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I. INTRODUCTION

Borsuk [ 3] has given interesting coaditions under which a certain
function space is separable (see Theorem 3.1). We give a proof for
Borsuk's Theorem here and we show how it can be used to establish a
useful theorem on homeomorphic convergence. We illustrate the
utility of the theorem on homeomorphic convergence by stating and
proving several of its consequences.

For example we show that the plane (EZ) does not contain uncount-
ably many pairwise disjoint contina each of which contains a simple
triod (Corollary 4.1). We prove that in an uncountable collection G
of pairwise disjoint simple closed curves in EZ2 nalmost all" elements
of G must be converged to homeomorphically '"from both sides' by
sequences of elements of G (see Theorem 4.3). The same technique
allows us to prove the nonexistence of uncountably many pairwise dis-
joint wild 2-spheres in E>.

Another interesting consequence of Borsuk's Theorem is Theorem
3.4 which shows that in each set G consisting of uncountably many com-
pact subsets of a metric space, some element of G is an element of
convergence. Proofs for this theorem do not often appear in the
literature, and, as far as the author knows, the proof given here does
not appear in the literature.

We wish to emphasize that all the proofs given in this report were
constructed by the author without reference to the literature, in fact
the author was unaware of the references until after the proofs were
given. We given reference at the end of the paper where proofs in the
literature can be compared with the proofs given here.

It is assumed throughout this paper that the reader is familiar
with the basic concepts in topology. Some theorems that are used in

support of this paper, but are not directly part of it, will be stated

without proof; however, the proofs can be found in the literature.




II. DEFINITIONS, NOTATION, AND
PRELIMINARY RESULTS

Definition: Let P be a metric space, and let Q be a separable metric

space, the function space m is defined as the set of all

continuous functions defined on P and having values in Q.
The metric topology for 7 is given in Theorem 3.1 to
follow.

Notation: Let(X, d) be a metric space, for xe X and ¢>o, Nd(x, €)= {

ye X:d(x,y)<es denotes as the ¢ -neighborhood of x in (X, d).

Definition: A sequence My, 1\/12, ————— of point sets in a metric space
converges homeomorphicaaly to a point set M if, for each

positive number ¢, there exists a positive integer K such
that if n >K there exists a homeomophism h from Mp onto M such
that p(x, hn(x)) <¢ for all xe M, .
Definition: Liet (X,;) be a sequence of point sets in a space S. The
set of all points x in S such that every open set containing x

intersects all but a finite number of the sets X is called

the limit inferior of (X, ) and is abbreviated !lim inf X "

or "lim X, !’ The set of all points y 1n 5 such that every
open set containing y intersects infinitely many sets X

is called the limit superior of (X ) and is abbreviated

""lim sup X, or 11lim X

Definition: A sequence (X,) of sets is said to converge to a set L

(abbreviated "lim Xp=L'") if lim sup Xp=L=lim inf Xp#¢.

Definition: A continuum is a compact connected metric space.

curve or Peano continuum.

Definition: A simple triod is a continuum that is the union of three

arcs AD, BD and CD such that D is the intersection of each

two of them. Somethimes we refer to a simple triod as a triod.




Definition: E" is defined as the Euclidean n-dimensional space.
Definition: For each positive integer n let s"= {(xl, X5 - - Xn+l)
1. 2 2
EE?+ x +x +—~-—+x2 =11 . A setS is called an
1 n+l J

n-sphere if S is homeomorphic to S™. If S is a 2-sphere
in Ez, we denote the bounded component of E3—S by Int

S and the other component by Ext S.




PRELIMINARY RESULTS

We state here several well known theorems. No proofs are given
here, but proofs can be found in some advanced topology texts.

Theorem 2.1: A metric space S is separable if and only if every un-

countable subset of S has a limit point.

Theorem 2. 2; A metric space is compact if and only if it is the con-

tinuous image of a Cantor set.

o
(OV)

Theorem Every compact metric space is separable.

™
o

Theorem Every subset of a separable metric space is separable.

Theorem 2.5: In a completely separable space, every uncountable subset

contains uncountably many limit points of itself.

