University of Windsor Scholarship at UWindsor

Electronic Theses and Dissertations

Theses, Dissertations, and Major Papers

1-1-1982

Discharge and resistance of streams with multiple roughness.

Andrew Hok-Bun Lau University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Lau, Andrew Hok-Bun, "Discharge and resistance of streams with multiple roughness." (1982). *Electronic Theses and Dissertations*. 6771.

https://scholar.uwindsor.ca/etd/6771

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

NOTE TO USERS

This reproduction is the best copy available.

UMI®

DISCHARGE AND RESISTANCE OF STREAMS

WITH MULTIPLE ROUGHNESS

by Andrew Hok-Bun Lau B.A.Sc., B.A.

A Thesis submitted to the Faculty of Graduate Studies through the Department of Civil Engineering in Partial Fulfillment of the requirements for the Degree of Master of Applied Science at The University of Windsor

> Windsor, Ontario, Canada 1982

UMI Number: EC54756

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI®

UMI Microform EC54756 Copyright 2010 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

> ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

LEAL THES THESIS 1982. · K28

LAU, Andrew Hok-Bun Discharge and resistance of streams... MASc.1982 PRINTING ON LEAVES 190 TO 256 IS FAINT AND BROKEN. WOULD NOT PRODUCE A GOOD MICROFICHE.

ACA 3071

Andrew Hok-Bun Lau 1982

778406

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<u>c</u>

To my parents

A second se

ABSTRACT

This thesis describes the influence of multiple roughness on the conveyance capacity of streams. Experimental studies were made of covered or open-channel flow in cross-sections lined entirely or partially with various roughness materials. Friction factors which were expressed in terms of Manning's and Chezy's roughness coefficient were determined and detailed velocity distributions were also measured. Theoretical analysis was made on the boundary shear stress distribution and velocity profiles, and relating these parameters to different configurations of the channel cross-section. A finite strip method was developed here in describing the velocity flow pattern within a channel, and the results would be very useful for the determination of stream flow characteristics in natural rivers.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

)

ACKNOWLEDGEMENTS

The writer wishes to express his sincere gratitude to Dr. S. P. Chee, Head of Civil Engineering Department for his constant guidance and encouragement and for critically reviewing this thesis.

In addition, many thanks must be given to Dr. J. A. McCorquodale, Professor of Civil Engineering Department and Dr. M. R. Haggag for their concern and assistance throughout this study.

The financial support provided by the National Research Council and the Civil Engineering Department of the University of Windsor is gratefully acknowledged.

vi

TABLE OF CONTENTS

ABSTRACI	•••••		•	• •	• •	•	• •	•	•	• •	•	•	•	•	v
ACKNOWLE	EDGEMENT	s	•	• •	••	•	• •	•	•	•••	•	•	•	•	vi
LIST OF	FIGURES	• • •	•	• •	• •	•	•••	•	•	•••	٠	٠	•	•	x
LIST OF	TABLES.	• • •	•	•••	•••	•	• •	•	•	•••	•	•	•	•	xiv
CHAPTER															
I.	INTROD	UCTION	ι.	• •	• •	•	••	•	•	• •	•	•	•	•	1
	1.1 I 1.2 D	ntrodu efinit	icto: ion	ry F of	Rema: the	rks Pr	 obl	em	•	•••	•	•	•	•	1 2
II.	LITERA	TURE P	REVI	EW.	•••	•	• •	•	•	•••	•	٠	•	•	4
	2.1 I 2.2 D	ntrodu	omen	on. tot	Eq	uiv	 ale	nt	•	• •	•	•	•	•	4
	2.3 S 2.4 S 2.5 D	Rough hape H econda iscuss	nnes Effe ary sion	s Ec cts Flow of	nuat: on (v in Lite	ion Cha Op era	s . nne en tur	l F Cha e F	Inn lev	ist el. iew	an	ce	• • •	• • •	6 29 42 50
III.	THEORE	TICAL	ANA	LYSI	cs.	•	• •	•	•	• •	•	•	•	•	52
	3.1 I 3.2 T 3.3 D 3.4 T 3.5 T 3.6 C	ntrodu heored erivat he She he Vel	icti ica ion ear loci ieri	on. 1 As of Stre ty I stic	ssum the ess Dist	oti Fl Dis rib	ons ow tri uti	Equ but on	iat	ior n.	• • • •	• • • •	• • • •	• • •	52 53 55 59 60
, ,	3.7 T 3.8 T 3.9 M	Velo he Hyo he Con lathema	lrau npos atic	y Di lic ite al N	Rad Rou Node	ibu ius ghn l f	tio Ra ess or	n. tic Ec Ger	o E gua ner	qua tic al	ti n.	on •	• •	• •	66 67 69
		Solu	itio	n.	• •	•	••	•	•	• •	•	•	•	•	71
IV.	EXPERI 4.1 I 4.2 I 4 4	MENTA Introdu The Tes .2.1	L IN ucti st E Lab Mea	on. qui ora sur:	pmen tory	TIC t. Fa Equ	on . 	.iti	Les	• •	•	• • •	•	•	76 76 76 76 77
	4 4	.2.3	Exp Sim	erin ula† Mate	ment ted eria	al Cov ls	Cha rers	inne ai	els nd	Roi	igh	.ne: •	ss	•	79 82

-_`

.

	4.3	Experime	ental Lalibr	Prog atio	ram. n of	E Ro	 ugh	nes	• s	• •	•	82
			Mat	eria	ls .	• •	• •	•	•		•	87
		4.3.2 F	Evalua	tion	of	Cha	nne	1				
		1 2 2 0	Com	posi	te F	loug	hne	ss 	•	• •	•	87
		4.3.3 2	Pro	file	ne v	/ero		Y			_	88
	4.4	Experime	ental	Resu	lts.	•••	•••	•		•••	•	88
	4.5	Experime	ental	Erro	rs .	• •	• •	•	•		•	88
V.	DISCU	SSION OF	THEO	RETI	CAL	AND						90
	GAPEr	THENTAL	RESUL	1.2 .	• •	• •	• •	•	•	• •	•	90
	5.1	Introduc	ction.					•	•	• •	•	90
	5.2	The Div:	ision	Surf	ace	Equ	ati	on	•	• •	•	90
	5.3	The Comp	posite	Rou	ghne	ess	Equ	ati	on	• •	٠	93
	5.4	Calibra	tion o	f Ro	ughr	ness	Εl	eme	nt	s.	•	96
	5.5	Effects	of Ge	omet	ric	Sha	pe	and				100
		Bound	lary R	ough	ness	5.	•••	•	• ,	• •	٠	T00
	5.0	Comparis	son E	etwe	en t	sxpe		ent	aı			
		anu . Pour	rneore	TICA		Jupo	SIC	e				103
	57	Comparie	son of	· · ·	ocit	••• ••• D	· · rof	ile	•	• •	•	100
	J•7	Usin:	y Fini	+e .	OCI	cy r						128
		5.7.1	Percen	tage	Dif	ffer	enc	еB	et	wee	en '	
			Exc	erim	enta	al a	nd	Pre	di	cte	ed	
			Loc	al V	eloc	citi	es.	•	•			128
		5.7.2	Behavi	or o	f Co	beff	ici	ent				
			Equ	atio	ns .			•	•	• •	•	130
		5.7.3	Statis	tica	l Ar	naly	sis	Be	tw	eer	1	
			The	oret	ical	l an	d E	xpe	ri	mer	1-	
			tal	Res	ults	5.	• •	•	•	• •	•	133
	5.8	Experime	ental	Erro	rs .	• •	• •	•	•	• •	•	136
		5.8.1	Source	s of	Erı	rors	• •	•	٠	• •	•	T36
		5.8.2 (Genera	l Eq	uat:	ion	tor	, 				1 7 7
		- - - -	Err	ors	Est:	lmat	.e10	n.	•	• • •	•	131
		5.8.3	SCIMO Real		OL	Exp	eri	men	Ld	7		120
	5 9	Pomarke					Re	•	• +e	• •	•	. 130 130
	5.5	Relitative		.scus	97.01		Ne	Sul	. 63	• •		
VI.	CONCI	USIONS 2	AND RE	SEAR	СН S	SUGG	EST	ION	IS.	•	•	140
	6.1	Conclus	ions .		•		• •	•	•	• •		140
	6.2	Researc	h Sugg	jesti	ons	• •	• •	•	•	•	•	. 141
100000												
APPENDIC]	ES	• • • •	•••	• •	٠	• •	• •	•	•	•	•	. 143
APPENDIX												
A	Nume	cical Ex	ample.	•••	•		• •	•	•	•		144
A.1	Numer	ical Exa	ample	in D	emor	nstr	ati	ng	th	е	-	
	Use c	of Monog	raphs	in F	'ind:	ing	λa	nđ				
	n ₁ /n t	Ratio.	• • •	• •	•	••	• •	•	•	• •	•	144

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•

APPENDIX (continued)

в.	List of Computer Programs 1	48
Bl.	Program for Estimating Local	
	Velocity Profile 1	49
С	Experimental Results 1	70
Cl	Roughness Elements Calbiration Data 1	.71
C2	Theoretical Results on Covered Channels 1	.78
C3	Results of Statistical Analysis on	
	Velocity Profiles 1	.86
C4	Experimental and Theoretical	
	Velocity Profiles 1	.89
C5	Values of Velocity Exponent E2 2	:57
D	Nomenclature	:59
Dl	List of Nomenclature 2	:60
DEFEDENC		65
INDE D KENC		.00
VITA AUC	TORIS	270

۰.

.

•

.

LIST OF FIGURES

۰.

•

.

Figure		Page
2.2.1	Schematic Depiction of Flow Under an Ice Covered Channel	5
2.2.2a	Covered Channel with Three Different Boundary Roughnesses	17
2.2.2b	Scheme of the Uniform Channel with Common Shape and Multiple Boundary Roughnesses	17
2.2.3	Irregular River with a Large Flood Plain .	20
2.2.4	Cross-Section and Velocity Distribution at River Section	25
2.2.5	Co-ordinate System	28
2.3.1	Definition Sketch of Flood Plan Channel Cross-Section	34
2.3.2a, b	Velocity Distribution in Trapozoidal Channel with Differing Bed and Bank Roughness	38
2.4.1	Orientation of Test Channel	45
2.4.2	Curvilinear Coordinate System	48
3.2.1	Definition of Finite Vertical and Horizontal Strip Approach	54
3.3.1	Definition Sketch of Channel Cross-section	57
3.4.1	Shear Stress Distributions	61
3.5.1	Dimensionless Velocity Frictions	64
3.6.1	Variations of Velocity Distribution	68
3.9.1	Mathematical Model for Velocity Profile Determination	72
4.2.1.1	Layout of Test Flume	78
4.2.2.1	Measuring Equipment	80

Figure (continued)	Page
4.2.2.2	Measuring Equipment	81
4.2.3.1	Dimensions of Experimental Channel Cross-sections	83
4.2.3.2	Experimental Channel Cross-sections	84
4.2.3.3	Model Channel Features	85
4.2.4.1	Simulated Covers Blocks and Roughness Elements	86
4.3.3.1	Velocity Traverse Arrangement	89
5.2.1	Monograph for λ	92
5.3.1	Monograph for n_1/n_t Ratio	94
5.3.2	Monograph for n_1/n_t Ratio	95
5.4.1	Flow Chart for Estimating Experimental Manning's n and Chezy's C	97
5.4.2	Calibration Using the Total Flow Rate	98
5.4.3	Calibration Using Vertical Strip Approach	99
5.4.4	Calibration of Manning's Roughness Factor Using Vertical Strip Approach	101
5.5.1	n _l of Different Shapes with Similar Lining Material n _c	102
5.5.2a	Composite Roughness n of Channels	104
F F a	with Different Cover Roughness	104
5.5.2b	Composite Roughness n _t of Channels with Different Cover Roughness	105
5.5.3a	Composite Roughness n _t of Channels with Different Cover Roughness	106
5.5.3b	Composite Roughness n _t of Channels with Different Cover Roughness	107

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~

_

Figure (continued)

.

.

•

5.5.4a	Composite Roughness n _t of Channels with Different Cover Roughness	108
5.5.4b	Composite Roughness n _t of Channels with Different Cover Roughness	109
5.5.5a	Composite Roughness n _t of Channels with Different Cover Roughness	110
5.5.5b	Composite Roughness n _t of Channels with Different Cover Roughness	111
5.6.1	Flow Chart for Estimating Theoretical Manning's n of Covered Channels	113
5.6.2	Experimental and Theoretical Composite Roughness	114
5.6.3	Experimental and Theoretical Composite Roughness	115
5.6.4	Experimental and Theoretical Composite Roughness	116
5.6.5	Experimental and Theoretical Composite Roughness	117
5.6.6	Experimental and Theoretical Composite Roughness	118
5.6.7	Experimental and Theoretical Composite Roughness	119
5.6.8	Experimental and Theoretical Composite Roughness	120
5.6.9	Experimental and Theoretical Composite Roughness	121
5.6.10	Experimental and Theoretical Composite Roughness	122
5.6.11	Experimental and Theoretical Composite Roughness	123
5.6.12	Experimental and Theoretical Composite Roughness	124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

Figure (continued)

·

,

5.6.13	Experimental and Theoretical Composite Roughness	125
5.6.14	Experimental and Theoretical Composite Roughness	126
5.6.15	Experimental and Theoretical Composite Roughness	127
5.7.1	Flow Chart for Estimating Velocity Profiles by Finite Strip Approach	129
5.7.2.1	Velocity Coefficient El	131
5.7.2.2	Velocity Coefficient E3	132
5.7.2.3	Plot of E2 V.S. El	134
5.7.2.4	Plot of E2 V.S. V/V_{maxT}	135
A.1.1	Channel Cross-section	145

Page

.

