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ABSTRACT 

Stratigraphy, Petrology, and Paleontology of the late Cretaceous (Campanian) Mesaverde Group 

in Northeastern Utah 

by  

Chris Ward, Master of Science Utah State University, 2017  

Major Professor: Dr. Benjamin J. Burger 
Department: Geology 
 

 This project examines a poorly studied sandstone ridge called Snake John Reef located 

22 miles southeast of Vernal, in northeastern Utah. Previously this ridge was mapped as 

exposures of late Cretaceous, undifferentiated Mesaverde Group, and recently unidentified 

dinosaur fossils have been found along the ridge by the Utah Field House of Natural History 

State Park Museum. Stratigraphic sections, petrographic thin sections, and collection and study 

of fossils from Snake John Reef were undertaken to understand the stratigraphic relationship as 

well as to reconstruct the depositional environment of the dinosaur bearing units. Snake John 

Reef represents exposures of three late Cretaceous formations, the lower Sego Sandstone, middle 

Iles Formation, and upper Williams Fork Formation which can be diagnosed on differences in 

lithology.  The units are capped by an unconformity with the Eocene Colton Formation. Fossil 

shark teeth (Scapanorhynchus, Cretolamna, and Squalicorax) are found in the lower Sego 

Sandstone, while dinosaur bones are located in the middle Iles Formation, and represent 

fragmentary but provisionally identified bones of ornithischian and tyrannosaurid dinosaurs. 

Fossil conifers (Geinitzia sp.) were also found in the Iles Formation, while fossil wood bored by 

Teredo (shipworms) is found in the upper Williams Fork Formation indicating close proximity to 

the ocean. This shows a marine to terrestrial transitional sequence, and an overall regression of 



 
 
 

 

the coastline. Petrographic study of the sandstone units indicate that they are best classified as 

calclithites composed of crystalline limestone with bituminous coal clasts. The absence of quartz 

grains indicate that the area represented a localized sediment starved coastal system, that may 

have been protected by barrier islands along a forested coastline. The presence of coal beds in 

the upper Williams Fork Formation indicate the presence of swamps higher in the section. 

Angularity of grains, abundance of poorly sorted fossil wood fragments, as well as sedimentary 

and paleontological evidence supports the interpretation that the coastline was prone to tropical 

storms that may have frequented the Western Interior Seaway during the Cretaceous Period. A 

major sequence boundary is found at the contact between the Sego Sandstone and Iles Formation 

representing a subaerial unconformity with an abundance of bioturbation 175.5 meters above the 

lower contact with the Mancos Shale. The Iles Formation represents a low stand system tract 

during a forced regression, with the upper Trout Creek Sandstone Member of the Iles Formation 

representing a short term transgressive system tract. In conclusion, the ridge along Snake John 

Reef presents a unique coastal depositional system during the final regression of the Western 

Interior Seaway that preserves dinosaur and plant fossils along a storm prone coastline during the 

Cretaceous. 
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INTRODUCTION 

Geologic and Geographic Context of Project Area 

During the late Cretaceous (Campanian to Maastrichtian) the Western Interior Seaway 

regression left behind a thick set of sedimentary rocks in northeastern Utah (sandstones, coal, 

and mudstones; Roberts and Kirschbaum 1995). The Mesaverde Group was deposited as a 

laterally extensive complex of shallow water facies, including coastal-plain, flood-plain, barrier 

islands, and marine-shelf, with depositional environments that transition between offshore 

marine to fully terrestrial coastal plain fluvial influenced deposits (Roehler 1990). The 

Mesaverde Group is broadly defined as the sedimentary rock layers above the Mancos Shale, and 

below the fully terrestrial latest Cretaceous and early Cenozoic mudstones and siltstones, 

representing the Fort Union, Wasatch, Colton, and North Horn Formations. Because of the 

complex lateral variation of sedimentary facies, the Mesaverde Group has been subdivided into 

numerous formations and members depending on geography. In northwestern Wyoming, the unit 

is divided into the Fales Member, an “unnamed middle member,” and the Teapot Sandstone 

Member (Demar and Breithaupt 2006). However, in southwestern Wyoming in the Rock Springs 

Uplift, the unit is subdivided into the Rock Springs, Blair, Haystack Mountains, Allen Ridge, 

Iles, Almond and Williams Fork Formations (Roehler 1990). In northwestern Colorado, the 

group is divided into the Sego Sandstone, Iles Formation, and Williams Fork Formation (Diem 

and Archibald 2005). In central Utah, near Price the Mesaverde Group is divided into the Star 

Point Sandstone, the Blackhawk Formation, the Castlegate Sandstone, and the Price River 

Formation, while along the Book Cliffs the Buck Tongue of the Mancos Shale overlays the 

Castlegate Sandstone, with the Sego Sandstone, Neslen Formation, Farrer Formation, and 

Tuscher Formation overlaying the Buck Tongue Member of the Mancos Shale (Hettinger and 



 
 
 

 

Kirschbaum 2002). The numerous geological terms applied to the Mesaverde Group reflect a 

complex of near-shore environments that resulted in laterally disconnected depositional facies 

that range from sand dominated deltaic environments, to coal-rich flooded ox-bows, to near 

shore littoral environments, and tidal-influenced mud flats. All these units were deposited during 

the final regression of the Western Interior Seaway during the Late Cretaceous. 

