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A b s t r a c t

In  hybrid  electric vehicles, when an uncontrolled electric m otor torque is applied in  

regenerative braking or torque-assist accelerating, vehicle instability may occur from  the loss of 

tire forces due to the road fric tion  conditions. This can result in  the loss o f vehicle steer-ability 

an d /o r the lost traction in  d riv ing  situations. The research objective is safely integrating the 

hybrid  system operations of a prototype design, in  order to achieve the safe lateral dynamic 

behaviour for various d riv ing  conditions.

By developing a vehicle dynamics controller (VDC) which employs the linear bicycle 

model as its estimator, the objective was achieved. Vehicle dynamics co-simulation was 

conducted to analyze the prototype's non-linear vehicle response w h ile  validating the linear 

controller performance. Implementation design of VDC entailing the X-by-w ire, data acquisition, 

and m icrocontroller technology was considered. The developed VDC reduces the driver's steer 

control effort and prevents the incipient vehicle instability in  all d riv ing  conditions.

i i i
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N o t a t io n

Label Description

—>

a
resultant acceleration

A front wheel base distance from  centre of gravity  of 
vehicle

ax acceleration along x-axis, in  a body fixed system
fly acceleration along y-axis, in  a body fixed system
tty__CarSim CarSim simulation result o f acceleration along y-axis, in  

a body fixed system
tty_m easured measured acceleration along y-axis, in  a body fixed 

system
Cly_nom inal nominal acceleration along y-axis, in  a body fixed 

system

•2i ratio of lateral acceleration comparison along y-axis, in  a 
body fixed system

ABS anti-lock braking system
AC alternating current
AW D all wheel drive system
B rear wheel base distance from  centre of gravity of 

vehicle
Ca tire cornering coefficient
CD coefficient of drag
Cf front tire cornering coefficient
Cr rear tire cornering coefficient
C AN controller area network
CD charge depleting
CG centre of gravity
CS charge sustaining
cw clockwise direction
ccw counter-clockwise direction
DAQ data acquisition system
DSP dig ita l signal processor
ECU electronic control un it
ESC electronic stability control
EM electric machine
f n n  = 1,2,3 ... inpu t current frequency
F force
— > 

F
resultant force vector

Ff forces o f front two tires
Fr forces o f rear two tires
Fx force along x-axis, in  a body fixed system
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Fy force along y-axis, in  a body fixed system
Fz force along z-axis, in  a body fixed system
G gravitational acceleration un it
HEV hybrid  electric vehicle
Izz moment of inertia along z-axis, in  a body fixed system
ICE internal combustion engine
ISO international standard organization
L I,  R l, L2, R2 front-left, front-right, rear-left, rear-right
M mass
M v_brk brake moment applied at a wheel
M z moment along z-axis, in  a body fixed system
OEM original equipment manufacturer
P rotational velocity along x-axis, in  a fixed body system
PCI programmable communication interface
Q rotational velocity along y-axis, in  a fixed body system
• rotational acceleration along z-axis, in  a body fixed
r system
R rotational velocity along z-axis, in  a body fixed system
u dynamic effective ro lling  radius of tire
r  measured measured rotational velocity along z-axis, in  a body 

fixed system
SAE society of automotive engineers
soc state o f charge
T, T torque
T em torque of electric machine
TCS traction control system
u linear velocity along x-axis, in  a body fixed system
•
V

linear acceleration along y-axis, in  a body fixed system

V linear velocity along y-axis, in  a body fixed system
VDC vehicle dynamics controller
a tire slip angle, rotational acceleration

af fron t tire slip angle

rear tire slip angle
•

p
rate of change of body slip angle along z-axis, in  a body 
fixed system

B body slip angle along z-axis, in  a body fixed system
f$ B M body slip angle of bicycle model along z-axis, in  a body 

fixed system
P c a rS im body slip angle of CarSim simulation model along z- 

axis, in  a body fixed system
5 f front wheel steer angle
6 r rear wheel steer angle
5sw steering wheel angle
Swheel wheel steer angle
A wheelslip ratio
M Coulomb coefficient of friction, micro
Z summation symbol
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Q rotational velocity
coem  ; rotational velocity of electric machine rotor
n  = 1,2,3 ...
(Ash ; n - 1,2,3 ... synchronous rotational velocity of electric machine

rotor
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1. In t r o d u c t io n

CHAPTER 1 

In t r o d u c t io n

1.1 AUT021 Project E03 Executive Summary

AUT021, a part of Network of Centres of Excellence (NCE), is a Canadian government 

and industry funded research organization head-quartered at the University o f Windsor. 

Currently there are over 40 AUT021 projects that are active across Canada and Project E03 is a 

part of Theme E- Design Process, where its main focus is developing H ig h ly  Qualified Personnel 

(HQP) for automotive industry. Another part of the mandate is to involve industry sponsors to 

increase the project profile  w ith  technical relevancy.

AUT021 Project E03 involves three Canadian universities (University o f W indsor, 

University of Waterloo and University of British Columbia) collaborating on "Regenerative 

Braking Technology using Ultracapacitors for H yb rid  Electric Vehicles". The fo llow ing  table 

summarizes the research team breakdown.

1
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1. In t r o d u c t io n

T M g P lP m j^ tE O ^ re s ia rA ^ s ^ m d m d ^ m s W e ^ ^ ^ m

U of Windsor U of Waterloo UBC

Graduate
Students

E. Oh,
N. Nantais 
R. Rieveley 
S. Draca 
(All Mechanical)

S. Samborsky (Mechanical) 
C. Mendes (Mechanical) 
Dr. M. Marei (Electrical)
M. Wei (Electrical)

K. Wicks 
(Electrical)

Focuses

Vehicle dynamics 
control/ Vehicle 
hybridization/
Data Acquisition

Hybrid system control and 
energy management/ 
Regenerative braking 
integration/ Power electronics
and control

Switch Reluctance 
Motor (SRM) 
development for 
rear drivetrain 
hybridization

A  pre lim inary hybrid  component design was completed via ADVISOR  sim ulation and a 

1 /100th scale hybrid  system bench testing was validated. [1] DAIMLERCHRYSLER Canada has 

donated a test-bench vehicle (Pacifica) for the hybrid  prototype development. For Phase I  project 

development, the team is w ork ing  on hybrid iz ing the Pacifica w ith  an AC induction motor (front 

drivetrain) and ultracapacitor pack. For Phase II, a switch-reluctance m otor (rear drivetrain) and 

battery pack implementation is planned.

1.2 Research Motivation

The research goal is to develop an active safety system for the prototype hybrid  electric 

vehicle that was converted from  a production Chrysler Pacifica. Depending on the powertrain and 

drivetra in  configurations of a hybrid  vehicle, the hybrid  system operation may adversely affect 

the vehicle stability. In  the case of a parallel hybrid  system, where an electric m otor is connected 

through the drivetrain, i t  requires safely integrating the regenerative braking function w ith  the 

anti-lock braking system in  order to achieve optim al braking performance. As well, the drive 

torque assist function needs to be controlled in  order to prevent wheelspin caused by the 

excessive torque output of the hybrid  system. Consequently, in  this system, a supervisory

2
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1. In t r o d u c t io n

control system is necessary to provide unobtrusive hybrid  operations during  various vehicle 

manoeuvres in  order to maintain the vehicle stability.

1.3 Thesis Synthesis

A  hybrid  electric vehicle (HEV) drivetra in can have unique effects on the vehicle 

dynamics, rooted in  its component design/schematic layout. As the electric motor provides both 

additional d riv ing  and braking torques to the existing internal combustion engine (ICE) and 

brake system, i t  becomes a secondary control system of the vehicle powertrain and brake system. 

The location of the motor w ith  respect to the path o f torque delivery is the determinant in  

affecting the vehicle dynamics, both in  handling and ride. Pre-transaxle or post-transaxle 

location of the electric m otor (from  the drivetra in perspective) has distinct functional effects to 

the overall system (vehicle).

The challenge w ith  the hybrid  Pacifica prototype design is that the electric m otor is placed 

behind the transaxle so the m otor torque is delivered from  after the fron t transaxle. Therefore, 

the electric m otor torque is equally shared by the front tw o wheels via half-shafts. This means 

that whenever the electric motor is activated, the drive or braking torque is equally transmitted 

by the front tw o wheels simultaneously. This creates an undesirable phenomenon where wheel 

traction control is impossible at low -p conditions (low  traction) during  the electric motor 

activation.

Wheel traction is what delivers the drive torque from  the powertra in or brake torque 

from  the brake system to the road. W hen the w heel traction is lost at a wheel, the longitud inal 

and lateral force at the tire are reduced to the tire's lim it and the driver's steer inpu t is no longer 

effective for vehicle steering. This is represented by spinning wheels in  acceleration or skidding 

wheels in  braking in  w hich case the vehicle does not move forward or slow down w ith  any steer-

3
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1. In t r o d u c t io n

ability. In  the case of the proposed prototype design, the regenerative braking (charge sustaining 

function) mode or the drive torque assist (charge depleting function) mode o f the hybrid  

operation introduces the vehicle instability i f  the hybrid  operation is not controlled.

This is the reason w hy the anti-lock braking system (ABS), traction control system (TCS), 

and electronic stability control (which uses both ABS and TCS) systems are developed to help 

m aintain vehicle stability on conventional vehicles. Since the ind iv idua l wheel braking is not 

possible by the inherent design, the underlying principle of this thesis is developing a system 

which controls the regenerative braking and drive torque assist functions of the hybrid  system 

while  m aintaining the vehicle stability.

The m ain system design concept is derived from  conventional orig inal equipment 

manufacturer (OEM) system architectures. BOSCH's vehicle dynamics control (VDC1) system is 

the firs t to be introduced in  the industry and it  has been used by many automobile OEM's since 

the early 1990's. [2] A n  active supervisory controller is needed to ensure the vehicle brakes safely 

w ith  the ABS function w hile  m axim izing the charge sustaining efficiency by allow ing 

regenerative braking at all possible situations. The same controller can be u tilized to control 

drive torque assist (charge depleting) to help accelerating the vehicle per driver request while  

ensuring the vehicle stability. This can be achieved by using various m otion sensors and a 

feedback control system programmed on a microcontroller. These sensors are incorporated to 

m onitor the overall vehicle behaviour and the driver's intent in  operating the vehicle. Then, the 

controller can a llow  electric motor torque delivery fo r both braking and accelerating when it  is 

safe to activate, based on its calculations. The developed VDC employs nom inal acceleration 

(ay nominai) and Body Slip Angle (P) control methods using the bicycle model explained in  Chapter 

2 .

'The term “Vehicle Dynamics Control” system is a generic one used by BOSCH®. The SAE convention refers to the 
same system as Electronic Stability Control (ESC) system.

4
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1.4 Research Outline

The research objective was to develop a vehicle dynamics controller through co

simulation, for controlling the hybrid  system function (regenerative braking and drive torque 

assist) of the prototype design to maintain vehicle stability in  various d riv ing  conditions. The 

objective is achieved for the prototype hybrid  Pacifica through the fo llow ing  study.

The prototype hybrid  Pacifica is simulated as a multi-DOF vehicle incorporating a non

linear tire  model in  the vehicle dynamics software CarSim to analyze its stability response in  

general. Furthermore, the effects of regenerative braking in  vehicle stability are investigated. By 

simulating the prototype vehicle w ith  its actual vehicle parameters, the realistic lateral vehicle 

dynamics behaviour is analyzed for safety lim its  applicable to the prototype vehicle. Using the 

threshold lim its, a vehicle dynamics controller is developed in  Simulink v ia co-simulation.

In  co-simulation, the "bicycle model" is investigated as the reference component of the 

controller design. The bicycle model's ab ility  to process the driver's in tent fo r the vehicle path 

calculation is verified and the overall controller design was conducted based on the threshold 

lim its of the bicycle model response in  controlling the hybrid  system function o f the prototype.

Iterative vehicle dynamics simulations of various d riv ing  conditions are conducted in  

order to ve rify  the robust controller performance. The validated vehicle dynamics controller 

design is implemented on PIC 18F458 p-controller for the system implementation. A  

comprehensive data acquisition sensor system architecture is designed to function w ith  the 

developed VDC on the prototype hybrid  Pacifica.

5
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CHAPTER 2

L it e r a t u r e  R e v ie w  &  Ba c k g r o u n d

2.1 Literature Review

A lthough the concept of modern hybrid  electric vehicle has been developed since 1970's, 

the firs t mass-production of hybrid  electric vehicle was achieved in  19992. [3] Therefore, only 

lim ited technical in form ation of relevancy in  vehicle dynamics control fo r hybrid  electric vehicles 

was available when this study was commenced.

However, the concept of vehicle dynamics control has been developed in  1995 by van 

Zanten et al. of the Robert BOSCH Corporation by using a "p-m ethod" (body slip angle control) 

in  controlling the lateral vehicle stability on their vehicle dynamics controller. [4] Using the 

bicycle model, the "P-method" calculates the body slip angle o f the vehicle and controls the 

hydraulic brake system of the ind iv idua l wheel in  order to m aintain the vehicle yaw moment 

balance. [4 &  5]

Panagiotidis et al. developed a regenerative braking sim ulation model incorporating a 

wheel lock-up avoidance algorithm  by using a co-simulation method. The authors focused on 

developing a sim ulation model that controls the amount o f regenerative braking torque in

2 Honda Insight was the first mass-produced hybrid electric vehicle.

6
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proportion to the hydraulic braking torque in  order to achieve the m axim um  regenerative 

braking efficiency. [6]

Khatun et al. investigated controlling the wheel slip fo r electric vehicle operation in  order 

to study the anti-lock braking system (ABS) and traction control system (TCS) for electric 

vehicles. [7] M i et al. developed an iterative learning control o f ABS for electric and hybrid  

electric vehicles using a wheel slip control and a vehicle speed forward speed observer in  order to 

a llow  regenerative braking to m im ic the ABS function in  assisting vehicle stability in  braking. [8]

H o ri developed a vehicle dynamics control system for an electric vehicle by installing a 

separate electric motor to each wheel of a four-wheel vehicle. Yaw rate and body slip angle 

control methods were developed by controlling the ind iv idua l electric m otor torque output. [9] 

Soga et al. of Toyota M otor Corporation developed a vehicle stability control system which uses 

the same concept as the BOSCH's vehicle dynamics control system for a hybrid  electric vehicle 

which utilized the industry-first brake-by-wire system. [10]

This study focused on developing a vehicle dynamics controller that controls the hybrid  

electric system function for a specific prototype hybrid  electric vehicle. The developed controller 

employs the bicycle model to estimate the vehicle body slip angle for stability control while 

comparing the driver's intended vehicle path to the actual one. Wheel slip control method was 

also employed to optim ize the brake and traction torque of the electric motor in  m aintaining the 

lateral vehicle stability.

7
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2.2 Hybrid Electric Vehicles
2.2.1 Definition of HEV

H yb rid  electric vehicles (HEV) employ two different sources o f propulsion- an internal 

combustion engine (ICE) and an electric machine3 (EM). ICE is used as a prim ary propulsion 

source using gasoline as fuel (sometimes diesel is used). The EM is used as a secondary 

propulsion source, and switches its function to an electric generator to create electricity which is 

stored to power the electric motor later. Therefore, in  the hybrid  system, the ICE consumes less 

fuel, thus reducing emissions. Electricity generation is achieved by "regenerative braking" which 

recaptures the propulsion energy spent by fuel from  the vehicular kinetic energy. The fo llow ing 

explains the regenerative braking concept.

Typically, an automobile is slowed down by applying brakes to its rotating wheels via 

fric tion force (disc or drum  brakes). In this phenomenon, the kinetic energy of the moving 

vehicle is dissipated p rim arily  as heat energy caused by fric tion  between the brake rotor and 

brake caliper pad; and in  case of drum  brakes, between the inner drum  lin ing  and brake shoe. 

When brakes are applied, the brake rotors of rotating wheels (powered by the vehicular kinetic 

energy) are essentially "grabbed" by brake calipers. The fric tion  force between the brake rotor 

and the brake calipers is what causes the braking moment about the centre o f rotating wheel that 

brakes the rotating wheel, hence decelerating the vehicle. The fric tion  force between the brake 

rotor and the brake caliper creates a tremendous amount o f heat energy as the rotors can heat-up 

up to 800 °C. [11] This large amount of heat energy transferred from  kinetic energy is rejected to 

the environment in  conventional braking systems.

3 Electric motor/generator is referred to as an electric machine (EM). By motor control, EM can function as either a 
motor or generator. [12]
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FRONT

ReductionTorque
Gear BoxConvertei ive  Shaft

Auto. 
Transmission

Final Electric
Dri ve/Diff. M ot o i/G e n e rator

REAR

Speed 
uction 

Gear Box

Final
Drive/Diff.

Electric
Motor/Generator

Figure 2.1 Schematic drawing- o f prototype hybrid Pacifica

In  hybrid  electric and electric vehicles, the aforementioned wasted energy is captured by 

regenerative braking by using the electric m otor as a generator. In  the above figure, the electric 

motor is connected to the drivetra in through a drive shaft. W hen regenerative braking is 

activated, the electric m otor functions as a generator commanded by the m otor controller of the 

hybrid  system. The rotor of electric motor is spun through the drive shaft w hich is connected to 

the rotating wheels. Spinning of the rotor enables the electro-magnetic fie ld  excitation for 

generating electricity. In  doing so, the vehicular kinetic energy is transformed as electricity and 

as a result, the vehicle brakes. This created electricity is then stored in  an energy storage system4 

which powers the electric motor when additional propulsion power is requested for driving. 

Since the otherwise wasted energy is captured to do work, hybrid  electric vehicles are more fuel 

efficient than the conventional vehicles, resulting less fuel consumption and emissions. 

Add itiona l braking in  hybrid  electric vehicles is achieved by the regular hydraulic brakes as in  

conventional cars.

4 For the prototype hybrid Pacifica, ultracapacitors are used as energy storage system. The details o f the system can be 
found in [1]

9
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2.2.2 Charge Sustaining (CS) and Charge Depleting (CD) 
Operation Theory

The term, charge sustaining (CS) operation, refers to the regenerative braking and charge 

depleting (CD) operation refers to the drive torque assist function of the hybrid electric vehicle. 

The idea of CS operation is that the vehicular kinetic energy of moving vehicle created by the ICE 

power is recaptured. The regenerated energy is used to recharge the energy storage system of an 

EV or HEV. In the case where the state of charge (SOC) is full, regenerative braking is no longer 

possible. For this reason, EVs and HE Vs are equipped with the mechanical brake system which 

can also perform ABS braking. The vehicle hybrid master controller decides the amount of 

braking needed from the mechanical system based on the braking command of the driver, SOC, 

and vehicle velocity. Regenerative braking can increase the range of such equipped vehicles by 

about 10 to 15%. [12 & 13]

Since the prototype hybrid Pacifica uses the AC induction motor as its secondary 

drivetrain, the following is used to explain the operation of induction machines. The induction 

machine works as a generator when it is operated with a negative slip, i.e., the synchronous 

speed is less than the motor speed (Oem > cos. Negative slip makes the electromagnetic torque 

negative during regeneration or generation mode of the EM. In the negative slip operational 

mode, voltages and currents induced in the rotor bars are of opposite polarity compared to those 

in the positive slip mode. As a result, electromagnetic torque acts on the rotor to oppose the rotor 

rotation. This is how regenerative braking decelerates the vehicle.

10
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Motoring

Generating

Figure 2.2 Transition from M otoring to Generating usinp a four quadrant drive

The motor drives for EVs always use four-quadrant drives, hence the electric motor is 

controlled by the drive to deliver positive or negative torque at positive or negative speed. The 

transition from motoring to regeneration can be explained with the help of Figure 2.2. The linear 

segments of the induction motor torque-speed curves for several operating frequencies are 

shown in the above and the curves are extended in the negative torque region to show the 

regeneration characteristics.

When the vehicle is moving forward by the positive induction motor torque, assume that 

the steady-state operating point of the EM is at point 1 as the driver commands regenerative 

braking. The hybrid system master controller immediately changes the motor drive frequency 

from fi to h  resulting the condition, cdS2 > oosi. The operating point shifts to point 2 immediately 

since the motor speed cannot change instantaneously due to the rotor inertia. At point 2, the slip 

and the electromagnetic torque are negative and this enables the EM to generate electricity. As a 

result, the vehicle will decelerate as long as the driver commands regenerative braking.

11
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When the motor speed decreases below the synchronous speed, the operating frequency 

also needs to be changed to a lower value in order to maintain the generating operation mode. 

The power electronics system is responsible for establishing the shifted linear torque-speed 

curves with different synchronous speeds for the induction EM at different frequencies. This is 

achieved by changing the frequency of the input voltage of the drive circuit. The regenerative 

braking mode will continue as long as the vehicle kinetic energy is available and the driver 

commands the regenerative braking function.

2.3 Design Configurations of Hybrid Electric Vehicle

There are two main design configurations of hybrid systems. Currently, series and 

parallel system configurations are actively researched and developed in today's automotive 

industry.

2.3.1 Series Hybrid System

In the series hybrid the mechanical output of the internal combustion engine is used to 

generate electrical power by means of a sizeable alternator-rectifier arrangement similar to that 

used in a conventional car [13] The electric motor is directly connected to the ICE so it runs at its 

optimum operating speed range to power the electric motor as generator and by default, there is 

no mechanical transfer of power from ICE to drivetrain. The ICE generated electricity and 

regenerative braking charges the electric energy storage system, a battery/ultracapacitor pack.

Pros:

• ICE runs continuously at the optimal efficiency level for fuel consumption and 

emissions.

