Theoretical analysis of biaxially loaded wide flange beam columns with plastic yielding in the section.

Daniel Michael Masterson
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
 Masterson, Daniel Michael, "Theoretical analysis of biaxially loaded wide flange beam columns with plastic yielding in the section." (1968). Electronic Theses and Dissertations. 6526.
 https://scholar.uwindsor.ca/etd/6526

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

THEORLIICAL AVAIYSIS OF BIAXIALIY LOADED
WIDE FLAMGE BEAM COLUMS WIHH
PLAS'IC YIELDIVG IV THE SECTIOW

A I'hesis
 Subnitted to the Faculty of Graduate Studies through the Department of Civil Engineering in Partial Fulfilment of the Requirements for the Degree of
 Master of Applied Science at the University of Windsor

by
Daniel Michael Masterson
B.A.Sc., University of Mindsor, 1.968

Windsor, Ontario 1968:

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI

UMI Microform EC52708
Copyright 2008 by ProQuest LLC.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway
PO Box 1346
Ann Arbor, MI 48106-1346

APPROVED BY:

G. Abdet Sayed

LDM: Vinnix

248693

ABSTRACT

Abstract

A theoretical investigation of biaxially loaded wide flange colums with plastic yielding in the section is carried out in this thesis. Computer programs are developed to perform the calculations. The effects of residual stresses and warring stresses are neglected but modifications to the procedure are suggested in order that these effects micht he included in a further analysis. The theoretical results obtained are compared with experimental results and with the results of other theories.

ACKIN OWLEDGEMFITS

The author wishes to express his deepest appreciation to Dr. William W. McVinnie under whose supervision this thesis vas prepared. His belp and encouragement made possible the success of this project.

Thanks is also expressed to the Computer Center at the University of Windsor for making its facilities available for use in this investigation. Thanks is also expressed to "rr. Harold Horreck for his assistance.

Financial assistance for this project was provided by the National Research Council of Canada.

TABLE OF CONTENTS

Page
ABSTRACI i
ACKN OWLEDGTENTS $i 1$
TABLE OF COL'IEMTS iii
LIST OF FIUUHES v
LISI OF IABLES vis
I In TRODUCTION 1
1.1 Object and Scope 1
1.2 General Comments 2
1.3 Previous Investigations 3
II I'HEOREIICAL SOLU'IION 8
2.1 Description of the Problem 8
2.2 Method of Solution 8
2.3 Assumptions 9
2.4 Column Integration 10
2.4.1 Governing Differential Equations 10
2.4.2 Numerical Integration Procedure 11
2.5 Load-Moment-Curvature Relationship 16
2.5.1 General Procedure 16
2.5.2 Developement of the Load-Moment- Curvature Equations 19
2.5.3 Introduction of Residual Stresses 22
2.5.4 I'wisting, Displacements 25
III COMPUTATIONS 32
3.1 Computer Programs 32
3.2 Humerical Calculations 33
Page
IV TISCUSSION OF RESULIS 35
4.1 General Comments 35
4.2 In umerical Results 36
V COWClUSIOAS AivD FUTUNE RESEATCH 40
5.1 Conclusions 40
5.2 Future Research 40
BIBLIOGRAPHY 80
I OMEIN CLATURE 82
VII'A 85

LIST OF FIGUFES

Figure

Page

1.1	Failure at the Euler Load	48
1.2	Failure at the Collapse Load	48
2.1	Column with Moments Applied at Both Ends	49
2.2	Typical Wide Flange Cross Section	49
2.3	Ideal Stress-Strain Curve	50
2.4	Typical Column Deflection Curve	50
2.5	Projection of the Column Element	51
2.6	Correction for u_{c}	52
2.7	Column Deflection Curve, $\beta=1$	53
2.8	Moment Rotation Curve	54
2.9	Monent-Curvature Curves About the x-axis	55
2.10	Moment-Curvature Curves mbout the y-axis	55
2.11(a)	Fossible Yield Configuretions of the Iop and Eottom Flanges Neglecting Warping and Residual Stresses	56
2.11. b)	Possible Yield Conficurations for the Uide Flange Section After Combining Top and Bottom Fjanges of Fig. 2.11(a)	56
2.12	Sequence for Checking the Yield Configurations	57
2.13	Curvature Relationships for Constant Moment About Each Axis	58
2.14	Total Strain Diagram for Flange	59
2.15	Residual Stress Distribution	60
2.16 (a)	Strain Distribution of a Flange(i,j) Weglecting Warping and Residual Strains	61
2.16 (b)	Distribution of Warping Strains Over a	

Figure pace
Flange (i,j) 61
2.16(c) Net Strain Vistribution for Flange (i, i) Obtained by Superimposing Firs. 2.16(a) and 2.16(b) 61
2.17(a) Possible Yield Configurations for a Wide Flange Section With Residual Stresses Included, Top and Bottom Separate 62
2.17(b) Possible Yield Configurations for a Wide Flange Section Vith Fiesidual Stresses Included 63
2.18 Sample Derivation Of lotal Cross Section Yield Pattern 64
2.19 Column With Unecual End Momerts, $\beta=0$ 65
2.20 Strain Distribution on the Flanges for the Cross Section at Tid Heisht of the Column 66
2.21 Rotated Principal Axis 66
4.1through4.13 Interaction Curves$67-79$

LIST OF TABLES

Table		Page
2.1	List of Yield Patterns and Equation Constants, Residual Stresses Neglected	4la
2.2	List of Yield Patterns and Equation Constants, Residual Stresses Included	42
4.1	Irbulation of Theoretical and Experimental Results	45

Cnapter 1 - Introduction

1.1 Object and Scone

A considerable amount of work has apneared in recent years concerning the behavior of columns sidbjected to moments apriled about one princinal axis of the cross section. This aprroximates the tyne of loading which would occur in rlaneframes. The studv of such beam-column behqvior presents a formidable problem because of the necessitv of considering inelastic action. Buildinrs are of a necessity thrce dimensional, but are normally analyzed as a series of plane frames. However, interaction between planes often results in some members being acted upon by loads from more than one plane. For example, corner columns of such frames might well be subjected to biaxial momert, 1. e., a moment about each of the principal axes of the cross section. Since little research has been done on the behavior of columns loaded in such a manner, particularly when inelastic action occurs, the object of this resemrch is to present an analysis to stury biaxially loacer wide flange beam columns. This enalysis is besod, to a lorfe extent, on previous work by scott (19).

The large amount of numerical work occurring in such an analusis necessitated the developement of computer proorams to nerform this numericel work. The scone of the studv was limited to the consideration of columns with equal end moments, these eoval end moments cousing on? single curvature of the column. Tn his study of solid, rectangular sections, soott (19) considereत double curveture and columns with moments applied onlv at one end.

Time did not permit this to be done for the wide flange section, which was the section used throughout the analysis.

1.2 General Comments

The expression "beam-column" refers to a member which is simultaneously subjected to an axial load and bending moments. The bending moments may result from eccentricities of the axial load or from transverse loading. As the bending moment approaches zero, the member tends to become a centrally loaded colimn and when the axial force approaches zero, the problem becomes that of a beam.

If the eccentrically loaded column were to remain elastic, its behavior would be represented by a load-deflection curve, which becomes asymntotic to the Euler load (Fig. 1.1), when the Euler load is given by $\quad P_{e}=\frac{I^{2} T I}{I^{2}}$
and

$$
\begin{aligned}
& \mathrm{Fe}=\text { Euler Load } \\
& E \quad=\quad \text { Modulus of Elasticity for the column } \\
& \text { material } \\
& \text { I }=\text { Moment of Inertia for the column } \\
& \text { cross section } \\
& \text { I }=\text { effective column length }
\end{aligned}
$$

However, this behavior is impossible since the column becomes inelastic at a value of the load less than P_{e} and the result is a load-deflection curve which is similar to that shown in Fig 1.2. The collapse load represented by this curve is normally some what less than the Euler load. The reason for this reduction in load
is easily explained. As the load is increased beyond initial yielding, plastification progresses along and across the column, thereby reducing the columns resistance to further loading. In Fig. 1.2 the portion of the curve from 0 to A represents the column behavior when the stresses are still elastic. The portion from A to A represents the range of partial yielding. Finally, when the curve reaches point B, a further increase in load becomes impossible because the internal stiffness of the column is just enough to resist the applieत load and moment. It is evident that this tvne of failure occurs by virtue of excessive bending in the plane of the applied moment.

If the member is subjected to bending about the stronger of its two principal axes, and if no lateral support is provided, the column may twist and bend out of the plane of loading and fallure occurs due to lateral-torsional buckilng. This has the effect of reducing the collapse load from that shown in Fig. 1.2.

The behavior of the biaxially loaded column is similar to that of Fig. 1.2. In this case, however, the determination of the deflection plotted in this figure becomes more complex than for the uniaxially loaded column and, as a result, the determination of the collapse load also becomes more complex. This is due to the fact that three interdependent displacements of the column cross section must be considered. These are lateral displacements in the two directions and a rotation of the section about its center of twist.

1.? Previous Investigations

The investigation of the beam column problem began with
single axis bending and the early works of von Karaman, Ros and Brunner, Chwulla, Westergaard and Osgood, Jesek and others, have been reviewed quite thoroughly bv Bleich (3). The works of Newmark (15), Ketter, Kaminsky and Beedle (11), Huber and Ketter (10), Ellis $(6,7)$ and Ojalvo (16) and Bijlaard (1) have been summarized by $S \operatorname{cott}$ (19).

Biaxial bending is a much more complicated problem than single axis bending because three interderendent displacements are involved, i. e. two lateral displacements and a twisting displacement. Birnstiel and Michalos (2) have presented an analysis of biaxially loaded wide flange columns. In their analysis, the column is divided into a number of panel lengths. Deformations at these panel ends are assumed and values of the intermal moments are computed. These internal moments are compared with theexternal applied moments. If the comparison is favorable, the correct deformations were assumed.. If the comparison is not favorable, the deformations must be adjusted. Internal Moments and forces are found by dividing the cross section into a number of elements by a rectangular grid, determining the strain on each element, and summing the results over all the elements of the cross section. By assuming increasing values of the second derivatives of the displacements, a curve of load versus deflection is obtained, which leads directly to the collapse load of the colvmn. The procedure used is probably the most exact of any presented to date. Only columns symmetric about the mid height are considered in the paper. The results obtained from an analysis of a 12 vFry column in their paper were compared with the results from an analysis of the same column using the method presented in this
study and agreement was found to be very good.
Sharma (20) has presented an apmroximate method for determining the ultimate load of columns subjected to blaxial bending caused by an eccentrically applieत load, the eccentricities at each end being equal. The procedure is based on the assumption that the lateral and twisting displacements vary sinusoidally along the column At midheight, a value of the second derivative of one of the lateral displacements is specified and equilibrium between internal and external forces and moments is established. Knowing the disnlacement at midheight thus determines the defected shape of the column. By incrementing the snecified second derivative, a load-deflection curve is obtained. In contrast to Birnstiel and Michalos, who considered the effect of yielding of the cross section on the position of the center of twist, Sharma assumes that the location of the center of twist remainsfixed. In his study he found the warping strains to be quite small in comparison with the strains due to bending and thrust. He tried the procedure neglecting the effects of twisting and obtained loads somewhat higher than before, as was expected. The error resulting from neglecting twist was found to increase somewhat with increasing slendermess but never exceeded 8 per cent. Considerable experimental and analytical work has been carried out in Germany and Russia on the blaxial loading of steel wide flange columns. Galambos (8) has presented a summary of the result of two papers, one by the Germans K. Kiappel and E. Winkelman (13: and the other by Chubkin (5), a Russian. The results of the tests by Klonnel and Winkelman were used by the author to check the
analysis presented in this study. The report by the Germans contains the results of 74 tests on rolled steel wide-flange columns and 17 tests on rolled steel channel columns. An eccentrically placed axial load was applied to the columns and the columns were tested to failure. The eccentricities were equal at each end. The members were ninned at the ends and restrained against warping. The report also analyses the results in the light of current German buckling snecifications and developes a semi-emperical design formula and an analalytical load-deformation analysis. The report by Chubkin contains the results of tests on 281 steel members tested with various types of eccentricity (axial, uniaxial, biaxial) and end conditions (warping restrained and warping free). Galambos has compared the results of the two tests with the CRC Interaction Equation

$$
\frac{P}{P_{0}}+\frac{P e_{x}}{S x \sigma_{y}\left(1-P / P_{a_{x}}\right)}+\frac{P e_{y}}{S_{y} \sigma_{y}\left(1-P / P_{e_{y}}\right)}=1.0
$$

This equationis5.21, CRC Guide. The formula, according to the tabulation presented by Galambos, is conservative. For each set of X and Y eccentricities, the German paper (13) gave two values of ultimate load. Galambos used the lower of the two for his comparison and was always conservative.