•

xiii

LIST OF TABLES

Table		Page
3.3.1	Assigned Notation	58
C.1.1	Calibration by Standard Approach	172
C.1.2	Calibration by Standard Approach	173
C.1.3	Calbiration by Standard Approach	174
C.1.4	Calibration by Vertical Strip Approach	175
C.1.5	Calibration by Vertical Strip Approach	176
C.1.6	Calibration by Vertical Strip Approach	177
C.2.1	Composite Roughness for Covered Channel	179
C.2.2	Composite Roughness for Covered Channel	179
C.2.3	Composite Roughness for Covered Channel	180
C.2.4	Composite Roughness for Covered Channel	180
C.2.5	Composite Roughness for Covered Channel	181
C.2.6	Composite Roughness for Covered Channel	181
C.2.7	Composite Roughness for Covered Channel	182
C.2.8	Composite Roughness for Covered Channel	182
C.2.9	Composite Roughness for Covered Channel	183
C.2.10	Composite Roughness for Covered Channel	183
C.2.11	Composite Roughness for Covered Channel	184
C.2.12	Composite Roughness for Covered Channel	184
C.2.13	Composite Roughness for Covered Channel	185
C.2.14	Composite Roughness for Covered Channel	185
C.3.1	Results of Statistical Analysis on Velocity Profile	187

xiv

Table (continued)							
C.4	Local Velocity Profiles	189					
C.5.1	Values of E2	258					

.

.

•

.

.

.

CHAPTER I

INTRODUCTION

1.1 Introductory Remarks

The regimes of rivers are continually being altered both by nature and man. The effects of such alter-ations often extend far distance up and down the stream from the actual Hence a complete assessment of the impacts of such site. changes is important to future planning of water resources development and control. Although laboratory studies which involve turbulent flow of water in flumes, lined channels, and other conduits of homogeneous boundary roughness are well understood in their overall aspects, yet these studies have depended either on very generalized descriptions of the natural rivers or on very idealized laboratory models of the rivers. Such simplicities are seldom found in natural It is quite common to find marked lateral variastreams. tions of bed configuration and roughness in such streams which associated with variations in depth as well. Therefore, the extent to which the laboratory results apply to the behaviour of natural streams is limited by many idealized test conditions.

In order to estimate the resistance to flow which is

1

encountered, the question arises as to the extent to which existing mathematical models derived from flume data are applicable. As far as the composite roughness is concerned, a variety of formulas can be found based on different assumptions. It has been pointed out by some previous investigators that these assumptions are generally too optimistic.

The aim of this study is to develop a more rational model for the prediction and presentation of data on the velocity profiles, the shear stress distributions and friction factor of a composite channel.

1.2 Definition of the Problem

Channel sections with different roughnesses along the wetted perimeter are often encountered in design problems, such as man-made and natural watercourses. Typical design problems include partly lined canals and tunnels with different construction materials used for the bottom and the sides.

In order to solve the problem, a more general solution has to be developed. There are two major aspects which have to be considered.

Firstly, the model has to be applicable to a multipleroughness channel, with or without a buoyant cover.

Secondly, it can also be applied to channels of different configurations, without neglecting the sidewall

2

effects.

The need for such a solution is obvious, both for design purposes and for laboratory investigation.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

As stated in the previous chapter, most laboratory experiments on the resistance to flow in open channels have been conducted under carefully controlled, idealized conditions. But these experimental conditions fail in important ways to reflect the characteristics of natural streams, in which lateral variation in depth and roughness may be very pronounced.

Past experience indicates that the roughness coefficient should be a function of the following independent variables: the Reynolds number; the roughnesses of the wetted perimeter; the cross-sectional shape; the nonuniformity of the channel in both profile and plan; the Froude number; and the degree of unsteadiness [38].

It is worth noting that many investigators have been studying the effects of these variables. Their invaluable experiences, which form the ground for future investigations, are going to be discussed in the following sections.

For the sake of simplicity, some of the notations used in different literature reports have been modified to agree

4

with those adopted in this thesis.

2.2 Development of Equivalent Roughness Equations

Basically the development was first studied for the determination of the equivalent roughness of an ice covered channel and the related problem of predicting the shear stress on the wetted perimeter. Later on different methods had been developed to obtain a more general solution to the problem of equivalent roughness.

By considering a segment of an ice covered stream as shown in Fig. 2.2.1, a common feature of practically all the analysis is the division of the whole flow section into two parts: area A_1 , which is dominated by the bed; and the balance of the section A_2 , for which the streamwise gravity force is balanced by the shear on the ice cover. The method for dividing the section into A_1 and A_2 differs from one analysis to another. The corresponding wetted perimeters are P_1 and P_2 , and the Manning coefficients, the Darcy-Weisbach friction factors and shear stresses are n_1 , n_2 , f_1 , f_2 and τ_1 , τ_2 respectively.

In 1931 Pavlovskiy [33] was the first to calculate the composite roughness n_t , by equating the gravity force along the channel to the sum of the shear forces exerted on the channel bed and the ice cover

$$\gamma R_t S_o = \frac{\tau_1 P_1 + \tau_2 P_2}{P_1 + P_2}$$
 (2.2.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

where

 γ is the unit weight of the fluid

S is the energy slope of the channel

R₊ is the hydraulic radius of the channel

The shear stress τ is obtained from Manning's equation in metric form

$$\tau_{i} = \frac{V^{2}\gamma}{\left(\frac{1}{n_{i}} R_{i}^{1/6}\right)^{2}}, i = 1, 2 \qquad (2.2.2)$$

where V is the mean velocity.

He assumed $R_t = R_1 + R_2$ and introduced Eq. (2.2.2) into Eq. (2.2.1) to obtain

$$n_t^2 = \frac{n_1^2 + a n_2^2}{1 + a}$$
 (2.2.3)

where a = P_2/P_1 . Equation (2.2.3) states that n_1^2 and n_2^2 are weighted in the composite n_t by P_1 and P_2 . It is apparent from Eq. (2.2.2) that τ_i/n_i^2 is constant, under the assumptions that R_i , i = 1,2, are equal and V_i , i = 1,2, are common to all sections.

In 1933 Lotter [33] based his analysis on both the Chezy formula and continuity, developed the relation for composite Chezy's coefficient,

$$Q = AC_{t} \sqrt{R_{t}S_{0}} = A_{1}C_{1} \sqrt{R_{1}S_{0}} + A_{2}C_{2} \sqrt{R_{2}S_{0}}$$
 (2.2.4)

Where V_i and C_i are the mean velocities and Chezy's coefficients for the flow sections. By the introduction of R_i = constant, and a = P_2/P_1 Eq. (2.2.4) yields

$$C_{t} = \frac{C_{1} + aC_{2}}{1 + a}$$
(2.2.5)

When the equation is expressed in terms of n_i , Eq. (2.2.5) becomes

$$n_{t} = \frac{1 + a}{\frac{1}{n_{1}} + a\frac{1}{n_{2}}}$$
(2.2.6)

In 1938 Belokon [33] used a power-law velocity distribution, with an exponent of 1.5, for each of the subsections A_1 and A_2 , and assumed that $V = V_1 = V_2$. The expression he derived was,

$$n_t = n_1 [1 + a (\frac{n_2}{n_1})^{3/2}]^{2/3}$$
 (2.2.7)

In the limiting case $n_1 = n_2$ and $P_1 = P_2$, Eq. (2.2.7) yields $n_t = 1.59 n_1$, which is obviously incorrect.

In 1948 Sabaneev [33] utilizing a generalized form of the Chezy relation with

$$C_{i} = 1.486 R_{i}^{r}/n_{i}$$
 (2.2.8)

where r is a nondimensional coefficient, which is equal to 1/6 in the Manning equation. Introducing Eq. (2.2.8) into

the Chezy equation Eq. (2.2.4), and solving for A_i yields

$$A_{i} = \left[\frac{n_{i}V_{i}}{1.486\sqrt{S_{0}}}\right]^{2/(2r+1)}P_{i} \qquad (2.2.9)$$

Substituting Eq. (2.2.9) into $A_t = A_1 + A_2$ and assuming the equality of V_i leads to

$$n_{t} = n_{1} \begin{bmatrix} \frac{1 + a}{n_{1}} \\ \frac{1 + a}{n_{1}} \end{bmatrix}$$
(2r+1)/2
(2r+1)/2
(2r+1)/2
(2.2.10)

In 1948 Levi [28], for a wide channel, applied the logarithmic velocity distribution to sections 1 and 2 to obtain

$$U_{i}(y) = \frac{1}{\kappa} \sqrt{\frac{gYS_{0}}{2}} \ln \frac{Y_{i}}{k_{i}}, i = 1, 2$$
 (2.2.11)

where κ is Von Karman's constant; y_i are vertical displacements away from the corresponding boundaries and k_i is the hydraulic roughness height. Equating the maximum velocity by substituting $Y_i = y_i$ into Eq. (2.2.11) and with $Y = Y_1 + Y_2$ leads to

$$Y_{i} = Y \frac{k_{i}}{\Sigma k_{i}}, i = 1, 2$$
 (2.2.12)

By applying the continuity equation together with the Chezy's relation, results in C_t ,

$$C_{t} = \frac{\sqrt{g}}{\kappa} [ln \frac{Y}{2k_{m}} - 1]$$
 (2.2.13)

where $k_{m} = \frac{k_{1} + k_{2}}{2}$

In terms of Manning's n₊, Eq. (2.2.13) becomes

$$n_{t} = \frac{\kappa \left(\frac{Y}{2}\right)^{1/4}}{\sqrt{g} \left[\ell n \frac{Y}{2k_{m}} - 1 \right]}$$
(2.2.14)

where k_{m} is given by the relation,

$$k_{m} = \frac{Y}{2} \exp \left[-1 - \frac{\kappa}{n_{+} \sqrt{g}} \left(\frac{Y}{2} \right)^{1/4} \right]$$
 (2.2.15)

Levi recommended the use of Eq. (2.2.15) for each n_1 and n_2 to solve for k_1, k_2 , and k_m and introducing k_m into Eq. (2.2.14) for the required n_+ .

In 1958 [16] a "Task Force on Flow in Large Conduits" of the Committee on Hydraulic Structures (A.S.C.E.) was authorized to assemble and evaluate information on hydraulic characteristics in large pipes, tunnels, and conduits.

According to Colebrook, when a conduit is lined circumferentially with two different materials, a relationship can be used to weight the composite friction factor slightly in the direction of greater roughness, that is,

$$n_t = n_r \left[\frac{P_r + P_s \left(\frac{n_s}{n_r}\right)^{3/2}}{P_r + P_s} \right]^{2/3}$$
 (2.2.16)

in which r and s represent the rough and smooth sections respectively.

In 1959 Chow [11] by following Pavlovskiy, utilized the static balance expression Eq. (2.2.1) together with the Chezy equation, obtained the expression

$$\frac{1+a}{c_t^2} = \frac{1}{c_1^2} + \frac{a}{c_2^2}$$
(2.2.17)

where $a = P_2/P_1$, which in terms of the Manning equation, becomes

$$\frac{(1 + a) n_{t}^{2}}{R_{t}^{1/3}} = \frac{n_{1}^{2}}{R_{1}^{1/3}} + \frac{an_{2}^{2}}{R_{2}^{1/3}}$$
(2.2.18)

by assuming $R_t = R_1 + R_2$ and the maximum discharge condition expressed by

$$\frac{d}{d(R_1/R_2)}(n_t) = 0 \qquad (2.2.19)$$

Equation (2.2.18) becomes

$$n_{t} = \frac{n_{2}}{\sqrt{1+a}} \left[a^{3/4} + \left(\frac{n_{1}}{n_{2}}\right)^{3/2} \right]^{2/3}$$
(2.2.20)

In the limiting case $n_1 = n_2$ and a = 1 Eq. (2.2.20) yields $n_t = n_1(2)^{1/6}$.

