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Abstract

A series of new phosphinimine compounds have been synthesized to investigate 

the effects o f a pendant heteroatom donor in the ligand framework on the reactivity of the 

resulting cyclopentadienyl-titanium complexes. The phosphinimine ligands (L) of the 

type NP(lBu2 ){(CH2 )3XBn} (X = O, S) were incorporated into the metal complexes 

CpTiCBL and Cp*TiCl2 L. The methyl abstraction of the corresponding dialkyl 

precursors resulted in the first example o f stable cationic titanium phosphinimide 

complexes in solution without the need for an external stabilizing reagent.

Using a reliable polymerization testing protocol, the titanium pre-catalysts were 

tested for ethylene polymerization. While the dihalide precursors showed moderate 

activity with MAO as the co-catalyst, the dialkyl precursors showed good to excellent 

activity with the co-catalysts B(C6Fs) 3  and [Ph3C]+[B(C6 F5)4 ]', with polymerization 

activities ranging from 40 to 4900 g mmol’1 h’1 atm '1. Of the dimethyl pre-catalvsts 

tested, the complex featuring a pendant thioether and the bulkier Cp* ancillary ligand, 

was the most active catalyst upon activation with 2 equivalents of [Ph3C]~[B(C6F5 ]’.

Preliminary polymerization testing of the dialkyl precursors with 2 equivalents of 

[Ph3C]+[B(C6 F5 )4 ]’ showed markedly higher activities at 60 °C. These results show 

promise for thermal stability o f hemilabile phosphinimide systems provided by an 

interaction between the pendant donor and the reactive cationic titanium centre. The 

presence o f  a pendant heteroatom donor m ay stabilize the reactive metal centre at 

elevated temperatures. Indeed, these systems are the first variants of the simple titanium 

phosphinimide catalysts, CpTiMe2 [NP(lBu)3], to show good to excellent activities under
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iv

laboratory conditions. The potential of the pendant donor derivatives has been 

demonstrated and evaluation for commercial use is underway.
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1

Chapter 1 

A Brief History of a-O lefin Polymerization

1.1 The Origin of a-Polyolefins

Thermoplastics remain an integral part o f modern society and have a variety of 

applications including thin film packaging, photographic and magnetic tape, beverage 

and trash containers, wire and cable insulation, and a variety o f automotive parts and 

upholstery.1 One important class of thermoplastics is the polyolefins, which include 

polyethylene, polystyrene and polypropylene. The feedstock petrochemical ethylene can 

by polymerized using a variety o f techniques to give a diverse array of products ranging 

from low-density polyethylene (LDPE) to high-density polyethylene (HDPE), each of 

which offers distinct polymer properties.

LDPE is a highly branched polymer with molecular weights typically in the range 

of 6000 -  40000. LDPE was the first commercially produced polyolefin, and was 

developed in 1939 by Imperial Chemicals Industries (ICI) in England. The process to 

make LDPE involves free-radical polymerization using traces o f oxygen or peroxide as 

the initiator. A drawback to this approach was the necessity for extreme conditions (250 

°C, 3000 atm).1 The high degree o f branching in LDPE reduces the crystallinity o f the 

polymer, giving rise to low density and a low crystalline-melting temperature. Branching 

in the free-radical polymerization process may be reduced through increasing the 

pressure. For example, nearly linear polyethylene may be produced at pressures 

approaching 5000 atm. Obviously, there was a need to produce linear polyethylene 

(HDPE) without the requirement o f extraordinarily high temperatures and pressures.
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Fifteen years after the discovery at ICI, a new way to make HDPE using transition 

metal catalysts was developed. This breakthrough came independently through the work 

of Ziegler and Natta, which led to the development of heterogeneous system capable of 

producing HDPE. ’ The Ziegler-Natta catalysts consist of a mixture o f an early transition 

metal complex with a trialkylaluminum reagent. The best known system, TiCl3 /Et2 AlCl,4 

is highly active at 25 C and 1000 atm. This lies in stark contrast to extreme conditions 

required fo r earlier radical polymerization methods. These catalyst systems, for which 

Ziegler and Natta won the Nobel Prize in 1963, and modem variations still account for 

more than 15 million tons of polyethylene and polypropylene annually.5 Nonetheless, 

such heterogeneous mixtures do have distinct disadvantages. These catalysts operate with 

multiple active sites, making rational catalyst modification for control o f the polymer 

properties arduous at best. The lack of convenient spectroscopic or physical techniques, 

such as NMR or mass spectrometry, to examine the surfaces under catalytic conditions 

also exacerbates the problems of design modification.6 Finally, due to the heterogeneity 

of the system, only the exposed surfaces are reactive, leaving the bulk of the catalyst 

buried and inactive. In this respect, the development o f homogeneous catalysts with a 

well-defined active site would certainly circumvent these drawbacks.

1.2 Homogeneous a-Olefin Polymerization Catalysts

In general terms, a homogeneous olefin polymerization catalyst may be generated 

using a pre-catalyst and a co-catalyst. The pre-catalyst is often a neutral transition metal 

complex of the form LnMRR’ (R,R; = alkyl group). The co-catalyst is commonly a Lewis 

acid that is capable o f activating the pre-catalvst by abstracting an alkyl group (R?) to
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give the cationic transition metal complex [L„MR]+. Examples o f common activators 

include methylalumoxane (MAO), B ^ F s ^ ,  and [Ph3 C]+[B(C6 Fs)4 ]'. Once the cationic 

transition metal has been formed, the anion (i.e. [MeMAO]’, [M eB ^F s^ ]" , [ B ^ F s ^ ] ')  

plays an important role in the polymerization process by serving as the counterion to

7 . . .stabilize th e  metal complex. Furthermore, greater ion pair separations can result in 

higher activities for olefin polymerization, although with typically reduced stability of the 

catalyst.8 It is important to recognize that a transition metal-based homogeneous olefin 

polymerization catalyst is comprised o f the ion pair between the cationic metal complex 

and the counterion.

Well-defined homogenous systems provide key advantages over traditional 

heterogeneous Ziegler-Natta catalysts. For example, mechanistic studies would be greatly 

facilitated with a soluble catalyst o f known composition and a more uniform molecular 

weight distribution would be obtained from a single site catalyst.9 Biscyclopentadienyl 

titanium dichloride-alkylaluminum metallocene complexes, developed in the 1950!s, 

were the first reported examples of homogeneous catalysts upon activation with 

alkylaluminum reagents.910 In their investigation o f the zirconocene Cp2 ZrCl2 activated 

with an alkylaluminum co-catalyst, Sinn and Kaminsky found that the addition of water 

led to catalyst activities rivaling that o f the Ziegler-Natta catalysts.11 Water was found to 

react with the alkylaluminum reagent to form MAO, which was the cause of the dramatic 

improvement in activity. A typical metallocene pre-catalyst is a Group IV metal (Ti, Zr, 

Hf) dichloride complex with two aromatic ligands (Cp. indenyl, fluorenyl). Co-catalysts 

for these systems are organoalumoxanes such as MAO, which acts to alkylate the
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4

dichloride metallocene followed by abstraction o f a methyl anion to give the metallocene 

monomethyl cation (Figure 1.1).

□  = vacant coordination site 

(M = Ti, Zr, Hf)

Figure 1.1 Activation of CP2 MCI2 with MAO

Overall, metallocene catalysts can be a hundred times more active than 

conventional Ziegler-Natta catalysts. For example, the ansa bis(fluorenyl) complex 

(C13H8-C2 H 4 -CI3 H8)ZrCl2 produces 300 tonnes o f PE/g o f Zr-h after activation with a 

cocatalyst.12 A further attractive point is the ability o f metallocenes to act as ‘single-site' 

catalysts to produce polymers with narrow molecular weight distributions. An advantage 

to metallocenes is that the nature of the active site is clearer than heterogeneous Ziegler- 

Natta catalysts and simple modification of the ancillary ligands can tailor these systems 

for maximum activity or tailoring polymer properties. For example, introducing alkyl 

groups on Cp ligands have a positive effect on catalyst activity. Presumably, the 

increased steric bulk on the ancillary ligand results in a better separation between the 

cation and [MeMAO]' to give improved activities.13 Bridging the aromatic ligands to give 

tfm'tf-metallocenes can have dramatic effects on the type of polymer produced. For 

example, the ethylene-bridged [r<7C-Et-[Ind)2]TiCl2 and |raoE t-[Ind]2]ZrC]2 (Ind = 

indenyl) activated with MAO gave the first homogeneous catalysts capable of producing 

isotactic polypropylene (Figure 1.2) . 14' 15

MAO M' MeMAO
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5

isotactic polypropylene

(M = Ti, Zr)

Figure 1.2 Formation o f isotactic propylene using the stereoselective ansa-

metallocene [rac-Et-[Ind]2 ]ZrCl2 pre-catalyst and MAO co-catalyst

Based upon the success o f metallocene chemistry, more recent efforts have been 

made to develop new catalysts that feature non-Cp ligands about Group IV metals. Part 

of this drive has been fuelled by a desire to avoid the ever-growing patent sphere 

encompassing Group IV metallocenes. Although there has been an increase in the 

number o f  publications for Group VIII and Group X metals, nonmetallocene systems 

based on Group IV metals are far more predominant. *6-' 7

The ‘constrained geometry catalysts' (CGC) were the first examples of 

nonmetallocene catalysts utilized on a commercial scale. The CGC ligands were first 

introduced by Bercaw and coworkers, who developed organoscandium olefin 

polymerization catalysts.18 The CGC ‘half sandwich' ligand incorporates a bulky amide 

group linked to a cyclopentadienyl unit. Shortly after the introduction of these ligands, 

patents for Group IV CGC systems (Figure 1.3) were awarded to Dow Chemical 

Com pany19-20 and the E xxon-M obil Corporation 2* 23
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fS z i\
Me2S i^  ^,MX2

N
I

R

1.1

(M = Ti, Zr; R = alkyl, aryl; R' = H, Me; X = Cl, Me)

Figure 1.3 Structure of a generic Constrained Geometry Catalyst

One o f the key design features o f these catalysts is the open nature of the active 

site which allows them to incorporate other bulkier olefins such as 1-hexene into the 

polymer.24 The steric strain imparted by the CGC ligand allows for the copolymerization 

of ethylene with larger a-olefms ranging in size from 1 -decene to 1 -octadecene. Through 

variation o f  the Cp unit, the bridge, and the amido groups o f the ligand, a variety of 

materials may be accessed, ranging from high-density polyethylene (HDPE) to linear 

low-density polyethylene (LLDPE).24

Metal complexes featuring chelates, such as the CGC catalysts, have shown much 

promise in the polymerization of olefins. A very significant advance in this respect came 

in the mid 199(fs, when McConville and coworkers reported that bulky bis-amide chelate 

complexes serve as highly active catalysts for polymerization of 1-hexene.25’2' A general 

structure o f the chelating bis-amide catalyst is shown in Figure 1.4. Activities as high as 

350 kg of poly( 1-hexene) mmol’1 hr’1 were obtained (X = Me, R = 2.6-‘Pr2-C6H3).26 

Furthermore, these systems were the first example o f the living polymerization of an 

aliphatic a-olefin at room temperature.25 These bis-amide catalysts were the first 

examples of highly effective fully nonmetallocene complexes for olefin polymerization.
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7

Modifications of these chelate complexes by other groups have been recently reviewed 

by Gibson and coworkers.16

1.2
(X = Me, Cl; R = Me, iPr)

Figure 1.4 McConville Bis-amide Catalysts

Another example of nonmetallocene catalysts with exceptionally high activities

28 31and molecular weights are the FI catalysts (Figure 1.5). ’ These systems incorporate 

two phenoxy-imine ligands (the acronym FI is derived from the Japanese pronunciation 

Fenokishi-lmin Haiishi). There are several impressive aspects to these catalysts. Both the 

extremely high activity (519 kg PE/mmol cat»h) o f the Fl-Zr complex (1.3; R = ‘Bu, R’ = 

H, R" = Ph) and the exceptionally high molecular weight obtained when activated with 

[Ph3C][B(C6 Fj)4 ]/'Bu3 Al (Mv = 505 x 104) are among the highest values obtained for 

homogeneous polymerization catalysts.28 Furthermore. Ti-based FI catalysts are shown to 

be highly active, and have one of the highest reported turnover frequencies (TOF = 20000 

m in'1 atm '1) for the living polymerization of ethylene.31
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8

— hi

R'

1.3
(M = Ti, Zr; R = H, Me, 'Pr, ‘Bu, 
adamantyl, cumyl, 1,1 -diphenylethyl;
R' = H, Me; R" = Ph, Cy, C6F6.nHn)

Figure 1.5 FI catalysts

1.3 Group IV Olefin Polymerization Phosphinimide Catalysts

Another exciting field of the ‘post-metallocene revolution' are Group IV metal 

complexes featuring sterically demanding phosphinimide ligands. ’2 A suitable approach 

in the design of new nonmetallocene catalysts is to incorporate ligands that mimic Cp 

units sterically and electronically. Given the large degree of success experienced by 

nitrogen-based ligand systems, phosphinimide chemistry has shown real promise in 

early-transition-metal olefin polymerization catalysis. The work of Wolczanski and 

coworkers highlighted the steric analogy between Cp ligands and tri-/er/-butyl methoxide 

(tritox).3j As shown in Figure 1.6, the phosphinimide ligand also follows this concept 

due to its structure. Stephan and coworkers reported that the cone angle for the 

phosphinimide ligand, ’Bu3 PN was found to be 87°, which is similar to the cone angle for 

a m etal-bound Cp ligand (83°).34 This serves as further evidence that both types o f  ligand  

create similar steric environments about titanium. One key difference is that the steric 

bulk of the phosphinimide ligand is considerably removed from the titanium centre, as 

the Ti-P and Ti-Cp-centroid distances were found to be 3.0 and 2.2 A, respectively.34
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Given the large degree of success experienced by nitrogen-based ligand systems, such as 

the McConville and FI catalysts, phosphinimide chemistry should show real promise in 

early-transition-metal olefin polymerization catalysis. Indeed, titanium complexes 

incorporating the tri-/er/-butylphosphinimide ligand (NPf'BufG are remarkably active 

catalysts upon activation, rivaling the metallocenes in this respect.

Ti— O Ti— n = R

Ti-tritox Ti-phosphinimideTi-Cp

Figure 1.6 Steric similarity between Cp, tritox and phosphinimide ligands

In terms o f electronics, a reasonable analogy between Cp and phosphinimide

36  37ligands was established by Dehnicke and coworkers. ! In his review o f phosphinimine 

ligands with transition metals, Dehnicke suggests a (a, 2n) set o f orbitals for the metal-

•7 “i
nitrogen triple bond (Figure 1.7); comparable to the 6 electrons donated by a Cp ligand.

In this model, the o-bonding network between phosphorus, nitrogen and the metal, is 

comprised of the overlap of the spJ orbitals o f phosphorus with the sp orbitals o f nitrogen 

and the d  orbitals o f appropriate symmetry on the metal. The unused metal d  and nitrogen 

p  orbitals make up the metal-nitrogen 71-bond. The remaining p orbital on nitrogen and 

the dz2 orbital on phosphorus are involved in the nitrogen-phosphorus 7t-bond. The NPR3' 

and Cp’ ligands both have one formal negative charge, and the structural and bonding 

features of the ligands to the same transition metal should be closely related.
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Figure 1.7 Preferred bonding mode of phosphinimine ligand compared to Cp as 

proposed by Dehnicke

However, based on simple electron-counting and structural data of titanium- 

phosphinimide complexes, Stephan and coworkers suggested that in some cases, 

phosphinimide ligands are more similar to a sterically demanding, four-electron- 

donating, “imide”. For example, the Ti-N distance in the solid-state for (p -Cp)(p - 

Cp)2 Ti(NPtBu3) was 1.844(2) A .38 The dramatic lengthening o f the Ti-N bond (compared 

to, for example, (p 5-Cp)(p1-Ind)2 Ti(NPtBu3 ); Ti-N distance of 1.77 A) is not consistent 

with a Ti-N triple bond. This suggests that there are examples in which a formally 18- 

electron assignment of the complex with the phosphinimide acting as a 4-elecron donor 

to the metal is more appropriate.

This consideration o f sterics and electronics in catalyst design proved to be 

fruitful in the pursuit o f new olefin polymerization catalysts. A series of phosphinimide 

systems reported by Stephan and coworkers in 1999 provided polymerization activities 

that were 2-3 times those o f the metallocenes under similar conditions. In further 

support of these findings. Density Functional Theory (DFT) calculations performed by
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Ziegler a n d  coworkers showed that the [(NPR.3 )2 TiMe]+ system had the lowest separation 

energy (com pared to [(1.2-Me2Cp)2ZrMe]+, [(Cp)(NCR2 )TiMe]+, [(CpSiR.2NMe)TiMe]+, 

and [(Cp)(O SiR 3 )TiMe]+) with a series o f anions ([B(C6Fs)4 ]', [M e ^ F s ^ ] ',  [Me- 

MAO].40 Despite the remarkable activity of these particular titanium systems, the 

zirconium analogues are not as active for olefin polymerization. This may be attributed to 

the significantly larger ionic radius of zirconium, which facilitates deactivation pathways 

over chain propagation.41 Selected phosphinimide derivatives reported by the Stephan 

group are shown in Figure 1.8.35,39,41'44

R’.  ^  R3P^

V "N*
X X Pf*3 r 3p

N
V  „..>x

N

1.4 1.5

(R = ‘Bu, T r, Cy; = t j
R' = H, ‘Bu; X = Cl, Me) ( ’ ’ ’ *

R'5

Zr..x y  \ . X
X P \  /  \  ' ' 'N

/ N X 1  IN
\\

II P R 3
% u

x PR3

1.6 1.7

(R = ‘Bu, ‘Pr; X = Cl, Me) (R = 'Bu, Tr; R' = H, Me;
X = Cl, Me)

Figure 1.8 Group IV phosphinimide olefin polymerization pre-catalysts

1.4 Hemilabile Ligands in Coordination Chemistry

The key component of a Group IV olefin polymerization catalyst is the highly 

reactive cationic transition metal centre. However, catalyst stability issues have been
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identified as one important problem to be addressed in future systems. Hemilabile ligands 

provide promise in this respect due to the potential o f a pendant donor in the ligand  

framework to stabilize the metal by coordination but transiently dissociate to provide an 

active site and retain reactivity. Hemilabile ligands are polydentate chelates that feature at 

least two different groups capable of bonding. By definition, this ligand class has tw o 

important features: a substitutionally inert portion (X) which anchors the ligand to  the 

metal and a labile section (Y) that can intermittently dissociate from the metal (F igure  

1.9). The coordination/dissociation of the labile portion is a reversible process th a t is 

dependant on the presence of coordinating ligands, substrates or solvent molecules (Z ).45

(X = inert group; Y = labile group;
Z = ligand or solvent molecule)

Figure 1.9 General action o f a hemilabile ligand

Mechanistically, a number o f different hemilabile processes have been identified, 

including a ‘wind screen wiper' reaction, ‘tick-tock' mechanism, ligand ‘interchange' 

process, or a ligand displacement mechanism (Figure 1.10) . 45 The phrase ‘hemilabile' 

was first coined in 1979 by Jeffrey and Rauchfuss in their investigation of the bidentate 

ligand o-(diphenylphosphino)anisole, w hich participates in a fluxional ‘wind screen  

wiper' process (Figure 1.10(a) ) . 46 O f course, this type of behavior is not limited to 

bidentate systems.
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Figure 1.10 Types of hemilabile reactions

Polydentate ligands can show similar effects, as reported by Orell and coworkers 

in 1995.47 In this case, a ‘tick-tock? twist mechanism occurred with the making/breaking 

of two Re—O bonds for the tridentate pyridine-Re system (Figure 1.10(b)). The strongly
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bound pyridine group acts as an inert 'anchor' to rhenium, while weakly bonding ketone 

groups rapidly exchange in a fluxional manner. Another type o f hemilabile behavior 

reported in the literature has been ligand ‘interchange' reactions in which coordinating 

counterions are in equilibrium with the labile portion of the hemilabile ligand. As seen in 

Figure 1.10(c), Chadwell and coworkers report such phenomena in an iron(II) system 

where rapid interchange occurs between the polydentate ether-phosphine and two triflate

. • 48counterions.

