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ABSTRACT

Three-dimensional finite element models of prestressed concrete hollow core slabs and I- 

shaped concrete beams are developed to study their shear behavior. Nonlinear finite 

element analysis is performed using the ANSYS 2003 software. SOLID65, L IN O , and 

SOLID45 elements are selected to represent the behavior of concrete, discrete reinforcing 

steel bars and steel plate, respectively. By applying transverse concentrated load, the 

load-deflection response of hollow core slabs and I-shaped concrete beams derived from 

the numerical models are presented. These results are then compared with the data 

obtained from physical tests to verify the validity and accuracy of the numerical models. 

Comparisons have been made among the shear strength of hollow core slabs and I-shaped 

beams obtained from the numerical models, physical tests and ACI 318 code. It has been 

found that in most cases, the results from the numerical simulation agree well with those 

from the physical tests. Also, results show that while the ACI 318 code can well predict 

the shear strength of I-shaped concrete beams, its prediction on the shear strength of 

prestressed concrete hollow core slabs is much more conservative when compared with 

those obtained from the numerical simulation and the physical tests.

ill
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CHAPTER 1 Literature Review

1.1 Introduction

A hollow core slab is a precast, prestressed concrete member with continuous voids 

provided to reduce its self-weight and fabrication cost. Though primarily used as floor or 

roof deck systems, hollow core slabs also have other applications such as wall panels and 

bridge deck units. Figure 1.1 shows the typical hollow core slab products used in roof and 

floor systems.

—

Figure 1.1: Hollow Core Slabs

The load bearing capacity of hollow core slabs is dominated by four different failure 

modes, i.e. flexure failure, anchorage failure, shear compression failure and shear tension

1
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failure. The design of hollow core slabs is governed by Canadian concrete design code, it 

is based on ACI (American Concrete Institute) 318 requirements. Because it is very 

difficult to place stirrups in most manufacturing processes, the hollow core slabs rely on 

the tensile strength of concrete to resist shear force. The nominal shear strength provided 

by concrete (web shear cracking strength) is given in ACI 318 by the lesser of Eq. (1.1)

where V cj is the nominal shear strength of concrete in a shear-flexure failure 

mode;

Vcw is the nominal shear strength of concrete in a web shear failure mode;

f 'c is the specified design compressive strength of concrete;

fpc is the compressive stress in concrete at the centroid of the section due to 

effective prestress for non -composite sections;

bw is the net web width of hollow core slab;

dp is the distance from extreme compression fiber to centroid of tension 

reinforcement;

d is the distance from extreme compression fiber to centroid of tension 

reinforcement;

Vd is the shear due to unfactored load;

or (1.2):

max

v „  = ( 3 . 5 V 7 7 + 0 . 3 / pt)6„dp +K, (1.2)

2
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Mcr is the cracking moment;

Mmax is the maximum factored moment due to externally applied loads. 

Figure 1.2 shows a typical hollow core slab cross-section
7

b w =  )* bw i
i=l

W4, W 5 W6W2 W3W1

Figure 1.2: Typical cross-section of Hollow Core Slab.

When determining the net web width (bw), the current practice recommended by ACI 318 

code simply sums up the minimum parts of the web (as shown in Figure 1.2) and ignores 

the interaction between the adjacent webs and flanges. Therefore, when calculating the 

nominal shear strength, the effective net web width bw might be underestimated by the 

current design code. To find out whether the hollow core slab shear strength predicted by 

ACI 318 code is conservative or not, one possible way is to develop a numerical model 

that can simulate the structural behavior of the prestressed concrete hollow core slab. The 

shear capacity of the slab can be obtained from the numerical analysis, based on which 

the effective web width of hollow core slab can be derived.

Cabrielsson [1] conducted a series of experiments to investigate the ductility of 

prestressed hollow core slabs subjected to bending, shear and torsion. By reviewing the 

experimental results of Cabrielsson’s web tests and slab tests, it is quite obvious that a

3
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slab has more shear resistance per unit length as compared to a web beam. One possible 

explanation could be that the boundary conditions of the web beam and the web section 

in a slab are different. The web beam has no restraints in the flange section while the web 

in a slab has some interaction with the surrounding webs through flange. Figure 1.3 

shows the typical cross-section of a web beam and a hollow core slab.

Web beam

Figure 1.3: Typical cross-section of web beam and Hollow Core Slab.

1.1.1 Classical Analysis for Concrete Structure

Classical beam theory for reinforced and prestressed concrete design is mainly based on 

linear elastic models, which assumes that plane sections remain plane throughout the 

loading history. Because of this, the classical beam theory is not capable of dealing with 

problems where material non-linearity and/or geometric non-linearity exist. Some 

reinforced concrete T-beams were tested at Empa Materials Science and Technology 

(Deuring [2]). The deflection and the failure mode of the beams were analysed using the 

classical beam theory. Results show that in general the load-deflection curves could be 

predicted by the classical theory with reasonable accuracy. However, while it was 

predicted by the classical theory that the beams would fail in tension, such a phenomenon 

was not observed on any of the beams, all the beams failed in compression. In addition,
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in the experiment, the concrete compressive strain of the beams at failure varied from 

0.19-0.25%, whereas in the classical beam theory a strain of 0.35% is normally used at 

compression failure of concrete.

Between 1978 and 1987, Yang [3] investigated the web-shear behaviour of 59 simply 

supported hollow core slabs. The tests were conducted in the Technical Research Centre 

of Finland (VTT). The overall depths of the units ranged from 7.5 in. (190 mm) to 16.0 in. 

(410 mm). Most units had a length of 24 ft. Figure 1.4 shows the typical cross-sections of 

the hollow core slabs used in Yang’s tests.

I oooof
^ _________________ 4ft_________________ ^

Figure 1.4: Typical cross-section of hollow core slabs in Yang’s tests [3].

Through these tests, Yang found that the flexure-shear strength of the specimens obtained 

in the tests agreed reasonably well with that predicted by the Eurocode. However, the 

web shear strengths obtained from experiments showed considerable scatter as compared 

to those by code prediction. Yang also observed that the rate at which the prestressing 

force was transferred to the concrete within the transfer length could significantly affect 

the web-shear strength. Web-shear cracking occurred when the principal tensile stress in

5
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the units (at the intersection of the narrowest web and the bottom flange) reached the 

tensile strength of the concrete for a location on a line drawn from the centreline of the 

support at an angle of 35 degrees to the axis of the unit. Figure 1.5 shows the failure 

pattern of Yang’s specimen.

Figure 1.5: Failure pattern of Yang’s specimen.

Matti Pajari [4] examined 49 test results on hollow core slabs due to web shear failure 

made by the Technical Research Centre of Finland (VTT). The height of hollow core 

slabs ranged from 7.9 in. (200 mm) to 19.7 in. (500 mm) and the length ranged from 16.4 

ft. (5010 mm) to 23.6 ft. (7200 mm). The void shape of the slabs in the above tests 

included both circular void (similar to Figure 1.2) and non-circular void (similar to Figure 

1.4). Pajari compared measured strengths with those calculated using Eurocode 2 (EC2) 

and Yang’ s model. The EC2 method overestimated the mean shear strength for all slab 

types (circular void and non-circular void). While the overestimation was only slight for 

slabs with circular voids, it was obvious for units with flat webs. For units with flat webs 

and depths equal to or greater than 10.4 in. (265 mm), strengths were in reasonable 

agreement with those calculated using Yang’ s model.

6
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From Deuring, Yang and Pajari’s work it can be seen that the classical concrete beam 

theory is not suitable for analyzing the concrete structures because of the nonlinear 

property of the concrete material. On the other hand, though the results from the 

experimental work are acceptable, it requires a large number of specimens to ensure the 

quality of the testing data.

1.1.2 Finite Element Analysis for Concrete Structures

The finite element method is a powerful numerical technique for the analysis of non

linear engineering problems. Two simply supported reinforced concrete beams with 

symmetrically placed concentrated transverse loads (as shown in Figure 1.6) were 

modeled by Faherty [5] using finite element method. He studied the non-linear concrete 

properties, linear bond-slip relation, bilinear steel properties, and the influence of 

progressive cracking of the concrete. Compared with experimental results, his finite 

element model produced very good results.

P/2 P/2

, , <

i
6"

i
3.0" 1'6” . 1'6" . 3.0’ 6”

Figure 1.6: Reinforced concrete beam (Faherty [5])
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In 2001, Kachlakev [6] used ANSYS to study concrete beams with externally bonded 

Carbon Fiber Reinforced Polymer (CFRP) fabric. He used eight-node solid element, 

Solid65, to model the concrete and Link8 element to model the steel reinforcement. The 

beam dimensions are shown in Figure 1.7.

