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Abstract

In isolated word speech recognition system, it is important to develop an accurate model 

that estimates speech characteristics. The conventional speech m odeling technique linear 

prediction (LP) method which is implemented by an all-po le Auto-Regressive (A R ) 

model is found not good for a ll speech sounds. It can not handle the nasal sound, or 

phonemes that introduce zeros. The objective o f  this thesis is to apply a new Auto 

Regressive-M oving Average (A R M A ) lattice model to speech feature extraction. To 

obtain the model parameters based on the Least Square Error (LS E ) crite rion, a lattice 

algorithm  provides an e ffic ien t and robust approach. The re flection coeffic ients o f  the 

lattice model then are forwarded to pattern recognition stages w hich could be 

implemented by Vector Quantization (V Q ) or Neural Netw ork (N N ) approaches. The 

experiments tested on an isolated word database indicate that the adopted lattice model 

provides s ign ifican tly  better performance on recognition accuracy than the LP model.

iv
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Chapter 1

1 Introduction

1.1 Speech Recognition

Speech recognition consists o f  two m ajor techniques: feature extraction and pattern 

recognition. The feature extraction attempts to discover characteristics o f  speech signals 

unique from one to others. Pattern recognition refers to the matching o f  features in such a 

way as to determine whether tw o sets o f  features are identical.

For extracting features, the speech waveforms have to be converted into some types o f  

parametric representation: this is called speech modeling or analysis. It is im portant to 

develop an accurate model that estimates speech characteristics: it has large influence on 

the system ab ility .

1.2 Modeling Problems

In the past 30 years, the linear predictive (LP) technique [ I ]  has been w ide ly  used in the 

area o f  speech m odeling/analysis. By applying LP analysis to speech signals, we obtain

ARMA l.iitt ice  M odeling f o r  Iso la ted W ord Speech Recognition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rage /



Chapter 1 Introduction

auto regressive (A R ) a ll-po le d ig ita l filte rs . The basic idea behind linear predictive 

analysis is that a speech sample can be approxim ated as a linear com bination o f  past 

speech samples. By m in im iz ing  the sum o f  the squared differences (over a fin ite  in terval) 

between the actual speech samples and linear predicted ones, a unique set o f  predictor 

coeffic ients can be determined. These coeffic ients are believed to contain the 

characteristics o f  speech and then could be used as the features in fo rm ation  in recognition 

tasks. It is shown that such an a ll-po le  type f ilte r  can be d irectly  derived from  an acoustic 

tube model o f  the vocal tract [2].

However in reality, the vocal tract model d iffe rs  from  the a ll-po le  model in several 

respects. First, the LP analysis method can not handle the phonemes w ith  zeros, e.g.. 

nasals, i f  we take into account the nasal tract as a side branch, the mathematical 

representation o f  the model w ill include zeros in its transfer function. Secondly, those 

fricatives and plosives excited sounds are equal to have the posterior and anterior tubes in 

the vocal system: excitations between them introduce zeros. There may be no resonance, 

or resonance may be hidden by zeros. These sort o f  zero problems lead us to another 

m odeling technique called auto regressive m oving average (A R M A ) m odeling. This 

technique is designed for handling pole-zero type m odeling problem : in other words, its 

transfer function includes not on ly  poles but also zeros.

For A R M A  modeling, a variety o f  techniques has been form ulated theoretically to 

estimate the model parameters. However, the practical application o f  these techniques has 

been somewhat lim ited due to the relative com p lex ity  o f  the algorithm s. A fte r many years

ARMA Lattice M odeling J o r  Isolated W ord Speech Recognition
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Chapter / Introduction

efforts, some o f  the more recent work indicates that a re la tive ly e ffic ien t A R M A  

m odeling technique is now available [ 13 ][ 14]: it is called the lattice method. Based on a 

recursive structure, the lattice a lgorithm  has many attractive properties, like  num erica lly 

s tab ility , computational e ffic iency and su itab ility  for hardware im plem entation.

1.3 About The Thesis

1.3.1 The objectives

This thesis looks at A R M A  modeling o f  speech w ith  an e ffic ien t lattice a lgorithm . The 

w ork presented is try ing  to apply this lattice model to substitute for the conventional LP 

model in an isolated word speech recognition system, and therefore obtain ing better 

system performance.

1.3.2 The organization

In Chapter 2. we discuss the speech modeling problem. An in troduction is given on the 

acoustic model, the basic knowledge o f  all-pole (A R ) and pole-zero (A R M A ) modeling 

fo r the speech are also presented.

In Chapter 3. we give the detail o f  an e ffic ien t A R M A  lattice a lgorithm . Based on 

geometric and projection theory, the A R M A  modeling problem is solved by using 

recursive lattice structure. The formulae for com puting lattice reflection coeffic ients are

ARMA Lattice M odeling f o r  Isola ted ll 'o rd  Speech Recognition
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( 'hapter 1 In troduction

given in this chapter. A t the end o f  the cahpter. the properties o f  the la ttice a lgorithm  are

summarized.

In Chapter 4. we construct a system fo r isolated word speech recognition. It includes the 

step by step procedure fo r implementation.

In Chapter 5. the pattern recognition techniques are discussed - first introduce the concept 

o f  the popular Vector Quantization (V Q ) techniques and then give the step by step 

algorithm  o f  a Neural N e tw ork (N N ) approach.

In Chapter 6. the experiments are designed fo r testing the pre-recorded database. The 

comparison results o f  using A R  and A R M A  lattice m odeling methods are also presented.

In Chapter 7. the conclusions and some future directions on the subject are discussed.

ARMA Lattice M odeling Jor Isola ted II ord Speech Recognition
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Chapter2

2 Speech modeling

2.1 What is Speech Modeling?

A lthough the recognition systems vary a lo t depend on the ir sub-components, the greatest 

com mon feature they share is perhaps named speech m odeling or speech analysis. W hat 

is speech modeling? It is a process that converts speech waveform  to some types o f  

parametric representation. The objective o f  this technique is to develop an accurate model 

o f  the available tim e series speech data. This model then has certain spectral properties 

and is usually parametric, i.e. represented by a set o f  parameters.

Basically, m odeling the speech sounds must take into consideration the ir method o f  

production. They have to be based on the acoustic properties o f  sound production. In the 

recognition system, m odeling plays im portant roles on the level o f  processing between 

the d ig itized  acoustic wav eform  and the acoustic feature vectors. The ir jo b  is to extract 

d is tinct in form ation from waveform .

ARMA Lattice M odeling f o r  Isolated W ord Speech Recognition
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Chapter 2: Speech M odeling

2.2 Speech Production

2.2.1 The mechanism of speech production

Hard Palate

Soft Palate 
(Velum)

Nasal Cavity

N o stril
Pharyngeal 

Cavity Tongue

Oral Cavity

- J
r j '"D)

/ ---------L u m J — T » —* aounTI— I

v o c *!.., 
COHO*

LUNG
VOLUME

f \TONGUE
MOUTH
oumir

tl
net

FONCE

Figure 2.1 (a) Human vocal system (b) functional components

To study a model that is useful fo r speech processing, it  is necessary to have knowledge 

about speech production. Figure 2.1(a) shows the human vocal system. Figure 2.1(b) 

shows a schematic o f  the functional components o f  the vocal system.

The process o f  producing speech sounds is as fo llows:

•  lungs: f i l l  w ith  a ir

•  contraction o f  rib  cage forces a ir from  the lungs into the trachea - the volume o f  

a ir determines the am plitude o f  the sound

•  trachea (w indp ipe): conveys a ir to the vocal tract. The vocal cords, at the top o f  

the trachea, separate the trachea from  the base o f  the vocal tract

•  vocal tract

S  consists of:

ARMA Lattice M ode ling  f o r  Isola ted W ord Speech Recognition
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Chapter 2: Speech M odeling

pharynx (throat)

mouth

nose

V the shape and size o f  the vocal tract vary by positioning the 

articulators: the tongue, teeth and lips 

■S the shape o f  the vocal tract determines the type o f  speech sound - e.g.. 

the /a1 in "hat" vs the / i/  in "h it"

The figures place in evidence the important features o f  the human vocal system. The 

vocal tract begins at the opening between the vocal cords, o r g lo ttis , and end at lips. The 

vocal tract thus consists o f  the pharynx, the mouth and the nose. The tongue controls the 

vocal tract d iv id in g  it into two resonant cavities, the pharynx and mouth, which, in turn, 

determine the transmission characteristics o f  the vocal tract. The nasal cavity is an 

parallel w ith  the mouth and can further m odify  the sound produced. The transmission 

characteristics o f  vocal tract is usually described by its resonant peaks in the spectrum 

known as formants, which sh ift in frequency as we changed the characteristics o f  the 

vocal tract.

2.2.2 Principle components

Two princ ip le  components o f  speech production are:

A . Excita tion  - create a sound by setting the a ir in rapid m otion

B. Vocal tract - "shape" the sound

The excitation can be characterized as phonation. fric tion  and plosive.

ARM. I Lattice M odeling  to r  Isolated Word Speech Recognition
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Chapter 2. Speech M odeling

^  Phonation: v ib ration o f  vocal cords, modes o f  vibration called resonance 

•S Friction: turbulent a ir flow

•  the excitation is set up by forcing a ir past a constriction at some point 

in the vocal tract

e.g.. / f /  in " fo r" : top teeth &  bottom lip  

e.g.. /th / in "th in ": tongue &  top teeth

•  can combine fric tion  w ith  phonation

e.g.. /v/ as in "vote" top teeth &  bottom lip  as in /t7. combined w ith  

phonation

S  Plosive: closure at some point in the vocal tract, fo llow ed by a release o f  a ir 

e.g.. /p/ as in "po t": closure at lips

•  can be combined w ith  vocal cord v ib ration: phonation and plosive /b/ 

as in "boy": closure at lips closure as in /p/. combined w ith  phonation

Speech produced by phonated excitation is called voiced: speech produced by phonated 

excitation plus fric tion  is called m ixed voiced: and speech produced by other types o f  

excitation is called unvoiced.

2.3 Model of Speech waveform

2.3.1 Tube model

In studying the speech production process, it is helpful to abstract the im portant features 

o f  the physical system in a manner that leads to a realistic yet tractable mathematical

ARMA Lattice M odeling to r Isola ted W ord Speech Recognition
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C hapter 2 Speech M odeling

model. Figure 2.2(a) shows such a schematic diagram  o f  the vocal system. For 

completeness the diagram includes the sub-glottal system composed o f  the lungs, bronchi 

and trachea. This sub-glottal system serv es as a source o f  energy for the production o f  

speech. Speech is s im ply the acoustic wave that is radiated from  this system when a ir is 

expelled from  the lungs and the resulting flo w  o f  a ir is perturbed by a constriction 

somewhere in the vocal tract.

n o s t r ilNASAL TRACTMUSCLE FORCE

VELUM.

LUNGS TRACHEA VOCAL VOCAL TRACT MOUTH 
BRONCHI CORDS

Excitation Tube Model Speech Output 
 ►

Figure 2.2 (a) Schematic diagram of vocal system (b) Block diagram

Figure 2.2 (b) shows a general b lock diagram that is  representative o f  models that has 

been used as the basis fo r speech processing. These models a ll have in common that the 

excita tion features are separated from  the vocal tract features. The vocal tract is modeled 

as a un ifo rm  tube closed at the g lo ttis  end and open at the mouth end. It is accounted for 

by the tim e-va ry ing  linear system: the purpose is to m odel the resonance, the v ib ra tion  o f  

the vocal cord. The excitation generator creates a signal that is either a tra in  o f  (g lo tta l)
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Chapter 2 Speech M odeling

pulses, or random ly varying noise. The parameters o f  the source and the system are 

chosen so that the resulting output has the desired speech-like properties. In practice, this

terms, this k ind o f  model which only has poles expressed by the denominator coeffic ients 

is also called an auto regressive (A R ) model. The most famous AR  m odeling applied in 

speech processing area is based on linear prediction theory: so called LP model.

2.3.2 LP model

The a ll-po le  LP model, as applied to speech, has been well understood fo r many years. 

