
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2007

Dynamic backtracking for general CSPs. Dynamic backtracking for general CSPs.

Kan Yu
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Yu, Kan, "Dynamic backtracking for general CSPs." (2007). Electronic Theses and Dissertations. 7035.
https://scholar.uwindsor.ca/etd/7035

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/127678466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7035&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7035?utm_source=scholar.uwindsor.ca%2Fetd%2F7035&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Dynamic Backtracking for General CSPs

by

Kan Yu

A Thesis

submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2007

© 2007 Kan Yu

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-35062-1
Our file Notre reference
ISBN: 978-0-494-35062-1

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Abstract

There are two categories of CSPs: binary CSPs and general CSPs. A binary CSP has

only unary and binary constraints. A unary constraint restricts the value of one

variable while a binary constraint restricts the values of two variables. A general CSP

may have constraints that restrict more than two variables. Many algorithms have

been developed to solve CSPs. Dynamic Backtracking and Constraint-directed

Backtracking algorithms (CDBT) are two of them. This thesis introduces a new

general CSP-solving algorithm - Constraint-directed Dynamic Backtracking (CDDBT)

that combines the advantages of Dynamic Backtracking and CDBT.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

iii

Dedication

To

my father and mother

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Acknowledgements

I would like to thank my supervisor Dr. Scott Goodwin, for his guidance, for his

academic advice, and for his support. I am also grateful for the scholarships provided

by the University of Windsor.

I also extend my appreciation to the members of my committee - Dr. Dan Wu and Dr.

Myron Hlynka, for their feedback and academic advice. I would like to thank Dr.

Richard Frost, the chair of my committee, for his guidance and academic advice when

I wrote my 510 survey.

I would like to thank Dr. Liwu Li, for his guidance. His sudden and unexpected death

was a shock to everyone. He is sincerely missed.

I would like to thank Robert George Price, for his academic advice and help. I would

also like to thank Robert Effinger, for his comments on Dynamic Backtracking.

I want to especially thank my parents for their love and full support.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

V

Table of Contents

Abstract.. iii
Dedication... iv
Acknowledgements... v
List o f Tables...viii
List o f Figures... ix
1 Introduction...1

1.1 Definition of CSP...1

1.2 Examples of CSP..2
1.3 Motivation...3

2 Background...5
2.1 Basic Concepts... 5

2.1.1 Unary, Binary and General Constraints...5
2.1.2 Density and Tightness... 5
2.1.3 Constraint Graphs..6
2.1.4 Satisfiability and Consistency.. 7
2.1.5 Search Ordering... 7

2.2 CSP-solving Techniques.. 9
2.2.1 General Discussion..9
2.2.2 Backtracking...10
2.2.3 AC-3 algorithm.. 10
2.2.4 Systematic and Non-systematic Search... 12
2.2.5 Performance o f CSP Algorithms.. 14

2.3 Dynamic Backtracking.. 15
2.3.1 Problem Addressed... 15
2.3.2 Definitions.. 15
2.3.3 The Algorithm...16
2.3.4 Example.. 17
2.3.5 Related Work.. 23

2.4 General CSPs... 25
2.4.1 Introduction...25
2.4.2 Early Research... 25
2.4.3 Later Research.. 26
2.4.4 Current Research.. 27
2.4.5 CDBT...28

3 CDDBT... 32
3.1 Methodology...32
3.2 The Algorithm.. 33
3.3 Proof...38
3.4 An CDDBT Example... 39

4 Experiments..41

vi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.1 Random General CSP Generator... 41
4.1.1 Methodology...41
4.1.2 A random CSP example..43

4.2 Experiment Data...46
4.2.1 Target Property: number of variables... 47
4.2.2 Target Property: domain size.. 49
4.2.3 Target Property: number o f constraints.. 51
4.2.4 Target Property: arity.. 53
4.2.5 Target Property: tightness of constraint.. 54

5 Results and Analysis.. 57
6 Conclusion and Future Work.. 67
Appendix: testing environment... 69

References...70
Vita Auctoris.. 76

vii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Tables
Table 3-1 Notation of CDDBT..34
Table 4-1 Three criteria for comparing the performance o f CDDBT and CDBT.................... 46
Table 4-2 Experiment #l(number o f variables vs. CPU runtime).. 47
Table 4-3 Experiment #1 (number o f variables vs. node checks)... 48
Table 4-4 Experiment #1 (number of variables vs. consistency checks)................................... 48
Table 4-5 Experiment #2(domain size vs. CPU runtime)... 49
Table 4-6 Experiment #2(domain size vs. node checks)..50
Table 4-7 Experiment #2(domain size vs. consistency checks)..51
Table 4-8 Experiment #3(number of constraints vs. CPU runtime)... 51
Table 4-9 Experiment #3 (number of constraints vs. node checks).. 52
Table 4-10 Experiment #3(number o f constraints vs. consistency checks)............................... 53
Table 4-11 Experiment #4(arity vs. CPU runtime).. 53
Table 4-12 Experiment #4(arity vs. node checks)...54
Table 4-13 Experiment #4(arity vs. consistency checks)...54
Table 4-14 Experiment #5(tightness o f constraint vs. CPU runtime).. 55
Table 4-15 Experiment #5(tightness o f constraint vs. node checks).. 56
Table 4-16 Experiment #5(tightness o f constraint vs. consistency checks).............................. 56
Table 5-1 detailed experiment data on configuration (number of variables=7, domain size=5,

density=0.1, arity=3, tightness o f constraint=0.9)..66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

viii

List of Figures
Figure 1-1 8-queens problem.. 3
Figure 2-1 Aconstraint graph (Russell & Norvig, 2003)...6
Figure 2-2 Backtracking search (Russell & Norvig, 2003)..10
Figure 2-3 AC-3 (Russell & Norvig, 2003)...11
Figure 2-4 Dynamic Backtracking (Ginsberg, 1993)... 16
Figure 5-1 Experiment #l(number of variables vs. CPU runtime).. 58
Figure 5-2 Experiment #l(number of variables vs. consistency checks)...................................59

Figure 5-3 Experiment #2(domain size vs. CPU runtime)...60
Figure 5-4 Experiment #2(domain size vs. consistency checks)... 60
Figure 5-5 Experiment #3 (number o f constraints vs. CPU runtime)..61
Figure 5-6 Experiment #3 (number o f constraints vs. consistency checks)..............................62
Figure 5-7 Experiment #4(arity vs. CPU runtime).. 62
Figure 5-8 Experiment #4(arity vs. consistency checks)... 63
Figure 5-9 Experiment #5 (tightness of constraint vs. CPU runtime)... 64
Figure 5-10 Experiment #5(tightness o f constraint vs. consistency checks)64

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

IX

1 Introduction

In Artificial Intelligence (AI), a lot of problems can be represented as Constraint

Satisfaction Problems (CSPs). We can find them in many fields of AI such as machine

vision, belief maintenance, scheduling problems, temporal reasoning, graph-coloring

problems, bioinformatics, and so on.

1.1 Definition of CSP

One definition of CSP from (Russell & Norvig, 2003) is:

“A constraint satisfaction problem (or CSP) is defined by a set of variables, Xi,

X2, . . . , Xn, and a set of constraints, Ci, C2, . . . , Cm. Each variable X* has a

nonempty domain D, of possible values.”

Another definition from (Tsang, 1993) is:

“A constraint satisfaction problem is a triple: (Z, D, C)

where Z = a finite set of variables { Xi, X 2, . . . , Xn }.

D = a function which maps every variable in Z to a set of objects of arbitrary

type.

C = a finite (possibly empty) set of constraints on an arbitrary subset of variables

in Z.”

Other researchers have definitions with different representations, but they all contain

the three key elements of CSP: variables, domains, and constraints. The arity of a

constraint is the number of involved variables. A solution to a CSP is an assignment of

values to all variables that does not violate any constraints. A CSP may have one

solution, more than one solution, or no solution.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

There are two categories of CSPs: binary CSPs and general CSPs. A binary CSP has

only unary and binary constraints. A unary constraint restricts the value of one

variable while a binary constraint restricts the values of two variables. A general CSP

may have constraints that restrict more than two variables. Many algorithms have

been developed to solve CSPs. Dynamic Backtracking (Ginsberg, 1993) and

Constraint-directed Backtracking algorithms (CDBT) (Pang, 1998) are two of them.

1.2 Examples of CSP

There are many CSPs in different areas. For example, one well-known CSP is the

8 -queens problem. A chess player named Max Bezzel originally proposed this

problem in 1848. Over the years, many mathematicians and Computer Scientists have

worked on the problem. The problem is to put eight queens on an 8 x8 chessboard

such that no two queens can attack each other. The 8 -queens problem has 92 distinct

solutions (1 2 solutions if not counting symmetry operations).

One formalization of the 8 -queens problem makes each row a variable (VI, V 2 ,. . . ,

V8 }. The domain of each variable is one of eight columns {1, 2, . . . , 8 }. The

constraint of the 8 -queens problem is “no two queens can attack each other”, which

means that no two queens are on the same row, column, or diagonal. If we set V1=T,

we cannot set V2=l or V2=2. Another formalization can be made by representing the

problem with the same number of variables but a different domain {1, 2, . . . , 64},

which stands for 64 positions on the 8 x8 chessboard.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 1-1 8-queens problem

Another well-known but harder CSP problem is the car sequencing problem. The goal

of the problem is to find an optimal arrangement of cars along a production line, given

production requirements, option requirements and capacity constraints. The detailed

description can be found in (Tsang, 1993). Other famous examples are Crossword

Puzzles, Map-Coloring problems, and so on.

1.3 Motivation

1. Dynamic Backtracking for binary constraints continues to be a focus of

research (Effmger & Williams, 2006) and (Zivan, Shapen, Zazone, & Meisels,

2006). Its concept of "eliminating explanation" can be applied to both binary

and non-binary CSPs. However, Dynamic Backtracking with non-binary cases

has not been completely investigated.

2. The power of the constraint-directed mechanism, the core of CDBT, has not

been sufficiently mined. The constraint-directed mechanism can be added to

many CSP approaches such as Forward Checking, Backjumping, and so on, as

mentioned in (Pang & Goodwin, 1996).

3. We wish to determine whether the performance improvements provided by

3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Dynamic Backtracking in the binary case can be carried over to the non-binary

case.

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 Background

2.1 Basic Concepts

2.1.1 Unary, Binary and General Constraints

There are two categories of CSPs: binary CSPs and general CSPs. General CSPs are

also called non-binary CSPs. A binary CSP has only unary and binary constraints. A

unary constraint restricts the value of one variable while a binary constraint restricts

the values of two variables. A general CSP may have constraints that restrict more

than two variables. In (Rossi, Petrie, & Dhar, 1990), the authors claim that it is

possible to convert any non-binary CSP to a binary CSP having the same solutions.

However, the efficiency of converting and then applying a binary CSP-solving

algorithm may not be as good as simply applying a non-binary CSP-solving algorithm

directly.

2.1.2 Density and Tightness

_ . the _ number _ o f _constraints
D en sity = --

the _ number _ o f _ all _ possible _ constraints

For example, if a CSP has three variables {Vi, V2, V3}, we have seven all possible

constraints, which are {Vi}, {V2}, {V3}, {Vh V2}, {Vi, V3}, {V2, V3}, and (Vi, V2,

V3}. The number of all possible constraints is defined \)y 2 ,he- number- of-™ ,abks -1 . If the

CSP has only one constraint Ci= (V), V2}, the density of the CSP is = 0.14.