Theorem 2. 6: In each uncountable separable metric space H there

exists an uncountable subset T of H such that H-T is
countable and every open set that interests T contains
uncountably many points of T.

Theorem 2. 7: In a metric space S, if p is a limit point of the set HCS,

then there exists a sequence of distinct points of H con-
verging to p.

Theorem 2. 8: If a continuous curve M contains no triod, then M is

either an arc, a point or a simple closed curve.

Theorem 2.9: Let S be a space having a countable basis. If G is a

collection of open sets covering a point set HCS, then some

countable subcollection of G covers H.




III. A THEOREM ON HOMEOMORPHIC CONVERGENCE

In this section we first identify a metric for the set w, then we
state and prove an interesting theorem due to Borsuk [ 3]. Theorem 3.3
is the central theorem of the paper. Apparently Burgess [4] first
proved this theorem, although others seemed to know of the theorem
in certain special cases (see[5] for example).

Theorem 3.4 is also an interesting consequence of Borsuk's
theorem. It shows what conclusions one is able to draw when the
disjoint compact sets are not mutually homeomorphic as in Theorem 3. 3.
Theorem 3.4 was probably first done by R. L. Moore [ 6] and doesn't
appear often in the usual topology texts.

Theorem 3.5 and 3.6 are more general statements of the results in
Theorem 3.3 and 3.4, respectively.

Theorem 3.1: The set S of all bounded functions from a compact

metric space P into a separable metric space (Q, pQ)
forms a metric space under the metric d defined as
follows: F y=1l u b, 3
ollows or fl’ fZeS, d(fl’fZ’ l1.u p {x),
fz(x)):xe P} .

Proof: Suppose d(f ,fz) =.0. Then l.uab.{pQ

(f

Q]

(€08t el = O |,

1

so it follows that pQ( l( x). f (x)) = 0 for all xe P. Thus fl(x) = fz(x) for
all xe P, since pQ is a metric for Q and therefore fl = fZ' The reverse
of this argument shows that fl = fZ implies d( Z)

Since Poy is a metric for Q, pQ(fl(x), fz(x) (f x), 1(x)) for all

xe P. Obviously 1l,u.b. { pQ

The triangle inequality follows from the following set of inequalities:

(£, (x), £, (x): %Pl &0 d(fl, £) = dff £ ).

alf, £,) + 4l 2,f3) = Labdo € ) Eojmenl s 1 ub e (0 (), f3(x)):xep} -
1.u. b, [P (x), £5(x)) + PQ( (v), f3(Y))3X:YEP} - 1-u-b-{PQ (£, (x), £,(x) +
o () £ (x) XePl 2 Luh feo (6 el g (el seB ) cal . 1)

Therefore d is a metric for S.




Theorem 3. 2: The metric space (w, d) is separable if P is compact,

Proof: Since every compact metric space is separable by Theorem
2.3, (P pp) is separable and thus has a countable basis U :{U, Ll eN}.
i
Also there is a countable set A :’ai:ie N} in Q such that A is dense in
@ .
(Q.r5)
Let = be the collection of all finite sets of positive integers

f
l

n ----n such that PcU n WU n, U----U n. Then T £ ¢ since

12 i)
P is compact and U is a cover for P, Also 2is countable.

1 2

12 % k} we define the collection{Wc, WS,

- } of disjoint sets as follows: Wi = Unl, Wi = Up

For each se 2, s :{n n,----.n

>

-1 .
_____ ; Ws = T ul (Uni). Let e be the collection of all functions ¢

o,
such that ¢(p)CA ari:i d(x) is constant over each W; Then T is countable.
Liet s = sLeJZTTs it follows that TTZiS a countable collection of bounded
functions. Thus it follows from Theorem 3.1 that ' = TUT S, is a metric
space. Furthermore from Theorem 2.4 it will follow that m is separable
once we show 7' is separable. We shall show that TTZiS a countable
dense subset of r'.

Let fem, we shall show the existence of a function Oe T such that 6
ig within ¢ of f for an arbitrarily small pesitive number €.