Figure 1.7: Typical beam dimensions used by Kachlakev

Because of symmetry, only one quarter of the beam was modeled as shown in Figure 1.8. 

Figure 1.8: Finite element discretization for a quarter of Beam (Kachlakev [6])

8
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A one-inch thick steel plate, modeled using Solid45 elements, was added at the support 

location in order to avoid stress concentration. This would provid a more even stress 

distribution over the support area. Moreover, a single line support was placed under the 

centreline of the steel plate to allow rotation of the plate. Figure 1.9 illustrates the steel 

plate at the support and loading location.

156"

Steel plate

228 '

240"

Figure 1.9: Loading and support locations ( Kachlakev [6])

The nonlinear Newton-Raphson approach was utilized to trace the equilibrium path 

during the load-deformation response. It was found that convergence of solutions for the 

model was difficult to achieve due to the nonlinear behavior of reinforced concrete 

material. The load-deflection curve for the reinforced beam was plotted as shown in 

Figure 1.10. It can be seen that the load-deflection relation from the finite element 

analysis agrees well with the experimental data for the reinforced concrete beam.
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Figure 1.10: Load-deflection plot for the beam (Kachlakev [6])

In 2003, Anthony J. Wolanski [7] studied the flexural behaviour of reinforced and 

prestressed concrete beams using finite element package - ANSYS 2003. The geometric 

dimension of the concrete beam was shown in Figure 1.11.

Figure 1.11: Beam dimensions used by Anthony [7]

10
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Three element types: solid65, solid45 and link8 were used to model concrete, steel plate 

and reinforcing steel, respectively. Because of symmetry, only a quarter of the beams 

were modeled as shown in Figure 1.12.

Figure 1.12: FEM model for a quarter of concrete beam (Anthony [7])

Anthony compared his ANSYS analysis results with the experimental data by Buckhouse 

[8]. It can be seen that the entire load-deflection relation by numerical simulation 

compares very well with the experimental data. The load-deflection relation at centreline 

of the beam is shown in Figure 1.13.

11
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Finite element analysis results 
made by Anthony

16000 ■

14000 -

12000 - Theoretical

Experimental data by 
Buckhouse [8]® Woo -

d>
>

6000 -

4000 -

2000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 1.13: Centreline Deflection (Anthony [7])

1.2 Motivations

When determining the shear strength of hollow core slabs, the effective web width could 

be underestimated by the present ACI 318 code because it neglects any possible 

interactions between the adjacent webs and flanges, and simply sums up the minimum 

parts of the slab web, as shown in Figure 1.2. In the experimental work by Cabrielsson [1] 

to investigate the ductility of prestressed hollow core slabs subjected to bending, shear 

and torsion, it was found that the slab had higher shear capacity than the web beam. But 

no further tests and analyses have been done to confirm and quantify it.

12
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We were approached by the local precast concrete industry, the Prestressed System Inc. 

(PSI) to study the effective web width of hollow core slabs. Being designers, they are 

eager to know if the effective web width defined in the current ACI code is reasonable or 

conservative. After reviewing the current research status of the structural behaviour and 

strength of prestressed hollow core slabs, it was found that research work related to this 

specific topic was rarely available in the literatures. Therefore, it is necessary to conduct 

further study to clarify this issue. A straight way to evaluate the strength of concrete 

member is through experimental work, but the cost is relatively high. Compared with the 

experimental tests, the finite element analysis method is time efficient and much cheaper. 

From the literature review it can be seen that using finite element method to model 

reinforced concrete beam is viable and the results obtained from the model are compared 

reasonably well with the experimental data. In the current study, the shear behaviour of 

prestressed hollow core slabs will be examined both numerically and experimentally. It is 

expected that the results from the present work will serve as a paving stone, which will 

lead to more quantitative studies on this topic and contribute to the refinement of the 

existing code.

1.3 Objectives

The objectives of the proposed research are as follows:
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1) To derive a finite element based numerical model for prestressed hollow core 

slabs under shear force. The model will be developed using commercial finite 

element package ANSYS 2003.

2) To verify the proposed numerical model. The load-deflection diagram will be 

obtained from the numerical simulation and it will be compared with the 

experimental data.

3) To verify the parameters of element in the numerical model. Three types of 

element will be used in this model: Solid65, Link8 and Solid45. There are more 

than 20 parameters in these elements. The crucial ones include the shear transfer 

coefficients for an open (or closed) crack, the uniaxial tensile cracking strength 

and uniaxial crushing strength.

4) To obtain the maximum shear capacity of hollow core slabs and reinforced 

concrete I-shaped beams through physical tests.

5) To evaluate the effective web width (bw) for hollow core slabs used in the current 

ACI design code.

14
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CHAPTER 2 Nonlinear Finite Element Modeling

2.1 Specimens

Two groups of specimens are used in this study. The first group includes four same I- 

shaped prestressed concrete beams (cut from the hollow core slabs); while the second 

includes four same full size hollow core slabs. They were fabricated by the Prestressed 

Systems Inc. (PSI) located in Windsor and tested at the Structures Lab at the University 

of Windsor. As shown in Figure 2.1 (a), the length of a typical specimen was 180 in. 

(4570 mm) with supports located 3.35 in. (85 mm) from each end of the specimen 

allowing a simply supported span of 173 in. (4400 mm). Figure 2.1 (b) shows the cross 

section of the prestressed concrete beam. It can be considered as a single web hollow core 

slab because it was cut from a hollow core slab. The cross section of the hollow core slab 

specimen is illustrated in Figure 2.1 (c).

15
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173 in. (4400 mm)

48 in. (1220 mm)7.4 in. (187 mm)

1-shaped beam

Figure 2.1: Elevation and cross sections (a) Elevation of beam and slab (b) Cross section 

of beam (c) Cross section of slab

Figure 2.2 and Figure 2.3 show the experimental set-up of an I-shaped beam and a hollow 

core slab in the structures lab at the University of Windsor, respectively.
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Figure 2.2: Experimental set-up of an I - shaped beam

Figure 2.3: Experimental set-up of a Hollow Core Slab
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In the following sections, the four beams will be referred to as “Beam-1” to “Beam-4” 

and the four slabs will be referred to as “Slab-1” to “Slab-4”. Table 1 shows the 

dimension and loading location of each specimen.

Table 2.1: Dimension and loading location of specimens

Length, in. (mm) Depth, in. (mm) Shear span, in. (mm)
Beam-1 180(4570) 8(203) 23.6 (600)
Beam-2 180(4570) 8(203) 33.5 (850)
Beam-3 180(4570) 8(203) 27.6 (700)
Beam-4 180(4570) 8(203) 19.7 (500)
Slab-1 180(4570) 8(203) 23.6 (600)
Slab-2 180(4570) 8(203) 33.5 (850)
Slab-3 180(4570) 8 (203) 27.6 (700)
Slab-4 180(4570) 8(203) 19.7 (500)

All the specimens have one roll support and one pin support which leads to a simply 

supported beam. One dial gauge is attached to the top center of the specimen at mid-span 

to measure the deflection. The load is applied slowly in a number of steps till failure by a 

universal loading machine with a maximum loading capacity of 67.5 kips [300 kN]. The 

model number of the loading cell is FL100U(C)2SGKT. Strain gauges are attached to the 

side and top of Beam-2 to record the structural shear behaviour under concentrated load.

2.2 Element Types

The finite element program ANSYS 2003, operating on a Windows XP platform is used 

in this study to simulate the behaviour of the prestressed I-shaped beams and hollow core
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slabs. Three types of elements are used in this study; i.e., SOLID65, L IN O , and 

SOLID45 to model concrete, prestressed reinforcing steel bars and steel plate, 

respectively. The material properties defined for each type of element in the finite 

element model are based on the standard test made by PSI.

2.2.1 Concrete

Solid65 element is used to model the concrete. This element is capable of cracking in 

tension and crushing in compression. It also has the property of plastic deformation and 

creep. The most important aspect of this element is the treatment of non-linear material 

properties. Solid65 element has eight nodes with three degrees-of-freedom at each node, 

i.e. translations in the nodal x, y, and z directions. The geometry and node locations of 

this element type are shown in Figure 2.4.

P (4),

Z

Y

Figure 2.4: Solid65 element (ANSYS 2003)

19

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2.2.2 Reinforcement

Link8 element is used to model the prestressed steel reinforcement. This 3-D spar 

element is a uniaxial tension-compression element with three-degrees-of freedom at each 

nodal end, “1” and “J”, i.e. translations in the nodal x, y, and z directions. Two nodes are 

required for this element. The element is also capable of modeling plastic deformation. 

The geometry and node locations of this element type are shown in Figure 2.5.