In northeastern Utah, the Mesaverde Group is exposed along a ridge called Snake John 

Reef which extends across the Utah-Colorado border east of Jensen, Utah. The ridge is formed 

by erosion resistant sandstone, which dips toward the south, and was folded from the late rise of 

the Uinta Mountains to the north during the Laramide Orogeny. The farthest western edge of 

exposures of the Mesaverde Group is along the base of Asphalt Ridge forming the western edge 

of Ashley Valley near Vernal, Utah. Further to the west the Mesaverde Group is covered by 

Eocene deposits that bury the Cretaceous rocks along the southern flank of the Uinta Mountains. 

The Mesaverde Group in northeastern Utah has not been well studied, and unlike other regions 

has not been subdivided into smaller lithological units.  

Paleontology of the Mesaverde Group 

The recovered flora of the Mesaverde Group indicates that the climate was subtropical, 

with similarities to today’s southeastern coast of Louisiana (Tidwell 2007; Young 1966). The 

Mesaverde Group has been dated to the late Campanian using ammonite biozones (Roberts and 

Kirschbaum 1995), but in some places likely extends up into the early Maastrichtian. Dinosaur 

fossils have been sporadically discovered from the unit.  Outcrops near Rangely, Colorado have 

produced a chasmosaurine ceratopsian skull (Diem and Archibald 2005), an oviraptor humerus 

(Hunt-Foster and Foster 2015), and a nearly complete hadrosaur skeleton currently being 

excavated by a team led by Dr. Elizabeth Johnson of Colorado Northern Community College 



 
 
 

 

(personal communication with Dr. Johnson). Fossils from other areas include a chasmosaurine 

ceratopsian skull, unassociated frill fragment (Farke 2004) and a partial skeleton of Saurolophus 

(Gates and Farke 2009) from the Rock Springs Uplift, Wyoming and hadrosaur trackways near 

Price, Utah and Grand Mesa, Colorado (Carpenter 1992).  

Purpose of Study 

The purpose of this study was to reconstruct the depositional environment of northeastern 

Utah during Late Cretaceous by examining the stratigraphy and petrology, as well as recovered 

fossils of the sedimentary rocks that compose the Mesaverde Group. The project area was 

limited to the Snake John Reef, a prominent ridge that extends east from Jensen, Utah across the 

Utah-Colorado border near highway 40. This report includes a stratigraphic column, thin-section 

analysis, and a description of fossils, including dinosaur bones recovered from the ridge. Data 

from the project area improves our understanding of the environments found along the coast of 

the Western Interior Seaway during the late Campanian, and how this area fits within the larger 

context of what we know about the geology of the Mesaverde Group throughout the western 

states of North America. 

MATERIALS AND METHODS 
 

In order to reconstruct the depositional environment of the Mesaverde Group along Snake 

John Reef, I measured a stratigraphic section using a Jacob Staff, starting at GPS coordinates N 

40°17.702’ W 109°14.966’ and ending at N 40°17.384’ W 109°15.005’. The stratigraphic 

section begins at the contact between the Mancos Shale and the first sandstone, and ends at the 

base of the Eocene Colton Formation, which was confirmed by the presence of perissodactyl 

mammal teeth.  

Rock samples were collected from lithologic units measured in the Mesaverde Group, 



 
 
 

 

and thin sections were made and studied at the USU Uintah Basin Geology Lab in Vernal, Utah. 

Eighteen rock samples were collected; fifteen from the sandstones, two from mudstones, and one 

coal seam. Sandstones were analyzed with a polarizing light microscope for grain characteristics 

and lithologic composition. Fossils were collected and documented when found.  The dinosaur 

fossils in this study were previously collected by Steve Sroka and housed at the Utah Field 

House of Natural History State Park Museum in Vernal, Utah.  

RESULTS 

Stratigraphic Column 

The measured stratigraphic column is 421.5 meters thick, with a lower sandstone unit and 

an upper interbedded sandstone, mudstone and coal unit. The basal sandstone in contact with the 

Mancos Shale forms a prominent resistant ridge, whereas the overlying units form a more 

gradual sloping hill to the south. Snake John Reef is a sinuous ridge, trending roughly east/west, 

but at the measured section it strikes 80° NE, with a dip of 60° south. 

The basal unit of the Mesaverde Group is a 175.5 m thick massive sandstone containing a 

thin zone of small scale (< 15 cm) cross-beds 15 m from the top. The top contact of this lower 

unit is an abrupt surface with heavy bioturbation, which is interpreted as a widespread subaerial 

erosional surface representing a sequence boundary during the low stand of the shoreline. Marine 

fossils (shark teeth, fish vertebrae and bone; Fig. 7) are found low in this unit near the road cut 

just west of the Colorado/Utah border along highway 40, 10 miles east of the main study locality 

(Fig. 1). The fossil-rich basal unit at this location is a coarse-grained sandstone, with a 

fossiliferous zone about 8 centimeters thick. This fossil bearing layer does not extend to the main 

study locality. 

Above the sequence boundary is a 246 m thick mudstone dominated sequence, with thick 



 
 
 

 

(1 - 45 m) mudstone layers alternating with thin (0.2 - 3 m), sometimes discontinuous 

sandstones, and occasional thin coal seams. Some mudstone units contain very high quantities of 

iron concretions. Petrified wood is common throughout the mudstone units, and occasionally 

found in the sandstones as well.  The sandstones commonly contain mudstone rip-up clasts and 

iron concretions, though the iron concretions are much less numerous than in the mudstones.  

A thin sandstone layer 23 m above the sequence boundary (unit 14) contains centimeter-

scale cross-bedding, rip-up clasts, and has produced fossilized conifer branches preliminarily 

identified to the Campanian-aged fossil Geinitzia (known in Eastern Europe and New Jersey; 

Burger and Ward 2016). Fragmentary dinosaur fossil material occurs between 49 m and 86.5 m 

above the sequence boundary. 

