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Abstract 1 

 Whole-brain responses to sound are easily measured through auditory evoked potentials (AEP), but it is 2 

unclear how differences in experimental parameters affect these responses. The effect of varying parameters is 3 

especially unclear in fish studies, the majority of which use simple sound types and then extrapolate to natural 4 

conditions. The current study investigated AEPs in goldfish (Carassius auratus) using sounds of different durations 5 

(5, 10, and 20 ms) and frequencies (200, 500, 600 and 700 Hz) to test stimulus effects on latency and thresholds. We 6 

quantified differences in latency and threshold in comparison to a 10 ms test tone, a duration often used in AEP fish 7 

studies.  Both response latency and threshold were significantly affected by stimulus duration, with latency 8 

patterning suggesting that AEP fires coincident with a decrease in stimulus strength.  Response latency was also 9 

significantly affected by presentation frequency. These results show that stimulus type has important effects on AEP 10 

measures of hearing and call for clearer standards across different measures of AEP.  Duration effects also suggest 11 

that AEP measures represent summed responses of duration-detecting neural circuit, but more effort is needed to 12 

understand the neural drivers of this commonly used technique. 13 
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Introduction 1 

 In trying to ascertain the hearing ability of a variety of fish species, one powerful technique has been the 2 

use of auditory evoked potentials (AEP).  First used in 1981 (Bullock 1981), AEP has now been employed to 3 

determine baseline hearing thresholds in adult (e.g. Kenyon et al. 1998; Ladich and Fay 2013) and larval (e.g. Higgs 4 

et al. 2003; Wright et al. 2005, 2011) fish, examine the role of a variety of environmental toxins (Lu and Tomchik 5 

2002; Low and Higgs 2014) and to assess possible effects of anthropogenic noise on fish hearing ability (Smith et al. 6 

2004, 2006; Crovo et al. 2015). This technique is attractive because it requires no training of the study subjects 7 

(Maruska and Sisneros 2016), so AEP can quickly provide data on hearing ability without prolonged holding in a 8 

potentially noisy (Bart et al. 2001) laboratory environment, and fish can be tested repeatedly, allowing testing before 9 

and after experimental manipulation on the same fish (e.g. Wysocki et al 2009, Higgs and Radford 2013). While not 10 

appropriate for absolute threshold determination (Higgs 2002; Ladich and Fay 2013), AEP has become a well-11 

established procedure among fish researchers and has provided valuable data to the field. 12 

 Despite the overall utility of the AEP approach, there still remain many unanswered questions about what 13 

AEP is actually measuring and how stimulus parameters may affect the responses recorded. By recording whole-14 

field potentials across the brain and nerve roots, AEP is likely detecting both auditory and lateral line inputs, at least 15 

at low frequencies (Radford et al. 2012; Brack and Ramcharitar 2012; Higgs and Radford 2013), and even within a 16 

species research labs obtain very different thresholds when using AEP techniques (Ladich and Fay 2013). The actual 17 

stimuli used can also affect an individual’s neural response to acoustic stimuli. For example, frequency may affect 18 

the latency of response to a given tone, as an inverse relationship between frequency and response latency has been 19 

found in zebrafish (Danio rerio) (Higgs et al. 2003), and stimulus duration has been shown to have an effect on 20 

AEPs in a range of vertebrates. For example, in the big brown bat (Eptesicus fuscus) increasing the duration of a 21 

presented tone results in an increased latency of response that ultimately correlated with the offset of the tone 22 

(Ehrlich et al. 1997). Furthermore, stimulus duration has also been shown to affect both response latency and 23 

threshold in the rat, mouse and frog (Sayegh et al. 2011). Despite these possible effects of stimulus type on auditory 24 

responses there has been little investigation of the effects of stimulus parameters on AEPs in fishes, leaving it 25 

unclear what aspects of the stimulus the fish are responding to and also how the brain may be deciphering and 26 

combining inputs to drive these responses. 27 
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The current study investigated the effects of stimulus parameters on AEPs of goldfish, Carassius auratus. 1 

