
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2005

Translating SQL queries to EJB-QL queries. Translating SQL queries to EJB-QL queries.

Yang Gao
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Gao, Yang, "Translating SQL queries to EJB-QL queries." (2005). Electronic Theses and Dissertations.
6936.
https://scholar.uwindsor.ca/etd/6936

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6936&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/6936?utm_source=scholar.uwindsor.ca%2Fetd%2F6936&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Translating SQL Queries to EJB-QL Queries

by

Yang Gao

A Thesis

Submitted to the Faculty of Graduate Studies and Research

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2005

© 2005 Yang Gao

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09789-2
Our file Notre reference
ISBN: 0-494-09789-2

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10^ 3 0 ^

Abstract

In multi-tier applications it is common to have a relational database at the backend, a

presentation tier at the front, and an object tier in between. Presentation tier will

access the objects tier, which will in turn access the database. Obviously, there is a

need to build a mapping between the object and the relational models. In particular,

we need to study the translation techniques between object and relational queries.

Enterprise Java Beans (EJB) is a technique supporting this kind of object tier. In

addition to the translation from EJB Query Language (EJB-QL) to SQL, which is

needed to execute the EJB-QL, we also need to study the translation from SQL to

EJB-QL when generating the object layer from legacy database application.

This thesis proposes an algorithm to translate SQL queries to equivalent EJB-QL

queries. Since EJB-QL is an object query language, our work is based on translation

techniques between relational and object query languages, and extends the existing

works in the following aspects:

1) Existing works described the translation of a small subset of SQL queries with

many restrictions. Our approach expands this subset to a larger one.

2) Our translation techniques are tailored to EJB-QL.

3) As far as we know, existing works are neither implemented nor tested. We applied

and tested our system with real data from an industry product.

Key words: schema mapping, CMP field, CMR field, relational query graph, object

query graph, key-based join, implicit join, explicit join, nested query, traverse

iii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Acknowledgements

I am very happy to take this opportunity to convey my thankfulness to all people who

helped me a lot during the whole process of my graduate study.

Firstly, I would like to thank my supervisor, Dr. Jianguo Lu, who gave me instructive

help and valuable advice. Without his patience and valuable guidance, it could be

impossible to complete this thesis fluently. Besides, he is a so nice person who can be

regarded as a sincere friend in study and life.

Secondly, I would like to thank my external reader Dr. Jianwen Yang, my internal reader

Dr. Alioune Ngom, Dr. Joan Morrissey and the committee Chair Dr. Arunita Jaekel, for

their time and instructive suggestions and comments.

Thirdly, I would like to thank all my friends and colleagues, who discussed with me on

such topic and provided useful suggestions and experience during the research.

Finally, I would like to give my special thanks to my parents, my husband, who gave me

continuous support, encouragement and their endless love...

iv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table of Contents

Abstract... iii

Acknowledgements.. iv

List of Figures...viii

List of Tables..ix

Chapter 1 Introduction...1

1.1 Motivation.. 1

1.1.1 Multi-tier Applications...1

1.1.2 System Migration... 1

1.1.3 Enterprise Java Beans (EJBs) Upgrade..2

1.2 Enterprise JavaBens (EJBs)... 3

1.2.1 Entity B ean... 3

1.2.2 Session Beans... 3

1.2.3 Message Driven Beans.. 4

1.3 Thesis Overview.. 4

Chapter 2 SQL vs. EJB-QL...5

2.1 EJB Query Language (EJB-QL)..5

2.2 SQL vs. EJB-QL... 5

2.2.1 General Syntax.. 5

2.2.2 Navigation vs. Join...6

2.2.3 Return Types... 8

2.2.4 Query domain...9

2.2.5 Directionality.. 10

2.3 Subquery... 11

2.3.1 Limitations in EJB-QL 2 .0 .. 12

2.3.2 EJB-QL development...13

Chapter 3 Schema Mapping.. 14

3.1 Introduction..14

3.2 O/R mapping in E JB ... 15

Chapter 4 Query Translation...23

v

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.1 Related Work... 23

4.2 Our Approach.. 26

4.3 Constructing a Relational Query Graph (RQG) from a relational query................. 27

4.4 Object Query Graph (OQG)... 31

4.5 Translating RQG to O Q G .. 33

4.5.1 Translating the vertices in RV... 34

4.5.2 Translating the join edges in RE1... 35

4.5.3 Translating the edges in RE2...38

4.6 Generate EJB-QL query from OQG.. 40

4.6.1 Obtaining the FROM clause..41

4.6.2 Obtaining the SELECT clause...41

4.6.3 Constructing WHERE clause..42

4.7 Translation Difficulties...54

4.7.1 The selection of starting vertex..54

4.7.2 Different types of nesting queries... 57

Chapter 5 System Implementation... 62

5.1 Overall Architecture..62

5.2 Assumptions...63

5.3 Features..64

5.4 Additional tools needed.. 64

5.5 User Interface.. 65

Chapter 6 Experiment and Evaluation...67

6.1 Experimental System...67

6.2 Evaluation Method..68

6.3 Experiment 1 - BANKING database system ... 69

6.3.1 Testing procedure...69

6.3.2 Testing Result...72

6.3.3 Result Analysis...81

6.4 Experiment 2 - EJB ORDER Project...83

6.4.1 Testing Procedure...83

vi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6.4.2 Testing Result... 84

6.4.3 Result Analysis...85

Chapter 7 Conclusions and Future W orks...87

7.1 Conclusions..87

7.2 Future Works..89

7.2.1 Relational Schema and EJB Mapping.. 89

7.2.2 Translation upgrading with the changes of EJB specification...........................89

7.2.3 Further integration of J2EE-compliant servers...90

Bibliography.. 91

Vita Auctoris.. 96

vii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List o f Figures

Figure 1-1 3-tier scenario... 1

Figure 1-2 2-tier scenario...2

Figure 3-1 The E-R schema of the Banking System..16

Figure 3-2 Partially translated object schema applied relation mapping rule..........................18

Figure 3-3 Partially translated object schema applied 1:1/1 :m relationship mapping rule 19

Figure 3-4 Final translated object schema applied all mapping rules...................................... 21

Figure 4-1 The RQG of Example 4.9..31

Figure 4-2 The OQG fo r..33

Figure 4-3 The intermediate graph after step 1 for Example 4.3..35

Figure 4-4 The process of translation of join edges in R E 1 ... 36

Figure 4-5 The translated Object Query Graph of Example 4.3..40

Figure 4-6 Traversing diagram for eliminating implicit join edges............................... 43

Figure 4-7 The Object Query Graph eliminated implicit join edges of Example 4.3.............49

Figure 5-1 The overall architecture of SQL2EJBQL Translation System...............................63

Figure 5-2 The GUI of SQL2EJBQL Translation system.. 66

Figure 6-1 The diagram for testing procedure... 69

Figure 6-2 The statistics of testing results..85

viii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List o f Tables

Table 2-1 The relational schema of the Banking System..7

Table 2-2 The object schema (abstract schema) of the banking system example......................8

Table 2-3 The development of EJB-QL from 2.0 to 3.0... 13

Table 4-1 The comparison of my thesis and the related approaches...26

Table 4-2 The possible translations of sub-select clause of Example 4.3................................ 42

Table 4-3 The table storing starting vertex, IDV and path for Example 4 .347

Table 4-4 The table storing all vertices, corresponding IDVs and paths for Example 4.3......49

Table 6-1 Mappings between tables and entity beans...71

Table 6-2 Testing result analysis..82

Table 6-3 Translation result for a join predicate... 83

ix

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Introduction

1.1 Motivation

1.1.1 Multi-tier Applications

Multi-tier applications have become the norm for building enterprise software today. A

multi-tier application usually has at least three tiers, i.e., presentation tier, object tier and

database tier. The database works at the backend, the presentation tier is at the front,

and the object tier stands in between. Presentation tier will not access database directly.

Instead, it will access the objects, which will in turn access the database. Figure 1-1

illustrates the interactions between three tiers. In object tier, object-oriented queries are

used to retrieve data from backend systems, typically a relational database. Obviously,

building a mapping between the object and the relational models is needed. In

particular, we need to study the translation techniques between object and relational

queries.

Object/relational
mappingObject tier Database tier

(relational database)

Presentation tier

Figure 1-1 3-tier scenario

1.1.2 System Migration

However, the 2-tier model without the object layer has been widely used since early

90’s. Many applications have been developed. The problem of migrating 2-tier

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

applications to 3-tier ones becomes more and more important. As shown in Figure 1-2,

a 2-tier model intermingles presentation logic and business logic in one tier, and uses

SQL queries to retrieve data from relational database directly. Consequently, the

translation from SQL queries to object-oriented queries plays an important role in the

migration from 2-tier to multi-tier model.

r n
Presentation Business

SQL queries ✓ \
Database tier

Logic Logic (relational database)

Figure 1-2 2-tier scenario

1.1.3 Enterprise Java Beans (EJBs) Upgrade

EJBs are server-side components that run in an Enterprise Java Bean (EJB) container

[SUN01]. EJB is a technique supporting the object tier in a multi-tier model [LLH+01].

EJB Query Language (EJB-QL), an object query language [C04][H04], resides in the

finder methods of EJBs to access the relational database. When an EJB-QL is executed,

it needs to be translated into SQL statement by the EJB container.

Furthermore, when EJB 1.0 was first developed in 1998, queries in those finder

methods are most likely SQL-based. EJB-QL was not used until the introduction of

EJB2.0 in 2001. Over the past several years many EJBs are developed and deployed,

When the EJB container is upgraded to EJB2.0, SQL queries have to be translated into

EJB-QL. So, in addition to the translation from EJB Query Language (EJB-QL) to

SQL, we also need to study the translation from SQL to EJB-QL.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1.2 Enterprise JavaBens (EJBs)

There are three kinds of enterprise java beans: entity beans, session beans, and message

driven beans.

1.2.1 Entity Bean

Entity beans are persistent objects that represent data in the database such as a relational

database. For example, an instance of Customer entity bean could correspond to a row

in the customer table. So changes to an entity bean result in changes to the database.

The entity bean provides methods to select, add, modify, and delete underlying data.

The slection of certain rows of the table corresponds to the selection of a group of beans

satisfying certain condition. The selection of beans is accomplished by the finder

method in the entity bean.

The EJB specification defines the Entity beans in two different categories: Container

Managed Persistence (CMP) beans and Bean Managed Persistence (BMP) beans. CMP

bean relies on the Container Provider’s tools to generate methods that perform data

access on behalf of the entity bean instances. BMP bean is more complicated than CMP

because it relies on the bean developer to code the persistence logic into the bean class.

In order to do this the developer must know what type of database is being used and

how the bean’s fields map to that database. In this thesis, we only interested in CMP

entity beans.

1.2.2 Session Beans

Session beans are defined as an extension of the client application. They are the verbs

in the process. Session beans drive all interaction with the database and are responsible

for managing the process.

3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1.2.3 Message Driven Beans

Message driven beans are JMS message consumers that implement some business logic.

1.3 Thesis Overview

With EJB technology as the background, this thesis proposed an algorithm of

translation from SQL queries to equivalent EJB-QL queries. Since EJB-QL is an object

query language, our work is based on translation techniques between relational and

object query languages. The related work was explored, and compared with our

approach. A tool named “SQL2EJBQL Translator”, which supports an automated

translation, is designed to translate the SQL statements in finder methods in

CMP 1.0/1.1 entity beans to EJB-QL.

The rest of this thesis is organized as follows: In Chapter 2, the difference between

SQL and EJB-QL is described. Chapter 3 describes the schema mapping between the

relational and object schema, which is the first step of SQL to EJB-QL translation.

Chapter 4 first introduces the approaches of the previous related papers, then explains

algorithm proposed in this thesis. The overall architecture and design details of the

translation tool are described in Chapter 5. The experiments and evaluation results will

be given in chapter 6. Chapter 7 gives a conclusion of this thesis and discusses the

work that needs to be done in the future.

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

SQL vs. EJB-QL
Before the discussion of query translation, we introduce EJB Query Language (EJB-

QL), as well as the difference between EJB-QL and SQL.

2.1 EJB Query Language (EJB-QL)

The syntax of EJB-QL is defined in the EJB 2.0 specification [SUN01]. It is an object

query which has path expressions allowing navigation over the relationships defined

between entity objects [AAG+01]. That is, a query can begin with one entity bean and,

from there, navigate to the related beans. For example, the query can start with an

Order bean and then navigate to the Order's line items. It can also navigate to the

products referenced by the individual line items, and so forth.

At runtime, EJB-QL usually executes in the native language of the underlying data

store. For example, a container that uses a relational database for persistence might

translate EJB-QL statements into SQL statements, while an object-database container

might translate the same EJB-QL statements into an object query language.

2.2 SQL vs. EJB-QL

2.2.1 General Syntax

The general syntax of the SQL and EJB-QL are very complicated. Here we give a brief

description of the part of SQL and EJB-QL that can be translated by our approach.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

<select-statement> ::= [ALL|DISTINCT] <select-clause>

<from-clause>

[<where-clause>}

Similar to SQL, an EJB-QL query contains a SELECT clause, a FROM clause, and an

optional WHERE clause. Here is a part of the BNF syntax of EJB-QL:

EJB-QL::= [ALL|DISTINCT] <select_clause>

<from_clause>

[<where_clause>]

We focus on the subquery led by EXISTS, IN, and comparison predicates in where clause.

We do not support the translation of groupby, order by, and having clauses.

2.2.2 Navigation vs. Join

EJB-QL allows entity objects and entity relationships to be easily navigated by path

expressions. A path expression is denoted by an identification variable followed by the

navigation operator (.) and a CMP field or CMR field. The type of the path expression

is the type of the CMP field or CMR field to which the expression navigates.

This navigation in a path expression is composed using “inner join” semantics. This is

the primary difference between EJB-QL and SQL. EJB-QL navigates to related beans,

whereas SQL joins tables. In EJB-QL, when your return result is a variable that

traverse a relationship by the navigation operator (t. theAccount), behind the

scenes, a SQL JOIN condition might occur.

For example, the following SQL query bases on a banking system database schema

illustrated in Table 2-1:

SELECT t.*
FROM TRANSRECORD T, ACCOUNT a
WHERE t.ACCID = a.ACCID and a .ACCTYPE = 'checking'

6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The equivalent EJB-QL which is against the corresponding object schema (abstract

schema in EJB) (Table 2-21) is:

SELECT object (t)
FROM Transrecord t
WHERE t .theAccount.acctype = 'checking'

Table Name Column Name

ACCOUNT

ACCID,BALANCE,INTEREST,ACCTYPE

PK = {ACCID}

FK = none

CUSTOMER

CUSTOMERID,TITLE,FIRSTNAME,LASTNAME,USERID,PASSWORD

PK = {CUSTOMERID}

FK = none

TRANSRECORD

TRANSID,TRANSTYPE,TRANSAMT,ACCID

PK = {TRANSID}

FK = {ACCID(ACCOUNT:ACCID)}

CUSTACCT
CUSTOMERID,ACCID

PK = {CUSTOMERID, ACCID}
FK = {CUSTOMERID(CUSTOMER:CUSTOMERID)}
{ACCID(ACCOUNT:ACCID)}

Table 2-1 The relational schema o f the Banking System

The relationships between the tables are as follows:

ACCOUNT (many)<->(many) CUSTOMER
ACCOUNT (one) <-> (many) TRANSRECORD

1 Table 2-2 explains the translated object schema in detail with entity bean’s terms.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bean Name Abstract Schema Name Attribute
CMP CMR

Account Account balance
interest
accid
acctype

customers
transrecords

Customer Customer customerid
title
firstname
lastname
userid
password
address

accounts
Transrecord Transrecord transid

transtype
transamt

theAccount

Table 2-2 The object schema (abstract schema) o f the banking system example

2.2.3 Return Types

The SELECT statement of SQL allows one to retrieve records from one or more tables

in the database. The return type can be the columns of tables.

