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ABSTRACT

Philip Eric Regier: Two-Electron Atoms in Momentum Space,
Master's thesis, University of Waterloo, November, 1983.

A Gaussian "geminal basis set is employed for calculating .* 
approximate eigenfunctions of the Schrodinger equation for 
two-electron atoms. The basis geminals are non-factorable 
two-electron functions with ‘explicit correlation terms. 
Sixteen term variational wavefunctions are obtained for H” ,
He and Li+ and are the best of their type and size. 
Previous wavefunctions were found to be improperly 
optimized.

A variation-iteration method for finding solutions to the 
momentum space Schrodinger equation is also considered. 
This technique successively iterates an initial 
waveifcqnction, producing a sequence of wavefunctions and 
energies which converge to * the exact wavefunction and 
energy. Using the Fourier transforms of the sixteen term 
wavefunctions as the initial wavefunctions, first-iterated 
wavefunctions. and half-iterated energies were produced. 
Previous work using this method with Gaussian orbital basis 
function was found to be in error.

(iv)
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Gaussian geminal wavefunctions of fifty terms were also 
constructed, using* the generator-coordinate methocl. This 
technique uses the motivation of Monte Carlo quadrature to 
map several variational parameters onto all of the non­
linear parameters • of the wavefunction. The technique of 
importance sampling and the control variate method were 
found to be very useful in this regard.

Compton profiles and one-electron momentum densities were 
produced from the -Gaussian geminal wavefunctions. The most 
accurate Compton profile yet obtained for helium is 
presented. The first-iterated'wavefunction was not used as 
the resulting integrals could not be evaluated.

\

(v)

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



0

 ̂ ' ACKNOWLEDGEMENTS

> •

f' would like to extend my deep appreciation to professor 
Ajit Thakkara^for his patience and guidance throughout the 
course of this work. Many thanks must also be extended to 
my wife Joan Higgs for her support during my research. I 
wish to thank professor H. F. Davis for his encouragement.

I would also like to thank the University of Waterloo and
the Natural Sciences and Engineering Research Council of

\Canada for their financial support.

\

(vi)

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



TABLE O F .CONTENTS

CHAPTER 1 

l'.l ■

1^2

1.3
CHAPTER 2 
2.1 
2.2

CHAPTER 3
3.1

3.2

3.3

3.4 ■
CHAPTER 4

4.1
4.2
CHAPTER 5 
5.1

INTRODUCTION
Position Space and Momentum Space 

Wavefunctions.
Calculation of Momentum Space Wavefunctions 
Momentum Densities and Compton Profiles. 
GAUSSIAN GEMINAL WAVEFUNCTIONS 
Construction of the Wavefunction.
Results.
VARIATION-ITERATION METHOD 
Wave Equation in Momentum Space 

(Two-Electron Atom).
Description of the VI Method.
Application of the VI Method to a Gaussian 

Geminal Wavefunction.
Results.
CONSTRUCTION OF WAVEFUNCTIONS USING THE 

GENERATOR COORDINATE METHOD 
The Generator Coordinate Method.
Results.
MOMENTUM DENSITIES AND COMPTON PROFILES 
Formulae.

(vii)

{

Page
1

1
. 5

14
18
18
26
34

34
37

40
48

52
52
59

N 2

72

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



5.2 Momentum Densities from Hylleraas-Type
Wavefunctions ' 74

5.3 The First-Iterated Wavefunction 76
5.4 Gaussian Geminal Wavefunctions. 77
CHAPTER 6 CONCLUSIONS AND SUGGESTIONS 96
6.-1 Conclusions. - 96

%
6.2 Suggestions for Further Research. 98
APPENDIX 1 FOURIER TRANSFORM OF A GAUSSIAN GEMINAL

BASIS FUNCTION 99
APPENDIX 2 MATRIX ELEMENTS WITH GAUSSIAN GEMINALS 100
APPENDIX 3 IMPORTANCE OF EACH WAVEFUNCTION TERM 10 3
APPENDIX 4 CALCULATION OF Ij., 12 AND I1 2 . 107
APPENDIX 5 CALCULATION OF J INTEGRALS 110
APPENDIX 6 CALCULATION OF K INTEGRALS 112
APPENDIX 7 MOMENTUM DENSITY AND COMPTON PROFILE

FROM GAUSSIAN GEMINALS 115
REFERENCES 117

* • 4  

%

(viii)

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



LIST OF TABLES

TABLE 1 1-Term Gaussian Geminal Wavefunction 
Helium. ,

for

TABLE 2 ij-Term Gaussian Geminal Wavefunction for
•

\ Helium.
TABLE 3 16-Term Gaussian Geminal Wavefunction 

Helium.
for

TABLE 4 16-Term Gaussian Geminal Wavefunction for
TABLE 5 16-Term Gaussian Geminal Wavefunction for
TABLE 6 Zeroth Order and Half-Iterated1 Energies o:

Several Wavefunctions.
TABLE 7 Frequency Function Schemes.
TABLE 8 Helium 50-Term GCM Wavefunctions.
TABLE 9 H" 50-Term GCM Wavefunction.
TABLE 10 He 50-Term GCM Wavefunction. »
TABLE 11 Li+ 50-Term GCM Wavefunction.
TABLE 12 Momentum Density and Compton Profile 

He 16-Term Scaled Wavefunction.
of a

TABLE 13 Momentum Density and Compton Profile 
He 50-Term Scaled Wavefunction.

of a

TABLE 14 Momentum Density and Compton Profile from
the HF Wavefunction of Szalevicz and 
Monkhorst (1981).

(ix)

29

30

31
32
33

51
61
65
66

68
70

79

81

83

\

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



TABLE 15 Momentum Density and Compton Profile
from Benesch (1976). 85

TABLE 16 Compton Profile from the Wavefunction of.
Sabelli and Hinze (1969). 86

TABLE 17 Momentum Density and Compton Profile of a
, y  H“ 16-Term Scaled Wavfunction. 87

TABLE 18 Momentum Density and Compton Profile of a
H- 50-Term Scaled Wavefunction. 89

TABLE 19 Momentum Density and Compton Profile of a
Li+ 16-Term Scaled Wavefunction. - . 91

TABLE 20 Momentum Density and Compton Profile of a
Li+ 50-Term Scaled Wavefunction. 93

(x)

O

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



FIGURE 1

\

LIST OF FIGURES

Plot-of Hfrlium Compton Profiles. '95

%

(xi)

A

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



-1-

f* CHAPTER 1 

INTRODUCTION

1.1 Position Space and Momentum Space Wavefunctions.

For the study of atomic and molecular systems in quantum 
chemistry, we are primarily concerned with the bound state 
solutions of' the time-independent Schrodinger equation in 
the Born-Oppenheimer approximation (Born and Oppenheimer 
(1927); Born and Huang (1954)). In operator form, this is 
expressed as i

H X = EX (1.1)
*

where H is the-electronic Hamiltonian, E is the electronic 
energy and x the wavefunction in an appropriate 
representation.

The representation most frequently used is that in which 
X is a function whose domain is the vector space of the 
position coordinates r=(ri,?2 ,. • • ,rjj) and spin coordinates 
o= (oi,...,on) of the N electrons (called position space). 
The representation which will be considered in this thesis 
takes x to be a function whose domai'n is the vector space of 

the electronic momentum coordinates p=(pi,P2»•••»Pn) an^ 
spin coordinates o = (oi,...,on) (called momentum space).
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These two representations are related by the Dirac-e
Fourier (Dirac (1958)) transform as follows

4>(p,o) = (2tt)~3N/2 j exp(-ip*r) ¥(r,S) dr (1.2)

Hartree atomic units will be used throughout (Whiffen 
(1978)).

For two-electron atoms, such as will be considered in 
this thesis, the spin may be treated as follows. Due to the 
small nuclear mass of the atoms considered, we may neglect 
the spin-orbit interaction and the relativistic change in 
mass. This enables the wavefunction to be factored into a 
prodpct of a function of spatial or momentum coordinates and 
a function depending on the spin coordinates (see Bethe and 
Salpeter (1957) Sec.24). Thus, the spin may be factored out 
of (1.2) leaving an ordinary Courier transform. Spin will 
henceforth be neglected, as it may be incorporated in a two- 
electron wavefunction merely by multiplication of a 
normalized spin function of appropriate symmetry.

The electronic Hamiltonian H for a system with N 
electrons and S nuclei is given by

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.
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1 N „ N S N N
H = -

2 k=
N N b  N N
I Pk - I I zji«j-?ki + I I r?k-?ji-1 (i.3)
L=1 k=l j=l k<i

where pk is the momentum vector of electron k, rk is the 
position vector of electron k, Rk is the position vector of 
nucleus k, pk2=pk *pk and Zk is the atomic number of nucleus 
k.

The first term ' in the Hamiltonian corresponds to the 
kinetic energy of the electrons, the following term gives 
the Coulombic potential energy due to the attraction of the 
electrons to the nuclei and the last term is the potential 
energy due to the electrostatic repulsion between the 
electrons. ^

When a particular representation is chosen for the 
wavef unct io.n, the operators in the Hamiltonian must be 
transformed so as to act on the elements of the space under 
consideration. The solution of the resulting equation will 
yield the wavefunction (and its associated eigenvalue) in 
the chosen space.

Wavefunctions are used to calculate expectation values of
atomic and molecular properties or observables. In

*principle, both position space and momentum space
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wavefunctions contain the same information; in other words, 
knowledge of either wavefunction enables one to calculate 
expectation values of all properties. In practice, however, 
the integrals involved in . the calculation of a given 
observable may be evaluated with greater facility^ in a 
particular one of the two representations, depending the 
integral under consideration. w
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1.2 Calculation of Momentum Space Wave Functions.

To determine wavefunctions in momentum space, two main 
approaches may be employed. The first is the application of 
the Fourier transform (1.2) to the solution of the 
Schrodinger equation in position space. In position space, 
the final two tefms of the Hamiltonian remain unchanged, as 
they are multiplicative operators containing position space 
coordinates. .The kinetic energy term, however, must be 
transformed to one which operates on the position space 
coordinates. This is accomplished by representing the p ^  

operators by the Laplacian operators - V ^ .  In the case of 
hydrogen, the resulting differential equation may be solved 
exactly, as shown in many textbooks (see Bethe and Salpeter 
(1957)). Podolsky and Pauling (1929) obtained the momentum 
space wavefunctions for hydrogen by Fourier transforming the 
position space solutions.

For systems with more than one electron, the Schrodinger 
equation may no longer be solved exactly. Various methods 
have been applied to arrive at a great many approximate 
wavefunctions for a large number of atoms and molecules (see 
Richards et al (1971, 1974 and 1978), Ohno (1982)). The
majority of these are variational calculations in^which the 
wavefunction has been, built from an orbital basis set (one-
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electron functions). The most common orbital basis sets in 
use are readily Fourier transformed, as reviewed by Kaijser 
and Smith (1-977). Thus, the Fourier transform technique of 
obtaining a momentum space wavefunction is widespread.

In the case of helium, an atom with two electrons, the 
best wavefunctions have been expanded in a basis set of 
geminals (two-electron functions) which are non-separable 
because they contain explicitly the inter-electron distance 
ri2* Some geminal basis sets in use. are Hylleraas type 
(Hylleraas (1928); Pekeris (1958)), exponential Hylleraas- 
Slater type (Hylleraas (1929); Slater (1928); Thak'kar and 
Smith (1977)), Gaussians (Singer (1960); Boys (1960); 
Poshusta (1978 and 1979)) and others containing negative 
(Kinoshita (1957)) and fractional (Schwartz. (1962)) powers 
of ri2 logarithmic terms (Frankowski and Pekeris (1966))
as well. Unfortunately, the basis sets which yield the best 
wavefunctions have proven too difficult to Fourier 
transform.

The second method is to formulate the problem directly in 
momentum space. In momentum space, it is the kinetic energy

M
operator that is a multiplicative operator and the potential 
energy operators which must be transformed. This may be 
done by replacing the position .operators by the
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correspondence x =»i3/9px , etc. This approach was attempted 
by Hylleraas (1932), and yielded a differential equation for 
the radial part of the solution for the hydrogen atom, which 
he then solved. For atoms other than the hydrogen atom,
this method is difficult to handle. A more convenient

\ .

approach is to use the Fourier transform to express the 
Schrodinger equation as an integral equation in momentum 
space. This calculation will be demonstrated in chapter 
three. While a • great deal of work has been done on the 
position space Schrodinger equation, very few attempts havfe— * 
been made to solve the momentum space Schrodinger equation. 
All of these attempts relevant to our work will now be 
reviewed.

Fock (1935) solved the modSfctum space integral equation 
for the hydrogen atom. He first itiade a transformation 
analagous to a stereographic projection from a plane onto a 
sphere and his solution was a function of these resulting 
coordinates. Thus', the hydrogen atom had been solved 
exactly in both position and momentum space.

McWeeny (1949) attempted an approximate solution to the 
integral equation for H 2 + (hydrogen molecule ion). This 
system now has two force centers (nuclei), although it 
remains a one electron problem. He employed a Variation-
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N

iteration (VI) procedure developed by Svartholm (1945) which 
will be fully described in chapter three. This procedure 
takes an initial guess at the wave function and then yields^, 
successive approximations to the ground-state wavefunction 
and energy eigenvalue. These approximations converge to the 
actual values; however, one ^is limited in practice by the 
ability to solve the resulting integrals. His initial 
wavefunction was a combination of atomic orbitals which he 
iterated to obtain .a correction term to the wavefunction. 
This corrected wavefunction gave a greater spread in the 
momentum distribution than the initial wavefunction.

Shibuya and Wulfman (1965) used Fock's^transformation in 
their work on the one-electron problem in an arbitrary 
number of force centers. They attempted to find a solution, 
by expanding the wavefunction in a basis set. Novosadov
(1976) obtained the general solution without having to 
select a form for the ’ wavefunction. The solution is a 
linear combination of an infinite number of hydrogen-like 
functions centered on each nucleus. Thus, to obtain 
numerical results, an approximation is necessary. A simple 
numerical calculation on H2+ was also performed. In a later 
paper, Novosadov (1979a) presents, in more detail, a 
numerical method' of solution for this one-electron many- 
certter problem. Subsequently, Novosadov (1979b) presented a
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numerical method for the solution of the momentum space 
Hartree-Fock equations for ground-state closed shell neutral 
or positive ion molecules.

T\

Monkhorst and Jeziorski (1979) pointed out that for many- 
center problems, solving the momentum space integral 
equation could eliminate the conventional position space 
difficulties of calculating many-center integrals and 
instabilities due to overcompleteness of the many-center 
basis sets. They also presented a method, similar to that 
of Novosadov, of approximating the energy eigenvalues of a 
one-electron system. A paper by Duchon et. al. (1982) 
presents an approximate method of determining the energy 
levels of a one-electron many-center system which converges 
more rapidly than the technique of Novosadov.

The first attempt to find an approximate solution for the 
momentum space integral equation for helium was by McWeeny 
and Coulson (1949). Here again they used the VI method 
developed by Svartholm. Their choice of starting function 
was the momentum space, form of the product of two hydrogen 
s-type (Slater) orbitals wi-th the screening constant as the 
variational parameter. They were able to calculate an 
improved eigenvalue estimate but were not able to do the 
integrations to obtain a new wavefunction. Schreiber (1978)

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



assumed a spherically symmetric' wavefunction (i.e. $(pi,P2) 
= <}>(pi,P2 )) ' and used a series representation of the
electrostatic electron repulsion term. Using the same 
initial wavefunction as McWeeny and Coulson (1949), he 
obtained a first-iterated wavefunction. This is not an 
extension of the work of McWeeny and Coulson (1949), as the

t

assumption-of spherical symmetry is restrictive and yields a 
different integral equation.

