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ABSTRACT

Phiiip Eric Regier: Two-Electron Atoms in Momentum Space,
Master's thesis, University of Waterloo, November, 1983.

A Gaussian‘geminal basis set is employed for calculating -~
Happroximate eigenfunctions of the Schrodinger equation for/.
two-electron atoms. The basis geminals are non-factorable
two-electron functions with ’‘explicit correlation terms.
Sixteen term variational wavefunctions are obtained for H,
He and Li* and are the best of their type and size.

Previous wavefunctions were found to be improperly

optimized.

A variation-iteratién method for. finding solutions to the
momentum space Schrodinger equation 1is .also considered.
-This technique successively iterates an initial
wavedynction, producing a sequencé of wabefunctions and
energies which converge to - the exact ‘vavefunction and
energy. Using the Fourier transforms of the sixteen term
wavefunctions as the initial wavefunctions, first-iterated
wa§efunctions, and half-iterated energies were produced.
Previous work using this ﬁethod with Gaussian orbital basis

function was found to be in error.

(iv)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A
\\
/
yd
Vel

Gaussian geminal wavefunctions of fifty terms were also
constructed, using’ the generator-coordinate method. This
technique‘uses the motivation of Monte Carlo quadrature to
map several va;iational parameters onto all of the non-
linear parameters -of the wavefunction. The technique of

-~

importance sampling and the control variate method were

-

~ found to be very useful in this regard.

Compton profiles and one-elecfron momentum densities were
produced from the Gaussian geminal wavefunctions. The most
accurate Comptoﬁ -préfile yet obtained for helium is
présenteﬁ. The first—iterated'wavefunctioﬁ wﬁs not used as

the resulting integrals could not be evaluated.

-

* , (v)
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CHAPTER 1
INTRODUCTION
1.1 Position Space and Momentum Space Wavefunctions.

For the study of atomic and molecular systems in quantum

- .chemistry, we are primarily concerned with the bound state
. solutions of the time-independent Schrodinger equation in

the Born-Oppenheimer approximation (Born and Oppenheimer

| (1927); Born and Huang (1954)). 1In opérator form, this is

expressed as ¢
Hx = Ex ' o (1.1)

where H .is. the -electronic Hamiltonian, E is the electronic
energy and x the wavefunction in an appropriate

representation.

The representation most frequently used is that in which
x is a function whose domain is the vector space of the

. . Ao o = . .
position coordinates r=(r;,r3,...,TN) and spin coordinates
6= (01,+..,0N) of the N electrons (called position space).
The representation which will be considered in this thesis
takes x to be a function whose domain is ;he vector'space of

) . a A — — —

the electronic momentum coordinates p=(p3,p2,...,PN) and the

s s A :
spin coordinates ¢ = (01,...,0N) (called momentum space).
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These two representations are related by the Dirac-
. ¢

Fourier (Dirac (1558)) transform as follows

e(p,0) = (2m)"IN/2 [ exp(-ip-t) ¥(F,3) af (1.2)

Hartree atomic units will be used throughout (Whiffen

(1978)).

Fo£ two-electron atoﬁs, such as will be considered in
this thesis, the spin may be treated as follows., Due to the
sméll nuclear mass of the atoms considered, we may neglect
the spin-orbit interaction and the relativistic change in
mass. This enables the wavefun&tion to be factored into a
product of a function of spatial or momentum coordinates and
a function depending on the spin coordinates (see Bethe and
Salpeter (1957) Sec.24). Thus, the spin may be factored out
of (1.2) leaving an ordinary qurier-tranSform. Spin will
henceforth be neglected, as it may be incorporated in a two- .

. L&,
electron wavefunction merely by multiplication of a

~normalized spin function of appropriate symmetry.

The electronic Hamiltonian H for a system with N

electrons and S nuclei is given by
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, N s ¥
Pk - ) Z Z5|Ry-T ™+ + &
k=1 j=1 <

I~

o]
[]
N )

[Fi-£5171 (1.3)

k=1

e

where Py is the momentum vector of. electron k, Fk is the
position vector of electron k, Rk is the position vector of

nucleus k, Pk2=5k'5k and Zy is the atomic number of nucleus

k.

The first term in the Hamiltonian corresponds to the
kinetic energy of the electrons, the following term gives
the Coulombic potential energy due to the attraction of the
electrons to the nuclei and the last term is the potential
energy due to the electrostatic repulsion between the
electrons. . \

When a particular representation 1is chosen for the
wavefunction, the operators in the H;miltonian must be
‘transformed SO as éo act on the elements of the space under
consideration. The solution of the resulting equation will
vield the wavefunction (and its associated eigenvalue) in

the chosen space.

wWavefunctions are used to calculate expectation values of
atomic and molecular properties . or observables. In

principle, both posftion space and momentum space
-~
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4

wavefunctions contain the same information; in other words,
knowledge of either wavefunction eﬁables one to ‘calculate
expectation values of all properties. In practice, however,
the integrals involved in. the calculation of a given
observable may be evaluated -with greater facility( in a

particular one of the two representations, depeniy1 the

integral under consideration,
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1.2 Calculation of Momentum Space Wave Functions.

To determine wavefunctions in momentum space, th main
approaches may be employed. The first is the application of
the Fourigr transform (1.2) to the solution of the
Schrodinger equation in position space. 1In position space,
the final two terms of the ﬁamiltonian remain unchanged, as
they are multiplicative operators containing position space
coordinates. The kinetic energy term, however, must be
transformed to one which operates on the position 'space
coordinates. This is accomplished by representing the pkz
;perators by the Laplacian operators —sz. In\fhe case of
hydrogen, the resulting differential equation may be solved
exactly, as shown in many textbooks (see Bethe and Salpeter
(1957)). Podolsky and Pauling (1929) obtained the momentum

space wavefunctions for hydrogen by Fourier transforming the

N
3

position space solutions.

For systems with more than oné electron, the Schgodinger
equation may no longer be solved exactly. Various methods
have been applied to arrive at a great ﬁany approximate
wavefunctions for a large number of atoms and molecules (see
Richards et al (1971, 1974 and 1978), Ohno (1982)). The

majority of these are variational calculations in.which the

wavefunction has been. built from an orbital basis set {(one-
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electron functions). The most common orbital basis sets in
use are readily Fourier transformed, as reviewed by Kaijser
and Smith (L977). Thus, the Fourier transform technique of

e ' obtaining a momentum space wavefunction is widespread.

In~the case of helium, an atom with two electrons, the
best wavefunctions have been expanded in a basis set of
geminals (two-electron functions) whiéh are non-separable

. because they contain explicitly the inte}—electron distance
riz. ‘Some geminal basis sets in use are Hylleraas type
(Hylleraas (1928); Pekeris (1958)), exponential Hylleraas-
Slater type (Hylleraas (1529); Slater (1928); Thakkar and
Smithl (1977)), éaussia;s (Singe} (1960); Boys (1960};
Poshusta (1978 and 1979)) and others containing negative

. (Kinoshita (1957)) and fractional (Schwartz (1962)) powers
of ryo and logarithmic terms (Franko;ski and Pekeris (1966))
as well. ,Unforthnately, the basis sets which yield the best
wavefunctions have proven too difficult to Fourier

transform.

The second method is to formulate the problem directly in
momentum space. In momentum space, it is the kin?tic energy
operator that is a multiplicativé operator and the potential
energy operators which must be transformed. This may be

done by replacing the position .operators by the
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correspondence x =1i3/3px, etc. This apbi'oach was attempted
by Hylleraas (1932), and yielded a differential equation for
the radial part of the ’solution for the hydrogen atom, which
he then solved. For atoms other than the hydrogen atom,
this method 1is difficult to handle. A\ more convenient
approach is to use the Fourier transforn{ to express the
Schrodinger equation as ahdntegral' equation in momentum
space. This calculation will be demonstrated in chapter
three. While a-gréat deal of work has been done on the
position space Schrodinger equation, verf few attempts have—
been méde to solve the momentum space Schrodinger equation.
All of these attempts rel_evant to our work will now be

. o
reviewed. ' .

Fock (1935) solved the mor&itum space integral equation
for the hydrogen atom. He first made a transformation
analagous to a stereographic projection from a plane onto a
sphere and his solution was a function of these resultiné
coordinates. Thus!, the hydrogen atom had been solved

exactly in both position and momentum space,

McWeeny (1949) attempted an approximate solution to the
inteqral equation for Hp* (hydrogen molecule ion). This
system now has two force centers (nuclei), although it

remains a one electron problem. He employed a variation-
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iteration (VI) proéedure developed by Svartholm (1945) which
will be fully described in chapter three, This procedure>
takes an initial gquess at the wave function and then yields.
successive approximations to the ground-state wavefunction
and energy eigenvalue. These appraximations converge to the
actual values; however, one is limited in practice by the
ability to solve the resulting integrals. His initial
wavefunction was a combination of atomic orbitals which he
iterated‘to obtain .a correction term to the wavefunction.
This corrected wavefunétion gave a greater spread in the

‘ -
momentum distribution than the initial wavefunction.

Shibuya and Wulfman (1965) used Fock's ,transformation in
their work on the one-electron problem in an arbitrary
number of force centers. They attempted to find a solution.
by expanding the wavefunction in a basis set. Novosadov
(1976) obtained the general solution without having to
select a form for the wavefunction. The solution is a
linear combination of an infinite number of hydrogen-like
functions centered on each nucleus. Thus, to obtain
numerical results, an approximation is nece;sary. A simple
numerical calculation on Hp* was also performed. In a later
paper, Novosadov (1979a) 'presents, in more detail, a

numerical method of solution for this one-electron many-

centter problem. Subsequently, Novosadov (1979b) presented a
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‘numerical method for the solution of the momentum space
Hartree-Fock equations for ground-state closed shell neutral
or positive ion molecules. ‘ -

)
\

Monkhorst and Jeziorski (1975) pointed out that for many-
center problems, solving the momentum space integral
equation could eliminate tge conventional position space
difficulties of calculating many-center integrals and
instabilities due to overcompleteness of the many-center

[ ‘
basis sets. They also presented a method, similar to that
of Novosadov, of approximating the energy eigenvalues of a
"one-electron system. A paper by Duchon et. al. (1982)
presents an approximate method of determining the energy

levels of a one-electron many-center system which converges

maore rapidly than the technique of Novosadov.

Tﬁe first attempt to find an aﬁproximate solution for the
momentum space integral equation for helium was by McWeeny
and Coulson_(1949).. Here agaih they used the VI method
developed by Svartholm. - Their choice of starting function
was the momentum space. form of the product of two hydrogen
s—-type (Slager) orbitals with the screening coﬁgiant as the
variational parameter. They were able to calculate an
improvéd eigenvalué estimate but were not able to da the‘

integrations to obtain a new wavefunction. Schreiber (1978)
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A

assumed a spherically éymmetric'wévefunction (i.e. ¢(P1.,P2)
= ¢(p1,p2)) " and used a series represehtation of the
electrostatic electron repulsion term. Using the same
initial wavefunction as McWeeny and Coulson (1949), he
obtained a first-iterated wavefunction. This 1is not an
extension of the work of McWeeny and Coulson (1949), as the

assumption. of spherical symmetry is restrictive and yields a

different integral equation.

Henderson and Scherr (1960) also used the VI methoa,
using wavefunctions expressed as a sum of products of
?aussién orbitals (one-electron functioné) as their initial
functions. They employed one-term, two-term and six-term
Gaussian functions with no correlation in their work. They
’were ‘able to get an improved upper bound to the energy
(improved over the wvariational energ& of their initial
function) and a. first-iterated wavefunction in terms of

A

hypergeometric functions.

Monkhorst and Szalewicz (1981) used the VI method on the
Hartree-Fock equations in momentum space developed by
Novosadov (1979b). Their initial function was the Fourier
transform of a normalized ls orbital. They obtained a first
and second iterated wavefunction and their energy bound was

better than that calculated variationally from their initial
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-11-

wavefunction. However, their results would only converge to
the Hartree-Pock wavefunction and eigenvalue, not .the actual

ones.

2

The usual sphe?ical poclar momentum variables (p,ep,¢p)
are not conjugate to the spherical polar position variables
(r,0,6). Lombardi (1980) has proposed a new set 6f position
and momentum variables which are conjugate variables.. He
then solved the hydrogen  atom in this momentum
representation. The functions obtained differ considerably
in form from those of Podolsky and Pauling. This is due to

the use of a different representation.

Using the saméqmomeqtum variables, Lombardi {1982) began
work on helium by carrying out a self-consistent field
calculation on the ground-state. The energy estimate
arrived at was in agreement with analagous position.space

results.

'

Lombardf {1983) then examined helium using the VI method
in conjunction with his momentum variables. He employed a
prodﬁct of Slater orbitals expressed in his momentum
- variables  as his initial function, this being the same as
that employed by McWeeny and Coulson (1949) and Schreiber
(1978).. The momentum space wave equation given by Lombardi

uses the assumption of a spherically symmetric wavefuncp&on
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(as did that of Schreiber). A first-iterated wave function

and energy was easily obtained by' contour integration,
avoiding the difficulties encountered by the previous

attempts using the variables (p,ep,¢p).

However, the physical interpretafion of these new
momentum variables is not clear and no formulae are
available for calculating other quantities such as Compton

profiles.

-

Cther methods aside from the VI méthod have been advanced
to solve the momentum space equations. A recent paper by
Navaza and ‘Tsoucaris (1981) investigates the possibility of

solving the Hartree-Fock integral equations numerically.

The VI method has not yet yielded good results partly
because a good starting function with explicit correlation
has never been tried. Gaussian geminals of the Boys (1960)
‘and Singer (1960) type are a good basis set for this type of
problem because a Gaussian geminal in position space
transforms to a Gaussian geminal in momentum space. In
Chapter 2, we. construct a good variational wavefunction

\ expanded in a Gaussian geminal basis set containing explicit
correlation terms. This wave fuﬁction will be far more
accurate than those yet used in the VI method. It will be

shown in Chapter 3 that the use of this basis set presents
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no complexitiesbgreater than those encountered by Henderson
and Scherr (1960) who used a basis set of products of

Gaussian orbitals.
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1.3 Momentum Densities and Compton Profiles.
]

To attempt comparison bet&een theory and experimént, it
is necessary ° to calculate experimentally observable
quantities from the wavefunction. One sluch quantity is the
Compton profile, Compton scattering, along with several
other techniques, may also be employed to yield information

N X
about the momentum density.