In EJB-QL, the query in a finder method must return an entity bean or a collection of

entity beans in which the finder method is defined. For example, a finder method for a

C u sto m er can only return C u sto m er objects.

8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.2.4 Query domain

The FROM clause of an EJB-QL query defines the domain of the query by declaring

identification variables. An Identification variable designates an instance of an entity

bean, it ranges over the abstract schema type of an entity bean. The FROM clause can

contain multiple identification variable declarations separated by a comma (,), all

identification variables must be declared in the FROM clause.

An identification variable always designates a reference to a single value. It is declared

in one of the two following ways:

■ A range variable is declared using the abstract schema name of an entity bean.

Range_variable_declaration ::=abstract_schema_name [AS]

identifier

■ A collection member identification variable is declared using a collection

valued path expression. The identification variable declarations are evaluated

from left to right in the FROM clause. A collection member identification

variable declaration can used the result of a preceding identification variable

declaration of the query string.

Collection_member_declaration ::= IN

(collection_valued_path_expression)[AS] identifier

For example, the following FROM clause contains two identification variable

declaration clauses. The identification variable declared in the first clause is used in the

second one. The range variable declaration C u sto m er AS c designates the

identification variable c as a range variable whose type is the abstract schema type,

C ustom er. The identification variable a has the abstract schema type A cco u n t.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Because the clauses are evaluated from left to right, the identification variable a can

use the results of the navigation on c.

FROM Customer AS c, IN (c.accounts) a

So the domain of the query may be constrained by path expressions.

In the FROM clause of SQL, all tables appearing in WHERE clause must be declared

in FROM clause, while in EJB-QL it is different. Only the entity bean for which the

finder method is defined, which we call it “root” bean, the bean that has many to one

relationship with the root bean needs to be defined in FROM clause, or when query

needs to compare multiple values ranging over the same abstract schema type, multiple

range variable declarations may therefore be defined in FROM clause. Those beans,

which can be navigated from the “root” bean, are not necessarily declared in FROM

clause. For example, the following SQL query is based on the database schema in

Table 2-1,

SELECT OBJECT(t)
FROM Transrecord t
WHERE t .theAccount.accttype = 'saving'

And EJB-QL query based on abstract schema shown in Table 2-2,

SELECT OBJECT(al)
FROM Account al, Account a2
WHERE al.balance > a2.balance

2.2.5 Directionality

The directionality of a relationship specifies the direction in which you can navigate a

relationship. Because foreign keys are used to join tables, relationships in a relational

database are effectively bidirectional. This is why it doesn’t matter in which table you

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

implement a one-to-one relationship, and the code to join the two tables is virtually the

same. For example, suppose two tables ORDER and SHIPMENT hold a one-to-one

relationship. When the foreign key is implemented in the SHIPMENT table, the SQL

code which joins two tables would be

SELECT * FROM ORDER,SHIPMENT
WHERE SHIPMENT.ORDERID = ORDER.ORDERID

Having the foreign key implemented in the ORDER table, the SQL code would be

SELECT * FROM ORDER, SHIPMENT
WHERE SHIPMENT.SHIPMENTID = ORDER.SHIPMENTID

The directionality in entity beans may not correspond to the inherent directionality of

the database schema. An entity bean can provide for directionality even though the

database not do so easily, and vice versa [RAJ+01]. In EJB-QL, if the relationship

between two entity beans is unidirectional, the relationship traversal is restricted. For

example, if you declare that Order has a one-to-one relationship with Shipment,

but you do not define the reverse one-to-one relationship that Shipment has with

Order, you can get Shipment from Order, but not Order from shipment.

2.3 Subquery

EJB-QL 2.0 does not support subquery, but some application server vendors extend the

standard EJB-QL to support subqueries. For example, WebLogic Server supports the

subqueries as the operands of: the comparison operators ([NOT] IN, [NOT] EXISTS)

and arithmetic operators (<, >, <=, >=, =, <> with ANY and ALL)[BEA04]. IBM

WebSphere also adds extra capabilities to support such kind subqueries [IBM03].

Our system supports the translation of the following types of subqueries:

1 1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1. Subquery return type

A subquery should only specify a single element in the SELECT clause. The

return type can be one of a number of different types, such as:

- Single CMP field type subqueries

- Aggregate Functions

- an entity bean

2. Nesting predicates

- Comparison predicate

- IN predicate

- EXISTS predicate

2.3.1 Limitations in EJB-QL 2.0

Compared with SQL, EJB-QL has many limitations and hence not every SQL query

can be translated into EJB-QL. EJB-QL is a powerful new technology that promises to

improve portability of entity beans in CMP, but it covers just those aspects of SQL that

is standard anyway, without enabling one to utilize advanced features provided by

different databases where appropriate. Here are some restrictions in EJB-QL 2.0:

• Currently, container-managed persistence does not support inheritance. For this

reason, two entity beans of different types cannot be compared in EJB-QL.

• String and Boolean comparison is restricted to = and o in EJB-QL.

• EJB-QL does not support “outerjoin”.

• EJB-QL does not support any kind of subqueries.

• EJB-QL does not support aggregation functions.

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

EJB-QL does not support ORDER BY, GROUP BY and HAVING clauses.

2.3.2 EJB-QL development

The development of EJB specification started from version 1.0 and now is reaching

version 3.0. There are significant changes from 1.1 to 2.0. The EJB 2.0 specification

introduces EJB-QL. EJB2.1 [SUN03] adds the support of aggregation functions and

ORDER BY clause in EJB-QL. EJB3.0 [SUN05] adds the support for inheritance,

outerjoin, GROUP BY clause, HAVING clause and subqueries. Table 2-3 describes the

development of EJB-QL from 2.0 to 3.0, it also compares the EJB-QL which supported

by our translation system with different versions of EJB-QL specification.

\ E J B - Q L

S u p p o r te a \^
Items

EJB-QL 2.0 EJB-QL 2.1 EJB-QL 3.0 Ours

ORDER BY X V V X

aggregation
function

X V V V

Outerjoin X X V X

Inheritance X X V X

subquery X X V V

GROUP BY X X V X

HAVING X X V X

Table 2-3 The development o f EJB-QL from 2.0 to 3.0

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3

Schema Mapping
SQL is based on a relational model, while EJB-QL is based on entity beans, i.e.,

objects. To translate SQL to EJB-QL, the first step is to construct a mapping between

relational and object models. This chapter describes the basics of the mapping and our

approach in constructing such a mapping.

3.1 Introduction

The mapping between the relational and the object models in EJB can be viewed as the

traditional object/relational mapping problem that has been extensively studied for a

long time. A variety of methods have been proposed [AAK97] [RSH96] [FV95]

[PTK95][CSG94][YL93][J97], many of them are in the area of database reverse

engineering. Unfortunately, there is no standard way to specify the actual O/R mapping

with CMP entity beans.

The EJB specification does not provide for a particular mapping method between an

object model and a relational database schema. Typically programmers define the

mapping in deployment descriptor, and EJB containers use the deployment descriptor

to map the entities and relationships to normalized database tables. The mapping

capability of the EJB container varies from implementation to implementation, which

is one of the “value added” services on which vendors compete [SGT01].

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

An EJB container is just a specific persistence framework to leverage the power of the

Enterprise JavaBeans component model, with a mapping tool put on top of it. The

mapping tool generates information that maps the entity bean's container-managed

fields to a data source, such as a column in a relational database table. This mapping

information is stored in an XML file. Lots of sophisticated O/R mapping products are

available for integration with application servers, such as TopLink[P03][ORA03],

Cocobase [TH002][TH003], and BeanMaker [DB04], etc.. Most of these tools may

perform the O/R mapping either automatically from existing database or based on

simple specifications supplemented by the user through an easy-to-use GUI interface.

In WebSphere Application Developer, EJB object persistency mapping is aided with

tools to map tables to CMP EJBs, using the top-down, bottom-up, or meet-in-the-

middle methodology. For the bottom-up approach, tools are available to map existing

database tables to EJB entities. For top-down, smart guides are available for creating

EJBs and mapping the associated EJB entity object model to database tables. For meet-

in-the-middle schemes, tooling is available for mapping EJB fields to columns and for

composers (computing one CMP field value out of multiple columns), converters (type

conversion and simple computation on one column), etc.

3.2 O/R mapping in EJB

O/R mappings in EJB define how EJB objects and their attributes are to be represented

in the database. To simplify the procedure, here we assume that there is a one-to-one

correspondence between tables and entity beans, and the relationships between entity

beans are bi-directional. We use the banking system example given in section 2.2.2 to

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

demonstrate the general mapping rules which map the exampled relational schema to

an object schema (abstract schema) of entity beans. Figure 3-1 is the ER-schema of

exampled database, which models a bank with many customers. A customer may have

multiple bank accounts and an account may be owned by multiple customers. A

transaction record is generated for each banking transaction, such as deposit,

withdrawal, or transfer of money between two accounts. A bank account may have

many transaction records.

LASTNAME
TITLE

PASSWORD

CUSTOMERID

own
TRANSID

TRANSTYPEm

ACCID

has
BALANCE

IN T E R E S T ^) (^ A C C T Y P E TRANSAMT ACCID

A CCOUNT

CUSTOM ER

TRANSRECORD

Figure 3-1 The E-R schema o f the Banking System

General Mapping Rules

In the following we present the general mapping rules of schema transformation,

namely, relation mapping rule and relationship mapping rule. We will demonstrate

them in the example of banking system shown in Table 2-1. Each mapping rule is

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

described below in two parts. The first part describes the rule itself. The second part

illustrates the rule with the help of an example.

Rule 1: relation mapping rule

This rule is to map each database relation (table) which is not represent a relationship

to a single entity bean. Each non-foreign key column is mapped to a persistent field

(CMP field) of the entity bean created for this table. SQL data types are mapped onto

the corresponding Java types.

Example of banking system: Up to this step, the partially translated schema will be the

following.

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Relation/Table

Column

map to
 >

Object/Entity

Attribute

_________ ACCOUNT

ACCID: character
BALANCE: decimal
INTEREST: decimal
ACCTYPE: varchar

►

_________Account

accid: String
balance: BigDecimal
interest: BigDecimal
acctype: String

CUSTOMER

CUSTOMERID: character
TITLE: varchar
FIRSTNAME: varchar
LASTNAME: varchar
USERID: varchar
PASSWORD: varchar

TRANSRECORD

TRANSID: character
TRANSTYPE: varchar
TRANSAMT: decimal
ACCID (EKl: character

CUSTACCT

CU STOMERIDIFKl: character
ACCIDfFKL character

Customer

customerid: String
title: String
firstname: String
lastname: String
userid: String
password: String

Transrecord

transid: String
transtype: String
transamt: BigDecimal

Figure 3-2 Partially translated object schema applied relation mapping rule

Rule 2: one-to-one or one-to-many relationship mapping rule

In relational database, a one-to-one or one-to-many relationship between two tables

is represented by a foreign key dependency. It is mapped to object references

(CMR fields) in both entity beans. Each object reference in one bean refers to the

other one.

Example of banking system: There is a one-to-many relationship between two

tables ACCOUNT and TRANSRECORD. The relationship is represented with the

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

foreign key ACCID in table TRANSRECORD, and it is mapped to a pair of

references (CMR fields) - transrecords in class Account and

theAccount in class Transrecord, transrecords is a set/multi-valued

CMR field which refers to the objects of class Transrecord; theAccount is a

single-valued CMR field referring to the object of class Account. After applying

this rule, the partially translated object schema is:

Relation/Table map to Object/Entity

Column Attribute

Account

0..1
ACCOUNT

ACCID: character
accid: String
balance: BigDecimal
interest: BigDecimal
acctype: String
transrecords: Set(Transrecord)

BALANCE: decimal
INTEREST: decimal
ACCTYPE: varchar

------------------- ^

Transrecord

0..*

TRANSRECORD transid: String
transtype: String
transamt: BigDecimal
theAccount: Account

TRANSID: character
TRANSTYPE: varchar
TRANSAMT: decimal

has

CUSTOMER

CUSTOMERID: character
TITLE: varchar
FIRSTNAME: varchar
LASTNAME: varchar
USERID: varchar
PASSWORD: varchar

Customer

customerid: String
title: String
firstname: String
lastname: String
userid: String
password: String

CUSTACCT

CUSTOMERIDfFKl: character
ACCID(FK'): character

Figure 3-3 Partially translated object schema applied l: l/l:m relationship mapping rule

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Rule 3: many-to-many relationship mapping

In the relational database, the many-to-many relationship is implemented as an

association table. This table only contains two foreign keys, each pointing to the

table of one of the related entities. Many-to-many relationship between two tables,

two set/multi-valued object references (CMR fields) are introduced in. If the

association table has its own attribute, this table should be mapped to an entity.

Example of banking system: There is a one-to-many relationship between two

tables ACCOUNT and CUSTOMER. The relationship is represented by the

association table CUSTACCT, and it is mapped to a pair of set/multi-valued

references (CMR fields) - accounts in class Customer and customers in

class Account, accounts is a CMR field which refers to the objects of class

Account, and customers is a CMR field referring to the object of class

Customer.

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Relation/Table

Column

map to

ACCOUNT

ACCID: character
BALANCE: decimal
INTEREST: decimal
ACCTYPE: varchar

TRANSRECORD

TRANSID: character
TRANSTYPE: varchar
TRANSAMT: decimal
ACCIDfFKLcharacter

CUSTOMER

CUSTOMERID: character
TITLE: varchar
FIRSTNAME: varchar
LASTNAME: varchar
USERID: varchar
PASSWORD: varchar

CUSTACCT

CUSTOMERIDfFIQ: char:
ACCIDtFKl: character

Object/Entity

Attribute

Account

accid: String
balance: BigDecimal
interest: BigDecimal
acctype: String
transrecords: Set(Transrecord)
customers: SetiCustomert___

0..1

0..*

Transrecord

transid: String
transtype: String
transamt: BigDecimal
theAccount: Account

0..*

owned by
Customer

customerid: String
title: String
firstname: String
lastname: String 0..*
userid: String
password: String
accounts: Set(Account)

has

Figure 3-4 Final translated object schema applied all mapping rules

Finally, by applying the above schema mapping rules, this relational schema in Table

2-1 is transformed to the object schema (abstract schema) showed in Figure 3-4.

Inheritance is among the most powerful features of object-oriented technology.

Unfortunately, it is not supported by EJB specification. Some EJB containers provide

support for it as an extension to the specification. For example, in IBM’s WebSphere

Application Server suit, EJB inheritance is mapped to a single table, that is, the base

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

and all derived entity beans are mapped to the same database table or multiple tables

(root/leaf).

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

Query Translation
Since EJB-QL is nearly identical to object-oriented Query Language, the translation

from SQL to EJB-QL is similar to the translation to Object Query Language (OQL).

4.1 Related Work

A few works have been done on the translation between SQL and object queries

languages [MYK93] [VA95] [MK98] [YZM+95] [MYK95] [CRD94] [RC95].

[MYK93][VA95][MK98][CRD94] address the translation from SQL queries to object

oriented queries. All of them use graphs to represent queries in the translation. One

difference among them is that the target languages are different with each other. In

[VA95], the SQL queries are translated to methods which are expressed in TM2

[BAZ93][FKS94], a language for describing conceptual schemas of object-oriented

databases, which allows the specification of data structures in terms of Classes and

Sorts, and provides a computationally complete, functional data manipulation language

for method and constraint specification. [CRD94] uses XSQL which is an extension to

the SQL query. The target language used in [MYK93][MK98] is OQL, which is an

SQL-like query language with special features dealing with complex objects, values

and methods [P01].

2 The language TM is an object-oriented data model that has been developed at the University of Twente and
the Politecnico di Milano.