Goldfish are otophysan species possessing Weberian ossicles connecting the swim bladder to the inner ear, allowing 2 

relatively sensitive hearing across a broad range of frequencies (Bergeijk 1967; Higgs et al. 2006) and have become 3 

an important model for auditory studies (Fay 1988, Smith et al. 2006, Higgs and Radford 2013). We aimed to 4 

determine if varying auditory stimulus duration affected response latency — to better understand neural drivers 5 

behind evoked potentials in fish and also how frequency affects responses across different latencies.  With this 6 

combination of approaches, we have attempted to begin to understand how the fish brain integrates stimuli and offer 7 

suggestions for interpreting AEP results across laboratories. 8 

 9 

Methods 10 

Fish handling 11 

Goldfish (mean ± S.E. total length = 5.23 ± 0.10 cm) were purchased from a local commercial fish store 12 

and kept in freshwater aquaria filled with conditioned tap water and maintained at a temperature of 25.6° C. The 13 

aquaria were held in the Central Animal Facility at the University of Windsor, with the fish maintained in 14 

accordance with the protocols set by the Animal Care Committee, and their health inspected monthly by a local 15 

veterinarian. All trials were conducted in an experimental tank (see below) filled with conditioned tap water and 16 

separate from the holding facilities. Before experiments, fish were anaesthetized by being placed in a bath of 2-17 

phenoxyethanol (0.004 mol l-1), allowing the fish to be manipulated in the testing apparatus without movement. Use 18 

of 2-phenoxyethanol has not been evaluated for possible effects on fish sensory responses to our knowledge but 19 

since we are conducting all trial comparisons on anesthetized fish as repeated measures of threshold differences, we 20 

expect no differential effect of this anesthetic on our results.  All fish were still under anesthesia effects at the 21 

conclusion of each trial.  In vivo AEP measurements in response to varying stimulus durations were obtained for 30 22 

goldfish, and each fish was tested once.  23 

Auditory evoked potential testing  24 

The effects of the stimulus parameters being investigated were determined using AEPs, for which the 25 

experimental protocol was modified from Radford et al. (2012). Trials were conducted in a polyvinyl chloride 26 
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(PVC) tank, 1.11 m long with a diameter of 0.25 m. The AEP measurements were obtained in response to sound 1 

stimuli presented by an underwater speaker (UW-30, Lubell Labs Inc., www.lubell.com) which was placed 0.75 m 2 

away from the fish at the opposite end of the tank.  3 

For each trial, the anaesthetized fish was placed on a holding apparatus consisting of a piece of sponge cut 4 

lengthwise on top of a glass slide, which was adhered perpendicularly to a plastic pipette positioned within the tank 5 

by a micromanipulator. The fish was placed on the sponge, with a piece of netting used to fasten the fish to the 6 

apparatus. The holding apparatus was positioned within the tank using a micromanipulator and the fish was 7 

submerged until its head was approximately 7 cm under water. Before commencement of each day of trials, sound 8 

level was calibrated in the absence of fish by placing a hydrophone (Reson model LC-10; www.reson.com) in the 9 

position of the fish-holding apparatus and altering the output to ensure an equal output across frequencies.  10 

The auditory stimuli used for the trials were produced using SigGen (version 4.4) and BioSig (version 4.4) 11 

software (www.TDT.com), and were delivered to the underwater speaker using a Tucker-Davis Technologies (TDT) 12 

System 3 apparatus. Tone bursts with frequencies of 200, 500, 600, and 700 Hz, gated through a Hanning window, 13 

were delivered to each fish. For each frequency, the sound level of the tone burst was increased in 5 dB increments 14 

until threshold was reached, at which point the tone burst was presented at 5 dB and 10 dB above threshold and the 15 

AEPs recorded to examine the effects of suprathreshold sound levels. In the present research, auditory threshold was 16 

defined as the minimum sound level that elicited a detectable AEP response above the background level of brain 17 

activity, since visual methods provide the same thresholds as more complex analytical approaches (Mann et al. 18 

2001). Stainless-steel subdermal electrodes (Rochester ElectroMedical; www. Rochestermed.com) were used to 19 

gather the evoked potentials produced by the fish in response to the stimulus. The recording electrode was 20 

positioned immediately posterior to the perimeter of the cerebellum, with this position being equivalent to the 21 

location of the brainstem. Recording electrode placement was determined visually, as the structure of the goldfish 22 

skull was visible through the translucent fish skin. The reference electrode was placed in the dorsal surface of the 23 

snout region, and the ground electrode was placed under the body. For each frequency and sound level pairing, an 24 

average of 400 responses were collected, with 200 responses being collected from the stimulus presentation at 90 25 

degrees, and 200 responses being collected from the stimulus presentation at 270 degrees for the purpose of 26 

minimizing stimulus artifacts.  27 
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The effects of varying stimulus duration were examined by measuring AEP responses to three tone 1 

durations: 5 ms, 10 ms, or 20 ms (n = 10 for each duration). As 10 ms tones are often used in fish AEP studies 2 