, .. . the_number o f_valid tuples_of a constraintI ightness_ oj _ a _ constrain £=--------------------------------------- ----------------------------------
the_number_ o f_ all_ possible_ tuples_ o f _ a _ constraint

For example, if the domains of the above CSP are Di= {1, 2}, D2= {1, 2, 3}, D3= {1,

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2, 3, 4}, all possible tuples of Ci are (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), and (2, 3). The

number of all possible tuples of Ci is defined by|D ,|x |D 2| = 2x3 = 6 . If the CSP has

3
three valid tuples (2, 1), (2, 2), and (2, 3), the tightness of Ci is— = 0.5.

6

Some researchers use an opposite definition:

the_number_of _invalid_tuples_of _ a _constraint
Tightness_oj _ a _constraint=-- —--------

the_number_of _all_possible_tuples_of _a_constraint

2.1.3 Constraint Graphs

A binary CSP can be represented as an undirected graph. In the graph, the nodes stand

for variables and the edges stand for binary constraints. A General CSP can be

represented as a hypergraph. Graph theory has a significant influence on CSP research.

A CSP can be unconnected (Figure 2.1).

NT

Queensland

\ \ SA NSW,Western
Australia

South
Australia New

South
W iles

i
/

VlCtOHI

Tasmania

(a) (b)

0
Figure 5.1 (a) The principal states and territories of Australia. Coloring this map can be
viewed as a constraint satisfaction problem. Tire goal is to assign colors to each region so
that no neighboring regions have the same color, (b) The map-coloring problem represented
as a constraint graph.

Figure 2-1A constraint graph (Russell & Norvig, 2003)

6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.1.4 Satisfiability and Consistency

Two fundamental concepts in CSP are satisfiability and consistency. In (Tsang, 1993),

the author introduces the concept of compound label. A compound label is an

assignment of values to variables like (<Variablel, value 1>, <Variable2, value2>,. . . ,

cVariableX, ValueX>). A constraint can also be viewed as a set of legal compound

labels. He also introduces a simple definition of satisfiability, which is “a compound

label X satisfies a constraint C if and only if X is an element of C”. Based on this

simple definition of satisfiability, related concepts are built such as satisfiable,

k-satisfies, and k-satisfiable (Tsang, 1993).

Consistency is another essential concept in CSP. According to (Tsang, 1993), “a CSP

is 1-consistent if and only if every value in every domain satisfies the unary

constraints on the subject variable. A CSP is k-consistent, for k greater than 1, if and

only if all (k - 1) compound labels which satisfy all relevant constraints can be

extended to include any additional variable to form a k-compound label that satisfies

all the relevant constraints”.

Satisfiability and consistency have a close relationship. They support many other

important concepts and theorems in CSP research, for example, the concepts of node

consistency (NC, same as 1-consistency), arc consistency (AC, same as

2-consistency), and path consistency (PC, same as 3-consistency in binary CSP).

2.1.5 Search Ordering

Search ordering is one of the most fundamental factors that affect the efficiency of

CSP-solving algorithms (Tsang, 1993). Search ordering includes ordering of both

variables and values in their domains. For example, in (Russell & Norvig, 2003), the

7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

authors introduce three heuristics: the minimum remaining values (MRV) heuristic,

the degree heuristic, and the least-constraining-value heuristic. The MRV heuristic

picks a variable that has fewer remaining values. The degree heuristic picks a variable

that is “involved in the largest number of constraints on other unassigned variables”.

The least-constraining-value heuristic picks a value that “rules out the fewest choices

for the neighboring variables in the constraint graph.”

For example, we have a CSP, which has ten variables {Vi, V2, . . V10}. Each variable

has the same domain {1, 2, ..., 100}. After we assign 1 to V], we are going to pick the

next variable. V2 to V9 have more than one remaining value. V10 has one only value

left, which is 5. Instead of picking V2, the MRV heuristic will pick V 10. If it cannot

assign 5 to V 10, we need backtrack. It may save time since we don’t need to assign

values to variables between V2 and V9.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8

2.2 CSP-solving Techniques

2.2.1 General Discussion

Modeling or representing a problem as a CSP is one area in CSP research. Plow to

solve a CSP is another important area. Over thirty years, CSP researchers have

developed different kinds of methods or algorithms that can solve CSPs.

(Tsang, 1993) classifies techniques in CSP-solving into three categories: problem

reduction, search, and solution synthesis. Each category corresponds to one chapter in

his book. In the problem-reduction chapter, the author mainly talks about NC, AC,

and PC algorithms. In (Russell & Norvig, 2003) problem-reduction methods are

classified as constraint propagation methods. In the search chapter, Tsang introduces

three categories of search strategies: general search strategies, lookahead strategies,

and gather-information-while-searching strategies. Most of the CSP-solving

algorithms can be found in this chapter such as Backtracking, Forward Checking,

Backjumping, Backchecking, Backmarking, and so on. In the solution-synthesis

chapter, the author mainly talks about GENET. In the rest of the chapters, the author

introduces other important techniques like stochastic search.

In this section, firstly, two CSP algorithms are used as examples: backtracking and

AC-3. Secondly, a lot of work about systematic and non-systematic search is

introduced. Thirdly, the performance of CSP-solving techniques is discussed. The

approach of Dynamic Backtracking (Ginsberg, 1993) and CDBT (Pang, 1998) are two

other CSP-solving algorithms. As these are of prime importance in this thesis, they

will be described separately in later sections.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.2.2 Backtracking

The Backtracking algorithm is a fundamental CSP-solving algorithm, which is the

basis of many other algorithms. It was first formally introduced by (Bitner &

Reingold, 1975). However, the basic idea of Backtracking can be traced back to the

19th century. Furthermore, it is often compared with other algorithms to evaluate their

performance. Backtracking, or backtracking search, is a depth-first search. It is shown

in Figure 2.2.

function BACKTRACKING-SEARCH(esp) returns a solution, o r failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECTRSIVE-BACKTRACKING(cisA%rmi«?i, csp) returns a solution, or failure
i f assignment is com plete then return a ss ig n m en t
va r « - SELECT-UNA5SIGNED-VARIABLE(VARIABLES[csp], a s s ig m ie n t . csp)
fo r each value in QRDER-DOMAIN-VALUESf iw r, a ss ig n m e n t, csp) do

if value is consistent with iu>*itiriment according to CONSTRAINTS[c#p] then
add { ik it = va lue} to merit
resu lt RECURSIVE-BACKTRACKING(assignment, csp)
if ‘resu lt ^ fa ih m then return i<
rem ove { var = >'oJne) from assnp ina »f

return fa ilu re

Figure 2-2 Backtracking search (Russell & Norvig, 2003)

Backtracking tries to assign a value to a variable. If it does not violate any constraints,

it will assign a value to the next variable. If it fails to assign a value, it will backtrack

to the previous variable.

2.2.3 AC-3 algorithm

One important class of CSP-solving algorithms is called “arc consistency” algorithms

(Mackworth, 1977a). Achieving consistency is also called problem reduction (Tsang,

1993), problem relaxation, or constraint propagation. In (Montanari, 1974), the author

introduces the concept of constraint networks and propagation using path consistency.

This approach was popularized by (Waltz, 1975). By achieving certain consistency

(NC, AC, or PC), the problem is reduced by eliminating redundant information from

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

domains and constraints. In other words, “an arc consistency algorithm can be thought

of as a simplification algorithm which transforms the original problem into a simpler

version that has the same solutions” (Nadel, 1989). Consistency concepts are so

defined to guarantee it. Another property of arc consistency mentioned in (E. C.

Freuder, 1982) is that in any binary CSP, if its constraint graph can be represented as a

tree, a backtrack-free search can be obtained if node and arc consistency are obtained.

NC, AC, and PC are different levels of consistency. In (Nadel, 1989), the author

classifies AC algorithms into two categories: partial arc consistency algorithms

(A C ^ , A C ^ , AC^3, and AC 3'3) and full arc consistency algorithms (AC1, AC2,

and AC3). In (Tsang, 1993), the author lists another AC algorithm: AC4. AC-3

(Mackworth, 1977a) is a widely-used algorithm:

function AC-3(csp) m unis the CSP, possibly with reduced domains
inputs: cap, a binary CSP with variables {A'j, A<s, A* }
local variables: queue, a queue of arcs, initially all the arcs in csp

is M r lim te is not empty do
A', Y j) — REMOVE-FIRS T(queue)

if RE'fOVE-lNCONSISTENT-VALU1S(A',, A j) then
for each .¥* in NEIGHBORS!A',]

add (A*. Xi) to queue

function REMOVE- INCONSISTENT-VALUES(A',, A'*) returns true if f we remove a value
tv moved — fa k e
for each, x in DOMAIN[.V>] do

if no value y in DGMAIX[A\] allows (x,y) to satisfy the constraint between A ; and X j
d m delete x from DOMAIN[XjJ; removed — true

return removed

Figure 2-3 AC-3 (Russell & Norvig, 2003)

For example, we have a CSP, which has ten variables {Vi, V2, ..., Vio}- Each variable

has the same domain {1, 2, ..., 100}. AC-3 tries to maintain arc consistency. If we

assign 1 to V), we find that no value can be chosen from V2’s domain that satisfies the

constraint between {Vi, V2}. Then 1 will be removed from V i’s domain. If we assign

3 to Vi, we find that no value can be chosen from Vg’s domain that satisfies the

constraint between (Vi, Vs}. Then 3 will be removed from Vi’s domain.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.2.4 Systematic and Non-systematic Search

Systematic search (global search) and non-systematic search (local search) are two

categories of CSP-solving methods. In (F. Freuder, Dechter, Ginsberg, Selman, &

Tsang, 1995), Dechter credits the work done in (Pearl, 1984): “Systematic algorithms

have two properties (1) Do not leave any stone unturned (completeness), and (2) do

not turn any stone more than once (efficiency).” Dechter claims that greedy

non-systematic algorithms may “leave many stones unturned and may also turn the

same stone multiple times”. Here, efficiency does not mean performance. She also

claims that systematic search can beat non-systematic search sometimes, and vice

versa. The following papers discuss systematic search and/or non-systematic search.

Others can be found in later Sections.

In (Minton, Johnston, Philips, & Laird, 1990), the problem addressed by the authors is

meaningful progress on how to solve large-scale constraint satisfaction and

scheduling problems. Three previous papers referred to by the authors are (Stone &

Stone, 1987), (Johnston & Adorf, 1989), and (Adorf & Johnston, 1990). The authors

develop a new heuristic called the min-conflicts heuristic that captures the idea of

Guarded Discrete Stochastic (GDS) Network. The main idea of the min-conflicts

heuristic is to minimize the number of conflicts by assigning a new value to the

variable, which is in conflict. The authors do experiments by employing three search

strategies (hill-climbing, informed backtracking, and best-first search) with the

min-conflicts heuristic. They claim that min-conflicts hill-climbing and min-conflicts

backtracking perform much better than basic backtracking on the n-queens problem.

They also claim that the min-conflicts heuristic is less effective on problems like

coloring sparsely-connected graphs. They state that these problems have a few

highly-critical constraints and many less important constraints. This paper has been

cited by many researchers such as (Minton, Johnston, Philips, & Laird, 1992) and

(Ginsberg, 1993).

