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ABSTRACT

System identification, that is, accurately obtaining the value
of system parameters is an important problem in the simulation of many
complex systems.

This thesis provides a method for obtaining the parameters of
first and second order linear systems using Z-transform techniques and a
digital computer. The accuracy of the identification exceeds that of an
analog method referenced in the text. An extension to higher‘order systems

is also proposed.

iii
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I. INTRODUCTION

The engineer is often faced with the problem of obtaining
the characteristics of the differential equations representing a
complicated system.

Simulation and design problems occurring in the determination
of aerodynamic coefficients, dynamic characteristics of tires, auto-
mobile suspension systems and aircraft landing gears for example, require
an accurate knowledge of the particular system to permit a meaningful
simulation to be made. Recently a technique for 'System Identification
By Means of a Implicit Synthesis Method' was presented by C.L. Sheng
end M.Y. Wu [7]. The paper investigated the determination of the
parameters in first order linear and non-linear systems and proposed a
method for higher order systems. A general purpose EAI-TR-48 analog
computer was used for the identification.

The purpose of this research was to try to equal or improve
upon the accuracy of the Sheng-Wu identification of linear systems
using a digital computer technique. The ﬁse of a digital computer would
give the engineer a choice of tools, analog or digital computers, in

the solution of a particular identification problem.
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II. SAMPLED-DATA SYSTEM THEORY

2.1 Z-transform Theory

By the very nature of a digital computer, techniques for system
identification require discrete information. Methods of analysis which
use discrete data are called sampled-data system methods. A sampled-
data system can be defined as one in which the flow of continuous infor-
mation is transformed into a series of pulses or numbers. This sampling
process is analogous to ideal switching. The discrete points or pulses
can only relate to the continuous data at the sampling instants. That
is, f(nT) can be completely determined from f(t) but f(t) can be known
only at the discrete time intervals T,2T,3T, etc., when £(nT) is known.

f(t) and f(nT) are the functions shown in Fig. 1. This train of pulses,

fw ‘ F(n7) |

TiME T 21 3T 4T TIME

CONTINUOUS DATA X SAMPLED DATA

S F6T)

T

Fig. 1 1Ideal Sampler, Sampling Period T.
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f(nT), can be analysed mathematically with the introduction of impulse
mcdulation. For a continuous input function, f(t), the sampled-data

*
output function £ (t) consists of a series of impulses of areas f(nT),
i.e. mathematically,

* *

£ (t) = £(t) & (t) (2-1)

*

where & (t) represents a unit impulse carrier train.

Expanding (2-1) we obtain

o«

() = £(t) = 58(t - nT)
n=0
- % £(aT) S(t - nT) (2-2)

n=0

This becomes through standard Laplacian transformation

* 2 -nTs
F(s) = » £(nT) e (2-3)
n=0
R . . -n _ =-nTs
Now, if for convenience we use the transformation Z = e and use

F(Z) to represent the impulse modulated function, (2-3) becomes

Il

it -n
% £(nT) Z
n=0

F(2)

L+ £am) 27+ ... (2-4)

£(0) + £(T) 2~

Thus the Z-transform can be considered independently of a
Laplace transform, with the exponent of Z being an ordering indicator.
For an example of the calculation of a Z-transform, let f(t) = e 2,
Then modulating the unit impulse carrier with £(t) we obtain

f*(t) = 0T 4 ot 8(t-1) + o228t S(t-2T) * ...

L ] + e_anT S(t-nT) + LI ]
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-aT -1

ice. £ (t) =1+e 227" + o282

4 e+ T gy

Writing this in closed form, it becomes
1

1 - e-aT Z-l

F(z) = (2-5)

A table of standard Z-transforms can be found in Appendix A.

Assume now that F(Z) of (2-5) is a transfer function of the
form %(Z), where C(Z) is the output variable and R(Z) is the input
variable. The numerical evaluation of C(Z) may be performed by several
methods, two of which will be briefly described. One method utilizes
conventional long division, but in this case the input R(Z) must be of

a known form such as sine, ramp, Step, etc.

- R(2)
o(2) = R(Z
1 - e-aT z-l
If R(Z) is assumed to be a unit step function, then R(Z) =

G(z) then becomes

1

(1-2"1)(1-e'aTz'1)

I

c(2)

1
aT

Y2 e "3TZ72

1 - (1+e”
Evaluating by long division the output can be written

aT) Z-l + (1+e-aT + e-ZaT) Z-Z + ...

c(z) =1+ (1te”
A more useful method and the one used exclusively in the iden-

tification technique to be described, is called the recursion method.