Higher in the section, the sandstones become thinner and more sparse. Above 277.5 m 

from the basal contact with the Mancos Shale there are no sandstones over 0.5 m thick. Most of 

the sandstones are heavily stained with hematite, giving them a rusty-red color. One sandstone in 

particular, unit “Upper 6” on the stratigraphic section (Fig.3), is composed of about 30% 

petrified wood. The wood is preserved in random orientations, very jagged, and pieces range 

from a few millimeters long to over 4 cm. Additionally, the larger pieces sometimes exhibit 

small burrow casts about 0.5 cm long, attributed to Teredo, or shipworms (Fig. 6). Another rust-

colored sandstone, unit 45, contains millimeter thick bands of lighter and darker hematite stained 

laminate bedding. 

The Mesaverde Group at Snake John Reef is truncated by a substantial unconformity, 

overlain by the Eocene aged Colton Formation. The unconformity itself is not visible along most 

of Snake John Reef, with grey mudstone both above and below the unconformity surface. 

However, there is a local marker bed of white sandstone adjacent to the stratigraphic section 



 
 
 

 

measuring path that is about 15 m wide and 4.5 m thick. This white sandstone and the equivalent 

mudstone strata to the east and west cap the Mesaverde Group at Snake John Reef. The 

discovery of Eohippus and other perissodactyl teeth in the mudstone layer above the marker bed 

indicate the mudstone above the marker bed is Eocene in age.  

Petrographic Analysis 
 

Petrographic analysis with a polarized light microscope revealed that the sandstones 

within the Mesaverde Group of Snake John Reef are calclithites, composed of limestone 

fragments and bituminous coal, with varying small percentages of hematite, usually as a stain or 

cement. Higher percentages of bituminous coal were found in the lower units, with a gradual 

decrease in coal clasts upward in the section. There is a complete absence of allogenic clasts, 

such as quartz or feldspar within the calclithites. The calclithites are highly reactive to HCl acid, 

and likely only formed the ridge called Snake John Reef due to northeastern Utah’s arid 

environment.   

Grain sizes range from silt to fine-grained sand, with the exception being Unit 5 with a 

grain size of 200 - 400 μm, which places it in the medium sand grain size range. The clasts are 

highly angular across the entire sequence, and all well to very-well sorted except for Unit 25, 

which with its grain size range of 40 - 250 μm is moderately-well sorted. Resistance to 

weathering across the sequence ranges from virtually absent to strong, correlating with the 

degree of cementation, with the more resistant layers containing more cement between grains. 

Interestingly, the basal ridge-forming sand unit is only moderately well cemented, while multiple 

thinner sands higher in the section are strongly cemented, and do not form ridges.  

Patterns of hematite staining differ across the sequence boundary separating the lower 

shallow-marine unit and the upper terrestrial unit. Hematite staining is found on the surfaces of 



 
 
 

 

specific clasts in the lower shallow-marine unit, with the matrix and other clasts being clean. 

However, in the upper terrestrial unit the hematite stain appears to be diagenetic, crossing clast 

and matrix boundaries, except for in Unit 33, a calclithite with clast-specific hematite staining. 

Starting with Unit 35, most of the calclithites at the top of the section are heavily stained with 

hematite, such that they are rust colored in hand sample and opaque in thin section. 

Characteristics and thin section photographs for each stratigraphic unit sampled can be found in 

Appendix 1. 

Dissolution tests were conducted on the rock samples using 23% HCl solution to confirm 

the identification of the major lithologic component as calcite. However, results were highly 

inconsistent, with dissolution percentages ranging from 18% up to 90%. The hematite in the rock 

samples also reacted to the HCl acid producing iron(III) chloride (Fe2O3 + 6HCl -> 2FeCl3 + 

2H2O), which is an exothermic reaction. If heated on a hot plate to evaporate reactant water, 

glass beakers would break under the extra heat. Hence digestion of the rock samples using HCl 

acid required slow evaporation over several weeks. While hematite nodules within the samples 

are uncommon, hematite is also observed as a stain on particular grains or within the cement 

when the samples are viewed in thin section. So while total hematite content by percent sample 

mass may be low, estimates of total carbonate content may be flawed or grossly underestimated 

when using acid digestion while hematite is present. 

Paleontology 

Nine unidentified dinosaur fossils have been found from the Mesaverde Group in the 

study area. They were found between 224 m and 262 m from the basal contact with the Mancos 

Shale (Fig. 3). The largest specimen, FHPR 4268, is a vertebral centrum 20 cm in diameter and 6 

cm thick (Fig. 4A). FHPR 9625 is a 20 cm long bone fragment that is missing both ends (Fig. 



 
 
 

 

4B). It most likely represents the distal end of a tyrannosaurid metatarsal II. The deep groove at 

what would be the distal end closely matches the tyrannosaurid metatarsal II labeled D in Fig. 3 

of Thomson et al. (2013). In both specimens the groove shallows proximally into a slightly 

concave flat bone surface, while the opposite side of the bone shaft is rounded. FHPR 9623 (Fig. 

4C) is a 4 cm wide distal ungual. The distal rim is chipped, but the bases of the lateral 

protrusions of the bone are present on each side. FHPR 2717 (Fig. 4D) is a complete pes III-1, 5 

cm wide at the proximal end and 4 cm wide at the distal end. FHPR 2718 (Fig. 4H) is a maxillary 

jaw fragment, possibly from the rear end of the tooth battery.  The medial side of the alveoli are 

exposed as grooves, which are heavily weathered and coated in iron oxide, and meet a wall of 

bone on one side. However in cross-section, two sequential replacement teeth are visible (Fig. 