For channel with multiple roughness coefficients, he assumed that each part of the channel section has the same mean velocity which is equal to the mean velocity of the whole cross-section, the equivalent roughness coefficient can be obtained from,

$$n_{t} = \left(\frac{\sum_{i=1}^{N} P_{i} n_{i}^{3/2}}{P_{t}}\right)^{2/3}$$
(2.2.21)

where i = 1, 2...N. By assuming that the total force resisting the flow is equal to the sum of the forces resisting the flow developed in the divided areas, another expression for n_{+} can be derived,

$$n_{t} = \left(\frac{\sum_{i=1}^{N} P_{i} n_{i}^{2}}{P_{t}}\right)^{1/2}$$
(2.2.22)

Further assume that the total discharge is equal to the sum of the discharges of the subdivided parts, the equivalent roughness coefficient can be expressed by

$$n_{t} = \frac{P_{t}R_{t}^{5/3}}{\sum_{i=1}^{N} \frac{P_{i}R_{i}}{n_{i}}}$$
(2.2.23)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

٠,

In 1961 Shiperko [39] used the assumptions that for a given channel section with roughness coefficients n_1 and n_2 , the average velocity and discharge must be a maximum. Thus the equivalent roughness coefficient can be obtained as,

$$c_t^2 = \frac{P_1}{P_t} c_1^2 + \frac{P_2}{P_t} c_2^2$$
 (2.2.24)

By further assuming that $R_t = R_1 = R_2$, and in term of Manning's n_t , Eq. (2.2.24) becomes

$$n_{t} = \sqrt{\frac{1}{\frac{P_{1}}{P_{t}n_{1}^{2}} + \frac{P_{2}}{\frac{P_{t}n_{2}^{2}}{P_{t}n_{2}^{2}}}}$$
(2.2.25)

In 1962 Dul'nev [13], by following Lotter and by further assuming that the hydraulic radii R_t , R_1 and R_2 were equal, he came up with an expression for the equivalent roughness coefficient as

$$n_{t} = \frac{1}{\frac{P_{1}}{n_{1}P_{t}} + \frac{P_{2}}{n_{2}P_{t}}}$$
(2.2.26)

In 1965, Sinotin [40], by applying Nikitin's law of velocity distribution for uniform flow in a wide channel (R ~Y),

$$\frac{U}{V_{\star i}} = 6.45 \log y/Y_i + 5.6 + 2.8 \frac{y/Y_i - 1}{y/Y_i} \qquad (2.2.27)$$

where $v_{\star\,i}$ are the shear velocities of section 1 and 2, to i=1,2

both the cover and bed sections of the channel, he obtained a hydraulic division relationship $\frac{Y_1}{Y} = F(\frac{n_1}{n_2})$ as,

$$\frac{Y_1}{Y} = 0.6 \log \frac{n_1}{n_2} + 0.5 \qquad (2.2.28)$$

He concluded that the formula for determining the reduced coefficient of roughness with variation of $\frac{Y_1}{Y}$ by Eq. (2.2.28) as,

$$n_{t} = \frac{n_{1}}{1.67 [(0.6 \log (\frac{n_{1}}{n_{2}}) + 0.5)^{1.75}]} + \frac{n_{1}}{n_{2}} (0.5 - 0.6 \log (\frac{n_{1}}{n_{2}})^{1.75}]$$
(2.2.29)

In 1966 Carey [2, 3], by basing his analysis on the Karman-Prandtl resistance equation for turbulent flows in pipes, he developed a framework for analysis and presentation of data. The resistance equations for the channel subsections can be written in terms of the effective size of roughness projections, k_i , as

$$\frac{V_{i}}{\sqrt{8gR_{i}S_{0}}} = 2 \log \frac{2R_{i}}{k_{i}} + 1.74 \qquad (2.2.30)$$

i = 1,2

By obtaining data on the stream discharge, channel geometry, and k_i , Eq. (2.2.30) can be solved for R_i and A_i by a trial and error procedure. Then, by employing Darcy's friction relation,

15

$$f_{i} = \frac{{}^{8gR_{i}S_{o}}}{{}^{V_{i}2}}, i = 1,2$$
 (2.2.31)

the quantities f, can be calculated.

In the following year, 1967 [4], he presented two different approaches for computing total discharge.

The first computation method called the "Pipe-flowequation method," he modified the Darcy-Weisbach equation in the form of

$$Q = \sqrt{\frac{8g}{f_{MOD}}} A_t R_t^{1/2} s_0^{1/2}$$
(2.2.32)

where Q is the total discharge for the covered channel, f_{MOD} is the modified Darcy-Weisbach friction factor for the channel,

to evaluate the total discharge of a covered channel. The second method called the "Stage-fall-relation method" is based on an analogy between ice-covered streams and streams having variable slopes caused by backwater during periods of open water. Basically, it involves two graphical relationships: (1) a relation between stage and discharge for some fixed condition of fall of the water surface; (2) a relation between discharge ratios and corresponding fall ratios.

Since the relationships in both methods are developed with data either recorded or measured in the field, it cannot be used for general applications.

In 1967 Sumbal and Komora [41], based on the studies of the flow under an ice covered channel, derived a method for solving the equivalent composite roughness.

He assumed that the velocity profile can be divided into several parts, pertaining to the walls and bottom and to the ice cover, where equal average velocity and equal energy slope exist.

For a given channel, as shown in Fig. 2.2.2a ,from the assumed values of the n_1 , n_2 and n_3 at a given discharge area, the relative distance of maximum velocities from the bottom $\frac{Y_1}{Y}$ is determined by means of a monograph [41]. The coefficient of $n_{1,2}$ can be defined by Eq. (2.2.33),

$$n_{1,2} = \frac{n_1 n_2}{\left[n_2 \left(\frac{Y_1}{Y}\right)^{5/3} + n_1 \left(1 - \frac{Y_1}{Y}\right)^{5/3}\right]}$$
(2.2.33)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Finally, the equivalent roughness coefficient n_t by Eq. (2.2.34), as,

$$n_{t} \left[\frac{n_{1,2}^{3/2} + \frac{Y}{B} n_{3}^{3/2}}{1 + \frac{Y}{B}} \right]$$
(2.2.34)

where

Y is the maximum depth of the channel, B is the width of the channel.

In the same year they examined several composite roughness equations which had been derived by previous investigators. By following Pavlovskiy's approach and the introduction of the Manning-Strickler equation, they obtained an expression for the hydraulic division ratio as,

$$\frac{Y_1}{Y} = \frac{n_1^{3/2}}{n_1^{3/2} + n_2^{3/2}}$$
(2.2.34a)

and a composite roughness equation

$$n_{t} = n_{1} \left[\frac{1 + \left(\frac{n_{2}}{n_{1}}\right)^{3/2} \frac{2}{3}}{2} \right] \qquad (2.2.34b)$$

By further assuming that Eq. (2.2.34b) can be applied to a uniform channel of common shape as shown in Fig. 2.2.2b to obtain a simple expression as,

$$n_{t} = \frac{\sum_{i=1}^{N} n_{i}^{3/2} p_{i}^{2/3}}{\sum_{i=1}^{N} p_{i}}$$
(2.2.34c)

In 1967 Bruk and Volf [1] had established a mathematical scheme which utilized Manning's equation to determine the roughness coefficients for very irregular rivers with large flood plains. The reach of the river is divided into k sections (Fig. 2.2.3), and each section is subdivided into a main channel and several strips of the flood plain. By applying the Manning equation to each strip, together with the continuity equation, they derived a system of equations.

19

$$\sum_{i=1}^{m} n_{i}^{-1} A_{ij} R_{ij}^{2/3} S_{j}^{1/2} - Q = 0 \qquad (2.2.35)$$

where

Q = total measured flow rate
A_{ij} = cross-sectional area of each strip
R_{ij} = hydraulic radius of each strip
S_j = energy slope for each section
i = number of strips within one section
j = number of sections within the reach

Since the channel geometry, total discharge and slope are measured, the only unknown variables of the k equations are the m roughness coefficients. The number of k equations are then reduced to m normalized equations by the method of

least squares, with the additional condition that the total head loss along the given reach be equal to its measured value H;

$$Q^{2} \sum_{j=1}^{k} L_{j} \begin{bmatrix} m & -1 \\ \Sigma & n_{i} \end{bmatrix}^{-1} A_{ij} R_{ij}^{2/3} \end{bmatrix}^{-2} = \sum_{j=1}^{k} \Delta h_{j} = H$$
(2.2.36)

where L is the length along each section.

The computation is initiated by assuming \mathbf{m} roughness coefficients for the sections and the recalculations of these coefficients by the above method.

In 1967 Hancu [18] [45] took the velocity defect law as the starting point for his investigation of the composite roughness channel. The velocity defect relation is

$$V_{\max} - U_{i}(y) = \sqrt{\frac{\tau_{i}}{\rho}} \frac{1}{\kappa} \ln \frac{y}{Y_{i}}, i = 1,2$$
 (2.2.37)

where κ is Von Karman's constant.

 $\tau_{i} = \frac{\rho}{2} \lambda'_{i} V_{i}^{2}, i = 1,2 \text{ shear stress on the boundaries}$ (2.2.38)

 $\lambda_{i}^{3-1/2} = 4 \log \frac{Y_{i}}{k_{i}} + 4.25, i = 1,2$ friction coefficients (2.2.39)

k_i are the absolute roughnesses ρ is the density of fluid.

By integrating Eq. (2.2.37) and eliminating V_{max} , the resulting expression is then combined with the force equilibrium of flow, pressure gradient and continuity equation which will yield,

$$\lambda' = 1/2 \left[\left(\frac{v_1}{v} \right)^2 \lambda_1 + \left(\frac{v_2}{v} \right)^2 \lambda_2 \right]$$
 (2.2.40)

where $\lambda^{'}$ is the composite friction coefficient.

The parameters V_1 , V_2 , Y_1 , Y_2 , λ'_1 and λ'_2 are the unknowns to be solved for using the given values of κ , k_1 , V and Y. Hancu presented a series of figures [18] to evaluate all these parameters, and the final expression in terms of Manning's friction coefficients is

$$n_{t} = n_{1} \left[\frac{1}{2} \left(\frac{Y}{Y_{1}} \right)^{1/3} \left[\left(\frac{V_{1}}{V} \right)^{2} + \left(\frac{V_{2}}{V} \right)^{2} \left(\frac{n_{2}}{n_{1}} \right)^{2} \left(\frac{Y_{1}}{Y_{2}} \right)^{1/3} \right] \right]^{1/2}$$
(2.2.41)

In 1968 Yu, Graf and Levine [47] reviewed the available formulas and then developed a semi-empirical relationship for n_t both for ice covered and ice free channels. First they adopted a modified form of Manning's equation.

$$V_{i} = \frac{1.49}{n_{1}} \left(\frac{A_{i}}{P_{i}}\right)^{(r + 1/2)} s_{o}^{1/2}$$
(2.2.42)

where
$$r = 1/6$$
, an empirical constant
 $Z = (\frac{n_2}{n_1})^{1/6}$ which is determined experimentally.

By using the geometrical relation $A_t = A_1 + A_2$ and the equality of V_i , they came up with an expression for n_t , as,

$$n_{t} = n_{1} \left[\frac{1 + a^{2} (n_{2}/n_{1})^{3/2}}{(1 + a)^{2}} \right]$$
(2.2.43)

In 1969 Larsen [25], for wide and constant depth channels, he applied the logarithmic velocity distribution to the subsections which is given by

$$U_{i}(y) = 2.5 V_{i} \ln \frac{30}{k_{i}} Y_{i}, i = 1,2$$
 (2.2.44)

where y_i is the distance from the boundary of A_i

k; is the roughness of the boundary

 v_{*i} is the shear velocity of A_i .

By evaluating the common maximum velocity and the mean velocities for both sections, together with the Manning equation applied to A_1 and A_2 , he came up with a hydraulic division ratio expression of Y_1/Y_2 .

$$\frac{Y_{1}}{Y_{2}} = \begin{bmatrix} ln\frac{30}{k_{2}} & Y_{2} & (ln\frac{30}{k_{1}} & Y_{1} - 1) & n_{1} \\ ln\frac{30}{k_{1}} & Y_{1} & (ln\frac{30}{k_{2}} & Y_{2} - 1) & n_{2} \end{bmatrix}$$
(2.2.45)

which, together with the continuity equation and the Manning equation applied to A_t , A_1 and A_2 yields

$$n_{t} = \begin{bmatrix} 0.63 & (\frac{Y_{2}}{Y_{1}} + 1)^{5/3} \\ \frac{Y_{2}}{Y_{1}} & \frac{1}{n_{2}} + \frac{1}{n_{1}} \end{bmatrix}$$
(2.2.46)

The quantity $\frac{Y_1}{Y_2}$ can be expressed as a function of n_i and $(\frac{30}{k_i})Y_i$ by Eq. (2.2.45). For the practical ranges of k_i and Y_i , the expression $ln(\frac{30}{k_i})Y_i$ is usually greater than unity and Y_1/Y_2 is only a function of n_1/n_2 . Thus n_t/n_2 can be related to n_1/n_2 by Eq. (2.2.45) and (2.2.46).

In 1972 Krishnamurthy and Christensen [24] presented a paper on the equivalent roughness coefficient of a wide channel. They assumed that the channel is so wide and shallow that the side wall effect can be neglected. The channel is subdivided into segments as in Fig. 2.2.4. Through the continuity equation, the discharge, ΔQ , in any subdivided section is expressed as,

$$(\Delta Q)_{i} = (V_{mean})_{i} (Y_{i}) (P_{i}), i = 1, 2, 3, ... N$$

(2.2.47)

The logarithmic velocity distribution $U(y)_i$, at any distance y from the bed and the roughness expressed in terms of hydraulic roughness k is

$$\left(\frac{U(y)}{V_{\star}}\right)_{i} = 8.48 + 2.5 \ln \left(\frac{y}{k}\right)_{i}, i = 1, 2, 3, \dots$$

(2.2.48)

where V_* is the shear velocity

k is the hydraulic roughness, $k = \left(\frac{n}{0.0342}\right)^6$

By using the assumption that the mean velocity occurs at a distance of 0.368 Y_i from the bed, and the sum of partial discharges equals to the total discharge, the equivalent roughness expression is,

$$n_{t} = \exp \left[\frac{\sum_{i=1}^{N} P_{i} Y_{i}^{3/2} \ell_{n n_{i}}}{\sum_{i=1}^{N} P_{i} Y_{i}^{3/2}} \right]$$
(2.2.49)

It is noted that Eq. (2.2.49) cannot be applied to rectangular channel sections and also covered channels.

