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ABSTRACT

A theoretical investigation of biaxially loaded wide
flange colums with piastic yielding in the section is carried
out in this thesis, Computer programs are developed to perfornm
the calculations. The effects of residual stresses und warping
stresses are neglected but modifications to the procedure are
sugrgested in order that these effects might be included in a
further analysis. The theoretical results obtaiuved are com-
pared with experimental results and with the results of other

theories.
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Chapter 1 - Introduction

1.1 Object and Scope

A considerable amount of work has apre=sred in recent vears
concerning the behavior of columns subjected to moments aprlied
about one princinal axis of the cross section., This arrroximates
the tvre of loading which woulﬁ occcur in rlaneframes. The studv
of snch heam-column behavior presents a formidable problem because
of the necessitv of considering inelastic action. Buildines are
of a necessity thrce dimensional, hut are normally analyzed as a
serles of plane frames. However, interaction between planes often
results in some members being acted upon by loads from more than
one plane., For example, corner columns of such frames might well

- be subJected to biaxial moment, 1. e., a moment about each of
the principal axes of the cross sectlon, Since little research
has been done on the behavior of columns loaded in such a manner,
particularly when inelastic éctlon occurs, the object of this
research l1ls to pregent an analyvsis to studv bilaxiallv loaded wide
flange beam colummns. This analvsis is based, to a lorpe extent, on
previous work by Scott (19),

The larsge amount of numerlcal work occurring in such an
an%lvsis necesgitated tre Aevelopement of computer proerams to
rerform this numeriéal work., The score of the studv was limited
to the conslideration of columms with equal end moments, these
enval end moments causing only single curvature of the columm,

Tn his studv of solid, rectaneular sections, Scott (19) comsidereAd

dovble curvature and columns with moments applled onlv at one end.
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Time did not permit this to be dome for the wide flange sectionm,

which was the section used throughout the analysis,

o 1.2 General Comments

The expression "beam-columm" refers to a member which is
simultaneously subjected to an axlal load and bending moments,
The bending moments may result from eccentricities of the axial
load or from transverse loading. As the bending moment approaches
zero, tﬁe member tends to become a centrally loaded columm and j
when the axlal force approaches zero, the problem becomes that of
a beam,

If the eccentrically loaded column were to remain elastic, its

behavlor would be represented by a load-deflection curve, which

becomes asymntotic to the Euler load (Fig. 1.1), when the Euler

II2 EI
load 1is glven by Pe = 12
and ~ Pe = Euler Toad
% = Modulus of Elasticity for the column
material
T = Moment of Inmertia for the column

cross section
L = effective column length

However, this behavior 1s lmpossible since the column becomes
inelastic at a value of the load less than P and the result is

a load-deflection curve which is simllar to that shown in Fig 1.2,
The collapsé load represented by this curve is mormally some what

less than the Euler load. The reason for this reduction in load
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1s easlly explained, ﬁAs the load 1is increased beyond initial
yielding, plastification progresses along and across the column,
thereby reducing the columns resistance to further loading. In
Fig. 1.2 the portion of the curve from O to A represents the column
behavior when the stresses are stlll elastic. The portion from
A to R represents the range of partial vielding. Finally, when
the curve reaches point B, a further increase in load becomes
impossible because the internal stiffness of the column is Just
enough to resist the applied load and moment., It is evident that
this tvre of faillure occurs bv virtue of excessive bending in
the plane of tre apnlied moment. |

If the member is subjected to bending about the stronger of
its two principal akes, and if no lateral support is provided,
the column mav twist and bend out of the plane of loading and
fallure occurs due to lateral-torsional buckling. This has the
effect of reducing the collapse load from that shown in Fig, 1.2,

The behavior of the blaxially loaded column 1s simllar to
that of Fig. 1.2. In this case, however, the determination of
the deflection plotted in this figure becomes more complex than
for the uniaxially loaded columm and, as a result, the determina-
tion of the collapse load also becomes more complex. This is due
to the fact that three interdependent displacements of the cédlumn
cross section must be conslﬁered. These are lateral displacements
in the‘two directions and a rotation of the section sbout its
center of twist,

1.2 Previous Investigations

The investigation of the beam column problem began with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i -

single axis bending and the early works of von Karaman, Ros
and Brummer, Chiwulla, Westergaard and Osgood, JTesek and others,
have been reviewed quite thorouéhly bv Bleich (3). The works of
Newmark (15), Ketter, Kaminsky and Beedle (11), Huber and Ketter (10),
E1l1s (6,7) and Ojalvo (16) and Bijlaard (1) have been summarized
by Scott (19).
Biaxial bending is a much more complicated problem than
single axis bending because three interdependent displacements are
involved, 1. e, two lateral displacements and a twisting displace-
ment. Birmstiel and Michalos (2) have presented an analysis
of blaxially loaded wide flange columns, In their analysis, the
;’Column is divided into a number of panel lengths. Deformations
 at these panel ends are assumed and values of the intermnal moments
are computed. These intermal moments are compared with theextermal
applied moments, If the comparison is favorable, the correct
deformations were assumed.. If the comparison i1s not favorable,
the deformations must be adjusted., Intermal Moments and forces
are found by dividing the cross sectlion into a number of elements
by a rectangular grid, determining the strain on each element,
and summing the results over all the elements of the cross sectionm.
By assuming increasing values of the second derivatives of the
displacements, a curve of load versus deflection is obtained,
which leads directlv to the collapse load of the column. The
procedure used is probablv the most exact of anv presented to
date, Only columns symmetric about the mid height are considered
in the paper. The results obtained from an analysis of a 12 WF79
column in their paper were comvared with the results from an

analysis of the same colummn using the method presented in this
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- study and agreement was found to be very good.
Sharma (20) has presented an aprroximate method for determining
the ultimate load of columms subjected to bilaxial bending caused
by an eccentrically applied load, the eccentricities at each end
being equal. The procedure is based on the assumptioﬁ that the
lateral and twisting displacements vary sinusoidally along the column
At midheight, a value of the second derivative of ome of the
lateral displacements 1s specified and equilibrium between inter-
nal and extermal forces and wmoments 1s established., Knowing the
disrlacement at midheight thus determines the defected shape of
the column., Bv incrementing the snecified second derivativé,
a load-deflection curve 1s obtained. In contrast to Birmstiel
and Michalos, who cdnsidered the effect of vielding of the
cross section on the position of the center of twist, Sharma
assumes that the location of the center of twist remainsfixed.
In his study he founﬁ the warping strains to be quite small in
comparison with the strains due to bending and thrust, He tried
the procedure neglecting the effects of twisting and obtained
loads somewhat higher than before, as was expected, The error
resulting fromvneglecting twist was found to increase somewhat
with increasing slemdermess but never exceeded 8 per cent,
Considerahle experimental and analvtical work has been carrled
out in Cermany and Russia on the bilaxial loading of steel wide
flange columms, Galémbos (8) has presented a summary of the
result of two papers, one bv the Germans K. KA0ppel and E, Wirkelman (13
and the other bv Chubkin (5), 2 Russian. The results of the tests

hv Klomnrel and Winkelman were used by the author to check the
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analysls presented in this study. The report by the Germans
contains the results of 7?4 tests on rolled steel wide-flange
columns and 17 tests on rolled steel channel columms, An eccen-
trically placed axial load was applied to the columns and the
columns were tested to failure. The eccentricities were equal

at each end, The members were rinned at the ends and restrained
against warping. The report also analyses the results in the light
of current German buckling sprecifications and developes a
semi-emperical design formula and an analalytical load-deformation
analysis. The report by Chubkin contailns the results of tests

on 281 steel members tested with various types of eccentricity
(axial, uniéxial, blaxial) and end conditions (warping restrained
and warping free). GalambOs has compared the results of the two

tests with the CRC Interaction Equation
-,—38 + Pex o+ Pey = /.0
° SxTy (1~ P/R,,.) 5.30?7(1-P/P,.,)
This equationis5.21, CRC Guide. The formula, according to the

tabulation presented by Galambos, i1s conservative, For each
set of X and Y eccentricities, the German paper (13) gave two
values of ultimate load., Galambos used the lower of the two
for his comparison and was alwavs conservative,

The problem of torsionzal buckling of thin walled columns
has been considered by several writers, Renton (18) has pre-
sented a paper which gilves a general solution of the equations
for the torsional flexural buckling of struts. Expressions for
the end conditions are found, and thelr application to the buckling
of frameworks described, The analysis 1s for elastic failure only.