The final process, ligand displacement, is of particular interest for catalytic 

applications. Jutzi and coworkers found that in the case o f the dimethylaminoethyl- 

cyclopentadienyl ligand, the weakly coordinating pendant amino group could be easily 

and reversibly displaced from cobalt by tert-butylisocyanide (Figure 1.10(d) ) . 49 

Hemilabile ligand displacement is important to researchers for two major reasons. First, 

the ability o f the ‘weak-donor' portion of the ligand to occupy an empty coordination site 

of a reactive transition metal centre would be very useful for homogenous catalysis. In 

olefin polymerization, for example, the active catalyst for metallocene and 

nonmetallocene systems is a very reactive cationic transition metal centre. Clearly, the 

incorporation of a hemilabile ligand would, in theory, provide stability in such a case. 

The second attractive feature to this ligand class is the reversibility o f the hemilabile 

activity. Not only can these ligands provide stability to reactive transition metal centers, 

but they are also capable of dissociating to allow a more strongly coordinating ligand, 

substrate, or solvent molecule, to take its place. The inert portion of the ligand serves as 

an anchor to keep it tethered to the metal; the labile portion is in turn available for 

recoordination if there is an empty coordination site.
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A vast number o f transition metal compounds featuring hemilabile phosphorus- 

oxygen (P .O ) ligands were reported in the literature and subsequently reviewed by 

Lindner an d  Bader in 1991 (Figure 1.11) . 50 A number of other examples of this ligand 

class are based on carbon, nitrogen and arsenic.45 However, bidentate ligands with 

phosphorus as the inert group are the most well studied class of hemilabile ligands. The 

major advantage to using P ,0  ligands is their ability to increase the electron density at the 

metal centre via a metal-oxygen interaction. In light of this, oxidative addition of a 

substrate as well as the reductive elimination o f the product is facilitated.50

)  f

(OC)4W

Me Ph Me Ph ___ \
\  Cl ' / /  /-\p P

D.'R:V -i'' '  '-P
‘ R '  r 0 = P
/  ' ' Cl J .

Ph Me M|  Ph

1.9 1.8 1.10 

Figure 1.11 Selected transition metal complexes featuring P -0  ligands

1.4.1 Olefin Oligomerization

New reactions affording a C-C linkage to selectively form new organic materials 

are highly sought after for industrial purposes. In this light, there is an ever-increasing 

demand for polymerization and oligomerization products from linear alpha olefin (LAO) 

monomers. LAOs are useful intermediates for the production of detergents, plasticizers, 

synthetic lubricants and copolymers. The three largest full range producers of LAOs are 

Shell, BP-Amoco and Chevron-Phillips.51 Specifically, 1-hexene and 1-octene are of 

particular interest as they serve as comonomers to produce LLDPE. The average 

molecular weights of the products are determined by the relative rates of the chain
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propagation and termination steps. Early transition metals (Groups IV-VI) tend to favor 

chain propagation, which leads to polymer formation. However, in the case o f Group VIII 

metals, chain termination (via P-elimination) is often favored to give oligomeric 

products.50 In a similar vein, homogeneous nickel(II) catalysts discovered by Keim52 

have been found to give a mixture o f oligomeric products via the Shell Higher Olefins 

Process (SHOP). Nickel(II) complexes containing P ,0  chelates are good catalyst choices 

because the resultant square planar systems favor olefin coordination. Indeed, the P ,0  

chelate in the nickel catalyst for the SHOP process is thought to be responsible for the 

high selectivity.52 However, it is important to note that there is no evidence of any 

hemilabile activity for these catalysts.

Following the success of late metal systems for production o f low molecular 

weight oligomers, a number o f mid and early transition metal complexes have been found 

to be selective for ethylene trimerization. Chromium catalysts have largely dominated 

this area. These catalysts are typically chromium(III) salts (usually carboxylates) with a 

Lewis basic donor (typically pyrroles or 1,2-diethoxyethane). A vast number of such 

systems have been published in the literature and subsequently reviewed.51 The inherent 

disadvantage to these catalysts is that the nature o f the active species is unknown, making 

it difficult to modify the catalyst to control performance.

In a recent significant finding, Hessen and coworkers were able to develop the 

first highly active and selective non chromium-based ethylene trimerization catalyst.

The key to this truly remarkable study was the finding that toluene, the solvent, can act to 

stabilize the active titanium(II) trimerization catalyst for the Cp*TiMe3/B(C6F .<;)3 

system.56 The observation by Pellecchia and coworkers that a minor product for this
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catalyst system was 3-hexene clearly indicated the presence of a titanium(II) 

intermediate. Hessen and coworkers reasoned that if  toluene could serve (quite poorly) as 

a weak donor to stabilize a cationic titanium(II) intermediate, then introducing a pendant 

arene onto the ancillary cyclopentadienyl ligand could mimic the solvent stabilization 

mode, but with greater effect.

The monocyclopentadienyl titanium hydrocarbyl species with an intramolecularly 

coordinated aromatic group proved to be a poor catalyst (lower activities and molecular 

weights) for styrene and propylene polymerization. However, this system was highly 

selective fo r ethylene trimerization. The activity o f these titanium catalysts rival the best 

chromium catalysts with respect to activity and selectivity.51 The major advantage is that 

the active site appears to be well-defined in comparison to the chromium systems. The 

activation o f the pre-catalyst with a Lewis acid is shown in Figure 1.12. The 

intramolecular interaction between the pendant arene and the metal centre was clearly 

established by *H and ^ C l’H} NMR spectroscopy.5'"

When the catalyst (Cs^CM eaPhlTiCb was activated with MAO, the major 

products were Cf, (83 wt %) and C to (14 wt %) with a very small amount of polyethylene.

B(CeF5 ) 3  or 
[Ph3 C]+[B(C6 F5)4]

Me V '"Me 
Me

(br i dge)— @
RB(CgF 5 ) 3

(bridge = CH2, CH2 CH2, CMe2, SiMe2; R = Me, C6 F6)

Figure 1.12 Pendant donor-metal interaction to stab ilize cationic metal centre
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The production o f a Cio fragment was attributed to co-trimerization o f 1-hexene with two 

ethylene units.55 Conversely, the pendant-free (C5H4CMe3 )TiCl3/MAO system produced 

polyethylene as the major product. This clearly indicates that the pendant arene is of 

utmost importance to switching the selectivity of the catalyst from polymerization to 

trimerization. Another important aspect o f the catalyst design is the nature o f the bridging 

group (Figure 1.12). The use of a C2 ethylene bridge produced a highly selective catalyst 

but with poor activity. In this case, the coordination of the arene to titanium is too strong. 

The use o f  a dimethyl silyl group as a bridge results in an unstable complex when 

activated. However, CMe2 as a bridge gave the highest activity and selectivity.55 

Therefore it is clear that the bridging unit also plays a crucial role in terms of the steric 

strain induced, strength of the metal-arene interaction, and the orientation of the arene 

moiety.

This work is a fantastic example of a catalyst that can be dramatically affected by 

the incorporation of a hemilabile ligand to afford selectivity and stability. The

c n
mechanism of the oligomerization process was elucidated by Blok and coworkers.' 

Based on DFT calculations they suggested that the oligomerization process occurs 

through metallacyclic intermediates (Scheme 1.1). The key step is the formation of a 

titanium(II) species when the alkyl-hydride complex undergoes reductive elimination. 

The titanium(II) species coordinates two ethylene molecules to generate a 

titana(IV)cyclopentane. A further insertion o f a third ethylene monomer gives rise to a 

titana(IV)cycloheptane. For the titanium catalyst featuring the hemilabile pendant arene 

ligand, direct Cp to Ca H transfer occurs to give a 1 -hexene adduct. However, for the 

‘naked’ system without a pendant donor, this process is endothermic and thus further
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insertion o f  ethylene monomers is favored to give polymer." Direct Cp to Ca hydrogen 

transfer is exothermic when a pendant donor is featured, and thus the arene donor plays a 

large role in  the chemistry at the metal centre.

p-H elim

,T \

2 =

(titanium-1 -hexene adduct) (titanacyclopentane)

p-H transfer

1 -hexene

(titanacycloheptane)

en
Scheme 1.1 Proposed trimerization cycle

1.5 Scope of This Work

It is apparent that hemilabile ligands in coordination chemistry have shown much 

promise towards preparing highly selective olefin oligomerization catalysts.53"5?
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Furthermore, the incorporation of a hemilabile donor in the ligand framework has the 

potential o f  stabilizing reactive transition metal centers that are suitable for olefin 

polymerization, and thus improving the thermal stability of potential catalysts. Group IV 

catalysts featuring phosphinimide ligands have proven to be highly active polymerization 

catalysts due to the steric and electronic similarities shared between phosphinimide and 

Cp ligands. Recent results in the Stephan group have shown promise in terms of 

developing hemilabile phosphinimide systems. Titanium complexes featuring di-tert- 

butylbiphenylphosphinimide ligands with a potentially hemilabile arene (Figure 1.13) 

have been synthesized, and an interaction between the pendant arene and Ti(II) and 

Ti(IV) metal centers has been observed.43,44

Figure 1.13 Pendant arene coordination in titanium-phosphinimide complexes

In this thesis, the goal is to develop new hemilabile phosphinimide ligands 

featuring a tethered heteroatom donor. The first part of this work will highlight the 

synthesis of these S- and O-donor versions o f these ligands and the preparation of 

selected titanium complexes. The reactivity o f Tewis acids with the titanium dialkyl 

species, and the role of the pendant donor in the activated complex, will also be 

discussed. Finally, the second portion o f this thesis will examine the titanium pre-

R = Me, Cl, CH2Ph

1.11 1.12
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catalysts fo r  their potential as polymerization or oligomerization catalysts upon activation 

with a series of co-catalysts.
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Chapter 2

Hem ilabile Ligand Design and Reactivity o f Selected Ti(IV)

Phosphinimide Complexes

2.1 Introduction: Synthesis of phosphinimines and Ti(IV) phosphinimide 

complexes

Hemilabile ligands are of interest to organometallic researchers based on their 

ability to transiently provide open coordination sites at the metal during reaction that are

• • • • < Q  ,“masked” in the ground-state structure and to stabilize reactive intermediates. This is 

especially important in the area of homogeneous a-olefin polymerization catalysis since 

the active species is a highly reactive cationic transition metal complex. The recent 

discovery o f a titanium complex, which incorporates a hemilabile arene ligand, by 

Hessen and coworkers remains the only example of a well-defined, highly active catalyst 

selective for ethylene trimerization.5'’ Huang and coworkers reported half-sandwich 

titanium complexes bearing a pendant ether group, CHiOCTTC^CpTiCfi and 

CH3 0 CH(CH3)CH2 CpTiCl3 , that are highly selective for ethylene trimerization but have 

moderate activity upon activation with MAO.59

Previous attempts in the Stephan group have been successful in the synthesis of 

titanium phosphinimide catalysts with a hemilabile function. Graham and coworkers43 

reported titanium complexes incorporating the di-Ze/'Z-butylbiphenylphosphinimine ligand 

(Figure 2.1). The sterically crowded environment provided by the ancillary Cp’ (Cp’ = 

C5H5 or CjMej) ligand on titanium inhibited free rotation of the biphenyl substituent, 

where the pendant arene faces away from the metal centre. Reduction o f these complexes
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with magnesium led to a transient Ti(II) species, which subsequently reduced the arene 

moiety and concomitantly reoxidized the metal (Figure 2.1a). This work lent credence to 

the possibility that the di-/er/-butylbiphenylphosphinimine ligand could possess 

hemilabile character under a more sterically open situation. Ghesner and coworkers44  

prepared a  series o f LMR3 complexes (M = Ti, Zr) featuring the aforementioned 

phosphinimine but without a sterically encumbering Cp’ (Cp’ = C5 H 5 or CjMe;) ancillary 

ligand. Complexes were isolated in which the pendant arene was shown to favor an 

orientation proximal to titanium. Furthermore, cationic complexes in which the metal 

centre was stabilized by the pendant arene were prepared through reaction with the bulky 

Lewis acid B(C6 F5 )3  (Figure 2.1b).

(R = Me, Ch2 Ph)

Figure 2.1 (a) Reduction o f Cp’(lBu2 (2 -C6H4 Ph)PN)TiCl2 to give Cp’(‘Bu2 (2 -

C6 H4 Ph)PN)Ti. (b) Formation of cationic species [‘Bu2 (2 - 

C6 H4 Ph)PNTiMe2]+[RB(C6 F5 )3 ]'.

Cp' Cp’

(a)

(Cp’ = C 5 H 5 ,  C5 Me5)

B(C6 F5 ) 3 (b)
Ti. ,Ti© e

R ‘  |RB(C 6 F5)3]
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W hile these systems did not show any catalytic activity for olefin polymerization, 

the development of phosphinimide ligands with a pendant arene that interacts with 

titanium is a promising result. Using different pendant donors on the phosphinimide 

ligand may provide new catalysts for olefin polymerization while maintaining stability at 

the electrophilic metal centre. In this chapter, synthetic routes were developed to prepare 

a series o f  new phosphinimine ligands bearing a pendant ether or thioether group. 

Selected titanium complexes featuring pendant ether and thioether phosphinimide ligands 

were subsequently prepared. The potential o f either hard (oxygen) or soft (sulfur) donors 

to stabilize the highly reactive titanium metal centre was probed by investigating their 

reactivity in solution with boron-based Lewis acids.

2.1.1 Results and Discussion: Complex Synthesis

New phosphines and the corresponding phosphinimine ligands were prepared in 

high yield using short and simple synthetic routes. The synthesis o f the ether-phosphine 

R.2 P(CH2 )3 0 Bn, R = 'Bu 2.1, Ph 2.2, was carried out via nucleophilic attack of the lithium 

phosphide salt RaPLi (R = 'Bu, Ph) on the commercially available benzyl 3-bromopropyl 

ether in THF. This reaction is highly exothermic and so must be carried out at low 

temperature (-35 °C). Formation of the phosphine is almost immediate with a change in 

color from yellow to colorless. Removal o f THF in vacuo and addition o f toluene 

precipitated LiBr, which was removed via filtration over Celite. Subsequent removal of

31 1toluene in vacuo gave a viscous oil as the pale yellow phosphine product. The P{ H) 

NMR spectrum showed a single resonance peak (-15.7 ppm 2.1, 27.0 ppm 2.2) indicating 

formation o f a single product with no further purification necessary. To make the
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analogous thioether phosphine lBu2 P(CH2)3 SBn 2.3, benzyl 3-bromopropylthioether was 

first prepared in high yield (93% yield) using a previously published method.60 While 

reaction at -35 °C gave multiple products, lowering the reaction temperature to -78 °C

31 1allowed for formation of a single, pure species. A single peak in the P{ H} NMR 

spectrum (27.4 ppm) indicated the formation o f 2.3.

The synthesis o f the corresponding phosphinimines Me3 Si-N=P(R2 )[(CH2 )3XBn], 

R = ‘Bu, X = O 2.4; R = Ph, X = O 2.5; R = ‘Bu, X = S 2.6, was carried out by azide 

oxidation o f  the phosphine ligands (Staudinger reaction61) in toluene. Refluxing the 

mixture for 12 hours and removal of toluene in vacuo afforded a viscous pale yellow oil. 

The formation of phosphinimines where R = Ph was confirmed by a downfield shift in 

the 31P{]H} NMR spectrum (1.56 ppm). Interestingly, when R = ‘Bu, the downfield shift 

was far less dramatic (27.1 ppm; A = < 1 ppm). Further evidence was provided by the 

presence o f a TMS singlet in the ]H NMR spectra (0.31 ppm 2.4, 0.49 ppm 2.5). The 

synthetic route is outlined in Scheme 2.1.

R2PLi

1. THF, -78 °C
2. toluene, -LiBr

R ,P '
R = ’Bu, X = O 2.1 
R = Ph, X = O 2.2 
R = *Bu, X = S 2.3

R2 P '
ll

N

toluene
NjSiMeg
-N2

, ^ 0
R = ‘Bu, X = O 2.4 
R = Ph, X = O 2.5 
R = ’Bu, X = S 2.6

Me^Si

Scheme 2.1 Synthetic route to ether- and thioether-phosphinimine ligands

Previous findings in the Stephan group have shown that there is a strong 

correlation between the polymerization activity o f titanium catalysts and the substituents
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on phosphorus. For example, catalysts derived from CpTi(NPCy3)Cl2 and CpTi(NP- 

'Pr3 )Cl2 exhibit relatively low ethylene polymerization activity when activated with 

MAO. This lies in stark contrast to the more sterically demanding tert-butyl substituents, 

which have shown the highest olefin polymerization activity for the phosphinimide 

systems o f this type.34’39 In light o f these findings, prepared titanium complexes featuring 

pendant ether and thioether groups presented in this work feature /er/-butyl substituents 

on phosphorus. Substitution o f these ligands on titanium was achieved in high yield via 

MesSiCl elimination, as shown in Figure 2.2.