4H2) behind this bone wall, and based on their broad-based triangular cross-section, the teeth 

identify the jaw as ceratopsian.  

The rest of the specimens are smaller vertebral elements. FHPR 2721 (Fig. 4F) is a partial 

vertebral centrum with a partial neural arch 4 cm in diameter and 3.5 cm long. FHPR 2715 is a 

very small vertebral centrum, 2 cm in diameter and 3 cm long. FHPR 2725 (Fig. 4G) is a slightly 

larger partial vertebral centrum, 7 cm long, 5 cm in diameter at the anterior end and 5.5 cm in 

diameter at the posterior end. The dorsal surface shows the rugose sutural surface for the neural 

arch on each side of the canal for the spinal cord. Unfortunately the neural arch was not found 

with it. 

Lastly, FHPR 2720 (Fig. 4I) is a flat bone fragment about 8 cm long, 4 cm wide and 1 cm 

thick. The museum labels it as a jaw fragment, but it contains no tooth elements. As it is an 

isolated and incomplete specimen, it cannot be identified.  

The following description of the Geinitzia sp. fossils recovered from Snake John Reef 



 
 
 

 

(Fig. 5) is reproduced from Burger and Ward (2016). The recovered fossil described here was 

found on a single large sandstone block, and shows the branching pattern, with four terminal 

branches and an isolate branch in the same slab (Figure 1). The fossil conifer branches compare 

closely with figures in Kunzmann (2010) and Halamski (2013) of Geinitzia reichenbachii from 

the Campanian of Europe. The branching pattern is less symmetrical and dense, and similar to 

modern Sequoia in habit. The fossils exhibited on the slab show both curved needlelike leaves 

extending from a wider scale-like base near the stem. This feature resembles some of the modern 

Araucaria species which show needles with a wider leaf base. The needles measure about 1 cm 

in length, with a wider scale-like leaf base making up about 3 mm of the total leaf length. The 

leaves are spirally arranged on each branch. 

DISCUSSION 

Depositional Environment 

The overall stratigraphic sequence of the Mesaverde Group at Snake John Reef fits the 

sequence reported in other areas, exhibiting a transition from shallow-marine to terrestrial 

deposits as the Western Interior Seaway receded eastward during the late Campanian. Despite 

lacking any marine fossils, the lower massive calclithite unit is thought to be shallow marine due 

to its stratigraphic position; overlying the marine Mancos Shale and underlying terrestrial 

deposits. The top of this unit exhibits a bioturbated subaerial unconformity, followed by an 

abrupt lithologic change to a mudstone dominant unit containing abundant terrestrial fossils such 

as petrified wood and dinosaur bones, none of which is found in the lower calclithite unit. The 

identification of the lower unit as marine is strengthened by the presence of marine fossils such 

as Scapanorhynchus, Cretolamna, and Squalicorax shark teeth and fish vertebrae contained in 

equivalent strata in the nearby Roadcut locality (Fig. 2 for locality, Fig. 7 for fossils). 



 
 
 

 

  The Snake John Reef outcrop appears to be contiguous, if not continuous with the 

Mesaverde Group outcrops in Rangely (Fig. 1), Colorado, which share the same shallow-marine 

to terrestrial sequence, therefore the stratigraphy of Diem and Archibald (2005) will be adopted 

here. The lower shallow-marine massive calclithite unit is assigned to the Sego Sandstone, a 

littoral sandstone at the base of the Mesaverde Group in Rangely, Colorado. The upper terrestrial 

unit represents the Iles Formation and Williams Fork Formations. Both formations are described 

as interbedded fine-grained sandstone, shale, carbonaceous shale, and coal, divided by the Trout 

Creek Sandstone, a “whitish-grey, fine-grained, cross-bedded sandstone ranging from 0 to 30 m 

in thickness” (Dyni 1968). Unit 33 in the stratigraphic section, a 10.5 m thick fine-grained 

calclithite, is the thickest calclithite in the upper terrestrial block, and tentatively identified as the 

Trout Creek Sandstone, with the top of Unit 33 marking the contact between the lower Iles 

Formation and upper Williams Fork Formation. This identification is based upon a lithologic 

change found across the Unit 33 boundary. Above Unit 33, all but one of the calclithites are less 

than one-meter-thick and stained rust colored from their high hematite content, while calclithites 

of this nature are not found below Unit 33. Additionally, the mudstone layers between the 

calclithites quickly increase in thickness above Unit 33, from a range of 1 to 12 m below, to a 

range of 5 to 45 m above.  

 The subaerial unconformity 175.5 m from the basal contact with the Mancos Shale at the 

top of the lower Sego Sandstone represents a major sequence boundary with the overlying Iles 

Formation. The Iles Formation represents a low stand system tract during a forced regression, 

with the upper Trout Creek Sandstone Member of the Iles Formation representing a short term 

transgressive system tract. The Williams Fork Formation represents a return to seaway 

regression that continues to the top of the Mesaverde Group at the unconformity with the 



 
 
 

 

overlying Eocene aged Colton Formation. 