The scattering of a photon from an electron is referred
to as Compton scattering. The wavelength of the scattered
radiation will then yield information about the momentum of
the electron. The formulae for calculating the Compton
profile are derived using what: is called the impulse
approximation. This involves two assumptions. The first is
that during the scattering process the electron may be
treated as free rather than bound. The second holds that
the eﬁergy gained by the electron from the collision with
the photon is much greater than its binding energy. For
mofe details on' the impulse approximation, the reader is
referred to the book edited by Williams (1977). It is only
through the impulse approximation that a simple relationship
exists between the Compton profile and the momentum density
of the electrons in the system under investigation. The

impulse Compton profile may be calculated from the momentum

s
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density which itself  calculated from the wavefunction.

t .

\\Eiﬁéx many atoms and golecules have had-their.Compton
profiles and momentum densities calculated in this manner,
{see Williams (1977)). rThe majoriéy of these calculations
used a momentum spacé wavefunction which was obtained as ihe
Fourier transform of a position space wavefunction. . As
mentioned previéusly, this would not allow use of the best
wavefunctions as they are not Fourier transformable,
Results of high accuracy for a few systems would be useful
for calibrating the experiments and testing the validity of

the impulseyapproximation. Some of the recent attempts at

more accurate solutions will be reviewed here,.

Eisenberger (1970) calculated the Compton profile of He.
Two different wavefunctions were used in this calculation.
One was the Hartree-Fock SCF wavefunction of Clementi (1965)

and the other was -a multiconfigurational F wavefunction

due to Sabelli and Hinze (1969). Eisenberger also measured
the ‘Compton profile of helium experimenyally and found that
the ggéults were in good agreement with the theoretical

calculation,

Benesch (1976) showed how to obtain Compton profiles and
momentum densities from position space wavefunctions

expanded in a Hylleraas-type basis containing correlation

¥
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terms. A two-rdimensiona‘l umerical integration was
necessary to obtain these results. He calculated these
‘quantities for helium using wavefunctions given by Bonham
and Kohl (1966). These were compared‘with those obtained

from the Hartree-Fock wavefunction of Clementi {(1965).

Eisenberger (1970) also examined Hp using a Hartr,ee—Fock.
wavefunction due to Cade and Wahl (1974) as well as a multi-
configuration SCF .wavefunction from Das and Wahl (1966).
Here the calculations were not ir} agreement with experiment
over the whole profile. Brown and Smith (1972) used a
configuration interaction (CI) function due to Liu (1973)
which accounted@ for most of the correlation energy but théir.
results also did not agree with the experiment of
Eisenberger (1970). A new experiment was performed by Lee
(1977) which yielded numbers closer to those calculated by
Brown and Smith. 1In a later papér, Smith et al (1977) took
iynto account molecular vibration and rotation -as well as
electron correlation .and found agreement with the
experimental data“ of Lee. Jeziorski and Szalewicz (1979)
employed an expli'citly‘ correlated Gaussian wavefunction mpre
accurate than that of Liu (1973) and found that the
resulting Compton profiles agreed clo;gly with those
obtained by smith et al (1977) prior to vibrational and

rotational averaging.
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In Chapter 4 of this thesis, wavefunctions of greater
accuracy than those produced in Chapter 2 will be generated.
Chapter 5 outlines the attempts to obtain Compton profilesb
and momentum den\sities from the wavefunctions of Chapters
2,3 and 4. The‘ feasibility of using the highly accurate
wavefunctions of Thakkar and Smith (1977) along with the
equations derived by Bene;c_h (1976) to generate a momentum
density 1is examined. Some expectation values of various

powers of p will also be calculated using some of these

wavefunctions.

\
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H

CHAPTER 2
GAUSSIAN GEMINAL WAVEFUNCTIONS P
2.1 Construction of the Wavefunction.

Since Gaussian geminals have the property that their
Fourier transform yields another  Gaussian geminal (see
Appendix 1), we may construct an approximate wavefunction in
position space by expansion in a Gaussian geminal basis set
which will be easily converted to a momentum space

wavefunction.

The approkimation to the wavefunction will be written in

the following form:

4-3/2
(F1,F3) = =-===(1+P79)
vi{ry,r2 vz 12

2 2

N ' -
) Ck exp(-akri< -Bkr2 —7kr122) (2.1)
=] .

2 -
where rj1¢ = ry°r)
r222= Fpery ( )
r = {Fy - r2)elry - T2
P12 f(rl,%‘z),= f(¥,,71) )
and (ag,Bk,vk,Ck) are parameters to be determined.

This form is useful as the rj;; dependence may be clearly

seen,
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Another waf of writing this, which will also be of some

use 1is:

2 2

N .
} Ck exp(-Tynkri1“ - gx/nkra< -25x6xr1-72) (2.2)
k=1

Here (Cy,nk,fk,Ck) are parameters to be determined.

The first form was used by Longstaff and Singer (1964)
and the second was used by Poshusta (1979). We shall use one

or the other as convenience dictates. These two different

parametrizations are related . by the following
transformation:
ap = Lk{ng+6k) '
Bk = Lr{l/nKk+9%) (2.3)
Yk = “Lkbk

If the wavefunction is to be square-integrable, we must
have the following conditions: gy >0, nk>0, |[6kxl<l for
k=1,...,N. Since repl;cing nk by 1/nk does not change the
wavefunction,we may write the resgrictions on the parameters

as follows:
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k>l k=1,...,N (2.4)

The parameters are obtained variationally as follows:

Define

Yk = exp(—cknkrlz -Ck/nkrzz -2LK 0T F2) (2.5)
Then
n=3/2 Y (L2 '
Y= - (1+P12) ] Ck¥x(F1,T2) (2.6)
V2 k=1
or, in matrix feorm
2-3/2
= —meo- ¥ C (2.7)
\7)
where ¥ = [(1+P12)¥),...,{(1+P12)UyN]
and C = Cy
C2
Cx

The Hamiltonian we will be using is the sum of the
kinetic energy T and the :potential energy V. For a two-
electron atom of nuclear charge Z, the Hamiltonian is given

by:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-21-

H=T=+ V (2.8)
»
1 1
“ T = - —V12 - -V22
2 2
yA yA 1
V== - - % ~—-

When values are assigned to the parameters (Zy,nk,€k) and
the resulting wavefunction (2.7) is substituted into the
Ritz quotient and the latter is minimized with respect to

the vector C, we obtain {McWeeny and Sutcliffe (1976)):

HC = ESC 7 (2.9)
where H and S are defined by:
Hik1 = <(1+P32)wik!l H l¥1> (2.10)
e Sk1 = <(2+P32)yylvy> (2.11)

This is a generalized eigenvalue equation, where the
unknowns are the eigenvalues E, and their corresponding
eigenvectors C. The lowest energy eigenvalue E of this
equation gives an upper bound to the ground state energy of
the atom. The parameters (Zk,nk,9k) should be chosen so as
to yield the minimum value of E. Calculation of the
correspohd_ing eigenvector C (with the condition that

<y |P>=1) will then determine the approximate wavefunction.

fad
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The methdd of calculation will now be outlined.

To solve this generalized eigenvalue problem in matrix

form, one proceeds as follows:

Since § 1is a positive definite matrix, the Choleski

decomposition may be used (Wilkinson and Reinsch (1971)).
S§=1L QT wvhere L is lower triangular
The equation (2.9) becomes:

lls2]

Since S is invertible, so is L.
tlec=8rtLLt ¢ (2.12)

Let G = L' H LT

le}
"
C
|
(@]

and
and (2.12) becomes
GD=ED (2.13)

which is now an eigenvalue problem and the lowest eigenvalue
E may be found. The corresponding eigenvector D may also be
calculated, which will allow calculation of the_grector C by

the following formula:
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c=vT p (2.14)

The calculation of the matrix-elements (2.10) and {2.11)
is outlined in Appendix 2. | The <calculation of the
generalized eigenvalue equation (2.9) was done usihg
combuter routines taken ‘from the EISPACK program library
{Smith et al (1976)). These routines use the algorithm
described above. Equation (2.13) is then solved by reducing
the matrix G to symmetric tridiagonal form using the method
of Householder. The eigenvalues of this matrix are
determined by the method of Sturm sequencing, and the
eigenvectors by inverse iteration. The C eigenvector 1is

calculated such that the wavefunction ¢ is normalized.

Two computer minimization routines were used to vary the
parameters fy,nk,0% in an attempt to minimize the eigenvalue
E. One of these was the program VAQ4AD from the HARWELL
subroutine library, using a conjugate direction method given
by Powell (1965). The other program was ZXMIN from the IMSL
subroutine library which uses a quasi-Newton method
dgscribed by Fletcher (1972). These programs must be used
with care, as there is no algorithm which-wi}l guarantee
finding the absolute minimum iﬁ this type of problem. Local

minima may be found and this “is highly dependent on the
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starting values supplied to the programs.

Finally, the wavefunction may be scaled to satisfy

the

virial theorem (Pilar (1968)). To perform this scaling, one

must calculate the following quantities:

<T>

<V>

4

by

-

wn(?l,Fé) = n3w(nF1,nf§) “(2.

It follows that

<T>, = nZ<T> ‘ (2.
<V>, = n<v> (2.
E\= n2<T> + n<v> (2.

Minimizing E, with respect to n yilelds

n = -<V>/{2<T>) ) (2.

Note that E>Es>E(exact) and that

<T> =ﬁn2<T> = <v>2/{4<T>) (2.
V>, = —-<V>2/(2<T>) (2.

from which we see that

-2<T,  =<V>y . _ (2.

<P lviv> (2.

<yl TIyp> , (2.15)

16)

We define a horm—preserving-scaling of the wavefunction

17)

18)
19}

20)

21)

22)
23)

24)
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in other words, satisfies the virial theorem.

¥
This scaling is necessary only because perfect

optimization with respect to the non-linear parameters

Lk.Nk,B% 1is not possible.
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2.2 Results.

For the purpose of testing the parameter optimizing
program and succeeding programsy one- and two-term
wavefunctions were produced for helium (2=2), Several
random guesses for the parameter values were used' to start
the minimization. The vbest wavefunctions obtained are
presented in tables 1 and 2. To produce the scaled

wavefunction from the tabulated parameters, simply multiply

each ¢)x by n? (where n is the scale factor given in the
table). = The tabulated energy eigenvalue is that obtained
after scaling. The method of obfaining more accurate

wavefunctions will now be pfesented.

Longstaff and Singer (1964) worked with a 1l6-term
wavefunction of the form (2.1). They obtained parameters
(ak,Bk,Yk,Cx) which yielded an energy of -2.90233 Ep
(hartree). Another 1l6-term wavefunction of the form (2.2)
was independently constructed by Poshusta (1979). He
arrived at ; set of parameters for which the correSpbnding
energy was -2.902446 Ep. It is clear that the wavefunction
of Longstaff and Singer (1964) was not fully~optimized; in
other words, there is a set of parameters different from

theirs which yields a lower energy. The wavefunction of

Poshusta (1979) was claimed, to be fully-optimized. -
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v
When the coefficients Ci are calculated, an analysis may

v ] be undertaken to calculate\ an approximate measure of the
weight that each basis function contributes to the
wavefunction (see Appendix 3). In attempting to add a 17th
basis function to Poshusta's 16-term function, this analysis
made it clear that a term of the l6-term wavefunction could
be replaced by another with consequent lowering of the
energy. Upon this discovery, it was decided to ascertain
how much lowering of the energy could be obtained with just

16 terms.

When the 16-term parameters of Longstaff and Singer
(1964) were used as starting values to the routine ZXMIN,
the resulting energy was substantially lower than that.
obtained by Poshusta 11979). The resulting parameters were
then put through VA04AD and the energy was lowered yet
again. However, two of the basis functions had become close
to being linearly dependent, as their parameters were almost
equal. This was not desirable because of the possiﬁility of
numerical instability in the ensuing calculations. The
problem was remedied by changing the parameters in one of
the two functions to an arbitrary value and then using this
resulting set of parameters as a starting value, Sevéral
more iterations of the two routines with re-setting of

parameters when this became necessary resulted in a 16-term

-

»
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wavefunction with an energy of' -2.9034048 Ep. The
parameters of this function are listed in Table 3. By way
of comparison, the best variatioﬁal estimate of Frankowski
and Pekeris (1966) is -2.903724377 Ep. The wavefunction of
Poshusta was most likely a 1local minimum rather than a
global minimum. It is not claimed that our result is a
global minimum, as the results are highly dependent on the
-algorithm uséd in the minimization and the choice of

starting parameters.

wavefunctions for H™ and Li* were also produced in this
manner, as the only change required 'in the program is to the
parameter Z, which is 1 for H™ and 3 for Li*. The starting
non-linear parameters were chosen by virial scaling the
correspohding parameters for helium. The parameters and
energies of these wavefunctions are listed in Tables 4 and
5. The energies for these H~ and Li* wavefunctions
respectively are -0.5275907 Exp and -7.2794137 \E “as compared
Qith the best ‘variational estimates of —Frankowski and

Pekeris (1966) of -0.527751016 En and -7.279913413 Ep.

-
~

-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-29-

TABLE 1.

1-Term Gaussian Geminal Wavefunction for Helium.

. ™~
Tk Nk A ek . Ck

0.76709D+0 0.20733D+1 0.77656D-1 0.1556223964253462D+1

» mn = 1.000005474502231D+0
E = -2.570885510460622D+0 -
% -
i
~
a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-30-

TABLE 2.~

2-Term Gaussian Geminal Wavefunction for Heliufn.

£

Lk Nk Bx Cx

0.21262D+1 0.31608D+1 0.47654D-1 0.2099432236690439D+1
A 0.62377D+0 0.18233D+1 0.82271D~-1 0.9037566063862591D+0

1.000001233068744D+0

=
n

m
1}

-2.816253182514283D+0
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TABLE 3

16-Term Gaussian Geminal Wavefunction for Helium.

Tk

0.27406D+0
0.59431D+0
0.58165D+0
0.14694D+1
0.15280D+1
0.45716D+1
0.11818D+1
0.13279D+1
0.40864D+1
0.15142D+2
0.17297D+2
0.36280D+1
0.23142D+2

0.29556D+0 .

0.41201D+1
0.12762D+2

n =

E =

Nk

0.17537D+1

0.36160D+1
0.15507D+1
0.38294D+1
0.94714D+1
0.16483D+2
0.11394D+1
0.15803D+1
0.52673D+1

. 0.88235D+1
0.37974D+2 .

0.17385D+1

0.10000D+1 .

0.18840D+1
0.11206D+1
0.22128D+1

N

0.13495D+0 .