In 1981 Lau and Krishnappan [26] presented a paper of an ice cover and its effect on stream discharge and flow mixing. They adopted the "k-e" turbulence model described by Launder and Spalding [27] to calculate the depth, velocity distribution, and turbulent eddy viscosity v_t distribution for the given discharge, bed slope and boundary roughnesses. These results are then used in the two-dimensional mass transport equation for simulation. The final solution gives some indications of the effects of an ice cover on the flow and on the vertical mixing.

For steady, two dimensional channel flow, the equations of continuity, momentum and the transport equation

for k and e take the following forms:

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0 \qquad (2.2.50)$$

$$\frac{\partial U^{2}}{\partial x} + \frac{\partial UV}{\partial y} = \frac{\partial}{\partial y} (v_{\pm} \frac{\partial U}{\partial y}) + gS_{0} - g \frac{dY}{dx} \qquad (2.2.51)$$

$$\frac{\partial Uk}{\partial x} + \frac{\partial Vk}{\partial y} - \frac{\partial}{\partial y} (\frac{v_{\pm}}{\sigma_{k}} \frac{\partial k}{\partial y}) + G - e \qquad (2.2.52)$$

$$\frac{\partial Ue}{\partial x} + \frac{\partial V}{\partial y} = \frac{\partial}{\partial y} (\frac{v_{\pm}}{\sigma_{e}} \frac{\partial e}{\partial y}) + C_{1} \frac{e}{k} G - C_{2} \frac{e^{2}}{k} \qquad (2.2.53)$$

$$\frac{\partial U\phi}{\partial x} + \frac{\partial V\phi}{\partial y} = \frac{\partial}{\partial y} (\frac{v_{\pm}}{\sigma_{\phi}} \frac{\partial \phi}{\partial y}) + S_{\phi} \qquad (2.2.54)$$

The coordinate system is shown in Fig. 2.2.5 where U, V are the velocity components in the x and y directions respectively.

Y is the flow depth

 S_o is the channel bed slope. $\sigma_k, \sigma_e, \sigma_{\phi}, C_1$ and C_2 are empirical constants e is rate of dissipation of turbulent energy k is kinetic energy of turbulent motion G is turbulent energy production by the mean motion,

$$G = v_t \left[\left(\frac{\partial U}{\partial y}\right)^2 + 2\left(\frac{\partial V}{\partial y}\right)^2 \right]$$

 S_{ϕ} is the volumetric source rate of ϕ .

The governing equations listed in the foregoing are derived with the assumption that the flow is predominantly along the x-direction, and that the turbulent transport⁵ U, k, e and ϕ are negligible in that direction.

For the numerical scheme, the one which was proposed by Patankar and Spalding [37] is adopted. The forms of the above governing equations are such that one single numerical scheme can be used to solve all of them. An implicit form of the finite difference equations of Eq. (2.2.54) are arrived at by integrating the differential equation term by term over small control volumes.

The result shows that, the computed velocity and eddy viscosity distributions do not follow the logarithmic and parabolic distributions for the whole depth of flow. The vertical mixing rates is larger in the case of free surface flow than in ice-covered flows, due to the difference in the eddy viscosity between the two. The final computed energy slope S_0 and the flow depth Y can be used to define the equivalent roughness coefficient through the application of Manning's equation.

2.3 Shape Effects on Channel Resistance

Prediction of discharge through a channel depends directly upon an accurate prediction of the resistance coefficient. One of the major governing factors is the channel geometry. Although the shape effects of the channel cross-section have

received considerable attention from hydraulic engineers for many years, yet their results cannot be generalized. Some of the techniques previously used to deal with this problem are reviewed and their shortcomings are discussed.

In 1967 Marchi [30] presented a paper to show the validity, for the calculation on friction factor in open channels, of formulae analogous to those of circular pipes and also taking into account the influence of cross-sectional shape and the free surface.

By combining the "velocity-defect law" and the "logarithmic velocity law," the velocity distribution along normals to the side wall can be represented by,

$$\frac{U(y)}{\overline{v}_{*}} = \frac{1}{\kappa} \ln \eta_{*} + F(\eta_{*}, \xi_{*}) + \frac{V_{max}}{\overline{v}_{*}}$$
(2.3.1)

in which

 $\overline{V}_{\star} = \sqrt{\overline{\tau}_{0}/\rho}$ the mean shear velocity, $V_{\star} = \sqrt{\overline{\tau}_{0}/\rho}$ the local shear velocity $\xi_{\star} = \frac{V_{\star}}{\overline{V}_{\star}}$ the ratio between local shear velocity and mean shear velocity $n_{\star} = \frac{Y}{Y}$ is the depth ratio from the boundary $F(n_{\star}, \xi_{\star})$ is a function which is equal to zero for $n_{\star} = 1,$ and becomes independent of n_{\star} for small values of n_{\star} $(n_{\star} + \frac{\delta}{Y})$, where δ is the thickness of the laminar sublayer, κ is the Von Karman constant According to Eq. (2.3.1), the wall has a sensible influence on the value of the velocity which represents the beginning of the turbulent distribution, that is on the value of U(y) for $y = \delta$ in the smooth flow, but it has a negligible action on the variation of $(U(y)/\overline{V}_*)$ as the y increases. By using the experimental data observed by Tracy [43] on closed conduits and by Nikuradse [34] and Marchi [29] on open channels, Eq. (2.3.1) becomes, for smooth flow,

$$\frac{U(\mathbf{y})}{\overline{\mathbf{v}}_{\star}} = a \log \frac{\mathbf{y}\overline{\mathbf{v}}_{\star}}{\mathbf{v}} + \mathbf{F}_{\mathbf{S}} (\mathbf{n}_{\star}, \boldsymbol{\xi}_{\star})$$
(2.3.2)

and for fully rough flow (in conduits with a sand roughness $\epsilon)$,

$$\frac{U(y)}{\overline{v}_{\star}} = a \log \frac{y}{\varepsilon} + F_r (n_{\star}, \xi_{\star}) \text{ with } a = 2.30/\kappa$$
(2.3.3)

The integration over the cross-section of the velocity given by Eq. (2.3.2), (2.3.3) together with the Chezy relation, yields the following resistance equations: For smooth channels

$$C = a \log \frac{N_R}{L} + a'_S$$
 (2.3.4)

in which

C is Chezy's coefficient for the channel
$$N_R$$
 is the Reynolds number $\frac{4RV}{v}$ and L is a constant unit length and the a' is an experimental coefficient.

For rough channels,

$$C = a \log \left(\frac{4R}{\varepsilon}\right) + a' \qquad (2.3.5)$$

where

By assuming that the shear velocity distribution is a function of only the section shape, different from open to closed sections, but independent for the regime of turbulent flow, and with ψ a sectional shape coefficient which is introduced into Eq. (2.3.4), (2.3.5), yields: For smooth boundary flow,

$$C = 5.75 \log \left(\frac{\psi N_R}{L}\right)$$
 (2.3.6)

For fully rough boundary flow,

$$C = 5.75 \log \left(\frac{13.3 \ \psi R}{\epsilon}\right)$$
 (2.3.7)

and for the transition region

C = 5.75 log
$$\left(\frac{L}{\psi N_R} + \frac{\epsilon}{13.3\psi R}\right)$$
 (2.3.8)

in which ψ is the shape factor which has to be determined experimentally.

In 1973 Yen and Overton [46] presented their study on the shape effects on the resistance in flood plain channels.

By assuming that secondary flow is non-existent both in laminar and turbulent flow, the equation of motion for a cross-section shown in Fig. 2.3.1 can be written as,

$$\frac{vv}{gb^{2}(-h_{x})} \quad (\frac{\partial^{2}U_{1}}{\partial y_{1}^{2}} + \frac{\partial^{2}U_{1}}{\partial z_{1}^{2}}) = 1 \quad (2.3.9)$$

in which

ì

 $U_1 = \frac{u}{V}$; u is the local velocity at point (y,z), V is

the mean velocity over the cross-section.

$$y_1 = \frac{y}{b}, z_1 = \frac{z}{b}$$
 and $h_x = \frac{\partial h}{\partial x}$, peizometric head gradient
in the flow direction.

In solving Eq. (2.3.9) for velocity distribution, the numerical method of relaxation was used, then, the boundary shear stress is computed from velocity gradient at various points on the boundary. By integrating the velocity over the entire cross-section and the shear stress over the wetted perimeter, the average velocity and average boundary shear stress were obtained. The Darcy-Weisbach resistance coefficient was then evaluated for various flow stages.

For resistance evaluation, the method suggested by Overton [36] was used to produce a resistance coefficient and an associated effective channel boundary for the channel cross-section. The effective channel boundary is an imaginary surface located at a distance of e from the actual

channel boundary.

By assuming that the Manning n-value for the channel is considered to be independent of the channel slope S_0 , then, the following proportionality holds,

$$Q/\sqrt{s_0} \sim AR^{2/3}$$
 (2.3.10)

where

Q is the total flow rate

A is the effective flow area

R is the effective hydraulic radius.

If $Q/\sqrt{S_0}$ is plotted versus the $AR^{2/3}$ term on a linear graph paper, the slope of the line of best fit would be equal to $1.49/n_t$, when using imperial units provided that the line intersects the origin. Since $AR^{2/3}$ is a function of e, the e value was chosen so that the line of best fit would pass through the origin. The objective fitting function such as the linear least squares can be used to solve the problem. The Manning n-value is calculated as,

$$n_{t} = 1.49 \frac{\Sigma \alpha_{1}^{2} - \overline{\alpha}_{1} \Sigma \alpha_{1}}{\Sigma \kappa_{1} \alpha_{1} - \overline{\kappa}_{1} \Sigma \alpha_{1}}$$
(2.3.11)

and the equation for the zero intercept is

$$\overline{K}_{1} - \frac{1.49 \ \overline{\alpha}_{1}}{n_{t}} = 0$$
 (2.3.12)

in which

$$K_1 \text{ is } Q/\sqrt{S_0}$$
 (2.3.13a)
 $\alpha_1 \text{ is } AR^{2/3}$ (2.3.13b)

and the bar signifies the mean of observed values. By eliminating n_{\pm} from Eq. (2.3.11) (2.3.12) yields

$$\overline{K}_{1} \Sigma \alpha_{1}^{2} - \overline{\alpha}_{1} \Sigma K_{1} \alpha_{1} = 0 \qquad (2.3.14)$$

Since α_1 is a function of e, Eq. (2.3.14) can be written as,

Funct (e) = 0
$$(2.3.15)$$

Finally, the Newton-Raphson method is used to solve for e and n_{+} .

In 1979 Hey [19] presented a paper on the influence of shape factor on the resistance to uniform flow in straight gravel-bed rivers and derived a standardized approach for the estimation of flow resistance.

By adopting the Colebrook-White equation in its general terms,

 $\frac{1}{\sqrt{f}} = C_1 \log \left(\frac{a_R}{k}\right)$ (2.3.16) in which

a = $10^{(E\kappa/2.30)}$, $C_1 = 2.30/(\kappa.\sqrt{8})$ E is a coefficient κ is the Von Karman constant

k is the roughness height of the surface

f is the Darcy-Weisbach friction factor.

Various cross-sectional shapeswere evaluated to determine the relation between shape effects and the coefficient 'a' as in Eq. (2.3.16). A unique relation was found between R/Y the radius-depth ratio and 'a', where Y is the perpendicular distance from the perimeter to the point of maximum velocity; usually, it is the maximum flow depth unless flow width/ depth ratio is very small. He transformed a variety of channel cross-sections to their equivalent plane surface Fig. 2.3.2.a,b. Assuming that the flow is two-dimensional and provided the roughness heights, hydraulic radii, and slopes are the same in each case, the smaller the ratio of R/Y, the higher the average velocity. Since proportionately more of their flow area is at a distance greater than R from the solid boundary. As the flow resistance declines with R/Y, it implies that the coefficient 'a' is inversely related to R/Y. In order to evaluate the flow resistance of the channel, it is necessary to standardize the roughness height of the banks to that of bed material. This is achieved by reducing the effective hydraulic length of the bank, if the bed is rougher than the bank and the reverse, to obtain a common velocity gradient in the bed and bank flow areas, Fig. 2.3.2b . The effective hydraulic radius of the section can then be defined for use in the Colebrook-White equation Eq. (2.3.16)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By equating the wall flow areas in Fig. 2.3.2a and Fig. 2.3.2b , the effective wetted perimeter of the left and right banks are

$$P_{L} = \frac{Y_{L}}{\sin \theta_{L}}$$
(2.3.17)

$$P_{R}' = \frac{Y_{R}}{\sin \theta_{R}}$$
(2.3.18)

the effective hydraulic radius will be

$$R' = A/P'$$
 (2.3.19)

where $P' = P_b + P'_L + P'_R$ is the effective wetted perimeter. Thus the flow resistance of the sections can be defined by using the effective hydraulic radius R' in Eq. (2.3.16).

