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Abstract

Constraints, actuating delay, uncertainties and imperfect state information have many 

realizations in the actual applications. These phenomena affect the system analysis 

and controller design in that care should be taken in designing associated stabilizing 

controllers.

This thesis is dedicated to a setting where the constrained control of an input- 

delayed linear discrete-time system subject to bounded measurement noise and dis

turbance input is in question. Using a propagator-based delay compensation strategy 

and a set theoretic model predictive control scheme, a robust control synthesis for 

such a setting is introduced. More complications arise from the imperfect state infor

mation.

In this manuscript, a scheme to satisfy the constraints as well as to compensate for 

this delay is presented. It is also guaranteed that the closed-loop system’s trajectory 

will remain at the vicinity of the origin at the steady state. A number of illustrative 

examples verify the theoretic results.
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Chapter 1

Introduction

1.1 M otivation

The areas of time delay systems and constrained control have long been under inten

sive investigations. Many advancements have been made in either topic and there is 

a myriad of publications pertinent to each subject. However, in actual applications 

(e.g. process control and networked control of constrained systems) there are many 

situations where the presence of neither of them can be neglected. Unfortunately, 

this fact has not received the attention it deserves and the main reason behind this 

work is to address this lack.

The time delay and constraints on the system shrink the domain of attraction of 

the closed-loop system. Domain of attraction is simply defined as the largest possible 

region in the state space in which the closed-loop system is asymptotically stable 

[71]. In order to have an effective control, this region should be enlarged as much

1
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1. INTRODUCTION

as possible. More specifically, effective control demands a method which can ad

dress the adverse effect of both time delay and constraints on the closed-loop system. 

This, hence, motivates one to do an in-depth analysis in both areas and to try to 

address their combinatorial problem by means of the available design control tech

niques. This issue becomes more difficult when besides the stability of the system 

some performance specifications are also imposed on the design. These performance 

requirements usually appear in the problem setting as new constraints on the behav

ior of system dynamics. For example, it may be crucial in a design that how fast the 

closed-loop response of the system is going to be regulated. This kind of performance 

specification can be introduced as a set of contractive constraints on the state trajec

tory of the closed-loop system, for instance.

To make the motif behind the subject more applied, it is also wise to consider the 

effect of imperfect state information in control and to account the need for measuring 

the output of the plant to reproduce the system states, known as output feedback. 

This issue becomes difficult due to various sources of unmeasured uncertainty like, no 

perfect model of the plant under control, persistent state disturbances and measure

ment noise. The effect of these uncertainties makes it impossible to design a controller 

able to guarantee the exponential or even asymptotic stability in their original sense 

[71]. This makes another motivation which is aimed to design an estimator which to

gether with the controller scheme can guarantee the a bounded steady state response 

known as ultimate boundedness [11] of the system.

On the other hand, control of a system suffering from a problem like actuating 

delay is effective when the computation of the control does not compromise the hard

ware infrastructure (e.g. faster CPU and more memory) and is fast enough so that 

it does not make another delay problem in the loop. This limits the set of applicable

2
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1. INTRODUCTION

tools which can be used to tackle this issue.

Given these motivations and requirements for designing a safe estimator/controller 

combination, this thesis concentrates on incorporating the effect of delay and uncer

tainties in design of a controller which beside guaranteeing stability guarantees that 

the constraints will not be violated and compensates for the actuating delay after a 

short interval as if no delay is present in the control input.

The rest of this chapter is devoted to give the reader a background on the works 

already done for the time delay systems and constrained control. The intention is to 

highlight the motivations more specific to each field as well as to their overlap. A 

note on the thesis structure is also included at the end.

1.2 System s with Actuating Delay

The control of time delay systems has been the hot spot for the last years and has 

already received a lot of attention. The motivation behind this push first came from 

the process industry since there were many examples of the delay systems which re

quired a better control than the conventional memoryless PI controllers (e.g. heat 

exchangers and feeding/exhausting systems in the process plants). As a result of such 

motivation many theoretical advancements have been made during the last decades. 

See for example, [35, 78, 88] for comprehensive survey on the recent results in this 

realm. Interesting discussions on the controllability of actuating delay systems can be 

found in [44, 45, 46] for both continuous and discrete-time systems. For some books 

on the subject reader may be referred to [34, 48, 57, 58, 70]. Unfortunately, except 

for [70] which has a dedicated part for actuating delay most of the material available 

is on the systems with state delays, though the control of systems with actuating is 

no less challenging.

3
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1. INTRODUCTION

The developments of the theoretical ground for control of the systems with ac

tuating delay has tracked two somehow independent ways for continuous-time and 

discrete-time systems but started within the same time frame. The credit for discus

sion in the continuous-time domain goes to [2, 54, 59] wherein authors advocate the 

use of propagator based controller (e.g. a controller which works on the future states 

of the system rather than the present states) to enlarge the domain of attraction of 

the resulting closed-loop dynamic system. Their approach is then tailored for robust

ness against uncertainties in many publications (e.g. see [47]) which usually consider 

a robust analysis for the systems with state feedback. Although not as fruitful as 

propagator-based control, some efforts have also been made on tailoring the existing 

non-delay methods or memoryless feedback schemes [20, 85, 91] in order to achieve 

a degree of robustness. However, it has been shown via simple analysis [80] that the 

memoryless controllers are far inferior to the propagated-based schemes.

By the advent of the digital control, some developments in the discrete-time sys

tems was needed. Many propagator-based theories has been developed for the nomi

nal systems. Smith predictor which has attracted so much attention in the industry 

was first introduced by [86]. In the nominal sense it could compensate for the ac

tuating delay very easily. Due to the poor stability of smith predictor design other 

schemes addressing actuating delay have emerged. See for example, [27, 28, 29] for 

internal model control (IMC), [23, 67] for analytical and discrete analytical predictor 

(AP/DAP) schemes and generalized analytical predictor (GAP) [89, 90]. IMC also 

has got some attention in the industry due to better steady state performance as op

posed to Smith predictor. However, because it utilizes the inverse of the plant model, 

the model of the plant should exactly be known. Also demerits of the Smith predictor 

for unstable and uncertain systems is still true for IMC. Analytical predictor schemes

4
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1. INTRODUCTION

AP, DAP, and GAP ameliorated these demerits and have shown better steady state 

response and better robustness to known uncertainties, however, they also fall short 

in case of unmeasured perturbations. To avoid scattered discussion an in-depth anal

ysis cannot be given on these schemes here. A basic comparison of these schemes 

is given in [90] where it can be concluded that all the schemes fall short when it 

comes to the systems with uncertainties where f unmeasured disturbance or modeling 

error is present. Later, some researchers have attempted to modify these schemes in 

order to use them for the unstable systems [3, 66, 64, 87], though not with big success.

All in all, the result of the researches done to date justifies the fact that more or 

less there is not much one can do to control of the input-delayed systems when the 

they suffers from unknown or unmeasured uncertainties either in the form of modeling 

error or in the form of exogenous disturbance and noise. By using a propagator which 

is in a way related to DAP and the work done in [2], it will be shown in later chapters 

that the effect of this issue strains the controller design and certain cares should be 

taken while designing a controller to stabilize the general systems with actuating 

delay.

1.3 Constrained Systems and Predictive Control

1.3.1 An Overview

In terms of finding applications in industry, theories developed for the constrained 

systems come in the second position after the regular linear system theories. This 

is due to the fact that simply all the controlled systems have either implicitly or 

explicitly constraints on their input or states. In many applications like ship rudder 

control or compressor systems not attending to the existence of such constraints is 

tantamount to deadly accidents [32],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. INTRODUCTION

The constrained control via schemes other than predictive control is not common. 

However, some researches have been done in this direction. In [38] a procedure is 

presented in order to maximize the attractive region of the input-constrained closed- 

loop system with linear feedback. Using linear matrix inequalities (LMI) [13] a way 

to determine the maximal domain of attraction of linear systems, albeit in the form 

of an ellipsoid, is introduced. Differently, [75] has used the invariance set theory in 

order to characterize the domain of attraction in the form of a polytope. Each taken 

approach assumed linear state feedback law. This is because nonlinear control syn

thesis for such systems in optimal scheme requires finding a robust control lyapunov 

function (RCLF) [26] which is not an easy task for general nonlinear systems in most 

of the cases. Moreover, the design of the proposed linear law is done offline removing 

the chance to change it according to the changing online conditions.

On the other side of the spectrum comes the MPC which is related to the op

timal control concept and is tailored mainly to consider constraints on the system’s 

input and/or states. It is a recursive methodology wherein at each time instant an 

optimization is performed over a future control input trajectory rather than a con

trol input alone. Implementation is done by applying only the first entry of such a 

trajectory to the plant. MPC removes the shortcomings of the other constrained con

trol approaches by adopting a time varying control law which can adapt to condition 

changes and introducing variations with nonlinear law which are easy to implement 

and can have an immense effect in enlarging the domain of attraction of the closed- 

loop system [81]. These capabilities has turned MPC into a popular control approach 

with over 2000 reported applications [61]. Also it is known as the only advanced 

method with significant impact on the industry [56]. This is no surprise by knowing 

the fact that MPC is first used in the industry and then has attracted the academia.

6
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1. INTRODUCTION

For the cogency of discussion further notes on the origin of MPC is omitted here. A 

comprehensive note on MPC history can be found in [56].

1.3.2 M ajor M PC schemes

In this section the aim is to discuss the major MPC schemes which have found good 

merits in terms of a combination of robustness, optimality, and computational inten

sity. For comprehensive notes on various types of MPC schemes to date reader may 

consult several surveys and books on the model predictive control [6, 56, 68, 63, 77]. 

The nonlinear MPC schemes are discussed in [61, 63, 72], Also, industry-oriented 

discussions can be found in [73, 74],

The MPC scheme which was first used in the industry had a finite horizon l . 