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The goal of my thesis is to describe tactics for translating queries that contain nested

blocks, aggregate functions, grouping and quantifiers. We use EJB-QL as target

language to describe these tactics. However, the approach works just as well for other

object oriented query languages that enjoy some or all of these features.

Since the syntax of EJB-QL is more similar to OQL, there are some strong similarities

between the translation algorithms of [MYK93][MK98] and the one proposed in this

thesis, but three important differences can be pointed out.

1) Nesting queries: [MYK93] does not discuss the translation of nested queries, in the

assumption that there are unnesting algorithms [K82] that transform nested queries into

an equivalent collection of simple queries. But this approach is inadequate for our

purpose.

2) Semijoin and antijoins: as for the translation of subqueries, [MK98] proposed their

solutions to translate queries with nesting predicates IN, NOT IN, EXISTS, and NOT

EXISTS. However, their approach assumes these semijoins or antijoins are key based.

For example, for a subquery of the form R.A (NOT) IN (SELECT S.B...), A and B

should have key-foreign key relationship. Our approach removes this assumption and

hence can translate more queries.

From the annotation they defined on the object schema and the definitions on the

semijoin and antijoins, we understand that both of these two kinds of joins can be

translated into object references between classes in the object schema. And these

references in the object schema are based on foreign keys and association tables of the

underlying relational schema, which means that the joins in SQL queries are key based

24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

joins. This requires the subquery with (NOT) EXISTS predicate of a SQL statement to

be correlated, which means the inner query should contain a join predicate that

references the relation of the outer query, and this join is key based join. For example,

in the following two queries, A and B should be a pair of key and foreign key.

Example 4.1. Queries that should have key-foreign key relationship between A and B,

in [MK98]’s approach.

select R.* from R where R.A IN
(select S.B from S)

Example 4.2. A query Q2 =

select R.* from R where EXISTS
(select S.* from S where R.A = S.B)

In my thesis, the joins and antijoins are expanded to any attributes. Meanwhile, the

uncorrelated subqueries with (NOT) EXISTS predicates are also considered to be

translated.

3) Aggregate functions: Both [MYK93] and [VA95] didn’t mention the translation of

SQL query which includes aggregate functions. Although EJB-QL 2.0 does not support

aggregate functions, many application servers do support them. For example, IBM

WebSphere allows to use aggregation functions (AVG, COUNT, MAX, MIN and SUM)

in a subselect clause . In my thesis, the subquery with the form of R.A = (SELECT

MAX(S.B)...) can be translated.

3 A subquery should only specify a single elem ent in the SELECT clause.

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The following table makes the comparison between my thesis and the related

approaches.

Subquery
nesting operator

Approaches Simple Aggregation
IN

NOT I N , o E X IST S/N O T EXISTS
query Function Key-

based
join

Nonkey-
based
join

uncorrelated
subquery

Correlated subquery
(EXISTS)

Key-
based
join

Nonkey-
based join

Clement Yu,
et al

V X X X X X X

Ahmed
Mostefaoui,
et al

V X V X X V X

Ours V V V V V V V

Table 4-1 The comparison of my thesis and the related approaches

4.2 Our Approach

Having compared with the related approaches of the query translation, this section

describes our approach to the translation of SQL queries to EJB-QL. We focus on the

translation of the subqueries with IN, EXISTS and comparison predicates.

As mentioned in 2.2.3, to satisfy the specification of EJB-QL defined in a finder method

[IBM03][SUN01], the value of the query result which is specified by the SELECT

clause, must be an entity bean in which the finder method is defined. So it is required

that the SELECT clause of the outmost SQL statement can not have aggregation

functions, and it need to be an all-column selection (for example, SELECT

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CUSTOMER.*) [GW99]. In the SELECT clause of subqueries, aggregation function

can be used, but only single element can be specified. WHERE clause specifies the

qualification conditions of a query. We assume that the relational WHERE clause

contains qualification conditions in conjunctive form.

Our translation methodology consists of three steps. In the first step, a relational query

graph (RQG) of the given query is constructed. In the second step, the RQG is

transformed to its corresponding object query graph (OQG). Finally, the translated

EJB-QL is obtained from the transformed OQG.

The above three steps will be discussed in the following three sections. We will use the

example as below.

Example 4.3. Consider the following SQL query defined on the relational schema

Table 2-1. This query finds the largest account of a particular customer,

select ax.*
from ACCOUNT a lr CUSTOMER Ci, CUSTACCT cai
where cx.CUSTOMERID=?
and ai.BALANCE =

(select MAX(a2.BALANCE)
from ACCOUNT a2, CUSTACCT ca2
where ca2. CUSTOMERID = cx. CUSTOMERID

and a2.ACCID = ca2.ACCID)
and ca2.ACCID = ax.ACCID
and Ci. CUSTOMERID = cax.CUSTOMERID

4.3 Constructing a Relational Query Graph (RQG) from a relational query

We use a representation for SQL queries similar to the one used in [MK98]. A RQG is

represented by a set of vertices RV, a set of undirected edges RE1, and a set of

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

directed edges RE2. In [MK98] a directed edge represents semijoin (with the

conditions IN and EXISTS) or a special kind of antijoins (with the conditions NOT IN

and NOT EXISTS), whereas in our definition, a directed edge represents a nesting

operator which leads to a subquery.

Definition 1 (RQG). Given relational query Q, we define its RQG as an annotated

graph: RQG(Q) = RQG(RV,RE1,RE2), where RV is a set of vertices, RE1 is a set of

undirected edges, and RE2 is a set of directed edges that are defined as follows:

- A vertex v in RV corresponds to either: 1) Relation Tuple Variable (RTV)4,

denoted by RTV(v), or 2) the predicate “EXISTS”. Vertex v is associated with a

number which indicates the depth, or the level, of the subquery or query where

the tuple variable is defined. The outermost query is of level 0.

Each vertex can be annotated with a set of selection operations on its

corresponding RTV.

- An undirected edge ej between vertices vj and V2 in RE1 represents a join

predicate. The annotation on ei is a join condition of the form < RTV(v;).a op

RTV(v2).b>, where a and b are the attributes of RTVs RTV(v/) and RTV(v^)

respectively, and op is a comparison operator such as ‘=’ and ‘> \ The vertices

reside in two ends can be either in the same or different query levels.

- A directed edge e2 from vertex v; to vertex V2 in RE2 indicates a nesting

operator such as “IN”, “NOT IN”, “EXISTS”, “NOT EXISTS”, or a

comparison operator (such as “>’, ‘=’, etc) with quantifier such as ANY and

4 Relation Tuple Variable is a variable that “ranges over” named relation. SQL does not require the explicit

introduction of a tuple variable, it allows the relation name to serve as an implicit tuple variable.

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ALL. Aggregation function can appear at the right side of operator. The

annotation ANNO on e2 has the following forms:

a) RTV(v/).a op [quantifier] * [Agg] * (RTV(v2).b). Where op is (NOT) IN or

comparison operator “ >”, etc.); a and b are non-key attributes of

RTYs RTV(v7) and RTV(v2).

b) op [Agg] * (RTV (v2). b). Where op is EXISTS; v7 represents to EXISTS

predicate; b is non-key attribute of RTV(v2).

c) RTV(v/).a op [quantifier]RTV(v2).b. Where op is (NOT) IN, (NOT)

EXISTS5 or comparison operator (“=”); a and b are key attributes with

foreign key relationship of relation RTV(v7) and RTV(v2).

We obtain a RQG by parsing the SQL statement and recursively processing SELECT

clause, FROM clause and WHERE clause. Different from the method proposed in 0,

we obtain the RQG through not only WHERE clause, but also SELECT and FROM

clause. This is because that rich information for subquery is hidden in SELECT clause

and the depth of query should be associated with vertices of RQG during processing

FROM clause. A set of vertices associated with a query depth are created when

processing FROM clause. When dealing with WHERE and SELECT clause, a set of

edges will be created.

Suppose the input SQL statement is the query in Example 4.3:

s e l e c t a x.*
from ACCOUNT a x, CUSTOMER c u CUSTACCT c a x
where cx.CUSTOMERID=?

and a x. BALANCE =

5 When the operator is (NOT) EXISTS, the quantifier should not appear.

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(select MAX(a2. BALANCE)
from ACCOUNT a2, CUSTACCT ca2
where ca2. CUSTOMERID = C i .CUSTOMERID

and a2.ACCID = ca2.ACCID)
and cax.ACCID = ax.ACCID
and C i . CUSTOMERID = cax.CUSTOMERID

We start with FROM clause of the main query. For each relation we create a vertex v

representing a RTV. Hence vertices ax6, cax and cx are created. Since the outmost query

is of both depth 0, we set depth 0 for al5 ca3 and cx, denoted by a^O), caL(0) and Ci (0) .

Next the WHERE clause of the main query is processed, “CUSTOMERID=?” is set as

an annotation on Ci. For join predicates “a1.ACCID=ca1. ACCID” and

“cax. CUSTOMERID = cx. CUSTOMERID”, two undirected edges are created to

connect a x and cax, and cax and cx. Their annotations are

“ax. ACCID=cax. ACCID”, “cax. CUSTOMERID = Cx. CUSTOMERID”.

The comparison predicate “a x. BALANCE = (select MAX (a2. BALANCE)..."

leads to a subquery. Again the FROM clause of the subquery will be processed first,

and vertices a2(l) and ca2(l) are created. A directed edge is created from ax to a2 with

annotation “ax. BALANCE = (select MAX (a2. BALANCE) ” for the sub SELECT

clause.

Finally, for join predicates “cx.CUSTOMERID = ca2.CUSTOMERID” and

“a2. ACC ID = ca2. ACC ID”, we create the undirected edges between cx and ca2 with

6 To simplify notation we assum e that a RTV and a vertex nam e are interchangeable.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

annotation “cx. CUSTOMERID=ca2. CUSTOMERID”, and a2 and ca2 with annotation

“a2. ACCID=ca2. ACC ID”, respectively.

The generated RQG is shown in Figure 4-1.

aj. BALANCE = MAX (a2.BALANCE)ai.ACCID=cai. ACCID

cai .CU STOMERID=ci .CU STOMERID a2.ACCID=ca2. ACCID

c1.CUSTOMERID=ca2.CUSTOMERID
ci (0)

CUSTOMERID= ? ► nesting operator

 join

Figure 4-1 The RQG of Example 4.9

4.4 Object Query Graph (OQG)

First, we define OQG.

Definition 2.(OQG) An Object Query Graph OQG(OV,OEl,OE2) consists of a set of

vertices OV, a set of undirected edges OE1, and a set of directed edges OE2.

- Each vertex v in OV represents either a Class Instance Variable (CIV) of a class

or an “EXISTS” predicate. It is associated with a number indicating the depth

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

where the CIV is defined in a query or subquery. Each vertex v is annotated

with the qualification conditions on the CIV corresponding to v.

- An undirected edge e in OE1 represents an explicit join (a join represented with

a join condition). It is annotated with the explicit join condition between the

two corresponding CIVs. The vertices residing in two ends can be either in the

same or different query depth.

- A directed edge e in OE2 represents one of the followings:

■ a nesting operator which leads to a subquery. The arrow starts from outer

query to inner query.

■ an implicit join (a join by a path expression using the object reference),

between two CIVs, The vertices residing in two ends can be either in the

same or different query levels. When two vertices are in different query

levels, the arrow should start from outer query to inner query. The edge e

from Vi to v2, has the annotation CIV (v j) .CMRvi, where CIV(vi) is the

CIV represented by v,/, CMRvi is the object reference/CMR field in the

class C(v/) corresponding to vj, with the domain class C(v2) corresponding

to v2. The edge e indicates the need of a traversal between CMRvi of class

C(v/) and the domain class C(v2).

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

al.interest > a2.interest

a2. customers

EXISTS c c (1)EXISTS (0)

c.firstname = ‘John’

> nesting operator

> implicit join

— explicit join

Figure 4-2 The OQG for Example4.4

Example 4.4. Figure 4-2 depicts an OQG for the EJB-QL below. The EJB-QL query

selects all the Account beans whose interests are higher than the Account whose

customer’s first name is “John”. Next section will discuss how to generate this kind of

OQG from RQG.

EJB-QL=
select object(aO
from Account < Account a2
where ai.interest > a2.interest

and EXISTS (select object(c)
from IN (a2.customers) c
where c.firstname = 'John')

4.5 Translating RQG to OQG

The algorithm of transforming RQG to OQG is described as follows. Starting from this

section we will use the following notational conventions:

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Given a vertex v,-,

• RTV(v,) denotes the RTV corresponding to vertex vi.

• ClV(vj) denote the CIV corresponding to vertex vi.

• R(v,) denotes the relation corresponding to the RTV(vi).

• C(v() denotes the class corresponding to the ClV(vi).

Given a relation or an attribute x,

• M(x) represents the corresponding class or attribute in a class, where M is

the mapping between the relational and object schemas.

Input: A relational query graph RQG(RV, RE1, RE2), Relational Schema, Object

Schema, R/O Schema mapping M.

Output: An object query graph OQG(OV,OEl,OE2).

Algorithm:

Translate vertices in RV;

Translate the edges in OE1;

Translate the edges in OE2.

The following subsections describe these three steps.

4.5.1 Translating the vertices in RV.

For each vertex V/, if v, does not correspond to an association table, copy v, to OV.

Otherwise, v; will be ignored.

Figure 4-3 shows an intermediate OQG generated from step 1 of the query graph

translation algorithm. In the RQG of Figure 4-1, the vertices ai, a2 and c2 are

copied into OQG since they correspond to ACCOUNT and CUSTOMER relations,

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

which are not associate tables. Vertices c a i and c a 2 are ignored since they

correspond to the association table CUSTACCT.

ai (0)

c i (0)

customerid = ?

Figure 4-3 The intermediate graph after step 1 for Example 4.3

4.5.2 Translating the join edges in RE1

For each edge e in RE1 between vertices vi and v2, supposing the annotation of e is

<RTV (V]_) . a op RTV(v2) . b>, where a and b are two attributes in relation

R(v/) and R(v2), there are a few cases for the translation of e, depending on what a

and b are mapped into the object schema. Three factors need to be considered in

the translation:

a) Whether both R(vy) and R(v2) are mapped into classes;

b) Whether one of a and b corresponds to CMP or CMR fields;

c) whether RTV(vy) and RTV(v2) are in different level of query blocks.

According to these different cases, different translations will be produced as illustrated

in the following diagram.

a2 (1)

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

M(R(a)) &
M(R(b) are
CMP fields

1 undirected edge
■►(explicit join)► same/different

query level

M(R(v,)) &
M(R(v2)) are
classes

► 2 directed edges
(implicit join)

Vj & v2 in
same query
levelM(b) is CMR

field

► 1 directed edge V)
(implicit join)different

auerv level

Vi & v3 in
same query
level

find third vertex v3
in OQG

► 2 directed edges
(implicit join)M(R(v2)) is

CMR field

► 1 directed edge
(implicit join)

same query
level

Figure 4-4 The process of translation ofjoin edges in RE1

Case 1. Both M(R(v/)) and M(R(v/)) are object classes in the object schema.

Subcasel. 1: Both M(a) and M(b) are CMP fields, ie., they are not object references.

In this case the translated edge and the annotation of the edge are as follows:

CIY(vj)).M(a) op CIV(v2)).M(b)

V; V2

Subcase 1.2.One of M(a) and M(b), say M(a), is CMP field.

In this case, the operator op must be the equal sign, and M(b) should correspond to

two CMR fields in classes M(R(v;)) and M(R(v2)) respectively. We call these two

CMR fields M(b)v/ and M(b)v2, which have domain classes M(R(v2) and M(R(v/)),

respectively.

