
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

1-1-2006 

Investigating the structure of semantic memory. Investigating the structure of semantic memory. 

Kevin Durda 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Durda, Kevin, "Investigating the structure of semantic memory." (2006). Electronic Theses and 
Dissertations. 6950. 
https://scholar.uwindsor.ca/etd/6950 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6950&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/6950?utm_source=scholar.uwindsor.ca%2Fetd%2F6950&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Investigating  th e  Structure o f Sem antic M em ory

by

Kevin Durda

A Thesis
Submitted to the Faculty of Graduate Studies and Research 

through the Department of Mathematics and Statistics 
in Partial Fulfillment of the requirements for 

the Degree of Master of Science at the 
University of Windsor

Windsor, Ontario, Canada 
2006

©  2006 Kevin Durda

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Library and 
Archives Canada

Bibliotheque et 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 978-0-494-34946-5 
Our file Notre reference 
ISBN: 978-0-494-34946-5

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A bstract
In this paper, a method to extract semantic associations between words from a 

large corpus of text is presented. These associations are then used to construct groups 

of associated words, called semantic neighbourhoods, for each word. In addition, a 

way to use these semantic neighbourhoods, together with a graph-theoretic clustering 

algorithm, to compute a measure of ambiguity for words with more than one meaning 

is described.
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1 In troduction

In a lexical decision (LD) experiment a string of characters is displayed on a computer 

screen and the subject is asked to determine as quickly as possible, and without sacri­

ficing accuracy, whether the text is an English word. The amount of time that elapses 

between the appearance of the string and the subject’s response is called the reaction 

time (RT) and is recorded, together with the accuracy of the response. Many charac­

teristics of a word have been found to affect a subject’s RT in a LD task, including the 

orthographic (i.e., visual; Coltheart, Davelaar, Jonasson, & Besner, 1977; Andrews, 

1992; Grainger k  Jacobs, 1996; Peereman k  Content, 1995; Sears, Hino, k  Lupker, 

1995) and phonological (i.e., aural; Westbury, Buchanan, k  Brown, 2002; McClelland 

k  Elman, 1986; Marslen-Wilson, 1987; Luce, Pisoni, k  Goldinger, 1990; Peereman 

k  Content, 1997) properties of the word, the word’s written frequency (Kucera k  

Francis, 1967), as well as attributes related to the meaning of the word (Meyer, 

Schvandeveldt, k  Ruddy, 1975; Buchanan, Westbury, k  Burgess, 2001; Azuma k  

Van Orden, 1997; Hino k  Lupker, 1996; J. M. Rodd, 2004). Cognitive psycholo­

gists have developed several models that attempt to explain how we perform word 

recognition. (Coltheart, Rastle, Perry, k  Zeigler, 2001; Ratcliff, Gomez, k  McKoo, 

2004; Seidenberg k  McClelland, 1989; McClelland k  Rumelhart, 1981; Rumelhart k  

McClelland, 1982).

A model of word recognition consists of a specification of how knowledge about 

words is stored in the mind and a description of the processes that are used to 

retrieve, manipulate, and decide upon the identity of the representation of the word. 

The validity of these models can be evaluated by comparing the performance of a 

computer implementation of the model to human performance across a battery of 

cognitive tasks. If the model cannot perform with speed and accuracy similar to that 

seen in humans, we may conclude either that this theory, in its current form, is not a 

satisfactory explanation of how humans recognize words, or that the computational 

model has been poorly implemented.

Unfortunately, computer implementations of these models have been incomplete.

1
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While each of these models describe a semantic processing unit, many implementa­

tions have failed to include this unit. One possible reason for this is the lack of a 

reliable computer-based representation of the semantic content of a word. Several 

measures have been developed to quantify the visual and aural qualities of a word 

by comparing orthographic and phonological similarity between words (see Buchanan 

k, Westbury, 2000, for a comprehensive listing). These are finite domains that are 

consistent between individuals. One cannot argue against the facts that the word cat 

is spelled C-A-T, that the spelling of bat is different from cat by only a single letter 

in the first position, and that both words are three letters in length. The situation 

is much the same for phonology (although we have all heard that tomato has more 

than one pronunciation). Comparisons between these features of a word are concrete 

and objective.

Judgments of semantic similarity, on the other hand, are subjective and can vary 

greatly from person to person. A baseball player will most likely associate the word bat 

with a wooden stick used to hit a ball, while a spelunker will probably associate this 

word with a flying mammal that hangs upside down in caves. These two individuals 

have very different semantic memories, but we hope that these memories have a 

common underlying structure and were formed by the same means (Buchanan et al., 

2001).

The preceding example uncovers another difficulty in analyzing semantic rela­

tionships; many English words are ambiguous, that is, they have more than one 

meaning. In an analysis of 4,930 words in the Wordsmyth dictionary (Wordsmyth, 

1999) having a word-form frequency greater than ten per million words in the CELEX 

lexical database (Baayer, Piepenbrock, & Van Rijn, 1993), J. M. Rodd, Gaskell, and 

Marslen-Wilson (2004) reported that 7.4% of the words have more than one distinct 

meaning. For example, bank may refer to a financial institution or the land at the 

edge of a river. 84% of these words have more than one variation of the same mean­

ing. Paper, for example, may refer to a material made from pressed wood pulp, or a 

single, standard-sized sheet of this material. These subtle differences in meaning are 

called senses, and 37% of the words analyzed have more than five senses. Thus, a

2
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psychologically relevant representation of semantic content must be able to account 

for multiple meanings and senses of a word.

In this thesis I present a new method for determining semantic associations be­

tween words, and with these associations, vector-based representations of the semantic 

content of each word, and their “semantic neighbourhoods” (SN; a group of words that 

are strongly associated or semantically similar) are created. Using a graph-theoretic 

clustering algorithm, the SNs are separated into several groups that are hypothesized 

to contain only words related to the target by a particular meaning. By examining 

the written frequency of the words in these groups, the probability of the target word 

appearing in each of its available contexts is estimated. These data are then used to 

calculate a measure of the amount of uncertainty inherent in each word’s meaning.

The next chapter contains a brief overview of this new method. Chapter 3 gives a 

more in-depth discussion of lexical ambiguity. Chapter 4 describes the two previously 

developed methods of creating semantic representations that form the foundation of 

the current method, and Chapter 5 describes the graph clustering algorithm used as 

a tool to measure ambiguity. Chapter 6 presents a mathematical framework in which 

relationships between words can be determined and provides a technical description of 

the new algorithm. Results are presented in Chapter 7 and possible future directions 

for this work are discussed in Chapter 8.

2 A  B rief O verview

The following provides a quick outline of a new procedure for extracting semantic 

associations between words by analyzing lexical co-occurrence in a large corpus, how 

a representation of the semantic characteristics of a word can be created based on these 

associations, and how these associations are used, together with a graph clustering 

algorithm, to measure the ambiguity of a word. A mathematically rigorous description 

of this process is given in Chapter 6.

The first goal is to measure the strength of the relationship between every pair 

of words. This strength is called semantic association. Words that are strongly

3
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associated (e.g., umbrella and rain), or semantically similar (e.g., coffee and tea), 

have a higher semantic association than words that are only weakly related (e.g., 

coffee and umbrella). These values are calculated by analyzing the number of times 

a pair of words occur together in written text, referred to as lexical co-occurrence.

The method begins calculating semantic associations by passing a small window 

over each word in the corpus. The word currently under inspection is called the target 

word, or the target. This window contains a user defined number of words preceding 

and following the target. For each word, the number of times that every other word 

appears in each window position, as well as the total number of times the word appears 

in the corpus, is counted. This last number is adjusted to give the written frequency 

per million words of text, called the orthographic frequency of the word. Once this 

step is completed, the lexical co-occurrence counts are adjusted to more accurately 

measure the importance of this co-occurrence. Some words, such as the, have a 

very high orthographic frequency and will occur near every word a disproportionate 

number of times. Because the semantic associations are calculated based on lexical co­

occurrence, they are subject to influence from orthographic frequency. To counteract 

this effect, co-occurrence counts with high frequency words are reduced. The details 

of how this is done are given in Section 6.2. Next, a weight is assigned to each window 

position. Weights are assigned in a manner that allows the algorithm to optimally 

calculate word ambiguity. This task requires the background provided in Chapter 5 

and is described in Section 6.5. In this brief introduction, it is assumed that these 

weights have already been found. The semantic association between two words is the 

weighted sum of the adjusted co-occurrence counts across all window positions. If 

two words never occur together in a window, the semantic association between those 

words is set to zero.

These associations are then used to create a vector representing the semantic char­

acteristics of a word. For a given target word, the semantic association between the 

target and each unique word in the corpus (including the target itself) is calculated. 

These values are then sorted alphabetically according to the word they correspond 

to, and this ordered list is used as the semantic representation of that word.

4
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Finally, the semantic associations are used to measure the ambiguity of each word. 

A graph containing only the words most strongly related to a target is constructed 

and the algorithm described in Section 5.3 is applied to find groups of highly inter­

connected words within this graph. Each group, or cluster, should contain only words 

that are related to the target by a particular meaning. For example, the graph for 

bank should contain one cluster of words related to the financial institution meaning, 

one cluster containing words related to the river bank meaning, as well as other clus­

ters corresponding to the other meanings of bank. Using the orthographic frequencies 

of the words in each cluster, the proportion of occurrences of the target that are 

associated with each meaning is estimated. These values are then used to find the 

information entropy (Shannon, 1948), given by

where n is the number of meanings of the word and pi is the proportion of occurrences 

of the target word that are related to meaning i. The entropy of a word’s meaning 

is an established measure of semantic ambiguity (Twilley, Dixon, Taylor, & Clark,

3 H om ographs and P olysem ou s W ords

As discussed in Chapter 1, many English words have more than one meaning. Some

words (e.g., bank) have multiple distinct meanings, and are referred to as ambiguous.