In 1979 Kazemipour and Apelt [22] developed a method for dealing with shape effect from considerations of dimensional analysis and using the experimental data of previous investigators. The method employs parameters more representative of the effect of cross-sectional shape on flow resistance in open channels. The shape factor developed is

$$\psi = \psi_1 / \psi_2 \tag{2.3.20}$$

where ψ_1 is equal to $\sqrt{P/B}$, (P is the wetted perimeter, B is the width of the channel), reflects the effects of non-uniform distribution of shear stress on the boundary as the shape of cross-section departs from an infinitely wide channel and ψ_2 is a function of the width/average depth or

aspect ratio of the cross-section. With this ratio, the value of Ψ_2 can be obtained from the dimensionless plot of Tracy and Lester's and Shih and Grigg's experimental data [22].

The shape factor ψ can then be defined by Eq. (2.3.20). If the flow is in the smooth or transitional turbulent region, the adjusted channel friction factor f_{*} can be obtained from

$$\frac{1}{\sqrt{f_{\star}}} = -2 \log \left(\frac{k_{\rm S}}{14.84R} + \frac{2.51}{N_{\rm R}^{\sqrt{f_{\star}}}}\right)$$
(2.3.21)

where $N_R \sqrt{f_*} = (128R^3 g S_0 / (v^2 \psi)^{1/2})$ (2.3.22)

k_s is Nikuradse's sand roughness size

R is the hydraulic radius

 N_{R} is the Reynolds number

 ν is the kinematic viscosity

g is the acceleration due to gravity.

If the flow is in the fully rough turbulent region, the f_* will be obtained from

$$\frac{1}{\sqrt{f_{+}}} = 2 \log 14.84 \ (R/k_{s}) \tag{2.3.23}$$

The final friction factor f_c for the channel is obtained from

$$f_{c} = \psi f_{\star} \tag{2.3.24}$$

In any specific case, it may be necessary to complete a

preliminary trial calculation in order to determine the smooth or fully turbulent regime.

In 1980 Chee, Haggag and Wong [6] presented a paper on the influence of channel shape on the conveyance capacity of streams.

By using the Reynolds form of the Navier-Stokes equation in two dimensional flow, the Prandtl-Von Karman mixing length theory, they came up with an equation which described the composite roughness of a covered channel

$$\frac{n_1}{n_t} = (\alpha + (1 - \alpha)\lambda)^{-5/3} (\alpha + (1 - \alpha)\frac{n_1}{n_2}\lambda^{5/3})$$
(2.3.25)

where

 n_1 is the channel roughness n_2 is the covered roughness n_t is the composite roughness λ is the hydraulic radius ratio $\frac{R_2}{R}$ α is the wetted perimeter ratio $\frac{P_1}{P}$

From observations in the laboratory for seven different channel shapes, they developed the shape factor ϕ such that,

$$\phi = n/n_{t} \tag{2.3.26}$$

in which n is the measured composite roughness of the channel. From the plot of ϕ versus the Reynolds number N_R , an expression which related the shape factor to the Reynolds

number can be obtained as

$$\phi = \left(\frac{3200}{N_R}\right)^{1.75} + C_1$$
(2.3.27)

in which C_1 is an experimental constant for different channel configurations [6], N_R is the Reynolds number.

2.4 Secondary Flow in Open Channel

Flow in noncircular channels of finite width has received considerably more attention to their motion pattern than channels with other shapes. The complexity of the channel configuration requires an additional dimension for its description. Irregularities in mean velocity distribution can be explained by reference to a system of secondary motions or superposed circulations in the plane of the conduit crosssection. Since these irregularities are not present in laminar motion, irrespective of boundary form, or in turbulent flow within circular pipes, it is usually concluded that the secondary motions are connected to the turbulent fluctuations in non-circular conduits.

Very few laboratory studies of this type of flow have been reported; J. Nikuradse [35], L. Howarth [20], H. A. Einstein and H. Li [14] are those among the earliest investigators. The result of their studies concluded that secondary currents may be expected to occur in open channel turbulent flows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In 1961 Taylor [42] carried out exploratory studies on open channel flow over boundaries of laterally varying roughness. The laboratory work was done in a tilting rectangular flume with plywood for the smooth half of the bottom, and nominal one inch filter gravel for the rough half. Observations were made both for the determination of overall friction factors of different bed types as well as detailed velocity traverses which were necessary to determine the distribution of flow and existence of secondary currents.

The recorded velocity distributions show displacement of equal velocity curves toward corners of the cross-section, and the occurrence of the thread of maximum velocity, in open channel flow, at a point below the free surface. These features are thought to be the result of a pronounced system of secondary circulation. Although Taylor had not derived any mathematical model for solving the enigma of secondary circulation, yet the presentation of his results provided good evidence for the existence of secondary circulation in open channel flow.

In 1965 Tracy [43] presented a paper on "Turbulent Flow in a Three-Dimensional Channel." By examining the flow regions, he assumed that the condition of steady flow removes the dependency of any time averaged quantity on time; the condition of uniform motion causes the mean values of the fluctuating quantities to be independent of the x-direction;

the viscous terms of the equations of motion are insignificant in fully developed turbulence flow. For these conditions, the equations of motion become

$$V\frac{\partial U}{\partial y} + W\frac{\partial U}{\partial z} = -\frac{1}{p}\frac{\partial \overline{P}}{\partial x} - (\frac{\partial \overline{UV}}{\partial y} + \frac{\partial \overline{UW}}{\partial z}) \qquad (2.4.1)$$

$$v\frac{\partial V}{\partial y} + w\frac{\partial V}{\partial z} = -\frac{1}{\rho} \frac{\partial \overline{P}}{\partial y} - (\frac{\partial \overline{v}^2}{\partial y} + \frac{\partial \overline{vw}}{\partial z})$$
(2.4.2)

$$v\frac{\partial W}{\partial y} + W\frac{\partial W}{\partial z} = -\frac{1}{\rho} \frac{\partial \overline{P}}{\partial z} - \left(\frac{\partial \overline{vw}}{\partial y} + \frac{\partial \overline{w}^2}{\partial z}\right)$$
(2.4.3)

and the equation of continuity is

$$\frac{\partial V}{\partial Y} + \frac{\partial W}{\partial z} = 0 \qquad (2.4.4)$$

where x, y, z are the coordinate system referred to Fig. 2.4.1

- U, V, W are mean velocities parallel to x, y, z directions respectively.
- u, v, w are instantaneous values of velocities fluctuations parallel to the x, y, z
 - ρ is the fluid density.

By differentiating Eq. (2.4.2) with respect to z and Eq. (2.4.3) with respect to y, then, subtracting one from the other, and combining it with the continuity equation, Eq. (2.4.4), the equations yield:

$$W\frac{\partial \xi_{R}}{\partial z} + V\frac{\partial \xi_{R}}{\partial y} = \frac{\partial^{2} \overline{vw}}{\partial z^{2}} - \frac{\partial^{2} \overline{vw}}{\partial y^{2}} + \frac{\partial^{2}}{\partial y \partial z} (\overline{v}^{2} - \overline{w}^{2}) \qquad (2.4.5)$$

in which

$$\xi_{\rm R} = \frac{\partial W}{\partial y} - \frac{\partial V}{\partial z}$$
(2.4.6)

The quantity ξ_R is a measure of the rotation of a fluid particle about an axis normal to the y-z plane. The magnitudes of the normal stress terms \overline{v}^2 and \overline{w}^2 of the Eq. (2.4.5) are functions of the Reynolds number of the mean flow, the space coordinates of the point at which they were measured, and the shape boundary roughness of the channel. They are physically significant as additional normal or pressure forces superposed on an elementary particle as a result of the turbulence of the motion. It is therefore, reasonable to speculate that the secondary motions are sustained as a result of an imbalance in these forces.

A sufficient condition for the existence of the motions is the existence of nonzero values of \overline{v}^2 and \overline{w}^2 of Eq. (2.4.5). Since the symmetry condition of uniform flow in circular pipes will prevent the above condition to exist, thus secondary motions are not present in circular sections.

In 1981 Chiu and Hsuing [10] based on their earlier papers [7][8][9] dealing with various aspects of threedimensional mathematical modeling of open channel flow, developed some relations and interactions among the secondary flow, shear stress distribution, and sediment concentration in alluvial channels. The analysis uses the framework of a

curvilinear system consisting of isovels (equal velocity curves) of primary flow (measured or computed local velocities), marked as ξ curves and their orthogonal trajectories marked as η curves(Fig. 2.4.2). The equations for ξ and η can be written as

$$\xi = \left(\frac{x_2}{Y}\right) \left[\left(1 - \frac{|x_3|}{B_i}\right) e^{|x_3|/B_i} \right]^{\beta i}$$
(2.4.7)

$$\eta = \left(\frac{x_2}{Y}\right)^2 + \frac{2B_1^2}{Y^2 \beta_1} \left(\ln \frac{|x_3|}{B_1} - \frac{|x_3|}{B_1}\right) \qquad (2.4.8)$$

in which Y is the water depth at the x_2 axis

B_i; i = 1,2 are the transverse distances on the water surface between the x_2 -axis and either the left or right bank of a cross-section; ξ_0 and β_i = empirical coefficients.

By applying the momentum equation in the x_1 direction in the ξ -n coordinate system directly gives the ξ component of the secondary flow.

$$V_{\xi} = \left(\frac{\rho}{h_{\xi}} \frac{\partial V_{1}}{\partial \xi}\right)^{-1} \left[-\rho \frac{\partial V_{1}}{\partial t} - \rho V_{1} \frac{\partial V_{1}}{\partial x_{1}} - \frac{\partial}{\partial x_{1}} (\rho g H) + \frac{\partial \sigma}{\partial x_{1}} + \frac{1}{h_{\xi}} \frac{\partial \tau_{\xi 1}}{\partial \xi} + \frac{1}{h_{\xi} h_{\eta}} \frac{\partial h_{\eta}}{\partial \xi} \tau_{\xi 1} \right]$$
(2.4.9)

while the continuity equation gives the n component of the flow

$$V_{\eta} = -\frac{1}{h_{\xi}} \int_{\eta}^{\eta} (h_{\xi}h_{\eta} \frac{\partial V_{1}}{\partial x_{1}} + h_{\eta} \frac{\partial V_{\xi}}{\partial \xi} + V_{\xi} \frac{\partial h_{\eta}}{\partial \xi}) d\eta + V_{\eta} \Big|_{\eta=\eta}^{*}$$

49

(2.4.10)

in which h_ξ and h_η are the scale factors on the ξ and η curves ρ is the fluid density

t is the time

- V_1 is x_1 component of flow velocity
 - g is the gravitational acceleration
 - H is the mean elevation of the bottom of a transverse cross-section of open channel
- V_{η}^{*} is the value of V_{η} at a boundary point in which $\eta = \eta^{*}$
- $\tau_{\xi 1}$ is the shear stress in the x_1 direction in the plane perpendicular to the ξ direction
 - σ_1 is the normal stress in the x_1 direction.

To compute secondary currents, Eq. (2.4.9) can be used first at every grid point of the $\xi-\eta$ coordinate network to obtain V_{ξ} , the other component V_{η} can be obtained by integrating Eq. (2.4.10) along each ξ curve starting from a boundary point (point at water surface).

By re-arrangement of Eq. (2.4.9) and applying it to the bed boundary ($\xi_i = \xi_0$), for steady uniform flow in the x_1 direction, the equation for the shear stress in x_1 direction in plane perpendicular to ξ direction can be written as,

$$\pi_{\xi 1} (\xi_{i}, \eta) = \frac{1}{h_{\eta}(\xi_{i}, \eta)} [\rho q s \int_{\xi_{i}}^{\xi_{\gamma}(\eta)} h_{\xi} h_{\eta} d\xi - \rho \int_{\xi_{i}}^{\xi_{\gamma}(\eta)} h_{\eta} v_{\xi} \frac{\partial V_{1}}{\partial \xi} d\xi]$$

$$(2.4.11)$$

in which S_0 is the energy slope. Equation (2.4.11) can be used to compute the shear stress in the flow and along the channel bed, that includes among other things, the effect of secondary flow.

In a study of bank erosion problems, Eq. (2.4.11) should be used to determine the peak values of boundary shear (drag force) that tend to occur on the side walls and on the channel bottom near the side walls. Peak boundary shear along with convection by secondary flow near the side walls should be a major mechanism responsible for bank and bed erosion of alluvial channels.

2.5 Discussion on Literature Review

Determination of the composite roughness of a covered or open channel and the related problem of predicting the shear stress exerted by the flow are of central importance to several aspects of hydraulic engineering. Hence it is not surprising that this problem has received the continued attention of engineers since the early 1930's.

Based on the foregoing discussion, it can conclude that many existing models has involved one or more fundamental shortcomings which are vital in hydraulic analysis of covered

or open channel flows. Some of these shortcomings are listed as follows:

1. The assumption of equal hydraulic radii ($R = R_1 = R_2$) regardless of the boundary roughness.

2. The assumption of an infinitely wide channel $(\mathbb{R}^{\times}Y)$ to a finite channel.

3. The assumption of equal velocities $(V = V_1 = V_2)$, which is invalidated for most finite channels.

4. By assuming uniform distribution of shear stress along the wetted perimeter.

5. By assuming no sidewall and geometric shape effect on the flow region.

6. Most models cannot handle more than two boundary roughnesses.

7. By applying one- or two-dimensional models to threedimensional flow.

8. By assuming no secondary circulations exist in the flow region.

To be more generally applicable, a mathematical model which can deal with the complex reality of three-dimensional flow, has to be developed in order to overcome the forementioned problems.