Figure 2.5: Link8 element (ANSYS 2003)

2.2.3 Steel plate

Another type of eight-node solid element, Solid45, is used for the steel plates at the top in 

the beam models where the load will be applied. The element has plasticity, creep, 

swelling, stress stiffening, large deflection, and large strain capabilities. The biggest 

difference between solid45 and solid65 is that the former does not have the ability to 

crack and crush. This element is defined by eight nodes with each node having three- 

degrees-of freedom at each node-translations in the nodal x, y, and z directions. The 

geometry and node locations of this element type are shown in Figure 2.6.

z

Y
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Z

Y
Surface coordinate system

X /

Figure 2.6: Solid45 element (ANSYS 2003)

2.3 Material Properties

2.3.1 Concrete

Concrete is a mixture of cement paste and aggregates. Its stress-strain relation is non

linear and appears to be somewhat ductile. As a quasi-brittle material, concrete has very 

different behaviour in compression and tension. Usually the tensile strength of concrete 

varies from about 8 -15%  of its compressive strength. A major reason for this low tensile 

strength is the fact that concrete is filled with fine cracks. When concrete is subjected to 

compressive load, because the cracks would close under the compressive stress and allow 

it to be transferred, the cracks would have little impact on the concrete compressive 

strength. Obviously, this is not the case when tensile load is applied. Figure 2.7 shows a 

typical stress-strain relation curve of normal weight density concrete (Bangash [9]).
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Figure 2.7: Typical uniaxial compressive and tensile stress-strain curve of normal weight

density concrete (Bangash [9])

In the compression zone, the stress-strain curve of concrete is linearly elastic up to about 

30% of the maximum compressive strength (point A). Beyond point A, the stress goes 

into non-linear range, increases gradually up to the maximum compressive strength (point 

B). After it reaches the maximum compressive strength acu, the curve descends into a 

softening region, and eventually crushing failure occurs at an ultimate strain ecu. In the 

tension zone, the stress-strain curve of concrete is approximately linearly elastic up to the 

maximum tensile strength a tu (point c). Beyond point C, the concrete cracks and the 

tensile strength decreases gradually to zero (Bangash [9]).
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2.3.1.1 Input data used in the finite element model

The input data of concrete material properties required by ANSYS are listed in Table 2.2. 

They will be explained in the following sections.

Table 2.2: Material Models of the Beam

E lem ent Type M aterial P roperties
L inear Isotropic

EX 4413 ksi (30.43 M pa)
PR X Y 0.19

M ultilinear Isotropic
Strain Stress, psi (M pa)

P o in tl 0 0
Point2 0.0004 1766 (12.18)
Point3 0.0006 2430 (16.75)
Point4 0.0012 4351 (30.00)
Point5 0.0016 5374 (37.05)
Point6 0.002 6000 (41.37)

Solid65
Point7 0.0022 5816 (40.10)
Point8 0.0024 5374 (37.05)
Point9 0.0028 4351 (30.00)

C oncrete
ShrC f-O p 0.3
ShrC f-C l 0.95
U nT ensS t 580 psi (4.0 M Pa)
U nC om p St 6000 psi (41.37 M Pa)
B iC om pSt 0
H ydroPrs 0
B iC om pSt 0
U nT ensS t 0
TenC rFac 0
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The Solid65 element requires linear isotropic and multilinear isotropic material properties 

to properly model the behaviour of concrete material. The multilinear isotropic material 

uses the Von Mises failure criterion along with the Wiliam and Wamke [10] model to 

define the failure of the concrete. The Wiliam and Wamke model is defined as follows: 

Cracking is permitted in three orthogonal directions at each integration point. If cracking 

occurs at an integration point, the cracking is modeled through an adjustment of material 

properties which effectively treats the cracking as a “smeared band” of cracks, rather than 

discrete cracks. The concrete material is assumed to be initially isotropic. In addition to 

cracking and crushing, the concrete may also undergo plasticity, the plasticity is done 

before the cracking and crushing checks.

Modulus of elasticity (EX):

EX is the modulus of elasticity of the concrete, which is usually designated by Ec. In the 

case of normal weight concrete, ACI section 8.5.1 recommends to use the following 

empirical formula:

£ , =  57000 V Z 7 (2 .1 )

where f c is the specified compressive stress of concrete. According to the standard test 

made by PSI, the specified compressive stress of concrete is 6000 psi [41.37 Mpa]. A 

value of 6,000 psi (41.37 Mpa) would correspond to a E c of 4415 ksi (30,443 MPa). 

Possion’s ratio (PRXY):
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PRXY is the Poisson’s ratio y  of the concrete. The Possion’s ratio of concrete various 

from about 0.11 to 0.2 and usually falls in the range of 0.15 to 0.20. Based on the testing 

results of biaxially loaded concrete, Kupfer [11] reported values of 0.20 for the Possion’s 

ratio of concrete loaded in compression in one or two directions, 0.18 for concrete loaded 

in tension in one or two directions, and 0.18 to 0.20 for concrete loaded in tension and 

compression. Possion’s ratio remains approximately constant under sustained load. In this 

study, the concrete is under both tension and compression, so 0.19 was selected as 

Possion’s ratio of concrete.

The compressive uniaxial stress-strain relationship of the concrete model was obtained 

from ACI code [13]. The implementation of the multilinear isotropic stress-strain curve 

requires that the first point on the curve to be defined by the user. It must satisfy the 

Hooke’s Law, i.e.

E  = —  (2 .2)
£

The multilinear curve was used to help with convergence of the nonlinear solution.
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Figure 2.8: Uniaxial Stress-Strain Curve

Figure 2.8 shows the concrete stress-strain relationship used in this study, it is based on 

ACI 318-05 Code [13]. Point 2, defined as 0.30 f c , is calculated in the linear range by 

using Eq. (2.2). Points 3 to 9 are obtained from reference [13].

Material model:

The material model in ANSYS is from Wiliam and Wamke [10], it requires that 9 

different constants to be defined. These 9 constants are listed in Table 2.3. The failure 

criteria of this model will be explained in the following section.
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Table 2.3: Concrete material data in ANSYS

Constant Parameter

1 Shear transfer coefficients for an open crack

2 Shear transfer coefficients for a closed crack.

3 Uniaxial tensile cracking stress.

4 Uniaxial crushing strength (positive).

5 Biaxial crushing strength (positive).

6 Ambient hydrostatic stress state for use with constants 7 and 8.

7
Biaxial crushing stress (positive) under the ambient hydrostatic stress 

state (constant 6).

8
Uniaxial crushing stress (positive) under the ambient hydrostatic 

stress state (constant 6).

9 Stiffness multiplier for cracked tensile condition.

Shear transfer coefficient (constant 1 and 21:

Shear transfer coefficient of concrete varies from 0.0 to 1.0, with 0.0 representing a 

smooth crack (complete loss of shear transfer) and 1.0 representing a rough crack (no loss 

of shear transfer). A number of preliminary analyses were attempted in this study with 

various values of the shear transfer coefficient within this range, but convergence 

problems were encountered when shear transfer coefficient was taken as less than 0.5. 

Therefore, the shear transfer coefficient for an open crack used in this study was chosen 

to be 0.3. For the same reason, the shear transfer coefficient for a closed crack was set to 

be 0.95 (Table 2.1).
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Uniaxial tensile cracking strength (constant 3):

Although tensile strength is normally neglected in most reinforced concrete design 

calculations, it is not the case for the shear capacity calculation of hollow core units. 

Because there are no stirrups in the hollow core unit, its shear capacity mainly depends 

on the tensile strength of concrete. The tensile strength of concrete does not vary in 

proportion to its compressive stress f c . It does, however, vary approximately in 

proportion to the square root of f c . Based on hundreds of tests, the ACI Code [13] 

(section 9.5.2.3) recommends that the uniaxial tensile cracking strength could be 

considered the same as the modulus of rupture of concrete, f r , i.e.

/, =7.sV7V <2'3)
where f c and f  r are in “psi”.

Uniaxial crushing strength (constant 4)

The uniaxial crushing strength was determined based on the uniaxial compressive

strength ( f c ). In this model, it was taken as the same value as f  c . The remaining

variables in the concrete model used the default values given in the ANSYS software.

