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ABSTRACT

The electron paramagnetic resonance spectra of Phenacite 

(Be2 Si0^)> °f CaF^rFe, and of BaF^Cr samples have been studied 

qualitatively following x-irradiation at low temperature (100°K). In 

the cases of the Phenacite and the CaF^.’Fe samples, the spectra observed 

before irradiation differed from those obtained after irradiation. These 

changes indicate the presence of paramagnetic radiation damage centres 

in these samples following exposure to x-rays at low temperature. In 

the case of the BaF2 .'Cr sample, however, no spectrum was observed at 

100°K, either before or after it was x-irradiated.
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I. INTRODUCTION

A. Historical

Irradiation of a solid by x-rays, by y-rays, and by other 

high energy particles, usually is accompanied by radiation damage. This 

damage may assume the form of atomic displacements from lattice positions, 

of ionization of atoms and of ions, or of electronic excitations, depend

ing on the energy of the incident radiation. For the case of x-irradiation, 

radiation damage is restricted either to electronic excitations, or to 

ionization processes.

Radiation damage in solids was first studied as early as 

1896 when Goldstein^ coloured ionic solids, such as the alkali halides,

by high energy radiation. Review articles concerning colour centres in
2 3 4alkali halides have been published by Pohl , by Seitz , by Pick , and

by Seidel and Wolf~*. Moreover, the technique of paramagnetic resonance

absorption was introduced to the field as early as 1949 by Hutchinson^

in his study of radiation-produced colour centres in alkali halides.

Since then, electron paramagnetic resonance (EPR) has become a most

useful tool with which to probe radiation damage in solids.

In the last fifteen years, the field of radiation damage 

has been extended to include other types of solids. Among these are the 

alkaline earth halides, particularly the fluorides of calcium and barium. 

Until now, however, radiation damage has not been studied in these crystals 

when they contain first series transition metal ion impurities. Samples

1
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2

of BaF^iCr and CaF^rFe have been x-irradiated at a temperature near the 

boiling point of nitrogen and qualitatively studied using EPR methods. 

Natural phenacite (Be2 SiO^) has also been investigated.

B. EPR and Radiation Damage Centres

The general hamiltonian which describes the interaction

energy of a paramagnetic centre located in a constant magnetic field

assumes the form:

H = H , + H jr+ H 1 + H  + H + H, + H„ + H., el cf Is ss zee hfs Q N

= H + H + H, , ,o zee hfs

where H = B H (L + 2S) = B (g H S + g H S  + g H S )zee r K x x x y y y °z z z

is the Zeeman energy term,

H, = A S I  + A S I  + A S I  hfs x x x  y y y  z z z

is the hyperfine structure term,

Hq contains several complex terms which are not important for EPR 

analysis of radiation damage centres, including electronic, crystal 

field, spin-orbit coupling, spin-spin coupling, quadrupole moment, and 

nuclear spin terms,

S is the spin angular momentum operator,

L is the orbital angular momentum operator,

H is the applied magnetic field, 

g is the g-factor tensor,

A is the hyperfine coupling tensor,

P is the Bohr Magneton,

and all z-components are considered to be directed parallel to the applied
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magnetic field.

By EPR, the components of the g-tensor and of the A-tensor 

may be measured. From this, the orientation of the principal axes of 

these tensors may be determined, whereupon much information can be 

derived concerning the neighbourhood of the centre. Additional informa

tion may be obtained by studying the intensities of the resonant 

absorptions, and the dependence of these intensities on time and temper

ature .

C. Low Temperature Radiation Damage in Crystals

Incident high energy photons, such as x-rays, undergo a 

series of collisions inside of a sample. One of the possible mechanisms 

which accounts for the energy loss by these photons is the production 

of radiation defects, such as the ionization of impurity ion valence 

electrons or the formation of colour centres. When the irradiation 

process is terminated, the radiation damage products exhibit a decay 

with time, either back to the preradiation state, or to some other 

intermediate state. Such decay is referred to as annealing, and is 

often enhanced by heating or by bleaching the sample. As a result, low 

temperatures are often required in radiation damage experiments in order 

to arrest the rate of annealing. Otherwise, some of the EPR species 

might disappear before it is even possible to observe them in the 

spectrometer.
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II. INSTRUMENTATION

A. X-Band Bridge Spectrometer

A block diagram of the x-band balanced bridge type of 

spectrometer, which was employed in these experiments, and which has 

been discussed in detail elsewhere is presented in Figure 1.

B. Cryostat for Low Temperature Radiation Damage Studies

In order to study the EPR spectra of crystals irradiated 

at temperatures near the boiling point temperatures of liquid nitrogen 

or of liquid helium, a specially designed cryostat is required. A 

cross-section of the cryostat used in these experiments is presented 

in Figure 2. The cryostat is divided into two main sections: (l) a

large main body to provide reservoirs (K,L) for the cryogenic liquids, 

and (2) a detachable tail consisting of a reservoir extension (Q), a 

copper radiation shield (R), and a stainless steel outer jacket (S).