It has the advantage that R(Z) can be a random input. Then
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i.e.

which is equivalent

c
(%)

c(z)

c(2)

il

e 3 o(z) 77

to

R(z) + ¢ 2% ¢(2) 2°

= R(Z)

1

C(nT) = R(aT) + "2t C[(n-1)T)

Now if R(Z) is a unit step function

then

c(1)
c(2)

c(3)

=R(1) + e 4 .c(0) =1 as C(0)
=R(2) + e (1) =1+ "

= R(3) + ¢ .c(2)

~ 1 + e-aT + e-2aT

Thus the output C(Z) is the same by either method.

2.2 System Algebra

of open loop transfer functions is necessary.

shown in Fig. 2.

R(s)

cls) / <:'(sg

(a)

R(s) 7

Rs)

G

(2-6)

=0

In addition to the Z-transform, a knowledge of the analysis

Consider the two examples

c(s) / c*s)

Fig. 2 (a) Continuous Input

(b)

(b) Sampled Input

The output of the system in Fig. 2(a) is given by
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c’(s) = [R(s)e(s)]" (2-7)
while the output in 2(b) is
¢"(s) = [K'(8)6(s)]"
= R*(S)G*(S) (2-8)
Now if, for example, R(s) = i and G(s) = ;f; then (2-7) becomes

* a .x
¢ (s) = [5rara)d
that is
o(2) = 4 (37 ]

where 3 denotes the Z transform of the term in parenthesis.

-aT)
aT

_zZ(1 - e
(z-1)(Z-e”
Eq. (2-8) can be written

c(z)

)

o(2) =57 * 315
Z

(z-1)(z-e" %}
* * *
Thus, the outputs R (s)G (s) and [R(s)G(s)] are not the same. The actual
configuration of the system is therefore very important.
Cascaded elements are affected in the same manner. Two elements
G1 and G_ separated by a sampling device would not give the same output

2

as a system with Gy and G2 connected directly. The references [1], [2],
and [3] go into this theory in much greater detail but this resumé is

sufficient for an understanding of the applications to follow.
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III. IDENTIFICATION

3.1 Method
It would be desirable to be able to identify the coefficients

of a linear differential equation of any order which is of the form

n n-1
(—i—:{- +A1(—i—;‘% F oveeee T AY = u(t) (3-1)
dt de n

where ¥(t) = system output
u(t) = system input
and A1 through A.n are the unknown coefficients of the system
and all initial conditions are zero.

This research will deal with first and second order systems
although the method to be described may be extended to higher order
systems.

This method depends upon a linear sampled-data model which

assumes that the input and output samples of a given system are related

by a Z-transform model of the following form
N{Z
F(z) = B (3-2)

2~ (nm1)

Il
3
-+
3]
N
4

where N(Z) ceose O

0 1 n-1

-1

D(z) =1+p2 + 322'2 *eenep 2

and n indicates the order of the system.
Thus, if the coefficients of the Z-transform model can be identified,
the time domain coefficients can be calculated using the known form of

Z-transform for the order of system under study.
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The input to the system to be identified can be of any fomrm,
but in most of the identifications, a step function of constant ampli-
tude and starting at time zero was used. Tﬁese step functions were
sampled and the sampled values were used to drive the 'black box'
system. The output of the system at each sampling instant was recorded
and the corresponding values of input and output were listed together.
This 1list of input and output samples is referred to as the input~output
record, and contains all of the samples at the sampling instants until
the input was removed. The input record can be expressed mathematically
as the sum of the sampled values of input at the specific sampling time.
Thus if the input is denoted by X(Z) then the total record of the input

using normal Z-transform notation is

m
x(z) = = X(n)z™" (3-3)
n=0
where m = number of samples
X(nT) indicates the value of the input at the
sampling instant nT.
and 2" is the time ordering indicator.
Similarly the output W(Z) can be written as
m
w(z) = £ W(aT) 277
n=0
where W(nT) indicates the value of the output at the
sampling time nT.
These expressions for the input and output records can also be written
as
m s
x(z) = % x.zJ
=0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



m "
w(z) = & w.z3
j=o

where j indicates the time of sampling and Wj and Xj are
the values of W(Z) and X(2) at the time j, this being the
form of notation used in later expressions.