Another class of ambiguous words have many subtle variations centred around a core

meaning (e.g., paper). These variations in meaning are called senses, and these words

are called polysemous.

Several studies have shown that ambiguity and polysemy affect RT in LD and

word naming1. Early studies suggested that a high level of ambiguity in a word’s

meaning offered an advantage in these tasks (Azuma & Van Orden, 1997; Hino &;

1In a word naming task, a string of letters is presented on the a computer screen and the subject 

is asked to say the word aloud as quickly as possible and without sacrificing accuracy.

n

1994).

5
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Lupker, 1996; Lichacz, Herdman, Lefevre, & Baird, 1999; Pexman &c Lupker, 1999). 

J. Rodd, Gaskell, and Marslen-Wilson (2002) suggested that these studies may have 

confounded ambiguity and polysemy and showed that words with multiple distinct 

meanings (e.g., bank) are recognized slower than non-ambiguous words, while words 

with multiple variations of a single meaning (e.g., paper) are recognized faster. A 

similar result was also found by Klepousniotou (2002).

Twilley et al. (1994) created relative meaning frequency norms for 566 homo­

graphs by providing lists of words to subjects and asking them to write down the first 

word that came to mind. The responses were then grouped into meaning categories 

and the proportion of responses corresponding to each category was calculated as a 

measure of relative meaning frequency. For each word, a measure of ambiguity was 

calculated by using the entropy formula from information theory (Shannon, 1948). 

For a word with n meanings, each with a corresponding proportion pt, i =  1 , . . . ,  n, 

of the responses, the ambiguity measure can be found using

n

= (!)
i ~ l

U is a measure of the degree of randomness inherent in an event. Higher U values 

correspond to more ambiguous words and the maximum value of U increases with the 

number of meanings. For a word with n meanings, the range of U is 0 < U < log2n. 

U — 0 when only one meaning occurs and the maximum value occurs when all 

meanings are equally likely.

Additionally, a balance value, B, was calculated for each word. This used the 

same formula as [/, but included only the two most frequent meanings, with their 

proportions adjusted to total to 1. B  values range from 0 to 1. This is a measure of 

the degree of dominance of the first meaning over the second meaning. A B  value of 

0 indicates that the relative frequency of the second meaning is 0, and a B  value of 1 

indicates that the first and second meanings are perfectly balanced. Any word with 

a B  value greater than 0.95 is considered a balanced homograph, and those with a B  

value between 0.1 and 0.3 are considered to be polarized.

As an example, consider the word ball. As measured by Twilley et al. (1994),

6
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the proportion of responses related to the most frequent meaning, playing sports, is 

0.92, and the proportion of responses related to dancing, the second most frequent 

meaning, is 0.02. Adjusting these proportions to total to 1, the proportion related to 

sports is .979 and the proportion related to dancing is 0.021. Using these values in 

the equation

B  =  - p i  log2pi -  p2 log2p2,

which is simply Equation 1 with n =  2, the balance measure for this word is B  = 

0.147. This indicates that ball is a polarized homograph, or that one meaning (in 

this case the object used in sports) dominates the second most common meaning. 

To further illustrate this idea, consider the word park. The proportion of responses 

related to cars is 0.45, while the proportion of responses related to city parks is

0.42. These values give a balance measure of B  — 0.999. Thus, park is a balanced 

homograph.

Shannon (1948) defines the entropy of a data source as a measure of the amount 

of choice, or uncertainty, involved in the selection of one of n possible outcomes for an 

event, with each outcome having a probability of pi, i =  1 , . . . ,  n. Let H(pi , . . .  ,pn) 

be such a measure. H  must meet the following three requirements:

1. H  should be a continuous function of the pj’s.

2. If all of the outcomes are equally likely, then H  should be an increasing func­

tion of n, since a higher number of equally likely outcomes produces more 

uncertainty.

3. The following identity should hold:

H { j P u P 2 , P z )  =  H{ j p x, P 2 + P ? i )  + { P 2 + P z ) H  (  ^  » 1 ^  ' )  • (2)
\ P 2 P 3 P2 P .1 /

This condition states that if a choice is broken down into two successive choices, 

the value of H  should not change. In Figure 1, the probability tree on the right 

shows an event with three possible outcomes. The tree on the left shows the 

same choice broken down into two consecutive steps. The probability of each

7
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of the three outcomes is the same in both trees. Equation 2 states that the 

entropy should be the same in both of these situations.

0.5

0.5

0.25 0.125
0.5

0.75 0.375

0.5

0.125

0.375

Figure 1: Two decompositions of a three choice decision.

In Appendix 2 of Shannon (1948), it is shown that
n

H { p i , . . .  , P n )  =  - K ^ P i l o g P u  ( 3 )
i ~ l

where K  is a positive constant, is the only H  satisfying these three conditions. The 

value of K  amounts to a choice of the base of the logarithm.

Alternatively, consider a word with n meanings, each of which is equally likely. 

Let Ai be the number of times we encounter meaning i of the word in a total of 

P  occurrences of the word, where P  =  Y^i=i A- The probability of obtaining the 

distribution (A , A > . . . ,  An) is
ft

P ~  T
where

P\
f t  = ------------------— -------------------

A A A . - A !
and T  =  np . The entropy of this distribution is obtained from H  = log ft (see 

Khinchin, 1957, for a derivation) and is given by Equation 3.

This function possesses several properties that make it particularly well suited as 

a measure of ambiguity:

1. H  =  0 if and only if there exists i' such that pa = 1 and Pi — 0, for all 

i — 1, . . . ,  n, i ^  i!. Put into words, this property becomes obvious: there is no 

uncertainty only when we are certain what the outcome will be.

8
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2. H  attains its maximal value of log n only when all outcomes are equally likely.

3. If the pi s are adjusted to be more nearly equal, the value of H  increases.

Together, properties 2 and 3 listed above describe the following important property 

of H: the outcome of an event is less certain if all outcomes are nearly equiprobable 

than if a single outcome is much more likely than all others.

One goal of the present work is to extract a measure of word ambiguity. Using the 

graph-theoretic clustering technique discussed in Section 5.3, the procedure used by 

Twilley et al. (1994) will be automated and used to obtain an ambiguity and balance 

measure for each unique word in a corpus.

4 M odels o f Sem antic M em ory

Semantic memory refers to our knowledge of words, their meanings, and their re­

lationships to each other and to the physical world. It may be thought of as a 

dictionary, encyclopedia, and thesaurus, all rolled into one (Tulving, 1972). A model 

of semantic memory refers to a description of how the semantic features of a word are 

represented, how these representations can be combined into larger units of meaning 

(such as phrases and sentences), what deductions can be made about a word based on 

the context in which it appears, and how word meaning is related to the perceptual 

systems that provide access to the world (McNamara h  Holbrook, 2003).

In this chapter, two broad classifications of semantic memory models are intro­

duced and two techniques for constructing semantic representations based on word 

co-occurrence in a large corpus are discussed. Note that these co-occurrence tech­

niques deal only with the first goal of a semantic memory model as described above, 

that is, specifying a representation of a word’s meaning. Thus, these methods of 

constructing representations do not form complete models of semantic memory, but 

for the sake of clarity they will be referred to as models in this thesis.

In an object-based view of semantics, words are considered to be associated if the 

objects they refer to have shared properties. Closeness is a measure of the similarity

9
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between objects. The property investigated may be common features or inclusion 

in a common category. Category membership can be treated as a strongly weighted 

feature, making these two ways of classifying words essentially identical. As a quick 

example, consider the words cat and dog. Both have teeth, claws, fur and a tail. 

Additionally, both can be included in the category pets. In an object-based view of 

semantics, the word cat would be closely semantically related to dog.

There are numerous models of object-based semantics (McRae, de Sa, & Seiden- 

berg, 1997; Collins & Loftus, 1975; Collins & Quillian, 1969), but the focus of this 

thesis is on the second type of model.

4.1 Language-Based Semantics

Language-based models determine semantic associations between words by analyzing 

lexical co-occurrence in a large corpus of written text. Considerable evidence sug­

gests that representations reflecting a language model are more consistent with the 

organization of our own semantic memory than those reflecting objects (Buchanan, 

Brown, Cabeza, & Maitson, 1999). In this section two language-based models of se­

mantic memory are described, upon which this new method of constructing semantic 

representations is based. Note that this list is by no means exhaustive, and that 

many other language-based models exist (see Landauer & Dumais, 1997; Lemaire & 

Denhiere, 2004; Nelson, McEvoy, & Schreiber, 1998, for example).

4.1.1 Hyperspace Analogue to  Language (HAL)

HAL (Lund & Burgess, 1996; Burgess, 1998; Burgess & Livesay, 1998; Burgess, 

Livesay, & Lund, 1998; Burgess & Lund, 1997) is a computational model that uses 

vectors to represent entries in semantic memory. A large corpus of written text, 

consisting of approximately 160 million words collected from Usenet newsgroups, was 

analyzed by passing a small window over each word in this text. Each position of this 

window is assigned a weight. The window position closest to the target is assigned a 

weight equal to the size of the window and these weights decrease linearly as distance

10
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from the target increases, with the farthest window position receiving a weight of 

one. For example, if the window extends five words in front of the target, the closest 

position receives a weight of 5, the next position receives a weight of 4, and so on, 

until the fifth position is assigned a weight of 1. Weighted word co-occurrences were 

recorded in a matrix containing one row and one column for each unique word in the 

corpus. A co-occurrence vector was constructed for each word by concatenating the 

transpose of the row corresponding to the target word to the word’s corresponding 

column. These vectors were then normalized to a constant length and a measure of 

semantic similarity between words was calculated by using the Minkowski family of 

distance metrics,

where = (w}, wf, .  . . , w?) and Wj =  (Wj,w?, . . . ,  w?) are the vectors corresponding 

to the two words under consideration. This family of metrics includes both Euclidean 

distance, when r =  2, and rectilinear distance, when r =  1. If dT(wi, Wj) < dr(wi, Wk), 

then Wi is said to be more strongly related (or closer) to Wj than to Wk-

In HAL, words with similar meaning (e.g., street and road), or words that are 

strongly related (e.g., street and car), exist closer together in semantic space than 

unrelated concepts. In addition, multidimensional scaling (Kruskal, 1978) reveals 

that these vectors contain some notion of categorical information. Exemplars from a 

common category (e.g., apple and orange) are closer together than exemplars from 

different categories (e.g., apple and wrench). The distance between words correlated 

with the priming advantage seen in a semantic priming task: words that are closer 

together based on HAL’s distance measure produced a larger priming effect (e.g., 

apple primes orange more than it primes umbrella).