A vacuum tight seal (M) semi-permanently attaches the reservoir extension 

to the centre reservoir (K). The radiation shield is mounted to a 

flange (N) that is in thermal contact with the liquid nitrogen reservoir 

(L). A rubber O-ring forms a vacuum tight seal (0) between the tail 

jacket and the flange which terminates the outer wall of the cryostat. 

Through this flange pass six vacuum tight feed-throughs (P) for 

electrical leads. The cryostat is evacuated by means of a high vacuum 

service valve (F). This vacuum insulates the centre reservoir from 

the liquid nitrogen reservoir and its accompanying tail radiation shield,

4
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Fig. 2. Cross section of EPR Cryostat used to study low temperature 
radiation damage in crystals.
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and, in turn, these from the atmosphere. The thermal insulation of the 

liquid nitrogen reservoir is further enhanced by the presence of milar (i) 

in the vacuum between the outermost walls. With the exception of copper 

shield (H), which encloses the centre reservoir within a surrounding 

near the boiling point temperature of liquid nitrogen irregardless of 

the liquid nitrogen level, all the cryostat walls (G) in the main body 

are constructed from stainless steel. Above the cavity (V), a waveguide 

(j) and a tube (D) for a crystal rotator shaft, both made from stainless 

steel and evacuated, pass through the brass block (T) that terminates 

the reservoir extension and extend up through the centre reservoir to 

the top of the cryostat. Here, a mica window (B) sealed with indium 

ends the waveguide vacuum while a special double O-ring seal (C), 

illustrated in Figure 3, closes off the tube, but yet allows the rotator 

shaft to turn. Above this seal sits a housing (A) for the crystal 

rotator and crystal orientation indicator. A final feature illustrated 

in Figure 2 is a safety release valve (E) that ruptures at high pressures.

The cut-away view of the tail assembly presented in Figure 4

shows in greater detail some features of the cryostat. The crystal

rotator shaft (A), worm (C-), and gear (G) assembly was discussed in 
'1 8detail elsewhere * . The sample (E) sits on a nylon pin (F) inserted into 

the gear. A small hole bored up the centre of the pin provides access 

to the sample for temperature monitoring by thermocouple (H) without 

harming the cavity Q. A second thermocouple (M) determines the temperature 

of the cavity which is coupled to the waveguide (B) by mean£ of an iris 

(D). In order to overcome the severe attenuation of 100 k.c. field

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Fig. 4. Cut-away view of the cryostat tail assembly.
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modulation by the cavity walls, special plugs (I) of brass foil of a 

thickness intermediate between the skin depths of the microwave power 

and of the 100 k.c. radiation are fitted tightly into holes centred 

on the broad sides of the cavity. Good electrical contact and smooth 

continuous surfaces on the inside walls of the cavity are required in 

order to maintain a large cavity Q. Small coils (L) were inserted into 

the plugs to provide the 100 k.c. field modulation. The modulation 

coil leads and the thermocouple leads terminate at a small plug (0) 

strapped to the cavity as shown. Teflon-coated wires (P) connect the 

electrical feed-throughs (Figure 2) with a socket (N) mated with this 

plug. The socket is easily separated from the plug and withdrawn through 

a hole in the radiation shield to facilitate cryostat dismantling.

Most of this radiation shield hole is covered over by a copper cap (R) 

when the cryostat is assembled. Figure 4 also shows the special beryllium 

window (J) in the tail jacket and the radiation shield hole (K) which 

provide access to the sample for the x-radiation.

A cross section of the rectangular resonant cavity

presented in Figure 5 illustrates further how the cavity was modified 

in order to produce 100 k.c. field modulation at the sample site.

C. Sample Alignment

When the cryostat is positioned vertically, as must be the 

case when it is filled with liquid nitrogen or liquid helium, the 

beryllium window, the radiation shield hole, the cavity hole, and the 

sample are aligned along a horizontal axis. However, the x-ray beam 

leaving the x-ray tube is inclined downward at about 5° from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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horizontal. As a result, it was necessary to tilt the cryostat and to 

carefully position it in front of the x-ray source so that the highest 

possible intensity of the x-ray beam actually arrived at the sample 

position. The cryostat was assembled as shown in Figure 6(a), and film 

located in front of the cavity, in back of the cavity, and in the centre 

of the cavity was exposed. Following each exposure, the cryostat was 

carefully repositioned until a set of photographs were obtained, the 

prints of which are presented in Figure 6(b).

D. Sample and Cavity Temperatures

Copper-constantan thermocouples were employed to monitor 

the temperature of the sample and of the cavity during experiments.