Henderson and Scherr (1960) also used the VI method, 
using wavefunctions expressed as a sum of products of 
Gaussian orbitals (one-electron functions) as their initial 
functions. They employed one-term, two-term and six-term 
Gaussian functions with no correlation in their work. They 
were able to get an improved upper bound to the energy 
(improved over the variational energy of their initial 
function) and a- first-iterated wavefunction in terms of 
hypergeometric functions.

Monkhorst and Szalewicz (1981) used the VI method on the 
Hartree-Fock equations in momentum space developed by 
Novosadov (1979b). Their initial function was the Fourier 
transform of a normalized Is orbital. They obtained a first 
and second iterated wavefunction and their energy bound was 
better than that calculated variationally from their initial
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wavefunction. However, their results would only converge to 
the Hartree-Fock wavefunction and eigenvalue, not .the actual 
ones.

The usual spherical polar momentum variables (p,0p,<j>p) 
are not conjugate to the spherical polar position variables 
(r,0,4>). Lombardi (1980) has proposed a new set of position 
and momentum variables which are conjugate variables. He 
then solved the hydrogen atom in this momentum 
representation. The functions obtained differ considerably 
in form from those of Podolsky and Pauling. This is due to 
the use of a different representation.

Using the same momentum variables, LOmbardi (1982) began 
work on helium by carrying out a self-consistent field 
calculation on the ground-state. The energy estimate 
arrived at was in agreement with analagous position space 
results.

i
Lombardi (1983) then examined helium using the VI method 

in conjunction with his momentum variables. He employed a 
product of Slater orbitals expressed in his momentum 
variables as his initial function, this being the same as 
that employed by McWeeny and Coulson (1949) and Schreiber 
(1978).. The momentum space wave equation given by Lombardi 
uses the assumption of a spherically symmetric wavefunction
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(as did that of Schreiber). A first-iterated wave function 
and energy was easily obtained by contour integration, 
avoiding the difficulties encountered by the previous 
attempts using the variables (p,9p,<|>p).

However, the physical interpretation of these new
momentum variables is not clear and no formulae are 
available for calculating other quantities such as Compton 
profiles.

Other methods aside from the VI method have been advanced 
to solve the momentum space equations. A recent paper by 
Navaza and Tsoucaris (1981) investigates the possibility of 
solving the Hartree-Fock integral equations numerically.

The VI method has not yet yielded good results partly 
because a good starting function with explicit correlation 
has never been tried. Gaussian geminals of the Boys (I960) 
and Singer (1960) type are a good basis set for this type of
problem because a Gaussian geminal in position space
transforms to a Gaussian geminal in momentum space. In
Chapter 2, we construct a good variational wavefunction 

\ expanded in a Gaussian geminal basis set containing explicit 
correlation terms. This wave function will be far more 
accurate than those yet used in the VI method. It will be 
shown in Chapter 3 that the use of this basis set presents
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no complexities greater than those encountered by Henderson 
and Scherr (1960) who used a basis set of products of 
Gaussian orbitals.
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1.3 Momentum Densities and Compton Profiles.
)

To attempt comparison between theory and experiment, it 
is necessary to calculate experimentally observable
quantities from the wavefunction. One such quantity is the 
Compton profile. Compton scattering, along with several 
other techniques, may also be employed to yield information 
about the momentum density.

The scattering of a photon from an electron is referred 
to as Compton scattering. The wavelength of the scattered 
radiation will then yield information about the momentum of 
the electron. The formulae for calculating the Compton
profile are derived using what’ is called the impulse
approximation. This involves two assumptions. The first is
that during the scattering process the electron may be 
treated as free rather than bound. The second holds that 
the energy gained by the electron from the collision with 
the photon is much greater than its binding energy. For 
more details on ' the impulse approximation, the reader is 
referred to the book edited by Williams (1977). it is only 
through the impulse approximation that a simple relations.hip 
exists between the Compton profile and the momentum density 
of the electrons in the system under investigation. The 
impulse Compton profile may be calculated from the momentum
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density which_is-"itself• calculated from the wavefunction.

greaj; many atoms and molecules have had their Compton 
profiles and momentum densities calculated in this manner,

f
(see Williams (1977)). The majority of these calculations 
used a momentum space wavefunction which was obtained as the 
Fourier transform of a position space wavefunction. As 
mentioned previously, this would not allow use of the best 
wavefunctions as they are not Fourier transformable. 
Results of high accuracy for a few systems would be useful 
for calibrating the experiments and testing the validity of 
the impulsey approximat ion. Some of the rec.er>t attempts at 
more accurate solutions will be reviewed here.

Eisenberger (1970) calculated the Compton profile of He.
Two different wavefunctions were used in this calculation.
One was the Hartree-Fock SCF wavefunction of Clementi (1965)
and the other was -a multiconfigurational SCF wavefunction
due to Sabelli and Hinze (1969). Eisenbergep also measured
the Compton profile of helium experimentally and found that
the results were in good agreement wi\h the theoretical 

*

calculation.

Benesch (1976) showed how to obtain Compton profiles and 
momentum densities from position space wavefunctions 
expanded in a Hylleraas-type basis containing correlation

*
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terms. A two-dimensional^ jiumerical integration was
necessary to obtain these results. He calculated these 
quantities for helium using wavefunctions given by Bonham 
and Kohl (1966). These were compared with those obtained 
from the Hartree-Fock wavefunction of Clementi (1965).

Eisenberger (1970) also examined H 2 using a Hartree-Fock 
wavefunction due to Cade and Wahl (1974) as well as a multi­
configuration SCF - wavefunction from Das and Wahl (1966). 
Here the calculations were not in agreement with experiment 
over the whole profile. Brown and Smith (1972) used a 
configuration interaction (Cl) function due to Liu (1973)

4

which accounted for most of the correlation energy but their 
results also did not agree with the experiment of 
Eisenberger (1970). A new experiment was performed by Lee
(1977) which yielded numbers closer to those calculated by 
Brown and Smith. In a later paper. Smith et al (1977) took 
into account molecular vibration and rotation -as well as 
electron correlation and found agreement with the 
experimental data of Lee. Jeziorski and Szalewicz (1979) 
employed an explicitly correlated Gaussian wavefunction mpre 
accurate than that of Liu (1973) and found that the 
resulting Compton profiles agreed closely with those 
obtained by Smith et al (1977) prior to vibrational and 
rotational averaging.
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In Chapter 4 of this thesis, wavefunctions of greater 
accuracy than those produced in Chapter 2 will be generated.
Chapter 5 outlines the attempts to obtain Compton profiles 
and momentum densities from the wavefunctions of Chapters
2,3 and 4. The feasibility of using the highly accurate 
wavefunctions of Thakkar and Smith (1977) along with the 
equations derived by Benesch (1976) to generate a momentum 
density is examined. Some expectation values of various 
powers of p will also be calculated using some of these 
wavefunctions.
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CHAPTER 2

GAUSSIAN GEMINAL WAVEFUNCTIONS

2.1 Construction of the Wavefunction.

Since Gaussian geminals have the property that their 
Fourier transform yields another Gaussian geminal (see

position space by expansion in a Gaussian geminal basis set 
which will be easily converted to a momentum space 
wavefunct ion.

The approximation to the wavefunction will be written in 
the following form:

p 1 2 u r i , r 2 J, = n r 2 ,ri;
and (cikrBkfYk'Ck) are parameters to be determined.

This form is useful as the ri2 dependence may be clearly 
seen.

Appendi-x 1), we may construct an approximate wavefunction in

iJj (?1 , r"2 ) = -----(I+P1 2 ) 
< 2

I Ck exp(-okr ! 2 -Bk^ 2 ~Ykri22 > (2 .1)
" k=l

where r^ 2 = n / r i
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Another way of writing this, which will also be of some 
use is:

1-3/2
ri, ?2 ) = ------(I+P1 2 )- v y

N
I Ck exp( -ckrikrl " ̂ ^ * 2  '2 ?k&krl * r 2 > <2 -2 )

k=l

Here (ck ,nk ,© k >^ k ) are parameters to be determined.

The first form was used by Longstaff and Singer (1964) 
and the second was used by Poshusta (1979). We shall use one 
or the other as convenience dictates. These two different 
parametrizations are related by the following 
transformation:

°k = tk(nk+0k)
&k = Ck^/hk+Bk) (2.3)'
Yk = 'Ck©k-

If the wavefunction is to be square-integrable, we must

have the following conditions: Ck>0 ' rlk>0 f I0 kl<l for
k=l,...,N. Since replacing nk by l/hk does not change the 
wavefunction,we may write the restrictions on the parameters 

as follows:
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tk>0  
nk»i 
I ek l<1

k=l,...,N (2.4)

The parameters are obtained variationally as follows:

Def i ne

\pk = exp(-^knkrl2 -Ck/nkr2 2 -2 Ck9k^l,?2) <2 *5)

Then

, - 3 / 2  N
= ----- (I+P1 2 ) >1 ( r*i r r2 )

V T  k=l
(2.6)

or, in matrix form

,~3/2
- - - - -  1 C
v r

where ¥ = [(I+P1 2 ) ,...,(I+P1 2 )
and C = r c rC2

■ CN.

(2.7)

The Hamiltonian we will be using is the sum of the 
kinetic energy T and the - potential energy V. For a two- 
electron atom of nuclear charge Z, the Hamiltonian is given 
by:
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H = T + V (2.8)

■ 1 2 1 2 T = - -V]/ - -V 2
2 2

2 Z 1

rl r 2 r 12'

When values are assigned to the parameters (Ck,hk'®k) anc^
the resulting wavefunction (2.7) is substituted into the
Ritz quotient and the latter is minimized with respect to
the vector C, we obtain (McWeeny and Sutcliffe (1976)):

HC = E|C (2.9)
where H and | are defined by:

Hki~= < (I+P1 2 ) ̂ k I H l’lJl> (2 .1 0 )

Ski = < (l+ p 1 2 I ̂ 1> (2 .1 1 )

This is a generalized eigenvalue equation, where the
unknowns are the eigenvalues E, and their corresponding
eigenvectors C. The lowest energy eigenvalue E of this
equation gives an upper bound to the ground state energy of
the atom. The parameters (Ck'hkf^k) should be chosen so as
to yield the minimum value of E. Calculation of the
corresponding eigenvector C (with the condition that 
•<\Jj | i|)>=l) will then determine the approximate wavefunction.
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The method of calculation will now be outlined.

To solve this generalized eigenvalue problem in matrix 
form, one proceeds as follows:

Since S is a positive definite matrix, the Choleski 
decomposition may be used {Wilkinson an3f Reinsch (1971)).

S = L Lt  where L is lower triangular

The equation (2.9) becomes:
r

h c = e l l t c  . ^

Since S is invertible, so is L.

L - 1  H C = E L - 1  L LT C (2.12)

Let G = y - 1  H L_T

and D = Lt C

and (2 .1 2 ) becomes

g D = E D (2.13)

which is now an eigenvalue problem and the lowest eigenvalue
E may be found. The corresponding eigenvector D may also be
calculated, which will allow calculation of th e ^ e c t o r  C by 

the following formula:
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C = L-t D (2.14)

The calculation of the matrix-elements (2.10) and (2.11) 
is outlined in Appendix 2. The calculation of the
generalized eigenvalue equation (2.9) was done using 
computer routines taken from the EISPACK program library 
(Smith et al (1976)). These routines use the algorithm 
described above. Equation (2.13) is then solved by reducing 
the matrix G to symmetric tridiagonal form using the method 
of Householder. The eigenvalues of this matrix are 
determined by the method of Sturm sequencing, and the
eigenvectors by inverse iteration. The C eigenvector is 
calculated such that the wavefunction is normalized.

Two computer minimization routines were used to vary the 

parameters S k r h k ^ k  an attempt to minimize the eigenvalue 
E. One of these was the program VA04AD from the HARWELL 
subroutine library, using a conjugate direction method given 
by Powell. (1965). The other program was ZXMIN from the IMSL 
subroutine library which uses a quasi-Newton method
described by Fletcher (1972). These programs must be used
with care, as there is no algorithm which will guarantee 
finding the absolute minimum in this type of problem. Local 
minima may be found and this '"is highly dependent on the
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start ing values supplied to the programs.

Finally, the wavefunction may be scaled to satisfy the 
virial theorem (Pilar (1968)). To perform this scaling, one 
must calculate the following quantities:

<T> = <vp I T I 4j> (2.15)
<V> = <4>|V|iIj> (2.16)

We define a norm-preserving•scaling of the wavefunction
s t

by

il>n ( r i , ?2 ) = n3 'Mnri,nr>2 )  ̂(2.17)

It follows that

<T>% = n2 <T> (2.18)
< v \ =  n<V> (2.19)
E^= n2 <T> + n<V> (2.20)

Minimizing with respect to n yields
n = -<V>/{2 <T>) ' (2.21)

Note that E^E^»E(exact) and that
<T>^ = r|2 <T> = <V>2 /(4<T>) (2.22)
<V>^ = -<V>2 /(2<T>) (2.23)

from which we see that
-2<T>^ =<V>A (2.24)
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in other words, ^  satisfies the virial theorem.

This scaling is necessary only because perfect 
optimization with respect to the non-linear parameters 

Ck'hk'Ok is not possible.
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2.2 Results.

For the purpose of testing the parameter optimizing 
program and succeeding programs!-" one- and two-term 
wavefunctions were produced for helium (Z=2). Several 
random guesses for the parameter values were used' to start 
the minimization. The best wavefunctions obtained are 
presented in tables 1 and 2. To produce the scaled 
wavefunction from the tabulated parameters, simply multiply 
each by (where n is the scale factor given in the
table). The tabulated energy eigenvalue is that obtained 
after scaling. The method of obtaining more accurate 
wavefunctions will now be presented.

Longstaff and Singer (1964) worked with a 16-term 
wavefunction of the form (2.1). They obtained parameters 
(cî , Bk»Yk'Ck) which yielded an energy of -2.90233 E^ 
(hartree). Another 16-term wavefunction of the form (2.2) 
was independently constructed by Poshusta (1979). He 
arrived at a set of parameters for which the corresponding 
energy was -2.902446 E^. It is clear that the wavefunction 
of Longstaff and Singer (1964) was not fully-optimized; in 
other words, there is a set of parameters different from 
theirs which yields a lower energy. The wavefunction of 
Poshusta (1979) was claimed^,, to be fully-optimized.
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When the coefficients are calculated, an analysis may 
be undertaken to calculate^ an approximate measure of the 
weight that each basis function contributes to the 
wavefunction (see Appendix 3). In attempting to add a 17th 
basis function to Poshusta's 16-term function, this analysis 
made it clear that a term of the 16-term wavefunction could 
be replaced by another with consequent lowering of the 
energy. Upon this discovery, it was decided to ascertain 
how much lowering of the energy could be obtained with just 

16 terms.

When the 16-term parameters of Longstaff and Singer 
(1964) were used as starting values to the routine ZXMIN, 
the resulting energy was substantially lower than that 
obtained by Poshusta (1979). The resulting parameters were, 
then put through VA04AD and the energy was lowered yet 
again. However, two of the basis functions had become close 
to being linearly dependent, as their parameters were almost 
equal. This was not desirable because of the possibility of 
numerical instability in the ensuing calculations. The 
problem was remedied by changing the parameters in one of 
the two functions to an arbitrary value and then using this 
resulting set of parameters as a starting value. Several 
more iterations of the two routines with re-setting of 
parameters when this became necessary resulted in a 16-term
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wavefunction with an energy of' -2.9034048 Eh- The 
parameters of this function are listed in Table 3. By way 
of comparison, the best variational estimate of Frankowski 
and Pekeris (1966) is -2.903724377 Eh- The vavefunction^of 
Poshusta was most likely a local minimum rather than a 
global minimum. It is not claimed that our result is a 
global minimum, as the results are highly dependent on the 
algorithm used in the minimization and the choice of 
starting parameters.