If the same input is applied to the unknown system and the
Z-transform model and the outputs of the two correspond exactly at each
sampling instant, then the model is a true system model and the coeffi-
cients of the actual system are known. If the two outputs are not
exactly the same however, the error between them indicates how close
the model coefficients are to the true values. Thus if we were to mini-
mize this error with respect to the coefficients of the model N(Zz)/D(Z)
we . would obtain the best approximation to the system. The error deter-

mination is shown diagrammatically in Fig. 3.

/  X(2) G / W(Z)

N
‘5(?-)

()

’\L/e‘(nT) = €j

Fig. 3 True Model Error

The error at each sampling instant is ej. The total effective
error is found by summing the squares of the values of ej over the record
length. If we use the inversion integral to obtain the error, then the

following error minimization is involved.
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10

x(z)-ﬂiglv

27j D(2)

- W(Z)[2 %Z = minimum (3-5)

If this expression were minimized with respect to the coefficients ai
and Bi of the model, the result would give the best identification. .
This minimization however cannot be solved exactly [9].

A method suggested by Steiglitz and McBride [9] will now be
developed to solve the above minimization problem. The minimization

involved in Fig. 4, which has no physical interpretation, can be easily

solved.

-/ X(@) G / W(z)

N(2) D@

€;

Fig. 4 Linear Regression Error

Again using the inversion integral the expression for the error is

1

Z(ej)z = E;E’§ iX(Z).N(Z)-W(Z).D(z)lZ g& = minimum (3-6)

The error at any time j involves the values of input and out-
put at time j plus several previous values. The number of previous
values is dependent upon the order of the system. Thus the product at

X(Z) and N(Z) can be written as

P
Ing=]

-j -1, -2 + -(n-1)
ij ).(a.o-&'a.lz +U.ZZ F oo o _,Z )

Il

0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

. -1 -(n-l)
L] . + + o ® 9 0
i.e moxj alxj-l VA an-l Xj_n+1z

The effect of X(Z).N(Z) at time j is therefore

n-1
LoaX, .
i=0 *+ 37t
n
Similarly the product of W(Z) and D(Z) at time j is L B, W, |,
i=0 1 Jj-1i
The error at time j is then
n-1 n
e, = X aX. .-~ X BW _ (3-7)
I 4=0 *J =0 *tJ17*
n-1 n
or setting By = 1 e. = X oX .- X BW . -W
3oy *ITY 0 gm P ITE

We can write this in matrix form if we let

S = [GpsGysees an_l,-Bl,-ﬁz,.....-ﬁn]

i
1
>
.
>

j j j-l...‘.Xj—rﬁ‘l,wj—l}....wj—nj

ql
and & and 4 be the transpose of &' and q'j.
Therefore
e. = q'.0 - W,
i 1 j
The total error can be obtained by squaring the sampled instant errors
and summing over the record length.

Z(ej)z is the total error which we would like to minimize

with respect to the coefficients ay and Bi’ i.e. with respect to the
matrix &. If we take the gradient of Z(éj)z with respect to & we would

obtain a minimization criterion

. 2y _ e 4
i.e. grad (Z(ej) ) = 2(& 3 ) ej

22 q.e. =0
qJ J

But e, = q'j & - W,
3 47 J
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Therefore % q.q'. & - % q.W, =0
qu J qJ J

let Q =X q.q', and ¢ = X q.W,
Q 495 947

Then the coefficients in & are

e (3-8)

5 =1Q
for minimum error.
But this criterion does not mean anything as far as the
original problem is concerned.
If the values of o, and Bi and the corresponding values of

N(2) and D(Z) denoted as Nl(Z) and Dl(Z) which were found using the

above technique :are used to adjust the values of input and output such

that
Wnew(z) ~ 1 -1
woriginal(z) 1+ 512-1 T ves BnZ-n Dl(Z)
and Xnew(z) _ 1 _ 1
an X ( z) 1

original 1+ BIZ- + ... BnZ-n Dl(Z)

then new values of & and B are obtained. The new values of N(Z) and
D(Z) thenbecome N2(Z) and DZ(Z) respectively. This procedure is con-
tinued several times. If we let i equal the number of iterations,

that is, the number of times the original equation & = Q-l.c is solved
then on the ith iteration we solve for Ni(Z) and Di(Z) with the original
input and output records being filtered by Di_l(Z), the value of D(2Z)
found on the previous interation. The error minimization on this ith

lteration involves the equation (3-9) derived from the diagram shown in

Fig. 5.
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/ X(@) /  W(z) 13

Di-n(z) Di—l (2)