The mathematical details and derivations w ill be om itted here: the interested reader is 

referred to the reference [1], It is an ana ly tica lly  tractable model and provides good 

performance in many speech processing applications. Experience has shown that it also 

works w e ll in some recognition applications. That is why it was so popular in the area o f  

speech processing in the past 30 years.

The basic idea behind the LP model is that a given speech sample at tim e n. y(n). can be 

approxim ated as a linear combination o f  the past N speech samples, such that

where the coeffic ients ai. a^ a \ are assumed constant over the speech analysis frame.

We convert Eq. (2.1) to an equality by inc lud ing an excitation term. x(n). g iv ing

unifo rm  tube model can be represented w ith  an a ll-po le  transfer function. In statistical

y ( / 7 )  =  ciiy ( n  -  I )  +  a : y ( n  -  2 )  +  ... +  a ,  y ( n  -  X ) ( 2 . 1 )

( 2 .2 )
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Chapter 2 Speech Modeling

By expressing Eq. (2.2) in the z-domain we get the relation

(2.3)

leadine to the transfer function

-k
(2.4)

We consider the linear com bination o f  past speech samples as the estimated y( n) .  

defined as

The basic problem o f  linear prediction analysis is to determine the set o f  predictor 

coefficients. J ak I - d irectly from  the speech signal so that the spectral properties o f the 

model match those o f  the speech waveform  w ith in  the analysis w indow. By m in im iz ing 

the sum o f  the squared differences (over a fin ite  interval) between the actual speech 

samples and linear predicted ones, a unique set o f  predictor coefficients can be 

determined. There are many methods to determine these coefficients: the most commonly 

used include auto-correlation method, covariance method and lattice method.

Methods to determine coefficients

Consider the causal A R  filte r model.

V
(2.5)

We now form the prediction error. e(n). defined as

(2 .6 )
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hint

A C )

Figure 2.3 Inverse filter A(z) applied to (a) model response, (b) desired response

H i z )  =
Akz)

where A(z) = ci0 + a xz ' + - - - + c c z

then H(z) A(z> = 1. or. in time domain. 

h ( n ) * a n = S(n)

(2.7)

(2 .8 )

(2.9)

The FIR filte r A(z) is thus the inverse filte r for H(z). wh ich whitens h(n} to produce 

dfm.'ds depicted in Figure 2.3(a). Since A(z> has order A', we call it a support w ith  .V 

order. Using 2.Y- / consecutive values for hfm  beginning at n=  -A’. (2.9) provides A’* /  

linear equations from  which to solve fo ra ,,: i.e.. given h(0> through h(K)  w ith  the fact that 

hdv  = 0. fo r n<0.  the convo lution may be written in m atrix form  to produce the fo llo w in g  

A’ -  /  equations fora ,,:

0 ••• 0 „

a ,  0
0 '  • ( 2 I 0 >

/?, htJ

/7, ••• /j, h()

1

" l 0

a . 0
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Chapte r 2 Speech Modeling,

Nevertheless, given a desired o r measured impulse response hd(n) that is not exactly A R  

and/or o f  greater than .Vth order, we can only approximate it. Therefore. (2 .9) becomes 

h , ( n ) * a i: = S ( n ) + e ( n )  (2.11)

where e(n) is the approxim ation error, and A (z ) is on ly an approxim ate inverse filte r as 

illustrated in Figure 2.3(b). S im ila r to (2.9). we write (2.11) into m a trix  form : we have

H j a= 5 + e ( 2 . 1 2 )

where

H

0

h .n

0

0

kin

  K  , , j

a=[a0.a i a s ]1

5=[ 1.0......0]T

c=[e0.e i eNf .

Note that we have assumed more data samples h j n j .  for /7-0.1 L.  than the m in im um

required (i.e.. L>. \ r) in order to approximate h j n )  closely over more than the m in im um  

interval. Or. in other words, we can assume the available data fo r the approxim ation is up 

to .V. A pp ly ing  the least-square error criterion, we are about to m in im ize

= e 1 -e = X <
7i=0

(2.13)

This is the standard problem in least-squares estimation w ith  over-determ ined equations. 

From (2.12), (2.13) becomes
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E \  -  ( H j a - 5)T(Hd a - 5)

= (aT H jT - 5 r)(Hu a - 5)

= a r H j '  H d a - 2 a r H dr 5 +  5r 5 (2.14)

To m in im ize  E\ .  we put the corresponding partial derivatives to zero: i.e. in vector form.

c  E,
- — •■ =0  (2.15)

(  a

which gives

2 H dr H d a - 2  H d‘ 5 =  0 (2.16)

or s im p ly

H dT H d a = H dr 5 (2.17)

Equation (2.17) is the desired normal equation fo r the LSE solution a. Note that i f  we 

p re -m u ltip ly  both sides o f  (2.12) by H d' . we have

H j1 H d a = H dr 5 + H j 'c  (2.18)

Com paring (2.17) and (2.18). it implies

H d 1 e=0 (2.19)

Covariance method

I f  we denote

0N = Hdr Hd (2.20)

and note also that

Hd1 5 =  /?,,„ 6 (2.21)

Equation (2.17) becomes
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0 \  a = h j n5 (2.22)

where <t>\ is the (N-H ) x ( N - l ) symmetric covariance m atrix. The parameters a can be 

obtained by (2.22).

a = hjn&'s ’ ' 8 (2.23)

Yule-VValker Equation

As Z.-> x .  the elements <j>,, o f  «t>\ approach the auto-correlation values R(i-j) where

r.

R(ni) = ^ h , ( n ) - h j ( n  + m) (2.24)
r s ~ -  0

Since h j n )  is real. R (-m )=R(m ). Therefore. c|jn becomes the symmetric Toeplitz auto

correlation m atrix:

R,  =

: R,: R,

1 R.I Ri

••• R,

R,
R . R.

(2.25)

F.quation (2.22) becomes the famous Yule-W alker equation [4]

R \ a = / t 1/,/5 (2.26)

And this leads to another famous method called autocorrelation method.

Both the covariance and autocorrelation methods consist o f  two steps: computation o f  a 

m atrix o f  correlation values and solution o f  a set o f  linear equations. A  variety o f  

techniques can be applied to solve those linear equations in an e ffic ien t manner such as
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the Cholesky decomposition solution for the covariance method, and D u rb in 's  recursive 

solution for the autocorrelation equations. Another class o f  methos called lattice method 

has envolved in which the above two steps have in a sense been combined into a 

recursive a lgorithm  for determ ining the linear predictor parameters. Once these 

coeffic ients obtained, they are forwarded to the pattern recognition stage. Since the model 

is derived from  the vocal tract system, those coefficients are supposed to reflect the 

features o f  the resulting speech signals. LP model is believed match the signal spectrum 

as long as the model order is large enough. The advantage o f  using this model is it is easy 

fo r im plem entation, however, we w ou ldn 't expect it  to w ork  w e ll on all kinds o f  

phonemes, e.g. nasals, or phonemes w ith  zero properties.

2.3.3 Model breakdowns

However in reality, the vocal tract model d iffers from an a ll-po le  A R  model in several 

respects. The most crucial and w ell-know n shortcoming o f  an a ll-po le  model is in its 

assumption that during any voiced pronunciation the velum is always closed and the 

sound wave proceeds only through the oral cavity. So the in fluence o f  the nasal cavity is 

ignored in the assumption. It raises no big problem when non-nasal sounds are processed, 

but in the case o f  nasal sounds the mismatch o f  the model becomes severe. Since the 

nasal cavity  plays the role o f  a resonance cavity during the nasal pronunciation, there 

appear some zeros in the transfer function. The zeros have the e ffect o f  suppressing the 

peaks in m id-frequency, fla tten ing spectrum there. But such a fla t spectrum o f  nasal 

sounds is not easily fitted by a fin ite  number o f  poles o f  the ex is ting  a ll-po le modeling 

[ ! ] •
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Besides, un like  phonation. the places o f  fricative, plosive and other excita tion are actually 

inside the vocal tract itself. This could cause d ifficu ltie s  fo r models that assume an 

excita tion at the bottom end o f  the vocal tract. In fact, those fricatives and plosives 

sounds generated somewhere inside the vocal tract (thus d iv id in g  the vocal tract in to the 

front and back portions), introduce zeros. There may be no resonance, o r the resonance 

may be hidden by zeros.

Therefore it is necessary to m od ify  the a ll-pole transfer function in to a pole-zero type 

which call for both poles and zero in transfer function so that to handle these zero 

problem missed by the a ll-po le model. For more general speech analysis, as carried out. 

for example, w ith in  speech recognition, a variety o f  im portant cues is provided by 

in fo rm ation  about spectral zeros.

2.3.4 Modifications on LP

A t the beginning o f  attempts to apply a pole-zero model, many methods were s till 

developed based on the orig ina l a ll-po le model: on ly  small m od ifica tions were made for 

some special purposes: this is to avoid bring ing in more com putation burden, so the 

parameters fo r the zero part somehow can be obtained easily from  the know n parameters 

o f  the poles [5 ]. In the meantime, there are other researchers developed a new acoustic 

model taking into account the nasal tract as w e ll as the oral tract and fin a lly  led to a pole- 

zero transfer function [6],

ARMA la tt ic e  M odeling fo r  Isolated H a rd  Speech Recognition
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Chapter 2 Speech M odeling

However, at present, more and more researchers focus on d irectly  app ly ing  pole-zero 

analysis method to speech signals. 20 years ago. this seemed not a feasible choice due to 

the huge com putation on the determ ination o f  parameters fo r both poles and zeros. But at 

present, except fo r the standard methods fo r solving the parameters, some other more 

e ffic ien t and pow erfu l techniques have been developed and used in this area. Other 

encouragement comes from the big im provem ent on the technology o f  high speed 

computers. A ll these facts made pole-zero m odeling eventually become a com petitive 

technique for speech analysis.

2.4 Pole-Zero (ARMA) Modeling

2.4.1 Introduction

In the previous discussing o f  basic model fo r speech production and the characteristics o f  

the vocal tract, we commented that the vocal tract could be reasonably approximated in 

terms o f  a rational transfer function represented by poles and zeros. The poles 

corresponding to the vocal tract resonance and the zeros introduced due to such effects as 

coarticulation and coupling between the vocal tract and nasal cavity.

The general transfer function o f  a pole-zero model is as fo llow  s:

I*.
(2.27)

;
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Chapter 2: Speech M odeling

where a and b denote the model parameters corresponding to poles and zeros 

respectively.

L ike  all-pole A R  models, the pole-zero model is called the autoregressive m oving 

average (A R M A ) model in statistical term. This is more generally used for a m odeling 

problem other than a signal processing problem. In fact, all d ifferent types o f  model can 

be derived from Eq. (2.27). depending on the nature o f  the numerator and denom inator 

coefficients. Models for which the coefficients a are zero are called m oving average 

(M A ) models. Those fo r which the b coefficients are zeros are called autoregressive (A R ) 

models. They are the special cases o f  the A R M A  models. Because m odeling the speech 

signal is equivalent to applying a d ig ita l filte r in the signal processing, they can be called 

all-zero (M A ) filters, a ll-po le (A R ) filters and pole-zero (A R M A ) filters too. For the 

purpose o f s im p lic ity , we w ill only use term M A . A R  and A R M A  in the fo llow ing  parts.

2.4.2 Comparison between AR and ARMA modeling

Figure 2.4 shows the comparison between a ll-po le modeling and pole-zero m odeling for 

nasal sound /a / in time domain. Here are a 12lh order A R  model and a 6/6 A R M A  model: 

standard methods, autocorrelation and Prony. are used to determine the parameters 

respectively. The sum o f  the squared error between the real signal and the modeled signal 

o f  are 3.8309 for AR  m odeling, and 0.7963 fo r A R M A  modeling (35 samples).

In the figure, it is easy to see that the A R M A  modeled signal is closer to the orig ina l one. 

that is to say that the A R M A  model is more accurate than the A R  model in representing

.MIMA Lattice M odeling fo r  Isola ted ll 'o rd  Speech Recognition
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the signal. S im ila r results can be found fo r other types o f  sound; o f  course error 

differences m ight not be that b ig -like  the sounds w ith  zero properties. However, overa ll, 

it again verifies that A R M A  model is the more generally applicable model fo r 

characterizing the speech signal, i f  one does not consider the d iff ic u lty  o f  obta in ing the 

model coefficients.