-0.27228D-2
0.51985D-1
0.99758D-2
0.44024D-3
0.20879D-2

-0.57116D+0
0.52959D-1
0.62901D-2
0.96287D-3
0.22808D-2
0.79803D-1

~0.91316D+0
0.30430D+0

-0.71306D+0
0.12932D+0

1.00002315777271758D+0

-2.90340475845390028D+0

Ck

0.7834309794628184D-1
0.1676512602867212D+0
0.3992914766677912D+0
0.5497096714246338D+0
0.1117496479692804D+0
0.2007585069357208D+0
-0.9263129489481611D-1
0.8968829761696726D+0
0.6901086242048394D+0
0.5076369840366206D+0
0.1979673096630049D+0
0.9965723414331877D+0
-0..1751783181217316D+0
-0.2949136827472741D-1
-0.2055838800345489D+0
0.6340978907609876D+0
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0.10764D+0
0.93527D-1
0.11325D+0
0.42778D-1
0.22471D+0
0.61039D+0
0.15182D+0
0.29736D+0
0.27521D+0
0.25834D+1
0.24141D+1
0.73289D+0
0.28798D+1
0.44447D-1

© . 0.54738D+0

0.96528D+0

3
]

" m
[}

Nk
0.36857D+1

*0.86037D+1

0.15640D+1
0.42127D+1
0.14861D+2

0.30728D+2

0.12909D+1
0.17140D+1
0.48645D+1
0.97931D+1
0.51040D+2
0.80306D+1
0.10635D+1
0.17871D+1
0.12002D+1
0.21210D+1

-32-

TABLE 4.

Ok

0.23514D-1
-0.97138D-3
0.75911D-1
-0.61919D-2
-0.21259D-2
0.14973D-2
-0.45030D+0
0.13637D+0
0.21178D-1
0.24075D-1
~-0.76145D-2
0.12070D-1
-0.85174D+0
0.11862D+0
-0.63871D+0
0.18354D+0

1.00001709453068775D+0

-0.527530692653241725D+0

16-Term Gaussian Geminal Wavefunction for H .

Ck

-0.2118219070958106D-1
-0.6854177628108106D-2
-0.3059306620704317D-2
-0.3963989030906066D-2
-0.9869661031178129D-2
. -0.9051876416704338D-2
0.1181921355114989D-1
-0.5898343498764227D-1
-0.4134837501070204D-1
-0.3320430356170277D-1
-0.1231589642926121D-1
-0.3813148584167367D-1
0.2677383327375646D-1
-0.3666679948965567D-2
0.2640970814876181D-1
-0.5661629089258670D-1
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N Nk
0.40690D+2 0.22667D+1
0.23786D+1 0.37194D+1
0.17853D+1. 0.14680D+1
0.54079D+1 0.39475D+1
0.46347D+1 0.97742D+1
0.14035D+2 0.17617D+2
C.18660D+1 0.13660D+1
0.41646D+1 0.15897D+1
0.13511D+2 0.57121D+1
0.49061D+2 0.99546D+1
0.52705D+2 0.42408D+2
0.78096D+0 0.15028D+1
0.41813D+2 0.10397D+1
0.10866D+1 0.323998D+1
0.76137D+1 0.11162D+1
0.11488D+2 0.17564D+1

3
"

]
1]

0.9999898370489983D+0

-7.279413716535168D+0

-33-~

TABLE 5.

8k

0.74682D-1
0.950124D-2

-0.51822D-1

0.10815D-2
0.17035D-2
0.23727D-2

-0.16997D+0
0.42559D-1"

0.29386D-2
0.7722DD-3
0.10260D-2
0.39765D-1

-0.89049D+0
-0.48325D+1
-0.72536D+0

0.67759D-1

<

Gaussian Geminal Wavefunction for Li™.

Ck
*

-0.2454997368339620D+1
-0.1133930352454319D+1
-0.4180091584050366D+1
-0.2150403006885588D+1
-0.4609152227833256D+0
-0.7264727500106591D+0
0.2072147338137456D+1
-0.3959544794961287D+1
-0.2428456590899977D+1
-0.1744788642472862D+1.
-0.6588257693389918D+0
-0.3277403114080187D+0
0.5454566337361895D+0
-0.1836948144148076D+0
0.4536483235045034D+0
-0.3702152587673132D+1
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CHAPTER 3
VARIATIONfITERATION METHOD
3.1 wWave Equatiov in Momentum Space (Two-Electron Atom).
The Hamiltonian for a two—electron”atom is

_ p12 1322 Z Z 1

. T e

2 2 r) rp riz

To write the Schrodinger equation in momentum space, the
operators 1/r3, 1l/r and 1l/rj3 must be transformed to

operate on a momentum space function.

We will first examine the transformation of 1l/r; to a
momentum space operator. In position space the operator

1/r; is a multiplicative operator:
(1/r1)¥(F¥y,T2) = g(¥1,T2) - (3.1)

Let us represent the momentum space form of this operator

by M:
M ¢(P1,P2) = £(pP1,P2) (3.2)

where the functions ¢ and ¢ and also f and g are related

by the Fourier transform:

.
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momentum space. By a similar calculation, we find that:
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0(P1,P2) = (2m~3  [-w(Fy,%3)

exp(-i(pP1°T] + Pr°Tp)) dridry (3.3)

£(P1,P2) = (2m)73 [ g(F1,F))

exp(-i(P1+T) + DP2*TH)) drydry (3.4)

{
L}

Substitution of (3.1) into (3.4) yields:

£(p1,P2) = (2m)73 [ (w(Fy,F3)/ry)
exp(-i(p1*T1 + Pa°r2)) ar1drs (3.5)
We must use the Fourier integral representation of 1/rj:
1/ry = 1/(272) | exp(iﬁ‘?ﬁ)/pz dp (3.6)
Substituting (3.6} into (3.5} and using (3.3) éivés:

C£(P1.P2) = 1/(2%%) [ ¢(P1-DP.P2)/p° dP

Therefore, using (3.2):
(3.7)

M ¢(5.1r62) = i R dp

The .operator 1/r; becomes an integral operator in
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1 1 $(D1.P2-P)

T #PLP2) = oope f “““ 5--=- dp | (3.8)
r2 2T P
and
P 1 $(P1-P,P2+P) _ ,
—-- e(P1p2) = —m3- f‘““5 ----- ap (3.9)
r12 2n p :
N~—
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3.2 Description of the VI Method.

Using the results of section 3.1, we may write the
Schrodinger equation in momentum space for a two-electron

atom as:

(po?+p12+p2?) &(B1.B2) =
AlZI1(d)+ZI2(¢)-132(d)] (3.10)

where pg? = -2E ' T (3.11)

. X = 72 (3.12)
11(¢) = [ p~2 ¢(P1-B,P2) B

I2(¢) = [ p72 ¢(P1.P2-B) dp (3.13)

112(¢) = § p~™2 ¢(P1-B,P2+B) P

An iterative method - of solution based on the Gauss-
Hilbert variational principle and the Kelloég theory of
_iterated functions will be applied to equation (3.10). This
'!Atechnique was first described by Svartholm (1945) and will

be referred to as the variation-iteration (VI) method.

In this procedure, A is regarded as an eigenvalue
parameter. An initial function, ¢0, is chosen and the

following integrals are formed:

o™ = (pe2+p12+p22) " ZI1(¢™) +212(6™)-112(4™)1(3.14)
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P
Wn = [ 6™ 1(pg2+p12+p2?) ¢ 4P} 4B (3.15)
Tn = «f 6M(pp2+p12+p2?%) ¢" dpl dFd (3.16)
I1f we let
—_
-Tn
Ap = -=- (3.17)
Wn
and
A Wq
An+1/2 = ———- (3.18)
Tn+l

then XAg,A1/2.X1,... is a monbtonically decreasing sequence
which converges to A, the smallest eigenvalue of (3.10).
Also, the seguence ¢O,¢1,... converges to ¢, the
eigenfunction of (3.10) corrresponding to A. In practice,
‘the number of iterations performed is limited by the ability
to solve the resulting integrals of (3.14). The iteration
will then be stopped at some 45 and some At. The quantity
At is now a function of pg. Here we may use the acguél

value of A and choose pp such- that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-39-

Ap = 1/m2 (3.19)

This yields a value for E (see eq. (3.11)) which is an

upper bound to the actual ground state energy of the system.
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s

3.3 Application of the &1 Method to a Gaussian Geminal

wavefunction.

If the wavefunction (2.1) is Fourier transformed, we will
obtain a wavefunction in momentum space. This will be
labelled ¢0 Bnd used as our initial wavefunction for the VI
method. Using the resulf of Appendix 1, we will get a
momentum space wavefunction of the folloving»form. '

.""3/2 N Ck

O(=. = ,
$°(P1,P2) = ——=—- (1+Py5) V' —m—moee
e V2 12 kzl (8k)3/2

-

exp |- --p1= --p2°- -=(P1+B2)* | (3.20)
Ak 8k Ak ,

where Ak =(uk8k+ agYk+ BkYR)#-

We now wish to redefine some of these quantities to

simplify the succeeding ahalysi$.

-3/2
N b / Ck
Let dk S e mwe mme————— (3-21)
Y7 (ak)3/2
ok ' Bx Yk
ak = -- ., bk =--, gk=-- (3.22)
Ak Ak Ak
. Then
Pl
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0_0 - N 2 2 -> - 2
¢ (P1,P2)= (1+P13) kZIdk expl-bxp1°-akp2<-gx(P1+P2)“]
. A (3.23)

‘Clearly, interchanging pj] and Py with the P1p operator is
the same .as interchanging akx and by with a new operator

which we shall call tig which does the following:
ty flak,bk) = f(bk,axk) . (3.24)

This operator does not change the wvalue of Ak. The

wavefunction is now written:

N . .
$9(81,82) - kZl(1+tk)dkexp{-bkplz-akpzz‘gk(pl+pz)21_
(3.25)
Finally, we define
hk = exp[—bkplz-akpzz-gk(ﬁpﬁz)z] (3.26)
Thus our wavefunction is written as:
0 o, - N - .
$°(P1,P2) = ) (l+ty) dg hyg (3.27)
k=1 , :

-

The first-iterated wavefunction, ¢1, is given as follows:

¢1>='(p02+p12+p22)—l[ZIl(¢0)+Z12(¢O)’112(¢0)] (3.28)
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1 N [ZI1(hy)+2I5(hK)~T12(hK)] e
¢~ = ] (l+ty) dk*—---—-——-i--—i —————————— (3.29).
=1 (po“+pP1°+p2

We now wish to calculate ij/2. The quantities Wg and Tj
must be calculated to obtain this result, The first of
these quantities is given by:

N N

wo = 1 1

(1+tp) (1+t5) dkd; {3.30)
k=1 j=1 : ‘

J dP1dps [2Iy(hy)+2Ia(hy)-T12(hk)] hj

and if we define

Jnlk,3) = [ dP1dB3 Inlhk) hj (3.31)
then
N N
S Wo= ) ) (1+ty) (1+t4)did4(23)(k,j)+232(k,j)-J12(k,3) ]
k=1 j=1

v ‘ . (3.32)

We may also use the fact fhat (L+ty) (2+t5)31(k,3) =
(i+tk)(1+tj)J2(k,j). This is derived by inserting the
actual expression for I; and I, (see Appendix 4} into the J)
and Jo integrals. Another such relation' is
(1+tk)(l+£j)J12(k,j) = 2(1+t5)J12(k,j). The expression for

Wp may now be written:,

/
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N N -
- Wwo=2 ) ¥ did§[Z2(1+ty) (1+£5)31(k,3)-(1+t5)T12(k, )]
. k=l ‘=l ] .
- ) —~—
' - {(3.33)

Using the calculation of Jy given in Appendix 5, Wg may
be calculated algebraically given the parameters
(ak,Bk,Yk,Ckx) of a wavefunction,

’

The quantity Ty is calculated as follows:

T1= [ ¢ (po2+E12+p22) ¢t dp1aDs
N N e _.‘
= 11 (etk)(l+ey)didy [ dp1dp2 (3.34)
k=1 j=1 ~ )
[le(hk)+212(hk)—112(hk)][ZIi(hj)+212(hj)—112(hj)]
(po2+p12+p2°2)
/ Define
Km,n(k,j) = TS dpidp> (3.35)
' (po“+p14+p2¢) ,
*
so that ! '
/

|
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—— ' N N
T1= } (1+tk)(1+tj)dkdj[22K1'1(k,j)+ZZK1,2(k,j)

kZ1 551
—ZKl"lz(k,j)+ZZK1'2(j,k)+ZzK2'2(k,j)-ZKz;lz(k,j)~
-ZKy,12(3,k)-2K2,12(3,k)+Ky2,12(k,3)] (3.36)

We may take advantage of the symmetry in this summation.

ya and write

N N .
T1=k21 ‘Zl(l+tk)(1+tj)dkdj[22K1'1(k,j)+zzx2'2(k,j)
= J = X )

+K12,12(k,3)+22%K;  2(k,3)-22Ky, 12(k,3)-22K3,12(k,j)]
l .
(3.37)

v
- As is the case with the J integrals, there are further

symmetries which may be applied to the K integials. These

are

(L+ty) (1+t5)K1, 10k, ) = (L+ty) (1+tj)Kg, 20k, 3) -

(T+ty) (1+t5)K1, 120k, 3) = (1+E) (1+t4)Kp, 12(k,j) (3.38)

(L+ty) (1+t5)K12,12(k,3) = 2(2+t5)K12,12(k,3)
, e ‘

SO we may write
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N N
Ty=2 ) ] dgdq [ (1+ty) (1+t5) (22K1,1(k,j )+Z2R1'2(k',j)
k=1 §=1 @ -
-2ZKy 12k, 3)) + (1+tj)K12 12(k,])] (3.39)

These K integrals are reduced in Appendix 6 to one-
dimensional integrals. Thus, for a given value of pg, the
quantity T; may “be calculated with the aid of a single one-

dimensional numerical integration.

If the above analysis were to be simplified by using an
uncerrelated wavefunction (suéh as any of those used vby
Henderson and Scherr (1960)), one need ‘only set <the
parameters Yk to zero. It is found in this case that our
evaluation of the J, K and I integrais agrees with that of
Henderson and Scherr. However, Henderson aﬂd Scherr claim
that all -dependence on i)g may be factored from._the K
integrals. As a consequence, these integrals need not be
re-evaluated for different valueé of pg, resulting in the

saving of a great deal of computation time. Unfortunately,

this dependence on pg cannot be factored and their numerical

results are in error. The actual results will be given in

the next section.