4 .1 .2  C o m p u ta tio n a l A n a lysis  o f  T ext: S em an tic  C o-occu rren ce  A sso c ia ­

t io n  N o rm s (C A T S C A N )

CATSCAN (Casey, 2005; Durda, Casey, Buchanan, k. Caron, under review) is a 

language-based model developed to remedy two flaws inherent in HAL: CATSCAN’s

11
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vector representations contain less influence from the written frequency of words, and 

window position weights are assigned in a non-arbitrary fashion.

The most prominent difference between CATSCAN and HAL is a reduced sensitiv­

ity to orthographic frequency. Consider extremely high frequency words, such as the, 

and, and a. Since these words occur so frequently in written English, they will have 

a high number of co-occurrences with every word. In an attempt to overcome this 

problem, CATSCAN uses an adjustment factor to reduce the semantic associations 

between high frequency words. Let

f t  +  fa
A =  e c ,

where f t and f a are the orthographic frequency of the target word and potential 

associate, respectively. The value of c is chosen so that 99% of the words in the 

corpus have a frequency less than c. A is multiplied by the semantic association 

between the target and the associate to reduce association between high frequency 

words.

CATSCAN also differs from HAL in the method used to assign a weight to each 

window position. In HAL, the window position closest to the target was assigned the 

highest weight, and weights decrease linearly as distance from the target increases. 

Assigning weights in this way implies that the words immediately preceding and 

following the target are the most relevant in determining semantic relationships, which 

may not necessarily be the case. Nouns, for example, are often preceded by one of 

the words the, a, or an. These words have little semantic value and should not be 

considered the most important in determining semantic associations.

In CATSCAN, window position weights are not determined until all co-occurrence 

data has been collected from the corpus. Instead of arbitrarily assigning linearly 

ramped weights, CATSCAN uses weights such that the magnitude of the correlation 

between the resulting semantic associations and RT in a LD experiment is maximized. 

It is interesting to note that, when weights were assigned in this manner, with the ad­

ditional constraint of non-negativity, only the first and third closest window positions 

on either side of the target and the eleventh window position before the target were

12
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assigned non-zero weights. Refer to Casey (2005) for a more complete description of 

the methods used to assign window weights in CATSCAN.

This model produces two types of SNs: A “local” SN, which measures the degree to 

which words are used together, and a “global” SN, which measures the degree to which 

two words are used in the same context. As a quick example, consider the word bank. 

The words account and water are possible local neighbours of bank corresponding to 

the financial institute and the river bank meanings, respectively. The word shore is 

a possible global neighbour. Stated more simply, a global neighbour will be a word 

that is synonymous with the target word, and is therefore closely related, but perhaps 

never appears with the target.

5 G raph T heory and Graph C lustering

In this section, some basic definitions from graph theory and the graph-theoretic 

clustering algorithm that is used in determining each word’s ambiguity are presented. 

Section 5.1 introduces the concept of a graph and several related definitions. A 

method of constructing a graph based on semantic associations is discussed in Sec­

tion 5.2, and the clustering algorithm is discussed in Section 5.3.

5.1 Graph Theory

This section introduces the terminology used to discuss graph theory. For more in- 

depth coverage of this material, refer to any of the several texts available on the 

subject (for example, Gibbons, 1985; Chartrand, 1985; Diestel, 2000)

Definition 5.1 Let S' be a finite, non-empty set. The unordered product of S  with 

itself is

S  ® S  =  {{sj, Sj}: su Sj e 5 } .

Definition 5.2 A graph, denoted G — (V, E), is a finite, nonempty set V, together 

with a finite, possibly empty set E  C V  <g> V. The elements of V  are called vertices, 

and the elements of E  are called edges.

13
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As an example, consider the graph with V  =  {1,2,3,4, 5} and

E  = {{1,2}, {1,5}, {2,3}, {2,5}, {3,3}, {3,4}, {3, 5}, {4,4}, {4,5} }.

A graph can be represented in R2 by plotting the vertices as points and drawing a 

line between the endpoints of each edge. The example graph, depicted in this way, is 

shown in Figure 2.

.1  2 3
f O

5 4

Figure 2: A representation of a graph in R2.

Definition 5.3 Let G = (V, E) be a graph. The order of G is the number of vertices 

in V, denoted \V\. The size of G is the number of edges in E, denoted \E\.

The order of the example graph is \V\ =  5, and its size is \E\ =  9.

Definition 5.4 Let e =  {vi, Vj} be an edge in a graph, G =  (V, E).  Then e is incident 

with both Vi and Vj, and and Vj are said to be adjacent, or neighbours.

Definition 5.5 Let G =  (V, E) be a graph and let v € V. The neighbourhood of v, 

denoted N(v),  is the set of all vertices that are adjacent to v, given by

N ( y )  =  {w  E V : {u,u;} E E }.

In the graph in Figure 2, vertices 1 and 2 are adjacent and the edge {1,2} is 

incident with both vertices 1 and 2. The neighbourhood of vertex 1 is N(l )  = {2,5} 

and the neighbourhood of vertex 3 is N(3) = {2,3,4,5}.

14
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D efinition 5.6 Let e =  {vi,vj} be an edge in a graph, G =  (V, E).  If =  Vj, then 

e is called a self-loop, or simply a loop.

D efinition 5.7 Let G =  (V, E) be a graph and let v € V. The degree of v, denoted 

deg(u), is the number of edges in G that are incident with v, with loops counted 

twice.

In the example, deg(l) =  2,deg(2) =  3, and deg(3) =  5.

D efinition 5.8 The graph in which each pair of vertices are adjacent is called a 

complete graph. Alternatively, if deg(u) =  |Vj — 1 for every v G V, then G is a 

complete graph. The complete graph of order n is denoted by K n.

The complete graphs of orders one through four are shown in Figure 3.

Figure 3: The complete graphs of orders 1 through 4.

Definition 5.9 Let G = (V, E) be a graph. Let V' C V  and

E(V') = {{vi,vj } e E : v i,vj e V ' }

be the set of all edges in G with both endpoints in V ' . If E'  C E,  then the graph 

G' =  (V ' , E ') is a subgraph of G, denoted G' C G. If E' = E(V'),  then G' is called 

the subgraph of G induced by V ', denoted G\V'].

Let V' = {1,3,4, 5}. Then

E(V')  =  {{1,5}, {3,3}, {3,4}, {3, 5}, {4,4}, {4,5}}.

Figure 4 shows a subgraph of our example with

E' = {{1,5}, {3,3}, {3,4}, {4, 5}},

and G\V'] is shown in Figure 5.

15
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1 3 ,o

5 4

Figure 4: A subgraph.

5 4

Figure 5: The subgraph induced by V '  =  {1,3, 4, 5}

16
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D efinition 5.10 Let G = (V, E) be a graph and let P  C V  with the property that 

P  ® P  C E. Then G[P] is a complete graph and is called a clique of G. If P  has the 

further property that adding any v G V \  P  breaks the condition that P  0  P  C E, 

then G[P] is called a maximal clique of G. Let w £ V. If G[P] is the largest clique 

containing w, then G[P] is called a major clique of G.

Note that a maximal clique is not necessarily a major clique, but every major 

clique is a maximal clique. Also, every vertex in a graph is contained in at least 

one clique, since the subgraph induced by a single vertex is complete. To simplify 

notation, the set of vertices, P, is used to refer to the clique G[P],

In the graph shown in Figure 2, the set of vertices P  =  {1, 2, 5} forms a clique. 

The subgraph induced by P  is shown in Figure 6 . Note that this is the complete 

graph of order 3.

1 2

5

Figure 6 : A clique of a graph.

As another example, consider the graph Figure 7. This graph contains a clique 

consisting of the five vertices displayed in white. Note that the subgraph induced by 

these vertices, shown in Figure 8 , contains the complete graph of order five, that is, 

every pair of two distinct vertices are joined by an edge.

5.2 Creating the Graph

This section describes how to construct the graph used as input to the clustering 

algorithm presented in Section 5.3. In this graph, words are represented as vertices

17
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Figure 7: A graph containing a clique of five vertices.

Figure 8 : The subgraph induced by the clique in Figure 7.
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and edges are placed between strongly associated words. The method described below 

was used by Aksoy and Haralick (1999a, 1999b) to construct the graph used in their 

image retrieval algorithm.

Suppose that the semantic association between each pair of words in the corpus 

has been calculated. A target word, wo, is selected and a graph of this word’s semantic 

neighbourhood is constructed. The N  words with the strongest association to wq are 

found and put into a result set, So =  {woi> r%2, • • •, 'Wojv}. If wq did not occur with 

at least N  distinct words, then the full list of semantic associates of wq is taken as 

the result set. For each word, wq * € So,i = the closest N  neighbours are

retrieved and put in a set, Si = {ie-u, '{nl2, . . . ,  w.um}, giving N  +  1 sets containing up 

to N  words each. Next, the set,

containing all words that were used as query words, as well as all words that appeared 

in any result set, is formed. Note that |V| < Â 2 +  A  +  1 . V  is the vertex set of the 

graph. The graph contains an edge from each word that was used as a query word to 

each word appearing in the result set of that query word. Keeping this in mind, the

edge set, E, is described by

By constructing the graph in this manner, higher-order co-occurrences are in­

cluded in the SN of each word. Suppose that word W{ is a close semantic associate of 

Wj, and Wj is strongly related to wk, but that Wi is not related to wk (i.e., the seman­

tic association between Wi and Wj is 0). By considering higher-order co-occurrences 

during the construction of s SN, wk may appear in the SN of in,, even though 

the two words never occurred together in the corpus. For example, the word street 

may often occur with car and car may often occur with road, but road and street 

may occur together very infrequently because they are synonymous. However, this 

method of graph construction allows road to appear in the SN of street.