Wavefunctions for H- and Li+ were' also produced in this 
manner, as the only change required fin the program is to the 
parameter Z, which is 1 for H “ and 3 for Li+ . The starting 
non-linear parameters were chosen by virial scaling the 
corresponding parameters for helium. The parameters and 
energies of these wavefunctions are listed in Tables 4 and 
5. The energies for these H~ and Li+ wavefunctions 
respectively are -0.5275907 Eh and -7.2794137> E h c o m p a r e d  

with the best variational estimates of --Erankowski and 
Pekeris (1966) of -0.527751016 Eh and -7.279913413 Eh .
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TABLE 1.

1-Term Gaussian Geminal Wavefunction for Helium.

Ck Hk 9k <=k
0.76709D+0 0.2073315+1 0.77656D-1 0.1556223964253462D+1

T1 = 1.000005474502231D+0

E = -2.570885510460622D+0 -
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TABLE 2. '

2-Term Gaussian Geminal Wavefunction for Helium.

Ck Hk ek ck
0.21262D+1 0.31608D+1 0.47654D-1 0.2099432236690439D+1
0.62377D+0 0.18233D+1 0.82271D-1 0.9037566063862591D+0

n = 1.000001233068744D+0

E = -2.816253182514283D+0

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



-31-

TABLE 3

16-Term Gaussian Geminal Wavefunction for Helium.

Ck Hk ®k Ck
0.27406D+0 0.17537D+1 0.13495D+0 . 0.7834309794628184D-l
0.59431D+0 0.36160D+1 -0.27228D-2 0.1676512602867212D+0
0.58169D+0 0.15507D+1 0.51985D-1 0.3992914766677912D+0
0.14694D+1 0.38294D+1 0.99758D-2 0.549709671424633BD+0
0.15280D+1 0.94714D+1 0.44Q24D-3 0 .1117496479692804D+0
0.45716D+1 0.16483D+2 0.20879D-2 0.2007585069357208D+0
0.1181BD+1 0.11394D+1 -0.57116D+0 -0.9263129489481611D-1
0.13279D+1 0.15803D+1 0.52959D-1 0.8968829761696726D+0
0. 408.64D+1 0.52673D+1 0.62901D-2 0.6901086242048394D+0
0.15142D+2 • 0.88235D+1 0.96287D-3 0.5076369840966206D+0
0.17297D+2 0.37974D+2 . 0.22808D-2 0.1979673096630049D+0
0.36280D+1 0.17395D+1 0.79803D-1 0.9965723414331877D+0
0.23142D+2 0.10000D+1 . -0.91316D+0 -0..1751783181217 316D+0
0.29556D+0 0.18B40D+1 0.30430D+0 -0 . 294913682747274ID-1
0.41201D+1 0.11206D+1 -0.71306D+0 -0.2055838800345489D+0
0.12762D+2 0.22128D+1 0.12932D+0 0.6340978907609876D+0

n = 1.00002315777271758D+0

E = -2.90340475845390028D+0
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TABLE 4.

16-Term Gaussian Geminal Wavefunction for H- .

Ck nk 6 k ck
0.10764D+0 0.36857D+1 0.23514D-1 -0.2118219070958106D-1
0.93527D-1 0.86037D+1 -0•97138D-3 -0.6854177628108106D-2
0.11325D+0 0.15640D+1 0.75911D-1 -0.3059306620704317D-2
0.42778D-1 0.42127D+1 -0.61919D-2 -0.3963989030906066D-2
0.22471D+0 0.14861D+2 -0.21259D-2 -0.9869661031178129D-2
0.61039D+0 0.30728D+2 ' 0.14973D-2 -0.9051876416704338D-2
0.15182D+0 0.12909D+1 -0.45030D+0 0.1181921355114989D-1
0.29736D+0 0.17140D+1 0.13637D+0 -0.5898343498764227D-1
0.27 521D+0 0.48645D+1 0.21178D-1 -0.4134837501070204D-l
0.25834D+1 0.97931D+1 0.24075D-1 -0.3320430356170277D-l
0.24141D+1 0.51040D+2 -0.76145D-2 -0.123158964292612ID-1
0.73289D+0 0.80306D+1 0.12070D-1 -0.3813148584167367D-l
0.28798D+1 0.10635D+1 -0.85174D+0 0.2677383327375646D-1
0.44447D-1 0.17871D+1 0.11862D+0 -0.3666679948965567D-2

* .0.54738D+0 0.12002D+1 -0.63871D+0 0.2640970814876181D-1
0.96528D+0 0.21210D+1 0.18354D+0 -0.5661629089258670D-l

n = 1.00001709453068779D+0

E = -0.527590692653241725D+0
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TABLE 5.

16-Term Gaussian Geminal Wavefunction for Li+ .

Ck *lk 0 k ck* .
0.40690D+2 0.22667D+1 0.74682D-1 -0.245499736833962dD+l
0.23786D+1 0.37194D+1 0.90124D-2 -0.1133930352454 319D+1
0.17953D+1 0.14680D+1 -0.51822D-1 -0.4180091584050366D+1
0.54079D+1 0.39475D+1 0.10815D-2 -0.2150403006885588D+1
0 .46347D+1 0.97742D+1 0.17035D-2 -0 .4609152227833256D+0
0.14035D+2 0.17 617D+2 0.23727D-2 -0.7264727 500106591D+0
0.18660D+1 0.13660D+1 -0.16997D+0 0.2072147338137456D+1
0.41646D+1 0.15897D+1 0.42559D-1' -0.3959544794961287D+l
0.13511D+2 0.57121D+1 0.29386D-2 -0 .2428456590899977D+1
0.49061D+2 0.99546D+1 0.7722DD-3 -0.1744788642472862D+1
0.527 05D+2 0.42408D+2 0.10260D-2 -0.6588257693389918D+0
0.78096D+0 0.15028D+1 0.39765D-1 -0.3277403114080187D+0
0.41813D+2 0.10397D+1 -0.89049D+0 0.5454566337361895D+0
0.10866D+1 0.32998D+1 -0.48325D+1 -0.1836948144148076D+0
0.76137D+1 0.11162D+1 -0.72536D+0 0.4536483235045034D+0
0.11488D+2 0.17564D+1 0.67759D-1 -0.3702152587673132D+1

n = 0.9999898370489983D+0

E = -7.279413716535168D+0
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CHAPTER 3 

VARIATION-ITERATION METHOD

3.1 Wave Equation in Momentum Space (Two-Electron Atom).

The Hamiltonian for a two-electron atom is 

Pi 2 P2 2 Z Z 1
2 2 ri r2 r12

To write the Schrodinger equation in momentum space, the 
operators l/r^, l/r2 and l/ri2 must be transformed to 
operate on a momentum space function.

We will first examine the transformation of l/r]_ to a 
momentum space operator. In position space the operator 
l/rj is a multiplicative operator:

(l/ri)il)(?i,r2 ) = g(?i,r2 ) (3.1)

Let us represent the momentum space form of this operator 
by M:

M <t» < P i , P2 > = f(Pi*p2 ) (3.2)

where the functions 4) and 4> and also f and g are related 
by the Fourier transform:
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' <{>(P1 ,P2 ) = (2lT> 3 J"'P(r:l,r2 )
exp(- i(pi•ri + P 2 *?2 )) dridr^ (3.3)

f ( P l , P 2 >  = < 2 it ) “ 3 J g ( ? i , f 2 )

exp(-i (pi'r*! + P2 * ̂ 2  ̂  dr^d?^ (3.4)
I

Substitution of (3.1) into (3.4) yields:

f ( P i »P2 ) = ( 2 n ) -3 J" ( ^ ( r i r?2) / r i )

exp(-i(pi‘ri + P 2 *r2 )) dr\dr 2 (3.5)

We must use the Fourier integral representation of l/r^: 

1/ri = 1 / ( 2 7r ̂ ) / exp( ip-* r^ )/p2 dp (3.6)

Substituting (3.6) into (3.5) and using (3.3) gives:

. f(Pl»P2 ) = 1/( 2 t t2 ) J <Mpi-p‘,P2 )/p'2 dp 

Therefore, using (3.2):

1 f *(P1 -P,P2 )
M <j> (P i »P 2 ) = / ------- 9 ----dP (3.7.)

2 it J p 2

The .operator l/r^ becomes an integral operator in 
momentum space. By a similar calculation, we find that:
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1 • ^ 1 r <t(pi,P2 “P)
 <MP1,P2) = -"5 " / ------r----dp
r2 2 it ^ d 2

{3.8)

and

1 ' _ _ . 1 r ♦(P1"P»P2+P>
—  ♦(pi,p2 ) = — 5 - / ----- 5 -dp
ri? 2 tt v

(3.9)
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3.2 Description of the VI Method.

Using the results of section 3.1, we may write the 
Schrodinger equation in momentum space for a two-electron 
atom as:

<P02+P12+P22> 4>(?i,P2) =
X[ZI1 (*)+ZI2 (*)-I1 2 (*)] (3.10)

where pq2 = -2E (3.11)
X = it' 2 (3.12)

, 11 (4>) = J P-2 <t>(pi-$,P2) dP
I2(4>) = I P-2 (PI<P2~P) dP (3.13)
112 (♦ > = J P-2 4>(P1-Pfp2+P) dP

An iterative method of solution based on the Gauss- 
Hilbert variational principle and the Kellogg theory of 
iterated functions will be applied to equation (3.10). This 
technique was first described by Svartholm (1945) and will 
be referred to as the variation-iteration (VI) method.

In this procedure, X is regarded as an eigenvalue 
parameter. An initial function, is chosen and the
fo.llowing integrals are formed:

* n + 1 = (P02 +Pl 2 +P2 2 )_ 1 [ZIl(<l>n )+Zl2(,J>n )-Il2(4'n ) 3 (3.14)

>
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w n = I 4>n+1 (p02 + Pl 2 +P22 > $n dPl dP 2 (3.15)

T n = I <(>n (p0 2 +Pl 2 +P 2 2 ) <!>n dPl dP^ (3.16)

If we let

•TnXn = --- (3.17)
wn

and

w
Xn + 1 / 2  = — (3.18) 

Tn+ 1

then Xg,X 1 /2 ,\i,... is a raonotonically decreasing sequence 
which converges to X, the smallest eigenvalue of (3.10). 
Also, the sequence converges to <J>, the
eigenfunction of (3.10) corrresponding to X. In practice, 
the number of iterations performed is limited by the ability 
to solve the. resulting integrals of (3.14). The iteration 
will then be stopped at some 4>s and some X f  The quantity 
Xt is now a function of po. Here we may use the actual 
value of X and choose po such- that
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Xt = 1/tt2 (3.19)

This yields a value for E (see eq. (3.11)) which is an 
upper bound to the actual ground state energy of the system.
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3.3 Application of the tfl Method to a Gaussian Geminal 
Wavefunction.

If the wavefunction (2.1) is Fourier transformed, we will
obtain a wavefunction in momentum space. This will be 

0 *labelled <j> and used as our initial wavefunction for the VI 
method. Using the result of Appendix 1, we will get a
momentum space wavefunction of the following form.

n * _ 3 / 2  N Ck
♦ °<P1,P2> = -Z=r~ <1+Pl2> I— ,-~V/2V 7  k=l (Ak ) 3 ' 2

exp 6 k 7 °>k 9 Yk ^  ,
 Pl . —  p2  (P1+P2)

Ak Ak Ak
(3.20)

where Ak = (ak Bk+ akYk+ BkYkM-.

We now wish to redefine some of these quantities to 
simplify the succeeding analysis.

,-3/2 Ck
Let dk  ------- ---

v r  (Ak) ^
(3.21)

“k 6 k Yk ,
ak = —  * bk = —  , gk = —  (3.22)

Ak Ak Ak

Then

J
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N
(plrP2)= (1+Pi2) I dk exp[-bkPi2-akP22-9k<Pl+P2)2] k=l

(3.23)

Clearly, interchanging pi and P2 with the P 1 2 operator is
the same .as interchanging ak and bk with a new operator
which we shall call tk which does the following:

tk f(ak,bk) = f(bk,ak) (3.24)

This operator does not change the value of Ak. The
wavefunction is now written:

N
♦°<P1»P2> = I (l+tk)dkexPt-bkPl2-akP22-9k<Pl+P2)23 k=l

(3.25)

Finally, we define
u

hk = exp[-bkPi2 -akP22 -9k(Pl+P2)2 l (3.26)

Thus our wavefunction is written as:

4>°(pifP2) = I <1 + tk) dk hk (3.27)
k=l

The first-iterated wavefunction, 4>1 , is given as follows: 

= (P02 +Pl 2 +P2 2 )_ 1 [2Ii(4)0 )+2l2(<(>0 ) - I l 2 U 0 ) 1 (3.28)
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N [ZI1 (hk )+ZI2 (hk )-I1 2 (hk )]
4.1 = i d + t k ) d k --------------- ---------------  (3>29)-

k=l (PO +P1 +P2 >

We now wish to calculate \\/2‘ The quantities Wg and Ti 

must be calculated to obtain this result. The first of 

these quantities is given by:

N N
WO = I I  (1+tjc) (1+t-j) dkdj (3.30)

k=l j=l

J dpidp2 [ZIi(hk )+Zl2(hk )-Ii2(hk ^  hj

and if we define

dn (k , j ) = [ dp“idp2 In(hk ) hj (3.31)

then

N N
■ Wg= I  I  (l+tk )(1+tj)dkdjtZJi(k,j)+ZJ2 (k,j)-Ji2 (k,j)] 

k=l j=l
-( > (3.32)

We may also use the fact that (l+tk )(1 + t j )J i (k , j )

(l+tk )(1+tj)J 2 (k,j ). This is derived by inserting the 
actual expression for 1^ and I2 (see Appendix 4) into the Ji 

and J2 integrals. Another such relation is
(l+tk )(1+fj)Ji2^k,j) = 2(1+tj)Ji2 (k,j). The expression for 
Wg may now be written:.
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Using the calculation of Jn given in Appendix 
be calculated algebraically given the 
(ot̂ , Bkf a wavefunction.

4

The quantity is calculated as follows:

Ti= J 4>1 (P02 +fJl2 +P2 2 )(t|1 dpidp2

N N _1 _
I I (1 + tfc) (l + tjjdfcdj J dpidp*2 

k=l j=l 
[zii(hjc)+zi2 (hjc)-ii2-(hjt) ] Czii (hj )+ZI2 (hj

(P02 +Pi2 +P22 )

Define

Im^ k )  ___

Km,n(k,j) = / — c — r— - dpidp2 
: (P02+P1^P22)

so that

5, W q may 
parameters

.(3.34) 

)-1 1 2 (h j ) ]

(3.35)

|
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N N
Tl= I I (l + tk)(l + tj)djldj[Z2 K lri(k,j)+Z2K i r2 (k,j) 

k=l j=l

“ZK1 ,12 (k r 3 ) +Z2Ki f 2 (j , k) +Z2K2 , 2 (k * 3 ) "Z K 2 ; 12 (k , j )■ 

_ZK1,12(jfk)“Z K 2 f12<j »k )+K l 2 f1 2 (k *3)3 (3.36)

We may take advantage of the symmetry in this summation 
and write

N N .
Tl= I I (l+tk)(l+tj)dkdj[Z2Klrl(k,j)+Z2K2,2(k,3>k=l j=l

1
+K12,l'2<k»3 )+2Z2Klf 2(k, j)-2ZKif !2(k, j )-2ZK2ri2(k» j ) ] 

' (3.37)

As is the case with the J integrals, there are further, 
symmetries which may be applied to" the K integ£als. These 
are

(l+tk ) (1+tj )K]_f i(k, j ) = (l+tk ) (l+tj)K2f2(k f j )

(l+tk )(1+tj)Ki#i2(k ,j) = (l+tk )(l+tj)K2ri2(k rj) (3.38) 

(l+tk )(1+tj)Ki2fl2(k »j> = 2(l+tj)Ki2,12(k »j)

*■ '■x. >
so we may write

&
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Tl= 2 I I dkdj [(l+tk )(1 +tj)(Z2 K ifi(k,j)+Z2K 1 <2 (k,j)
k=l j=l

-2ZKi/i2 {k,j)) + (l+tj)Ki2 fl2 (k,j)3 (3.39)

These K integrals are reduced in Appendix 6 to one­
dimensional integrals. Thus, for a given value of pg, the 
quantity T^ may *be calculated with the aid of a single one­
dimensional numerical integration.