Cons:

• Limited propulsion power output as the electric motors have lower power to 

weight ratio compared to the ICE

12
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• Requires a sizeable alternator/rectifier as a mandatory system component.

2.3.2 Parallel Hybrid System

In the parallel hybrid system, the electric motor can supply power in parallel with ICE 

through a shared gearbox of drivetrain. Electricity generation is only available through 

regenerative braking. Multiple electric motors can be installed to increase electricity generation 

at the cost of weight gain. An example is installing an electric motor on each front and rear drive 

axle of a vehicle.

Pros:

• Total system power output can be tailored for performance or efficiency.

• By adding an electric motor on the base ICE powertrain, total power output can 

be increased, (e.g. Lexus 400h)

• By installing a smaller ICE, electric motor can supplement the lack of power to 

match the performance of a bigger ICE powertrain, (e.g. Honda Insight)

Cons:

• ICE cannot operate at the set optimal efficiency level (Lower overall efficiency 

compared to the series hybrid system)

13
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2.4 Vehicle Handling Dynamics and Tire Forces
2.4.1 Pneumatic Tire Force Generation

Pneumatic tires are vital components of any vehicle that generates longitudinal and 

lateral forces to allow vehicle manoeuvring. Since tires are made of rubber, they present a non

linear material behaviour reacting to forces generated from the tire-road interaction. For decades, 

efforts have been made to accurately model the tire behaviours but the rubber's non-linear 

property does not allow formulating an accurate mathematical model of its behaviours. Instead, 

experimental curve-fitting has been done for various tires to have a representative tire data used 

for vehicle dynamics simulation. Hans Pacejka developed the most widely used "Magic Formula 

Tyre Model" which employs trigonometric equations with various coefficients that represent the 

tire behaviour in various conditions. [14] Simulations performed using the Pacejka model have 

been proven to be accurate when compared to empirical data.

2.4.2 Longitudinal Tire Force (Fx)

When a driving or braking torque is applied to the wheel, a driving or braking traction 

force, Fx, is generated between the tire and the road surface. This is achieved through a 

longitudinal slip, which relates the angular velocity and the forward velocity of the wheel.

effectiveDynamic 
rolling radius, ra

Figure 2.3 R o llim  wheel w ith  drive moment

14
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A free-rolling tire of a dynamic effective rolling radius (ra) has a relationship between the

forward velocity (u) and the angular velocity (co) in the form of:

u = rdCO [Eq. 2.1]

In Figure 2.3, a driving torque is show n as t in the direction of wheel travel. A braking

torque will have an opposite direction as to create a braking traction force in the wheel.

Braking slip occurs when the braking torque is applied to the wheel because its angular 

velocity is less than the free-rolling angular velocity. When the wheel locks, the angular velocity 

becomes zero. The relationship, referred to as longitudinal wheel-slip in braking (Ab), is 

expressed as:

An assumption can be made (although not strictly true) that the longitudinal force (Fx) is

^  _  (u -  rdCO)
[Eq. 2.2]

u

Driving slip (Ad) is expressed differently due to the case of when u = 0 as:

(.rd( 0 - u ) 

r(Q
[Eq. 2.3]

proportional to the normal force (Fz) so that the longitudinal coefficient of friction (gx) can be

defined as:

[Eq. 2.4]
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2.4.3 Lateral Tire Force (Fy)

In vehicle handling dynamics, lateral forces generated by tires are primarily important. 

Lateral tire forces allow lateral vehicle motion responding to driver's steering input, and provide 

the vehicle its ability to negotiate a turn. When a lateral force is applied to the wheel traveling 

with a forward velocity, a corresponding lateral force will arise in the contact patch between the 

tire and the road surface, due to friction. If the lateral force is small enough not to cause the tire 

to skid sideways on the surface, it will cause the wheel to deviate its direction from where it is 

pointed. This will induce a lateral velocity in addition to the wheel's forward velocity. Therefore 

the resultant velocity vector of the wheel will point in a different direction than the direction of 

the centre plane of the wheel. The angle between the wheel centreline and the direction of wheel 

travel is called the tire slip angle (a).

Figure 2.4 The tire slip anple (a) between a wheel centerline &  the direction o f wheel travel

In the vehicle stability analysis, a linearized model of the relation between the tire lateral 

force (Fy) and the slip angle (a) is commonly used as described by Equations 2.10 and 2.11. For

sm all tire slip  an gles, a prop ortionality  constant called , the cornering coefficient, Cu, can be

defined as the slope of the line relating lateral force to slip angle. Although the slip angle is the 

main determinant of the side force, there are other characteristics such as camber angle of small 

influence and the driving and braking torque that can be of a significant influence.
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2.4.4 Normal Tire Force (Fz)

Normal force acting on the tire allows the tire lateral force generation. The Coulomb 

friction model,

F y =  <UFZ [Eq- 2.5]

is used to represent the lateral tire force. It is commonly assumed that the lateral tire 

force at a given slip angle is roughly proportional to the normal force. [15] The coefficient of 

friction depends on the road surface as well as on the tire material. Although tire side force and 

normal force is approximately proportional, this relationship is not entirely true and coefficient of 

friction decreases when the normal force becomes excessively large.

2.4.5 Combined Lateral and Longitudinal Forces (Friction Circle)

Tires generate lateral and longitudinal forces simultaneously as when a car is turning and 

braking or accelerating at the same time. This interaction can be described in plot called a 

Friction Circle [16] where the lateral force (Fy) and the longitudinal force (Fx) make up the axes. 

The idea is that the maximum tire forces are essentially limited to a circle in the Fx-Fy plane 

assuming a constant normal force. The maximum lateral force is achieved when there is no 

longitudinal force. Conversely, the maximum longitudinal force is achieved when no lateral 

force is present.

17
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L a te ra l T ire  Lorca (NI)
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Figure 2.5 A  typical friction circle containing lateral &  longitudinal forces

At large slip angles or large longitudinal slips, the magnitude of the total force generated 

typically drops below its maximum value. By modulating the brake torque output, the 

longitudinal slip is minimized to generate maximum possible braking force. Therefore, the 

braking distance can actually be shorter with ABS brakes than the fully locked ordinary brakes. 

Under various road conditions where coefficient of friction and load transfer along the 

longitudinal (x) and lateral (y) axes vary, the traction level on each tire increases or decreases. 

The increased traction force of driven wheels cannot always be transferred into vehicle 

propulsion effectively and thus results in wheel spin.

The danger of wheel spin is that it further reduces the traction limit at that particular 

wheel. The unbalanced traction force in left and right wheel therefore causes an unwanted 

vehicle yawing moment about the z-axis of vehicle (CG). This presents potential instability in 

vehicle handling dynamics. In braking, the excessive braking torque induces wheel lock-up and 

it results in skidding of a particular wheel. The traction force of a skidding wheel is very low and 

causes non-effective braking at that wheel. Furthermore, in the case of steered wheels, vehicle 

steering becomes impossible as the lateral tire forces are minimized due to skidding and the 

vehicle cannot negotiate the driver's intended path. In this case, the vehicle will continue to

18
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travel in the direction where the CG of the vehicle is heading, not to the direction where the 

steered wheels are pointed. Thus, the excessive torque provided to the braking wheels imposes 

potential instability in vehicle handling dynamics.

2.5 Bicycle Model Equations

The bicycle model is a classic model that has been widely used in the study of vehicle 

dynamics. Its name stems from the fact that the width of the two-track vehicle investigated is 

considered to be unimportant to the vehicle behaviour. Hence, two front tires are lumped 

together as one and so are the rear tires. It is a linear 2-DOF (lateral velocity & yaw rate) 

mathematical model derived from the Newton's Second Law:

X F  = m a  [Eq. 2.6]

The bicycle model (Figure 2.6) is an integral component of the developed vehicle 

dynamics controller for the following reasons. Firstly, the body slip angle can be calculated using 

the model. The body slip angle, which is a control variable of the VDC system, cannot simply be 

measured by motion sensors. Secondly, using the bicycle model, the driver's intent in vehicle 

maneuvering (nominal path) can be calculated by the controller in various driving conditions. 

This nominal path is compared with the actual state/path of the vehicle to recognize the vehicle 

instability (if present), and necessary action is commanded by the controller to help maintain the 

vehicle stability.

2.5.1 Equation Derivations

In lateral dynamics of a vehicle, the lateral motion is stipulated by the lateral tire forces 

(Ff & Fr) developed at the contact patch. The lateral velocity (v) and yaw velocity (r) are the 

degrees of freedom in the mathematical model. The forward velocity (u) is assumed to be 

constant which further simplifies the equations. The properties of the vehicle are mass (m), yaw
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moment of inertia (Izz), and distances of the front and rear axles from the centre of the gravity of 

the vehicle (a & b). The cornering stiffnesses of the front and rear tires are denoted Cf and Cr, 

respectively. The steering angle of the front tire is 5f.

Figure 2.6 The bicycle model

By using Eq. 2.6 and using the velocities of the vehicle that are defined in a frame 

attached to the vehicle rotating with it, the following is obtained.

£  F  = F f  + F r = m(v+ ru ) [Eq. 2.7]

And from the moment equilibrium about the z-axis,

'E M  =  l a  [Eq. 2.8]

it can be achieved that,

= I  r  =  aF f  -  bF r [Eq. 2.9]

Mostly, the lateral forces are developed from the misalignment, tire slip angle (a) and

steer angle (8) as shown in Fig. 2.7.
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JJ
i r

Figure 2.7 The tire slip amle (a)

In order to keep the linearity of the bicycle model, a simple linear function describing the 

lateral force as a function of a  is developed as following:

Ff  -  Cf a f

Fr =  ~ C ra r

[Eq. 2.10] 

[Eq. 2.11]

In Figure 2.7, by using small angle approximation for the slip angles that are constrained 

kinematically by the vehicle velocity, the following equation is derived.

a f  + S f  =
v +  ra

[Eq. 2.12]

And applying the same method, for the lumped rear tire, the following is obtained. Note 

that 5r = 0 at the rear tire unless rear wheel steering is applied.

a r + 8r =
v — rb

[Eq. 2.13]

Substituting Eq. 2.10 & Eq. 2.11 into Eq. 2.12 & Eq. 2.13 respectively. The following 

equations are achieved.

F ,-C ,S , -< ? ± P » C ,

F  =  —C
(rb -  v)

[Eq. 2.14] 

[Eq. 2.15]
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Substituting the Eq. 2.12 & Eq. 2.13 into the lateral force equation of Eq. 2.7 and the 

moment equation of Eq. 2.9 and combining them into a matrix form, the following matrix 

equations is achieved. This the final form of the bicycle model describing the lateral dynamics of 

a vehicle.

m  0 

_0 I

It is of an interest to discuss the definition of body slip angle (p). As per SAE J670e 

standard, Sideslip Angle (body slip angle, P) is the angle between the traces on the X-Y plane of 

the vehicle x-axis and the vehicle velocity vector at some specified point in the vehicle. [17]

Figure 2.8 The body slip angle (f3)

In low speed cornering where the lateral acceleration is low, the vehicle velocity vector 

will coincide with the vehicle x-axis. At higher speeds, the greater lateral acceleration will cause 

the velocity vector deviate from the vehicle x-axis. This is how the body slip angle is created.
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2.6 Vehicle Dynamics Controller Concept

Since the emergence of ABS in late 1970's, advances have been made in controlling tire- 

road traction control to provide maximum longitudinal and lateral forces for the vehicle in 

motion. [18]

ABS braking modulates braking torque output by modulating brake line pressure in 

order to prevent wheel lock-up. [19 & 20] This allows maximum braking force at wheels. The 

traction control system (TCS) works in the same principle to provide maximum traction force at 

driven wheels. [19 & 20] The engine torque output is modulated by spark retardation or fuel cut

off. The production Pacifica is not equipped with TCS so individual wheel slip control is not 

possible for maintaining stability in acceleration. In the case of braking, ABS controls individual 

wheel braking to prevent wheel lock-up to avoid skidding but this cannot be achieved when 

regenerative braking is in effect.

More recently the concept of electronic stability control (ESC) was first developed by the 

BOSCH corporation in 1995, incorporating ABS and TCS technology. [2] It is an active safety 

system for road vehicles which controls the lateral dynamic vehicle motion in emergency 

situations. From the steering angle, the accelerator pedal position and the brake pressure, the 

driver's desired motion is derived while the actual vehicle motion is derived from the measured 

yaw rate and lateral acceleration.

The driver's inputs measured by the steering wheel angle, throttle position, brake

p osition , an d  brake p ressure sensors are u sed  to calculate n om in al behaviour of the vehicle by the 

nominal values of the controlled variables (driver's input). The actual behaviour of the vehicle is 

determined from longitudinal & lateral acceleration, yaw rate, and wheel rotation speed sensors 

(calculates vehicle forward speed). The nominal behaviour which is calculated by the bicycle
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model is compared to the actual behaviour of the vehicle to determine the difference between the 

nominal and actual paths of the vehicle. In BOSCH's vehicle dynamics control system, if the 

actual vehicle path is beyond the safety limit, then the vehicle controller signals necessary 

actuation of brakes and/or engine torque retardation to keep the vehicle on safe path. This 

process effectively controls the yaw moment around the vehicle z-axis to cause appropriate yaw 

angle to the direction that the driver commands and effectively maintains the vehicle stability.

Actual
Behaviour

Nominal Behaviour 
(Bicycle Model)

Controller with Computation of Actuator Commands

Vehicle (Plant) Actuators for Brake & Engine 
Interventions: Sensors. Estimation of State Variables

Actuating Signal

Figure 2.9 Fundamental control task o f BOSCH VDC

In this study, the developed supervisory VDC controls the extra braking or acceleration 

torque output of the electric motor in lieu of individual wheel braking and/or engine torque 

retardation, based on the vehicle state variables of ay and p. It will be a closed loop control 

system that continuously monitors the system behaviour and control the torque output when 

necessary.
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2.7 Vehicle Dynamics Co-simulation Softwares Review:
CarSim & Matlab/Simulink

CarSim is a software package for simulating and analyzing the behaviour of four- 

wheeled vehicles both with and without trailers. It works as a stand-alone program or as a 

Simulink plug-in and for this reason it is suitably fast and easy software for co-simulation with 

Matlab where the VDC using the bicycle model is created.

The VDC design is developed in the Matlab/Simulink environment. Matlab is used to 

develop the mathematical bicycle model for the prototype hybrid Pacifica. The developed 

mathematical model is converted into a Simulink block as a part (estimator) of the closed-loop 

design of VDC. A mathematical model of electric motor is developed to represent hybrid 

functions (regenerative braking & electric motor torque assist) of the prototype for simulation. 

The developed vehicle dynamics controller is interfaced with CarSim for co-simulation that is 

used to validate the controller design.
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CHAPTER 3

H y b r id  Sy s t e m  D e s ig n  &  Pe r f o r m a n c e

3.1 Chrysler Pacifica

A 2004 Chrysler Pacifica production model is donated for the project by 

DAIMLERCHRYSLER of Canada.

Figure 3.1 2004 Chrysler Pacifica A W D  model (Courtesy o f DAIM LERCHRYSLER Corp.)

The project objective is to produce a prototype hybrid electric Pacifica using an AC 

synchronous induction motor (SIEMENS 1PV5133-4WS20) as the secondary propulsion source 

and an ultracapacitor pack as an energy storage system. The 2004 production Pacifica AWD 

model has the following standard features of relevance.
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J ^ l^ l2 0 Q 4 _ £ ^ ^ ^ g c i^ c a ^ ia n d ^ ^ a t^ s

Powertrain

3.5L V6 engine: 184 KW (250 HP) @ 6,400 RPM & 339 N«m (250 lb»f) 
@ 4,000 RPM
Four-Speed Automatic Transmission with Auto-Stick
Fuel Efficiency: EPA Mileage Estimates: City = 7.23 Km/L; Highway
= 9.35 Km/L

Weight 1993 Kg
Weight Distribution- Front: Rear = 56% : 44%

Dimensions Wheelbase: 2954.02 mm
Track Width: 1676.40 mm for both front and rear
Brakes- Power assisted 4-wheel disc, anti-lock with Electronic

Chassis Control Variable Brake Proportioning
Features Suspension: Load-leveling rear shock absorbers to maintain a 

consistent ride height when laden with cargo (4-wheel independent 
suspension, with MacPherson strut front and 5-link rear)

3.2 Prototype Hybrid Electric Pacifica Design

The prototype design is a post-transmission, parallel hybrid since the electric motor is 

installed separate from the engine to generate electricity. The following Figure 3.2 describes the 

Phase I design schematic. The electric motor (2) is located behind the front differential unit 

through the front torque coupler (speed-reduction gear box) (1). When the electric motor is 

activated, controlled by the driver input in the throttle or brake-by-wire system (9), the hybrid 

system controller (5) signals the electric motor actuation. If the command is for drive torque, the 

induction motor controller (4) controls the electric motor to produce positive torque. The motor 

is powered by the electric energy stored in the ultracapacitor bank (6) through the induction 

motor inverter (3). The positive torque created will be delivered to the front drivetrain via the 

front torque coupler to propel the vehicle forward.
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i i I

o o o

o o o

'__ I© ©

1 Front Torque Coupler (gear 
box)

6 Ultracapacitor Bank

2 Front Drive AC Induction 
Motor

7 Cooling System

3 Induction Motor Inverter 8 Engine Control Unit (ECU)
4 Induction Motor Controller 9 Throttle-by-Wire & 

Brake-by-Wire Systems
5 Hybrid System Controller 10 Data Acquisition System

Figure 3.2 Phase I  schematic design (Courtesy o f S. Samborsku)

If the command is for brake torque, the induction motor controller (4) controls the electric 

motor to produce negative torque, in which the torque generation is provided by the vehicle 

kinetic energy transferred by the front drivetrain and through the front torque coupler. At this 

instance, electricity is created by the electric motor and it is relayed through the induction motor 

inverter to charge the ultracapacitor bank. The cooling system (7) maintains the operating 

temperatures for the electric motor, inverter, hybrid system controller, and torque coupler. These 

components require a separate, dedicated liquid cooling as the hybrid system operates with the 

range of 180 to 400 V (450 A) of electricity. The electric motor coupled with the gearbox, operates 

up to 12,000 rpm. The engine control unit (8) works in conjunction with the hybrid system 

controller in order to produce a modulated drive torque from the internal combustion engine for 

the system efficiency. Lastly, the data acquisition system (10) monitors all the system data
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information necessary for the hybrid system operation as well as the VDC system developed in 

this study.

3.2.1 Prototype Pacifica Hybrid Powertrain (ICE & EM)

In addition to its stock internal combustion engine (ICE), the prototype powertrain has a 

3-phase AC induction electric motor with a 67 KW peak power.

SIEMENS 1PV5133WS20 Motor

Motor Type 3-Phase AC
Induction

Peak Power 67 kW
Continuous Power 32 kW
Peak Torque 190 N-m
Speed Range 0 -12,000 rpm
Input Bus Voltage 260-385  V

Figure 3.3 SIEMENS 1PV5133WS20 motor

The electric motor alone is a considerably powerful powertrain unit. Added to the stock 

184 KW internal combustion engine, the hybrid powertrain system can produce an enhanced 

power output. However, due to its design nature, the electric motor has a very different 

performance curves compared to the standard ICE; therefore, the combined power output is not 

simply the sum of the two powertrain units. A detailed electric motor performance discussion is 

found in Section 3.3.

3.2.2 Prototype Pacifica Hybrid Drivetrain

The electric motor is integrated as a post-transmission powertrain component in the front 

drivetrain. As mentioned in the beginning of this section, the electric motor is directly connected 

to the gearbox (front torque coupler) which serves as a medium in order to:
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• Transmit the electric motor torque to the front drivetrain to provide propulsion 

to the vehicle.

• Match the electric motor operation speed range of 0 to 12,000 rpm to the existing 

drivetrain operation speed range of 0 to 1083 rpm through gear ratio of 1.71:1 

(automatic transaxle) and 6.52 :1 (speed-reduction gear box).

In order to install the gearbox to the existing front drivetrain, the propeller shaft between 

the front and rear drivetrains is removed from the power transfer unit (PTU), depicted as (1) in 

Figure 3.4 of the automatic transaxle. (See Figures 3.4 & 3.6)

Front
Drivetrain

Rear Drivetrain

Fig. t AW D D rive lin e

Figure 3.4 Pacifica A W D  drivetrain schematic drawing (Courtesy o f DAIM LERCHRYSLER Corp.)
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Figure 3.5 3D model o f gearbox and electric motor assembly (Courtesy o f S. Draca)

4111&M2

Fig. 4 Power Transfer Unit Low er Boits
1 - POWER TRANSFER UNIT
2 - TRANSAXLE

Figure 3.6 Drawings o fP T U  and 41AE/TE automatic transaxle (Courtesy o f DAIM LER CHR YSLER Corp.)

The gearbox output shaft is connected to the PTU joint, and the input shaft of the gearbox 

is connected to the output shaft of the electric motor. The torque transmission is as follows. In 

drive torque delivery mode of the electric motor, the torque flow starts from the motor to gearbox 

to front differential (housed inside the automatic transaxle) to half-shafts which are connected to

the front left an d  right w h eels . In regenerative brake torque d elivery  m o d e , the sam e p ath  as the  

drive torque is followed in  the reversed order.

In the prototype design, no clutch system is used to engage/disengage the electric motor 

torque output to the front drivetrain. This design stipulates a permanently engaged electric
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motor to the front drivetrain. A good analogy is the powertrain/drivetrain interaction of a 

manual transmission vehicle which has a front-engine mounted and front-wheel driven design. 