2.3.1.2 Failure Criteria for Concrete

The concrete material model predicts the failure of brittle materials. Both cracking and

crushing failure modes are considerd. The criterion for failure of concrete due to a

multiaxial stress state can be expressed in the form below (Wiliam and Wamke [10]):

y ~ S >  0 (2.4)
J  c
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where F  = a function of the principal stress state ( a xp, cryp, crzp)

<jxp, <ryp, crzp = principal stresses in the principal directions X, Y and Z

S = failure surface (to be discussed) expressed in terms of principal

stresses and five input parameters f , , f c , f cb , f( and f*.

f ,  = ultimate uniaxial tensile strength

f c - uniaxial crushing strength

f cb = ultimate biaxial compressive strength

/ ,  = ultimate compressive strength for a state of biaxial compression 

superimposed on hydrostatic stress state 

f 2 = ultimate compressive strength for a state of uniaxial compression 

superimposed on hydrostatic stress state

However, the failure surface can be specified with a minimum of two constants, / ,  and

f c . The default values of the other three constants used by Wiliam and Wamke [10] are:

/ * = 1 . 2 / e (2.5)

A  = 1 -45 f c (2.6)

f 2 = 1 -725 f c  (2-7)

The ambient hydrostatic stress state, denoted as <j  h , is defined as:

1 ,
&  h =  +  a  yP + a  *p  > (2-8)

A three-dimensional failure surface of concrete is shown in Figure 2.9. The most 

significant nonzero principal stresses are in the x and y directions, represented by
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<r and <7^ ,  respectively. Three failure surfaces are shown as projections on the crxp- 

<7yp plane. The mode of failure is a function of the sign of a zp. For example, if errand 

<j are both negative (compressive) and a zp is slightly positive (tensile), cracking would 

be predicted in a direction perpendicular to a zp . However, if crzp is zero or slightly 

negative, the material is assumed to be crushed [12].

G y p

Cracking

(Tz p < 0 (Crushing)

Figure 2.9: 3-D failure surface of concrete [12]

In a concrete element, cracking occurs when the principal tensile stress in any direction 

lies outside the failure surface. After cracking, the elastic modulus of the concrete 

element is set to zero in the direction parallel to the principal tensile stress direction. 

Crushing occurs when all principal stresses are compressive and lies outside the failure 

surface; subsequently, the elastic modulus is set to zero in all directions [9], and the 

element effectively disappears. Crushing of the concrete starts to develop in elements
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located directly under the loads. Subsequently, adjacent concrete elements crushes within 

several load steps as well, which significantly reduces the local stiffness. Finally, the 

model shows a large displacement, and the solution diverges.

2.3.2 Steel Reinforcement and Steel Plate

Link8 element is being used for modeling steel reinforcement. The steel reinforcement in 

the specimens was prestressed using 7-wire strands which have a diameter of Vi in. (13 

mm) and a tensile strength of 270 ksi (1860 MPa). The material property of the

prestressed steel was modeled by using a multilinear stress-strain curve developed based

on the following equations [13],

s ps < 0 .0086 : f PS = 28500 s PS (ksi) (2.5)

s ps < 0.0086 : f p S = 270  °  ^ nn_ (ksi) (2.6)
s PS -  0.007

Table 2.4 shows the magnitude stress and strain calculated based on Eq. (2.5) and Eq. 

(2.6). These data are plotted in Figure 2.10.
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Table 2.4: Values for multilinear stress-strain curve of prestressed strand

Strain(nim/rmi) Stress(MPa) Strain(mnVmm) Stress(MPa) Strain(ninVmm) Stress(MPa)
0 0 0.0107 1724.735 0.0135 1773.997

0.008 1544.48 0.0109 1730.331 0.0137 1776.037
0.0083 1560.568 0.0111 1735.442 0.0139 1777.978
0.0085 1589.298 0.0113 1740.126 0.0141 1779.817
0.0087 1612.803 0.0115 1744.435 0.0143 1781.562
0.0089 1632.391 0.0117 1748.413 0.0145 1783.219
0.0091 1648.965 0.0119 1752.096 0.0147 1784.796
0.0093 1663.173 0.0121 1755.516 0.0149 1786.297
0.0095 1675.485 0.0123 1758.701 0.0151 1787.729
0.0097 1686.258 0.0125 1761.673 0.0171 1791.074
0.0099 1695.765 0.0127 1764.453 0.0189 1806.156
0.0101 1704.214 0.0129 1767.06 0.0215 1813.385
0.0103 1711.775 0.0131 1769.508 0.0259 1821.204
0.0105 1718.579 0.0133 1771.812 0.0301 1825.948

2000

1800

1600

/ - s  1 4 0 0  03
§  1200 

I  1000 

£ 800 

* 600
400
200

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
unit strain (mm/mm)

Figure 2.10: Stress-strain curve of prestressed steel strands

32

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The material properties of the prestressed steel strands are taken as follows:

The elastic modulus Es = 29000 ksi (200,000 Mpa); the Yield strength 

f y -  60,000 psi (414 Mpa); and the Possion’s ratio y = 0.3.

The material properties of the steel plates in the finite element models were assumed to 

be perfectly elastic, and the strengths are identical in tension and compression. Since the 

Solid45 element was used to model the steel plates at loading locations on the beam, this 

element was modeled as a linear isotropic element with a modulus of elasticity of the 

steel as Es = 29000 ksi (200,000 Mpa), and the Possion’s ratio y = 0.3. Figure 2.11 

shows the stress-strain curve of steel plates used in this model.

-cr f

+

+ ( j

Figure 2.11: Stress-strain curve for steel plate
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2.4 Finite Element Discretization

The first step of finite element analysis is to develop mesh for the model. In other words, 

the model needs to be divided into a number of small elements, so after loading, stress 

and strain are calculated at integration points of these small elements [14]. One of the 

important steps in finite element modeling is the selection of the mesh density. 

Convergence will be obtained when sufficient number of elements is used in the model. 

This is practically achieved when an increase in the mesh density has a negligible effect 

on the results [15]. Therefore, a convergence study was carried out to determine an 

appropriate mesh density for the finite element model.

2.4.1 Finite Element Discretization of Beam Model

Because of symmetry, only half of the beam was simulated using ANSYS 2003. 

Therefore, a 3.7 in. (93.5 mm) x 8 in. (203 mm) x 173 in. (4400 mm) prestressed concrete 

beam was analysed. Four different mesh sizes of 528, 1056, 1936 and 3872 elements, 

respectively, were used to examine the convergence of the results. Three parameters, i.e. 

the maximum deflection, the maximum compressive stress in the concrete and the 

maximum tensile stress in the steel reinforcement were monitored to determine if the 

results converged or not. Figure 2.12 and Table 2.5 show the results of the convergence 

study.
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Figure 2.12: Results from convergence study: (a) Maximum deflection; (b) Maximum 

tensile stress in steel reinforcement; (c) Maximum compressive stress in concrete
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Table 2.5: Comparisons of results in the convergence study

Number of 
elements

Maximum deflection Tensile stress Compressive stress CPU time

Magnitud 
e (mm)

Difference
%

Magnitude
(Mpa)

Difference
%

Magnitude
(Mpa)

Difference
%

Magnitude
(s)

Difference
%

528 0.726 0.0 1130.1 0.0 33.4 0.0 93 0.0
1056 0.737 1.5 1130.2 0.0 33.8 1.2 158 69.9
1936 0.748 3.0 1128.2 0.2 33.9 1.5 399 329.0
3872 0.738 1.6 1128.0 0.2 34.3 0.3 630 577.4

Note: All the differences are based on the result of element size 528.

From Figure 2.12 and Table 2.5 we can see that the differences in the results were very 

small when the number of elements increased from 528 to 3872, however, the calculation 

time increased dramatically at the same time. Therefore, to shorten the calculation time, 

the 528 element model was selected for the Beam model and used as the base for the 

other specimens as well.

The beam and plate were modeled as volume elements. The finite element mesh for the 

beam model is shown in Figure 2.13.
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AN

Concrete Beam

Figure 2.13: The finite element meshes of the beam model

The Link8 element was used to model the prestressed reinforcement. Reinforcement 

locates at the plane of symmetry about vertical axis in the beam. Thus, the area of steel at 

the plane of symmetry is one half of the normal area.

2.4.2 Finite Element Discretization of Slab Model

For the slab model, only 1/12 of the slab was modeled because of geometric symmetry. 

The element type and mesh size of the hollow core concrete slab model are the same as 

those in the beam model. Figure 2.14 shows the finite element mesh for the slab model.
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Hollow core slab

Figure 2.14: The finite element meshes of the slab model 

2.5 Loading and Boundary Conditions 

2.5.11-shaped beams

a) Modeling of boundary conditions

Four beams were tested for shear strength under concentrated load. The finite element 

models were loaded at the same locations as the tested beams. A steel plate, 1.97 in. (50 

mm) thick, 3.94 in. (100 mm) wide), modeled using Solid45 elements, was added at the 

loading area in order to avoid stress concentration problems in the numerical simulation.
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This provided a more even stress distribution over the loading area. Figure 2.15 illustrates 

the boundary conditions and loading position of the specimen. The distance L from the 

support to the loading point (shear span) were taken as 19.7 in. (500 mm), 23.6 in. (600 

mm), 27.6 in. (700 mm) and 33.5 in. (850 mm) respectively in the four beams.