N;(2) Di(2)

NP
\\J/ej
Fig. 5 Iterative Model Error
1 N (z) D (z)
- 2 dz
Z(e ) — y |x(z) - w(z). = min
" om DO (D 2

(3-9)

If on the ith iteration the values found for a and B are the same as
the values found on the previous iteration, then Di(Z) = Di-l(z) and

the error minimzation equation becomes

Ni(Z) D (z) dz .
§ |x(2). B;(ET W(Z)‘ ] (Z)I = min.
ieee Ni ) az
39 |x(2) 'B,—(Z) - w(z)] 7 = min. (3-10)

Thus, the iterative procedure provides a solution to the original true

model error minimization at convergence of the coefficients.

3.2 First Order Linear System
By using the iterative procedure described in Section 3.1, a

first order system Z~transform model takes the form
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gy =—2—=—1 (3-11)

1—1-312' 1+Blz' 1

Having found Bl we must now relate the Z-transform to the
time domain coefficients of the equation
>
Y + AY = u(t)
This equation may be written in a transfer function form using Laplace

transformation as

This equation can now be written in terms of Z-transforms as

Y 1
_(Z) [ R S
u l-e AT 7 1

Therefore Bl = -e-.}\'T

A = ~1n(-8;) (3-12)
T

where In = natural logarithm

T = sampling period

I

B, = coefficient of D(Zz).

3.3 Second Order Systems

The Z-transform model for second order systems is

i Z-].
O 1

N _
pl?) = T (3-13)
1+ g2 B2

The coefficients To s and BZ must now be equated to the time domain

1781

coefficients of the general second order system

Y + AY + BY = u(t) (3-14)

Using Laplace transforms again, (3-14) becomes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

szy(s)-+ S AY(s) +B Y(s) = u(s)

or

(s) = = (3-15)

where 8 = -a,-a,

equation s2 + As + B.

(3-14) becomes upon application of Z-transformation

-alT -a2T -1
(e -e )2
oy =1~ —aiT, ~a,T -1 . ~(ata )T.-2 (3-16)
Y 3781 1-(e 72Nz 1 TV g
Therefore equating coefficients of (3-13) and (3-16)
-alT -a2T
B, =-(e ~Fe )
1
-(a,+a )T
—. (a;¥a))
B2
We can solve for a. and a
1 2 >
-3 + -
N BTV B 432)
Lot 2 (3-17)
2
_ -ln ('31 VB - 452)
a, T 2

Then the coefficients of (3~14) become

= +
A al a2
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3.4 Higher Order Systems

Systems of a higher order than two may also be identified.
If a look up table is developed to relate the time domain coeffici-
ents of such systems to the equivalent Z~transform coefficients, this
table can then be stored in computer memory and the appropriate rela-
tionships can be retrieved when a particular order of system is to be
identified.

A few examples will be shown to illustrate the usefulness of

this technique.

3.5 Computer Solution

The input and output records used as data for the computer
identification were generated by means of a recursion forumla of the
appropriate order. This digital generation permitted many systems to
be tested without any difficulty obtaining data. The number of samples
obtained and the sampling period are known and are also input to the
program. The identification of first and second order systems was
accomplished by using two programs. These programs were written in
Fortran and were run on an I.B.M. 1620. They are now described with
reference to Fig. 6.

The values of input and output obtained from the recursion
formula are first read into the computer along with T -~ the sampling
period and N - the order of the system. Each value of X(Z) the input,
and W(Z) the output, is stored as an element of vector XJ and WJ
respectively for easy access. The solution of Eq.(3-8) is implemented.