For each xeP, let G, be the set of all ye P such that pQ(f(x), f(y))< E:5- :
Then G is open is P, hence there exists an integer n(x) such that xe Un(x? GX.
Then there is a finite collection r = {n(xl), n(xz), —————— , n(x}t )} of integers
such that pcU U---UU . Thus rex

n(xy) n(x¢)

Since A is dense in Q, for each i there must be a point a;¢ A such that

(f(xi), ai) < €-3— . By definition of o, there exist a function B in Tss

o >

such that 6(x) = a; for each xe er .

LetxeP. Then x ¢ W' for some i.

T
: : { 6_ f <
Since WlCGXi , then er(f(xO), Jé}zl)) < 3 Alsop (I(Xo), e(xo)_ pQ(f(xo),
— € =
f ) ¥ o, Ul t8l )l <5tz = . ‘ i
Hence for each xe P, p(f(x), €(x)) < —% . Thusdif @) <eandie




Theorem 3. 3: If G is an uncountable collection of mutually home-

omorphic compact subsets of a separable metric
space (Sp), then some sequence of distinct sets of
G converges homeomorphically to some element of G.
Proof: Ilet G= {gq:qe 1. 11s uncountable} .
Let gae (G, and for each pel let h[3 be a homeomorphism of g onto g .
Let H = | h5: Be I} . Since G is uncountable, H must be uncountable.

{

Let F be the set of all continuous maps from g into S. Then it follows
a
from Theorem 3.2 that (F, d) is a separable metric space. Now H is
an uncountable subset of F; hence H has a limit point he H by Theorem
Z.1l. Therefore some sedquernce {hn} of distinct points of H converges
. _
to h. Define k, = heh;, . Obviously k, is a homeomorphisim of g
onto g when g is the image of g4 under the homeomorphism h. Consider
the sequence [g | of distinct points of G.
Let xo€ gy, then there exists an element y of g , such that xo=hp(y,)
a
. -1 =1
and it follows that p(k,(xo), x5) = p(heh "(x,), x,) = p(heh, " (h (v,)), h (yo))=
pP(h(y ), h (v5))-
Since {h11(' converges to h, for each positive numbere there exists a
positive integer K, such that if n>K p(h(y), hn(y)) <e for each yeg .
a
That is, plkp(x ), %o} =€ if 0 ~ K. IHence for cach xe 2 . p(k, (x), x)<e

ifn >k [Thus {gn} converges to g homeomorphically.

Theorem 3.4: If G is an uncountable collection of compact sets in

a separable metric space S, then some sequence of
elements of G converges to an element of G.
Proof: Let G:{g(l igel 1is uncountable} . By Theorem 2.2 for each
ac I, there exist a continuous map f(1 of a Cantor set C onto gy
Letw = { 6:0 is a continuous map from C into S}. It follows from
Theorem 3.2 that (m, d) is a separable metric space. K F =1 fq:ael f,
then F is an uncountable subset of 7; so F has a limit point { € F by

Theorem 2.1. Of course, then some sequence |f 1] of distinct points of

' n

F converges to fr’ Now consider the sequence{gn} and the set g € G.




Let y€g,.- Then there exist an element x, of C such that fr(xo) = Yo
Since %fn} converges to f. it follows that for each positive number ¢ there
exists an integer K such that f e Nj(f,.,¢) if n >K.

Let n >K. Thenp(f (x5), Vo) = P (fn(xo), £1(x0)) <¢; that is, £ (xo)e Np
(y,.¢) Since fn(xo)e g Ne(yo,€)Ngn £ &, and it follows from the definition
of limit inferior that y,e lim inf g,. Since y, was an arbitrary point of
gy it follows that ng lim int g .

Assume lim sup g, & g, since lim inf g, C lim sup g,, it follows
that lim sup g, # $, so there exists a point z in (lim sup g,)-g... Since

g, is closed, inf{p(z, X)) s3xce gr} # &, so we can choose a number ¢ such

that 0<e < inf { p(z,x):xegr}. Let H :U{Np(x : :Xigrll' Since,‘fn](

7 )

converges to f_, for this %there exist an integer K; such that if n>K;
£ No(f, e);that 1s, fn>K, plf (v, y) = plf, (=), f0x) < Z" for ally =
f.(x)egr where xeC . Therefore g ¢ H for all n = Kl" Clearly
Np(z,-j—l— JNVH = 6. Therefore if n>K, Np(z,%)ﬂ g, = 4. It follows that
Np(z,%) intersects at most a finite number of elements of {gn\ . ‘Fhis
implies z§ (lim sup g,) thus zd (lim sup g,)-gr. But this controdicts
our assumption.