The practical application o f  A R M A  m odeling techniques has been somewhat lim ited  due. 

perhaps, to the relative com plex ity  o f  the model fittin g  a lgorithm . This is a bottleneck 

problem o f  using A R M A  model. Fortunately, more recent research w o rk  indicates that 

the lattice a lgorithm , an e ffic ien t technique available fo r A R M A  m odeling, could be one 

feasible choices.

A R:12 A R M A :6.6

Original 
AR resp 
A R M A  resp

0.6

0.4
©*o3 0.2
Q.
£(O
"O
©N
(0
o
c  -0.4

- 0.6

- 0.8

0 5 10 15 20 25 30 35 40
sample number

Figure 2.4 A R  and A R M A  modeling o f speech sound In i
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2.4.3 Lattice method

Although a varie ty o f  A R M A  m odeling techniques have been form ulated theoretically. 

Methods in vo lv in g  large m atrix operations and iterative op tim iza tion  techniques are 

generally unsatisfactory in the environm ent o f  speech analysis, in which m em ory and 

speed requirements are im portant and the potential fo r real-tim e processing is often 

desirable. Thus, the most suitable techniques tend to be those based on a least-squares 

error c rite rion , formulated in such a way as to involve the solution o f  linear equations. 

The Levinson-D urb in  a lgorithm  [7] is one o f  these techniques. This a lgorithm  also leads 

to the la ttice structure o f  the im plem entation. Figure 2.5 shows a basic lattice b lock that 

represents one order increment. It uses reflection coeffic ients instead o f  canonical 

parameters in the m odeling. These coeffic ients indicate the degree o f  corre lation between 

the forw ard and backward prediction errors, for this reason K is also called the partial 

corre lation coeffic ients (PARCO R).

in - l i" 'o r d e r  in i '1'o rder

-k"

k  reflection coefficient 
e forward error 
r backward error

Figure 2.5 Basic lattice structure

To use the lattice form  for m odeling it is necessary to estimate the re flection coeffic ients 

o f  the prediction model from  available data. The algorithm s are m ostly o f  the b lock-
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Chapter 2 Speech M odeling

processing type and based on the Levinson algorithm  w hich is related to stationary' 

covariance matrices [1 ]. The computation is performed in tw o steps. First, the sample 

covariance m atrix  o f  the data is computed, using various types o f  w indow ing. Then, 

reflection coeffic ients are computed by cross-correlating the forward and backward errors 

propagating in  the lattice [8 |. When the sample covariance m atrix  has a Toeplitz structure 

(the so-called autocorrelation method), the resulting lattice model is the optim al least- 

squares predictor o f  the observed process.

Recently, new lattice structures were developed for im plem enting the least-square 

prediction [9 ][  10]: the algorithm s are capable o f  com puting reflection coefficients 

directly form  the data. It is recursive both in lim e and in model order. The reflection 

coeffic ients are updated as each new data point becomes available. The recursive nature 

o f  the a lgorithm  makes it ideally suited for real-time estimation.

The use o f  the lattice form  realizations in linear system m odeling problems has played an 

increasingly im portant role in many areas o f  application, for example, in speech 

processing, spectral estim ation, and system identifica tion. The many nice structural 

properties o f  la ttice forms such as modular structure, good contro l o f  numerical stability, 

and much reduced com putational com plexity o f  m odeling a lgorithm  make them attractive 

candidates fo r hardware implementation.
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Here is the comparison o f  using the lattice technique and the d irect-fo rm  A R  and A R M A  

m odeling for speech signal. Figure 2.6(a) depicts the spectrum o f  the nature nasalized 

constant /m/.

Two strong anti resonances are clearly evident, one is at 650 Hz and the other at 3.2 KHz. 

Figure 2.6(b) shows the spectrum resulting from a 12Ih order A R  m odeling.. It is evident 

that this spectrum accurately reflects the presence o f  the resonances but not the 

antiresonances. In general, increasing the order o f  the A R  m odeling w ill not improve the 

m odeling o f  the antiresonances [6].

Figure 2.6(c) and (d) represent the spectrum obtained from  an A R M A  (12.10) model. In 

Figure 2.6(c). the model is obtained using d irect-form  Prony's method [7] and in Figure 

2.6(d). the model is obtained using a RLS based lattice a lgorithm  [7 ], In comparing the 

results for these two methods, it seems clear that the use o f  RLS based lattice modeling 

leads to more accurately characterized the anliresonances.
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Figure 2.6 Illustration o f modeling of speech sound /m /
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3 ARMA Lattice Modeling Algorithm

3.1 Introduction

The earliest form  o f  A R M A  lattice m odeling a lgorithm  was proposed by Lee. Friedlander 

and M o r f  [ l l ]  who form ulated the a lgorithm  based on geometric approach and projection 

approach. A  s im ila r approach was used by Parker and L im  [12] to develop a m u lti

channel A R  lattice a lgorithm . It is shown that the two-channel case can be adapted fo r the 

purpose o f  A R M A  system m odeling. However, both algorithm s are restricted to the case 

where the num erator and denom inator polynom ia ls o f  the optim al model are o f  the same 

order. In attempts to remove such restriction. M iyanaga. Nagai and M ik i [10] developed a 

lattice a lgorithm  w h ich  allow s arbitrary arrangement o f  A R  type and M A  type update 

recursions. Further im provem ents in this d irection are made by Kwan and Lu i [13] [14]. 

who have derived the a lgorithm  which exhib its a high degree o f  s im p lic ity  and regularity 

in  com putational architecture and made it a com petitive candidate for implementation.
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3.2 ARMA Lattice Modeling

A  linear causal tim e varying A R M A  model may be characterized by an equation which 

expresses the model output at tim e n. y n (n ) .  as a linear com bination o f  the previous 

outputs v(n -  1) y ( n  -  p )  and the current and previous inputs x (n )  x(n -  q ) . i.e..

Im plem enting the model corresponding to this difference equation leads to a transversal 

filte r realization [9 ], where the ak and the bk are the filte r coefficients. For lattice

realization. y „ ( n )  is expressed as linear combination o f  some aux ilia ry  variables which 

can be expressed as a linear com bination o f  the variables y ( n - l ) , . . . . y ( n - p )  and

x {n )  x(n — q ) .  A lthough these structures w ould have d iffe rent sets o f  filte r

coefficients, they w ould all be equivalent in the sense that for a given input they would 

generate the same output (assuming no quantization or round o f f  errors).

In the A R M A  m odeling problem , we are given an input sequence { x(n)  j and an output 

sequence {> '(« ) }  and we w ould like  to find a linear tim e varying A R M A  filte r 

(determ ine the filte r coeffic ients), whose output { y ( n ) } is as close as possible to { y ( n ) }. 

In a speech application, the systems we are try ing to model are s low ly  varying in tim e so 

that the A R M A  f ilte r  coeffic ients may be considered to be constant over any interval o f  

length L. In this case, the m odeling problem at time n may be formulated as fo llows. A t 

each tim e i w ith in  the interval [n -L+1 . n]. an A R M A  model w ith  constant coefficients 

generates an output according to the difference equation

(3.1)
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p <t
S' „(0 = £ a" . * A i  -  k)  + Y , hnj ,x(i  -  k)  (3.2)

1=1  1  =  0

O ur goal then is to find the set o f  filte r coeffic ients which m in im ize the mean square error 

over the in terval [n-L+1 . n]. i.e.. m in im ize

XtSE(n )  =  Y . \ e n( i f =  Z i  > ’( / ) - ^ ( O ) 2 ( 3 . 3 )
/ = n - (  / . - I ) t = n - {  L - 1 )

Note that i f  we define the L-dim ensional error vector en as

en = [ * „ ( " )  en( n - L  + \ ) ] r (3.4)

then the mean square error. M SE(n). can be viewed as the Euclidean norm  o f  the error

vector. en. in  an L  dimensional H ilbert space. I f  we also define the vectors 

v„ = [> •(« ) y { n - L  + \ ) ] ‘

y „  = [>'»(«) - L  + 1)]' (3.5)

x„  = [ * ( « ) ......-v(/?-Z. + l ) ] /

then we can vvTite the error vector as

p <t

e„ = y„ -  y„ = y„ -  ( Z fl«.*>’»-* + Z h» ± ) (3-6)
1=1  1 = 0

Since y n is a linear combination o f  the vectors ....v and x, „v then it lies in the

subspace generated by these vectors:

>’n e 'X„.PM = Sp{ya. ,  y a-p. x  } (3.7)

It is w e ll know n that the error vector en is m in im ized when y n equals the pro jection o f  

r „  onto the subspace 9? „ p v [ 1 ]. I f  we denote this projection by Pn p (> ,,) then

p <t
y„ = p n . P , (  (y„ ) = Z  a'Kky„-k + Z  V* *»-* (3-8>

1=1 1=0
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Chapter 3. ARMA Lattice M odeling  A lgo rithm

where a n. fo r k = I   p and hnk fo r k= 0  q are the projection coeffic ients. It is

im portant to keep in m ind o f  the fact that Pn (y „ ) is the m in im um  error norm  solution,

independent o f  the basis selected for 'J?„ . Th is projection, however, may be realized or

evaluated in many d iffe ren t ways depending upon the choice o f  basis for .

The A R  m odeling problem is a special case o f  the A R M A  m odeling problem  where q=0. 

In this case the mean square error is m in im ized  w ith  the projection

y „  = P,: r ( y „ )  the projection o f  v„ onto 'J?(1 r (3.9)

where '.H„ = Sp \ _r„ , ....... y„..„ J .

In ligh t o f  this geometric interpretation o f  the m odeling problem, it has been shown that 

the A R M A  lattice f ilte r is characterized by tw o design rules [2 ][3 ]. namely

1) It is realized in terms o f  an order increasing orthogonal basis o f

 /•„ . which is generated by the Gram -Schm idt orthogonalization

procedure: r , , = y „  . -  P „ . ( y____)

2) It evaluates the projection erro r en „ rather than the projection P „ r ( y „ )  and it 

does so in an order increasing manner, i.e. it first evaluates en,. then en , .  etc. up

t o  e n . r  ■

ARM A Lattice M odeling  fo r  Isolated Word Speech Recognition
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Chapter 3 ARMA Lattice M odeling A lgorithm

An A R M A  lattice f ilte r was developed in [ 13 ][ 14] fo r A R M A  m odeling problem. The 

A R M A  lattice filte r was derived by defin ing six prediction errors. A  summary o f  the 

a lgorithm  is given in the next section.

3.3 ARMA Lattice algorithm [ 13][ 14]

3.3.1 Introduction

The a lgorithm  adopted here is an A R M A  lattice analysis method for signals. To obtain 

order update recursions for a lattice model, two elementary modules and two starting 

blocks and four regular blocks are formed. Reflection coeffic ients inside each lattice 

stage can be calculated as model parameters.

3.3.2 Elementary modules 

Module A

The structure o f  module A  is shown in f ig u re  3.1. e and r are forward error and backward 

error respectively. K I and K2 are reflection coeffic ients, they can be expressed by a 

single coe ffic ien t K. according to the equations listed below. The relations between the 

inputs and the outputs o f  the module A  then can be reflected by this single coeffic ient K.
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K2

K2

where K \  =

V I - A ' :

A.'2 =
- K

V l  -  K 2

Figurc 3.1 Module A

!n other words.
V 1 1 - K e

Ir V l  -  K : - K  1 r
(3.10)

K. is given by K = < e . r >. It is the dot product, also know as correlation, between vector 

e and r. The correlation estim ation form ula used here is given by:

e.

e = and /• =
■

_ e !  . f ,  _

The value o f  L is taken the length o f  the frame. Once the module is defined, w ith  given 

inputs, coeffic ient K  and the outputs can be obtained.
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Module B

A fte r some algebraic manipulation, w ith  path o f  e-e’ revised direction, module A  w ill 

become module B which takes input e’ and r  and returns c and r \  And the de fin ition  is 

shown in Fiuure 3.2

K2

-K 2

w here A.'I = V 1 -  K : .

and K2  = K  .

Figure 3.2 Module B

Same as module A . instead o f  using K l and K2. a single reflection coeffic ient K  is given 

by:

K < r .u  >
(3.13)

V l -  K : < e ' . u >

where u is related to e’ by the fact that e’ is the error associated w ith  the prediction o f  the 

random variable u.