CHAPTER III

THEORETICAL ANALYSIS

3.1 Introduction

The approach used to evaluate the effects of the multiple roughness of the wetted perimeter, and channel shape on the flow and Stream resistance, is presented here based on the concepts developed in the earlier research by Chee and Haggag (1977)(1976) [17]. The procedure involves the Reynolds form of the Navier-Stokes equation in two-dimensional flow together with the Prandtl-Von Karman mixing length theory to develop the velocity profile equations. Through the use of Manning's equation, the momentum equation and the defined velocity profile equations, the composite roughness equation of the channel is thus derived. The relations are then applied into a numerical model to solve for the final solution.

The model is developed in a manner that it can handle any geometric shape effects and multiple roughness condition of a channel. The cross-section of a stream is divided into segments of corresponding depth and bed configuration, such that a composite result can be obtained by numerically integrating the velocity pattern

over the entire stream cross-section. Also, the friction factors which are expressed in term of Manning's roughness and Chezy's coefficient can be calibrated through this method. The results obtained from this investigation can be extended for use in prototype covered or open-channels.

3.2 Theoretical Assumptions

The following assumptions are used in derivation of the relations:

1. The channel flow cross-section is divided into vertical finite strips, Fig. 3.2.1. For each strip, it is again sub-divided into two small sections, an upper and a lower sub-section. Both subsections exert shear on and are affected by their boundary conditions respectively.

2. The dividing surface between the upper and lower sub-sections is the locus of no shear within the flow and is also the locus of maximum velocity. The boundary between two finite strips is considered as no shear within the flow.

3. The above assumptions also hold when the channel cross-section is sub-divided into horizontal finite strips, with each strip consisting of the left and right sub-sections, corresponding to the boundary conditions on both sides of the channel.

4. In case of open channel flow, the vertical finite strip will consist only of one sub-section, which is the lower sub-section corresponding to the channel bed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¥ ب 5. In the vertical strip approach, each strip is assumed to be a finite section within an infinitely wide channel, where the side walls exert no effect on that particular section. In the horizontal strip approach, each strip is assumed to be a finite section within an infinitely deep channel, where the surface and bed exert no effect on that particular section.

6. The hydraulic equations such as the continuity and Manning's equation can be applied to each finite strip separately.

7. The fluid is homogeneous, incompressible and the flow is steady and uniform.

3.3 Derivation of the Flow Equation

The derivation is based on a covered channel which is divided into two sub-sections. The division boundary line represents the locus of no shear and maximum velocity in relation to a vertical. The Reynolds form of the Navier-Stokes equation in two dimensional flow can be written as:

$$\rho \left(\frac{\partial \overline{U}}{\partial t} + \overline{V} \frac{\partial \overline{U}}{\partial y} + \overline{U} \frac{\partial \overline{U}}{\partial x}\right) = -\frac{\partial \overline{P}}{\partial x} + \frac{\partial}{\partial y} \left(\mu \frac{\partial \overline{U}}{\partial y}\right) + \frac{\partial}{\partial y} \left(-\rho \overline{U'V'}\right) + F_{ix}$$
(3.3.1)

in which U, V are average velocities in x and y directions; U', V' are local velocity variations in the x and y directions;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 ρ , μ are fluid density and viscosity;

 \overline{P} is the average pressure;

F_{iv} is the body force;

and the main flow characteristics and notations are shown in Fig. 3.3.1 and Table (3.3.1).

For the condition of steady flow, the change of the flow velocity with respect to time $\partial \overline{U}/\partial t$ will equal zero while \overline{V} will vanish as it averages a random variation. And, as the flow is uniform with respect to the x-direction, both $\partial \overline{U}/\partial x$ and $\partial \overline{P}/\partial x$ will be zero.

Moreover, from Fig. 3.3.1, the force due to gravity is the only body force which acts on the flow. This force is represented by the weight component in the x-direction. For unit volume of flow,

$$F_{ix} = \gamma \cdot \sin \theta \qquad (3.3.2)$$

As θ is very small in most practical cases, the sin θ value can be substituted by the bed slope S₀ and by replacing γ with ρg , Eq. (3.3.2) becomes

$$\mathbf{F}_{ix} = \rho g \mathbf{S}_{o} \tag{3.3.3}$$

Then, Eq. (3.3.1) can be simplfied as

$$\frac{\partial}{\partial y} \left(\mu \frac{\partial U}{\partial y} - \rho \overline{U'V'} \right) = -\rho g S_{O}$$
(3.3.4)

The first term on the left side of Eq. (3.3.4), $\mu \frac{\partial \overline{U}}{\partial y}$

TABLE 3.3.1

Assigned Notation

Parameter	Flow Cross-section	Channel Sub-section	Cover Sub-Section
Flow Area	A	Al	A ₂
Wetted Perimeter	P	Pl	P2
Hydraulic Radius	R	Rl	R ₂
Flow Depth	Y	Yl	Υ ₂
Relative Depth Ratio	ε	εl	ε ₂
Local Velocity	Ŭ	Ul	υ ₂
Mean Velocity	v	vl	v ₂
Manning's Roughness	n	nl	n ₂
Shear Stress	τ	τ _l	τ2
Shear Velocity	v.	v _{*1}	v*2
Bed Slope	so	so	So

.

.

, .

.

59

represents the laminar shear τ_{L} and the second term $\overline{\rho U'V'}$ represents the turbulent shear τ_{t} . Then Eq. (3.3.4) can also be written as

$$\frac{\partial}{\partial y} (\tau_{\rm L} + \tau_{\rm t}) = -\rho g S_{\rm O} \qquad (3.3.5)$$

3.4 The Shear Stress Distribution

By integrating Eq. (3.3.5) with respect to each subsection, the shear stress and velocity distributions can be obtained.

For the channel sub-section (1), the shear stress is given as

$$\tau_{L1} + \tau_{t1} = -\rho g S_0 Y_1 + C_1$$
 (3.4.1)

where C_1 is an integrating constant.

Since the upper boundary of sub-section (1) is the separation surface between the two sub-sections, which is presumed to be the locus of zero shear and lies at a distance Y_1 from the bed, therefore, when $y_1 = Y_1$, the laminar and turbulent shear will be

$$\tau_{L1} = \tau_{t1} = 0$$
 When $y_1 = y_1$ (3.4.2)

From this boundary condition, C₁ can be obtained as

$$C_{1} = \rho g S_{0} Y_{1}$$
 (3.4.3)

and substituting it back to Eq. (3.4.1), yields

$$\tau_{L1} + \tau_{t1} = \rho g S_{o} (Y_{1} - Y_{1})$$
 (3.4.4)

The existence of a laminar sublayer close to the bed boundary at a very small distance of δ_1 , only the laminar shear exists in this region. Therefore, when $y_1 = 0$, Eq. (3.4.4) yields

$$\tau_{01} = \tau_{L1} = \rho g S_0 Y_1 \tag{3.4.5}$$

where τ_{01} is the total shear on the bed.

Since the laminar shear is very small outside the sublayer, it can be neglected from the total shear, and Eq. (3.4.4) becomes

$$\tau_{tl} = \rho g S_{o} (Y_{l} - Y_{l})$$
(3.4.6)

where τ_{t1} describes the shear distribution between the range $Y_1 > Y_1 > \delta_1$.

Similar shear stress distribution can be obtained for sub-section (2), with the changing of subscript 1 to 2 for the above expression, and they are shown as in Fig. 3.4.1

3.5 The Velocity Distribution

The velocity profiles of a channel can be obtained by employing the Prandtl-Von Karman mixing length theory. For the lower subsection (1) of a covered channel, the equation

is

$$\tau_{t1} = \rho L^2 \left(\frac{dU_1}{dy_1}\right)^2$$
(3.5.1)

where L, according to Von-Karman is defined as

$$L = \kappa y_1 \tag{3.5.2}$$

where κ is the Von-Karman constant.

By substituting Eq. (3.5.2) into Eq. (3.5.1) gives

$${}^{\tau}t_{1} = \rho \kappa^{2} y_{1}^{2} \left(\frac{d u_{1}}{d y_{1}}\right)^{2}$$
(3.5.3)

Combining Eq. (3.5.3) with Eq. (3.4.6) yields

$$\frac{dU_{1}}{dy_{1}} = \frac{1}{\kappa Y_{1}} (gS_{0})^{1/2} (Y_{1} - Y_{1})^{1/2}$$
(3.5.4)

which in terms of the relative depth ratio $\varepsilon_1 = \frac{Y_1}{Y_1}$, becomes

$$\frac{dU_1}{d\varepsilon_1} = \frac{1}{\kappa} (gY_1S_0)^{1/2} \frac{(1-\varepsilon_1)^{1/2}}{\varepsilon_1}$$
(3.5.5)

Since the shear velocity of a wide channel can be expressed as,

$$v_{*1} = (g Y_1 S_0)^{1/2}$$
 (3.5.6)

therefore, Eq. (3.5.5) becomes

$$\frac{\mathrm{d}\mathbf{U}_{1}}{\mathrm{d}\varepsilon_{1}} = \frac{\mathbf{V}_{\star 1}}{\kappa} \frac{(1-\varepsilon_{1})}{\varepsilon_{1}}^{1/2}$$
(3.5.7)

The velocity distribution in terms of ϵ_1 can be obtained by integrating Eq. (3.5.7) with respect to ϵ_1 ,

$$U_{1}(\varepsilon_{1}) = \frac{V_{\star 1}}{\kappa} F_{1}(\varepsilon_{1}) + C_{1}$$
(3.5.8)

where

$$F_{1}(\varepsilon_{1}) = 2(1-\varepsilon_{1})^{1/2} - \ln \frac{1+(1-\varepsilon_{1})^{1/2}}{1-(1-\varepsilon_{1})^{1/2}}$$
(3.5.8a)

is a dimensionless velocity function and is shown in Fig. 3.5.1 .

By equating the mean velocity of the sub-section V_1 to the value computed from Eq. (3.5.8) and putting the relative depth $\varepsilon_1 = 1/3$, which is the location of the mean velocity in the sub-section, the constant C_1 can be obtained as,

$$C_1 = V_1 + 2/3 \frac{V_{\star 1}}{\kappa}$$
 (3.5.9)

Substituting Eq. (3.5.9) into Eq. (3.5.8) yields,

$$\frac{V_1 - U_1(\varepsilon_1)}{V_{\star 1/\kappa}} = -F_1(\varepsilon_1) - 2/3$$
(3.5.10)

which when simplified, gives

$$\frac{\mathbf{v}_{1} - \mathbf{u}_{1}(\varepsilon_{1})}{(2\mathbf{v}_{\star 1}/\kappa)} = \mathbf{F}_{2}(\varepsilon_{1})$$
(3.5.11)

in which $F_2(\epsilon_1)$ is another dimensionless velocity function shown in Fig. 3.5.1 and can be expressed as

$$F_{2}(\varepsilon_{1}) = \ln \frac{(\varepsilon_{1})^{1/2}}{1 - (1 - \varepsilon_{1})^{1/2}} - (1 - \varepsilon_{1})^{1/2} - 1/3 \qquad (3.5.12)$$

By applying another boundary condition, that is, when ε_1 equals unity, where the local velocity becomes equal to the maximum velocity and $F_1(\varepsilon_1)$ equal to zero, Eq. 3.5.8 becomes

$$U_{l}(\varepsilon_{l}) = V_{max} + \frac{V_{\star l}}{\kappa} F_{l}(\varepsilon_{l}) \qquad (3.5.13)$$

Noticing that $F_1(\varepsilon_1)$ is always a negative function and when $\varepsilon_1 = 1/3$, $F_1(\varepsilon_1)$ is equal to -2/3. Putting it back into Eq. (3.5.13) gives

 $U_{1}(\varepsilon_{1}) = V_{max} - 2/3 \frac{V_{*1}}{\kappa} = V_{1}$ (3.5.14) which is the mean velocity of sub-section (1).

Similarly, the velocity equations for the upper subsection of an covered channel can be derived as

$$U_2(\varepsilon_2) = V_{\max} + \frac{V_{\star 2}}{\kappa} F_1(\varepsilon_2) \qquad (3.5.15)$$

or

$$\frac{v_2 - u_2(\varepsilon_2)}{(2v_{*2}/\kappa)} = F_2(\varepsilon_2)$$
(3.5.16)

and the mean velocity of sub-section (2) as

$$U_2(\epsilon_2) = V_{max} - 2/3 \frac{V_{\star 2}}{\kappa} = V_2$$
, for $\epsilon_2 = 1/3$ (3.5.17)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

Therefore, with the above equations, the velocity profile of a covered channel is completely defined.