Chajes and Winter (4) present a simple method of calculating the
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elastic torsional-flexural buckling load of centrally loaded,

thin walled columms with singly symmetric sections. An inter-
action type of equation between the torsional and flexural
buckling loads 1s developed and used to predict the fallure loads.

The effect of residual stresses on the strength of beam-columns
has been considered by different resesarchers, Galamtos (9),
preserits a set of moment-curvature curves which show the effect
of neglecting residual stresses. Sharma (20) also considers
residual stresses in his analvsis. He concludes that the
residual stress effect is relatively insignificant.

The rrocedure used in this thesls is based on an analvsis
given by Scott (19), who considered biaxially loaded columns of
s0lid rectangular cross section. The procedure used and the
modifications necessary for wide-flange cross sections are glven

in the next chanter.
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Chapter 11 - Theoretical Solutiom
2.1 Description of the Problem
The biaxially loaded columm under investigation (Fig. 2.1)
is of length L and simply supported at each end, 1. e., displace-
ments are zero but rotations are vermitted about the x and y axes.
The bending 1s such that the axial load, P , is applied to the
column and then end moments abhout the x and vy axes are incrensed
simultaneously to collanse.  In this study, moments are desiecnated
as M¥ opr MY where the surerscrint indicates the axes about which
thev act, S bscrirts are used £o designate vosition of the
moment. For examnle, MXa is the moment about the x exis at point A
in Fig, 2.1. To further define the loading, the ratio of the
x-moment to yv-moment at the ends of the columm is desionated as ¥
and a constantp 33 defined as the ratio of the x-moment at B to
the x-moment at A, The ratios ¥ and £ are considered to remain
constant throughout the loading. As noted previously, only
values of B =/ are considered in this study although the method.
‘will work for any £B . |
A wlde flange section 1s used throughout this investigation
(Fig. 2.2). The half depth of the cross section less the thickness
of the flanges 1s taken as D, the half wldth as K4 D, the flange
thickness as ¥, D and the web thickness as K3 P , The x and y
axes are orlentated as shown‘in Fig, 2.1,

2.2 Method of Solution

The analysis presented herein involves the determination of
moment~Aeflection curves such as the one shown in Fig., 2.8. The
ordinate of the curve mav be any of the end moments since all

are related bv B and Y . The abscissamav be anvy deflectionm,
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but in this studv end rotations are used. For a given column,
F), P, and ¥ are svmecified and the end moments increased
ﬁﬁtil the peak moment on the moment-deflection curve is obtalned,
A typlecal point on this curve is found from the column deflection
curve which 1s the shape a colummn will take if the load and
deformation at a point are specified, A numerical integration
procedure presented by McVinnie (16) is used to develop the
column deflection curve, By consideration of many specific pro-
blems interaction curves for the blaxially loaded colummn can be

developed.

2.3 Assumptions
| In this studv, the following assumptions are made:

1) Deflections and rotations are small in accordance with small

| deflection theory.

2) Deflections occur in the x and y direction only, no twisting
of the columm 1is 2llowed. In section 2,5.,4 a method is suggested
whereby the nrocedure can be modified to include the effects
 of twisting.

3) Plane sections remalwn plane after bending.

4) The material 1s mild structural steel which is assumed to
have an.elastic, perfectly plastic, stress-strain curve
(Fig. 2.3). It is further assumed that the teunsion and

compression stress-strain curves are identical. This curve

1s typical of mlld steels, provided that strains no greater
than about ten times the yield strain are considered.

5) No unloading occurs in yielded portions of the column,
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6) Residual stresses are neglected., Section 2.5.3 shows how the
procedure can be modified to include residual stresses.

?) Members are originally straight and prismatic,

8) Axial shortening of the column is neglected.

Q) The effect of shear on the bending resistance of the column
is neglécted. Except for assumptions 2 and 6, the above
assumptions are standard to most previous column investigations.
Previous research into bilax’ally loaded columms (20) has
shown assumptions 2 and 6 to be reasonable,

2.4 Colummn Integration

2.4,1 Governing Differential Ecuations

For the biaxiallyvy loaded beam colummns, the displacements.
of the cross section at any point along the column are defined
by the lateral disvlacements of the shear centre in the x and y
directions, T and ¥V resnectivel§, and by the rotation of the
section about its shear centre. Differential equationsof equib-
brium for this problem have been derived by Timoshenko and Gere (21).
Since the effects of twisting are not 1n1t1ally included in this

analysis, the governing differential equations reduce to,

ng‘%%" Pa +cz +c, =0 - (2.1)
B* 94 + P& * GZ *Cs-0 (2.2)
where B>, 87 = bending stiffmness about the X and vy axes
>3 = co~ordinate along the mecmber
€i5Cs, C5,C 4 = constants of integration

For tre elastic case, where the bending stiffnesses are
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independent and constant, Eos, 2,1 and 2,2 are independent and
define the behavior of the columm in the v - z and x - z planes
respectivelv, However, after inelastic action begins, the bending
stiffnesses depend unon the extent and position of yielded material
which in turn is dependent upon the axial load, applied moments,
and the lateral displacememnts. As a result, Egs 2.1 and 2.2 are
couplel thru these stiffmnesses and U and V¥ must be determined
simultaneously using a numerical integration procedure.
2.,4.2 Numerical Integration Procedure

A typlcal element of length "a" of the column deflection
curve is shown in Fig. 2.4, The x and v displacements at i are
denoted by uy; and v; respectively and those ati+1 by ugyiand vy .
A projection of the element in Fig. 2.4 onto the vz plane is shown
in Fig. 2.5 (a). In this figure, O end ez,are the slopes of the
column deflection curve at 1 and 1+1 respectivelv, yr”is the
change in slope between 1 and 11 and S, 1is the deflection of if!
from the tangent to the column deflection curve at 1, Assuming
that the projection of the element onto the v-z plane 1s a flat

circular arc, S, 1is given by

Sy = £ ny t2,3)
since Q/’c is a small angle

Tn Y= Y¥ zag? f \
and Sy = %‘4 A% (2.4)

“where ¢‘:‘_‘ 1s the x  axls curvature at 1

From geometry, the defledtion at &1 in the y direction 1is

/():..*’ =/U-A. .’.qmex‘ - SVMQZ‘_’ (205)
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and the slope of the deflection curve at 4 ;1 is
e’f‘ﬁ = 0%, - ‘Vx (2.6)
By considering the projection of the element onto the x-z plane,

Fig. 2.5 (b), it can be shown that

Az*l=ﬂg+aM93‘—ngel‘é‘ (207)
o, =% -7 (2.8)
Substituting for Sv , /™, S« and W7 and making the

assumption that eﬁﬁ and e?tare small angles, the equations for the
dlsplacements and rotations at 1+1 in terms of those at 1 are

written as

- . x. a? , X
Wip =M rae’ - 27 g

2 c (2.9)
/u/;ﬂ?’“i tae’ - ?.‘2¢:3 | (2,10)
o, =0% —agk (2.11)
e?+,=9dd““¢?‘. (2.12)

At this point 1t is convenient to introduce certain quantities
which are used to put Egq. 2.9 to 2,12 into dimensionless form,

These aouantities are

Py =  yield load =EEy Ac
X x
MY = yie1d moment=E L &y
E = Young's Modulus for the "aterial
Ac = cross sectional area = 2(K3+2 KiKy) D?