If the above analysis were to be simplified by using an 
uncorrelated wavefunction (such as- any of thos.e used by 
Henderson and Scherr (I960)), one need only set the 
parameters Yk to zero. It is found in this case that our 
evaluation of the J, K and I integrals agrees with that of 
Henderson and Scherr;. However, Henderson and Scherr claim 
that all dependence on pg may be factored from the K 
integrals. As a consequence, these integrals need not be 
re-evaluated for different values of pg, resulting in the 
saving of a great deal of computation time. Unfortunately, 
this dependence on po cannot be factored and their numerical 
results are in error. The actual results will be given in 
the next section.

The computational effort involved in obtaining \\/2 from 
a correlated Gaussian geminal wavefunction is similar to
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X
that involved in using wavefunctions of the type used by 
Henderson and Scherr. The J integrals may be done 
analytically in both cases, and the K integrals involve a 
one-dimensional quadrature in both cases. Thus there is no 
advantage to using initial wavefunctions such as those of 
Henderson and Scherr.

To obtain an energy bound, we must find a value of pg 
such that

tt2Wq - Ti = 0 (3.40)
The energy corresponding to this value'of pg will be closer 
to the true energy of the system than the variational energy 
E q of the initial wavefunction ij>®.

To obtain an even better bound on the energy, the 
technique of Henderson and Scherr could be followed to 
minimize \\/2• Write eqns. (3.30) and (3.34) as

N N
Wg = I dfcdjWfcj (3.41)

k = V  j  =  l

N N
T 1 = \ I ^k^j^kj (3.42)

k=l j=l

The equation
X1 / 2  = Wg/Ti (3.43)
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could be solved as a generalized eigenvalue problem:
(W - X1 /2 X) D = 0 (3.44)

where the matrix elements of W and £ are W^j and T̂ 'j 
respectively and D is a column vector of the d^
coefficients.

For given values of the non-linear parameters of the 
wavefunction and of pg , the eigenvalue \\/2 maY bs obtained. 
The value given to pg should be such that the lowest 
eigenvalue equals 1/n . The non-linear parameters may now 
be varied, yielding a po with every different set. The
highest of these values for pg may then be used to calculate 
an energy bound. . The corresponding non-linear parameters 
and their associated eigenvector would give a wavefunction 

that was optimized with respect to Xy/2 . This is a 
useful approach for wavefunctionL with few parameters and 
terms. Each element . of the T matrix requires a numerical
integration for every value of p g , - instead of just one
integration per value as in the method previously 
illustrated. For wavefunctions with more than a few terms, 
this method becomes too costly. For this reason we used the 
linear and non-linear parameters of our initial wavefunction 
41® in the calculation of X2 /2 .
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3.4 Results.

The limits on the K integrals are zero and infinity. The 
natural choice of numerical method for this type of integral 
is Gauss-Laguerre quadrature; however, the results obtained 
from this method were not sufficiently accurate. An 
adaptive quadrature algorithm which was suited for an 
integral over a finite range was employed. This quadrature 
routine was developed by Thakkar (unpublished) and uses a 
global acceptance criterion and data representation as a 
binary tree, as suggested by Malcolm and Simpson (1975). It

Clenshaw-Curtis quadrature as the interval integrator and a 
refined Oliver estimate as the interval error estimator. A 
rmmber A was chosen and the total integral was split into a 
sum of an integral from zero to A and another from A to 
infinity. The selection of A was such that the major
contribution to the total integral came from the finite 
integral. Next, the second integral was transformed to a 
finite range. Calling the integration variable x, the 
transformation x=-l/po^ln y gives us an integral from zero 
to exp(-Apg^). In this manner, the total integral could be 
evaluated in ■ two pieces by the adaptive quadrature
algorithm. Care had to be taken to ensure that the
integrand was correctly evaluated at all points. ' In some

differs from their use of a 7-point
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places, the use of series representations of the integrand 
became necessary to avoid numerical instabilities. This 
method gave us the accuracy that we needed.

Solving eq.(3.40) was accomplished with a root-finding 
subroutine using the algorithm of Bus and Dekker (1975). 
Two values of pg must be supplied to the routine, such that 
the root lies between them. As one bound, the po derived 
from was used. As the other bound, pg was taken from 
the best theoretical results of Frankowski and Pekeris 
(1966).

Henderson and Scherr (1960) used three wavefunctions in 
their work. These wavefunctions were sums of products of 
Gaussian orbitals. These consisted of a one-term, one- 
parameter function (which we refer to as HS1), a one-term, 
two-parameter function (HS2) and a six-term, three non­
linear parameter function (HS3). The ground state energies, 
Eg, given in Table 6 are the energies of these wavefunctions 
when they have been optimized Variationally. Henderson and 
Scherr also optimized the parameters with respect to \\/2 1 

for which the resulting energy is referred to as Ei/2 - 
These half-iterated energies .which they calculated from 
their wavefunctions are given in Table 6 . The half-iterated 
energies given in Table 6 for these wavefunctions were
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recalculated by us using the parameters which they gave. No 
attempt was made to re-optimize these parameters. We see 
that their values of this half-iterated energy are in error, 
probably due to the fact that po does not factor from the K 
integrals as they claimed.

The remaining wavefunctions in 'Table 6 are those given in 
Tables 1,2,3,4 and 5 in Chapter 2. The variational energy 
obtained earlier is given along with the half-iterated 
energy which was calculated. This half-iterated energy is 
not the energy corresponding to <t>̂ (this corresponding 
energy would be E]_, the energy calculated from X^), but is 
an upper limit to E]_. The "exact" energies listed at the 
bottom of the table are due to Frankowski and Pekeris 
(1966).

j
%

It may be seen that for' the three 16-term wavefunctions, 
the energy difference Ej/2 -E(exact) is approximately a 
factor of 10 less than Eg-E(exact). This continues the 
trend noted by Henderson and Scherr; that the better the

' iinitial wavefunction, the greater is the decrease in 
absolute error. It must be noted, however, that- our E ^ / 2  

results would be even lower had we varied parameters to 
minimize X} / 2  as Henderson and Scherr did.
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TABLE 6.
Zeroth Order and Half-Iterated Energies of 

Several Wavefunctions.

EO

-2.3010
-2.5566
-2.8511

E l/2

HS1 (He) 
HS2 (He) 
HS3 (He)

1-term He (Table 1)
2-term He (Table 2) 
16-term H _ (Table 4) 
16-term He (Table 3) 
16-term Li+ (Table 5)

-2.5942 
-2.7755 
-2.8818 

EO 
-2.5709 
-2.8163 
-0.52759 
-2.90340 
-7.27941

El/2(Henderson 
and Scherr) 

-2.5995
-2.7815
-2.8915

e 1/2 
-2.7730 
-2.8760 
-0.52773 
-2.90369 
-7.27987

H" E (exact) = -0.527751016
He ' E (exact) = -2.903724377
Li+ E (exact) = -7.279913413
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CHAPTER 4

CONSTRUCTION OF WAVEFUNCTIONS USING 
THE GENERATOR COORDINATE METHOD

4.1 The Generator Coordinate Method. 3,

The construction of wavefunctions using the technique
given in Chapter 2 rapidly becomes more difficulty and time-

(

consuming as the number of terms in the wavefunction rises. 
To avoid having to optimize all of the non-linear 
parameters, we make use of what is called the generator 
coordinate method (GCM). This was first employed in the 
construction of accurate electronic wavefunctions by Thakkar 
and Smith (1977) (for the form of these wavefunctions, see 
eq. (5.8)). Using the GCM, they produced very accurate and 
compact two-electron Hylleraas-type wavefunctions. The 
method has been fruitfully employed since then (see, for 
example, Thakkar (1981)). The GCM will be described and 
used to generate larger wavefunctions than the 16-term 
wavefunctions obtained thus far.

Poshusta (1979) refers to the technique of generating 
parameters as tempering. He presents some tempering 
functions for Gaussian geminals and the resulting 
wavefunctions which they generate. However, he did not work
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within the GCM framework and does not present a method for 
obtaining his tempering functions.

Wavefunctions are generated using the GCM in the 
following manner:

4i ( r l  =  J  K ( t )  G f t , ? )  d t  ( 4.1D

where the integration is carried out over the domain D, G is 
a known generator function and K(t) is to be determined. To 
obtain a wavefunction as a sum of a finite number of terms, 
we may numerically integrate eq.(4.1) to get

* = I Wj K(tj) G (tj,r) (4.2)
3 = 1

where {Wj} and {tj} are the weights and abscissae of an
integration formula for the domain D. We may combine the
known Wj and the__unknown K(tj) into unknown linear

coefficients D j .

N ^<|j = £ Dj G(tj ,r) (4.3)

If we make the association

T = ( c , n , 9 )  (4.4)
and we make the choice
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^ " 3 / 2G( C » f|, 9 » rj_, ?2 ) = ----- (1+P12̂VT
e x p ( - c n r x 2 - c / n r 2 2 - 2 c 0 r i '  r * 2 ) ( 4 . 5 )

then our wavefunction is of the same form as (2 .2 ), except 
the parameters (Cj,nj,9j) are now chosen to be the abscissae 
of some numerical integration‘formula.

As in chapter two, the domain of integration will be 
Sj> 0

' n-pl j =1, . . . N (4.6).
-  I e-j  I < i

The method of integration we choose is a pseudo-random 
number quadrature (see Hammersley and Handscomb (1964)).
However, it is iseen from the parameters of the 16-term 
wavefunction that none of the three sets {CjK (hjl or {9j} 
is uniformly distributed. For example, the values of the 0 
parameter tend to cluster around zero. This suggests that 
our abscissae (?j,nj,Bj) riot be generated by a uniform 
distribution of pseudo-random numbers. We may. make use of- 
this knowledge and the fact that we already have a good 
16-term wavefunction (which is better than the 1 0 0 -term 
wavefunction with E =-2.90309 Eh obtained by Poshusta (1979)- 
using his tempering methods) by the following methods.

\
J
|

\
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Let us write our wavefunction (4.1) as:

<p= J" CK ("t) -Ki6 ('t) ] G(t,r) dt + J’Kig(t) G(t,r) d?(4.7) 
D D

Define G as in (4.5) and use the domain as given by 
(4.6). Then choose Kig(t) such that the last integral 
becomes a sum of 16 unknown coefficients, each multiplied by 
one of the 16 basis functions used in our 16-term 
wavefunction. Let us refer to these 16 basis functions as 

(<l>N+i, . . . , ̂ n +16 ) • The kernel Kig would then have the form 
of a sum of delta functions. Let us rename the unknown 
function K ( t )-Kig(t ), and call it Ki(t). We now have

^  -*■ N+16
\J)= jKift) G(*t,r) df + I C-jip-j (4.8)

D j=N+l

By incorporating the known 16-term wavefunction in this 
manner, we have utilized the control variate method (see 
Hammersley and Handscomb (1964)).

In the remaining integral we wish to proceed as from 
eq.(4.1), but we wish to distribute the tj non-uniformly. 
This method, called importance sampling (see Hammersley and 
Handscomb (1964)), is now outlined.

First we may introduce normalized frequency distribution

\_?
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functions for c,ti and 0 which we will call u(t), v(n) and 
w (6 ) . The integral of each of these functions over the 
domain of their independent variable must be unity for 
normalization. Equation (4.8) may now be written as:

KiU,Ti,e) G(c,n,0 ,r^,r‘2 )
J ------------------------- u(c)v(n)v(e) dcdnde
d u(c)v(n)w{e)

N+16
+ I CjjPj (4.9)

j =N+1 ••

This may be approximated by

1 N. (c j , ri j , 8 j ) -
- I ------------------ G(Cjfnj,ej,ri,r2 )
N j=l u(Cj)v(nj)v(0j) J J

N+16
+ I (4.10)

j=N+lJ y

where the Cj,njr6 j are distributed according to their
frequency functions.’

K
We may.now write K^/(Nuvw) as a coefficient:

)

N ^  N+16
I Cj G(Cjfn-},en,rifr2 ) + I (4.11)

j = l j =N+1 4

Using this importance sampling scheme,' the are
obtained as follows. • Calculate the cumulative probability 
distributions:
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U(c)= fu(x)dx , v(n)= Jv(x)dx , w ( 9)= Jw(x)dx (4.12)
0 1 - 1

As our sequences of pseudo-random numbers uniformly
distributed on [0 ,1 ], we take 

Rlj = «  j {j + 1 ) / 2  V T  »
R2j = «  j(j+l)/2 V T  »  ■ (4.13)
R 3j = <<: j(j+l ) / 2  V T  >> 

where « . x »  denotes the fractional part of ,x(. ^

Solving the equations
U U j ) - Rij = 0 j = l, .. . ,N
V(nj) - R 2 j = 0 j=l,...„N. (4.14)
W{9j ) - R 3j = 0 j = l, .. . ,N

gives us the' Cj,nj,9j distributed according to their 
frequency functions, as required for eq. (4,11).- Thus, to 
get a wavefunction of the type (4.11), we must define' the
frequency functions u, v and w to obtain the 3N parameters

. ■ eP
{C.HrQ}. The N+16 coefficients, C j , may be obtained by

*, using the variational principle, as.in Chapter 2. T h i s ^ y p e  
of wavefunction may be further improved by introducing
constants in the three frequency functions that may be 
optimized such that the wavefunction yields the minimum, 
variational energy. In this fashion, a wavefunction
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containing a large number .of non-linear parameters may be
v

constructed which requires optimization of only a few fion- 
linear parameters.

4

r  -  ■
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-59-

4.2 Results.

First a variety of frequency functions were examined by 
the following exploratory calculations. The frequency
function schemes used are given in Table 7. Each set of 
frequency functions chosen was used to create a 16-term
helium wavefunction with parameters generated solely by the

4GCM . (without making use of the 16-term wavefunction of 
Chapter 2). Each set-'is listed with the 16-term variational 
energy obtained with that scheme and the corresponding 
vajLues of the frequency function parameters. The programs 
ZXMIN and VA04AD, as described in Chapter 2, were used to 
vary these frequency function parameters so as to obtai.n the 
minimum energy. In the cases where the inverse functions 
for U, V or W could not be solved explicitly, equations 
(4.14) were solved using the root-finding program employed 
in Chapter 3. The value of the parameter or 0 was then
obtained to 5 significant figure accuracy.

Scheme number 5 is a set of frequency functions given by 
Poshusta (1979). This is his MCI scheme, with the functions 

, for c and n re-written in our notation. In this case, the 
frequency function parameters are used to tailor the domain 
of the frequency function. Scheme 8 is also due to 
Poshusta, as well as the z function in scheme 9. Note that

It
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schemes 5 and (T produce values of n>0 and not n>l. These 
could not be re-written in our notation.