The computational effort involved in obtaining Aj/2 from

a correlated Gaussian geminal wavefunction is similar to
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that involved in using wavefunctions of the type used by
Henderson and Scherr. The J integrals ﬁay be done
analytically in both cases, and the K integrals involve a
one-dimensional quadrature in both cases. Thus there is no
advantage to using initial wavefunctions such as those of

Henderson and Scherr.

To obtain an energy bound, we must find a value of pg
such that -
w2@p - T] = 0 ' (3.40)

Thé enefgy corresponding to this value:of pg will be closer
to the true energy of the syStem than the variational energy

Eg of the initial wavefunction ¢0.

To obtain an even better bound on the energy, the
technique of Henderson and Scherr could be followed to

minimize Xj/2. Write eqns. (3.30) and (3.34) as

o ) dedgwg (3.41)
Wo = ) djd Wk A 3.41
k2D 341 i%kj
? g | ( )
T) = dyd Ty 3.42
k21 =1 0 -
The eqﬁation
Ai/2 = Wo/T) ' , (3.43)
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could be solved as a generalized eigenvalue problem:

(W - X3/2T}) D=0 (3.44)
where the matrix elements of W and T are Wiy and Tgj
respectively and D is a column vector of the dyg

coefficients.

For given values of the non-linear parameters of the
wavefunction and of pg, the eigenvalue X),/7 may be obtained.
The wvalue given to pg should be such that the lowest
eigenvalue equals l/nz. The non-linear parameters may now
be wvaried, vyielding a pg with every different set. The
highest of these values for pg may then be used to calculate
an energy bound. . The corresponding non-linear parameters

and their associated eigenvector would give a wavefunction

¢0 that was optimized with respect to Aj/2. 'This is a

useful approach for wavefunctions with few parameters and
terms. Each element.of the T matrix requires a numerical
integration for every value of pg,- instead of just one
integration per value as in the method previously
illustrated. For wavefunctions with more than a few terms,
this method becomes too costly. For this reason we used the
linear and non-linear parameters of our initial wavefunction

¢0 in the calculation of Aj/2.

~.

-
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3.4 Results. '

The limits on the K integrals are zero and infinity. The
natural choice of numerical method for this type of integéal
is Gauss-Laguerre quadrature; however, the results obtained
from this method were not sufficiently accurate. An
adaptive quadrature algorithm which was suited for an
integqral over a finite range was employed. This quadrature
routine was developed by Thakkar (unpublished) and uses a
global acceptance Fritarion and data répresentation as a
binary tree, as suggested by Malcolm and Simpson (1975). It
differs from their ’}ec nigue ° >— the use of a 7-point
Clenshaw-Curtis quadrature as the interval integrator and a
'quined Oliver estimate as the interval error estimator. A
\gﬁmber.A was chosen and tﬂe total intégral was split into a
sum of an inteéral from iero to A and another from A to
infinity. The selection of A was such that the ﬁajor
contribution to the total integral came from the finite
integral. Next, the second integral was transformed to a
finite range. Calling the integration variable x, the
t;ansformatién x=-l/p021n f gives us an integral from zero
to exp(-Apoz). In this manner, the total integral could be
evaluated in. two pieces by the adaptive quadréture

algorithm. Care had to be taken to ensure that the

integrand was correctly evaluated at all points. °~ In some

\ J
e
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places, the use of series representations of the integrand
became necessary - to avoid numerical instabilities. This

method gave us the accuracy that we needed.

Solving eq.(3.40) was accomplished with a root-finding
subroutine using the algorithm of Bus and Dekker (1975).
Two valuesAof pp must be supplied to the routine, such that
the root lies between them. As one bound, the pg derived
frém ¢0 was used. As the other bound, po was taken from
the best theoretical. results of Frankowski and Pekeris

(1966).

Henderson and Scherr (1960) used three wavefunctions in
their work. These wavefunctions yere sums of products %f
Gaussian orbitals. These consisted of a one-term, one-
paraheter function {(which we refer to as HS1l), a one-term,
two-parameter function (HS2} and a six-term, three non-
linear parameter function (HS3). The ground state energies,
Eg, given in Table 6 are the energies of these wavefunctions
when they have been optimized Yariationally. Henderson and
Scherr also optimized the parameters with respect to Aj/2,
for which the resultiqﬂ energy ‘is referred to as Ej/2.
These half-iterated energies .which they calculated from

their wavefunctions are given in Table 6. The half-iterated

energies given 1in Table 6 for these. wavefunctions were
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recalculated by us using the parameters which they gave. No
attempt was made to re-optimize these parameters. We see
that fﬁeir values of this half-iterated energy are in error,
probably due to the fact that pg does not factor.from the K

integrals as they claimed.

The remaining wavefunctions indTable 6 are those given in
Tables 1,2,3,4 and 5 in Chapter 2. The variational energy
obtained earlier 1is given along with the half-iterated
energy which was célculated. This half-iterated energy is
not the energy corresponding to ¢1 (this corresponding
energy would be E;, the energy calculated from ij), but is
an upper limit to Ej;. The "exadﬁ"fénergies listed at the
bottom of the table are duei to Frankowski and Pekeris

(1966). oo

4
.

It may be seen that for' the three l6-~term wavefunctions,
the ‘enerqgy difference Ej/p-Efexact) 1is approximately a B
factor of 10 less than Eg-E(exact). This continues the
trend noted by Henderson and Scherr; that the better the
init{al wavefunction, the gréater is the decrease in
absolute error. It must be noted, however, that-our Ej/

results would be even lower had we varied parameters to

minimize Aj/2 as Henderson and Scherr did.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-51-

TABLE 6.

. Zeroth Order and Half-Iterated Energies of

Several Wavefunctions.

Eg Ey/2 Ey1/2

(Henderson
and Scherr)
HS1 (He) -2.3010 —2.5942‘ -2.5995
HS2 (He) -2.5566 -2.7755 -2.7815
HS3 (He) ~2.8511 -2.8818 -2.8915
: Eg E1/2
l-term He (Table 1) -2.5709 -2.7730
2-term He (Table 2) -2.8163 -2.8760
) 16-term H™ (Table 4) -0.52758  -0.52773
l6-term He (Table 3) '-2.90340 -2.90369
: l6-term Li* (Table 5) -7.27941  -7.27987
.
H- E (exact) = -0.527751016
He E (exact) = -2.903724377

"Li* E (exact)

«
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CHAPTER 4

CONSTRUCTION OF WAVEFUNCTIONS USING

THE GENERATOR CCORDINATE METHOD
4.1 The Generator Coordinate Method. @

The construction of wavefunctions using the technique
given in Chapter 2 rapidly becomes more difficult and time-
consuming as the number of terms in the wavefuéction rises.
To avoid having to optimize all of the non-linear
parametefs, wve make use of what is called the generator
coordinate method (GCM).  This was first employed in the
construction of accurate electronic wavefunctions by Thakkar
and Smith (1977) (for the form of these wavefunctions, see
egq. (5.8)). Using the GCM, they produced very accurafe and
compact two-electron Hylleraas-type wavefunctions., The
method has been .fruitfully employed since then (see, for
example, Thakkar (1981)). The GCM will be described and
used to generate larger wavefunctions than the 1l6-term

wavefunctions obtained thus far.

Poshusta (1979) refers to the technique of generating
- parameters as tempering. He presents some tempering
functions for Gaussian geminals and the resulting

wavefunctions which they generate. However, he did not work
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. -
ar

within the GCM framework and does not present a method for

obtaining his tempering functions.

Wavefunctions are generated using the GCM 1in the

following manner:

—_ o —

v(t) = [ K(Y) G6(E,7) d (4.1)
D

where the integration is carried out over the domain D, G is

a known generator function and K(t) is to be determined. To

obtain a wavefunction as a sum of a finite number of terms,

we may numerically integrate eq.(4.l1) to get

<
1
It~

Wi k(t3) 6(T5,D) (4.2)

=1

where {wj} and {tj} are the weights and abscissae o¢f an
integration formula for the domain D. We may combine the

known W: and the unknown K(ts) into unknown Llinear
] e ]

coefficients Dj.

-
1]
il ~12Z,

Dy G(E},?) {4.3)

3=1

If we make the association

T o= (z,n,8) ' (4.4)

and we make the choice
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-3/2
G(C'nlel?lli:ﬁ): _____ (l+p12)
V2

exp(—cnrlz—c/nrzz—Zce?a'Fa) (4.5)

then our wavefunction is of the same form as (2.2), except
the parameters (cj,nj,ej) are now chosen to be the abscissae

of some numerical integration’ formula.

As in chapter two, fﬁe domain of integration will be
£5>0
nyz1 j=1,...N (4.6)
- l85i<2

The method of integration we choose is a pseudo-random
number quadrature (see Hammersley and Handscomb (1964)).
However, it 1is seen from the parameters of the 1l6-term
wavefunction that none of the three sets {¢j}, (nj} or {8j}
is uniformly distributéd. For example, the values of the 6
parameter tend to cluster around zero. This suggests that
our abscissae (cj,nj,ej) not be generatgd. by a uniform
distribution of pseudo-random nﬁmbers. We may make use of:
this knowledge and the fact that we already have a good
l6-term wavefunction (which 1is better than thé 100-term
wavefunction Qith E =-2.90309 Ep obtained by Poshusta (1979)

using his tempering methods) by the following methods.
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Let us write our wavefunction (4.1) as:
- - - s P N - Py - ’
v= JIR(T)-R1g(T)] G(t,T) dt + [K1g(t) G(t,r) dt(4.7)
D . D

Define G as in (4.5) and use the domain as given by
(4.6). Then choose K16(?3 such that the last integral
‘becomes a sum of 16 unknown coefficients, each multiplied by

one of the 16 'basis functions used in our 1l6-term

wavefunction. Let us refer to these 16 basis functions as
(UN+1s++-2UN+16). The kernel Kijg would then have the form
of a sum of delta functions. Let us rename the unknown

function K(€)~K16(?), and call it K;(t). We now.have

v= JR1(%) G6(t,r) dt + ]  Cj¥4 ' (4.8)
D J=N+1 .

-

By incorporating the known l6~term wavefunction in this
manner, we have utilized the control variate method (see

Hammersley and Handscomb (1964)).

In the remaining integral we wish to proceed as from

. —
eq.(4.1), but we wish to distribute the tj non-uniformly.
This method, called importance sampling (see Hammersley and

Handscomb (1964)), is now outlined.

First we may introduce normalized frequency distribution
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functions for z,n and 6 which we will call u(z), v{n) and
w{8). The integral of each of these functions over the
domain of their independent variable must be wunity for

normalization. Equation (4.8) may now be written as:

Kl(C,ﬂ,e) G(Crn'er?ir-r‘z)

e u(z)vin)w(e) drdnde
D u(z)v(n)wie)
NEIG (
+ Ci¥5 4.9)
j=N+1 33 »

This may be approximated by

1 N Ki{gj,n§,65) - s h
e 33 G(%j,nj,04,71,72)
N j=1 u({gj)vinjlw(8;) .
N+16 o
T (4.10)
J=N+l “

where the £j.n5y,84 are distributed according to. their
frequency functions.’

. - A .
We may .now write K;/(Nuvw) as a coefficient:

}f ( 0 2 F ) Nfls ( )
V= Cs G(Ls5,n4,84,1r1,1r2 + Csv¥s 4.11
54y T3 PTRIANEAT | jeke1 M3

Using this importance sampling scheme, the ;i,nj,ej are
obtained as follows. - Calculate the cumulative probability

distributions:
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. ‘ o
u(g)= ju(x)dx , Vin)= ?v(x)dx , w(e)= Jw(x)dx (4.12)
0 1 : -1
As our sequences of pseudo-random numbers uniformly
distributed on [0,1], we take
R1j = << j(j+1)/2 Y73 >>
R2j = << j(j*1}/2 ¥3 >> n ‘ {4.13)
\

R3j = << j(j+1)/2 V5 >>

where <<x>> denotes the frac¢tional part of x¢ _t

Solving the equations

U(zj) - R15 = 0 jél,...,N ' 7
V{nj) - Rpj = 0 =1,....N. (4.14)
Ww(8j) - R3j = 0 j=1,...,N .

g}ves us the’ £j,nqj,05 distributed acc;rding to their
frequency functions, as required for eq. (4.11).- Thus, to
get a wavefunction of the type (4.11), we must’ define’ the '
frequency functioqs u, v ang}w to obtain the 3N parameters
{z,n,01. The hi+16 ‘coeffi?ients, Cj, may be obtained by
" using the variational principle, as.in Chapter 2. This % ype
of wavefunction mi;y be further improved by introducing
constants in" the three frequency functions that may be

optimized such’ that the wavefunction yields thé minimum.

variational energy. In this fashion, a  wavefunction

-
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containing a large number .of non-linear parameters may be

constructed which requires optimization of only a few hon-
linear parameters.

: <

7 . L
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4.2 Results.

First é variety of frequency functions were exémined by
the following *exploratory calculations. The frequency
function schemes used are given in Table 7. Each set of
frequency functions chosen was used to create a 1lé6-term
helium wavefunction with parametérs generated solely by the
GCM dwithout making use of the 1l6-term wavefunction of
Chabter 2). Each set-is listed with the 16-term variational
energy obtained with that scheme and the correspo;aing
values of éhe frequency function parameters. The programs
ZXMIN and VAO4AD, as described in Chapter 2, were used to
vary these frequency function parameters so as to obtain the
minimum energy. In the cases where the inverse functions
for U, V or W could not bé'solved explicitly, equétions
{4.14) were solved using the root-finding program employed
in Chapter 3. The value of the parameter f,n or 8 was then

obtained to 5 significant figure accuracy.

Scheme number 5 is a set of frequency functions given by

" Poshusta (1979). This is his MCl scheme, with the functions
, for T and n re-written in our notation. 1In this case, the
frequency function parameters are used to tailor the domain
~of the frequency function. Scheme 8 1is also due to

Poshusta, as well as the [ fuﬁction in scheme 9. Note that
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}

schemes 5 andLS“produce values of n>0 and not n>l. These

‘could not be re-written in our notation.

The remainder of the frequency functions were obtained by
attempting to fit é function to histograms of the £,n,®
parameters proéuced from the 16-term wavefunction for helium
given earlier in Table 3.