With a gear engaged, the engine torque produced (positive) is delivered to the drivetrain to 

propel the vehicle. When down-shifting to decelerate the vehicle, "engine braking" is done. This 

is achieved by the higher gear ratio (of selected low gear) and the rotational inertia of the engine 

and transmission components that act as negative torque delivered to the front drivetrain. At this 

point, the front left and right wheel produces the same negative torque output and "engine 

braking" cannot control individual braking as does the anti-lock braking system. When 

encountered by a slippery surface in engine braking, the driver applies brakes while disengaging 

the clutch to command a proper braking control to the vehicle. This allows the ABS braking to 

provide a safe deceleration performance.

Same as in the illustrated analogy, the torque generated by the electric motor is delivered 

equally to the left and right wheels whenever the motor is activated. In drive torque mode, the 

excessive positive torque can spin the front wheels when the tires exceed their traction limit, 

creating vehicle instability as the steer-ability is lost. Conversely, in brake torque mode, the 

excessive negative torque can lock-up the front wheels which will cause vehicle instability due to 

the loss of steer-ability. The research motivation of this study is rooted from this design 

constraint of the prototype hybrid vehicle.

3.3 SIEMENS Electric Motor Performance Analysis for 
Regenerative Braking and Drive Torque Assist Function

In order to accurately model the regenerative braking and drive torque assist function of 

the prototype Pacifica and study their effects, the electric motor performance is analyzed. The 

electric motor speed-reduction gear ratio and the drivetrain gear ratio are used to relate the 

vehicle speed and the motor power/torque output. The vehicle speed vs. motor power & torque
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curves are obtained as a result. The achieved torque curve is used for analyzing the effects of 

regenerative braking on the prototype vehicle.

3.3.1 Statement of Assumption

Since the exact prototype hybrid system performance is yet to be tested and validated, 

the electric motor torque used in Sections 3.3.2 and 3.3.3 is an idealized value assuming a 100% 

efficiency in the hybrid power-electronics system. As well, it assumes that the state of charge 

(SOC) in the prototype ultracapacitor bank is at an ideal level to be able to provide a 100% 

excitation power for the induction motor and being able to absorb all the current produced by the 

electric motor for charging. This allows the design of an idealized prototype system, which can 

be scaled back appropriately when the prototype design is validated through testing.

As well, this exercise assumes a 100% drivetrain efficiency in torque transmission. This is 

because the accurate efficiency is unknown, and the study looks at the preliminary evaluation of 

the prototype design, with custom made components such as the speed-reduction gearbox. The 

actual efficiency can only be found from a direct measuring of the system performance, which is 

planned to be done in the Phase II of this project. Therefore, at this stage of the project,, the ideal 

system performance calculation is a rather appropriate approach so that the measured data can 

be compared to the ideal system performance for the final evaluation.

3.3.2 SIEMENS Motor Performance Curves

The following motor performance data was obtained from the SIEMENS product 

specification information presented in Appendix A. The torque curves below essentially 

determine the regenerative and drive torque when commanded by the driver.
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Siemens Electric Motor Performance Plots 
(Max Current: 280 A)

2000 4000 6000 8000 10000 12000 14000
Motor Speed (RPM)
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■ ■ Rated
Power

■ - Rated
Torque

Figure 3.7 SIEMENS 1PV51334WS20 motor performance curves

3.3.3 Speed-Reduction Gearbox (Torque Coupler) Final Gear Ratio 
Selection

As the motor is permanently attached to the running drivetrain without a clutch device, 

the motor (rotor) continuously spins in all driving speed range. Therefore the maximum motor 

rpm (12,000 rpm) needs to be matched to the maximum vehicle design speed of 150 km/h. The 

final speed reduction gear ratio is designed to be 6.52 : 1 with the stock automatic transaxle gear 

ratio of 1.71 : 1. These gear ratios are multiplied together to the motor performance curves in 

order to calculate the actual motor torque and power delivered to the front two wheels of the 

prototype.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. H y b r id  S y s t e m  D e s ig n  &  P e r f o r m a n c e

Siemens Electric Motor Performance ® Wheel 
(Max Current: 280 A)
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Figure 3.8 SIEMENS 1PV51334WS20 motor verformance at the wheel

Over the vehicle speed range of 0 to 150 KPH, the above maximum torque can be 

generated in an idealized condition. The above torque curve is curve-fitted to obtain a 

polynomial function of 8th degree which is implemented in the electric motor torque calculator of 

the Simulink model discussed in Section 5.3.6.

3.4 Data Acquisition (DAQ) System for Hybrid Pacifica

The Figure 3.9 describes the overall hybrid system component interaction for operating 

the prototype vehicle. The DAQ system to be incorporated on the hybridized Pacifica enables 

hybrid CS & CD function (regenerative braking and motor assist) actuation by communicating 

driver's request to the hybrid system master controller, and monitoring the system characteristics 

for a safe and efficient operation. As well, a custom-design data acquisition system will allow the 

vehicle dynamics controller to asses the vehicle dynamics state and control the hybrid function 

appropriately for maintaining vehicle stability.
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The prototype hybrid system employs the SIEMENS motor inverter and controller. 

Signal processing and data communication is done by the digital signal processor (DSP) onboard 

the motor inverter via controller area network (CAN) bus. MICROCHIP'S PIC 18F458 

microcontrollers are used for controlling throttle, brakes, energy management, and vehicle 

dynamics control system.
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Hybrid Pacifica System Architecture
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The sensor data com m unication is done in  tw o d iffe ren t environm ents. Custom  sensors 

outlined in  A ppendix D  w ill communicate v ia  the contro ller area netw ork (C AN ) data bus w hich 

w ill be relayed to  the master hyb rid  system controller. Stock sensors on Pacifica communicate via 

the program m able com m unication interface (PCI) data bus. The results are used fo r con tro lling  

the CS &  CD functions o f the hyb rid  system fo r m ainta in ing the vehicle stab ility .

3.5 X-by-wire Technology

As con tro lling  regenerative braking and m otor assist function  on the prototype is a 

crucial task w h ich requires an in tegral con tro llab ility , the X -by-w ire technology (brake &  th ro ttle ) 

is im plem ented fo r the vehicle.

3.5.1 Brake-by-wire & Pacifica Stock Brake System

Chrysler Pacifica's stock brake system is the CO N TIN EN TAL TEVES M AR K 25 ABS 

system. It is a hydrau lic operated fric tio n  brake system, using a diagonal sp lit hydrau lic system.5 

The system also features electronic variable brake proportion ing  (EVPB) to  balance front-to-rear 

braking when brakes are applied in  the pa rtia l braking range. The EVPB controls the braking 

force in  the rear according to the fro n t braking force to achieve an op tim a l braking performance 

(m ainta in ing a near lock-up fo r m axim um  braking effect). [11] The stock brake system is 

designed and tested to the OEM specifications, meaning that the system is optim ized fo r Pacifica 

to  satisfy a ll governm ent safety regulations. Therefore, m od ify ing  the brake system is a very 

critica l task w hich requires an extensive design analysis, testing, and va lida tion . [21]

The ideal braking system fo r the prototype hyb rid  is a fu lly  integrated brake-by-w ire 

system w hich w ou ld  contro l both the regenerative braking and hydrau lic  braking seamlessly. 

Compared to a conventional hydrau lic braking system, a brake-by-w ire system has an electronic

5 In the standard brake mode, the master cylinder primary circuit supplies pressure to the right front and left rear wheel 
brakes, and the secondary master cylinder circuit supplies pressure to the left front and right rear wheel brakes.
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control u n it tha t controls the hydraulics w ith  an electric pum p(s) to  de live r brake line  pressure 

independent o f the pedal force when braking is commanded. A n electronic pedal m odule w ith  

pedal angle sensor determ ines the d rive r's  request by the pedal position  and delivers the 

appropriate brake line  pressure w hich actuates the hydrau lic  brake calipers fo r braking. In 

add ition  to  p rov id in g  an optim um  braking behaviour, it  is capable o f rea liz ing  a ll required 

braking and s tab ility  assistance functions such as ABS, TCS, and ESC. [22]

However, im plem enting such a system is a considerable engineering task and requires 

necessary components custom ized fo r the Pacifica prototype (hydraulic pum p u n it, electronic 

contro ller u n it, etc.). M ost o f a ll, developing an ABS a lgorithm  to m atch the stock performance 

w ou ld  also be a com plex task6. A lthough th is is the ideal and safer ( if designed appropria tely) 

fo r con tro lling  braking dynam ics fo r the hyb rid  system, this system is no t pursued fo r the scope 

o f th is research. A  brake-by-w ire system that addresses the aforem entioned issues is under 

investigation fo r fu tu re  im plem entation in  the vehicle.

3.5.1.1 Dual-Stage System: Electrical and Hydraulic

In  the m eantime, fo r its  s im p lic ity , the proposed design considered in  th is study is a 

"dual-stage" brake-by-w ire system w ith  a sim ulated pedal feel. I t  does not m od ify  the 

C O N TIN EN TAL TEVES ABS brake system and the regenerative braking is used as an 

independent, add itiona l braking system by having tw o stages o f b raking pedal range. Stage I is a 

regenerative braking region and Stage I I  is a hydrau lic braking region. The mechanical 

connection between the brake pedal and brake booster is decoupled to create an offset gap. This 

gap w ill be used fo r the regenerative braking pedal range. Once the pedal couples w ith  the 

booster actuator rod, the hydrau lic system is activated v ia  d rive r's  pedal force as is done 

conventionally. In  order to alleviate the loose pedal phenomenon in  Stage I, a torsional spring is

6 ABS braking algorithm is proprietary technical information developed and kept by OEM brake and auto 
manufacturers.
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integrated to the pedal lever. Inherently, there w ill be a two-stage (regenerative &  hydraulic) 

pedal feel feedback; however, th is may be advantageous in  in fo rm ing  the d rive r in  w h ich  braking 

tha t they are applying.

The CTS 503 Adjustable Pedal Sensor is equipped w ith  tw o angular position  sensors and is 

m ounted on the pedal's ro tational axis. The sensor signals are fed in to  the Labjack data 

acquisition term inal fo r the d ig ita l signal processor. The independent in p u t signals are compared 

and processed to communicate the braking power request from  the d rive r to the m otor contro ller 

thus activating regenerative braking. In  hydrau lic  braking range (Stage II), regenerative braking 

can s till be activated ( T r 0tai = TH ydrau iic  + T R egen ) to provide requested braking pow er if  necessary. 

The tw o sensor signals are compared w ith  each other fo r the signal in te g rity  and fault-detection 

as a safety check. I f  tw o signals deviate in  a range exceeding a specified value, a system fa u lt is 

signaled and regenerative braking function  is suspended. Thus, the system w ill on ly w o rk  w ith  

the stock hydrau lic  system braking. The d rive r shall be alerted by a w arn ing signal as the firs t 

stage braking (regenerative) is no longer available and the d rive r shall be tra ined to ignore the 

Stage I braking.

This presents a poor braking dynam ics (d rive -ab ility ) and m ay be dangerous to 

untrained drivers. However, fo r the purpose o f im plem enting a functiona l regenerative braking, 

the "dual-stage" system is deemed to be suffic ient fo r the scope o f th is project. One very 

s ign ificant drawback o f th is design is the "loss" o f braking in  Stage I  where regenerative braking 

is not activated due to the VDC in tervention  or due to the u ltracapacitor7 bank's SOC level being 

too h igh or low . A  possible solution to avoid the loss o f braking in  Stage I  is u tiliz in g  a resistor 

bank w hich w ill p rovide regenerative baking by a llow ing  electric current generation. The current 

can be by-passed to the resistor bank where electric energy can be dissipated as heat. However, 

th is s till does no t help the situa tion when S O C  is too low  to energize the generator function. Due

7 Ultracapacitors are used for energy storage system in the Prototype Pacifica.
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to the added com plexity and w eight o f a resistor bank to the overall system, such system is not 

used in  the design.

3.5.2 Throttle-by-wire

In  a conventional system, the th ro ttle  valve is controlled by a cable attached to the 

th ro ttle  pedal. In  a th ro ttle -by-w ire  system, the mechanical connection is rem oved and in  its 

place, position  sensors are im plem ented to  generate actuation signal according to the pedal angle. 

This signal triggers the electric actuator attached to the th ro ttle  body to  contro l the th ro ttle  valve 

angle fo r desired pow er output. The benefits o f these systems are such tha t transient (ineffic ient) 

phase o f th ro ttle  operation is elim inated and the hyb rid  contro l system is "in fo rm ed" fo r power 

demand and is able to generate the desired ou tpu t by con tro lling  engine and m otor e ffic ien tly. A  

th ro ttle -by-w ire  project is under investigation to be insta lled on the prototype hyb rid  Pacifica.
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C H A PTER  4 

V ehicle M o d e l in g  fo r  C o -sim u l a t io n

The vehicle s im ulation was done using the M E C H A N IC A L SIM U LATIO N  

CORPORATION'S vehicle dynam ics sim ulation software CarSim 6.04, along w ith  MATHW ORKS 

IN C .'s Matlab/ Simulink software where the vehicle dynam ics con tro lle r was designed and 

developed through co-sim ulation. The MSC SOFTWARE'S w id e ly  used ADAMS/CAR  & 

A D  AMS/CONTROLS softwares were given consideration fo r use. Due to CarSim's better a b ility  

to interface w ith  Simulink fo r co-sim ulation, it  was decided to use CarSim fo r th is study.

4.1 Vehicle Coordinate System

CarSim uses the ISO 8855 coordinate system that has X positive  fo rw ard , Z  positive up, 

and Y positive to  the left-hand side o f the vehicle. This is in  contrast to  the SAE J670e coordinate 

system, where Y is positive to  the rig h t and Z is positive down. I t  has six degrees o f freedom 

along its  three axes- translation along and ro ta tion  about each axis. Rotation about the X axis is 

ro ll (p); about the Y axis is p itch  (q); and about the Z axis is yaw  (r).
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Figure 4.1 Vehicle coordinate system

4.2 Prototype Vehicle Modeling in CarSim

4.2.1 Vehicle Mass & Dimensional Properties

The prototype hyb rid  Pacifica is m odeled in  CarSim based on the stock Pacifica mass and 

dim ensional properties. M ajor hyb rid  components such as the AC electric m otor, m otor inverter 

&  contro ller, gearbox, m otor cooling system, and ultracapacitor bank are modeled in  the 

sim ulation m odel w ith  the m ost accurate know ledge of mass and dim ensions according to the 

current project developm ent stage. The fin a l prototype mass w ith  the d rive r is determ ined to be 

2325 Kg w ith  a d rive r (80 Kg), m otor and gear box assembly (88 Kg), and u ltracapacitor bank (72 

Kg). These mass properties are located in  the Pacifica m odel at the ir design locations as show in  

Figure 4.2. The rest o f hyb rid  component mass is applied at the vehicle CG. CarSim uses these 

properties to adjust the in e rtia l properties and ride  height o f the vehicle, to  sim ulate the vehicle 

w ith  the loaded conditions.
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ilectric Motor & Gea

Figure 4.2 H ybrid  Pacifica w ith  driver &  hybrid components

Inertia  properties in  ro ll, p itch, and yaw  (Ixx, Iyy, and Izz) were extrapolated from  the 

N ational H ighw ay T ra ffic  Safety A dm in istra tion  (NHTSA) test data on the Static S tab ility  Factor 

o f the 2004 C hrysler Pacifica and s im ila rly  sized vehicles' inertia  properties. [23] The detailed 

mass and dim ensional values are provided in  A ppendix C.

4.2.2 Suspension Kinematics & Compliances

Suspension kinem atics and compliances data are crucial properties o f a vehicle 

suspension that represent the m otion o f the vehicle suspension, re lative to the sprung mass. The 

accurate in fo rm ation  o f these data w ill sim ulate the vehicle in  m otion accurately fo r realistic 

results. Accurate measurement o f such data requires a special suspension measurement fix ture .

A  satisfactory measurement o f both fron t and rear suspension kinem atics points o f 

Pacifica was taken to  produce representative kinem atics curves fo r the s im ulation m odel. The 

points were measured by using strings, plum b bob, square, and a m easuring tape. The 

measurement contains some know n inaccuracy as some o f the points were inaccessible to 

measure d irectly ; however, such inaccuracy is neglig ib le in  th is study. Steering kinem atics was 

no t measured bu t the rack and p in ion  steering assembly gear ra tio  o f 17.8 : 1 is used in  

sim ulation. The wheels were le ft on the hub in  order to m ainta in the ride  he ight at norm al 

loading condition. However, the resulting suspension properties w ou ld  no t cause significant 

error in  the sim ulations.
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Figure 4.3 2004 Chrysler Pacifica A W D  on hoist for kinematics measurement

Racing by the Num bers, a kinem atics analysis program , is used to  generate kinem atics 

curves using the measured suspension hard-points data. Caster, Wheelbase Change, Camber, 

Toe, and Lateral M ovem ent (scrub) kinem atics curves are im plem ented in  CarSim model.

Compliances data cannot be measured w ith o u t a sophisticated and purpose-built 

m easuring fix tu re . So the CarSim generic "M in iva n " compliances data were adopted fo r 

sim ulation. As w e ll, fo r suspension spring rate and dam ping, the generic CarSim "M in iva n " data 

were used. These values are reasonable representations o f the actual values since the production 

Pacifica shares s im ila r dim ensional and mass properties w ith  m inivans.

4.2.3 Tire Data

I t  is a w e ll know n fact that the v irtu a l vehicle sim ulation results are la rge ly dependent on 

the tire  data used. This is because the tire  is the m edium  fo r transferring vehicle forces w ith  the 

road interaction. Because tire  is made o f rubber, its  reaction to forces is non-linear, w h ich  makes 

it  very d iffic u lt to  define the characteristics. O ften tire  m anufactures do not share the p roprie tary 

in form ation. Studies have been done in  an attem pt to m odel tire  characteristics fo r realistic 

sim ulation results. The m ost trusted m ethod o f sim ulating tire  is by the use o f "M agic Tire 

M ode l" developed by Hans Pacejka o f D e lft U n ivers ity  in  Netherlands. The "M agic T ire M odel" 

is a set o f in te rpo la tion  equations that are derived from  the em pirica l data o f tire  forces. CarSim is
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able to handle Pacejka 5.2 tire  m odel; however, the representative m odel fo r Pacifica's tire  data 

(M ichelin  Energy M XV4 Plus P235/65R17) was not available8.

CarSim features "In te rna l T ire M odel" w h ich  is derived from  a various tire  data w hich 

represents a generic behaviour o f the selected tire  class. The in terna l CarSim "B ig  SUV T ire " 

m odel w ith  the effective ro llin g  radius o f 0.353 m  was used fo r s im ulating Pacifica.

4.2.4 Aerodynamics Data

A  coefficient o f Drag (Cd) value o f 0.355, a fron ta l area of 2.84 m 2, and a reference length 

o f 2.954 m  are used fo r the aerodynamic m odeling o f the prototype. These values account fo r the 

aerodynam ic resistance to the vehicle at a ll speeds and the vehicle orientations.

4.2.5 Hybrid Powertrain & Drivetrain Modeling

As the hyb rid  d rive tra in  layout is o f a special design, CarSim does no t support hyb rid  

pow ertra in  configurations so it  was created in  the Simulink function  b lock instead. In  a ll 

sim ulations o f th is study, the vehicle m odel is set to m ainta in a certain speed to execute braking 

sim ulations. Therefore, exact engine ou tpu t per th ro ttle  in p u t is, in  th is case, irre levant. As used 

in  sim ulating regenerative braking torque, the same electric m otor torque curve can be used to 

describe the add itiona l torque ou tpu t o f the hyb rid  pow ertra in. Engine fue l map and power 

curves were obtained from  Chrysler Technical Center (CTC). [24 &  25] SIEMENS electric m otor 

perform ance curves were obtained from  a SIEMENS pub lica tion source. However, the engine 

maps are no t used in  th is study as the dynam ic th ro ttle  in p u t is not sim ulated.

A s hybrid drive train layout is of a special design, C arS im  does not support hybrid

d rive tra in  configurations. A lthough it  is not possible to create a s im ulation m odel w ith  a hybrid

drive tra in , it  can be represented m athem atically w ith in  vehicle in p u t and ou tpu t parameters.

8 Delft-Tyre, the company that publishes Pacejka model information was contacted. Tire information for Goodyear 
245/70/R16 which is similar to Pacifica’ s tire, was available for purchase for US$1,450. Due to the high cost, the data 
was not purchased.
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W ith in  Simulink, the electric m otor torque curve o f Figure 3.8 is created using Eq. 5.9. The torque 

ou tpu t values are d irectly  linked  to CarSim as a brake torque (M y_brk) in p u t to  each o f the fron t 

wheels. This torque is activated by brake command and applied to the vehicle along w ith  the 

hydrau lic braking torque. The Simulink p o w e r/d rive tra in  m odel is discussed in  de ta il in  Section 

5.3.6.

4.3 CarSim & Simulink Co-simulation Interfacing

4.3.1 Hybrid Pacifica Bicycle Model Implementation in Simulink

The fo llo w in g  vehicle parameters o f Table 4.1 are im plem ented in  the bicycle m odel used 

in  the Simulink m odel w hich is ve rified  to y ie ld  a realistic result in  Chapter 6.

Table 4.1 Bicycle model -parameter values for hybrid Pacifica
Mass (kg) Izz (kgm2) a (m) b(m) Cf (N/rad) 

for both tires
Cr (N/rad) 
for both tires

2325 4309.356 1.359 1.595 90756.8 96257.0

W ith  the lack o f tire  data, the "cornering stiffness" coefficients were obtained by using 

cu rve -fit data o f CarSim's la tera l tire  force (Fy) and tire  s lip  angle (a) ou tpu t data. These are 

obtained from  the Equations 2.10 and 2.11.