However, It is proven that finite horizon scheme falls short in stabilization of the 

systems [56]. As a remedy to this problem a dual mode MPC (DMMPC) was then 

introduced. In this scheme a terminal cost and a terminal constraint have been added 

to the finite horizon MPC in order to emulate an infinite horizon problem. The idea 

of using a terminal cost and constraint at once to guarantee nominal feasibility as well 

as stability was first introduced in [41], where the terminal constraint was chosen to 

be the origin, i.e. T  — {0}. However, this constraint reduces the size of the feasible 

set and could result in numerical convergence problems in the optimization, especially 

when working with nonlinear models [61]. Also it could not be extended to the case 

of systems with uncertainties.

One of the most popular MPC methods for guaranteeing robust stability is to 

choose an invariant terminal set [65]. Such a set has a feature that every state trajec

tory starting inside this set will remain in its interior for unlimited time. By choosing

1 Discussions on finite and infinite horizon problems can be found in Chapter 2.

7
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1. INTRODUCTION

the terminal constraint to be such a set, rather than the origin, the size of the feasi

ble region of the MPC optimization for a given horizon N  is increased and most of 

the numerical convergence problems are addressed. After introduction of this noble 

approach to the academia almost all the robust MPC schemes proposed were in a 

way a subsidiary to it. Major schemes which have found considerable attentions are 

[5, 18, 51]. Among these schemes model predictive control with contractive invariance 

constraint (MPCCIC) [18] is chosen and extended in this thesis resulting in a whole 

new method. This scheme makes the grounding of the main discussion of the thesis 

which can be found later in Section 3.3. It is based on set invariance theory [12] and 

involves computation of problem-relevant invariant sets or attractive regions prior to 

doing any online optimization. This has the effect of less online computation which 

is amicable for actuating delay problem.

It is also important to point out that using this approach one can easily take the 

state estimation error and actuating delay into the consideration. This then can be 

seen as a remedy to problem of output feedback in MPC which has not lent itself to 

full disclosure yet. In fact, there are only few useful papers published on this issue 

[4, 55, 62, 83] which as a result make this area remain fairly open to new investiga

tions. The cause of this issue is the strict dependence of MPC predictions on the 

current system state. Therefore, any error in the state measurement yields predic

tions which are not close to the actual plant state trajectory in future. An adequately 

updated survey on the output feedback MPC can be found in [25].

There are other DMMPC schemes which have considered the delay in the system. 

The major work is done in [51] which spawned a series of schemes based on LMIs 

[39, 40, 80]. However, LMI approach has the shortcoming in that it is not clear how to 

use it for the output feedback structure [56]. Moreover, LMI dimensions can increase

8
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1. INTRODUCTION

rapidly with number of the states and amount of delay in the system which renders 

it an online-computationally demanding scheme [56].

1.3.3 Different M PC Optimizations

All the MPC schemes which have found considerable attention in the industry assume 

either linear or quadratic constraints for the processes under control. The reason is 

that using nonlinear constraints can yield to non-convex and/or nonlinear optimiza

tion problems which then put the computation resources under pressure. Common 

optimizations involve quadratic programming with linear constraints (QPLC) and 

linear programming with linear constraints (LPLC). However, there are instances of 

successful schemes using quadratic programming with quadratic constraints (QPQC) 

[52] albeit at the expense of heavier but tolerable computations. Since quadratic 

constraints, usually in terms of ellipsoids, can fall short in tightly approximating the 

actual constraints on the system, theoretical developments in this thesis has been 

grounded on linear constraints. Furthermore, the scheme proposed in this thesis is 

intended to compensate for delay and base a procedure to address faster applications 

like networked control [92]. Hence, using the quadratic constraints is not advocated.

1.4 Estim ation

There are various estimation/reachability analysis technics using for examples ellip

soids [9, 16, 53, 82], zonotopes [1, 31] and parallelotopes [17] to define a guaranteed 

state estimation. However, each of these approaches has shortcomings when compared 

to the polytopic approach taken here. For example, each step in the estimation by 

ellipsoids requires outer-approximation of the resulting estimation error bound which 

is detrimental to precision of the analysis. Zonotopes and parallelotopes are special 

polytopes and this speciality makes them not as flexible as the general polytopes in

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. INTRODUCTION

estimation of an arbitrary region in the space. A brief comparison is given in [76].

It is known for a while that coupling an stable state estimator and a nominally 

exponentially stable MPC scheme will result in asymptotic closed-loop stability of the 

whole system given the disturbances and noises are decaying overtime [84]. However, 

when the problem deals with the persistent uncertainties in the form of unmeasured 

disturbance input, measurement noise, finding a control scheme to guarantee asymp

totic stability is not possible. The reason is that when the perturbations are persistent 

using an stable estimator can only guarantee a bound on the state estimation error 

and the problem of coupling of such an estimator with a nominally exponentially 

stable MPC scheme does not guarantee even the asymptotically ultimately bounded 

(AUB) stability2. However, it is shown in [60] that by applying invariance theorem 

one can achieve the AUB stability of the closed-loop response.

The idea of set invariance for designing an estimator first published in [24] where 

a method to define a polytopic bound on the estimation error is proposed for the 

systems with disturbance input. In this thesis, the idea in [24] is extended to the case 

where the measurements are contaminated by persistent but polytopically bounded 

noise.

1.5 Structure of Thesis

This thesis is organized as follows:

Chapter 2: Set Invariance and Robust Predictive Control

In Section 2.1, a preliminary definition on the MPC is given in both nominal case and

2Relevant discussion on AUB stability has been included in Section 2.2.4

10
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1. INTRODUCTION

general dual mode scheme. Section 2.2 is dedicated to give preliminaries regarding 

the poly topic objects and their representations. A group of set valued operations and 

tools is also defined and characterized in this section. In particular, Section 2.2.3 is 

devoted to the discussion on the basics of the set invariance in control. The way to 

design and implement the invariance sets under time-invariant linear feedback law as 

well as time-varying controller schemes is also discussed ifi this section. The final sec

tion of Chapter 2 regards to the MPCCIC scheme since it is needed for understanding 

the materials given in Chapter 3.

Chapter 3: R obust Predictive Control w ith A ctuating D elay

The main contribution of this work is squeezed in this chapter. Chapter 3 begins with 

the analysis and design of a error-bounding state estimator which is a extension to 

the work done [24]. It also deals with introducing a linear set propagator which plays 

an important role in compensating for the actuating delay as well as in enlarging 

the domain of attraction of the resulting closed-loop system. The discussion on the 

proposed MPC approach is given in section 3.3. This includes the notes on designing 

various invariant sets like terminal constraint and a new feasibility and stability guar

anteeing constraint set for the proposed MPC model. Section 3.4 is then intended 

to verify the theoretics developed in the previous sections of this chapter via a set of 

illustrative examples.

Chapter 4: Conclusions and future work

This chapter summarizes the contributions made by this thesis and outlines directions 

for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11



Chapter 2 

Set Invariance and Robust 

Predictive Control

In this chapter, first an overview of the model predicitve control methodology is given. 

The basic conceptual definitions are explained and different tools needed to operate on 

sets are characterized. General idea behind the set invariance theory and its relation 

to MPC is also discussed. In particular, The MPCCIC scheme is also introduced to 

provide prerequisites to help assimilate the discussion in the main part of this thesis.

2.1 M odel Predictive Control

Assume a case in which no disturbance is present and exact state information is 

available for control-related computations. Let a system dynamics be summarized as 

the following:

x(k + 1) =  f (x(k) ,u(k) ,w(k)) ,  (2.1)

12
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2. SET INVARIANCE AND ROBUST PREDICTIVE CONTROL

where k is the time step, x  € Rn, u 6 Rm, and w e R "  and /  : Rn x R m x Rn —> Rn 

is general time-invariant continuous function of state x, input u and the disturbance 

input w. It is also assumed that /(•, •, •) possesses a fixed point at origin, i.e. 0n =  

/(0 n, 0m, 0„). The following set memberships are also held

x (E X  3 0n, (2'2)

u e U 3 0m, (2.3)

w 6 W  3 On. (2.4)

where X  is a generic set and U is compact. Model predictive control is a scheme in 

which a nominal copy of plant model (i.e. when w =  0n) known as internal model is

used to predict the future states and inputs of the plant. In this section, a brief dis

cussion is dedicated to the MPC schemes defined for the system (2.1) under different 

conditions.

2.1.1 Nom inal Regulation Problem  for M PC

Consider the dynamics (2.1) where it is assumed that w(k) = Ora,VA: e  Z+. The 

nominal MPC problem can be described by the following procedure:

• At each instant k find the solution to the following constrained optimization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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2. SET INVARIANCE AND ROBUST PREDICTIVE CONTROL

problem:

N - l

u opt = min L(x(k  +  i\k), u(k +  i\k)), (2.5a)
i=0

u  =  [u(k\k)T , u(k + 1|A;)T, . . . ,  u(k + N  — l|fc)T]T, (2.5b)

subject to

x(k\k)  =  x(k),  (2.5c)

x(k + i + l\k) = f (x (k  +  i \k),u(k + i\k),On), (2.5d)

x(k + i \ k ) e X ,  i = 0 , . . . ,  iV — 1, (2.5e)

u{k + i\k) G U, i =  0 , . . . ,  iV — 1, (2.5f)

• Set the actual input u(k) =  u(k\k) and repeat the optimization with updated 

data at next sampling instance.

In the above optimization x(k  +  i\k), u(k +  i\k), i  = 0 , . . . ,  N  — 1 are the MPC’s 

predicted state and predicted control input respectively. They are defined as predicted 

state and predicted input of the system for time step k +  i which are evaluated based 

on the state information at time k, i.e. x(k).  (2.5d) is the M PC’s internal model 

used to do the predictions. L (. , .) is called stage cost function which is a continuous, 

non-negative and time invariant function defined on X  x U.