(Wright et al. 2005; Smith et al. 2006; Radford et al. 2012; Higgs and Radford 2013), this duration was used as a 3 

control measurement. For each fish, the first tone frequency was played at 10 ms and a threshold measurement was 4 

taken as detailed above. Following this, the test duration (5, 10 or 20 ms) was played at the same frequency. This 5 

procedure continued for all frequencies remaining. The use of each fish as its own repeated measure control also 6 

accounted for possible difference in acoustic environment between fish since they came from unknown commercial 7 

provenance. The threshold values (Table 1) for the initial 10 ms stimulus and the test duration of interest were then 8 

used to determine the absolute threshold difference to account for individual sensitivity differences between 9 

individual fish. The effect of stimulus duration on latency was determined by measuring the latency of the response 10 

to the auditory stimuli, with latency being defined as the time, in milliseconds, elapsed between the onset of the 11 

acoustic stimulus to the onset of the AEP at 10 dB above threshold, as indicated by the largest declination 12 

identifiable from the background.  13 

Statistical analysis 14 

 Determination of both response latency and auditory threshold were completed visually (Brittan-Powell et 15 

al. 2002), based on graphical output generated in BioSig software. A subset of the data was analyzed by three blind 16 

observers to assess possible subjectivity in visual threshold measures. In all cases, thresholds were in agreement ± 5 17 

dB with no clear biases across stimulus frequencies or durations. The effects of duration and frequency on both 18 

latency and absolute threshold difference were determined through statistical analysis using SPSS (version 23, IBM 19 

SPSS Statistics, Chicago, IL) by performing two repeated measures analysis of variances (ANOVA). Significant 20 

effects were investigated further by conducting Tukey post hoc tests. A significance level of α = 0.05 was used for 21 

all tests conducted. 22 

Results 23 

There was a significant effect of both duration and frequency of tone bursts on AEP response latency, with 24 

no significant interaction between the two main effects (F6,78 = 1.53, ρ = 0.20). There was a significant between-25 

group difference for duration (Fig. 1; F2,26 = 18.0, ρ < 0.001), with Tukey post hoc analysis indicating latency was 26 
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significantly longer at 20 ms (9.50 ± 0.41 ms), compared to 5 ms (6.08 ± 0.41 ms, ρ <.001) and 10 ms (7.18 ± 0.43 1 

ms, ρ <0.002) and that latency at 10 ms was longer than at 5 ms (ρ = 0.18), but this did not reach statistical 2 

significance. A significant difference was also identified for frequency (Fig. 2; F3,78 =18.568, ρ <0.001), where a 3 

negative relationship was identified between frequency and latency. Latency at 200 Hz (8.86 ± 0.31 ms) was longer 4 

than that at 500 (8.03 ± 0.28), 600 (7.47 ± 0.28), and 700 Hz (6.00 ± 0.47 ms) and 700 Hz had a much shorter 5 

latency than all other frequencies. 6 

 The differential presentation of both tone duration and frequency also significantly affected absolute 7 

threshold difference between presentations. There was a significant between-group difference for duration (Table 1, 8 

Fig. 3; F2, 26 = 7.40, ρ =0.003) and Tukey post hoc analysis indicated that absolute threshold difference was 9 

significantly lower at the 10 ms (0.97 ± 0.56) duration, compared to 5 ms (3.75 ± 0.54, ρ =0 .004) and 20 ms (3.38 ± 10 

0.54, ρ = 0.013), with both 5 ms and 20 ms presentations resulting in an increase in threshold as compared to 10 ms.. 11 

Moreover, 5 ms and 20 ms were not significantly different from one another (ρ = 0.874). Additionally, a significant 12 

between-group difference was identified for frequency (Fig. 4; F3,78 = 5.62, ρ = 0.002), with the lowest mean 13 

difference (1.00 ± 0.37) at 700 Hz.  14 

In addition to this statistical analysis, response latency values were matched with the waveform of the 15 

signal. In doing this, it was determined for the 10 ms and 20 ms stimuli that the AEP response was coincident with a 16 

decrease in signal strength, due to the ramping up and down of the presented tone. Alternatively, the response for the 17 