Sequence stratigraphic analyses of the Mesaverde Group have been conducted in both the 

Book Cliffs, UT (Legler et al 2014) and Rangely, CO (Painter et al 2013) areas. In the Book 

Cliffs, the Sego Sandstone is interpreted as containing four regressive-transgressive tongues of 

deltaic sediment. In Rangely, the lower Sego Sandstone contains fluvio-deltaic deposits that 

transition into a passive tide-influenced shoreline higher in the formation after large-scale river 

avulsion. Despite some degree of agreement between these two areas, their geographic distance 

and substantial lithologic differences from Snake John Reef lead me to believe that the Snake 

John Reef stratigraphic sequence is unrelated to what is found at the Book Cliffs or in Rangely. 

However, the single stratigraphic section measured for this report does not lend itself well to 

correlation, and a more complete sequence stratigraphic analysis of the entire ridge line may add 

further detail to the local sequence stratigraphy of the area as well as allow better correlation 

between Snake John Reef and other Mesaverde Group outcrops.  

 The limestone composition of the area lends itself to some interpretations atypical of 

Mesaverde Group deposits elsewhere in the US. The rapidly uplifting Sevier Orogeny just west 

of the area should have been contributing a substantial quantity of erosive quartz and arkosic 

sediment to the area. Roehler (1990) reported lithologic compositions from the Green River 

Basin of 46.5% - 72% quartz, 3 - 10% feldspar, and 16.5 - 25% lithics, and abnormal sandstone 

compositions have not been reported from the Mesaverde Group in neighboring areas (Roberts 

and Kirschbaum 1995; Hettinger and Kirschbaum 2002). The limestone dominant clasts in the 

calclithites of Snake John Reef indicate a sediment starved depositional system lacking any 

rivers contributing erosive sediment from nearby orogenic events. The area would also have to 

have been protected from any longshore currents that could bring quartz sediment to the area, 



 
 
 

 

perhaps by other geologic or sedimentological structures that are not preserved.  

Further complicating the sediment source is the high angularity of the grains. Typical 

shallow-marine sediment has been thoroughly tumbled by wave action and become well 

rounded. Highly angular calcite grains, a much softer mineral than quartz, indicates wave energy 

was low with minimal clast transport. The sediment must be locally derived, but a source of 

nearby limestone has not been identified. Furthermore, the locally low energy conditions must 

have persisted through to the end of Mesaverde deposition, because the terrestrial calclithite 

deposits in the Iles and Williams Fork Formations possess the same limestone composition and 

high angularity as the lower shallow-marine Sego Sandstone. 

The thin calclithites in the terrestrial Iles and Williams Fork Formations are, other than 

variations in grain size, lithologically the same as the underlying shallow-marine Sego 

Sandstone. If they represented short term transgressions of the Western Interior Seaway and were 

littoral sands, the grains would be expected to be more rounded from being tumbled by waves. 

However, they are just as angular as in the Sego Sandstone, indicating a similar lack of wave-

action and tumbling. An alternative explanation is that they are storm deposits. The climate along 

the coast of the Western Interior Seaway during the late Cretaceous was subtropical, similar to 

the gulf coast of the U.S., and should have been subjected to tropical storms just like the southern 

states are today. Powerful storms wash marine sediment well inland (Keen and Stone 2000), 

where it drops out of suspension once the energy of the storm fades. This type of deposition does 

not cause a significant amount of grain tumbling; the grains are picked up and moved quickly, 

then redeposited and do not move much afterwards. This allows the grains to stay angular, as 

observed at the Snake John Reef locality. Modern storm deposits form bars and berms well away 

from the coast (Keen and Stone 2000), which may explain the inconsistent thickness and 



 
 
 

 

discontinuity of these calclithite layers. The storm deposits also decrease in frequency up section, 

which fits with the seaway retreating eastward from the area.  

The other peculiar aspect of the calclithites of Snake John Reef are the bituminous coal 

clasts found throughout the sequence. The upper terrestrial units contain 3 coal seams and 

abundant petrified wood, indicating that the coastline was most likely swampy. In describing 

Mesaverde Group stratigraphy in the Book Cliffs of Utah and Colorado, Young (1966) described 

a cycle of coastal lagoons forming behind barrier beaches and then filling in with swamps that 

were eventually buried under new beaches as the coastline advanced seaward, leaving peat 

deposits below the surficial littoral sands. In the sediment-starved local depositional environment 

of Snake John Reef, these peat deposits would not have been buried deep enough to coalify 

during the Cretaceous, but total sediment accumulation over time may have been low enough 

that powerful storms could scour down to the peat beds, eroding them and working organic 

matter back into the local sediment. This organic matter would later coalify when the Mesaverde 

Group was buried under Cenozoic sediment, creating the coal clasts present in the deposits 

today. Since the barrier beaches/islands integral to this scenario are also involved in explaining 

the high grain angularity of the deposits at Snake John Reef (by dampening wave energy in the 

area), they provide two-fold support for this interpretation. The resulting picture is a coastline 

very far from any rivers, lined with a chain of barrier beaches that protect the coastal swamps 

behind them from wave action, which is also protected from longshore currents that could bring 

quartz sand to the area. One possible reconstruction can be found in Fig. 8. 

Paleontology 

 The fossil material of Snake John Reef serves as an initial indicator of the potential for 

the area to produce more fossil material in the future. All fossil material collected from the area 



 
 
 

 

to date has been collected at the surface. As the material is exposed by erosion from annual 

winter rain and snow, quarrying may produce more complete material that hasn’t been subjected 

to present day erosive forces.  

During the late Campanian around 75.5 Ma, new Laramide uplift east of the Sevier 

Orogeny created a north/south biogeographic boundary, segregating, among many animal 

groups, the hadrosaurian dinosaurs. This boundary placed Maiasaura, Prosaurolophus, and later 

Saurolophus on the north side, and Gryposaurus and Kritosaurus on the south side (Gates et al. 