Table 1 contains the query and result set data used to create the graph shown in 

Figure 9. This graph will be used as an example to illustrate the clustering algorithm

E  = {{a;*, Wij} e V  ® V  : Wij e  Si, i =  0 , . . . ,  N, j  = 1 , . . . ,  N}.
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Query Result Set

1 1, 2, 3, 4, 8 , 9

2 2, 1, 4, 5, 3, 6

3 3, 2 , 1 , 4, 6 , 7

4 4, 1, 7, 3, 5, 6

8 8 , 9, 1, 10, 11, 12

9 9, 1, 8 , 10, 11, 12

Table 1: Queries and result sets for the graph in Figure 9

presented in the next section. Figure 10 shows a graph constructed for the word bark, 

using N  =  43.

2

11

Figure 9: An example of a graph constructed using the method of Section 5.2.
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Figure 10: A semantic graph for the word bark, constructed using N  =  43.
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It is informative to compare the semantic graphs constructed for different types 

of words. Figure 11 shows the graphs for four words. The two graphs in the upper 

half of the figure are for words that are unambiguous, that is, they have only a single 

meaning, while the graphs in the lower half correspond to words that have two or more 

meanings. The graphs on the left half represent words that have few senses, and those 

on the right represent words with many senses. Note the different structures present 

in these graphs. Comparing the graphs of kitchen and belt, two words that have only 

a single meaning, reveals that both graphs have a similar structure. Each contains 

only a single group of highly interconnected vertices, corresponding the the unique 

meanings of these words. However, this group is much larger and spread out in the 

graph for belt, a word with many senses, compared to that in the graph for kitchen, 

which has only a few senses. A similar result is found by comparing the graphs of 

kiwi and fold. Both of these graphs have multiple groups of highly interconnected 

vertices, but in the graph for kiwi, these groups are distinct, with relatively few edges 

connecting the two groups. Because fold has multiple meanings with numerous senses, 

this distinction between groups, while still present, is not as prominent.

5.3 Graph Clustering

This section presents the graph clustering algorithm. This algorithm was developed by 

Shapiro and Haralick (1979) to analyze and deconstruct the edges of two dimensional 

shapes into their component parts in a shape recognition algorithm, and has since 

been applied to image grouping and image retrieval from a large database (Aksoy 

Sc Haralick, 1999a, 1999b). An attractive feature of this algorithm is that the items 

returned in each cluster are not only strongly related to the target item, but also 

to each other. In addition, this algorithm allows for overlap between clusters, which 

does not occur in other clustering algorithms such as A'-means. This allows a word 

such as flow, which is related the both the financial (i.e. cash flow) and river bank 

(i.e., flowing water) meanings of the word bank, to appear in both of these meanings’ 

clusters.

A straightforward method of finding the clusters of a graph is to first determine

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) kitchen (b) belt

(c) kiwi (d) fold

Figure 11: Semantic graphs for four words.
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the complete set of major cliques in G and then iteratively merge any two cliques 

that have enough overlap, as determined by some user specified threshold (Kumar, 

1968; Augustson k  Minker, 1970). Unfortunately, finding the cliques of a graph is 

an ATP-complete2 problem (Karp, 1972). Instead of finding cliques, the algorithm of 

Shapiro and Haralick (1979) is used to find near-cliques, referred to as dense regions, 

each of which contains a major clique of the graph. This algorithm runs in 0 ( n 2) 

time for a graph of order n. (Shapiro k  Haralick, 1979). Once the set of dense regions 

has been found, they may be iteratively merged to form clusters.

Throughout this section, G =  (V, E)  is a graph constructed by the method de­

scribed in the previous section.

D efinition 5.11 Let x ,y  £ V. The conditional density of vertex y given vertex x, 

denoted D(y \ x), is the number of nodes in the neighbourhood of x  that also have y 

as a neighbour. More precisely,

D(y  | x) — | {n £ V  : {x, n} £ E  A {n, y} £ E }  |

=  \{n E N(x) : {n,y} e  E}\

=  \ { N ( x ) n N ( y ) } \ .

Note that D(y  | x) =  D{x \ y). This measure is used to find sets of vertices which 

are “dense enough” , according to some user supplied parameters, but not necessarily 

as dense as the cliques of the graph. This will lift the restriction that the subgraph 

induced by the set of vertices is complete, removing the heavy computational burden 

of finding cliques. Table 2 contains the values of D(x  | y) for each pair of vertices in 

the graph from Figure 9.

Let A; be a positive integer and x £ V  and consider the set of vertices

Z(x, k) = {y e V  : D(y | x) > k} .

The integer k determines how many neighbours a vertex y must share with x  for 

it to be included in Z(x,k) .  As k is increased, the vertices of Z(x,k)  must share

2A discussion of TAP-complete problems is given in Appendix 9. For now, it suffices to say that 

an ATP-complete problem is computationally intractable, and no efficient algorithm to solve such a 

problem is known to exist.
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1 2 3 4 5 6 7 8 9 10 11 12

1 6 4 4 4 2 3 2 3 3 2 2 2

2 4 6 5 6 2 3 2 1 1 0 0 0

3 4 5 6 6 2 3 2 1 1 0 0 0

4 4 6 6 7 2 3 2 1 1 0 0 0

5 2 2 2 2 2 2 1 0 0 0 0 0

6 3 3 3 3 2 3 2 0 0 0 0 0

7 2 2 2 2 1 2 2 0 0 0 0 0

8 3 1 1 1 0 0 0 6 6 2 2 2

9 3 1 1 1 0 0 0 6 6 2 2 2

10 2 0 0 0 0 0 0 2 2 2 2 2

11 2 0 0 0 0 0 0 2 2 2 2 2

11 2 0 0 0 0 0 0 2 2 2 2 2

Table 2: Conditional densities.

more neighbours and G[Z(x,k)] becomes smaller and more tightly interconnected. 

Note that these regions are nested, with Z(x,  1) 3  Z(x, 2) 3  Z(x,  3) 3  . . . .  Now, 

let C  be a major clique of size M  containing vertex x. If y 6  C, then it must be

that D(y | x) > M,  which means C  C Z(x ,M ).  Thus, for any k < M,  we have

C C Z(x, k), so k < M  < \Z(x, k) |. Hence, any k that does not satisfy the inequality 

\Z(x,k)\ > k cannot be the size of a major clique containing vertex x. Only values

of k that satisfy this last inequality will be considered.

Definition 5.12 Let Z(x, k) = {y € V : D(y  | x) > k} and let j  =  max{fc : \Z(x,k)\ > 

The set of vertices, Z(x) = Z(x , j ) ,  is called a dense region candidate, or DRC.

Z(x)  contains a major clique of size j  containing x, but may also include some 

additional nodes which are not part of the clique, and so is not necessarily a clique 

itself.

A few additional restrictions are placed on the DRC before it can be called a 

dense region. First, regions should not be too small, as determined by some user
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provided threshold. This can easily be enforced by rejecting any DRC containing 

fewer than the user-specified number of vertices. Secondly, each vertex in the DRC 

should be adjacent to a high proportion of other vertices in the DRC. The following 

two definitions are used in meeting this second requirement.

D efinition 5.13 Let B  C V. The association of a vertex x  € V  to the set B, 

denoted A(x \ B), is the proportion of vertices in B  which are also in N(x),  given by

where 0 < A(x  | B) < 1 .

D efinition 5.14 The compactness of a set B  C V,  denoted C(B),  is the average 

association of the vertices in B  to B  itself, given by

C(fl) =  A r  I B),
' ' xeB

where 0 < C(B) < 1.

A dense region of a graph can now be defined:

D efinition 5.15 Let B  C V. Given MINSIZE, a positive integer, MINASSOC, a 

real number in the interval [0,1], and MINCOMP, a real number in the interval 

[MINASSOC, 1], B  is called a dense region if all of the following conditions are met:

1. B  — {y € Z(x) : A (y \ Z (x )) > MINASSOC} for some x  G V,

2. C(B)  > MINCOMP, and

3. \B\ > MINSIZE.

The first condition states that the vertices in B  are the vertices from a DRC 

that have the highest association with the DRC. The second condition ensures that 

the average association of the vertices in B  are high enough, as determined by the 

threshold MINCOMP. These two conditions ensure that each vertex in B  is adjacent 

to a high number of other vertices of B. The last condition ensures that the region
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X N(x) j Z(x) = Z(x,y) C(Z(x))

1 1, 2, 3, 4, 8 , 9 4, 1, 2, 3, 4 1

2 1, 2, 3, 4, 5, 6 4 1, 2, 3, 4 1

3 1, 2, 3, 4, 6 , 7 4 1, 2, 3, 4 1

4 1, 2, 3, 4, 5, 6 , 7 4 1, 2, 3, 4 1

5 2 ,4 2 1, 2, 3, 4, 6 0 .8 8

6 2, 3 ,4 3 1, 2, 3, 4, 6 0 .8 8

7 3 ,4 2 1, 2, 3, 4, 6 0 .8 8

8 1, 8 , 9, 10, 11, 12 3 1, 8 , 9 1

9 1, 8 , 9, 10, 11, 12 3 1, 8 , 9

10 8 , 9 2 1, 8 , 9 1

11 8 , 9 2 1, 8 , 9 1

12 8 , 9 2 1, 8 , 9 1

Table 3: The neighbourhood, maximal value of j ,  dense region candidate, and com­

pactness of each vertex in G

is large enough to be of interest. Note that if MINASSOC =  1 and MINCOMP =  1,

then the dense regions found will be the major cliques of G.