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

If RTV(v;) and RTV(v2) are defined in the same level of query block, the translated

edge will be two directed edges. The edge from v; to v2, with annotation

CIV(v7).M(b)v7, indicates the need of a traversal from the M(b)v/ of class M(R(v/))

corresponding to vi to the domain class M(R(v2)) of M(b)v/ which corresponds to

v2. The edge from v2 to vi, with annotation CIV(v2).M(b)v2, indicates the need of a

traversal from the M(b)v2 of class M(R(v2)) corresponding to v2 and the domain

class M(R(v/)) of M(b)v2 which corresponds to v/.

CIV(vi).M(b)vj
 >

v' ^ v2

CIV(v2).M(b)v2

If RTV(v;) and RTV(v2) are defined in the different level of query blocks,

supposing RTV(vy) is in outer query block and RTV(v2) is in inner query block, the

translated edge is a directed edge from vi to v2, with annotation CIV(v/).M(b)v/.

CIV(v;).M(b)v;
v ► ^

Case 2. One of the vertices, say v2, corresponds to association table. In this case, v2

is not copied into OQG, and M(R(v2)) corresponds to two set-valued CMR fields in

two classes represented by other vertices in OQG, say, in v; and v2. Use M(R(v2))v;

and M (R (v2)) v5 to denote those two CMR fields, where M(R(v2))v/ is in class

M(R(v;)) with domain classes M(R(v2), and M(R(v2))v3 is in class M(R(v2)) with

domain class M(R(v/)), respectively.

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

For each vertex v in RQG, if it corresponds to class M(R(v2)) and is adjacent to v2

in the RQG, remove the edge between v and V2 .

If RTV(v/) and RTV(v2) are defined in the same level of query block, create two

directed edges in OQG between the v, and V3 . The edge from v/ to V3; with

annotation CIV(v/).M(R(v2))vi, and the edge from V3 to vj with annotation

CIV(v3).M(R(v2))v5.

CIV(v;)).M (R (v2))v;

 - - - - ►

V, v3
<...

CIV(v3)).M(R(v2))v3

If RTV(vy) and RTV(vj) are defined in the different level of query blocks, such as

RTV(v/) in outer query block and RTV(v2) in inner query block, create an directed

edge from the v/ to v3, with annotation CIV(v/)).M(R(v2))v/, where M(R(v2))v; is in

class M(R(v/)).

CIV(v/)).M(R(v2))v/
v j ~ ~ ~ * v 3

4.5.3 Translating the edges in RE2

For each edge e in RE2 from vertex v/ and v2, where e represents a nesting operator,

a directed edge is created in OQG between vj and v2, and the annotation ANNO on

e is converted to ANNO’ on the translated edge in OE2. Different forms of ANNO

will result in different ANNO’. ANNO =

a) RTV(v/).a op [quantifier]*[Agg]*(RTV(v2).b). ANNO’ will be

“CIV(v;).M(a) op [quantifier] * [Agg] * (CIV(v2) ,M(b))”, where M(a) and

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

M(b) are CMP fields mapping to attributes a and b respectively in relational

schema.

b) op [Agg]*(RTV(v2).b). ANNO will be “op [Agg]*(CIV(v2).M(b))”, where

M(b) is CMP field mapping to attribute b in relational schema.

c) RTV(v/).a op [quantifier]* RTV(v2).b. Assume b is a foreign key. ANNO

will be [quantifier]*CIV(v/).M(b)v/, where M(b)vy is the CMR field in class

M(R(v/)) which has domain class M(R(v2)).
ANNO’

V; ---► v2

Figure 4-5 shows the OQG of the studied example after step 2 & 3 of the

query graph translation. In the RQG of Figure 4-1, when translating edge

eaicai between ax7 and cai, cai corresponds to the association table

CUSTACCT that was transformed to two CMR fields accounts and

customers in object schema, accounts is in class Customer, and

customers is in class Account. We can find that vertex ci corresponds

to class Customer and is adjacent to cax in the RQG. The edge between

cai and ci is set as “visited”. Since ax and ci are defined in the same

query block, two directed implicit join edges eaici and eciai in OQG between

a i and cx is created, with annotations a x. customers and

cx. accounts. For the edge ea]Ca2 , ca2 corresponds to the association table

CUSTACCT, we find that a2 corresponds to class Account and is adjacent

7 To simplify notation we assume that a CIV and a vertex name are interchangeable

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

to ca2 in the RQG, remove the edge between ca2 and a2. Since a2 and Ci

are defined in the different query block, one directional implicit join edge

ecia2 in OQG between c i and a2 is created, with annotation

Ci.accounts, edge eaia2 represents a nesting operator, with the

annotation ai. BALANCE =(select MAX (a2 . BALANCE) which is in

the form of Ri.a op [quantifier] * [Agg]* (R2 . b) . Creating an

edge ea/a2 from ax and a2 in OQG, its annotation will be “a x. balance =

(select MAX (a2. balance) , where balance is CMP field mapping

to attributes BALANCE in relational schema.

al .customers ai .balance = MAX (a?.balance)

ci .accounts

ci .accounts
ci (0)

customerid = ?

 ► nesting operator

 p. implicit join j

| explicit join

Figure 4-5 The translated Object Query Graph of Example 4.3

4.6 Generate EJB-QL query from OQG

Now we will generate the EJB-QL query from the OQG. The simple idea is to

construct EJB-QL query gradually by traversing the OQG from a starting vertex vr

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

selected by a user. This starting vertex should correspond to one of the CIVs defined in

the outmost query. The path expressions are constructed for different types of edges.

The results of traversing an edge e of OQG depend on the following factors:

1) The type of the object reference cmr represented by edge e. cmr which can

be either single- or set- valued.

2) The type of the traversed edge e.

4.6.1 Obtaining the FROM clause

The FROM clause of EJB-QL contains the identification variables which include range

variables and collection member identification variables' (IDVs). The initial starting

vertex is first processed and a range variable is defined in the FROM clause. While

traversing the OQG, more range variables might be declared if its corresponding vertex

cannot be reachable by the navigation from the initial starting vertex; or some

collection member identification variables may be added when traversing a set-valued

CMR field, which means the FROM clause will contain collection_valued path

expression.

4.6.2 Obtaining the SELECT clause

As we have discussed in Chapter 2, in EJB-QL the SELECT clause of the outmost SQL

statement needs to be an all-column selection. For R.* in the SELECT clause of main

query, where R is a relation, the translated SELECT clause of the main query can be:

a) SELECT OBJECT(o), where “o” is an IDV, it is defined for a vertex in OQG

which associates with a CIV(R).

b) SELECT o.r, where “o” is an IDV, “r” is a single-valued CMR field.

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

As we defined in 2.3, the return type of a subquery in EJB-QL can be a single CMP

field, an aggregate function, a single IDV, or a path expression ended with a single

valued CMR field. Table 4-2 illustrates the possible translations of sub-select clause of

a SQL statement.

Subselect clause o f

SQL

Subselect clause o f EJB-QL Remark

SELECT R.A

SELECT o.a “A” is an attribute of relation “R”.
“o” is an IDV. It is defined for a vertex in
OQG which associates with a CIV(R).
“a” is a CMP field corresponding to R.A.

SELECT o.r.a “r” is an single-valued CMR field

SELECT AGG(R.A)

SELECT AGG(o.a) “AGG” is one of aggregate functions (AVG,
MAX, MIN, SUM)

SELECT AGG(o.r.a)

SELECT R.* SELECT OBJECT(o)

SELECT o.r

Table 4-2 The possible translations of sub-select clause o f Example 4.3

4.6.3 Constructing WHERE clause
We now present an algorithm which constructs the WHERE clause of EJB-QL query

from OQG. The difficulty of query translation from SQL queries to EJB-QL queries is

the translation of the WHERE clause because the major difference between SQL and

EJB-QL is showed in WHERE clause. Actually, it not only constructs the WHERE

clause, but also add more contents in FROM clause (i.e. declare IDVs in FROM clause)

and generate the subqueries.

The algorithm has three main steps:

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• Translating initial starting vertex which is selected by a user. This step is to

declare the IDV in FROM clause for the initial starting vertex.

• Eliminate all implicit join edges. This step is to set up path or declare IDV for

all vertices in OQG. It will traverse the OQG through all implicit join edges in a

depth-first manner, starting from the initial starting vertex. Since our OQG is a

3-dimentional graph, a layer represents a query block, the number of layers

indicates the depth of the query. Depth-first is first applied to the implicit join

edges connecting the vertex in different layers, then applied to the edges in the

same layer. For example, Figure 4-6 is an OQG with three layers. Assume vertex

b is the initial starting vertex, the order of traversing is: b - > d - > g - > h - > e -

> f - > a - > c .

a

level 0

level 1

Level 2

Figure 4-6 Traversing diagram for eliminating implicit join edges

The implicit join edges between two vertices in same level must be in pair, with

different directions. When one of implicit join edge is traversed, both of them will

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

be eliminated.

• Processing vertices in OV. Now only explicit join edges and nesting operator

edges are left in OQG. By process each vertex in OV, as well as its adjacent

explicit join edges and nesting operator edges, the whole EJB-QL statement

will be produced.

Traversing the OQG from a starting vertex vr , different edges will be passed through.

The interpretation of each edge may vary with its type. There are three types of edges in

our OQG, we will analyze each type of the edges. In the following, sel-on-V represents

the selections on vertex v, IDV(v) represents the IDV declared for v, PATH(v)

represents the path of v navigated from some starting vertex. Except for the initial

starting vertex, all vertices should have their own path navigating from some starting

vertex. Not every vertex has an IDV, it only declared in certain circumstances. We will

explain it in the following part.

Undirected edge. The undirected edge represents an explicit join. Suppose the

annotation of the edge is “CIV (vi) . cmpi op CIV (v 2) . cmp2”. The edge is

translated to a join predicate of EJB-QL:

IDV(vi) | PATH(vi) .cmpi op IDV (v2) I PATH (v2) . cmp28

CIV(vi).cmpi op CIV(v2).cmp2
Vi V 9

8 IDV has the higher priority than the path to be chosen to construct a join predicate in WHERE clause.

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Directed edge (implicit join). This edge represents an implicit join. The semantics of

this edge is that a traversal from class C(vi) to class C(v2) is needed. Here the type of

reference/CMR field cm r does play a role.

If cmr is single-valued, the path is generated for v2: IDV (v i) | PATH (v i) . cmr

If cmr is multi-valued, we should declare IDV IDV (V2) for v2 with the form

“ IN (IDV (v i) | PATH (vi) . cmr) I DV (v2) ” in FROM clause.

CIV (vx) . cmr
Vi ► V2

Directed edge (nesting operator). This edge represents a nesting operator. The

translation result of this kind of edge mainly depends on the annotation of the edge.

ANNO

Vl ► V2

a. “CIV(vi).cmpi op [quantifier]*[Agg]*(CIV(v2).cmp2)”. The translation would

be “ IDV(vi) | PATH (vi) .cmpi op [q u a n t i f i e r]* [Agg] * (s e l e c t

IDV (V2) I PATH (V2) . cmp2”, the SELECT clause of an subquery is generated.

b. “op [Agg]*(CIV(v2).cmp2)”. The translation would be “EXISTS (s e l e c t

IDV (v2) I PATH (v2) . cmp2”, the SELECT clause of an subquery is generated.

c. “[quantifier]*CIV(vl).cmri2”. where cmrj2 is the CMR field in class C(vi) which

has domain class C(v2). The translation will depend on the nesting operator and

the type of cm r12 (single- or set- valued).

If cm r i 2 is set-valued, the path of v2 is IN(IDV (vi) | PATH (vi) . c m r ^) . We

now declare an IDV I DV (v 2) for v2 with the form of

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

IN(IDV(vi) | PATH (vi) .cmr 1 2) IDV(v2). If the nesting operator is “=”,

“EXIST”, or “IN”, 0 shows that there are three different forms for the same

query, so the annotation will be translated in EJB-QL with one form and will not

generate a subquery. If the nesting operator is “<>, NOT EXIST, or NOT IN”,

use “NOT EXISTS” as nesting operator to lead a subquery. A partial subquery

can also be got: “NOT EXISTS (select object (IDV(v2)) From

IN(IDV(vi) | PATH (vi) .cmr 1 2) IDV(v2)”.

If cmr 1 2 is single-valued, the path for v2 is I DV (v i) I PATH (v i) . cmri2. If the

nesting operator is “=”, “EXIST”, or “IN”, the annotation will be translated in

EJB-QL with one form and has no subquery. Nothing need to be done at this

stage. If the nesting operator is “o , NOT EXIST, or NOT IN”, due to the

limitation of the EJB-QL syntax, the translation is failed. We will explain it in

detail in next section 4.7.2

We now present an algorithm that obtains the EJB-QL from the OQG.

Input: an OQG(OV, OE1, OE2), starting vertex, selected vertex.

Output: an EJB-QL string.

A table is defined to help the translation. Table VERTEX-IDV-PATH, which stores the

vertices and corresponding identification variables (IDYs) as well as their paths that

will be used in path expression.

The process has the following steps:

1. Process starting vertex and all vertices which has no adjacent implicit join edges.

Declare an IDV such as IDV (vstart) for starting vertex, no path is needed to set

for the starting vertex, put them in the VERTEX-IDV-PATH. Suppose the class

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

associated with starting vertex is C (vstart)> declare the IDV for starting vertex in

FROM clause in the form of: C (vstart) IDV (vstart)- Apply the same method

on those vertices which has no adjacent implicit join edges.

In Example 4.3, assume we chose a x in OQG as starting vertex. After step 1, an

IDV accl is declared for a i, put them in table VERTEX-IDV-PATH, and put the

declaration in FROM clause of the outmost query with the format: A cco u n t

ac c i . We can get the partial EJB-QL query which is:

EJB-QL: “ from Account accl”

VERTEX IDV PATH

ai acci /

Table 4-3 The table storing starting vertex, IDV and path for Example 4.3

2. Eliminate all the implicit join edges

We use a stack ON-LINE1 to keep track of the visited vertices. Initially, the stack

is empty.

First we set starting vertex as active vertex. Repeat until active vertex is null.

a) If there is already an active vertex, then proceed to step b). Otherwise, choose

an active vertex in the following order: i) if the ON-LINE1 is not empty, pop

out the top vertex from it. ii) get the first vertex from the OV.

b) Process the active vertex va. Get all the adjacent outgoing implicit join edges of

active vertex va. If va has no outgoing implicit join edge, inactivate the active

vertex, remove va from OV and go back to step a). Otherwise, process them in

the following order:

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

i) The implicit join edge e connecting two vertices in different level of query

blocks, which starts from va to a vertex v2> where V2 is in the subquery.

Translating e with the method described before, we can get the IDV(if have)

and path for v2. Put V2 , its IDV(if have) and path in VERTEX-IDV-PATH.

Remove the edge e. If V2 has no outgoing implicit join edge, inactivate the

active vertex and go back to step a); otherwise, set V2 as active vertex, process

V2-

ii) The implicit join edge e connecting two vertices in same query block,

which starts from va to V2 . Remove the implicit join edge which is from V2 to

va. Get all adjacent outgoing implicit join edges which are in same query

block of va, if the number of such edges >1, push the va into the stack ON

LINE 1 . Find the CMR field from the annotation of e, use the method

presented in i) to process e.

For Example 4.3, starting vertex a! is set as the active vertex. a x h a s one

adjacent outgoing implicit join edge eai d • Process eaIcl. eaid has annotation

a x. customers . The CMR field customers is set-valued. Declare an IDV

custi for ci, and its path will be IN(acci.customers). Put ci, custi and

IN(acci.customers) in VERTEX-IDV-PATH. Remove the edge ea}ci. cl has one

outgoing implicit join edge ecia2 , set cx as active vertex. Process ecia2 . ec] a2 has

annotation cx.accounts. The CMR field accounts is set-valued. Declare

an IDV a c c 2 for a 2, and its path will be IN(custx.accounts). Put a 2, a c c 2 and

IN(custi.accounts) in VERTEX-IDV-Path. Remove the edge ecia2 - Since a 2 has

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

no adjacent outgoing implicit join edge, inactivate the active vertex. To get an

active vertex, first we check the stack ON-LINE, it is empty. Then we check OV,

the vertices stored in OV is in the order of a1} Ci and a2. Get them from OV and

check the adjacent outgoing implicit join edges one by one, none of them has

adjacent outgoing implicit join edges, remove each of them. Finally, the OV is

empty, and the active vertex is null.