Therefore (lim sup g _)C g, Since (lim sup g )C ng(lim inf gn),
and (lim inf g _)C(lim sup gn), it follows that (lim inf g ) = (lim sup g.) =
g+ Hence {gnx converges to g,

Theorem 3.5: If G is an uncountable collection of mutually home -

omorphic compact subsets of a separable metric
space (S,p), then there is a countable subset oF of G
such that if ge G-G™ then some sequence of elements
of G converges homeomorphically to g.
Proof: Let G = {ga:qe I Iis uncountable} . Let g ¢ G, and for each
Bel let hf3 be a homeomorphism of ga onto gB. Let H :{hﬁ: Bel i Since

G is uncountable, H must be uncountable. Let F be the set of all

continuous maps from g, into S. Then it follows from Theorem 3.2

that (F,d) is a separable metric space. Now H is an uncountable subset




of F. and by Theorem 2.4 H is separable, hence every uncountable sub-
set of H has a limit point and it will follow from Theorem 2.6 that there
exists an uncountable subset T of H such that H-T is countable and every
open set that intersects T contains uncountably many points of T.

let he T. Clearly h is limit point of T and also a limit point of H.
Therefore some sequence {hn} of distinct points of T converges to h by
Theorem 2.7. Define k = hohr_ll . Clearly k_ is a homeomorphism of
g, onto g where g is the image of B under the homeomorphism h.

By the same arpument as in the proats of Theorem 3,3, it is not
difficult to show that the sequence {gn = hn(ga)§ of distinct points of G
converges to g homeomorphically.

Let G = l[gr:gI ~ hr(ga) where heT } Then G'cG and G' is un-
countable since T is uncountable, furthermore G*=G-G'= {gr:gr:hr(ga)
where h . H»T} is countable since H-T is countable.

Since for each geG' there is some sequence {gnlj of distinct points
of G converging to g :h(ga) homeomorphically, G' is uncountable and

G-G'=G* is countable, the theorem follows.

Theorem 3.6: If G is an uncountable collection of compact sets in

a metric space S, then, except for at most a count-
able number of elements of G, each element of G is
the limit of some convergent sequence from G.
Proof: liet G = EgQ:QEI, I is uncountable lj By Theorem 2. 2 for each
a€ I, there exist a continuous map fa of a cantor set C onto g -
Let w:{@:@ is a continuous map fromC into S}I. It follows from
Theorem 3. 2 that (m, d) is a separable metric space.
It = { fa:ae I } , then F is an uncountable subset of m. Theorem 2.4
implies that F is separable; hence every uncountable subset of F has a
limit point. It follows from Theorem 2.6 that there exist an uncountable

subset T of F such that F-T is countable and every open set that intersects

T contains uncountable many points of T.

TetfeT. Clearly f is a limit point of 1T and also a limit point of E.
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Therefore some sequence {fn\S of distinct points of F converges to f.
By the same argument as in the proof of Theorem 3.4, it is not difficult
to show that the sequence ([gn = fn(C)ﬁ converge to g = £(C)

Thus for each geG' ={g.:g.. = £.(C) where fre T} there is some
sequence {gn = fn(C)} of distinct points of G which converges to g=£f(C).

Thus the Theorem follows since G' is uncountable and G-G!' = {gr:gr =

fr(C) where fre F—T} is countable.
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IV. APPLIGATIONS TO GONTINUA IN EZ

It has been known [ 5]for many years that there do not exist uncount-
ably many pairwise disjoint triods in EZ. We indicate below how to
establish this result using Theorem 3.3. An interesting consequence of
the theorem on triods is Corollary 4. 3 whichhas proven useful in resent
research in the topology of i (see Theorem 5. 4).

We prove (Theorem 4. 2) that in an uncountable collection G of dis-
joint simple closed curves in the plane not only must many elements
of G be limits of sequences from G coverging homeomorphically, but
G contains a countable collection G! such that each element of G-G!
is converged to homeomophically from both sides by elements of G.