Cp' Cp'
Cp' = C5 H5 , L = (CH2)3OBn 2.7

j .  Me3 SiN=P(tBu)2L ' Cp' = CgMeg, L = (CH2)3OBn 2.8

a T " C'  A  “ 3  C ^ ' c ^ L ^ S B n  2^0

<b J  l

Figure 2.2 Synthetic route to titanium-phosphinimides

Addition of a toluene solution of 2.4 to an orange solution o f CpTiCb in toluene 

at room temperature gave a dark orange mixture. Refluxing overnight and removal of 

solvent in vacuo afforded a dark orange oil. Subsequent washing with hexanes gave a 

yellow solid (73.2% yield). A downfield shift for the Cp resonance (6.46 ppm) and 

absence o f the TMS signal in the !H NMR spectrum indicated formation o f the product 

CpTiCl2 [NP(’Bu)2 (CH2 )3 0 Bn] 2.7. Ligand substitution onto Cp*TiCl3 was accomplished 

using the same process to give the orange solid product Cp*TiCl2 [NP(tBu)2 (CH2 )3OBn 

2.8 (81.3% yield). The same trends were seen in the 'H NMR data for 2.8. In both cases, 

31P{!H) NMR spectroscopy showed a downfield shift for the product resonances of the 

metal complexes (39.9 ppm 2.7, 38.5 ppm 2.8). The benzylic methylene protons were
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equivalent in the ]H NMR spectrum, which unsurprisingly suggested no titanium-oxygen 

interaction in the neutral species. X-ray quality crystals of 2.7 were grown through 

evaporation of a dilute solution in hexanes (Figure 2.3).

T i l

C ll

C12

Figure 2.3 ORTEP drawing o f 2.7; 30% ellipsoids are shown, hydrogen atoms have 

been omitted for clarity. Selected bond distances and angles: T il-N l 

1.754(3) A, N l-P l 1.601(3) A, Til-C ll 2.2981(15) A, Til-C12 2.2977(15) 

A, T il-N l-P I  179 .5(2)°, C H -T il-C T 2 101.26°.

The T i-0 distance o f 5.296 A confirms no interaction between titanium and 

oxygen in the solid state. The pseudo-tetrahedral geometry about titanium was similar to
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other titanium  phosphinimide complexes. The almost perfect linearity o f the Ti-N-P. angle 

[179.5(2)°] was indicative of some multiple bond character in the Ti-N bond. 

Additionally, the N-P distance of 1.601(3) A was similar to previously reported titanium 

phosphinimide complexes.1b2~6j The molecular structure o f 2.8 was also confirmed 

crystallographically (Figure 2.4). A Ti-0 distance o f 5.204 A again reveals no interaction 

between oxygen and the metal centre. The overall structure was similar to 2.7.

T i l

Cl l
C12

Figure 2.4 ORTEP drawing of 2.8; 30% ellipsoids are shown, hydrogen atoms have 

been omitted for clarity. Selected bond distances and angles: T il-N l 

1.766(3) A, N1-PI 1.604(3) A, Til-C ll 2.3047(14) A, Ti 1-C12 2.3176(16) 

A, T il-N l-P I 168.7(2)°, Cll-Til-C12 101.43(6)°.
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Thioether-containing titanium complexes CpTiChtN P^Bu^CfB^SBn] 2.9, and 

Cp*TiCl2[N P(,Bu)2 (CH2)3 SBn] 2.10, were also prepared in relatively good yield (76.7% 

2.9, 61.3%, 2.10). There were clear differences in the 'H  NMR spectra compared to 2.7 

and 2.8, respectively. Both the benzylic and methylene protons alpha to sulfur were 

shifted upfield when compared to the corresponding oxygen systems. The benzylic 

protons w ere equivalent, again suggesting no titanium-sulfur interaction for the neutral 

species.

The dialkyl titanium species CpTiMe2 [NP(lBu)2 (CH2 )3 0 CH2 Ph] 2.11, 

Cp*TiMe2 [NP(tBu)2 (CH2 )3 0 CH2 Ph] 2.12, CpTiMe2 [NP(tBu)2(CH2)3 SCH2Ph] 2.13 and 

Cp*TiMe2 [NP(tBu)2 (CH2 )3 SCH2Ph] 2.14 were prepared in moderate to excellent yields 

(77% 2.11, 81.7% 2.12, 46% 2.13, 91.9% 2.14) by reaction of the dichloride derivatives 

with either alkyllithium (MeLi) or Grignard reagents (MeMgBr) in benzene and ether, 

respectively (Figure 2.5).

Cp' Cp'

F ig u re  2.5 Synthetic route to titanium-phosphinimide derivatives

The *H NMR spectrum for 2.11 is shown in Figure 2.6. In the case o f the Cp* 

systems 2.12 and 2.14. the dialkyl products were isolated as solids following extraction.

C p '= C5H5. L = (CH2)3OBn 2.11 
Cp' = C6Me5, L = (CH2)3OBn 2.12

MeMgBr

Cp' = C5H5, L = (CH2)3SBn 2.13 
.'Bu Cp' = C5Me5, L = (CH2)3SBn 2.14
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cooling an d  filtration o f the reaction mixture with hexanes. However, the Cp-dialkyl 

products 2.11 and 2.13 could only be isolated as waxy oils. Presumably, less steric bulk 

with the unsubstituted Cp complexes and the long pendant alkyl chain were the likely 

reason these dialkyl species could not be isolated as crystalline solids. Expected upfield 

shifts in the  31P{’H} NMR spectra upon alkylation of the metal complexes was observed 

in all cases. ]H NMR chemical shifts for the methyl groups ranged from 0.63 ppm for 

2.11 to 0.40 ppm for 2.14, comparable to those reported for similar titanium-

o r
phosphinimide complexes. ‘

8

.Ti

4

O ^ P h S
3

Me /  '•
Me N

2
1

P \
t /  Bu 
*Bu 6

7 o 6 . 0 5 . 0 4 . 0 

( p p m )

3 . 0 2 . 0 1.0

Figure 2.6 ]H NMR spectrum for complex 2.11
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2.2 Introduction: Reactivity of Ti(IV) phosphinimide complexes with B(C6F5) 

and [Ph3C]+[B(C6F5)4r

The previous section discussed the design o f hemilabile phosphinimide ligands 

and their incorporation into Ti(lV) complexes. It has been established that early 

transition metal phosphinimide systems catalytically polymerize olefins.32 Incorporation 

of a heteroatom donor into the ligand framework should impart unique reactivity for this 

new class o f Ti-phosphinimide systems. Before testing catalyst precursors for 

polymerization purposes, it is important to investigate the reactivity of the pre-catalyst 

with commonly used activators. NMR spectroscopy is a powerful tool for determining if 

stable ion pairs are being generated in solution. This section focuses on the activation o f 

the dialkyl titanium systems with the Lewis acids methylalumoxane (MAO), 

tris(pentafluorophenyl)borane, B(C6F5)3 , and trityl borate, [Ph3 C]+[B(C6 F5)]4\

Single-site homogeneous olefin polymerization catalysts are often comprised of 

two ligands (L, L ’) and two alkyl groups (R, R ’) bound to a group(IV) transition metal 

centre. These neutral species are not effective catalysts and require activation by a co­

catalyst. Hence the choice of co-catalysts often bears a large influence on the 

performance o f olefin polymerization catalysts/ Lewis acids such as BfCeF?^, 

[Ph3C]+[B(C6F5 )4 ]' and MAO are commonly used to abstract an alkyl group K  to give the 

active catalyst [LL,M R,]+. There are two major considerations concerning the co­

catalyst. First, the catalytic precursors should rapidly and cleanly transform to the active 

catalyst. Second, the anionic portion o f the catalyst is a crucial part o f the catalytically 

active ion pair and is capable of exerting significant influence on both the polymerization
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process and the polymer produced.7,64 Figure 2.7 depicts the formation of the active

catalyst from the pre-catalyst and co-catalyst in metal-catalyzed olefin polymerization.

Figure 2.7 Equilibrium between pre-catalyst, activator, and ion pair

The importance and understanding o f boron-based activators, in particular, has

reported the utility o f the strong Lewis acid BfCftFsfi as a promoter of highly efficient 

olefin polymerization in conjunction with Group IV metallocene dialkyls. The bulky 

fluoroaryl groups are strongly electron withdrawing, which provides sufficient Lewis 

acidity at the boron centre to affect methyl abstraction of a dialkyl catalyst precursor. 

Furthermore, B(C6 F5 ) 3  has good solubility in nonpolar, noncoordinating solvents and the 

boron centre is surrounded by highly electronegative functional groups that are resistant 

to electrophilic attack.66

Another common co-catalyst is [Ph3 C]+[B(C6 Fj)4 ]".68 The trityl borate co-catalyst 

(among other [B ^F s^J '-based  activators) has been shown to be highly active for olefin 

polymerization.69 The trityl ionic activator is a powerful alkyl- and hydride-abstracting 

oxidizing reagent. However, [B(C6F5)4 ]'-based activators suffer from poor thermal
*7n

stability, which results in very short catalytic lifetim es.,u

Group IV metallocenes have also been shown to be highly active in the 

polymerization of a-olefins when combined with M AO.15 This oligomeric activator is

L

L'
+ Activator

(pre-catalyst) (X = counteranion)

been well developed over the last 20 years. In the early 1990s, Marks65,66 and Ewen67 first
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prepared through the controlled hydrolysis o f  AlMe3 to give [-Al(Me)-0-]n, where n ~ 5- 

20. MAO acts to alkylate dihalide catalyst precursors and subsequently abstract a methyl 

group to produce a catalytically active species. A disadvantage is that the exact structure 

o f MAO is not well understood. Furthermore, depending on the nature of the H20  source 

used in its synthesis, MAO-activated metallocenes may exhibit widely differing activities 

in olefin polymerization.7

Cp titanium-phosphinimide dialkyl pre-catalysts have shown higher activity when 

using CeFs-boron-based activators as opposed to the analogous dihalide precursors in 

conjunction with MAO.34,35 Modeling studies with AlMe3 suggest C-H bond activation as 

a possible degradation pathway for phosphinimide catalysts in the presence of MAO.35'71 

Alternately, interaction between an aluminum centre and the phosphinimide ligand may 

suppress catalytic activity. High activities have also been seen with the bis- 

phosphinimide titanium complex TiMe2[NP('tBu)3]2 with both B lQ Fsb and 

[Ph3 C]+[B(C6F5)4]'.35 Markedly lower activities were observed with the corresponding 

dihalide systems and MAO.

In terms o f polymerization, monomer uptake and insertion into the M-C bond are 

the crucial steps for polymer chain propagation. Ziegler and coworkers highlighted the 

importance of the counterions ( [M e B ^ F s ^ ] ',  [B(C6 Fs)4 ]', [TMA-MAOMe]' and 

[MAOMe]') in a theoretical study.40 The uptake and insertion of monomer are likely 

influenced by the mobility and coordination o f  the counterion, respectively. The ion-pair 

separation energy (A H jps) , which is an indicator o f  counterion mobility, was found to be 

lowest for [ B ^ F s ^ ] ' and thus the weakest interactions with all of the studied cations 

([(NPR3)2TiMe]+, [(Cp)(NCR2)TiMe]+, [(CpSiR2N R’)TiMe]+, [(Cp)OSiR3T iM ef.
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[(Cp)NPR.3 TiMe]+. [(1.2-Me2Cp)2ZrMe]+). The relative coordinative ability of the typical 

anions is in the order of MAOMe' > TMA-MAOMe' > M e B ^ F sf i ' > [B(C6F5)4 ] \  The 

conclusion can be drawn that greater mobility o f the counteranion in turn leads to higher 

olefin polymerization activities.

2.2.1 Results and Discussion: Activation o f Dialkyl Precursors

In contrast to MAO, activation o f catalyst precursors with the well-defined 

species B(C6Fs) 3  or [Ph3 C]+[B(C6 F5)4 ]' can be conveniently studied using NMR 

spectroscopy. 31P{'H} and !H NMR variable-temperature (VT) NMR spectroscopy is 

useful for investigating the stability o f the cationic species generated following alkyl 

abstraction. 19F and n B NMR experiments are ideal for determining the formation o f a 

stable anionic species. This is particularly relevant for BlCfTsft. where clear changes in 

the NMR spectra indicate the formation o f an anionic alkyl borate. The difference in 

chemical shift o f the met a and para  fluorines (A 8 (m,p-19F NMR)) is a good qualitative 

probe for the mode of coordination o f [RB(C6F5)3 ]‘ (R = Me, CFFPh) to, for example, 

cationic d° metals. Values of 3-6 ppm indicates coordination to give contact ion pairs; <3 

ppm indicates solvent-separated ion pairs.72‘7j

Previous work in the Stephan group has shown activation of species analogous to 

2.11-2.14 with both B(C6F5 ) 3  and [Pli3 C]+[B(C 6F5)4 ]'.39 With this knowledge in hand, 

investigations were undertaken to examine the activation of the dialkyl precursors. If the 

activations are done in toluene, clathrate-like oils are formed that are unsuitable for NMR 

analysis. Therefore, a deuterated haloarene solvent (Q D jBr) was used to ensure 

solubility.74 Initial efforts to activate the dialkyl precursor 2.11 with either of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

aforementioned Lewis acids at room temperature resulted in a mixture of products, as

31 1evidenced by P{ H} NMR spectroscopy. However, when the reaction was repeated at - 

35 °C by slowly adding a cooled solution o f the activator to a solution of 2.11, followed 

by warming to room temperature, this resulted in the clean formation of the cationic 

species [CpTiMe(N=P(tBu)2(CH2)3 0 Bn)]+[MeB(C6F5)3]' 2.15.

C p '  X ^ P h  ©  C P '  v ^ P h  r n ’ - r u  y  nI \  MeB(C6 F5 ) 3  I ,-X  Ph Cp -  C5 H5, X -  0  2.15
I  /  B(C6 F5 ) 3  >  Cp' = C5 Me5, X = 0  2.16

M b ' !  " N  >   *  /  -  \  Cp1 = C5 H5, X = S 2.17
Me Me >  Cp’ = C5 Me5, X = S 2.18

^  NBU tBl/ N Bu

Figure 2.8 Activation of 2.11-2.14 with B(C6Fs)3

31 1The P{ H} NMR spectrum displayed a singlet at 45.4 ppm, which signified 

formation o f a single product. A singlet at -15.0 ppm in the n B NMR spectrum 

confirmed the generation of an anionic borate. Furthermore, the 19F NMR spectrum 

showed a A8 (m,p) value of 2.38, clearly indicating that the methyl borate anion was not 

tightly bound to the metal centre.72'73 Interestingly, the !H NMR spectrum (Figure 

2.9(b)) at -35 °C showed that both the methylene protons alpha to oxygen and the 

benzylic methylene protons were diastereotopic. This was most clearly seen with the 

benzylic methylene protons, which were clearly resolved as two doublets (4.96 ppm, |JH- 

h | — 12 Hz; 4.61 ppm, | J h-h | = 12 Hz). The methylene protons alpha to oxygen were 

clearly two different sets of signals, although they were broad and poorly resolved. 

Additionally, the tert-butyl resonances were two overlapping doublets (1.24 and 1.19 

ppm), indicating that they were now inequivalent. The Cp (6.72 ppm) and MeB(C6Fs)3
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0.58 ppm) resonances were sharp and broad singlets, respectively. The remaining 

methylene protons were obscured by the broad Ti-Me peak (1.47 ppm).

2.11

/ Ti- 
Me /

O ^ P h

(a)

(c)

N,Me

. / ‘Bu I 2 
‘Bu (

|i 2

5. 2  4 . 8  4 . 4  4 . 0  3 . 6  3. 2

(ppm)

5 . 2  4. 8  4 . 4  4 . 0  3. 6

(Ppm)

2.15

©
MeB(C6F5)3 © / ! ' '

/  \
1

Me N

5. 2  4. 8  4 . 4

, K u  
‘Bu

1
ft s

4 . 0  ’ 3 . 6  3. 2

(ppm)

2.15 + THF

0 I .-THF cTA
MeB(C6F5)3 © T r \  Ph

Me/  \  J

‘Bu tBu

Figure 2.9 ]H NMR spectrum of (a) the neutral dimethyl complex 2.11, (b) the 

activated complex 2.15, (c) the addition of THF to 2.15 displaces the 

pendant ether-titanium interaction

To further establish the presence o f  an oxygen-titanium interaction, 2.15 was 

treated with a stoichiom etric amount o f  T H F . T he ’h  N M R  spectrum (F igure 2.9(c)) 

revealed that the benzylic methylene protons and methylene protons alpha to oxygen 

each resolved into single resonances. This showed that the pendant ether interaction with 

the metal centre had been displaced by the addition of a stronger donor. These findings
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confirmed that upon treatment of 2.11 with B(C 6 Fs)3 , species 2.15 was formed in which: 

(i) a methyl group had been cleanly abstracted from the titanium centre resulting in a 

solvent separated ion pair and (ii) the inequivalency of the benzylic methylene protons, 

the methylene protons alpha to oxygen, and the /er/-butyl groups suggested the formation 

of a hard-hard interaction between the oxygen donor and titanium. The presence of a 

heteroatom donor in the pendant ligand was favorable towards forming a donor-stabilized 

ion pair in solution.