2012). Based on their identification of Saurolophus material from Barnum Brown’s 1937 

expedition to the Campanian aged Almond Formation in southern Wyoming, Gates and Farke 

(2009) predicted that the segregation boundary would be found in the northern Utah/northern 

Colorado region. The Snake John Reef locality sits squarely within this region, and material 

recovered from this area that could be identified to genus or species may provide important 

geographic data points for the delineation of this biogeographic boundary hypothesis. 

 Currently, all fossil material recovered from the Snake John Reef locality are isolated, 

fragmentary specimens that cannot be identified to genus or species. But the presence of fossil 

material indicates the potential for the area to produce more complete specimens in the future. To 

date, all fossil material recovered from Snake John Reef has been found via prospecting. The 

material appears to be exposed by erosion from annual rain and snow, as fossils are found most 

abundantly at the beginning of each summer. It’s possible that more complete material lays 

further underground, and discovery of a suitable quarry may produce material identifiable to 

genus or species. 

  



 
 
 

 

CONCLUSION 

Examining the previously undescribed Mesaverde Group at Snake John Reef in 

northeastern Utah has revealed a marine to terrestrial transitional sequence typical of the 

Mesaverde Group. However, it represents a protected, sediment starved coastal depositional 

system that is atypical of the Mesaverde Group, completely lacking quartz sediment and instead 

containing calclithites composed of crystalline limestone. The area was occasionally hit with 

tropical storms that left thin discontinuous calclithite deposits over the coastal plain. The area is 

sparsely fossiliferous, and has produced fragmentary dinosaur material, as well as conifer branch 

fossils referred to Geinitzia.  

There is a high potential for future research in the area. Conducting a full sequence 

stratigraphic analysis, as well as correlating the area to Mesaverde Group outcrops in other 

regions requires additional stratigraphic sections. Additionally, future prospecting for fossils 

could help reveal a new dinosaur record from northeastern Utah. This research highlights the 

transitional nearshore marine and terrestrial depositional environment during the final regression 

of the Western Interior Seaway in northeastern Utah, along a late Cretaceous storm-prone 

coastline. 
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Fig. 1: Regional map of the Mesaverde Group.

 



 
 
 

 

Fig. 2: Local map of the Mesaverde Group and study area.

 



 
 
 

 

Fig. 3: Stratigraphic section. Many lithologic units are too thin to show at this scale. For field 
descriptions of each unit, see Table 1. Credit to Ben Burger for digitizing my sketch. 
 

 
  



 
 
 

 

 
Table 1: Lithologic descriptions of each unit. 
 

Unit # 
Thickness 
(m) Description 

1 10.5 
Tan/grey calclithite, lenticular beds, very fine grained, forms the ridge at the basal 
contact with the Mancos Shale 

2 12 Tan/grey calclithite, mostly covered, fine grained 
3 21 Grey fine grained calclithite 
4 4.5 Tan/grey fine grained calclithite 

5 112.5 

White/grey calclithite, coarsening upwards from fine grained to medium grained. 
Hematite staining is sparsely distributed throughout. The top meter contains 
substantial decimeter-scale cross-bedding. Steve Sroka calls this the "Uranium Sand," 
referring to an abandoned uranium mine found at the base of this unit. The hole is 
deeper than the eye can see - don't fall in! 

6 15 
White/grey calclithite, medium grained, bioturbation, heavy organic matter content. 
Subaerial unconformity and sequence boundary. 

7 1.5 
White/grey calclithite, medium grained, bioturbation, heavy organic matter content. 
Subaerial unconformity and sequence boundary. 

8 1 Light brown mudstone. 
9 0.7 Tan calclithite, fine grained. 

10 2.5 Coal 
11 4.5 Light brown mudstone. 

12 3 
Tan calclithite, very fine grained. Underside shows dissolution holes, 
bioturbation/burrows, petrified wood, rip-up clasts. The first "Temple Wall." 

13 9 Tan mudstone. 

14 1 

Tan calclithite; despite forming a wall of resistant rock about 3 meters tall, the grains 
range in size from 20-40μm, which technically falls within the grain size range for 
silt. Contains <1cm iron concretions, rip-up clasts, lithics, 3cm crossbeds. The 
Geinitzia branch fossils are found in this layer. 

15 1.5 Tan/grey silty calclithite. 
16 1.5 Tan calclithite, fine grained, thin shingly bedding. 
17 4.5 Light brown mudstone. Petrified wood. 

18 3 
Grey calclithite, grain size range 30-60μm, placing it in the grain size range for silt. 
<1cm iron concretions. 

19 7.5 Tan calclithite, grain size range 20-60μm, placing it in the grain size range for silt. 
20 3.5 Light brown mudstone. Petrified wood. 
21 0.3 Tan calclithite, fine grained. 
22 3 Light brown mudstone. 

23 1.1 
Orange/brown calclithite, fine grained. Makes a prominent wall stretching across 
much of the area, with roughly rectangular fractures throughout. The second "Temple 



 
 
 

 

Wall." Current lower boundary of dinosaur bone bearing interval. 

24 11 
Mottled grey, tan, and reddish mudstone. Numerous bands of broken iron concretions, 
so it may count as a paleosol. Abundant petrified wood. 

25 1 
Brown calclithite, fine grained. Very hard and resistant to weathering. Inconsistent 
exposure, more like a row of individual calclithite blobs. 

26 6.5 Tan mudstone. Petrified wood. 
27 0.5 Brown calclithite, fine grained. Thin beds, inconsistent exposure. 
28 5 Tan mudstone. 