The matrices Q and c are labelled SQUE and SUMCI respectively. The

matrix qjiSnamed QJ and its transpose qj' is QJT. The parameters 1l -
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READ
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the iteration counter, N2 and NP, and ALAP which contains the previous
values of the time domain coefficients are set to their initial values.
SQUE and SUMCI are initially set to zero. The appropriate values of

XJ and WJ agre stored in the matrices QJ and QJT. QJ is then used to
form the matrix CI = QJ.WJ and CI is summed over the record length and
the resultant stored in SUMCI. Also the product of QJ and QT is
summed and stored in SQUE where SQUE = 2 QJ.QJT. The matrix SQUE is
inverted using a library subroutine and the resultant premultiplies
SUMCI. This product is the coefficient matrix 3. Up to this point in
the calculations the order of the system is immaterial as long as it is
specified. Here the two programs begain to differ. The calculations
have essentially the same form except that the actual formulas for
model output, etc. are specifically for first or second order systems.
The number of iterations already pérformed is checked by testing II.

If I1 is other than zero the original input output record is reread.
Using the coefficients of the & matrix and the input record XJ the
output of the model N(Z)/D(Z) is calculated, and this output is compared
with the actual output WJ of the unknown system. The mean square error
and the variance of this error are calculated and are used as the
criterion for selecting the best identification if convergence of the
coefficients is not obtained. The time domain coefficients A for first
order and A,B for second order systems are then calculated from the
elements of the & matrix. These values are compared with the coeffici-
ents which were calculated on the previous iteration and stored in ALAP.
If they have converged to within a preset value (0.0001) the coeffici-
ents are punched out and the program ends. If convergence has not been

obtained the original XJ and WJ are prefiltered by means of the digital
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filter l/DII as described in Section 3.l. The new coefficients replace
the previous ones in ALAP, the counter Il is increased by one, and the
matrices SQUE and SUMCI are reinitialized. If convergence is not ob-
tained after several iterations the program may be stopped and the error

values can be used to select the best approximation to the coefficients.
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IV, EXPERIMENTAL RESULTS

Several systems were identified using the method described.
Various sampling periods and numbers of samples were used for some
systems. Also various inputs were used. The results of these tests

are listed in the following tables.

TABLE 1 First Order Systems

Y +AY = u(t) where A = 1.000
and 200 samples

Tsec. u(t) A 4 Error
0.5 1.0 1.000134 +0.0134

0.2 1.0 0.9999923 -0.00077

0.1 1.0 1.0000045 +0.00045
0.05 1.0 1.0000088 4+0.00088
0.02 1.0 0.99988 -0.012

TABLE 2 Y+ AY = u(t)  where A = 1.000
and 150 samples

Tsec u(t) A % Error
0.5 1.0 1.00006 8 +0.0068

0.1 1.0 0.999949 -0.0051
0.05 1.0 1.000029 +0.0029
0.02 1.0 0.99989 -0.011
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TABLE 3 Y + AY = u(t) where A = 7.5320
and 200 samples

. Tsec u(t) A % Error
0.5 1.0 7.53671 +0.06
0.1 1.0 7.53364 +0.02
0.02 1.0 7.53300 +0.013
0.01 1.0 7.53207 +0.001
0.1 5.0 7.53173 -0.004
TABLE 4 Y + AY = u(t) A = 20.150

and 200 samples

Tsec u(t) A % Error
0.1 1.0 20.1111 -0.20
TABLE 5 Y + AY = u(t) A = 1.000

and 200 samples
Tsec u(t) A ¢ Error
0.1 3.0 0.999927 -0.0073
0.1 5.0 1.0000045 +0.00045
0.01 t 1.00019 +0.019
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SECOND ORDER SYSTEMS

TABLE 6 Y + AY + BY = y(t)  and 200 samples

ACTUAL VALUE IDENTIFIED VALUE
Tsec

A B A B
0.1 35.0 300.0 35.0856 301.062
1.0 6.0 5.0 5.9914 4.9934
1.0 5.0 6.0 4.9908 5.9844
0.5 5.0 6.0 4.9850 5.9777

TABLE 7 SECOND ORDER IDENTIFICATION ERRORS

ACTUAL COEFFICIENTS PERCENTAGE ERROR
T A B A B
0.1 35.0 300.0 +0.246 0.354
1.0 6.0 5.0 -6.143 -0.133
1.0 5.0 6.0 -0.184 -0.260
0.5 5.0 6.0 -0.52 ~0.37
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V. DISCUSSION OF RESULTS

The analog identification technique of Sheng and Wu [7] is
based on the principle of steepest descent and utilizes an implicit
synthesis method. 1t is used for first and second order linear systems
and also nonlinear first order systems. A method to identify higher
order linear systems using the same implicit synthesis circuits is also
proposed. The systems to be idéntified were simulated using an analog
computer circuit. The results of théir method were compared to those
of the digital method described.