VERTEX IDV Path

a i a c c i /

C l CUSti IN(acc i . customers)

a2 acc2 IN(custi .accounts)

Table 4-4 The table storing all vertices, corresponding IDVs and paths for Example 4.3

ai (0)
ai.balance = MAX (a2.balance)

customerid = ?

--------- ► nesting operator

 explicit j oin

Figure 4-7 The Object Query Graph eliminated implicit join edges o f Example 4.3

3. Process vertices in OV.

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

First we will translate the top level SELECT clause. If the selected vertex vsei is the

initial starting vertex, the SELECT clause will be: “select

OBJECT (IDV (vstart)) ”• Otherwise, assume its IDV is IDV (vsei) the SELECT

clause will be: “select OBJECT (IDV (vsei)). If there is no IDV declared for

vsei, get its path from VERTEX-IDV-PATH, say, PATH(vsei). The SELECT

clause will be: “select PATH (vsei)”.

We define a stack ON-LINE2 to keep track of vertices. It is initially empty.

Repeat until OV is empty.

Algorithm: Translate vertex.

Input: a list of vertices SUBQUEY-VERTICES, active vertex v, OV, ON-LINE2,

VERTEX-IDV-PATH

Output: a String, which is part of an EJB-QL query.

0) Choose active vertex. If the active vertex is null, select an active vertex in the

following order: i) get the first vertex from SUBQUERY-VERTICES; ii) pop

out the top of vertex in ON-LINE2. iii) get the first vertex from OV. For an

active vertex va, if it has been visited, go to step 5); if it is the initial starting

vertex, go to step 2), otherwise process it in the following order.

1) Check va in table VERTEX-IDV-PATH, if it has IDV, say, IDV (va), get the

path of va, say, PATH (va), declare it in the FROM clause in the form of :

PATH (va) IDV (va) .

2) Translate the selections on va and put the translated selections in the WHERE

clause. The translation for selections on a vertex is very straightforward. Just

copy it to WHERE clause directly.

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3) Translate all the adjacent undirected edge, put them in the WHERE clause. In

this stage, each vertex should have a path defined for it. Some vertices may have

IDVs declared for them. Use the method of translating explicit join edges

presented before. The edge e is translated to an EJB-QL join predicate:

“IDV (v a) I Path (va) .cmpVa op IDV (v2) I Path (v2) . cmp2".

4) Translate all the nesting operator edges which start from the active vertex va. If

the number of nesting operator edges starting from va >1, push va into stack ON-

LINE2. Get the other end of vertex va for a nesting operator edge, which is v2.

Define a list TEMP-VERTICES, put v2 in the list, get all vertices which are in

the same query block with v2, put them into TEMP-VERTICES. Translating e

using the method for a nesting operator edge described before. If there are path

or/and IDV generated for v2, put them in VERTEX-IDV-PATH.

Remove the edge e. Set the SUBQUEY-VERTICES as TEMP-VERTICES,

active vertex as null.

5) Remove v from OV and SUBQUEY-VERTICES. Go to step 0).

For Example 4.3, assume the selected vertex is ai, we get the SELECT clause for

main query, which is “s e l e c t ob j e c t (a c c i) ”. Now the EJB-QL query is:

EJB-QL:

select object (acc\)

from Account acci

The vertices in OV is {ai, ci, a2}. Get the first vertex from OV, which is ai, set it as

active vertex. Using the Translate Vertex algorithm. Now SUBQUERY-

VERTICES is empty, active vertex is ai, OV is {ah ci, a2}, ON-LINE2 is empty.

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Since ai is the initial starting vertex, so go to step 2). There is no selection on al

and no adjacent undirected edge associated with al. So we will skip the followed

two steps and start to translate nesting operator edge eaia2 in step4). The annotation

on eaia2 is ai . b a l a n c e = a2 .MAX (balance) , which is in the form of

"CIV(Ri).cmpi op [quantifier] *Agg(CIV(R2).cmp2)” . Now the EJB-QL query

becomes:

EJB-QL:

select object (acci)
from Account acci
where acc\.balance = select (MAX (accj. balance)

The other end of eaia2 is a2 . a2 is in level 1. Define a list TEMP-VERTICES, put a2

in the list, get all vertices which are in same query block with a2 , put them in a list

called TEMP-VERTICES, now the TEMP-VERTICES is {a2}. Remove the edge

eaIa2. Set the SUBQUEY-VERTICES as TEMP-VERTICES, active vertex as null;

remove a\ from OV; go through the algorithm Translate Vertex again.

Now SUBQUERY-VERTICES is {a2 }, active vertex is null, OV is {ci, a2 }, ON-

LINE2 is empty. Get the active vertex from SUBQUERY-VERTICES, which is a2 .

Process a2 . Since a2 is not initial starting vertex, declare a2 in subquery in step 1),

EJB-QL:

select object (acci)
from Account acci
where acci.balance = (select (MAX (acc2 .balance))

from IN (custi. accounts) slcc2

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Skip steps 2), 3), 4) because a2 does not meet the conditions. In step 5), remove a2

from OV and SUBQUERY-VERTICES. The SUBQUERY-VERTICES is empty,

add the right bracket “)”. Set the active vertex null; remove a2 from OV; go through

the algorithm Translate Vertex again.

EJB-QL:

select object (acci)
from Account acci
where acci.balance = (select (MAX (acc2.balance))

from IN(custi.accounts) acc 2 >

Now SUBQUERY-VERTICES is empty, active vertex is null, OV is {ci}, ON-

LINE2 is empty. Get the active vertex from OV, which is ci. Process cj. Since Ci is

not initial starting vertex, declare cl in the FROM clause of main query in step 1)

EJB-QL:

select object (acci)
from Account acci, in (acc\. customers) custi

where acci.balance = (select(MAX (accl.balance))
from IN (custi. accounts) acc2)

In step 2), translate its selection to custi.customerid = ?■

EJB-QL:

select object (acci)
from Account acci, in (acci. customers) custi
where acci.balance = (select (MAX (acc2.balance))

from IN (custi. accounts) acc2)
and custi. customerd = ?1

step 5), ci is removed from OV. OV is empty. Translation is done.

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Finally, the generated EJB-QL string is:

select object (acci)
from Account acci, in (acci. customers) custi
where acci. balance = (select (acc2 .MAX (balance))

from IN (custi. accounts) acc2>

and custi. customerd = ?1

4.7 Translation Difficulties

The translation is complicated by the fact that the selection of starting vertex is not

unique during the traverse of OQG, the object reference can be either single- or

set/multi-valued, the nesting structures have different types, and the syntax of EJB-QL

has the restrictions. These factors influence with each other. Different selection of

starting vertex may result in navigation to a different implicit join edge, of which the

type of object reference/CMR field in the annotation may be different (single- or multi

valued). Because of the restrictions of EJB-QL syntax, sometimes this will cause

translation fail. The annotation of a nesting operator edge decided the type of the

nesting query. When it is of the form “ [q u a n t i f i e r] CIV (vi) . cmri2”, the edge

will be dealt with the same way as an implicit join edge, same problem will occur.

4.7.1 The selection of starting vertex

As described in 4.6, the simple idea to generate an EJB-QL query is gradually

traversing an OQG from a designated starting vertex vr. The candidates of vr are all

vertices which represent the CIVs corresponding to the RTVs defined in the outmost

SQL query. Different starting vertex will result in different navigation, which may

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

generate different EJB-QL query or even can not produce an EJB-QL. In the following,

we will explain it using examples.

As mentioned in 2.2.4 and 2.2.2, EJB-QL uses navigation to express the “inner join”

operation in SQL statement. For SQL statement

Select R.*
From R, S
WHERE R.PK = S.FK

Suppose there is a l:m relationship between R and S. Let ejbR and ejbS represent

the abstract schema names of entity bean mapped from relation R and S, respectively.

cmpPK is a CMP field of ejbR mapped from attribute PK. cmrS is a multi-valued

CMR field of ejbR referring to ejbS; cmrR is a single-valued CMR field of ejbS

referring to ejbR. For the join condition “R. PK = S . FK” in the SQL statement,

there should be a path expression which indicates a navigation over a CMR field in the

translated EJB-QL query.

If we chose ejbR as the start of traverse, first we declare an identification variable

e jbr using the range variable declaration9 in FROM clause:

from ejbR ejbr

According to the EJB-QL specification, an identification variable always designates a

reference to a single value. For the navigation from ejbR to ejbS over the multi

valued CMR field cmrS, an identification variable must be declared in FROM clause

by a collection_member_declaration in the form of:

9 A range variable is declared using the abstract schema name of an entity bean.

55

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

IN (ejbr.cmrS) ejbs

The path expression ejbr. cmrS represents the join operation in the original SQL

statement.

If we chose ejbS as the start of traverse, the identification variable ejbs is first

declared in FROM clause:

from ejbS ejbs

For the navigation from ejbS to ejbR over the single-valued CMR field cmrR, if

there is no condition of selection predicates applied on the ejbR, there would be no

cause to trigger a path expression such as "ejbs. cmrR". The join condition “R . PK

= S . FK” in SQL cannot be expressed in corresponding EJB-QL. The translation can

not be proceeded.

Example 4.5. For a SQL statement

select t.*
from TRANSRECORD t, ACCOUNT a
where a.ACCID = t.ACCID

ACCOUNT .ACCI D is the primary key of the table ACCOUNT, and

TRANSRECORD.ACCID is the foreign key of table TRANSRECORD. The related

beans are Account and Transrecord. There is a l:m relationship between

Account and Transrecord. The CMR field in Account is multi-valued with

name "transrecords" and the CMR field in Transrecord is single-valued with

name "theAccount".

We have two options to select a starting vertex.

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

a) Using Account bean as starting vertex, the translated EJB-QL is:

select OBJECT(t)
from Account a, IN (a.transrecords) t

Navigation to transrecords results in a collection. To handle such navigation, in

FROM clause, using a collection valued path expression “IN (a . transrecords)

t ", the identification variable t is declared to range over the elements of the

transrecords collection, “a . transrecords” represents the join operation in

the original SQL statement.

b) Using Transrecord bean as root. Since the CMR field “theAccount” in

Transrecord referring to Account bean is single-valued. The Account bean,

which is reachable by navigation from the root bean Transrecord on a single

valued CMR field, is not necessarily declared in FROM clause. There is no place to use

a path expression such as “t . theAccount” representing the join operation

a. ACC ID = t. ACC ID in the original SQL statement. The translation will not be

preceded.

4.7.2 Different types of nesting queries

The annotation of a nesting operator edge determines the type of the nesting query.

When it is of the form “ [quantifier] CIV (vl) . cmr12”, the edge will be dealt

with the same way as an implicit join edge.

For Example 4.1 and 4.2 illustrate two queries

Q1 = select R.* from R where R.A IN (select S.B from S)
Q2 = select R.* from R where EXISTS (select S.*

from S where R.A = S.B)

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

When A and B are not foreign key relationship, the translation is quite straight-forward.

Let e jb R and e j b S denote the abstract schema names of entity bean mapped from

relation R and S, respectively. cmpA and cmpBare the CMP field name mapped from

attribute A and B. The translated EJB-QL queries will be:

EJB-QL1 = select object (r) from ejbR r where r.cmpA IN (select
s.cmpB FROM ejbS s)

EJB-QL2 = select object(r) from ejbR r where EXISTS
(select object(s)
from ejbS where r.cmpA = s.cmpB)

When there is a foreign key relationship between A and B, the translation will be

similar to the method proposed by Mostefaoui in [MK98]. Mostefaoui shows that IN

and EXISTS conditions can be represented by semijoins, whereas NOT IN and NOT

EXISTS conditions correspond to a special kind of antijoins. In the thesis, the ‘ -ANY”

is also regarded as a semijoin, and “o a l l ” corresponds to anitijoin. When translating

such SQL statement with semijoin, there is no need for nesting in the translated EJB-

QL query. In the translation of nested query with antijoin, we should keep the nesting

structure in translated EJB-QL. An m:l relationship between the entity bean of outer

query and the entity bean located in its subquery in an antijion will cause problem.

Example 4.4.

select a.*
from ACCOUNT a
where a.BALANCE >100 and a.ACCID IN(select t.ACCID

from TRANSRECORD t
where t .TRANSAMT > 20)

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Since there is a l:m relationship between the Account bean and Transrecord

bean, we need to declare a collection member identification variable in FROM clause

with a collection valued path expression “IN (a.transrecords) t

“a . transrecords” represents the join operation in the original SQL statement.

The translated EJB-QL is:

select object (al)
from Account al, IN (al.transrecords) t
where al.balance >100 and t .transamt>20)

When there is a m:l relationship between the root corresponding entity bean and the

entity bean corresponded by a vertex located in its subquery, the translation is

relatively simple.

Example 4.5. Consider a query Q =

select t.*
from TRANSRECORD t
where t.TRANSAMT > 20 and t.ACCID IN (select a.ACCID

from ACCOUNT a
where a.BALANCE >100)

Since there is a m:l relationship between the Transrecord bean and Account

bean, we don’t need to declare an identification variable in FROM clause.

“t . theAccount” represents the join operation in the original SQL statement. The

translated EJB-QL is:

select object (t)
from Transrecord t
where t .transamt>20 and t .theAccount.balance>100

The translation of nested query with an antijion is more complicated. Here we also

translate SQL subqueries with different nesting predicates in the EJB-QL with one

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

formulation, which uses NOT EXISTS as nesting operator to lead a subquery. [VA95]

used the same way to handle NOT IN and NOT EXISTS, in which all subqueies led by

NOT IN or NOT EXISTS were translated to subquery led by EXISTS, and NOT IN to

NOT EXISTS.

Example 4.6 Consider two SQL queries Q1 and Q2.

Ql =
select t.*
from ACCOUNT a
where a .BALANCE >100 and a.ACCID NOT IN (select t.ACCID

from TRANSRECORD t
where t.TRANSAMT > 20)

Q2 =
select t.*
from TRANSRECORD t
where t.TRANSAMT > 20 and t.ACCID NOT IN (select a.ACCID

from ACCOUNT a
where a.BALANCE >100)

EJB-QL 1 is the translated query to Q1:

select object(a)
from ACCOUNT a
where a.balance >100 and NOT EXISTS (select object (t)

from IN(a.transrecords) t
where t.TRANSAMT > 20)

Since the relationship between the entity bean T r a n s r e c o r d and A c c o u n t is m:l,

we cannot declare an identification variable for T r a n s r e c o r d because it is

reachable by the navigation from A c c o u n t on single-valued CMR field

t h e A c c o u n t , Q2 can’t be translated. This is a limitation of the EJB-QL syntax. For

an OQL discussed in [MK98], the NOT EXIST clause is a bloc in WHERE clause.

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Assume an antijoin edge e from class instance variable Ci to C2 and a reference r

between Ci and C2, the NOT EXISTS clause will be in the format of “NOT EXISTS

v a r in C i. r : < l i s t _ o f _ c o n d i t i o n s > " , where v a r is a C2 variable and

< l i s t _ o f _ c o n d i t i o n s > is the selections on the variable v a r . Here the

declaration of v a r does not take into account the type of the reference r (single-or

multi-valued). So for the query Q2, if it’s translated into OQL, the NOT EXISTS

clause would be "NOT EXISTS a in t . theAccount; a . balance>100 ".

However, the semantics of Q2 is meaningless. Because the foreign key (ACCID) in

table TRANSRECORD should be a subset of primary key (ACCID) in table ACCONT,

the subquery is always false. The result of the query is therefore always an empty set.