The operation o f  module B is described by the fo llo w in g  equation:

e

1

1 t j

i

'

I P* I * 1 _
_ ■-1 (3.5)

and the calculation o f  the reflection coe ffic ien t is
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Chapter 3 ARMA Lattice M odeling A lgorithm

from
K < r .  u >

< e' . u >
< r . i t  >

we get ri =  s ign(------------- )
< e ' . u  >

< r . u >  

< e’ .11 >

1 +
< r . u  >
< e' .u >/

These two modules w ill be used as elementary blocks to construct other regular blocks. 

For s im p lic ity , the modules w ill be treated as blocks w ith  inputs and outputs shown

below:

c 9 e e

Module A Module B

I * • i i •

Figure 3.3 Module blocks

3.3.3 Definition of error fields

Before we introduce the starting blocks and regular blocks, we have to give the 

de fin ition  o f  error fie lds w h ich the lattice a lgorithm  operates on. They are inputs and 

outputs o f  each block. The lattice blocks inv olv ed in this a lgorithm  manipulate 4 out o f  6 

error fields. They are listed in the fo llow ing  Table 3.1.
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Chapter 3 ARM. l Lattice M odeling A lgorithm

Table 3.1 E rro r fields

Symbol D efin ition

ex forw ard error o f  x

extended forward error o f  y

extended backward error o f  x

r\ backward error o f  y

t \ backward error o f  x

T> extended backward error o f  y

The error fields in the table form two groups, one for A R  order update, the other for VIA 

order update, each one consists o f  4 error fie lds, i.e..

fo r A R  lattice like AR  AR . A R  VIA.

e.

r x

K r ,

for V IA  lattice like V IA  AR . V IA  M A .

The firs t two are the same for both sets: the last two w ill be changed in outputs when the 

order update needs to sh ift from  A R  to M A  o r from  M A  to AR.
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3.3.4 Starting blocks

There are two starting blocks, namely I_A R  and l_ M A . respectively fo r A R  and M A  

order update in the next stage.

I AR

♦  edn)

x(n

M odule A

>(n)

Figure 3.4 I_A R

Look at the diagram o f  block I_AR. it is constructed by a module A. The output error 

fields are for the A R  order update in the next stage. The reflection coeffic ients o f  this 

block is s im ply the coefficients o f  module A . W ith  given inputs o f  x(n) and y(n). the 

reflection coeffic ients and the error fields can be calculated by equations (3.10) and 

(3.12) and (3.13).

I_M A

S im ila r to I_AR . the starting block I M A  is also constructed by a module A . However its 

output error fie lds are fo r M A  order update: one could see the last two errors are changed.
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♦  edn)

x(n

Module A

y(n)
♦  i\(n)

Figure 3.5 I_ \IA  

3.3.5 Regular order update blocks

Once we have the firs t b lock o f  the lattice model to be either I_A R  or I M A . the next 

task is to connect it w ith  other order update blocks for A R  o r M A  order increment un til 

we have got the model order that we want. In this a lgorithm , there are four such blocks 

are developed, namely. A R  AR . M A  M A . A R  V1A. M A  AR . The first part o f  the 

names stands fo r the input error fields for order update, and the second part is fo r the 

output error fie lds fo r connection o f  the next stage: e.g.. the b lock A R _A R  has the input 

error fields o f  AR  order update type: after this block. A R  order w ill be increased by 1. 

and since the output erro r fields o f  this block are for A R  type too. the next stage that can 

be connected must have the identical input error fields, say A R  A R  or A R M A .
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A R _ A R

The block diagram o f  A R  A R  is shown in Figure 3.6. The error fie ld  on the le ft side is o f  

order p ( fo r  A R  order), q ( fo r  M A  order). A fte r this lattice block, the A R  order w ill 

increase, i.e. p -> p-M . But fo r s im p lic ity , the notation is not shown.

u = v (n -p - l)

M odule

Module
Module

Figure 3.6 AR_AR

note that M odule B is upside down.

M odule A  is sym metrical, it could be upside dow n as long as the signal paths are 

not tw isted.

u is required in calculating the reflection coeffic ient.

The le ft side is

' e\ r 'n

w hile  the right side is

| V / " '  ']

r-‘/> r r . „

r ' r ‘"  v 1 V
r - i.‘/i 

v y
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M A JVIA

Shown below, the block diagram o f  b lock M A  M A  in Figure 3.7. the same as A R  A R : 

the error fie ld  on the le ft side is o f  order p. q. A fte r this lattice block, the M A  order w ill 

increase, i.e. q -> q -1 .

u = x( n -q -1)
rd n

x,(n)

Module

M odule
Module

Figure 3.7 M A JV IA

note that M odule B is NO T upside down in this M A  M A  block.

M odule A  is symmetrical, it could be upside down as long as the signal paths are 

not twisted.

u is required in calculating the reflection coefficient.

The le ft side is

e r 

r-</ > w h ile  the riaht side is
€ \ r  7  ’ 1 ’ 

r ' r  >t - 11

r « r . ‘t - i i  
v i
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A R _M A

In this lattice b lock. A R  M A . shown below in Figure 3.8. the output error fields are 

changed to M A  format. The error field on the le ft side is o f  order p. q. A fte r this lattice 

block, the AR order w ill increase, i.e. p -> p ~ l.  And the 3rd and 4th output error fields 

are changed in meaning.

r-.(n)

Module
M odule

Figure 3.8 AR M A

The le ft side is

f

g- r , .

r 7 ’-"
' r  •/'

w hile  the riuht side is

M A A R

The last b lock in this lattice a lgorithm  is called M A  AR . its b lock diagram is shown in 

Figure 3.9. Again the error fie ld on the le ft side is o f  order p. q. A fte r this lattice block.
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the M A  order w ill increase, i.e. q -> q+1. The output error fie lds havre changed to A R  

com patib le format.

M odule
M odule

Ts( n ) --------------------------------------------------------------------------------------------------------------- ► r,(n)

Figure 3.9 M A _A R

V / - 1' jV / " ' - 1' '

The le ft side is 1
1 n ./I w h ile  the righ t side is i /• </ - I )r i

\ r > / v ; J

3.3.6 Order increments

To bu ild  an A R M A  lattice model, as we mentioned before, it  should always start from  

one o f  the starting blocks. O ther regular order update blocks are then connected 

according to the rules o f  error fie lds com patib ility . The fo llo w in g  figure shows the 

' ‘m ic ro ”  structure o f  an A R M A  lattice model:
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Basically. A R M A  model w ith  any orders can be obtained in such a way as long as the 

inputs and outputs o f  adjacent blocks are identical, e.g. starts from  I_A R . so the next 

b lock 's  input must in same format o f  the I A R 's output. That is to say. e ither A R  M A  or 

A R  A R  can fo llo w  the I .A R  block. Same th ing happens fo r a ll the b locks here. I f  the 

second b lock is A R  M A . then the th ird  one must be M A  A R  or M A  M A , then one by 

one to continue.

(2 .0 )(0.0 ) ( 1.0 ) (3 .0 )

(0 .0 ) (2 .0 )

(0 .2 ) (2 .2 )
M A  AR AR MA

AR M A

1 AR

AR M AI M A

MA MA

AR AR

M A  AR

AR AR A R  AR

AR MA

Figure 3.10 A R M A  lattice order increments

In the figure, we notice that for any A R M A  lattice w ith order o f  (p. q ). there m ight be not 

on ly one way to build  it. They could include d iffe rent types o f  basic blocks or have 

d iffe ren t sequences, e.g.. A R M A  (2.1) could be formed as I A R -  A R  M A - M A  A R - 

A R  M A  or I_A R - A R  AR - A R  M A - M A  A R  or I M A - M A  A R - A R  A R - A R  A R  

and so on. In a ll kinds o f  possible connections, there is one special arrangement so-called 

m in im a l, i.e.. the order update is in the way o f  A R  M A . M A  A R  alternating. The 

fo llow  ing is an example o f  such an arrangement.
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1'hupter 3 ARM A Lattice M odeling A lgorithm

-- -

I AR AR M A M A AR AR MA M A AR

AR order
-  1

M A order
-  I

AR order
* l

M A order
-  I

Figure 3.11 M inim al arrangement

Since being arranged in this way could cause the one o f  the re flection coefficients for 

each regular order update b lock AR  M A  and M A  A R  become to zero, the total number 

o f  coe ffic ien t required for the whole modeling is though reduced. Here is a numerical 

example. The system which needs to be modeled has poles and zeros shown as below

Tabic 3.2 Example: poles and zeros

r 0
0.70 ± 10°
0.80 ± 4 0 °
0.80 ± 54°

Zeros 0.85 ± 8 7 °
0.85 ± 9 3 °
0.70 ± 115°
0.60 ± 150°
0.60 ± 12°
0.90 ± 23°
0.75 ± 72°

Poles 0.96 ± 72°
0.90 ± 9 4 °
0.96

000o+1

0.90 ±  132°
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The impulse response sequence then can be generated fo r the modeling. A  lattice model 

o f  order (8.8) is used. Thus there are 17 blocks inside it. starting from  I_AR . fo llow ed by 

8 A R M A  and M A  A R  pairs. The corresponding coeffic ients are obtained as fo llow :

K0 = 0.512129

B lock 1 A R -M A K 1 1 = 0.000000 . K12 = -0.957997

B lock 2 M A  AR K21 = 0.000000 . K22 = 0.092432

B lock 3 A R -M A K3 1 = 0.000000 . K32 = -0.751382

B lock 4 M A  A R K 4 1 = 0.000000 . K42 -  -0.095171

B lock 5 A R -M A K51 = 0.000000 . K52 = 0.258404

B lock 6 M A  AR K61 = 0.000000 . K62 = 0.448894

B lock 7 A R -M A K71 = 0.000000 . K72 = -0.643009

B lock 8 M A  A R K81 = 0.000000 . K82 = 0.182304

B lock 9 A R -M A K91 = 0.000000 . K92 = 0.484343

B lock 10 M A  AR K101 = 0.000000 . K102 = 0.441427

B lock 1 1 A R -M A K i l l  = 0.000000 . K 1 12 = -0.311877

B lock 12 M A  AR K 121 = 0.000000 . K 122 = 0.095687

B lock 13 A R -M A K131 =0.000000 . K132 = 0.106936

B lock 14 M A  AR K141 = 0.000000 . K142 = -0.496944

B lock 15 A R -M A K 151 = 0.000000 . K 152 = -0.991207

B lock 16 M A  AR K161 = 0.000000 . K162 = -0.377064
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So this gives us the idea o f  how to build  an A R M A  lattice model w ith  m in im um  

reflection coefficients. I f  the A R  order is higher than the M A  order, one can start from  the 

I_A R  block and fo llo w  by A R  A R  blocks. The total number o f  the A R  A R  blocks 

needed can be computed by subtraction o f  AR order from V IA  order. A fte r all the 

A R  AR  blocks, the A R V I A  and M A  AR  pairs are then arranged un til it get to the order 

desired. In the contrast, i f  the V IA  order is higher than A R  order, we can start from  I_ M A  

block and then fo llow ed by M A M A  blocks and A R  V IA  and M A  A R  pairs. Table 3.3 

shows the number o f  coeffic ients required for the A R V IA  lattice model w ith  d iffe rent 

orders. They are a ll arranged under the consideration o f  m in im a l arrangement.

Tabic 3.3 Numbers of lattice coefficients

\ AR : 2 AR : 4 AR : 6

COCH<

j MA 2 5 15 21 27
i MA 4 15 9 15 21 I

MA 6 21 15 13 19 I
| MA 8 27 21 19 17 i

For convenience, we recall the number o f  coefficients needed fo r each block as fo llow s: 

B lock Type: I_A R  I M A  A R  A R  VI A  M A  A R  V IA  M A A R

Coeffic ients: 1 1 3  3 1 1

So. e.g.: A R M A (8.4) includes 1 I_AR . 4 AR  A R . 4 A R  V IA . and 4V IA  A R . so

the total number o f  reflection coeffic ients required is l* l-4 * 3 - r -4 *  1+4* 1=21.