It is known [56] that due to finite horizon nature of the problem (i.e. when 

N  < oo), optimization (2.5) cannot guarantee feasibility nor stability of closedloop 

dynamics in any sense. The following general scheme is then introduced to get over 

this problem.

14
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2. SET INVARIANCE AND ROBUST PREDICTIVE CONTROL

2.1.2 Dual-m ode M PC (DM M PC) - N eed for Terminal Cost 

and Constraint

Considering (2 .1), a generic DMMPC optimization can be represented by

N - l

uopt — min F(x(k + N\k)) + L(x(k  +  i\k), u(k  +  i\k)), (2.6a)
i=0

u  =  [u(k\k)T, u(k +  1|k )T, . . . ,  u(k + N  — 1|&;)T]T, (2.6b)

subject to

x(k\k) — x(k),  (2 .6c)

x(k + i + l\k) = f ( x ( k  + i\k), u(k +  i\k), 0n), (2 .6d)

x(k  +  i\k) € X,  i — 0 , . . . ,  iV — I, (2.6e)

u(k + i \ k ) e U ,  i = 0 , . . . ,  N  -  I, (2.6f)

u(k  +  i\k) =  g(x(k + i\k)) € U, i > N ,  (2.6g)

x(k  +  i\k) 6 T  C X,  i > N,  (2.6h)

where F(.) is the terminal cost which is a non-negative, time invariant and continuous 

function on X . g(.) is a time invariant function on X  which defines a time-invariant 

state feedback law inside the set T. T  itself is called the terminal constraint.

Remark 2.1: The reason for naming this scheme as dual-mode is caused by the 

fact that for the predicted control inputs with indices higher that that of horizon 

N,  control law switches from MPC law to a fixed control law defined by g(.). In the 

simplest case g(.) can be a linear state feedback law which is will be discussed later 

in this chapter.

Remark 2.2: It had been known (e.g. see [10]) for quite some time that using 

Bellman’s principle of optimality one can use the problem (2.5) with infinite horizon, 

i.e. setting N  =  oo. However, it was not known how to handle constraints with infinite 

horizon since it makes (2.5) an infinte-dimensional problem for which a solution can

15
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2. SET INVARIANCE AND ROBUST PREDICTIVE CONTROL

not be conceived. DMMPC has solved this problem by doing the optimization over 

an iV-tuple trajectory with matrix representation (2.6b) and relegating the rest of 

the problem to time-invariant control law (2.6g) for which a terminal cost F(-) can 

be defined.

2.2 Set Invariance and MPC

Invariance concept in control has been considered relatively early in modern control 

literature (e.g. see [22]) and is proven as a tool both in analysis and synthesis of 

control sysytems [12]. This section is dedicated to relation of set invariance and MPC 

methodology.

2.2.1 Polyhedrons, Polytopes and Their Representations

Definition 2.1 (Closed Half-space): Consider n-dimensional Euclidean space Rn. 

Associated with any constant vector 7r G Rn, n A  0n and a constant 9 G R., there is a 

Closed Half-space defined by

H{ir, 6) = { x e  Rn|7rTx < 9}. (2.7)

Definition 2.2 (Polyhedron): A convex set, A  C  Rn, is called a polyhedron if it 

can be represented by a finite intersection of closed half-spaces.

W'ha
A  =  P |  9i), TCi G Rn, 9i G R

i—1

where ri/ia is the number of half-spaces involved.

Using (2.7), a polyhedron can be represented by its half-space representation of 

the form

A  = {a G W ’IttJ a < 9i, i — 1, . . .  ,nha} = {a G R n |n a  < 0 } , (2.8)

16
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2. SET INVARIANCE AND ROBUST PREDICTIVE CONTROL

where II G Rn'iaXn and 0  G In particular, for a polyhedron A  containing the

origin in its interior A°, a representation (2.8) exists where > 0 , i = 1, . . . ,  n /la[50].

Definition 2.3 (Extreme Point): Consider a convex set A  G Rn. A point a is an 

extreme point of A  if and only if

a G A  : $ai, a,2 G A,  $ A G (0, 1) such that a =  (1 — A)ai +  Aa2.

Intuitively extreme points of a convex set are the corners or vertices of that set. The 

set of all extreme points of A  is called extreme set of A.

Definition 2.4 (Convex Hull): Consider a set of points A  =  {a, G R n, i =

1, . . . ,  n}. The convex hull of A is a set A  represented by

n n

A  — hull(A) =  {a G Rn|3Ct =  {a^, i =  1, . . . ,  n : on > 0, a* =  1} and a ~  eqaj}
t=1 i—1

(2.9)

and is intuitively the minimal convex envelope containing all points in A.

Theorem 2 .1: [79], Consider a convex set A  with a countable extreme set A — 

{a,i G A , i — 1 , . . . ,  nva}. Let also A = {a* G A , i = 1 , . . . ,  n}  be arbitrary. Then A  

has the minimum number of points such that hull(A) = A  if and only if A  =  A.

Proposition 2 .1: Let A be a polyhedron with extreme set A  =  {a;, i = 1, . . . ,  nva}. 

Then A  has also a convex hull representation of the form

A  =  hull(A) =  hull({oi,z =  1, . . .  ,n m}). (2.10)

Remark 2.3: Representations (2.8) and (2.10) are interchangeable. However, as 

the dimension and the number of half-spaces grows finding all vertices of the polyhe

dron which involves a mix of search and linear programming (LP) can become quite 

demanding. The same is also true for finding a numerically robust algorithm which 

can compute the convex hull of a large number of points [21].

17
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Definition 2.5: A set A  G R n is said to be bounded if and only if there exists a 

constant r > 0 such that A  C 93r , where W  =  {x  G Rn : ||x|| <  r} 1.

Definition 2.6 (Polytope): A bounded polyhedron is called a polytope.

Definition 2.7: A polytope A  is said to be symmetric if and only if Va G A, — a G 

A. Briefly shown, A  is symmetric if A  = —A.

Remark 2.4: In order to have a compact and unified representation, a notation 

K n is adopted in this thesis to define all compact and convex sets in Rn. Notice that 

in this sense polytopes in R n are members of Kn.

2.2.2 Basic Set-induced Operations

Definition 2 .8 : Consider a polyhedron A  C Rn with half-space representation 

(2.8). Then affine translation of A  with respect to the translation vector v G RTl is a 

set B C Rn and is defined by

B = v + A  = { b e  Rn|II& < 0  +  Uv}. 

Definition 2.9: Given two polyhedrons

A = { a c  Rn|n xa < © d , B = {b G Rn|II26 < 0 2}, 

their intersection is a set C C Rn with the following representation

(2 .11)

C = A n B c g R"
Ill 0 X

C <

n 2_ 0 2_

Remark 2.5: The matrix concatenation above may yield redundant inequalities. 

These inequalities may strain the computations involving these sets since they cause 

redundant computations. To tackle this problem some methods already are intro

duced to remove such redundancies [15, 42],

can be any vector norm defined in E TI

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Definition 2.10: Let A  G Kn be a polytope and T : Rn —> Rm be a linear transfor

mation. The linear transformation of A  is a set B C  Rm with the following definition

B  =  T(A)  = { b e  Rm|b =  T(a),  Va G A}. (2.12)

When the transformation is written in the form of a matrix in R mxn, m > n, two 

situations might arise which are discussed by the following theorems.

Theorem 2.2 (T G R mxm is invertible [8 , 42]): Assuming A  possesses the repre

sentation (2 .8), the linear transformation of A  can be written as

B = T A  = { b e  Rn|nT_16 <  0}.

Theorem 2.3 (T  G Rmxn, m > n  [42, 69]): Let r  =  rank(T). Then

B = T A = { b c  Rm|T±6 = 0, nTjft < 0}

where rows of T± G R(m~r)xm form a basis for subspace of R,m which is orthogonal to 

the subspace spanned by columns of T  and Tj is any matrix with property T jT  =  Im.

A more elaborated account on these theorems as well as their proofs can be found 

in [42]. As a general alternative to Theorems 2.2 and 2.3, the following theorem 

can be used to address the problem of linear transformation. However, according to 

Remark 2.3, this may cause heavy computations when the number of vertices is large.

Theorem 2.4: [79] Let A  G Kn be a polytope. Assume A — vert(.4) = {ifoi =

1. . . . ,  nva} is the extreme set of A  and T  G R mXn is a linear matrix transformation. 

Then the set B = T(A) is a subset of Km with the set of vertices B  =  {bj, j  =

1. . . .  ,n vb} such that

nvb < nva and Vbj G B, 3fo G A :bj =  Taj.

19
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Theorem 2.5: [79] Consider a countable set of points A  in R n. Let also B  be a

set of points in Rn such that A  C B. Then hull(A) C hull(B).

Definition 2.11: Consider a polytope A  G Kn and a linear matrix transformation 

T  : R” —>• R m. Then, pre-image of A  with respect to T  is defined as

Pre(M) = { x €  Rn|Tx G A}.

Definition 2.12 (Support Function [36, 50, 79]): The support function of a set

d c R 11 calculated at a given direction r; G Rn is defined by

hA(rj) =  sup(7/Ta).

Furthermore, if A  is a polytope with representations (2 .8) and (2 .10), then

Definition 2.13 (Minkowski Addition [36]): Consider A  and B  as two generic sets 

in an Euclidean space. The Minkowski addition of the two sets is described by

C =  A  © B = {c =  a +  b : a G A ,b  G B},

The notation will also be used in order to show the sum operator for this type 

of addition.

Lemma 2 .6: [33] When the operands A  and B  in (2.14) are polyhedrons, their 

Minkowski addition can be computed as per following,

^Aiv) =  niax(?7Ta), a G vert(M). (2.13)
a

(2.14)

C — {c G Rn|c G hull (a +  b), Va G vert(M), V6 G vert (23)}. (2.15)

20
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Remark 2.6: Lemma 2.6 suggests that Minkowski addition can be done through 

finding the vertices of each operand and then, finding all combinations of addition of 

their vertices and taking the hull of the resulting combinations.