Similar reactions with 2.12-2.14 gave the stable ion pairs 

[Cp,TiMe(N=P(tBu)2(CH2 )3XBn)]+[MeB(C6F5)3 ]' (Cp^ = C5Me5, X = O 2.16; Cp’ = 

C5H5 , X = S 2.17; Cp’ = C5H5 , X = S 2.18). Low temperature (-35 °C) ’H NMR spectra 

for these activated complexes showed similar trends to 2.15. In all cases, confirmation of 

a solvent separated anionic methyl borate was also evident by n B and l9F NMR 

spectroscopy. Furthermore, the pendant donor was found to coordinate to the metal 

centre as evidenced by the diastereotopic benzylic methylene protons and the methylene 

protons alpha to X (X = O, S). Table 2.1 shows the relevant NMR data for complexes 

2.15-2.18.
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Table 2.1 Selected NMR spectral data for 2.15-2.18 (X = 0  2.15, 2.16; X = S 2.17,

2.18)

Complex 2.15 2.16 2.17 2.18

Nucleus

19f A 5(m,p) 2.38 2.37 2.33 2.30

nB -15.0 (s) -15.0 (s) -14.7 (s) -14.6 (s)

31p 45.4 (s) 43.0 (s) 45.7 (s) 44.4 (s)

’H CHH-X-CHHBz 4.96 (d) 4.08 (d) 3.18 (d) 3.22 (d)

CHH-X-CHHBz 4.61 (d) 3.99 (d) 2.99 (d) 2.77 (d)

|*7h -h | 12 Hz 7 Hz 12 Hz M H z

Low temperature (-35°C) reactions of complexes 2.11-2.14 with 

[Ph3C]+[B(C6F5 )4 ]" afforded the ion pair complexes

[CpTiMe(N=P(tBu)2 (CH2)3 XBn)]+[B(C6F5)4 ]' (Cp‘ = C5H5, X = O 2.19; Cp’ = C5Me5, X 

= O 2.20; Cpr = CjH5, X = S 2.21; Cp’ = C5M e5, X = S 2 .2 2 ) (Figure 2.10).

? P ' \  Ph ©  ? P ' C p 1 =  C 5 H 5 , X =  O  2.19
Ti /  [P h 3 C]+[B(C 6 F 5)4]-^ B (C 6 F 5 ) 4  ® t C '  >  Cp| = C5 Me5,X  -  0  2.20

Me /  ''N K  /  + J  v \  ~ 5 5’ x  “ s
Me ^  M e >  C p' = C5 Me5, X = S  2.22

* B i/ ‘Bu P h 3C M e ^
'B u 'Bu

Figure 2.10 Activation of 2.11-2.14 with [Ph3 C]+[B(C6 F5)4 ]'

Coordination of the heteroatom donor to titanium was also observed for the 

activated species 2.19-2.22. ]H NMR spectroscopy showed that the benzylic methylene 

protons and the methylene protons alpha to X (X = S, O) were diastereotopic. Again,
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only the benzylic methylene protons were clearly resolved as two doublets. Table 2.2 

highlights the relevant NMR data for complexes 2.19-2.22. The benzylic methylene 

protons for complex 2.19 were surprisingly observed as a broad singlet, which can be 

attributed to second order coupling. The methylene protons alpha to oxygen were 

inequivalent, indicating that the titanium-oxygen interaction was still intact.

Table 2.2 Selected NMR spectral data for 2.19-2.22 (X = 

2 .2 2 )

O 2.19, 2.20; X = S 2.21,

Complex 2.19 2 . 2 0 2 . 2 1 2 . 2 2

Nucleus

31p 45.1 (s) 43.0 (s) 45.4 (s) 44.3 (s)

*H CHH-X-CHHBz 3.99 (brs) 4.08 (d) 3.28 (d) 3.24 (d)

CHH-X-CHHBz 4.02 (d) 3.13 (d) 2.77 (d)

I-̂ h-hI 7 Hz 13 Hz M H z

A variety o f donor-stabilized cationic Ti-phosphinimide complexes of the type 

[Cp(NPtBu3)TiMe(L)][RB(C6F5)3] (R = Me, C6F5; L = Py, 4-EtPy, NC5H4NMe2, PMe3,

n 75P Bu3, PPh3, P(p-MeC6 H4 )3) have been previously reported . However, complexes 2.15- 

2.22 represent the first example of cationic titanium-phosphinimide complexes which do 

not require the introduction of an external donor (L) to induce stability.

VT NMR experiments were conducted to investigate both the thermal stability 

and coordinative strength of the donor atoms to titanium. Data was collected in 5 °C 

increments from -30 °C to 60 °C. It is important to note that in all cases (2.15-2.22),
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increasing the temperature did not cause dissociation of the pendant donor from the 

electron poor metal centre on the NMR timescale. This conclusion was drawn based on 

the observation that the methylene protons alpha to X (X= O. S) remained inequivalent 

up to the 60 °C temperature limit. Displacement o f the pendant ether or thioether moiety 

was not observed on the NMR timescale at elevated temperatures, presumably due to the 

electrophilicity of the metal centre.

In the case of the pendant ether complexes (2.15, 2.16, 2.19, 2.20), no change in 

the 'fl NMR spectra was observed over the entire temperature range. However, the 

pendant thioether complexes exhibited temperature-dependent second order coupling of 

the benzylic methylene proton resonances for the systems bearing the less bulky Cp 

ancillary ligand (2.17, 2.21). No changes were observed in the 'H NMR spectra over the 

entire temperature range for the thioether complexes bearing the bulkier Cp* ancillary 

ligand (2.18, 2.22). As shown in Figure 2.11, at elevated temperatures one set of doublets 

shifts downfield until at approximately 303 K, the chemical shifts become so similar that 

they overlap. It is thought that the second oder nature of the benzylic resonances and the 

observed chemical shift temeperature dependence is an interesting artifact but that the 

complexes persists as a donor stabilitzed cation in solution.
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303 K

© I
MeB(C6 F5 ) 3  ® T i ' '  >

Me N A

t f ^ B u
‘Bu

2.17

273 K

243 K
3 . 3 0  3 . 2 0  3 . 1 0  3 . 0 0  2 . 9 0

(ppm)

Figure 2.11 Portion of the VT H NMR showing the temperature-dependent second 

order coupling o f the benzylic methylene proton resonances for complex

2.17

2.3 Conclusions

New phosphinimine ligands featuring a pendant ether or thioether moiety have 

been prepared. Substitution onto a titanium centre was achieved in good to high yields 

via MesSiCl elimination. Solid-state structures of some of these complexes show a near 

linear Ti-N-P bond angle and multiple bond-like Ti-N distances. Dialkyl derivatives of 

these complexes were readily prepared in moderate to good yields. The presence o f the 

pendant ether or thioether ‘arm* is o f considerable interest as a potential hemilabile 

system that could catalyze the polymerization or oligomerization of ethylene. These 

complexes are of particular interest due to the presence of a hard (oxygen) or soft (sulfur) 

heteroatom donor that could potentially provide stable cationic species upon alkyl 

abstraction with a Lewis acid.
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Stable ion pairs in solution have been prepared using dialkyl titanium catalyst 

precursors 2.11-2.14 and the appropriate activator. Activated complexes 2.15-2.22 

represent the first example of cationic titanium-phosphinimide complexes which do not 

require the introduction of an external donor (L) to induce stability. These systems are 

unique in that the donor is intrinsically built into the phosphinimide ligand fragment.

In all cases, the pendant ether or thioether coordination to titanium persisted in the 

absence o f other donors even at elevated temperatures. This is due to the very electron- 

poor titanium centre. However, temperature-dependent second order coupling was 

observed for complexes 2.17 and 2.21.

It is important to note that the intramolecular interaction can be disrupted by the 

introduction of an external base, such as THF, showing that the T i-0 or -S interaction is 

labile in the presence o f donors, which bodes well for reactivity with olefins. The contrast 

between using either a hard (oxygen) or soft (sulfur) donor to stabilize the cationic Ti- 

phosphinimide species should provide unique reactivity in the presence o f ethylene. 

Polymerization studies are discussed in the next chapter.
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Chapter 3

Reactivity of Hemilabile Phosphinim ide Titanium Complexes

in the Presence o f Ethylene

3.1 Introduction

The previous section discussed the design of hemilabile phosphinimide ligands 

and their incorporation into Ti(IV) complexes. Furthermore, the reactivity of these 

complexes with the discrete activators BfCfUjL and [Ph3C]+[B(C6F5)4 ]‘ gave heightened 

stability o f cationic titanium-phosphinimides in solution without the addition of an 

external base. Stability o f these complexes was shown to be due to the coordination o f a 

hard (oxygen) or soft (sulfur) donor in the pendant ligand. It has been established that 

early transition metal phosphinimide systems catalytically polymerize olefins.32 

Incorporation o f a pendant donor should impart unique reactivity for these new titanium- 

phosphinimide systems. This chapter describes the polymerization testing methods and 

reactivity o f hemilabile titanium-phosphinimide complexes in the presence of ethylene.

3.2 Polymerization Mechanism Involving Group IV Metals

Homogeneous a-olefin polymerization catalyzed by Group IV catalysts entails 

activation, propagation, and chain termination.76 Activation of catalyst precursors with a 

Lewis acid has been discussed in the previous chapter. The catalytically active species is 

a coordinatively unsaturated cationic alkyl complex. Once the active catalyst has been 

generated in solution, the first step o f the propagation cycle is the binding of the olefin to 

the vacant coordination site at the metal.7/"78 Unlike d8 Ni(II) and Pd(II) catalysts, Ti(IV)
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and Zr(IV) catalysts have d° metal centers and thus sigma donation from the olefin to the 

empty metal orbital occurs but the metal cannot participate in back-bonding. Therefore, 

the bonding between the olefin and a Group IV d° metal must consist entirely of 

electrostatics, van der Waals interactions, and charge transfer.76 The dominant interaction 

is charge transfer from the olefin to the metal. The next step in the propagation cycle is

the insertion of the olefin into a metal-carbon bond. The metal-carbon cr-bond pair

interacts with the carbon-carbon 71-bond pair o f the olefin. This propagation mechanism,

77 78 • •as proposed by Cossee and Arlman ' , is shown in Figure 3.1.

olefin complexation insertion

Figure 3.1 Cossee-Arlman mechanism

LnM,
©

Lni\/r
,R

The influence of the counteranion in the propagation mechanism has been shown 

to be significant through experimental7'66 and theoretical40'79'80 studies. For example, 

when the insertion of ethylene into [Cp2 ZrEt]+[MeB(C6 Fs)]’ was modeled using 

computational methods, the authors reported that the most favorable approach o f the 

olefin to the metal centre was from the opposite side o f where the anion was 

coordinated.80 This in turn causes a concomitant increase of the zirconium-methyl 

distance. Consideration o f  the anion into the Cossee-A rlm an mechanism is shown in 

Figure 3.2.
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Figure 3.2 Modified Cossee-Arlman mechanism with counterion considerations

Chain termination may occur through p-hydride elimination (Figure 3.3 (a)), P- 

hydride transfer to monomer (Figure 3.3 (b)), chain transfer to the counterion (Figure

7  f\
3 . 3  (c)), or by irreversible deactivation o f the catalyst.
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Figure 3.3 Common chain termination pathways
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3.3 General Considerations

Catalyst activity, molecular weight distribution of the polymer, thermal stability

and patent position are the four main criteria that must be considered in the design of new

catalysts for olefin polymerization. In terms of catalyst performance, the amount of

polymer production and the molecular weight distributions are the important factors.

Catalyst activity is used to evaluate the amount of polymer produced over a period of

time (Equation 3.1). Literature convention is to describe activity o f a catalyst in the units

g mmol'1 h’1 bar’1 or g mmol’1 h’1 atm’1.

, . . polymer mass (g) _
Activity = ------------------------------------------ — ---------------------------  (3.1)

amount of catalyst (mmol) x time (h) x pressure (atm or bar)

Experimentally determined activities are heavily influenced by the polymerization 

testing conditions and reactor setup. Often, little or no information is often provided

about catalyst lifetimes in the literature, and consequently activities for the same catalyst

81can vary widely when reported by different research groups. For example, a short 

polymerization run for a catalyst that is only active for 30 seconds will have an inflated 

activity compared to the same run over a one hour period. To aid in the comparison of 

catalyst activities to other systems, Gibson and coworkers designed a scale o f merit

o J
ranging from very low to very high, as shown in Table 3.1.
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Table 3.1 Rating of the effectiveness o f a catalyst based on its activity3

Rating Activity [g mmol' 1 h' 1 bar'1]

Very low < 1

Low 1 -  10

Moderate 1 0 -1 0 0

High 1 0 0 - 1000

Very high > 1000

a  D a t a  b o r r o w e d  f r o m  G i b s o n  a n d  c o w o r k e r s  -  s e e  R e f e r e n c e  8 1

Information on the molecular weight distribution o f polymer samples is 

commonly determined via gel permeation chromatography (GPC). This technique is able 

to provide molecular-weight averages that are important in determining polymer

properties: the number average M„ (Equation 3.2), the weight average M» (Equation 

3.3), and the polydispersity index (PD1) of the polymer (Equation 3.4).’

N  A '

y  N,M, Y N M }  —  ' ' __ Z-J > < \A
Mn = ^ --------(3.2) M v = ^ -----------(3.3) PDI = (3.4)

Z n . m ,  m ”
1=1 /=]

Nj is the total number of molecules with a molecular weight of Ad,.

Thermal stability of the catalyst during polymerization is of critical importance 

since commercial olefin polymerization is typically performed in the temperature range 

of 70 -  160 °C. High temperatures are required to keep the polymer in solution in order 

to maintain a constant monomer flow and prevent reactor fouling. Pre-catalysts with
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strong metal-ligand bonds afford more resistance to thermal degradation. The 

incorporation o f hemilabile ligands into transition metal pre-catalysts can provide an 

additional facet o f stability. Previous attempts to ‘trap’ cationic titanium phosphinimide 

complexes have only been successful with the introduction of an external base such as 

THF.75 Presumably, during polymerization the ethylene monomer acts to stabilize the 

metal centre. The incorporation of a pendant donor in the ligand framework can stabilize 

the highly reactive metal centre, excluding the need for an external reagent. This 

additional stability from the pendant ether or thioether should in theory protect the metal 

centre and provide improved stability under thermal duress. Of course, temperature 

stability cannot be properly investigated without testing catalysts for polymerization at 

elevated temperatures. The aim of titanium systems with a hemilabile ligand is to 

establish thermal stability well beyond that o f  conventional catalysts.

A final aspect to consider is that the ever-growing sphere of patents that cover 

olefin polymerization catalysts is a serious limitation. A new pre-catalyst is not 

commercially attractive unless it falls outside the current patents for olefin 

polymerization. With this in mind, the phosphinimide ligands discussed in Chapter 2 are 

unique in that a pendant heteroatom donor has been built into the ligand framework. The 

resulting titanium complexes 2.7-2.14 are the first examples of transition metal 

complexes incorporating a hemilabile phosphinimide ligand where the pendant moiety is 

an ether or thioether group. Efforts to design commercially viable highly active, 

thermally stable olefin polymerization or oligomerization catalysts are fruitless if  patent 

position is not carefully considered.
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3.4 Polymerization Protocol

Thorough reactor cleaning is essential to ensure no moisture or other 

contaminants are present in the reactor vessel.82 Prior to reactor assembly, any residual 

polymer was removed and the vessel was washed with toluene and acetone. Following 

assembly, the reactor vessel and solvent storage unit were refilled with nitrogen with 4 

refill/evacuation cycles over at least 90 minutes.

Approximately 600 mL of toluene was transferred to the solvent storage container 

from a purification column. The solvent was purged with dry nitrogen for 20 minutes and 

then transferred to the reactor vessel by differential pressure. The solvent was stirred at 

1500 ± 10 RPM and the temperature was kept constant at 30 ± 2 °C. The system was then 

exposed to ethylene via five vent/refill cycles. Once the ethylene flow meter read 0.000. 

the reactor was ready for injection of the Al('Bu ) 3  (T/'BAl), a solvent scrubber that 

removes the final traces of water (if applicable), pre-catalyst, and co-catalyst.

Once the reactor had been readied for injection, the pre-catalvst, co-catalyst and 

solvent scrubber stock solutions were prepared in an inert atmosphere glovebox. The 

stock solutions were loaded into syringes and transferred to the reactor for injection 

immediately to avoid contamination or sample decomposition. T/BA1 scrubber was used 

as a solvent scrubber only for polymerizations using either B(C6 F5 )3  or 

[Ph3C]+[B(C6 F5 )4 )]‘ as the co-catalyst. When testing the dichloride precursors, MAO 

served as both the activator and solvent scrubber. The following is an example of a 

polymerization experiment using CpTi(NPlBu 3 )Me2 as the catalyst, B(C6 F.5 )3  as the co­

catalyst, and T/BA1 as the solvent scrubber.
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Pre-Catalyst Stock Solution: CpTi(NPlBu3 )Me2 (11 mg, 0.031 mmol) was 

weighed into a vial. Toluene (5.00 mL) was added to dissolve the catalyst (6.12 mmol 

CpTi(NPlBu3 )Me2 /L). 1.0 mL of the solution (0.0060 mmol CpTi(NPtBu3 )Me2 ) was 

transferred into a syringe for injection into the reactor.

Co-Catalyst Stock Solution: B ^ F . ^  (17 mg, 0.035 mmol) was weighed into a 

vial. Toluene (9.00 mL) was added to dissolve the co-catalyst (3.91 mmol B(C6 Fs) 3  /L).

1.5 mL of the solution (0.0060 mmol) was transferred into a syringe for injection into the 

reactor.

Solvent Scrubber Stock Solution: 0.66 mL of a 25.2 weight % solution of T/BA1 

in heptanes (density = 0.710 g/mL, 0.595 mmol T/BA1) was diluted with toluene (14.33 

mL) to give a clear, colorless solution (41.5 mmol T/BA1 /L). 3.0 mL of the solution 

(0.120 mmol, 20.0 equivalents) was transferred into a syringe for injection into the 

reactor.

Injection Sequence: The 3.0 mL of T/BAl solution (0.125 mmol, 20.8 

equivalents) was injected into the reactor via the catalyst injection inlet. The solvent 

scrubber was allowed to stir for 5 minutes. Next, the 1.0 mL pre-catalyst solution of 

CpTi(NPtBu3 )Me2 (0.0060 mmol) was injected. Immediately afterwards, the 1.5 mL 

solution ofB (C 6F5)3 (0.0060 mmol) was injected. When testing the dichloride precursors, 

MAO was injected and the solution was allowed to stir for 5 minutes. The dichloride pre­

catalyst was then injected.

Polymerization and Polymer Collection: The reactor was allowed to stir (1500 ± 

10 RPM) for 5 minutes at 30 ± 2 °C at 2 atm o f ethylene. Following the 5 minute reaction 

time, the polymerization was halted by closing off the ethylene inlet valve and venting
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the reactor. Stirring was stopped and the reactor was disassembled. The reactor contents 

were then transferred to a 4 L beaker containing approximately 100 mL of 10% HC1 (v/v) 

in MeOH to help precipitate any polymer remaining in solution. The polymer was then 

collected via filtration, washed with toluene, and dried overnight. The following day, the 

polymer was weighed and the catalyst activity was calculated using Equation 3.1.