¢§ = yield curvature = Ey
(1 +K)D

TX = ExD% + 4K K ()4 gg)zp‘*

ey =% V& a,
/+Ky

l-x
/zz:=' radius of gyvration = ;;—*
[

where E%yis the vield strain of the material and e;;}is the

~ X
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rotation caused by =2 moment of magnitude Mxv» acting dt one end
of a simply supported beam of length 7T_fZX/4}E;“ . Using these

quantities, Egs. 2.9 to 2,12 are written in dimensionless form as

. X.
Mgt M<,oa T V& o _ €&yray L 2 (2.1
Ap = Bt D3Ik, AJ‘—'é‘;" 2 (P UFKy) ¢>‘>, 3)
4 ‘
: /&5 =% 21 @5 (2.14)
Miyy  Ma 2T fEy ~ _6;1(2) > 2.
x. .
%, 0% _ 3 (%) Ve, P (2.15)
-—é_;('—'—- @xy A ..flx ’3,
4! 9, A (2.16)
e%n X 3 ay Vs Z2X
= x

It should be noted that the nanel length "a" is now expressed in
terms of D,
At any point on a column deflection curve (Fig. 2.4)
/N&~7
MT = P

:P/{,(,

To construct the curve, the displacements (including rotations)

are speclfied at a point such as B, the moments calculated, and

the curvatures found by the procedure given in Section 2,5.
Deflections and rotations at the next panel palnt are calculated
‘using Eqs. 2,13 to 2,16, where the subscript "i" corresponds to
pednt R, Once the deflections at 1+1 are found, this point becomes
the peint 1 and the procedure 1ls repeated to find the deflections

at the next panel point. This vrocess 1s continued until the
desired column length is reached., The accuracy of the deflections
at 441 1s increased by first obtalning the deflections at 1+1
asgumine that the curvatures at i are constant from 1 to i+1

Using these deflectlons at i1+1 , curvatures at this point are
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determined and a second set of deflections at i1+1 calculated,
using the average of the curvatures at 1 and 141 .,
The nart of the column deflection curve (Fig. 2.4) between
A and P represents the deflected shape ofthe columm shown in
Fig, 2.1 provided that the moments at A and B in both figures are
, the same, To obtalin columm deflection curves that are readily
usable 1iIn this study requires a proper selection of initial
conditions., For columns having equal moments about the x axis
and equal moments about the y axis ( g=/ ), the point C,
mid-way on the column, is selected to have zero ©7%F and GZ and
a combination of displacements, u and v. Because of symmetry,
only half the column length need be considered for these particuylar

boundarv conditions, For a specified v, , uyis found such that

c
the combination would give a moment ratio at A equal to &
if the columm were to remain elastic. The resulting column
deflectiq? curve 1g as shown in Fig, 2.4, If thre calculated
ratio,g;é > 1s emal to the srecified 3/ , Plus or minus an
allownahle amoimt of error, a nermissiltle end moment has been
determined and one point on the moment deflection curve obtained.
Tf the calculated ratio is not ecusl to 5/, prlus or minus the |
allowable amownt of error, u, 1s corrected and a mew column
deflectlon curve found,

The specified v, 1s incremented by trial and error so that
sufficient points on the moment-deflection curve are obtained.
Corrections to 1, are explained using the curve shown in Fig, 2.6.

The problem is to find a value of u, which, when comblned with ve ,

will give a moment ratio suffilcliently close to the specified ratio,
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¥ . This 1is accomplished by approximating the curve by a series
of secants. Initlally the point a omn the curve 1s calculated
using the value of u, obtained from elastic theory. A new point
d 1s calculated from a displacement e, which 1s found by extending
the‘secant 0 a until 1t intersects the value ¥ at point Ce.
If necessarv, a third approximation 1s made using the extended
gsecant ad which results in displacement ucaand the point f on the
curve., Thils vprocess 1is répeated until the desired accuracy 1is
reached or until the slope of the secant becomes negatlve, a
negative slorne indicating that the curve has reached a maximum
moment ratio below the value ¥ . TIn tre latter case, it is
evident that, for the smecified VvV, , mo valve of Ye con be found
for X . ; trerefore, Ve must be decreased, It shonld be noted
that in many cases the first apvroximation to Vg resulted in =
moment ratio sufficiently close to ¥ .

In studying columms with moments @t oneend only ( F =0 ),

the point B is selected to have zero u and v displacements and a
combination of rotations ©5 and ©% . Since there 1s no
symmetry,“the entire length of the columm must be considered.
The integration 1is started at point B and 9?3 andegplay the same
role as vgand u, for the case B =/. Because of a shortapge of
time, no columms with B=0or with 8 of other values were stundied
although this would he quite simple to 4o bv making.a proper

choice of initial conditlons.
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2,5 Load - Moment - Curvature Bé;atﬁonsh;n

2.5, General Procsedure

The nrocedure given in section 2,4 reouires that a relation-
shin between moments and curvatures be determined for a comstant
axilal load and specifilc cross section., This relationship can be
represented by the curves shown in Figs. 2.9 and 2,10, Each of
the curves of Fig. 2,9 represents the variation of M with ¢x,
for constant values of 999wh11e‘those of Fig. 2.10 represent
the variation of MY with ¢9for constant values of & . The develope~
ment and use of these curves 1s considered in the following
paragraphs and speéific equations for the wide flange section
are gilven in section 2.5.2.

Assuming that plane sections remain plane, and neglecting
residual stresses, the normal strain on a cross section at any
point (x, y) mav be written as |

€=%y +3%x ré (2.17
where €o 1s a uniform normal strain and 96x'and gfgare the cur=-
vatures aktout the x and v axes resrectivelv, With reference to
the stress strain curve of Fig. 2.3, the corresponding stress
distribtution is

g-=F€ -E[€*€Ey] (2.18)
The brackets have tre significance that when the absolute value

of € 1s less than €y, the term in the brackets 1s zero. When €

is negative the plus sign is used for the term inslde the brackets
and when € is positive, the negative sign is used for the term

inside the brackets.
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For the equilibrium of the cross section

P=;0”d/) 2.19
Combining equations 2,18 and 2,10 glves
P:Ej:qé'o//; -Ef,fere] dA (2.20)

Similar expressions for the moments are given by Eqs. 2,21 and 2,22
M* = Ef geda-Ef ylete]dA (2 21
M P=F§, xedA ~Ef,xleze]dA (2.22)

In Egs, . 2.20 to 2,72, the first integral gives the value of the

load or moment if the section were everywhere elastic and thre secénd
integral 1s consldered a correction to account for ylelding of the
cross section, And as such its value will depend on the amount and
nosition of vielding.