The following theorem characterize the relation between support function of the 

sets and their Minkowski addition.

Theorem 2.7: [79] Let A  and B  be two sets with their Minkowski addition defined 

in (2.14). For any direction p G Rn, we have

hc(rj) > hA(rj) +  hB(r]).

Definition 2.14 (Pontryagin Difference [36]): Given two generic sets 4 c R n and 

B  G Kn, the Pontryagin difference or shortly p-difference between A  and B  is defined 

by

C = A ~ B  = {c G R n |c + B C A }

=  r v - » -  (2'i6 >
beB

Theorem 2.8: [50] Let A  and B  be such that their p-difference (2.16) is defined. 

For any direction 77 G R n, we have

hc(v)  < 7) -  M 7?)-

Lemma 2.9: [50] Let A  and B  be sets in Euclidean space such that A  B ^ t b .  

Let B — B\ © B2, then

A  ~  B =  {A ~  Bi) ~  B2. (2.17)

The following lemma shed light on the way with which the p-difference can be

computed for polytopes.

21
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Lemma 2.10: [50] Suppose A  C Rn is a polyhedron with representation (2.8), and 

assume B e  K" is a poly tope for which hs{TTi),i = 1, . . . ,  n ha, then

A  ~  B =  {c G R n|7rfc < Oi -  hB(ni), * =  1, • • •, ^ a }  (2.18)

Definition 2.15 (Hausdorff Metric [14]): The distance between two compact sets

M, B  C  R n can be discribed by Hausdorff metric which is defined as

dh(A, B) =  inf{e > 0|M C Bt and B C  A }

where A e and Bt denote the union of all closed balls of radius e centered at points of

A  and B  respectively.

Proposition 2.2: Let <Bt be a closed ball with radius e centred at origin. Then, 

according to the definition 2.13, in defintion 2.15 we have

A t = A®<B€ and B t = B @ W .

2.2.3 Set Invariance Basics

The following discussion grounds the idea behind the set invariance concept for linear 

discrete-time systems. The concepts given here will be extended in Chapter 3 to 

address the main contribution of this thesis.

Consider the following constrained linear discrete-time system

x(k + 1) =  Ax(k) + Buik)  4- w(k), 

u(k) =  h(x(k)),

y (k ) =  Cx(k).  (2.19)

Here, k e  1A is the time step. x(k) and x(k + l) e  Rn are the current and next states 

of the system. u(k) e  Rm is the current control input and w(k) e  R" is the current

22
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realizaton of the disturbance input. Function h : R ra —> Rm is the feedback control 

law on the perfect state information x  and is assumed to be continuous. y{k) G Rp 

is the system output. Moreover, it is assumed that the matrices A, B,  and C  have 

compatible dimensions. The system is subject to the following constraints,

x e X ,  on e X  (2 .20)

u e u ,  om e u ,  (2.21)

where X  is assumed to be a polyhedron in R n and U G Kn is assumed to be a

polytope. Furthermore, no information is assumed on the disturbance input w(k)

except for a polytopic set membership

w e w ,  0n € W.  (2 .22)

Remark 2.7: Compared to (2.1), the state evolution in (2.19) can be found by 

setting f (x (k) ,u(k) ,w(k) )  =  Ax(k) + Bu(k)  +  w(k). Also here, A is a polyhedron 

and U is a polytope which results in a more restricted condition.

For the system (2.19), basic invariant sets under different control laws are discussed 

in the sequel. A more general discussion for the case of nonlinear feedback law, h(-), 

can be found in [42, 43].

Invariant Sets under Linear Time-invariant State Feedback, h(x) =  K x  

Let in (2.19) the control law be defined by,

u(k) =  h(x) =  Kx(k) ,  (2.23)

then

x(k + l) = {A + B K )x { k ) +w {k ) ,  (2.24)

where it is assumed that K  is such that the matrix $  =  A + B K  is stable, i.e. all its 

eigenvalues lie inside the unit circle.

23
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Definition 2.16 (Input Admissible Set [43]): For the system (2.19), a set Xad Q X  

is called input admissible under the linear state feedback law (2.23) if and only if

Xad = {x : x e  X , K x  G U}. (2.25)

Definition 2.17 (Positively Disturbance Invariant(PDI) Set [49, 50]): For the sys

tem (2.19), a set T  is called PDI under linear time-invariant state feedback if and 

only if for a time step k0, we have

Vx(fc0) € T  and Vw(k) G W, x(k)  G T  and u(k) = K x ( k ) G U. Vk > k0. (2.26)

Proposition 2.3: If T  is a PDI set then by the condition (2.26) we have T  C Xad. 

Proposition 2.4: T  is a PDI set if the following condition is satisfied:

(A  +  B K ) T  C T ~ W ,  T C  Xad. (2.27)

Remark 2.8: PDI set can be defined for any general nonlinear but time-invariant 

feedback law [42]. However, in this thesis PDI set alludes to linear state feedback law

(2.23).

Invariant Sets under Affine Feedback, h(x) — K x  +  q 

Consider (2.19) with the control law defined by

u(k) =  K x ( k ) +  q(k), (2.28)

where q(k) is a residual computed via a control law other than state feedback so as 

to give more flexibility in controlling (2.19). Then, (2.19), can be written as

x(k + l) =  (A + BK)x(k)  + Bq(k )+w(k) ,  k >  0. (2.29)

Definition 2.18 (Robustly Stabilizable Set [7, 43]): Assume (2.29) admits a PDI 

set T  under linear state feedback law, i.e. when q(k) — 0m. Then, a set S m { X , T )  C

24
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X,  is called M-step robustly stabilizable set for (2.29) if and only if it contains all 

states in X  for which there exists a time-varying feedback control law (2.28) which 

produces an input trajectory {u(k) — K x ( k ) +  q(k)}^lo1 which satisfies the input 

constraint (2.21) and drives the system state to T  in M  steps or less, while keeping 

the evolution (2.29) inside the state constraint X.  Mathematically speaking, this is 

equivalent to say

S M(X, T)  =  {z(0) € R"|3{u(fc) =  Kx(k)  + q(k) e  U}%r0\  3 N  < M  :

{x{k) e  X } ^ - Q\ { x { k )  € T}%LN,V{w(k)  € W jjlo 1} 'I2-30)

Proposition 2.5: The following condition is true for stabilizable sets. For any 

positive integer N ,

S N{ X , T)  D S n _i ( X , T )  D . . .  D S x{ X , T )  D S 0( X , T ) = T .

In this manuscript, the arguments ( X , T )  may be excluded for brevity whenever 

it does not cause confusion.

2.2.4 Predicitve Control w ith Contractive Invariance Con

straint

MPCCIC scheme is a variant of DMMPC. Because the controller scheme which is 

going to be proposed in this thesis is infact inspired by model predicitve control with 

contractive invariance constraint (MPCCIC) [18], here a brief section is dedicated to 

its background. Beforehand, the following definition is in order.

Definition 2.19 (Asymptotically Ultimately Bounded Stability [11, 60]): Consider 

a system resulting from (2.19) by omitting constraints (2.20) and (2.21) and u = 0. 

This system is called asymptotically ultimately bounded(AUB) if the system evolves 

asymptotically to a bounded set, i.e. there are finite constants /?, 7 > 0 such that
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the following condition is satisfied.

Va £ (0 , 7 ), 3k* > 0 : ||x(0)|| < a => ||a:(fc)|| <  /3, VA: >  k*

where ||.|| can be any vector norm.

To give a definition for the case in which u ^ O  and constraints (2.20) and (2.21) 

are present the following proposition is given.

Definition 2.20: The system (2.19) is said to be AUB stabilizable if there exists 

an initial state s(0) £ X  and an infinite input trajectory {u{k) £ which

can satisfy the following conditions disregarding all possible disturbance trajectories 

{w{k) £ W}£°=0:

(i) x(k ) £ X,  k =  0 , . . . ,  0 0 .

(ii) 3k* > 0 such that for all k > k*, ||:z(/c)|| < (3, ft > 0 is such that ||x|| < fi =7 

x C X.

The set of all initial states which admit an admissible input trajectory to guarantee 

these two conditions is called AUB stabilizable set.

M PCCIC definition

Here, a variant of MPC which is then extended in this thesis to form the main 

contribution is discussed. If the quadratic stage cost and terminal cost is considered 

and an affine control law (2.28) is assumed, the MPCCIC scheme at time step k can 

be implemented by a quadratic programming with linear constraints (QPLC) over a 

predicted auxiliary input trajectory {q(k +  i l k ) } ^ 1 where N  is the control horizon:
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• Having the perfect state information x(k),  solve

qop = arg n u n J(N ),

,  JV -l

J(N)  — < x T(k +  N\k)Px(k  +  N\k) + ^  [xT(k + i \k)Qx(k + i\k)+
 ̂ i=0

qT(k + i \k)Rq(k + i\k)] j, (2.31a) 

q  =  [qT(k\k), . . . ,  qT(k + N  -  l\k)]T, (2.31b)

subject to

x(k\k) = x(k),  (2.31c)

x(k + i + l\k) = Ax(k + i\k) + B u(k + i\k ), (2.31d)

u(k + i\k) =  Kx ( k  + i\k) + q(k + i \ k ) e U ,  (2.31e)

x(k + i \ k ) e X ,  (2.31f)

x(k  +  N\k)  G T , or q(k + i\k) =  0m, i > N ,  (2-31g)

x(k + l\k) e  Scon C X,  (2.31h)

P >  0, Q > 0, R >  0, (2.31i)

• Put u(k) — K x ( k ) +  q(k\k) and repeat the optimization at th  next time step.