In the digital method, the fact that the input was sampled;
that is, interrupted,imposed a minor restriction. The system to be
identified could net be run undér normal operating conditions. However,
since the major application of any identification technique is in the
research field, this restriction is not felt to be of any great
significance.

The input=-output records were checked to make sure that the
number of initializing zeros equalled the order of the system. If this
condition was not true the data was misleading and caused erroneous
identification.

The first order systems identified demonstrated the accuracy
of this method. The system ¥ + Y = u(t), that is A = 1.000 was identified
using several different values of u(t), including a ramp function. All
of the identified values of A were within 0.024. The same system was
identified by the analog method with an accuracy of 0.14. The first

order system Y + 7.5320 Y = u(t) was also identified very accurately.

23
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The parameter A was found to be 7.5367 in the worst case and 7.53207 in
the best case. A third system Y + 20.150 Y = u(t) was also identified
to within 0.2% but this value could be improved with the proper selection
of sampling period. Tables 1,2,3 list the identified values and associ-
ated errors for two first order systems with several different sampling
periods. Figure 7 shows that the best results are obtained when the
total sampling time is equal to approximately 20-~30 times the time
constant of the system.

The selection of a sampling period is determined by two

criteria. If the system response is as shown in Fig. 8 and the
A
A-‘
A(»-—e’”)

L

!
[
i
|
|
!

¥ 52A Time

Fig. 8 Time Response of First Order System
sampling period T is large with respect to the time constant 1/A the
sampling is poor and therefore the error is higher. When nT, the total
sampling time is small with respect to 5/A, only part of the system
response is sampled and the error is higher. There is therefore an
optimum sampling period which is small compared to 1/A providing the
total sampling time nT is large compared to the time constant of the
system. For the system with A = 1.000 the associated time constant is
T =1/A = 1.00 sec. With two hundred samples and a period of O.l seconds
the best identification of A = 1.000 was obtained. The total time in

this case is approximately twenty times the time constant and the sampling
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period is small compared with the time constant which satisfies the two
criteria. Fig. 7 shows that as the sampling rate increases the abseclute
value of error increases and as the sampling period becomes quite 1large
(the total sampling time is long) the absolute error again increases.
Similar results were obtained for A = 1.00 with 150 samples and A = 7.5320
with 200 samples. Therefore once an approximation of the system is
obtained, a proper value of T can be chosen to obtain the best identifi~
cation.

The identification of second order systems although not as
accurate as the first order systems was within 0.5% in even the worst
case. For second order system the sampling period must be chosen to
satisfy two criteria. According to the sampling theorem the period of
sampling must be at least T = 1/2W where W is the highest frequency
present. Also the total sampling time must be sufficient to allow the
system to settle which sets a lower limit on the period T. If a period
of approximately 1/2 or 1/3 the upper limit is used, an approximation
of the system can be found. This is possible if the bandwidth of the
system can be approximated even roughly. The period can then be re-
duced until the error starts to rise again. For example the system
¥ + 5% + 6Y = u(t) can be identified at T = 1.0 secs. with greater
accuracy than at 0.5 secs. The maximum value of T in this case would
be approximately T = 2.0 secs.

By applying the method suggested by McBride and Steiglitz with
a sampled input instead of a continuous one a greater accuracy of identi-
fication has been achieved. OSimilar results could be expected for

higher order systems.
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Vi. CONCLUSIONS

The digital method described in this research offers an
alternative to analog identification for linear systems of any order.

The look-up table for higher order systems would consist of relation-
ships which would be of value to the particular user.

Both systems, the digital and analog, give acceptable results
and the choice of one over the other would depend upon available equip-
ment and the personnel involved.

The use of a digital computer technique for system identifica-
tion makes available an additional tool to the engineer involved in design

and simulation.
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TABLE A.1l Z Transforms

APPENDIX A

£(t) F(s) F(Zz)
1 Z
L s Z-1
. 1 T Z
s? (z-1)2
ot 1 _Z
e 2 sta z-e~al
o-al_ -bT b-a z(e3T_¢"PTy
B + + - -
(sta)(stb) (Z-e aT)(z_e bT)
a Z sinaT
sin at 52+a2 ZZ-ZZCOSaT'H.
s Z(Z-cosaT)
cos at sz+a2 22-22cosaT+1
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