Those sets of frequency functions with the best l6-term
variational energy were used to generate a 50-term
wavefunction of the form (4.11). Table B8 lists the schemes
tested on a 50-term wavefunction of the form (4.11) along
with the resulting energies. The frequency function
parameters were re-optimized for these wavefunctions. The
scheme which yielded the best variational energy, scheme 5,
was then used to create 50-term wavefunctions for H™ and Li*
as well, These 50-term wavefunctions are given in Tables<9,
10 and 11. The first 34 terms are generated from the
frequency functions and the last 16 terms use the scaled
t,n,0 paraheters given in Chapter 2. The scaled C values
for all 50 terms are presented in £he tables. To obtain the
scaled S50-term wavéfunction, all 50 ¢ parameters must be
multiplied by the square of the given virial scale factor.
For the purposes of comparison, the best variational
energles obtained by PFrankowski and Pekeris (1966} are also

listed in Tables 9,10 and 11.
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TABLE 7.

Frequency Function Schemes.

N,M and P represent normalization constants.

1. u(z)
vin)
w{0)

N cexp£ c/a
M {1+bn) exp( n/c?)
P [cos((n/2)8) + d(1-82)1

5 parameters

; 0.83513D+0

b2 = 0.37938D-2 /
c? = 0.16049D+1 :

d = -0.95213D+0

E1g = -2.8655 . -
2. wylg) =N cz exp(—c/a?)

v(n) as in 1.

w(8) as in 1.

. 3 parameters

a¢ = 0.37671D+0

b2 = 0,21881D+2

c? = 0.14421D+1

d = -0.38517D+1

E1g = -2.8416 \

’
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TABLE 7 {cont.) -

N[z?2 exp( g/a? )+(c2exp( c/bz))/cgl
M[n2 eﬁp( —nsd2)+{nlexp(-n/£2))/g?]
P(l1-08“)exp(-1861)

_— o~~~
DI N
— S
M Ay

W nn

£ <C

arameters
0.16850D+0
0.75888D+0
0.32423D+2
0.99439D+0
0.38482D+0
0.18030D+0

0 o

[SENTSENNSEN .
Bwowonun Ny

la}

= -2.8692

=
(o)
(2]

4, ul{z) as in 3.
v{n) as in 3.
w{8) = Pcos((mn/2)06)

g parameters

al = 0.15644D+0
b2 = 0.10504D+1
\\) c2 = 0.13347D+3
32 = 0.11123D+1
= £2 = 0.45719D+0 o
g2 = 0.13974D+0 .

Ejg = -2.8778

N
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TABLE 7 (cont.)

1
u(g) = -=———- exp(a)<g<exp(b); a<b
;{b-a)
1
vin) = ——==-- exp({c)<n<exp(d); c<d
n{d-c)

nj = (g-firzy + f

6 parameters —
~-0.17827D+1
0.24736D+1
-0.39728D+1
0.55036D-1
-0,20213p-1
0.21210D+0

a0 oo
(U I (I I

= -2.8885

o
=
o

u{z) as in 5,

vin) = M[(1+c?n)exp(-n/d?))
w(8) as in 5.

6 parameters

= -0.20539D+1

= 0.39017D+1

0.73379D-3

0.26055D+1

= 0.48649D-1

= 0.10492D+0

Ejg = -2.8873
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TABLE 7 (cont.)

7. u(rg) as in 5.
v(n) sas in 6. 2 2
w(8) = P[f cos((n/2)8) + (1-8%)exp(-g<lel)]

6 parameters

0.34181D+0
0.11973D+1
0.17316D-1
0.19510D+1
.87073D-1
.12503D+2

nou

NN

a LD o
o
oo

E1g = -2.8733

8. ¢y = exp(aryj +br
nj = exp(crpj +drg3j)
83 = sin(fr3j +grg3j)

where rpj= << j{j+1)/2 fn-th prime >>

6 parameterS

® a = -0.15980D+1
b = 0.23520D+1
c = -0.43882D+1
d = 0.20279D+1
f = 0.39170D+0
g = -0.18400D+0
Eig = -2.8905
9. z: = a2d) a>0
vin) as in 2, (solve using rjyjy)
w(8) as in 5. (solve using r33)
5 parameters )
at = 0.22641D+0
b2 = 0.18230D+1
c? = 0.16169D+1
d = 0.12141D+1 : v
f = 0.88094D-1 _
g = 0,11022D+0

E1g = -2.8768
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TABLE 8.

—=, -
Helium 50-Term GCM Wavefunctions.

-0.88911D+0
0.46896D+1
-0.48744D+1
-0.61306D+0
0.91202D-2
0.14272D-2

scheme 5.

Iwonnonon

K OO Do

(]
o

50 = -2.9035403

-0.23111D+1
0.37841D+1
-0.40833D+1
0.17611D+1
0.26565D-2
0.12810D~1

scheme 8.

a-oooe

t=
o

50 = -2.9035083

~0.21528D+1
0.35958D+1
0.29998D+0
0.28094D+1
0.10030D+0
0.21013Dp-3

scheme 6.

NN
(LI (I B I )

amQAnNnboe

= -2.9034939

Q]
o
(=

o -
L )
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TABLE 9.
H™ S50-Term GCM Wavefunction.

° Scaled Cg
~0.6973159882613982D-01
0.5765894424798000D-03
0.6354085026286149D-02 g
0.9330235426230553D-03
\ -0.1185541770415685D-01
0.1302365388874927D-02
0.9496570405005006D-02
0.8354259942526741D-02
-0.5299596166016247D-02
0.3876140541411643D-02
-0.2558896606950276D-03
0.2360205668810851D-03
0.8210858865191725D-02
-0.3057435719427838D-01
-0.1968691555044590D-01
0.1214485506628942D+00
0.2982036446372525D-04
0.9921614159545529D-02
0.9249324820678532D-03
0.1168671902450335D-01
0.5135706976650327D-03
-0.1044387559891311D-01
-0.2750161096602315D-03
-0.5555145003776513D-02 °
0.4243332132486493D-01
0.3678184518082852D-01
0.2256171780897080D-01
-0.3868462459515158D-03
~0.1141638450893223D-02
0.7783289681930299D-04
0.6399013757489044D~03
0.7549021777770289D-02
0.7745272777340250D-01 .
0.2048499975522868D~01
0.2103326403176208D-01
~t 0.6968701937464148D-02
0.3037631734240636D-01 .
0.3985689222784572D-02
0.9660006913329909D—82

[ ‘ »

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-67-

TABLE 9 (cont.)
0.5971828765146128D~02
~0.1171511063252401D-01
0.6437753434906017D-01 -
0.4154004513992137D-01
-0.3443371088982349D-02
0.6416806221128636D-02
-0.1166847997855307D+00
-0.2729872040450338D-01
0.3662636302404848D-02
-0.2585767386360977D-01
0.4424064794637419D-01

The first 34 cg,ng,ej are generated by scheme 8 with
' 91D+1

a'=-0.19

b = 0.27927D+1
¢ = -0.57545D+1
d = 0.67720D+0
f = 0.48333D-3
g = 0.77444D-1

The last 16 ;j,nj;aj are the scaled parameters from Tislg,4.

For this 50-term wavefunction

0.9998026999743541
-0.5276490714302323

n
_E

nn

E (exact) = -0.527751016
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TABLE 10,
He 50-Term GCM Wavefunction.

Scdled Cy

~0.2044849652538567D+01
0.1638134040063559D-02
 0.8410181029456954D-01
0.1591524656650429D-02
0.2921928756872029D~01
0.5854348342452844D-02
0.1330628825756143D+00
0.6611231646619084D-01
0.2212650930438624D+00
0.2404905260678761D+00
. 0.9768499075473357D~02
-0.7556989709028050D-02
0.4503389659690509D+00
0.2404861612260007D-01
0.8973348921218027D-01
0.1332865116234977D+00
-0.3512878259311028D-02
0.3232059721941153D+00
0.7015079206625750p-01
0.2400403013660101D+00
~0.3197999925458807D-01
~0.4788426059332739D+00
0.7008309149703888D-02
-0.2549500550705289D+00
-0.2560896070772198D+00
~0.1292036934417369D+00
0.4711878312494276D+00
~0.8862275384122093D-03
-0.6088236317964243D-02
-0.1974354534551892D-01
0.5013504499162201D-02
~0.7194474664480702D-02
0.3492274751215179D+00
0.2519260122097870D+00
0.7833207518978851D-01
0.1669775886472045D+00
0.3992481139480899D+00
0.5309209518317787D+00
0.2579723692030408D+00
~0.7685188701656463D-01
-0.9331227322743397D-01

A
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TABLE 10 (cont.)
0.8786033790756235D+00 . .
0.2295992414956630D+01

-0.3458040227603057D+00
0.9858676046927818D-01
0.1060605386850110D+01

! _ -0.1744076248418728D+00

-0.2943803221666693D-01
-0.2026603919946295D+00
\_0.7106931725602302D+00

3¢ z3j,nj,04 are generdted by scheme 8 with

--0.88%11D+0

0.46896D+1
-0.48744D+1 - 0
-0.61306D+0 Ve .
0.91202D-2

0.14272D-2

The last 16 cj,nj,ej are the scaled parameters from Table 3.

For this 50-term wavefunction

n = 0.9999587801679417
E = -2.903540316632166

E (exact) = -2.903724377

"
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TABLE 11.

\/ Li* 50-Term Wavefunction.

Scaled Cs
Z 0.1551822399486184D+00
0.3505140368128134D-05
-0.3317831386308162D-02
0.57279326746535948D-0
0.3296883308068918D-0
-0.3038264302497086D-01
-0.3613625436313713D+00
-0.1553886161063876D+01
£.2665172133158871D+01
-0.8210395158300870D+00 \
-0.6394508562872439D-03
0.9894266426500836D-03
-0.8464339304195829D+00
-0.2648147840257026D+01
-0.1412447414883455D+01 )
0.4264966096643472D~02 .
0.5320119917025612D-03 .
~0.6100388438369612D+00
~0.2967731712026773D-01
-0.7191552991324749D+00
0.1279602246884527D-01
0.1003336115112577D+01
-0.1025588107539613D-02
0.6321328964742434D-02
~-0.2998683790558917D+01
-0.1593937413177974D+00
-0.6403310149787437D+00
-0.2040221207925509D-03
-0.1443415208727508D-02
0.4694752496447185D-01"
-0.4084523388829902D-03
-0.,6395852658557166D+00
-0.1413016363937362D+00
0.4231240143398764D-01
, ~0.2273420669298360D+01
! - -0.9851183680516158D+00
‘ -0.4167477469436565D+01
- 0.8783830172437716D+00
- -0.3341033075685406D+00 .
- 0.6228958323627976D+00
0.2070196944196083D+01
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TABLE-11 (cont.)
-0.3913370820578325D+01
-0.4254104083479847D+00
-0.9516261920520188D+00
0?1124843060413084D+01
-0.3284290725065104D+00
. 0.5373293157833873D+00
‘ < . -0.1934462281368806D+00

. 0.4528219226240417D+00
. . -0.3878740112981642D+01

-
=2
(i
rh
-
]
n
(a2

34 Cj'"j"ej are generated by scheme 8 with,

-0.13507D+1
0.46964D+1
-0.51795D+1
~0.80685D+0.
.0.42967D-2
0.44753D-3

2

‘\ i

RN o
EEEEER

. . _ ' -
v . The last 16 I;j,nj,ej are the scaled parameters from Table 5.

" For this 50-term wavefunction

'n' = 0.9999977473342717 -
E = -7.279570470472180

E (exact) = -7.279913413 \

¢ T
|
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v CHAPTER FIVE

MOMENTUM DENSITIES AND COMPTON PROFILES
<t

5.1 Formulae.

From a two-electron wavefunction, one may calculate the

following quantities.
The one-electron momentum density,‘n(ﬁ), is
1B =2 [ ¢™(5,52)¢(8,82) ap (5.1)

~ 7" .Thé‘spherically averaged momentum density, I(p), is

> .

m 21 .
(p) = -- [d8 [ d¢ O(p,0,¢) siné - (5.2)
4m O 0 .

The radial momentum density, I(p), is g%;en‘by

1(p) = 4wp2fi(p) - ~ {5.3)

The “spherically averaged Compton profile, J(qg), which is
the experimentally accessible quantity if measurements are
—
taken” on the .liquid or gas phase, is given within the
“J . e
impulse approximation by (see Williams }1977)?
] .' - , |
‘ 1(p) o o . .
s =) [ I e L (5.8
.2 ., P A -
19 : '

The momentum expectation values may be derived from

< .
“ia U

i .-
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<pk> = { 1(p)p¥ dp (-3<k<5) (5.5)
0
1
The function J(g) may be expanded about the origin in a

Taylor series, in the form

J(q) = } ----- o (s5.6)

The coefficients of the odd powers of q must vanish, as
J(q) is an even function. The even order derivatives of
J{(gq) may be calculated in terms of HN(p) using eqgns. (5.4)

and (5.3). The following expansion is obtained:

]

J(q) = d(0) - 21 § ----=- 1{2n-2)(g) ¢2n ,
. n=1l (2n)! (5.7)
Thus, calculation of the first few even order derivatives of
N(p) at p=0 along with J(0) would allow us to approximate

the function J(g) near to the origin.
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5.2 Momentum Densities from Hylleraas-Type Wavefunctions.

The two-electron wavefunctions obtained by Thakkar and
Smith (1977) are highly accurate with only a few terms.
These wavefunctions have the following form:

v o= (4m)71 kglck(l+P12)exp(-ukr1 -Bkr2~—7kr12) (5.8)
A paper by Benesch (1976) describes how to calculate the
momentum density and Compton profile from a class of
wavefunctions which includes those of Thakkar andKSmith as a
special case. Benesch calculated the momentum density and
Compton profile for He wusing the RHF wavefunction of
Clementi (1965) and a Hylleraas-type wavefunction of Bonham
and Kohl (1966}. The 'variational energy of this. second

wavefunction was -2.,903486 Ep.-

The calculation of a momentum density from the Thakkar
and .Smith wavefunctions involves performing a two-
dimensional duadréture. The integrand ‘given by Benegch isja
complicated function which had to be successively
differentiated with respect to five different. ygriables.
These differentiations involved‘iarge expressions and were
done,.witb the help of the symbolic algebra computer

language, MACSYMA.
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A

Two computer routines were used to perform the double
integration. Both routines, DMLIN and DBLIN, were taken
from t‘.‘he IMSL library. ’

The integrand was found to be highly unstable. Even
simple rearrangements of the integrand resulted in d{fferent
answers., It became clear that the attempt to cast the
problem in a form where the numerics became stabfe would
‘involve a great deal of computer time if, in fact, it could
be done at all. ’I"hiS approach Awas abandoned in favbr of
a.ttempting to use the momentum space wavefunctions whichl

have been calculated.