In this procedure,q is the matrix representation of the predicted auxiliary input tra

jectory. T  is the terminal constraint and assumed to be PDI under state feedback

(2.23). (2.31i) simply means matrices P  and Q are positively semidefinite and R  

is assumed positively definite. This assures that the stage cost and cost satisfy the 

reuirements discussed in Section 2 .1.1. S con is called contractive invariance constraint 

which involves a contraction of a proper stabilizable set defined in(2.30) and is cal

culated by the following algorithm:

Algorithm 2.1: At each time instant k, considering x(k) as the true plant state
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2. SET INVARIANCE AND ROBUST PREDICTIVE CONTROL

1. Check if x(k)  G <Syv, where N  is considered the smallest integer which makes 

this condition true.

2. Impose an constraint on MPC which makes x(k + 1) G <Sjv-i true. By (2.29) 

this can be written in terms of the MPC predicted state (2.31d) which is the 

same as (2.29) but with no disturbances w(k)  G W,he.

x{k  -p l|fc) G <Sjv-i ~  W x{k -\-1) G <Sjv—i ^  S con — <Sjv_i ~  W. (2.32)

Remark 2.9: AUB stability of the MPCCIC scheme comes from the fact that each 

stabilizable set Si, i =  0 , . . . ,  N  — 1 satisfied the AUB condition in Proposition 2.20. 

See [60] for the relevant but scattered discussion and proof.
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Chapter 3 

Robust Predictive Control with 

Actuating Delay

This chapter embraces the major contribution and results of this thesis. It starts 

with the problem formulation. Then using a combination of disturbance invariance 

concept [24] and the set-membership membership estimation [82] an estimator is 

designed which guarantees a polytopic bound on the estimation error. Later, this 

bound is used in designing an output feedback MPC scheme which together with the 

proposed estimator guarantees the AUB stability. More improvements are given by 

considering the observer dynamics and a correlation between the uncertainties. The 

proposed scheme also compensates for the delay in the control input.

3.1 Problem  Formulation

First, let us introduce two new notations.

29
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3. ROBUST PREDICTIVE CONTROL WITH ACTUATING DELAY

Definition 3.1: Consider a polytope A  G Rn and a trajectory {a(k) G A}^L0. 

Then a time-stamped polytope A(k)  G Rn is a set such that Yk  G Z + :

• It is shape-wise time-invariant, i.e. A(k) = A.

• Only a(k) G A(k).

Definition 3.2: Consider a trajectory {u(&)}fcL0. Then, a polytope denoted by 

A t(k) with k and t as integers and t <  fc, refers to a polytope computed at time t 

such that it defines a set at time k: At{k) 3 a(k).

3.1.1 System  specifications

Consider a system described by

x{k + l) =  Ax(k) + B u(k — t )  +  w(k),

ym(k) =  Cx(k) + v(k). (3.1)

where x £ R n is the plant state and u G R m is a retarded control input vector with 

a finite delay described by r  G Z+. yrn G Rp is the measurement output which is 

contaminated by the noise signal v G Rp. The following set of assumptions are made 

on the system (3.1).

Assumption 1: Polyhedral constraints on the input and state of the system are 

assumed by

u e U  G Km, x e X c W 1 (3.2)

where 0„ G X  and 0m G U.

Assumption 2: Disturbance input and measurement noise admit the following set 

memberships

w{k) G W(fc) G Kn, v(k) G V(fc) G Kp, (3.3)

where W(k)  and V(k)  are symmetric polytopes time-stamped as per Definition 3.1.
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3. ROBUST PREDICTIVE CONTROL WITH ACTUATING DELAY

Assumption 3: If r  =  0, then the resulting system is controllable and observable 

following the general definitions of these terms [71].

Assumption 4: A Luenberger linear estimator is coupled with ym to make an

estimate x(k)  of the actual state x(k).  The estimator dynamics can be defined by

x(k  +  1) =  Ax(k) + Bu(k — t ) + L(ym(k) — Cx(k))  (3.4)

in which L G Rpxn is called the estimator gain. Moreover, it is primarily assumed 

that the estimator is stable, i.e. the matrix 4/ =  A  — LC  has spectral radius p(ff?) 

less than 1.

Assumption 5: At time step k the following trajectory of the system

{ u ( k - r  + i) G U y ^ l  (3.5)

is assumed to be known.

Assumption 6 : Let the initial input trajectory be defined by setting k = 0 in (3.5). 

It is assumed tha t this trajectory along with the initial state a:(0) make an admissible 

set of initial conditions, i.e they satisfy the following requirement,

x ( t ) G A, V{w(i) G W }tn o1, (3.6)

where by iterating state  equation in (3.1), we have
T —1 T—1

x ( t )  =  A rx{0) +  A T~l~iB u (—T +  i) +  Y  A ^ ^ w i f ) .  (3.7)
i —0 i—0

Remark 3.1: In the sequel, Assumptions 1-6 are implied whenever (3.1) is refer

enced. Any exception will be stated.

3.1.2 Requirem ents

General Synthesis Problem: Devise a new MPCCIC scheme which together with the 

estimator (3.4) ensures the followings.
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3. ROBUST PREDICTIVE CONTROL WITH ACTUATING DELAY

•  Guarantees the AUB stability of the closed-loop against the estimation error, 

disturbance input, and measurement noise.

• Compensates for the actuating delay, i.e. makes the closed-loop response behave 

as if r  =  0 .

•  Respects the constraints in Assumption 1 for all-time, given Assumptions 2-6 

are given.

The above problem can be described with three inter-connected smaller problems: 

Estimation, delay compensation and control.

Let the estimation error be defined by

e(k) =  x(k) — x(k), k £ Z +.

Then the estimation error admits the following dynamics,

e(k +  1) =  'f'e(fc) +  w(k) — Lv(k).  (3.8)

Estimation Problem; Consider the system (3.3) with the corresponding state esti

mator (3.4). The aim is to design L  such that for a given symmetrically polytopic 

estimation error bound denoted by S  £ Kn the following condition is satisfied,

e(k0) £ £, for some k a > 0 = >  e(k) £ £,Vfc >  k0. (3.9)

Delay Compensation Problem: In order to compensate for the actuating delay r , a 

method should be specified to provide an estimate of the system state x (k ) at the 

earlier time k — r.

Lemma 3.1: Consider the state evolution (3.1) at time k —r  which can be described

by

x(k  — t + 1) =  Ax(k  — r)  +  B u(k — 2 r) +  w(k — r). (3.10)
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3. ROBUST PREDICTIVE CONTROL WITH ACTUATING DELAY

Let x(k — t ) be the estimate of x(k  — r)  computed by estimator (3.4). Then an 

advanced estimate of x (k ) calculated at time k — r  and its corresponding advanced 

estimation error can be characterized by the following set of propagations

T — 1

Xk~T(k) — A Tx(k — t ) +  ^  AT~1~lB u(k  — 2r  +  i), (3.11)
i=0

efe_T(fc) =  x(k) -  x k- T(k) G Sk- T{k), k G Z +,
T — 1

4 -r(* 0  =  A TS ( k - r )©  A T~1~iW (k  — r  + i). (3.12)
i=0

Proof. Iterating (3.10) gives

r — 1 r — 1

x(k) = A Tx(k  -  r)  +  ^  A T~1~lBu(k - 2 t + i) + ^  AT~l~lw{k -  r  + i). (3.13)
i=0 j=0

Now comparing (3.11) and (3.13) yields the following advanced estimation error

T — 1

ik~T(k) = A Te(k — r)  +  A T~1~tw(k — r  + i). (3.14)
i=0

The actual values of {w(k — r  +  i)}[=701 and e(k — r )  are not known to compute (3.14). 

A set containing all realizations of (3.14) can be defined by

Sk- T{k) =  {ek- r (k) is evaluated by (3.14) V{w(k—r+i)  G W } ]^1 and Ve(k—r)  G £}.  

Using Definition 2.13, (3.12) is derived. □

Proposition 3.1: Let a control input calculated according to x k- T(k) in (3.20) be 

denoted by uk~r (k). Then setting

u(k -  t ) =  uk- T{k) =  h(xk-Ak) ) ,  (3.15)

defines a delay compensating control law1.

lrThe function h  : It" —> Rm can be a time varying control law which is specifically defined later 

in Section 3.3.1.
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3. ROBUST PREDICTIVE CONTROL WITH ACTUATING DELAY

Proof. Inserting (3.15) into (3.1) yields to the following expression.

x(k  +  1) =  Ax(k)  +  Bh(xk~T{k)) +  w(k)

which clearly shows that x(k  +  1) is depended upon information on time step k 

only. □

Proposition 3.2: Since (3.12) consists of Minkowski addition of shapewise time- 

invariant sets also is Sk-T(k) and £k- r {k) = £, V7c. We then have

T — 1

£ = AT£ ®  0 ^ - ! - ^ .  (3.16)
i = 0

Definition 3.3: The set £  is called advanced estimation error (AEE) set.

Control Problem: Define a new MPCCIC scheme such that, given Assumption 6 is 

satisfied, guarantees that the closed-loop response regulates to origin and respects the 

constraints defined in Assumption 1. This feature should be invariant of the adverse 

effect of uncertainties in Assumption 2 and AEE set(3.16). The control problem can 

be solved by

• defining an invariant terminal constraint set for the new MPCCIC to assure 

ultimate boundedness of response (steady state requirement).

• finding a feasibility region in X  for any point of which new MPCCIC scheme 

guarantees convergence to the invariant terminal constraint set in less than or 

equal N  time steps (transient response requirement).