The 25 possible yield configurations for the wide flange sec-
tion are shown in Fig. 2.11(bl. The 25 different yleld configura-
tions can be arrived at by considering all the possible yield
patterns of the top and bottom flanges as shown in Filg. 2.11(2).

The different combinationsof these top and bottom patterns, with
elimlnation of impossible situations, wlll yield the 25 patterms
used in the analysis. For each of the yleld configurations, Igs.
220 to 2,22 have forms in terms of the specified values of the
section dimensions, P, >, #7, and €. . Using these equationms,
the curves of Figs., 2,9 and 2,10 are developed in the following
manner.,

1) For a given value of P, the curvatures, ¢x and & ? are

specified, leaving €, the Only unknown in equation 2.17.
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2) Using enuation 2,20, a value of €, is determined that corresponds
to the specified ¢’; ¢7, P , and an assumed yleld configura-
tion. It is necessary to assume a yvield configuration because
of the different form of equation 2.20 for each configuration.
The yield configuration that corresponds to the calculated ¢,
is found and compared to the one assumed, If these are nmot the
same, 2 new conflguration must be assumed and a new value of €,
calculated. The magnitudes of the bending strains at the
corners of the section control the sequence of assumed yileld
configurations., Fig. 2,12 shows the sequence used in this
study.

3) When & is finally determined, Rgs., 2,21 and 2.22 are used
to find M and AAD.

LYy Ry varving ¢xand ¢7'svstematical1y over the desire range
of curvatures, the renuired curves are determined.

The curves of Figs, 2,9 and 2,10 are developed for the load
vnder consideration hefore the numerical integration 1s begun.
Using these curves, the values of the curvatures for zny combina-
tion of M* and mZare determined as follows:

1) For any value of AAx(for example,AAi), the combinations of
curvatures resulting in this moment are found at the intersections
of MY with the constant #Zcurves of Fig. 2.9. A plot
of these intersectlons is shown as curve A in Flg. 2.15.

2) For any value of M/ﬂ(for example,M?) the combilnations of
curvatures resulting in this moment are found at the inter-

section ofMg wlth the constant ¢xcurves of Flig. 2.10, A plot
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of these intersections 1is shéwn as curve B in Fig., 2,13,
3) The resulting curvatures for/MizuﬁiAA% acting together are
determined by the intersection of curve A (step 1) with
curve B (step 2). These are designated as &% and #73 in
Fig. 2.13.
2.5.2 Developement of the Load - moment - Curvature Equationms
The load -~ moment - curvature relationship for the wide
flange sectlion 1is developed from Egqs., 2.20, 2,21 and 2.22, Divid-
ing these equations by the appropriate factors given in Section

2.4 results in the dimensionless equations,

P_D*C € 4A _ D (2.23)
R Afeysz‘ fEe,-]
M p* 4 e da (2.24)
Semr—— = w— 4 D .
M% T I ("”"Z)g D & e —fx(”"(z)j —,—,Q[g‘; #) "—’—’i
4 4

M D ¢ € dA (2.25)
— = — (I+K X €
my T 2)); b & Pz (HKZ)fD[‘Sy =

where A, = 2(Kz+2K K)D?% = the area of the

cross section

x_ 2 4 K 2 4
= £ + 4K, K
I K3 D 4K, Ky (14 z/z) D7 = the moment of

3

in ertia of the cross section about the x axis.,
The first integral in each ecuation represents the volume
(or the first moment of the volume) of the ﬁﬁydistribution and

may bewritten as,
D?C ¢ dA _ &
5

AC gy B—Z €>/
A
b X
dA _
T (/+kz)f gy % = -ga;,

X € _T* '7
I" U*Kz)f D & ag;,z T I ‘gi
Y

where _'_}_'“3:: Zi[g K, 3/(2 + /(33j = the moment of
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inertia of the cross section about the y axis.

The second integral in each eduilibrium equation is the volume
(or the first moment of the volume) of the[jé;-fiy distribution.
The required volume was derived for each of the 25 yleld configura-
tions bv the process described later on this page .« Anm
example of such a derivation for the top flange 1s shown using
Fig. 2.14. These volumes, having been derived for the possible
vield patterns of the top flange can be arrived at for the bottom
flange and for the wedb by simply changlng the strain numbers to
sult the situation, The results are then combined, i. e., top
and bottom flanees and the web, to give the equations for the

25 different vield configurations. The volumes to be subtracted
for each tvme of vielding are found by drawing the total strain
distribution dlagram for the flange or web under consideration as
in Fig. 2.1% . The strain at 1 is a compressive strain and the

strain at 3 is a tensile one, By provnortion, it is found that
.. . € +€£
2043 k’D - ¢ Y K’D
€L' _GA'

2aji KD = S €Y 4D
€ - €
The strain at any point (x, yv) 1in terms of the yleld strain

is given by Eq. 2.17 divided by Ey and with x and y expressed in

terms of D

€. 4 8% 1 g7 Lo, &

+ 2 .
€ D gy Itk B g% 11Kz €,
The first two terms on the right hand slde represent "bending
strains® and depend onlv on the values of the curvatures and

the section dimensions, The third term depends on the magnitude

of the axial load. The strain at either end is found by substituting
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the end coordinates into the strain equation. 6} is used to

—

denote the "bending strains" at 1 and CJ

J. The shaded volumes are calculated and these are the

to represent those at

"correction factors" for eau'n 2,20, In Fig, 2.14 , the expression
for £ is
By

P _ | L
P)' = G 2(K3+2K,K;) D2 [_‘Za[". KD (€ +’) z %P

+2a5; kKD(& 1) £ % D]

P_ Kk (Ee+6+1)* (63 +€o -I) ]
or R TG [(F757 ) + )

2(K3+2,(lkz l. -GJ

where all strains are understood to be divided by 657. Multiplying
this equation by -1 and expanding, a quadriatic equation in €, 1is

arrived at. The equaﬁion is of the form

Q& +Re +S =0

where
A
R=—= + ;gﬂ—: O
GL..'GJ EJ--GL.

it

s2A[ Sl €i=1] -}
R [ 6‘- _GJ. E - e‘-
o oafEcr)R (€ -1)R P
= A ——2 4 =370) +
5 [ € -€&; EJ' - EL' ] Py
/(' KZ

1]