4.3.2 CarSim  and Simulink Co-simulation Interfacing

The u ltim ate  goal o f im plem enting the bicycle m odel to the vehicle dynam ics contro ller is 

to  calculate the discrepancy between the d rive r's  intended vehicle path and the vehicle's actual 

path and provide a contro lled electric m otor torque ou tpu t to m ainta in  the vehicle stab ility . In  

order to  ve rify  the bicycle model-based contro ller is a w e ll-su ited application fo r the purpose, the 

co-sim ulation m ethod is chosen to validate the contro ller performance. Through ite ra tive  co

sim ulation, the VDC design is optim ized fo r the contro l performance. I t  can be understood that 

the non-linear CarSim m odel represents the prototype hyb rid  Pacifica and the Simulink contro ller
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m odel represents the actual microprocessor-based Vehicle Dynamics C ontro lle r im plem ented on 

the prototype.

As w e ll, the co-sim ulation verifies the D AQ  system design architecture that is to be 

im plem ented on the prototype. Lateral state variables: la tera l acceleration, yaw  rate, body slip  

angle, and the rate o f body slip  angle change are calculated from  the CarSim m odel, these 

variables are extracted to be compared to the same variables o f the bicycle m odel fo r va lid ity .

C o-sim ulation allow s runn ing the same sim ulation in  the tw o d iffe ren t software 

environm ents; therefore, elim inates the need o f analyzing the sim ulations independently at a 

d iffe ren t tim e. M oreover, it  enables in teractive ly con tro lling  the s im ula tion  parameters through 

the interface. In  th is study, the developed Simulink contro ller controls the CS and CD functions 

o f the CarSim vehicle m odel based on the parameters supplied by CarSim in  the sim ulation. The 

outcome is a VDC contro ller (Simulink) perform ance evaluation on the v irtu a l prototype vehicle 

m odel {CarSim). Vehicle dynam ics sim ulation in  CarSim can be exported to  the Simulink 

environm ent v ia  the 'S -function ' block. Using export variables o f the 'S -function ' block, the 

vehicular behaviour can be investigated by the Simulink sim ulation. The details are discussed in  

Chapter 5.
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C H A PTER  5

V ehicle D y n a m ic s  Co n tr o ller

The p rim ary objective o f the conventional electronic s tab ility  contro l (ESC9) system is to 

provide vehicle s tab ility  and handling p red ic tab ility  by using m icroprocessors, vehicle m otion 

sensors, and vehicle contro l actuators. This is achieved by recognizing the d rive r's  intended path 

o f vehicle trave l and active ly con tro lling  the vehicle m otion to guide the vehicle fo llow ing  the 

d rive r's  commanded path w ith o u t causing vehicle ins tab ility . The d rive r's  intended path can be 

calculated by using the steering in p u t and vehicle speed in p u t (b rake /th ro ttle ) and the vehicle 

m otion contro l can be done by actuating vehicle subsystems: such as a brake system or the 

engine.

The very im portant and m ajor difference between the conventional ESC and the 

developed vehicle dynam ics contro ller (VDC) is as fo llow s. "The electronic s tab ility  program  

(ESP) is a system tha t relies on the vehicle's braking system as a too l fo r "steering" the vehicle." 

[20] In  other words, appropriate braking at the in d iv id u a l wheel(s) is activated independently to 

balance the yaw  m om ent o f the vehicle about the z-axis in  order to  m ainta in  the vehicle stab ility . 

On the contrary, the VDC cannot command independent braking to contro l the yaw  m om ent o f

9 Electronic Stability Control (ESC) is an SAE conventional term.
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5. V ehicle D y n a m ic s  Controller

the prototype vehicle due to the inherent system design10. It m onitors the vehicle dynam ic states 

and on ly allow s the electric m otor's braking (or d riv ing ) torque w hen such torque w ill not 

d isturb the vehicle yaw  moment. As w e ll, it  elim inates the regenerative brake lock-up to provide 

the vehicle steer-ability. As a closed-loop contro l system, the developed VDC increases the safety 

o f the prototype hyb rid  electric vehicle and its  perform ance is ve rified  through the sim ulation in  

Chapter 6.

i  r

Vehicle Response
Actual Path

Driver Demand
Nominal Path

Control Deviation

Vehicle (Control Loop)
Hybrid Function (regenerative braking and 

drive torque assist) Operation

VDC PIC
Calculates & Processes the deviation and 

commands ‘On/Off signal for Hybrid Function

Figure 5.1 The developed VD C  operation flowchart

Another design difference is that ESC processes the "nom ina l" and "actua l" values of 

both yaw  rate and body slip  angle to correct the yaw  moment. VDC processes the "nom ina l" and 

"actua l" values o f the lateral acceleration (yaw rate) and on ly calculates the actual body slip  angle 

to  contro l the regenerative braking and drive  torque assist function. The fo llo w in g  table 

summarizes the m ain difference between the conventional ESC and VDC.

10 Recall that regenerative braking is delivered by the front two wheels through the common motor drive shaft; 
therefore, the individual braking control in the regenerative braking mode is impossible with the prototype system.
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T M ^^^^rd i^ ren cesb e tw e^cgm e n tio na ^E S C m ^e vd ^e d^D C ^
ESC VDC

Control Method
(rnominal " factual) 

&
(rnom inal— factual) 

&
(^nominal — Pactual) P control

Control Execution & 
Effect

-Individual wheel braking or 
engine torque retardation for 
yaw moment control to regain 
vehicle stability
-Keeps vehicle on driver 
intended path

- Wheel lock-up prevention in 
CS mode & wheelspin 
prevention in CD mode to avoid 
incipient vehicle instability
- Keeps vehicle on driver 
intended path & increases 
regenerative braking and 
electric motor torque assisted 
acceleration performance

5.1 Development of Vehicle Dynamics Controller

F ollow ing the conventional ESC architecture, a contro ller is developed w hich calculates 

the nom inal vehicle lateral acceleration and compares it  to the actual vehicle la tera l acceleration 

to determ ine d rive r's  in tent. However, when th is contro l is used on slippery surfaces, a deviation 

occurs in  la tera l acceleration (higher response) and yaw  rate (faster response) as the road 

coefficient o f fric tio n  is low er than the norm al. As a result, the vehicle la tera l speed (v) increases 

ra p id ly  and therefore body slip  angle ((3) increases (|3=v/u) more than the norm al situation. 

Figure 5.2 shows the d iffe ren t vehicle response to the same d rive r in p u t o f steer and vehicle 

speed.
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(c) V e h ic le  T rack  on 
Low F r ic lio n  Road

M e d iu m  
F r ic lio n  Road

I I

(«i) V e h ic le  T ra ck  on 
H ig h  F r ic tio n  Road

Equal S lep  S leer &  
Equal T h ro tt le  In p u ts

Figure 5.2 Vehicle response to the same driver inpu t on
hiph &  low ji-conditions

The nom inal response is w hat the d rive r commands based on h is /h e r experience on 

norm al (high-p) d riv in g  conditions. W hen the vehicle travels on a low -p  surface w ith  the same 

inpu t, i t  deviates from  the d rive r's  intended path and the yaw  rate increases due to the lack o f 

traction at tires and the body slip  angle increases accordingly. D erived from  th is phenomenon, 

con tro lling  the latera l acceleration and body slip  angle response is an effective and robust method 

to  contro l the vehicle m otion. C alculating road fric tio n  conditions is unnecessary as estim ating 

the nom inal la tera l acceleration and com paring it  to the actual la tera l acceleration to determ ine 

the path devia tion is sufficient. This deviation is the d irect result o f the road p-conditions.

5.2 Overall VDC Architecture

The fo llo w in g  Figure 5.3 shows the overall architecture o f the Vehicle Dynamics 

C ontro lle r (VDC) where various sensor and command signals are connected to sub-controller 

blocks to  m onitor the vehicle dynam ics states and calculate the m otor torque de livery signal fo r
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hyb rid  system functions (CS &  CD). The contro ller sim ulation environm ent contains CarSim and 

Simulink, where the co-sim ulation is executed at the same sim ulation tim e-step.

Hj Z}
Ca Sim S-Functl<

wheel steer angle 

 H u/17.8----------

J~(pi/180) |—|

(m/sA2) „

H u-9.81 wq

Fcn3 

* \  u/3.6 \ -

delta_avg

~H <(u) |—

Ay Controller

Wheel Slip Controller

Vehicle Speed Calculator

Beta_dot Calculator

Hybrid System Function Controller

—jiJHH■HI■ H
Electric Motor Toqi ue Simulator & Driver Brake Throttle C

 JH?i
Brake Comm I Mono

Beta.Controller

Figure 5.3 Overall VD C  design architecture

The CarSim s im ulation block is represented by the 'S -function ' block, nam ely "CarSim S- 

Function". This block enables the CarSim and Simulink in terfacing fo r exchanging data fo r 

calculations. Predefined ou tpu t values (export channel variables) from  CarSim are relayed as 

signals to each sub-controller blocks where calculations are perform ed. The export channel 

variables are lis ted in  the fo llow ing  table.
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Export Channel Variables

1 5sw 7 R1 Wheel 
Speed

13 P

2 P 8 L2 Wheel 
Speed

14 LI Brk. Chmbr. Press.

3 r 9 R2 Wheel 
Speed

15 R1 Brk. Chmbr. Press.

4 ay 10 Vehicle
Speed

16 L2 Brk. Chmbr. Press.

5 ax 11 Brake Cont'l 
Press.

17 R2 Brk. Chmbr. Press.

6 LI Wheel 
Speed

12 Sim. Time 18 & 
19

LI & R1 Wheel Steer 
Angle

S im ila rly, the fin a l command signals fo r brake torque or d rive  torque o f the VDC are 

im ported to the " CarSim S-Function" block to relay the m otor torque ou tpu t fo r CS or CD 

function  to the CarSim model. The im po rt channel variables are listed in  the fo llo w in g  table.

T ^ g X 3 _ £ ^ ^ m ^ S ^ n d io n ^ M o ^ I^ o r t ^ a n n ^ v ^ iM ^ is t

Im port Channel Variables

1 FL Brake Torque O utput
2 FR Brake Torque O utput

I t  is noted that although the im port channel variable is named as brake torque output, it  

receives a positive torque (drive  torque) in  the case o f CD function  execution. As the 

im p o rt/e xp o rt data exchange is done sim ultaneously, the VDC can process the signals from  the 

CarSim s im ulation m odel in  order to contro l the electric m otor torque ou tpu t and m aintain the 

vehicle stab ility .
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5.3 Vehicle Dynamics Controller Operation Process

There are seven subsystems in  the VDC as listed in  the fo llo w in g  table.

Table 5.4 VD C  subsystems

VDC Subsystems

1 Vehicle Speed Calculator

2 Wheel Slip Controller

3 Ay Controller (Linearity Limit &

Ay_nominai/Ay_actuai Ratio Threshold Limit)

4 P  Calculator

5 (3 Controller

6 Electric Motor Torque Simulator

7 Hybrid System Function Controller

5.3.1 Subsysteml- Vehicle Speed Calculator

The vehicle speed calculator takes each rectilinear wheel speed through In p u t P o rtl. 

Through O utpu t P o rtl, the fou r speeds are relayed fo r calculating the wheel s lip  in  the next 

subsystem. Through O utpu t Port2, the vehicle speed, w h ich is obtained by Eq. 5.1, is relayed to 

the next subsystem.

r  U L \  U Rl  U L2 U R2  ^
=  U ve h ic le  [ E q -  5 - 1 ]

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. V e h ic l e  D y n a m ic s  C o n t r o l l e r

wheel

u (m/s)1

W heel Speeds
u (m/s)2

G J -----------
W heel Speed LF,RF,LR,RR Vehicle SpeedAvg. wheel speed for V eh ic le  Speed

u (m/s)3

vehicle
u (m/s)4

u/3.i

u /3.6

u /3.6

u/3.6

Figure 5.4 Vehicle speed calculator subsystem block

On the prototype Pacifica, the wheel ro ta tion  pulse signal w ill be processed via  D AQ  to 

calculate each w heel's rectilinear speed using Eq. 5.2.

U wheel =  ^ w h e e l X  Td [Eck

5.3.2 Subsystem2- Wheel Slip Ratio Calculator

The wheel s lip  ra tio  calculator em ploys the sim ila r logic as the ABS wheel s lip  controller. 

The underly ing  p rinc ip le  is contro lling  the slip  on each wheel fo r m axim um  braking force 

generation. Recall that wheel s lip  is necessary to generate b rak ing /trac tio n  force. From  various 

literatures sources [7 &  8], it  is found that wheel s lip  ra tio  o f up to 0.18 is found to be effective fo r 

braking force generation. Therefore, the wheel slip  ra tio  threshold value is set to 0.18 fo r 

suspending CS and CD function. The calculated vehicle speed (Inpu t Port3) and wheel speeds
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(Inpu t P o rtl) from  the previous subsystem are used as in p u t variables. The calculated vehicle 

speed is used as the reference value fo r each wheel speed to calculate the wheel s lip  ratio.

^  wheel _ L I  ^  vehicle/. i w n tz a i i  v c n ic i c  \

A -   -----------------------  [Eq. 5.3]
^veh ic le

o ------
Vehicle speed for check

veh ic le

-------
Calculated Vehicle Speed □  jwheel slip control mode

Front

O r -
Wheel Speed 
LF,RF,LR,RR

Control Mode 
LF.RF.LR.RRSum Rear Product

Speed Limit

Slip Ratio Increase Signal

wheel ve locity
slip m ode wheel 1

slip m ode wheel 2

slip m ode wheel 3

□
slip m ode wheel4

Figure 5.5 Wheel slip controller subsystem block

Both fro n t and rear wheel s lip  threshold ratios are set to be 0.18 to  trigger "O FF" signal 

fo r CS and CD functions. Each wheel produces its ow n 'O N /O F F ' (1 /0 ) signal fo r the hyb rid  

system function  and each signal is converged using a m u ltip lica tio n  block. As a result, the 

converged signal delivered to the 'O u tp u t P o rtl' contains 'O N ' (1) signal fo r the commanded 

hyb rid  function  when each and every wheel s lip  ra tio  is less than 0.18. W hen the slip  ratio  

exceeds 0.18, ou tpu t o f 'OFF' (0) is processed fo r that wheel contro l mode, id e n tify in g  that the 

wheel is s lipp ing  excessively beyond the po in t where there is insu ffic ien t traction  between the
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tire  and the road. This suspends the hyb rid  system functions as the vehicle w ou ld  be under 

unstable conditions and on ly ABS brakes are used to decelerate/control the vehicle in  the case of 

CS function. A t speeds low er than 0.83 m /s , the slip  contro l is bypassed so wheel lock-up or 

w heelspin is allow ed at very low  speeds. This is analogous to standard ABS systems.

5.3.3 Subsystem3- Lateral Acceleration (Ay) Controller

This contro lle r perform s tw o independent threshold checks fo r la tera l acceleration 

in form ation. F irs tly , i t  checks the lateral acceleration is under a threshold value o f 7.00 m /s 2 (0.71 

g) as the prototype is capable o f g ripp ing  to the road up to the value o f ay = 7.36 m /s 2 from  the 

p re lim ina ry  sim ulations.

Non-Linearity Signal

□  |_

Ay_sensor

QQr
delta

□ — r  
Linearity Signal

a

Ay Control mode □

Ay Limit

□
I Ay_Sensorl

Ay com m anded from r_ss_BM

u|11+ l

Abs1 Add 1 to avoid zero d iv ider!

Add 1 to avoid zero d iv ider

u(!j/u (2 ]

Ay lim it comparison

Ay Com m anded

Ay Linearity Control Mode

Ay D eviation Control M od e l

[T J o F F S ig iSignal

r *
M J O N  Sign

-K D
AyLim itl 

ION Signal

Ay Deviation Control Mode

Ay Com parison Result

Figure 5.6 A v controller subsystem block

Secondly, it  calculates and compares the nom inal lateral acceleration to  the actual lateral 

acceleration measured. The nom inal lateral acceleration (Eq. 5.5), or steady-state lateral
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acceleration, is essentially a rearranged transfer function o f steady-state yaw  rate (rss) from  the 

fo llow ing  Eq. 5.4 and Eq. 2.16.

^  y _ measured
rss= —   [Eq. 5.4]

m n a l =  { u  ( d  +  b)  ~
m(acf  -  bcr ) 
(a + b )c f cr

[Eq. 5.5]

As discussed previously, the nom inal lateral acceleration indicates w hat the d rive r is 

com m anding fo r the vehicle response. Using Eq. 5.5, the nom inal value is then compared to the 

actual lateral acceleration value (measured) to  determ ine the de live ry o f hyb rid  function. The 

add ition  o f 1 is im plem ented to avoid having an indeterm inate value resu lt due to the zero 

denom inator.

ay Ratio =  lâ-"°-in°'j + 1 [Eq. 5.6]
\ a  y  _  m easured  1

W hen ay nominal is greater than the ay_actuai, it  essentially means that the d rive r is 

dem anding m ore lateral force (via greater steering in p u t a n d /o r fo rw ard  speed inpu t) than w hat 

the vehicle is capable o f responding due to the traction lim it at the tire /ro a d  contact. A t this 

instance, g iv ing  up the braking force (long itud ina l traction force) allow s gain ing lateral traction 

force at the tire  as discussed in  Section 2.4.3. As a result, the vehicle responds to the d rive r's  

steering in p u t better and thus fo llow s the intended path better. This is the reason fo r suspending 

CS and CD function  when ay ra tio  threshold is reached. The threshold value fo r the ra tio  is set to 

2 after a successive ite ra tion  in  order to provide im proved braking w h ile  m ainta in ing a good 

steer-ability o f the vehicle.
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5.3.4 Subsystem4- /? Calculator

The rate o f body slip  angle change, /? , is calculated to determ ine w hether the vehicle is in  

a transient or non-transient (steady) state w h ile  in  operation. In  th is contro lle r design, it  enables 

calculating the body slip  angle w ith o u t using a tim e derivative calculation as discussed in  the 

section 5.3.5. Using the available sensor signals, nam ely ay, u, and rmeasured/ it  can be found as:

a y

P  = ------------r measured l E T  5 '7 1
U

B e ta _ d o t

c a --------------
Beta_R (CarSim Reference)

A y _ s e n s o r  ( m / s ^ )

Ay_sensor

KDf(u)
Beta_dot1B eta_dot Fen

r_sensor

Figure 5.7 B calculator subsystem block

P  in fo rm ation  is relayed to the P contro ller subsystem to calculate body slip  angle in  

both steady-state and transient state conditions.
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5.3.5 Subsystem5- Body Slip Angle (p) Controller

The p contro ller has fou r inputs: u, 5Wheei, rmeasured and /? . I t  calculates the theoretical 

body s lip  angle fo r both steady-state and transient conditions w ith  the rate o f body slip  angle 

change. The resu lt produces a reasonable estim ation to the actual body s lip  angle o f the vehicle 

where the d irect measurement by a sensor is im possible. The equation fo r the body s lip  angle is 

obtained by rearranging Eq. 2.16 and Eq. 5.7 in to  the fo llow ing  form .

f t  =

c* /  7 \  Ym easured \ /  n  \
C /O  (c iC y  b C r )  I T Y lU \f)  - f - r measure&

(cf +cr)
[Eq. 5.8]

< 2 >
Beta Carsim !

Q } —
Vehicle Speed

□

C D r -
delta_wheel

□

— 1» | f(u> [-►

yawrate_m deg/s 

yawrate_m1

C D r-
Beta_dot

□

□

f(u)

Body Slip Angle_Clapton_v8_1

I Beta I Control M odel □

Off Signal

- > ©
I Beta I limit

I Beta I Control Mode2

On Signa

i t
Beta with Beta .do t | 

— ►[£

Figure 5.8 f3 controller subsystem block
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I t  is found that on h igh -fric tion  surfaces, vehicle m aneuverability is lost when p exceeds 

about 10° in  m agnitude11, whereas on packed snow th is value is 4°. [5] In  add ition , typ ica l 

drivers are found to be inadequate in  con tro lling  vehicles w ith  greater than 2° o f body s lip  angle. 

[4] Therefore, the threshold lim it o f the p is set to the m agnitude o f 4°.

5.3.6 Subsystem6- Electric Motor Torque Simulator

Two d iffe ren t subsystem blocks are described here fo r CD and CS functions. Both 

subsystems calculate the available m otor torque assuming 100% system efficiency i.e. the optim al 

S.O.C level to p rovide the 100% m otor torque delivery.

The SIEMENS electric m otor perform ance curve (Appendix A ) is used to generate an 8th 

order po lynom ia l function  w hich closely represents the m otor torque curve as a function of 

vehicle speed.

*mectriCMo<or = -3.2768e”8x8 +5.5847e~6jc7 -3.7968e- V  +0.012953*5 [Eq. 5.9]
-  0.22635x4 +1,8054x3 -  5.2543x2 +1.6423* + 1014.3

In  the case o f CS function  command, a negative torque ou tpu t is calculated. In  the case of 

CD function  command, a positive torque ou tpu t is calculated.

The fo llow ing  Figure 5.9 shows the CS function  (regenerative braking) block and it  is 

designed to w o rk  w ith  the prototype vehicle design speed o f 0 k m /h  to 150 k m /h . In  th is block, 

the brake contro l command from  the d rive r in p u t is processed to convert it  to  a brake 'O N /O F F ' 

signal w h ich  is also relayed to the 'H yb rid  System Function' contro ller. The CS function  torque is 

sim ulated as an embedded system o f the stock vehicle brake system. In  sim ulation, when the 

d rive r presses the brake pedal, both the regenerative braking and ABS braking system is applied 

fo r braking.