The system setup is shown in Fig.3.1. It is worth noting that by feeding the 

control with the advanced estimation (3.11), it is actually possible to split the plant 

into a delay-free part and a part consisting of delay units only. Also note that at each 

instant k — r  the MPC optimization is finding u(k) =  uk- T(k). At time k — r ,  this 

input has not yet been applied to the plant.
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3. ROBUST PREDICTIVE CONTROL WITH ACTUATING DELAY

Plant

U A -2r+ i ( f r   2T  +  1)

y„,(& ~ T -  1)

Error
Bound

MPCPropagatorObserver

Figure 3.1: Problem formulation

3.2 Error Bounding Estimator

At each instant, the only information available for state estimation are the current 

input, measured output and the bounds (3.3). In order to have a well defined struc

ture, it is imperative to guarantee a predefined set bound in (3.9) on the estimation 

error.

Proposition 3.3: Associated with a predefined error bound set in (3.9), and the 

uncertainties defined in Assumption 2, there exists a C C R nXp which, if not empty, 

contains the admissible estimator gains which solve the estimation problem in Section 

3.1.2. Such a set is defined as

£  =  { i G  R nxp|t t£  C £  ~  >V, W  =  W  0  L V ] , (3.17)
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3. ROBUST PREDICTIVE CONTROL WITH ACTUATING DELAY

Proof. Consider the estimation error dynamics (3.8). Define w(k) — w(k) — Lv(k).  

Then estimation problem in Section 3.1.2 implies that given e(k) G £  for some integer 

k, the outcome of the following condition should be true

e(k +  1) =  Te(fc) +  w(k) G £, Vw(k) G W, Vu(fc) G V.

However, by Definition 2.13 , this implies that e(k + 1) G <?, Vw(k) G W,  where 

VV =  W © ( -LV) .  By symmetry of V, we arrive at (3.17). □

Proposition 3.4: Consider the system (3.1). Assume 8  is a symmetric poly tope 

such that

8 = {e G R n|rj[e < & > 0, i = 0, . . .  ,n he} ,

where rji ^  0n. Let also the set of vertices of 8 be known and be defined as

vert(£) =  {e.j G Rn, j  =  1, . . .  ,n ve}.

Then by Lemmas 2.9 and 2.10 it is possible to have the following alternative for

(3.17).

C =  \ l  G R nXp\r{['fyej < & -  m_ax(rj[wk) -  max(—rj[Lve),wk G v e rt(W ),^  G vert(V),L Wk Vg

Vi =  1,..  . , n he, j  -  1, . . .  , nvey  (3.18)

Remark 3.2: Note that in (3.18) there is a maximization over a phrase which 

involves the unknown variable L. Implementing this maximization is not possible. 

To get over this problem let us introduce the following lemma.

Lemma 3.2: labelestlemThe following definition of C is equivalent to one in (3.18),

C =  ( l  G Rnxp|ri f ^ e j  -  r]jLve <  & -  max(r{[wk),wk G vert(W ),
t Wk

Vi =  1, . . . ,  ri/je, j  = 1 , . . . ,  nve) It =  1, . . . ,  nvv j-. (3.19) 

where nvv is the number of vertices of the measurement noise set V.
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3. ROBUST PREDICTIVE CONTROL WITH ACTUATING DELAY

Proof. By symmetry of V, we have — max(—rjf Lvg) — maxfqjLvf) .  This implies that
ve ve

(3.18) can be rewritten as

£  =  \ l  G R nyp\r]f ̂ Je:i — max(r/fLvf) < £  -  max(r)f wk) ,wk G vert(W ), ty € vert(V),
I  V£ Wk

\/i 1, . . . , Tlhe  j j  == 11 • • ■ j ^ •

Also we have

V?7j G R n, max(rj[ Lve) G V, where V  = {ae : a£ =  r^ L x u fii  =  1 , . . . ,  nvv}. 
w

The proof is complete if it is noted that for all i , j  defined in (3.19), the following 

condition is held,
Tiyv
f W ^ .  & ~ ra&xfqjwk)) = 'H(rjf^ej -  max(rjfLvt ), & -  max(rjfwk)).
1 ^ w k V£ w k

□

3.3 M PC Structure

3.3.1 Correlation None-observant M PC (C N O M PC )

In order to keep the true plant state x(k)  inside the state constraint (3.2) using this 

imperfect information, an effective control algorithm should be able to handle the 

effect of the AEE set (3.12). Using (3.11) this can be implemented in part and in 

terms of set operations by

x k~T(k) e  Xsh =  X  ~  S  => x(k) e  A, (3.20)

which would be the first shot on properly defining the MPC optimization constraints.

The M PC  O ptim ization Problem  P(N)

Define kT = k — r . The proposed MPC optimization to be solved can be described 

by the following
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3. ROBUST PREDICTIVE CONTROL WITH ACTUATING DELAY

(i) Solve at each time instant kT,

q op =  arg min | x T(fc +  N\kr)Px{k  +  N\kr) +

N - 1

[xT(k + i\kT)Qx(k  4- i\kT)+
»=o

qT(k + i\kT)Rq(k + i\kT)] j , (3.21a)

q =  [qT(k\kT) , . . . , q T(k + N - l \ k T)]T, (3.21b)

subject to

x(k\kT) — x k- T(k), (3.21c)

x(k + i +  l \kT) =  Ax(k + i\kT) + B u(k + i\kT), (3.21d)

u(k + i\kT) = Kx ( k  + i\kT) + q(k + i\kT) e U ,  (3.21e)

x(k  +  i\kT) G X„h, as per (3.20) (3.21f)

x(k  +  iVj/cT) G T , or q(k + i\kT) =  0TO, i > N,  (3.21g)

x(k  +  1|kT) G Scon C Xshi (3.21h)

P >  0, Q > 0, R >  0. (3.21i)

where T  is the terminal constraint and S con is a contractive constraint which 

should be designed in order to ensure feasibility of the problem for all time steps 

later than the optimization time kT.

(ii) Apply

u(k) = h(xk-T{k)) = u(k\kT) =  Kx(k \kT) +  qop{k\kT). (3.22)

Like Section (2.1.1), MPC predictions can be defined as follows. x(k  +  i\kT),u(k +

i\kT) and q(k + i\kT) are the M PC’s predicted state, predicted control input and

predicted auxiliary input for time k + i which are calculated based on information at 

the optimization time kT. It is assumed that $  =  A + B K  is a stable matrix and P
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3. ROBUST PREDICTIVE CONTROL WITH ACTUATING DELAY

can for example be the solution to a discrete Lyapunov equation, i.e.

P  : <&P<&T — P  + Q = 0nxn.

Since the MPC internal model (3.21g) is nominal, its decision making can become 

completely wrong for the plant. To tackle this problem it is wise to consider the 

deviation between MPC model trajectory and the that of the plant. Inserting (3.14) 

into (3.1) and considering i £  Z+ yields

i —1

x(k  +  i) = &x(k)  -  ^ ~ ^ j B K e k^T+j(k + j)
3=0

i —1 i —1

+  + j \kT) +  &~l~j w{k +  j).  (3.23)
j=0 j=o

Definition 3.4: The point-wise differences between trajectories (3.23) and those 

obtained by recurring (3.2Id), can be characterized by

d(k + i\kT) =  x(k  +  i) — x(k + i\kT),i  > 0 .

They are called predicted deviations (PD) and can be presented by

i—1 i —1

d(k + i\kr ) =  & ~ l A ek-r (k )  -  Y ,  & ~ l - j B K e k„T+j(k +  j )  +  Y  + j),
j=1 j -o

d(k) =  efc_T(fc). (3.24)

Since (3.24) involves unknown entities, the set terminology is utilized to define a set 

bound on each PD realization, i.e.

d(k +  i\kT) 6 V( k  +  i\kT),
i—l i—1

V(k  + i\kr) =  & - 1A£k- T( k ) @ Q ) & - 1- j B K £ k-.T+j(k + j)  © ®  $ <- 1-^W(fc + j ) ,
j=1 j - 0

X>(fc|fcr ) = 4 - r ( f c ) .  (3.25)
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3. ROBUST PREDICTIVE CONTROL WITH ACTUATING DELAY

Remark 3.3: Using time invariance in (3.3), and slight abuse of notation an equiv

alent form of (3.25) can be introduced where the dependency on time k is removed. 

For i e  Z+ ,

i —1 i —1

V (i)  =  ¥ - 1A S @ Q ) ¥ - 1- j B K £ @ Q ) ¥ - 1- j W ,
j = 1 j - o

V(0) = S. (3.26)

where the minus sign is removed from the summand involving £  due to the fact that

£  is a result of Minkowski addition of individually symmetric sets.

Remark 3.4: The PD bound sets admit the following linear dynamics, i.e.

V{i + l) = $ V ( i)@ B K £ @ W .  (3.27)

After discussing the MPC dynamics, we now are ready to give explanation on 

the procedures needed to design terminal and contractive constraints which make the 

whole closed-loop AUB stable.

Terminal Constraint T

• General setup

In order to have an acceptable closed-loop behavior under the linear control we should 

guarantee

x(k  +  l) G Xadi i c

where Xad is defined in (2.25). Translation of this condition to its equivalent for the 

MPC’s predicted states gives,

Vfc, x(k  +  i) c= Xad —> x(k + i\kT) £ Xad ~  V (k  + i\kT), i G Z +.
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3. ROBUST PREDICTIVE CONTROL WITH ACTUATING DELAY

where by (3.21g) x(k  +  i\kT) = &lx(k\kT) ,i  6  Z+. The set T  can be characterized as 

follows
OO

r  =  P i  Qi, (3.28a)
i = 0

Qi = {x £ R n\¥ x  £ Xad~ V { k  + i\kT)}. (3.28b)

The analysis can be done by first introducing the following lemma which is a direct 

extension to the Theorem 4.1 in [50].

Lemma 3.3: Assume $  is asymptotically stable. Consider (3.25). There exists a 

compact set, V  c R n such that Vfc, lim^oo V (k  +  i\kT) = V , i.e.

3e > 0 and i* £ Z + : dh(V ,V (k  +  i*\kT)) < e.

A  proof can be find in [50].