-~
.
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~

5.3 The First-Iterated Wavefunction ¢1.

<

The_ momentum density of the first-iterated wavefunction
is obtained by substituting equation (3.29) for ¢l into the
formula (5.1). A typical ‘integral which results is:

Iyj(hg?} Il(hj)

s difz (5.9)
. (pg2+p12+pp2)?2

Substitution of the integral representation for I; given

in Appendix 4, enabled this integral to be reduced.to:

gnt lae 1 exp(—Lplz)
——————————————— du . Jdy ~—-----=---
\/(bk+gk)(bj+gj) 0 0 Npj
©  ppexp(-Mpp2+Np1py)
[dpy ——=--- 57TT5TTT35 (5.10)
- (pg“+p1“+p2°) : A
where L = (bk+gk)(l—u2) + (bj+gj)(1—y2)
M = ak+9k+aj+9j-gk2/(bk+9k)-gj y“#{bj+gy)
N = gg(2-u?) + 93(2—y2)

Attempts to reduce this integrak further were
unsuccessful. Integrals such as these would also require
evaluation to normalize ¢1, except they would have to be
integrated over pj as well. Thus, no numerical results for

&
the momentum density could be obtained using ol. r

-
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5.4 Gaus%ﬁan Geminal Wavefunctions.

The evaluation of I{(p) and J(q) using Gaussian geminal
wavefunctions of the form (2.1) is found to be quite simple.
All of the resulting | integrals may be evaluated
analytically. The derivatives of I(p)*at the origin and the
expectation values <pk> may also be evaluatea analytically.

These results are given in Appendix 7.

The results of these calculations using the 116-term

wavefunctions of He (Table 3), H™ (Table 4) and Li* (Table
5) are given in Tables 12, 17 and 19 respectively. These
calculations ,were also performed using the three 50-term
wavefunctions of Tables 9, lo-gnd 11. “These results.are
presented in Tables 13, 18 and 20, )

Included for comparison are some Compton profiles and
momentum deqsities for helium which have been calculated
previously. Table 15 contains the data of Benesch (1976},
who used the wavefunction of Bonham and Kohl (13966) which
has a variational energy'of ?2.903486'Eh; Evaluation of the
momentum density required a tvo—dimeﬁsional quadrature.
Another numerical integration is required to obtain J(q)}.
Table 16 contains the helium Compton profile given by

Eisenberger (1970) using the wavefunction of Sabelli and

Hinze (1969). Table 14 gives a momentum density and Compton

-~
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profile calculated analytically by us from a HF wavefunction

produced by Szalewicz and Monkhorst (1981).

The values obtained for <p4> for helium may be compared
: \

with the best theoretical result of 108.17604 due to Pekerik

(1959). The 50-term wavefunction has a value of jp4>
closest to this result although it 1is still not véry
2> and

accurate. It is known that the exegctation values <p~

<pf? converge very slowly when Gaussian orbitals  are used
(Simas et al (1982)). This 1is also true of Gaussian
geminals as even 50 terms does not give very good accuracy.
It has _ been shown that the momentum density behaves
asymptotically as p_8 (Thakkar. et al (1981)). Our
expression of the momentum density (see Appendix 7) decgys
as a Gaussian. This leads one to suspect that the value of

<p4> when using Gaussians should be underestimated.

The graph in Figure 1 shows the Compton profiles of the
l16-term, . 50-term, _Benésch and Sabelli-Hinze helium
anefunctibns after subtracting the HF Compton profile and
multiplying by 100.V it is seen that the Compton profiles
from the 1l6-term and 50-term Qavefunctions vary only
slightly from each other while the others are considerably

different._

™

1
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TABLE 12.

Momentum Density and Compton Profile of a
He 16-Term Scaled Wavefunction

n{p)
0.4322424D+00
0.4310468D+00
0.4274840D+00
0.4248351D+00
0.4178673D+00
0.4087899D+00
0.4035126D+00
0.3707735D+00
0.3301803D+00
0.2856598D+00
0.2408387D+00
0.1885723D+00
0.1607344D+00
0.1282449D+00
0.1012554D+00
0.6202612D-01
0.3777571D-01
0.2315674D-01
0.1435793D-01
0.9020267D-02
0.3016609D-02
0.1119480D-02
0.4557532D-03
0.2003219D-03
0.9396853D-04
0.4656546D-04
0.2421062D-04
0.1316504D-04
0.7465081D-05
0.4391610D-05
0.2662733D-05
0.1654197D-05
0.1049119Dp-05
0.6784537D-06
0.4475571D-06
0.3014219Dp-06

I1(p)
0.0000000D+00
0.8666711D-02
0.3438030D-01
0.5338635D-01
0.4029211D+00
Q<1664390D+00
0.2028276D+00
0.4193349D+00
0.6638663D+00
0.8974268D+00
0.1089528D+01
0.1222713D+01
0.1292702D+01
0.1305374D+01
0.1272413D+01
0.1122398D+01
0.9304191D+00
0.7449504D+00
0.5845838D+00
0.4534081D+00
0.2369239D+00
0.1266102D+00
0.7015776D-01
0.4027711D-01
0.2391208D-01
0.1462897D-01
0.9203247D-02
0.5955724D-02
0.3963429D-02
0.2704143D-02
0.1882175D-02
0.1330385D-02
0.8525168D-03
0.6905818D-03
0.5075812D-03
0.3787779D-03

J(p)
0.1067073D+01
0.1064904D+01
0.1058430D+01
0.1053611D+01
0.1040903D+01
0.1024283D+01
0.1014586D+01
0.9538178D+00
0.8768488D+00
0.7899726D+00
0.6992725D0+00
0.6098899D+00
0.5256268D+00
0.4488753D+00
0.38073905D+00
0.2708235D+00
0.1914535D+00
0.1354964D+00
0.9639547D-01
0.6812104D-01
0.3146390D-01
0.1531016D-01
0.79063298D-02

0.4299766D-02 .

0.2446822D-02
0.1449658D-02
0.8909870D-03
0.5660912D-03
0.3702091D-03
0.2481040D-03
0.1698033D-03
0.1184465D-03
0.8414214D-04
0.6085264D-04
0.4478110D-04
0.3349620D-04
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TABLE 12 {(cont.)

~

-1,.49692927059849565D+00
1,87005608248628361D+01
-4,37038484702093022D+02
1.54577226125645377D+04
=-7.433189592093996669D+05,
* 4.06261675825547675D+00
2.13414659758152403D+00
= 2.000000020000000028D+00
<pz = 2.81515096549407073D+00
<p4>/2 = 2.90340475845379697D+00
<p7> = 1.83769673304682835D+01
= 1.03604044985572354D+02

il O~
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TABLE 13.

Momentum Density and Compton Profile of a
He 50-Term Scaled Wavefunction.

I(p)
0.4327687D+00
0.4315682D+00
0.4279909D+00
0.4253315D+00
0.4183370D+00
0.4092267D+00
0.4039314D400
0.3710945D+00
0.3304088D+00
0.2858108D+00
0.2409252D+00
0.1986054D+00
0.1607276D+00
0.1282146D+00
0.1012173D+00
0.6200085D-01
0.3776968D-01
0.2315979D-01
0.1436160D-01
0.9021684D-02
0/3015311D-02
0.1119017D-02
0.4558398D-03
0.2004703D-03
0.9404471D-04
0.4657995D-04
0.2419743D-04
0.1314740D-04
0.7452831D-05
0.4386403D-05
0.2662776D-05
0.1657028D-05
0.1052788D-05
0.6817972D-06
0.4500714D-06
0.3030231D-06

I(p)
0.0000000D+00
0.8677193D-02
0.3442107D-01
0.5344873D-01
0.1030368D+00
0.1666168D+00
0.2030380D+00
0.4196980D+00
0.6643262D+00
0.8979010D+00
0.1089920D+01
0.1222917D+01
0.1292648D+01
0.1305066D+01
0.1271935D+01
0.1121941D+01
0.9302705D+00
0.7450485D+00
0.5847332D+00
0.4534793D+00
0.2368219D+00
0.1265578D+00
0.7017108D-01
0.4030694D-01
0.2393146}-01
0.1463352D-01
0.9198234D-02
0.5947741D-02
0.3956926D-02
0.2700837D-02
0.1882205D-02
0.1332661D~-02
0.9558474D-03
0.693%850D~03
0.5104327D-03
0.3807901D-03

J(p)
0.1067273D+01
0.1065101D+02
0.1058620D+01
0.1053795D+01
0.1041073D+01
0.1024435D+01
0.1014727D+01
0.9539013D+00
0.8768726D+00
0.7899435D+00
0.6992031D+00
0.6097967D+00
0.5255282D+00
0.4487881D+00
0.3807238D+00
0.2708030D+00
0.1914573D+00
0.1355010D+00
0.9639195D-01
0.6911136D-01

'0.3145796D-01

0.1531219D-01
0.7909627D-02
0.4301401D~02
0.2446938D-02
0.1449147D-02
0.8905111D-03
0.5659181D-03
0.3703364D-03

0.2484141D-03
0.1 <03
0.1187700D-93

0.8437798D-04
0.6099033D-04
0.4483319D-04
0.3348551D~04
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TABLE 13 (cont.) S
gfig(O) = -1.50311334931482063D+00
1{8)(0) = 1.89647658410584987D+01
I8 (0) =-4.53537462161925767D+02
i8] (0) = 1.51714377179646049D+04
1{107(0) ="1,03082143626830846D+05
<p72> =" 4.06494178097705672D+00
<p-1> = 2.13454699955583432D+00

<p0> = 2,00000000000000800D+00

<pz = 2.81502329479204283D+00

<p2>/2 = 2,90354031663256112D+00
= 1.83996638378424993D+01 e

<p*> = 1.06076272511062569D+02

L .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘i

the HF Wavefunction of Szalewicz and Monkhorst (l§81).

1%
0.00
0.04
0.08
0.10
0.14
0.18
0.20
0.30
0.40
- 0.50
0.60
0.65
0.70
0.80
0.50
1.00
1.20
1.30
1.40
1.60
1.80
2.00
2.50

3.00°

3.50
4.00

4.50

5.00

5.50

6.00

6.50

7.00

. 7.50

. 8.00
8.50
9.00
9.50

10.00
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TABLE 14.

Momentum Denéity and Compton Profile from

I{p)
0.4398504D+00
0.4385594D+00
0.4347158D+00
0.4318618D+00
0.4243693D+00
0.4146399D+00
0.4090000D+00
0.3742743D+00
0.3318248D+00

0.2859884D+00

0.2405239D+00

.0.2188331D+00

0.1981765D+00
0.1605861D+00
0.1284386D+00
0.1017259D+00
0.6264934D~-01

'0.4893299D~-01

0.3818827D-01
0-.2331840D-01
0.1437141D-01
0.8978890D-02
0.2974641D-02
0.1092550D-02
0.4404606D-03
0.1924043D-03
0.9000356D-04

0.4464672D-04
0.2329908D-04.

0.1270812D-04
0.7206001D-05
.0.4229093D-05
0.2559287D-05
0.1591967D-05
0.1015115D-05
'0.6619845D-06
0.4406052D-06
0.2987789D-06

I(p)
0.0000000D+00
0.8817760D-02
0.3496192D-01
0.5426936D-01
0.1045225D+00
0.1688208D+00
0.2055858D+00
0.4232942D+00
0.6671734D+00
0.8984589D+00
0.1088105D+01
0.1161849D+01
0.1220276D+01
0.12915190D+01
0.1307346D+01
0.1278325D+01
0.1133676D+01
0.1039198D+01
0.9405779D+00
0.7501508b+00
0.5851327D+00
0.4513282D+00
0.2336278D+00
0.1235645D+00
0.6780364D-01
0.3868517D-01
0.2290312p-01
0.1402618D-01
0.8856741D-02
0.5749018D-02

1 0.3825876D-02

0.2604073D-02
0.1809053D-02
0.1280335D-02
0.9216437D-03
0.6738182D-03
0.4996969D-03
0.3754566D-03

J(p)
0.1070484D+01
0.1068276D+01
0.1061692D+01
0.1056791D+01
0.1043880D+01
0.1027012D+01
0.1017179D+01
0.9557135D+00 .
0.8781956D+00
0.7910629D+00
0.7003825D+00
0.6553289D+00
0.6111608D+00
0.5270326D+00
0.4502677D+00
0.38139769D+00
0.2711902D+00

'0.2276595D+00

0.1909541D+00
0.1344722D+00
0.9520763D-01
0.6798136D-01
0.3065797D-01
0.1479699D-01
0.7603997D-02
0.4129005D-02
0.2352036D-02
0.1396803D-02
0.8603056D-03
0.5471459D-03
0.3580102D-03
0.2402612D-03
0.1649379D-03
0.1155635D-03
0.8247699D-04
0.5985725D-04
0.4410891D-04
0.3296039D-04
L
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TABLE 14 (cont.)

-0.1616838423772048D+01

12 -
2(6)(0) = 0.2317224196265785D+02
Q(B)(O) = -0.6809283361710810D+03
H( 050) = 0.3323886323791572D+05

- MR7(0) = -0.2412896247057461D+07
<p”%> = 4,09233 ' “‘\\\4
<p 1, = 23(0) (These expectation values are -
<p3 = 2.794956 due to Simas et al (1983)). - '
<p2>/2 = 2/8616754 ‘ !
<p3> = 17.9903 J

<p?> = 105.6156

t—/\
. %
’,
~
s,
(
‘} -~
/' v
— b 4
) ]
oo . O T Lo RS v KRR "“‘

L)
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pJ TABLE 15.

Momentum Density and Compton Profile
from Benesch (1976).

P I(p) J(p)
0.00 0.00000D+0 0.10685D+1
0.04 0.89703D-2 0.10662D+1
0.08 0.35557D-1 0.10595D+1 .
0.10- 0.55181D-1 0.10545D+1
. 0.14 0.10622D+0 0.10414D+1
0.18 0.17144D+0 0.10243D+1
0.20 0.2086BD+C 0.10143D+1
0.30 0.42850D+0 0.85198D+0
0.40 0.67298D+0 0.B7365D+0
0.50 0.90250D+0 0.78594D+0
" 0.60 0.10881D+1 -0.69505D+0
0.70- 0.12148D+1 0.60603D+0
0.80 0.12803D+1 0.52246D+0
0.90 0.12913D+1 0.44650D+0
1.00 0.12591D+1 0.37915D+0
1,20 0.11139D+1 0.27020D+0
1.40 0.92600D+0 0.19131D+0
1.60 0.74280D+0 0.13646D+0
1.80 0.58426D+0 0.97374D-1
2.00 0.45498D+0 0.70067D-1
2,50 0.24090D+0 0.32060D-1 .
3.00 0.12937D+0 0.14795D-1
3.50 0.71544D-1 0.80250D-2
4.00 0.40926D-1 0.43528D-2
4.50 0.,24221D-1 0.24729D-2
5.00 0.14806D-1 0.14635D-2
5,50 0.9327D-2 0.8980D-3
6.00 0.6037D-2 0.5686D-3
6.50 0.4009D-2 0.3702D-3
7.00 0.2723D-2 0.2469D-3 '
7.50 0.1888D-2 0.1683D-3 ¥ 5
8.00 '0.1334D-2 0.1168Db-3
8.50 0.9589D-3 0.8234D-4
9.00 0.7003D-3 .0.5882D-4
9,50 0.5188D-3 0.4246D-4 g
10.00 0.3896D-3 0.3089D-4
H(g) = 0.447 - (see Simas (1982))
<p~ 4> = 4.111 These expectation’'values come
<p> = 2:843 from unpublished results of Thakkar,
<p?> = 6.040. Smith and Simas. .
. <p3> = 20.37
<p4> = 128.1
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TABLE 16.