3.5 Results and Discussion

The variability of reported activities in the literature poses a significant challenge 

to researchers to directly compare results. The sensitivity of the catalyst activity depends 

primarily on reactor size, choice o f solvent, choice of co-catalyst and scavengers, quality 

of stirring, the order of addition, temperature, pressure, and time.16 Researchers typically 

employ either Schlenk line techniques or a polymerization reactor to evaluate the 

performance of olefin polymerization catalysts. Using the Biichi polymerization reactor 

in this study holds several advantages including better control over reaction conditions 

such as temperature, stirring rate and ethylene pressure. Certain variables were kept 

constant to ensure reproducibility during the polymerization reactions, which are 

summarized in Table 3.2.
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Table 3.2 Polymerization Conditions

Temperature8 30 °C

Ethylene Pressure 2 atm

Stirring rate 1500 rpm

Amount of co-catalyst8 0.0060 mmol

Catalyst concentration8 10 pmol/L

Solvent Toluene

Solvent Volume 600 mL

Equivalents of TfBAl 20

a A m o u n t  o f  c o - c a t a l y s t  a n d  [ c a t a l y s t ]  w e r e  h a l v e d  w h e n  p e r f o r m i n g  h i g h  t e m p e r a t u r e  r u n s  ( 6 0  ° C )

Using a standard was important to gain a relative measure o f the activity o f the 

new catalysts. The highly active titanium-phosphinimide catalyst CpTi(NPlBu3 )Cl2 was 

used as a standard when evaluating the dihalide pre-catalysts 2.7-210. Similarly. 

CpTi(NPlBu3 )Me2 was the standard when evaluating the dialkyl analogues 2.11-2.14, 

Reasons behind the choice of the standard were twofold. Although metallocenes are 

commonly used for comparison for new Group IV transition metal catalysts, the tri-tert- 

butylphosphinimide complexes have comparable activity to Cp2ZrCl2 and CGC catalysts,

39and significantly higher activity in comparison to Cp2TiCl2 or CpTiC^. Secondly, the 

catalysts 2.7-2.14 (Figure 3.4) are structurally similar to the parent tri-tert- 

butylphosphinimide complexes, which make them a better benchmark for comparison in 

this study.
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2 . 7  2 . 8  2 . 9  2 . 1 0

2.11 2.12 2 . 1 3 2 . 1 4

Figure 3.4 Catalysts tested for polymerization

The activities of pre-catalysts 2.7-2.15 were determined using three activation 

strategies. Dihalide precursors 2.7-2.10 were tested using MAO as the co-catalyst 

(Section 3.5.1). Dialky] precursors 2.11-2.15 were tested with the activators BlGgF-A 

(Section 3.5.2) and [Ph3 C]+[B(C6F5)4 ]‘ (Section 3.5.3). Polymerization testing was also 

done at 60 °C with 2 equivalents o f [Ph3 C]+[B(CeF5)4 ]', and compared to analogous tests 

performed at 30 °C (Section 3.5.4). All polymerizations were tested in duplicate to test 

for reproducibility, and the percent difference was calculated using Equation 3.5:

Activity;
x 100%%Difference

Average Activity
(3.5)
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3.5.1 Polymerizations with MAO as the Co-Catalyst

Polymerization tests using the Biichi polymerization reactor were first performed 

with 500 equivalents o f MAO as the activator. Catalyst concentrations were kept constant 

at 10 pmol/L. Please refer to Table 3.2 for the remaining polymerization conditions. The 

results o f these polymerization tests are summarized in Table 3.3.

Table 3.3 Polymerization results with MAO as co-catalyst

P re-C atalyst A ctivity (Trial 1)

(g m m ol'1 h'1 atm '1)

Activity (Trial 2) 

(g m mol'1 h'1 atm '1)

A verage Activity  

(g m m ol'1 h'1 atm '1)

%

Difference

CpTiCyNPC'Bu).,] 2 1 9 1 5 2 0 3 4 9 2 1 1 3 2 7

2.7 4 6 5 3 3 6 4 0 1 3 2

2.8 8 9 6 6 2 1 7 5 9 3 6

2.9 1 2 7 8 3 1 0 5 4 2

2.10 1 6 9 1 6 2 1 6 6 4

The activity o f the standard CpTi(NP‘Bu3 )Cl2 and excess MAO was found to be 

very high, whereas only moderate activities were found for complexes 2.7-2.10. Stephan 

and coworkers reported that the pre-catalyst T iChfN P^Bu^h had limited activity in 

combination with MAO, whereas activation o f TiMe2 [NP(tBu)3 ] 2  with B(C(,F5 ) 3  or 

[Ph3 C]+[B(C6 F5)4]' led to much higher activities.35 Reaction with excess AlMe3 and 

TiMe2 [NP(1Bu)3 ] 2  gave divergent decomposition pathways consisting o f phosphinimide 

abstraction and C-H bond activation (Figure 3.5). This suggests that the aluminum centre 

can interact with the titanium-bound nitrogen atoms or the aluminum-bound methyl 

groups can interact with the titanium centre.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

phosphinimide abstraction

y < .

O  H,
-BusP x Nn  / C x

\  / M6 excess AIMe. A  ^ / V " A  A P'B“>T i ^  excess A lM e^ Mf̂ A| AIMe2  + y C + Me2AI Ti

J  Me \ y  Me2AI Ti AIMe2  XCH Y

.p f  Hz c  N L  p 'Bu3‘Bu3P Ho II AIMe3

^  P'Bu 3  j

Y
C-H activation products

Figure 3.5 Decomposition pathways in the reaction of AlMe3 and TiMe2[NP(tBu3)]2

One possible explanation for the lower activities seen with complexes 2.7-2.10 

may be that Lewis acid-base interactions are also taking place between the aluminum 

centers o f  MAO and the pendant heteroatom donor (Scheme 3.1). Interaction between 

oxygen or sulfur with residual AlMe3 or the Lewis acidic sites in MAO could potentially 

draw the pendant arm away from the electron-poor titanium centre, making the titanium- 

bound nitrogen more accessible for attack by the aluminum centers in MAO.

Cp 1 C p 1 Cp'

I xf'Ph I X^Ph Y  .x^Ph
A Ti. >  / Ti-- > y Tr >

Cl c i  V  >  MAO „ M eJ e  V  \  e x c e ss  MAO ^ ^  <

XK  X .  V
‘Bu7  ‘Bu ‘Bu7  ‘Bu tB/  ‘Bu

x = o, s
C p 1 = C 5 H5 , C 5 Me5

MAO/T:

lAO/TMl

Me

Ph

‘Bu
MAO/TMJ

Scheme 3.1 Possible interaction between aluminum centers and the pendant donor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

Although this explanation currently remains speculative, Do and coworkers have 

recently reported similar interactions between the amine nitrogen o f the unbridged 

zirconocene [l-(p-Me2NC6H4)-3,4-Me2C2H2]2ZrCl2 and the aluminum centers in MAO.83 

In this system, the authors propose that aluminum-nitrogen interactions prevent the 

amine-functionalized ligands from freely rotating. This observation lends credence to the 

possibility o f Lewis acid-base interactions between aluminum and a heteroatom donor 

with a free lone-pair, disrupting the titanium-heteroatom interaction. This would in turn 

lead to nitrogen-aluminum interactions, causing ligand degradation.

In comparing complexes 2.7-2.10, the oxygen derivatives showed better activity. 

The distance between sulfur and the cationic titanium centre is expected to be greater 

when compared to oxygen. Hence it may be easier for the aluminum centre o f MAO to 

destabilize the sulfur derivatives. The percent differences for the polymerizations were 

not particularly low, but were still under 50%. This speaks to the difficulty with 

percentage errors for systems with low activities; reported activities with MAO in the 

literature have been known to vary widely. '

3.5.2 Polymerizations with B(C6F5)3 as the Co-Catalyst

The dialkyl titanium phosphinimides 2.11-2.14 were tested for ethylene 

polymerization with B(C6 F5 ) 3  as the co-catalyst. Both 1 and 2 equivalents o f the activator 

were used to determine if increasing the concentration increased the activity o f the 

catalyst. Please refer to Table 3.2 for the polymerization conditions. The results of 

polymerization screenings with B(C6 F5 )3  are tabulated in Table 3.4.
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Table 3.4 Polymerization results with B(C 6Fs) 3  as co-catalyst

Pre-Catalyst Activity (Trial 1) 

(g mmol'1 h 1 a t m 1)

A ctivity (Trial 2) 

(g m m ol'1 h'1 atm '1)

A verage Activity 

(g m m ol'1 h'1 a tm 1)

%

Difference

C p T i M e 2 [ N P ( ' B u ) 3 ] “ 8 9 3 7 1 1 3 1 3 1 0 1 2 5 2 3

2.11a 2 2 8 3 5 7 2 9 3 4 4

2.12° 7 9 3 1 4 2 2 1 1 0 8 5 7

2.13“ 9 3 3 8 1 3 8 7 3 1 4

2.14“ 1 9 5 2 1 8 3 5 1 8 9 4 6

C p T i M e 2 [ N P ( ’B u ) 3 ] b 6 8 7 7 7 9 8 1 7 4 2 9 1 5

2.11b 1 4 3 8 1 5 6 0 1 4 9 9 8

2.12b 3 0 8 7 2 6 3 7 2 8 6 2 1 6

2.13b 1200 1 1 6 9 1 1 8 5
<*»
J

2.14b

ay-X.. _ __*_- f

4 2 8 4

^ s . b . _____

3 9 0 0 4 0 9 2 9

a O n e  e q u i v a l e n t  o f  B ( C 6 F 5 ) 3 ; b t w o  e q u i v a l e n t s  o f  B ( C 6 F 5 ) 3

The percent difference for complexes 2.11 and 2.12 were quite high due to 

polymer swelling in the reactor. If the polymer tends to form near the top of the reactor 

vessel and becomes swollen with toluene, the ethylene inlet can become partially 

blocked, which disrupts the flow. The percent difference values for all other tests in this 

series indicate good to excellent reproducibility.

Polymerization results in Table 3.4 indicate that the dimethyl precursors (2.11- 

2.14)/B(C6F5)3 are much more active than the dichloride precursors (2.7-2.10)/MAO. 

Complexes 2.12 and 2.14, which feature the bulkier Cp* ancillary ligand, have higher 

activities than the Cp complexes 2.11 and 2.13, respectively. A similar trend was seen 

with the related pre-catalyst Cp’Ti(NPR.3 )Me2 (Cp’ = C5H 5 , 'BuCsFF; R = Cy, 'Pr, lBu),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

which showed a dramatic increase in polymerization activity with additional steric bulk 

on the cyclopentadienyl ligand.

Furthermore, the pre-catalysts 2.11-2.14 showed a significant increase in activity 

when two equivalents o f the co-catalyst were used. Increasing the concentration o f the 

active species may in turn increase the concentration o f the catalytically active species. 

When one equivalent of B(C6 Fs) 3  is used, there may be competition for interaction with 

the Lewis acidic boron centre between the methyl group and the pendant sulfur or oxygen 

heteroatom. Interactions between BfCeFsF and the pendant donor would reduce the 

concentration o f the active cationic titanium complex for polymerization.

Interestingly, the standard CpTiMe2 [NP(lBu)3 ] significantly dropped in activity by 

26% when two equivalents o f the activator was used, lying in stark contrast to the 

pendant donor systems. One possible explanation could be the formation of the dication 

[(Cp)(tBu3NP)Ti(p-MeB(C6 F5 )3)2 ]2+ due to abstraction of both of the titanium-methyl 

groups (Figure 3.6). Guerin and coworkers6j reported that the bisphosphinimide system 

(rBu3NP)2 TiMe2 afforded similar reactivity with two equivalents o f B(C6F5 ) 3  to give the 

dication [(tBu3NP)2 Ti((p-MeB(C6F5)3 )2 ]2+. Similar attempts to affect double alkyl 

abstraction using [Ph3 C]+[B(C6F5)4]' led to decomposition. The possible partial formation 

of a dication [(Cp)(tBu3NP)Ti(p-MeB(C6F5)3 )2 ]2+, which would be an ineffective catalyst, 

would lower the activity as shown in Table 3.4.
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active catalyst 
 A _____r

I B(C6F 5)3

(C6f 5)3b

B(C 6F 5)3

(C6f 5)3b
B(C6F5)3

Y
inactive catalyst

Figure 3.6 Suggested formation of the dication [(Cp)(tBu3NP)Ti(|a-MeB(C6 F5 )3 )2 ]2+

Thioether complex 2.14 showed the highest activity whether one or two 

equivalents o f B(C6Fs) 3  were used. The very high activity of 2.14 approaches 55% of the 

activity o f the standard CpTiMe2 [NP(lBu)3 ] when two equivalents of co-catalyst were 

used. The results indicate that the introduction o f a soft donor gives markedly improved 

activities for a-olefm polymerization. Although this seemed surprising, there is literature 

precedent for this type of trend.84,85 For example, Gibson and coworkers84 prepared a 

series of titanium complexes featuring tridentate ligands with pendant hard (O) or soft (S, 

P) donors (Figure 3.7).

Figure 3.7 Order of polymerization activity o f  titanium complexes with a pendant

in c re a s in g  p o ly m e r iz a t io n  activ ity

hard or soft ligand
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In the Gibson systems, the sulfur derivatives had a much higher activity (.3530 g 

mmol'1 h r '1 bar'1) than the analogous oxygen derivatives (88 g mmol'1 hr'1 bar'1) upon 

activation with 2000 equivalents of MAO. The pendant phosphine pre-catalysts displayed 

the highest activity (19 500 g mmol'1 h '1 bar'1). Although the titanium complexes shown 

in Figure 3.7 are not structurally related to complexes 2.11-2.14, this is an example of 

improved catalyst activity upon introduction o f a pendant soft donor into the ligand 

framework.

3.5.3 Polymerizations with [Ph3C]+[B(C6Fs)4]‘ as the Co-Catalyst

The dialkyl pre-catalysts 2.11-2.14 were tested for polymerization activity with 

one and two equivalents o f [Ph3 C]+[B(C6 F5 )4 ]' as the co-catalyst. Polymerization 

conditions can be found in Table 3.2. The polymerization screening results o f these pre­

catalysts are shown in Table 3.5.
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Table 3.5 Polymerization results with [Ph3 C]+[B(C6 Fs)4 ]' as co-catalyst

Pre-Catalyst Activity (Trial 1) 

(g mmol'1 h'1 atm '1)

A ctiv ity  (Trial 2) 

(g m m ol'1 h'1 atm '1)

A verage Activity  

(g m mol'1 h'1 atm '1)

%

Difference

C p T i M e 2 [ N P ( ’B u ) 3 ] a 8 3 2 9 8 2 5 5 8 2 9 2 1

2.11a 4 3 4 0 4 2 7

2.12a 2 6 3 5 2 0 9 4 2 3 6 5 2 3

2.13a 1 9 1 4 1 6 3 8 1 7 7 6 1 6

2.14a 4 9 3 1 4 7 6 1 4 8 4 6 4

C p T i M e 2 [ N P ( ‘B u ) 3 ] b 9 4 1 9 7 4 5 7 8 4 3 8 2 3

2.11b 1 8 1 4 1 7 1 7 1 7 6 6 5

2.12b 3 3 3 2 2 6 7 5 3 0 0 4 22

2.13b 2 4 9 5 2 6 5 6 2 5 7 5 6

2.14b

ai __.rrni.

4 7 2 1

+ r r » - i -  b~i__•

4 9 0 3

r mi m  + rn//-' r- \ t

4 8 1 2 4

a l  e q u i v a l e n t  o f  [ P h 3 C ] + [ B ( C 6 F 5 ) 4 ] ' ;  2  e q u i v a l e n t s  o f  [ P h 3 C ] + [ B ( C 6 F 5 ) 4 ]

The percent differences for the polymerization tests show much better 

reproducibility than the polymerization tests using MAO as the activator. Trends noted 

with the use o f B(C6F5 ) 3  as the activator were also observed upon activation with 

[Ph3C]+[B(C6F5)4 ]'. For example, complex 2.14 was again found to have the highest 

activity, approaching 60% of the activity o f  CpTiMe2 [NP(lBu)3]. Additionally, the 

pendant thioether complexes had markedly better activities than the analogous pendant 

ether systems. Furthermore, increased steric bulk on the ancillary Cp ligand resulted in 

higher activities when comparing either the sulfur or oxygen complexes. Increasing the 

amount o f co-catalyst to two equivalents resulted in improved activities for 2.11-2.13. 

The activity o f 2.14 was not significantly altered. Doubling the amount of co-catalyst 

may maximize the number of catalytically active species in solution.
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Overall, pre-catalysts 2.11-2.14 were much more active upon activation with 

[Ph3 C]+[B(C6 F5 )4]' when compared to B(C6 F 5 ) 3  and MAO. Catalytic activity depending 

on the counterion employed was found to be [B(C6F5)4]' > [M e B ^ F s^ ] ' > [MeMAO]'. 

This was not surprising since catalytic activities are highly dependent on the type of

o

anion used and tend to increase as the anion becomes less coordinating. Theoretical 

studies with the aforementioned anions have shown that [B(C6F5)4]’ has the weakest 

interaction with [CpTi(NPMe3 )Me]+.40 Stephan and coworkers32 have found dramatically 

improved activities when using [Ph3 C]+[B(C6 F5 )4]' to activate CpTi(NP*Bu3 )Me2 . Thus, 

the initial polymerization screening results (Tables 3.3-3.5) fall in line with previous 

experimental and theoretical findings.