The problem of torsional buckling of thin walled columns has been considered by several writers. Renton (18) has presented a paper which gives a general solution of the equations for the torsional flexural buckling of struts. Expressions for the end conditions are found, and their application to the bucking of frameworks described. The analysis is for elastic failure only. Chajes and Winter (4) present a simple method of calculating the

Abstract

elastic torsional-flexural buckling load of centrally loaded, thin walled columns with singly symmetric sections. An interaction type of equation between the torsional and flexural buckling loads is developed and used to predict the failure loads.

The effect of residual stresses on the strength of beam-columns has been considered by different researchers. Galamkos (9), presents a set of moment-curvature curves which show the effect of neglecting residual stresses. Sharma (20) also considers residual stresses in his analvsis. He concludes that the residual stress effect is relatively insignificant.

The nrocedure used in this thesis is based on an analvsis given by Scott (19), who considered biaxially loaded columns of solid rectangular cross section. The procedure used and the modifications necessary for wide-flange cross sections are given in the next chanter.


```
Chapter 11 - Theoretical Solution
```


2.1 Descrintion of the Problem

The biaxially loaded column under investigation (Fig. 2.1)
is of length L and simply supported at each end, 1. e., displacements are zero but rotations are cermitted about the x and y axes. The bending is such that the axial load, P, is applied to the column and then end moments about the x and y axes are incrensed simultaneously to collanse. In this study, moments are desionated as M^{X} or M^{y} where the superscrint indicates the axes about which they nct. Sיbscrints are used to designate position of the moment. For examnle, M_{X} is the moment about the x exis at point A in Fig. 2.1. To further define the loading, the rato of the x-moment to γ-moment at the ends of the column is desionated as γ and a constant β is defined as the ratio of the x-moment at B to the x-moment at A. The ratios γ and β are considered to remain constant throughout the loading. As noted previously, only values of $\beta=1$ are considered in this study although the method will work for any β.

A wide flange section is used throughout this investigation (Fig. 2.2). The half depth of the cross section less the thickness of the flanges is taken as D, the half width as $K_{1} D$, the flange thickness as $\mathrm{F}_{2} D$ and the web thickness as $\mathrm{K}_{3} D$. The x and y axes are orientateत as shown in Fif. 2.1.
2.2 Method of Solution

The analysis nresenter herein involves the determination of moment-خeflection curves such as the one shown in Fig. 2.9. The ordinate of the curve may be any of the end moments since all are related by β and γ. The abscissamav be any deflection,
but in this study end rotations are used. For a given column, P, β, and γ are specified and the end moments increased until the peak moment on the moment-deflection curve is obtained. A typical point on this curve is found from the column deflection curve which is the shape a column will take if the load and deformation at a point are specified. A numerical integration procedure presented by McVinnie (16) is used to develop the column deflection curve. By consideration of many specific problems interaction curves for the biaxially loaded column can be developed.

2.3 Assumptions

In this study, the following assumptions are made:

1) Deflections and rotations are small in accordance with small deflection theory.
2) Deflections occur in the x and y direction on? y, no twisting of the column is allowed. In section 2.5 .4 a method is suggested whereby the nrocedure can be modified to include the effects of twisting.
3) Plane sections remain plane gfter bending.
4) The material is mild structural steel which is assumed to have an elastic, perfectly plastic, stress-strain curve (Fig. 2.3). It is further assumed that the tension and compression stress-strain curves are identical. This curve is typical of mild steels, provided that strains no greater than about ten times the yield strain are considered.
5) No unloading occurs in yielded portions of the column.
6) Residual stresses are neglected. Section 2.5 .3 shows how the procedure can be modified to include residual stresses.
7) Members are originally straight and prismatic.
8) Axial shortening of the column is neglected.
9) The effect of shear on the bending resistance of the column Is neglected. Except for assumptions 2 and 6, the above assumptions are standard to most previous column investigations. Previous research into biax ally loaded columns (20) has shown assumptions 2 and 6 to be reasonable.
2.4 Column Integration
2.4.1 Governing Differential Equations

For the biaxially loaded beam columns, the displacements of the cross section at any noint along the column are defined by the lateral disnlacements of the shear centre in the x and y directions, \bar{u} and \bar{v} respectsvelv, and by the rotation of the section about its shear centre. Differential equationsof equibbrium for this problem have been derived by Timoshenko and Gere (21). Since the effects of twisting are not initially included in this analysis, the governing differential equations reduce to,

$$
\begin{equation*}
B^{y} \frac{d^{2} \vec{\mu}}{d z^{2}}+P a+c_{1} z+c_{2}=0 \tag{2.1}
\end{equation*}
$$

$$
B^{x} \frac{d^{2} \bar{v}}{d z^{2}}+P \bar{v}+C_{3} z+C_{4}=0
$$

$$
a F
$$

$$
B^{x}, B^{y}=\text { bending stiffness about the } x \text { and } y \text { axes }
$$

where $B^{x}, B^{y}=$ bending stiffness about the x and y axes

2	$=$ co-orinate along the member
$c_{1}, c_{2}, c_{3}, c_{4}$	$=$ constants of integration

For the elastic case, where the bending stiffnesses are
independent and constant, Eas. 2.1 and 2.2 are independent and define the behavior of the column in the $y-z$ and $x-z$ planes respectively. However, after inelastic action begins, the bending stiffnesses depend unon the extent and position of yielded material which in turn is dependent unon the axial load, applied moments, and the lateral displacements. As a result, Eqs 2.1 and 2.2 are couplet thru these stiffnesses and \bar{u} and \bar{v} must be determined simultaneously using a numerical integration procedure. 2.4.2 Numerical Integration Procedure

A typical element of length "a" of the column deflection curve is shown in Fig. 2.4. The x and y displacements at i are denoted by u_{i} and v_{i} respectively and those ati+1 by u_{1+1} and $v_{1}+1$. A projection of the element in Fig. 2.4 onto the $y-z$ plane is shown in Fig. 2.5 (a). In this figure, Θ_{i}^{x} and Θ_{i+1}^{x} are the slopes of the column deflection curve at 1 and $i+1$ respectivelv, ψ^{x} is the Change in slope between 1 and $1+1$ and S_{v} is the deflection of $i+1$ from the tangent to the column ieflection curve at 1. Assuming that the proiection of the element onto the $\mathrm{V}-\mathrm{z}$ plane is a flat circular arc, \mathcal{S}_{v} is given by

$$
\begin{equation*}
\delta_{v}=\frac{a}{2} \tan \psi^{x} \tag{2.3}
\end{equation*}
$$

since ψ^{x} is a smali angle

$$
\tan \psi^{x}=\psi^{x}=a \phi_{i}^{x}
$$

and

$$
\begin{equation*}
\delta_{v}=\frac{a^{2}}{2} \phi^{x_{i}} \tag{2.4}
\end{equation*}
$$

where $\phi_{i}^{x_{i}}$ is the x axis curvature at 1 From geometry, the defledtion at if1 in the y direction is

$$
\begin{equation*}
v_{i+1}=v_{i}+a \sin \theta^{x_{i}}-S_{v} \cos \theta_{i}^{x_{i}} \tag{2.5}
\end{equation*}
$$

and the slope of the deflection curve at $1+1$ is

$$
\begin{equation*}
\theta_{i+1}^{x}=\theta^{x} i-\psi^{x} \tag{2.6}
\end{equation*}
$$

By considering the projection of the element onto the $x-z$ plane, Fig. 2.5 (b), it can be shown that

$$
\begin{align*}
& \mu_{i+1}=\mu_{i}+a \sin \theta^{y_{i}}-\delta_{\mu} \cos \theta^{y_{i}} \tag{2.7}\\
& \theta_{i+1}^{y}=\theta_{i}^{y}-\psi^{y} \tag{2.8}
\end{align*}
$$

Substituting for $\delta v, \psi^{x}, \delta \mu$ and ψ^{y} and making the assumption that θ^{x} and θ_{i}^{y} iare small angles, the equations for the displacements and rotations at $1+1$ in terms of those at 1 are written as

$$
\begin{align*}
& \nu_{i+1}=v_{i}+a \theta^{x_{i}}-\frac{a^{2}}{2} \phi^{x_{i}} \tag{2.9}\\
& \mu_{i+1}=\mu_{i}+a \theta_{i}^{y_{i}}-\frac{a^{2}}{2} \phi_{i}^{y} \tag{2.10}\\
& \theta_{i+1}^{x}=\theta_{i}^{x}-a \phi_{i}^{x_{i}} \tag{2.11}\\
& \theta_{i+1}^{y}=\theta^{y}-a \phi_{i}^{y} \tag{2.12}
\end{align*}
$$

At this point it is convenient to introduce certain quantities which are used to put Eq. 2.9 to 2.12 into dimensionless form. These quantities are

$$
\begin{aligned}
P_{y} & =\text { yield load }=E \epsilon_{y} A_{c} \\
M_{y}^{x} & =\text { yield moment }=E I^{x} \phi_{y}^{x} \\
E & =\text { Young's Modulus for the Material } \\
A_{c} & =\text { cross sectional area }=2\left(K_{3}+2 K_{1} K_{2}\right) D^{2} \\
\phi_{y}^{x} & =\text { yield curvature }=\frac{\epsilon_{y}}{\left(1+k_{z}\right) D} \\
I^{x} & =\frac{2}{3} K_{3} D^{4}+4 K_{1} K_{z}\left(1+\frac{k_{z}}{2}\right)^{2} D^{4} \\
\theta_{y}^{x} & =\frac{\pi}{3} \cdot \frac{\sqrt{\epsilon_{y}}}{1+K_{z}} \cdot \Omega_{x} \\
\Omega_{x} & =\text { radius of gyration }=\sqrt{\frac{I^{x}}{A_{c}}}
\end{aligned}
$$

where E_{y} is the yield strain of the material and $\theta^{x} y^{\text {is }}$ the
rotation caused by a moment of magnitude $M_{y}{ }_{y}$ acting dt one end of a simply supported beam of length $\pi \Omega_{x} / \sqrt{\epsilon_{y}}$. Using these quantities, Eqs. 2.9 to 2.12 are written in dimensionless form as $\frac{v_{i+1}}{D}=\frac{v_{i}}{D}+\frac{a}{D} \cdot \frac{\pi}{3} \frac{\sqrt{\epsilon_{y}}}{1+k_{2}} \cdot \mu_{x} \frac{\theta^{x_{i}}}{\theta^{x} y}-\frac{\epsilon_{y}}{2}\left(\frac{a}{D}\right)^{2}\left(\frac{1}{\left(1+k_{2}\right)} \frac{\phi^{x_{i}}}{\phi^{x} y}\right.$

$\frac{\theta^{x_{i}+1}}{\theta^{x_{y}}}=\frac{\theta^{x_{i}}}{\theta^{x_{y}}}-\frac{3}{\pi}\left(\frac{a}{D}\right) \frac{\sqrt{\varepsilon_{y}}}{\Omega_{x}} \frac{\phi^{x_{i}}}{\phi^{x} y}$
$\frac{\theta^{y_{i}+1}}{\theta^{x} y}=\frac{\theta^{y_{i}}}{\theta^{x} y}-\frac{3}{\pi}\left(\frac{a}{D}\right) \frac{\sqrt{\varepsilon_{y}}}{\mu x} \frac{\phi^{y_{i}}}{\phi^{x} y}$
It should be noted that the nanel length "a" is now expressed in terms of D.

$$
\begin{gathered}
\text { At any point on a column deflection curve (Fig. 2.4) } \\
M^{y}=P \mu \\
M^{x}=P \mu
\end{gathered}
$$

To construct the curve, the displacements (including rotations) are specified at a point such as B, the moments calculated, and the curvatures found by the procedure given in Section 2.5. Deflections and rotations at the next panel paint are calculated using Eqs. 2.13 to 2.16, where the subscript " 1 " corresponds to podnt F. Once the deflections at $i+1$ are found, this point becomes the point 1 and the procedure is repeated to find the deflections at the next panel point. This process is continued until the desired column length is reached. The accuracy of the deflections at $1+1$ is increased bv first obtaining the deflections at $1+1$ assumine that the curvatures at 1 are constant from 1 to $1+1$. Tising these deflections at $1+1$, curvatures at this point are
determineत and a second set of deflections at $1+1$ calculated, using the average of the curvatures at 1 and $1+1$.