Compton Profile from the Wavefunction of
Sabelli and Hinze (1969).

o) J{p)
0.00 -0.1068D+1
0.10 0.1055D+1 ) .

0.20 0.1015D+1
' 0.30 0.954D+0
0.40 0.876D+0
0.50 0.788D+0
0.60 0.698D+0
“0.70 0.609D+0
0.80 0.525D+0
0.90 0.449D+0
1.00 0.381D+0
1.20 0.27Ip+0
1.40 0.191D+0 o
1.60 0.135D+0 s
1.80 0.096D+0
2.00 0.069D+0
2.50 0.031D+0
3.00 0.015D+0

\./
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TABLE 17.

Density and Compton Profile of a

H™ 16-Term Scaled Wavefunction.

o(p)
0.1723720D+02
0.1650038D+02
0.1451290D+02
0.1321616D+02
0.1041121D+02
0.776)&57D+01
0.6602357D+01
0.2788833Dth
0.1251340D+01
0.6268279D+00
0.3409368D+00
0.1971148D+00
0.1190979D+00
0.7421552D-01
0.4735564D-01
0.2041488D-01

..0.9339921D-02

0.4486279D-02
0.2258266D-02
0.1187793D-02
0.2778493D-03

.0.7825856D-04

0.2594291D-04
0.9699618D-05
0.3985172D-05
0.1784421D-05

" 0.B627563D-06

0.4437940D-06
0-.2392015D-06
0.1336337D~06
0.7697205D-07

"0.4566247D-07

0.2792925D-07
0.1763480D-07
0.1149535D-07
0.7722869D-08

I{p)
0.0000000D+00
0.3317599D+00
0.1167197D+01
0.1660792D+01
0.2564290D+01
0.3160080D+01
0.3318707D+01
0.3154085D+01
0.2515968D+01
0.1969238D+01
0.1542362D+01
0.1213739D+01
0.9578420D+00
0.7554220D+00
0.5950885D+00
0.3694189D+00
0.2300431Dp+0C
0.1443232D+00C
0.9194538D-01
0.5970500D-01
0.2182223D-01

0.8850835D-02

0.3993601D-02
0.1950224D-02
0.1014103D-02
0.5605925D-03
0.3279619D-03
0.2007677D-03
0.1269991D-03
0.8228523D~04

0.5440833D-04

0.3672394D-04
0.2535754D-04
0.1795005D-04
0.1303705D-04
0.9704843D-05

J(p) -
0.3218702D+01
0.3133927D+01
0.2900491D+01

0.2743831D+01
0.2389690D+01 .

0.2027734D+01
0.1856762D+01
0.1179925D+01
0.7699058D+00
0.5197528D+00

-0.3599393D+00
+0.2539482D+00
"0.1B%6057D+00

0.1312700D+00
.0.9578891D-01
0.5233657D-01

0.2952714D~-01"

0.1719934D-01
0.1033801D-01
0.6395733D-02
0.2152173D-02
0.8361506D-03
0.3646349D-03
0.1738346D-03
0.8941945D-04
0.4910798D-04
0.2843019D-04
0.1715053D-04
0.1069907D-04
0.68773934D-05
0.4551598D-05
0.3099388D-05
0.2169194D-05
0.1556725D-05
0.1141696D-05
0.8523696D-06

4
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TABLE 17 (cont.)

-9.46154011132922903D+02 -
1.92380770607384835D+05
-7.29792932724249177D+07 : .
4.16584772151196289D+10 . ~
=-3.21517550114579478D+13 '
4.27004883298870839D+01
6.43740331669148202D+00 -
<p¥> = 2.00000000000000056D+00
<p> = 1.11485282148915082D+00
<p?>/2 = 5.27590692653263194D-01
<p3> = 1.65457330236620045D+00
<p4> = 4.67214541490788626D+00

HOOEN
N O~ o

)

A A SIERISIE

Lol o T
NN O e e e
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p
0.00
0.04
0.08

0.10

0.14
0.18
0.20
0.30
0.40
0.50
0.60
0.70

0.90
1.00
1.20
1.40
1.60
. -1.80
2,00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
10.00

~A
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TABLE 18.

A

Momentum Density and Compton Profile of a

H

- T(p)
0.1733569D+02
0.1659113D+02

#0.1458350D+02

0.1327429D+02
0.1044479D+02
0.7775868D+01
0.6610021D+01
0.2784744D+01
0.1248948D+01
0.6260432D+00
0.3407404D+00
0.1971016D+00
0.1191393D+00
0.7426475D-01
0.4739460D-01
0.2042608D-01
0.9338153D-02
0.4483192D-02
0.2256914D-02
0.1187692D-02
0.2781301D-03
0.7831054D-04
0.2593256D-04
0.9687111D-05
0.3981782D-05
0.1786445D-05
0.8655349D-06
0.4456641D-06
0.2401496D-06
0.1341557D-06
0.7240017D-07
0.4609570D-07
0.2834179D-07
0.1797539D-07
0.1173378D-07
©0.7857621D-08

-

1(p)

'0.0000000D+00

0.3335845D+00
0.1172874D+01
0.1668097D+01
0.2572561D+01L
0.3165948D+01
0.3322559D+01
0.3149472D+01
0.2511159D+01
0.1966773D+01
0.1541473D+01
0.1213658D+01
0.9581749D+00
0.7559235D+00
0.5955780D+00
0.3696215D+00
0.2299995D+00
0.1442239D+00
0.9189036D-01
0.5969991D-01
0.2184429D-01
0.8856713D-02
0.3992007D-02
0.1947709D-02

0.1013240D-02

0.5612284D-03
0.3290409D-03
0.2016137D-03
0.1275024D-03
0.8260666D-04
0.5471096D-04
0.3707236D-04
0.2573209D-04
0.1829672D-04
0.1330745D-04
0.9874178D-05

50-Term Scaled Wavefunction.

J(p)
0.3222255D+01

0.3137005D+01

0.2902359D+01
0.2744973D+01
0.2389476D+01
0.2026596D+01
0.1855365D+01
0.1178675D+01
0.7694055D+00

- 0.5196622D+00

0.3599962D+00
0.2540398D+00
0.1816876D+00
0.1313264D+00
0.9581857D-01
0.5233306D-01
0.2951844D-01
0.1719627D-01
0.1033971D-01
0.6398959D-02
0.2153472D-02
0.8361782D-03
0.3645482D-03
0.1739085D-03
0.8959833D-04
0.4928937D-04
0.2856696D-04
0.1724407D-04
0.1076580D-04
0.6929950D-05
0.4593188D-05
0.3130519D-05
0.2189255D-05

0.1566342D-05 .

0.1142877D-05

0.8478758D-06 -
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TABLE 18 {(cont.)

-9.56189997715263402D+02
1.95057429577937415D+05
-7.40103621757408939D+07
4.20066019536668644D+10
) =-3.18633992604584531D+13
4.28358613966412945D+01
6.44451043942338006D+00
<p®> = 1.99999999999999914D+00

Nl O s r e

<p> = 1.11466439233682726D+00 .
<p?>/2 = 5.27649071429998118D-01

<p3> = 1.65782428851877103D+00

<p?> = 4.82636181207409998D+00 e

-
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TABLE 19. -

P

‘0\
~

Momentum Density and Compton Profile of a

Lit

- I{p)
0.9648737D-01
0.9639084D-01
0.9610198D-01
0.9588603D-01
0.9531306D-01
.9455561D-01
.,9410936D-01
.9123699D-01
.8739407D-01
.8274096D-01
.7746065D-01
.7174553D-01
.6578476D-01
.5975361D-01
.5380536D-01
.4263342D-01
.3293337D-01
.2495691D-01
.1866011D-01
.1383466D-01
0.6465322D-02

k==X Xeket=l=toRok=R=R=X=X=

0.3052069D-02

0.1481479D-02
0.7452919D-03

0.2113865D-03
0.1185789D-03
0.6858764D-04
0.4085641D-04
0.2504394D-04
0.1576971D-04
0.1017044D-04
0.66394673D-05
0.44B3734D-05
0.3048881D-05
0.2102606D-05

.0.38%6471D-03.

“1(p)

0.0000000D+00.
0.1938053D-02

0.7728980D-02
0.1204935D-01
0.2347565D-01
0.3849835D-01
0.4730452D-01
.1031866D+00
.1757162D+00
.2599384D+00
.3504237D+00
.4417746D+00
.5290725D+00
.6082177D+00
0.6761380D+00

CSCOOO0OO0O0O

'0.7714762D+00
'0,8111517D+00

0.8028616D+00
0.7597473D+00
0.63954056D+00

0.5077852D+00
0.3451808D+00

0.2280560D+00
0.1498498D+00
0.9915310D-01
0.6640904D-01
0.4507571D-01
0.3102832D-01
0.2169186D-01
0.1542086D-01
0.1114695D-01
0.8178550D-02
0.6078229D-02
0.4563885D-02
0.3457781D-02
0.2642212D-02

16-Term Scaled Wavefunction.

- J(p)
0.6541960D+00
.0.6537112D+00
0.6522598D+00
0.6511742D500 -
0.6482910p+00
0.6444735D+00
0.6422212D+00
0.6276655D+00
0.6080277D+00
0.5839828D+00
0.5563143D+00
0.5258643D+00
0.4934847D+00
0.4599936D+00
0.4261404D+00
0.3598618D+00
0,2985676D+00"
0.2444482D+00
0.1982747D+00
0.1598500D+00
+0.9230340D-01
0.5353056D-01
0.3Y60753D-01
0.1911843D-01
0.1186592D-01
0.7552023D-02
0.4923259D~02
0.3284324D-02
0.2239403D-02
0.1557941D-02
0.1103436D-02
0.7939188D-03
0.573&@140—03
0.4281555D-03
0.3203615D-03
0.2425737D-03
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TABLE 19 (cont.)

ggﬁg(o) = -1.20727981777734467D-01
Mie)(0) = 5.54776412286796153D-01
I{51(0) =-4.89979724868112521D+00
I:90{0) = 6.73260793124566739D+01
m(20)(0) =-1.29050721268732619D+03
¢ <p72> = 1.50795097613571150D+00
<p-l> = 1.30839150605437120D+00

<p®> = 1.99999993999999964D+00
= 4.50843991305116043D+00
<p2>/2 = 7.27941371653506974D+00
35 = 7.94649279629268275D+01
= 6.00128544816338803D+02

N
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TABLE 20.

Momentum Density and Compton Profile of a
Li* 50-Term Scaled Wavefunction.

I(p)

.9679352D-01
.9670201D-01
.9642689D-01
.9622000D-01
.9566651D-01
.9492585D-01
79448543D-01
.9160277D-01
.8769277D-01
.8296249D-01
.7762552D~-01
.7187218D-01
.6587989D-01
.5981764D-01
.5383880D-01
.4261802D-01
.3289637D-01
.2492187D-01
.1863804D-01
.1382604D-01
.6470237D-02
.3053930D-02
.1480797D-02
.7445355D-03

.2114652D-03
.1187141D~03
.6868016D~04
.40839765D-04
.2505294D-04
.1576461D-04
.1016194D-04
.6687458D-05
.44739055D-05
.3046495D-05
0.2101826D-05

e~

.3894223D-03

I({p)
0.0000000D+00
0.1944309D-02
0.7755110D-02

.0.,1209136D-01

0.2356274D-01
0.3864910D-01
0.4749356D-01
.1036003D+00
.1763168D+00
.2606344D+00
.3511696D+00
.4425545D+00
.5298375D+00
.6088694D+00
.6765584D+00
.7711975D+00
.8102405D+00
.8017342D+00
.7588485D+00
.6949725D+00
.5081713D+00
.3453914D+00
.2279509D+00
0.1496977D+00
0.9909591D-01
0.6643374D-01
0.4512710D-01
0.3107017D-01
0.2171376D-01
0.1542640D-01
0.1114335D-01
0.8172720D-02
0.6071679D-02
0.4559122D-02
0.3455076D-02
10.2641232D-02

CODOODOODDOOOODODOOO

OO0 O000O0COCOCOODODODOOOO0OO0O000O0O0ODDO0O0OO0DO0DO00O00O00O0O0O0O0OO0 |

J(p?}
.6545160D+00
.6540297D+00
.6525736D+00
.6514842D+00
.6485906D+00
.6447585D+00
.6424973D+00
.6278825D+00
.6081714D+00
.5840536D+00
.5563193D+00
.5258104D+00
.4833787D+00
.4598453D+00
.4258633D+00
.3596759D+00
.2884288D+00
.2443800D+00
.1982682D+00
.1598792D+00
.9232684D-01
.5352187D-01
.3159586D~01
.1911667D-01
.1187060D-01
.7557364D-02
.4926596D-02
.3285550D-02
.2239345D~02
.1557392D-02
.1102872D-02
.7935353D-03

+.5791067D-03

.4281445D-03
.3204515D-03
.2427101D-03
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TABLE 20 (cont.)