11 This was also confirmed by CarSim simulations of the prototype hybrid Pacifica.
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T orque Off1

lo to r  O p era tion  HIGH LIMIT (41 m /s

T orque ON1

□ F - 1
O n S lgna l2

Motor O pera tion  LO W  L im it (0 m /s)1
Off S ig na l2

□ p

On S igna l

Figure 5.9 Electric motor torque simulator for regenerative braking (CS function) subsystem block

The available torque value is then delivered to the 'H yb rid  System Function ' contro lle r to 

provide the braking torque at the fron t tw o wheels.

The fo llo w in g  Figure 5.10 shows the CD function (d rive  torque assist) b lock and it  is also 

designed to w o rk  w ith  the prototype vehicle design speed o f 0 k m /h  to  150 k m /h . In  th is block, 

the th ro ttle  contro l command from  the d rive r in p u t is processed to convert it  to a drive  torque 

assist 'O N /O F F ' signal w hich is then relayed to the hyb rid  system function  contro ller. The CD 

function  torque is sim ulated as an embedded system o f the stock pow ertra in  system. In  

sim ulation, when the d rive r presses the th ro ttle  pedal, both the drive  torque assist o f EM and ICE 

torque are applied fo r accelerating.
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Drive Torque

T orqu e  Off1

lo to r  O p era tion  H IGH LIMIT (41 m /s

veh ic le ve lo c ity l
T o rqu e  ON1

On S ig na l2

Sign2 Fen Available MotorTorqi
M otor O p era tion  LO W  L im it (0 m /s)1

Off Signa12

\fp

Vehicle Speed Reference

O n S igna l

Thro ttle  C o m m a n d  fo r E lectric  M oto r O p era tio n  

1 ►©
Thro ttle  In pu t sigr

O ff S igna l[fjfU
throttle commam

Figure 5.10 Electric motor torque simulator for drive torque assist (CD function) subsystem block

The available torque value is then delivered to the hyb rid  system function  contro lle r to 

provide the d riv in g  torque at the fro n t tw o wheels.

5.3.7 Subsystem7- Hybrid System Function Controller

The H yb rid  System Function contro ller, a Boolean logic contro ller, collects a ll the 

'O N /O F F ' actuating signal data from  each o f the subsystems to determ ine the fin a l braking or 

d rive  torque delivered by the electric m otor.
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Ay Control Mode

Product

F ku re  5.11 H ybrid  system function controller subsystem block

The contro lled torque is delivered to each o f the fro n t wheels as a braking or d riv in g  

torque. O nly the In p u t P o rtl has the actual value o f the transform ed brake or d rive  torque and 

th is value is m u ltip lie d  by the 'O N /O F F ' signal o f each subsystem contro lle r to  contro l the fina l 

torque delivery. This in  re turn  controls the regenerative braking or d rive  torque assist function  to 

w o rk  seamlessly w ith  the sim ulation m odel ABS system or ICE in  m ain ta in ing the prototype's 

vehicle s ta b ility  in  decelerating or accelerating operation.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. V e h ic l e  D y n a m ic s  C o n t r o l l e r

5.4 VDC System Implementation using PIC18F458 p- 
Controller

The above Simulink VDC design is im plem ented to a m icroprocessor using M icrochip 's 

PIC18F458. Details o f the system architecture, data acquisition sensor im plem entation and 

Assem bly language code details are included in  A ppendix D.
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C H A PTER  6

V ehicle D y n a m ic s  C o -sim u l a t io n

The goal o f co-sim ulation was to investigate the realistic d riv in g  situations and evaluate 

the perform ance o f the developed vehicle dynam ics contro lle r in  m ain ta in ing the vehicle steer 

contro l and its  la tera l s tab ility . F irst, the co-sim ulation interface va lida tion  is done using a set o f 

steady-state and transient-state sim ulations. This is to v e rify  how  w e ll the linear bicycle m odel 

matches the non-linear CarSim m odel in  calculating vehicle dynam ics states: nom inal lateral 

acceleration (ay_nominai) and body slip  angle ((3).

For evaluating the VDC perform ance in  CS function, three cases o f transient-state 

sim ulations are perform ed to investigate the effect o f VDC contro l on the regenerative braking. 

Then, the VDC system perform ance integration is va lidated w ith  a vehicle configuration o f an 

embedded regenerative braking w ith  the stock ABS braking system.

For evaluating the VDC perform ance in  CD function, tw o cases o f transient state 

sim ulations are perform ed to investigate the effect o f VDC contro l on the d rive  torque assist 

function. The VDC perform ance is validated fo r its  a b ility  to contro l the extra traction torque 

from  the electric m otor in  acceleration mode (w h ile  the ICE traction torque is active).
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6.1 Linear and Non-linear Model Response

The bicycle m odel is a linear system w hich uses a set o f equations describing the vehicle 

m otion (v &  r) as discussed in  Section 2.5. However, the CarSim s im ula tion  m odel uses a m u lti- 

DOF, non-linear m athem atical m odel w hich represents the vehicle response in  a m ore realistic 

manner. I t  is observed that, although effectively close fo r the VDC, the linear m odel response is 

inevitab ly d iffe ren t than the non-linear m odel, causing discrepancy in  the vehicle state 

calculation. The source o f discrepancy is from  the non-linearity o f the CarSim m odel p rim a rily  

stem m ing from  the tire  m odel, suspension &  steering kinem atics and compliances.

6.2 Steady-State & Transient State Simulation

The steady-state cond ition  analysis is perform ed to investigate the vehicle s tab ility  

characteristics and m ore im portan tly  to determ ine the s tab ility  threshold lim its  o f the vehicle 

dynam ics parameters under investigation.

The transient state sim ulation is perform ed to analyze how  the vehicle responds to the 

dynam ic steering and fo rw ard speed inputs12. Transient-state (dynam ic) d riv in g  conditions 

represent the m a jo rity  o f d riv in g  situations. Therefore, it  is v ita l to  investigate the system 

response in  transient conditions in  order to contro l the vehicle s ta b ility  in  dynam ic d riv in g  

situations. The transient analysis is done to sim ulate rea l-w orld  d riv in g  conditions that are 

common in  causing vehicle instab ility . This approach allow s investigation o f realistic d riv in g  

situations in  order to  evaluate the VDC performance. A lso, th is s im ula tion  demonstrates the 

lim ite d  yet very effective results o f the linear bicycle m odel in  calculating nom inal lateral 

acceleration and body slip  angle.

12 Forward speed of vehicle is controlled by the throttle and brake input of the driver.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6. V e h ic l e  D y n a m ic s  C o -s im u l a t io n

6.3 Simulation Model Configurations

For the developm ent o f the Vehicle Dynamics C ontro ller (VDC), fou r cases o f vehicle 

configuration were considered as follow s.

Table 6.1 Vehicle configuration cases

Vehicle Design Configuration

Case A Hybrid Pacifica equipped with two front wheel hybrid 
system function only without VDC (ORANGE)

Case B Hybrid Pacifica equipped with two front wheel hybrid 
system function only with VDC (WHITE)

Case C Hybrid Pacifica equipped with two front wheel hybrid 
system function with stock powertrain and drivetrain 
functions without VDC (RED)

Case D Hybrid Pacifica equipped with two front wheel hybrid 
system function with stock powertrain and drivetrain 
functions with VDC (BLACK)

Each vehicle configuration is tested fo r CS and CD functions o f the hyb rid  system 

operation in  developing Vehicle Dynamics C ontro ller fo r the prototype hyb rid  Pacifica
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6.4 Simulation Cases

F ollow ing Tables 6.2 and 6.3 summarize a select num ber o f sim ulations perform ed in  

order to  develop and validate the perform ance of the vehicle dynam ics contro lle r (VDC).

Table 6.2 Simulations performed for VD C  evaluation and validation on CS function

6.5 Interface 
Development 

Validation

6.6 VDC Performance 
Validation on 

Regenerative Braking System

6.7 VDC Performance 
V alidation on 

H ybrid  Braking  
(REGEN+ABS) System

6.6.1 Without 6.6.2 With VDC 6.7.1 Without 6.7.2 With VDC
VDC Control Control VDC Control Control
(Orange) (White) (Red) (Black)

STEADY STATE I. SLB @ 100 I. SLB @ 100 KPH I. SLB @ 100 I. SLB @ 100
I. SSC (ji=1.00) KPH Mu=0.20 KPH KPH
30KPH Mu=0.20 Mu=0.2L/0.6R Mu=0.20 Mu=0.20
60KPH Mu=0.2L/0.6R Mu=0.85 Mu=0.2L/0.6R Mu=0.2L/0.6R
90KPH Mu=0,85 Mu=0.85 Mu=0.85
120 KPH
150 KPH II. DLX @ 90 II. DLX @ 90 KPH II. DLX @ 90 II. DLX @ 90

KPH Mu=0.2/0.6 KPH KPH
TRANSIENT Mu=0.2/0.6 Mu=0.50 Mu=0.2/0.6 Mu=0.2/0.6
STATE Mu=0.50 Mu=0.85 Mu=0.50 Mu=0.50
II. DLX (p=1.00) Mu=0.85 Mu=0.85 Mu=0.85
30 KPH III. HWY EXIT
60 KPH III. HWY EXIT RAMP @ 90 KPH III. HWY EXIT III. HWY EXIT
90 KPH RAMP @ 90 KPH Mu=0.6L/0.2L RAMP @ 90 RAMP @ 90
120 KPH Mu=0.6L/0.2L Mu=0.50 KPH KPH
150 KPH Mu=0.50 Mu=0.85 Mu=0.6L/0.2L Mu=0.6L/0.2L

Mu=0.85 Mu=0.50
Mu=0.85

Mu=0.50
Mu=0.85

Three stages o f sim ulation are discussed in  the fo llow ing  sections. The firs t stage is 

conducted to validate the CarSim vehicle m odel and Simulink C ontro lle r m odel in terfacing and 

evaluate the responses o f the nonlinear CarSim m odel and linear bicycle m odel in  steady-state 

and transient-state conditions. This proves how  the linear bicycle m odel is an effective estim ator 

fo r the nonlinear CarSim model. The second stage is conducted to analyze the regenerative 

braking perform ance alone in  conjunction w ith  VDC. The th ird  stage is conducted to see how 

embedded regenerative braking behaves w ith  the existing ABS brake system at the vehicle 

system level in  conjunction w ith  VDC.
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Table 6.3 S im d a tio n s jje ^ ^  co rV D C e m lu a tia n a n d jm M  function

6.8 VDC Performance 
Validation on

6.8.1 Without VDC 6.8.2 With VDC Control
Control (Red) (Black)
I. SLA @ 60 KPH I. SLA @ 60 KPH
a) Mu=0.20 a) Mu=0.20
b) Mu=0.2L/0.6R b) Mu=0.2L/0.6R
c) Mu=0.85 c) Mu=0.85

II. DLX @ 60 KPH II. DLX @ 60 KPH
a) Mu=0.2/0.6 a) Mu=0.2/0.6
b) Mu=0.50 b) Mu=0.50
c) Mu=0.85 c) Mu=0.85

Since the CS function  has the same operational p rinc ip le  as the CD function, on ly the 

integrated hyb rid  pow ertra in  system design is considered fo r the s im ula tion discussions.

For the sake o f space, on ly the most crucial system perform ance o f each case is discussed 

in  detail, w h ich  is in  the sp lit-p  condition. I t  is also noted that a lthough the VDC system succeeds 

in  m ainta in ing the vehicle stab ility , the calculation results shown fo r the nom inal lateral 

acceleration and body slip  angle are the least accurate compared to  the other sim ulation results. 

This is because the sp lit fric tio n  condition (p = 0.2L/0.6R) creates the greatest vehicle ins tab ility  

due to the traction lim it d ispa rity  between the le ft and rig h t tires o f the vehicle. This d isparity  

creates the largest yaw  moment imbalance fo r the vehicle. A ppend ix E contains additional 

sim ulation results o f a h igh  road fric tio n  condition, where the linear bicycle m odel responses are 

very close to  the non-linear CarSim results. This indicates that the bicycle m odel is a good 

estim ator o f the non-linear system response where the road coefficient o f fric tio n  is high.

6.5 S im u la tion  Interface V alidation: B icycle M od el
Evaluation with CarSim Model

The firs t purpose o f th is sim ulation is to  ve rify  that CarSim and Matlab/  Simulink 

environm ents are interfaced seamlessly in  order to conduct co-sim ulations. The second purpose
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is to validate that the linear bicycle m odel is an effective and representative m odel as an 

estim ator to the non-linear CarSim model. W ith  va lida tion , the developed m ethod is ve rified  to 

be va lid  fo r the VDC system development. The fin a l and m ost im portan t reason is to derive 

threshold lim it values fo r the contro l variables o f VDC via  steady-state and transient-state 

sim ulations.

6.5.1 Steady State Simulation

According to  van Zanten et al., it  is useful to start the va lida tion  o f the vehicle w ith in  the 

linear range o f the m odel where the linear response o f a vehicle is conventionally seen at less 

than ay = 0.4 g (3.92 m /s 2) w ith  p  = 1.0. [4] Therefore, sim ulations are perform ed at p=1.0 surface 

starting from  a low  vehicle speed to the m axim um  vehicle speed o f the prototype (150 km /h ). 

The vehicle speed was m aintained at a preset value in  each case. Then it  was increased 

increm entally to see the effects o f non-linear behaviour o f the m odel where ay is greater than 0.4 

g level.

Two cases o f sim ulation at 90 KPH and 120 KPH are presented. The 90 KPH sim ulation 

is shown since the latera l acceleration is at the lim it o f linear response region. The 120 KPH 

sim ulation is shown since the lateral acceleration actually coincides w ith  the actual test resu lt13 of 

7.36 m /s 2. S im ulations perform ed under 90 KPH resulted in  good response behaviour and 150 

KPH sim ulation showed unstable vehicle response.

13 Motor Trend magazine conducted a 60 m radius skid pad test to find out the average lateral acceleration limit of 0.75 
g for 2004 Chrysler Pacifica. [26]
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6.5.1.1 Constant Radius Track Cornering (R= 150 m) @ 90 KPH, |i=1.00
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Figure 6.1 Steady State cornering o f hybrid Pacifica @ 90 K PH: fi=1.00

The actual la tera l acceleration is at 4.10 m /s 2, w h ich is at 0.42 g level. The ay_n0minai 

response is at 2.67 m /s 2. The reason fo r such d isparity  in  the nom inal la tera l acceleration is 

because it  is found using the steady state yawrate transfer function  o f the bicycle model. The 

fa irly  large (w orst among a ll SSC sim ulations) error o f 34.87 % is derived from  the non-linearity 

o f CarSim m odel in  its  suspension and steering kinem atics and compliances. The d isparity  

between the bicycle m odel's cu rve -fit linear tire  data vs. the non-linear em pirica l data o f the 

CarSim m odel is another m ajor source o f error. This can be validated since at a higher lateral 

acceleration level (shown in  the next sim ulation), the ay ncluai and ay_nominai are very close to each 

other.

Both body slip  angle responses are very close (pactuai = -2.13° vs. Pbm = -2.31°). This can be 

explained as Pbm is found w ith  "m easured" data (ay &  r) o f actual vehicle state in  its  transfer
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function; therefore, its  resu lt is very close to the actual value. The la tera l offset is at 0.05m w hich 

is neglig ib le fo r the vehicle path deviation. The fo llo w in g  table sum marizes the peak value 

com parison o f lateral acceleration and body slip  angle values o f the sim ulation.

CarSim ay_nom inal

(m/s2) (m/s2) P carS im  ( ° ) p B M  (°)

Results 4.10 2.67 -2.13 -2.31
Error Margin (%) 34.88 8.45
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6.5.1.2 Constant Radius Track Cornering (R= 150 m) @ 120 KPH, p=1.00
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Figure 6.2 Steady State cornering o f hybrid Pacifica @ 120 KPH: u=1.00

The above figure  shows the vehicle response very close to the p roduction  Pacifica's actual 

lateral acceleration lim it o f 7.36 m /s 2. This close result can be a good ind ica tor that the 

sim ulation m odel created w ith  various assumptions is in  fact a very good representative model o f 

the actual Pacifica. A t 120 KPH, the vehicle takes more tim e to  reach its  steady state. The 

fo llo w in g  table summarizes the peak value com parison o f la tera l acceleration and body s lip  angle 

values o f the sim ulation.

TMg6^5_S^mmi£fM^alaccderationandbo^d^_m^ere^ts_

«*y_CarSim

(m/s2)
«*y_nominaI

(m/s2)
PcarS im

(°) O 
CO 

w 
2

Results 7.23 7.61 -4.33 -3.96
Error Margin (%) 5.26 8.55
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The same reasoning applied in  the previous 90 KPH run  can be applied to explain the 

m argin o f error between the non-linear and linear models.

6.5.2 Transient State Simulation
6.5.2.1 Double Lane Change @ 90 KPH, p=1.00

Driver Steer Input & Avg. Wheel Steer (8W)Vehicle Forward Speed
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■«« Avg. Wheel Steer Output
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Time (s)
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Figure 6.3 Double Lane Change manoeuvre o f hybrid Pacifica @ 90 KPH; fi=1.00

In  the double lane change manoeuvre, sim ila r to the steady-state sim ulation, the lateral

acceleration calculation is not as accurate as body slip  angle calculation. The phase-lag in  the

response o f ay_actuai compared to ay_nommai is due to the ine rtia l effects o f the actual vehicle

response. Recall tha t the ay nominal transfer function  assumes the steady-state cond ition  and thus,

it  does not use vehicle yaw  moment o f inertia  (Izz) around the z-axis. The result is tha t ay_nommai

calculates the results d irect to the d rive r's  steering in p u t w ith o u t the lag. The response o f Pbm is

•

very close to  the real value because it  takes account o f the ine rtia l effect as it  is calculated w ith  p  

in fo rm ation  w hich uses the measured lateral acceleration and yaw  rate data from  sensors. The
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measured values invo lve  the yaw  m om ent o f inertia  effect as it  is an actual measurement o f the 

vehicle m otion in  tim e. The fo llow ing  table summarizes the peak value com parison o f lateral 

acceleration and body s lip  angle values o f the sim ulation.

«*y_CarSim

(m/s2)
3y_nom inal

(m/s2)
PcarS im

(°)
pBM
(°)

6.53 8 . 0 1 -4.71 -4.79
Results & & & &

-8.64 -9.10 7.09 6.13

Error 
Margin (%)

18.48
&

5.05

1.67
&

13.54
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6.5.2.2 Double Lane Change @ 150 KPH, ji=1.00
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Figure 6.4 Double Lane Chame manoeuvre o f hybrid Pacifica @ 150 K PH: u=1.00

The s im ila r analysis done in  the previous 90 KPH run  can be used fo r the error m argin in  

the lateral acceleration comparison. The fo llow ing  table summarizes the peak value comparison 

o f lateral acceleration and body s lip  angle values o f the sim ulation.

T M e S J S ^ ^ m ^ o fM ii^ g ^ l^ g M m a n d b o ^ s l^ n ^ lg re s M g

<iy_CarSim

(m/s2)
S y n o m in a l

(m/s2)
PcarS im

(°)
P b m

(°)

6.53 8.01 -4.71 -4.79
Results & & & &

- 8 . 6 4 - 9 . 1 0 4 7 . 0 9 6 . 1 3

Error 
Margin (%)

2 2 . 6 6

&
5.37

1.70
&

13.54

As the vehicle speed is m uch higher, the error on the nom inal la tera l acceleration is 

greater w ith  longer delay tim e. This in  tu rn  causes greater steering in p u t by the d rive r to
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navigate the vehicle through the target path. Based on the observation, the fo llo w in g  values are 

decided fo r the VDC im plem entation.

Table 6.8 Threshold lim it values implemented in VD C

ay_CarSim

(m/s2)
tly_nom inal 

/  3y_CarSim

PcarS im

<°>

Limit
Values 7 2 4

The same threshold lim it values are used fo r the VDC system o f a ll s im ulation cases to 

ve rify  tha t the developed VDC is a robust contro ller fo r a ll types of d riv in g  conditions.
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6.5.3 Straight-Line Braking Simulation

In  order to evaluate the stra ight-line braking performance w ith  effects o f VDC, a vehicle 

w ith  VDC and another w ith o u t VDC are sim ulated fo r the same s im ula tion  conditions. For the 

sim ulation environm ent, the on ly variable is the road coefficient o f fric tio n . In  the case o f sp lit 

0.20L/0.60R p-condition , the le ft side o f the vehicle is in  contact w ith  0.20 p surface (Ice) and the 

rig h t side o f the vehicle is in  contact w ith  0.60 p surface (snowy). The sim ulation cond ition  can 

be seen in  the fo llo w in g  anim ated figure.