3.5.4 Polymerization Testing at Elevated Temperatures

To investigate the thermal stability o f compounds 2.11-2.14, polymerizations 

were performed at 60 °C. Two equivalents o f [Ph3 C]+[B(C6F5)4]' were employed, as these 

conditions merited the highest activities at 30 °C. All other polymerization testing 

conditions can be found in Table 3.2. A comparison of catalyst activities at 30 °C and 60 

°C are summarized in Table 3.6.
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Table 3.6 Effect o f temperature on catalyst activities

Pre-Catalyst Activity (Trial 1) 

(g mmol'1 h'1 atm'1)

A ctiv ity  (Trial 2) 

(g m m ol'1 h"1 atm '1)

A verage Activity  

(g mmol"1 h'1 a tm 1)

%

Difference

C p T i M e 2 [ N P ( ‘B u ) 3 ] a 8 3 2 9 8 2 5 5 8 2 9 2 1

2.11a 4 3 4 0 4 2 7

2.12a 2 6 3 5 2 0 9 4 2 3 6 5 2 3

2.13a 1 9 1 4 1 6 3 8 1 7 7 6 1 6

2.14a 4 9 3 1 4 7 6 1 4 8 4 6 4

C p T i M e 2 [ N P ( ‘B u ) 3 ] b 1 2 1 6 0 1 1 3 8 8 1 1 7 7 4 7

2.11b 4 7 6 6 5 7 6 8 5 2 6 7 1 9

2.12b 5 7 5 8 6 0 3 0 5 8 9 4 5

2.13b 5 4 6 2 6 6 4 2 6 0 5 2 1 9

2.14b

a«T> _ n r\ r\iO. b'-r1 _ za cis~<

7 4 1 4 8 0 4 6 7 7 3 0 8

The activities of complexes 2.11-2.14 increased dramatically at elevated 

temperatures. The standard CpTiMe2 [NP(lBu)3 ] also had an improved activity at 60 °C, 

however the increase in activity was more pronounced for species 2.11-2.14. Complex 

2.14, which had the highest activity (7730 g m m ol'1 h"1 atm '1) was approximately 65% as 

active as CpTilV ^fN PfBu^] (11774 g m m ol'1 h '1 atm’1). Although the results in Table

3.6 are only preliminary, the markedly improved activities at elevated temperatures of 

these titanium-phosphinimide pendant ether and thioether systems points towards the 

possibility o f commercial applications. The presence of a donor atom in the ligand 

framework could possibly stabilize the highly reactive cationic metal centre under 

industrial relevant conditions (70-160 °C).
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3.6 Conclusions

New, highly active ethylene polymerization pre-catalysts, which feature a pendant 

hard or soft donor, have been prepared. A reliable polymerization testing protocol was 

used through control of variables such as temperature, pressure, stirring rate, solvent 

volume, reaction time, and concentration o f pre-catalysts, co-catalyst, and solvent 

scrubber. The pre-catalysts were tested with the common activators MAO, B(C6 Fs)3 , and 

[Ph3C]+[B(C6F5)4]'. Due to lack of specialized equipment, analysis of the molecular 

weights o f the polymer could not be obtained. As of this writing, polymer samples are 

being analyzed by Nova Chemicals Corp. However, the impact of these hemilabile 

systems on the molecular weight o f the resulting polymers will be o f particular interest. 

Aliquots o f the reactor solution following each polymerization were taken and analyzed 

using gas chromatography (GC) analysis, which showed no evidence of lower oligomers 

in all polymerization trials.

The dichloride precursors 2.07-2.10 displayed moderate to good activity upon 

activation with MAO. Interaction between hard aluminum centers in MAO and the 

pendant donor may be a source of catalyst poisoning. The dimethyl precursors 2.11-2.14 

showed substantially improved activities upon activation with either BlG^Fs^ or [Ph- 

3 C]+[B(C6Fs)4 ]‘. With the choice of co-catalyst being a critical factor in terms o f catalyst 

activities7, the order of polymerization activity depending on the counterion employed 

was found to be: [B(C6Fs)4 ]' > [M e B ^ F s^ ] ' > [MeMAO]'.

When comparing the dimethyl titanium systems, two major trends were found. 

First, added steric bulk on the ancillary cyclopentadienyl ligand resulted in markedly 

higher polymerization activities. Second, the choice o f the pendant donor heteroatom in
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the ligand framework was very influential. Remarkably, the choice of a soft thioether 

donor resulted in dramatically improved activities over the analogous ether systems. 

Overall, complex 2.14, featuring both a bulky Cp* ancillary ligand and a pendant 

thioether donor, had the highest activity in all cases under the conditions employed. 

Previously synthesized derivatives of the highly active CpTiMe2 [NP('Bu)3 ] pre-catalyst 

where the groups on phosphorus were altered were orders of magnitude lower than the 

parent compound. Despite being unable to match the activity of CpTiMe2 [NP(tBu)3], the 

pendant donor systems 2.11-2.14 are the first phosphinimide derivatives to be on the 

same order o f magnitude as CpTiMe2 [NP(lBu)3 ].

Complexes 2.11-2.14 were also tested under optimal reaction conditions (two 

equivalents o f [Ph3 ]+[B(C6F5)4 ]') at elevated temperatures (60 °C). These initial results 

were promising, as all pre-catalysts showed markedly improved activity at higher 

temperature. This leaves open the possibility for commercial applications, as the 

industrial standard o f activity is limited to temperatures between 70 and 160 °C.32 The 

presence o f a pendant heteroatom donor may stabilize the reactive metal centre at 

elevated temperatures. Indeed, these systems are the first variants of the simple titanium 

phosphinimide catalysts, CpTilV^fNP^Bufi], to show good to excellent activities under 

laboratory conditions. The potential of the pendant donor derivatives has been 

demonstrated and evaluation for commercial trial is underway.
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Chapter 4 

Experimental

4.1 General Considerations

All preparations were performed in a dry, oxygen-free, nitrogen atmosphere 

employing either standard Schlenk line techniques or an Innovative Technologies glove 

box. All organic chemicals were purchased and used as received from Aldrich Chemical 

Co. All metal compounds were used as received from Strem Chemical Co. B(C6 Fs) 3  and 

[Ph3C]+[B(C6F5)4]‘ was generously donated by Nova Chemical Corp. Hyflo Super Cel 

(Celite) was purchased from Aldrich Chemical Co. and dried overnight in a vacuum oven 

prior to use. Benzene, toluene, diethyl ether, hexanes and pentane were obtained directly 

from an Innovative Technologies solvent purification system. THF was freshly distilled 

from sodium-benzophenone ketyl. CeDsBr, C6 D6 and C7D 8 were purchased from 

Cambridge Isotopes Laboratories and were freshly distilled from sodium-benzophenone 

ketyl. !H, 31P{'H} (121 MHz), i3C{'H} (75 MHz), "B I 'H ) (96 MHz), and 19F NMR 

(282 MHz) spectral data were acquired on Bruker Avance 300 or 500 MHz 

spectrometers, 'fl and ljC{'H) NMR spectra were internally referenced to the residual 

proton or carbon peak o f the solvent and chemical shifts are reported relative to SiMe4 . 

31P{'H} spectra were referenced relative to 85% H3 PO4 as an external standard. n B{'H} 

and 19F NMR spectra were referenced relative to the external standards BF3 *Et2 0  and 

80% CCI3 F in CDCI3 , respectively.
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4.2 Phosphines

(*Bu)2P(CH2)3 0 CH2Ph, 2.1. A solution o f Br(CH 2 )3 0 Bn (0.696 g, 3.04 mmol) in 10 mL 

THF was added dropwise at -35°C to a solution o f (*Bu)2PLi (0.462 g, 3.04 mmol) in 20 

mL of THF. Following addition of the bromoether, there was an almost immediate color 

change from deep yellow to very pale yellow. The solution was stirred and allowed to 

warm to 25°C. The solvent was removed in vacuo to afford a white and yellow solid (due 

to LiBr). The yellow residue was redissolved in toluene to precipitate LiBr. The solution 

was filtered to remove LiBr and the solvent was removed in vacuo to afford a yellow oil. 

3 1 P{‘H} NMR (C6 D6, 25 °C, §): 27.0. 'H NM R (C6 D6, 25 °C, 5): 7.28 -  7.07 (C6 H 5); 

4.35 (s, 2H, OCH2); 3.46 (t, 2 H, CH2 OCH2, |J H-h | = 6  Hz ); 1.85 (m, 2 H, CH2 -CH2- 

CH2); 1.42 (m, 2H, P-CH2); 1.06 (d, 18H, ‘Bu). ,3 C{]H} NMR (C6 D6, 25 °C, 8 ): 139.4 -  

127.3 (C 6 H5); 73.1 (s, CH2 OCH2); 71.1 (d, CH 2 OCH2, |JP.C| = 14 Hz); 30.7 (d, 

P[C(CH3)3]2, |J p-c | = 8  Hz); 29.8 (s, P[C(CH3)3]2); 25.7 (s, CH2 CH 2 CH2); 18.1 (d. P-CH2. 

|JP.C| = 22 Hz). Yield: 0.814 g, 91%.

Ph 2 P(CH 2 )3 0 CH 2 Ph, 2.2. A solution of Br(CH2)3OBn (0.656 g, 2.86 mmol) in 10 mL of 

THF was added dropwise at -35 °C to a solution o f Ph2PLi (0.5 g, 2.60 mmol) in 20 mL 

of THF. Following addition o f the bromoether, there was an almost immediate color 

change from deep orange to pale yellow. The solution was stirred and allowed to warm to 

25 °C. The solvent was removed in vacuo to afford a yellow oil. The oil was redissolved 

in toluene to precipitate LiBr. The solution was filtered to eliminate LiBr and solvent was 

removed in vacuo to afford a clear yellow oil.
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3 1 P{'H} NMR (C6 D6, 25 °C, 6 ): -15.7 (s). ‘H NMR (C6D6, 25 °C, 6 ): 7.55 -  7.18 

(C6 H5); 4.37 (s, 2H, CH2 OCH2); 3.41 ( t  C H 2 OCH2, |JH.H| = 6  Hz); 2.19 (m, 2H CH2- 

CH 2 -CH2); 1.82 (m, 2H, P-CH2). NMR (C6D6, 25 °C, 6 ): 139.5 -  127.3

(C 6 H5); 72.7 (s, CH2 OCH2); 70.7 (d, CH 2 OCH2, |JP.C| = 13 Hz); 26.7 (d, CH2 -CH 2 -CH2, 

|JP.C| = 17 Hz); 24.9 (d, P-CH2, |JP.C| = 12 Hz). Yield: 0.703 g, 81%.

*Bu2P(CH2)3SCH2Ph, 2.3. A solution o f Br(CH 2 )3 SCH2Ph (2.0 g, 8.16 mmol) in 20 mL 

of THF was added dropwise at -78 °C to a solution of (lBu)2PLi (1.24 g, 8.16 mmol) in 

40 mL of THF. The mixture was allowed to slowly warm to room temperature overnight. 

The solvent was removed in vacuo to afford a yellow oil. The oil was redissolved in 

toluene to precipitate LiBr. The solution was filtered to eliminate LiBr and solvent was 

removed in vacuo to afford a clear yellow oil. 3 1 P{'H} NMR (C6 D6 , 25 °C, 6 ): 27.4 (s). 

’H NMR (C6D6, 25 °C, 6 ): 7.27 -  7.07 (C 6 H 5); 3.53 (s. 2Hf CH2 SCH2); 2.46 (t, 

CH 2 SCH2, | J H-h | = 7 Hz); 1.79 (m, 2H CH2 -CH 2 -CH2); 1.36 (m, 2H, P-CH2); 1.13 (d, 

lBu, | J H-h | = 12 Hz). 13C{'H} NMR (C6 D6; 25 °C; 5 ) :  129.1 -  126.8 (C6 H5); 36.2 (s, 

CH2 SCH2); 32.6 (d, CH 2 SCH2, |JP.C! = 12 Hz): 29.7 (d, P[C(CH3)3]2, |JP-c| = 14 Hz); 27.2 

(s, P[C(CH3)3]2); 26.4 (s, CH2 CH2 CH2); 20.5 (d, P-CH2, |JP.C! = 22 Hz). Yield: 2.33 g, 

92%

4.3 Phosphinim ines

Me3SiNP('Bu)2 |(CH2)3 0 CH2Ph], 2.4. Azidotrimethylsilane (5 eq., 6.49 g, 56.3 mmol) 

was added dropwise to a yellow solution o f  2.1 (1.713 g, 3.315 mmol) in 20 mL of 

toluene. The mixture became off white and cloudy, and was refluxed overnight. The
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solution was cooled and filtered to remove any impurities. Solvent was removed in vacuo 

to afford a yellow oil. 3 1 P{]H} NMR (C6D6, 25 °C, 5): 27.1 (s). 'H NMR (C6 D6, 25 °C,

5): 7.28 -  7.05 (C6H 5); 4.37 (s, 2H, CH2 OCH2); 3.33 (t, 2H, CH 2 OCH2, |J H-h | = 6  Hz); 

1.86 (m, 2H, CH2 -CH2 -CH2); 1.51 (m, 2H, P-CH2); 1.02 (d, 18H, lBu, |J H-h | = 13 Hz); 

0.31 (s, 9H, Si(CH3)3). 13C{’H} NMR (C6 D6, 25 °C, 5): 139.2 -  127.5 (C6 H5); 72.9 (s, 

CH2 OCH2); 71.1 (d, CH2 OCH2, jJP.c | = 11 Hz); 36.7 (d, P[C(CH3)3]2, |Jr-c| = 63 Hz); 

27.0 (s, P[C(CH3)3]2); 24.9 (s, CH2 -CH 2 -CH2); 19.2 (d, P-CH2, |JP.C| = 60 Hz); 4.8 (s, 

Si(CH3)3). Yield: 1.11 g, 87.7%.

Me3SiNP(Ph)2[(CH2)3OCH2Ph], 2.5. Azidotrimethylsilane (5 eq., 2.58 g, 22.4 mmol) 

was added dropwise to a yellow solution of 2.2 (1.50 g, 4.49 mmol) in 20 mL of toluene. 

The mixture became off white and cloudy, and was refluxed overnight. The solution was 

cooled and filtered to remove any impurities. Solvent was removed in vacuo to afford a 

viscous yellow oil. 3 1 P{'H} NMR (C6D6, 25 °C, 5): 1.56 (s). 'H NMR (C6 D6. 25 °C,

6 ): 7.78 -  7.15 (C6 H 5); 4.56 (s, 2H, CH2 OCH2); 3.29 (t, 2H, CH 2 OCH2, |J H-h | = 8  Hz);

2.27 (m, 2H, CH2 -CH2 -CH2); 1.95 (m, 2H, P-CH2); 0.49 (s, 9H, Si(CH3)3). ^C l'H } 

NMR (C6 D6, 25 °C, 5): 139.5 -  128.1 (C 6 H 5); 73.2 (s, CH2 OCH2); 70.9 (d, CH 2 OCH2, 

|JP.C| = 15 Hz); 29.2 (d, P-CH2, |JP.C| = 53 Hz); 23.4 (s, CH2-CH 2 -CH2); 5.1 (s, Si(CH3)3). 

Yield: 1.51 g, 79.9%.

M esS iN P ^B u ^K C H ^S C ^P h ], 2.6. Azidotrimethylsilane (5 eq., 4.70 g, 40.8 mmol) 

was added dropwise to a yellow solution of 2.3 (2.53 g, 8.16 mmol) in 30 mL of toluene. 

The mixture became off white and cloudy, and was refluxed overnight. The solution was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

cooled and filtered to remove any impurities. Solvent was removed in vacuo to afford a 

yellow oil. 3 ,P{]H} NMR (C6D6, 25 °C, S): 26.8 (s). ]H NMR (C6 D6, 25 °C, 8 ): 7.28 -

7.07 (C6 H 5); 3.56 (s, 2H, CH2 SCH2); 2.38 ( t  2H, CH2 SCH2, |JH-H| = 7 Hz); 1.82 (m, 2H, 

CH2 -CH2 -CH2); 1.42 (m, 2H, P-CH2); 1.05 (d, 18H, ‘Bu, | J H-h | = 13 Hz); 0.32 (s, 9H, 

Si(CH3)3). 13C{’H} NMR (C6 D6, 25 °C, 8 ): 138.6 -  126.7 (C 6 H 5); 35.6 (s, CH2 SCH2);

32.9 (d, CH 2 SCH2, |JP.c| = 13 Hz); 29.6 (d, P[C(CH3)3]2, \Jp-c\ = 13 Hz); 27.1 (s, 

P[C(CH3)3]2); 24.1 (s, CH2 -CH2 -CH2); 20.4 (d, P-CH2, |JP.C| = 12 Hz); 4.7 (s, Si(CH3)3). 

Yield: 3.24 g, 78.0%.

4.4 Titanium Complexes

CpTiCl2[NP('Bu)2{(CH2)3OCH2Ph}], 2.7. A solution o f 2.4 (0.30 g, 0.786 mmol) in 5 

mL of toluene was added dropwise at room temperature to a solution of CpTiCl3 (0.184 

g, 0.825 mmol) in toluene. The yellow solution was then refluxed overnight to give a 

clear orange solution. The solvent was removed in vacuo to yield a dark orange oil. 

Treatment of the oil with hexanes, and subsequent decanting gave a yellow solid. 

3 ,P{’H} NMR (C6 D6. 25 °C, 8 ): 39.9 (s). 'H NMR (C6 D6. 25 °C, 8 ): 7.30 -  7.09 (C6 H5); 

6.46 (s, 5H, C5H 5 ); 4.35 (s, 2H, CH2 OCH2); 3.34 (t, 2H, CH 2 OCH2, | J H-h | = 7 Hz); 2.12 

(m, 2H, CH2 -CH2 -CH2); 1.59 (m, 2H, P-CH2); 0.99 (d, 18H, lBu, | J H-h | =  1 4  Hz). 

I3C{'H} NMR (C7 D8, 25 °C, 8 ): 138.7 -  119.4 (C 6 H5); 118.2 (s, C 5H5); 72.7 (s, 

CH2 OCH2); 69.9 (d. CH2 OCH2, |Jp.c | = 19 Hz); 38.3 (d. PfC(CH3)3]2, |JP.C| = 62 Hz);

26.4 (s, P[C(CH3)3]2); 24.5 (s, CH2 -CH2 -CH2); 18.7 (d, P-CH2, |JP.C| = 64 Hz). Yield: 

0.289 g, 73.2%.
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Cp*TiCl2 [NP(tBu)2 {(CH2)3 0 CH 2 Ph}], (Cp* = C 5Me5), 2.8. A solution of 2.4 (0.50 g. 