1

i
j  3.68 in. (93.5 mm)

180 in. (4570 mm)
Loading Area  Top View

1 '
8 in. (203 mm)

4 ^  3.35 in. (85 mm) 173 in. (4400 mm) |~ 3.35 in. (85 mm)

Side View

Figure 2.15: Boundary conditions and loading position of the specimen.

Displacement boundary conditions are required to constrain the model so that a unique 

solution can be obtained. To ensure that the model acts the same way as the experimental 

beam, boundary conditions need to be applied at points of symmetry, and locations of the 

supports and loading.

The symmetric boundary conditions were set first. In the finite element model, the 

directions of the X, Y and Z-axis were defined as follows: the Z-axis was set along the 

longitudinal direction of the beam, the X-axis was set in the horizontal plane and
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perpendicular to the longitudinal axis of the beam and the Y-axis was set in the vertical 

plane and perpendicular to the X-axis and Z-axis.

The model being used is symmetric about the YZ plane (along the axis of the beam, 

shown in Figure 2.15). To model the symmetry, nodes on this plane must be constrained 

in the transverse direction. These nodes, therefore, have a displacement constraint along 

X-axis as zero. Figure 2.16 shows the boundary conditions when YZ plane is a symmetric 

plane.

Z

C o n s t r a i n t  i n  X d i r e c t i o n

Figure 2.16: Boundary conditions for the plane of symmetry of beam model
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The beam has two supports. One support was modeled as a pin end constraint. A single 

line of nodes on the bottom surface was given constraint of displacement in the X, Y and 

Z directions. The magnitude of these displacements was set as zero. By doing so, the 

beam will be allowed to rotate about X-axis. Another support is a roller support. A single 

line of nodes on the bottom surface was constrained in the X and Y direction, the 

magnitude of displacement at X and Y direction were set as zero. The support condition 

is shown in Figure 2.17.
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Pin support 
condition

Roller support 
condition

Figure 2.17: Boundary conditions at supports in the beam model
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b) Modeling of loading conditions

The concentrated load acting on the steel plate is applied across the centreline of the plate. 

Because there are 3 nodes along the centreline of the plate, the force applied at each node 

on the plate is one third of the actual force applied. Figure 2.18 illustrates the simulation 

of loading condition used in the finite element model.

AN
Simulation of concentrated 
load applied on the plate

Figure 2.18: Loading condition of the beam model
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2.5.2 Hollow core slabs

The slab model is also symmetric about the Z plane, so the nodes on this plane have a 

displacement constraint along X-axis as zero. Figure 2.19 shows the boundary conditions 

when Z plane is a symmetric plane.

Figure 2.19: Boundary conditions for the plane of symmetry of slab model

The slab has supports at both ends. One of the supports is modeled as a pin end constraint 

and another support is a roller support. The support condition is shown in Figure 2.20.
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Pin suDDort condition

Roller support 
condition

Figure 2.20: Boundary conditions at supports in the slab model

The concentrated load acting on the steel plate is applied across the centreline of the plate. 

Figure 2.21 illustrates the simulation of loading condition used in the slab model.
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Simulation of concentrated load 
applied on the hollow core slab

Figure 2.21: Loading condition of the slab model

2.6 Nonlinear Solution for Both Beam and Slab Models

In the nonlinear analysis, the total load applied to a finite element model is divided into a 

series of load increments called load steps. At the completion of each incremental 

solution, the stiffness matrix of the model is adjusted to reflect nonlinear changes in 

structural stiffness before proceeding to the next load increment. The ANSYS program 

[12] uses Newton-Raphson equilibrium iteration for updating the model stiffness. 

Newton-Raphson equilibrium iteration provides convergence at the end of each load 

increment within tolerance. Figure 2.22 shows the use of the Newton-Raphson approach 

in the nonlinear analysis of a single degree-of-freedom.
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Load

F2

FI

A
Displacement

Figure 2.22: Newton-Raphson iterative solution [12]

In the first loading step, the out-of-balance load vector is assessed, which is the difference 

between the restoring force (the load corresponding to the element stresses) and the 

applied load. Subsequently, the program carries out a linear solution (from point A to B), 

using the out-of-balance loads, and checks for convergence. If convergence criterion is 

not satisfied, the out-of-balance load vector is re-evaluated (back to point C). Then the 

stiffness matrix is updated (from point C to D), and the convergence is checked again. 

This iterative procedure continues until the solution converges (reaches point F), so the 

calculation in the first loading step is completed. The same procedure is then applied to 

loading steps 2, 3 and so on.

In this study, for the prestressed concrete solid elements, the convergence criteria were 

based on the force and the displacement. It was found that the convergence of solutions
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for the models was difficult to achieve due to the nonlinear behavior of reinforced 

concrete material. Therefore, the convergence tolerance limits were increased to a 

maximum of 5 times the default tolerance limits (0.5% for force checking and 5% for 

displacement checking) in order to obtain convergence of the solutions.

2.7 Load Stepping and Failure Definition for Finite Element Models

The finite element model used in the current analysis is a simple beam under a transverse 

load. Because there is no live load involved, the “Static analysis type” in ANSYS 2003 is 

chosen. The “Restart” command is utilized to restart an analysis after the initial run or 

when the loading step has been completed.

For nonlinear analysis, the “Automatic Time Stepping” function in the ANSYS program 

will predict and control the size of the load step. Based on the time-history of the 

previous solution and the physics of the models, if the convergent behaviour is smooth, 

the “Automatic Time Stepping” function will increase the load increment up to the 

selected maximum size of load step. If the convergent behaviour is abrupt, the 

“Automatic Time Stepping” function will bisect the load increment until it is equal to a 

selected minimum size of load step. The maximum and minimum load step sizes are the 

required input for utilizing the “Automatic Time Stepping” function in ANSYS.

Failure of the models is defined when the solution for a 1 lb (0.45 kg) load increment 

does not converge. The program then gives a message specifying that the models have a
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significantly large deflection, which exceeds the displacement limitation of the ANSYS

program.
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CHAPTER 3 Results and Discussions

The purpose of the comparison between the results obtained from finite element analysis 

and the physical tests of beams and slabs is to ensure that the material properties, real 

constants and convergence criteria used in the numerical simulation are correct and the 

developed finite element model is capable to accurately simulate the structural behaviour 

of the studied beams and slabs.

3.1 Physical Tests

1) Beam-1 (the ratio of the shear span a to depth d: 3.0)

Figure 3.1 shows the testing set up of Beam-1, which has a shear span length of 23.6 in. 

(600 mm).

Figure 3.1: Physical set up of Beam-1

The location of load cell and dial indicator on beam-1 is given in Figure 3.2.
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This beam was loaded to failure. The computer connected to the dial indicator on the 

beam recorded the mid-span deflection and the loading history. The load increment is 

very small (about 0.225 kips or 1.0 kN per 5 second) to ensure the accuracy of the 

recorded data.

L=23.6 in. (600mm)
--------Mid-Span Hal Indicater

Load Cell
r r

8  i i |  (203 m m)

J
^  3.35 in. (85 m m ) 173 in. (4400mm) 3.35 in. (85 mm )

(Unit mm)

Figure 3.2: Elevation of Beam-1

Beam-1 failed suddenly when the first inclined crack appeared and the load reached 8.76 

kips (39.0 kN). It was a typical shear failure because the failure was sudden and brittle. 

Figure 3.3 shows Beam-1 at failure.

Figure 3.3: Beam-1 at failure
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The location of the first crack was on a line drawn from the centreline of the support at an 

angle of about 40 degrees to the longitudinal axis of the beam. At the time of failure the 

concrete crushed while the prestressed steel strands did not fail at all.

2) Beam-2 (the ratio of the shear span a to depth d: 4.25)

Figure 3.4 shows the location of load cell, strain gauge and dial indicator on Beam-2, the 

shear span length of Beam-2 is 33.5 in. (850 mm).