The nart of the column deflection curve (Fig. 2.4) between A and B represents the deflected shape of the column shown in Fig. 2.1 provided that the moments at A and B in both figures are the same. To obtain column deflection curves that are readily usable in this study requires a proper selection of initial conditions. For columns having equal moments about the x axis and equal moments about the y axis ($\beta=1$), the point C, mid-way on the column, is selected to have zero θ_{c}^{x} and θ_{c}^{y} and a combination of displacements, u and v. Because of symmetry, only half the column length need be considered for these particular boundary conditions, For a specified v_{c}, u_{c} is found such that the combination mould pive a moment ratio at A equal to γ if the column were to remain elastic. The resulting column deflection curve is as shown in Fig. ?.4. If the calculated ratio, $\frac{M_{A}^{y}}{M_{A}^{x}}$, is enuel to the snecified γ, plus or minus an al Tow inle amount of error, permissible end moment has been determined and one point on the moment deflection curve obtained. If the calculated ratio is not ecual to γ, plus or minus the allowable amount of error, u_{c} is corrected and a new column deflection curve found.

The specified v_{c} is incremented by trial and error so that sufficient points on the moment-deflection curve are obtained. Corrections to M_{c} are explained using the curve shown in Fig. 2.6. The problem is to find a value of u_{c} which, when combined with v_{c}, will give a moment ratio sufficiently close to the specified ratio,
γ. This is accomplished by approximating the curve by a series of secants. Initially the point a on the curve is calculated using the value of u_{c} obtained from elastic theory. A new point d is calculated from a displacement ${ }^{n} c_{2}$ which is found by extending the secant o a until it intersects the value γ at point c. If necessary, a third approximation is made using the extended secant ad which results in displacement $u_{c}{ }_{3}$ and the point f on the curve. This process is repeated until the desired accuracy is reached or until the slope of the secant becomes negative, a negative slone indicating that the curve has reached a maximum moment ratio below the value γ. In the latter case, it is evident that, for the snecified v_{c}, no value of u_{c} can be found for γ; therefore, v_{c} must be decreased, It should be noted that in many cases the first approximation to v_{c} resulted in a moment ratio sufficiently close to γ.

In studying columns with moments at one end only ($\beta=0$), the point B is selected to have zero u and v displacements and a combination of rotations θ_{B}^{y} and $\theta_{B}^{x_{B}}$. Since there is no symmetry, the entire length of the column must be considered. The integration is started at point B and Θ_{B}^{Y} and Θ_{B}^{x} play the same role as v_{c} and $"_{c}$ for the case $\beta=1$. Because of a shortage of time, no columns with $\beta=0$ or with β of other values were studied although this would be quite simple to do be making a proper choice of initial conditions.

2.5 Load - Moment - Curvature Relationshir

2.5.1 Generg2 Procedure

The nrocedure given in section 2.4 recuires that a relationshin between moments and curvatures be determined for a constant axial load and specific cross section. This relationship can be represented by the curves shown in Figs. 2.9 and 2.10. Each of the curves of Fig . 2.9 represents the variation of M^{x} with ϕ^{x} for constant values of ϕ^{y} while those of Fig. 2.10 represent the variation of $M y$ with ϕ^{y} for constant values of ϕ^{x}. The developement and use of these curves is considered in the following paragraphs and specific equations for the wide flange section are given in section 2.5.2.

Assuming that plane sections remain plane, and neglecting residual stresses, the normal strain on a cross section at any point (x, y) may be written as

$$
\begin{equation*}
\epsilon=\phi^{x} \cdot y+\phi^{y} \cdot x+\epsilon_{0} \tag{2.17}
\end{equation*}
$$

where ϵ_{0} is a uniform normal strain and ϕ^{x} and ϕ^{y} are the curvatures about the x and y axes resnectivelv. With reference to the stress strain curve of Fig. 2.3, the corresponding stress distribution is

$$
\begin{equation*}
\sigma=E \epsilon-E\left[\epsilon \pm \epsilon_{y}\right] \tag{2.18}
\end{equation*}
$$

The brackets have the significance that when the absolute value of ϵ is less than ϵ_{y}, the term in the brackets is zero. When ϵ is negative the plus sign is used for the term inside the brackets and when ϵ is positive, the negative sign is used for the term inside the brackets.

For the equilibrium of the cross section

$$
P=\int_{A} \sigma d A
$$

Combining equations 2.18 and 2.19 gives

$$
P=E \int_{A} \epsilon d A-E \int_{A}\left[\epsilon \pm \epsilon_{y}\right] d A
$$

Similar expressions for the moments are given by Eqs. 2.21 and 2.22

$$
\begin{aligned}
& M^{x}=E \int_{A} y \epsilon d A-E \int_{A} y\left[\epsilon \pm \epsilon_{y}\right] d A(2.21) \\
& M^{y}=E \int_{A} x \epsilon d A-E \int_{A} x\left[\epsilon \pm \epsilon_{y}\right] d A(2.22)
\end{aligned}
$$

In Eqs. 2.20 to 2. 22 , the first integral gives the value of the load or moment if the section were everywhere elastic and the second integral is considered a correction to account for yielding of the cross section, and as such its value will depend on tho amount and position of vielding.

The 25 possible yield configurations for the wide flange section are shown in Fig. 2.19(b). The 25 different yield configurations can be arrived at by considering all the possible yield patterns of the top and bottom flanges as shown in Fig. 2.11.(a). The different combinations of these top and bottom patterns, with elimination of impossible situations, will yield the 25 patterns used in the analysis. For each of the yield configunations, Zos. 220 to 2.22 have forms in terms of the specified values of the section dimensions, P, ϕ^{x}, ϕ^{y}, and $\epsilon_{0}:$ Using these equations, the curves of Figs. 2.9 and 2.10 are developed in the following manner.

1) For a given value of P, the curvatures, ϕ^{x} and ϕ^{y} are specified, leaving ϵ_{0} the only unknown in equation 2.17.
2) Using enuation 2.20, a value of ϵ_{0} is determined that corresponds to the specified ϕ^{x}, ϕ^{y}, P, and an assumed yield configuration. It is necessary to assume a yield configuration because of the different form of equation 2.20 for each configuration. The yield configuration that corresponds to the calculated ϵ_{0} is found and compared to the one assumed. If these are not the same, a new configuration must be assumed and a new value of ϵ_{0} calculated. The magnitudes of the bending strains at the corners of the section control the sequence of assumed yield configurations. Fig. 2.12 shows the sequence used in this study.
3) When ϵ_{0} is finally determined, Eas. 2.21 and 2.22 are used to find M^{x} and M^{y}.
4) By varying ϕ^{x} and ϕ^{y} systematicaliy over the desire range of curvatures, the renuired curves are determined.

The curves of F1gs. 2.9 and 2. 10 are developed for the load under consideration before the nimerical integration is begun.

Tring these curves, the values of the curvatures for eny combination of M^{x} and M^{y} are determined as follows:

1) For any value of M^{x} (for example, M_{0}^{x}), the combinations of curvatures resulting in this moment are found at the intersections of $M_{0}^{x_{0}}$ with the constant ϕ^{y} curves of Fig. 2.9. A plot of these intersections is shown as curve A in Fig. 2.15.
2) For any value of M^{y} (for example, \mathcal{M}_{0}^{y}) the combinations of curvatures resulting in this moment are found at the intersection of M_{o}^{y} with the constant ϕ^{x} curves of Fig. 2.10. A plot
of these intersections is shown as curve B in Fig. 2.13.
3) The resulting curvatures for M_{0}^{x} and M_{0}^{y} acting together are determine त by the intersection of curve A (step 1) with curve B (step 2). These are designated as ϕ_{0}^{x} and $\phi^{y} 0$ in Fig. 2.13.
2.5.2 Developement of the Load - moment - Curvature Equations The load - moment - curvature relationship for the wide flange section is developed from Eq. 2.20, 2.21 and 2.22. Divideing these equations by the appropriate factors given in Section 2.4 results in the dimensionless equations,

$$
\begin{align*}
& \frac{P}{P_{y}}=\frac{D^{2}}{A} \int_{A} \frac{\epsilon}{\epsilon_{y}} \frac{d A}{D^{2}}-\frac{D^{2}}{A} \int_{A}\left[\frac{\epsilon}{\epsilon_{y}} \pm\right] \frac{d A}{D^{2}} \tag{2.23}\\
& \frac{M^{x}}{M^{x}}=\frac{D^{4}}{I^{x}}\left(1+K_{z}\right) \int_{A} \frac{y}{D} \frac{\epsilon}{\epsilon_{y}} \frac{d A}{D^{z}}-\frac{D^{4}}{I^{x}}\left(1+K_{z}\right) \int_{A} \frac{y}{D}\left[\frac{\epsilon}{\epsilon_{y}} \pm 1\right] \frac{d A}{D^{z}} \tag{2.24}\\
& \frac{M^{y}}{M_{y}^{x}}=\frac{D^{4}}{I^{x}}\left(1+K_{2}\right) \int_{A} \frac{x}{D} \frac{\epsilon}{\epsilon_{y}} \frac{d A}{D^{2}}-\frac{D^{4}}{I^{x}}\left(1+K_{z}\right) \int_{A} \frac{x}{D}\left[\frac{\epsilon}{\varepsilon_{y}} \pm 1\right] \frac{d A}{D^{2}} \tag{2.25}
\end{align*}
$$

where $A_{C}=2\left(K_{3}+2 K_{1} K_{2}\right) D^{2}=\quad$ the area of the cross section

$$
I^{x}=\frac{2}{3} K_{3} D^{4}+4 K_{1} K_{2}\left(1+k_{2} / 2\right)^{2} D^{4}=\quad \text { the moment of }
$$

in ertia of the cross section about the x axis.
The first integral in each equation represents the volume (or the first moment of the volume) of the $\varepsilon / \epsilon_{y} d i s t r i b u t i o n ~ a n d ~$ may bewritten as,

$$
\begin{aligned}
& \frac{D^{2}}{A_{C}} \int_{A} \frac{\varepsilon}{\epsilon_{y}} \frac{d A}{D^{2}}=\frac{\varepsilon_{0}}{\varepsilon_{y}} \\
& \frac{D^{4}}{I^{x}}\left(1+k_{z}\right) \int_{A} \frac{y}{D} \frac{\epsilon}{\varepsilon_{y}} \frac{d A}{D^{2}}=\frac{\phi^{x}}{\phi_{y}^{x}} \\
& \frac{D^{4}}{I^{x}}\left(1+k_{z}\right) \int_{A} \frac{x}{D} \frac{\epsilon}{\varepsilon_{y}} \frac{d A}{D^{2}}=\frac{I^{y}}{I^{x}} \frac{\phi^{y}}{\phi_{y}^{x}}
\end{aligned}
$$

where

$$
I^{y}=\frac{1}{6}\left[8 k_{1}^{3} k_{2}+k_{3}^{3}\right]=\text { the moment of }
$$

inertia of the cross section about the y axis.
The second integral in each equilibrium equation is the volume (or the first moment of the volume) of the $\left[\frac{\epsilon}{\epsilon_{y}} \pm 1\right]$ aistribution. The required volume was derived for each of the 25 yield configurations by the process described later on this page . An example of such a derivation for the top flange is show using Fig. 2.14. These volumes, having been derived for the possible vield patterns of the top flange can be arrived at for the hottom flange and for the web by simply changing the strain numbers to suit the situation. The results are then combined, i. e., top and bottom flanges and the weh, to give the equations for the 25 different vield configurations. The volumes to be subtracted for each tyne of yielding are found by drawing the total strain distribution diagram for the flenge or web under consideration as in Fig. 2.14. The strain at i is a compressive strain and the strain at j is a tensile one. By proportion, it is found that

$$
\begin{aligned}
2 a_{i j} k, D & =\frac{\epsilon_{i}+\epsilon_{y}}{\epsilon_{i}-\epsilon_{j}} k, D \\
2 a_{j i} k, D & =\frac{\epsilon_{j}-\epsilon_{y}}{\epsilon_{j}-\epsilon_{i}} k, D
\end{aligned}
$$