The remainder of the frequency functions were obtained by 
attempting to fit a function to histograms of the c,n,9 
parameters produced from the 16-term wavefunction for helium 

given earlier in Table 3.
Those sets of frequency functions with the best 16-term 

variational energy were used to generate a 50-term 
wavefunction of the form (4.11). Table 8 lists the schemes 
tested on a 50-term wavefunction of the form (4.11) along 
with the resulting energies. The frequency function 
parameters were re-optimized for these wavefunctions. The 
scheme which yielded the best variational energy, scheme 5, 
was then used to create 50-term wavefunctions for H- and Li+ 
as well. These 50-term wavefunctions are given in Tables'9, 
10 and 11. The first 34 terms are generated from the 
frequency functions and the last 16 terms use the scaled 
C,n , 6  parameters given in Chapter 2. The scaled C values 
for all 50 terms are presented in the tables. To obtain the 
scaled 50-term wavefunction, all 50. c parameters must be 
multiplied by the square of the given virial scale factor. 
For the purposes of comparison, the best variational 
energies obtained by Frankowski and Pekeris (1966) are also 
listed in Tables 9,10 and 11.
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TABLE 7.

Frequency Function Schemes.

N,M and P represent normalization constants.

1 . u(c) = N 4 exp(-t/a2 ) .
v(n) = m  (l+b^n) exp(-n/c^) 
w {0) = P [cos( ( tt/2 ) 0) + d{l-0 ) ]
4 parameters 

_a2 = 0 .83513D+0 
b 2 = 0.37938D-2 
c 2 = 0.16049D+1 
d = -0.95213D+0

= -2.8655

2'. = N c2 exp(-£/a^)
v(n) as in 1 . 
w( 0 ) as in 1 .
4 parametei .2 _ n 77CT»rsa^ = 0.37671D+0 

b 2 = 0.21881D+2 
c 2 = 0.14421D+1 
d = -0.38517D+1
E^g = -2.8416

■ /
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TABLE
3. u ( 0  = NU^exp(-<;/a2 ) + U ^  

v(n) = Mtn exp(-Ti/dZ ) + (ri' 
w( 6 )'= P(1-0 )exp(-I 0 I)

6 parameters 
a2 = 0. 168 50D+0 

■ b 2 = 0.75888D+0 
c2 = 0.32423D+2 
d 2 = 0.99439D+0 
f2 = 0.38482D+0 
g 2 = 0 .18030D+0
E^g = -2.8692

u(t) as in 3. 
v (n ) as in 3 . 
w{ 0 ) = Pcos ( (tt/2)0)

6 parameters 
a2 = 0.15644D+0 
b 2 = 0.10504D+l 
c 2 = 0.13347D+3 
d 2 = 0.11123D+1 
f2 = 0.45719D+0 
g 2 = 0.13974D+0
E^g = -2.8778

/V

7 (cont.) -
exp(-c/b2 ))/c2 ] 
exp(-n/f ))/g ]
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TABLE 7 (cont.)
5. 1

u(c) exp(a)<c<exp(b); a<b
C(b-a)

1
v(n) exp(c)<n<exp(d); c<d

n(d-c) 
nj = (g-f)r3j + f

6 parameters 
a = -0.17827D+1 
b = 0.24736D+1
c = -0.39728D+1 
d = 0.55036D-1
f = -0.20213D-1 
g = 0.21210D+0
Eig = -2.8885

6 . u(c) as in 5.
v(n) = m [ (i+c2 n)exp{-n/d2 )] 
w(0) as in 5.

4

6 parameters 
a = -0.20539D+1 
b = 0.39017D+1
c2 = 0.73379D-3 
d 2 = 0.26055D+1 
f = 0.48649D-1 
g = 0.10492D+0
E 1 6 = -2.8873 .

I
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TABLE 7 (cont.)
7. u(c) as in 5.

v(n)jas in 6 . _
w(8) = P[f cos((it/2)0) + (1-0 )exp(-g2 I 0 I ) ]

6 parameters 
a = 0.34181D+0 
b = 0.11973D+1 
c2 = 0.17316D-1 
d 2 = 0.19510D+1 
f = 0.87073D-1 
g = 0.12503D+2
Eie = -2.8733

8 . Cj = exp(arij +br
nj = exp(cr2 j +drsj;
0 j = sin(fr3 j +grgj)

where rnj= <<: j (j+l )/ 2 ^n - t h  prime >>
6 parameters 

a » -0.15980D+1 
b = 0.23520D+1
c = -0.43882D+1 
d = 0.20279D+1
f = 0.39170D+0
g = -0.18400D+0
Eie = -2.8905

9. Cj = a2 d3 d>0
v\n) as in 2 . (solve using rij )
w{0) as in 5. (solve using r2 j )

6 parameters 
a2 = 0.22641D+0 
b 2 = 0.18230D+1 
c 2 = 0.16169D+1 
d = 0.12141D+1 
f = 0.88094D-1 . 
g = 0.11022D+0
Eig = -2.8768

r-
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scheme

scheme 8

scheme 6

T A B L E  8 .

Helium 50-Term GCM Wavefunctions.

a = -0.88911D+0 
b = 0.46896D+1
c = -0.48744D+1 
d = -0.61306D+0 
f = 0.91202D-2
g = 0.14272D-2
E 50 = -2.9035403

a = -0.23111D+1 
b = 0.37841D+1
c = -0.40833D+1 
d = 0.17611D+1
f = 0.26565D-2
g = 0.12810D-1
E 5q = -2.9035083

a = -0.21528D+1 
b - 0.35959D+1
c2= 0.29998D+0
d 2= 0.28094D+1
f = 0.10030D+0
g = 0.21013D-3
E 50 = -2.9034939
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TABLE 9.

H~ 50-Term GCM Wavefunction.

Scaled C-; 
-0.6973159882613982D-01 
0 . 576589442479800OD-O3 
0.6354085026286149D-02 
0.9330235426230553D-03 

-0.1185541770415685D-01 
0.1302365388874927D-02 
0.9496570405005006D-02 
0.8354259942526741D-02 

-0.5299596166016247D-02 
0.3876140541411643D-02 

-0.2558896606950276D-03 
0.2360205668810851D-03 
0.8210858865191725D-02 

-0•3057435719427838D-01 
-0.196869155504459OD-O1 
0.1214485506628942D+00 
0.2982036446372525D-04 
0.992161415954552 90-02 
0.9249324820678532D-03 
0.1168671902450335D-01 
0.513570©976650327D-03 

-0.1044387559891311D-01 
-0. 2750161096602315D-03 
-0.5555145003776513D-02 
0.4243332132486493D-01 
0.3678184518082852D-01 
0.225617178089708OD-O1 

-0.3868462459515158D-03 
-0.1141638450893223D-02 
0.77.83289681930299D-04 
0.6399013757489044D-03 
0.7549021777770289D-02 
0.774527277734025OD-O1 
0.2048499975522B68D-01 
0.2103326403176208D-01 

^  0.6968701937464148D-02
0.3037631734240636D-01 
0.3985689222784572D-02 
0.9660006913329909D-e2
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TABLE 9 (cont.) 
0.5971828765146128D-02 

-0.1171511063252401D-01 
0.6437753434906017D-01 
0.4154004513992137D-01 

-0.3443371088982349D-02 
0.6416806221128636D-02 

-0.1166847997855307D+00 
-0.2729872040450338D-01 
0.3662636302404848D-02 

-0.2585767386360977D-01 
0.4424064794637419D-01

The first 34 C-irh-iiB-i are generated by scheme 8 with 
a = -0.19591D+1 
b = 0.27927D+1
c = -0.57545D+1 
d = 0.67720D+0
f = 0.48333D-3
g = 0.77444D-1

The last 16 Sj,nj/0j are the scaled parameters from Table.4.

For this 50-term wavefunction
D = 0.9998026999743541 
E = -0.5276490714302323

E (exact) = -0.527751016
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TABLE 10.
He 50-Term GCM Wavefunction.

Scaled C-j 
-0.2044849692548567D+01 
0.1638134040063559D-02 

. 0.8410181029456954D-01 
0.1591524656650429D-02 
0.2921928756872029D-01 
0.5854348342452844D-02 
0.1330628825756143D+00 
0.6611231646619084D-01 
0.2212650930438624D+00 
0.2404905260678761D+00 

. 0.9768499075473357D-02 
-0.7556989709028050D-02 
0.4503389659690509D+00 
0.2404861612260007D-01 
0.8973348921218027D-01 
0.1332865116234977D+00 

-0.3512878259311028D-02 
0.3232059721941153D+00 
0.7015079206625750D-01 
0.2400403013660101D+00 

-0.3197999925458807D-01 
-0.4788426059332739D+00 
0.7008309149703888D-02 

-0.2549500550705289D+00 
-0.4560896070772198D+00 
-0.1292036934417369D+00 
0.4711878312494276D+00 

-0.8862275384122093D-03 
-0.6088236317964243D-02 
-0.1974354534551892D-01 
0.5013504499162201D-02 

-0.7194474664480702D-02 
0. 3492274751215179D+00 
0.2519260122097870D+00 
0.7833207518978851D-01 
0.1669775886472045D+00 
0.3994481139480899D+00 
0.5309209518317787D+00 
0.2579723692030408D+00 

-0.7685188701656463D-01 
-0.9331227322743397D-01

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



TABLE 10 (cont.)
0•8786033790756235D+00 
0. 2295992414956630D+01 

-0.3458040227603057D+00 
0.9858676046927818D-01 
0.1060605386850110D+01 

-0.1744076248418728D+00 
-0.2943803221666693D-01 
-0.2026603919946295D+00 

\ 0.7106931725602302D+00

The first 34 Cj.nj.6j are generated by scheme 8 with
a = -0.88911D+0 
b = 0.46896D+1
c = -0.48744D+1 
d = -0.61306D+0 
f = 0.91202D-2
g = 0•14272D-2

The last 16 Cj.hj.6 j are the scaled parameters from Table 3

For this 50-term wavefunction
n = 0.9999587801679417 
E = -2.903540316632166

E (exact) = -2.903724377

<3

/
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TABLE 11.
Li+ 50-Term Wavefunction.

Scaled Cj 
*  0.15518223994B6184D+00

0.3505140368128134D-05 
-0. 331783133fi:308162D-02 
0.5727946746535948D-03 
0.3296883308068918D-02 

-0 . 30382643024970860-01 
-0.3613625436313713D+00 
-0.1553886161063876D+01 
ft.2665172133158871D+01 
-0.8210395158300870D+00 
-0.6394508562872439D-03 
0.9894266426500836D-03 

-0.8464339304195829D+00 
-0.2648147840257026D+01 
-0.1412447414883455D+01 
0.4 264966096643472D-02 
0.5320119917025612D-03 

-0.6100388438369612D+00 
-0.2967731712026773D-01 
-0.7191552991324749D+00 
0.1279602246884527D-01 
0.1003336115112577D+01 

-0.1025588107539613D-02 
0.6321328964742434D-02 

-0 . 2 9*98 68 3 7 90 558 917D+01 
-0.1593937413177974D+00 
-0.6403310149787437D+00 
-0.2040221207925509D-03 
-0.1443415208727508D-02 
0.4694752496447185D-01 

-O’. 4 08 4 52 3 3888 2990 2D-0 3 
-0.6395852658557166D+00 
-0.1413016363937362D+00 
0.4231240143398764D-01 

-0.2273420669298360D+01 
-0.9851183680516158D+00 
-0.4167477469436565D+01 
0.8783830172437716D+00 

-0.3341033075685406D+00 
. 0.6228958323627976D+00

0.2070196944196083D+01

9

o
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TABLE-11 (cont.)
-0.3913370820578325D+01 
-0.4254104083479847D+00 
-0.9516261920520188D+00 
0^112484'3060413084D+01 

-0.3284290725065104D+00 
0.5373293157833873D+00 

-0.19344622B1368806D+00 
0.4528219226240417D+00 

-0.3878740112981642D+01

The first 34 Cj,nj»6j are generated by scheme 8 with.
a = -0.13507D+1 

- b = 0.46964D+1
c = -0.51795D+1 

,d = -0.80685D+0- 
'f = 0.42967D-2
. g = ”0.44753D-3 

*
The last 16 Cjrnj.9j are

For this 50-term wavefunction
'n = 0.9999977473342717 
E = -7.279570470472180

E (exact) =.-7.279913413 S,

i

! (
<**■

*I

[ _ , - •

>- *

^  • "  ■
‘i. . ■ ■ ’ •• :
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CHAPTER FIVE 

MOMENTUM DENSITIES AND COMPTON PROFILES 

5.1 Formulae.

From a two-electron wavefunction, one may calculate the 
following quantities.

The one-electron momentum density,- n(p), is

H(p) = 2 J <|>* (p,p2 ) <MPrP2 ) dP 2 (5.1)

r -The ̂ spherically averaged momentum density, H(p), is 

1 IT 2u
n(p) = —  Jde I d<t> n(p,e,<t>) sine (5 .2 )

4u 0 0

The radial momentum density, I(p), is given by
9-  ^  'I (p ) = 4np^II(p) (5.3)

The spherically averaged Compton profile, J(q), which is 
the experimentally accessible quantity if measurements are 
takery^on the .liquid or gas phase, is given within the 
impulse approximation by (see Williams (1977)T

JOO

/ I(p-)
[) = - \J(q) = - ) /  dp (5.4)2 J , p 

m
The momentum expectation values may be derived from
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<pk> = J I(p)pk dp (-3<k<5) (5.5)
0

) %
The function J(q) may be expanded about the origin in a 

Taylor series, in the form

® J^k)(o)
J(q) = I -r   (;5.6)k=0 k!

The coefficients of the odd powers of q must vanish, as
J(q) is an even function. The even order derivatives of
J(q) may be calculated in terms of n(p) using eqns. (5.4)%
and (5.3). The following expansion is obtained:

« (2n-l) .
J(q) = J(0) - 2tt I ------- IIU n ~2 ) (0) q

n=l (2n)! (5.*7)

Thus, calculation of the first few even order derivatives of 
n(p) at p=0 along with J(0) would allow us to approximate 
the function J(q) near to the origin.
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5.2 Momentum Densities from Hylleraas-Type Wavefunctions.

The two-electron wavefunctions obtained by Thakkar and 
Smith (1977) are highly accurate with only a few terms. 
These wavefunctions have the following form:

i N
~ (4 n ) I Ck (1+P]_2 ) exp( -a^rj - B k r2 " Y k r 12> (5.8)

k = l

A paper by Benesch (1976) describes how to calculate the 
momentum density and Compton profile from a class of 
wavefunctions which includes those of Thakkar and Smith as a 
special case. Benesch calculated the momentum density and 
Compton profile for He using the RHF wavefunction of 
Clementi (1965) and a Hylleraas-type wavefunction of Bonham 
and Kohl (1966). The variational energy of this second 
wavefunction was -2.903486 Eft.

The calculation of a momentum density from the Thakkar 
and.Smith wavefunctions involves performing a two- 
dimensional quadrature. The integrand'given by Benesch is’a 
complicated function which had to be successively 
differentiated with respect to five different variables. 
These differentiations involved large expressions and were 
done, with the help of the symbolic algebra computer 
language, MACSYMA.
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A
Two computer routines were used to perform the double 

integration. Both routines, DMLIN and DBLIN, were taken
A t

from the IMSL library.

The integrand was found to be highly unstable. Even 
simple rearrangements of the integrand resulted in different
answers. It became clear that the attempt to cast the

*
problem in a form where the numerics became stable would 
involve a great deal of computer time if, in fact, it could 
be done at all. This approach was abandoned in favor of 
attempting to use the momentum space wavefunctions which 
have been calculated.