L=33.5 in. (850 mm)
27.6 in. (700 mm)

Load Cell
r

---------Mid-Span Dial Indicater

1

i
8 inj (203 mm)------ Top Strain Gauge

^  3.35 in. (85 mm) 173 in. (4400 mm) ^ 3.35 in. (85 mm)

Figure 3.4: Elevation of Beam-2

The first crack occurred at the bottom of the beam when the load reached 5.8 kips (26.0 

kN). It then propagated up vertically to the web. When the load increased to 6.9 kips
f 1 11 j  C  d r t j / t f c ' i

(30.7 kN), the inclined web crack (4$Mvith horizontal plane) occurred and the beam 

failed. This was still a shear failure. Figure 3.5 (a) shows the first crack on the bottom of 

beam; Figure 3.5 (b) shows the vertical crack on the web of beam; and Figure 3.5 (c) 

shows the inclined crack on the web of beam.
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Figure 3.5: Picture of crack on Beam-2

3) Beam-3 (the ratio of the shear span a to depth d: 3.5)

Beam-3 failed when the load reached 7.2 kips (32.0 kN) and the first inclined crack 

appeared. The crack formed a 45 degree angle with the longitudinal axis of the beam. It 

was a typical shear failure because the failure was sudden and brittle. Beam-3 failed in 

the beginning of the plastic range of the material property. One of the possible reasons 

could be the imperfection of the concrete material. Figure 3.6 shows Beam-3 at failure.
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Figure 3.6: Picture of crack on Beam-3

4) Beam-4 (the ratio of the shear span a to depth d: 2.5)

This beam failed suddenly when the load reached 7.4 kips (33.0 kN) and the first inclined 

crack appeared. The failure happened within the elastic range of concrete and did not 

extend to the plastic range. One of the possible reasons could be that this beam is 

different from the other beams: it has some holes on the top flange, so the beam is already 

damaged before testing. Figure 3.7 shows Beam-4 at failure.

Inclined crack at 
failure P=7.4 kips 
(33.0 kN)

Figure 3.7: Picture of crack on Beam-4
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5) Slab-1 (the ratio of the shear span a to depth d: 3.0)

The slabs were tested following the same procedure as the beams. For safety reasons, the 

slabs were not loaded to their ultimate stage. The loading process was stopped when the 

width of crack in concrete reached 2 mm.

The first crack on Slab-1 appeared when the load reached 43.8 kips (195.0 kN). It located 

at the bottom and on the web of the slab. The crack was perpendicular to the longitudinal 

axis of the slab. The second crack occurred when the load reached 44.3 kips (197 kN). It 

formed an angle of 70 degree with respect to the longitudinal axis of the slab. The 

loading process had to be stopped because the width of the first crack was measured to be 

2 mm when the load reached 45.2 kips (201 kN). Figure 3.8 (a) shows the first crack, and 

Figure 3.8 (b) shows the second one.

First crack at web 
P=43.8 kips (195 kN)

Second crack at web 
P=44.3 kips (197 kN)

(a) (b)

Figure 3.8: Cracks on Slab-1
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6) Slab-2 (the ratio of the shear span a to depth d: 4.25)

The first crack on Slab-2 was observed when the load reached 33.5 kips (149 kN). It 

located at both the bottom and the web of the slab and it was perpendicular to the 

longitudinal axis of Slab-2. The vertical crack on the web went up towards the top of the 

slab. As the load increased, the crack became more and more inclined when passed 2/3 

height of the slab. It formed an angle of 45 degree with respect to the longitudinal axis of 

the slab. The testing was stopped when the load reached 34.8 kips (155 kN) because the 

width of bottom crack was measured to be 2 mm. Figure 3.9 (a) shows the first crack on 

Slab-2 and Figure 3.9 (b) shows the extension of the first crack.

First crack at web 
and bottom 
P=33.5 kips 
(149.0 kN)

Extension of 
first crack 
P=34.8 kips 
(155.0 kN)

Figure 3.9: Cracks on Slab-2

7) Slab-3 (the ratio of the shear span a to depth d: 3.5)
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The first crack on Slab-3 appeared when the load reached 29.2 kips (130.0 kN). It located 

at the bottom and the web of the slab. The crack was perpendicular to the longitudinal 

axis of the slab. The second crack occurred when the load reached 31.5 kips (140.0 kN). 

It formed an angle of 60 degrees with respect to the longitudinal axis of the slab. The 

loading process had to be stopped because the width of the first crack was measured to be 

2 mm when the load reached 32.6 kips (145.0 kN). Figure 3.10 shows the cracks on Slab- 

3.

Extension of 
first crack 
P=31.5 kips 
(140.0 kN)

Figure 3.10: Cracks on Slab-3

8) Slab-4 (the ratio of the shear span a to depth d: 2.5)

The first crack on Slab-4 appeared when the load reached 44.7 kips (199.0 kN). It located 

at the bottom and the web of the slab. The web crack propagated to the upper part of the 

web as the load increased. The loading process had to be stopped because the width of
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the bottom crack was measured to be 2 mm when the load reached 48.3 kips (215 kN). 

Figure 3.11 shows the cracks on Slab-4.

Extension of 
first crack 
P=44.7 kips 
(199.0 kN)

First crack P=44.7 
kips (199.0 kN)

Figure 3.11: Cracks on Slab-4

3.2 Finite Element Analysis

The ANSYS elements, material properties and boundary conditions as previously 

discussed in section 2.2 were used in the following finite element model. In the finite 

element model, the application of the load up to failure was done incrementally as 

required by the Newton-Raphson procedure. After each load increment was applied, the 

restart option was used to go to the next step after convergence.

The first load step taken was to produce the camber in the concrete beam due to the 

prestress. The second load step was the addition of the self-weight. After the first 2 

loading steps, the time at the end of each step (or sub-step) corresponds to the vertical
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loading applied to the beam. For the third load step the time at the end of the load step (or 

sub-step) is referring to a load applied at the steel plate.

3.3 Comparison of Experimental and Numerical Results

3.3.1 Beams

1) Beam-1

The load-deflection relationship of Beam-1 obtained from the physical experiment and 

numerical simulation are plotted in Figure 3.12. In the linear part (from point O to point 

A in Figure 3.12) the numerical results agree very well with the experimental data. This 

indicates that the modulus of elasticity of concrete used in the numerical model was 

selected correctly. Moreover, the prestressing effect of steel strands was also properly 

simulated in the model. In the nonlinear part of the curve (from point A to point B or C), 

the slope of the experimental curve is steeper than that by finite element analysis. One 

possible reason could be that the parameter of shear transfer coefficient or the stress- 

strain curve of concrete in the numerical model is not exactly the same as those in the 

physical specimen. It can be seen that the maximum service load of 7.0 kips (31.0 kN) 

predicted by the numerical model agrees well with the physical testing data of 7.2 kips 

(31.9 kN). It captures well the nonlinear load-deflection response of the beam up to 

failure. The maximum service load is defined as follows: on the load-deflection curve of 

a specimen (for example, Beam-1 in Figure 3.12), a point (point A) can be identified
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beyond which the displacement increased rapidly with very little increase in load. The 

load corresponding to this specific point is defined as the maximum service load.

Beam-1 (Shear Span 600mm)

45 

40 

35 

30

s

I 25 1 20 

15

10

5

0
0 2 4 6 8 10 12 14

Mid-Span Deflection (mm)

Figure 3.12: Experimental and Numerical load-deflection responses of Beam-1

2) Beam-2

Figure 3.13 shows the load-deflection relationship of Beam-2 obtained from the physical 

experiment and finite element simulation. The two curves agreed very well in both the 

linear part and nonlinear part. It means that all the parameters selected for the numerical
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model correctly represent the physical properties of Beam-2. In Figure 3.13, it can be 

seen that the numerical model predicts the maximum service load to be 5.1 kips (22.90 

kN) whereas that obtained during the tests was 5.4 kips (24.0 kN). The difference is only 

4.6%.

Beam-2 (Shear Span 850 mm)

35 Maximum service load from experiment: 24.0 kN

30

25

|  20 

■33 15

Maximum service load from Ansys: 22.9 kN

10

“  Experiment 
 Ansys5

0
4 120 2 6 8 10 14 16 18

M id-Span D eflection (mm)

Figure 3.13: Experimental and Numerical load-deflection responses of Beam-2

In the numerical simulation, the first crack(s) of Beam-2 appeared when the load reached 

6.2 kips [27.6 kN], while that observed in the experimental work corresponds to a load of 

5.8 kips [26.0 kN], The difference is 5.8%. Figure 3.14 shows the first crack(s) of Beam-
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2 in the numerical model. Compared with Figure 3.5 (Pictures of crack on Beam-2), 

appreciable agreement of crack pattern can be seen from these figures. Both first cracks 

are perpendicular to the longitudinal axis of the beam and of flexural type. They all 

occurred at the cross section where the concentrated load is applied, initiated from the 

bottom flange and extended to the web.

AN

Concentrated load

First crack(s) in Beam-2 
Cracking load: 6.2 kips (27.6 kN)

Figure 3.14: First crack(s) of Beam-2 in numerical model
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The strain of concrete at the top surface of the beam measured during the tests was 

compared to the numerical results in Figure 3.15. Again, it was found that the two sets of 

data agreed very well till the applied load reached approximately 5.6 kips (25.0 kN).