IX- )»-■«»■*

Figure 6.5 Straight Line Braking verformance on snowy highway (u~0.20LI0.60K)

The fric tio n  s p lit is defined w ith  respect to the road centre-line, in  global coordinates, in  

w hich the vehicle is in itia lly  centered. For example, if  the vehicle moves to the le ft by m ore than 

its ha lf-track w id th , then vehicle is on the complete 0.20 p surface. I f  i t  moves to the rig h t by the 

same am ount, then the vehicle is on the complete 0.60 p surface. The CarSim "D rive r Path 

Follow er M ode" is used fo r steering wheel angle in p u t control. Hence, the vehicle receives a 

constant w heel steer angle correction in  order to keep the vehicle in  its  targeted path w hich 

coincides w ith  the road centre-line. This d rive r path fo llow er essentially represents the d rive r's  

attem pt to fo llo w  the target path.
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The vehicle target path is predefined in  CarSim. In  th is case, it  is set to be a stra ight line 

course fo r the dura tion  o f the sim ulation run. The in itia l vehicle speed is kept at 100 k m /h , and 

the th ro ttle  in p u t is m aintained to keep the vehicle speed at 100 k m /h  u n til the braking 

command is activated. For a regenerative braking command, a step in p u t o f full-scale 

regenerative braking (generates ax « -2.7 m /s 2 on p = 0.85 surface) is applied at 1 s. Since the 

regenerative braking is designed to be activated v ia  the master cylinder chamber pressure inpu t, 

a brake pressure o f 1 Pa is used as the inpu t. This adds a braking torque o f 3.5 x 10*4 N «m , w hich 

is neg lig ib le14. In  the case o f embedded regenerative and ABS braking command, a 7 MPa of 

hydrau lic braking command along w ith  fu ll regenerative braking (generates ax “  -7.5 m /s 2 on p = 

0.85 surface) are applied at 1 s. Detailed analyses fo r both cases are done in  Sections 6.6.1 and 

6.7.1 respectively.

14 In CarSim, the generic big SUV braking torque is defined as 350 N«m per 1 MPa of brake delivery pressure.
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6.5.4 Double Lane Change Braking Simulation

This s im ulation set is an industry  standard fo r ESC /ABS perform ance evaluation. The 

sim ulation course uses tw o 4 m  w ide lanes marked w ith  cones tha t represent a path tha t the 

vehicle should negotiate. Road fric tio n  is set as p = 0.20L/0.60R, the vehicle is on a sp lit-p  surface 

in itia lly , and travels on p = 0.20 road once it  enters the le ft lane.

Figure 6.6 Double Lane Chame B rak im  performance on snowy highway (u=0.20L/0.60R)

D rive r steering in p u t is set to fo llo w  the predefined target path (DLX) w ith  1 s d rive r 

preview  tim e. Thro ttle  is applied in  order to keep the preset speed o f 90 k m /h  and when braking 

is activated, the th ro ttle  is set to  release. For the design configuration o f regenerative braking- 

on ly  scenario, the fu ll regenerative torque is commanded at 0.78 s o f each sim ulation. This is 2 s 

p rio r to  the tim e when the vehicle w ou ld  enter the second lane, w ith  the speed o f 90 k m /h  (2 s o f 

d rive r preview  o f road). This braking generates 2.5 m /s 2 o f deceleration at the on-set o f braking 

and continues to  p rovide up to  2.7 m /s 2 o f deceleration.

A lthough  the braking force does no t match the "pan ic" braking condition , it  is the 

m axim um  regenerative braking force available and the tim ing  sim ulates the panic braking
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response. In  the case o f the integrated braking system, 3 MPa of hyd rau lic  braking along w ith  

the fu ll regenerative braking is applied to sim ulate a realistic "pan ic" b raking scenario. This 

combined braking generates approxim ately 5.0 m /s 2 o f deceleration at the on-set o f braking and 

continues to provide up to  approxim ately 6.1 m /s 2 o f deceleration. D etailed analyses fo r both 

cases are done in  Sections 6.6.2 and 6.7.2 respectively.
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6.5.5 Highway Exit-Ramp (Decreasing Radius) Braking

This sim ulation case simulates a vehicle exiting  from  the h ighw ay onto an exit ram p w ith  

a decreasing radius. A  "gentle " brake in p u t is applied gradua lly and consistently throughout the 

bend as a norm al d rive r w ou ld  do. In itia l vehicle speed is set to  be 90 k m /h  in  "coasting" mode 

and the brakes are applied at the 1 s o f the sim ulation w hich is 2.5 s before the tim e the vehicle 

w ou ld  reach the start o f the bend w ith o u t any braking inpu t. The road surface cond ition  is set to 

p =0.60L/0.2R fo r th is rig h t-tu rn  bend w ith  the same convention used in  SLB and DLX 

sim ulations. The fo llo w in g  figure  represents a sample sim ulation condition.

Figure 6.7 H W Y  E X IT-R A M P  braking performance (u=0.60L/0.20R)

The steering contro l is set to be a path fo llow er. In  the case o f regenerative braking (VDC 

V a lida tion  Stage), the fu ll step in p u t o f regenerative braking torque (generates ax » -2.7 m /s 2 on p 

= 0.85 surface) is commanded at 1 s. This d iffe ren t in p u t is perform ed since fo r regenerative 

braking, the interest is investigating the VDC system perform ance evaluation fo r the m axim um  

braking regenerative braking output. For the integrated braking system va lida tion , the 

m agnitude o f b raking applied is a 'ram p ' in p u t o f 1 MPa (generates ax “  -3.9 m /s 2 on p = 0.85 

surface) over dura tion  o f 3 s, w h ich is a realistic braking practice fo r norm al d riv ing .
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6.5.6 Straight-Line Acceleration Simulation

This sim ulation setting is essentially the same as the stra ight line  b raking sim ulation. 

O n ly differences are:

• The in itia l vehicle speed is set at 60 km /h .

•  A  norm alized th ro ttle  in p u t o f 0.2 is given at the beginning o f the sim ulation to 

accelerate the vehicle. This actuates both the ICE and EM  to p rovide traction 

torque to the vehicle.

6.5.7 Double Lane Change Acceleration Simulation

This sim ulation setting is essentially the same as the double lane change acceleration 

sim ulation. O n ly differences are:

• The in itia l vehicle speed is set at 60 km /h .

•  A  norm alized th ro ttle  in p u t o f 0.2 is given at 6 s o f the s im ula tion  tim e to 

accelerate the vehicle. The command actuates both the ICE and EM  to provide 

traction torque to the vehicle. This is when the vehicle is in  the second (le ft) lane 

and accelerating m oderately to re turn  to the firs t (righ t) lane.
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6.6 VDC Performance Validation on Regenerative 
Braking System

This set o f sim ulations is done to investigate the component level perform ance o f 

regenerative braking on the prototype and the contro l perform ance o f the Vehicle Dynamics 

C ontro ller. The braking sim ulation is done using regenerative b raking function  o f fro n t tw o 

wheels on ly, i.e. the stock ABS braking system is no t used. Three m ain crite ria  are considered fo r 

the VDC perform ance evaluation:

• Steer E ffo rt by D rive r (Steering W heel Angle Inpu t)

•  Lateral Path D eviation (Steer-ability o f vehicle)

•  Braking Time (Subjective to the situation)

These three crite ria  u ltim a te ly  determ ine the safety and efficiency o f braking 

perform ance as the least steer e ffo rt w ith  controlled vehicle m otion  and m in im um  braking 

distance represent the ideal braking performance.
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6.6.1 Straight Line Braking Simulation @ 100 KPH, ji=0.20L/0.60R
6.6.1.1 SLB without VDC Control

Driver Steer Input & Avg. Wheel Steer (ftw)Vehicle Forward

Driver Steering Input 
■ Avg. Wheel Steer Output

Driver Brake Command Lateral Acceleration

h b  Actual Ay 
. . .  Nominal Ay

O  0.2

Body Slip Angle (p)B ra k e  T o rq u e  D e liv e ry  @ W h e e l

; \

... BetaE

Longitudinal Acceleration Lateral Path Offset

■—  Target Path

E -0.5

T im e (s) Time (e)

Figure 6.8 SLB performance o f hybrid Pacifica w ithout V D C  @ 100 KPH: fi=0.2L/0.6R

W ithou t VDC, regenerative braking is provided regardless o f the vehicle ins tab ility . The 

d ips in  the fro n t-le ft (L I) wheel brake torque are due to the low  fric tio n  coefficient (p= 0.20) o f the 

road. This is explained as the tire  is on ly capable o f generating braking force up to  the lim it o f its  

available traction. As expected, the ay nominal is higher than the ayactuai because the road fric tio n  

condition is low  at 0.20L/0.60 so the vehicle cannot respond to yaw  (tu rn ) as fast as the d rive r 

intends it. Consequently, the vehicle leaves its  target path as m uch as 1 m  to  the righ t. The 

deviation to the rig h t is caused due to the vehicle yaw  moment, M z, imbalance in  clockwise 

d irection  caused by the higher braking force o f the fro n t-rig h t tire . The d rive r corrects the 

steering wheel as m uch as 350° [CCW ]. The braking tim e takes about 17 s.
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6.6.1.2 SLB with VDC Control

V e h ic le  F o rw a rd  S p e e d Driver Steer Input & Avg. Wheel Steer (8 )
30
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00 s 10 15 20 25 30

100
Driver Steering Input 
Avg. Wheel Steer Output
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•500 5 10 15 20 25 30

Oriver Brake Command Lateral Acceleration

1.5

i

m m  Actual Ay 
. . .  Nominal Ay

^  1
.e,

<

0
I  M

B ra k e  T o rq u e  D e liv e ry  @ W h e e l B o d y  S lip  A n g le  (p )

—  L1 
-■  R1

■ Actual B 
Betaou
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Longitudinal Acceleration
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Lateral Path Offset
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T im e (e)
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0
•0.2

•0.4 Target Path

•0.60 5 10 15 20 25 30

Figure 6.9 SLB Performance o f hybrid Pacifica w ith  VD C  @ 100 K PH: ]i=0.2L/0.6R

W ith  VDC, regenerative braking is contro lled as seen in  the above figu re  (Brake Torque 

p lo t) due to  wheel s lip  and the discrepancy in  ay_n0mmai and ay_carSm- The vehicle leaves its target 

path up to 0.4 m  to the rig h t, w hich is w ith in  the lim it to keep the vehicle in  its  designated lane. 

Since the contro lled braking force enables gaining the lateral force at tire , the d rive r gives a less 

steering in p u t to navigate the vehicle. Therefore, the ay nominal commanded is closer to  the ay_carSim- 

H owever, the braking tim e is extended by 8 s to b ring  the vehicle to a fu ll stop.

T M e ^ ^ V D C ^ e r^ rm m c g g g ^ m s o n ^ ^ W ^

Steer Input 
Magnitude 

(°)

Max. Lateral 
Deviation  

Magnitude (m)

Braking Time 
(s)

Vehicle Path 
Control 

Maintained?

No
VDC 350 1.0 17 Yes

VDC 80 0.4 25 Yes
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6.6.2 Double Lane Change Braking Simulation @ 90 KPH; 
|i=0.20L/0.60R

6.6.2.1 DLX Braking without VDC Control

Driver Sleer Input & Avg. Wheel Steer (8W)V e h ic le  F o rw a rd  S p e e d

Driver Steering Input 
Avg. Wheel Steer Output

Lateral AccelerationDriver Brake Command

_  Actual Ay 

. . .  Nominal Ay
o  0.2

Body Slip Angle (p)Brake Torque Delivery @ Wheel

z, -200

g- -400

. . .  Beta(

Lateral Path OffsetLongitudinal Acceleration

Target Path

E. 20

T im e (a)

Figure 6.10 D L X  braking performance o f hybrid Pacifica w ithout VD C  @ 90 KPH: u=0.2L/0.6R

Due to the lack o f VDC contro l, a constant brake torque o f about 400 N «m  (traction 

lim ited ) is delivered. This is due to the fact that the vehicle loses its  steer-ab ility and remains in  

p=0.20 region fo r the rem ainder o f the run  as it  is skidd ing  dow n the icy  surface. The d rive r 

commands a fixed  steer in p u t o f 370° [CW ]
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6.6.22 DLX Braking with VDC Control

Vehicle Forward Speed Driver Steer Input & Avg. Wheel Steer (S )

Driver Steering Input 
Avg. Wheel Sleer Output

10 15 20 26 30

Driver Brake Command

Brake Torque Delivery @ Wheel

10 15 20 25 30

Longitudinal Acceleration

Time (s)

10 15 20 25 30

Lateral Acceleration

'V
J ,

Actual Ay 

. . .  Nominal A

10 15 20 25 30

Body Slip Angle (p)

10 15 20 25

Lateral'MtWoffset

Target Path

A ■ • • Actual Path

f l
V

10 15 20 25 30
Tim e {•>

Figure 6.11 D L X  braking performance o f hybrid Pacifica w ith  VDC  @ 90 K PH: }i=0.2L/0.6R

A  contro lled regenerative brake torque up to its  m axim um  capacity (1015 N «m ) is 

delivered to each wheel, w h ich effective ly m aintains the vehicle contro l fo r steer-ability. The 

prolonged d ip  in  brake torque matches the va lley o f ay_nominai p lo t, where i t  exceeds the lim it. The 

path deviation is acceptable and the vehicle completes the D LX manoeuvre. The d rive r 

commands steering in p u t in  the range of 100° [CCW ] to 190° [CW ].

Steer Input 
Magnitude 

(°)

Max. Lateral 
Deviation 

Magnitude (m)

Braking 
Time (s)

Vehicle Path 
Control 

Maintained?

No VDC Lost @ 380 27 17 No
VDC -100 to 190 2 25 Yes
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6.6.3 Highway Exit Ramp Braking @ 90 KPH; p = 0.6L/02R

6.6.3.1 HWY Exit Ramp Braking without VDC Control

Driver Steer Input & Avg. Wheel Steer (8W)Vehicle Forward Speed

<■•*» Driver Steering Input 
■ Avg. Wheel Steer Output« to

Lateral AccelerationDriver Brake Commandx 10

£ 0.6

mm Actual Ay 
,  Nominal Ay

o  0.2

Body Slip Angle 0 )Brake Torque Delivery @ Wheel

Longitudinal Acceleration Lateral Path Offset

Target Path

Time (s) Time <•)

Fizure 6.12 H W Y  E X IT-R A M P  brakinz performance o f hybrid Pacifica w ithout V D C  @ 90 KPH; }i=0.60L/0.20R

Due to  the lack o f VDC control, the fu ll regenerative brake torque is delivered. As seen 

in  the locked steering in p u t and both o f the lateral acceleration and body slip  angle p lots, the 

vehicle is sk idd ing  away to the le ft o f the h ighw ay ram p. On the snow y 0.60 p surface, the 

vehicle deviates from  it  path as much as 9.2 m. The vehicle loses steer-ab ility and the d rive r 

commands a fixed  steer in p u t o f 360° [CW ]
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6.6.3.2 HWY Exit Ramp Braking with VDC Control

V e h ic le  F o rw a rd  S p e e d Driver Steer Input & Avg. Wheel Steer (8W)

o> '50 
*  -100 
I
w  -150 Driver Steering Input 

• • • Avg. Wheel Steer Output

Driver Brake Command Lateral Acceleration

£
£ 0.6

|  0.4 
a
o  0.2

0 5 10 15 20 25

B ra k e  T o rq u e  D e liv e ry  @ W h e e l

■ H ill i
10 15 20 25

Longitudinal Acceleration

Actual a
Nomina A

B o d y  S lip  A n g le  (p )

Actual Beta
- .  Be“ BM

10 15

Lateral Path Offset

1  \  

i  •

/  V r

Target Path 
■ ■ • Actual Path

10 15 20 25

Figure 6.13 H W Y  E X IT-R A M P  braking verformance o f hybrid Pacifica w ith  VD C  @ 90 KPH: u-Q.6LIQ.2K

W ith  VDC, a contro lled regenerative brake torque is delivered. The d rive r is able to  steer 

the vehicle throughout the bend w ith  as m uch as 2.7 m path deviation.

Steer Input 
Magnitude 

(°)

Max. Lat. Deviation 
Magnitude (m)

Braking 
Time (s)

Vehicle Path 
Maintained?

No VDC Lost @ 360 9.2 21 N o
VDC -150 to 50 ■ 2.7 12 Yes
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6.7 VDC Performance Validation on Integrated Braking 
System (Regenerative Braking & ABS)

This set o f sim ula tion investigates how  regenerative braking system perform s when 

integrated w ith  the sim ulated stock Pacifica ABS system. Furtherm ore, the perform ance o f VDC 

w hich controls regenerative braking along w ith  the stock ABS system is evaluated fo r vehicle 

system level va lida tion .

As w ith  Section 6.6, the same three crite ria  are considered fo r the VDC perform ance 

evaluation:

•  Steer E ffo rt by D rive r (Steering W heel Angle Input)

•  Lateral Path D eviation (Steer-ability o f vehicle)

•  Braking Time (Subjective to the situation)
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6.7.1 Straight Line Braking @ 100 KPH, ]i = 0.20L/0.6R

6.7.1.1 SLB without VDC Control

Driver Steer Input & Avg. Wheel Steer (ftw)Vehicle Forward Speed

■■■ Driver Steering Input 
• • • Avg. Wheel Steer Output

Driver Brake Command Lateral Acceleration

Actual Ay 
. . .  Nominal A

<*“ 0

Body Slip Angle (ft)Brake Torque Delivery @ Wheel

. . .  Beta£

Longitudinal Acceleration Lateral Path Offset

Target Path

T ime (a) Time «

Figure 6.14 SLB performance o f hybrid Pacifica w ithout VD C  @ 100 KPH; y.=0.2L/0.6R

W ithou t VDC, regenerative braking is provided regardless o f the vehicle ins tab ility . ABS 

braking, on the other hand, is active to contro l the hydrau lic  braking torque output. This can be 

ve rified  on the 'Brake Torque' p lo t o f Figure 6.14 as the L I brake ou tpu t is at a constant -500 N »m  

and R1 is at a constant -1015 N «m  from  5 s to 8 s. W ith  the lost steer-ab ility, as w ith  Section 

6.6.1.1, the vehicle skids on the icy surface to the le ft w ith  the lateral devia tion o f up to 1.5 m. 

The deviation to the rig h t is caused due to  the fron t brake force im balance that induces the 

clockwise vehicle yaw  m om ent, M z. The d rive r corrects the steering wheel as m uch as 360° 

[CCW ]. The braking tim e takes about 8.7 s.
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6.1.12 SLB with VDC Control

Vehicle Forward Speed
30
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00 2 6 6 104

Driver Brake Command

0 2 4 6 8

Brake Torque Delivery @ Wheel

8 10

Longitudinal Acceleration

/ *

Driver Steer Input & Avg. Wheel Steer (8 )
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Avg. Wheel Steer Output200
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4 6'0 2 e 10

Body Slip Angle (p)
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0
•20
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•60

•80

Lateral Path Offset

• Target Path 
Actual Path
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Figure 6.15 SLB performance o f hybrid Pacifica w ith  VDC  @ 100 K PH; u=0.2L/0.6R

As can be observed in  'Brake Torque' p lo t o f Fig. 6.15, both regenerative and ABS braking 

are contro lled by the wheel s lip  and lateral acceleration lim its . Compared to Section 6.7.1.1, the 

lateral path deviation is s im ila r bu t the steering in p u t is considerably less fo r VDC controlled 

braking. The braking tim e takes about 9.3 s.

TM e_6J2VD C ^e^rm m cem ^arison^S ^brM n^

Steer Input 
Magnitude 

(°)

Max. Lat. Deviation  
M agnitude (m)

Braking 
Time (s)

Vehicle Path 
Maintained?

N o VDC E ventu ally  
L ost @ 360

1.6 8.7 Yes

VDC 0 to 260 1.4 9.3 Yes

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6. V e h ic l e  D y n a m i c s  C o - s im u l a t io n

6.7.2 Braking during a Double Lane Change @ 90 KPH, ji =
0.20L/0.60R

6.7.2.1 DLX Braking without VDC Control

Driver Sleer Input & Avg. Wheel Steer (6W)Vehicle Forward Speed

Driver Steering Input 
■ Avg. Wheel Steer Output

Driver Brake Command Lateral Acceleration

Actual Ay 

. . .  NominalAy

Brake Torque Delivery @ Wheel Body Slip Angle (p)

Actual Beta

Longitudinal Acceleration Lateral Path Offset

Target Path

Time (s) T im e (e)

Figure 6.16 D L X  braking performance o f hybrid Pacifica w ithout VDC  @ 90 KPH; ]i=0.2L/0.6R

Even though ABS braking is controlled, the regenerative braking s till outputs a constant 

traction lim ite d  brake torque w hich leads to the loss o f steer-ability and path deviation. As 

shown in  the above subplots, the nom inal lateral acceleration matches the actual lateral 

acceleration fa irly  w e ll due to controlled braking by the ABS contro lle r up to about 4.3 s. The 

vehicle s till skids away to the le ft, however, due to the fact tha t it  is now  on the icy surface w ith  

locked fro n t tw o wheels. The d rive r cranks the steering wheel to 370° clockwise d irection in  an 

attem pt to b ring  the vehicle back to the target path. The to ta l deceleration tim e is 13.5 s.
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6.7.2.2 DLX Braking with VDC Control
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Figure 6.17 D L X  brakins performance o f hybrid Pacifica w ith  VDC  @ 90 KPH; }i=0.2L/0.6R

W ith  the large lateral acceleration and body s lip  angle discrepancies, regenerative 

braking is m ostly inactive fo r the dura tion o f the run. W ith  fro n t tw o  wheels p rov id ing  a 

contro lled regenerative torque, the ABS contro ller distributes the optim al braking torque at each 

wheel o f the vehicle to m aintain its steer-ability. W ith  a constant steering correction, ranging 

from  350° [CW ] and 380° [CCW ], the d rive r is able to b ring  the vehicle to its  target path although 

the path deviation is as large as 3 m.

T M ^ J 3 ^ D C ^ ^ ^ rm ^ g c g ^ a r i§ o n J ^ D ^ ^ rM n ^

Steer Input 
Magnitude 

(°)

Max. Lat. Deviation 
Magnitude (m)

Braking 
Time (s)

Vehicle Path 
Maintained?

