the chest.

6.3 Quantitative Kinematic Crash Analysis

6.3.1 Head Acceleration

The magnitude of the minimum local x, maximum local z and resultant peaks 

were greater for the altered model as compared to the unaltered model. This may be 

attributed to a greater rotational displacement of the head the altered model travels in the 

same amount of time as the unaltered model. In addition, rapid change in acceleration for 

the altered model on the local x, local z and resultant acceleration profiles may be
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attributed to a whiplash phenomena experienced by the head during the crash. The 

minimum peak local x  and maximum z components and resultant head acceleration for 

the altered and unaltered models occur at approximately the same time. For the altered 

model to achieve a greater displacement in the same amount of time requires a greater 

acceleration of the head. The minimum peak local x and maximum z components and 

resultant head acceleration peak events also coincide with the instant of maximum head 

rotation. In addition, the unaltered model exhibited a prominent local x acceleration 

maximum peak of 36 g at approximately 137 ms which was due to the head of the 

unaltered model making contact with the CRS whereas the altered model does not make 

contact with the CRS.

6.3.2 Chest Acceleration

The magnitude of the minimum peak local x and z components and the maximum 

resultant chest acceleration were greater for the altered model as compared to the 

unaltered model. These peaks occurred at approximately the same time which coincided 

with the approximate time of maximum head rotation. A prominent maximum peak was 

evident 1 1 2  ms for the unaltered model and represents the time of head contact with the 

CRS.

6.3.3 Chest Deflection

Chest Thoracic Index was 141 percent greater for the altered model as compared 

to the unaltered model. This can be attributed to a greater rotational displacement of the 

head of the altered model which contacts the chest causing a greater degree of 

deformation. The time of maximum chest deflection for the altered model of 72 ms more 

closely coincides with the maximum rotational displacement of the head of 74 ms as
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opposed to the maximum local x acceleration of the chest which was 52 ms. The 

unaltered model deformation peaked at 42 ms which more closely coincides with the 

minimum local x chest acceleration of 52 ms.

The difference in the calculated values for CTI for the altered and unaltered 

models can be explained by a greater 3 ms peak resultant acceleration of the spinal cord 

for the altered model as compared to the unaltered model. In addition, the altered model 

exhibited greater chest deflection values as compared to the unaltered models. Since both 

terms are in the numerator of the CTI equation, increasing both values in the equation 

would increase the end resultant CTI value. It also stands to reason that with reduced 

linear and angular material stiffness properties in the neck of the altered model, there 

would be less resistance to rotation provided by the neck material to counteract the 

forward rotation of the head. With a greater degree of rotation, the head contacts the chest 

which compresses and counteracts some of the rotational forces of the head thereby 

increasing the chest deflection.

6.3.4 Neck Forces

Two trends emerged for the upper and lower neck forces; the altered model 

exhibited higher neck forces than the unaltered model and the upper neck forces were 

greater than the lower neck forces. The greater neck forces observed in the altered model 

are attributed to a greater acceleration of the head of the altered model as compared to the 

unaltered model. Since force is equal to the product of mass and acceleration, and since 

the mass of the head of the altered and unaltered models are equal, the greater 

acceleration of the head of the altered model produces greater upper and lower neck 

forces.
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The upper neck forces being greater than the lower neck forces are primarily due 

to the force attenuation characteristics of the neck. The neck attenuates some of the forces 

between the upper neck load cell and the lower neck load cell. This results in less force 

being transmitted from the head to the lower neck. This observation was consistent with 

previous research conducted by Sances et al. (2002). An important point to note is that 

the forces and moments observed in the dynamic crash simulations are significantly 

greater than the forces and moments observed in the quasi static component test analysis 

and pediatric cadaver data. This can be attributed to the dynamic mass inertia effect of the 

head that is negligible in the quasi static numerical simulations and experiment. In 

addition, the loads predicted from the numerical simulation were significantly greater 

than the loads at failure for the pediatric cadaver data. This indicates that for the 

numerical crash test, catastrophic failure would have occurred in the neck region. Failure 

is not observed in the numerical simulation because LS-DYNA linearly extrapolates and 

exceeding the failure loads from the pediatric cadaver data.