The strain at any point (x, y) in terms of the yield strain is given by Eq. 2.17 divided by ϵ_{y} and with x and y expressed in terms of D

$$
\frac{\epsilon}{\epsilon_{y}}=\frac{y}{D} \frac{\phi^{x}}{\phi_{y}^{x}} \frac{1}{1+K_{z}}+\frac{x}{D} \frac{\phi^{y}}{\phi^{x}} \frac{1}{1+K_{z}}+\frac{\epsilon_{0}}{\epsilon_{y}}
$$

The first two terms on the right hand side represent "bending strains" and depend only on the values of the curvatures and the section dimensions. The third term depends on the magnitude of the axial load. The strain at either end is found by substituting
the end coordinates into the strain equation. $\overline{\mathcal{E}}_{i}$ is used to denote the "bending strains" at 1 and $\overline{\mathcal{E}}_{j}$ to represent those at 1. The shaded volumes are calculated and these are the "correction factors" for equ'n. 2.20. In Pip. 2.14, the expression for $\frac{P}{P_{y}}$ is

$$
\begin{aligned}
& \frac{P}{P_{y}}=\epsilon_{0}-\frac{1}{2\left(k_{3}+2 k_{1} k_{z}\right) D^{2}} {\left[2 a_{i j} k_{1} D\left(\epsilon_{i}+1\right) \cdot \frac{1}{2} k_{2} D\right.} \\
&\left.+2 a_{j i} k_{1} D\left(\epsilon_{j}-1\right) \frac{1}{2} k_{2} D\right] \\
& \text { or } \frac{P}{P_{y}}=\epsilon_{0}-\frac{k_{1} k_{z}}{2\left(k_{3}+2 k_{1} k_{z}\right)}\left[\left(\frac{\left(\bar{\epsilon}_{i}+\epsilon_{0}+1\right)^{2}}{\epsilon_{i}-\bar{\epsilon}_{j}}\right)+\left(\frac{\left(\bar{\epsilon}_{j}+\epsilon_{0}-1\right)^{2}}{\bar{\epsilon}_{j}-\bar{\epsilon}_{i}}\right)\right]
\end{aligned}
$$

where all strains are understood to be divided by E_{y}. Multiplying this equation by -1 and expanding, a quadratic equation in ϵ_{0} is arrived at. The equation is of the form

$$
Q \epsilon_{0}^{2}+R \epsilon_{0}+S=0
$$

where

$$
\begin{aligned}
& Q=\frac{A}{\bar{\epsilon}_{i}-\bar{\epsilon}_{j}}+\frac{A}{\overline{\epsilon_{i}}-\bar{\epsilon}_{i}}=0 \\
& R=2 A\left[\frac{\bar{\epsilon}_{i}+1}{\bar{\epsilon}_{i}-\bar{\epsilon}_{j}}+\frac{\bar{\epsilon}_{j}-1}{\bar{\epsilon}_{j}-\bar{\epsilon}_{i}}\right]-1 \\
& S=A\left[\frac{\left(\bar{\epsilon}_{i}+1\right)^{2}}{\epsilon_{i}-\epsilon_{j}}+\frac{\left(\bar{\epsilon}_{j}-1\right)^{2}}{\bar{\epsilon}_{j}-\bar{\epsilon}_{i}}\right]+\frac{P}{P_{y}} \\
& A=\frac{k_{1} k_{2}}{2\left(k_{3}+2 k_{1} k_{2}\right)}
\end{aligned}
$$

In this case, $Q=0$ and the equation in ϵ_{0} takes the form

$$
R \varepsilon_{0}+S=0
$$

or $\quad \epsilon_{0}=-S / R$
If λ_{0} is non moro, then ϵ_{0} is described by

$$
\epsilon_{0}=\frac{-R-\sqrt{R^{2}-4 Q S}}{2 Q}
$$

For this analysis, the equations are all linear or quadratic. In this examnle, of course, the strain in only one flange was considered. To arrive at the net enuation in ϵ_{0}, the expressions for Q, R and S for the two flanges and the web are deriver and the resilits sunerimnosed. Exnressions for $4, \mathcal{R}$, and S for all possible flange and web yield patterns are given in table 2.1. Once $\frac{\epsilon_{0}}{\epsilon_{y}}$ has been found for the given $\phi^{x} / \phi_{y^{\prime}}^{x} \phi^{y} / \phi_{y}^{x}$, and P/Py, a check load and the bending moments are found using a summationprocedure. Essentially, this procedure divides the section into small elements (20 elements per flange, web). The stress corresponding to strain at the centre of each element is found and the contribution of each element to the load or to the moment is determined. Total loads and moments are calculated by summing the contributions from each element. The load determined in this manner is checked against the specified load and thus a number of programming and derivation errors were eliminated. If the calculated load agrees with the original load, the calculated moments are regarded as leritimate output and are used in the column integration procedure.
2.5.3 Introduction of Residual Stresses

Residual stresses are stresses set un in the member due to cooling. Their distribution is generally assumed to be that of Fig. 2.1 5. These stresses are compressive at the flange tips and tensile at the centre. Sharma (20) uses a σ_{nc} (compressive resididal stress) of 12 Ksi and assumes $\sigma_{\imath t}$ (tensile residual stress) to be constant along the web. The magnitude of $\sigma_{\lambda_{t}}$ is such to maintain equilibrium of the cross section. Adding the strain
distribution due to residual stresses of 2.16 (b) to the strain distribution of Fig. 2.16 (a) will result in the distribution of Fig. 2.16 (c). The equation describing the magnitude of the resudual strain at any point (x, y) in the cross section is

$$
\epsilon_{R}=\frac{\epsilon_{c}-\epsilon_{t}}{b}|x|+\epsilon_{t}
$$

where $\quad \epsilon_{c}=$ compressive residual strain at the tips of the flanges
$\epsilon_{t}=$ tensile residual strain at the centre of the flanges
$b=$ width of half section
$\epsilon_{R}=$ residual strain at any point (x, y)
Therefore, the total strain equation now becomes

$$
\epsilon=\phi^{x} \cdot y+\phi^{y} \cdot x+\epsilon_{0}+z / x \mid+\epsilon_{t}
$$

where $Z=\frac{\epsilon_{c}-\epsilon_{t}}{b}$
or, non dimensionalining

$$
\frac{\epsilon}{\epsilon_{y}}=\frac{\phi^{x}}{\phi_{y}^{x}} \cdot \frac{y}{D} \cdot \frac{1}{1+k_{z}}+\frac{\phi^{y}}{\phi_{y}^{x}} \cdot \frac{x}{D} \cdot \frac{1}{1+k_{z}}+z\left|\frac{x}{D}\right|+\frac{\varepsilon_{t}}{\varepsilon_{y}}
$$

where

$$
\begin{aligned}
z & =\frac{\epsilon_{c} / \epsilon_{y}-\epsilon_{t / \epsilon_{y}}}{b / d} \\
& =\frac{\epsilon_{c} / \epsilon_{y}-\epsilon_{t} / \epsilon_{y}}{K_{1}}
\end{aligned}
$$

Because of the introduction of residual stresses to the analysis, the number of possible yield configurations increases considerably. The possible configurations are again arrived at by considering the types of yielding that could occur in the top and bottom flanges and superimposing the results.

The possible yield configurations are as shown in Fig. 2.17 (a).

The constants Q, R and S for the yield patterns have been derived and are listed in Table 2.2. The strain distribution and subsequent equations for Q, R and S for the web will be the same as for the case with no residual stress with the exception that the constant $\epsilon_{\text {ut }}$ will be adतed to all of the strains. When the different equations are combined to form a yield pattern for the cross section, P / P_{y} must be added to the expression for S to make it complete. This necessity arises from the fact that in deriving the expressions, the load in only that branch of the total cross section under consideration is taken into account. The expression $P=f(\epsilon)$ results in P occurring in the last coefficient S of the quadratic expression. Summing the three sis, i. e. for the two flanges and for the web will yield the total P for the cross section. It is therefore simpler to add P to the total expression for S than to add a part of it to each particular branch of the cross section.

To illustrate the procedure outlined, consider the example of Fig. 2.18. Configuration 1 and configuration 12 are united to give the resulting total yield configuration for the cross section, the yield configuration for the web automatically determined by the two flanges. Therefore, the expressions for Q, R and S will be found by combinine 1,12 , and 19 from table 2.2 and adding P / p_{y} to the resulting expression for S. The equations are then

$$
\begin{aligned}
& Q=\frac{A^{*}}{2\left(\bar{\epsilon}_{5}-\bar{\epsilon}_{1}\right)}+0+0=\frac{A}{2\left(\bar{\epsilon}_{5}-\bar{\epsilon}_{1}\right)} \\
& R=A\left(\frac{\bar{\epsilon}_{5}-1}{\bar{\epsilon}_{5}-\bar{\epsilon}_{1}}-1\right)+0+2 B^{*}\left[\frac{\bar{\epsilon}_{5}-\bar{\epsilon}_{6}-2}{\bar{\epsilon}_{5}-\bar{\epsilon}_{6}}-1\right] \\
& S=A\left[\frac{\left(\bar{\epsilon}_{5}-1\right)^{2}}{2\left(\bar{\epsilon}_{5}-\bar{\epsilon}_{1}\right)}-\frac{\bar{\epsilon}_{5}+\bar{\epsilon}_{1}}{2}-1\right]+0+B\left[\frac{\left(\bar{\epsilon}_{5}+\bar{\epsilon}_{6}\right)\left(\bar{\epsilon}_{5}-\bar{\epsilon}_{6}+2\right)}{\bar{\epsilon}_{5}-\bar{\epsilon}_{6}}\right]+\frac{P}{P_{y}}
\end{aligned}
$$

* Symbols A and B are defined in the romenclature.

2.5.4 Twisting Disolacements

As mentioned previously, tre effect of twisting on the strength of the column has been shown to be small in many cases (20) and has been neglected in this study. However, an anproximate nrocedure whereby these displacements could easily be in corporated in the analvsis is given in this section. This procedure is based on the following assumptions:

1) The shear center and centroid of the cross section coincide, i. e. the effect of partial yielding of the cross section on the position of the shear center is neglected.
2) Twisting displacements of the column vary according to the equation

$$
\begin{equation*}
\alpha=\alpha_{0} \sin \frac{\pi z}{L} \tag{2.26}
\end{equation*}
$$

where $\quad \alpha=$ twisting displacement at Z
$\alpha_{0}=$ twisting displacement at mid height of of the column.
3) The yield pattern in the flanges at any inelastic cross section is the same as that at mid height of the column.

Assumptions 1 and 2 have been used by previous investigatiors (20). Assumption 3 is used to determine the effect of warping strains on the princinal axis curvatures and since these strains are small, it should be a reasonable assumntion.

According to Timoshenko and Gere (21) the warping strain of a thin-walled, open cross section subjected to twisting is given
by

$$
\epsilon_{z}=\frac{\partial \omega}{\partial z}=\left(\bar{\omega}_{s}-\omega_{s}\right) \frac{d^{2} \alpha}{d z^{2}}
$$

where

$$
\begin{aligned}
& \omega_{s}=\int_{0}^{s} \Omega d s \\
& \bar{\omega}_{s}=\frac{1}{m} \int_{0}^{s} \Omega d s
\end{aligned}
$$

$$
\begin{aligned}
\omega= & \text { warping displacement } \\
\cdots= & \text { the length of centre line of the cross section. } \\
\alpha= & \text { the angle of rotation of any cons section. } \\
\Omega= & \text { the radial distance from the axis of rotation } \\
& \text { to point on the centre line of the cross } \\
& \text { section. } \\
\epsilon_{z=}= & \text { the warping strain set up in the cross sec- } \\
& \text { ion caused by the warping displacements } \\
& \text { and } S \text { is measured along the centreline of } \\
& \text { the cross section. }
\end{aligned}
$$

In this study it is necessary to apply this equation to a wide flange section subjected to biaxial loading, the section having some plastic yielding.