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

After two years, four authors presented another paper (Minton et al., 1992). They

analyzed the min-conflicts heuristic. They state that (Johnston & Adorf, 1989) and

(Adorf & Johnston, 1990) inspired their heuristic. Adorf and Johnston developed a

neural network called GDS network. Minton et al. raise a question “why does the

GDS network perform so well”. They state both a non-systematic search hypothesis

and an informedness hypothesis. They claim that the informedness hypothesis is the

reason. By capturing the idea of GDS, the authors state the min-conflicts heuristic.

The heuristic assigns a value of a variable in conflict while the value minimizes the

number of conflicts. The authors also claim that many search strategies can use the

method of repairing an inconsistent assignment except the hill-climbing strategy. This

paper has been cited by many researchers such as (Davenport, Tsang, Zhu, & Wang,

1994) and (F. Freuder et al., 1995).

In (Davenport et al., 1994), the authors introduce a new connectionist architecture -

GENET that solves CSPs using iterative improvement methods. One previous work

referred to by the authors is (Minton et al., 1992). The authors state that the GENET

network is similar to the GDS network. One significant difference from GDS is that

GENET has a learning procedure. In order to escape local minima, they introduce a

rule for adjusting the weights of the connections. The authors introduce two specific

constraints: illegal constraints and atmost constraints, in addition to general

constraints. They do experiments on the Graph Coloring problem, random general

constraint satisfaction problems, and the Car Sequencing Problem. They test five

different algorithms namely MCHC, MCHC2, GENET, GENET2, and GENET3. The

authors claim that GENET outperforms other existing iterative improvement

techniques. This paper has been cited by many researchers such as (F. Freuder et al.,

1995).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.2.5 Performance of CSP Algorithms

In (Nadel, 1988), the author evaluates some CSP-solving algorithms on n-queens and

confused n-queens problems. He claims that Forward Checking (FC) performs best

among these algorithms. In (Kumar, 1992), the author lists three schemes of

CSP-solving techniques: backtracking, constraint propagation, and constraint

propagation inside backtracking. The author claims that the drawbacks for

backtracking are thrashing (Gaschnig, 1979) and redundant work. For example,

algorithms using a backtracking mechanism may keep backtracking for the same

reason. Kumar (1992) claims that there are two possible reasons for thrashing: node

inconsistency and arc inconsistency (Mackworth, 1977a). On the other hand, he also

states that constraint propagation is more expensive than simple backtracking in most

cases. So the author raises a question - “how much constraint propagation is useful.”

In (Mackworth & Freuder, 1993), the authors compare and analyze the complexity of

many finite CSP (FCSP) algorithms such as AC-1, AC-2, AC-3, and AC-4. They state

that it is important to identify tractable problem classes that are specific classes with

tractable solution techniques.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14

2.3 Dynamic Backtracking

2.3.1 Problem Addressed

In (Ginsberg, 1993), the problem addressed by the author is that meaningful progress

is sometimes removed in existing backtracking methods. For example, Backtracking

suffers from thrashing. Two previous papers referred to by the author are

Dependency-directed backtracking (Stallman & Sussman, 1977) and Backjumping

(Gaschnig, 1979). They both suffer from this problem. In (Ginsberg, 1993), the author

introduces a new algorithm called Dynamic Backtracking that can solve this problem.

2.3.2 Definitions

Ginsberg uses another definition of the CSP. He defines a CSP as “a set I of variables;

for each i G /, there is a set of Vt of possible values for the variable i. k is a set of

constraints, each a pair (J, P) where J= (/ '/ , . . . ,jk) is an ordered subset of /a n d P is a

subset of Vn x • • • x Vjk Because i is unique, the author uses it to indicate both a

variable and the index of a domain.

The most important concept the author introduced is the concept of an eliminating

explanation. “Given a partial solution Pl to a CSP, an eliminating explanation for a

variable i is a pair (v, S) where v GV f and 5 c P .” P is the corresponding set

of variables for P. The underlying meaning of eliminating explanation is that i cannot

be set to v because of the values that are already set by P to the variables in S. An

eliminating mechanism e is a function. It takes two inputs: a partial solution P and a

variable i<£ P . It outputs an eliminating explanation set s(P, i) for i.

1 Note this P is different from the one in the previous paragraph.

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.3.3 The Algorithm

The author reconstructs the depth-first search algorithm and the Backjumping

algorithm with his notations of CSP and the concept of eliminating explanation. Then

he gives the algorithm of Dynamic Backtracking:

A lg o r i th m 4.3 (D y n a m ic backtracking) Given m inputs a constrainl-satisfaction prob
lem and an elimination mechanism e:

1. Set P -i“ Ei =! 0 for each i € I .

I, I f I I return P . Otherwise, select a variable i € I — P . Set Ei = JS» U e(F, f).

S. Set S ~ Vi - E i. I f S is nonempty, choose an dem ent v £ S . Add (t , «) to P and
return to step S.

I I f S is empty, we m ust ham E, i;.- let E be the set of all variables appearing in the
explanations fo r each eliminated value.

5. I f E 0 , return failure. Otherwise, let (j, vj) be the last entry in P that binds a
variable appearing in E . Remove (j, ty} from P and, for each variable k assigned
a value after j , remove from. Eu any eliminating explanation that involves j . Add
(v j , E P P) to Ej and return to step $.

Figure 2-4 Dynamic Backtracking (Ginsberg, 1993)

The essential difference from previous methods is that the author saves nogood

information based on the current assignment. A nogood is dropped if it depends on old

information. The author compares Dynamic Backtracking with Backjumping by the

experiment of generating nineteen puzzles of different sizes. Similar work has been

done in (Ginsberg, Frank, Halpin, and Torrance, 1990). The author claims that

D ynam ic Backtracking has better performance than Backjumping. He claim s that, in

nineteen tests, Dynamic Backtracking beats Backjumping in six and obtains the same

performance as Backjumping in the other thirteen. Future work suggested by the

author is backtracking to older culprits and dependency pruning.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.3.4 Example

Given a simple CSP:

Variables: V ,,V 2,V 3

Domains: Di=D2=D3= {1, 2}

Constraints: V i^ V2, V2^ V3, V3^ Vi

Initially:

Eliminating Explanations Assigned Value

Vi

V2

V3

p

p

E

Iteration 1:

Select the first variable Vi --> calculate Ej, the set of eliminating explanations for Vi.

Because partial solution P = 0 , Ei is 0 —> assign the first valid value to V/, which is

1 - > add (Vu 1) to P

Eliminating Explanations Assigned Value

V, 1

v 2

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

V3

p {(V,, 1)}

p {V,}

E

Iteration 2:

Select next variable V2 --> calculate £ 2, which is {(1, {£;})} -> assign the first valid

value to V2 , which is 2 —> add (V2 , 2) to P

Eliminating Explanations Assigned Value

V, 1

v 2 (1, {V,}) 2

V3

p {(V,,1),(V2> 2)}

p {Vi,V2}

E

Iteration 3:

Stepl:

Select next variable V3 --> calculate £ 5, which is {(1, {£;}), (2, {£2})}

Eliminating Explanations Assigned Value

V, 1

V2 (1 , { Vi}) 2

V3 (1, { Vi}), (2, { V2})

p {(V,, 1), (V2, 2)}

p {V,,V2}

E

Step2:

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Assign the first valid value to Vj, but no valid value can be found

Eliminating Explanations Assigned Value

V, 1

V2 (1, {V,}) 2

V3 (1, { V,}), (2, { V2}) cannot assign a value

p {(V ul), (V2, 2)}

p {V,,V2}

E

Step3:

E is the set of all variables appearing in the explanations for each eliminated value. It

needs to be calculated. Then {Vi, V2 } is assigned to E.

Eliminating Explanations Assigned Value

1

V2 (1, {V,}) 2

V3 (1 , {V i}),(2 ,{ V 2}) cannot assign a value

p {(V,,1),(V 2,2)}

p {Vi,V 2}

E {Vi, v 2}

Step 4:

Unlike Backtracking, which will backtrack directly to the previous variable, Dynamic

Backtracking removes the last entry in P while the variable of this entry is in E.

However, in this example, the entry happens to be (V2 , 2). Then, for every variable

after V2, we remove all eliminating explanations that involve U.

Eliminating Explanations Assigned Value

V, 1

v 2 (1 , {V!})

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

V3 (1, {V,})

p {(V,, 1)}

~p {Vi}

E {Vi}

Step 5:

Add (2, £ f) P) to E2

Eliminating Explanations Assigned Value

V, 1

V2 (1, {V,}), (2, {VO)

V3 (1, {V,})

p {(Vi, 1)}

p {Vi}

E {V,}

Iteration 4:

Stepl:

We select next variable. Here we select V2 again. ~> calculate E2, which is still {(1,

{V,}), (2, {V!})}

Eliminating Explanations Assigned Value

V, 1

v 2 (1,1V,}), (2, { Vi})

V3 (1, {VO)

p {(Vi, 1)}

p {Vi}

E {Vi}

Step2:

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Assign the first valid value to F2, but no valid value can be found

Eliminating Explanations Assigned Value

V, 1

V2 (1, { V ,}),(2, {V,}) cannot assign a value

V3 (1, {V!})

p {(Vi, 1)}

p {Vi}

E {Vj}

Step3:

E needs to be calculated. Then {V/} is assigned to E.

Eliminating Explanations Assigned Value

V! 1

V2 (1, {V,}), (2, { Vi}) cannot assign a value

V3 (U V i})

p {(V,, 1)}

p {V,}

E {Vi}

Step 4:

Dynamic Backtracking removes the last entry in P while the variable of this entry is

in E. The entry is (Vi, 1), which is the only one left. Then, for every variable after V/,

we remove all eliminating explanations that involve V/.

Eliminating Explanations Assigned Value

V,

V2

V3

p

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

p

E

Step 5:

Add (I ^ P I jP) to Ei. Because E and P are both 0 , E f]P is 0 . So we add (1 ,0)

to Ei. Ej = {(1, 0)} means Vj cannot be assigned to 1 whatever assignments of other

variables are.

Eliminating Explanations Assigned Value

V, (1 ,0)

V2

V3

p

p

E

Iteration 5 to the end:

We select Vi again, and we assign 2 to Vj. Following the similar steps, (2, 0) has been

added to Ej. We backtrack to Vj again. At this time, no value is valid for V/. Then we

have E = 0 . The algorithm terminates and returns failure, which means there is no

solution for this CSP.

Eliminating Explanations Assigned Value

v, (1 ,0), (2, 0)

V2

v 3

p

p

E

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In this specific CSP, the performance of Dynamic Backtracking may not be as good as

Backtracking because it just backtracks to the previous variable as Backtracking does.

In other CSPs (Ginsberg, 1993), Dynamic Backtracking may backtrack to some

variable other than the previous variable.

2.3.5 Related Work

Dynamic Backtracking is a systematic search technique. In (Jonsson & Ginsberg,

1993), the authors make a comparison between systematic and non-systematic search

techniques. They compare the performance of depth first search and three new search

methods, which are Dynamic Backtracking (Ginsberg, 1993), Minimum Conflicts hill

climbing (Minton et al., 1990) and GSAT (Selman, Levesque, & Mitchell, 1992). The

authors do experiments mainly on the graph-coloring problem because they state that

it is the best problem to evaluate these methods’ performance among graph-coloring

problem, n-queens problem, and crossword puzzles. The authors claim some results.