Beam-2 (Shear Span = 850 mm)

 Ansys
~ Experiment

2.50.5 3.5

Strain (1/1000)

Figure 3.15: Experimental and Numerical load-strain responses of Beam-2

3) Beam-3

The load-deflection relationship of Beam-3 obtained from the physical experiment and 

numerical simulation is plotted in Figure 3.16. In the elastic range, these two curves 

agreed reasonably well; but the physical beam failed at the beginning of plastic range 

while the numerical one went much further in the plastic range. The most possible reason 

could be that the material properties of concrete have some defects in the mixing and / or
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manufacturing process. The maximum service load of 6.1 kips (27.0 kN) observed in the

physical test agrees well with the numerical model data of 6.0 kips (26.5 kN).

Beam-3 (Shear Span 700 mm)

40 y  M aximum service load

■so

35

30

25

20

15

10

5

from experiment: 27.0 kN

Maximum service load from 
Ansys: 26.5 kN

Experiment
Ansys

2 4 6 8 10 12 14 16 18

Mid-Span Deflection (mm)

Figure 3.16: Experimental and Numerical load-deflection responses of Beam-3

4) Beam-4

Figure 3.17 shows the load-deflection relationship of Beam-4 obtained from the physical 

experiment and numerical simulation. It can be seen from Figure 3.17 that the physical 

beam failed abruptly in the elastic range and did not extend to the plastic range at all. As 

we discussed in section 3.1, one of the most possible reasons could be that this beam was

damaged before testing because it has some holes on the top flange. The maximum
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service load of 6.7 kips (30.0 kN) observed in the physical test is much lower than the

numerical model data of 8.0 kips (35.5 kN).

Beam-4 (Shear Span 500mm)

50

45

40

35

z 30
zw 25
■3u

20

15

10

5

0

Maximum service load from 
Ansys: 35.5 kN

Maximum service load 
from experiment: 30.0 kN

■Experiment
•Ansys

4 6 8 10

Mid-Span Deflection (mm)

12 14

Figure 3.17: Experimental and Numerical load-deflection responses of Beam-4

3.3.2 Slabs

1) Slab-1

The load-deflection relationship of Slab-1 obtained from the physical experiment and the 

numerical simulation are plotted in Figure 3.18. The two curves agreed reasonably well 

except that the slope of the numerical curve is steeper than that of the experimental curve. 

One possible reason could be that the modulus of elasticity of concrete used in the
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numerical model (which is taken from the standard test of PSI) is a little bit higher than it 

should be in the specimen. It can be seen that the maximum service load of 44.6 kips 

(198.5 kN) predicted by the numerical model agrees very well with the physical testing 

data of 44.3 kips (197.0 kN).

Slab-1 (Shear Span 600mm)
250

Maximum service load from Ansys: 
197.0 kN

200 -

150 - Maximum service load from 
experiment: 198.5 kN

J  100

 Ansys

' Experiment

Mid-Span Deflection (mm)

Figure 3.18: Experimental and Numerical load-deflection responses of Slab-1

2) Slab-2

The load-deflection response of Slab-2 is shown in Figure 3.19. In the linear and 

nonlinear range, the predicted load-deflection response agrees well with the 

corresponding testing data, except the slope of the curve from the numerical simulation is
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slightly steeper than the experimental results. This could be due to that the modulus of 

elasticity of concrete used in ANSYS model is based on the PSI standard test, which 

could be slightly different from that of an individual specimen.

Slab-2 (Shear Span 850 mm)

200 T Maximum service load from 
Ansys: 146.0 kN

150 -

•o 100 
& o Maximum service load from 

experiment: 147.5 kN

 Ansys

i Experiment

0 2 4 6 8 10 12

Mid-Span Deflection (mm)

Figure 3.19: Experimental and Numerical load-deflection response of Slab-2

The first cracking load of Slab-2 from the numerical model and the physical test has a 

difference of 4.2%. The one reported by the numerical model is 34.8 kips [154.9 kN], 

whereas that observed in the test is 33.5 kips [149.0 kN]. The first crack(s) in the 

simulation is shown in Figure 3.20. Compared with Figure 3.9 (Cracks on Slab-2), the
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crack pattern and the occurred location from the ANSYS simulation are very similar to 

those from the experiments. Both first cracks are flexural cracks began from the bottom 

of the slab at the loading location and extended to the web. The maximum service load 

predicted by the numerical model is 32.8 kips [146.0 kN], and that from the test is 33.1 

kips [147.5 kN]. The difference is only 1.0%.

Concent

AN
rated load 

r

1 1 1 I
I i
-M-

1 | 
+ 4

1 1 i 7

First crack(s) o f  Slab-2 
Cracking load: 34.8 kips (154.9 kN)

Figure 3.20: First crack(s) of Slab-2 in ANSYS model

3) Slab-3

Figure 3.21 shows the load-deflection relationship of Slab-3 obtained from the physical 

experiment and the finite element analysis. The maximum service load of Slab-3
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predicted by the numerical model was 37.1 kips (165.0 kN) and the maximum service 

load reached in the tests was 30.3 kips (135.0 kN). The difference is 22.2%. One of the 

possible reasons that cause this relatively large difference could be that the material 

properties of concrete have some defects in the mixing and / or manufacturing process.

Slab-3 (Shear Span 700 mm)
200

Maximum service load 
from Ansys: 165 kN

150

i r  ioo

Experiment jMaximum service load from 
experiment: 135 kN Ansys

4 6 8 10 12 140 2

Mid-Span Deflection (inm)

Figure 3.21: Experimental and Numerical load-deflection response of Slab-3 

4) Slab-4

The load-deflection relationship of Slab-4 obtained from the physical experiment and the 

finite element analysis is shown in Figure 3.22. The maximum service load of 47.2 kips
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(210.0 kN) predicted by the numerical model and of 43.8 kips (195.0 kN) from the 

physical test has a difference of 7.7%.

Slab-4 (Shear Span 500 mm)
25Q Maximum service load from 

experiment: 195.0 kN

200

Maximum service load from 
Ansys: 210.0 KN~  150

100

 Experiment

Ansys

2 6 100 4 8 12 14

Mid-Span Deflection (mm)

Figure 3.22: Experimental and Numerical load-deflection response of Slab-4

3.4 Comparison with AC I318 code prediction

The maximum service load obtained from the physical tests and the numerical simulation 

is applied by a strength-reduction factor to achieve the factored maximum service load. 

The strength-reduction factor <j) is taken as 0.75 [13], provided the load factors are

following the recommendations in ACI 318-05 Section 9.2. The comparison of the
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factored maximum service load of hollow core slabs and I-shaped beams subjected to 

concentrated load obtained from the numerical simulation, physical experiments and the 

prediction from the ACI 318 code are summarized ana presented in Table 3.1 and Table 

3.2.

Table 3.1: Comparison of I-shaped concrete results

Beam-4* Beam-1 Beam-3 Beam-2
Shear span to cepth ratio, a/d 2.5 3 3.5 4.3

Factored maximum 
service load, kips 

(kN)

Test 5.6(24.8) 5.4 (23.9) 4.6 (20.3) 4.0(17.6)
ANSYS 6.0(26.6) 5.2 (23.3) 4.5 (19.9) 3.9 (17.2)

ACI 318 Code 5.3 (23.4) 5.1 (22.8) 4.3 (19.2) 3.8 (16.7)

Difference, %
Test & ANSYS 6.7 2.8 1.9 2.6

Test & Code 6.4 4.9 5.5 5.5
ANSYS & Code 13.7 1.9 3.4 2.8

Table 3.2: Comparison of hollow core slab results

Slab-4 Slab-1 Slab-3* Slab-2
Shear span to depth ratio, a/d 2.5 3.0 3.5 4.3

Factored 
maximum service 

load, kips (kN)

Test 32.9(146.3) 33.5(148.9) 22.8(101.3) 24.9(110.6)
ANSYS 35.4(157.5) 33.2(147.8) 27.8(123.8) 24.6(109.5)

AQ 318 code 28.4(126.5) 27.6(122.6) 23.3 (103.8) 20.5(91.3)

Difference, %
Test & ANSYS 7.7 0.8 18.2 1.0

Test & Code 13.5 17.6 2.4 17.5
ANSYS & Code 19.7 17.0 16.2 16.6

Reevaluated effective web width b , ^ 1.2 b , 1.2 b , 1.2 b , 1.2 b ,

* The data in this column is not used for comparison because this specimen is not 

working well during physical test.