From the table, we found that w ith in  the same model length, the m in im um  total number 

o f  coefficients is always obtained when the A R  order equals to the V IA  order. This
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properly has very special meaning when choosing the model order fo r the recognition 

application.

As we know , a 12lh order A R  model is the typ ica l choice fo r the speech coding and 

recognition applications. Since the dim ension o f  feature vectors after m odeling is same 

as the dim ension o f  code vectors in the next pattern recognition stage, we have to keep 

the new A R M A  model in the same model length as the conventional A R  model so that it 

w il l not add com putation burden in fo llo w in g  codebook tra in ing and testing procedure. 

Based on this consideration, we w ould rather choose A R M A  (6.6) (13 lattice coeffic ients) 

than A R M A  (8.4) (21 lattice coeffic ients) when we want the model length to be . e.g.. 

around 12.

Besides the a lgorithm  we proposed here, there are number o f  other lattice a lgorithm s 

developed based on the recursive least square criterion. Com paring w ith  those 

algorithm s, our method has an advantage that, as we discussed before, w ith  special 

arrangement the number o f  coeffic ients required for the model can be reduced. M oreover, 

since it on ly takes (5 + ION) m u ltip lica tions and (3+6N ) additions (N  is the model length, 

see in  A ppend ix), compare w ith  other a lgorithm s, our method obtain more com putation 

saving [16].

3.4 Properties of Lattice Algorithm

The lattice a lgorithm  that we discussed in the previous section also has number o f  other 

desirable properties which are shared by most o f  lattice algorithms. In this section we
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consider these properties and compare them w ith  the corresponding d irect-form  

algorithm .

Computational Requirements

The computational com plex ity  o f  the trad itional d irect-form  algorithm s fo r AR.V1A 

m odeling is proportional to N 2 (model length) [7 ], In contrast, the lattice a lgorithm  

described in the previous section has a com putational com plexity that is proportional to 

N. It is computational e ffic ien t.

Numerical properties

The lattice a lgorithm  is num erically robust. First, it is num erica lly stable. The term 

num erica lly  stable means that the output estimation error from the com putational 

procedure is bounded when a bounded error signal is introduced at the input. Besides, all 

the reflection coefficients are bounded between -1 and I. Second, the numerical accuracy 

o f  the optim um  solution is also re latively good compared to other d irect-form  algorithm s. 

They are less sensitive to roundo ff errors and coeffic ient quantizations [17],

Implementation Consideration

As we have observed, the lattice model structure is h igh ly m odular and a llow s for the 

computations to be pipelined. Because o f  the high degree o f  m odularity, the lattice 

a lgorithm  is suitable fo r im plementation in V LS I.
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As a result o f  this advantage in im plem entation and the desirable properties o f  stab ility , 

excellent numerical accuracy, and com putational effic iency, we anticipate that in the near 

future, more and more m odeling w ill be implemented by the lattice approach.
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Chapter 4

4 Speech Recognition System

4.1 Introduction

4.1.1 Primary tasks

Speech recognition is generally used as a human-computer interface fo r other software. 

When it functions e ffective ly  in this role a speech recognition system performs three 

prim ary tasks (see Figure 4.1):

Preprocessing  converts the spoken input into a form  the recognizer can

process

Recognition  identifies what has been said

C om m unica tion  sends the recognized input to the software/hardware

systems that need it

In order to understand what these tasks entail, the technology focus begins w ith  a 

description o f  the data that speech recognition systems must handle. It describes how
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speech is produced (called articu la tion), examines the stream o f  speech its e lf (called 

acoustics), and then characterizes the a b ility  o f  the human ear to handle spoken input 

(called aud ito ry  perception). Once this groundwork has been la id the technology focus 

examines the demands o f  preprocessing in detail. The discussion is fo llow ed by this 

in troduction .

Speech Input

Recognition

Preprocessing

Communication

Application software

Figure 4.1 Components of speech recognition application

Preprocessing, recognition and com m unication should be inv is ib le  to the users o f  a 

speech recogn ition  interface. The end user sees them ind irec tly  as accuracy and speed o f  

the system. Accuracy and speed are tools that users call upon to evaluate a speech 

recogn ition interface.
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4.1.2 The data of speech recognition

The in form ation needed to perform  speech recognition is contained in the stream o f  

speech. For humans, that How o f  sounds and silences can be partitioned into discourses, 

sentences, words, and sounds. Speech recognition systems focus on words and sounds 

that distinguish one word from  another in a language. Those sounds are called phonemes. 

The words "seat.”  "m eat." “ beat." and "cheat" are d ifferent words because, in each case, 

the in itia l sound ("s ."  ” m ." "b ."  and "ch ") is recognized as a separate phoneme in 

English. The ab ility  to differentiate words w ith  d istinct phonemes is as critica l fo r speech 

recognition as it for human beings.

There are a number o f  ways speech can be described and analyzed. The most commonly- 

used approaches are a rticu la tion , acoustics and aud itory perception. These three 

approaches o ffe r insights into the nature o f  speech and provide tools to make recognition 

more accurate and e ffic ien t.

The articulation is concerned w ith  how phonemes are produced. The focus o f  it is on the 

vocal (tract) apparatus (structure) o f  the throat, mouth and nose where the sounds o f  

speech are produced. And A R P A B E T . a national system, was established by speech 

researchers to classify or label those phonemes.

A lthough articulation provides valuable in form ation about how speech sounds are 

produced, a speech recognition system can not analyze the movements o f  the mouth.
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Instead, the data source for speech recognition systems is the stream o f  speech itse lf. L ike  

all sound streams, speech is an analog signal: a continuous flo w  o f  sounds waves and 

silence. L'se an acoustic-based model to analyze speech data is s t ill the most popular and 

reliable method for the recognition task.

The a b ility  o f  the human auditory processing system suggests that an auditory-based 

speech recognition system w ould be superior to systems based on acoustics and signal 

processing. L'nfortunately. our understanding o f  human speech perception is incomplete. 

A lthough research found sign ificant improvements in recognition accuracy when coding 

based upon auditory models is used in conventional recognition systems, fu ll u tiliza tion  

must await results o f  a great deal o f  additional research.

4.1.3 Recognition approaches

The recognizer in the system performs its prim ary function: to iden tify  what the user has 

said. The three competing recognition technologies found in com m ercial speech 

recognition systems are:

•  Pattern recognition

•  Acoustic-phonetic recognition

•  Stochastic processing

These approaches d iffe r in speed, accuracy, and storage requirements.

The pattern recognition represents speech data as sets o f  feature/parameter vectors called 

patterns or templates. Thus the fundamental o f  this approach is pattern tra in ing. The units

ARMA l.attice M odeling fo r  Isolated Word Speech Recognition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 50



Chapter 4 Speech Recognition System

being trained can be phrases, words or sub-w ord units, and then stored as reference 

patterns / templates. The spoken input are organized into patterns p rio r to perform ing 

recognition, then one compare the input w ith  stored patterns and find the best match. 

Provide a good tra in ing  set is very im portant to th is approach. Pattern recogn ition was the 

dom inant recognition m ethodology in I950 's  and 1960‘ s. In 1980‘ s the new dynamic 

tim e warping (D T W ) algorithm  was introduced as a fast, robust and accurate one which 

was then w ide ly  used even today. Pattern recogn ition  performs very w e ll w ith  small 

vocabularies o f  phonetically d is tinct items but has d iff ic u lty  m aking the fine distinctions 

required fo r larger vocabulary recognition and recogn ition o f  vocabularies containing 

sim ilar-sounding words (called confusable words). Since it operates at w ord level there 

must be at least one stored pattern/template fo r each word in the application vocabulary.

U n like  pattern recognition, acoustic-phonetic recogn ition  functions at the phoneme level. 

Theore tica lly , it is an attractive approach to speech recognition because it lim its  the 

number o f  representations that must be stored to the number o f  phonemes needed for a 

language. For English, that number is around fo rty  no matter how large the application 

vocabulary. The basic techniques o f  this approach are feature analysis (i.e. measurement 

o f  invariant o f  sounds), segmentation o f  the feature contours into consistent group o f  

features and labeling o f  the segmented features so as to defect words, sentences. 

Acoustic-phonetic recognition supplanted pattern recognition in the early 1970's. 

However it was not fu lly  developed due to poor understanding o f  basic know ledge on 

some aspects. This technology com bined w ith  the development o f  pow erfu l but 

inexpensive com puting hardware, has led to renewed interest by researchers.
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The term stochastic refers to the process o f  m aking a sequence o f  non-determ inistic 

selections from  among sets o f  alternatives. They are non-determ inistic because the 

choices during the recognition process are governed by the characteristics o f  the input 

and not specified in advance. L ike  pattern recognition, stochastic processing requires the 

creation and storage o f  models o f  each o f  the items that w ill be recognized. But stochastic 

processing involves no direct matching between stored models and input. Instead, it is 

based upon com plex statistical and probabilis tic  analyses which are best understood by 

exam in ing the ne tw ork-like  structure like  H M M  (hidden markov model). Researchers 

began investigating using H M M  for speech recognition in the early 1970's, but this 

method d id not gain widespread acceptance fo r com mercial system until the late 1980's. 

However, by the 1990's H M M  had become the dom inant approach to continuous speech 

recognition.

4.2 Isolated Word Speech Recognition System

4.2.1 Our task

A ccord ing to the vocabulary type and size, the recognition application can be d iv ided into 

groups shown in Table 4 .1:
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Tabic 4.1 Vocabulary* types and sizes

Isolated words ( < - 2 ) ♦

Type Connected words (>2)

Continuous words

small vocabulary (<20) *

Size Moderate vocabulary* (around 100)

Large vocabulary (around 1000)

Our recognition task is to recognize the isolated words (called discrete utterances) which 

are probably used fo r voice command o f  a software application. A n  isolated word system 

operates on a single word at a time. This kind o f  recognition task is generally more 

d iff ic u lt when vocabularies are large or have many sim ilar-sounding words. Our database 

consists o f  10 English words: it belongs to the small vocabulary size.

To bu ild  a system for handling this small vocabulary size and isolated word recognition 

task, the appropriate data analysis method could be acoustic signal modeling. The 

m odeling techniques (e.g. LP). have been used in this area since the 1960's w ith  many 

successful applications. In our application, we would use A R M A  lattice modeling due to 

its superiorities that have been discussed in Chapter 3. As to recognition part, basically, 

as we introduced in the previous section, the pattern recognition is the best and economic 

choice for this task, since it performs very w ell w ith  small vocabularies o f  phonetically 

d istinct items.

ARMA Lattice M odeling to r  Isolated W ord Speech Recognition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 53



Chapter 4 Speech Recognition System

4.2.2 Recognition system model

This is the basic pattern recognition system model (Figure 4.2). Input S(n) is analyzed 

based on some parametric model (A R M A  lattice model) to give the test pattern T. then 

compared to a pre-stored set o f  reference patterns {RvJ. Using a pattern c lassifie r (i.e. a 

s im ila rity  procedure) the pattern s im ila rity  scores are then sent to a decision a lgorithm  

and then choose the best transcription o f  the input speech and output the index o f  

reference.

The reasons for using this b lock diagram model are because it is easy to im plem ent in 

either software or hardware, and it works w e ll in practice.

Test
Pattern

Similarity
Scores

Input
S(n)

Rv

Output
IndexReference

Pattern

Pattern
Training

Decision
Algorithm

Pattern
Similarity

Parametric
Representation

Figure 4.2 Block diagram of recognition system 

4.3 Parametric Representation

Parametric representation is the front-end processor that has been w ide ly  used in speech 

recognition systems. Figure 4.3 shows its b lock diagram.
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Basically, parametric representation includes two parts: preprocessing and A R M A  lattice 

analysis. ( I f  using the LP model, the second part changes to LP analysis accordingly)

A  typ ica l parametric representation procedure starts w ith  the d ig itiza tion  (i.e. sampling) 

o f  a continuous waveform  at a sam pling rate that is at least tw ice the highest s ign ificant 

frequency o f  the waveform . The remaining part o f  this analog-to-digita l conversion is 

quantization o f  the discrete data. M any o f  voice recording devices or softwares complete 

this pan autom atically. The resulting data are then preprocessed d ig ita lly  by filte ring , 

w indow ing  o r other com bination o f  various techniques so that the desired in form ation 

can be extracted o r enhanced. In the fo llow ing , we w ill give the detail description o f  each 

block in Fiuure 4.3.