In this case, & = O and the equation in €,takes the form
R€E 1S5S0

or €o = - S/R

- If 7 is non -vero, then € is described by

~VR2-4Q8S

€ =
2Q
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For this analvsis, the equations are all linear or quadratic, In
this examnle, of course, the strain in only one flange was
considered, To arrive at the met emuation in €, , the exrressions
for O, R and S for the two flanges and the web are derived and
the results superimnosed. Expressions for @, kK, and S for all
possible flange and web yield patterns are pgiven in table 2,1.
Once %has been found for the given ¢7¢;¥) ¢a/¢; ,and
f%/ﬁ;, a check load and the bending moments are found using a
summationprocedure, Essentially, this procedure divides the
section into small elements (20 elements per flangg,web). The
stress corresponding to strain at the centre of each element is
found and the contribution of each element to the load or to
the moment 1s determined, Total loads and moments are calculated
by summing the contributions from each element, The load deter-
mined in thils manner 1s checked against the specified load and
thus a number of programming and derivation errors were eliminated.
If the calculated load agrees with the original load, the calcu-
lated moments are regarded as legitimate output and are used in
the column integration procedure,
2.5.,3 TIntroduction of Residual Stresses
Residual stresses are stresses set ur in the member due to
cooling, Their dlstribution is generallyv assumed to be that of
Fig, 2,1 5. These stresses are compressive at the flange tips
and tensile at the centre. Sharma (20) uses a OXc (compressive
residnal stress) of 12 kg1 and assumes O3+ (tensile residual stress)
to be constant along the web. The magnitude of O{+ 1is such to

maintain equilibrium of the cross section. Adding the strain
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distribution due to residual stresses of 2,16 (b) to the strain
distribution of Fig. 2.16 (a) will result in the distribution
of Fig. 2.16 (c). The equation describing the magnitude of the

resudual strain at any point (x,y) in the cross section 1is
€p= <% /x/re€e

b
where €. = compressive residual strain at the tips of the
flanges
€¢ = tensile residual strain at the centre of the
flanges

b = width of half section
€g = residual strain at any point (x, y)

Therefore, the total strain ecuation now becomes
€=¢x_,y, +¢’3.x + €0 + 2/x) + €4

€c'ét
b
or, non dimensionalizing

€ _ _Zié: 4 / ‘ _QEg X, L pz2/%] + €e
€y gy D Itk T g% Dk /3]

where Z=

£
where 7 = Ga/ey - St/ey
64/6"/ - €t /6'}/
K
Because of the introduction of residual stresses to the analyvsis,

the number of possible yleld configurations increases considerably.
The posslble conflgurations are agaln arrived at by considering
the types of ylelding that could occur in the topr and bottom
flanges and superimposing the results,

The possible vield configurations are as shown in Fig. 2.17 (a).
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The constants Q, R and S5 for the yleld patterns have been derived
and are listed in Table 2.2, The strain distribution and subse-
quent equations for Q, R and S for the web wlll be the same as
Tor the case with no residual stress with the exception that the
constant ELvt wlll be added to all of the strains, When the
different equations are combined to form a yileld pattern for the
cross section, B@? must be added to the expression for S to make
it comnlete, This necessity .arises from the fact that in deriving
the exnressions, the load in onlyv that branch of the total cross
gsection mmier consilderation is takem into account. The exrression
P = f(?) results in P occurring in the last coefficlent S of
the auadratic exnression. Summing the three Sts, i, e. for the
two flanges and for the web will vield the total P for the cross
section., It is therefore simpler to add P to the total expression
for 5 than to add a part of 1t to each particular branch of the
cross sectlon.

To illustrate the procedure outlined, comnsider the example
of Fig. 2.18, Configuration 1 and configuration 12 are united
to give the resulting total yileld configuration for tre cross
‘section, the vield configuration for the web automatically deter-
mined by the two flanges., Therefore, the expressions for Q, R and S
will be found by combining 1 , 12 , and 19 from table 2.2 and

adding /ﬁ to the resulting expression for S. The equations are

then A* A
= — +0 + 0 = Ll
X 2(6-&) 2(85-8&)

R = A( 6’”’_ —1) + O +2£§T€zg‘fc 1]

G
S=A (@-5_,)2 _ €4 +E_l] _,_O,,_B[(f;"gc.)(@"fa"’?) +.._.P
2(&5-€) 2 & - & 5

* ¢
Symbols & and B are defined in the Lomenclatyre
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2.5.4 Twisting Disvlacements

As mentioned previously, tre effect of twisting on the
strength of the column has been shown to be small in mpy cases (20)
and has been neglected in this studv, However, an anrproximate
nrocedure whereby these disnlacements could easily be in corpor-
ated in the analvsis is given in this section. This procedure is
based on the following assumptions:
1) The shear center and centroid of the cross section coincide,
1. e. the effect of partial vielding of the cross section on
the position of the shear center 1is neglected,
2) Twisting displacements of the column vary according to the
equation o= o, “wa“g}?
(2.26)
where < = twisting displacement at 2Z

=<, = twisting displacement at mid height of
of the columm,

3) The yvield pattern in the flanges at any inelastic cross sec-
tion is the same as that at mid height of the column.
Assumptions 1 énd 2 have been used by previous investigatiors (20).
Assumptlion 3 1s used to determine the effect of warping strains
on the principal axis curvatures and since these stralins are small,
it should be a2 reasonable assumntion.
According to Timoshenko =and Gere (21) the warping strain of

a thin-walled, open cross section subjected to twisting is glven

28690
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dw ~, d “ex
'b € = ~ :(C()S-ws>
y zZ°- Dz J 22
. S
where w5=f nds
o
’ S
wS:I;_L\ S;JLOIS
W = warping displacement
vvL. = the length» of centre line of the cross sectionm.
= = the angle of rotation of any corss section.
1 = the radial distance from the 2xis of rotation
to a point on the centre line of the cross
section.
Eg = the warping strain set up in the cross sec-

tion caused by the warping displacements
and S is measured along the centreline of
the cross sectionm.,
In this studv it 1is neces%ary to apply this equation to a
wide flange sectlon subjected to blaxlal loading, the section having
some plastic yiéelding. |
In order to evaluate CU, the extent of yielding in the
cross section must be known, as only the unvielded portion of the
cross section can contribute to the strength of the sectiom.
Since the wnrbing strains are small compared to the bending strains,
it should suffice to determine the ylelded portibn of the cross
section neglecting twist. The extent of the ylelding can easlly
be calculated if 55; ¢lyand €o are known by using Eq. 2.17. The
procedure for determining the constant - curvature - moment -
curvature curves requires that €o be determined for predetermined
combinations of ¢xand ;é# These calculated values of €o can
easlly be used to determine & for any combination of curvatures

not specified, ézg and Ws can then be calculated using only that
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vortion of the cross section which remains elastic.
The w»roblem remaining is to find a value for oL, (Fa. 2.26).

The torsional moment 1s glven by the equation
X da 4 Jdo

Z - M d= 2
M= Mags Ad: T 73 j,qo\cﬂ dA (2.28)

The resisting torsional moment can be divided 1into two parts; the
2 2
part called/V\,, due to pure torsion and the part M,, due to

warping of the cross section. The filrst part 1s

| 2 _ ~ d« 5 -
M, = by (2.29)

where C 18 the St. Venant torsional stiffness for the sectlon,

which for small angles of twist 1s normally assumed to be unaffected
by partlal yielding of the cross section due to normal stresses.,

The second part is

Z G/%x
MZ - ng—'z—:;‘ (2.30)
where (. 1s the warping constant. According to Sharma (20)

Z 2 d 3=
=-FA(Is +TIf
Mz Z)a’ZB (2.31)

+Iy5, = moment of intertia of the elastic
portion of the cross section about
the v-axis

where Lg

!

and ‘ A. = denth of the section
For eouillibrium of the cross sectlion
MmE=mE M3
Substituting from Eqs. 2.28, 2,29, and 2.31 into Eq. 2,32 gives

4
M dZ - mE G G2 watds

(2.33)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

Differentiating with respect to Z s Ea. 2,33 becomes

x 4 ¢J{x
My P 7 - 59" +07';z’[ 0z A2dA =
o 2 2
C ~EFMN(Ts + T,
d 22 7 )dz4 (2.34)