As discussed in the Chapter 1, for computational purposes [81], it is of interest to

find a terminal constraint which is not empty and is bigger than just the origin {0}.

To this end, let us introduce a new notation.

Definition 3.5: Consider a generic set A  € R", then

and A  A  {0ra}.

Similarly,

A  = $ &  A  \ A  = $ ox A  = {0n}.

Theorem 3.4: T  ^  0 if and only if Vi 6 lA ,V { k  + i\kT) C Xad and also V  C Xad, 

where V  =  limi_>00X>(fc +  i|fcT), Vfc.

Proof. The necessity follows by noting that if

3i € Z+ : V{k  +  i\kT) (£ Xad => Xad ~  V (k  +  i|fcT) =  0,
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This plus (3.28b) gives T  = 0. Also V  (t Xad contradicts the invariance of T  if it is 

assumed that T  ^  {0„}.

On the other hand, if V ,V (k  + i\kT) C  Xad,i  £ Z + then by (3.28b) £ Z+ : Qi == 0.

Extending this to the limit gives T  ^ 0. □

Although above theorem gives a necessary and sufficient condition for existence 

of T  it does not give a practical tool to test it. The following discussion is intended 

to address this issue.

Theorem 3.5: Consider Xad and S C  Xad. Then T  ^  0 exists if a small positive 

real number 5 > 0 exists such that Xad is a PDI set with respect to the effective 

disturbance

VV = B K S  © W ® f8 a.

Proof. If Xad is PDI, by definition (2.27) it can be said that

§Xad Q Xad ~  VV.

If the initial deviation V {k\kr) — E C  Xad, then by (2.17) and (3.27)

$ V (k \kT) C  Xaj ~  B K S  -  W -  Q35 => V (k  + l\kT) C  Xad -  OS'5 c  Aad.

Continuing this way leads to

V (k  + i\kT) c  Aad~ f B 5, i G Z +

and V  C  Xad ~  fB5 C Xad. By Theorem 3.4 T  ^ 0  exists and proof is complete. □

Remark 3.5: The condition which has been set by Theorem 3.5 might be very 

tight in many circumstances. In fact, there are many situations in which one can 

find a prestabilizing feedback gain K  which does not meet this condition whereas it 

can define a PDI terminal constraint by using the procedure (3.28). This issue will 

become clear later by illustrative examples.
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• Finite Determinedness

One of the most important conditions which should be satisfied in order to make 

the construction (3.28) implementable is the finite determinedness of the set T , i.e. 

existence of an index i* E Z + :

r = n&.
i=o

i* is called determinedness index [30] and ensures the procedure for computing ter

minal constraint T  takes finite number of iterations.

Theorem 3.6: Assuming Xad is a compact set and T  ^  0 exists, then

(i) Qi, i G Z + , are also compact.

(ii) 3i* E Z+ : %. = T . where =  f |- l0 &■

Proof. The proof of (i) comes naturally from (3.28) and compactness of Xad since 

(3.28) involves linear transformation and set intersection which preserves the com

pactness. To prove (ii), we know

Vfc, Ve > 0, 3i G Z + :

dh(Xad ~  D, Xad ~  P{k  +  i\kr)) < e, Vi >  i.

Let us define an outer/inner-approximation of the sets Qi, V?' >  i respectively by

Qi = {x  G Rn|$fic G X ^ } , X ^  =  Xad ~  V  © <8 e,

Q . =  {£  G R n\& x  G Xad}, Xad =  X a d ~ V ~  © e.

Two issues should be cleared here:

• By Theorem 3.4, Xad ~  P  ^  0 and by definition (AA; ~  V)° 3 0n , hence 

if Xad ~  V  #  0 =f> 3e > 0 : f  0.

In this discussion assume e satisfies such a property.
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• By p-difference and Minkowski addition properties [36] XfL 3 0n, X°d 3 0n 

which implies

BA G (0,1) : \ X ^  C  Xad-

Now assume the spectral radius of $  be denoted by p < 1, then for an arbitrary 

convex and compact shape C G K" [37]

3fi G [1 oo) : W G Z, ¥ C  C  RpeC.

Now 3£* : W > £*, p,pe < A, then it is trivial to show that W > I* :

Qi+e => =  e  Xad} d Qi D Qi-

By (3.28a) this is tantamount to %+i = Ti+i+i and by construction %+e =  T . This 

proves that i* = i + 1  is a determinedness index (though might not minimal) for T , 

hence, T  is finitely determined. □

Contractive Invariance Constraint

To implement (3.21h) at time instant kT =  k — r  it is necessary to find a contractive 

constraint for x(k  + l\kT) in such a way that the initial condition of MPC optimization 

at the next step x[k + l\kT + 1) still falls inside the feasible region of the optimization. 

This guarantees the feasibility of optimization in future or all-time feasibility. The 

following theorem helps in addressing this problem.

Theorem 3.7: Consider the set A  G Kn. Suppose the aim is to find a contraction 

Aeon — cont(,4) such that x{k + 1|kT) G A con implies x(k  4- l|fcT +  1) G A , then

cont(^) =  A  © V (k\kT) ~  V (k  + l\kT) (3.29)

is such a contraction.

Proof. Suppose x(k  + 1|kT + 1) G A  then by (3.25) it is true that

x(k  +  1) — x(k + l\k T +  1) G V{k\kT) =4 x(k  +  1) G A  © V{k\kT) (3.30)
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On the other hand, (3.25) suggests x(k + 1) — x(k + l\kT) G V (k  + l\kT) which implies 

x(k + 1) G x(k + l\kT) + V (k  + l\kT) . Now (3.30) is true if x(k  + l\kT) + V (k  + l\kT) C 

A  © V{k\kT). This is equal to say

x{k + l\kT) G A ® V { k \k T) ~ V ( k  + l\kT)

and (3.29) is immediate. □

In order to quantify the stabilizable sets for the proposed scheme, let us start from 

the terminal constraint (3.28) and find the sets of initial states x(k\kT) G IRn which can 

be driven to it in 1, . . . ,  M  steps despite the bounded PDs (3.25). Let S i ( X sh, T )  Q 

X sh, i =  0 , . . . ,  M  denote such sets and call them deviation-robust stabilizable (DRS)

sets. It is assumed that So(Xsh,T )  =  T . In order to characterize these sets the

following definition is delivered.

Definition 3.6 (Deviation-Robust One-Step (DROS) Set): Consider system (3.1) 

with constraints and uncertainties (3.2) and (3.3), respectively. Given a compact set 

A  C XSh, Q{A) is called a DROS set, if

Q{A) =  {x(/u|/cT) G Tjhldu G IA \ x{k +  1|kT +  1) G «A}.

By (3.29),

Q(A) =  {x(k\kT) G Xsh\3u G U : x(k  + 1|kT) G cont(^l)}. (3.31)

Equation (3.31) implies

S i+i ( X Sh, T )  =  Q { S i ( X sh, T)), i = 0 , . . . , M .

By (3.21d),

Si+i(X sh,T )  = {x(k\kT) G Xsh\3u(k\kT) G U :

A x(k\kT) +  B u(k\kT) G cont(<Sj(A’s/l,T))}.(3.32)
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Proposition 3.5: Equation (3.32), can be rewritten as

Si+i(Xsh, T )  =  XSh H Pre(cont(Si(Xsh, T)) © ~BU ). 

where the pre-image is taken with respect to A  (see Definition 2.11).

Proof. The necessity of intersection with Xsh is obvious from the first condition in 

(3.32). The second condition implies that Ax(k\kT) E  cont(<Si(A'a/l,T  — Bu(k\kr). 

The proof is immediate. □

Now the following algorithm gives the procedure to compute the DRS sets:

Algorithm 3.1 (Construction of DRS sets): The stabilizable sets, then can be 

characterized by the following recursions.

So =  T,

<S)+i =  Xsh Pi Pre (cont (Si) © -B U ).

Here, arguments (Xsh, T)  are omitted for brevity.

Algorithm 3.2 (Proposed MPC Control): Assume a maximum control horizon N  

and the corresponding problem defined by (3.21a). At each instant k — r,

1. Set M  =  0. If x(k\kT) E  S o  =  T  , set u{k\kT) =  K x(k\kT), else continue.

2 . Set M  = M  + l,

if M  < N ,

•  if x(k\kT) E S m set

*5con  COnt(tSjVT—l)

and run the optimization (3.21a), else go to  step 2.

else run a feasibility recovery algorithm [83] which is not in the scope of this 

thesis.
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3.3.2 Correlation Observant M PC (COM PC)

Consider (3.25). Although for every k the affine control law (3.22) guarantees the 

boundedness of d(k + i\kT), i G Z +, it is still possible for a system with reasonable 

deadtime r , that the PD sets become unnecessarily large, rendering (3.21a) infeasible. 

The cause of this problem is oversight of the fact that (3.25) consists of Minkowski 

addition over expressions sharing the same realizations. For example, assuming r  > 1, 

it is readily seen that using (3.12) the sets £k~T(k) and £fc_T+1(/c +  1) share on the 

phrase W (k — 1). The main problem of ignoring this fact and attempting to make 

Minkowski summations in (3.25) is that the result may become unnecessarily large. 

The following discussion is devoted to give a reason for this phenomena and address 

a design in order to ameliorate its effect.

Theorem 3.8: Let Tx : Rn —> fC and T2 : R n —> R* be two linear transformations. 

Then for arbitrary compact set C c R " ,

(Ti +  T2)C C T]C © T2C. (3.33)

Proof. To be specific to this text, we only prove the case when C is a polyhedron and 

the transformations can be presented by matrices. Let

C — vert(C) =  {q G R n, i =  1, . . . ,  nvc}.

It can be shown [79] that

vert((Tx +  T 2)C) C (Ti +  T 2)vert(C) =  {(Ti +  T 2)q  : % G C},

which implies that during the linear transformation some vertices may be removed. 