The maximal values for j ,  the dense region found around each node, and the 

compactness of the dense regions in our example are shown in Table 3, together with 

the neighbourhood of each vertex. These regions were found using the parameters 

MINSIZE =  3, MINASSOC = 0.5, and MINCOMP =  0.75.

To determine the clusters of G, a dense region is found around each vertex in G

and these regions are then merged.

D efinition 5.16 The overlap between two sets, B i and B2 is

f  \Bi n  b 2\ \B\ n  b 2\ \

" “ n a T ' - f t T / -

If the overlap between two dense regions exceeds a user supplied threshold between 

0 and 1, called MINOVERLAP, then the two regions are merged, provided that each
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of the nodes in the resulting set have a high enough association to the new set. This 

merging is iteratively performed until no two regions can be merged. The result is a 

set of clusters of the graph G.

After merging the dense regions given in Table 3 (using MINOVERLAP =  0.75), 

the resulting clusters are {1 ,2 ,3 ,4 ,6 } and {1,8 ,9}. The subgraphs induced by these 

clusters are shown in Figures 12 and 13, respectively. Note that vertex 6 was included 

in the first cluster, even though it was not in the result set when vertex 1 was used 

as the query item (see Table 1). This is because vertex 6 is related to a high enough 

number of other vertices in the cluster, as determined by MINASSOC and MINCOMP, 

to warrant its inclusion.

2

Figure 12: Subgraph induced by {1,2,3,4, 6 }.

8

9

Figure 13: Subgraph induced by {1,8,9}.
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6 M eth od

Now that the necessary background has been provided, a detailed description of the 

algorithm discussed in Chapter 2 is presented. Section 6.1 introduces the notation 

required to present the algorithm more rigorously, and the algorithm itself is discussed 

in Sections 6.2 through 6.5.

6.1 Analyzing the Corpus

Let W  =  {wi, W2, . . . ,  wp} be a set of p unique words. This set is called the 

dictionary and contains the full set of strings that are considered valid English words. 

Let T  =  (t%, f2, • • • , tu) be an ordered list of words such that for every U, i =  1 , . . . ,  v,  

there is a word wx € W such that t,t =  wx. T  is called a corpus, and the semantic 

associations created in this thesis are based on lexical co-occurrence between the 

words in this corpus. Note that T  may consist of many separate written works, but 

that these works are abstracted into a single entity. Also note that the words in T  are 

not necessarily unique and, as such, may occur multiple times in T. In fact, if each 

word in T  occurred only a single time, the type of analysis performed in this thesis 

would be ineffective and would fail to produce any usable results. Throughout this 

discussion, Wj is used to denote the target word and Wi is used to denote a potential 

associate of Wj.

A small window is constructed and passed over each word in the corpus, recording 

which words occur together in a window. The parameter r/ determines how far this 

window extends on either side of the target word. Let I(ti) be the window centered 

around ti, the ith word in T.  This window contains the r/ words preceding U and the 

r/ words following U, but does not contain U itself. I(U) can be written as

{ti—rij ti—77+1, • • • ) L—1, ti+1, . . . , ti+'q) .

The functions in the next three definitions provide information about how many 

times words occur together in the corpus.
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D efin ition  6.1 Let W i , W j  e  W and

f?{wi I Wj) = |{Ar: t k = Wj A tk+n = xw<}|.

ft(Wi  | W j )  is called the local co-occurrence function,

f f (w i  | Wj) counts how many times ŵ  occurs in the nth position in an interval 

around W j .  If n < 0, then wl appeared before w3, and Wi is said to have occurred 

in the pre-context of Wj. If n > 0, then Wi appeared after Wj, and is said to have 

appeared in the post-context.

D efinition 6 . 2  Let Wi, Wj € W and let

fe(wi | W j )  is called the local frequency function.

f e ( w i  | W j )  counts how many times a word W j  occurred in an interval, in any 

position, around u?*.

D efinition 6.3 Let iu* € W and let

f g(wi) is called the absolute global frequency function.

f g(wi) counts how many times ŵ  appeared in the entire corpus. A more interesting 

measure is the global frequency of ŵ  per million words of written text, rather than a 

number that depends on the size of the corpus scanned. An additional function that 

provides exactly this value is defined next.

D efinition 6.4 Let w.* € W.  The global frequency function, denoted f g(wi), is given

Once this window has been passed over the entire corpus, recording the informa­

tion specified above, how words are semantically related can be determined based on 

these data.

njt 0

fg(wi) = |{fc : tk =  Wi}| •

by
1000000/g K )

'WfcGW J 9
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6.2 Rem oving Frequency Effects

At this point, an enormous amount of data about the corpus has been collected. The 

number of times each word appears, given by f g(wi), and how many times each pair 

of words appears together, given by ft{wi \ Wj) have been calculated. In addition, 

the number of times a word appears in each relative window position around a target 

word, given by, //*(Wi | w3), has been collected from the corpus. This last number 

must be converted to a measure of how important the co-occurrence is. Suppose 

fei'Wi | Wj) is large. If w3 and w3 are both very high frequency words, this high 

incidence of co-occurrence may not mean that and Wj are semantically related. 

It may merely be a side effect of both words having high frequency. Keeping this 

in mind, any measure that determines the strength of the relationship between two 

words must be independent of the global frequency of the two words.

D efinition 6.5 Let Wi,Wj € W. The local co-occurrence strength of w\ given Wj is

i i =  I ( 1 1 q o o o o o o - / , K ) \ 32
’ v W  U t r H l  1000000 )

Higher values of sn{uii | Wj) correspond to a stronger relationship between wl and 

Wj. It is beneficial to inspect this function in more detail. Let 

w  ̂ 1 f  1000000 — f g i w i )  ̂ 32AW = 7m  I 1000000 J
and

t M  = T + e W

A graph of A (wi) for words with a global frequency between 0 and 65,0Q03 is shown 

in Figure 14. Figure 15 shows a graph of this function for low frequency words (less 

than ten occurrences per million words).

A (wj) is multiplied by the raw co-occurrence counts to reduce these values for high 

frequency associates. Note that A (wi) «  1 when f g(wi) =  1. For words with f g(wi) < 

1,A(wi) > 1, and co-occurrence values are actually increased. To counterbalance this 

effect, the co-occurrence counts are multiplied by 7 (wt), shown in Figure 16.

3In our corpus, the was the most frequently occurring word, with a frequency of 64,355.56 per 

million words.
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Figure 14: Graph of function A (wi)
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Figure 15: Graph of A(iuj for low frequency words.
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Figure 16: Graph of function 7 (wj)

In the analysis performed in this thesis, any word occurring less than 0.3 times per 

million words was excluded. If w S W with f g(w) =  0.3, then X(w) — 1.825. Thus, 

co-occurrence for these ultra low frequency words is nearly doubled. However, for the 

same word, 7 (w) =  0.5744, and the product of the two is X(w)^(w) =  A7 (iu) =  1.049. 

This function leaves co-occurrence counts for low frequency words relatively un­

changed, but counts for high frequency associates are greatly reduced. This function,

1 /1000000-/flH \ 32 /  1 \
~  y / J M  V  1 0 0 0 0 0 0  J  \ 1  +  e -/3w j  ’

shown in Figure 17, is used as the co-occurrence adjustment factor. A7 (wi) is multi­

plied by f i (w i  | Wj) to obtain the final co-occurrence value, sn(wi | Wj).

6.3 Creating Sem antic R epresentations

Next, a weight ct; is assigned to the ith window position, i = —77,...,??. To simplify 

formulas, we will set ao =  0. These variables are assigned values that allow optimal 

performance of this method in its task of measuring word ambiguity. As the algorithm 

has yet to described in its entirety, a description of how these weights are determined 

is postponed until Section 6.5, after all steps of the method have been presented. For
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Figure 17: Graph of function A7 (w^

now, assume that an optimal value has been assigned to each a*, i =  —77, . . . ,  ?/, using 

the technique presented in Section 6.5.

For each Wi G W, a vector representing Wi in semantic space is created.

Definition 6.6 Let Wj =  (wj,Wj, . . .  ,w?), with the ith component given by

Once each component is calculated, wj is normalized to unit length using the 12 

norm and this is used as the vector-based representation of the semantic characteris­

tics of Wj. The contents of these vectors, as opposed to some form of distance metric, 

are used to determine semantic relationships between words. Note that, in general, 

w*j 7  ̂ wj, which is consistent with the literature (Chwilla, Hagoort, & Brown, 1998;

v

Wj is the semantic representation of Wj and Wj is the semantic association of wt to

Koriat, 1981; Thompson-Schill, Kurtz, & Gabrieli, 1998).
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6.4 M easuring Am biguity

This section describes how the semantic representations can be used to measure the 

degree of ambiguity inherent in the meaning of a word, uv

Using the method of Section 5.2, a “semantic graph” for a target word, Wi, contain­

ing only the words most strongly related to Wi is constructed. In the current setting, 

the N  closest neighbours of Wi are found by examining w% and finding the N  highest 

values of wj. Let these values be wj1, wj2, . . . ,  wjN. For each wjn, n — I , . . .  ,N ,  the 

components of Wjn are inspected to find the highest N  values of Wjn. Let these values 

be w1-™, n — 1 , . . . ,  N, m  = 1 , . . . , N ,  and let wknm be the semantic associate of wjn 

corresponding to w1-™.

These values are used to construct the semantic graph, G, for word W{. Let

V  = { w ^  U {wjn : n = 1 , . . . ,  N}  U {wkn m : n =  1 , . . . ,  N, m  =  1.......  N}

be the vertex set of G and

E  = {{wu wjn}: n  =  1, . . .  , N }  U {{wjn,wkn,m} : n — 1 , . . . ,  N , m  — 1 , . . . ,  N} .

be the edge set of G. Then G =  (V, E) is the semantic graph for Wi.