No VDC Lost @ 360 13 13.5 No
VDC -350 to 380 3 12.8 Yes
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6.7.8 Highway Exit Ramp Braking @ 90 KPH; p = 0.6L/02R

6.7.8.1 HWY Exit Ramp Braking without VDC Control

Driver Steer Input & Avg. Wheel Steer (8W)Vehicle Forward Speed

Driver Steering Input 
■ ■ ■ Avg, Wheel Steer Output

Driver Brake Command Lateral Acceleration

£  0.8

Actual Ay
O  0.2

Brake Torque Delivery @ Wheel Body Slip Angle (ft)

Longitudinal Acceleration Lateral Path Offset

Target Path

Time (e) Tima (s)

Figure 6.18 H W Y  E X IT  R A M P  braking performance o f hybrid Pacifica w ithout V D C  @ 90 KPH: ji=0.6L/0.2R

The vehicle is going through a right-hand tu rn  o f the exit ram p so the vehicle d rifts  to  the 

le ft on the snow dusted p = 0.60 road surface. The presence o f L2 and R2 brake torques o f 140 

N *m  indicates that ABS braking is active fo r the entire ru n  o f the sim ulation. Regenerative 

braking provides a ll the fro n t wheel brake torque dictated by the traction  lim it. This lim it 

occurrence is also com municated to the ABS contro ller as wheel s lip  signal. Hence, no additional 

fro n t braking torque is delivered by the hydrau lic  system. The vehicle steer contro l is not 

possible and the steering in p u t is ine ffective ly locked at -350°. As a result, the vehicle skids on 

the snow dusted side o f the road (left) and leaves the intended path by 5.8 m. Braking tim e is just 

over 10 s.
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6.7.8.2 HWY Exit Ramp Braking with VDC Control
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Figure 6.19 H W Y  E X IT  R A M P  brakin? performance o f hybrid Pacifica w ith  VD C  @ 90 KPH: }i=0.6L/0.2R

Both VDC and ABS braking controllers effective ly generate optim al braking 

(long itud ina l) forces w h ile  preserving lateral forces o f each tire . Thus, the vehicle m aintains its 

contro l and returns to the intended path although the vehicle stops about 3.5 s later than its 

counterpart.

TMe_6M_VDC^er^rmmce_com^risonJ^HWY^XIT^AMP^mkin^

Steer Input 
Magnitude 

(°)

Max. Lat. Deviation 
Magnitude (m)

Braking 
Time (s)

Vehicle 
Path Maintained?

N o VDC Lost @ -350 5.8 10.2 No
VDC 0 to -160 2.3 13.5 Yes
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6.8 VDC Performance Validation on Integrated 
Powertrain System (ICE & Electric Motor)

This set o f s im ulation investigates how  the electric m otor traction  (drive) torque affects 

the vehicle s tab ility  w hen coupled w ith  the stock ICE torque ou tpu t in  vehicle acceleration. The 

perform ance o f VDC that controls drive  torque assist function  w ith  the stock ICE is evaluated fo r 

vehicle system level va lidation .

As w ith  the CS function  evaluation in  Sections 6.6 and 6.7, the s im ila r performance 

criteria  are considered fo r the VDC system evaluation:

•  Steer E ffo rt by D rive r (Steering W heel Angle Inpu t)

•  Lateral Path D eviation (Steer-ability o f vehicle)

•  F inal Speed at the end o f sim ulation
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6.8.1 Straight Line Acceleration @ 60 KPH, = 0.20L/0.6R

6.8.1.1 SLA without VDC Control

Driver Steer Input & Avg. Wheel Steer (8W)Vehicle Forward Speed

f  35

|  -40
™ ■ Driver Steering Input 
• ■ ■ Avg. Wheel Steer Output

|  20

Driver Throttle Command Lateral Acceleration

Actual Ay 

. . .  Nominal Ay
«  -0.5

Electric Motor Drive Torque Delivery @ Wheel Body Slip Angle (p)

Actual Beta

Longitudinal Acceleration Lateral Path Offset

—  Target Path

Time (s) T im e (a)

Figure 6.20 SLA performance o f hybrid Pacifica w ithout VD C  @ 60 K PH: fi=0.2L/0.6R

W ithou t VDC, the electric m otor traction torque is p rovided continuously. The vehicle 

continues to accelerate w ith  a decreasing electric m otor torque output. As before, the excessive 

traction torque reduces the lateral tire  forces and therefore the vehicle deviates from  its  target 

path by as m uch as 0.45 m.
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6.8.1.2 SLA with VDC Control

Vehicle Forward Speed
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Target Path 
Actual Path,§  0.15

Figure 6.21 SLA performance o f hybrid Pacifica w ith  VD C  @ 60 KPH; u=0.2L/0.6R

VDC detects the slippery cond ition  o f the road surface from  its  wheel s lip  and ay_ratio 

controllers and provides regulated electric m otor traction torque to the vehicle. The result is the 

less lateral path deviation o f 0.15 m  and a sm aller steering wheel angle in p u t by the d river.

TM^_^15^D^^er^rmnnce_com^ari^2^m_SL^@_60_^PHi^=Q^2F/0£R^

Steer Input 
Magnitude 

(°)

Max. Lat. Deviation
Final

Vehicle Vehicle
Magnitude (m) Speed

(m/s)
Path Maintained?

No VDC U p to 58 0.45 35 Yes
VDC U p to 32 0.15 33 Yes
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6.8.2 Accelerating during a Double Lane Change @ 60 KPH, ji =
0.2L/0.6R

6.8.2.1 DLX Acceleration without VDC Control

Driver Steer Input & Avg. Wheel Steer (aw)Vehicle Forward Speed

1,30

Driver Steering Input 
■■■ Avg. Wheel Steer Output

Driver Throttle Command Lateral Acceleration

8 0.15
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Figure 6.22 D L X  acceleration performance o f hybrid Pacifica w ithout VD C  @ 60 K PH; }i=0.2L/0.6R

As soon as the th ro ttle  command is given on the icy road surface at 6 s, both the nom inal 

lateral acceleration and body slip  angle start to deviate from  the actual values. Barely any lateral 

acceleration is present since there are very little  lateral tire  forces available fo r the vehicle. As a 

result, there is a considerable deviation in  the actual vehicle path and the vehicle leaves its 

designated lane.
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6.8.2.2 DLX Acceleration with VDC Control
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Figure 6.23 D L X  acceleration verformance o f hybrid Pacifica w ith  VD C  @ 90 KPH; fi=0.2L/0.6R

A lthough the stock ICE continues to  provide its  traction torque w hen the th ro ttle  in p u t is 

commanded, the electric m otor torque ou tpu t is contro lled as shown in  the Figure 6.23. As a 

result, the vehicle is contro lled to respond better to the d rive r's  in p u t (the latera l acceleration 

values are close to  each other). Therefore, the d rive r provides a m uch less steering wheel angle 

am ount and the latera l path deviation is m in im ized a llow ing  the vehicle to complete its 

manoeuvre successfully.

T M e 6 J6 ^D C £ e r^ rm a n cg co ^a rism Jn D L X a cce le ra tio n _

Steer Input 
Magnitude 

(°)

Max. Lat. Deviation
Final

Vehicle Vehicle Path
Magnitude (m) Speed

(m/s)
Maintained?

No VDC -380 to 110 5 30 N o
VDC -100 to 80 0.5 26 Yes
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6.9 Discussion of Results

The results have found that VDC effective ly controls regenerative braking and drive  

torque assist function  to reduce the d rive r steering in p u t fo r safety. As w e ll, it  preserves the 

lateral traction forces o f fro n t tw o wheels, hence m ainta in ing the vehicle la teral s tab ility . This 

fu rthe r allow s the vehicle to fo llo w  its target path m uch better than the vehicle w ith o u t VDC 

control.

W hile  the acceleration performance is suffered w ith  the in tervention o f VDC contro l, the 

d rive r steer e ffo rt is reduced and the vehicle fo llow s the d rive r's  intended path safely. This 

results in  the safe h igh  w ay d riv ing . It is also noted that the deceleration perform ance is reduced 

in  general, resu lting  in  a longer braking tim e/distance. However, th is is a subjective safety 

criterion. A n  unstable vehicle leaving its designated lane to  stop sooner and a stable vehicle 

m ainta in ing steer-ab ility to stop later have a d iffe ren t safety outcome depending on the situation. 

For example, i f  the vehicle is about to co llide w ith  a moose on the ice covered Trans-Canada 

h ighw ay in  M anitoba, the shorter braking distance is preferred. I f  the vehicle is trave ling  on 

H ighw ay 101 in  the ra iny coast (c liff) o f B ritish  Colum bia, the steer-ab ility around the bend is 

preferred. Append ix E shows fu rthe r sim ulation results w ith  a good VDC estim ation 

perform ance due to a h igh  fric tio n  road surface condition.
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CHAPTER 7

C o n c l u s io n s  &  R e c o m m e n d a t io n s

The unique post-transaxle electric m otor im plem entation o f the hyb rid  system presented 

a design challenge tha t could affect vehicle s tab ility  fo r the prototype vehicle. This prom pted 

investigating the effects o f the hyb rid  d rive tra in  on the vehicle dynam ics through sim ulation. A  

representative, non-linear, and m ulti-degree-of-freedom  prototype vehicle m odel was created in  

CarSim vehicle dynam ics sim ulation software and various realistic sim ulation cases were 

investigated fo r the vehicle response w ith  the effects o f controlled and uncontro lled regenerative 

braking and m otor torque acceleration. Based on the results, a vehicle dynam ics contro ller using 

m otion sensors and a linear estim ator (bicycle m odel) was developed to  m onitor and m aintain 

s tab ility  o f the prototype vehicle. The co-sim ulation m ethod was conducted in  the 

CarSim/ Simulink environm ent to ve rify  the contro ller performance. The va lidated Vehicle 

Dynamics C ontro lle r was then im plem ented using a m icro-contro ller w h ich is designed and 

program m ed to  w o rk  w ith  the actual m otion sensors w hich w ill be integrated w ith  the data 

acquisition system o f the prototype hyb rid  Pacifica.

Brake-by-w ire and th ro ttle -by-w ire  systems are discussed in  order to demonstrate that 

the braking or th ro ttle  actuation command m odeled in  the co-sim ulation is an achievable and 

realistic approach; therefore, va lida ting  the developed VDC is designed fo r actual 

im plem entation on the prototype vehicle.
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The Vehicle Dynamics C ontro ller developed in  th is study is found to be an effective 

safety system w hich:

•  aids the d rive r in  steering e ffo rt (both in  m agnitude and correction frequency) to 

reduce the chance of causing vehicle in s ta b ility  induced by the excessive steer 

inpu t.

•  allow s the optim al traction at d riven wheels and therefore sustaining steer-ability 

o f the vehicle

•  prevents vehicle in s ta b ility  from  occurring by con tro lling  b ra ke /d rive  torque 

ou tpu t o f the electric m otor in  situations where the vehicle in s ta b ility  is 

incip ient.

As w ith  the ABS system, one drawback o f the VDC system is the extended braking 

distance on slippery road conditions in  exchange fo r steer-ability. However, the drawback 

negates itse lf because in  "w heel lock-up" situations, the system reverts to the stock ABS system 

w hich is proved to be an effective and robust safety feature in  m odern b raking technology.

The linear bicycle m odel used in  Vehicle Dynamics C ontro lle r is found to  be effective fo r 

the robust contro lle r performance. Furtherm ore, the sim ple steady-state calculation o f state 

variables, nam ely ay nomina i and p  , w ith o u t using tim e-integration, w h ich w ou ld  be required fo r 

the non-linear observer design, allows faster calculation tim e fo r the chosen m icro-controller.

I t  is also found that the linear bicycle m odel is lim ite d  in  accurately calculating the 

contro lled state variables. To rem edy the problem , a non-linear observer can be im plem ented to 

increase the accuracy o f the result. The non-linear observer w ith  its  closed-loop feedback control 

w ill produce better estim ation results to the non-linear vehicle response. However, fo r slippery 

road conditions, the results w ill s till be inaccurate as the road coefficient o f fric tio n  calculation 

cannot be perform ed easily nor accurately. One possible w ay to address the issue is using 

in frared sensors to determ ine the road surface condition bu t i t  s till does no t y ie ld  reliable result
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to determ ine an accurate road surface condition. For example, a pudd le  o f w ater is hard to 

d istingu ish from  ice and vice versa fo r the in frared sensor. Such a system is very costly to 

im plem ent fo r production  vehicles.

The bicycle m odel can also be replaced w ith  a tw o-track m odel w h ich adds ro ll, p itch, 

bounce, and fo rw ard  speed as a variable. The estim ation result w ill be im proved w ith  a better 

accuracy due to a realistic w eight transfer based on m otion on fou r wheels. As w e ll, inclusion o f 

Pacejka non-linear tire  m odel in  the contro ller m odel design w ill generate m ore realistic tire  

forces. C om bining the tw o w ill y ie ld  more accurate lateral and long itud ina l tire  forces that w ill 

calculate more rea listic state variable values closer to the actual vehicle response. However, this 

is an idealized contro lle r design w hich requires an extensive com puting power.

Actua l track /road  testing remains to be done fo r the VDC perform ance va lida tion  on 

con tro lling  the actual hyb rid  system function. I t  is expected that an ite ra tive  testing procedure 

w ill be required to ve rify  and tune the developed VDC as the bicycle m odel parameters used are 

sim ulated estimates o f the prototype vehicle. The same applies fo r the va lida tion  o f the CarSim 

sim ulation results as the sim ulation m odel was developed using estim ated values.
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Two Stage Braking System Functional Block Diagram

Driver Input: 
Brake Pedal Angle

(T brake)

Hydraulic Brake 
System: 

Actuated when 
pedal travel is in 
Stage II region

»M/C Pressure-

PIC 18F458- Regenerative Braking 
Controller:

1) Calculate Tro?iJp from pedal angle
2) Process TRegcr command 

(Hydraulic is independent of this system, 
additional braking of hydraulics will only be 

actuated by driver's foot when regen braking 
cannot provide sufficient deceleration)

Pacifica DAQ

Hybrid Master 
Controller:

1) Process all DAQ 
data

regen

Hydraulic braking torque delivered independent of the Hybrid Sys'

! Braking at
Wheel

Motor
Controller

Legend
TVake- Braking Torque Command by Driver
T*regen" Regenerative Braking Torque Command by Controller

Figure B .l "Dual-Stave" brake-bv-wire system functional diagram
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Brake-Bv-W ire Control Logic Flowchart
Ed Oh, 12/14/04, Rev.2.0

(  S ta r t  
u  Ig n it io n  S t a r t - u p )

S y s t e m  c h e c k  &  
c a lib ra t io n  t o r  

s e n s o r s  A N D  A B S  

c o n t ro lle r  A N D  
M o to r  c o n t ro lle r

~ ©
D is p la y  E r r o r  

M e s s a g e  &  
D is c o n n e c t  re g e n  

b r a k in g 2

IF  T ru e  

1
P r o c e e d  to  s u b 

r o u t in e  B

jr F in is h  \  

I  ( Ig n it io n  T u r n - o f f ) y

C D

©
IN P U T :

Vappsti Vbpps: 
( D u a l  r e a d in g  

o f  8 P P )

J D
IF True THEN IF  F a ls e  T H E N -

IN P U T :

Hybrid w ntre l

C a lc u la te  b r a k e
_ ^ ' ^ /c l ta g e v' ‘v ^ ^ r S C o n tr o l  A C  M o to r

p e d a l  p o s it io n w f o r  r e g e n .  b ra k in g

C a lc u la t e  b r a k e  t o r q u e  
d e m a n d  p e r  p e d a l  

p o s it io n *
( L o o k  u p  t a b le )

CED

O U P U T :
D e s ir e d

b ra k in g  to r q u e
s e n t  to  H y b r id

C o n tro l

CED
L E G E N D  &  N O T E S  
A B S -  A n ti L o c k  B ra k in g  S y s t e m  

B P P S -  B r a k e  P e d a l  P o s it io n  S e n s o r  
B P P -  B r a k e  P e d a l  P o s it io n
1 -  M e c h a n ic a l  B r a k e s  still fu lly  fu n c t io n a l to  o p e r a te  th e  v e h ic le
2 -  M e c h a n ic a l  B r a k e s  still in o p e r a t io n  ( S t a g e  II )
3 -  A s s u m e s  t h e  a m o u n t  o f  r e g e n  b r a k e  t o r q u e  c a n  b e  m o d u la t e d  b u t  it  a ls o  n e e d s  t o  b e  
d e t e r m in e d  w h a t  th e  s y s te m  lim it  is  @  v a r io u s  v e h ic le  s p e e d s

Page 1

Fisure B.2 "Dual-Stave" brake-bv-wire control logic flow chart
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Formula SAE 
Univ. of Windsor 
Ontario, Canada 
8-919-696

Camber
-0.976

C:\Pfooram Files\MstcheuVQeometry\Pacitica\050f27-pacrfica front macpfierson strut-good with camber.GEN

Steer*
- 0.006

SVSA
1817.350
202.254

Ins.Cen.
1464.549
264.910

ARBrci tic> 
-0.0 00

Ride
0.000

Roll
0.000

Steer
0.000

Roll Cen 
-0.000 
154.158

ARBratio
0.000

Ins.Cen
1464.549
264.910

Camber
-0.976

Steer*
0.000

Inc Sprint
-o.oot0 .0(

Scrub
-0.000

NetScrub
-0.000 Twist

0.000

SVSA
1817.350
202.254

Figure C.2 Racing by the Numbers software used for Pacifica susvension kinematics analysis
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A p p e n d ix

D
V e h ic l e  D y n a m ic s  C o n t r o l l e r  
Im p l e m e n t a t io n  u s i n g  PIC18F458 
M ic r o -c o n t r o l l e r
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D .l Physical Architecture

The Simulink VDC design obtained in  Chapter 5 is im plem ented to  a m icroprocessor 

using M icrochip 's PIC18F458. The VDC transfer functions and the design architecture developed 

in  th is study are program m ed in  'Assem bly' language and it  is im plem ented15 on the VDC PIC 

m icrocontro ller w h ich  is an in tegral part o f the hyb rid  system contro lle r on the prototype vehicle. 

The fo llo w in g  figu re  describes the physical architecture o f the VDC PIC contro ller. I t  shows the 

interaction among the m otion sensors, VDC PIC, and hyb rid  system contro lle r PIC.

C
Vehicle Dynamic s Controller Physical Architecture- Phnss 1. Stage 1 

>    <

31/05/2005

c

DAQ: late ra l ci f* 
Yaw rate sansor

X I

Vetiicte
Dynamics
Contro'ter

I Components Ps Controls TS
VM n in n  I ly nW iC g  < :iCnTr?=iHi.i

VD Controller- Control
PhyaeaUAfechitec ti

Accelerator Pedal

AC Induction 
Motor

Front
Gear
box

Y_V

\r
Transmission
/Differential

Internal
Combustion

Engine

Throttle
Actuator

Throttle
PIC

3
Hybrid
Electric
Vehicle

Controller

| Control W ire |—

Mechanics'
Functional

Link
3/5

Figure D . l Physical architecture o f VD C  PIC on hybrid Pacifica

15 Dr. M. Marei and M. Wei at the University of Waterloo have co-developed the hybrid system controller and VDC 
PIC Assembly programming and implementation are executed by the researchers.
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D.2 System Architecture

VDC PIC 1SF458 System Arch itecture- Ed Oh

CAN Bus Network

Steering
Wheel
Sensor

Wheel
Speed

Sensors

Lateral
Accl'n
Sensor

Yawrate
Sensor

Brake PIC Throttle
PIC

I \ 1

Hybrid 
Controller PIC Check

f 0 from VDC.
provide 

conditioned" T 
delivery.

If 1 from VDC. 
provide available 

Tdelivery.

VDC PIC

FRONT
WHEELS

Figure D . l  VDC system architecture
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Figure D.2 shows the system architecture o f the VDC PIC and its  in teraction w ith  m otion 

sensor signals and the hyb rid  system contro ller PIC. D rive r's  speed inpu t, e ither brake or 

th ro ttle , is processed d irectly  by the hyb rid  system contro ller and the request is processed based 

on the SOC level o f the u ltracapcitor pack. A t the same tim e, the VDC PIC calculates the vehicle 

dynam ics state o f the vehicle as described in  the section 5.2. Its ou tpu t signal is given as 0 or 1 

d ig ita l signal in  w hich 0 translates to 'suspend' and 1 to 'd e live r' to the torque de live ry command 

o f the hyb rid  system contro ller PIC. As a result, th is controls either the regenerative braking or 

d rive  assist torque from  the electric m otor in  order to  m ainta in the vehicle s ta b ility  in  d riv ing .
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D.3 Motion Sensors

For VDC operation, the fo llow ing  m otion sensors are used. These sensors are planned to 

be im plem ented w ith  the vehicle data acquisition system.

Table D . l List o f motion sensors used for VD C  function

Item Sensor Description Quantity Analog/Digital
1 Steering Wheel Angle Sensor 1 A
2 Lateral Acceleration Sensor 1 A
3 Yaw Rate Sensor 1 A
4 Wheel Speed Sensor 4 D

U sing the sensor technical specification, attached at the end o f th is appendix, each o f the 

sensor signal in p u t voltage is designed to be converted as values lis ted in  Table D.2. The 

converted signal data are then used as in p u t values in  the VDC PIC calculation.