72 Q;A%£4 can be evaluated once the yleld configuratlon 1s known.

The quantity £ (I¢, +I.y2) can bc evaluated by the expression

_ M7
Using the assumed variation of o¢ (Eq. 2.36) and Z=-2é in Eq. 2.34
yilelds
¢X
o< /V\A 2 /V\A (2.36)
o

V[ foeardA -c- (”T)

where all anuantities are evaluated at the mid height of the columm

=4 -

Having established K, and the yield configuration, the werp-
ing strains can be calculated from Eq. 2,27 and their effect on
the strength of the cross section at mid height, or any location
for that matter, can be readlly determined. Referring to Fig. 2,20,
the change in the extent of ylelding due to warping strains 1is
shown cross hatched and may result in elther an ilncrease or decrease
in the amount of yvielding. The améunt of the change can be readily
determined by geometry, This chénge in yielding will change the
effective moments of inertia (moments of inertia of the elastic
’portion of the cross section), the amount of which is readily
calculated., Let

A I':) AT7 =change 1n the effective moments
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of inertia at the mid helghts of
the colummn about the x and y axes
respectively., Positive values corresmpond
to a decrease in moment of inertia,

By using assumption 3 (page 25), the change in the moments

of inertia at any point z on the cross section are approximated

by
. T2
AT =A0TI%5 @n 7= (2.37)
A TR
AT? = AT ;ain 7 (2.3R)

Knowing A7 X and AT ¢ , the chanee in curvatures at any point

can be found =28

it

change in x-axls curvature due to

warping strains
x

_ AA
B -7 [E‘(I'x)' T E(T*- AI’CH (2.39)

AT

A¢‘g = change in y-axis curvature due to
warping strains
_ /ﬂ
= I5%), E(v—'z AI") (2.40)

It should be noted that if ATXor AT % are negative
(the moments of inertia increase), the curvature decreases.
A further consequence of twisting i1s that moments about the
x Cal
principal axes are no longer simply M and M °, Refering to
Fig. 2.21, 1t is apparent that moments on the rotated cross

section must be referred to the § and‘Q‘axes. It can be shown

that
ME= M m? (2.41)
M'?.; /v\#-— o M (2.42)
B ¢§-°<,¢5% (2.43)
K3
g?- g™ - g (2.48)
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where the superscripts refer to the axis in Flg. 2.21.
Tgs. 2.41 to 2,44 are vused tc transform from one axis svstem to
the other,

Making use of the cauations Adeveloped in the nroceeding
narasranhs, the following procedure 1s sugeested for the inclusion
of twist in the analvsis:

1) Assume (as usual) a wair of mid heisht displacements u and v.

2) Neglecting twist, determine a column deflection curve for the
displacements of step 1.

3) Using the column deflection curve of step 2, determine

(from Eq. 2.36), the vield configuration at mid height, and

AI% amda azh . |
4) Construct a mnew column deflection curve for the u and v dis-

placements of step 1 and the assumed twisting (Eq. 2.26) using

the followlng vrrocedure:

5) At a panel point i calculate
x

M7 = Pu¢

/\/\Yi = Pae
Tsing these moments find the moments about the rotated rrincipal
axes using Eqs. 2,41 and 2,42,

6) Determine the curvatures ¢f and ¢':" vsing the rrocedure given
in Sec 2.5.1 and anvlv the corrections glven by EZas. 2,39 and
2.h0,

7) Determine @:and @B¥ using Fas. 2.43 and 2,44, Find the dis-
placements at 1 + 1 using Eos, 2.13 to 2,16,

8) Go to the rext panel point (which now becomes i and repeat
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steps 5 to 7. Repeat until the desired length of column is

reached,

9) Check the rathagé%ith )’aS’usual and modify the assumed mid
height displacements accordingly.

The procedure given on preceding nages is good for equal end
moments, Howaver, if different boundary conditions are cousidered,
the assumption thet o varies sinusoidally is no louger rezsonable.
Consider the case where the bvending moments at one end are zero
(B=0), Since the trauscendental functions are symmetric, we will
simply modify the former function to fit the new situvation. Fig.
2.19 depicts the manner in which this might be done., The column
is divided at the point of maximum deflection &s before., The
difference now is that the point of maxirmum deflection is not at
the centre due to the unsymmetrical houndary conditions. One fun-
ction will not desecribe the twisting behavior of both parts of the
colum and thus we will use the fwo functionScK=<xoﬂ&n1%f and

04"*0*““'55 , Where Ly and Lp are the lengths of column above
and below the point of maximum deflection respectively. The first
equation épplies for z from O to Lq and the second for z fron L1
to Ly, For a kndwngiifl and Ly ean he determined neglectinp twist
and o¢_can be calculated in much the same manner as for the equal
end moment case, Once the variation of o is known, the twisting

displacements can be included in the manner just descrihed,
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Chanter 111 - Commnutations

3.1 Computer Programs

The rrocedure used in this pfoject necessitated the extensive
use of a computer. During the study an IRM 1620, and IBM 7040
and an IBM 360/40 computer were used, In thls respect the analysis
contains ample variety.

Two sets of programs were used to complete the analysis, The
first set of programs established the constant - curvature, moment -
curvature curves for the glven sectlon, loads and specified values
of the curvatures, The equations used in this program and the flow
of the program had to be developed from scratch, sé to speak, and
the "debugging" process was quite tedious bhecause of the rslatively
large number of vield configurations. To further complicate
matters, the TRY 1620 comnuter was the onlv machine available during
the initial writling and "debugzing" of the program. Because of
the limited canacitv of this machine, the program controlling
the seaouence of assumed vield confignrations, i. e. the moment
curvature program, was divided into four parts, according to the
0, A, B and C divisions of Fig. 2,12, The data from these four
rarts was then combined to form a complete set of data, This
procedure greatly augmented the amount of time spent in setting
up the procedure and "debugging" it. The 1620 was also very slow
in execution. Thus, when the oprortunity came, the four parts
of the program were combined and run on a larger machine., More
time was spent correcting the programs after they were combined
but after this initial perlilod of detective work, the time saved

was great., One set of moment curvature curves for one axial load
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required about one half hour of rumning on the 1620 machine, On
the 360/40, moment curvature curves for five loads could be run
in about five minutes, Also, with the program all in one piece
it was much easier to correct anv errors in the equations or in the
flow. The columm integration program was also rum on the 360/40
machine after it was avallable and execution time was drastically
cut. Results which reduired six to eirsht hours of running on the
1620 could be run in amproximately fifteen minutes on the 360/40.
The columm integration program determined moment - deflection
curves for the case}3==l. Tn this v»rogram, a curvature subprogram
was nsed to determine srnecific values of curvature for the moments
calculated at each manel roint on the colummn - deflection curve,
A nrogram treating the case B=Owas avallable frouScott (19) but
the rrogram was never set up and run for wide flange secticnsas
time d1d not permit. It should be emphasized that although the only
boundary conditions studled were B=)that B =0 or B =-) or any
inbetween set of boundary conditions are also possible with only
minor alterations to the programs.

3.2 Numerical Calculations

The numericsl calculations involved curve interpolation and
finding the coordinates of the intersection of two curves,
The curvature subprogram, used to determine specific values

of curvature for the moments calculate at each panel point on the

columm deflection curve, recuires a method of interpolating between
sveclific noints on the constant - curvature moment curvature curves.
For example, the constant moment curves of Fig, 2.15 showineg the

relationshin between ¢xand ¢¢are found bv interrolating from polnts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-3~

on the curves of Filgs, 2,7" and 2,72, Cecond-desree nolynomials
derived from three dats noints boumnding the value of the inderendent
variable were used for 21l interrolations. These curves have the
seneral shane of most of the curves found in this study, at least
over the limiterd ranze of trree data roints.