-1.14310628354540629D-01

-5.22006223563693403D-01
1.582128796383128459D+02

=1.51845946984049585D+04

) =-8.97715703419174743D+06
1.51050308499113420D+00
1.30903204647602991D%00

<p”> = 2.00000000000000050D+00

<p> = 4.50810916318400279D+00
<p?>/2 = 7.27957047047271899D+00
<p3> = 7.04990576843794123D+01
<p?> = 6.04423062855430587D+02
w
&

——
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FIGURE 1.,

Plot of Helium Compton Profiles;’l
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS

6.1 Conclusions. 3

The 16-term Gaussian' deminal Qévefunctfon for helium
which was calculated in Chapter 2 is considefably better, to
our. knowledge, than any other like calculation. If one is
careful with the application of the miniﬁfzing routines then
good results may be achieved.~ When the number of terms in
.the'wavefunctioﬁ becomes large, it is no longer feasible to
attempt to optimize all of its”parameters. The work on the
GCM suggests that this is a good method to increase thg size
of the wavefunction without an undue amount of' computer
work. Use of a small wavefunction that has'beén "fully-
optimized™ within the GCM-produced wavefunction {s.found to
be Qery useful. This suggests that construction of a large
wavefunction should start with the calculation ofva.émall
"fully—optimized“ wavefuncgion and then proceed with GCM-

produced parameters.

The VI method does not seem to be particularly well-
suited for a.Gaussian basis set. A great deal of computer

time 'is required to produce an estimate of the half-iterated

:
’
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energy. The first-iterated wavefunction is compl{Fated and

of questionable wvalue, although it may be ughgul in

. calculating other expectation values. We have shown that

the use of Gaussian geminals with explicit correlation
presents no difficulty greéter than the use of products of
Gaussian orbitals, and thus should be the choice "if

Gaussians are to be employed.

The 50-term helium wavefunction produced in Chapter 5 is
the most accurate- wavefunction usgh to produce a- helium
Compton profile to date. Gaussian gemindls are ideal for
this type of calculation as all results may be obtained

analytically.

N L]

»
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6.2 Suggestions for Further Research.

The.area which lends itself most readily to future work
is fhe GCM. We have presented nine frequency function
schemes bu£ many more could be tested. It would be
instructive to examine a greater number of frequency
functions to gain more insight into this methéd. These
frequgncy functions may be given more parameters to be
variea, with both the shape of the function and its

endpoints varied.

The VI method also deserves more scrutiny. Since the use .

of Gaussians is questionable, perhaps a good momentum space

~ basis set could be found in whiéh the integrals involved in

the iteration ®° do not - become too complicated. The

feasibility of using the first-iterated wavefunction of

Chapter. 3 in calculating properties other than the momentum
. L
deénsity or Compton profile could be examined.
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APPENDIX 1
FOURIER TRANSFORM OF A GAUSSIAN GEMINAL BASIS FUNCTION

Take as our Gaussian geminal:
g(F1,T2) = exp(-ary2-bry2-cry5?)
The Fourier transform is: '
¢(P1.p2) = 1-2'15-; f qﬁcp(—arlz—brzz—crlzz)

™

exp(-ip} ‘?1‘i52 *T5) dr;dr>

Splitting into Cartesian cooFdinates and performing the

integrations yields:

T -bpy 2-app2-c(P1+p3) 2

where A = 4(ab+ac+bc)
with the conditions a+c>0, A>0.

Ve
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APPENDIX 2
MATRIX ELEMENTS WITH GAUSSIAN GEMINALS

Take two Gaussian geminals as follows:

2)

exp (—arlz—brzz-crlz

exp (-dri2-erp?-fria

g1

i

g2 2)

1. Overlap Matrix Elements.

<

<gylgy> = | exp(—(a+d)r12-(b4;e)r22-(c+f)rlzz) ardr

Splitting ?1 and ?2 into Cartesian coordinates, we find

oo 00 ] 3
= jﬂ./;fo-(a+d)x12-(b+e)x22—(c+f)(xl—xz)zl dxj)dx?
2o Zoo ‘ \

W " The double integral may be evaluated using:

® T u? , ‘
| exp(-tx2-ux)dx éw/:-exp -- t>0
I . t - 4t
The result is T
."3
< > -
g1lg2 £372

with the conditions a+d+c+£f>0, ¢t>0
and where t = (a+d){(b+e)+(a¥d)c+f)+(b+e) (g+f).
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. 2. Kinetic Energy Matrix Elements.’

These integrals are ‘evaluated by first performing the
differentiations and integrating in Cartesian coordinates.,
The result is:

1 5 . 5 3n3
- -<gy|v1+V2clgy>'= ———-£(d+e+2f)t—2fd(b+e)
2 , £57
-2fe(a+d)-d?(b+c+e+f)-eZ(a+d+c+f)-2£2(a+d+b+e) ]

where t is given above.
3. Potential Energy Matrix Elements.

If the potential energy operators are replaced by their
Fourier integral representations (as in eq. (3.6)), the
integrals are readily evaluated .in Cartesian coordinates.

The results are:

-2<g1l 1/r1-lgp> = =--===--o- {(bre+c+f)>0

tVb+e+c+f t>0

~z<91I-l/r2 lgo> = =—=omm==-- {a+d+c+£f)>0

tVa+d+c+f t>0

L3
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| 24572
<gyl .1/¥82 192> = =--—=-—==-- (a+d+b+e)>0
tVa+d+b+e t>0 .

L3

A wvhere t is given above.

-
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" APPENDIX 3
IMPORTANCE OF EACH WAVEFUNCTION TERM

‘Let us take an L-term wavefunction as follows:

L
vL = ] Cxéx (a3.1)
k=1

. D . . . .
The variational energy, Ep,, of this wavefunction is given

by
.
- <yp, |Hlwy>
Ef, = —~--—-—--- (A3.2) -
<11JL I U)L)
The linear coefficients are calculated by solving
HC=ESC (A3.3)
or
Y ]
" ¥ HpnCn = BEL ) SmnCn (a3.4)
n n
A3
for each m=1,...,L .

and where Hpp= <¢plHidp>

Smn= <¢m!én>.
~if

The solution of (A3.4) is constrained by rsquiring that

Yy, be normalized. This condition may be written as
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} CuCnSmr= 1 . ' . (A3.5)
m,n -
¢
Let us define Yyr/ as the wavefunction resulting when the
j-th basis function is deleted from (A3.1) and for which the
.

linear coefficiehtsqhave been re-calculated variationally.
We also define xp,j as the wavefunction resulting when the
j-th basis function is deleted from (A3.1) and the remaining

linear coefficients are unchanged.

-

\_/
We will approximate ¥r/§ by XL/j: .
L ] .
YL/j ®xnL/j = 1 Ckdk (A3.6)
k=3 .

&

Defing.EL/j as the variational energy of ¥r/§ and er/j as
the variational energy of xp,j. We know that
€L/j>EL/j2EL2true energy.
The energy gained by the wavefunction when the j-th basis
funé;ion is deleted is given by Ep/j-EpL. An over-estimate
of this energy is given by: '

Pd
Ar/j = eL/j-EL > En/§-EL

“ L
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S 32 Rttt . (A3.7)
<xL/jlxL/j3>

Now

<xL/jlxL/3> } CnCnSmn - écmcjsmj

m,n

2. .
n

-

. 2g. .
<xn/5lxL/3> = 1-2Cj % CmSmj *+ €355 (A3.8)

using (A3.5) and the fact that § is symmetric.
<xu/jlHlxL/5> - En<xn/jlxe/i> = 1 CmCn{Hmn-EpSmn)
m,n

. . : 2 (s Er S s

= Co2(Hszsm L

ﬁsing (A3.4).

So we have

AL/j= _____________________ "~ (A3.10)

" This technique, first developed by Brown (1967), gives
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. c .
an over-estimate, AL/j: of the variational energy increase

when® the j-th basis function is removed from eqg. (A3.1).
Since the quantities required in £f3.10) will already have
been calculated in obtaining (A3.1), it is a quick method to
get an. idea of the importance of the j-th basis function.
Calcui;;ion of the exact energy increase would require the
solution of a new set of linear coefficients., ' This
approximate energy increase is computed in the program which

¢ -
calculates eigenvectors.

A\
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APPENDIX "4 ///’

CALCULATION, OF I3, I.AND I35.
r

For use in the evaluation of these quantities, the

following integral will be evaluated:

dp -
-= exp(-ap2+2q-p)
p2

(Ad.1)

Define spherical polar coordinates_(p,8,¢} sucn that E

&

lies along the axis from which 8 is measured. The

now becomes

27 T ® siné '2
dé de Jdp ------ exp(-ap“+2gp cos@)
b
0 0 0 p?

integral

Integrate over the ¢ wvariable apd transform the ©

variable by u=cosé to get:

2m du

—_t—_

dp exp(-ap2+2qpu)

- 8

Using integral tables, we get:

4372 q2u2 4202 qu

1
=-=-= [ du |exp | ----] + exp |[-—--| erf { --
al/2 1 a , a 'EY

The term containing the error function is an odd

a>0.

function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-108-

of u and it will integrate to zero. We are left with:

7372 } _ . q2u2
} =-r—c du exp| -—--
’ al/2 -1 a
24372 (q2u2
=-s=s- du exp|----
al/2 0 a
1
- =——==c Fl-,-,—- a>o0
al/2 2 2 a

where F(1/2,3/2,x) is the confluent hypergeometric function

-~

defined as:

13 1
Fl-,-,x| = Jexp(xu?)du
2 2 0

1, Calculation of Ij. “
- S _2_ 2__..-2
Let g(P1.,P2) = expl-bp1“-ap24-c(p1+P2)“]

-

dp =~ b el
I;(g) = =3 g(p1-p,p2)

P

__Substituting the actual expression for g yields:
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. [ap '
I1(g) = g(P1,p>) -5- expl-(b+c)p2+2((b+c)P1+chr)-P]
‘ p .
(D) 21372 2y 13 ((b+c)'13'1+c'f)‘2)2
1(g) = ————- g{pP1,P2 S Attt
Yb*c ' ' b+c
A similar calculation gives
2n3/2 1 3 (cPi+(a+c)py)?
12(9) = ===== g(Plypz) Fl -y—y——————mmmm *
a+c ' 2 2 a+c
3/2 . e Y
2% 1 3 (bp1-ap3)
I12(g) = ===~ g(p},P2) F | =,=,———=---=-
a+ a+b
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APPENDIX 5
CALCULATION OF J INTEGRALS =

Let

h i 2 > 2

g = exp(-ap)f -bpy¢ -c(p1+p2)“]

h = expl-dp; 2 _£(p1+DP2) 2]

’

Calculate )

J1 = [dp1dp2 Ii(g) h
Substitute for 1I3(g) and h and wuse the integral

representation of I given in Appendix 4 to get:

on3/2 1 '
= —---- [ du [ap1dpy expl-({a+c)(1-u?)+a+f)p;
O . -

—(b+e+c+f—czh2/(a+c))p22
~2(c(1-u?)+£)P1°D2)

First evaluate the integral over 51 and E% by expanding
these two vectors in Cartesian coordinates and wusing

integral tables:

]
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1
= 219/2(a+c) [ dul(a+c)v-wu2)~3/2
0

where v (b+é)£a+d+c+f) (a+d)(c+£
v (a+c)“(b+e) + a (c+f) + c<(a+d)
with the condition that (a+c)v-w>0,

Performing the last integral gives: ~?i

vila+c)v-w

Similarly
- 27372
' J12 = -—Tp==o==--
v a+b)v-y
where y = (a+b)2(c+f)+b2(a+d)+al(b+e) -
v is given above

with the condition (a+b)v-y>0.

/
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APPENDIX 6

<

.CALCULATION OF K INTEGRALS

7

Let

g = expl-ap1?-bpp2-c(P1+53)2]

h

exp[-dplz-epzz—f(§1+5})2]

Calculate

n - [eBre 13(g)I1(h) P
1,1 = p1dp2 ---5TTT5TTT5T '
: (po?+p12+p2?) ‘ |

Use the, integral representation of I} given in Appendix 4

and use !

@D . .
--377737775 = J exp(—m(p02+p12+p22)) dm
PO *rP1°+P2 0 -

All wvariables with the exception of m are easily ' *

integrated. The result is

4n6

© Q
1,1 = ~f======-== I dm --—--—----=- tan *f--
Jla+c) (d+f) 0 v PQ PN
o b
where P
P = (a+d+m) (b+e+m)+{(c+£f) (a+b+d+es2m) :
N = m(m+b+e+ac/(a+c)+df/(d+f)) I

¥ B o E
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Q:
l((a+c)(d+f)(b+e+m)+ac(d+f)+dea+c)+cfm)2/((a+c)(d+f))

P, Q, N>0
Similarly
>
- I;(g}1iz(h).
Ky,2 =_lép1dpz --------- =5
(po2+p12+p2?)
4nb ® exp(—mpoz) -1 Q
S —o—--m - dm ~--------- tan --
(a+c)(e+f) o . v/ PQ PN
where

P 1is as above

((a+ci(b+m)+ac)((e+f)(d+m)+ef)/((a+c)(e+f))

N =
- Q = (f(a+c)(b+m)+c(e+f){d+m)+cfla+e))2/((a+c) (e+f))
P, Q, N >0

(po2+pra+p2?)
4q6 ® exp(-mpoz).. e
= —mmmtemmemo fdam -------——- tan~+{--
Jla+c) (d+e) 0 JPQ PN

~
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P is as above

N = m2 + (2f+b+2de/(d+e)+ac/(a+c))m
bf + acf/(a+c) + bde/(d+e)} + acde/{({a+c)(d+e))
Q = (d(b+m)(a+c)+af(d+e)+ad(c+e)—cem)2/((a+c)(d+e))
P, Q, N> 20
. Iiz2(g)112(h)
K12,12 =fdprdp2 ----5---5-=- .
A (po2+p12+p2?)
4n® o exp(—mpoz) 1 Q
T —-—oooee o dm -------~~- tan --
J(a+b) {(d+e) 0 JPQ PN

where

P is as above
N = m? + 2m(c+f+de/(d+e)+ab/(a+b))

Q:

((ae+bd)(c+f)+(be(a+d+c+f+m)+ad(b+e+c+f+m)))2/((a+b)(d+e))

P, N, Q>0
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APPENDIX 7

MOMENTUM DENSITY AND COMPTON PROFILE FROM

GAUSSIAN GEMINALS

Take

dk(1+tk)exp(-bkp12-5k222‘9k(51*5§12)
1 2

R4
n
I~

. k
as in equation (3.25).
Now use equation (5.1) to calculate n(E) with the result

exp(-upz/v)

R N
I(p) = 2n dpds (L+tp ) (Lets)——m—c-cmmm-
k=1 451 0 0 e T G372
\
where v = ayg+gk+aj+gj \
u = (ak+aj)%bk+gk+bj+gj) + (bk+bj)(gk+gj)

In this case li(p) = N(P).

Now

T(q) = 20 [ opli(p)dp .
lql
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_ . N N exp(—uqz/v)
= 47°/2 ) ¥ dkdj(lﬂ:k) (L+tg)==——=5-5--~ _
k=1 j=1 .
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