I
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5.3 The First-Iterated Wavefunction

The. momentum density of the first-iterated wavefunction 
is obtained by substituting equation (3.29) for if)1 into the 
formula (5.1). A typical integral which results is:

Il(h^) 11 (h-j)
— - r — - — d p 2 (5.9)
(PO +P1 +P2 )

Substitution of the integral representation for 1^ given 
in Appendix 4, enabled this integral to be reduced to:

8tt4 1— _ 1 exp(-Lp-i2 )
------------ Jdu . J d y -----------------------

Vtb^+g^)(bj+gj) 0 0 Npi
® P2exp(-Mp2^+Npip2)
Jd p 2 -------  (5.10)

(PO +Pl +P2 )

where L = (bk+g^)(1-u2) + (bj+gj ) (1-y2)
m = ak+gk+aj+gj-gk2/<bk+gk)-gj2y2^(bj+gj)
N = gjc(2-u2) + gj(2-y2)

Attempts to reduce this integral—^ further were 
unsuccessful. Integrals-such as these would also require 
evaluation to normalize 4>̂ , except they would have to be
integrated over p^ as well. Thus, no numerical results for

lthe momentum density could be obtained using <}> . r
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5.4 Gaussian Geminal Wavefunctions.

The evaluation of n(p) and J(q) using Gaussian geminal 
wavefunctions of the form (2.1) is found to be quite simple. 
All of the resulting integrals may be evaluated 
analytically. The derivatives of 5 (p)' at the origin and the 
expectation values <p^> may also be evaluated analytically. 
These results are given in Appendix 7.

The results of these calculations using the 16-term 
wavefunctions of He (Table 3), H" (Table 4) and Li+ (Table 
5) are given in Tables 12, 17 and 19 respectively. These 
calculations ,were also performed using the three 50-term 
wavefunctions of Tables 9, 10 and 11. 'These results are

m4

presented in Tables 13, 18 and 20.

Included for comparison are some Compton profiles and 
momentum densities for helium which have been calculated 
previously. Table 15 contains the data of Benesch (1976), 
who used the wavefunction of Bonham and Kohl (1966) which 
has a variational energy of -2.903486 E^. Evaluation of the 
momentum density required a two-dimensional quadrature. 
Another numerical integration is required to obtain J(q). 
Table 16 contains the helium Compton profile given by 
Eisenberger (1970) using the wavefunction of Sabelli and 
Hinze (1969). Table 14 gives a momentum density and Compton
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profile calculated analytically by us from a HF wavefunction 
produced by Szalewicz and Monkhorst (1981).

The values obtained for <p^> for helium may be compared
\

with the best theoretical result of 108.17604 due to Pekeri^s
(1959). The 50-term wavefunction has a value of </̂ >
closest to this result although it is still not very

— ?accurate. It is known that the expectation values <p > and 
<p^> converge very slowly when Gaussian orbitals, are usedb
(Simas et al (1982)). This is also true of Gaussian
geminals as even 50 terms does not give very good accuracy.
It has . been shown that the momentum density behaves
asymptotically as p-® (Thakkar. et al (1981)). Our
expression of the momentum density (see Appendix 7) decays
as a Gaussian. This leads one to suspect that the value of
<p4> when using Gaussians should be underestimated.

■*

The graph in Figure 1 shows the Compton profiles of the 
16-term, 50-term, .Benesch and Sabelli-Hinze helium 
wavefunctions after subtracting the HF Compton profile and 
multiplying by 100. It is seen that the Compton profiles 
from the 16-term and 50-term wavefunctions vary only 
slightly from each other while the others are considerably 
different.

I
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TABLE 12.
Momentum Density and Compton Profile of a 

He 16-Term Scaled Wavefunction
p n(P ) I( p) J(p)0.00 0.4322424D+00 O.OOOOOOOD+OO 0.1067073D+01
0.04 0.4310468D+00 0.8666711D-02 0.1064904D+01
0.08 0.4274840D+00 0.3438030D-01 0.1058430D+01
0.10 0.4248351D+00 0.5338635D-01 0.1053611D+01
0.14 0.417867 3D+00 0.HL029211D+00 0.1040903D+01
0.18 0.4087899D+00 0.1664390D+00

0.2028276D+00
0.1024283D+01

0.20 0.4035126D+00 0.1014586D+01
0.30 0.3707735D+00 0.4193349D+00 0.9538178D+00
0.40 0.3301803D+00 0.6638669D+00 0.8768488D+00
0.50 0.2856598D+00 0.8974268D+00 0.7899726D+00
0.60 0.2408387D+00 0.1089528D+01 0.6992725D+00
0.70 0.1985723D+00 0.1222713D+01 0.6098899D+00
0.80 0.1607344D+00 0.1292702D+01 0.5256268D+00
0.90 0.1282449D+00 0.1305374D+01 0.4488759D+00
1.00 0.1012554D+00 0.1272413D+01 0.3807905D+00
1.20 0.6202612D-01 0.1122398D+01 0.2708235P+00
1.40 0.3777571D-01 0.9304191D+00 0.1914535D+00
1.60 0.2315674D-01 0.7449504D+00 0.1354964D+00
1.80 0.143 5793D-01 0.5845838D+00 0.9639547D-01
2.00 0.9020267D-02 0.4534081D+00 0.6912104D-01
2.50 0.3016609D-02 0.2369239D+00 0.3146390D-01
3.00 0.Ill9480D-02 0.1266102D+00 0.1531016D-01
3.50 0.4557532D-03 0.7015776D-01 0.7906329D-02
4.00 0.2003219D-03 0.4027711D-01 0.4299766D-02
4.50 0.9396853D-04 0.2391208D-01 0.2446822D-02
5.00 0.4656546D-04 0.1462897D-01 0.1449658D-02
5.50 0.2421062D-04 0.9203247D-02 0.8909870D-03
6.00 Q.1316504D-04 0.5955724D-02 0.5660912D-03
6.50 0.7465081D-05 0.3963429D-02 0.3702091D-03
7.00 0.4391610D-05 0.2704143D-02 0.2481040D-03
7.50 0.2662733D-05 0.1882175D-02 0.1698033D-03
8.00 0.1654197D-05 0.1330385D-02 0.1184465D-03
8.50 0.1049119D-05 0.9525168D-03, 0.8414214D-04
9.00 0.6784537D-06 0.6905818D-03 0.6085264D-04
■ 9.50 0.4475571D-06 0.5075812D-03 0.4478110D-04
10.00 0.3014219D-06 0.3787779D-03 0.3349620D-04

I ‘
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TABLE 12 (cont.)

II (J (0) = -1. 49692 927 059B49565D+00 
n *'(°) = 1 . 8 700 5608248628361D+01 
□ (0) =-4.37038484702093022D+02
I “ '(0) = 1.54577226125649377D+04 
n U “; (0) =-7.43318992093996669D+05 
<p“2> = ‘ 4.06261675825547675D+00 
<p_1> = 2.13414659758152403D+00
<p°> = 2.00000000000000028D+00
<p> = 2.81515096549407073D+00 
<p‘>/2 = 2.90340475845379697D+00
<p3> = 1.83769673304682835D+01
<p4> = 1.03604044985572354D+02
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T A B L E  1 3 .

Momentum Density and Compton Profile of a 
He 50-Term Scaled Wavefunction.

p n (P ) I<p) J (p)
0 . 0 0 0.4327687D+00 O.OOOOOOOD+OO 0.1067273D+01
0.04 0,4315682D+00 0.8677193D-02 0.1065101D+01
0.08 0.4279909D+00 0.3442107D-01 0.1058620D+01
0 . 1 0 0.4253315D+00 0.5344873D-01 0.1053795D+01
0.14 0.4183370D+00 0.1030368D+00 0.1041073D+01
0.18 0.4092267D+00 0.1666168D+00 0.1024435D+01
0 . 2 0 0.4039314D*00 0.2030380D+00 0.1014727D+01
0.30 0.3710945D+00 0.4196980D+00 0.9539013D+00
0.40 0.3304088D+00 0.6643262D+00 0.8768726D+00
0.50 0.2858108D+00 0.8979010D+00 0.7899435D+00
0.60 0.2409252D+00 0.1089920D+01 0.6992031D+00
0.70 0.1986054D+00 0.1222917D+01 0.6097967D+00
0.80 0.1607276D+00 0.1292648D+01 0.5255282D+00
0.90 0.1282146D+00 0.1305066D+01 0.4487881D+00
1 . 0 0 0.1012173D+00 0.1271935D+01 0.3807238D+00
1 .2 Q 0.6200085D-01 0.1121941D+01 0.2708030D+00
1.40 0.3776968D-01 0.9302705D+00 0.1914573D+00
1.60 0.2315979D-01 0.7450485D+00 0.1355010D+00
1.80 0.1436160D-01 0.5847332D+00 0.9639195D-01
2 . 0 0 0./9021684D-02 

0.3015311D-02
0.4534793D+00 0.6911136D-01

2.50 0.2368219D+00 0.3145796D-01
3.00 0.1119017D-02 0.1265578D+00 0.1531219D-01
3.50 0.4558398D-03 0.7017108D-01 0.7909627D-02
4.00 0.2004703D-03 0.4030694D-01 0.4301401D-02
4.50 0.9404471D-04 0.2393146Q,-01 0.2446938D-02
5.00 0.4657995D-04 0.1463352D-01 Q.1449147D-02

\ 5.50 0.2419743D-04 0.9198^340-02 0.8905111D-03
6 . 0 0 0.1314740D-04 0.5947741D-02 0.5659181D-03
6.50 0.7452831D-05 0.3956926D-02 0.3703364D-03
7.00 0.4386403D-05 0.2700937D-02 0.248M41D-03
7.50 0.2662776D-05 0.1882205D-02 0.17W&B3£kr03
8 . 0 0 0.1657028D-05 0.1332661D-02 0.11877000^3
8.50 0.10527B8D-05 0.9558474D-03 0.8437798D-04

^ . 0 0 0.6817972D-06 0.6939850D-03 0.6099033D-04
9.50 0.4500714D-06 0.5104327D-03 0.4483319D-04

1 0 . 0 0 0.3030231D-06 0.3807901D-03 0.3348551D-04
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TABLE *13 (cont.)

njj (0) = -1.50311334931482063D+00 
nJ* (0) = 1.89647658410584987D+01 
g ? (0) =-4.53537462161925767D+02 
n ” '(0) = 1.51714377179646049D+04 
n u " M 0 ) = 1.0308214 3646830846D+05 
<p"‘> = 4.06494178097705672D+00
<p” > = 2.13454699955583432D+00r
<p°> = 2.00000000000000900D+00
<p> = 2 . 81502329479204283D+00
<p2>/2 - 2.90354031663256112D+00
<p^> = 1.83996638378424993D+01
<p4> = 1.06076272511062569D+02

t

\

u
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TABLE 14.
Momentum Density and Compton Profile from 

the HF Wavefunction of Szalevicz and Monkhorst (1981).

p n(p) I (p) J (p)
0 . 0 0 0.4398504D+00 0.0000000D+00 0.1070484D+01
.0.04 0.4385594D+00 0.8817760D-02 0.1068276D+01
0.08 0.4347158D+00 0.3496192D-01 0.1061692D+01
0 . 1 0 0.4318618D+00 0.5426936D-01 0.1056791D+01
0.14 0.4243693D+00 0.1045225D+00 0.1043880D+01
0.18 0.4146399D+00 0.1688208D+00 0.1027012D+01
0 . 2 0 0.4090000D+00 0.2055858D+00 0.1017179D+01
0.30 0.3742743D+00 0.4232942D+00 0.9557135D+00
0.40 0.3318248D+00 0.6671734D+00 0.8781956D+00

- 0.50 0.2859884D+00 0.8984589D+00 0.7910629D+00
0.60 0.2405239D+00 0.1088105D+01 0.7003825D+00
0.65 „0.2188331D+00 0.11-61849D+01 0.6553289D+00
0.70 0.1981765D+00 0.1220276D+01 0.6111609D+00
0.80 0.1605B61D+00 0.1291510D+01 0.5270326D+00
0.90 0.1284386D+00 0.1307346D+01 0.4502677D+00
1 . 0 0 0.1017259D+00 0.1278325D+01 0.3819769D+00
1 . 2 0 0.6264934D-01 0.1133676D+01 0.2711902D+00
1.30 0.4893299D-01 0.1039198D+01 0.2276595D+00
1.40 0.3818817D-01 0.9405779D+00 0.1909541D+00
1.60 0-.2331840D-01 0.7501508D+00 0.i344722D+00
1.80 0.1437141D-01 0.5851327D+00 0.9520763D-01
2 . 0 0 0.8978890D-02 0.4513282D+00 0.6798136D-01
2.50 0.2974641D-02 0.2336278D+00 0.3065797D-01
3.00 0.1092550D-02 0.1235645D+00 0.1479699D-01
3.50 0.4404606D-03 0.6780364D-01 0.7603997D-02
4.00 0.1924043D-03 0.3868517D-01 0.4129005D-02
4.50 0.9000356D-04 0.2290312D-01 0.2352036D-02
5.00 0. 4464672D-04 0.1402618D-01 0.1396803D-02
5.50 0.2329908D-04. 0.8856741D-02 0.8603056D-03
6 . 0 0 0.1270812D-04 0.5749018D-02 0.5471459D-03
6.50 0.7206001D-05 0.3825876D-02 0.3580102D-03
7.00 0.4229093D-05 0.2604073D-02 0.2402612D-03
7.50 0.2559287D-05 0.1809053D-02 0.1649379D-03
8 . 0 0 0.1591967D-05 0.1280335D-02 0.1155635D-03
8.50 0.L015115D-05 0.9216437D-03 0.8247699D-04
9.00 0.6619845D-06 0.6738182D-03 0.5985729D-04
9.50 0.4406052D-06 0.4996969D-03 0.4410891D-04

1 0 ; 0 0 0.2987789D-06 0.3754566D-03 0.3296039D-04
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TABLE 14 (cont.)

II ^v(O) = -0 .1616838423772048D+01
n} 4 '(0) = 0. 2317224196265785D+02

= -0.6809283361710810D+03
n;°'(0 ) = 0.3323886323791572D+05
n 1^ ;(0) = -0.2412896247057461D+07
<p~_2> = 4.09233 
<p > =■ 2J(|0) (These expectation values are
<p> = 2.79E956 due to Simas et al (1983))
<p^>/2 = 2/8616794 ,
<p^> = 17 j 9903 J
<p4> = 105.6156

t>sant>
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TABLE 15.
Momentum Density and G

from Benesch (

p I(p) J(p)
0 . 0 0 0.000O0D+0 0.10685D+1
0.04 0.89703D-2 0.10662D+1
0.08 0.35557D-1 0.10595D+1 >. 

0.10545D+10 .1 0- 0.55181D-1
0.14 0.10622D+0 0.10414D+1

,,0.18 0.17144D+0 0.10243D+1
0 . 2 0 0.20868D+0 0.10143D+1
0.30 0.42850D+0 0.95198D+0
0.40 0.6729BD+0 0.87365D+0
0.50 0.90250D+0 0.78594D+0
0.60 0.10881D+1 0.69505D+0
0.70 0.12148D+1 0.60603D+0

• 0.80 0.12803D+1 0.52246D+0
0.90 0.12913D+1 0.44650D+0

' 1 . 0 0 0.12591D+1 0.37915D+0
1 , 2 0 0.11139D+1 0.27020D+0
1.40 0.92600D+0 0.19131D+0
1.60 0.74280D+0 0.1364^D+0
1.80 0.58426D+0 0.97374D-1
2 . 0 0 0‘.45498D+0 0.70067D-1
2.50 0.24090D+0 0.32060D-1 .
3.00 0.12937D+0 0..14795D-1
3.50 0.71544D-1 0.80250D-2
4.00 0.40926D-1 0.43528D-2
4.50 0.24221D-1 0.24729D-2
5.00 0.14806D-1 0.14635D-2

■ 5.50 0.9327D-2 0.8980D-3
6 . 0 0 0.6037D-2 0.5686D-3
6.50 0.4009D-2 0.3702D-3
7.80 0.2723D-2 0.2469D-3
7.50 0.1888D-2 0.1683D-3
8 . 0 0 0.1334D-2 0.1168D-3
8.50 0.9589D-3 0.8234D-4
9.00 0.7003D-3 0.5882D-4
9.50. 0.5188D-3 0.4246D-4

1 0 . 0 0 0.3896D-3 0.3089D-4
n (Q ) = 0.447 (see Simas

<p *> = 4.111 These expi

r

<p> = 2;843 from unpublished results of Thakkar
<p?> = 6.040 Smith and Simas..
<p?> = 20.37
<p4> = 128.1
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* TABLE 16.
Compton Profile from the Wavefunction of 

Sabelli and Hinze (1969).

p J(p)
0 . 0 0 "0.1068D+1
0 . 1 0 0.1055D+1
0 . 2 0 0.1015D+1
0.30 0.954D+0
0.40 0.876D+0
0.50 0.788D+0
0.60 0.698D+0
0.70 0.609D+0
0.80 0.525D+0
0.90 0.449D+0
1 . 0 0 0.381D+0
1 . 2 0 0.27iD+0
1.40 0.191D+0
1.60 0.135D+0
1.80 0.096D+0
2 . 0 0 0.069D+0
2.50 0.031D+0
3.00 0.015D+0

Ok
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T A B L E  1 7 .