3.6 Characteristic Equations for Velocity Distribution

The derived velocity equations show that as the boundary roughness coefficients of the two sub-sections are equal, their mean velocities will also be equal, and the maximum velocity will be located at the mid-depth of the cross-section. If the channel consists of different boundary roughness, then the difference between the two sub-section mean velocities can be expressed as

$$V_1 - V_2 = -\frac{2}{3\kappa} (V_{\star 1} - V_{\star 2})$$
 (3.6.1)

in which V_1 , and V_2 can be evaluated by applying Manning's equation to both sub-sections separately.

$$V_{i} = \frac{1.49}{n_{i}} R_{i}^{2/3} S_{0}^{1/2}, i = 1,2$$
 (3.6.2)

and the maximum velocity which can be expressed as

$$v_{\max} = 1/2(v_1 + v_2) + \frac{1}{3\kappa}(v_{\star 1} + v_{\star 2})$$
(3.6.3)

will move away from the rougher boundary.

The velocity distribution also shows that, as the bed slope S_o increases, the curvature of the velocity profile will become more severe. The variations of the velocity profile are shown in Fig. 3.6.1

By using the continuity equation together with the above equations, the channel mean velocity can be written as

$$V = 1/2(V_1 + V_2) - \frac{1}{3\kappa}(V_{\star 1} - V_{\star 2}) (\frac{A_1 - A_2}{A})$$
(3.6.4)

which when combined with Eq. (3.6.3), gives the ratio between V_{max} and V, as,

$$\frac{V_{\text{max}}}{V} = 1 + \frac{2}{3\kappa} \left(\frac{V_{\star 1}}{V} \frac{A_2}{A} + \frac{V_{\star 2}}{V} \frac{A_1}{A} \right)$$
(3.6.5)

Equation (3.6.5) also shows that, the rougher the boundaries, the higher the shear velocities V_{*i} and consequently the larger the V_{max}/V ratio.

3.7 The Hydraulic Radius Ratio Equation

The equation used to evaluate the hydraulic radius ratio can be obtained by substituting Eq. (3.5.6) for subsection (1) and (2) and Eq. (3.6.2) into Eq. (3.6.1) as

$$\frac{R_1^{1/6}}{n_1 \sqrt{g}} = \frac{0.444(\lambda^{1/2} - 1)}{\kappa(1 - n_1/n_2 \lambda^{2/3})}$$
(3.7.1)

in which $\lambda = R_2/R_1$ is the hydraulic radius ratio. By applying the momentum equation to the flow, for

unit length of channel in the flow direction

$$\gamma AS_{o} = \tau_{1} P_{1} + \tau_{2} P_{2}$$
(3.7.2)

and substituting τ_i by $\gamma R_i S_0$, i = 1, 2, for uniform flow, Eq. (3.7.2) becomes

$$R_{1}/R = 1/(\alpha + (1-\alpha)\lambda)$$
 (3.7.3)

where α is the wetted perimeter ratio P₁/P.

The final equation for the hydraulic radius ratio λ can be obtained by combining Eq. (3.7.1) and Eq. (3.7.3) and taking the value of $\kappa = 0.4$,

$$\frac{R^{1/6}}{n_1 \sqrt{g}} = 1.11 \frac{(\lambda)^{1/2} - 1}{1 - (n_1/n_2) \lambda^{2/3}} (\alpha + (1 - \alpha)\lambda)^{1/6}$$
(3.7.4)

The location of the division surface between the two sub-sections can be obtained by solving Eq. (3.7.4) for the λ value.

3.8 The Composite Roughness Equation

By the definition of the hydraulic radius R = A/P, and the cross-section geometry, it gives

$$\frac{A_2}{A_1} = \lambda \frac{1-\alpha}{\alpha}$$
(3.8.1)

Introducing this equation into Eq. (3.6.4) together with Eq. (3.6.2) and Eq. (3.5.6) for both sub-sections, yields

$$\frac{n_{1}}{n_{t}} = 1/2 \left(\frac{1}{\alpha + (1 - \alpha)\lambda}\right)^{2/3} \left(1 + \frac{n_{1}}{n_{2}}\lambda^{2/3}\right) - \frac{n_{1}\sqrt{g}}{R^{1/6}} \frac{1}{4 \cdot 47\kappa} \cdot \frac{\alpha - (1 - \alpha)\lambda}{(\alpha - (1 - \alpha)\lambda)^{5/6}} \left(1 - \sqrt{\lambda}\right)$$
(3.8.2)

The above equation can be simplified by means of Eq. (3.7.4) to obtain,

~

$$\frac{n_{1}}{n_{t}} = (\alpha + (1 - \alpha)\lambda)^{-5/3} (\alpha + (1 - \alpha)\frac{n_{1}}{n_{2}}\lambda^{5/3})$$
(3.8.3)

This is the general composite roughness equation for a covered channel with only two boundary roughness.

In wide channels, the α value becomes 0.5 and Eq. (3.7.4) and Eq. (3.8.3) can be reduced to

$$\frac{R^{1/6}}{n_1 \sqrt{g}} = \frac{\lambda^{1/2} - 1}{1 - (n_1/n_2) \lambda^{2/3}} \cdot (1 + \lambda)^{1/6}$$
(3.8.4)

and

$$\frac{n_1}{n_t} = \frac{1.587(1+(n_1/n_2)\lambda^{-5/3})}{(1+\lambda)^{5/3}}$$
(3.8.5)

3.9 Mathematical Model for General Solution

The difficulties of solving the channel flow problems arise from the fact that most natural channels usually consists of more than two roughnesses along their wetted perimeter. Also, the shear stress is not evenly distributed along the boundary.

The model used to solve these problems is illustrated in the channel shown in Fig. 3.9.1. The cross-section is divided into vertical and horizontal finite strips corresponding to their local flow depths and boundary roughnesses. The relations derived in the previous sections are applied to the strips for their individual velocity profile. The dimensionless velocity profiles $(U_S/V_S)_{xy}$ and $(U_S/V_S)_{xz}$ are then used as coefficients of each other through a coefficient equation. The relative velocity at the intersecting point 'A' can be estimated. The successive evaluation of the local point velocities forms the solution field for the channel cross-section.

The coefficient Equation which describes the velocity distribution within the channel cross-section can be expressed as,

$$U/V = EL [(U_S/V_S)_{XY} \cdot (U_S/V_S)_{XZ}]^{E2}$$
 (3.9.1)

or

$$U/V = E3 [(U_S/V_S)_{XY} \cdot (U_S/V_S)_{XZ}]^{E2} / (V_{max}/V) (3.9.2)$$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in which

- $({}^{U}S^{/V}S)_{XY}$ is the dimensionless local velocity profile in the x-y plane
- $(U_S/V_S)_{xz}$ is the dimensionless local velocity profile in the xz plane
 - $\mathbf{U}_{_{\mathbf{S}}}$ is the point velocity within the strip
 - V_S is the mean velocity for that particular strip
 - U is the final local velocity for the solution
 - V is the mean velocity for the cross-section
 - v_{max} is the maximum velocity of the cross-section
 - E1 is the velocity coefficient which indicates the magnitude of the flow
 - E 2 is the velocity exponent which indicates the velocity gradient steepness
 - E3 is the velocity coefficient, where

 $E3 = E1 \cdot (V_{max}/V)$

The coefficient equation (3.9.2) defines the solution set of any individual cross-section, whereas Eq. (3.9.1)defines the solution for the cross-section with a given flow rate designated by its (V_{max}/V) ratio.

The evaluation of the unknown coefficients El, E2 in Eq. (3.9.1) or (V_{max}/V) , E3, E2 in Eq. (3.9.2) can be done by satisfying the following boundary conditions:

1. Through the continuity equation, the total flow

rate of the cross-section should be equal to the integration of the velocity profile with respect to the elementary areas, that is,

$$\frac{1}{A}\int_{V}^{U} dA = \frac{1}{AV}\int_{V}^{U} dA = \frac{Q}{AV} = 1$$
(3.9.3)

where A is the total flow area, Q is the total flow rate, V is the mean velocity.

2. By means of the momentum equation, the total driving force (gravitational body force) should be equal to the integration of the shear force along the wetted perimeter, under the steady state condition. For unit length along the flow direction (x axis)

$$\gamma AS_{O} = \int_{P} \int_{L} dP \qquad (3.9.4)$$

where $\tau_L = \mu \frac{dU}{dN}$ is the boundary shear stress N is a displacement vector normal to the boundary surface, N=Funct. (y,z)

If θ_1 is the local product of $({}^US/{}^VS)_{xy}$. $({}^US/{}^VS)_{xz}$, Eq. (3.9.1) becomes

$$U/V = E1 \theta \frac{E2}{1}$$
 (3.9.5)

By condition (1)

$$\frac{1}{A} \oint \frac{U}{V} dA = \frac{E1}{A} \oint \theta_1^{E2} dA = 1$$
 (3.9.6)

which can be written as,

$$El = \frac{A}{\int_{\theta_1}^{\theta_1} E^2 dA}$$
(3.9.7)

By condition (2) and Eq. (3.9.5)

$$\frac{dU}{dN} = VELE2\theta_1 (E2-1) \frac{d\theta_1}{dN}$$
(3.9.8)

Therefore, the total shear is

$$\int_{P} \mu \frac{dU}{dN} dP = \int_{P} \mu VELE2\theta_1^{(E2-1)} \frac{d\theta_1}{dN} dP = \gamma AS_0^{(3.9.9)}$$

Using Eq. (3.9.1); (3.9.7) and (3.9.9), the coefficients El, E2 can be defined.

Identical relations can be obtained for the coefficient equation (3.9.2), in order to solve for E2, E3 and (V_{max}/V) ratio. Finally, a complete model for solving the problem is well defined and this concludes the chapter on Theoretical Analysis.

CHAPTER IV

EXPERIMENTAL INVESTIGATION

4.1 Introduction

In trying to understand the flow situations and to estimate the composite roughness of a channel, the question arises as whether the derived mathematical method in Chapter III is applicable to all channels. Thus, experimental investigation is necessary, in order to answer this question.

Experiments were undertaken to examine those aspects such as:

- 1. The calibration of roughness materials,
- the variations of geometric shape and multiple roughnesses in channel flow,
- the verification of theoretically developed velocity profiles,

and to estimate their significance. The results of those experiments form the basis for this study.

4.2 The Test Equipment

4.2.1 Laboratory Facilities

Experimental observations were carried out in a 1.5' (0.457 m) width by 2.0' (0.61 m) depth flume with an

uninterrupted length of 24' (7.315 m) (Ref. Fig. 4.2.1.1). The bottom and one side of the flume were made of plywood while the other side was made of clear plexiglass. The head tank, with a size of 4.25' (1.419 m) by 3.66' (1.18 m) in plan and 4' (1.219 m) in depth was provided at the upstream end of the flume, where an adjustable gate was also located. Gauge screens were installed between the outlet section of the tank and the flume, in order to reduce the air bubbles entrained within the water as well as the surface waves caused by turbulence.

At the downstream exit, a tail gate was installed to control the flow depth. The flume was served by a centrifugal pump capable of delivering up to 3500 USGPM $(0.2267 \text{ m}^3/\text{s})$ in discharge with a 22.0' (6.71 m) head. It has an open loop system used together with a sump. The flow was adjusted by a gate valve installed between the pump and the inlet pipe of the head tank. An electromagnetic flow meter calibrated to 10 USGPM (6.31 x $10^{-4} \text{ m}^3/\text{s})$ was used for discharge measurements.

4.2.2 Measuring Equipments

Point gauges with electric bulb indicators were used to measure water surface elevations at three stations along the flume. They were calibrated to read up to 0.01" (0.025 cm) directly.

Pitot tubes were used for measuring point velocities

at the centre station. The manometer used read directly to 0.1" (0.254 cm).

A miniature current flow meter was also used to measure the point velocities at the cross-sections. The meter, together with two separate probes, could operate in four different ranges, with a maximum reading of 13.12'/s (4 m/sec). The sensitivity of the meter is 0.157"/s (0.4 cm/s).

All these equipments are shown in Fig. 4.2.2.1 to Fig. 4.2.2.2.

4.2.3 Experimental Channels

Seven different channel cross-sections had been used for observations. These channel shapes ranged from rectangular, semi-circular, trapezoidal, triangular, and compound variations of the last three shapes. The rectangular channel was actually the testing flume itself with bottom and one side made of plywood and the other side of plexiglass. The semicircular channel was built with 20 gauge sheet metal, and inscribed in the flume. The trapezoidal and triangular channels were also built inside the flume, with 3/4" (1.905 cm) thick plywood. Several vent holes were drilled on the channel bottom near station (1) and (2), to balance out the static pressure built up under the channel.

There were seven partition blocks on each side beneath the channel bottom, to prevent any leakage flow in

that region. The details and dimensions of these channel cross-sections are shown in Fig. 4.2.3.1 , together with some of these sections in 4.2.3.2 and 4.2.3.3 .

4.2.4 Simulated Covers and Roughness Materials

In the cases of flow with covered channels, the floating covers were made of plywood boards with and without roughness elements attached to the underside. The size of the covers were 17" (43.2 cm) square by 1.5" (3.81 cm) thick. The specific gravity of the cover was 0.8.

Two different kinds of wire mesh, with diamond shape patterns, of sizes 2 1/2" x 1 1/4" (6.35 cm x 3.175 cm) and 1 1/2" x 3/4" (3.81 cm x 1.905 cm) had been used. These wire meshs together with the plywood would impose Multiple roughnesses for different boundary conditions.