The curvature determinaticn (Section 2,5) requires that the
coordinafes of the intersection of two curves be found. Two parts
on each curve are selected and a linear equation is written thru
each pailr. The coordinates of the intersection of these two straight
lines are found and compared with the coordinates of the polnts
detefmining the lines, If the coordinates of the intersection are
rounded by the points, an approximation to the intersection has
been obtained., If the coordinates of the intersection are not tounded,
then a new moint on one or both curves 1s selected and the process
repeated. Once the intersection 1is bounded, a second degree equationm
is writtem thru the two bounding moints nlus a third roint on each
curve., The curves are thus approximated bv the eauations,.

g7 - algr)?rb(sX)+cC

!
“4 2 x
Br-d(sI) +elpy)+ ¥
At anv intersection, the fo lowing must hold
Ca Y
B, =P,
x X
gr=%z
A x
Equating the two ¢ values gives a quaAdratic equation in ¢ . This
is solved using Newton's second order method where the first

approximation to the root is given by the linear equations written

thru each palr of bounding points.
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Chapter IV - Iiscussion of Results

b,1 General Comments

A number of factors affect the behavior of blaxially loaded
columms. Among these are the relative dimemsions of the cross

section (K,, K KB)’ the slenderncss ratio l/ry , the ratio of

59
end moments (B ), the ratio of moments at each end () ), and the
axial load (P )., Consideration of all of these factors would
reanire the solution of an extremely larsge numbor of rroblems.
The lack of a sultahle comruter and available computer time
limited the number of nroblems that could be considered, 'fith
the conversion of the nroeram to the 360/L0 svstem a run of 3 3/4
hours on the TBM 1620 was rednced to less than 10 minutes on the
360/40 machine. This 10 minutes of running yielded threce inter-
action curves of five points each of the type shown in Fig. 4.1.
A number of elastic points on the moment deflectlon curves

were obtained and served to check the computer programming. In
addition, a series of hand calculations weré made by Scott (19)
for the square créss section with P/Py = 0.6, L/ry = 100, B = 1,
and ¥ = 1, in order to check the column integration computer
rrogram. The maximum error found bv these hand computations
was 0.3%. In the present analvsis of wide flange columns, the same
columm Integration prd@ram wss used, tﬁe only changes bhelng in
certain constants which derend on section properties,

| Tn the develorement of the column deflection curves, the
nranel length, "a", was taken as no more than four times the

smallest radins of gvration of the cross sectionjexact values
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were selected to glve the reaqulred slendermess ratlo,

L,2 Numerical Results

Interaction curves for the wilde flange sectlions conslidered
in this stndv are shown in Fie.'s 4,1 to L4.13, These curves are
all for columns withﬂ = 1, Four different secticns were studled
with width to Aentkh retios (b/d) varving from 0.6 to 1. 1¥rv was
varied from 60 to 90 to 120 and ¥ was taken as 4, .8, 1.2, 1.4
and 2,0, For the sectiom with b/d ratio of 1, the axial load
p/P'V was varied from .1 through ,9 to glve the interaction curves
of Fig. 4.1. The interaction curves were obtained by considering
a number of axlal loads and calculating the ultimate or maximum
moment for that particular lcad and section. The ultimate moment
was obtained from the moment-rotation curve (Fig. 2.8) by taking
the maximun moment.attained by the curve. The value assumed for
P/Py was then plotted against this value of M/My to give one point
on the interaction curve. The rest of the interaction curves
have a maximum P/Py of .3 or .5. This was due to the fact/that
time and space on the 1620 did not permit a largerrange of loads.
After installation of the 360/40, more moment-curvature curves
were develomed and more extensive interaction curves drawn,

From t%e curves it can be scen that as the load is increased,
the moment carrving canacitv at all slenderness ratios is sub-
stantiallv Aecreased. The effect of an increase in slenderness
ratio is to decrease the loéd carrving caracitv of the column,
Decreasing the b/d ratio from 1 to .6 decrenses the moment carrying
canacity bv about 26% for an axial load of P/Py = 0,1 and by

about 28% for F/Py = 0,3 . At all values of ¥ , the interaction
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curves shift to the right as h/4 incrensses, 1In other words,

for constant load, the momen®t canacitv increases with b/d. Com-
narine the interaction curv~es at constant load shows that as Y
1s incremsed, the moment carrving caracity of the column is
substantially reduced for all b/d and slenderness ratios.

No laboratory tests were performed in this study to sub-
stantiate . the thcery. However, a number of tests on blaxial
bending of wide flange columms has been carried out in Germany
and Russia. Test results obtained bv Kloppel and Winkelman (13)
and presented by Calambos are used to check the theoretical
solution., These results are for columms loaded with equal eccen-
tricities at each end with the load being increased to failure,
The srecimens were rolled stecl wide-flange columns and their
cross sections had width to depth ratios varving from .5 to 1. The
end conditions were such that the members were essentiallv pimmed
acainst rotation, and worrine was restrained bv heavv end nlates,
For the most nart, the interaction curves rresented in Figs, 4.1
to 4,13 are for the values of Z’, lVrv and cross sections used
by Klonrel and Winkelman.

Prediction of the ultimate load that an eccentricallv loaded
column will carryv 1s based on the interaction curves and the fact
that the relationship between lcad and moment for the test 15
given by the equation

MX = p¥ (L.1)
or in dimensionless form as
ML E)
M%7 B T o
This i1s the equation of a stralght line passing throush the origin
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1+ Kz e

(ﬂ"/o)z "D
is the reciprocal of the slope. Equation 4.1 is plotted on the

where P/PV and MX/MX'V are the variables and

interaction curve and its intersection with the interaction
curve gi&es the theoretical ultimate load that the columm can
carry.

The results of the comparison between the theoreticsal and
experimental loads are tabulated in table 4,1, As can be seen the
theorvy is uncomservative 1in all cases but three. There are
possible explanationsfor part of the dilfferences. It was noted
in the tabulated data of the German tests that two fallure loads
wefe given for the same section ‘mn manv cases, Tt wounld scem
that more that one srecimen of the same cross section was tested
and that a maximom and a minimum value were recorded., The alege-
braic average of the two valnes was used, were availlable, to com-
~are with the theoretical results. However, 1t is aquite possible
that this average ‘s not the truve mean value and that the lower
axial loads are closer to the truth. Also, the effect of warping
strains and residual strains was not included in the analysls.
Also, it was assumed that the materlial used by the Cermans was
perfectlyv elastic-perfectly plastic. The vield strains needed
in the column integration nrogram were taken from the table of
results presented in the paver (13) and mav have onlv been
anproximationsor values taken from a handbook. Sharma (20) also
used these results to test his theorv and he shows no better,
if as eood, agreement,

To further check the theory, the procedure Aescribed above

was used to obtain the ultimrte load on a 12 Wideflonge 79 section
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which had been »nreviouslv analvsed bv Pirnstiel and Michales (2).
The predicted ultimate load was identical to that presented,

indicating that the two theories are commatible.
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Chanter V - Conclusions and Future Research

5.7 Conclusions

2 analvsis of 2 blaxislly lo=2ded columm has been rresented
which is srecifically anplicable to the wide flange cross section,
Since the wide flange is a commonlv used secticn, the analvsis
can be used widely.