For example, they claim that Dynamic Backtracking performs better than the

non-systematic methods in graph coloring problem. Future work suggested by the

authors is that people can compare their work with similar work done at the AT&T

Bell Laboratories.

In (Ginsberg & Me Allester, 1994), the authors introduce a new algorithm that

combines both systematic and non-systematic approaches. Two previous works

referred to by the authors are Dynamic Backtracking (Ginsberg, 1993) and GSAT

(Selman et al., 1992). The authors use the notation of nogoods instead of constraints

in standard definition o f CSP. The new algorithm is called Partial-order D ynam ic

Backtracking (PDB). In this algorithm, they also introduce two new concepts: safety

conditions and weakening. In experiment (3-SAT problem), the authors compare PDB

with WSAT and TABLEAU. They claim that PDB performs the best among these

three algorithms. Two type of future work are suggested by the authors. First, more

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

problems need to be tested. Second, there are a few untouched questions about the

flexibility of PDB.

In (F. Freuder et al., 1995), the problem addressed by the authors is systematic and

stochastic control in CSP. Two previous works referred to by the authors are (Minton

et al., 1992) and (Ginsberg & McAllester, 1994). Freuder states a lot of questions that

relate to this problem. Dechter claims that, between systematic algorithms and

stochastic greedy, the main job is how to exploit identified class-superior algorithms.

Ginsberg states two observations about systematic and non-systematic search. Selman

claims that it is better to formulate problems using model-finding rather than theorem

proving. Tsang claims that stochastic search is more important in practical

applications. This paper has been cited by many researchers such as (Gomes &

Selman, 1997).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

24

2.4 General CSPs

2.4.1 Introduction

More research has been done on binary CSPs than on general CSPs. One reason is

that “new ideas/techniques are usually much simpler to present/elaborate by first

restricting them to the binary case” (Bessiere, 1999). The other reason is that all CSP

problems can be transformed into binary CSPs with some cost (Tsang, 1993).

However, many researchers have done significant work on general CSPs.

2.4.2 Early Research

(Mackworth, 1977b) is one of the early works on general CSPs. The purpose of this

paper is to describe a program, called MAPSEE, which interprets sketch maps. One

previous work referred to by the author is (E. C. Freuder, 1976). Mackworth states

that, first, there is a phase called the initial partial segmentation. Then the second

phase addressed by the author is achieving consistency. In this period, he provides a

new algorithm NC, an n-ary Relation Consistency Algorithm. He claims that NC is a

generalized version of AC-3, which is more efficient than AC-3. In the end, the author

states that there is some room for refining the initial segmentation. Future work

suggested by the author includes the integration of segmentation and interpretation

phases, the problem of automatically generating primary cue interpretation catalogue,

and the use of schemata. This paper has been cited by many researchers such as

(Bessiere, Meseguer, Freuder, & Larrosa, 1999) and (Bacchus, Chen, van Beek, &

Walsh, 2002).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.4.3 Later Research

In (Rossi et al., 1990), the problem addressed by the authors is that the old definition

of equivalence of CSPs is limited. One previous work referred to by the authors is

(Montanari, 1974). Two CSPs are equivalent based on the old definition of

equivalence if they share the same solutions. The authors develop a new and more

general definition of equivalence - extended equivalence. The authors introduce the

concept of mutual reducibility as the base of extended equivalence. They claim to

prove binary and non-binary CSPs are equivalent using a new definition of

equivalence. The authors also introduce two algorithms for transforming non-binary

CSPs into equivalent binary CSPs. They claim that one algorithm of them can

produce an equivalent binary CSP and the other one can successfully transform with

some cost. Future work suggested by the authors is that it is possible to generalize the

new definition to other types of problems. This paper has been cited by many

researchers such as (Bessiere et al., 1999) and (Bacchus et al., 2002).

In (Bacchus & van Beek, 1998), the problem addressed by the authors is that few

theoretical and experimental works have been done on performance of non-binary

CSPs and their binary representations. Two previous theoretical works referred to by

the authors are (Mackworth, 1977b) and (Van Hentenryck, 1989). One previous

experimental work referred to by the authors is (Ginsberg, 1993). The authors

introduce a new algorithm called FC+ that is a modification of FC. In addition to

pruning the domains of h-variables, FC+ also prunes the domains of corresponding

uninstantiated variables. The authors claim that FC+ sometimes performs better than

FC on non-binary CSPs. They also claim that the number of satisfying tuples may be

the most important factor when we decide to translate or not. Future work suggested

by the authors is to investigate the relationship between binary translations. This

paper has been cited by many researchers such as (Bessiere, 1999).

In (Bessiere et al., 1999), the problem addressed by the authors is the problem of

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

solving non-binary CSPs by extending binary search algorithms. One previous work

referred to by the authors is (Rossi et al., 1990). In (Bessiere et al., 1999), the authors

extend FC for non binary constraints. Depending on different alternatives of

constraints involving past, current, and future variables, the authors introduce six

algorithms (nFCO, nFCl, nFC2, nFC3, nFC4, and nFC5). The authors prove some

results on the six algorithms. For example, they prove that these algorithms are all

correct (soundness and completeness). To compare FC+, nFCO, nFCl, nFC2, nFC3,

nFC4, and nFC5, they do three experiments on random problems, Schur’s lemma, and

the car sequencing problem. The authors claim that their performance has very close

relationship with the tightness and arity of constraints. They also claim that their

performance depends on the use of the semantics of constraints. Future work

suggested by the authors is how to find a criterion to choose an appropriate nFCx

algorithm. This paper has been cited by many researchers such as (Stergiou, 2001).

2.4.4 Current Research

In (Bacchus et al., 2002), the authors compare binary constraints and non-binary

constraints. Two major previous works are (Dechter & Pearl, 1989) and (Rossi et al.,

1990). The authors compare the dual transformation and the hidden transformation.

The forward checking and maintaining arc consistency algorithms are used in the

comparison. The two algorithms are two variations of the chronological backtracking

algorithm. At every node in the search tree, they maintain a local consistency property.

The authors prove some results from the comparison. For example, they prove that

enforcing arc consistency on the original CSP is the same as its hidden transformation.

They claim that their results can help users w ho want to apply the two transformations

to a CSP model. This paper has been cited by (Stergiou & Walsh, 2006).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.4.5 CDBT

In (Pang, 1998), Pang introduces an algorithm to solve non-binary CSPs. One

previous work referred to by the author is (Pang & Goodwin, 1996). The algorithm is

called constraint-directed backtracking algorithm (CBDT). He claims that a

shortcoming of traditional backtracking is that all given constraints are as criterion

functions when we check consistency. The most significant feature of CBDT is that it

assigns values to the variables from some constraint simultaneously. However, other

CSP-solving algorithms usually assign one value to one variable. The author claims

that CBDT has a more limited search space than Backtracking and other tree search

algorithms.

Pang gives his own definition of CSP: “A constraint satisfaction problem is a structure

(X, D, V, S). X={Xi, X2, ..., Xn} is a set of variables, D={ Di, D2,..., Dn} is a set of

domains where each domain D, is a set of possible values for variable X*, and V={Vi,

V2„ .., Vm} is a family of ordered subsets of X called constraint schemes. Each V; =

{Xn, Xi2,..., Xiri} is associated with a set of tuplesSj c Da x Dn x ...x D n called a

constraint instance, and S={ Si, S2,..., Sm} is a family of such constraint instances.

Together, a pair (Vj, S;) is a constraint (or relation) which permits the variable in Vi to

take only the value combinations in Si.”

The CDBT algorithm (Pang, 1998) is described as the following three functions:

forward(IP, Vi, tupi)

1. begin

2. if | Vi I = n then return tupi;

3. select Cj+i=(Vi+i, S;+i) from C s.t. Vi+i (Z Vg

4. cks’() - {Ch |C h €EC,Vh * V i+1,V h (ZVi,Vh c V „ };

5. s '+l — {tup I tup GSw, tup[v1n v i+i]=tupi[v1n v i+i]};

6. while S *+1 ^ 0 do

28

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7. tup — one tuple taken from S *+l;

8. tupi+i tupi fxt tup;

9. if test(tupi+i, cks’(Vi+0) then return forward(IP, Vi+i, tupi+i)

10. end while

11. return goback(IP, Vi, tupi)

12. end

goback(IP, Vi, tupi)

1. begin

2. if | Vi | = 0 then return unsatisfiable;

3. while S* ^ 0 do

4. tup one tuple taken from S *;

5. tupi tupn ixi tup;

6. if test(tupi, cks’(Vi)) then return forward(IP, Vi, tupi);

7. end while

8. return goback(IP, Vw, tupu);

9. end

test(tupi, cks’(Vi)).

1. begin

2. for each Ch=(Vh, Sh) in cks’(Vi) do

3. if tupi[Vh]<S Sh then return false;

4. return true;

5. end

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Here, IP is a CSP. cks’(Vi) is a constraint check-set including the constraints which

need checking for variable set Vi. Vi is all variables involved in constraints from all

constraints that have been selected so far, whereas V; is just the variables involved in

the ith selected constraint. More description can be found in (Pang, 1998).

The key point of CDBT can be illustrated in the following example:

Given a simple CSP:

Variables: Vj, V2,..., V20

Domains: D i= D 2= . . = D 20= {1,2,..., 30}

Constraints: C/, C2,...,Cg

Suppose we have already selected C/ and C2. So Vj, V2, V3, and V4 have been assigned

values. Next, we select C3 and only consistent tuples can be considered. In other

words, the tuples must include (Vj, 2), (V3, 5), and (V4, 8). Suppose we obtain 3 tuples

(see Cj in Figure 8). We put them into S3 . Then all the 3 tuples need to check

consistency using constraint check-set. If we find such a tuple, we pick this tuple to

build a partial solution. Then, we select next constraint. If we cannot find such a tuple,

we need to backtrack and consider other tuples inS*.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

31

3 CDDBT

3.1 Methodology

Constraint-directed Dynamic Backtracking (CDDBT) is built on the basic structure of

Dynamic Backtracking with some modifications. Three main modifications are:

1. Use the key mechanism of CDBT: constraint-directed. CDDBT chooses one

constraint each time instead of variable.

2. Use a different eliminating explanation {t, C)\ Given a partial solution P, f is a

tuple for a constraint i. C is a set of constraints. We are going to select i, which

has not been selected before. Vt is the set of variables involved in i. (t, C)

means that V, cannot take the tuple t because of the tuples already assigned to

some constraints in C. Different from the definition in (Ginsberg, 1993), C

may have constraints that don’t appear in P. This definition is more general

than Ginsberg’s. Ginsberg uses the first of his three assumptions to support his

definition of eliminating explanation. Our definition has no restrictions.

3. Use a different eliminating mechanism e from the e of Dynamic Backtracking.

In (Ginsberg, 1993), the author points out that his definition of elimination

mechanism is “somewhat flexible with regard to the amount of work done by

the elimination mechanism - all values that violate completed constraints

might be eliminated, or some amount of lookahead might be done.” There are

two main rules for CDDBT’s eliminating mechanism to guarantee the partial

solution satisfies all related constraints. First, when a tuple needs to be

eliminated, all reasons that cause elimination must be given. The eliminating

explanation of the same tuple and the same reason is eliminated only once.