Next, the graph clustering algorithm described in Section 5.3 is applied to G. Let 

Ci, C2, ■ ■ ■, Cq be the clusters of G. Each cluster is interpreted as containing only 

words related to a single meaning of W{. The union of all clusters,

C =  Cx U C2 U • ■ • U Cq,

is the SN of ŵ .

If only a single cluster is found by the algorithm, then Wi is a non-ambiguous 

word. Otherwise, we will use Shannon’s entropy formula to measure raj’s ambiguity. 

Let Cf — { q j, Ci‘2- ■ ■ ■, Qj(T£}, i  =  1 , . . . ,  q, where at is the number of words in Ce, and 

ce,j =  w for some w G W, j  =  1 , . . . ,  at. Let

n c t ) =  £ / , ( < * * )
j=l 
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be the summed orthographic frequency of the words in Q . The probability that a

word in the SN of Wi is in Ct is given by

  f ̂  \   f{Ct)
n  p{Ct ) E «_i / ( C .)'

These probabilities are calculated for I  =  1 , . . . ,  q, and are then used to calculate the 

ambiguity and balance measures from Twilley et al. (1994), using Equation 1 given 

in Chapter 3.

The parameters of the graph clustering algorithm (N, MINSIZE, MINASSOC, 

MINCOMP, and MINOVERLAP) are determined using the same method that is used 

to determine the window weights, which is described in the next section.

6.5 D eterm ining W indow W eights and Graph Clustering Pa­

rameters

A genetic algorithm (GA; Holland, 1992) is used to determine the weight assigned 

to each window position, as well as the parameters used in the graph clustering al­

gorithm. A GA is an iterative global search method that uses Darwin’s principles 

of natural selection (Darwin, 1859) to evolve a near optimal solution to a problem. 

In this situation, the solution space is large and complex. One cannot perform any 

mathematical analysis or calculate derivatives to guide a search. In fact, this problem 

cannot even be represented as a single function (or group of functions) to be opti­

mized. GA is used because this problem does not meet any of the requirements (i.e., 

differentiability, or even continuity) needed by a traditional search algorithm, such as 

Newton’s method or the conjugate-gradient method.

The GA begins by creating several random solutions to the given problem. Each 

solution is called an individual, and a set of solutions is referred to as a population. 

Individuals in the population are evaluated by a fitness function, and the strongest 

individuals are combined to create a new population, called a new generation. The 

construction of new individuals by combining the features of two individuals from the 

previous generation is referred to as crossover. After several generations have been 

computed in this way, the individuals will converge to a near optimal solution.
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In this situation, an individual specifies a complete set of window weights and 

clustering parameters. That is, each individual consists of a weight for each window 

position, a value for N, the number of items returned in the result sets used to 

construct the semantic graph, and values of the clustering algorithm parameters, 

MINSIZE, MINASSOC, MINCOMP, and MINOVERLAP.

An individual is evaluated by selecting a subset of the 566 words for which am­

biguity norms are available, applying the algorithm described in Sections 6.1 to 6.4 

to determine the ambiguity of each of these words, then calculating the correlation 

between these data and the corresponding data from Twilley et al. (1994). Individ­

uals that produce a stronger correlation are deemed to better perform the task at 

hand, and are more likely to be selected by the GA for use in crossover. In addition, 

individuals are penalized in the event that they are unable to find any clusters in the 

semantic graph of a given word. Let p be the proportion of words from the evaluation 

set for which the algorithm was unable to find any clusters. To avoid assigning high 

fitness values to individuals for which this situation is likely to occur, p is subtracted 

from the correlation to obtain our final fitness value.

In this work, a custom GA was written in C ++  using the LAM implementation 

(Squyres k  Lumsdaine, 2003; Burns, Daoud, k  Vaigl, 1994) of the Message Passing 

Interface (MPI) library. This program was run on a cluster of 11 Macintosh G4’s, 

each with two 1 GHz CPUs. The population size was set to 300 and the algorithm 

was allowed to run for 3045 generations. The crossover rate was set to 0.95 and 

the mutation rate was set to 0.05. Individuals were selected for crossover using 

tournament selection with a tournament size of three, and 375 randomly selected 

words from the Twilley et al. (1994) norms were used to evaluate individuals. During 

crossover, new individuals were created as a linear combination of the individuals 

selected for crossover. Let v\ be a parameter from individual 11, and let V2 be the 

corresponding value from another individual, 12- Let w\ and W2 be the values to 

be calculated for the new individuals being created. A random value x  G [0,1] is
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selected, and the parameters for the new individuals are:

W \  =  x v i  +  (1 — x ) v 2
w2 = xv2 + {l — x)vi.

Values for each parameter were calculated in this way, with both N  and MINSIZE 

rounded to the nearest integer, to construct the new individuals. During mutation, 

the value of N  and MINSIZE were randomly incremented or decremented, each weight 

was changed by a random value selected from a normal distribution with mean 0 and 

standard deviation 3, and all of the other parameters were altered by a random value 

from a normal distribution with mean 0 and standard deviation 0 .1 .

It is important to note that, until execution of the GA has been completed, the

final weights used by the method are unknown. The algorithm attempts to use several 

different sets of weights and evaluates the performance of the algorithm under each 

set of weights across a number of words (in this work, 375 words were used). In 

addition, the graph clustering parameters are evaluated in the same manner. This 

means that, for each of the 375 words selected from the Twilley et al. (1994) data set, 

the GA must apply the weights to the local co-occurrence strengths calculated earlier, 

construct a semantic graph, apply the graph clustering algorithm, then measure the 

ambiguity of the word. As such, in Section 6.3, the phrase “assume that an optimal 

value has been assigned to each a*” grossly curtails the amount of work required to 

assign values to each a*.

7 R esu lts

In these experiments, a corpus of approximately 267 million words was analyzed 

using a window that extended 15 words on either side of the target. Any word with 

a frequency of less than three per ten million words was excluded from the analysis. 

These words appeared less than 80 times in the corpus, and the co-occurrence data 

was insufficient for determining the semantic associations between these words. From 

the corpus used, a dictionary of 64,391 distinct words was constructed, of which 

37,269 occurred with sufficient frequency to be included in the analysis. After co­

occurrence data was collected and adjusted to reduce frequency effects, a GA was
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Distance from Target Pre-context Post-context

1 416.89 486.73

2 491.53 412.73

3 524.48 461.62

4 480.24 492.30

5 513.03 458.10

6 573.83 497.03

7 482.00 381.82

8 521.66 574.40

9 416.86 515.92

10 564.91 619.43

11 419.51 475.66

12 637.58 446.94

13 455.13 484.82

14 566.26 532.40

15 529.15 539.81

Table 4: Optimal window weights

used to determine the optimal window weights and graph clustering parameters. The 

optimal weights are shown in Table 4. These weights were allowed to vary between 

0 and 1000. The minimum and maximum allowable values for each of the clustering 

parameters, as well as the optimal values as determined by the GA, are given in 

Table 5.

7.1 Sem antic R epresentations

The practical purpose of this exercise was to develop a database the would be useful to 

psychologists interested in semantic processing. Such a database would require that 

the measure of semantics be free from orthographic frequency, be sensible in terms 

of their word lists, and provide information that could be used in different types of
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Parameter Minimum Maximum Optimal

N 10 60 43

MINSIZE 1 60 1

MINASSOC 0 1 0.188

MINCOMP MINASSOC 1 0.860

MINOVERLAP 0 1 0.531

Table 5: Optimal graph clustering parameters

experiments. This section provides an overview of how well this objective has been 

met.

7.1.1 Independence of Frequency

To determine the amount of influence from frequency in our semantic representations, 

the correlation between orthographic frequency and semantic association within each 

vector was calculated. The average correlation was 0.077, with a standard deviation 

of 0.124. The correlation between the absolute values of these correlations and the 

orthographic frequency of the target word is 0.129, revealing that there is a stronger 

influence of orthographic frequency in high frequency words.

In addition, the correlation between semantic association across all targets and 

the orthographic frequency of the associate was calculated. The average correlation 

was -0.043, with a standard deviation of 0.016. Thus, the vectors computed by this 

method contain only minimal interference from orthographic frequency, and these 

effects are most prominent within the representations of higher frequency words.

7.1.2 Semantic Neighbourhoods

Table 6  contains the ten closest semantic associates for the ten words given as the 

headings in this table. Note that these words are related both semantically (i.e., have 

similar meaning, such as volcano and mountain) and associatively (i.e., are strongly 

related through use in language, such as volcano and lava) to the target.
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COFFEE FEAST HAM M ER FLEET BOAT

CUP WEDDING ANVIL SHIP OARS

TEA BANQUET SLEDGE ADMIRAL ROW

POT PASSOVER CHISEL VESSELS SAIL

SUGAR GUESTS STEAM SAILED SHORE

BREAKFAST CELEBRATE NAIL NAVAL ASHORE

SIPPED INVITED TONGS SEA WATER

MUG WINE FORGE BOATS CREW

DRANK HARVEST MACK COAST RIVER

COCOA FESTIVAL CLAW HARBOUR FERRY

TABLE MERRY DRILL BRITISH STERN

BARK PLANT CIGARETTE MOUNTAIN VOLCANO

BIRCH SOIL LIT RANGES ERUPTION

TREE NUCLEAR SMOKING PEAKS CRATER

DOG ANIMAL ASH VALLEY LAVA

SAP SEED ASHTRAY SLOPES CONE

TWIGS POLLEN LIGHTER ROCKY EARTHQUAKE

LEAVES LEAVES TOBACCO SUMMIT ISLAND

PINE SPECIES STUBBED BIKE ASH

BITE ROOTS PUFF TOP ACTIVE

TRUNK NUTRIENTS SMOKER SIDE DORMANT

BRANCHES GROWTH MATCH CLIMBING MOUNTAIN

Table 6 : Most strongly related semantic neighbours
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7.1.3 Category Exemplars

To investigate whether or not this method was able to extract categorical information 

from the corpus, the method’s ability to find category exemplars (i.e., an apple is a 

member of the category fruit) was tested. Ten categories were selected and, by 

inspecting the vector representing the name of the category, the ten exemplars with 

the strongest association to each category were found. The results are shown in 

Table 7, with the category names given as headings.