On the other hand by Theorem 2.5,

T XC © T 2C =  hull(M),

A  -  {aid G Rn|a ij =  T iCi +  T 2C j,\/iJ  =  1, . . .  ,n vc}.
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Now

vert((T! +  T 2)C) C  A  => hull(vert((T1 +  T2)C) C hull(A) 

which is another explanation of (3.33). □

As a result of this theorem, the aim would be to regroup those phrases in (3.25) 

which are in the form of righthand side of (3.33). Inserting (3.14) and (3.8) into

(3.25), and regrouping those terms which has correlations gives

i —1

d(k + i\kT) =  (<U- 1AT+1 -  -  r)
j=1

i —2 i —2

+ 53($<-2-j'at+1-  J ]  & - 2- er v e- j ) w ( k  -  t  +  j )
j = 0 f c j + l

r

+  A T~^w(k + i — I — r  + j)
1 = 0

i —2 i —2

+ -  r + j).
f = o  i=j

where T =  B K A T. Using set terminology, this can be rewritten as

i —1

v { k  +  i\kT) = ($ <- 1A r+1 -  ^
i=i

i —2 i —2

® ̂ ($ i-2-i'AT+i -  ^  $*-2-^r^“j’)w 
1 = 0  1 = 3 + 1

T

® 0 AT- J'W
i = o
i —2 i —2

® 0 ( ^ V - 2- W ~ j'L)V. (3.34)
1 = 0  1 = 3

Remark 3.6: All the theorems discussed previously in Section 3.3.1 are also appli

cable to PD sets defined by (3.34). In fact, it will be shown via illustrative examples 

that smaller PD sets gives us the ability to apply the results to bigger uncertain

ties/delays. In terms of offline computation of the terminal constraint T  this yield
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usually to smaller determinedness index as opposed to the scheme described previ

ously.

3.4 Illustrative Examples

Consider (3.1) with unstable openloop dynamics

A

Assume uncertainties

1.2 0.5 1
, B =

0 0.7 0.5
C = [ l  0] (3.35)

IMloo <  0.1, IMloo <  0.1

10 -1 0 0 0 \

0
J

0
5

5
5

- 5 /

and the constraints

I M l o o  < 2 , x E hull

It is desired that the estimation error satisfies the condition S  : HelM < 0.5. Let 

K  be the solution to the discrete LQR problem where in (3.21a) Q =  21, R  =  10. 

This gives K  «  [—0.50 — 0.38]. Moreover, using the discrete Lyapunov equation 

P : (A +  B K )P {A  +  B K )t  — P  +  Q =  0nXn. A proper terminal cost weight matrix

3.82 -0.70

-0.70 3.26
for (3.21a) can be found P . Also using (3.19)

C:

0 - 1 0.083

- 1 0
L <

-1.125

1 0 1.250

0 1 0.083

(3.36)

It is allowable to choose any L E C. In this example it is chosen to be the Tcheby- 

chev center of C i.e. L & [1.188 — 0.021]T. Figure 2, shows the estimation error

realizations assuming e(k) =  [0.5 0.5]T E vert(£).
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Figure 3.2: Estimation error trajectory

3.4.1 Sim ulation Based on D P Sets (3.25)

Assume the system suffers from delay r  = 3 and the MPC optimization (3.14) has 

the maximum control horizon N  =  5. Also consider the following initial conditions

x(k) =  [1.1 2 .2]t , u(k) =  ufc_3(/c) =  1,

u(k + 1) =  uk- 2(k +  1) =  - 1, u(k + 2) = uk-i{k  +  2) =  1.

The result of simulations has been depicted in Fig 3.3 and Fig 3.4. Figure 3.3 shows 

both the state response of the plant and the control inputs before and after the MPC 

is utilized. It has also shown via horizontal dashed lines that input constraints have 

been satisfied.

In Fig 3.4, the plant state trajectories x(k+ r), k > 0 and propagated state trajectories 

x k(k +  r)  =  x(k  +  r\kT + r), k > 0 , denoted by plus signs and asterisks, have been 

compared to each other. The two outer sets shown via dashed boundaries present 

the original state constraints X  and Xsk and the invariant sets <S;,0 <  i < 5 have 

been shown via dashed/dotted style. Apart from conversion and ultimate bounded-
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MPC effect

x’
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k
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r
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Figure 3.3: Plant states response for Example 3.4.1, r  =  3, N  — b.

N \

-4

-10 -4
x,

Figure 3.4: Invariant sets, propagated state and true future plant state trajectories 

pertaining to Example 3.4.1.

ness, Fig 3.4 verifies that keeping the propagated states inside the DRS sets is equal 

to keeping the plant states inside the original state constraints defined by (3.2) and 

example data. Note that in Fig 3.4 the DRS sets , <Ss are so close that they cannot
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be discerned. It is also verified that having an admissible initial state the proposed 

algorithm is capable of driving the trajectory inside S q =  T  in less than N  =  5 steps.

3.4.2 Sim ulation Based on D P Sets (3.34)

Figure 3.5 shows the evolutions of DP sets defined by (3.25) and (3.34) for the system. 

It can be seen how the method proposed in Section 3.3.2 has shrunk the PD sets. 

The effect of such an improvement will be bigger upper bounds on delay and/or 

uncertainties. In fact, running the Example 3.4.1 with r  =  4 results in empty terminal 

set which is tantamount to failure in design introduced in Section 3.3.1. However, 

COMPC can tolerate such a delay. Fig 3.6 and Fig 3.7 show the results of simulation 

for COMPC, using the same control horizon as Example 3.4.1 and r  — 4 and the 

following set of initial conditions:

x (k) = [0 3.4]t ,

u(k) =  Uk~i{k) =  1, u(k + 1) =  uks ( k  +  1) =  - 1,

u(k + 2) =  uk- 2(k +  2) =  —1, u(k + 2) = Uk-i(k +  3) =  1.

It is worth noting that comparing Fig 3.7 with Fig 3.4 shows the terminal constraint 

set pertaining to COMPC scheme possess a simpler polytopic shape compared to 

that in Fig 3.4. This is due to the fact that smaller DP sets yield to lower finite 

determinedness index in computing the terminal set which is equal to savings in 

offline computations, though of not much interest.
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Figure 3.5: Comparing the DP sets computed by (3.25)(dashed style) and

(3.34)(dotted style).
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Figure 3.6: Plant states response for Example 3.4.2, r  =  4, N  =  5.
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~ i o -6
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Figure 3.7: Invariant sets, propagated state and true future plant state trajectories 

pertaining to Example 3.4.2.
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Chapter 4

Conclusions and Future Work

The main contributions of this thesis are summarized in this chapter and suggestions 

for possible future directions are outlined.

4.1 Contributions

The central idea of this thesis was to develop an output feedback methodology ad

dressing the control of an input-delay linear system subject to polytopic constraints 

on its input and state. Development of the ideas included some contributions which 

are enumerated as follows.

4.1.1 Estim ator Design

• An error-bounding estimator has been designed which can guarantee a given 

bound by finding a set of all estimator gains in such a way that any gain 

selected inside such a set can guarantee the specified error bound by making it
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a positively disturbance invariant set. It extends the result first given in [24] by 

accommodating measurement noise in the synthesis (Theorem ??).

4.1.2 Controller Design

A novel MPC structure capable of handling the effect of actuating delay, persistent 

uncertainties and imperfect state information is presented. The pertinent contribu

tions are as follows:

•  Development of an optimistic procedure to characterize the future possible de

viations between true system trajectory and that of the MPC internal model 

(Equation (3.25)). This characterization then could be an avail for the rest of 

synthesis development since it guarantees the boundedness of the deviations by 

incorporating the notion of pre-stabilized predictions.

• Giving a procedure to characterize the terminal constraint and cost necessary 

to ensure feasibility and stability of the problem. The sufficient conditions for 

existence of the terminal constraint set are discussed (Theorems 3.4 and 3.5).

•  Giving sufficient conditions for the finite determination of the terminal con

straint sets under mild conditions (Theorem 3.6).

• Defining a new contractive invariance constraint with which the all time con

straint satisfaction (feasibility) as well as stability of the scheme given admissible 

initial conditions is achievable (Theorem 3.7, Algorithms 3.1 and 3.2).

• Making improvement in the basic scheme primarily proposed by incorporating 

the correlation among the different prediction deviation (PD) sets given by

(3.25). This leads to ability to deal with combinations of bigger uncertainties, 

error bounds, and actuating delay (Theorem 3.8 and Equation (3.34)).
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4.2 Future Work

History has shown that controlling the systems with delay in their control input is a 

challenging subject. This is because not many synthesis schemes have been developed 

for the control of such systems and most of the work has been done for the analysis 

of such systems (see e.g. [34]). Here the possible future research directions , though 

not all of them are given to facilitate the future investigation in continuation to the 

work done in this thesis.

•  In [19] a procedure is presented which can address the problem of trajectory 

tracking of piecewise constant references. Although this result is now only valid 

for MPCCIC, it may be extended to CNOMPC or COMPC scheme proposed 

here to give more applications to these scheme .

• It is interesting to consider the statistical information if available. Knowing 

statistical information on the uncertainties give the ability to tailor the current 

work in a way to get better performances, e.q. better steady state performance.

• Although the class of uncertainties addressed here have made a good stride 

on achieving more applicable scheme for real world problems, other cases of 

uncertainties can also be investigated. These cases include but are not limited 

to the structured uncertainties, measured disturbances which includes constant 

disturbance rejection, and modeling errors.

• The last but not the least is the developments for the nonlinear systems. Al

though current research has shown improvements in the softwares to implement 

the nonlinear optimizations and invariance, extending the ideas available for 

linear systems to the nonlinear case demands more investigations. Availabil

ity of such tools can guarantee achieving bigger domain of attractions for the 

closed-loop setup.
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