Second, if a tuple for a constraint is found consistent with the partial solution,

no more consistency checks are needed for this constraint.

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.2 The Algorithm

Notation:

csp a CSP

vars variables of csp, \ vars | is the size of vars

I constraints of csp

i the new selected constraint

pse a partial solution element (c, t). c is a constraint and t is one of valid

tuples of c

P a partial solution. It is a list of partial solution elements. | P | is the size

of P

P constraints involved in P

(it ,Q an eliminating explanation (t, C): Given a partial solution P, t is a tuple

for a constraint c .C is a set of constraints.

Et eliminating explanation set for i (because i is unique, it can be used as

index also)

Et tuples that are eliminated in E,

e(P, i) elimination mechanism e(P, i) returns eliminating explanations for i

when the partial solution is P. The tuples of i that are inconsistent with

P are going to be eliminated until one consistent tuple is found.

cks (pses, i) a constraint check set for pses and i. pses is a list o f partial solution

elements andpsesczP. For example constraints C/, Q , ..., and Cj, are

involved in pses, now we are going to choose constraint i.

cks = {Ch | C*e I, Ch * i, Vh cz VXj, Vh cZ VXj, Vh c VXJ+I }.

Here, Ch is a constraint; Vh is the variables involved in Cp, VXj is the

variables involved in Ci, C2, and C,; VXj+iis the variables involved

in Ci, C2, C,, and /.

S If only one solution is required, S contains the first tuple that is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

consistent with P. If all solutions are required, S contains the all tuples

that are consistent with P.

E E is the set of constraints appearing in the eliminating explanations for

each eliminated tuple

Table 3-1 Notation of CDDBT

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

34

Constraint-directed Dynamic Backtracking (CDDBT)

Input: a CSP

Output: the first solution

1. P — 0

2. Ei •*- 0 for each i in I

3. W HILE (P doesn’t covers vars AND (at least one constraint has not been

chosen AND it contains a variable that is not assigned a value))

4. Choose a constraint i from I where P doesn’t cover Vs involved variables

5. Ej — Ei U s{P, i) , S is obtained when calculating e(P, i)

6. IF (S <> 0)

7. Choose a tuple t from S

8. Add (/, t) to P

9. ELSE

10. IF (E= 0 OR P = 0)

11. RETURN No Solution

12. ELSE

13. Let (c, t) be the last entry in P that binds a constraint appearing

in E if E <> 0 ; if not found, choose the last entry in P

14. Remove (c, t) from P

15. For each constraint k 'm P after c o r k not in P,

Remove from Ek any elimination explanation that involves c

16. Add (t, ~P) to Ec

17. END OF IF

18. END OF IF

19. END OF W HILE

20. Output P

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Elimination mechanism e(P ,i) :

1. tupleCanBeAdded false

2. W HILE (tupleCanBeAdded = false AND at least one valid tuple cl in i has

been chosen)

3. tupleAlreadylnEliminationExplanation false

4. tuplelsPermanentlyEliminated — false

5. IF (cl= t and (t, C) is an eliminating explanation of E,)

6 . tupleAlreadylnEliminationExplanation *- true

7. IF (C = 0)

8 . tuplelsPermanentlyEliminated — true

9. END OF IF

10. END OF IF

11. tupleNeedsEliminating false

12. IF (tuplelsPermanentlyEliminated = false)

13. IF (P = 0)

14. W HILE (at least one cj in cks(P, i) has not been chosen)

15. IF (cl violates c/)

16. Add (cl, ci) to Et

17. tupleNeedsEliminating true

18. END OF IF

19. END OF W HILE

20. ELSE

21. pseList — 0 , constraintList 0

22. W HILE (at least one (c, t) in P has not been chosen)

23. Add (c, t) to pseList

24. Add c to constraintList

25. checkset cks(pses, i)

26. Add t to pscl

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

27. IF {cl violates t)

28. Add {cl, c) to Et

29. tupleNeedsEliminating *- true

30. ELSE

31. tup ■*- t U cl

32. W HILE (at least one c/ in checkset has not been

chosen)

33. IF {tup violates c/)

34. Add {cl, c{) to Ei

35. tupleNeedsEliminating — true

36. END OF IF

37. END OF W HILE

38. END OF IF

39. IF {{c, t) is not the first element in pseList)

40. IF {cl violates pscl)

41. Add {cl, constraintList) to E,

42. tupleNeedsEliminating ■*- true

43. ELSE

44. nppscl •*- pscl U cl

45. W HILE (at least one c/ in checkset has not been

chosen)

46. IF {nppscl violates ci)

47. Add {cl, constraintList) to E,

48. tupleNeedsEliminating true

49. END OF IF

50. END OF W HILE

51. END OF IF

52. END OF IF

53. W HILE (at least one cj in checkset has not been chosen)

54. IF {cl violates ci)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

56.

55. Add {cl, 0) to Ei

tupleNeedsEliminating true

57. END OF IF

58. END OF W HILE

59. END OF W HILE

60. END OF IF

61. END OF IF

62. IF (tupleAlreadylnEliminationExplanation = false AND

tupleNeedsEliminating = false)

63. Add cl to S

64. tupleCanBeAdded true

65. END OF IF

66. END OF W HILE

3.3 Proof

Theorem 3.1: If a CSP is solvable, CDDBT can always return a solution.

Proof. Suppose we have a simple CSP:

Variables: Vj,V 2 , . . . ,V n

Domains: D/=Dr=.. -=D„= {di, d2,. .., dh}

Constraints: C/, C2 ,...,C m

We choose C/ first. We must find at least one tuple t/ from C/ that satisfies constraints

C2 ,...,Cm because this CSP is solvable and elimination mechanism of CDDBT

eliminates any tuple before t2 that violates related constraints. If ti involves all

variables form V/ to V„, tj is a solution. If not, we choose the next constraint C* that

involves at least one new variable. We look for a tuple t2 from Q that satisfies ti and

related constraints. If we can not find it, we backtrack and look for another tj. We

must find at least one tuple t2 from Q that satisfies tj and related constraints because

this CSP is solvable and elimination mechanism of CDDBT eliminates any tuple

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

before tk that violates ti and related constraints. Then tj U 4 is a partial solution. If ti U

tk involves all variables form V/ to V„, tj U tk is a solution. If not, we choose the next

constraint that involves at least one new variable. Following this procedure, we must

find a solution.

3.4 An CDDBT Example

We use the same example as the example in CDBT:

Given a simple CSP:

Variables: Vj, V2,..., V20

Domains: Di=D2-...= D 2o- {1, 2, . . . , 30}

Constraints: C/, C2,...,Cg

Suppose we have already selected C/ and C2. So V/, V2, V3, and V4 have been assigned

values. We select the next constraint whose involved variables are not a subset of {Vj,

V2, V3, V4). Next, we eliminate the tuples that violate partial solution P and related

constraints until we find one tuple in C5 which is consistent. If we find that tuple, we

put it into S and select the next constraint. If not, we put this inconsistent tuple with

the reason (suppose Cj and C2) into £ 5 and select the next constraint.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

40

4 Experiments

4.1 Random General CSP Generator

4.1.1 Methodology

At present, most random CSP generators are binary generators. Further more, they

usually generate random CSPs with the same domain, the same arity, and the same

tightness of each constraint. They only generate random tuples of each constraint. My

random CSP generator is a general CSP generator and generates more random

features. It generates a CSP with random variables, random domains, and random

constraints.

In (Gent, MacIntyre, Prosser, Smith, & Walsh, 2001), the authors state that “many

models of random binary constraint satisfaction problems become trivially insoluble

as problem size increases.” They claim that one reason for the problem is the

appearance of “flawed variables” . Their definition of “flawed” is “A value for a

variable is flawed if, when the value is assigned to the variable, there exists an

adjacent variable in the constraint graph that cannot be assigned a value without

violating the constraint between the two variables.” They also cite an early work by

(Achlioptas et al., 1997), in which the authors prove that if tightness is larger than

some value (related to domain size), as the problem size increases, the generated

random binary CSP may have a flawed variable. My random general CSP generator

may also suffer from this problem. Our concern in this thesis is CSP-solving

algorithms, not random CSP models.

Another problem of random CSP generators is: when density is large, we may

generate the same involved variables of constraints again and again. The same applies

to tightness of each constraint. When tightness is large, we may generate the same

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

valid tuples of a constraint again and again. We call this the “unsuccessful hit”

problem. We solve it using the following strategy. For example, if tightness ti is larger

than 0.5, we first generate all possible tuples, then we generate invalid tuples with 1-

ti, finally we can easily obtain valid tuples.

My random general CSP generator has three modules:

generate random constraints

generate random domains

generate random variables

If we make this procedure more specific, that is:

generate random density

generate random domain of each variable

generate random number of variables

generate random tightness of each
constraint

generate random involved variables of
each constraint

generate valid random tuples of each
constraint

remove constraints that violate the
requirement of arity and the requirement

of number of contraints

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.1.2 A random CSP example

The output of my random general CSP generator is a CSP. The following is an

example:

Arguments:

numberOfCSPsNeedsToBeGenerated=1

maximumNumberOfVariables=7

maximumDomainSize=4

maximumDensity=0.5

maximumArity=7

maximumTightnessOfConstraint=0.5

connected=true

randomLeve1=00000

******************^SP 0 has been Q^eneneted.*****************

numberOfVariables=5

Because argument maximumArity>numberOfVariables, maximumArity is

assigend to 5

VO's domain(1 elements): 0

Vi's domain(2 elements): 0 1

V 2 's domain(3 elements): 0 1 2

V 3 's domain(3 elements): 0 1 2

V 4 's domain(2 elements): 0 1

density=0.2242043106667143

numberOfAllPossibleConstraints=31

expected numberOfConstraints=6

cspIsConnected=true

numberOfConstraints=6,after remove from constraints that violate arity

requirement

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CO's involved variables: V4

this constraint's tightness=0.4317 6073273825644

numberOfAllPossibleTuples=2

numberOfTAllowedTuples=l

<V4,1>

C l 's involved variables: VI V3

this constraint's tightness=0.38900738448987093

numberOfAllPossibleTuples=6

numberO fTA11owedTup1e s=2

<V1,0> <V3,0>

<V1,1> <V3,0>

C2's involved variables: VO V2 V3 V4

this constraint's tightness=0.05772896162759178

numberOfAllPossibleTuples=l8

numberO f TAl1owedTup1e s=1

<V0,0> <V2,1> <V3,1> <V4,1>

C3 ' s involved variables : VI V2 V4

this constraint's tightness=0.2511751603623239

numberOfAllPossibleTuples=12

numbe rO f TAl1owedTup1e s=3

<V1,0> <V2,0> <V4,0>

<V1,1> <V2,2> <V4,1>

<V1,1> <V2,1> <V4,0>

C4 ' s involved variables: V0 VI V2 V4

this constraint's tightness=0.263554641222876

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

numberOfAllPossibleTuples=12

numbe r0 f TAllowedTuples=3

<V0,0> <V1,1> <V2,2> <V4,1>

<V0,0> <V1,0> <V2,1> <V4,1>

<V0,0> <V1,1> <V2,0> <V4,0>

C5's involved variables: VO V3 V4

this constraint's tightness=0.44465671147816943

numberOfAllPossibleTuples=6

numberOfTAl1owedTup1es=2

<V0,0> <V3,2> <V4,1>

<V0,0> <V3,0> <V4,0>

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.2 Experiment Data

We are interested in how some CSP properties would influence the algorithms. These

properties are number of variables, size of each domain, density (or number of

constraints), arity, and tightness of each constraint. Three criteria (CPU runtime, node

checks, and consistency checks) are used to evaluate the performance of CDBT and

CDDBT.

criterion definition

CPU runtime the time between an algorithm starts and ends (milliseconds,

approx.).

node checks the number of constraints that an algorithm has visited (the

same constraint may be visited more than once).

consistency checks if we check consistency between two tuples, the number of

consistency checks add one.