6.3.5 Neck Moments

Two trends again emerged with respect to the upper and lower neck moments; the 

lower neck moment had a greater maximum peak value and a greater time to peak. The 

greater maximum peak value can be primarily attributed to two factors; the sum of the 

moments of the head and neck and the length of the moment arm acting on the lower 

neck. Firstly, the moment acting on the upper neck is due to the rotational moment of the 

head whereas the moment acting on the lower neck is due to the rotational moment of the 

head plus the rotational moment of each vertebral body in the neck. In addition, the 

distance the centre of mass of the head is from the axis of rotation, or in other words, the

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



length of the moment arm is greater for the lower neck load as opposed to the upper neck. 

This greater moment arm gives the mass of the head a greater mechanical advantage to 

generate a larger moment about the lower neck.

The greater time to peak for the lower neck moment as compared to the upper 

neck moment can be explained as follows. The upper neck reaches full rotation earlier 

than the lower neck. This is due to the successive rotation of each vertebral body in the 

neck and the time required until this mechanism is propagated to the lower neck. As the 

head begins to rotate, the upper neck achieves full segmental vertebral rotation prior to 

the lower neck which gives rise to an earlier peak moment for the upper neck as 

compared to the lower neck.

6.3.6 Head Injury Criteria

The altered model had greater values of the HIC15 and HIC36 as compared to the 

unaltered model. Since the HIC is an acceleration based criterion, it would be expected 

that the altered model which experienced a greater head acceleration and rotational 

displacement would produce a greater value for the HIC. For the altered model, the 

HIC 15 was greater than the HIC36 which can be attributed to the shape of the resultant 

head acceleration profile. A rapid change in acceleration of the head of the altered model 

created a spike on the altered resultant head acceleration profile. The HIC 15 evaluates the 

area under the acceleration curve for a 15 ms window and since the HIC equation has a 

exponential term (2.5), small differences in area under the curve create large differences 

in calculated values of the HIC. Conversely, the HIC36 was greater than the HIC 15 for the 

unaltered model which again is attributed to the wider and shallower profile of the 

unaltered resultant head acceleration profile. All calculated maximum values for the HIC
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were considerably less then the limiting values of 570 and 1000 for the HIC15 and HIC36 

respectfully as recommended by NHTSA.

6.3.7 Head Rotation

The degree of rotational displacement of the head of the altered model was 31 

percent greater than that of the unaltered model. This difference can be attributed to 

reduced axial and angular stiffness material properties of the neck of the altered model. 

With reduced material stiffness properties, the neck of the altered model would provide 

less resistance to rotational displacement per given unit of acceleration. This explanation 

is consistent with the observation that the altered model exhibited a greater degree of 

rotational displacement than the unaltered model given the same acceleration input. The 

time to peak head rotational displacements were similar, 74 ms for the altered verses 70 

ms for the unaltered which is to be expected since the prescribed acceleration pulse was 

identical for both models.

6.3.8 Head Trajectory

The altered model exhibited a greater local (x,z) coordinate system displacement 

as compared to the unaltered model. The altered model local x head excursion was 16 

percent greater than the unaltered model. The rational for the altered model exhibiting a 

greater degree of head trajectory is again due to the reduced stiffness of the neck which 

lends to a greater displacement. In addition, the head trajectory of the altered model more 

closely resembles the profile of the experimental pediatric cadaver sled test conducted by 

Kallieris et al. (1976). Exact comparisons can not be made between the altered model and 

the pediatric test due to advancements in child safety seat design, restraint systems
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employed (i.e. 5-Point Harness) and anchorage methods (i.e. LATCH), however, there is 

no other known pediatric cadaver sled test to use as a baseline for comparison.

6.4 Hypotheses Revisited

6.4.1 Hypothesis 1

The neck o f the Hybrid III three-year-old child finite element model is significantly stijfer 

than that o f the pediatric cadaver cervical spine data.

Based on the findings of this research, the null hypothesis is rejected and the 

research hypothesis can be accepted.

The results of this study indicate that significant differences exist in the 

magnitude of linear and angular stiffness of the Hybrid III three-year-old finite element 

model as compared to pediatric cadaver data. This finding was consistent with previous 

research conducted by Sances et al. (2002) who found that the linear stiffness of the 

Hybrid III adult dummy under compressive loading was stiffer as compared to adult 

cervical spine specimens.