1.31 mmol) in 5 mL of toluene was added dropwise at room temperature to a solution of 

Cp*TiCl3 (0.400 g, 1.38 mmol) in toluene. The yellow solution was then refluxed 

overnight to give a clear orange solution. The solvent was removed in vacuo to yield a 

dark orange oil. Treatment o f the oil with hexanes, and subsequent decanting gave an 

orange solid. ^ P l'H }  NMR (C6 D6, 25 °C, 5): 38.5 (s). ]H NMR (C6 D6, 25 °C, 5): 7.42 

-  7.18 (C6 H 5); 4.45 (s, 2H, CH2 OCH2); 3.47 (t, 2H, CH 2 OCH2, |J H-h | = 6  Hz); 2.40 (m, 

2H, CH2 -CH 2 -CH2); 2.30 (s, 5H, C5 H5); 1.92 (m, 2H, P-CH2); 1.11 (d, 18H, lBu, |J H-h | =  

14 Hz). 1 3C{'H) NMR (C6 D6, 25 °C, 6 ): 139.5 -  128.1 (C 6 H5); 125.9 (s, C5 (CH3)5);

73.4 (s, CH 2 OCH2); 71.4 (d, CH 2 OCH2, |JP.C| = 13 Hz); 38.9 (d, P[C(CH3)3]2, \Jp-c\ = 53 

Hz); 27.9 (s, P[C(CH3)3]2); 25.2 (d, CH2 -CH 2 -CH2, |JP_C| = 15 Hz); 21.8 (d, P-CH2, |JP.C| 

= 53 Hz); 13.5 (s, C5 (CH3)5). Yield: 0.600 g, 81.3%.

CpTiCl2 [NP(‘Bu)2 {(CH2)3 SCH 2 Ph}], 2.9. A solution o f 2.6 (1.01 g, 2.54 mmol) in 5 mL 

of toluene was added dropwise at room temperature to a solution of CpTiCl3 (0.559 g, 

2.54 mmol) in toluene. The reaction mixture was then refluxed overnight to give a clear 

yellow solution. The solvent was removed in vacuo to yield a dark orange oil. Following 

addition of 30 mL of hexanes, the mixture was allowed to stir overnight. Removal of 

hexanes in vacuo gave a dull yellow waxy solid. 3 iP{'H} NMR (C6 D6 , 25 °C, 5): 39.2 

(s). 'H NMR (C6 D6, 25 °C, 8 ): 7.42 -  7.01 (C6 H 5); 6.52 (s, 5H, C5H5); 3.63 (s, 2H, 

CH2 SCH2); 2.31 (t, 2H, CH2 SCH2, |J H-h | = 6  Hz); 2.09 (m, 2H, CH2 -CH 2 -CH2); 3.45 (m, 

2H, P-CH2); 0.98 (d, 18H, lBu, | J H-h | = 14 Hz). 13C{'H) NMR (C6D6, 25 °C, 8 ): 139.2 -

127.6 (C6 H5); 119.9 (s, C 5 H5); 38.9 (d, P[C(CH3)3]2, |JP.C| = 52 Hz); 36.2 (s, CH 2 SCH2):
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32.8 (d, P[C(CH3)3]2, |^p-c| = 13 Hz); 27.5 (s, CH2 SCH2); 24.2 (d, CH2 -CH2 -CH2, |JP.C| = 

4 Hz); 21.2 (d, P-CH2, |JP.C| = 53 Hz). Yield: 0.956 g, 76.7%.

Cp*TiCl2[NP('Bu)2{(CH2)3SCH2Ph}], (Cp* = C5Me5), 2.10. A solution of 2.6 (0.505 g,

1.27 mmol) in 5 mL of toluene was added dropwise at room temperature to a solution o f 

Cp*TiCl3 (0.387 g, 1.33 mmol) in 20 mL of toluene. The red solution was then refluxed 

overnight to give a clear orange solution. The solvent was removed in vacuo to yield a 

dark red solid. Washing the product with hexanes, and subsequent decanting gave a 

bright orange solid. 3 iP{'H} NMR (C6 D6, 25 °C, 5): 37.7 (s). ]H NMR (C6D6, 25 °C,

5): 7.61 -  7.00 (C6 H5); 3.65 (s, 2H, CH2 SCH2); 2.40 (m, 2H, CH 2 SCH2); 2.25 (m, 2H, 

CH2 -CH2 -CH2); 2.19 (s, 15H, C5 (CH3)5); 1.70 (m, 2H, P-CH2); 1.07 (d, 18H, ‘Bu, | J h-h | =  

14 Hz). 13C{’H) NMR (C6 D6, 25 °C, S): 139.5 -  127.5 (C 6H5); 126.0 (s, C5<CH3)5); 38.8 

(d, P[C(CH3)3]2, !Jp-c ! = 53 Hz); 36.5 (s, CH 2 SCH2); 33.4 (d, CH2 SCH2, |JP.C| = 15 Hz);

27.8 (s, P[C(CH3)3]2); 24.4 (s, CH2 -CH 2 -CH2): 23.7 (d, P-CH2, |JP.C| = 52 Hz); 13.5 (s, 

C5 (CH3)5). Yield: 0.451 g, 61.3%.

CpTiMe2 [NP('Bu)2 {(CH2 )3 0 CH 2Ph}], 2.11. 0.405 mL (0.648 mmol) o f a 1.6 M MeLi 

ether solution was added dropwise to a yellow benzene solution o f 155 mg (0.314 mmol) 

of 2.7. After stirring for 25 minutes, the mixture turned cloudy with a grey-yellow color. 

Removal of benzene in vacuo afforded a yellow oil. Treatment with hexanes precipitated 

LiCl, which was removed via filtration to afford a clear orange filtrate. Removal of 

hexanes in vacuo afforded a dark orange oil. 3 1 P{'H} NMR (C6D 6 , 25 °C, 8 ): 25.7 (s). 

'H NMR (C6D6, 25 °C, 8 ): 7.31 -  7.09 (C6 H 5); 6.19 (s, 5H, C5H 5); 4.35 (s, 2H, OCH2);
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3.34 (t, 2 H , CH 2 OCH2 , | J H-h | = 6  Hz); 2.08 (m, 2H, CH2 -CH 2 -CH2); 1.59 (m, 2H, P- 

CH2); 1.04 (d, 18H, lBu, | J H-h | = 14 Hz); 0.63 (s, 6 H, Ti-(CH3)2). i3 C{'H} NMR (C7D8, 

25 °C, 5): 138.9 -  124.5 (C6 H5); 110.5 (s, C 5 H5); 72.7 (s, CH2 OCH2); 70.4 (d, 

CH 2 OCH2, |^p-c| = 11 Hz); 40.3 (s, Ti-CH3); 37.8 (d, P[C(CH3)3], |JP-c| = 55 Hz); 26.7 (s, 

P[C(CH3)3 )J); 24.7 (s, CH2 -CH2 -CH2); 19.0 (d, P-CH2, |JP.C| = 54 Hz). Yield: 0.109 g, 

77%.

Cp*TiMe2[NP(‘Bu)2{(CH2)3OCH2Ph}], (Cp* = CsMes), 2.12. 2.33 mL (3.73 mmol) of 

a 1.6 M M eLi ether solution was added dropwise to a yellow benzene solution o f 1.0 g 

(1.77 mmol) o f 2.8. After stirring for 25 minutes, the mixture turned cloudy with a grey- 

yellow color. Removal o f benzene in vacuo afforded an orange oil. Treatment with 

hexanes precipitated LiCl, which was removed via filtration to afford a clear orange 

filtrate. Removal o f hexanes in vacuo afforded a dark orange oil. A concentrated hexanes 

solution was prepared and stored in a vial at -35°C overnight. The solvent was then 

removed in vacuo to give a yellow solid. 3 iP { ’H} NMR (C6D6, 25 °C, 8 ): 24.0 (s). *H 

NMR (C6 D 6, 25 °C, 8 ): 7.32 -  7.07 (C 6H 5); 4.35 (s, 2H. CH2 OCH2); 3.35 (t, 2H, 

CH 2 OCH2, |J H-h | = 6  Hz); 2.13 (m, 2H, CH2 -CH 2 -CH2); 2.06 (s, 15H, C5 (CH3)5); 1.78 

(m, 2H, P-CH2); 1.1 8 (d, 18H, lBu, |JH-H| = 13 Hz); 0.41 (s, 6 H, Ti-(CH3)2). i3 C{'H}

NMR (C6D6, 25 °C, 8 ): 129.0 -  128.1 (C 6 H5); 118.7 (s, C 5 (CH3)5); 73.4 (s, CH2 OCH2);

71.8 (d, CH 2 OCH2, |Jp-C| = 13 Hz); 43.3 (s, Ti-(CH3)2); 38.8 (d, P[C(CH3)3], |JP-c| = 55 

Hz); 28.0 (s, P[C(CH3)3)]); 25.5 (s, CH2 -CH 2 -CH2); 21.9 (d, P-CH2, |JP.C| = 54 Hz); 12.6 

(s, C5(CH3)5). Yield: 0.758 g, 81.7%.
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CpTiMe2[NP(‘Bu)2{(CH2)3SCH2Ph}], 2.13. 1.88 mL (5.64 mmol) o f a 3.0 M MeMgBr 

ether solution was added dropwise at -78 °C to a yellow ether solution of 840 mg (1.71 

mmol) o f  2.9. The reaction mixture was allowed to warm slowly to room temperature. 

Following filtration over Celite, removal o f solvent in vacuo afforded a brownish orange 

oil. The product was extracted with hexanes to give a clear orange filtrate. Subsequent 

removal o f  hexanes in vacuo afforded a viscous orange oil. 3 1 P{!H} NMR (C6D6, 25 °C,

6 ): 25.0 (s). ’H NMR (C6D6, 25 °C, 5): 7.31 -  7.02 (C6H5); 6.23 (s, 5H, C5H 5); 3.53 (s, 

2H, CH2 SC H 2 ); 2.34 (t, 2H, CH 2 SCH2, |^H-hI = 4 Hz); 2.02 (m, 2H, CH2 -CH2 -CH2); 1.54 

(m, 2H, P-C H 2); 1.07 (d, 18H, lBu, |J H-h | = 12 Hz); 0.66 (s, 6 H, Ti-(CH3)2). '^ { 'H }

NMR (C6 D 6, 25 °C, 6 ): 139.3 -  127.6 (C 6 H5); 111.2 (s, C 5 H5); 41.0 (s, Ti-(CH3)2); 38.5 

(d, P[C(CH3)3)], |J p-c | = 55 Hz); 36.6 (s, CH2 SCH2); 33.4 (d, P[C(CH3)3], |Jp-c| = 13 Hz);

27.8 (s, C H 2 SCH2); 24.4 (d, CH2 -CH 2 -CH2, |JP.C| = 4 Hz); 21.6 (d, P-CH2, |JP.C| = 54 

Hz). Yield: 0.369 g, 46%.

Cp*TiMe2[NP(*Bu)2{(CH2)3SCH2Ph}], (Cp* = C5Me5), 2.14. 0.39 mL (1.17 mmol) of 

a 3.0 M solution o f MeMgBr was added dropwise at -78°C to an orange ether solution of 

0.206 g (0.355 mmol) of 2.10. The solution was allowed to warm slowly to room 

temperature overnight. Removal o f ether in vacuo afforded a yellow oil. The product was 

extracted with hexanes and a concentrated 5 mL solution was cooled at -35°C overnight.

2 1 1
Removal o f  hexanes in vacuo afforded a bright yellow waxy solid. P{ H} NMR 

(C6 D6, 25 °C, 5): 23.5 (s). 'H NMR (C6 D6, 25 °C, 8 ): 7.27 -  7.01 (C6 H5); 3.54 (s, 2H, 

CH2 SCH2); 2.37 (t, 2H, CH2 SCH2, | J H-h | = 7 Hz); 2.12 (m, 2H, CH2 -CH 2 -CH2); 2.06 (m, 

15H. C5 (CH3)5); 1.60 (m, 2H, P-CH2); 1.20 (d, 18H, lBu, |J H-h | = 10 Hz); 0.40 (s, 6 H, Ti-
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(CH3)2). 1 3 C{'H} NMR (C6D6, 25 °C, 5): 139.4 -  127.6 (C 6 H5); 118.7 (s, Cs(CH3 ) 5 ;

43.5 (s, Ti-(CH3)2); 38.9 (d, P[C(CH3)3], |JP.C| = 55 Hz); 36.9 (s, CH 2 SCH2); 33.9 (d, 

CH2 SCH2, |JP_c| = 14 Hz); 28.0 (s, P[C(CH3)3]); 24.7 (s, CH2 CH 2 CH2); 24.0 (d, P-CH2, 

|JP_c| = 46 Hz); 12.6 (s, C5 (CH3)5). Yield: 0.176 g, 91.9%.

4.5 Activated Complexes

Synthesis of Cp’TiMe[NP(,Bu)2{(CH2)3XCH2Ph}][MeB(C6F5)3] (Cp’ = C5H5, 

X = O 2.15; Cp’ = C5Me5, X = O 2.16; Cp’ = C5H5, X = S 2.17; Cp’ = C5Me5, X = S 

2.18), and Cp’TiMe[NP(,Bu)2{(CH2)3XCH2Ph}][B(C6F5)4] (Cp’ = C5H5, X = O 2.19; 

Cp’ = C5Me5, X = O 2.20; Cp’ = C5H5, X = S 2.21; Cp’ = C5Me5, X = S 2.22). These 

compounds were prepared in a similar fashion, and thus one preparation is detailed. Some 

methylene proton resonances were obcured, thus only a partial NMR of the product ion 

pair is resported. A 4 mL solution o f B(C6 F5 ) 3 (79 mg, 0.155 mmol) in deuterated 

bromobenzene was slowly added dropwise at -35 °C to a 4 mL deuterated bromobenzene 

solution of 2.11 (70 mg, 0.155 mmol). The reaction mixture was stored at -35 °C 

overnight. 2.15: 3 iP{!H} NMR (C6D 5 Br, 25 °C, 8 ): 45.4 (s). 'H NMR (partial, C6 D 5Br, - 

30 °C, 5): 7.62 -  7.34 (C6 H 5); 6.72 (s, 5H, C5 H 5); 4.96 (d, 1H, OCHHPh, | J H-h| = 12 Hz); 

4.61 (d, 1H, OCHHPh, |JH-h| = 12 Hz); 3.98 (m, 1H, CHHO); 3.82 (m, 1H, CHHO); 1.47 

(br s, 3H, Ti-CH3); 1.24 (d, 9H, lBu, |JH.H| = 7 Hz); 1.19 (d, 9H, lBu, | J H-h| = 7 Hz); 0.58 

(br s, 3H, B -C H 3). n B NMR (C 6D 5Br, 25 °C, S): -15.0 (s). I9F NMR (C 6D 5Br, 25 °C, 8 ): 

-132.0 (d, 6 F, C6 F5 (o-F ), |Jf.f | = 23 Hz); -164.0 (t, 3F. C6F5 (p-F), |JF.F| = 20 Hz); -166.4 

(m, 6 F, C6 F5 (m-F)). 2.16: ^ P l'H }  NMR (C6 D 5Br, 25 ° C ,  8 ): 43.0 (s). ’H NMR (partial, 

C6 D5Br, -30 °C, 8 ): 7.23 -  6.82 (C6 H5); 4.08 (d, 1H. OCHHPh, |J H-h| = 7 Hz); 3.99 (d,
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1H, OCHHPh, |JH-h| = 7 Hz); 3.52 (m, 1H, CHHO); 3.34 (m, 1H, CHHO); 1.69 (s, 15H, 

C5 (CH3)5); 1.12 (br s, 3H, Ti-CH3); 0.82 (br s, 3H, B-CH3); 0.77 (d, 9H, lBu, |JH-h| = 9 

Hz); 0.74 (d, 9H, lBu, |JH.H| = 10 Hz). n B NMR (C6 D 5Br, 25 °C, 5): -15.0 (s). 19F NMR 

(C6 D5Br, 25 °C, 5): -132.3 (d, 6 F, C6 F5 (o-F), |JF.F| = 20 Hz); -164.4 (t, 3F, C6F5 (p-F), 

|JF.F| = 11 Hz); -166.9 (m, 6 F, C6 F5 (w-F)). 2.17: ^P l'H }  NMR (C 6D 5Br, 25 °C, 6 ): 45.7 

(s). ]H N M R (partial, C6D5Br, -30 °C, 6 ): 7.11 -  6.81 (C6H5); 5.77 (s, 5H, C5H5); 3.18 (d, 

1H, SCHHPh, |Jh-h| = 12 Hz); 2.99 (d, 1H, SCHHPh, |JH-h| = 12 Hz); 2.70 (m, 1H, 

CHHS); 2.43 (m, 1H, CHHS); 1.12 (br s, 3H, Ti-CH3); 0.87 (br s, 3H, B-CH3); 0.82 (d, 

9H, lBu, |JH-h| = 20 Hz); 0.76 (d, 9H, lBu, |JH-H| = 17 Hz). n B NMR (C6 D5Br, 25 °C, 5): -

14.7 (s). 19F NMR (C6 D5Br, 25 °C, 5): -132.2 (d, 6 F, C6F5 (o-F), |JF.F| = 20 Hz); -164.3 (t, 

3F, C6F5 {p-F), |JF.F| = 24 Hz); -166.8 (m, 6 F, C6F5 (m-F)). 2.18: 3 1 P{'H} NMR (C6 D 5Br, 

25 °C, 6 ): 44.4 (s). ]H NMR (partial, C6D 5Br, -30 °C, 5): 7.13 -  6.81 (C6 H5); 3.22 (d, 1H, 

SCHHPh, |JH-h| = 14 Hz); 2.77 (d, 1H, SCHHPh, |JH-h| = 14 Hz); 1.67 (s, 15H. 