In order to evaluate ω, the extent of yielding in the cross section mist be know, as only the unyielded portion of the cross section can contribute to the strength of the section. Since the warning strains are small compared to the bending strains, it should suffice to determine the y yielded portion of the cross section neglecting twist. The extent of the yielding can easily be calculated if ϕ^{x}, ϕ^{y} and ϵ_{0} are known by using Eq. 2.17. The procedure for determining the constant - curvature - moment curvature curves requires that ϵ_{0} be determined for predetermined combinations of ϕ^{x} and ϕ^{y}. These calculated values of ϵ_{0} can easily be used to determine ϵ_{0} for any combination of curvatures not specified. $\bar{\omega}_{s}$ and ω_{s} can then be calculated using only that

$$
-27
$$

portion of the cross section which remains elastic.
The nroblem remaining is to find a value for α_{0} (Eq. 2.26).
The torsional moment is given by the equation

$$
\begin{equation*}
M^{z}=M_{A}^{x} \frac{d \mu}{d z}+M_{A}^{y} \frac{d \mu}{d z}+\frac{d \alpha}{d z} \int_{A} \sigma_{c} \Omega^{2} d A \tag{2.28}
\end{equation*}
$$

The resisting torsional moment can be divided into two parts; the part called M_{1}^{z}, due to pure torsion and the part M_{2}^{z}, due to warping of the cross section. The first part is

$$
\begin{equation*}
M_{1}^{z}=C \frac{d \alpha}{d z} \tag{2.29}
\end{equation*}
$$

where C is the St. Venant torsional stiffness for the section, which for small angles of twist is normally assumed to be unaffected by partial yielding of the cross section due to normal stresses. The second part is

$$
\begin{equation*}
M_{2}^{z}=-C_{\omega} \frac{d^{3} \alpha}{d z^{3}} \tag{2.30}
\end{equation*}
$$

where $C \omega$ is the warping constant. According to Sharma (20)

$$
\begin{equation*}
\mathcal{M}_{2}^{z}=-E h^{2}\left(I_{f_{1}}+I_{f_{2}}\right) \frac{d^{3} \alpha}{d z^{3}} \tag{2.31}
\end{equation*}
$$

where

$$
\begin{aligned}
I_{f_{1}}+I_{f_{2}}= & \text { moment of intertia of the elastic } \\
& \text { portion of the cross section about } \\
& \text { the } y \text {-axis }
\end{aligned}
$$

$$
h=\text { denth of the section }
$$

For eoullibrium of the cross section

$$
M^{z}=M_{1}^{z}+M_{2}^{z}
$$

Substituting from Eqs. 2.28, 2.29, and 2.31 into Eq. 2.32 gives

$$
\begin{array}{r}
M_{A}^{x} \frac{d v}{d z}-M_{A}^{y} \frac{d \mu}{d z}+\frac{d \alpha}{d z} \int_{A} \sigma_{c} \Omega^{2} d A \\
\quad=C \frac{d \alpha}{d z}-E h^{2}\left(I_{f_{1}}+I_{f_{2}}\right) \frac{d^{3} \alpha}{d z^{3}} \tag{2.33}
\end{array}
$$

Differentiating with respect to Z, Eq. 2.33 becomes

$$
\begin{gather*}
M_{A}^{x} \phi^{y}-M_{A}^{y} \phi^{x}+\frac{d^{2} \alpha}{d z^{2}} \int_{A} \sigma_{c} \Omega^{2} d A= \\
C \frac{d^{2} \alpha}{d z^{2}}-E h^{2}\left(I_{f_{1}}+I_{f_{2}}\right) \frac{d^{4} \alpha}{d z^{4}} \tag{2.34}
\end{gather*}
$$

$\int_{A} \sigma_{c} \Omega^{2} d A$ can be evaluated once the yield configuration is known. The quantity $E\left(I_{f_{1}}+I_{f_{2}}\right)$ can be evaluated by the expression

$$
\begin{equation*}
E\left(I_{f_{1}}+I_{f_{2}}\right)=\frac{M^{y}}{\phi^{y}} \tag{2.35}
\end{equation*}
$$

Using the assumed variation of $\alpha\left(\right.$ Eq. 2.36) and $Z=\frac{L}{2}$ in Eq. 2.34 y1elds

$$
\begin{equation*}
\alpha_{0}=\frac{M_{A}^{x} \phi^{y}-M_{A}^{y} \phi^{x}}{\left(\frac{\pi}{L}\right)^{2}\left[\int_{A} \sigma_{c} \Omega^{2} d A-c-\left(\frac{h \pi}{L}\right)^{2} \frac{M^{y}}{\phi^{y}}\right]} \tag{2.36}
\end{equation*}
$$

where all quantities are evaluated at the mid height of the column $\left(z=\frac{h}{2}\right)$.

Having established α_{0} and the rield configuration, the werping strains can be calculated from Eq. 2.27 and their effect on the strength of the cross section at mid height, or any location for that matter, can be readily determined. Feferring to Fig. 2.20, the change in the extent of yielding due to warping strains is shown cross hatched and may result in either an increase or decrease in the amount of yielding. The amount of the change can be readily determined by geometry. This change in yielding will change the effective moments of inertia (moments of inertia of the elastic portion of the cross section), the amount of which is readily calculated. Let

$$
\Delta I_{0}^{x}, \Delta I_{0}^{y}=\text { change in the effective moments }
$$

of inertia at the mid heights of the column about the x and y axes respectively. Positive values correspond to a decrease in moment of inertia.
By using assumption 3 (page 25), the change in the moments of inertia at any point z on the cross section are approximated by

$$
\begin{align*}
& \Delta I^{x}=\Delta I{ }_{0}^{x} \sin \frac{\pi z}{L} \tag{2.37}\\
& \Delta I^{y}=\Delta I{ }_{0}^{y} \sin \frac{\pi z}{L} \tag{2.38}
\end{align*}
$$

Knowing ΔI^{x} and $\Delta I^{\mathcal{y}}$, the change in curvatures at any point can be found as

$$
\begin{align*}
& \Delta \phi^{x}=\text { change in x-axis curvature due to } \\
& \text { warping strains } \tag{2.39}\\
&=-\left[\frac{M^{x}}{E\left(I^{x}\right)}-\frac{M^{x}}{E\left(I^{x}-\Delta I^{x}\right)}\right] \quad \text { (2.39) } \\
& \Delta \phi^{y}=\text { change in y-axis curvature due to } \tag{2.40}\\
& \text { warping strains } \\
&=-\left[\frac{M^{y}}{E\left(I^{y}\right)}-\frac{M^{y}}{E\left(I^{y}-\Delta I^{y}\right)}\right] \text { (2.40) }
\end{align*}
$$

It should be noted that if ΔI_{o}^{x} or ΔI_{o}^{y} are negative (the moments of inertia increase), the curvature decreases.

A further consequence of twisting is that moments about the principal axes are no longer simply M^{x} and M^{y}. Refering to Fig. 2.21, it is apparent that moments on the rotated cross section must be referred to the \mathcal{E} and ${ }^{\eta}$ axes. It can be shown that

$$
\begin{align*}
& M^{\xi}=M^{x}+\alpha M^{y} \tag{2.41}\\
& M^{\eta}=M^{y}-\alpha M^{x} \tag{2.42}\\
& \phi^{x}=\phi^{\xi}-\alpha \phi^{\eta} \tag{2.43}\\
& \phi^{y}=\phi^{\eta}-\alpha \phi^{\xi} \tag{2.44}
\end{align*}
$$

where the superscripts refer to the axis in Fig. 2.2.1. Eqs. 2.41 to 2.44 are used to transform from one axis system to the other.

Making use of the caluations develoned in the proceeding narapranhs, the following nrocedure is supgested for the inciusion of twist in the analvsis:

1) Assume (as usual) a natr of mid heint displacements u and v.
2) Neglectine twist, determine a column deflection curve for the displacements of step 1.
3) Using the column deflection curve of step 2, determine (from Eq. 2.36), the yield configuration at mid height, and ΔI_{0}^{x} and ΔI_{0}^{y}.
4) Construct a new column deflection curve for the u and v displacements of step 1 and the assumed twisting (Eq. 2.26) using the following procedure:
5) At a panel point i calculate

$$
\begin{aligned}
& M_{i}^{x}=P v_{i} \\
& M_{i}^{y}=P \mu_{i}
\end{aligned}
$$

"sing these moments find the moments about the rotated principal axes usine Eqs. 2.41 and 2.42.
6) Determine the curvatures ϕ_{i}^{f} and ϕ_{i}^{η} using the rrocedure given in Sec 2.5.1 and annly the corrections given by Ens. 2.39 and 2.40.
7) Determine ϕ_{i}^{2} and ϕ_{i}^{y} using Ens. 2.43 and 2.44. Find the displacements at $1+1$ using Eas. 2.13 to 2.16.
8) Go to the mext panel point (which now becomes 1 and repeat
steps 5 to 7. Repeat until the desired length of column is reached.
9) Check the ratio $\frac{M_{A}^{\mathcal{H}}}{M_{A}^{x}} w i t h \gamma$ as usual and modify the assumed mid height displacements accordingly.

The procedure given on preceding nages is good for equal end moments. However, if different boundery conditions are considered, the assumption that α varies simsoidally is no longer reasonable. Consider the case where the bending moments at one end are zero ($\beta=0$). Since the transcendental functions are symmetric, we vill simply modify the former function to fit the new situation. Fig. 2.19 deoicts the manner in which this misht be done. The column is divided at the point of maximum deflection as before. The difference now is that the point of maximu deflection is not at the centre due to the unsymmetrical boundary conditions. One function will not describe the twisting behavior of both parts of the columa and thus we will use the two functions $\alpha=\alpha_{0} \sin \frac{\pi z}{L_{1}}$ and $\alpha=\alpha_{0} \sin \frac{\pi Z}{L_{2}}$, where L_{1} and L_{2} are the lengths of column above and below the point of maximum deflection respectively. The first equation applies for z from 0 to L_{1} and the second for z from L_{1} to L_{2}. For a known $\mathcal{S}_{\text {max }}, L_{1}$ and L_{2} can he determined neglecting twist and α_{0} can be calculated in much the same manner as for the equal end moment case. Once the variation of α is known, the twisting displacements can be included in the maner just described.

Chanter 199 - Comnutations

3.1 Computer Programs

The nrocedure used in this nroject necessitated the extensive use of a computer. During the study an IRM 1620, and IBM 7040 and an IBM $360 / 40$ computer were used. In this respect the analysis contains ample variety.

Two sets of programs were used to complete the analysis. The first set of programs established the constant - curvature, moment curvature curves for the given section, loads and specified values of the curvatures. The equations used in this program and the flow of the program had to be developed from scratch, so to speak, and the "debugging" process was quite tedious because of the riatively large number of vield configurations. To further complicate matters, the TRM 1620 comnuter was the only machine available during the initial writing and "debugging" of the program. Because of the limited capacity of this machine, the program controlling the socuence of assumed vield configurations, i. e. the moment curvature program, was divided into four parts, according to the O, A, B and C divisions of Fig. 2.12. The data from these four parts was then combined to form a complete set of data. This procedure greatly augmented the amount of time spent in setting, up the procedure and "debugging" it. The 1620 was also very slow in execution. Thus, when the opnortunity came, the four parts of the program were combined and run on a larger machine. More time was spent correcting the programs after they were combined but after this initial period of detective work, the time saved was great. One set of moment curvature curves for one axizl load
required about one half hour of rumning on the 1620 machine. On the $360 / 40$, moment curvature curves for five loads could be run in about five minutes. Also, with the program all in one piece it was much easier to correct any errors in the equations or in the flow. The column integration program was also run on the $360 / 40$ machine after it was available and execution time was drastically cut. Results which recuired six to eisht hours of running on the 1620 could be rum in anproximately fifteen minutes on the $360 / 40$. The column integration prooram determined moment - deflection curves for the case $\beta=1$. Th this nrogram, a curvature subprogram was used to determine snecific values of curvature for the moments calculated at each nanel point on the column - deflection curve. A program treating the case $\boldsymbol{\beta}=0$ was available from Scott (19) but the program was never set up and run for wide flange sectionsas time did not permit. It should be emphasized that although the only boundary conditions studied were $\beta=/$ that $\beta=0$ or $\beta=-1$ or any inbetween set of boundary conditions are also possible with only minor alterations to the programs.

3.2 Numerical Calculations

The numerical calculations involved curve interpolation and finding the coordinates of the intersection of two curves.

The curvature subprogram, used to determine specific values of curvature for the moments calculate at each panel noint on the column deflection curve, recuires a method of internolating between snecific noints on the constant - curvature moment curvature curves. For example, the constant moment curves of Fig. 2.15 showing the relationshin between ϕ^{x} and ϕ^{y} are found br internolating from roints
on the curves of Figs. 2."4 and 2.12. Cecond-deoree polynomials derived from three data points bounding the value of the inderendent variable were used for all interpolations. These curves have the general shane of most of the curves found in this study, at least over the limited range of tree data points.