It follows from Theorem 3. 3 that in any collection G of pairwise dis-
joint continua in EZ some sequence of G must converge homeomorphically
to an element of G. We were unable to establish the converse — if M
is a continuum such that there exists a sequence {Ml} of pairwise dis-
joint continua in EZ-M converging homeomorphically to M, then must
there exist uncountably many disjoint copies of M in EZ’? We later dis-
covered that this is an unsolved problem [4].

Theorein 4.1: There do not exist uncountably many mutually dis-

joint triods in EZ.
Note: We do not claim to have a rigorous proof for this theorem.
A better proof can be constructed using the axioms of the
topology of E2 but such a proof could be constructed using
the outline given below. For a rigorous proof see [5].
Proof: This proof is by contradiction. Suppose there exists a set
A consisting of uncountably many mutually disjoint triods in Fe Ieth-
{ Ta:qe I, I is uncountable). Clearly for arbitrary Ta" Tﬁe A, Tu and Tﬁ

are homeomorphic and compact. Hence A is an uncountable collection

of mutually homeomorphic compact subsets of the separable metric

space EZ. Then by Theorem 3.3 some sequence {T-l} of distinct sets




of A converges homeomorphically to some element T of A. For con-
venience we assume [ 7] T is the union of two perpendicular straight line

segrements bc and ad where d is the point of intersection (see Figure 1).

a' N

_ 1
Let ¢ = min|p(a,d),p(a,b),p(d, i)} A la
N = Np(a, = )N, = Np(b,= ) ; o
1 2 4& =2 '4 : D].
€
N3:—, Nplc, " ) and N.— Np(d,z).
N T antat
@,‘,L__. el s
.
0
Figure 1

Then there exists an integer K such that if n>K, there is a home-
omorphism h :T,—*T such that d(x, h(x)) <% forall xin T... Tetd
be an integer larger than K, and let T; consist of the three arcs ald! b!d!
and c'd' where each pair intersects only at d'. Then there exist a home-
omorphism hj:T;{—T such that d(x, h(x))<€z for all x in T..

Since h; is a homeomorphism, it maps end points of T; onto the
end points of T. We assume without loss in generality that h.(a') =
a, hy(b')=b h.(c') =c and h;(d') = d, then clearly a'eN, b'e NZ’ c'e N,
and d'e N.

Obviously, adudbucd divides N-T into three disjoint open sets Dl’
D‘2 and D3 as labeled in the picture. By hypothesis T and T; are dis-

joint so that d'¢ T,

Supposed d'eD;. Let M :U{Np (X’i—}- ):xe dc} -T.

Since h; is a homeomorphism, hj(c') = c, h;(d') = d, hi(d‘c') = dc,
and furthermore d(x, hi(x)) <-€Z for all x in the arc d'c'. From this and

the fact that d'c'NT = ¢ we see that d'c'CM, since xe Np (hi(x), z— ) and

hi(x)edc . Let Ml = M—Dl, then it is obvious that D; and 1\/[1 are two

mutually separated sets in M, d'e Dl’ and c'e Ml.

But this is impossible since d'c' is a connected subset of Dlu Ml




13

such that d'c! intersects both Dl and M. This contradiction shows that

d'QDl.
By a similar argument, we see that d'¢ D2 and d's D3:
Thus, d'¢ N-T. This is clearly impossible since d'eN=(N f\T)UD1
1
UDZUD3 and di¢ T.

Corollary 4.1: If a continuum M in EZ contains a triod, then there

do not exist uncountably many disjoint copies of M
2
in B .
Proof: This result follows directly from Theorem 4. 1.

Corollary 4.2: If a nondegenerate continuous curve M is neither an

arc nor a simple closed curve, then there do not
exist uncountable many copies of M in the plane.
Proof: If a nondegenerate continuous curve is neither an arc nor
a simple closed curve it must contain a triod (see Theorem 2.8). Thus
Corollary 4. 2 follows from Corollary 4.1 above.

Corollary 4. 3: If G is an uncountable set of mutually disjoint

nondegenerate continuous curves in EZ, then all
but countably many curves of G are either arcs or
simple closed curves.