29 0.5 
Brown calclithite, fine grained. Thin beds, seems to contain softball sized concretions 
of the same brown calclithite sediment. Inconsistent exposure. 

30 12 Tan mudstone, abundant iron concretions in layers. 

31 0.7 
Brown calclithite, very fine grained. Thin beds. Inconsistent exposure. Current upper 
boundary of dinosaur bone bearing interval. 

32 3 
Moved about 30 meters west due to lack of exposure. Tan/grey mudstone, abundant 
iron concretions in layers. 

33 10.4 
Tan calclithite, fine grained. Mudstone rip-up clasts, 1-2m wide concretions of brown 
calclithite. 

34 2.6 Tan mudstone containing a 0.3m thick coal seam 1m from the base, iron concretions. 
35 0.2 Brown calclithite, fine grained, inconsistent exposure. 

36 12.4 
Tan mudstone, abundant iron concretions in layers. Contains a 0.2m thick coal layer 
at the top. 

37 0.2 
Rust-colored calclithite, grain size ranges 20-40μm, placing it in the grain size range 
for silt. Heavily stained with hematite. 

38 6 Grey mudstone, contains a 0.5m thick coal seam near the top. 
39 2 Coal. 
40 5 Grey mudstone, abundant iron concretions. 
41 0.2 Rust-colored calclithite, heavily stained with hematite. 
42 4 Grey mudstone, iron concretions. 
43 2 Coal. 
44 8 Grey mudstone. 

45 0.5 

Rust-colored calclithite, heavily stained with hematite. Night had begun to fall back at 
layer 38, and it was now quite dark. The yips and howls of the large pack of coyotes 
were growing closer, so I hurried back to the car - thus the following change in unit 
nomenclature. 

Upper 
1 12 Grey mudstone. 
Upper 
2 0.5 

Rust-colored calclithite, heavily stained with hematite, millimeter-scale bedding 
visible in cross-section. Pond? 

Upper 
3 5 Grey mudstone. Petrified wood. 



 
 
 

 

Upper 
4 2.5 

Lower half-meter is yellow, patches of hematite staining. Upper 2 meters is 
white/grey. Very fine grained calclithite. 

Upper 
5 33.5 Grey mudstone. Petrified wood. 

Upper 
6 0.5 

Dark rust-colored calclithite, heavily stained with hematite, very fine grained. About a 
third petrified wood by volume. Some of the larger pieces of petrified wood contain 
Teredo(shipworm) burrow casts. 

Upper 
7 3.5 Grey mudstone. 
Upper 
8 0.3 

Rust-colored calclithite, heavily stained with hematite, very fine grained. Also 
contains iron concretions. 

Upper 
9 45 

Grey mudstone. Contains a 15m wide white very fine grained calclithite that tapers in 
thickness at both ends, possibly a channel sandstone (except it's a calclithite). Exhibits 
hematite staining, especially at the upper surface. I later marked this as the contact 
between the Mesaverde Group and Colton Formation. 

Upper 
10 31.5 

Light grey mudstone. An Eohippus tooth was found 12m from the base of the unit, 
and a lag deposit containing other mammalian tooth fragments was found 22.5m from 
the base of the unit. 

Upper 
11 0.1 

Tan calclithite, very fine grained. Once I discovered that I had reached the Eocene, I 
stopped measuring. 

 
  



 
 
 

 

Fig. 4: Fossil Specimens. A, FHPR4268 large centrum; B, FHPR9625 ulna; C, FHPR9623 distal 
ungual; D, FHPR2714 pes-III 1; E, FHPR2715 small centrum; F, FHPR2721 small centrum; G, 
FHPR2725 partially fused centrum; H1, FHPR2718 jaw fragment lingual side; H2, FHPR2718 
jaw fragment posterior side; I, FHPR2720.

 



 
 
 

 

Fig. 5: Geinitzia branch fossils from Unit 14, reproduced from Burger and Ward 2016. 

 

  



 
 
 

 

 
Fig. 6: Teredo borings from Unit Upper 6.

 



 
 
 

 

Fig. 7: The Roadcut locality contains a fossiliferous band containing Scapanorhynchus(above), 
Cretolamna(middle), and Squalicorax(below) shark teeth, and fish vertebrae. 
 

 
 

 
 

 
  



 
 
 

 

Fig. 8: Reconstruction of the Snake John Reef depositional environment. 

  



 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX 1 
  



 
 
 

 

Appendix 1: Rock sample thin sections under normal and polarized light with lithologic 
characteristics. The hematite staining parameter approximates the following values: very light 
(1% of average microscope view exhibits hematite stain), light (5%), moderate (10%), heavy 
(20%+), extensive (completely stained). 

    
Unit 1: Sego Sandstone 
 Color: yellow-tan 
 Grain Wear: angular 
 Sorting: very well sorted 
 Cementation: medium 
 Grain Size (μm): 50-100 
 Lithologic Composition: 5% organic, 95% calcite 

Degree of Hematite Staining: light, confined to specific grains, while other grains 
and matrix clean 
Macro: 2-5mm hematite concretions producing bumps on surface of hand samples 

 

    
Unit 2 or 3: Sego Sandstone 
 Color: grey-tan 
 Grain Wear: angular 
 Sorting: very well sorted 
 Cementation: medium 
 Grain Size (μm): 120-200 microns 
 Lithologic Composition: 5% organic, 95% calcite 

Degree of Hematite Staining: light, confined to specific grains, while other grains and 
matrix clean 

 Macro: flaser bedding 



 
 
 

 