Table 4-1 Three criteria for comparing the performance of CDDBT and CDBT

The generator can generate both connected and unconnected CSPs, but in this thesis

only connected and solvable CSPs are used. Thirty CSPs are generated for each

configuration (a configuration consists of a given number of variables, a given

domain size, density, arity, and tightness.) Then the average is put into the data tables.

In the last three rows of each table, AVG is average number. STDEV is sample

\ S (X - X)
standard deviation, which is defined b y J — ------------ , where X is individual value,

V n — 1

X is sample mean, and n is sample size (Bluman, 2001). Total Wins indicates the

number that an algorithm has fewer CPU runtime, node checks, or consistency

checks.

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.2.1 Target Property: number of variables

domain size=10, density =0.1, arity=3, tightness of constrain ts.5

Configuration# number of

variables

CPU runtime

CDBT CDDBT

AVG STDEV AVG STDEV

1 5 2.8 3.6 7.2 18.8

2 6 3 3.3 35.7 50.6

3 7 4.6 5.4 110.1 196.9

4 8 10.8 10.8 523 921.8

5 9 34.3 73 6207.8 17824.5

6 10 131.8 206.6 63186.2 194173

7 11 87.2 320.9 31021.8 109827.6

8 12 13.2 10.2 1041.5 1665.2

9 13 7.6 7.4 233.8 305.9

10 14 5.9 5.9 409.5 589.4

AVG 9.5 30.1 64.7 10277.7 32557.4

STDEV 3.0 44.1 110.3 20919.6 66238.0

Total Wins 10 0

Table 4-2 Experiment #l(number of variables vs. CPU runtime)

domain size=10, density =0.1, arity=3, tightness of constraint=0.5

Configuration# number of

variables

node checks

CDBT CDDBT

AVG STDEV AVG STDEV

1 5 2.1 0.3 2.1 0.3

2 6 2.7 0.7 2.7 0.7

3 7 3.3 0.5 3.3 0.5

4 8 4.6 1.4 4.6 1.4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5 9 8.8 9.3 8.8 9.3

6 10 43 108.7 43 108.7

7 11 50.6 166.3 50.6 166.3

8 12 6.3 1.8 6.3 1.8

9 13 6.5 0.8 6.5 0.8

10 14 6.8 0.9 6.8 0.9

AVG 9.5 13.5 29.1 13.5 29.1

STDEV 3.0 17.8 58.8 17.8 58.8

Total Wins 0 0

Table 4-3 Experiment #l(number of variables vs. node checks)

domain size=10, density =0.1, arity=3, tightness of constraint=0.5

Configuration# number of

variables

consistency checks

CDBT CDDBT

AVG STDEV AVG STDEV

1 5 656.5 293.3 815.8 192.2.3

2 6 1339.7 780.6 18276.5 36621.5

3 7 1951.7 1256.9 27280.4 49838.8

4 8 5668.4 6141.8 230923.8 371988

5 9 33560.4 102820.1 2642506.8 7736933.1

6 10 147367.7 245254.7 30174343.8 86505843.5

7 11 89690.9 363024.5 11903416.1 44358703.4

8 12 7307.2 11113.2 198955.1 302261.8

9 13 3079 2189.2 72852.2 110486.1

10 14 2922.1 1142.6 67348.6 112551.7

AVG 9.5 29354.4 73401.7 4533671.9 13958715.0

STDEV 3.0 49867.4 128582.1 9739536.8 28987769.2

Total Wins 10 0

Table 4-4 Experiment #l(number of variables vs. consistency checks)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.2.2 Target Property: domain size

number of variables=10, density =0.1 , arity=3, tightness of constraint=0.5

Configuration# domain

size

CPU runtime

CDBT CDDBT

AVG STDEV AVG STDEV

1 4 20.2 39.8 456.9 1084.8

2 5 48.3 92.5 2368.9 3751

3 6 34.9 60.7 3307.8 9458.1

4 7 37.8 99.1 6789.4 21325.2

5 8 56.1 147.4 10453.6 36129.3

6 9 296.1 1494.7 27593.9 132988.9

7 10 303.7 1320.3 46453.8 185863.8

8 11 57.1 94.7 20870.8 35017.1

9 12 62.9 75.6 33578.1 73733.5

10 13 101.2 196 55652.3 95430.5

AVG 8.5 101.8 362.1 20752.6 59478.2

STDEV 3.0 106.6 554.3 19565.0 61904.4

Total Wins 10 0

Table 4-5 Experiment #2(domain size vs. CPU runtime)

number of variables=10, density =0.1, arity=3, tightness of constraints. 5

Configuration# domain size node checks

CDBT CDDBT

AVG STDEV AVG STDEV

1 4 71.1 154.2 71.1 154.2

2 5 105.5 168.2 105.5 168.2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 6 68.9 179.7 68.9 179.7

4 7 30.8 80.9 30.8 80.9

5 8 37 106.2 37 106.2

6 9 45.3 194.3 45.3 194.3

7 10 35.9 124.5 35.9 124.5

8 11 11.3 9.6 11.3 9.6

9 12 10.5 10.2 10.5 10.2

10 13 12.8 17.4 12.8 17.4

AVG 8.5 42.9 104.5 42.9 104.5

STDEV 3.0 30.9 72.0 30.9 72.0

Total Wins 0 0

Table 4-6 Experiment #2(domain size vs. node checks)

number of variables=10, density =0.1 , arity=3, tightness of constrain ts.5

Configuration# domain

size

consistency checks

CDBT CDDBT

AVG STDEV AVG STDEV

1 4 5873.6 12235.5 150423.6 307210.7

2 5 32356.2 71230.4 1149792.9 2102456.2

3 6 28680.7 49400.7 1419459.8 3824804.4

4 7 38654.3 102066.7 4357396.4 14909110.4

5 8 63316.3 196480.6 3821391.5 11825787

6 9 391443.4 2027349.4 19702135 100137020.1

7 10 372913.1 1659342.6 19167865.7 79628910

8 11 57099.4 125810.4 7178282 13529756

9 12 59107.8 88559 9886455.4 21588321

10 13 146727.9 368773.3 19830199.1 39540189.4

AVG 8.5 119617.3 470124.9 8666340.1 28739356.5

STDEV 3.0 143333.1 735582.9 8055244.4 34484281.6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Total Wins 10 0

Table 4-7 Experiment #2(domain size vs. consistency checks)

4.2.3 Target Property: number of constraints

domain size=10, density =0.1, arity=3, tightness of constrain ts.5

Configuration# number of

constraints

CPU runtime

CDBT CDDBT

AVG STDEV AVG STDEV

1 4 5.2 6.9 4.2 6.4

2 5 5.1 4.8 99.8 149.3

3 6 6.3 5.8 237.1 227.4

4 7 6.4 5.7 320.4 467.7

5 8 12.7 23.4 1001.2 1545.9

6 9 9.6 7.1 520.3 490.8

7 10 18.1 20.6 4181.6 10143.3

8 11 26.2 44.1 6441.9 22629.9

9 12 29.2 30.8 8233.6 15452.6

10 13 37 40.6 5484.4 13206.4

AVG 8.5 15.6 19.0 2652.5 6432.0

STDEV 3.0 11.5 15.3 3125.9 8282.6

Total Wins 9
.... .

1

Table 4-8 Experiment #3(number of constraints vs. CPU runtime)

domain size=10, density =0.1, arity=3, tightness of constrain ts.5

Configuration# number of

constraints

node checks

CDBT CDDBT

AVG STDEV AVG STDEV

1 4 4 0 4 0

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 5 4.6 0.5 4.6 0.5

3 6 5.1 0.7 5.1 0.7

4 7 5.1 0.9 5.1 0.9

5 8 5.9 1.9 5.9 1.9

6 9 5.4 0.8 5.4 0.8

7 10 7.7 6.2 7.7 6.2

8 11 10.3 17.2 10.3 17.2

9 12 11.6 13.2 11.6 13.2

10 13 8.4 7.6 8.4 7.6

AVG 8.5 6.8 4.9 6.8 4.9

STDEV 3.0 2.6 6.1 2.6 6.1

Total Wins 0 0

Table 4-9 Experiment #3(number of constraints vs. node checks)

domain size=10, density =0.1, arity=3, tightness of constrain ts.5

Configuration# number of

constraints

consistency checks

CDBT CDDBT

AVG STDEV AVG STDEV

1 4 1000 0 84.8 48.5

2 5 1595.2 525.1 11712.6 24870.4

3 6 2300.9 607.9 53685.8 98081.5

4 7 3147.2 1147.2 65535.4 92798.8

5 8 5293.8 4126.2 293218.7 462158.2

6 9 4941.7 3218.7 186416.3 181796.5

7 10 11719.7 11484.8 1148759.9 2290542.6

8 11 27706.6 62381.7 2032266.8 6295508.4

9 12 29155.7 35264.5 2891293.2 5208255.9

10 13 39954.6 57597.9 1983216.2 3280283.6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

AVG 8.5 12681.5 17635.4 866619.0 I793434.4

STDEV 3.0 14198.6 24729.1 1072910.8 2377384.7

Total Wins 9 1

Table 4-10 Experiment #3(number of constraints vs. consistency checks)

4.2.4 Target Property: arity

number of variables=7, domain size=5, density =0.1, tightness of constraint=0.5

Configuration# arity CPU runtime

CDBT CDDBT

AVG STDEV AVG STDEV

1 2 3.1 7 14.2 53.2

2 3 2.9 3.6 54.2 128.1

3 4 4.7 5.1 204.5 429

4 5 8.4 7.2 588 1145.5

5 6 21.9 14.3 16232.8 21260

AVG 4.0 8.2 7.4 3418.7 4603.2

STDEV 1.6 8.0 4.1 7166.9 9321.4

Total Wins 5 0

Table 4-11 Experiment #4(arity vs. CPU runtime)

number of variables=7, domain size=5, density =0.1, tightness of constraints. 5

Configuration# arity node checks

CDBT CDDBT

AVG STDEV AVG STDEV

1 2 14.8 49.6 14.8 49.6

2 3 7.1 8.4 7.1 8.4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 4 3.5 1.5 3.5 1.5