Definition:  Let J be a simple closed curve in EZ. The interior of J,
denoted by I(J), is the bounded component of EZ-J. The
exterior E(J) is EZ—(J UT(D).

Definifion: & simple closed curve J will have property Q. relative to an
uncountable set G of simple closed curve if there exists a
simple closed curve J G such that
(1) JoCE(J)

2 1 el

(3) There exist a homeomorphism f such that £(J;)=J and
p (f(x), x) = il_ tor all xcJ ;.

Furthermore a set G' of simple closed curves will have

property Q; relative to an uncountable set G of simple

closed curves if for every element JeG', J has property Qi
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relative to G. A simple closed curve J is said to have
property P relative to G if J has the properties as in Theorem
4.2 which follows. Furthermore a subset G, of G is said

to have property P relative to G if for each JeG, J has
property P relatives to G.

Theorem 4.2: If G is an uncountable collection of disjoint simple

closed curves {JQS in EZ, then there exists an
element J of G and two sequences {Jiﬁ and{Ji}of
elements of G such that:

(1) gJi} converges homeomorphically to J,

(2) ;J” converges homeomorphically to J,

(3) jiCI(J') for each i, and

(4) JICE(J) for each i.

Proof: As in previous proofs it can be shown that there is an
uncountable subset G! of G such that G-G!' is countable and for each ge G'
there exists a sequence {gi} from G converging homeomorphically to g.

Since for every element J in G' there exists a sequence that converges
to J homeomorphically, we can let G':GIU GE where GI :} J: there exists
a sequence{Jil‘ converges to J such that J;e I(J)S and GE: {J : there exists
a sequence [Ji’; converges to J such that J;e E(J)}} .

Since G' is uncountable, one of GI and GE must be uncountable.
We assume without loss in generality that GI is uncountable.

Let Jo€ GI; and let {JI ﬁbe a sequence of elements of Gl converging to
J, such that JiC I(Jo) for each &. Then J C E(JiI yfor cach i. For each i,
let f; be 2 homeomorphism of J% onto Jo satisfying definition of home-

omorphic convergence.

There exists an integer N; such that i>N; implies f; moves no point of

J; more than a distance 1. Hence i > N1 implies J:i[ has property Q1
i
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I ‘
relative to G'. Then it follows from Theorem 2.9 and the argument above
that there exists at most a countable subset of GI that doesn't have property

Q, relative to cl.

LetG' be the set of all elements J of GI

such that J doesn?t have
property Ql relative to GI. Then Gq is countable and G;= G G is un-
countable.

Similarly we examine G; relative to property QZ. There is a sub-
set GZ of G1 such that GZ is uncountable Gl —G2 is countable, and each
element of G‘2 has property QZ relative to Gl., For each i, define an un-
countable collection Gri of simple closed curves such that (1) G; has property
Qi yelative to Gy 1, (6) G C Gy g . (3)G1‘Gi__l is countable.

Let G, = 1/31 Cri . Since we take out at most a countable number of
elements from G, at each stage, it is obvious that G, = G} - [G’ZUG%U e
is not empty and, moreover, it is uncountable.

Eor every Je G, e GL and J has property Q; relative to G for every i.
It is not difficult to show that J has property P relative to G. Therefore
the uncountable subset G, has property P relative to G.

Remark: In the pr oof of above theorem, if GE is also uncountable then we
can use the same technique to prove that there exist an uncountable sub-

set G(') of GE such that G} has property P relative to G and GE-G'O is count-
able. In case GE is countable, let GZ) = &. Then the set GOUG:) is un-
countable and has property P relative to G. Furthermore G-(GOU Gz))

is countable, so we can state a stronger theorem than Theorem 4.2 as

follows:

Theorem 4.3: If [J'a} is an uncountable collection G of disjoint simple

2 :
closed curves in E~, then there exist a uncountable

subset G, of G such that G_ has property P relative to
o fe) p P Y

G and G—GO is countable.
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V. AN APPLICATION TO TAME 2-SPHERES IN E3

We indicate here one more application of our main theorem. A 2-

3
sphere S in E~ is said to be tamely embedded in E3 (or tame in E3) if

and only if there is a homeomorphism h of E3 onto itself such that h(S)
2-spheres are known to exist in E3,

Bing [ 2] has given a characterization of tame 2-spheres which we
state below as Theorem 5.1. The proof is apparently difficult and has
not been studies by the author. Based on Theorem 5.1 we show that each
collection of disjoint wild 2-spheres is at most countable.