The curvature determination (Section 2.5) requires that the coordinates of the intersection of two curves be found. Two parts on each curve are selected and a linear equation is written thru each pair. The coordinates of the intersection of these two straight Ines are found and compared with the coordinates of the points determining the lines. If the coordinates of the intersection are bounded by the points, an approximation to the intersection has been obtained. If the coordinates of the intersection are not bounded, then a new point on one or both curves is selected and the process repeated. Once the intersection is bounded, a second degree equation is written thru the two bounding noints plus a third point on each curve. The curves are thus approximated by the equations.

$$
\begin{aligned}
& \phi_{1}^{y}=a\left(\phi_{1}^{x}\right)^{2}+b\left(\phi_{1}^{x}\right)+c \\
& \phi_{2}^{y}=d\left(\phi_{2}^{x}\right)^{2}+c\left(\phi_{2}^{x}\right)+f
\end{aligned}
$$

At any intersection, the following must hold

$$
\begin{aligned}
& \phi_{1}^{y}=\phi_{2}^{y} \\
& \phi_{1}^{x}=\phi_{2}^{x}
\end{aligned}
$$

Equating the two ϕ^{y} values gives a quadratic equation in ϕ^{x}. This is solved using Newton's second order method where the first approximation to the root is given by the linear equations written thru each pair of bounding points.

Chapter IV - Discussion of Results

4.1 General Comments

A number of factors affect the behavior of biaxially loaded columns. Among these are the relative dimensions of the cross section $\left(K_{1}, K_{2}, K_{3}\right)$, the slendernoss ratio L / r_{y}, the ratio of end moments (β), the ratio of moments at each end (γ), and the axial load (P). Consideration of all of these factors would reauire the solution of an extromely larfe number of problems. The lack of a siltable computer and available computer time limited the number of nroblems that could be considered. fith the conversion of the nrooram to the $360 / 40$ system a run of $33 / 4$ hours on the TBM 1620 was rednced to less than 10 minutes on the $360 / 40$ machine. This 10 minutes of running yielded three interaction curves of five points each of the type shown in Fig. 4.1.

A number of elastic points on the moment deflection curves wore obtained and served to check the computer procramming. In addition, a series of hand calculations were made by Scott (19) for the square cross section with $P / P_{y}=0.6, I / r_{y}=100, \beta=1$, and $\gamma=1$, in order to check the column integration computer program. The maximum error found by these hand computations was 0.3%. In the present analysis of wire flange columns, the same column integration prosram was used, the only changes being in certain constants which denend on section properties.

In the develonement of the column deflection curves, the nanel lenoth, "a", was taken as no more than four times the smallest radius of gyration of the cross section;exact values
were selected to give the required slenderness ratio.

4.2 Mumerical Results

Interaction curves for the wide flange sections considered in this study are shom in Fio.'s 4.1 to 4.13. These cirves are all for columns with $\beta=1$. Four different sections were studied with width to denth retios (b / d) varving from 0.6 to $1 . L / r_{y}$ was varied from 60 to 90 to 120 and γ was token as . $4, .8,1.2,1.4$ and 2.0. For the section with b / d ratio of 1 , the axial load $\mathrm{P} / \mathrm{P} y$ was varjed from. 1 through. $?$ to give the interaction curves of Fig. 4.1. The interaction curves were obtained by considering a number of axial loads and calculating the ultimate or maximum moment for that particular load and section. The ultimate moment was obtained from the moment-rotation curve (Fig. 2.8) by taking the maximum moment attained by the curve. The value assumed for P / P_{y} was then plotted against this value of M / M_{y} to give one point on the interaction curve. The rest of the interaction curves have a maximum ${ }^{\mathrm{P}} / \mathrm{p} \mathrm{y}$ of .3 or .5. This was due to the fact that time and space on the 1620 did not permit a larger range of loads. After installation of the $360 / 40$, more moment-curvature curves were develoned and more extensive interaction curves drawn.

From the curves it can be scen that as the load is increased, the moment carrving canacity at all slenderness ratios is substantially decreased. The effect of an increase in slenderness ratio is to decrease the load carrying canacity of the column. Decreasing the b / d ratio from 1 to .6 decreases the moment carrying canacity by about 26% for an axial load of $\mathrm{P} / \mathrm{P} y=0.1$ and by about 28% for ${ }^{P} / P_{y}=0.3$. At all values of γ, the interaction
curves shift to the right as b / A increases. In othor words, for constant load, the moment canacity increases with b / d. Comnarine the interaction curves at constant load shows that as γ is incrosed, the moment carrying canacity of the column is substantially rediced for all b / d and slenderness ratios.

No laboratory tests were performed in this study to substantiate, the thocry. However, a number of tests on biaxial bending of wide flange columns has been carried out in Germany and Russia. Test results obtained by Kloppel and Winkelman (13) and presented by Galambos are used to check the theoretical solution. These results are for columns loaded with equal eccentricities at each end with the load being increased to failure. The snecimens were rolled stecl wide-flange columns and their cross sections had width to depth ratios varying from .5 to 1 . The end conditions were such that the members were essentially pinned acainst rotation, and worning wos restraine by heavy end plates. For the most nart, the interaction curves nresented in Fios. 4.1 to 4.13 are for the values of $\gamma, L / r_{Y}$ and cross sections used by Klonnel and Winkelman.

Prediction of the ultimate load that an eccentrically loaded column will carry is based on the interaction curves and the fact that the relationship between load and moment for the test is siven by the equation

$$
\begin{equation*}
M^{x}=P e^{x} \tag{4.1}
\end{equation*}
$$

or in dimensionless form as

$$
\frac{M^{x}}{M_{y}^{x}}=\frac{P}{P_{y}} \frac{\left(1+k_{2}\right)}{\left(r_{x} /\right)^{2}}\left(\frac{e^{x}}{D}\right)
$$

This is the equation of a straight line passing through the origin
where P / P_{y} and $M^{x} / M^{x} y$ are the variables and $\frac{1+K_{2}}{\left(\Omega^{x} / D\right)^{2}} \cdot \frac{e^{x}}{D}$ is the reciprocal of the slope. Equation 4.1 is plotted on the interaction curve and its intersection with the interaction curve gives the theoretical ultimate load that the column can carry.

The results of the comparison between the theoretical and experimental loads are tabulated in table 4.1. As can be seen the theory is unconservative in all cases but three. There are possible explanationsfor part of the differences. It was noted in the tabulated data of the German tests that two fallure loads were given for the same section in many cases. It would soem that more that one snecimen of the same cross section was tested and that a maximum and a minimum value were recorded. The aleebraic average of the two valies was ised, were available, to comnare with the theoretical results. However, it is auite possible that this average is not the true mean value and that the lower axial loads are closer to the truth. Also, the effect of warping strains and residual strains was not included in the analysis. Also, it was assumed that the material used by the Cermans was perfectly elastic-perfectly plastic. The yield strains needed in the column integration program were taken from the table of results presented in the paper (13) and mav have only been approximationsor values taken from a handbook. Sharma (20) also used these results to test his theorv and he shows no better, if as pood, apreement.

To further check the theory, the procedure described above was used to obtain the ultimate load on a 12 Wideflange 79 section
which hat been nreviously analysed by Eirnstiel and Michatos (2). The predicted ultimate load was identical to that presented, indicating that the two theories are comnatible.

Chanter V - Conc?usions and Future Research

5.1 Conclusions

An analvsis of a biaxially loaded column has been nresented mhlch is smecifically applicable to the wide flange cross section. Since the wide flange is a commonly used section, the analysis can be used widely.

Although a relatively small amount of data was collected, the following conclusions can be made:

1) End moments at collapse are substantilly decreased with an increase in slenderness retion and/or axial load on the column.
2) An increase in minor principel axis bending moment (MY) can substantially reduce the colmm's ability to carry major principal axis bending (M^{X}) for a given slenderness ratic and axial load.
3) Interaction curves for the biaxially loaded column can be developed for use in the design of such members.
4) Comparison of theoretical results with available exnerimental resilts shows fiarlv goon agreement. A comparison with an "expct" analvsis also showed very good agreement. It is IIkely that some of the error noter in the results came from the lack of the consideration of residual strain and twisting disnlacements in the analysis. It is unlikely that these factors could contribute more than 8 per cent to the error however (20).

5.2 Future Research

Laboratory tests on biaxially loaded wide flange columns should be made in which a high degree of control could be obtained. Specifically, material properties of each specimen
tested should be exsctly determined. A larger number of end conditions (end moment ratios (β) and loading conditions (P)) should be checked in order to broaden the horizons of the results of this study. The effects of warping and residual strains should be included in the analysis and these results compared with results obtained without the inclusion of these effects and with the experimental results.

Table 2.1 List of yield patterns and quadratic equation constants for the top and bottom flenges and the web for the analysis excluding residual stresses. All strains are divided by ϵ_{y}

Patterid	Q	R	S
	$\frac{A^{*}}{\bar{\epsilon}_{2}-\bar{\epsilon}_{1}^{*}}$	$2 A \frac{\left(\bar{\epsilon}_{2}-1\right)}{\bar{\epsilon}_{2}-\bar{\epsilon}_{1}}$	$A \frac{\left(\bar{\epsilon}_{2}-1\right)^{2}}{\bar{\epsilon}_{2}-\bar{\epsilon}_{1}}$
	$\frac{A}{\overline{\epsilon_{2}-\bar{E}_{1}}}$	$2 \mathrm{~A} \frac{\left(\bar{\epsilon}_{2}-1\right)}{\bar{\epsilon}_{2}-\bar{\epsilon}_{1}}$	$A \frac{\left(\bar{\epsilon}_{2}-1\right)^{2}}{\bar{\epsilon}_{2}-\bar{\epsilon}_{1}}$
	\bigcirc	$2 A\left(\frac{\bar{\epsilon}_{2}-1}{\bar{\epsilon}_{2}-\bar{\epsilon}_{1}}+\frac{\bar{\epsilon}_{1}+1}{\bar{\epsilon}_{1}-\bar{\epsilon}_{2}}\right)$	$A\left[\frac{\left(\epsilon_{1}+1\right)^{2}}{\bar{\epsilon}_{1}-\bar{\epsilon}_{2}}+\frac{\left(\bar{\epsilon}_{2}-1\right)^{2}}{\bar{\epsilon}_{2}-\bar{\epsilon}_{1}}\right]$
	$\frac{A}{\bar{\epsilon}_{1}-\bar{\epsilon}_{2}}$	$2 A \frac{\left(\bar{\epsilon}_{1}+1\right)}{\bar{\epsilon}_{1}-\bar{\epsilon}_{2}}$	$A\left[\frac{\left(\bar{\epsilon}_{1}+1\right)^{2}}{\overline{\epsilon_{1}}-\bar{\epsilon}_{2}}\right]$
	$\frac{A}{\epsilon_{1}-\bar{\epsilon}_{2}}$	$2 A \frac{\left(\bar{\epsilon}_{1}+1\right)}{\bar{\epsilon}_{1}-\bar{\epsilon}_{2}}$	$A \frac{\left(\bar{\epsilon}_{1}+1\right)^{2}}{\bar{\epsilon}_{1}-\bar{\epsilon}_{2}}$
6	0	0	\bigcirc
	\bigcirc	$2 A\left[\frac{\bar{\epsilon}_{2}-1}{\bar{\epsilon}_{2}-\bar{\epsilon}_{1}}+\frac{\bar{\epsilon}_{1}+1}{\bar{\epsilon}_{1}-\bar{\epsilon}_{2}}\right]$	$A\left[\frac{\left(\bar{\epsilon}_{1}+1\right)^{2}}{\bar{\epsilon}_{1}-\bar{\epsilon}_{2}}+\frac{\left(\bar{\epsilon}_{2}-1\right)^{2}}{\bar{\epsilon}_{2}-\bar{\epsilon}_{1}}\right]$

Table 2.1 (contd)