4 5 2.3 0.5 2.3 0.5

5 6 2.2 0.6 2.2 0.6

AVG 4.0 6.0 12.1 6.0 12.1

STDEV 1.6 5.3 21.2 5.3 21.2

Total Wins 0 0

Table 4-12 Experiment #4(arity vs. node checks)

number of variables=7, domain size=5, density =0.1, tightness of constraints. 5

Configuration# arity consistency checks

CDBT CDDBT

AVG STDEV AVG STDEV

1 2 114.1 275.5 1510.7 6344.5

2 3 1059.5 2910.1 19650.4 60248.9

3 4 1697.6 1749.9 57523.4 141205.5

4 5 4267.7 5001.9 191181.9 420071.5

5 6 12528.3 11115 3986688 9048845.1

AVG 4.0 3933.4 4210.5 851310.9 1935343.1

STDEV 1.6 5045.5 4228.7 1754300.3 3979758.2

Total Wins 5 0

Table 4-13 Experiment #4(arity vs. consistency checks)

4.2.5 Target Property: tightness of constraint

number of variables=7, domain size =5 , density =0.1, arity=3

Configuration# tightness of

constraint

CPU runtime

CDBT CDDBT

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

AVG STDEV AVG STDEV

1 0.1 3.9 6.2 12.6 16.1

2 0.2 6.4 15.9 29.1 66.5

3 0.3 4 6.6 25.4 31.8

4 0.4 3.6 4.1 46.9 90.8

5 0.5 2.5 2.9 18.4 36.5

6 0.6 2.6 4.3 7.7 10.5

7 0.7 2.3 3.7 9.8 16.6

8 0.8 2.2 3.1 9.5 10.5

9 0.9 2.5 3.9 7.8 9.6

AVG 0.5 3.3 5.6 18.6 32.1

STDEV 0.3 1.3 4.1 13.2 28.7

Total Wins 10 0

Table 4-14 Experiment #5(tightness of constraint vs. CPU runtime)

number of variables=7, domain size=5 , density =0.1, arity=3

Configuration# tightness of

constraint

node checks

CDBT CDDBT

AVG STDEV AVG STDEV

1 0.1 22.9 30.7 22.9 30.7

2 0.2 22.6 53.2 22.6 53.2

3 0.3 9 8 9 8

4 0.4 9.7 14.1 9.7 14.1

5 0.5 4.2 2.1 4.2 2.1

6 0.6 3.5 0.7 3.5 0.7

7 0.7 3.5 0.7 3.5 0.7

8 0.8 3.4 0.6 3.4 0.6

9 0.9 3.3 0.5 3.3 0.5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

AVG 0.5 9.1 12.3 9.1 12.3

STDEV 0.3 8.1 18.3 8.1 18.3

Total Wins 0 0

Table 4-15 Experiment #5(tightness of constraint vs. node checks)

number of variables=7, domain size=5 , density =0.1, arity=3

Configuration# tightness of

constraint

consistency checks

CDBT CDDBT

AVG STDEV AVG STDEV

1 0.1 331.5 434.8 1502.1 2579.9

2 0.2 1102.4 2628.7 7956.5 21036.3

3 0.3 1237.4 3639 8176.4 12548.4

4 0.4 976.5 1599.1 17393.6 43733

5 0.5 379.4 499.2 4787.7 10798.7

6 0.6 290.1 177.3 1983.7 4645

7 0.7 307.2 166.5 3456.2 9351.6

8 0.8 293.9 104.4 1803.7 2399.3

9 0.9 299.3 179.4 1987.7 3167.8

AVG 0.5 579.7 1047.6 5449.7 12251.1

STDEV 0.3 400.5 1292.9 5168.0 13275.2

Total Wins 9 0

Table 4-16 Experiment #5(tightness of constraint vs. consistency checks)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5 Results and Analysis

1. For random general CSPs, the constraint-directed mechanism cuts a lot of the

search space. Both CDBT and CDDBT need only a few backtracks or even no

backtracks. The search for a solution is pretty smooth. The constraint-directed

mechanism avoids a lot of backtracks.

2. For random general CSPs, CDBT usually performs better than CDDBT.

There are four reasons. First, both the constraint-directed mechanism and the

Dynamic Backtracking mechanism cut the search space using different

strategies. If we combine both, there is some redundant work. In CDDBT, we

have to use a more complicated eliminating mechanism to guarantee their

cooperation. Second, the constraint-directed mechanism reduces the number of

backtracks, on the other hand, it weakens one strength of the Dynamic

Backtracking mechanism, which is it can save a lot backtracks. Third, the

random general CSP generator, by its nature, generates “fair” CSPs, which

means, for example, all variables have the same opportunity to involve in all

constraints. However, in cases such as Crossword Puzzles and Map-Coloring

problems, some variables involve in fewer constraints and other variables

involve more constraints. Fourth, most experiments are done under

tightness=0.5, which means in each constraint half the tuples out of all possible

tuples are valid. It is difficult for the random general CSP generator to generate

a solvable CSP under low tightness.

3. For random general CSPs, the number of variables does not affect the

performance of CDBT and CDDBT greatly. This is a good feature for the

constraint-directed mechanism because the number of variables is the main

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

factor that affects the size of CSP. In the following figures, values along y-axis

are the base-10 logarithms of corresponding values.

Experiment #1 (number of variables vs. CPU
runtime)

6

5

§ 4
_ j

E 3
C
3

3 2 Q.o
1

0 4~

0
number of variables

-♦ -C D B T „
- • —CDDBT I

i'

10 155

Figure 5-1 Experiment #l(number of variables vs. CPU runtime)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Experiment #1 (number of variables vs. consistency
checks)

s 7
o

<0 5
O<u
■ g4
o' _ c 3

(!) 2coO 1

5 10

number of variables

-CDBT j

-CDDBT;

15

Figure 5-2 Experiment #l(number of variables vs. consistency checks)

4. For random general CSPs, with domain size, density, and arity increasing,

CDBT performs well and is stable, but CDDBT performs poorly and is

unstable. For example,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

59

Experiment #2(domain size vs. CPU runtime)

-♦—CDBT
• —CDDBT

domain size

Figure 5-3 Experiment #2(domain size vs. CPU runtime)

O
O
<0*o0)

S'c
&
CO

■(0coo

Experiment #2(domain size vs. consistency checks)

5 10

domain size

-CDBT

-CDDBT

15

Figure 5-4 Experiment #2(domain size vs. consistency checks)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

oo

4.5

4

3.5

3

2.5o>
E
1 2
3
3 1.5
Q.
O 1

0.5

0

Experiment #3(number of constraints vs. CPU
runtime)

■ CDBT

CDDBT

5 10

number of constraints

15

Figure 5-5 Experiment #3(number of constraints vs. CPU runtime)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7

S' 6
<3
9 5

J2
o
>■ 3 o c a>
#> 2
"inc
8 1

Experiment #3(number of constraints vs.
consistency checks)

5 10

number of constraints

-CDBT

-CDDE3TI

15

Figure 5-6 Experiment #3(number of constraints vs. consistency checks)

4.5

4

3.5

(3 3
01 2.5
E
1 2

1 , 5
0.
° 1

0.5

0

Experiment #4(arity vs. CPU runtime)

T

- • — CDBT
-■— CDDBT

4

arity

Figure 5-7 Experiment #4(arity vs. CPU runtime)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Experiment #4(arity vs. consistency checks)

_ 6
oT~
® r-O 5-J
<ft
1 4

S' 3s
I 2 #> c c
oo .

4

arity

-• -C D B T
CDDBT

Figure 5-8 Experiment #4(arity vs. consistency checks)

5. For random general CSPs, the tightness of each constraint does not affect the

performance of CDBT and CDDBT greatly.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Experiment #5(tightness of constraint vs. CPU
runtime)

1.8 |
1.6

- . 1 . 4

§ 1-2-
1 I

0.8

0.63 Q.
o 0.4 |-

0.2

0

-CDBT

-CDDBT

0.2 0.4 0.6 0.8

tightness of constraint

Figure 5-9 Experiment #5(tightness of constraint vs. CPU runtime)

4.5

4
o '
5 3.5

=- 3
2C
B 2.5
c
t 2

35 1.5
To

1

0.5

0

(0
coo

Experiment #5(tightness of constraint vs.
consistency checks)

— ♦- -♦—CDBT

-■—CDDBT

0.2 0.4 0.6

tightness of constraint

0.8

Figure 5-10 Experiment #5(tightness of constraint vs. consistency checks)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6. For random general CSPs, CDDBT performs better than CDBT in some cases.

number of variables=7, domain size=5 , density =0.1, arity=3, tightness of

constraints. 9

CSP# consistency checks

CDBT CDDBT

1 259 1306

2 336 1100

3 263 124

4 171 2952

5 1055 7644

6 361 1078

7 112 55

8 251 80

9 211 210

10 238 71

11 523 11394

12 395 2441

13 497 3729

14 112 85

15 173 1734

16 151 3393

17 448 12655

18 377 1341

19 276 948

20 220 139

21 336 343

22 299 1784

23 340 1546

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

24 131 51

25 184 2258

26 224 14

27 336 444

28 157 148

29 337 302

30 206 263

AVG 299.3 1987.7

STDEV 179.4 3167.8

Total Wins 19 11

Table 5-1 detailed experiment data on configuration (number of variables=7, domain size=5,

density=0.1, arity=3, tightness of constraint=0.9)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 6

6 Conclusion and Future Work

In (Mackworth & Freuder, 1993), the authors state that it is important to identify

tractable problem classes that are specific classes with tractable solution techniques.

From research done on CSP-solving algorithms so far, there is no single best

algorithm for CSP solving. Usually, one algorithm can beat another algorithm in some

class of CSPs, and vice versa. This is also what we found for CDDBT and CDBT. For

random general CSPs, CDBT usually performs better than CDDBT, but CDDBT

performs better than CDBT in some cases. If the conditions under which CDDBT

outperforms CDBT can be identified in the future, we could then choose to use it in

those cases and use CDBT in the other cases. At present we only know that such cases

exist and have not discovered a means to identify them.

Currently, most significant papers on CSPs appear in the journal of Artificial

Intelligence and the journal of Constraints. The primary conference in this area is

called the International Conference on Principles and Practice of Constraint

Programming (CP). The International Joint Conference on Artificial Intelligence

(IJCAI) and AAAI Conference on Artificial Intelligence are other important ones.

From these sources, some but not all CSP research can be identified in following:

1. Consistency: (Li, 2006) and (de Givry, Heras, Zytnicki, & Larrosa, 2005)

2. Constraints in Bioinformatics: (Backofen & Will, 2006)

3. Distributed CSPs: (Zivan & Meisels, 2006) and (Hirayama & Yokoo, 2005)

4. Dynamic Backtracking: (Effinger & Williams, 2006) and (Zivan et al., 2006)

5. Multi-agent: (Liu, Jing, & Tang, 2002)

6. Non-binary CSPs: (Butaru & Habbas, 2005)

7. Quantified Constraint Satisfaction Problems: (Gent, Nightingale, & Stergiou,

2005)and (Gottlob, Greco, & Scarcello, 2005)

8. Symmetry: (Cohen, Jeavons, Jefferson, Petrie, & Smith, 2006) and (Puget, 2005)

9. Uncertainty Reasoning: (Tarim, Manandhar, & Walsh, 2006)

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Dynamic Backtracking and general CSP are still two popular research areas in

constraint research. We believe that CCDBT provides a new perspective for solving

general CSPs. Some future works are:

1. Classify the CSPs that CDDBT has good performance.

2. Do experiments on real-world CSPs, for example, N-queens problem,

Crossword Puzzles, scheduling problems, temporal reasoning, and

graph-coloring problems. Constraint researchers usually do experiments either

on random cases or practical cases; we choose the former in this thesis. One

result can be anticipated is that it is very likely CDDBT would perform better

than CDBT in the similar problems, where Dynamic Backtracking

outperforms Backtracking such as graph-coloring problems.