Theorem 5.1: (Bing[2]) A 2-sphere S in E3 is tame in E3 if for
[

5 :
each component V of E -S there exists a sequence lsi

of 2-sphere in V converging homeomorphically to S.
Note: Since there are only two components Int S and Ext S of E3-S
the same technique as given in the proof of Theorem 4.2 can
be used to prove the following theorem.

Theorem 5.2: If G is an uncountable collection of disjoint 2-spheres

in E3, then there exists an uncountable subset G of G
such that for every Se G, there exist two sequence
{Siﬁ and [Sii% of elements of G such that :
(1) {Si} and fSi\, both converges homeomorphically
to S,
(2) S.CIntS, and s'ic Ext S.
Furthermore G-Gg is countable.
wild 2-spheres in E3. Then it follows from Theorem 5.2 and Theorem

5.1 that uncountably many 2-sphere in G are tame. This contradiction

gives us the following:
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Theorem 5.3: There do not exist uncountably many disjoint wild

2-sphere in E .

Remotk: In Ea, let P :1pt:t€[ -1, 1]11 be the collection of all planes that
are parallel to xy-plane and let S be a 2-sphere contained in the union of
the planes from Z =1 to Z = -1. Suppose for every P ¢ P, Mt: ptﬂS is
a locally connected continuum. Then it is obvious that for each te (-1, 1)
M, is neither a point, nor an arc. Let G= th:Mt is not a simple closed
curve and t £ -1, 1} . Suppose G is uncountable. Then it follows from
Theorem 2.8 that for each M€ G, there is a triod Tt eMt. L.et H= {Tt : Tt
C My, Mte G}. Then H is an uncountable collection of pairwise disjoint
triods in S. If we remove one point p from the intersection of z=1 with

S, then 5- {p\) is homeomorphic to the plane E , but this contradicts the

2
fact that there doesn't exist uncountable many triods in E”. This
contradiction gives us the following:

S5 , - .
Theorem 5.4: In K , let P o { pt:te [-1,1]} be the collection of all

planes that are parallel to xy-plane and let S be a
2-sphere that is contained inp;. If for every
pie P My =p{NS is a locally connected continuum, then

all but countable number of M; are simple closed

curves.




(®p

18
REFERENCES

3
Bing, R.H. E~ does not contain uncountably many mutually ex-
clusive wild surfaces. Bull. Amer. Math. Soc. (Ab-
stract 63-801t) 63:404, 1957.

Bing, R.H. Conditions for a 2-sphere to be tame in E3, Fund.
Math., 4%:105-139. 1959,

Borsuk, K. Sur les re'tractes, Fund. Math., 17:152-170, 1931.

Burgess, C.E. Collections and sequences of continua in the plane. II
Pacific J. Math. 11:447-454. 1961.

Moore, R.L. Concerning triods in the plane and junction points
of plane continua, Proc, Nat. Acad. Sci. 14:85-88., 1928.

Moore, R.L. Foundations of point set Theory, Amer. Math. Soc.
Colloguium Publications, 13. 1962,

Schoenflies, A. Die Entwicklung der Lehre von dem Punktmannig-
faltigkeiten, II Teil, Leipzig, B.G. Teubner, 1908, 10+33lpp.




19

VITA
Frank J.S. Wang
Candidate for the Degree of
MASTER OF SCIENCE

Report: A Theorem on Homeomorphic Convergence and Some Applications

Major Field: Mathematics
Biographical Information:

Personal Data: Born August 16, 1943 in Szuchuan, China.

Education: Graduate of Chian-Sow High School, Taipei, Taiwan
in June 1960. B.S. in Forestry from National Taiwan University;
Taipei, Taiwan, Republic of China in June 1964.




	A Theorem on Homeomorphic Convergence and Some Applications
	Recommended Citation

	tmp.1505499975.pdf.ReKa_