5 ms stimulus came after stimulus cessation (Fig 5). 18 

Discussion 19 

 The major objective of the current research was to determine the effects that stimulus parameters, namely 20 

duration and frequency, have on the auditory evoked potentials of goldfish. Consistent with the original hypothesis, 21 

increasing the duration of auditory stimuli resulted in an increased latency of evoked potentials. If the fish were 22 

responding to the point of sound offset, as hypothesized, an increase in stimulus duration would increase the latency 23 

of response by the same duration. However, in this experiment, this one-to-one relationship was not seen. While the 24 

10 ms and 20 ms responses were coincident with a decrease in the strength of the signal, this was not seen for the 5 25 

ms stimulus whose average latency came after signal cessation, perhaps indicating a minimum time for acoustic 26 

stimulus processing.  In amphibians and many mammals, there are populations of duration-tuned neurons (DTN) in 27 
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mid-brain and higher areas that selectively encode different sound durations as a way to extract timing information 1 

about acoustic signals (Sayegh et al. 2011; Aubie et al. 2012). In fishes, the temporal structure of communication 2 

sounds is directly encoded in the auditory midbrain (reviewed by Bass et al. 2005) and can be modeled as a simple 3 

post-inhibitory rebound circuit that can directly encode stimulus duration in the 10-40 ms timeframe directly 4 

relevant for behavioural interactions (Large and Crawford 2002).  While the current technique cannot identify 5 

individual neurons in the duration-dependent circuitry, AEP is a whole brain response that likely also detects ear and 6 

auditory nerve inputs (Corwin et al. 1982) and will be influenced by the suite of neural drivers behind the response. 7 

 That we found the lowest threshold difference with our 10 ms test duration is, on one hand, not surprising 8 

since 10 ms was also our pre-test duration but it does point to the need for further investigation on stimulus effects 9 

on threshold. Many research groups use AEP to test auditory thresholds and it has been noted that there are large 10 

differences in threshold measures between groups, even within a single species (Higgs 2002; Ladich and Fay 2013), 11 

but there are no standards within the field for stimulus parameters. Some investigators (Hawkins 1981; Fay and 12 

Coombs 1983) have noted that, for behavioural trials, threshold increases with decreases in stimulus duration while 13 

others (Popper 1972) have noted little relation between stimulus duration and auditory threshold. The approximate 14 

10 dB difference in threshold between AEP and behavioural threshold at low frequencies has been attributed 15 

(Ladich and Fay 2013) to differences in signal duration between the two procedures with duration effects, when they 16 

occur, attributed to differences in central brain processing (Fay 1985). We found a U-shaped distribution of 17 

threshold differences but it would be interesting to see how this distribution might shift with different control tone 18 

durations.  Others (Kenyon et al. 1998) have pegged tone duration to the number of cycles present in the signal, 19 

thereby varying duration between frequencies, but a simple cycle dependence would not explain our current results. 20 

There were no interaction effects between latency and frequency in the current study so our duration effects were 21 

truly time-dependent. It may be that 10 ms is the “ideal” stimulus duration for a maximal AEP response but it also 22 

could be that the main driver behind these threshold differences is really the change in stimulus duration. 23 

Regardless, our results clearly point to more investigation of duration effects on auditory threshold for AEP 24 

measurements as we work to standardize approaches in this field. 25 

The decrease in response latency with increasing frequency found in the current study is supported by 26 

previous work in a range of teleosts (Kenyon et al. 1998; Ladich 1999; Wysocki and Ladich 2001; Higgs et al. 27 
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2003). It has been hypothesized that increased latency at lower frequencies could indicate stimulation of both 1 

auditory and lateral line hair cells, as the lateral line is preferentially responsive at lower frequencies (Engelmann et 2 

al. 2000). At 400 Hz and below then, both the hair cells in the inner ear as well as the lateral line may be stimulated 3 