Typical exemplars appear to have stronger associations to the category than those 

that are less common. For example, when the semantic associates of fruits are sorted 

by association strength, the word peaches appears 20th from the top of the list. The 

word plantain, a much less common type of fruit, did not appear until position 727. 

Note that when the lists in Table 7 were constructed, only the category exemplars 

themselves were included. Other words may be interleaved with the category exem­

plars, but these words were not included in the lists.

7.1.4 M ultidimensional Scaling

As further evidence of the existence of categorical information within these vector 

representations, multidimensional scaling was applied to several of the vectors created 

by this method. Using the same words used to evaluate HAL, the dimension of the 

vectors was reduced to only two dimensions and each of these words were plotted in 

the plane. The results, shown in Figure 18, are similar to those found using vectors 

from HAL. However, the word tooth, which was incorrectly grouped with the animal 

names by HAL, was correctly classified as a body part. Also note that country names 

were very distinctly grouped from the body parts and animal names.

To further investigate this property of our vectors, 31 words from the categories 

fruits, vegetables, tools, and furniture were selected and multidimensional scaling was 

applied to their vectors. The results are shown in Figure 19. Again, words from 

different categories were grouped together. There were four notable exceptions. First, 

saw was classified as a piece of furniture. However, this word was very close to table,
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ANIMALS FOOD VEGETABLES SPORTS FRUITS

DOG VEGETABLES POTATOES FOOTBALL ORANGES

HORSE PASTA CARROTS TENNIS BERRIES

CAT CEREAL BEANS BASKETBALL BANANAS

ELEPHANT MEAT TOMATOES GOLF GRAPES

PIG MILK PEAS SOCCER APPLES

BIRD FRUIT CABBAGE RUGBY APRICOTS

GOAT CHEESE ONIONS BOXING PEARS

COW FISH MUSHROOMS CRICKET PLUMS

MONKEY CHOCOLATE LETTUCE SQUASH LEMONS

KANGAROO RICE TURNIPS SWIMMING PEACHES

FISH BIRDS TREES COUNTRIES EMOTIONS

TROUT HUMMING FIR GERMANY ANGER

SALMON PIGEON PINE JAPAN PASSION

COD PARROT PALM BRITAIN FEAR

CARP SPARROW APPLE AFRICA EXCITEMENT

GOLDFISH THRUSHES PEAR FRANCE RAGE

HERRING STARLING BEECH AMERICA PAIN

MACKEREL ROBINS OAK SWEDEN JOY

TUNA CROWS BIRCH ITALY EMPATHY

SHARK BLACKBIRD ELM BRAZIL PITY

Table 7: Top category exemplars
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Figure 18: Multi-dimensional scaling of animals, countries, and body parts.

which is a common type of saw. Next, desk was grouped in the tools category. A 

desk is a common setting in which work is performed, and it is possible that desk's 

similarity to work was more strongly represented than its similarity to other pieces of 

furniture. Analysis of the vectors representing desk, furniture, and work revealed that 

the distance between desk and work (1.02 using Euclidean distance, and 0.0154 using 

rectilinear distance) is slightly smaller than the distance from desk to furniture (1.06 

using the Euclidean metric, and 0.0174 using rectilinear distance). The correlation 

and cosine between desk and work (0.46 and 0.51, respectively) and between desk 

and furniture (0.43 and 0.47, respectively) were calculated, and it was found that 

there was a slightly stronger similarity between desk and work.

Finally, both lemon and kiwi were classified as vegetables rather than fruits. While 

lemon was classified as a vegetable, it was also placed very close to the other fruits. 

However, kiwi was grouped separately from all other fruits and vegetables. One 

reason for this may be the ambiguous nature of this word. A kiwi may refer to a fruit, 

a small bird, or a resident of New Zealand. In addition, this word has a very low
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Figure 19: Multi-dimensional scaling of fruits, vegetables, tools, and furniture.

orthographic frequency (less than one occurrence per million words). The low amount 

of co-occurrence data collected for this semantically rich word may have prevented 

the method from constructing a representation consistent with those created for other 

fruits.

As a final analysis of the category information contained within these vectors, 

multidimensional scaling was performed on the vectors corresponding to 72 words. 

The results are shown in Figure 20. Words did not fall into categories as distinctly 

as in Figures 18 and 19, but there remains a strong tendency for similar concepts to 

group together. The fruits and vegetables were grouped together, and most animals 

were grouped near the body parts. There is also a strong separation between non­

living and living objects. While this experiment does not provide much additional 

insight into the categorical information contained within our vectors, it does begin 

to give an overview of the general structure of the semantic memory formed by this 

method.
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Figure 20: Multi-dimensional scaling of 72 words

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.2 Am biguity M easurem ents

The ambiguity measurements created by this method are now examined. The corre­

lation between U (as calculated by this method) and orthographic frequency is 0.298, 

and the correlation between B  (as calculated by this method) and frequency is 0.189. 

While this may suggest that there is some relationship between written frequency 

and ambiguity, this may not be the case. Figure 21 shows scatter plots of U and B  

versus orthographic frequency. These data suggest that there is no linear relationship 

between either U or B  and frequency.

Comparison with the data from Twilley et al. (1994) revealed only a weak cor­

relation of 0.112. This may be explained by examining the type of words used in 

this study. Since the norms collected were for homographs, many of the words under 

consideration have two distinct meanings. One possibility is that this method better 

differentiates between senses of a word than between distinct meanings.

To further investigate this possibility, the ambiguity measurements were compared 

to RT in LD (taken from Balota, Cortese, & Pilotti, 1999). The correlation between 

U and RT is —0.265, and the correlation between B  and RT is —0.190. A graph 

of U plotted against RT, with the line of best fit, is shown in Figure 22. Note 

that these data suggest a linear relationship between U and RT. As discussed in 

Chapter 3, homographs should be recognized more slowly than non-ambiguous words, 

and polysemous words should be recognized faster. Since the data produced by this 

method predicts that high “ambiguity” words are recognized faster, it is possible that 

this algorithm is actually measuring the degree of polysemy in a word’s meaning.

Inspecting the clusters found in the semantic graphs of several words, it appears 

that this method does, in fact, seem prone to finding the senses of a polysemous word 

rather than distinct meanings. For example, for the word annual, three clusters were 

found. All three of them related to the yearly occurrence meaning, and two focused on 

the financial aspects of this word, but none of the clusters contained words related to 

the flower meaning of annual. For the word grate, both clusters referred to the metal 

frame work of bars used to cover an opening, such as a storm grate or a fireplace grate.
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(b) B vs. Log Frequency 

Figure 21: Scatter plots of ambiguity versus frequency.

Neither of the two clusters contained words concerned with the to irritate meaning 

of grate.

This may be caused by the limited number of words used to construct the semantic 

graph. Since only the 43 closest semantic associates were used in creating the graph, 

common words associated with a particular meaning may not have had a strong 

enough association with the target to be included in this graph. Increasing the number
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Figure 22: U vs. RT with line of best fit.

of associates used to construct the graph causes the number of vertices to become very 

large. For example, with N  =  43, the graph may contain up to 1893 distinct words. If 

N  =  100, the maximum order of the graph is 10,101. As more computational power 

becomes available, this possibility can be further investigated.

8 Future D irections

Future work includes continuing to improve the quality of the semantic representa­

tions created using this method. A genetic programming package, such ass NUANCE 

(Hollis & Westbury, 2003), will be used to further develop an understanding of the 

relationships between written frequency, lexical co-occurrence, and semantic associa­

tion. Using this information, the influence of orthographic frequency in the represen­

tations created by this method will be further reduced, particularly in high frequency 

words. In addition, a much larger corpus, on the order of billions of words, will be 

analyzed. This will provide a wealth of co-occurrence data and increase the number 

of words for which sufficient data is available to construct representations.

This method will also be modified to allow it to better differentiate between sep­

arate meanings of a word and the relatively subtle differences between senses of a
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word. As an example, consider the word apple. The algorithm found three clusters 

in the SN of this word: one corresponding to the fruit meaning of the word, and 

two corresponding to the corporation. The two business oriented clusters focus on 

different aspects of the corporation’s activity. One is concerned with the products 

they produce, and the other focuses on the financial workings of the company. These 

clusters overlap by 50%, but are not similar enough to be merged by the algorithm. 

One possibility is to use two thresholds to determine when clusters are merged. The 

first value, MINOVERLAPa can be set to a lower value to allow for the more aggressive 

merging strategy required to separate words into meanings. Next, a second threshold, 

MINOVERLAPp, can be set to a higher value, allowing for more clusters to differentiate 

between different senses of the same meaning.

Other methods of constructing and clustering the semantic graph for each word 

will be investigated. As more resources become available, much larger graphs can be 

constructed. This can be done by increasing the number of items returned in the 

query sets or increasing the depth of the search. The latter method will cause the 

upper bound on the number of vertices in the graph to grow to N a +  N 2 + N  +  1 . 

If N  = 43, the graph can contain up to 81,400 vertices. Since clustering must be 

performed thousands of times in the GA used to select parameters, using graphs of 

this order is infeasible. With more computational power, the effects of graph size on 

the quality of the ambiguity measurements can be investigated.