Preprocessing

N  M

y , ( » )s(n)Input

Sianal

k f ( m )

Frame
Blocking

Pre-
emphasis

End Point 
Detection

Windowing

A R M A  lattice 
analysis

p q

Figure 4.3 Block diagram o f parametric representation

ARMA I.atttce M odeling  fo r  Isola ted ll 'o rd  Speech Recognition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page 55



Chapter 4 Speech Recognition System

1. Endpoint Detection— The goal o f  endpoint detection is to separate acoustic 

events o f  interest from  silences and background noises. A  threshold could be set 

up for this purpose. A  simple detector functions in the way: when the input signal 

is found to have three continuous samples above the threshold or under the

threshold, the firs t one above and first one under the threshold could be thought as

the start point and the end point o f  the utterance.

2. Pre-emphasis— The speech signal s(n). is put through a first order (a=0.95) FIR

filte r to spectrally flatten the speech signal. Perhaps the most w ide ly used pre

emphasis network is the fo llow ing  system:

H (  = ) =  \ - a = - '  (4.1)

In this case, the output o f  the pre-emphasis network is related to the input to the 

network by the difference equation

s(n)  = ,v(/7) -  as(n -  1) (4.2)

The most com m on value for a is around 0.95 [18].

3. Frame Blocking— In this step the pre-emphasized speech signal is blocked into

frames o f  N samples, w ith  adjacent frames being separated by M  samples. In 

practice. N should be as small as possible to reduce the total computation load. 

Figure 4.4 illustrates the blocking into frames fo r the typical case in which 

M =(1 /3 )N  [18].
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-► IVI

N w
N

*  N W

Figure 4.4 Blocking into overlapping frames

The first illustrated frame consists o f  the first N speech samples. The second 

frame begins M  samples after the first frame, and overlaps it by N -M  samples. 

S im ila rly, the th ird  frame begins 2M  samples after the first frame and overlaps it 

by N-2.V1 samples. I f  we denote the f h frame o f  speech by x t(n). and there are L 

frames w ith in  the entire speech signal, then

.v, (n) = s ( \ / f  + n) (4.3)

where n=0.1 N - l and f=0.1   L - 1

Typical values fo r N and M  are 240 and 80 when the sampling rate o f  the speech 

is 8 kHz. These correspond to 30-msec frames, separated by 10 msecs.

4. Windowing—  The next step in the preprocessing is to w indow  each individual 

frame so as to m in im ize  the signal discontinuities at the beginning and the end o f  

each frame. The concept here is identical to the one discussed w ith  regard to the 

frequency domain interpretation o f  a short-time spectrum, to use the w indow to 

taper the signal to zero at the beginning and the end o f  each frame. I f  we define 

the w indow  as w (n). 0 < n < N - l . then the result o f  w indow ing is the signal 

x,  (n)  = .v, (n)w(n)  (4.4)

A  typical w indow  used here is the Hamming w indow , which has the form
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2/7??
u(??) = 0.54 — 0.46cos(—— -).0  < n <  V -  I (4.5)

5. A R M A  lattice analysis— This is the last step for the parametric representation. 

W ith  the pre-known order p and q. the re flection coefficients fo r each frame then 

can be computed, e.g. i f  select p = q = 6. there would be 13 coeffic ients generated 

from  the lattice analysis.

4.4 Pattern Training

Pattern recognition processes consist o f  tra in ing  and testing. Pattern tra in ing is by which 

the representative sound patterns are converted into the reference patterns for use by the 

pattern s im ila rity  decision. The tra in ing methods include casual tra in ing, robust tra in ing 

and clustering training. Am ong them, the clustering training, which means large number 

o f  versions o f  each vocabulary entry are trained to create one reference pattern, is usually 

used for speech reference pattern tra in ing [ 1 8 1. The tra in ing is shown in Figure 4.5. when 

pu l the re flection coefficients o f  each frame (1 to L) from  A R M A  lattice analysis as input 

o f  the tra in ing  procedure: the codebook CB is designed to m in im ize  the d istortion 

between input vectors and reference vectors.
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Clustering ••• ^ - ^ \ m
training C R  C R  C R

>
ktL [1 ,2 , . . . ,m]

Figure 4.5 pattern training

4.5 Pattern Similarity Decision

A fte r the tra in ing procedure, suppose we have N codebooks for N utterance classes. The 

fo llow ing  is a recognition s im ila rity  decision system shown in Figure 4.6. A fte r 

com puting the d isto rtion  between the input utterance and all reference codebooks, the 

utterance is then recognized as the one which has m in im um  distortion. The index o f  that 

reference codebook w i l l  be output as the final recognition result.

! D(CB')
H C B 1

D(CB-)
CB2

Jk,(m) I Index
M IN

CBN
! D(CBN)

Figure 4.6 Similarity decision system
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During the operation, the N  codebooks are used to test the unknown utterance. The input 

comes in  frame by frame. The resulting N average distortion scores D are obtained by the 

fo llow ing  equation:

D( CB, n ) = ~ y  t i ( k . . k .  )./ = 1.2 V (4.6)
L r r

where A. " '  satisfying

A * , = argm inc/(A \ . C B ‘, , ' ) (4.7)

Then the utterance is recognized as class K  i f

D ( C B iK' ) = m in D ( C B tn ) (4.8)

K is the index o f  the codebook as which input utterance recognized.
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5 Pattern Recognition Techniques

5.1 Introduction

The key question in pattern recognition is how to generate the reference patterns so that 

the test patterns can be compared w ith  them to determine their s im ila rity . Depending on 

the different techniques, it can be done in a variety o f  ways.

As we mentioned in Chapter 4. pattern recognition processes consist o f  tra in ing and 

testing. During training, the pattern template o f  each known word must be created. Each 

template consists o f  a set o f  features extracted from spoken utterances. The exact form  o f  

template w ill depend on the nature o f  the pattern recognition algorithm  used. During 

testing, patterns o f  unknown words are compared w ith  those templates: the decision is 

then made by specific rules. The basic structure o f  the speech pattern recognition process 

is shown in Figure 5.1.

Many different types o f  pattern recognition techniques can be used in speech recognition 

system, such as vector quantization and neural network techniques.
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Comparison during testing
Unknown

word

Template o f  
Known 

word

Template o f  
Known 

word

Template o f 
Known 

word

Database o f Known Words

Figure 5.1 Pattern recognition structure

5.2 Vector Quantization

Vector quantization (V Q ) [19] is an effective method o f  segregating data into clusters and 

determ ining the centroids o f  those clusters. V Q  reduces a set o f  L w-dim ensional vectors 

into a codebook o f  .1 /centroid vectors where L » M.

VQ  was o r ig in a lly  designed for speech transmission systems to reduce the bandwidth o f  

signals. Instead o f  transm itting all the bits necessary to represent the m -dim ensional 

vector, on ly the codebook entry number o f  the centroid closest to the vector w ould need 

to be transmitted. Thus, a sequence o f  codebook entry numbers could be transmitted to 

represent an entire utterance.
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5.2.1 Definition

A vector quantizer O o f  d im ension in and size .1/ is a m apping from  a vector in m-

dimensional Euclidean space. R m . into a fin ite  set C.

O : R'" - > C

where O  is the vector quantizer and R is the Euclidean space, and

C  is called codebook and is defined by C =  (y , .y , . - - - .  \ \ ,  ). y, e Rm . where v, is

called code vector, i is the index o f  the code vector.

Associated w ith  every code vector is a partition  (cell) in set o f/? '" . The i!h cell wh ich is 

associated w ith y , is defined by

/?, = [ x e R m : 0 ( x )  = } , ) .  

for which to be a cell, it naturally fo llow s that

U R, = R "'and  R, D R ; = 0 f o r i  *  j .

so that the cells form  a partition  o f  /?'".

The above basic defin itions have described the components in a vector quantizer. Figure 

5.2 shows a 2-D VQ. w ith  M =6 code vectors in the codebook. The input X  is in 3rd cell, 

and therefore, w ill be quantized to vector ly  w ith  index i=3.
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_  — — Quantization [.oss
( Distortion)

o 4

'Partition! cell)

O ">

Figure 5.2 Elements in VQ

5.2.2 Elements of VQ implementation

To bu ild  a VQ  codebook and implement a VQ-based recognition procedure, we need the

fo llow ing :

1. A  large set o f  feature vectors which form a tra in ing set. The tra in ing set is used to 

create the optim al set o f  code vectors for representing the feature va riab ility  

observed in the tra in ing set. We require the su ffic ien t number o f  tra in ing vectors 

to be much greater than the number o f  code vectors (at least several times the 

code vectors), so as to be able to find the best set o f  code vectors in a robust 

manner. In practice, it has been found that the number o f  tra in ing vectors should 

be at least ten times the number o f  code vectors to tra in a VQ  codebook that 

works reasonably w e ll [18].
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2. A  measure o f  s im ilarity , o r distance, between a pair o f  vectors so as to be able to 

cluster the training set vectors as w e ll as to associate or classify arb itrary input 

vectors into unique codebook entries.

3. A  centroid computation procedure. On the basis o f  the partition ing that classifies 

the tra in ing set vectors into VI clusters, we choose the M  code vectors as the 

centroid o f  each o f  the M clusters.

4. A  classification procedure for arb itrary speech input vectors that chooses the code 

vector closest to the input vector and uses the codebook index as the resulting 

recognition result. This is often referred to as the nearest-neighbor labeling or 

optim al encoding procedure. The classification procedure is essentially a 

quantizer that accepts, as input, a speech vector and provides, as output, the 

codebook index o f  the code vector that best matches the input.

5.2.3 VQ training

The way in w h ich a set o f  training vectors can be clustered into a set o f  VI code vectors is

the fo llow ing  (th is procedure is known as the generalized L loyd algorithm ):

1. Initialization: A rb itra rily  choose VI vectors as the in itia l set o f  code words in the 

codebook.

2. Nearest-neighbor search: For each tra in ing vector, find the code vector in the 

current codebook that is closest and assign that vector to the corresponding cell 

(associated w ith the closest code word).
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3. Centroid update: Update the codeword in each cell using the centroid o f  the 

tra in ing vectors assigned to that cell.

4. Iteration: Repeat steps 2 and 3 until the average distance falls below a present 

threshold.

From the above procedure, we see the drawback o f  this method. The m in im um  distance 

search is an exhaustive search algorithm  which walks through a ll the code vectors in the 

codebook. Moreover, centroid update is com putation consum ing too.

5.3 Neural Network approach

A rtif ic ia l neural networks (A N N ) are computational models that attempt to emulate the 

human brain by a topology that resembles interconnected nerve cells. NNs are capable o f  

doing many d iffe rent jobs, such as classification, associative m em ory and clustering. The 

main drawback o f  neural networks is their long tra in ing tim e. A lthough knowledge about 

neural networks is s till in an early stage, their learning power on the application to speech 

recognition is s ignificant.

5.3.1 Architecture

Introduced by Kohonen [20 |. the architecture for the net that can be used to cluster a set 

o f  m -dim ension tra in ing vectors X  into M  clusters Y  is shown below. W is called the 

weight vector that is associated w ith  the input and the output neural.
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w VV; w iMm

Figure 5.3 Neural net architecture

5.3.2 Learning algorithm

The m otivation for the a lgorithm  is to find the w inner output un it that is closest to the 

inpu t vector. Euclidean measure is used fo r the distance measurement. It is a pattern 

classification method in w h ich each output un it represents a particu lar class. The weight 

vector for an output un it is often referred to as a reference vector (code vector) for the 

class that the unit represents.

The fo llow ing  is the nomenclature we use in the algorithm  

X  tra in ing vector

T  correct class fo r the tra in ing vector

W j weight vector fo r jth  output un it

IIX-WJH Euclidean distance between input vector and w eight vector for jth  output

unit
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Algorithm

Step 0 in itia lize  weight vectors and learning rate a(O)

Step 1 while  stopping cond ition is false, do step 2-6

Step 2 for each training input vector X . do step 3-4 

Step 3 Find j  so that |j.\-\V ji| is a m inm um

Step 4 update W j as follows:

Wj( t+ 1 )=W j( t )+«(t)[X ( t )-W j( t )1 

Step 5 reduce learning rate

Step 6 test stopping condition

5.3.3 General considerations 

Initialization of weight vectors

The simplest method o f  in itia liz in g  the weight vectors is to take the first M  tra in ing 

vectors and use them as weight vectors. The remaining vectors are then used for tra in ing 

[21 ]. Another simple method is to assign the in itia l weights randomly.