(Higgs and Radford 2013), resulting in a longer processing time for low frequency auditory stimuli; since processing 4 

of one sensory pathway would hypothetically be easier and more rapid than multimodal processing. Future research 5 

needs to be completed to provide evidence for this hypothesis. For example, the same methodology and stimulus 6 

parameters employed in the current research could be replicated with the addition of lateral line ablation (Pohlmann 7 

et al. 2004; Higgs and Radford 2013). If lateral line stimulation is, in fact, involved at these lower frequencies, we 8 

would expect to see no effect of duration on response latency at low frequencies when it is ablated, causing the 9 

stimulus to be perceived as only auditory. The changes in latency with frequency could also be related to the 10 

reduced time window of  sound energy with increasing frequency (Kenyon et al. 1998), although if this were the 11 

sole driver of latency changes one would expect to see a more linear decrease in response latency with frequency 12 

than has been reported here and in past studies.  13 

The present research has thus demonstrated that stimulus duration and frequency play a crucial role in 14 

evoked potential latency and absolute threshold difference in goldfish. This signifies the importance of standardizing 15 

the testing parameters employed throughout research in fish audiology, as currently, there is no standard set of 16 

testing parameters being used in this field of research. Standardizing the conditions under which AEP recordings are 17 

taken, including stimulus parameters such as duration, will allow researchers to reliably compare results with one 18 

another. It is important to note however that changes seen at the AEP level, here and in previous studies, must be 19 

interpreted with caution when extrapolating to the physiological significance of these differences to fish in their 20 

natural environment. Sound stimuli used in lab-based physiological experiments are, by necessity, of shorter 21 

duration that the cacophony of sounds experience by fish in the wild.  Even though fish AEP can respond to short-22 

scale temporal dynamics in conspecific sounds (Wysocki and Ladich 2003), these sounds are presented in isolation, 23 

not the entire auditory scene to which it has been argued that fish evolved (Popper and Fay 1993; Fay and Popper 24 

2012).  25 
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 All applicable international, national, and/or institutional guidelines for the care and use of animals were 1 

followed. All procedures performed in studies involving animals were in accordance with the ethical standards of 2 

the institution at which the studies were conducted. 3 
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Table 1: Average absolute threshold values (± 1 S.E.) for each frequency at 10 ms control 

duration and each of three treatment durations.  

 
Frequency (Hz) 

Control Threshold 

(dB re 1µPa) 

Treatment 

Duration (ms) 

Treatment Threshold 

(dB re 1µPa) 

200 117.5 ± 3.35 5 120.5 ± 2.73 

500 112.5 ± 3.96 5 118 ± 3.09 

600 129.5 ± 3.02 5 134 ± 1.79 

700 126.5 ± 2.48 5 128.5 ± 1.83 

200 117 ± 3.51 10 118 ± 3.27 

500 117.5 ± 3.18 10 119.5 ± 2.83 

600 133.33 ± 1.93 10 134.44 ± 1.67 

700 128 ± 2.90 10 128 ± 2.90 

200 121.9 ± 2.59 20 127.5 ± 1.67 

500 121.5 ± 2.59 20 126.5 ± 3.34 

600 130.5 ± 2.63 20 133 ± 2.13 

700 128 ± 3.28 20 129 ± 3.00 

Table 1 Click here to download Table Table 1 Garabon  Higgs final
revision.docx
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Fig. 1. Mean latency (+ 1 S.E.) values for each stimulus duration. Latency of evoked potentials increased with 

increasing stimulus duration. Letters “a” and “b” indicate significantly different values. Latency was significantly 

shorter at 5ms (ρ <.001) and 10 ms (ρ =.002) compared to 20 ms. No significant differences in latency were seen 

between 5 and 10 ms (ρ =.176). 
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Fig. 2. Mean latency of evoked potentials in response to tone bursts of varying frequency including 200, 500, 600, 

and 700 Hz. Plot displays mean latency values for each frequency with the standard error of the mean.  
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Fig. 3. Auditory threshold difference (+ 1 S.E.)  in response to stimulus durations of 5, 10, and 20 ms. Mixed effects 

of duration on frequency were found. Significant relationships are indicated with letters “a” and “b”. There was no 

significant difference found between threshold at stimulus durations of 5 and 20 ms (ρ =.874). Threshold at 10 ms 

was found to be significantly lower than both 5 ms (ρ =.004) and 20 ms (ρ =.002). 
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Fig. 4. Auditory threshold difference in response to tone bursts of varying frequency including 200, 500, 600, and 

700 Hz. Plot displays mean threshold values for each frequency with the standard error of the mean.  
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Fig. 5: Stimulus traces for 500 Hz as received at the fish holder for 5 ms (a), 10 ms (b), and 20 ms (c) stimulus 

durations and corresponding suprathreshold AEP response traces (d-f) for each stimulus condition.  Arrow in a-c 

shows the mean location of response latency for each stimulus condition. 
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