PYTPTETS	Q	R	s
	\bigcirc	2 A	$A\left(\bar{\epsilon}_{1}+\bar{\epsilon}_{2}+2\right)$
	\bigcirc	$2 A\left(\frac{\bar{\epsilon}_{2}-1}{\bar{\epsilon}_{2}-\bar{\epsilon}_{1}}+\frac{\bar{\epsilon}_{1}+1}{\bar{\epsilon}_{1}-\bar{\epsilon}_{2}}\right)$	$A\left[\frac{\left(\bar{\epsilon}_{1}+1\right)^{2}}{\bar{\epsilon}_{1}-\bar{\epsilon}_{2}}+\frac{\left(\bar{\epsilon}_{2}-1\right)^{2}}{\bar{\epsilon}_{2}-\bar{\epsilon}_{1}}\right]$
10	\bigcirc	2 A	$A\left(\bar{\epsilon}_{3}+\bar{\epsilon}_{4}-2\right)$
${ }^{11}$	$\frac{A}{\bar{E}_{3}-\bar{E}_{4}}$	$2 A \frac{\left(\bar{\epsilon}_{3}+1\right)}{\bar{\epsilon}_{3}-\bar{E}_{4}}$	$A \frac{\left(\bar{\epsilon}_{3}+1\right)^{2}}{\bar{\epsilon}_{3}-\bar{\epsilon}_{4}}$
$\begin{array}{\|c\|l} 12 \\ \hline \end{array}$	$\frac{A}{\bar{E}_{3}-\bar{E}_{4}}$	$2 \mathrm{~A} \frac{\left(\bar{\epsilon}_{3}+1\right)}{\bar{\epsilon}_{3}-\bar{\epsilon}_{4}}$	$A \frac{\left(\bar{\epsilon}_{3}+1\right)^{2}}{\bar{\epsilon}_{3}-\bar{\epsilon}_{4}}$
${ }_{\text {W }}^{13}$	0	$2 A\left(\frac{\bar{\epsilon}_{3}+1}{\bar{\epsilon}_{3}-\bar{\epsilon}_{4}}+\frac{\bar{\epsilon}_{4}-1}{\bar{\epsilon}_{3}-\bar{\epsilon}_{4}}\right)$	$A\left[\frac{\left(\bar{\epsilon}_{3}+1\right)^{2}}{\bar{\epsilon}_{3}-\bar{\epsilon}_{4}}+\frac{\left(\bar{\epsilon}_{4}-1\right)^{2}}{\bar{\epsilon}_{3}-\bar{\epsilon}_{4}}\right]$
14	$\frac{B}{\bar{\epsilon}_{5}-\bar{\epsilon}_{6}}$	$2 B^{*} \frac{\left(\bar{E}_{5}-1\right)}{\bar{E}_{5}-\bar{E}_{6}}$	$B \frac{\left(\bar{\epsilon}_{5}-1\right)^{2}}{\epsilon_{5}-\bar{\epsilon}_{6}}$
15	\bigcirc	$2 B\left(\frac{\bar{\epsilon}_{5}-1}{\bar{\epsilon}_{5}-\bar{\epsilon}_{6}}+\frac{\bar{\epsilon}_{6}+1}{\bar{\epsilon}_{6}-\bar{\epsilon}_{5}}\right)$	$B\left[\frac{\left(\bar{\epsilon}_{5}-1\right)^{2}}{\bar{\epsilon}_{5}-\bar{\epsilon}_{6}}+\frac{\left(\bar{E}_{6}+1\right)^{2}}{\bar{\epsilon}_{6}-\bar{\epsilon}_{5}}\right]$

Table f.1 (cont'd)

$\begin{aligned} & \text { YIEID } \\ & \text { PATTERN } \end{aligned}$	Q	R	S
$16 \frac{1}{4}$	$\frac{B}{\bar{\epsilon}_{6}-\bar{\epsilon}_{5}}$	$2 B \frac{\left(\bar{\epsilon}_{6}+1\right)}{\bar{\epsilon}_{6}-\bar{\epsilon}_{5}}$	$B \frac{\left(\epsilon_{6}+1\right)^{2}}{\bar{\epsilon}_{6}-\bar{\epsilon}_{5}}$
17 事	\bigcirc	$2 B-1$	$B\left(\bar{\epsilon}_{5}+\bar{\epsilon}_{6}-2\right)$

$$
\begin{aligned}
\bar{\epsilon}_{1}= & \epsilon_{1}-\epsilon_{0} \\
= & \text { berding strain at } \\
& \text { point } 1
\end{aligned}
$$

$\frac{k_{1} k_{2}}{2\left(k_{3}+2 k_{1} k_{2}\right)}$
${ }^{11}$

$$
\begin{aligned}
& \text { Cross Section } \\
& \text { Centreline }
\end{aligned}
$$

r

T	+	${ }^{\text {a/gic.) }}$	4,
可	$\stackrel{1}{4 \times 0}$	A(\%)	(1)
	(tatan	(1)	
	${ }^{24}$	A(t):	4 4 (130)
T	\%	A(\%)	aramer
		-28	
T	。	$\frac{4}{58}$	

Table 2.2 (cont'd)

	Q	R	s
$\left.\right\|^{x * *}$	\bigcirc	\bigcirc	\bigcirc
	\bigcirc	$-2 A$	$A\left(1-\frac{\bar{\epsilon}_{2}+\bar{\epsilon}_{5}}{\bar{\epsilon}_{2}-\bar{\epsilon}_{5}}\right)$
$10 \text { 華 }$	$\frac{A}{2\left(E_{5}-\bar{E}_{1}\right)}+\frac{A}{2\left(\bar{E}_{5}-\bar{E}_{2}\right)}$	$A\left[\bar{\epsilon}_{5}-1{ }^{\epsilon_{5}-\bar{\epsilon}_{1}}+\frac{\bar{\epsilon}_{5}-1}{\bar{\epsilon}_{5}-\bar{\epsilon}_{2}}-2\right]$	$A\left[\frac{\left(\bar{c}_{5}-1\right)^{2}}{2\left(\bar{\epsilon}_{5}-\bar{\epsilon}_{1}\right)}+\frac{\left(\bar{\epsilon}_{5}-1\right)^{2}}{2\left(\bar{\epsilon}_{5}-\bar{\epsilon}_{2}\right)}-\frac{\bar{\epsilon}_{1}+\bar{\epsilon}_{2}}{2}-\bar{\epsilon}_{5}\right]$
II	$\frac{A}{2\left(\bar{\epsilon}_{5}-\bar{E}_{2}\right)}$	$A\left[\frac{\bar{\epsilon}_{5}-1}{\bar{\epsilon}_{5}-\bar{\epsilon}_{1}}+\frac{\bar{\epsilon}_{5}-1}{\bar{\epsilon}_{5}-\bar{\epsilon}_{2}}+\frac{\bar{\epsilon}_{1}+2}{\bar{\epsilon}_{1}-\bar{\epsilon}_{5}-2}\right]$	$\left[A\left[\frac{\left(\bar{\epsilon}_{5}-1\right)^{2}-\left(\bar{\epsilon}_{1}+1\right)^{2}}{2\left(\bar{\epsilon}_{5}-\bar{\epsilon}_{1}\right)}+\frac{\left(\bar{\epsilon}_{5}-1\right)^{2}}{2\left(\bar{\epsilon}_{5}-\bar{E}_{2}\right)}\right)-\frac{\bar{\epsilon}_{1}+\bar{\epsilon}_{2}}{2}-\bar{\epsilon}_{5}\right]$
	\bigcirc	\bigcirc	\bigcirc
	$\frac{A}{2\left(\bar{\epsilon}_{6}-\bar{\epsilon}_{4}\right)}$	$A\left[\frac{\bar{\epsilon}_{6}+1}{\left.\bar{\epsilon}_{6}-E_{4}-1\right]}\right.$	$A\left[\frac{\left(\bar{E}_{6}+1\right)^{2}}{2\left(\bar{E}_{6}-\bar{\epsilon}_{4}\right)}-\frac{\bar{\epsilon}_{6}-\bar{\epsilon}_{4}}{2}+1\right]$
$\begin{array}{\|r\|r\|} \hline 14 & \\ \hline \end{array}$	$\frac{A}{2\left(\bar{\epsilon}_{3}-\bar{\epsilon}_{6}\right)}$	$A\left[\frac{\bar{\epsilon}_{3}+1}{\bar{\epsilon}_{3}-\bar{\epsilon}_{6}}-2\right]$	$A\left[\frac{\left(\bar{\epsilon}_{3}+1\right)^{2}}{2\left(\bar{\epsilon}_{3}-\bar{\epsilon}_{6}\right)}-\bar{\epsilon}_{6}-\frac{\bar{\epsilon}_{3}+\bar{\epsilon}_{4}}{2}\right]$
15	$\frac{A}{2\left(\bar{\epsilon}_{3}-\bar{E}_{6}\right)}+\frac{A}{2\left(\bar{E}_{4}-\bar{E}_{6}\right)}$	$A\left[\frac{\bar{\epsilon}_{3}+2}{\bar{\epsilon}_{3}-\bar{\epsilon}_{6}}+\frac{\bar{\epsilon}_{4}-2}{\bar{\epsilon}_{4}-\bar{\epsilon}_{6}}-1\right]$	$A\left[\frac{\left(\bar{\epsilon}_{3}+1\right)^{2}}{2\left(\bar{\epsilon}_{3}-\bar{\epsilon}_{6}\right)}+\frac{\left(\bar{\epsilon}_{4}-1\right)^{2}}{2\left(\bar{\epsilon}_{3}-\bar{\epsilon}_{6}\right)}+\frac{-\bar{\epsilon}_{3}-\bar{\epsilon}_{4}}{2}-\bar{\epsilon}_{6}\right]$

Table 2.2 (cont'd)

$\begin{aligned} & \text { YIELD } \\ & \text { PATTESNV } \end{aligned}$	Q	R	S
$\begin{array}{c\|} 16 \\ \text { Anthay } \end{array}$	\bigcirc	$-2 A$	$A\left[1-\frac{\bar{\epsilon}_{4}+\bar{\epsilon}_{6}}{\bar{\epsilon}_{4}-\bar{\epsilon}_{6}}\right]$
	$\frac{A}{2\left(\bar{\epsilon}_{3}-\bar{\epsilon}_{6}\right)}+\frac{A}{2\left(\bar{\epsilon}_{4}-\bar{\epsilon}_{6}\right)}$	$A\left[\frac{\bar{\epsilon}_{3}+2}{\bar{\epsilon}_{3}-\bar{\epsilon}_{6}}+\frac{\bar{\epsilon}_{4}+2}{\bar{\epsilon}_{4}-\bar{\epsilon}_{6}}-1\right]$	$A\left[\frac{\left(\bar{\epsilon}_{3}+1\right)^{2}}{2\left(\bar{\epsilon}_{3}-\bar{\epsilon}_{6}\right)}+\frac{\left(\bar{\epsilon}_{4}+1\right)^{2}}{2\left(\bar{\epsilon}_{4}-\bar{\epsilon}_{6}\right)}-\frac{\bar{\epsilon}_{3}+\bar{\epsilon}_{4}}{2}-\bar{\epsilon}_{6}\right]$
18	0	$-2 B^{*}$	\bigcirc
19 委	\bigcirc	$2 B\left[\frac{\bar{E}_{5}-\bar{\epsilon}_{6}-2}{\bar{\epsilon}_{5}-\bar{\epsilon}_{6}}-1\right]$	$B\left[\frac{\left(\bar{\epsilon}_{5}+\bar{\epsilon}_{6}\right)\left(\bar{\epsilon}_{5}-\bar{\epsilon}_{6}+2\right)}{\bar{\epsilon}_{5}-\bar{\epsilon}_{6}}\right]$
20 *	$\frac{B}{\bar{E}_{5}-\bar{E}_{6}}$	$2 B\left[\frac{\bar{\epsilon}_{5}-1}{\bar{\epsilon}_{5}-\bar{\epsilon}_{6}}-1\right]$	$B \frac{\left(\bar{\epsilon}_{5}-1\right)^{2}}{\bar{\epsilon}_{5}-\bar{\epsilon}_{6}}$
21	$\frac{B}{\bar{\epsilon}_{6}-\bar{\epsilon}_{5}}$	$2 B\left(\frac{\bar{\epsilon}_{6}+1}{\bar{\epsilon}_{6}-\bar{\epsilon}_{5}}-1\right)$	$B \frac{\left(\bar{\epsilon}_{6}+1\right)^{2}}{\bar{\epsilon}_{6}-\bar{\epsilon}_{5}}$

$\frac{k_{1} k_{2}}{2\left(k_{3}+2 k_{1} k_{2}\right)}$,

* $A=$
$\bar{\epsilon}_{i}=\epsilon_{i}-\epsilon_{0}=$ "bending" strain at any point i along the
cross section centreline $\frac{k_{3}}{2\left(k_{3}+2 k_{1} k_{2}\right)}$