3. Compare Dynamic Backtracking and CDDBT.

4. Do research on random general CSP generator.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 8

Appendix: testing environment

Hardware:

Dell Dimension 5150

Base: Intel® Pentium® 4 Processor 521 w/HT Technology (2.8GHz,800FSB)

Memory: 1GB Dual Channel DDR2 SDRAM at 400MHz (4x256M)

Software:

Windows XP Professional SP2

JDK 6ul

Eclipse SDK 3.2.2.

Because there are many processes running simultaneously including XP itself, the

CPU runtime value is slightly different every time we run an algorithm. Furthermore,

because of the limitation of hardware and software condition, for example, CPU,

memory, Java heap space, Java stack, and so on, the maximum number of constraints

is set to 100 and the maximum number of allowed tuples of each constraint is set to

20000. Consequently, in following experiment data, if density does not match number

o f constraints, number of constraints is real; if tightness does not match number o f

allowed tuples, number o f allowed tuples is real.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

69

References

Achlioptas, D., Kirousis, L. M., Kranakis, E., Krizanc, D., Molloy, M. S. O., &

Stamatiou, Y. C. (1997). Random constraint satisfaction: A more accurate picture.

Principles and Practice o f Constraint Programming - CP97, Third International

Conference, Linz, Austria. 107-120.

Adorf, H. M., & Johnston, M. D. (1990). A discrete stochastic neural network

algorithm for constraint satisfaction problems. The International Joint

Conference on Neural Networks, San Diego, C A ., 3, 917-924.

Bacchus, F., Chen, X., van Beek, R, & Walsh, T. (2002). Binary vs. non-binary

constraints. Artificial Intelligence, 140(1-2), 1-37.

Bacchus, F., & van Beek, P. (1998). On the conversion between non-binary and binary

constraint satisfaction problems. AAAI-98, Madison, Wisconsin. 311-318.

Backofen, R., & Will, S. (2006). A constraint-based approach to fast and exact

structure prediction in three-dimensional protein models. Constraints, 11(1),

5-30.

Bessiere, C. (1999). Non-binary constraints. Principles and Practice o f Constraint

Programming (CP-99), 24-27.

Bessiere, C., Meseguer, R, Freuder, E. C., & Larrosa, J. (1999). On forward checking

for non-binary constraint satisfaction. Principles and Practice o f Constraint

Programming (CP-99), New York. 88-102.

Bitner, J. R., & Reingold, E. M. (1975). Backtrack programming techniques.

Communications o f the ACM, 75(11), 651-656.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bluman, A. G. (2001). Elementary statistics: A step by step approach (4th ed.). Boston:

McGraw-Hill.

Butaru, M., & Habbas, Z. (2005). Solving the car-sequencing problem as a non-binary

CSP. Principles and Practice o f Constraint Programming - CP 2005, Sitges,

Spain. 840.

Cohen, D. A., Jeavons, P., Jefferson, C., Petrie, K. E., & Smith, B. M. (2006).

Symmetry definitions for constraint satisfaction problems. Constraints, 77(2-3),

115-137.

Davenport, A., Tsang, E. P. K., Zhu, K., & Wang, C. J. (1994). GENET: A

connectionist architecture for solving constraint satisfaction problems by iterative

improvement. AAAI, Seattle, WA, USA. 325-330.

de Givry, S., Heras, F., Zytnicki, M., & Larrosa, J. (2005). Existential arc consistency:

Getting closer to full arc consistency in weighted CSPs. International Joint

Conference on Artificial Intelligence (IJCAI), Edinburgh, Scotland, UK. 84-89.

Dechter, R., & Pearl, J. (1989). Tree clustering for constraint networks. Artificial

Intelligence, 38, 353-366.

Effinger, R. T., & Williams, B. C. (2006). Extending dynamic backtracking to solve

weighted conditional CSPs. The Twenty-First National Conference on Artificial

Intelligence and the Eighteenth Innovative Applications o f Artificial Intelligence

Conference, Boston, Massachusetts, USA.

Freuder, E. C. (1976). Synthesizing constraint expressions. M.I.T., Cambridge, Mass:

A. I. Memo 370.

Freuder, E. C. (1982). A sufficient condition for backtrack-free search. Journal o f the

ACM, 29(1), 24-32.

Freuder, F., Dechter, R., Ginsberg, M., Selman, B., & Tsang, E. (1995). Systematic

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

versus stochastic constraint satisfaction. IJCAI, Montreal, Canada. 2027-2032.

Gaschnig, J. (1979). Performance measurement and analysis of certain search

algorithms. (Ph.D. Diss., Camegie-Mellon University).

Gent, I. P., MacIntyre, E., Prosser, P., Smith, B. M., & Walsh, T. (2001). Random

constraint satisfaction: Flaws and structure. Constraints, (5(4), 345-372.

Gent, I. P., Nightingale, P., & Stergiou, K. (2005). QCSP-solve: A solver for

quantified constraint satisfaction problems. 138-143.

Ginsberg, M. L. (1993). Dynamic backtracking. Journal o f Artificial Intelligence

Research (JAIR), 7, 25- 46.

Ginsberg, M. L., & McAllester, D. A. (1994). GSAT and dynamic backtracking. The

4th International Conference on Principles o f Knowledge Representation and

Reasoning (KR'94), Bonn, Germany. 226-237.

Gomes, C. P., & Selman, B. (1997). Problem structure in the presence of perturbations.

AAAI-97, Providence, RI. 221-226.

Gottlob, G., Greco, G., & Scarcello, F. (2005). The complexity of quantified constraint

satisfaction problems under structural restrictions. IJCAI 2005, Edinburgh,

Scotland, UK. 150-155.

Hirayama, K., & Yokoo, M. (2005). The distributed breakout algorithms. Artificial

Intelligence, 767(1-2), 89-115.

Johnston, M. D., & Adorf, H. M. (1989). Learning in stochastic neural networks for

constraint satisfaction problems. NASA Conference on Space Telerobotics,

Pasadena, C A ., 2 367-376.

Jonsson, A. K., & Ginsberg, M. L. (1993). Experimenting with new systematic and

nonsystematic search techniques. The AAAI Spring Symposium on A I and

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

NP-Hard Problems, Stanford, California.

Kumar, V. (1992). Algorithms for constraint-satisfaction problems: A survey. A I

Magazine, 73(1), 32-44.

Li, S. (2006). On topological consistency and realization. Constraints, 7/(1), 31-51.

Liu, J., Jing, H., & Tang, Y. Y. (2002). Multi-agent oriented constraint satisfaction.

Artificial Intelligence, 736(1), 101-144.

Mackworth, A. K. (1977a). Consistency in networks of relations. Artificial

Intelligence, 3(1), 99-118.

Mackworth, A. K. (1977b). On reading sketch maps. The Fifth International Joint

Conference on Artificial Intelligence, Cambridge, Mass. 598-606.

Mackworth, A. K., & Freuder, E. C. (1993). The complexity of constraint satisfaction

revisited. Artificial Intelligence, 59, 57-62.

Minton, S., Johnston, M. D., Philips, A. B., & Laird, P. (1992). Minimizing conflicts:

A heuristic repair method for constraint satisfaction and scheduling problems.

Artificial Intelligence, 53(1-3), 161-205.

Minton, S., Johnston, M. D., Philips, A. B., & Laird, P. (1990). Solving large-scale

constraint-satisfaction and scheduling problems using a heuristic repair method.

The 8 th National Conference on Artificial Intelligence (AAAI 1990), Boston,

Mass. 17-24.

Montanari, U. (1974). Networks of constraints: Fundamental properties and

applications to picture processing. Information Science, 7(2), 95-132.

Nadel, B. A. (1988). Tree search and arc consistency in constraint satisfaction

algorithms. In L. Kanal, & V. Kumar (Eds.), Search in artificial intelligence (1st

ed., pp. 287-342). New York: Springer-Verlag.

73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Nadel, B. A. (1989). Constraint satisfaction algorithms. Computational Intelligence, 5,

188-224.

Pang, W. (1998). Constraint structure in constraint satisfaction problems. (PhD thesis,

University of Regina, Canada).

Pang, W., & Goodwin, S. D. (1996). Application of CSP techniques to scheduling

problems. The 2m International Symposium on Operations Research and its

Applications (ISORA ’96), Gulin, China.

Pearl, J. (1984). Heuristics: Intelligent search strategies fo r computer problem

solving. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Puget, J. (2005). Symmetry breaking revisited. Constraints, 10(1), 23-46.

Rossi, F., Petrie, C., & Dhar, V. (1990). On the equivalence of constraint satisfaction

problems. 9th European Conference on Artificial Intelligence (ECAI '90),

Stockholm, Sweden. 550-556.

Russell, S. J., & Norvig, P. (2003). Artifical intelligence: A modern approach (2nd

ed.). Englewood Cliffs, NJ: Prentice Hall.

Selman, B., Levesque, H. J., & Mitchell, D. (1992). A new method for solving hard

satisfiability problems. AAAI 1992, San Jose, CA. 440-446.

Stallman, R. M., & Sussman, G. J. (1977). Forward reasoning and

dependency-directed backtracking in a system for computer-aided circuit analysis.

Artificial Intelligence, 9(2), 135-196.

Stergiou, K. (2001). Representation and reasoning with non-binary constraints. (PhD

thesis, University of Strathclyde).

Stergiou, K., & Walsh, T. (2006). Inverse consistencies for non-binary constraints.

ECAI 2006, Riva del Garda, Italy. 153-157.

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Stone, H., & Stone, J. (1987). Efficient search techniques - an empirical study of the

n-queens problem. IBM Journal o f Research and Development, 31, 464-474.

Tarim, S., Manandhar, S., & Walsh, T. (2006). Stochastic constraint programming: A

scenario-based approach. Constraints, 7/(1), 53-80.

Tsang, E. (1993). Foundations o f constraint satisfaction. San Diego: Academic Press.

Van Hentenryck, P. (1989). Constraint satisfaction in logic programming (1st ed.).

Cambridge, MA: MIT Press.

Waltz, D. (1975). Understanding line drawings of scenes with shadows. In P. H.

Winston (Ed.), The psychology o f computer vision (1st ed .,). New York:

McGraw-Hill.

Zivan, R., & Meisels, A. (2006). Dynamic ordering for asynchronous backtracking on

DisCSPs. Constraints, 77(2-3), 179-197.

Zivan, R., Shapen, U., Zazone, M., & Meisels, A. (2006). Retroactive ordering for

dynamic backtracking. Principles and Practice o f Constraint Programming - CP

2006, Nantes, France. 766-771.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

75

Vita Auctoris

Name:

PLACE OF BIRTH:

YEAR OF BIRTH:

EDUCTION:

Kan Yu

Shanghai, China

1974

Qibao High school, Shanghai, China

1990-1993

Shanghai University, Shanghai, China

1993-1997 BEng

University of Windsor, Windsor, Ontario, Canada

2004-2007 M.Sc.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

	Dynamic backtracking for general CSPs.
	Recommended Citation

	tmp.1507664919.pdf.pQwzF