It was found that during the x-irradiation process, the sample temperature 

was about 100°K, while that of the cavity was about 87°K. These, however, 

were not the temperatures observed during operation of the EPR spectro

meter. Passage of a current through the 100 k.c. modulation coils 

located on the cavity sides generated a quantity of heat which effectively 

raised these temperatures to about 105°K for both sample and the cavity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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III. EXPERIMENTAL PROCEDURE

The EPR spectra of the samples were recorded at low temperature 

before and after irradiation with hard x-rays (40 - 50 Kev). The recorded 

spectra were then compared for possible spectrum changes resulting from 

radiation damage. Where appreciable changes had occurred, the spectrum 

was recorded once more after it had warmed up to room temperature to 

note if such changes continued to persist.

In the course of these experiments, the samples were each 

irradiated for about 2 hours. They were subjected to a rate of radiation 

dosage corresponding to an 18 milliampere x-ray tube current. The 

x-rays leaving the source passed through about 2 cm. of air, a thin 

beryllium window in the cryostat tail, and a few centimetres of vacuum 

before reaching the sample. Hence, the actual amount of radiation 

arriving at the sample was only slightly attenuated.

14
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IV. RESULTS AND DISCUSSION

A,. Natural Phenacite

Changes occurred in the spectrum of Phenacite following 

x-irradiation of the sample at 100°K. These changes are illustrated 

in Figure 7. A comparison of Figure 7(a) with Figure 7(b) indicates 

the appearance of two additional groups of absorption lines located 

almost equally distant on either side of the original spectrum. These 

groups appeared to be triplets, and continued to exist even after the 

sample had been warmed to room temperature. Figure 8 shows in greater 

detail the changes in the central group. There was an increase in the 

number of resonance lines in this group after low temperature irradiation. 

However, when the sample was warmed to 292°K, the spectrum appeared to 

have changed again. This would seem to indicate an annealing of some 

radiation damage centres in Phenacite within the temperature range of 

100°K to 292°K.

B. Calcium Fluoride Containing Iron Impurities

The EPR spectrum of the CaF2 :Fe sample showed marked change 

following low temperature x-irradiation. The spectrum coming from the 

unirradiated crystal at 100°K appeared as a single group of resonance 

lines centred about the DPPH resonance [Figure 9(a)]. After irradiation, 

the spectrum had changed to five sets of resonance lines centred approxi

mately about DPPH [Figure 9(b)]. When the sample was warmed to 292°K 

[Figure 9(c)], the spectrum resembled that obtained from the unirradiated

15
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Fig. 7. Comparison of Phenacite spectrum (a) at 100°K before x-irradiation,

(b) at 100°K after x-irradiation, and (c) at room temperature 
following x-irradiation at 100 K. Sample orientation in part (c) 
is not the same as in parts (a) and (b).
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sample.

The changes in the EPR spectrum of the CaF^tFe sample were 

also studied during the period when it was allowed to warm up following 

x-irradiation at 100°K. These studies were carried out with the magnetic 

field oriented differently than it was in the first case discussed above. 

The observed changes in the spectrum are presented in Figures 10 and 11.

The spectrum obtained before irradiation at 100°K is shown in Figure 10(a). 

That obtained immediately after the crystal was x-irradiated at 100°K is 

presented in Figure 10(b). The recording traces in Figure 11 were obtained 

while the crystal was then allowed to warm up to room temperature. It 

is seen that the EPR spectrum changes from a single group of resonance 

lines [Figure 10(b)] to three groups [Figure 10(a)], and then back again 

to one group [Figures 11(b), 11(c)], as the temperature of the crystal 

increases to 292°K. Moreover, Figure 11(c) exhibits a spectrum somewhat 

similar to that obtained from the unirradiated CaF^rFe sample at 100°K 

[Figure 10(a)]. Hence, it seems probable that most of the paramagnetic 

radiation damage centres in the CaF2 :Fe sample produced by x-irradiation 

at 100°K are annealed by warming the sample to room temperature.

C. Barium Fluoride Containing Chromium Impurities

No changes were observed in the EPR spectrum of BaF2 :Cr 

following irradiation of the crystal at 100°K with 48 keV x-rays. The 

recording trace in Figure 12(a) shows only the DPPH resonance line in 

the EPR spectrum of the sample at 100°K before irradiation. Similarly, 

the spectrum of the sample after irradiation at 100°K [Figure 12(b)] 

contains only the DPPH resonance line. Hence if any EPR radiation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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(a)

(b)

(c)
Fig. 11. Changes in the CaF2 :Fe spectrum at the sample orientation of Figure 10 during warming period 

following x-irradiation at 100°K. Part (a) shows the spectrum at some intermediate 
temperature, (b) the spectrum at almost room temperature, and (c) the spectrum at room 
temperature. Time interval between recordings was about 1/2 hour.
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damage centres were produced during the x-irradiation at 100°K, they 

were annealed immediately and completely.
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