6.4.2 Hypothesis 2

The Hybrid III three-year-old child finite element model does not adequately predict the 

failure tolerance o f the pediatric cadaver cervical spine data under axial tensile loading 

conditions.

Based on the findings of this research, the null hypothesis is rejected and the 

research hypothesis can be accepted.

The Hybrid III three-year-old finite element model greatly over predicted the 

failure tolerance of the pediatric cervical spine under axial tensile loading conditions.
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6.4.3 Hypothesis 3

The Hybrid III three-year-old child finite element model does not exhibit the same 

kinematic response o f the pediatric cervical spine data under flexion loading conditions. 

Based on the findings of this research, the null hypothesis is rejected and the 

research hypothesis can be accepted.

The Hybrid III three-year-old finite element model over predicted the magnitude 

of the bending moment for flexion and extension as compared to pediatric cadaver data.

6.4.4 Null Hypothesisxx

There will be no difference in stiffness, failure tolerance or kinematic response under 

flexion between the neck o f the Hybrid III three-year-old child finite element model and 

that o f the pediatric cadaver cervical spine data.

Based on the findings of this research, the null hypothesis is rejected for each of the 

three research hypotheses.
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7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The kinematics of the Hybrid III three-year-old child finite element model were 

compared to experimentally determined values of neck stiffness for a small population of 

pediatric cadaver specimens. Significant differences in stiffness were found. The material 

properties of the pediatric cadaver data were implemented into the Hybrid III model and 

the experimental procedure for the pediatric cadaver data was numerically simulated. 

Excellent prediction capabilities were observed. The kinematics of the altered and 

unaltered Hybrid III models under crash loading conditions were compared and 

significant differences were determined. In addition, comparisons between the altered and 

unaltered models were made with pediatric cadaver sled test results. Conclusions are 

summarized as follows:

1. The neck of the Hybrid III three-year-old finite element model is 435 times stiffer 

under axial tensile loading, 12.4 times stiffer under flexion bending loading and

4.8 times stiffer under extension bending loading conditions than that of recently 

obtained experimental pediatric cadaver data.

2. The altered Hybrid III model exhibits a 31 percent greater degree of head rotation 

than the unaltered model when subjected to a crash pulse which is more consistent 

with the degree of rotation of a child cadaver and other child dummy finite 

element models.

3. The altered Hybrid III model exhibits a 91 percent greater degree of chest 

deflection than the unaltered model when subjected to a crash pulse.
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4. The altered Hybrid III model head trajectory more closely resembles the profile of 

the experimental pediatric cadaver sled test than the unaltered model. In addition, 

the altered model exhibited a 16 percent greater local x head excursion as 

compared to the unaltered model when subjected to a crash pulse which more 

closely resembles the local x head excursion of the pediatric cadaver sled test.

5. Overall, the altered Hybrid III model more accurately predicts the kinematics of 

the head and neck expected based on experimentally obtained pediatric cadaver 

data, in comparison to the original Hybrid III model.

7.2 Future Work

Future work should focus on making comparisons between other child dummy 

models such as the child finite element model with experimentally obtained pediatric 

cadaver data and potentially implement the pediatric cadaver data into the cervical spine 

of these models.
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10. APPENDICES 

APPENDIX A 

The Finite Element Method

x  F = (m) • (a) + (c) • (v) + (k) • (x)

Where:

m, c and k are material properties; 

m = mass 

c = viscosity 

k = stiffness

(m) • (a) = inertial component 

(c) • (v) = viscous component 

(k) ■ (x) = dampening component

2nd Order Differential equation is an equation containing a variable and 2 of its 

derivatives.

LS-DYNA approximates to a, v and d to simultaneously solve coupled 2nd order 

differential equations that define the material properties for a number of finite elements.
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APPENDIX B

The Abbreviated Injury Scale

The Abbreviated Injury Scale (AIS) provides a ranking of the severity of injury. 

Injuries are ranked on a scale of 1 to 6, with 1 being minor and 6 being an unsurvivable 

injury. The scale represents the threat to life associated with an injury and is not meant to 

represent a comprehensive measure of severity. The AIS is not an injury scale, in that the 

difference between AIS1 and AIS2 is not the same as that between AIS4 and AIS5 

(Copes et al., 1990).

Injury AIS Score
1 Minor
2 Moderate
3 Serious
4 Severe
5 Critical
6 Unsurvivable
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