C5 (CH3)5); 1.13 (br s, 3H, Ti-CH3); 0.83 (d, 9H, lBu, |JH-h| = 13 Hz): 0.79 (d, 9H. lBu. 

|Jh-h| = 14 Hz); 0.42 (br s, 3H, B-CH3). n B NMR (C 6 D5 Br, 25 °C, 5): -14.6 (s). ,9F NMR 

(C6D5Br, 25 °C, 5): -132.2 (d, 6 F, C6 F5 (o-F), |JF.F| = 22 Hz); -164.4 (t, 3F, C6 F5 (p-F), 

|JF.F| = 23 Hz); -166.9 (m, 6 F, C6F5 (m-F)). 2.19: 3 1 P{’H} NMR (C 6 D5Br, 25 °C, 5): 45.1 

(s). 'H NMR (partial, C6 D 5Br, -30 °C, §): 7.00 -  6.81 (C6 H5); 6.04 (s, 5H, C5 H5): 3.99 (br 

s, 1H, OCH 2Ph); 3.39 (m, 1H, CHHO); 3.26 (m, 1H, CHHO); 1.88 (br s, 3H, Ph3 C- 

CH3); 1.02 (br s, 3H, Ti-CH3); 0.80 (d, 9H, lBu, |JH-h| = 14 Hz): 0.76 (d, 9H, lBu, |JH-h| =

9 Hz). 2.20: 3 1 P{'H} NMR (C6 D 5Br, 25 °C, 5): 43.0 (s). 'H NMR (partial, C6 D5Br, -30 

°C, 6 ): 7.14 -  6.76 (C6 H s); 4.08 (d, 1H, OCHHPh, = 7 Hz); 4.02 (d, 1H, OCHHPh, 

|JH-h| = 7 Hz); 3.47 (m, 1H, CHHO); 3.33 (m, 1H, CHHO); 1.88 (br s, 3H, Ph3 C-CH3);
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1.71 (s, 15H, C5 (CH3)5); 0.85 (br s, 3H, Ti-CH3); 0.83 (d, 9H, lBu, |JH-H| = 9 Hz); 0.77 (d, 

9H, *Bu, | J H-h| = 9 Hz). 2.21: ^ { ’H} NMR (C6 D 5Br, 25 °C, 5): 45.4 (s). *H NMR 

(partial, C 6 D5Br, -30 °C, 6): 7.26 -  6.81 (C 6 H 5); 5.88 (s, 5H, C5H 5); 3.28 (d, 1H, 

SCHHPh, | J H-h| = 13 Hz); 3.13 (d, 1H, SCHHPh, |J H-h| = 13 Hz); 2.53 (m, 1H, CHHS); 

2.43 (m, 1H, CHHS); 1.98 (br s, 3H, Ph3 CCH3); 0.99 (br s, 3H, Ti-CH3); 0.94 (d, 9H, 

lBu, |Jh -h | = 23 Hz); 0.83 (d, 9H, lBu, |JH.H| = 13 Hz). 2.22: 31P{‘H} NMR (C6 D 5Br, 25 

°C, 5): 44.3 (s). !H NMR (partial, C6 D 5Br, -30 °C. 5): 7.10 -  6.81 (C6 H5); 3.24 (d, 1H, 

SCHHPh, |Jh-hI = 14 Hz); 2.77 (d, 1H, SCHHPh, |J H-h| = 14 Hz); 1.87 (br s, 3H, Ph3 C- 

CH3); 1.68 (s, 15H, C5 (CH3)5); 0.80 (d, 9H, lBu, | J H-h| = 13 Hz); 0.76 (d, 9H, lBu, |J H-h| = 

11 Hz); 0.42 (br s, 3H, Ti-CH3).

4.6 Ethylene Polymerization Technique

All polymerizations were performed in a similar fashion, and thus only one 

representative example is detailed. Any variations on the polymerization conditions have 

been explicitly mentioned in Chapter 3.

The reactor vessel and solvent storage unit were refilled with nitrogen with 4 

refill/evacuation cycles over at least 90 minutes. Approximately 600 mL of toluene was 

transferred to the solvent storage container from a purification column. The solvent was 

purged with dry nitrogen for 20 minutes and then transferred to the reactor vessel by 

differential pressure. The solvent was stirred at 1500 + 10 RPM and the temperature was 

kept constant at 30 ± 2 °C. The system was then exposed to ethylene via five vent/refill 

cycles. Once the ethylene flow meter read 0.000, the reactor was ready for injection of 

the A1('Bu)3 (T/BA1) solvent scrubber, pre-catalyst, and co-catalyst.
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Stock solutions of the pre-catalyst, co-catalyst, and solvent scrubber were 

prepared in an inert atmosphere glove box. 6.0 pmol of the pre-catalyst in 2.0 mL of 

toluene was loaded into a syringe. 6.0 pmol o f the co-catalyst B(CeF5 ) 3  in 1.5 mL of 

toluene was loaded into a separate syringe. 20 equivalents o f Al('Bu) 3  (T/BA1) solvent 

scrubber in 3.0 mL of toluene was also loaded into a syringe. The stock solutions were 

immediately transferred to the reactor for injection to avoid contamination or sample 

decomposition. The T/BA1 solution was injected into the reactor via the catalyst injection 

inlet. The solvent scrubber was allowed to stir for 5 minutes. Next, the 2.0 mL pre­

catalyst solution was injected. Immediately afterwards, the 1.5 mL solution of B(C6F5 ) 3  

was injected (when testing the dichloride precursors, MAO was injected and the solution 

was allowed to stir for 5 minutes; the dichloride pre-catalyst was then injected). The 

reactor was allowed to stir (1500 ± 10 RPM) for 5 minutes at 30 ± 2 °C and 2 atm of 

ethylene.

Following the 5 minute reaction time, the polymerization was halted by closing 

off the ethylene inlet valve and venting the reactor. Stirring was stopped and the reactor 

was disassembled. The reactor contents were then transferred to a 4 L beaker containing 

approximately 100 mL of 10% HC1 (v/v) in MeOH to help precipitate any polymer 

remaining in solution. The polymer was then collected via filtration, washed with 

toluene, and dried overnight for subsequent weighing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

References

(1) Fried, J. R.; Editor Polymer Science and Technology, First Edition; 
Prentice-Hall: New Jersey, 1995.
(2) Ziegler, K.; Holzkamp, E.; Breil, EL; Martin, H. Angew. Chem. 1955, 67 , 
541-547.
(3) Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; 
Moraglio, G. J. Am. Chem. Soc. 1955, 77, 1708-1710.
(4) Ziegler, K.; Martin, H. Application: DEDE, 1969, p 4.
(5) Crabtree, R. H. The OrganometaUic Chemistry o f  the Transition Metals, 
Third Edition; Wiley-Interscience: New York, 2001.
(6 ) Kim, S. H.; Somorjai, G. A. Surf. Interface Anal. 2001, 31, 701-710.
(7) Chen, E. Y.-X.; Marks, T. J. Chem. Rev. 2000, 100, 1391-1434.
(8 ) LaPointe, R. E.; Roof, G. R.; Abboud, K. A.; Klosin, J. J. Am. Chem. Soc.
2 0 0 0 ,122, 9560-9561.
(9) Breslow, D. S.; Newburg, N. R. J. Am. Chem. Soc. 1959, 81, 81-86.
(10) Breslow, D. S.; Newburg, N. R. J. Am. Chem. Soc. 1957, 79, 5072-5073.
(11) Sinn, H.; Kaminsky, W. Adv. Organomet. Chem. 1980 ,18, 99-149.
(12) Alt, H. G.; Milius, W.; Palackal, S. J. J. Organomet. Chem. 1994, 472, 
113-118.
(13) Alt, H. G.; Koeppl, A. Chem. Rev. 2000, 100, 1205-1221.
(14) Ewen, J. A. J. Am. Chem. Soc. 1984, 106, 6355-6364.
(15) Kaminsky, W.; Kuelper, K.; Brintzinger, H. H.; Wild, F. R. W. P. Angew. 
Chem. 1985, 97, 507-508.
(16) Gibson Vernon, C.; Spitzmesser Stefan, K. Chem. Rev. 2003 ,103, 283- 
315.
(17) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000 ,100, 1169- 
1203.
(18) Shapiro, P. J.; Bunel, E.; Schaefer, W. P.; Bercaw, J. E. Organometallics 
1990, 9, 867-869.
(19) Stevens, J. C.; Neithamer, D. R. In Eur. Pat. Appl. (Dow Chemical Co.,
USA). Application: Ep, 1991, p 9 pp.
(20) Stevens, J. C.; Timmers, F. J.; Wilson. D. R.; Schmidt, G. F.; Nickias, P. 
N.; Rosen, R. K.; Knight, G. W.; Lai, S. Y. In Eur. Pat. Appl. (Dow Chemical 
Co., USA). Application: Ep, 1991, p 58 pp.
(21) Canich, J. A. M. In Eur. Pat. Appl. (Exxon Chemical Patents, Inc., USA). 
Application: Ep, 1991, p 30 pp.
(22) Canich, J. A. M. In US.; (Exxon Chemical Patents, Inc., USA). 
Application: US, 1991, p 15 pp Cont -in-part of U S SerN o 533, 245.
(23) Canich, J. A. M.; Licciardi, G. F. In US.; (Exxon Chemical Patents, Inc., 
USA). Application: US, 1991, p 15 pp Cont -in-part o f U S SerNo 533,245.
(24) McKnight, A. L.; Waymouth, R. M. Chem. Rev. 1998, 98, 2587-2598.
(25) Scollard, J. D.; McConville, D. H. J. Am. Chem. Soc. 1996,118, 10008- 
10009.
(26) Scollard, J. D.: McConville, D. H.; Payne, N. C.; Vittal, J. J. 
Macromolecules 1996, 29, 5241-5243.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

(27) Scollard, J. D.; McConville, D. H.; Vittal, J. J. Organomet allies 1997, 76, 
4415-4420.
(28) Matsui, S.; Fujita, T. Catal. Today 2001, 66, 63-73.
(29) Matsui, S.; Mitani, M.; Saito, J.; Tohi, Y.; Makio, H.; Matsukawa, N.; 
Takagi, Y.; Tsuru, K.; Nitabaru, M.; Nakano, T.; Tanaka, H.; Kashiwa, N.; Fujita, 
T. J. Am. Chem. Soc. 2 0 0 1 ,123, 6847-6856.
(30) Matsukawa, N.; Matsui, S.; Mitani, M.; Saito, J.; Tsuru, K.; Kashiwa, N.; 
Fujita, T. J. Mol. Catal. A: Chem. 2 0 0 1 ,169, 99-104.
(31) Saito, J.; Mitani, M.; Mohri, J.-I.; Yoshida, Y.; Matsui, S.; Ishii, S.-I.; 
Kojoh, S.-I.; Kashiwa, N.; Fujita, T. Angew. Chem., Int. Ed. 2001, 40, 2918-2920.
(32) Stephan, D. W. Organometallics 2005, 24, 2548-2560.
(33) Lubben, T. V.; Wolczanski, P. T.; Van Duyne, G. D. Organometallics 
1 984 ,3, 977-983.
(34) Stephan, D. W.; Stewart, J. C.; Guerin, F.; Courtenay, S.; Kickham, J.; 
Hollink, E.; Beddie, C.; Hoskin, A.: Graham, T.; Wei, P.; Spence, R. E. v. H.; Xu, 
W.; Koch, L.; Gao, X.; Harrison, D. G. Organometallics 2003, 22, 1937-1947.
(35) Stephan, D. W.; Guerin, F.; Spence, R. E. v. H.; Koch, L.; Gao, X.;
Brown, S. J.; Swabey, J. W.; Wang, Q.; Xu, W.; Zoricak, P.; Harrison, D. G. 
Organometallics 1 999 ,18, 2046-2048.
(36) Dehnicke, K.; Weller, F. Coord. Chem. Rev. 1 9 9 7 ,158, 103-169.
(37) Dehnicke, K.; Krieger, M.; Massa, W. Coord. Chem. Rev. 1 9 9 9 ,182, 19- 
65.
(38) Guerin, F.; Beddie, C. L.; Stephan, D. W.; Spence, R. E. v. H.; Wurz, R. 
Organometallics 2001, 20, 3466-3471.
(39) Stephan, D. W.; Stewart, J. C.; Guerin, F.; Spence, R. E. v. H.; Xu, W.; 
Harrison, D. G. Organometallics 1999, 18, 1116-1118.
(40) Xu, Z.; Vanka, K.; Firman, T.; Michalak, A.; Zurek, E.; Zhu, C.; Ziegler,
T. Organometallics 2002, 21, 2444-2453.
(41) Yue, N.; Hollink, E.; Guerin, F.; Stephan, D. W. Organometallics 2001,
20, 4424-4433.
(42) Yue, N. L. S.; Stephan, D. W. Organometallics 2001, 20, 2303-2308.
(43) Graham, T. W.; Kickham, J.; Courtenay, S.; Wei, P.; Stephan, D. W. 
Organometallics 2004, 23, 3309-3318.
(44) Ghesner, I.; Fenwick, A.; Stephan, D. W. Organometallics 2006, 25, 
4985-4995.
(45) Slone, C. S.; Weinberger, D. A.; Mirkin, C. A. Prog, lnorg. Chem. 1999, 
48, 233-350.
(46) Jeffrey, J. C.; Rauchfuss, T. B. lnorg. Chem. 1 9 7 9 ,18, 2658-2666.
(47) Orrell, K. G.; Osborne, A. G.; Sik, V.; Da Silva, M. W. Polyhedron 1995, 
14, 2 7 97-2802 .
(48) Chadwell, S. J.; Coles, S. J.; Edwards, P. G.; Hursthouse, M. B. J. Chem. 
Soc., Dalton Trans. 1996, 1105-1112.
(49) Jutzi, P.; Siemeling, U. J. Organomet. Chem. 1995, 500, 175-185.
(50) Bader, A.; Lindner, E. Coord. Chem. Rev. 1 9 9 1 ,108, 27-110.
(51) Dixon, J. T.; Green, M. J.; Hess, F. M.; Morgan, D. H. J. Organomet. 
Chem. 2004, 689, 3641-3668.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

(52) Peuckert, M.; Keim, W. Organometallics 1983, 2, 594-597.
(53) Deckers, P. J. W.; Hessen, B.; Teuben, J. H. Angew. Chem., Int. Ed. 2001,
40, 2516-2519.
(54) Deckers, P. J. W.; Hessen, B.; Teuben, J. H. Organometallics 2002, 21, 
5122-5135.
(55) Hessen, B. J. Mol. Catal. A: Chem. 2004, 213, 129-135.
(56) Pellecchia, C.; Pappalardo, D.; Gruter, G.-J. Macromolecules 1999, 32, 
4 4 9 1 -4 4 9 3 .
(57) Blok, A. N. J.; Budzelaar, P. H. M.: Gal, A. W. Organometallics 2003, 22, 
2564-2570.
(58) Braunstein, P.; Naud, F. Angew. Chem., Int. Ed. 2001, 40, 680-699.
(59) Wu, T.; Qian, Y.; Huang, J. J. Mol Cat. A: Chem. 2004, 214, 227-229.
(60) Palmer, D. C.; Taylor, E. C. J. Org. Chem. 1986, 51, 846-850.
(61) Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635-646.
(62) Latham, I. A.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1986, 399-401.
(63) Guerin, F.; Stewart, J. C.; Beddie, C.; Stephan, D. W. Organometallics 
2 0 0 0 ,19, 2994-3000.
(64) Zhou, J.; Lancaster, S. J.; Walker, D. A.; Beck, S.; Thomton-Pett, M.; 
Bochmann, M. J. Am. Chem. Soc. 2001, 123, 223-237.
(65) Yang, X.; Stem, C. L.; Marks, T. J. J. Am. Chem. Soc. 1991,113, 3623-
3625.
(6 6 ) Yang, X.; Stem, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994,116, 10015- 
10031.
(67) Ewen, J. A.; Elder, M. J. Eur. Pal. Appl. (Fina Technology, Inc., USA). 
Application: Ep, 1991, p 9 pp.
(6 8 ) Krossing, 1.; Raabe, I. Angew. Chem., Int. Ed. 2004, 43, 2066-2090.
(69) Chien, J. C. W.: Tsai, W. M.; Rausch, M. D. J. Am. Chem. Soc. 1991,113, 
8570-8571.
(70) Jia, L.; Yang, X.: Ishihara, A.; Marks, T. J. Organometallics 1995, 14, 
3135-3137.
(71) Kickham James, E.; Guerin, F.; Stephan Douglas, W. J. Am. Chem. Soc. 
2002, 124, 11486-11494.
(72) Horton, A. D.; de With, J.; van der Linden, A. J.; van de Weg, H. 
Organometallics 1996, 15, 2672-2674.
(73) Horton, A. D.; de With, J. Chem. Comm. 1996, 1375-1376.
(74) Ma, K.; Piers, W. E.; Gao, Y.; Parvez, M. J. Am. Chem. Soc. 200 4 ,126, 
5668-5669.
(75) Cabrera, L.; Hollink, E.; Stewart, J. C.; Wei, P.; Stephan, D. W. 
Organometallics 2005, 24, 1091-1098.
(76) Rappe, A. K.; Skiff, W. M.; Casewit, C. J. Chem. Rev. 2000, 100, 1435- 
1456.
(77) Cossee, P. J. Catal. 1964, 3, 80-88.
(78) Arlman, E. J.; Cossee, P. J. Catal. 1964, 3, 99-104.
(79) Lanza, G.; Fragala, I. L.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 8257- 
8258.
(80) Chan, M. S. W.; Ziegler, T. Organometallics 2000, 19, 5182-5189.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

(81) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed. 
1999, 38, 428-447.
(82) Younkin, T. R.; Connor, E. F.; Henderson, J. I.; Friedrich, S. K.; Grubbs,
R. H.; Bansleben, D. A. Science 2000, 287, 460-462.
(83) Kim Seong, K.; Kim Hwa, K.; Lee Min, H.; Yoon  Seung, W.; Do, Y. 
Angew. Chem., Int. Ed. 2006, 45, 6163-6166.
(84) Oakes, D. C. H.; Kimberley, B. S.; Gibson, V. C.; Jones, D. J.; White, A. 
J. P.; Williams, D. J. Chem. Comm. 2004, 2174-2175.
(85) Long, R. J.; Gibson, V. C.; White, A. J. P.; Williams, D. J. lnorg. Chem.
2006, 45, 511-513.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

Appendix A 

Supplementary X-Ray Data

Table A .I. Crystallographic parameters for CpTiChP'JPOBu^Cf^^OCFkPh] (2.7) and 

Cp:t:TiCl2 [NP(tBu)2 (CH2 )3 0 CH2 P h](2 .8 ).

Crystal 2.7 2.8

Molecular Formula CzaH-oChNOPTi C28H47Cl2NOPTi

Formula Weight 492.29 563.43

A (A) 9.020(3) 10.6707(12)

B (A) 20.667(7) 11.1671(12)

C (A) 14.585(5) 25.8174(28)

a (° ) 90.00 90.00

(3(°) 106.219(1) 94.268(1)

y(°) 90.00 90.00

Crystal System Monoclinic Monoclinic

Space Group P2( 1 )/n P2( 1 )/n

Volume (A3) 2610.52(35) 3067.89(6)

Dcaic (gem'3) 1.25 1.22

Z 4 4

Abs coeff, p, m m '1 0.608 0.525

0 range (°) 1.8-24.2 1.6-25.0

Reflections Collected 9175 5420

Fooo 1040 1204

Parameters 224 307

Goodness o f  Fit 0.990 1.052
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