Stopping rules

The stopping condition in the a lgorithm  may specify a fixed number o f  iterations or the 

learning rate reaching a su ffic ien tly  small value.

It often happens that the neural network algorithm s "overlearnt", i.e.. when learning and 

test phases are alternated, the recognition accuracy is firs t improved until an optim um  is
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reached: after that, when learning is continued, the accuracy starts to decrease s low ly . A  

possible explanation is that when the weight vectors become very spec ifica lly  tuned to 

the tra in ing data, the a b ility  o f  the a lgorithm  to generalize for new data suffers from  that. 

It is therefore necessary to stop the learning process after some optim al num ber o f  steps, 

say. 50 to 200 times the total number o f  the weight vectors (depending on the particular 

a lgorithm  and learning rate). Such a stopping rule can only be found by experience, and it 

also depends on the input data [2 1 J.

Learning rate

The learning rate a  is a s low ly decreasing function o f  tim e (or tra in ing  epochs). 

Kohonen [20] indicates that a linearly decreasing function is satisfactory for practical 

computations. A t the beginning it should stay above 0.1. For good statistical accuracy, a  

should be maintained during the convergence phase at a small value (on the order o f  0.01 

or less) for a fa irly  long period o f  time, which is typ ica lly  thousands o f  iterations.

5.4 Comparison

Table 5.1 Comparison between VQ  and NN approach

VQ NN approach
1 Euclidean distance measurement Euclidean distance measurement
T Computation consuming centroids 

calculation
Simple update form ula

•>J No convergency control parameter. It 
is based on L lovd  Iteration.

Learning rate parameters

4 M ay fall in local m inim a Embedded relaxation process which 
reduces the chance o f  lock ing  in local 
m inim a
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Table 5.1 shows the comparison between vector quantization and neural network 

approach. It is obvious that the structures o f  V Q  and N N  approach are very sim ilar. They 

all need to train a codebook based on the inputs. However, the N N  approach seems has 

more control on the tra in ing process, e.g.. the learning rate and the number o f  iterations.

The learning rate a  is an im portant parameter, w ith  its decreasing during the learning 

procedure, the im pact by those further iterations is getting sm aller and smaller. The 

phenomenon is s im ila r to simulate annealing which is a stochastic relaxation technique. 

The reason o f  that is to reduce the chance o f  fa lling  in to local m inim a. This stochastic 

relaxation technique has been introduced to some im proved method o f  VQ . However, it 

is already embedded in the NN  approach.

VQ  is a com putational intensive a lgorithm . The centroids calcu la tion as well as the 

m in im um  Euclidean distance search are exhaustive calculations. A lthough NN approach 

involves the same distance measure, it has a sim ple update form ula  fo r the new weight 

vectors.

Besides the above considerations, the neural network approach gets lots o f  research 

support for e ffic ien t hardware implementations such as. it can readily implement a 

massive degree o f  parallel computation, because a neural net is a h igh ly  parallel structure 

o f  simple, identical, com putational elements. M oreover, it  in trins ica lly  possesses a great 

deal o f  robustness or fault tolerance. Since the " in fo rm a tio n " embedded in the neural 

network is "spreaded" to every computational element w ith in  the network, this structure
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is inherently among the least sensitive o f  networks to noise or defects w ith in  the 

structure.
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Chapter 6

6 Experiments and Results

6.1 Database Collection

In the previous sections, we have already bu ilt up a system for recognizing isolated 

words. To test this system, we need to have a database which contains the isolated word 

we are going to recognize.

The pre-recorded database that we used fo r the experiment is specially designed for our 

isolated word speech recognition application. It is a collection o f  speech recordings 

w hich is accessible in computer readable form (*.w av  format). The fo llow ing  is the 

descrip tion o f  the database:

Linguistic contents

•  isolated English words and names:

C a ll. Hangup. No. Yes. Halima. Hari. John. Tracy. W alter, and Wayne

•  each word is repeated 10 times by each speaker

ARM . I L a tt ic e  M o d e lin g  J o r Iso la ted  W ord Speech R ecogn ition
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Numbers and types of speakers

•  10 speakers. 5 females. 5 males

Recording conditions

•  speech recorded under the awareness o f  speakers

•  in quiet lab/o ffice environment

•  read speech recording

•  single-channel

Recording equipment

•  m icrophone: table-top microphone

•  recording device/processor: sound recorder

Sampling rate

•  8 kHz

6.2 Experimental Design

Tw o kinds o f  experiments were designed to test the recognition system: speaker- 

dependent test and speaker-independent test. Basica lly, some recognition systems require 

speaker enro llm ent— a user must provide samples o f  his or her speech before using them, 

whereas other systems are said to be speaker-independent, in that no enrollm ent is 

necessary. S im p ly speaking, speaker-dependent applications must use voice samples 

from the same group o f  speakers for both tra in ing and testing. And speaker-independent
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applications must use voice samples from different groups o f  speakers (fo r both cases, 

none o f  the ind iv idua l sample were used for both tra in ing and testing). Apparently, the 

speaker-independent case could be more d iff ic u lt  and the recognition accuracy is lower 

than for the speaker dependent one.

As we described in the previous section, our database contains 10 English words w ith  

each repeated 10 times by 10 speakers. So for each word, there are 100 samples from 10 

d iffe rent speakers. For speaker-dependent tests, the samples o f  each word were divided 

into two sessions. Session 1 contained 60 samples from  10 d iffe rent speakers (6 samples 

per speaker) and session 2 took the remaining 40 samples, they were non-overlapping 

sessions. In the experiments, session 1 was used as tra in ing data, whereas session 2 was 

for testing. Since the tra in ing data and testing data come from the same 10 speakers, the 

tests then are said to be speaker-dependent.

For speaker-independent tests, we d iv ided database in to  two sessions in another way. 

This time, fo r each word session 1 consisted o f  60 samples from 6 d iffe ren t speakers (10 

samples per speaker) and sessions 2 had the rem aining 40 samples form  the other 4 

speakers. The tra in ing was then done on session 1 and testing was done on session 2. 

Since we use other speakers voices to test the pre-trained system, this is called speaker- 

independent.
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6.3 Implementation Issues

Before show ing the results, some implementation issues are described below. In the 

parametric representation, p rio r to any analysis, the speech signal (sam pling rate is 8 kHz 

) is pre-emphasized by a first order f ilte r 1-0.95/.'1 . The analysis was done over frames o f  

30 ms duration (240 samples). The overlap between frames was 20 ms. For the LP 

analysis, the autocorrelation method was used to get trad itional I2 lh order A R  model 

coeffic ients. The lattice method discussed in Chapter 3 was used to calculate the 

reflection coefficients o f  dimension 13 for the A R M A  (6.6) model. The reasons why we 

choose 6/6 as the order o f  the A R M A  model have already been explained in Chapter 3.

In pattern recognition process, the N N  classifier (as described in Chapter 5) was trained 

using 12-dimension A R  feature vectors and 13-dimension A R M A  feature vectors. The 

codebooks fo r each word were then generated from session 1. In some experiments the 

codebook sizes were chosen o f  16. 32 and 64 for the comparison. Accord ing  to the 

stopping rule discussed in Chapter 5. the total number o f  iterations should be 5CK200 

times o f  codebook size, so in our experiments, the tra in ing process w ill stop at 1000. 

2000 and 3500 epochs fo r codebook size o f  16. 32. and 64 respectively. And the learning

rate was determined bv a( t )  = 0.1 — — — ^ 1 / .  T is the total number o f  iterations and ty.

is the index o f  iterations. Once the codebooks had been generated, the recognition results 

were then obtained from testing session 2 on those pre-stored codebooks.
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6.4 Results and Discussions

6.4.1 Speaker-dependent tests

The Tabic 6.1 shows the experimental results for speaker-dependent tests. For both 

A R M A  lattice and A R  ( LP) modeling, three groups results are obtained for codebook size 

o f  16. 32 and 64 respectively.

Table 6.1 Results for speaker-independent recognition

ARMA AR
16 32 64 16 32 64

Call 34/40 37/40 38/40 30/40 33/40 34/40
Yes 32/40 36/40 37/40 32/40 34/40 34/40
No 33/40 34/40 36/40 26/40 30/40 30/40

Hangup 38/40 39/40 40/40 26/40 36/40 36/40
Halima 32/40 37/40 39/40 30/40 35/40 36/40

Hari 32/40 36/40 37/40 29/40 32/40 34/40
John 34/40 38/40 38/40 26/40 26/40 30/40
Tracy 36/40 37/40 39/40 30/40 34/40 35/40
Walter 34/40 39/40 40/40 28/40 33/40 36/40
Wayne 33/40 36/40 38/40 23/40 26/40 30/40
Overall 338/400 369/400 382/400 280/400 319/400 335/400

From the table, we can see that for both AR  and A R M A  methods, the recognition rates 

im proved by increasing the codebook size. The AR  models could be more sensitive to the 

changes o f  the codebook size due to re la tive ly larger variations in LP coefficients.

Here is an example o f  recognizing a word sampie "no ". The left side shows results 

obtained using A R M A  lattice modeling w ith  a codebook o f  size 32. whereas the right 

side shows the results using the same modeling w ith  a codebook o f  size 64. Since there 

are more code vectors to represent input signals in 64 case, the values for the d istortion 

between the input and the codebooks are reduced.
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* * *  no.wav: * * *  no.wav:

distance w ith no is 0 .357394 distance w ith no is 0 .3442

distance w ith  halima is 0 .610437 distance w ith halima is 0 .510472

distance w ith hangup is 0 .676647 distance w ith hangup is 0 .64445

distance w ith  liari is 0 .764919 distance with hari is 0 .7414

distance w ith  john is 0 .439352 distance w ith john is 0 .395938

distance w ith call is 0 .489176 distance w ith call is 0 .464484

distance w ith  tracy is 0 .847844 distance with tracy is 0 .748699

distance w ith  waiter is 0 .503466 distance with waiter is 0 .449677

distance w ith wayne is 0.6002 distance with wayne is 0 .523466

distance w ith  yes is 0 .964889 distance w ith ves is 0 .830009

no * * *  It is no

The fo llo w in g  is the comparison between the A R M A  lattice modeling (le ft side) and A R  

m odeling (righ t side): the codebook sizes are 64 fo r both cases. Since the A R  model has 

more variations in LP coefficients, the d istortion measured are much bigger than those o f  

the A R M A  model. The results also show the test using A R  m odeling has not recognized 

"n o "  correctly : th is m ight be due to the poor capability  o f  A R  modeling for the words 

w ith  nasal sounds.
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* * *  no.wav:

distance with no is 0 .3442

distance with halima is 0 .510472

distance with hangup is 0.64445

distance w ith liari is 0.7414

distance w ith john is 0 .395938

distance w ith call is 0.464484

distance with tracy is 0 .748699

distance with waiter is 0.449677

distance w ith wayne is 0 .523466

distance w ith ves is 0 .830009

* * *  It is no

* * *  no.wav:

distance w ith no is 3 .39076

distance w ith halim a is 4 .27658

distance with hangup is 4 .3432

distance with hari is 4 .29334

distance w ith john is 3 .52464

distance with call is 3 .02287

distance w ith tracy is 4 .78638

distance with w aiter is 3 .86665

distance w ith wayne is 3 .83143

distance with ves is 4 .82915

* * *  It is call

To see the results more clearly, three comparison figures are generated from  the above 

table.
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Recognition Using AR Modeling

Wayne

Halima

0 0  1 0 2  0.3  0.4  0 .5  0.6  0.7  0.8  0 .9  1

Recognition R e n

Figure 6.1 Recognition using AR modeling

Figure 6.1 only gives the performance o f  the A R  m odeling fo r speaker-dependent 

recognition. From the figure, compare the results from codebook size o f  16 and 32. the 

longer utterances, longer words, e.g. halima. hangup, waiter, w h ich  contains more 

phonetic in form ation are found take more benefits o f  increasing codebook size than other 

short ones. This is probably because they need more code vectors to represent their 

features. One exception is for the hangup in A R M A  m odeling (see in Figure 6.2). the 

results shows no big difference between codebook 32 and 16; I guess this is because this 

word is so d istinctive in its nasal pronunciation when compared w ith  other words, so it is 

easy to be recognized.
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Recognition Using ARMA Lattlc* Modeling

W «yna

T ra cy I

• owo

H angup

0.6
Recognition Rates

□codefcooksize: 64 
I ■  codefcooksize: 32 
Qcodefcook size: 16

Figure 6.2 Recognition using A R M A  lattice modeling

Although the utterances especially longer ones get significant im provem ent on 

recognition rate w ith  number o f  code vectors increased to 32. most o f  the recognition rate 

can not get such improvement as number o f  the code vectors continue to ju m p  from  32 to 

64. That im plies the codebook size must be closer and closer to a lim it. A fte r a certain 

point, they are large enough for all utterances, and the recognition rates w ill not im prove 

any more w ith  the size increasing. In practice, we always want the codebook size as small 

as possible w ith  the acceptable performance. First o f  a ll. it could save storage; second, it 

w ill reduce the computation fo r the s im ila rity  decision. On the other hand, w ith  larger 

codebooks, the speech can be better characterized, but at significant computational 

expense. So it  is always necessary to find  a balance (trade-off) between these tw o issues. 