Momentum Density and Compton Profile of a
H 16-Term Scaled Wavefunction.

p n(p)
0.00 0.1723720D+02
0.04 0.1650038D+02
0.08 0.1451290D+02
0.10 0.1321616D+02
0.14 0.1041121D+02
0.18 0.776Ja|57D+01
0.20 0.660Z357D+01
0.30 0.27888 3 3D+.Q1
0.40 0.1251340D+01
0.50 0.626B279D+00
0.60 0.3409368D+00
0.70 0.1971148D+00
0.80 0.1190979D+00
0.90 0.7421552D-01
1.00 0.4735564D-01
1.20 0.2041488D-01
1.40 0.9339921D-02
1.60 0.4486279D-02
1.80 0.2258~266D-02
2.00 0.1187793D-02
2.50 0.2778493D-03
3.00 0.7B25856D-04
3.50 0.2594291D-04

00 0.9699618D-05
50 0.3985172D-05
00 0.1784421D-05
50 ' 0.8627563D-06 
00 0.4437940D-06
50 0*. 2392015D-06
00 0.1336337D-06
50 0.7697-205D-07

8.00 0.4566247D-07
8.50 0.2792925D-07
9.00 0.1763480D-07
9.50 0.1149535D-07

10.00 0.7722869D-08

I (p)
O.OOOOOOOD+OO 0. 
0.3317599D+00 0.
0.1167197D+01 0.
0.1660792D+01 0.
0.2564290D+01 0.
0.3160080D+01 0.
0.3318707D+01 0.
0.3154095D+01 0.
0.2515968D+01 0.
0.1969238D+01 0.
0.1542362D+01 0.
0.1213739D+01 *0. 
0.9578420D+00 0.
0.7554220D+00 0.
0.5950885D+00 X. 
0.36941B9D+00 0.
0.2300431D+00 0.
0.1443232D+00 0.
0.9194538D-01 0.
0.5970500D-01 0.
0.2182223D-01 0.
0.8850835D-02 0.
0.3993601D-02 0.
0.1950224D-02 0.
0.1014103D-02 0.
0.5605925D-03 0.
0.3279619D-03 0,
0.2007677D-03 0.
0.1269991D-03 0,
0.8228523D-04 0.
0.5440833D-04 0,
6.3672394D-04 0,
0.2535754D-04 0, 
0.1795005D-04 0. 
0.1303705D-04 0,
0.9704843D-05 0,

J (p) 
3218702D+01 
3133927D+01 
2900491D+01 
2743831D+01 
2389690D+01 
2027734D+01 
1856762D+01 
1179925D+01 
7699058D+00 
5197528D+00 
3599393D+00 
2|l39482D+00 
l|»t£057D+00 
1312700D+00 
9578891D-01 
5233657D-01 
2952714D-01 
1719934D-01 
1033801D-01 
6395733D-02 
2152173D-02 
8361506D-03 
3646349D-03 
1738346D-03 
8941945D-04 
4910798D-04 
2843019D-04 
1715053D-04 
1069907D-04 
6877934D-05 
4551598D-05 
3099388D-05 
2169194D-05 
1556725D-05 
1141696D-05 
8523696D-06

(
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TABLE 17 (cont.)

n \2 (0) = -9.46154011132922903D+02 
n}’ ((0) = 1.92380770607384835D+05 
I t (0) =-7 .29792932724249177D+0,7 
n t'{0 ) = 4.16584772151196289D+10 
n u ° ; (0) =-3.21517550114579478D+13 
<p-2> = 4.27004883298870839D+01
<p-l> = 6.43740331669148202D+00 •
<p°> = 2.00000000000000056D+00
<p> = 1.11485282148915082D+00
<p%>/2 = 5.27590692653263194D-01
<p3> = 1.65457330236620045D+00
<p4> = 4.67214541490788626D+00
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T A B L E  1 8 .

Momentum Density and Compton Profile of a 
H_ 50-Term Scaled Wavefunction.

p IUp) K p ) J(p)
0 . 0 0 0.1733569D+02 O.OOOOOOOD+OO 0.3222255D+01
0.04 0.1659113D+02 0.3335845D+00 0.3137005D+01
0.08 j 0.1458350D+02 0.1172874D+01 0.2902359D+01
0 . 1 0 0.1327429D+02 0.1668097D+01 0.2744973D+01
0.14 0.1044479D+02 O'. 2572561D+01 0.2389476D+01
0.18 0.7775868D+01 0.3165948D+01 0.2026596D+01
0 . 2 0 0.6610021D+01 0.3322559D+01 0.1855365D+01
0.30 0.2784744D+01 0.31494^2D+01 0.1178675D+01
0.40 0.1248948D+01 0.2511159D+01 0.7694055D+00
0.50 0.6260432D+00 0.1966773D+01 0.5196622D+00
0.60 0.3407404D+00 0.1541473D+01 0.3599962D+00
0.70 0.1971016D+00 0.1213658D+01 0.2540398D+00
0.80 0.1191393D+00 0.9581749D+00 0.1816876D+00
0.90 0.7426479D-01 0.7559235D+00 0.1313264D+00
1 . 0 0 0.47 39460D-01 0.5955780D+00 0.9581857D-01
1 . 2 0 0.2042608D-01 0.3696215D+00 0.5233306D-01
1.40 0.9338153D-02 0.2299995D+00 0.295.1844D-01
1.60 0.4483192D-02 0.1442239D+00 0.1719627D-01
1.80 0.2256914D-02 0.9189036D-01 0.1033971D-01
2 . 0 0 0.1187692D-02 0.5969991D-01 0.6398959D-02
2.50 0.2781301D-03 0.2184429D-01 0.2153472D-02
3.00 0.7831054D-04 0.8856713D-02 0.8361782D-03
3.50 0,2593256D-04 0.3992007D-02 0.36454§2D-03
4.00 0.9687111D-05 0.19477 W D - 0 2 0.1739085D-03
4.50 0.3981782D-05 0.1013240D-02 0.8959833D-04
5.00 0.1786445D-05 0.5612284D-03 0.4928937D-04
5.50 0.8655949D-06 0.3290409D-03 0.2856696D-04
6 . 0 0 0.4456641D-06 0.2016137D-03 0.1724407D-04
6.50 0.2401496D-06 0.1275024D-03 0.1076580D-04
7.00 0.1341557D-06 0.8260666D-04 0.6929950D-05
7.50 0.7740017D-07 0.5471096D-Q4 0.4593188D-05
8 . 0 0 0.4609570D-07 0.3707236D-04 0.3130519D-05
8.50 0.2834179D-07 0.2573209D-04 0.2189255D-05
9.00 0.1797539D-07 0.1829672D-04 0.1566342D-05
9.50 0.1173378D-07 0.1330745D-04 0.1142877D-05

1 0 . 0 0 0.7857621D-08 0.9874178D-05 0.847B758D-06
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TABLE 18 (cont.)

(0) = -9.56189997715263402D+02 
n}i{(0) = 1.95057429577937415D+05 

(0) =-7.40103621757408939D+07 
5/in(0) = 4.20066019536668644D+10 
n u J'(0) =-3 .18 633992604 584 531D+13 
<p~2> = 4.28358613966412945D+01
<p“1> = 6.444510439t33.38006D+00
<p°> = 1.99999999999999914D+00
<p> = 1.11466439233682726D+00
<pi">/2 = 5.27649071429998118D-01 
<p3> = 1.65782428851877103D+00
<p4> = 4.82636181207409998D+00

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



‘ TABLfe 1^.
Mome.ntum Density and Compton Profile o£ a 

Li+ 16-Term Scaled Wavefunction.

p • n(P) -I (p) J-,(p)
0 . 0 0 0.96487 37D-01 O.OOOOOOOD+OO 0,65#1960D+0 0
0.04 0.9639084D-01 0.1938053D-02 0.6537112D+00
0.08 ' 0.9610198D-01 0.7728980D-02 0.6522598D+00
0 . 1 0 0.9588603D-01 0.1204939D-01 0.6511742D+00 ■ 

0.64829100+000.14 0.9531306D-01 0.2347569D-01
0.18 0.9455561D-01 0.3849835D-01 0.6444735D+00
0 . 2 0 0.9410936D-01 0.4730452D-01 0". 6422212D+00
0.30 0.9123699D-01 0.1Q31866D+00 0.6276655D+00
0.40 0.8739407D-01 0.1757162D+00 0.6080277D+00 \
0.50 0.8274096D-01 0.2599384D+00 0.5839828D+00
0.60 0.7746065D-01 0.3504237D+00 0.5563143D+00
0.70 0.717J1553D-Q1 0.4417746D+00 0.525B643D+00
0.80 0.657 8476D-01 0.5290725D+00 0.4934847D+00
0.90 0.5975361D-01 0.6082177D+00 0.4599936D+00
1 . 0 0 0.5380536D-01 0.6761380D+00 0.4261404D+00
l'. 2 0 0.4263342Dr01 '0.7714762D+00 0.3598618D+00
1.40 0.3293337D-01 0.8111517D+00 0.2985676D+00'
1.60 0.2495691D-01 0.8028616D+00 0.2444482D+00
1.80 0.1866011D-01 0.7597473D+00 0.1982747D+00
2 . 0 0 0.1383466D-01 0.6954056D+00 0.1598500D+Q0
2.50 0.6465322D-02 0.5077852D+00 •0.9230340D-01
3.00 0.3052069D-02 0.3451808D+00 0.535.3056D-01
3.50 0.1481479D-02 0.2280560D+00 0.3I60753D-01
4.00 0.7452919D-03 0.1498498D+00 0.1911843D-01
4.50 . 0.38 964 71D-03- 0.9915310D-01 0.1186592D-01
5.00 0.2113865D-03 0.66-40904D-01 0.7552023D-02
5.50 0.1185789D-03 0.4507571D-01 0.4923259D-02
6 . 0 0 0.6858764D-04 0.3102832D-01 0.3284324D-02
6.50 0.4085641D-04 0.2169186D-01 0.2239403D-02
7.00 0.2504394D-04 0.1542086D-01 0.1557941D-02
7.50 0.1576971D-04 0.1114695D-01 0.1103436D-02 '
8'. 00 0.1017044D-04 0.8179550D-02 0.7939188D-03
8.50 0.6694673D-05 0.6078229D-02 0.579I2814D-03
9.00 0.44B3734D-05 0.4563885D-02 0.4281555D-03

> 9.50 0.3048881D-05 0.3457781D-02 0.3203615D-0 3
1 0 . 0 0 0.2ia2606D-05 0.2642212D-02 0.2425737D-03
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T A B L E  1 9  ( c o n t . )

II^|(0) = -1.207279B1777734467D-01 
II 4 '(0) = 5.54776412286796153D-01
I (0) =-4.89979724868112521D+00
II “ '(0) = 6.73260793124566739D+01 
n u “ J (0) =-1. 29050721268732619D+03

 ̂ <p *> = 1.50795097613571150D+00
<p X> = 1.30839190605437120D+00
<p°> = 1. 99999999-999999964D+00
<p> = 4.50843991305116043D+00
<pi“>/2 = 7.27941371653506974D+00
<p^> = 7..04649279629268275D+O1
<p4> = 6.00128544816338803D+02
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TABLE 20.
Momentum Density and Compton Profile of a 

Li+ 50-Term Scaled Wavefunction.

p n (p) I (p) J (p)
0 . 0 0 0.9679352D-01 O.OOOOOOOD+OO 0.6545160D+00
0.04 0.9670201D-01 0.1944309D-02 0.6540297D+00
0.08 0.9642689D-0'1 0.7755110D-02 0.6525736D+00
0 . 1 0 iO .9622000D-01 0.1209136D-01 0.6514842D+00
0.14 0 .9566651D-01 0.2356274D-01 0.6485906D+00
0.18 0 .9492585D-01 0 .'3864910D-01 0.6447 585D+00
0 . 2 0 0V9448543D-01 0.4749356D-01 0.6424973D+00
0 . 30 0 .9160277D-01 0.1036003D+00 0.6278825D+00
0 .40 0.8769277D-01 0. 1763168D+00 0.6081714D+00
0 . 50 0.82 9 6249D-01 0.2606344D+00 0.5840536D+00
0 .60 0.77 6 255 2D-01 0.3511696D+00 0.5563193D+00
0.70 0.7187218D-01 0.4425545D+00 0.5258104D+00
0.80 0.6587989D-01 0.5298375D+0Q 0.4933787D+00
0.90 ' 0.5981764D-01 0.6088694D+00 0.4598453D+00
•1 . 0 0 0.5383880D-01 0.6765584D+00 0 .4259633D+0*0

1 . 2 0 0.4261802D-01 0.7711975D+00 0.3596759D+00
1.40 0.3289637D-01 0.8102405D+00 0.2984288D+00
1.60 ■ 0.2492187D-01 0.8017 342D+00 0.2443800D+00
1.80 0.1863804D-01 0.7588485D+00 0.1982682D+00
2 . 0 0 0 ̂ 1382604D-01 0.6949725D+00 0.1598792D+00
2.50 0.6470237D-02 0.5081713D+00 0.9232684D-01
3.00 0.3053930D-02 0.3453914D+00 0.5352187D-01
3.50 0.1480797D-02 0.2279509D+00 0.3159586D-01
4.00 0.7445355D-03 0.1496977D+00 0.1911§67D-01
4.50 0.3894223D-03 0.9909591D-01 0.1187060D-01
5.00 0.2114652D-03 0.6643374D-01 0.7557364D-02
5. 50 0.1187141D-03 0.4 512710D-01 0.4926596D-02
6 . 0 0 0.6868016D-04 0.3107017D-01 0.3285550D-02
6.-50 0.4089765D-04 0.2171376D-01 0.22 39345D-02
7.00 0.2505294D-04 0.1542640D-01 0.1557392D-02
7.50 0.1576461D-04 0.1114335D-01 0.1102872D-02
8 . 0 0 0.1016194D-04 0.8172720D-02 0.7935353D-03
8 . 50 0.6687458D-05 0.6071679D-02 0.5791067D-03
'9.00 0.4479055D-05 0.4559122D-02 0.4281445D-03
9. 50 0.3046495D-05 0.3455076D-02 0.3204515D-03

1 0 . 0 0 0.2101826D-05 0.2641232D-02 0.2427101D-03
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T A B L E  2 0  ( c o n t . )

ni?J(°) = -1.14310628354540629D-01 
nj£{(0) =-5.22006223563693403D-01 

(0) = 1.58212879638312849D+02 
1 “ '(0) =-1. 51845946984049585D+04 
IP1” ' (0) =-8.97715703419174743D+06 
<p”f> = 1.51050308499113420D+00
<Pn > = 1.3090320464760299115*00
<p°> = 2.00000000000000050D+00
<p> = 4.50810916318400279D+00
<P t>/2 = 7.27957047047271899D+00
<p;> = 7.04990576843794123D+01
<p4> = 6.04423062855430587D+02

* \ • •

o
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FIGUR2 1.
Plot of Helium Compton Profiles.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS

6.1 Conclusions.

The 16-term Gaussian' geminal wavefunction for helium

our. knowledge, than any other like calculation. If one is 
careful with the application of the minimising routines then 
good results may be achieved.^ When the number of terms in 
.the wavefunction becbmes large, it is no longer feasible to 
at'tempt to optimize all of its^parameters. The work on the 
GCM suggests that this is a good method to increase the size 
of the wavefunction without an undue amount of computer 
work. Use of a small wavefunction that has ' been "fully-
optimized" within the GCM-produced wavefunction is found to 
be very useful. This suggests that construction of a large 
wavefunction should start with the calculation of a small

The VI method does not seem to be particularly well- 
.suited for a-Gaussian basis set. A great deal of computer 
time'is required to produce an estimate of the half-iterated

which was calculated in Chapter 2 is considerably better, to

"fully-optimized" wavefunction and tTien proceed with GCM- 

produced parameters.
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4.
J /;'

energy. The first-iterated wavefunction is complicated and 
of questionable value, although it may be usfeful in 
calculating other expectation values. We have shown that 
the use of Gaussian geminals with explicit correlation 
presents no difficulty greater than the use of products of 
Gaussian orbitals, and thus should be the choice if 
Gaussians are to be employed.