    
Unit 5: Sego Sandstone 
 Color: very light grey 
 Grain Wear: angular 
 Sorting: well sorted 
 Cementation: poor 
 Grain Size (μm): 200-400 
 Lithologic Composition: 10% organic, 90% calcite 

Degree of Hematite Staining: light, confined to specific grains, while other grains and 
matrix clean 

 Macro: 10-30cm cross-beds 
 

    
Unit 12: Iles Formation (Note: Non-polarized picture has the same scale) 
 Color: brown-tan 
 Grain Wear: angular 
 Sorting: well sorted 
 Cementation: strong 
 Grain Size (μm): 30-100 
 Lithologic Composition: 15-20% organic, 80-85% calcite 

Degree of Hematite Staining: heavy, independent of specific grains or matrix 
 Macro: bioturbation, petrified wood fragments, mudstone rip-up clasts 
 



 
 
 

 

    
Unit 14: Iles Formation 
 Color: tan 
 Grain Wear: angular 
 Sorting: very well sorted 
 Cementation: poor 
 Grain Size (μm): 20-40 
 Lithologic Composition: 5% organic, 95% calcite 

Degree of Hematite Staining: light, independent of specific grains or matrix 
Macro: <1mm hematite concretions, 2-6cm petrified sticks, mudstone rip-up clasts, ~3cm 
cross-beds 

 

    
Unit 18: Iles Formation 
 Color: tan 
 Grain Wear: angular 
 Sorting: very well sorted 
 Cementation: poor 
 Grain Size (μm): 30-60 
 Lithologic Composition: 1% organic, 99% calcite 

Degree of Hematite Staining: bands of moderate non-grain specific staining, otherwise 
clean 

 Macro: none 
 



 
 
 

 

    
Unit 19: Iles Formation 
 Color: tan 
 Grain Wear: angular 
 Sorting: well sorted 
 Cementation: strong 
 Grain Size (μm): 20-60 
 Lithologic Composition: 10% organic, 90% calcite 
 Degree of Hematite Staining: moderate, independent of grains or matrix 
 Macro: sample contains one 5mm hematite concretion 
 

    
Unit 25: Iles Formation 
 Color: grey-tan 
 Grain Wear: angular 
 Sorting: moderately well sorted 
 Cementation: strong 
 Grain Size (μm): 40-250 
 Lithologic Composition: 5% organic, 95% calcite 
 Degree of Hematite Staining: light, independent of grains or matrix 
 Macro: unit contains large pieces of petrified wood and dinosaur fossils 
 



 
 
 

 

    
Unit 31: Iles Formation 
 Color: light tan 
 Grain Wear: angular 
 Sorting: very well sorted 
 Cementation: strong 
 Grain Size (μm): 40-80 
 Lithologic Composition: 1% organic, 99% calcite 
 Degree of Hematite Staining: light, independent of grains or matrix 

Macro: extensively cemented such that distinguishing grain boundaries is difficult, 
organics and hematite content confined to small patches, contains dinosaur fossils 

 

    
Unit 33: Iles Formation (Troutcreek Sandstone) 
 Color: tan 
 Grain Wear: angular 
 Sorting: very well sorted 
 Cementation: very poor, fell apart under the rock saw coolant water spray 
 Grain Size (μm): 100-200 

Lithologic Composition: 5% organic, 95% calcite, rare tan opaque grains (mudstone?), 
one muscovite grain 
Degree of Hematite Staining: moderate, confined to specific grains 

 Macro: mudstone rip-up clasts 
 



 
 
 

 

 
Unit 37: Williams Fork Formation 
 Color: rust 
 Grain Wear: angular 
 Sorting: very well sorted 
 Cementation: strong 
 Grain Size (μm): 20-40 
 Lithologic Composition: ~100% calcite 

Degree of Hematite Staining: extensive, the entire rock is heavily stained with hematite; 
“ferrous calcite” 

 Macro: laminate pattern, algal mat or pond deposit 
 

    
Unit Upper 4: Williams Fork Formation 
 Color: light tan  
 Grain Wear: sub-angular 
 Sorting: very well sorted 
 Cementation: poor 
 Grain Size (μm): 60-120 
 Lithologic Composition: <1% organic, 99% calcite 
 Degree of Hematite Staining: very light 
 Macro: none 
 



 
 
 

 

 
Unit Upper 6: Williams Fork Formation 
 Color: rust 
 Grain Wear: angular 
 Sorting: well sorted? 
 Cementation: strong 
 Grain Size (μm): 20? - 80? 
 Lithologic Composition: 95+% calcite 

Degree of Hematite Staining: extensive, “ferrous calcite.” The hematite stain is so dark 
that distinguishing individual grains and composition with any confidence is impossible. 

 Macro: abundant petrified wood shards with random orientations 
 

    
Unit Upper 9: Williams Fork Formation (cap unit of Mesaverde Group) 
 Color: light tan 
 Grain Wear: angular 
 Sorting: very well sorted 
 Cementation: poor 
 Grain Size (μm): 60-120 
 Lithologic Composition: 1% organic, 99% calcite 
 Degree of Hematite Staining: very light 

Macro: collected from a river channel deposit at the top of a large stack of siltstone 
 



 
 
 

 

    
Unit Upper 11: Colton Formation 
 Color: tan 
 Grain Wear: angular 
 Sorting: well sorted 
 Cementation: poor 
 Grain Size (μm): 60-150 

Lithologic Composition: 1% organic, 99% calcite 
Degree of Hematite Staining: very light 

 Macro: Eocene, still calcite, rare <1mm hematite concretions 
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