In our translation, we assume that all SQL statements are semantically meaningful.

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5

System Implementation
This chapter covers the implementation of query translation discussed in the last chapter.

First, we will explain the overall design, and then we will show the design details of the

main components. The query translator is implemented in programming language Java.

The integrated development environment (IDE) used in developing the translator is Eclipse

3.0.

5.1 Overall Architecture

The translation system consists of three subsystems: Mapping File Generator, SQL

Extractor and SQL2EJBQL Translator.

The Mapping File Generator takes database schema file and some extension files

provided by vendor as input. These extension files describe the CMP beans and their

relationships, as well as the mappings between database schema and CMP beans. The

output is e j b - j a r . x m l and c m p -m a p p in g . xml files. The e j b - j a r . x m l file

describes the CMP beans and their relationships, the c m p - m a p p in g s . xml file

describes the mapping between the database schema and CMP beans. This tool focuses

on using extension files generated by WebSphere Application Developer (WSAD) with

DB2 as backend.

The SQL Extractor takes as input the EJB code which contains partial queries defined

in EJB1.X finder methods. The format of queries in finder methods of EJB1.X differs

62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

from vendor to vendor, and in many cases theses queries are not complete. In IBM

WebSphere Application Server, some finder methods only specifies the WHERE

clause of a SQL query, the SELECT and FROM clauses are omitted. The query

extraction step analyzes the EJB code and extracts the complete and standard SQL

statements. This part of the tool will differ for different EJB servers. We focus on

WebSphere Application Server.

The SQL2EJBQL Translator takes e j b - j a r . x m l , c m p - m a p p in g . xml and SQL

queries as input, and produces EJB-QL queries.

The overall architecture of the system and relationship between the three components

are shown in Figure 5-1.

vender
defined
files
eib-iar.xml-

database
schema

import
EJB code -------►

Mapping cmp-mapping.xml
importfr-. File generate Database schema

Generator (schema.xml)

ejb-jar.xml

loading
into

SQL2EJBQL

translator

Extractor

Igenerate standard SQL import
►statements ►

(sqlqueries.xml)

generate EJB-QL
queries
(queries.xml)

Figure 5-1 The overall architecture o f SQL2EJBQL Translation System

5.2 Assumptions

Although most of the queries in finders in CMP entity beans are not complex, the

automated translation of them is not a trivial one-to-one mapping, for several reasons.

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

■ We are assuming the enterprise beans remain the same in the new and old systems.

That is, although the EJB version is different, the number of beans, their logic

definitions, and their relationships are not changed.

■ We are assuming the mapping between database schema and EJB architecture are

1-1, i.e., map each table to a single entity bean, each column to a CMP field and

relationships to CMR field.

■ The database schemas in the old and new systems are not changed. In real

situation, the schema will be modified more or less when a product is updated. In

this case the SQL queries themselves need to be translated first.

5.3 Features

In addition to the translation of simple SPJ queries, our translator can also deal with

subqueries, LIKE predicate, IN predicate, BETWEEN predicate, NULL predicate, and

EXISTS predicate, etc., as well as aggregate functions.

5.4 Additional tools needed

The following additional tools are also used in our translation system:

• javacup (parser generator)

• sql4j (sql parser)

• xml4j.jar (this has been included in J2SDK1.4)

• log4j-1.2.8.jar

• gnu-regexp- 1.1.4.jar

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.5 User Interface

Figure 5-2 shows an Eclipse plug-in that was made for SQL2EJBQL Translator in

Eclipse3.0.

User can import vender defined files which define the CMP beans and their

relationships, as well as the mappings between database schema and CMP beans, the

database schema file.

There is a SQL editor which can highlight the keywords “SELECT, FROM and

WHWER” is ready for user to open a sql query (.sql) from the file system, or typed in

by user in GUI. The translated EJB-QL query is displayed in the “EJB-QL query”

view. The user can select a CMP bean name as navigated root for EJB-QL query. For a

certain SQL query, different EJB-QL query can be generated by choosing various CMP

bean name. The following diagram explains how the translator works.

65

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5
•

■ Resource - e jd s t.sq l ~ Eclipse Platform f iT] p jP f f j

Fie &dit N avigate S earch Pro tect SQL Q ueryTrandatOr Rub Window hjelp

(, q£I • % * • V ' v-’ ’ ' ̂ Resource
> ifr.Navigator l\% ' f ' Cj - ^ e x ls t .s q l „ CJ

; v ' - I t j , ▼ S E L E C T p o . *

! . r̂est * *"» P0REER P°
* ̂ .project lj WHERE E X IS T S (S E L E C T 1 . * FR O H L IN E IT E H 1 WHERE l.N A M E - ' b o o k s ')

cutiine is n o t available.

it B««PM— JL.
:t :o k e c t (o_ iooo)
10 1000

EXISTS(S£LECT OBJECT(!_1001)
FROM I 1001
WHERE LlOOl -name - 'books')

Figure 5-2 The GUI o f SQL2EJBQL Translation system

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6

Experiment and Evaluation
This chapter examines the query translation implementation with testing data from actual

applications. The testing focuses on the verification of the correctness and completeness of

our translation. The experimental result is analyzed to evaluate the implementation of

query translation.

6.1 Experimental System

Two experiments have been made in this thesis.

In section 4.1, we have made the comparison between our approach and the other two

translation algorithms [MYK93][MK98] from the theoretical point of view (see Table

4-1). Both existing algorithm and our algorithm cover the translation of unnested

queries and nested queries with key-based join. While queries with the following

characteristics can not be translated with the existing algorithm.

• Nested queries with non-key-based join.

• Uncorrelated nested queries.

• Queries with aggregation functions.

In the first experiment, we will investigate the translations for all above kinds of

queries. We will create a database system using the schema described in section 2.2.2

(Table 2-1) and the corresponding enterprise application with abstract schema (object

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

schema) in Table 2-2 , set up mappings between the database tables and CMP entity

beans. Testing cases have been created based on the different types of queries.

The second experiment uses the data from a business application obtained from IBM.

The purpose of this experiment is to test our algorithm in an enterprise application. In

future, our translator is supposed to help the upgrading of EJB applications. The

testing result is a reflection of completeness of our translation algorithm.

6.2 Evaluation Method

The main objectives of evaluating our algorithm are to determine how correct and

complete the translation is. As we know, the application server will translate the EJB-

QL queries to SQL statements when the EJBs are deployed. The application server here

acts as an EJB-QL to SQL translator. To demonstrate the correctness and completeness

of our algorithm, in the first experiment, testing was executed under the procedure

illustrated in Figure 6-1. We construct SQL queries which cover the characteristics

mentioned in previous section, the SQL2EJBQL translator takes these SQL statements

as input, the output will be the translated EJB-QL queries. Again, we put these EJB-QL

queries into the finder methods of CMP entity beans, and deploy these beans. Finally,

we compare the regenerated SQL statements with the original ones, the correctness of

the translation is verified. In our experiment, IBM WebSphere Application Developer

is used.

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Original
SQL queries

regenerated
SQL queries

EJB-QL
queries

SQL2EJBQL
Translator

Application

Server

Figure 6-1 The diagram for testing procedure

In second experiment, we took a large amount of SQL statements in a real enterprise

application as translation target. By analyzing the testing result, reasons for failed

translation have been investigated. The result tells us the possibility of making use of

our tool in an actual industry product.

6.3 Experiment 1 - BANKING database system

6.3.1 Testing procedure

This testing has four steps.

Stepl: Create the following database BANKS YS using IBM DB2 7.1.

ACCOUNT (ACCID(PK), BALANCE, INTEREST, ACCTYPE);
CUSTOMER(CUSTOMERID(PK),TITLE,
FIRSTNAME,LASTNAME,USERID,PASSWORD,ADDRESS);
TRANSRECORD (TRANSID (PK),TRANSTYPE,TRANSAMT,ACCID(FK REFERENCES
ACCOUNT (ACCID));
CUSTACCT (CUSTOMERID(PK,FK),ACCID(PK, FK)) . (CUSTOMERID) REFERENCES
CUSTOMER (CUSTOMERID), (ACCID) REFERENCES ACCOUNT (ACCID).

Relationships between tables:

ACCOUNT (many)<->(many) CUSTOMER
ACCOUNT (one) <-> (many) TRANSRECORD

69

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Step 2: Create new entity beans and their relationships in WebSphere Application

Developer (WSAD) 5.1, using bottom-up mapping. The mapping result is described in

mapping file. We notice that bottom-up mapping does not recognize m:m relationships.

It creates an intermediate entity bean and two l:m relationships. For example: the

relationship between Customer and Account is not recognized as an m:m

relationship, despite the fact that the CUSTACCT table has only foreign keys and no

other attributes. The mapping generates four entity beans: Account, Customer,

Transrecord, Custacct.

Using WSAD to remove Custacct bean and define an m:m relationship between

Customer and Account with cmr fileds accounts (in Customer bean,

references Account bean) and customers (in Account bean, references

Customer bean).

Relationships between beans:

Account (many)<-> (many) Customer
Account (one) <-> (many) TransRecord

The mappings between tables and beans are described in the Table 6-1.

Bean Name Abstract
Schema Name

Attribute Table Name Column
CMP CMR

Account Account balance ACCOUNT BALANCE
interest INTEREST
accid ACCID
acctype ACCTYPE

customers
transrecords

CUSTACCT ACCID
CUSTOMERID

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Customer Customer customerid CUSTOMER CUSTOMERID
title TITLE
firstname FIRSTNAME
lastname LASTNAME
userid USERID
password PASSWORD
address ADDRESS

accounts

Transrecord Transrecord transid TRANSRECORD TRANSID
transtype TRANSTYPE
transamt TRANSAMT

theAccount ACCID

Table 6-1 Mappings between tables and entity beans

Step 3: Translate SQL into EJB-QL.

Input:

- SQL statement. With format (*.sql). We name it “original SQL”.

- schema.xml. Database schema file.

- ejb-jar.xml. It describes the CMP beans and theirs relationships.

- cmp-mappings.xml file. It describes the mapping between the tables of

database and CMP beans.

Output: EJB-QL query.

Tool: SQL2EJBQL Translator.

2) Verify the translated EJB-QL query.

Input: EJB-QL query generated in step 3.

Output: SQL statement. It is named as “regenerated SQL”.

Tool: WSAD 5.1.

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6.3.2 Testing Result

The mapping between SQL queries and EJB-QL queries is not a one-to-one

relationship. Instead, a SQL statement can correspond to several EJB-QL queries,

depending on which bean will be the start of the navigation, we call the start bean

“root” in this experiment.

Note that in the test some SQL statement may not be meaningful. This is because that

we need to test different syntactic structures within one simple schema.

6.3.2.1 Testing simple queries in one table

1) Original SQL:
select ql.* from ACCOUNT ql

EJB-QL:
SELECT OBJECT(a_1000)FROM Account a_1000

Regenerated SQL:
select ql.\"ACCID\", ql.\"BALANCE\", ql.\"INTEREST\",
ql.\"ACCTYPE\" from GAOYANG.ACCOUNT ql

2) Original SQL :
select ql.* from ACCOUNT ql where ql.BALANCE > ?

EJB-QL:
SELECT OBJECT(a_1000)
FROM Account a_1000
WHERE a_1000.balance > ?1

Regenerated SQL:
"select ql.\"ACCID\", ql.\"BALANCE\", ql.\"INTEREST\",
ql.\"ACCTYPE\" from GAOYANG.ACCOUNT ql where (ql.\"BALANCE\"
> ?)");

6.3.2.2 Testing one-to-many relationship

1) Original SQL:
select ql.*
from ACCOUNT ql, TRANSRECORD q2
where ql.ACCID = q2.ACCID

EJB-QL:

Using Transrecord bean as root:
SELECT t 1000.theAccount

72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

FROM Transrecord t 1000

Regenerated SQL:
select q2.\"ACCID\", q2.\"BALANCE\", q2.\"INTEREST\",
q2.\"ACCTYPE\" from GAOYANG.TRANSRECORD ql left outer join
GAOYANG.ACCOUNT q2 on (q2.\"ACCID\" = ql.\"ACCID\")");

Using Account bean as root:
SELECT OBJECT(a_1000)
FROM Account a_1000, IN (a_1000.transrecords) t_1002

Regenerated SQL:
select ql.\"ACCID\", ql.\"BALANCE\", ql.\"INTEREST\",
ql.\"ACCTYPE\" from GAOYANG.ACCOUNT ql, GAOYANG.TRANSRECORD q2
where (q2.\"ACCID\" = ql.\"ACCID\")

2) Original SQL :
select ql.*
from ACCOUNT ql, TRANSRECORD q2
where ql.ACCID = q2.ACCID AND TRANSTYPE = ?

EJB-QL:

Using Transrecord bean as root:
SELECT t_1000.theAccount
FROM Transrecord t_1000
WHERE t_1000.transtype = ?1

Regenerated SQL:
select q2.\"ACCID\", q2.\"BALANCE\", q2.\"INTEREST\",
q2.\"ACCTYPE\" from GAOYANG.TRANSRECORD ql left outer join
GAOYANG.ACCOUNT q2 on (q2.\"ACCID\" = ql.\"ACCID\") where
ql. V'TRANSTYPEV = ?)

Using Account bean as root:
SELECT OBJECT(a_1000)
FROM Account a_1000, IN (a_1000.transrecords) t_1002
WHERE t_1002.transtype = ?1

Regenerated SQL:
select ql.\"ACCID\", ql.\"BALANCE\", ql.\"INTEREST\",
ql.\"ACCTYPE\" from GAOYANG.ACCOUNT ql, GAOYANG.TRANSRECORD q2
where (q2.\"TRANSTYPE\" = ?) and (q2.\"ACCID\" =
ql.\"ACCID\")

6.3.2.3 Testing many-to-many relationship

1) Original SQL:
select q2.*
from CUSTOMER ql, ACCOUNT q2, CUSTACCT q3
where q3.CUSTOMERID = ql.CUSTOMERID and q2.ACCID = q3.ACCID

73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

EJB-QL:

Using Customer bean as root:
SELECT OBJECT(a_1002)
FROM Customer c_1000, IN (c_1000.accounts) a_1002

Regenerated SQL:
select q2.\"ACCID\", q2.\"BALANCE\", q2.\"INTEREST\",
q2.\"ACCTYPE\" from GAOYANG.CUSTOMER ql, GAOYANG.ACCOUNT q2,
GAOYANG.CUSTACCT q3 where (q3.\"CUSTOMERID\" =
ql.\"CUSTOMERID\") and (q2.\"ACCID\" = q3.\"ACCID\")

Using Account bean as root:
SELECT OBJECT(a_1000)
FROM Account a_1000, IN (a_1000.customers) c_1002

Regenerated SQL:
select ql.\"ACCID\", ql.\"BALANCE\", ql.\"INTEREST\",
ql.\"ACCTYPE\" from GAOYANG.ACCOUNT ql, GAOYANG.CUSTOMER q2,
GAOYANG.CUSTACCT q3 where (q3.\"ACCID\" = ql.\"ACCID\")
(q2.\"CUSTOMERID\" = q3.\"CUSTOMERID\")

2) Original SQL :
select ql.*
from ACCOUNT ql, CUSTOMER q2, CUSTACCT q3
where q2.LASTNAME = ? and q3.ACCID = ql.ACCID and
q2.CUSTOMERID = q3.CUSTOMERID

EJB-QL:

Using Customer bean as root:
SELECT OBJECT(a_1002)
FROM Customer c_1000, IN (c_1000.accounts) a_1002
WHERE c_1000.lastname = ?1