Using the data produced by our method, a semantic processing unit will be imple­

mented. This unit will most likely be based on a connectionist framework (Rumelhart, 

McClelland, k, The PDP Research Group, 1986; McClelland, Rumelhart, & The PDP 

Research Group, 1986), and I hope to be able to train this unit to perform well in 

many semantic tasks, such as living-nonliving judgments, property verification, and 

category inclusion judgments. This unit can then be integrated into a full model of 

word recognition.
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9 Sum m ary

In this thesis, I have presented a new method for evaluating semantic association by 

analyzing lexical co-occurrence in a large corpus. Using these associations, vector- 

based representations of the semantic characteristics of each distinct word in the 

corpus were constructed. It was demonstrated that these representations contain only 

minimal influence from orthographic frequency, and that this influence is strongest 

in high frequency words. The vectors created by this method contain categorical 

information, and the semantic associations between words are intuitive.

By using graph theoretic clustering techniques, the SN for each word was divided 

into several groups of words related to the target through a common meaning, and 

the orthographic frequency of the items in these groups was used to estimate the 

frequency of each meaning of an ambiguous word. Based on these data, an ambiguity 

measure was calculated for each distinct word in the corpus. It was shown that 

these measurements are independent of frequency and are able to predict RT in a 

LD task. Analysis of the ambiguity measurement revealed that this method better 

distinguished between the senses of a polysemous word than between the distinct 

meanings of a homograph.

As a final note, it is important to point out a subtle but crucial difference between 

these results and those found in Casey (2005). In Casey’s work, the window weights 

were optimized to best predict RT, that is, to minimize the correlation between 

the data produced by his method and experimental RT data. Thus, the data was 

constructed in such a manner that, by its very nature, required it to predict RT in LD. 

In the current method, the data were optimized to best match established ambiguity 

norms, a variable that has previously been shown to affect RT in LD. Although it 

was never attempted to alter the data to best predict RT, the data produced did so 

in a  way th a t  is consistent w ith recent literature  investigating the  effects of polysemy 

in word recognition. This method was able to extract values for a psychologically 

relevant variable that was consistent with previous norms and predicted RT in LD 

without any prior knowledge of experimental RT values.
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This use of polysemy measures for optimization is a significant improvement over 

Casey et al’s use of lexical decision RT for two reasons. First, polysemy is a well 

known semantic measure and the goal is to create a measure that is semantic in 

nature. Second, by using RT from lexical decision as the optimization metric, the 

final product is rendered ineffective as a tool in examining semantic effects in lexical 

decision: It would not be a surprise to find that the measure correlates with lexical 

decision RT, it was developed to do just that. The neighbourhoods from Casey et 

al. are interesting and useful in many ways but this potential source of circularity 

makes them less than ideal for psycholinguistic research. This method provides a 

more widely useful measure that is mathematicaly linked to a known semantic value.
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A ppendix: C om plexity  and A^'P-Complete P roblem s

The time complexity of an algorithm is the number of steps required by the algorithm 

to solve the problem as a function of the size of the data provided as input to the 

algorithm. This is typically measured by counting the number of operations the 

algorithm requires to process the input. Here, the term operations is vague and 

should be defined to include only those operations which are most relevant to the 

performance of the algorithm being analyzed. When analyzing an algorithm that 

sorts a list of items, for example, the number of comparisons between items may be 

counted. For an algorithm that multiplies two matrices, the number of addition and 

multiplication operations may most strongly affect the running time.

D efinition A .l  Let g: N —> R+, where R+ denotes the positive real numbers. Then 

0(g)  is the set of all functions / :  N —> R+ for which there exists some c € R, c > 0 

and some N  € N such that f (n)  < cg(n) for all n > N.

The set 0(g)  is called big oh of gee of just oh of gee, and contains all functions 

which are bounded above by g. If the number of operations required by an algorithm 

is f (n) ,  then we say that the algorithm has complexity 0( f (n) ) .  When analyzing 

the complexity of an algorithm, it is common practice to include only the highest- 

order term and ignore any constants. Thus, instead of describing the complexity of 

an algorithm as 0(3n2 +  2n +  1), it is simply written as 0 ( n 2). This allows for the 

classification of algorithms into broad categories based on their asymptotic growth 

rate or order.

Figure 23 shows the relative growth rates for several common orders of functions. 

As is clear from this figure, some functions grow much faster than others as the size 

of the input increases. The function 2" grows very quickly. If an algorithm is order 

0 (2") a very large number of operations are required to solve the problem for even 

moderately sized inputs. As the size of the input grows the time requirements of the 

algorithm become extremely high and for large inputs, the algorithm may take days, 

months, or even years to complete. Problems for which all known algorithms require 

immense amounts of computational time are considered intractable. As a general rule
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Figure 23: Relative growth rates of 2", n2, n l g n  and n.

of thumb, any problem that can be solved in polynomial time (i.e., there exists an 

algorithm with complexity 0 ( n k) for some constant k > 0 ) or faster is considered 

tractable.

D efinition A .2 An algorithm is said to be polynornially bounded if its complexity is 

0 (n k) for some fixed k > 0. A problem is said to be polynornially bounded if there 

exists a polynornially bounded algorithm to solve the problem.

Many optimization problems can be formulated as decision problems. A decision 

problem consists of a problem description and a specific input to the problem. The 

only possible answers to a decision problem are yes or no. As an example, consider 

the traveling salesperson problem (TSP):

Given a set of n cities and the costs of traveling between each pair of 

cities, find the minimum cost of traveling to each of the n  cities exactly 

once and returning to the starting city.

This problem is formulated as an optimization problem. A decision problem ver­

sion of the TSP is:
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Given a set of n cities, the costs of traveling between each pair of cities, 

and a positive real number k, is there a way to travel to each of the n 

cities exactly once, returning to the starting city, with a total cost of at 

most k ?

T  and N T  are two classes of decision problems. V  is the class of all decisions 

problems that are polynornially bounded. Inclusion in V  does not guarantee that a 

problem has a reasonable efficient solution, but all problems with efficient solutions 

are contained in V. If a problem is not in V, then the problem is extremely difficult 

to solve, and most likely will be impossible to solve in practice.

The class N T  is more difficult to describe. Consider the task of verifying a 

potential solution to a problem. A potential solution is referred to as a certificate. In 

the decision problem version of the TSP, a certificate would consist of a permutation 

of the cities to be visited. A certificate can be verified by the following steps:

1. Check that each city is visited exactly once.

2. Check that the ending city is the same as the starting city.

3. Check that the total cost of travel is less than k.

Clearly, and algorithm for verifying a solution to the TSP that uses these three steps

is polynornially bounded. If the solution meets all requirements of the problem, the 

algorithm returns a yes answer. Otherwise, the algorithm may either return no or 

enter an infinite loop and provide no output.

D efinition A .3 A nondeterministic algorithm is an algorithm with two phases:

1. Create a random solution to the problem.

2. Determine if the random solution satisfies the problem. If it does, output yes.

Otherwise, there is no output.

When a deterministic algorithm is run multiple times on the same input, it pro­

duces the same output. A nondeterministic algorithm, however, may produce dif­

ferent (or no) output on each execution. The number of operations required by a
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nondeterministic algorithm is the sum of the number of operations required to pro­

duce a random solution, plus the number of operations required to verify the random 

solution. A nondeterministic algorithm is polynornially bounded if there exists a 

polynomial p such that for every input of size n  for which a correct solution exists, 

there is an execution of the algorithm that completes in fewer than p(n) operations.

D efinition A .4 J\fV is the class of all decision problems for which a polynornially 

bounded nondeterministic algorithm exists.

Clearly, V  C J\fV, since the verification stage for any polynornially bounded 

decision problem may simply produce a correct solution in polynomial time, then 

output yes. An open problem in theoretical computer science is whether or not 

V  =  N V .  Unfortunately, no one has yet shown that any single problem in H V  is 

not also in V. That is, while there are no known polynornially bounded solutions for 

any problem in N V ,  none of these problems have been shown to have a lower bound 

on their time complexity that is larger than polynomial.

Next consider the task of converting the input to one problem to a valid input to 

another problem.

D efinition A .5 Let P  and Q be two decision problems, and let T  be a map from 

the input set of P  to the input set of Q. T  is called a polynomial reduction from P  

to Q if the following three conditions are satisfied:

1. T  is polynornially bounded.

2. For any input x  to P , if x  produces a yes output for P , then T(x)  produces a 

yes output for Q.

3. For any input x  to P , if x  produces a no output for P , then T(x)  produces a 

no output for Q.

If there exists a polynomial reduction from P  to Q, then P  is said to be polyno­

rnially reducible to Q, denoted P  <p  Q. Note that if P  <p  Q and Q € V,  then 

P  e V .
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D efinition A .6 A decision problem Q is said to be N T-hard  if P  <P Q for every 

P  € N T .

If Q is an W P-hard problem, then it must be at least as difficult as any other 

problem in N T .  This provides a lower bound on the complexity of Q. Note that a 

problem may be ATP-hard and not be in N T  since it must only be as hard as any 

other problem in N T ,  but there are no stipulations on the complexity or existence 

of an algorithm that solves the problem. Inclusion in N T  provides an upper bound 

on a problem, since a nondeterministic polynornially bounded algorithm, must exist 

to solve the problem.

D efinition A .7 If Q e  N T  and Q is NT-hard,  then Q is called NT-complete.

Karp (1972) showed that the decision version of many optimization problems, 

including finding maximal cliques in a graph, are N T - complete. Prom this definition, 

and the fact that the class T  is closed under the operation of polynomial reduction, 

follows an important result:

If Q is A/’P-complete and Q G T ,  then N T  = T.

This result displays the value of finding an A/"'P-complete problem that is polynornially 

bounded. Unfortunately, such solutions have been sought for several problems in N T  

without success. Most researchers believe that polynornially bounded solutions to 

N T - complete problems do not exist. Unfortunately, at this point, it is still unknown 

whether or not N T  =  T,  and it is considered computationally difficult to find exact 

solutions to any NT-complete,  as no known polynornially bounded algorithm to solve 

any of these problems has been found.
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