It can be seen from these two tables that in general, the experimental results are greater 

than the numerical simulation, and ACI 318 code gives the least prediction. For the 

factored maximum service load of I-shaped beams given in Table 3.1, the largest
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difference among the three sets of results is only 5.5%. Table 3.2 shows the comparison 

of the factored maximum service load of the hollow core slabs. It can be seen that the 

numerical predictions agree well with the experimental results, especially in the case of 

Slab-1 and Slab-2. The average difference between these two sets of results is 0.9%. 

However, the results obtained from ACI 318 code are much smaller than those from 

ANSYS simulation and experiments. The average factored maximum service load 

obtained from ANSYS and test are 17.8 % and 16.2 % higher than the ACI 318 code 

predictions, respectively. For the code prediction, the factored maximum service load of 

the I-shaped beam and the hollow core slab is determined based on the less of Eq. (1.1) 

and (1.2). While the I-shaped beam is considered as a single web hollow core slab, of 

which the net web width is taken exactly the same as the web width of the beam, in the 

case of the multi-web hollow core slab, the simple summation of the minimum parts of 

the slab web as bw neglects the potential interaction between the adjacent webs. This 

could underestimate the actual effective web width of the hollow core slab and lead to a 

more conservative prediction of its shear strength.

If the numerically obtained factored maximum service load is applied to the left side of 

the equation (Eq. (1.1) or (1.2), depending on the failure mode), a re-evaluated effective 

web width of hollow core slab bw new can be obtained. It is also presented in Table 3.2, 

which is 20% higher than the original bw.
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CHAPTER 4 Conclusions and Recommendations

In the present study, finite element models are developed to study the shear behaviour of 

I-shaped concrete beams and prestressed concrete hollow core slabs. The results obtained 

from the numerical simulations are compared with those from the physical tests and ACI 

318 code. Based on these comparisons, the following conclusions can be drawn:

1. The finite element models developed in the present study can accurately simulate 

the shear behaviour of I-shaped concrete beams and prestressed concrete hollow 

core slabs. The response in terms of the load-deflection relation at the mid-span of 

the specimens obtained from the ANSYS simulation agrees well with what 

observed in the tests. The maximum service load and cracking load predicted by 

the numerical models are very close to the experimental results.

2. The shear capacity predicted by the ACI 318 code agrees well with the ANSYS 

simulation and the physical test for the I-shaped concrete beams, but it is more 

conservative in the case of the prestressed hollow core slabs. One possible 

explanation could be that when determine the effective web width for shear 

strength calculation of hollow core slabs, the current ACI 318 code ignores the 

interaction between the adjacent webs, which results in a more conservative 

prediction.

As future work, more studies are required to quantify the impact of the web interaction on 

the shear capacity of prestressed concrete hollow core slabs.
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APPENDIX A Calculation of shear capacity of I-shaped concrete beams

Shear Span S

3.35"
R1

L=173.2"

i
R2i

3.35"

276 .5+P (L -S )/L

V u

Figure A .l I-shaped concrete beams with supports 

Prestressing Steel: 0.5 in diameter, f  pu -  270 ksi , low relaxation strands,

Initial stress = 70% f pu ; loss = 15%; / c = 6000 psi ; L = 173.2 in;

b w = 1 .89 in ; d  = 6 .8 in ; Vp = 0

v„ = (3.5V77+ 0.3 f pc) b , d + V p

= (3 .5  a/6000 + 0. 3 f pc) x 1.89 x 6 .8  + 0

= 12 .85 x (271 .1 + 0.3  f pc)

= 3484 + 3 .86 f  pc

f  pc is calculated as a function o f the transfer o f  prestress into the section along

the span.

Transfer length = 50 d b -  50 x 0 .5  = 25 "

Bearing length = 3 .35 "
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Full prestress transfer is achieved (25 -  3 .35 ) = 21 .65 in" from the face o f 

support.

^ / * e = 0 -153 x 270000 x 0 .7  x (1 -  0 .15  ) x  (^_ +^ ~ 35 )

to jc = 21 .65 "
I 
4

/  =  A Ps f s e  =  6g2 98 + 3 .35
A V 25

A beam = 0-203 x 0 .187 -  — x n  x 0 .139 2 = 0.0228 m

V cw = (4514 .13 + 123 .92 x) lb  (x from 3.35 to 25 in)

at left support, V cw = (4514 .13 + 123 .92 x 3 .35  ) = 4929 Alb

self weight o f  HC beam

=  A beam x l x  Y  bean, = 0.0228 X  4 .5 7  X 2400 =  250 kg = 551 .2 lb

Maximum shear happened at left support, so,
L -  S \  551 .2

P  x = 4929 .1

(1) Shear span S = 500 mm (19.7 in), P = 5249 lb = 23.4 KN

(2) Shear span S = 600 mm (23.6 in), P = 5387 lb = 24.0 KN

(3) Shear span S - 700 mm (27.6 in), P = 5533 lb -  24.6 KN

(4) Shear span S = 850 mm (33.5 in), P = 5766 lb = 25.7 KN

(jfV  ̂ = 0 .85  x ( 0 .6 a/6000 x  b wd  + Vd + Vi M cr )
M m ax

Vd = 0 .61 x 56 .5 x (14 .44 / 2 -  x )
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Based on these definitions, <f>Vci are calculated. A summary o f (f> a n d  

<j> Vci are presented in the following table.

____________ Table A -l Allowable Shear o f  I-shaped concrete beams____________

X 6 VT  CW <t>vci Allowable Shear

500 mm (1.64 ft) 23.4 kN 23.4 kN 23.4 kN

600 mm (1.97 ft) 24.0 kN 22.8 kN 22.8 kN

700 mm (2.30 ft) 24.6 kN 19.2 kN 19.2 kN

850 mm (2.79 ft) 25.7 kN 16.7 kN 16.7 kN
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APPENDIX B Calculation of shear capacity of hollow core slabs

Shear Span S

3.35"
R1

L=173.2"
R2

3.35"

276 .5+P (L -S )/L

V u

Figure B .l Prestressed concrete Hollow core slab with supports 

Prestressing Steel: 0.5 in diameter, f  pu = 270 ksi , low relaxation strands,

Initial stress = 70% / pu ; loss = 15%; f c = 6000 psi ; L = 173.2 in;

b w = 13 .375 in ; d  = 6 .8m  ; Vp = 0

v „  = ( 3 . 5 + 0 . 3  f^  )bttd p + Vp

= (3 .5  V6000 + 0 .3  /  ) x 13 .375 x 6 .8  + 0

= 90 .95 x (271 .1 + 0 . 3 / pc )

= 24657 + 27 .3 / „J  p c

f  pc is calculated as a function o f the transfer o f  prestress into the section along 

the span.

Transfer length = 50 d b -  50 x 0 .5  = 25 "

Bearing length = 3 .35 "
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Full prestress transfer is achieved (25 -  3 .35 ) = 21 .65 in" from the face o f 

support.

A ps  f s e  = 5 X  0.153 X  270000 x 0 .7  x (1 -  0.15 ) x ( * ■ -  )

to x = 21 .65 "

A s ,a b  = 138700 mm 2 / ( 25 - 4 ) 2 = 215 .00 in 2 
A psf se 122897 x + 3.35 .

fpc = ~  x ( -----77------ )

V cw = (26748 + 624 x) lb  (x from 3.35 to 25 in)

at left support, V cw = (26748 + 624 x 3 .35 ) = 28838 lb

self weight o f  HC beam

= A siab x  / x  Y b e a m = 0 •1387 x 4 .57  x 2400 = 1521 kg = 3354 lb 

Maximum shear happened at left support, so,

P  x
L -  S \ 3354

v L
+ — —  = 28838

(1) Shear span S = 500 mm (19.7 in), P = 30518 lb -  136.2 KN

(2) Shear span S = 600 mm (23.6 in), P = 31583 lb = 141.0 KN

(3) Shear span S = 700 mm (27.6 in), P = 32333 lb = 144.3 KN

(4) Shear span S = 850 mm (33.5 in), P = 33532 lb = 149.7 KN

<j>Vci = 0 .85 x ( 0 .6  V6000 x b wd  + Vd + VfM  cr )
M m ax

Vd = 4 x 56 .5 x (14 .44 12 -  x )
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Based on these definitions, 0 V ci are calculated. A summary o f (f> V^  and 

<j) Vci are presented in the following table.

__________ Table B -l Allowable Shear o f prestressed hollow core slabs__________

X SVT  CW <!>vci Allowable Shear

500 mm (1.64 ft) 136.2 kN 126.5 kN 126.5 kN

600 mm (1.97 ft) 141.0 kN 122.6 kN 122.6 kN

700 mm (2.30 ft) 144.3 kN 103.8 kN 103.8 kN

850 mm (2.79 ft) 149.7 kN 91.3 kN 91.3 kN
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