Regenerated SQL:
select q2.\"ACCID\", q2.\"BALANCE\", q2.\"INTEREST\",
q2.\"ACCTYPE\" from GAOYANG.CUSTOMER ql, GAOYANG.ACCOUNT q2
GAOYANG.CUSTACCT q3 where (ql.\"LASTNAME\" = ?) and (
q3.\"CUSTOMERID\" = ql.\"CUSTOMERID\") and (q2.\"ACCID\
q3.\"ACCID\")

Using Account bean as root:
SELECT OBJECT(a_l000)
FROM Account a_1000, IN (a_1000.customers) c_1002
WHERE c 1002.lastname = ?1

74

and

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Regenerated SQL:
select ql.\"ACCID\", ql.\"BALANCE\", ql.\"INTEREST\",
ql.\"ACCTYPE\" from GAOYANG.ACCOUNT ql, GAOYANG.CUSTOMER q2,
GAOYANG.CUSTACCT q3 where (q2.\"LASTNAME\" = ?) and (
q3.\"ACCID\" = ql.\"ACCID\") and (q2.\"CUSTOMERID\" =
q3.\"CUSTOMERID\")

6.3.2.4 Testing many-to-one relationship

Original SQL :

select ql . *
from TRANSRECORD ql , ACCOUNT q2
where q2 . ACCTYPE = ? and q2 . ACCID = ql . ACCID

EJB-QL:
Using Account bean as root:

SELECT OBJECT(t_1002)
FROM Account a_1000, IN (a_1000.transrecords) t_1002
WHERE a_1000.acctype = ?1

Regenerated SQL:
select q2.\"TRANSID\", q2.\"TRANSTYPE\", q2.\"TRANSAMT\",
q2.\"ACCID\" from GAOYANG.ACCOUNT ql, GAOYANG.TRANSRECORD q2
where (ql.\"ACCTYPE\" = ?) and (q2.\"ACCID\" =
ql.\"ACCID\")

Using Transrecord bean as root:

SELECT OBJECT(t_1000)
FROM Transrecord t_1000
WHERE t_1000.theAccount.acctype = ?1

Regenerated SQL:
select ql.\"TRANSID\", ql.\"TRANSTYPE\", ql.\"TRANSAMT\",
ql.\"ACCID\" from GAOYANG.TRANSRECORD ql, GAOYANG.ACCOUNT q2
where (q2.\"ACCTYPE\" = ?) and (q2.\"ACCID\" =
ql.\"ACCID\")

6.3.2.5 Testing BETWEEN predicate

1) Original SQL:
select ql.* from ACCOUNT ql WHERE ql.BALANCE BETWEEN 1500 AND
2000

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

EJB-QL:
SELECT OBJECT(a_1000)
FROM Account a_1000
WHERE a_1000.balance BETWEEN 1500 AND 2000

Regenerated SQL:
select ql.\"ACCID\", ql.\"BALANCE\", ql.\"INTEREST\",
ql.\"ACCTYPE\" from GAOYANG.ACCOUNT ql where (ql.\"BALANCE\"
>= 1500) and (ql.\"BALANCE\" <= 2000)

6.3.2.6 Testing IN predicate

1) Original SQL:
select ql.*
from ACCOUNT ql
where ql.BALANCE IN (1500, 2000)

EJB-QL:

SELECT OBJECT(a_1000)
FROM Account a_1000
WHERE a_1000.balance IN (1500,2000)

Regenerated SQL:
select ql.\"ACCID\", ql.\"BALANCE\", ql.\"INTEREST\",
ql.V'ACCTYPEV from GAOYANG. ACCOUNT ql where (ql. \ "BALANCE\"
1500 or ql.\"BALANCE\" = 2000)

6.3.2.7 Testing LIKE predicate

1) Original SQL:
select ql.*
from CUSTOMER ql
where ql.LASTNAME LIKE 'Ma%e'

EJB-QL:
SELECT OBJECT(c_l000)
FROM Customer c_1000
WHERE c_1000.lastname LIKE 'Ma%e'

Regenerated SQL:
"select ql.\"CUSTOMERID\", ql.\"TITLE\", ql.\"FIRSTNAME\",
ql.\"LASTNAME\", ql.\"USERID\", ql.\"PASSWORD\",
ql.\"ADDRESS\" from GAOYANG.CUSTOMER ql where (ql.\"LASTNAME\
LIKE \'Ma%e\')

6.3.2.8 Testing NULL predicate

1) Original SQL:

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

select ql.*
from CUSTOMER ql
where ql.LASTNAME IS NULL

EJB-QL:
SELECT OBJECT(c_1000)
FROM Customer c_1000
WHERE c 1000.lastname IS NULL

Regenerated SQL:
select ql.\"CUSTOMERID\", ql.\"TITLE\", ql.\"FIRSTNAME\",
ql.\"LASTNAME\", ql.\"USERID\", ql.\"PASSWORD\",
ql.\"ADDRESS\" from GAOYANG.CUSTOMER ql where (ql.\"LASTNAME\"
IS NOT NULL)

6.3.2.9 Testing EXISTS predicate (uncorrelated subquery)

1) Original SQL:
select ql.*
from ACCOUNT ql
where EXISTS (select q2.* from TRANSRECORD q2 where q2.TRANSAMT
> 1 0 0 0)

EJB-QL:
SELECT OBJECT(a_1000)
FROM Account a_1000
WHERE EXISTS(SELECT OBJECT(t_1001)
FROM Transrecord t_1001
WHERE t_1001.transamt > 1000)

Regenerated SQL:
select ql.\"ACCID\", ql.\"BALANCE\", ql.\"INTEREST\",
ql.\"ACCTYPE\" from GAOYANG.ACCOUNT ql where (exists (select
1 from GAOYANG.TRANSRECORD q2 where (q2.\"TRANSAMT\" > 1000)))

6.3.2.10 Testing subqueries (non-key-based join)

1) Original SQL : (IN predicate)
select ql.*
from TRANSRECORD ql
where ql.TRANSAMT IN (select q2.TRANSAMT

from TRANSRECORD q2, ACCOUNT q3
where q2.ACCID = q3.ACCID AND q3.ACCID =

'alO')

EJB-QL:
SELECT OBJECT(t 1000)

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

FROM Transrecord t_1000
WHERE t_1000.transamt IN(SELECT t_1003.transamt
FROM Transrecord t_1003
WHERE t_1003.theAccount.accid = 'alO')

Regenerated SQL:
select ql.\"TRANSID\", ql.\"TRANSTYPE\", ql.\"TRANSAMT\",
ql.V’ACCIDV from GAOYANG. TRANSRECORD ql where (
ql.\"TRANSAMT\" = ANY (select q2.\"TRANSAMT\" from
GAOYANG.TRANSRECORD q2, GAOYANG.ACCOUNT q3 where (q3.\"ACCID\"
= \ 1 alO\ ') and (q3.\"ACCID\" = q2.\"ACCID\")))

2) Original SQL : (comparison predicate)
select ql.*
from TRANSRECORD ql
where ql.TRANSAMT = ANY(select q2.TRANSAMT

from TRANSRECORD q2, ACCOUNT q3
where q2.ACCID = q3.ACCID AND q3.ACCID =

'alO')

EJB-QL:
SELECT OBJECT(t_l000)
FROM Transrecord t_1000
WHERE t_1000.transamt =ANY(SELECT t_1003.transamt
FROM Transrecord t_1003
WHERE t_1003.theAccount.accid = 'al0r)

Regenerated SQL:
select ql.\"TRANSID\", ql.\"TRANSTYPE\", ql.\"TRANSAMT\",
ql.\"ACCID\" from GAOYANG.TRANSRECORD ql where (
ql.\"TRANSAMT\" = ANY (select q2.\"TRANSAMT\" from
GAOYANG.TRANSRECORD q2, GAOYANG.ACCOUNT q3 where (q3.\"ACCID\"
= \'al0\') and (q3.\"ACCID\" = q2.\"ACCID\")))

3) Original SQL : (comparison predicate with negation)
select ql.*
from TRANSRECORD ql
where ql.TRANSAMT <> ALL (select q2.TRANSAMT

from TRANSRECORD q2, ACCOUNT q3
where q2.ACCID = q3.ACCID AND q3.ACCID =

10)

EJB-QL:
SELECT OBJECT(t_1000)
FROM Transrecord t 1000

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

WHERE t_1000.transamt OALL(SELECT t_1003.transamt
FROM Transrecord t_1003
WHERE t_1003.theAccount.accid = 'alO')

Regenerated SQL:
select ql.\"TRANSID\", ql.\"TRANSTYPE\", ql.\"TRANSAMT\",
ql.\"ACCID\" from GAOYANG.TRANSRECORD ql where (
ql.\"TRANSAMT\" <> ALL (select q2.\"TRANSAMT\" from
GAOYANG.TRANSRECORD q2, GAOYANG.ACCOUNT q3 where (q3.\"ACCID\"
= \1alO\') and (q3.\"ACCID\" = q2.\"ACCID\")))

6.3.2.11 Testing subqueries (key-based join)

1) Original SQL:

select ql.*
from ACCOUNT ql
where ql.BALANCE >100 and ql.ACCID IN(select q2.ACCID

from TRANSRECORD q2
where q2.TRANSAMT > 20)

e j b-q l :

SELECT OBJECT (a_1000)
FROM Account a_1000, IN(al.transrecords) t_1000
WHERE a_1000.balance >100 AND t_1000.transamt>20)

Regenerated SQL:
select ql.\"BALANCE\", ql.\"INTEREST\", ql.\"ACCID\",
ql.V'ACCTYPEV from GAOYANG. ACCOUNT ql, GAOYANG. TRANSRECORD q2
where ((ql.\"BALANCE\" > 100) and (q2.\"TRANSAMT\" > 20)
and (q2.\"ACCID\" = ql.\"ACCID\")")

2) Original s q l: (EXISTS predicate, correlated subquery, key-based join)

select ql.*
from ACCOUNT ql
where ql.BALANCE >100 and exists (select q2.ACCID

from TRANSRECORD q2
where q2.TRANSAMT > 20 and
ql.ACCID = q2.ACCID)

79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

e j b -q l :

SELECT OBJECT (a_1000)
FROM Account a_1000, IN(al.transrecords) t_1000
WHERE a_1000.balance >100 AND t_1000.transamt>20)

Regenerated SQL:
select ql.\"BALANCE\", ql.\"INTEREST\", ql.\"ACCID\",
ql.\"ACCTYPE\" from GAOYANG.ACCOUNT ql, GAOYANG.TRANSRECORD q2
where ((ql.\"BALANCE\" > 100) and (q2.\"TRANSAMT\" > 20)
and (q2.\"ACCID\" = ql.\"ACCID\")")

3) Original SQL: (IN predicate with negation)
select t.*
from ACCOUNT a
where a.BALANCE >100 and a.ACCID NOT IN (select t.ACCID

from TRANSRECORD t
where t.TRANSAMT > 20)

EJB-QL:

SELECT OBJECT(a_1000)
FROM Account a_1000
WHERE a_1000.balance >100 AND NOT EXISTS (SELECT object(t_1000)

FROM IN(a_1000.transrecords) t_1000
WHERE t_1000.transamt > 20)

Regenerated SQL:
select ql.\"BALANCE\", ql.\"INTEREST\", ql.\"ACCID\",
ql.\"ACCTYPE\" from GAOYANG.ACCOUNT ql where ((ql.\"BALANCE\"
> 100) and (not exists (select 1 from GAOYANG.TRANSRECORD
q2 where (q2.\"TRANSAMT\" > 20) and (q2.\"ACCID\" =
ql.\"ACCID\")))");

6.3.2.12 Testing aggregation function

1) Original SQL:
select al.*
from ACCOUNT al, CUSTOMER cl, CUSTACCT cal
where cl.CUSTOMERID=?

80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

and a1.BALANCE =
(select MAX(a2.BALANCE)
from ACCOUNT a2, CUSTACCT ca2
where ca2.CUSTOMERID = cl.CUSTOMERID

and a2.ACCID = ca2.ACCID)
and cal.ACCID = al.ACCID
and cl.CUSTOMERID = cal.CUSTOMERID

e j b-q l :

SELECT object(a_1000)
FROM Account a_1000, in(a_1000.customers) c_1000
WHERE a_1000.balance = (SELECT(MAX(a_1001.(balance))

FROM IN(c_1000.accounts) a_1001)
and c_1000.customerid = ?1

Regenerated SQL:
"select ql.\"BALANCE\", ql.\"INTEREST\", ql.\"ACCID\",
ql.\"ACCTYPEX" from GAOYANG.ACCOUNT ql, GAOYANG.CUSTOMER q2,
GAOYANG.CUSTACCT q3 where ((q2.\"CUSTOMERID\" = ?) and (
ql.\"BALANCE\" = (select max(q4.\"BALANCE\") from
GAOYANG.ACCOUNT q4, GAOYANG.CUSTACCT q5 where ((
q5.\"CUSTOMERID\" = q2.\"CUSTOMERID\") and (q4.\"ACCID\" =
q5.\"ACCID\"))) and (q3.\"ACCID\" = ql.\"ACCID\") and (
q2.\"CUSTOMERID\" = q3.\"CUSTOMERID\")");

6.3.3 Result Analysis

From the testing result, we found that:

1. All the translations for unnested queries without joins are correct.

2. The translation of aggregate functions is straightforward, the result is correct.

3. The translations for some unnested queries with joins are failed under certain

conditions.

4. The translations for nested queries led by IN, EXIST and = which has key-

based join are translated in one form. The translated EJB-QL is unnested.

81

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5. The translations for nested queries led by NOT IN, NOT EXIST and o

predicates which has key-based join are translated in one form. The translated

EJB-QL has nesting structure with the nesting operator “NOT EXISTS”.

Table 6-2 illustrates the testing result in detail.

SQL queries
Unnested

query
without

join

Unnested
query with

join
Aggregation

Function

Subquery
nesting operator

IN, =
NOT IN, o EXISTS/NOT EXISTS

Key-based
join

Nonkey-
based join

uncorrelated
subquery

Correlated subquery
(EXISTS)

Key-based
join

Nonkey-
based join

Completeness complete incomplete complete incomplete complete complete incomplete complete

Correctness correct correct correct correct correct correct correct correct

Table 6-2 Testing result analysis

Remark: This result is under certain condition.

For translating a key-based join predicate between two tables T1 and T2, we assume the

corresponding entity beans are El and E2 respectively. During the translation, El is

selected as a start of traversal. The relationships between two tables/beans, and the

selection condition on table/bean T2/E2 which is not the start of the traversal, will affect

the translation result. Table 6-2 explains the translation results under different conditions.

82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Relationship between tables/entity
beans

Translation Result
Selection conditions on Tables/beans

Yes N o

1:1 translated failed

l:m translated translated

m:l translated failed

m:m translated translated

Table 6-3 Translation result for a jo in predicate

6.4 Experiment 2 - EJB ORDER Project

The data used in this experiment are provided by IBM WCS 5.1, which uses EJB 1.0

with DB2 7.1.1 as backend. The queries are stored in an XML file. The schema of

database, ejb-jar and cmp-mappings files are stored in a different XML file

respectively.

6.4.1 Testing Procedure

The testing has three steps:

Step 1: Using Mapping file generator to generate xml files which is used to set up a

translation application.

Input: All these files are generated by WSAD with DB2 as backend.

1) database schema files: *.schxmi and *.tblxmi files. For example, in this

project, the input file is: Order-OrderCaptureData_NULLID. schxmi,

Order-OrderCaptureData_NULLID_ACCOUNT. tblxmi, etc.)

2) ejb-jar.xml. Describe all enterprise beans information.

3) Map.mapxmi. Describe the mappings between database schema and

CMP beans.

83

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Output:

1) schema.xml. Database schema file.

2) ejb-jar.xml. Describe the CMP beans and their relationships. The file

excludes the information of other beans such as BMP bean, session

bean, etc.

3) cmp-mappings.xml. Describe the mapping between the database schema

and CMP beans.