F. K. Soong reported error rates o f  20% fo r codebooks o f  size 4. 10% fo r size 8. and 2%
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for size 64 fo r iden tifica tion  based on utterances o f  10 d ig its  in a noise-free environm ent

[22]. In fact. 64 is the largest size that has ever been found in literature on isolated word 

speech recognition applications. The experimental results shown here also give a p ro o f 

that 64 could be an appropriate choice. We notice that a ll the recognition rales for 

codebook size o f  64 are higher than 90% for the A R M A  case.

Figure 6.3 presents the comparison o f  two m odeling methods. W ith  the same coodbook 

size. 64. A R M A  lattice m odeling proves rem arkably better in the recognition 

performances. Especia lly fo r the words w ith  nasal sound like  no. john. wayne. the 

superiority o f  A R M A  method is apparently proved.

Wayne

Water

Tracy

John

Han

Halima

Hangup

Yes

I - •
— RUSHHHII m um A T I

ESR25SQSS1

cai

A M

i -■ • ...............................

— — j H H Saw

I------------------------------r r r r . ...
— HBHh h H R flH HHHNHH&Brai

------ -—.---- i  ■ ■ ■

02 0.4 0.6 0.8

■A R  Modeling | 
■ARM A Modeling j

1.2

Figure 6.3 A R  modeling vs A R M A  lattice modeling
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It is also interesting to notice that the longer utterances, e.g.. hangup, ha lim a and waiter, 

lend to be easier to be recognized due to the ir rich and d istinct phonetic contents. In the 

opposite, shorter utterances are easier to be buried by other utterances w ith  partly  s im ila r 

sounds.

6.4.2 Speaker-independent tests

In Table 6.2. the speaker-independent experiments show s im ila r results as the speaker- 

dependent one. except their recognition rates degraded due to the testing o f  d ifferent

speakers.

Table 6.2 Results for speaker-independent recognition

ARMA AR
16 32 64 16 32 64

Call 25/40 31/40 33/40 19/40 24/40 29/40
Yes 29/40 32/40 35/40 19/40 26/40 30/40
No 25/40 30/40 32/40 18/40 25/40 27/40

Hangup 34/40 36/40 38/40 22/40 28/40 32/40
Halima 29/40 35/40 39/40 20/40 30/40 34/40

Hari 30/40 34/40 35/40 25/40 29/40 33/40
John 33/40 36/40 36/40 20/40 27/40 31/40
Tracy 30/40 33/40 37/40 23/40 28/40 32/40
Walter 30/40 35/40 37/40 24/40 29/40 33/40
Wayne 32/40 35/40 36/40 21/40 27/40 30/40
Overall 297/400 337/400 358/400 211/400 273/400 281/400

In pattern recognition, the speaker va riab ility  is typ ica lly  modeled using statistical 

technique applied to a large amount o f  data. To properly train the codebook, the training 

data should span the range as broad as possible on d ifferent speakers, in c lud ing  ranges in 

age. accent, gender, speaking rate. levels and other variables [18 ], Th is  is to ensure the 

system's app licab ility  to a w ide range o f  speakers.
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W e show a comparison between the speaker-dependent recognition and speaker- 

independent recognition in Figure 6.4. The overall accuracy o f  a ll 10 words fo r both 

speaker-dependent and independent cases are shown below. A lthough a ll the speaker- 

independent cases have lower rates compared w ith  the dependent ones, the degradation 

fo r the A R M A  lattice m odeling is not as much as the A R  modeling. This im plies that the 

features extracted from  A R M A  lattice m odeling characterized the speech signal more 

e ffec tive ly  than the A R  m odeling. In some degree A R M A  lattice representation m ight 

emphasize perceptually im portant speaker-independent features o f  the signal, and 

deemphasize speaker-dependent characteristics.

120.00%

100.00%

80 .00%

60 .00%

40 .00%

20.00%

0.00%
ARMA_16 ARMA32 ARMA64 AR_16 AR_32 I AR_64

□  Speaker-Dependent 84.50% 92.25% 95.50% 70.00% 79.75% ( 83.75%
■  Speaker-Independent 74.25% 84.25% 89.50% 52.75% | 68.25% | 70.25%

Figure 6.4 Speaker-dependent vs speaker-independent
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To make it fa ir, we also investigate a 13th order A R  model and A R  lattice model in  our 

experiments, then the feature vector dimension is the same fo r both A R  and A R M A  

models. The lattice reflection coefficients can be obtained from  LP coeffic ients using a 

set o f  recursion equations (D urb in 's  algorithm ) [23]. The fo llow ing  table lists their 

overall recognition accuracy for the case o f  codebook size 64.

Table 6.3 Recognition results for same feature vector dimension

AR(12) AR(13) AR
Lattice(13)

ARMA
Lattice(6,6)

Speaker-
Dependent

83.75% 84.00% 84.25% 95.50%

Speaker-
Independent

70.25% 70.25% 70.50% 89.50%

From the table, no improvement is found for speaker-independent recognition when AR  

order increased by 1. And the 13th order AR  lattice model has s light improvements on 

recognition performance compared w ith  its trad itional method. The reflection coeffic ient 

is said to be a useful feature domain for speech recognition. Look at the results from  all 

the above modelings, w ith  the same feature vector dimension. A R M A  lattice model 

shows again its superiority on the recognition performance.
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7 Conclusions

7.1 Conclusions

Speech recognition is a d iff ic u lt  problem, largely because o f  va ria b ility  associated w ith  

speech signals: thus acoustic feature extraction becomes a very im portant part fo r a 

recognition application. The system attempts to model the signal in  such a way that, at 

the level o f  signal representation, an accurate m odeling technique that is able to extract 

more and im portant features from  signals is developed.

In stead o f  using conventional LP model to analyze the isolated word speech signal, a 

new A R M  A  lattice model was investigated due to its a b ility  o f  m odeling the zeros. The 

number o f  operations in this lattice a lgorithm  compares favorab ly to those in the 

corresponding direct form  pole-zero m odeling a lgorithm . A nd  w ith  the special 

arrangement, the number o f  coeffic ients required in the m odeling is reduced too. These 

advantages make it an e ffic ien t method for speech analysis. M oreover, the advances in 

computer technology and hardware im provem ent have also d irec tly  influenced the model
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choice. Since the ava ilab ility  o f  fast com putation has enable large scale processes run 

w ith in  a short amount o f  tim e, system speed is not a serious problem  anymore.

Tw o kinds o f  experiments, speaker-dependent and speaker-independent recognition, have 

been designed to test the system using the proposed A R M A  lattice m odeling and neural 

network pattern recognition technique. W ith  the same codebook size. A R M A  (6.6) lattice 

m odeling proves remarkably better in the recognition performances than 12lh order A R  

(LP) m odeling in both experiments. The recognition using A R M A  lattice m odeling w ith  

64 code vectors has the highest overall recognition accuracy o f  95.5%.

Com paring all the results o f  A R  and A R M A  lattice m odeling, the A R M A  lattice 

m odeling shows the superiority especially for recognizing the words w ith  nasal sound 

like  no. john . wayne. The ir accuracy is about 19% higher than using A R  m odeling. This 

proves the capability  o f  taking care o f  sounds w ith  zeros properties fo r A R M A  modeling. 

To make the comparison fair, we even tested A R  and A R M A  models w ith  same 

coeffic ients dim ension (13). The results o f  A R M A  lattice m odeling show a s im ila r 

accuracy o f  11% higher than other A R  m odeling in speaker-dependent recognition.

In conclusion. A R M A  lattice m odeling is more suitable than the A R  (LP ) method for the 

isolated word speech recognition applications. W ith its benefit in the hardware 

im plem entation, we anticipate this m odeling technique w ill be popular in the area o f  

speech recognition.
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7.2 Future Work

The future w o rk  o f  our study o f  A R M A  lattice m odeling for speech recognition may be 

focus on two directions, further investigation on the proposed m odeling techniques and 

using o f  pub lic database to make recognition results comparable.

In the developing o f  an appropriate model, model order has to be determined accordingly. 

To provide guidelines to aid in the choice o f the LP order fo r practical im plem entation, 

researchers performed a series o f  investigation [I8J. However, when we constructing 

A R M A  lattice model, the model order is sim ply chosen to make the vector length as same 

as typ ica l LP model for the purpose o f  keeping lo w  computation load. Further 

experimental evaluation o f  that value should be done to obtain more evidentia l support. 

M oreover, up to this point we have discussed A R M A  lattice model m ain ly in terms o f  

difference equation and recursive corre lation form ula: i.e.. in terms o f  tim e domain 

representations. To make this technique complete, from the v iew  o f  theory, the frequency 

domain interpretation o f  A R M A  lattice m odeling should be also investigated.

In other side, although we already have had reasonable results to ve rify  the effectiveness 

o f our system, there are some other external parameters that can affect the recognition 

performance, inc lud ing the characteristics o f  the environmental noise and the type and 

the placement o f  the m icrophone. As seen in the experiments, we trained and tested our 

system using loca lly  collected data and had not been very careful in selecting the tra in ing 

and testing sets. As a result, it was very d iff ic u lt to compare performance across systems. 

Nowadays, much e ffo rt has gone into the development o f  large speech corpora fo r system
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development, tra in ing and testing. Use o f  these corpora in future helps to compare the 

components o f  a recognizer in a more meaningful way.

Another d irection o f  future w ork is probably the robust recognition. In our experiments, 

the data used for both tra in ing and testing are supposed to be clean speech. However, 

most practical recognition applications have to w ork under more d iff ic u lt  situations, say. 

the tra in ing and testing conditions are d ifferent. To solve this problem, im provem ents can 

be made at both feature extraction level and pattern recognition level. In the L.P analysis, 

a standard method is to convert the LP coefficients to cepstral coeffic ients which have 

been shown to be a more robust, reliable feature set for speech recognition than the LP 

coefficients [18]. This raises our guess about the possib ility  o f  any conversion on A R M A  

lattice coefficients, therefore to get a more robust system.
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Appendix

Computational Complexity o f ARMA Lattice Algorithm

An A R M A  lattice model w ith  m in im a l arrangement (p=q) is shown below:

I AR A R M A M A  AR AR M A M A AR

AR order (p) M A order (q) AR order (p) VIA order (q)
* I - I - I - I

The computation required for the bu ild ing  blocks is as fo llows:

1_AR: (5 M .3 S )

AR  VIA : (1 0 M .6 S )

M A A R :  (1 0 M .6 S )

VI— m ultip lica tion  S— summation

So for an A R M A  lattice model o f  order length N (p -q ). the total com putation required is: 

(5M . 3S) -  (N /2 )*(1 0 M . 6S) ~ (N /2 )* (1 0 M . 6S) = ((5~10N )M . (3 -6 N )S )
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