X M ^ ^ 2 J ^ u ts m s ^ s i^ n d c o m m io n d M g

Input Signal Variable
Name

Sensor Range 
[V] Units Range

Wheel speed 1 ul 0 to 5 m /s 0 to ©max/0.353
Wheel speed 2 u2 0 to 5 m /s 0 to ©max/0.353
Wheel speed 3 u3 0 to 5 m /s 0 to ©max/0.353
Wheel speed 4 u4 0 to 5 m /s 0 to ©max/0.353
Steering Angle steer 0 to 1.87 0 -32.16 to +32.16
Lateral Acceleration Aym 0.65 to 4.35 m /s2 -17.658 to 17.658
Measured Yaw Rate yawm 0.65 to 4.35 ° /s -100 to 100
ABS Signal ABS 0,5 unitless 0,1

D.3.1 Wheel Speed Sensor Technical Specification

The technical specification o f the wheel speed sensor used in  Mark 25 ABS System on 

Pacifica was obtained from  C O NTIN EN TAL TEVES Corporation. However, due to  the 

con fiden tia lity  agreement, the specification data is not published.
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D.3.2 Steering Wheel Angle Sensor Technical Specification 
Miniature MP series
Descrip tion
AMETEK Rayeico'" Miniature Position 
Transducer has been designed to provide 
maximum user flexibility. This unit can be 
mounted in confined areas and by simply 
loosening a single bolt, direct the cable in 
any direction by turning the transducer 
body 360 degrees and the mounting 
swivel 160 degrees. Slotted cable entry 
allows the cable to be out of alignment by 
as much as ±10 degrees in one axis .

Basic Specifications

Performance
Ranges: 0-2'thtcu#i0-20’
UnsaiSyfBFSy.' ±0.1% FS

±0.25% FS, 0-2", 0-5’ and 0-10' 
Resolution Infinite (HybrdFctentioneter;
fndwtal Caitetton Sheet HtMcfed

Fea tu res
z Standard Accuracy ±0 .1%  FS*
z Ranges to 20 inches 
z ‘A ' Circuit O utput Equals Input 
z Extra Long-Life Replaceable Cable 
z P rec,s»n Hybrid or W irewound 

Potentiometer 
z All Anod-zed A lum inum and 

Stainless Steel Construction

'-a:5Kfs.'5-2' wand MO*
Higfi A c z u -a c y  -  j  1c:L FS Option Available

Electrical
Excitation: AC or DC ip  to 25 volts

lip.TJsi.Kda'ter: 
Oi.ipviT .Vi'pecfa.-rce:
En v iio nm e n ta t

hljoiidcy
VSolia'r

'A* Circuit 503ohtts 
A ’ Circuit C-K O cta

0-2WF
S5%RH@7S*F
5Cgfcr10nis
20g20Hz-2kHz

A pplications
• Automotive Testing
• Robotics Control
• Aircraft Stress Testin
• Injection Mold 

Equipment Control
• Aircraft Door Sensiri

Physical
CCKistnJction

EieciricaiCaWeType: 

RsptaceaWe tag-life cable

Anodized AMnnum and 
Stainless Steel 
8', 3 conducKr shielded 
tefon jacketed

Specification  Table

O rd e r in g  In fo rm a tio n  
MP - 20 A

h ild e l Circuit
Range

Circuit Diagram
mVVVViiKh Tension

Model TV cir 02
UP-2 500 24
MP-6 200 24
MP-tO too 24 i>\tvlc)

MP-15 66 24 (fifieM )

MP-20 50 24

iCvtv-n)
f.VhilCl COM

4 -2 0  m A  &  " B ” C irc u it E x te rn a l 
C o n d itio n e r  E n c lo s u re

T ~Cl13*

“ r1 iy _L

M o d e l D ia g ra m

ifleai-Ca?* A«Bvert

3. sC’

Sp*cjfrcat)cn$ subject to change without notice

Durham Instruments, 1400 Bayly St. Unit 23, Pickering, Ontario, L1W 3R2 

888-DISENSOR, VAVw.disensors.com, sales@disensors.com
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D.3.3 Yawrate & Lateral Acceleration Sensor Technical 
Specification

K1 Original Equipment Information________ 0  BOSCH

D R S - i V0RS-M M 1,0R  

Figuro 3 Yaw ratc sensors DRS-MM1 .OR (analog) 
and DRS-M M 1.1 (d ig ita l in terface).

3 Features and Applications

The currently available versions of the DRS MM1 
are shown in figure 3. It can be supplied either 
with an analog (DRS-MM1.0R) or digital (DRS- 
MM1.1) interface. For both sensors the output 
signals comprise simultaneously the yaw rate 
and the linear acceleration normal to the driving 
direction. The yaw rate output signal is 
superimposed by an internally generated 
reference voltage of 2,5V. Check- and safety- 
functions of the complete sensor unit are realized 
by an externally triggered, alternating signal. For 
each sensor at the end of line, the offset is 
trimmed in temperature and the sensitivity is 
controlled over the specified temperature range. 
The DRS-MM1.0R provides an output voltage 
between 0,5 and 4,5V {see figure 4). An extra 
connector pin provides the reference voltage.
For the DRS-MM1.1, the yaw rate signal is 
calculated internally and transmitted 
simultaneously with the acceleration signal using 
a CAN protocol.

upper

reference voltage

lower limit
0.65V

*100 Yaw rale in *n - 100

F ig u ro  4 Typical c h a r a c te r is t ic  c u r v o o f  th e  y a w  
ratosensors D R S M M I.O R .

The DRS-MM family is a rugged and compact 
sensor offering viability. Its 12 V battery 
compatibility and additional safety functions 
make it the preferred choice for automotive 
endurance applications. Further application 
fields for the yaw rate sensor DRS-MM1 are 
available e.g. in navigation systems.

4 Specifications DRS-MM1

Yaw rate sensor 
(typical values)^

Measuring range ±  t00 Vs
Resolution ± 0 2 V s -
Scale factor .18 mV/Vs
Scale factor error S5.%
Offset error £ 2  Vs
Non-lineanty maximal

. deviation
.£ 1 % FSO

Ready time £  1 0 s
Electrical noise 
(@ 100 Hz bandwidth^ {sf ? vr . : ■ :

Linear acceleratloi 
(typical valui

i  sensor

Measuring range
Scalefactor 41000 mV/g
Scale factor error !/ s 5 *
Offset error f 1 . ffi.0.06 g
Readv time *fi;<Mrsv
Electrical noise 
(@ 100 Hz band width)

iS'SrriVjTpj

Non-hnearitysiijiaximal
.'.deviation

£•3 %  FSO

General data
Dynamic response 4>-30 Hz
Operating temperature range® -40 .+85 "C
Supply vol’age range ;e .2 ... 16 V. 

Isl 2-'V. nominal
Current consumption at 12V 47QmA analog, 

-140 mA CAN

Further Information

\forsloir1,09, 9 11.1999

Technical Sales Product Team Serwors
Tel +(49)-711/811-34303 
Fax +(49)-711/811 -24873  
E-mail K1 .sensors@bosch.com r '!■,

' .0  ffofwflflcwe* GmbH mswves aff r<gr>t& wan Art We events? Psvpeoy rights. Ws reserve aft rigMsofdispo&Bl wclr as GOfytngmd passing on to third parito&.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:sensors@bosch.com


A p p e n d ix  D . V D C  Im p l e m e n t a t io n

D.4 VDC PIC 18F458 Controller

The PIC18F458 m icrocontro ller is designed to  w o rk  w ith  the contro lle r area netw ork 

(C AN ) bus electronic netw ork o f m any autom otive applications. Since the SIEMENS m otor 

contro ller uses the C A N  bus netw ork, it  was necessary to use such contro ller. PIC18F458 has the 

operating frequency o f DC- 40M Hz w ith  32K Bytes o f in terna l program  m em ory. I t  also features 

40 p in  connections to handle signal com munications. For VDC, 8 pins are used fo r m otion and 

ABS sensor signals and 1 p in  is used fo r com m unicating w ith  the h yb rid  system contro lle r PIC.

The VDC PIC contro ller perform s three m ain operations. The firs t stage o f operation is 

to  process the m otion sensor data (Table D.2) from  the vehicle data acquisition system. In  the 

second stage, the VDC PIC perform s the calculations listed in  the fo llo w in g  Table D.3. The 

equations lis ted are the same equations used in  the Simulink model.

Table D .3 VDC PIC calculations for vehicle dynamics states

Calculations Variable
Name Equation Units

Linear Speed ua ua= 0.25 x (ul+u2+u3+u4) m /s
Slip Ratio 1 slipl If ua = 0, slipl=0 

Else, slipl= | ul-ua | / ua
unitless

Slip Ratio 2

CM.&C/1 If ua = 0, slip2=0 
Else, slip2= | u2-ua | / ua

unitless

Slip Ratio 3 slip3 If ua = 0, slip3=0 
Else, slip3= | u3-ua | /  ua

unitless

Slip Ratio 4 slip4 If ua = 0, slip4=0 
Else, slip4= | u4-ua | / ua

unitless

Steady State Yaw Rate yawss If ua = 0, yawss=0
Else, yawss= (Aym/ua) x (180/n)

° /s

Beta_dot betadot betadot= yawss -  yawm ° /s
Beta beta If ua=0, beta=0

Else,
beta=
(Cf*steer-[(a*Cf-b*Cr)*r/u]-m*u*(Beta dot- 
r) /  (Cf+Cr)

O

A y _ c o m m a n d e d
(Ay_nominal)

A y e = (u2/[ (a + b )- (m (a C f-b C r) /(a + b )C fC r)] )s te e r m / s 2

Ay_commanded /  
Ay_measured

AyRatio =( | Ay_commanded | + ! ) / ( | Aym | +1) unitless
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In  the last stage o f the VDC PIC operation, the fin a l safety check is perform ed in  deciding 

the de livery o f electric m otor torque to the driven  wheels. The d ig ita l 0 (suspend) or 1 (deliver) 

signal is the ou tpu t o f the fo llow ing  'safety check' calculations.

Table D A  VD C  PIC safety check calculations for electric motor torque delivery decision 
_______________________for the hybrid system controller______________________

Safety Checks Variable
Name Units Condition

Safe
for Condition for 

Unsafe
Slip Ratio 1 Threshold Check slipl unitless 5 0.18 >0.18
Slip Ratio 2 Threshold Check slip2 unitless 5 0.18 >0.18
Slip Ratio 3 Threshold Check slip3 unitless 5 0.18 >0.18
Slip Ratio 4 Threshold Check slip4 unitless 5 0.18 >0.18
Lateral Acceleration Threshold 
Check

Ay m /s2 5 7.00 >7.00

Lateral
Acceleration_commanded/Lateral
Acceleration_measured

Ay Ratio unitless 52 >2

Beta Steady State beta o 54 >4
ABS Trigger Signal ABS signal unitless OFF ON

The fin a l com m anding signal o f VDC PIC is relayed to the hyb rid  system contro ller PIC

fo r the fin a l de live ry o f d rive r's  torque request.
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D.4.1 VDC PIC Assembly Code
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Filename: Vehicle Dynamics *
Date: August 2, 2005 *
File Version: v5 *

Oct 13,2005 - implement input from A/D module *
Dec 12,2005 - scale analog input by 4 (10 bits down to 8bits) *
Jan 15,2006 - new functions and inputs

*

Jan 20,2006 - new functions again
*

*

Author: Maria Wei, Mostafa Marei *
Company: University of Waterloo *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Files required: P18F458.INC, MATH18.INC
*

FP24.A18, VD.A18, Compare.A18, Safety.A18
*

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

title "PIC18F458 Vehicle Dynamics"
LIST P=18F458 ;directive to define processor
#include <P18F458 . INC> /processor specific variable definitions
#include <MATH18.INC> ;AN00575 floating point math routines

• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
t

/Configuration bits

 CONFIG _C0NFIG1H, _0SCS_0FF_1H & _HSPLL_0SC_1H
 CONFIG _CONFIG2L, _BOR_OFF_2L & _PWRT_0FF_2L
 CONFIG _CONFIG2H, _WDT_OFF_2H
 CONFIG _C0NFIG4L, _STVR_0FF_4L
 CONFIG _CONFIG5L, _CPO_OFF_5L & _CP1_0FF_5L & _CP2_OFF_5L & _CP3_OFF_5L
 CONFIG _CONFIG5H, _CPB_OFF_5H & _CPD_OFF_5H
 CONFIG _CONFIG6L, _WRTO_OFF_6L & _WRT1_0FF_6L & _WRT2_OFF_6L &

_WRT3_OFF_6L
 CONFIG _CONFIG6H, _WRTB_OFF_6H & _WRTC_OFF_6H & _WRTD_OFF_6H
 CONFIG _CONFIG7L, _EBTRO_OFF_7L & _EBTR1_0FF_7L & _EBTR2_OFF_7L &

_EBTR3_OFF_7L
 CONFIG _C0NFIG7H, _EBTRB_OFF_7H

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

/Variable definitions

/ CBLOCK 0x000 is for math routines 
CBLOCK 0x100 
COUT
STATUS_SAVE, W_SAVE / variables for context saving
ulEXP, ulO, ull 
u2EXP, u20, u21 
u3EXP, u3 0, u31 
u 4 e x p , u 4 0 ,  u 4 1

input u 
input u 
input u
i n p u t  u

steerEXP, steerO, steerl/ input steer
AymEXP, AymO, Ayml / input lateral acceleration
yawmEXP, yawmO, yawml / input yaw rate
uaEXP, uaO, ual z calculated reference speed
sliplEXP, sliplO, slipll/ calculated slip 1
slip2EXP, slip20, slip21/ calculated slip 2
slip3EXP, slip30, slip31/ calculated slip 3
slip4EXP, slip40, slip41/ calculated slip 4
yawssEXP, yawssO, yawssl/ calculated yaw rate

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A p p e n d ix  D. V D C  I m p l e m e n t a t io n

AycEXP, AycO, Aycl 
AyrEXP, AyrO, Ayrl 
betaEXP, betaO, betal 
blahEXP, blahO, blahl 
mehEXP, mehO, mehl 
ENDC

calculated lateral acceleration 
lateral acceleration ratio 
calculated beta
variables used for temporary storage 
variables used for temporary storage

#define ADGOBit ADCONO, 2 
#define CARRYBit STATUS, 0 
#define TM2IFBit PIR1, 1 
#define ABS PORTB, 0 
;#define TM2IO PORTD, 0 
subroutine
#define StarBit PORTD, 7

testlitH equ 0x01 
testlitL equ OxBl

Testing to check period of interrupt

for testing purposes when call GetlnTest

f t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
EEPROM data

Reset vector
ORG 0x0 00 0

goto Main ;go to start of main code

High priority interrupt vector 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Low priority interrupt vector and routine 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
High priority interrupt routine 

ORG 0x0008

*** high priority interrupt code goes here ***

; Push upon entering interrupt
movwf W_SAVE 
swapf STATUS, F 
swapf STATUS, W 
movwf STATUS SAVE

bsf TM2IO 
subroutine

save w
; swap STATUS

save STATUS

; Testing to check period of interrupt

call Getln 
; call GetlnTest

call VDFun 
call SafetyFun

bcf TM2IO 
s u b r o u t i n e

Get Inputs 
Get Inputs Testing 
Call Transfer Functions 
Call Safety Checks

Testing to check period of interrupt

; Pop upon exiting interrupt 
swapf STATUS_SAVE, F 
swapf STATUS_SAVE, w 
movwf STATUS 
swapf W_SAVE, F 
swapf W_SAVE, W

restore STATUS

restore W

bcf TM2IFBit ; clear T2 Int Flag
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retfie
. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
/

;Start of main program 

Main:

clrf INTCON ; disable interrupts 
clrf PIRl ; clear flags

; A/D Initialization
movlw b'10000000' ; Right justify, C/R = 8/0
movwf ADCONI;

I/O Initialization 
Clrf PORTA 
clrf LATA 
movlw OxFF 
movwf TRISA

(analog)

Clear PORTA

Set PORTA to be input 
PORTA(0): ul input (analog)

PORTA(1): u2 input (analog)
PORTA(2): u3 input (analog)
PORTA(3): u4 input (analog)
PORTA(4): steer input (analog)
P O R T A ( 5 ) : lateral acceleration input

P O R T A (6): yaw rate input (analog)

clrf PORTB 
clrf LATB 
movlw OxFF 
movwf TRISB

Clear PORTB

Set PORTB to be input
PORTB(0): ABS input (digital)

clrf PORTD 
clrf LATD 
movlw 0x00 
movwf TRISD

Clear PORTD

Set PORTD to be output 
PORTD(0): timer2 interrupt output 

; PORTD(7): Safety output

; T2 initialization for period generations
movlw 0x50 ; l/PR2=foc(10MHz)/4/80=31,25kHz
movwf PR2 ; Period of Timer 2
movlw 0x07 ; postscaler = 1, Enable T2, prescale = 16
movwf T2CON ; T2 freq. fsw=31.25kHz/(postscale * prescale) = 1.953125 kHz

Interrupts
movlw 0x02 
movwf PIE1 
clrf PIE2 
c l r f  PIE3 
movlw 0x02 
movwf IPR1 
movlw OxCO 
movwf INTCON;

T2
enable T2 interrupt 
disable all other interrupts 
disable all other interrupts 
T2 is High Priority Interrupt

enable global and peripheral interrupts

self
goto self

#include <FP24.A18> ; floating point math routines
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#include <Compare.A18>; floating point comparison 
#include <Inputs.A18>; obtain analog inputs with offset 
#include <VD.A18> ; transfer function calculations
#include <Safety.A18>; safety calculation

; End of program 
END
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A p p e n d ix

E
A d d i t i o n a l  C o -s im u l a t io n  
R e s u l t s
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The fo llow ing  sim ulation results are obtained from  the same sim ulation cases perform ed 

in  Chapter 6. The difference is the fric tio n  coefficient o f road surface where p = 0.85. The results 

illus tra te  tha t the linear bicycle model produces very good estim ation values fo r the nom inal 

lateral acceleration and body slip  angle of the non-linear CarSim prototype Pacifica model.
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E.l VDC Performance Validation on Regenerative Braking 
System
Double Lane Change Braking Simulation @ 90 KPH; ji=0.85

DLX Braking without VDC Control

Driver Steer Input & Avg. Wheel Steer (6w)Vehicle Forward Speed

—  Oriver Steering Input 
■ • ■ Avg. Wheel Steer Output

Driver Brake Command Lateral Acceleration

Actual Ay 

. . .  Nominal Ay

O  0.2

Body Slip Angle (0)Brake Torque Delivery @ Wheel

. . .  Beta{

Longitudinal Acceleration

Target Path 
■ ■ ■ Actual Path

Time (s) Time (t)

Figure E .l D L X  REGEN brakin? without VDC Control @ 90 K PH; u=0.85

Since the road surface fric tio n  is h igh, the tires are able to generate both braking and 

lateral forces to decelerate the vehicle w h ile  m ainta in ing its  lateral s tab ility . N om inal lateral 

acceleration on ly deviates by little  and the body slip  angle response is very close to  the non-linear 

response o f the hyb rid  Pacifica sim ulation model.
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DLX Braking with VDC Control

Driver Steer Input & Avg. Wheel Steer (8W)Vehicle Forward Speed

Driver Steering Input 
■ Avg. Wheel Steer Output

Driver Brake Command

_  Actual Ay 
. . .  Nomina! Ay

y  0.2

Body Slip Angle (0)Brake Torque Delivery @ Wheel

c= c r :
b  Actual Beta

LateraTwtWOffsetLongitudinal Acceleration

Target Path

T im e (s)T ime (s)

Figure E.2 D L X  REGEN braking w ith  VDC Control @ 90 KP H ; u =0.85

As w ith  the firs t case, the estim ation perform ance o f the linear bicycle m odel is very good 

to  the non-linear response. Due the discrepancy between the nom inal and actual value o f the 

latera l acceleration, regenerative braking torque is contro lled by VDC as shown in  Figure E.2. 

Both vehicles brake at alm ost the same tim e and the lateral path devia tion  is neglig ib le fo r both 

cases.
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E.2 VDC Performance Validation on Integrated Braking 
System (Regenerative Braking & ABS)
Double Lane Change Braking Simulation @ 90 KPH; ji=0.85

DLX Braking without VDC Control

Driver Steer Input & Avg. Wheel Steer (5W)V e h ic le  F o rw a rd  S p e e d

Driver Steering Input 
• • • Avg. Wheel Steer Output

Lateral AccelerationD riv e r  B ra k e  C o m m a n d

Actual Ay 
. . .  Nominal Ay

Body Slip Angle (ft)B ra k e  T o rq u e  D e liv e ry  @ W h e e l

§ -1000

s  -2000

Lateral Path OffsetL o n g itu d in a l A c c e le ra tio n

Target Path 
Actual Path

Tima (a)Time (s)

Figure E.3 D L X  brakins (REGEN+ABS) w ithout VD C  Control @ 90 K PH: fi=0.85

W ith  the add itiona l hydrau lic braking torque the vehicle stops m uch quicker than the 

case w ith  on ly regenerative braking. The bicycle m odel estimates the prototype response very 

closely.
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DLX Braking with VDC Control

Driver Steer Input & Avg. Wheel Steer (8W)Vehicle Forward Speed

Driver Steering Input 
• • •  A\g. Wheel Steer Output

•  10

Lateral AccelerationDriver Brake Command

. . .  Nominal A

Body Slip Angle (fl)Brake Torque Delivery @ Wheel

o -1500 —  R2

g  -2000

Lateral Path OffsetLongitudinal Acceleration

Target Path

T ima (a)Time (s)

Figure E.4 D L X  braking (REGEN+ABS) w ith  VD C  Control @ 90 KPH; u=0.85

N o VDC contro l is provided in  this operation since the vehicle response is stable fo r the 

bicycle m odel estim ation w hich is close to the actual prototype vehicle response.
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