Although a relatively small amount of data was collected,
the following conclusions can be made:

1) End moments at collapse are substantilly decreased with an
increase in slendermess rspion and/or axlial load on the column.

2) An increase in minor princiral axis bending moment (MY) can
substantially reduce the column's abllity to carry major
principal axis bending (MX) for a given slenderness ratic
and axial load.

3) Interaction curves for the biaxiallv loaded column can be
developed for use in the design of such members,

4) Comparison of theoretical results with available exnmerimental
resnlts shows falrlv good screement. A comparison with an
"exact" annlvsis also showed very good asreement, It is likely
that some of the error moted in the results came from the
lack of tre consideration of residual strain and twisting
displacements in the analvsis, It is unlikely that these
factors could contribute more than 8 rer cent to the error
however (20). |

5.2 Future Research

Laboratory tests on blaxlally loaded wide flange columns
shold be made in which a high degree of control could be

obtained. OSpecifically, material properties of each speclmen
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tested should be exactly determined. A lareer number of end
conditions (end moment ratios (B) and loading conditions ( P ))
should be checked in order to broaden the horizons of the results
of this study., The effects of warping and residual strains should
be included in the analysis and these results compared with results
obtained without the inclusion of these effects and with the

experimental results,
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Table 4,1 TABULATION OF [HEORETICAL ALD EXPERIMAL 1AL
RESULTS
1 2 3 4 5 ¢
SECT IO ac.“YA ELHEOR | PLISY % DIFF | PTHLOR
PROPERTIES ¢ 1% P P 4-3,100 P
loF CoLum a Y (13)* ar R
(20)
K1=1']7 '365 0'250 0239 4’06 02()8
.409 .396 3.3 423
K»=0.168 168 .176 4.8 .210
530 . 550 -3.6 . G00
K.=0,117
- .182 .295 .263 12.0 .256
L - g7 ‘
Iy ! 1,003 .256 ,242 4,0 Lt
L244 .195 173 12,5 .189
. 720 .315 .281 12,0 .328
K1=1.0 .293 0156 0136 1407 -
. . 215 .163 32,0 -
K»=0,2308 357 «353 1.1 -
K3=o.1231 404 .189 .149 27.0 -
L=71 .879 .224 . 186 20,0 -
T
y .195 .165 .144 14.5 -
.098 .199 .169 18,0 -
K,=0.83851 .2377 .147 .114 29,0 -
. 200 . 170 17. O b
K,=0,2301
.358 175 .129 35.6 -
K3=0,1231 )
. 716 . 204 .165 24,0 -
L=og5
ry .159 .165 .141 17.0 -
0249 02}9 ]400 had

* o .
The numbers in brackets refer to corresponding references
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Table 4.1 (cont'd)

L 2 3 4 5
SECTgom | ¥ AN PTHEOR PIEST % DIFF
PROFERLIBS === P P A-3
OF COLUIG ¥*, y Yoo 7 #3090

(13)
K1=0.7615% 1343 165 <141 14.0
Kp=6.2307 | .2015 -200 | 179 18.0
[ . 'f- .O
Ky=0,123 ’
= 0] ,
Ty 302 o 174 .156 11.5
.0671 .186 .142 31.0
K,=0.6307 .548 .165 .144 14,6
K5=0,2307 .182 172 . 164 5,0
1 .112 .
K3=o.5476 H.0
122 144 . 144 0
% = 114
y
K1=1-2578 075 .;‘;12 .2g6 "1205
; o‘o 03 1 605
K2=002578 -277 0256 8'5
K4=0.1886 2,25 0242 0213 13,5
L. e 1.50 .300 .279 7.5
y
4,25 360 .314 14,5
.563 .19% 162 20,0
.188 « 270 . 250 &.0
—* The bracketed 13 refers to reference 13
,*

[ ~ . 3
‘he bracketed 13 refars to reference 13
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i

1 2 3 4 D
STCT IO R PLHIOR PUEST % DIFF
SROPER L IES = — F 3 4.3
OF COLUM: i v y xon

) . 208 246 9,0
K,=0,2578
K3= 0.18&6
k=100
y
K1=0,8805 .50 .ggg .230 11.0
. 1 14,5
K2=O.2578 3 7
.25 .273 .2 15.0
K3=O.1886 37 >
% =121
y

* .
The bracketed 13 refers!to reference 13
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Euler Load .
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Deflection
Fig, 1.1 Failure at the Buler Load
Collapse Load
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Deflection

Fig, 1.2 Failure at the Collapse Lo&d
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Fig. 2,19 HResidual Stress Distribution
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b=K1D h=K1D >

Fig, 2,16(a) Strain Distribution of a Flange (i,j)
Neglecting Warping and Residual Strains

Fig., 2,16(b) Distribution of Residual Strains over 2
Flange (i,j)
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Fig., 2.16(¢c) Net Strain Distribution for Flange (i,3)
Obtained by Superimposing 2.16 (a) & 2% (p)
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Fig. 2,19 Column With Unequal End Moments (B=0)
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Fig. 2,21 Rotated Principal Axis
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Nomenclature

area of the cross section
K Kz

AL S
2(K3+ZHIKZ)

length of a typical element of the column deflectiom
curve.

constant equal to

factors defining the length of teunsion or compression
vielding in the webs or flange.

bending stiffnesses about the x and v axes respec-
tively.

constant equal to —2

2(K3+2KiKp)

width of half section of wide flange column.
St. Venants torsiomal comstant

hzalf depth of the cross section

modulus of elasticity

eccentricity for the x 2and v axis end moments respec-
tively.

moment of intertia of the elastic portiocm of the cross
sectiomn,

ad jJacent points on the columm deflection curve,
denotes. left hand end of a flange or web.

denotes right hand end of a flange or web.

factor defining half the flange width.

factor defining the flange thickness.

factor defining the web thickness,

columm length,

bending moment about the x and y axis respectively.
twisting moment about the longlitudinal axls =z.

length of the centre line of the columm cross section.

axial load armnlied to the column.
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Pe - Euler load
Py vield lo=d
o coefficient of the quadratic term in the equatiom

for €.
R coefficient of the linear term in the equation

for c

o]

rx, rY radius of egvration about the x and v axis respectively.

r radial distance from the axis of rotation to a point
on the centreline of the cross section.

Q slone of the line & 4 in Fir, 2.6

‘absolute va've in the cavuation defining €4

u, v lateral disnlacements of tre shear centre in the
Xx an1 v directioms rosvectively,
w warving disnlacement
7 ccordinate along the number
< twisting displacemnt at 7 along the columm length,
g twisting displacement at the column midheight.
f3 ratio of the x moment at one end of column to the
x moment at the other end.
J ratio of the y moment to the x moment at the same
end of the column.
S deflection of 1 + 1 from the column deflection curve
at 1
DETTA initail specifled value for v
€ strain
é bending strain
€° uniform normal strailn
6;7 vield strain
61,3 strzin at a flange or wcb tir in the column cross sectlon.
€3 warpine strain
€

comnressive residual strain at the tips of the flanges.
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tensile residual strain at the centre of the flanges.

¢f¢# x and v axis curvatures respectively.

gﬁ;; rield curvature

¢§, ¢"L curvatures about the § and? axes

§, "’L | a¥es 2t an anvae to the x 2nd v asis resyectively.
6’; @# rotations abont the x and v axis resrectivelw
6979 vield rotation

o stress

md change in slope between 1 and 1 + 1 on the column

deflection curve,
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