The 50-term helium wavefunction produced in Chapter 5 is 
the most accurate - wavefunction used to produce a helium 
Compton profile to date. Gaussian geminals are ideal for 
this type of calculation as alj. results may be obtained 
analytically.

I *
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6.2 Suggestions for Further Research.

The_area which lends itself most readily to future work 
is the GCM. We have presented nine frequency function 
schemes but many more could be tested. It would be 
instructive to examine a greater number of frequency 
functions to gain more insight into this method. These 
frequency functions may be given more parameters to be 
varied, with both the shape of the function and its 
endpoints varied.

The VI method also deserves more scrutiny. Since the use 
of Gaussians is questionable, perhaps a good momentum space 
basis set could be found in which the integrals involved in 
the iteration “ do not become too complicated. The 

S feasibility of using the first-iterated wavefunction of.
Chapter 3 in calculating properties other than the momentum 
density or Compton profile could be examined.
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APPENDIX 1

FOURIER TRANSFORM OF A GAUSSIAN GEMINAL BASIS FUNCTION 

Take as our Gaussian geminal:

g(ri,r2) = e x p ( - a r i 2 - b r 2 2 - c r i 2 2 )

The Fourier transform is:

<t>(pifP 2 ) = - - r -  $ ?kp(-ari2 -br2 2 -cri2 2)
( 2 TT )

exp(ripi*r’i-iP2,r2) drid'ri
Splitting into Cartesian coordinates and performing the 

integrations yields:

1

♦ (P1 »P2 ) = ^7 oexP (A)3/2-
-bpx2 -ap2 -c(pi+p2)' 

A

where A = 4(ab+ac+bc)
with the conditions a+c>0, A>0,
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APPENDIX 2 

MATRIX ELEMENTS WITH GAUSSIAN GEMINALS 

Take two Gaussian geminals as follows:

gi = exp (-ari^-br2 ^-cri2 ^ ) 
g 2 = exp (-dri^-er2 ^-fri2 ^ )

1. Overlap Matrix Elements.
c

<gi I g2> = / exp(-(a+d)ri2-(b+e)r2^-(c+f )ri22 ) dridr*2

Splitting ri and r2 into Cartesian coordinates, we find

-i)
0 0 - 0°

I lexp[-(a+d)xi2 -(b+e)x2 2 -(c+f)(xi~x2 )2 ] dx^dx2

- CO ' O O   ̂ ^

The double integral may be evaluated using:

00 9 (u2\J exp(-tx -ux)dx = expf—  I t> 0

v >
The result is

<9ll92> - -3?2

with the conditions a+d+c+f>0 , t> 0
and where t = (a+d) (b+e) + (a-Fd)‘(c+f ) + {b+e) (g+f).
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2. ,Kinetic Energy Matrix Elements.

These integrals are ‘evaluated by first performing the 
differentiations and integrating in Cartesian coordinates. 
The result is: '

3 it '
- -<9 1 |Vl2+722 I92>'= — --£<d+e+2 f)t-2 fd(b+e)

2 t 5 / 2

-2 fe(a+d)-d2 (b+c+e+f)-e2 (a+d+c+f)-2 f2 (a+d+b+e)]
where t is given above.

3.' Potential Energy Matrix Elements.

if the potential energy operators are replaced by their 
Fourier integral representations (as in eq. (3.6)), the 
integrals are readily evaluated . in Cartesian coordinates. 
The results are:

-2Z-5'2'
-Z<gi| 1 / r i •Ig2 > = — --------

tVb+e+c+f
(b+e+c+f ) > 0  

t> 0

- 2 Z^ 5 / 2
-Z<gi I 1 /T2 19 2 > = "

t'\/a+d+c+f
(a+d+c+f ) > 0  

t> 0
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2 ir5 / 2
<911 1/F12 I 92> = — ----- —tya+d+b+e

w
where t is given above.

{a+d+b+e ) > 0  
t> 0 .
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" APPENDIX 3 

IMPORTANCE OF EACH WAVEFUNCTION TERM 

Let us take an L-term wavefunction as follows:

L
+L = I c k4>k {A3.1)

k=l

The variational energy, ETl , of this wavefunction is given

by

<*L | H U L>
El    ‘ . - (A3.2 )

<^l U l >

The linear coefficients are calculated by solving
H C = E S C (A3.3)

or

' I HmnCn = EL I SmnCn (A3.4)
n n *
for each m =l,...,L
and where Hmn= <$m I H 1 $n>

Smn= 4>n> •

The solution of (A3.4) is constrained by requiring that 

4<l be normalized. This condition may be written as
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I CmCnSmrf- 1 __ (A3.5)
m, n

t
Let us define 4»l /] as the wavefunction resulting when the

j-th basis function is deleted from (A3.1)- and for which the
\_

linear coefficients^have been re-calculated variationally. 
We also define XL/j as wavefunction resulting when the
j-th basis function is deleted from (A3.1) and the remaining 
linear coefficients'are unchanged.

We will approximate 4>L/j by XL/j:

L
^L/j *  XL/j = I ' (A3.6 )

k*j
4 0

Define EL/j as the variational energy of t̂ l /j and EL/j as 
the variational energy of XL/j• We ^now that 

. £L/j^EL/j>EL»true energy.
The energy gained by the wavefunction when the j-th basis 
function is deleted is given by EL/j-EL,. An over-estimate 
of this energy is given by:

AL/j = eL/j"EL » e L/j~eL
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<

<XL/jlHiXL/j>-EL<XL/jIXL/j> 
f i L / j = --------------------------------------------------------------------------   ̂ ( A 3 . 7 )

<XL/jlXL/j>

Now

<XL/jlXL/j> “ 1 CmCnSmn iQnCjSjnjm , n m

Icncjsjn + c j2sjj

<XL/jlXL/j> “ 1 2Cj £ CmSm j + Cj^Sjj ' (A3.8 )
m

using (A3.5) and the fact that S is symmetric,

<XL/j I H I XL/j > " '̂L<XL/j I XL/j > = 1 CmCn (Hmn_ELsm n )m, n

-2Cj £ Cm (Hmj-EL,Sraj ) + Cj^Hjj-ELSjj)
m

= Cj 2 (Hj j-ELSj j ) (A3.9)
using (A3.4).

So we have

cj 2 <Hjj:ELsjj^ 
l-2Cj £ CmSmj+ Cj^SjjAL/j= r z ~ Z  ~ Z ~ 2 r ~  (A3.1 0 )

m

This technique, first developed by Brown (1967), gives
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an over-estimate, AL / j , of the variational energy increase 

when the j-th basis function is removed from eq. (A3.1). 

Since the quantities required in ^A3.10> will already have 

been calculated in obtaining (A3.1), it is a quick method to 

get an. idea of the importance of the j-th basis function. 

Calculation of the exact energy increase would require the

solution of a new set of 

approximate energy increase is 

calculates eigenvectors.

*r

linear coefficients. ' This 
computed in the program which

I
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APPENDIX'4

CALCULATION, OF Ii, I2 AND Il2-

For use in the evaluation of these quantities, the 
following integral will be evaluated:

dp
exp(-ap2+2q-p) (A4 .1)

Define spherical polar coordinates (p,0,<t>) sucn that q 
lies along the axis from which 0 is measured. The integral 
now becomes

2 tt it ® p^sin0
Jd<t> Jd0 J d p    exp(-ap2+2qp cos0)
0 0 0 p 2

Integrate over the 4> variable apd transform the 0 

variable by u=cos0 to get:

2 ir J du J dp exp(-ap2 + 2 qpu> 
- 1  0

Using integral tables, we get:

, 3 / 2 1
=----  f du
a1 / 2 - 1

q 2 u2\ /q2 u2\ I qu
exp | j + exp I--— I erf U a> 0

The term containing the error function is an odd function
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of u and it will integrate to zero. We are left with:

1 /q^u^ \
=-I7- a u  e*P - - -

2 * 3 ' 2 1 /q2 u2 '

2it3 / 2  ■ / 1 3 q 2 \
=" I / 2  F U ' / r  3>0

where F(l/2,3/2,x) is the confluent hypergeometric function 
defined as:

(1 3 \ 1 -F -,-,x = Jexp{xu^)du
\ 2 2 I 0

1. Calculation of I^. *

Let g(pi,P2) = exp[-bpi2-ap22-c(̂ i+P2)2]
dp ^  ^

!i(g) = I “ 2 g(pi-P'P2 >

 Substituting the actual expression for g yields:
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_  /dp ■
1 1 (9 ) = g(pi,P2  ̂ j ~2 ~ exp[-(b+c)pz:+ 2 ( (b+c)pi+cp2 )*p]

/I 3 ((b+cVpi+cp^ ) 2
ii(g) = -~r—  g<pirP2) F -»-»---------------Vb+c \ 2 2 b+c

A similar calculation gives

2ir3 ^ 2 / 1 3 {cpi+fa+cVp^ ) 2
12(g) =  g(PirP2> F - > - > ---------------■Va+c \ 2 2 a+c

2tt3/2 ^  11 3  (bpi-ap^)2
1 1 2 (g ) = g(pi,P2 ) F -»-f----------Va+B \ 2 2 a+b

* ’ ' v
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APPENDIX 5

CALCULATION OF J INTEGRALS

Let
Ve
g = expC-apij2 -bp2 2 -c(pi+P2 )2 ] 

h = exp[-dpi^-^Sp^ 2 -f(pi+P2)2 ]
f

Calculate

Jl = Jdpidp2 Ii(g) h

Substitute for I].(g) and h and use the integral 
representation of 1^ given in Appendix 4 to get:

2 * 3 7 2 1 ' -  -  ’=  ---- J du Jdpidp2 exp[-((a+c)(l-u'M+d+f)pi
Ja+c 0

-(b+e+c+f-c2 u 2 /(a+c))p2 2 

-2(c(l-u2 ) + f)^i *P2 ]

First evaluate the integral over p^ and P 2 by expanding 
these two vectors in Cartesian coordinates and using 
integral tables:
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= 2 ir9 //2 (a+c) J du( (a+c)v-wu2 ) 3 ^ 2 
0

where v = (b+e)(a+d+c+f) ± (a+d)(c+f 
w = (a+c)2 (b+e) + a 2 (c+f) + c 2 

with the condition that (a+c)v-w>0 .

Performing the last integral gives: -'r

2 TT9 / 2
J l  =  — -----------------------

vv( a+c) v-w

Similarly

2 tt9/2
J 12 = v"\/{a+b)v-y

where y = (a+b)2 (c+f)+b2 (a+d)+a2 {b+e) 
v is given above 

with the condition (a+b)v-y>0 .

)
(a+d)
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• APPENDIX 6
(

CALCULATION OF K INTEGRALS

Let
g = expt-api2-)3p22-c(pi+P2)2 ]

h = exp[-dpi2-ep22-f(pi+P2
Calculate

Il<g) 11(h)

<P02+P12+P22 )

Use the. integral representation of Ii given 
and use ‘

1 ®
— z-— z c = I exp(-m(po2+p12+p22 ) ) dm
PO +P1 +P2 0 '

All variables with the exception of m
integrated. The result is

4 tt̂  °° exp(-mpo2 )
Rj i = ____________ J dm ----   tan

,/(a+c)(d+f) 0 /PQ
•>

where
P = (a+d+m)(b+e+m)+(c+f)(a+b+d+e+^m)
N = m(m+b+e+ac/(a+c)+df/(d+f))

Kl,l = /dpidp2

in Appendix 4

are easily

r .....................
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Q =
( (a+c ) (d+f ) (b+e+m)+ac(d+f) +df.( a+c ) +c fm) ( ( a+c ) (d+f) )

P , Q , N > 0 
Similarly

I1 (g)1 2(h)
dpidp"2 -------------

(PO +P1 +P2 )

4 tt ̂ co exp(-mpo^) IQ
J dm t----------- tan-1/--

v/(a+c) (e+f) 0 • /PQ~ I PN
where

P is as above

N = ((a+c)(b+m)+ac)((e+f)(d+m)+ef)/((a+c)(e+f))
•Q = ( f (a + c ) (b+m)+c(e+f ) (d+m)+cf (a + e ))2/ ((a+c) (e + f )-) 

P, Q, N > 0

/> Ii(g) i]_2 (h)
*1,12 = Jdpidp2 2— ' r - 2,J . (po +pn*P2 > •

4n6 co exp(-mpo2 ).. IQ
  1  | dm   — --tan- 1 / —
7(a+c) (d+e) 0 / P Q  \J PN

'' i
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where
P is as above
N = m 2 + (2f+b+2de/(d+e)+ac/(a+c))m

bf + acf/(a+c) + bde/(d+e) + acde/{(a+c)(d+e))
Q = (d(b+m)(a+c)+af(d+e)+ad(c+e)-cera)2/ ((a+c)(d+e)) 
P, Q, N > 0

_  Ii2 (g)Il2 (h)
K 12/1.2 = / d p i d p 2 ----

' 3 (P02 +P1 2 +P22 )

4 7t ̂ oo exp(-mpo2 ) _ fQ~
f dm    tan I ~~

v/(a + b )  ( d + e )  0 / p q " J P N

w h e r e
P is as above
N =  m 2  +  2m(c + f + d e / ( d + e ) + a b / ( a + b ) )
Q =

( ( a e + b d ) ( c + f ) + ( b e ( a + d + c + f + m ) + a d ( b + e + c + f + m ) ) ) 2 / ( ( a + b ) ( d + e ) )  
P. N, Q > 0
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APPENDIX 7

MOMENTUM DENSITY AND COMPTON PROFILE FROM 
GAUSSIAN GEMINALS

Take

4> = I dk (l + tk)exp(-bkPi2 -aKP22 -9k(Pl+P2)2 ) 
k=l

as in equation (3.25).

Now use equation (5.1) to calculate II (p ) with the result

N N exp(-up2/ v )
n(p) = 2tt 7 I  I  dkdj (l+tk ) (1 + tj )---- --------

k=l j=l ' v J / 2

\

where v = ak+gk+aj+gj
u = (ak+aj)lbk+gk+bj+gj) + (bk+bj)(gk+gj)

In this'case n(p) = n{p).

Now

CO
J(q) = 2tr J pil(p)dp 

Iql
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5/2 N N exp(-uqVv)
I I d kdj(l+tk ) (1 + tj )------1/2

k=l j=l 2uv '
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