Table $4.1 \begin{aligned} & \text { TMABULATION OF THEORETICAL AND EXFERIMNTAL } \\ & \text { FESULTS }\end{aligned}$					
$\begin{gathered} 1 \\ \text { SECTIOI } \\ \text { PROPRERTIE } \\ \text { OF COLUNW } \end{gathered}$	$\gamma=\frac{\sum_{r y} y_{A}}{M_{A}^{x}}$	$\frac{\mathrm{F}}{\frac{3}{\text { PeOR }}}$	$\frac{\frac{4}{\operatorname{masi}^{2}}}{(13)^{*}}$	5 $\%$ 1)IFF $\frac{4-3}{4} \times 700$	$\begin{gathered} 6 \\ \frac{\text { Prion }}{P_{y}} \\ (20)^{*} \end{gathered}$
$\begin{aligned} & K_{1}=1.17 \\ & K_{2}=0.168 \\ & K_{3}=0.117 \\ & \frac{L_{1}}{r_{y}}=57 \end{aligned}$. 365	. 250	$\begin{aligned} & .239 \\ & .396 \\ & .175 \\ & .550 \end{aligned}$	$\begin{array}{r} 4.6 \\ 3.3 \\ 4.8 \\ -3.6 \end{array}$	$\begin{array}{r} .268 \\ .423 \\ .219 \\ .600 \end{array}$
		. 409			
		. 168			
		. 530			
	. 1.82	. 295	. 263	12.0	. 256
	1.093	. 256	. 242	6.0	-25?
	. 244	. 195	. 1.73	12.5	. 189
	.729	. 315	.281	12.0	. 328
$\mathrm{K}_{7}=1.0$. 293	.156.215	.136.163	14.732.0	-
$\mathrm{K}_{2}=0.2308$. 357	. 353	1.1	-
$\mathrm{K}_{3}=0.1231$. 494	. 189	. 149	27.0	-
$\frac{L}{r_{y}}=71$. 879	. 224	. 186	20.0	-
	. 195	. 165	. 144	14.5	-
	. 098	. 199	. 169	18.0	-
$\mathrm{K}_{1}=0.8385$. 2377	$\begin{array}{r} .147 \\ .200 \end{array}$.114 .170	$\begin{aligned} & 29.0 \\ & 17.0 \end{aligned}$	-
$K_{2}=0.2301$. 358	. 375	. 129	35.6	-
$\mathrm{K}_{3}=0.1231$. 204	. 165	24.0	-
$\underline{L}=85$. 716				
$\mathrm{r}_{\mathrm{y}}=85$. 159	$\begin{array}{r} .165 \\ .249 \end{array}$	$\begin{array}{r} .141 \\ .219 \end{array}$	$\begin{aligned} & 17.0 \\ & 14.0 \end{aligned}$	-

* The numbers in brackets refer to corresnonding references

Fig. 1.2 Failure at the Collapse Load

Fig. 2.1 Column With Moments Applied at Both Ends

Fig. 2.2 Typical Wide Flange Cross Section

Fig. 2.3 Ideal Stress-Strain Curve

Fig. 2:4 Typical Column Deflection Curve

(a) Projection onto the $y-z$ Plane

(b) Projection onto the $x-z$ Plane

Fig. 2.5 Projections of the Column Element
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig. 2.6 Correction For u_{c}

Fig. 2.7 Column Deflection Curve, $\boldsymbol{\beta}=1$

Fig. 2.8 Momentimotation Curve

Fig. 2.9 Moment-Curvature Curves About the x-Axis

Fig. 2.10 Morent-Curvature Curves About the y-Axis
**********)

$\xrightarrow{\text { AAAAAM }}$
$+$

Fig. 2.11(b)

Fig. 2.15 Fesidual Stress Distribution

			A-				
						nsion $x \times x$	
						mpression	mun
	Fig. 2	$\begin{array}{ll} .17(b) & P_{0} \\ S e \end{array}$	sible Yie tion With	1a Configu Residual	ations for tresses	a ide cluded	lange

* Number refers to Dable 2.2

Fig: 2.18 Sample Derivation of Total Cross Section
-65-

Fig. 2.19 Column With Unequal End Moments ($\beta=0$)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig 2.20 Strain Distribution on the Flanges for the Cross Section at $M_{i} d$ Height of the Column

Fig. 2.21 Rotated Principal Axis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBL IOGRAPHY

1. Biflaard, P. P., Buckling of Columns With Equal and Unequal Eccentricities and Unequal Rotational Fnd Restraints, Proceedings, 2nd U. S. Nat'l Congress of Applied Mech., 1954.
2. Birnstiel, C., and J. Michalos, UItimate Load of H-Columns Under Blaxial Bending, Proceedings, ASCE, Vol. 89 ST2, 1963.
3. Bluch, F., Buckling Strength of Metal Structures, McGraw-Hill Book Co., New York, 1952.
4. Chajes, Alexander, and Winter, George, Torsional-Flexural Buckling of Thin-Walied Members, Presented at the ASCE structural Engineering Conference and Annual Meeting, October 19-23, 1964. Conference Rerrint 117.
5. Chubkin, G. M., Experimental Research on the Stability of $\frac{\text { Thin Plate Steel Members With Blaxial Eccen- }}{\text { tricity Paper N } 06 \text { in the book Angivsis of }}$ tricity, Paper $\mathbb{N}^{0} 6$ in the book Analus18 of Spatial Structures, Vol. 5, Moscow, 1959 (G. I. I. S.)
6. Ellis, J. S., E. J. Jury and D. W. Kirk, Ultimate Capacity of Steel Columns Loaded Blaxially, EIC, BR and STR 2, 1964.
7. Ellis J. S., and P. J. Marshall, The Ultimate Capacity of Steel Column Loaded Blaxially, Paper presented at the annual meeting of the Column Research Council, 1967.
8. Galambos, T. V., Review of Tests on Biaxially Loaded Steel Wide-Flange Beam-Columns, Report to the Column Research Council, Task Group $\mathrm{N}^{\circ} 3$, Ultimate Strength of Columns with Blaxiaily Eccentric Loading, April, 1963, Fitz Engineering Laboratory Report ${ }^{\mathrm{O}}$ 287.4.
9. Galambos, T. V., Bending and Compression, Chapter 6 of Structural Steel Desion, Civil Engineering Department Staff, Lehigh University, Fritz Engineering Laboratory Report 354.3.
10. Huber, A. W., and R. L. Ketter, The Influence of Residual Stress on the Carrying Capacity of Eccentrically Loaded Columns, Publication, Int. Assoc. for Bridge and Struc. Enf., Vol. 18, Zurien, 1958.
1.. Ketter, R. I., E. L. Kaminsky and I. S. Beedle, Plastic Deformation of Wide Flange Beam Columns, Trans., ASCE, Vol. 120, 1950.
11. Ketter, R. L., Lynn S. Beedle and B. G. Johnston, Column Strength Under Combined Bending and Thrust, Progress Report No 6 on Welded Continuous Frames and Their Components, December 1952.
12. Kloppel, L., E. Winkelman, Experimentelle und Theoretische Untersuchuagen Uber die Trgálast von "u elachsig Aussermittig Gedruokten Stahlstaben (Experimental and Theoretical Investigations on the Ultimate Strength of Biaxially Compressed Steel Columns), Der Stahlban, February, March April, 1962, Vol. 31.
13. Lay, M. G., and T. V. Galambos, The Experimental Behavior of Restrained Columns, pulication sponsored by the Structural Steel Committee of the Welding Research Council.
14. Newmark, N. M., Numerical Procedure for Computing Deflections, Voments $\frac{\text { and Buckline Loads, Trans., ASCE, }}{1043} 108$,
15. McVinnie, W. W., Elastic and Inelastic Bucking of an Orthogonal $\frac{\text { Space Frame, Ph. D. Thesis, Tniv. of Illinois, }}{\text { 1966. }}$
16. Ojalvo, M., Restrained Columns, Proceedings, ASCE, Vol. 86 , EM5, 1960.
17. Renton, J. D., A Direct Solution of the Torsional-Flexural Buckline of Axially Loaded Thin-Walled Bars, The Structural Engincer, September 1960.
18. Scott, T. L., Theoretical Analysis of Biaxially Loaded Beam-Columns, M. A. Sc. Thesis, University of Windsor, 1967.
19. Sharma, S. S., Strength of Steel Columns With Biaxially Eccentric Loads, Ph. D. Thesis, University of Iliinois, 1965.
20. Timoshenko, S. P., and J. M. Gere, Theory of Elastic Stability, McGraw-Hill Book Co., New York, 1961.

Nomenclature

${ }^{A_{c}}$	ea of the cross secter
,	相 K_{2}
A	constant equal to $\overline{2\left(K_{3}+2 K_{1} K_{2}\right)}$
a	length of a typical element of the column deflection curve.
A1j, Aji	factors defining the length of tension or compression yielding in the webs or flange.
$B^{\mathrm{X}}, \mathrm{B}^{\mathrm{Y}}$	bending stiffnesses about the x and y axes respectively.
p	constant equal to $\frac{K_{3}}{2\left(K_{3}+2 K_{1} K_{2}\right)}$
b	width of half section of wide flange column.
C	St. Venants torsional constent
I, d	half depth of the cross section
E	modulus of elasticity
e^{x}, e^{y}	eccentricity for the x and y axis end moments respectively.
$T_{f_{7}}+I_{f_{2}}$	moment of intertia of the elastic portion of the cross section.
1, $1+1$	adjacent points on the column deflection curve.
i	denotes. left hand end of a flange or web.
J	denotes right hand end of a flange or web.
K_{1}	factor defining half the flange width.
K_{2}	factor defining the flange thickness.
K_{3}	factor defining the web thickness.
I, I	column length.
$M^{\mathrm{X}}, \mathrm{M}^{\mathrm{y}}$	bending moment about the x and y axis respectively.
M^{2}	twisting moment about the longitudinal axis z .
m	length of the centre line of the column cross section.
P	axial load annlied to tho column.

Pe	Euler load
Py	vield losd
0	coefficient of the quadratic term in the equation for ϵ_{0}
R	```coefficient of the linear term in the equation for \epsilono```
$\mathrm{r}^{\mathrm{x}}, \mathrm{r}^{\mathrm{y}}$	radius of evration about the x and y axis respectively.
r	radial distance from the axis of rotation to a point on the centreline of the cross section.
S	slone of the line a त in Fir. 2.6
5	absolute vaiue in the equation defining ϵ_{0}
u, v	lateral disnlacements of the shear centre in the x añ y directions rosnectively.
w	warning disnlacement
7	ccordinate along the number
α	twisting displacemnt at Z along the column length.
α_{0}	twisting displacement at the column midheight.
β	ratio of the x moment at one end of column to the x moment at the other end.
γ	ratio of the y moment to the x moment at the same end of the column.
δ	deflection of $1+1$ from the column deflection curve at 1
DETTA	initail specified value for v
ϵ	strain
$\bar{\epsilon}$	bending strain
$\epsilon_{\text {。 }}$	uniform normal strain
ϵ_{y}	vield strain
$\epsilon_{i, j}$	strein at a flange or wob tin in the column cross section.
ϵ_{z}	warping strain
ϵ_{c}	comnressive residual strain at the tips of the flanges.

E_{R}	tensile residual strain at the centre of the flanges.
ϕ^{x}, ϕ^{y}	x and y axis curvatures respectively.
$\phi^{x} y$	viel* curvature
ϕ^{ξ}, ϕ^{η}	curvatures about the $\mathcal{\xi}$ and η axes
5, η	axes at an anr α to the x and v asis respectively.
θ^{x}, θ^{y}	rotations about the x and v axis respective? ${ }^{\text {a }}$
$\theta^{x} y$	vield rotation
σ	stress
ψ	change in slope between 1 and $1+1$ on the column deflection curve.

Daniel Michael Masterson was born in Chatham, Ontario, on July 3, 1944. After graduating from highschool in Chatham in 1963, he elirolled in Engineering at the University of Windsor and obtained a Bachelor of Applied Science in Civil Engineering degree in 1967. In September, 1967, he returned to the University of $\mathfrak{W i n d s o r}$ for further study leading to a Master of Applied Science in Civil Engineering derree.

Mr. Mastecson is a member of the Association of Professional Engineers of Ontario.