Step 2: Using SQL extractor which takes as input the EJB code containing partial

queries defined in EJB1.X finder methods, to produce the standardized and complete

SQL.

Input: ibm-ejb-jar-ext.xmi.

Output: queries.xml.

Step 3: Using SQL2EJBQL Translator to translate SQL queries to EJB-QL queries.

Input: schema.xml, ejb-jar.xml, cmp-mappings.xml, queries.xml.

Output: ejbqls.xml

6.4.2 Testing Result

170 SQL statements from finder methods in entity beans are collected and tested.

Here is the statistics:

- Total translated: 124.

- Failed: 46.

Figure 6-2 describes the statistics in details:

84

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

19% B I n c o r r e c t SQL

ORDER BY Clause

E3 Dis junctive queries

0 can’ t be processed by
SQL parser

fH constant in join
pred ica te

■ t r a n s la t e d

Figure 6-2 The statistics o f testing results

6.4.3 Result Analysis

The reasons of failed translation are listed as below.

1. Incorrect SQL statement. Tables in SQL statement are not defined in database

schema. All these queries are nested query with tables in subqueries are not

defined in schema. For example:
SELECT SCHORDERS.*
FROM SCHORDERS

WHERE (SCHORDERS.JOB_RN = ANY (SELECT SCCJOBREFNUM FROM

SCHCONFIG WHERE MEMBER_ID = ?))

85

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

s c h c o n f i g i s n o t d e f i n e d in t h e s c h e m a f ile .

Number of such queries: 5.

2. “ORDER BY” clause. For the time being, our translator does not support the

translation of “ORDER BY” clause.

Number of such queries: 32.

3. Disjunctive queries. We can’t translate disjunctive queries. Number of such

queries: 4.

4. Query can’t be processed by SQL parser SQL4J.

For example:
SELECT SH IP IN FO . *

FROM SHIPINFO

WHERE SHIPINFO.ORDERS_ID = ? AND SHIPINFO.ADDRESS_ID = - 1

Number of such queries: 3.

This can be fixed easily by modifying the parser.

5. Constant in j oin predicate.

For “fmdAll” queries with the statement have “1=1” in WHERE condition. For

example:
SELECT TRADEPOSCN.*

FROM TRADEPOSCN

WHERE 1 = 1

So far, our translator does not support translating the join predicate with constant.

Number of such queries: 2.

73% of SQL queries, extracted from a real industry product, were translated

successfully. Being able to provide a correct and automated translation of SQL to

EJB-QL, our translation tool will offer a great help in the migrations of enterprise

applications.

86

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 7

Conclusions and Future Works

7.1 Conclusions

This thesis describes an algorithm and its implementation of SQL to EJB-QL query translation,

which is motivated by upgrading of EJB container. Based on the translation techniques between

relational and object query languages, our work extends the existing works in the following

aspects:

1) Existing works described the translation of a small subset of SQL queries with

many restrictions. For example, some exclude subqueries, some require key-

based semijoins and antijoins, and none deals with aggregates. Our approach

takes subqueries with all types of semijoins and antijoins into consideration,

furthermore, add the translation on aggregate functions. The range of target SQL

queries has been expanded to a larger set.

2) Our translation techniques are tailored to EJB-QL. Although our algorithm is for

the translation of SQL to EJB-QL, EJB-QL is an object query language (OQL),

these techniques can be easily applied on the translation between SQL and other

OQL.

3) As far as we know, existing works are neither implemented nor tested. We

applied and tested our system with real data from an industry product.

The query translation system is implemented under the following assumptions:

87

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1) Only SQL queries with SELECT-FROM-WHERE statements and also the

subqueries with IN, EXISTS and comparison predicates are considered.

2) The relational WHERE clause contains qualification conditions in conjunctive

form.

3) The mapping between database schema and entity beans is one to one.

In spit of all above restrictions, the implementation of a query translation system is still

a challenging work. A series of experiments have been carried out implement various

types of query translation. From the experimental results, we get the conclusions as

follows:

1) All the translations for unnested queries without joins are correct.

2) The translation of aggregate functions is straightforward, and the result is

correct.

3) The translations for some unnested queries with joins are failed under certain

conditions.

4) The translations for nested queries led by IN, EXIST and = which has key-

based join are translated in one form. The translated EJB-QL is unnested.

5) The translations for nested queries led by NOT IN, NOT EXIST and o

predicates which has key-based join are translated in one form. The translated

EJB-QL has nesting structure with the nesting operator “NOT EXISTS”.

6) 73% of SQL queries, extracted from a real industry product, were translated

successfully. Being able to provide a correct and automated translation of SQL

to EJB-QL, our translation tool will offer a great help in the migrations of

enterprise applications.

88

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Consequently, the algorithm proposed in this thesis performs well. The subset of target

SQL queries is expanded a lot in comparison to the other existing algorithm. Because of

the restrictions of the syntax of EJB-QL, as we mentioned in section 6.3.3, when two

tables involved in a key-based join condition, one bean corresponding to a table is

chosen as a traversing start point, if this bean has a 1:1 or m:l relationships with the

other bean, and there is no selection condition on the latter, the translation will fail. This

is the main disadvantage of the algorithm.

7.2 Future Works

7.2.1 Relational Schema and EJB Mapping

The Mapping file generator to extract the mappings between database schema and

enterprise beans. Defining a mapping from a set of tables in a relational database to a

set of entity beans is the key issue of the tool’s development. At the current stage of the

development we are assuming the mapping is 1-1.

In the real world, O/R mapping between relational database and entity beans may not

be a simple 1-1 mapping, instead it may be a many-many mapping in many cases. The

same applies to the attribute-column mapping. A possible solution to deal with this is

query rewriting, we will investigate this issue and make the implementation in future.

7.2.2 Translation upgrading with the changes of EJB specification

EJB has being developed rapidly. Now the specification of EJB is reaching version 3.0.

Lot of new features have been introduced in EJB 3.0, more support was added in EJB-

QL. In this thesis, our translation is mainly based on EJB-QL2.0 with some extension

on aggregation functions and subqueries. We need to upgrade our translation to be able

89

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

to translate more advance SQL statement such as “left outjoin”, HAVING clause,

ORDER BY clause, GROUP BY etc..

7.2.3 Further integration of J2EE-compliant servers.

As we metioned before, the mapping file to bind the abstract schema to a backend

database is provided by a specific EJB container, the format of the file is very vender

depended. For now, our translator only provides for support of the Sun ONE

Application Server and IBM WCS 5.1. The support of further J2EE- compliant servers

is easy to achieve due to a modular design of SQL2EJBQL translator’s software

architecture.

90

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bibliography

[AAG+01] R. Adatia, F. Ami, K. Gabhart, J.Griffin, M. Juric, J. Lott, T. McAllister, A.

Mulder “Professional EJB”. Wrox Press, 2001.

[AAK97] Behm A, Geppert A, Dittrich KR. “On the migration of relational schemas and

thdata to object-oriented database systems”. In Proceedings of the 5 International

Conference on Re-Technologies for Information Systems, Austria, 1997.

[BAI] Barry & Associates Inc. “Mapping Tables to Objects”. http://www.service-

architecture.com/object-relational-mapping/articles/mapping_tables_to_objects.html.

[BAZ93] H. Balsters, R. A. de By & R. Zicari, “Typed sets as a basis for object-oriented

database schemas”. In Proceedings Seventh European Conference on Object-Oriented

Programming, July 26-30,1993.

[BEA04] BEA Systems. EJB Query Language (EJB-QL) and WebLogic Server. Product

documentation, 2004. http://e-docs.bea.eom/wls/docs81/ejb/EJB-L.html#l 151257.

[C04] Doug Clarke. “J2EE Persistence - Productivity with Choice”, http://www.jax.de/

materialien2004 /j ax/keynotes/clarkeJ 2ee_persistence.pdf

[CRD94] Chang, Y., Raschid, L. and Dorr, B..”Transforming queries from a relational

schema to an equivalent object schema: a prototype based on F-logic”. Proceedings of the

International Symposium on Methodologies for Intelligent Systems, 1994.

[CSG94] M. Castellanos F. Saltor and M. Garcia-Salaco. “Semantically enrichment of

threlational databases into an object-oriented semantic model”. In The 5 International

conference on Database Applications DEXA’94, 1994.

91

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.service-
http://e-docs.bea.eom/wls/docs81/ejb/EJB-L.html%23l
http://www.jax.de/

[D87] U. Dayal. “Of nests and trees: A unified approach to processing queries that contain

nested subqueries, aggregates, and quantifiers,” in Proceedings of Thirteenth International

Conference on Very Large Data Bases, Brighton England, September 1-4, 1987, P.M.

Stocker, W. Kent & P. Hammersley, eds., Morgan Kaufmann Publishers, Los Altos, CA,

1987, 197-207.

[DB04] K. Drosten, C. Bals. “BeanMaker - a Tool for Automatic Generation of Persistent

Enterprise Java Beans”. Research paper, 2004.http://fhge.opus.hbz-nrw.de/volltexte/2004/

21/.

[FKS94] J. Flokstra, Maurice van Keulen & J. Skowronek, “The IMPRESS DDT: A

database design toolbox based on a formal specification language.” In Proceedings ACM-

SIGMOD 1994 International Conference on Management of Data, ACM Press, New York,

NY, 1994, 506.

[FV95] C. Fahmer and G. Vossen. “Transformation of relational schemas into object

oriented schemas according to odmg-93”. In fourth International Conference on Deductive

and Object-Oriented Database DOOD’95, pages 429-446, 1995.

[GW99] James R. Groff and Paul N. Weinberg. “SQL: The Complete Reference”.

MCGRAW HILL Book Company. April, 1999.

[HOI] Richard Monson-Haefel. “Enterprise JavaBeans”, 3rd Edition. O'Reilly, September

2001 .

[H04] Jeff Hanson. “An Introduction to Java Object Persistence with EJB”. November 9,

2004. Available at http://www.devx.com/Java/Article/22441.

92

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://fhge.opus.hbz-nrw.de/volltexte/2004/
http://www.devx.com/Java/Article/22441

[IBM03] IBM. “Object Finder EJB Query Language for Container Managed Persistent

Entities Draft 2.0 for V5.0.1”, January 2003

[J97] Fong, J.. “Converting Relational to Object-oriented Database”. SIGMOD Record,

Vol.26, No. 1, March 1997

[K82] Won Kim, “On Optimizing an SQL-like Nested Query”.ACM Trans. Database Syst.

7(3): 443-469,1982

[K90] Won Kim. “Introduction to object-oriented databases”. Massachusetts Institute of

Technology, 1990.

[L02] Jianguo Lu. “Reengineering of Database Applications to EJB Based Architecture”.

CAISE 2002, LNCS 2348, pp. 361-376,2002.

[LLH+01] T. Lau, J. Lu, E. Hedges and E. Xing. “Migrating E-commerce Database

Applications to an Enterprise Java Environment”. In Proc. of 2001 conference of the

Centre for Advanced Studies on Collaborative research, Canada, 2001.

[MK98] A. Mostefaoui and J. Kouloumdjian. “Translating Relational Queries to Object-

Oriented Queries According to ODMG-93”. ADBIS 1998: 328-338, 1998.

[MKD+03] Vlada Matena, Sanieey Krishnan, Linda DeMichiel, Beth Steams. “Applying

Enterprise JavaBeans: Component-Based Development for the J2EE Platform”. 2nd

Edition, January 2003

[MYK95] W. Meng, C. Yu, W. Kim. “A Theory of Translation From Relational Queries to

Hierarchical Queries”. IEEE Transactions on Knowledge and Data Engineering. Volume 7,

Issue 2 (April 1995), Pages: 228 - 245,1995.

93

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[MYK+93] W. Meng, C. Yu, W. Kim, G. Wang, T. Pham and S. Dao. “Construction of

Relational Front-end for Object-Oriented database Systems. ICDE’93

[ORA03] Oracle Corp.. “OracleAS TopLink Unit of Work Primer”. White paper, 2003.

[P01] M. Petropoulos. “OQL - Object Query Language”, http://www.db.ucsd.edu /People

/michalis/notes/02/OQLTutorial.htm, October 2001.

[P03] Pepperdine, K.. “Oracle9Ias TopLink by Example”, http://www.oracle.com

/technology/ oramag/webcolumns/2003/techariticles/pepperdine_TopLink.html. 2003.

[PTK95] J.M. Petit, F. Toumani, and J. Kouloumdjian. “Relational databases reverse

engineering: a method based on query analysis”. International Journal of Cooperative

Information Systems, 4(2,3):2870-316,1995.

[RAJ+01] Ed Roman, Scott W. Ambler, Tyler Jewell, Floyd Marinescu. “Mastering

Enterprise JavaBeans (2nd Edition)”. 2001.

[RC95] Raschid, L. and Chang, Y. "Interoperable Query Processing from Object to

Relational Schemas Based on a Parameterized Canonical Representation." Inter. Journal of

Intelligent and Cooperative Information Systems, 1995.

[RSH96] Ramanathan, Shekar, and Julia Flodges. “Reverse Engineering Relational

Schemas to Object-Oriented Schemas”. Technical Report. July, 1996.

[SUN01] SUN Microsystems Inc.. “Enterprise JavaBeans Specification, Final Version,

Version2.0”, August 2001.

[SUN03] Sun Microsystems, Inc. “EJB QL: EJB Query Language for Container-Managed

Persistence Query Methods”. Enterprise JavaBean 2.1, Final Release”. September, 2003.

94

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.db.ucsd.edu
http://www.oracle.com

[SUN05] Sun Microsystems, Inc. “JSR 220: Enterprise JavaBeans, Version 3.0,

Persistence API, Early Draft Review 2”. February, 2005.

[SGT+01] P G Sarang, Kyle Gabhart, Andre Tost, Tim McAllister, Rahim Adatia, Matjaz

Juric, Ted Osborne, Faiz Ami, Jeremiah Lott, Vaidyanathan Nagarajan, Craig A. Berry,

Dan O'Connor, John Griffin, Aaron Mulder, Dave Young. “Professional EJB”. Wrox Press

Ltd.. 2001.

[THO] THOUGHT Inc.. “Dynamic Universal Querying with CocoBase”. Technical Paper.

[THO02] THOUGHT Inc. “CocoBase (©.Enterprise O/R Version 4.5 Features and

Benefits”. Technical paper. 2002.

[THO03] THOUGHT Inc. “CocoBase® Enterprise O/R Optimized for IBM WebSphere

Studio IDE”, http://www.thoughtinc.com/ibm_wasd/, 2003.

[VA95] M. Vermeer and P. Apers. “Object-oriented views of relational databases

incorporating behaviour”. In the fourth International Conference on Database Systems for

Advanced Applications (DASFAA’95), 1995.

[WDS+03] U. Wahli, W. Denayer, L. Schunk, D. Shaddon, M. Weiss. “EJB2.0

Development in WSAD”. IMB Red book, April 2003.

[YZM+95] C.Yu, Y.Zhang, W.Meng, W.Kim, G.Wang, T.Pham, S.Dao. “Translation of

Object-Oriented Queries to Relational Queries”. Proc. of the 11th Intl. Conf. on Data

Engineering, March 6-10, Taipei, Taiwan, 1995.

[YL93] L. Yan and T. Ling. “Translating relational schema with constraints into OODB

schema”. IFIP Transactions of Interoperable Database Systems (DS-5), 1993.

95

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.thoughtinc.com/ibm_wasd/

Vita Auctoris

Name:

Place of Birth:

Date of Birth:

Education:

Yang Gao

Jinhua, Zhejiang Province, P.R.China

1970

University of Windsor

Windsor, Ontario, Canada

2002-2005 M.Sc in Computer Science

Northwest Polytechnic University

Xian, P.R. China

1988-1992 B.Sc., Materials Engineering

96

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

	Translating SQL queries to EJB-QL queries.
	Recommended Citation

	tmp.1507664919.pdf.1JUwJ