All these materials are shown in Fig. 4.2.4.1. The symbols n_{C} , n_{F} and n_{p} are used to designate (2 1/2" x 1 1/4") wire mesh, (1 1/2" x 3/4") wire mesh and plywood respectively.

4.3 Experimental Program

This program consisted of groups of experiments which had been carried out along the investigation in order to meet the objectives of this study. The arrangements and procedures used in different groups are listed in the following sections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Partition Blocks Used to Prevent Leakage Flow Under the Ghannel Bottom. The Profile Vent Holes Used to Balance the Static Pressure Under the Channel Bottom

Fig. 4.2.3.3 Model Channel Features.

4.3.1 Calibration of Roughness Materials

Six different arrangements had been used for this calibration procedure. The rectangular channel was chosen as the standard shape for comparison. Only the bottom was lined with an unique wire mesh at a time. The energy slope, the total flow rate and the water surface elevations at station (1) and (2) were recorded in order to evaluate Manning's roughness coefficient. Two different approaches were used to measure the flow rate Q. The first one was using the flow rate recorded by the flow meter, which was the total flow rate through the flume. The second method is by means of a recorded velocity profile. The profile along the vertical centre line of the cross-section had been measured and was used to evaluate the discharge. These two sets of values were then compared.

4.3.2 Evaluation of Channel Composite Roughness

The experimental procedures were almost the same as described in the previous section. Instead of just using the rectangular flume, all seven channel cross-sections had been studied. The boundary roughness elements were also rotated for different settings. In this way, the significance of the geometric shape and multiple boundary roughness can be estimated.

4.3.3 Study of the Velocity Profile

Detailed velocity traverses through the flow depth and across the width of the channel were recorded by using pitot tube and miniature flow meter. The station which had chosen for taking measurements were located well beyond an initial length of 40 times the cover thickness to ensure the establishment of uniform flow away from the leading edge.

The coordinate system used in recording data was indicated in Fig. 4.3.3.1 . Elevations were measured as a ratio to the maximum flow depth. The spacing of the traverse stations were small near the sidewall of the channel.

All seven different configurations with rotating multiple roughness had been studied and sixty seven velocity traverses were recorded.

4.4 Experimental Results

A summary of the results obtained in the experimental investigation is given in Appendix C.

4.5 Experimental Errors

The sources of the experimental errors along with their expected values are discussed in Chapter V.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER V

DISCUSSION OF THEORETICAL AND EXPERIMENTAL RESULTS

5.1 Introduction

In this chapter the utilization of the analytical relations and the mathematical model developed in Chapter III are discussed. First, the behavior of various analytical relations to their independent variables, then the applicability of these relations to different model channels and comparisons with the experimental results. Finally, the application of the numerical model together with the above relations in solving composite channel problems, and verification of this procedure through the experimental results.

5.2 The Division Surface Equation

The analytical model mentioned in Chapter III involved the solving of the Division Surface Equation, Eq. (3.7.4), in order to locate the position of the division surface, which separates the two flow sub-sections in relation to the cross-section of the channel. Since the dependent variable λ can not be separated from the other parameters, no direct solution can be found.

In order to evaluate the values of λ , one method is to

90

develop a kind of alignment chart which consists of a practical range of precalculated λ values.

By referring back to Eq. (3.7.4), successive numerical values of n_1 , n_2 , α and λ are used within a numerical subroutine in order to generate the corresponding values of Φ , where $\Phi = R^{1/6} / (n_1 g^{1/2})$ denotes a separate functional group of the equation.

During the computation process, the values of Φ was found to be very insensitive to the changes of α , thus the range of α values from 0.55 to 0.65 can be considered as a parameter with one unique value.

The Alignment Chart, Fig. 5.2.1, is developed with a logarithmic base. It consists of a total of nine axes. The first axis from the left contains all pre-calibrated Φ values. The rest of the eight axes carry the values of λ corresponding to eight different n_1/n_2 ratios.

To distinguish the positions of the λ values on different axes, a reference point is placed on the far right side of the figure.

With a single set of λ and $\overline{\Phi}$ data generated by an unique value of n_1/n_2 ratio, we can calibrate a single λ axis, by aligning the reference point with the corresponding values on the pre-calibrated $\overline{\Phi}$ axis.

The use of this Alignment Chart to find λ values of certain given n_1/n_2 , α and Φ value is demonstrated in Appendix Al.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 The Composite Roughness Equation

The general equation for the estimation of the composite Manning's roughness factor n_t for a covered channel with any cross-sectional shape is referred to by Eq. (3.8.3).

Although the equation can be solved directly to get the value of n_t, yet it will involve a lot of mathematical operations. It is much more handy to develop another alignment chart to solve the equation graphically.

The development of the alignment chart is much similar to that described in the previous section. But this time, the composite roughness n_t is quite sensitive to the change in α values. Thus the chart has to be developed to take this effect into account.

In order to include the complete range of n_1/n_2 ratio, two separate charts, Fig. 5.3.1 and Fig. 5.3.2, have been developed with one ranging from 0.2 to 0.6 and the other one from 1.5 to 4.0.

The first axis to the left contains all precalibrated λ values. The rest of the four axes carry the values of n_1/n_t corresponding to different n_1/n_2 ratios. For each axis, the left side of the axis is calibrated with α values equal to 0.55 and on the right equal to 0.65. For the rest of the n_1/n_t values within this α range, they can be obtained by interpolating between the 0.55 to 0.65 values.

The use of these Alignment Charts to find n_1/n_t values

93

of certain given n_1/n_2 , α and λ value is demonstrated in Appendix Al.

5.4 Calibration of Roughness Elements

The experimental procedures and settings for these calibration tests had already been mentioned in Chapter IV, Section 4.3.1. The recorded data were then used to evaluate the corresponding hydraulic parameters as well as the roughness coefficients expressed in terms of Manning's n and Chezy's C. The procedures used to carry out the evaluation is listed in Fig. 5.4.1. All the results are presented in Appendix Cl, Table (C.1.1) to (C.1.6). The calculated Manning coefficients for different roughness elements were then plotted against their Reynolds' numbers, and the graphs are shown in Fig. 5.4.2 and Fig. 5.4.3. It can be seen that all these roughness curves range from the laminar flow region, then passing by a transitional zone, into the turbulent region. The slopes of the curves dn/dN_R are very steep in the laminar region which indicates the persistence of laminar shear under low flow velocity, while the values of dn/dN_{R} approaching zero when they reach the turbulent region. Usually, most of the practical designs and laboratory studies are based on this region, since the roughness Coefficient becomes a constant with respect to the flow velocity.

The curves also show that the fine wire mesh has

99

i

a higher Manning's value, than the coarse one. It can be explained that, since both of them have almost the same roughness height (manufactured by steel sheet of the same thickness), but the fine one carries a denser pattern within an unit area of wire mesh, so more energy will be lost when flow passed over it. Thus, it shows a higher roughness coefficient, than the coarse one. The figures (5.4.2, 5.4.3) also show that, the centre velocity profile approach will give a lower roughness coefficient due to reduced side wall effect in calibration (Ref. Fig. 5.4.4) and this method is more advantageous in standardizing material roughnesses for design purposes.

5.5 Effects of Geometric Shape and Boundary Roughness

There were twenty two tests carried out according to the procedures mentioned in Chapter IV, Section 4.3.2, in order to verify the effects of geometric shape and multiple boundary roughness.

The testing started with experiments on different geometric shapes with equal lining material and under free surface conditions. The data were analyzed according to the procedures listed in Fig. 5.4.1 in order to obtain the roughness coefficients. The results were then plotted against the corresponding Reynolds' numbers as in Fig. 5.5.1. It shows that for different shape of channels

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with similar lining material, different roughness coefficients will be expected. The most efficient geometric shape found is the semi-circular section. The reason can be related to the secondary motions mentioned in Chapter II, Section 2.4. The symmetric condition of uniform flow in semi-circular section greatly reduces the existence of secondary motions within the flow. Thus less energy loss will be encountered.

The second part of the testing involved experiments on channels with different geometric shapes, lining materials and buoyant covers. The results were graphed and shown in Fig. 5.5.2a,b to Fig. 5.5.5a,b.

For different combinations of channel shapes and lining materials, different roughness curves can be obtained. Thus, it concludes that mathematical models which involve precise definitions of geometric shapes and boundary roughnesses is needed to solve the complexity of channel hydraulics.

5.6 <u>Comparison Between Experimental and Theoretical</u> Composite Roughness

In verifying the utilization of the Division Surface Equation (3.7.4) and Composite Roughness Equation (3.8.3), fourteen experiments had been carried out on channels with different shapes and buoyant covers.

The experiments were separated into two groups, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first one involved channels with plywood blocks for the cover, and the second group with 2 1/2" x 1 1/4" coarse wire mesh. The experimental procedures were described as in Chapter IV, Section 4.3.2. The recorded data were then analyzed according to the procedures as shown in Fig. 5.6.1. The results were shown in Fig. 5.6.2 to 5.6.15 and in Table(C.2.1) to (C.2.14).

Both cases show that, although there were variations in experimental composite roughness coefficients for different boundary conditions, the theoretical curves generated by Eq. (3.8.3) were more or less the same. This behaviour implies that Eq. (3.8.3) is not so sensitive in response to shape effects as is to be expected. The same argument can also be found as in Chapter II, Section 2.3 and in this chapter, Section 5.2.

In Section 2.3, the introduction of a shape factor ϕ in Eq. (2.3.26) to form the correlation between the experimental and theoretical predicted n_t implied that Eq. (3.8.3) cannot be used to evaluate the composite n_t directly with regards to channel configurations. And in Section 5.2, the insensitivity of λ to the changes of α values also indicated that, the α parameter failed to represent the shape effects within the relation.

It is suspected that the wide channel assumption $R \approx Y$ used in deriving the relations caused this vital

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

disadvantage of utilizing Eq. (3.7.4) and Eq. (3.8.3).

In the following section, the introduction of the finite strip method into the analytical model in order to eliminate the above disadvantage is examined.

5.7 <u>Comparison of Velocity Profiles Using Finite</u> Strip Approach

To study the effect of channel shapes and boundary roughnesses on the flow pattern, sixty seven experiments were tested. All seven channel configurations together with three different kinds of roughness elements combined to form different settings for analysis. The experimental procedures were described as in Chapter IV, Section 4.3.3. The recorded velocity traverses were analyzed according to the procedures as shown in Fig. 5.7.1. The theoretical and experimental velocity traverses are listed in Appendix C.4, Table (E-13) to Table (E-93). There are several important aspects which had been deduced from the data analysis, and they are going to be discussed in the following sections.

5.7.1 <u>Percentage Difference Between Experimental</u> and Predicted Local Velocities

The percentage difference between measured and predicted point velocities ranged from less than 1% minimum, and up to 11% maximum.

128

The estimated percentage error in measuring local velocities which is discussed in this chapter, section 5.8 has been found to be ±5%. It seems that both ranges are compatible to each other.

Since, the mean velocity was obtained by integrating the local velocity traverse with respect to the finite areas, it's level of error should fall into the same range as in the above case. Thus, the estimated percentage error in mean velocity of $\approx \pm 6$ % described in Section 5.8 is acceptable.

5.7.2 Behavior of Coefficient Equations

The two coefficient equations discussed in Chapter III, Section 3.9, Eq. (3.9.1) and Eq. (3.9.2) had been tested against the experimental data.

The coefficients El and E3 had been recorded graphically as in Fig. 5.7.2.1 to Fig. 5.7.2.2 and E2 in Table C.5.1. For all seven configurations with different boundary conditions, the values of El shown in Fig.

5.7.2.1 has more or less a constant value of ≈ 0.975 , when they were separated from the (V_{max}/V) ratios, the values of E3 can be obtained. Fig. 5.7.2.2 shows that E3 has slightly more scatter than El with a mean value of \approx 1.135. The values of E2 are shown in Table C.5.1. The variations between the data ranged from 0.164 up to 2.600.

130

Ŋ

)

1.4

)

)

Since El is obtained by the correlation between dimensionless velocity traverses, a constant value is most likely to be expected. The scattering in values of E2 implies that for different boundary conditions and discharges, different velocity gradient steepness will exist.

The values of E2 was then plotted against El as in Fig. 5.7.2.3 and V/V_{maxT} ratio as in Fig. 5.7.2.4. Both Cases show good relations between these coefficients. In Fig. 5.7.2.3, a second degree function between El and E2 and in Fig. 5.7.2.4 a linear function between V/V_{maxT} and E2 are expected.

The constancies of El and E3 together with the relations shown in Fig. 5.7.2.3 and Fig. 5.7.2.4 enable them to be selected as the initial conditions for solving design problems when an iterative method is used, whereas, the value of E2 has to be evaluated successively.

5.7.3 <u>Statistical Analysis Between Theoretical</u> and Experimental Results

A statistical program has been carried out to estimate the correlation between the theoretical and measured velocity traverses. The most commonly used "Least Square Regression" model has been adopted, and the results through all sixty seven velocity traverses are presented in Appendix C.3, Table (C.3.1).

The "Least Square Regression" model is designed to

)

)

minimize the sum of the squares of the deviations of the actual data points from the straight line of best fit. The correlation coefficient "r", which measures how well the line fitted to the data, ranged from 0.811 up to 0.999, with value of 1.0 in the ideal case. The slope "m" of the regression line ranged from 0.946 up to 1.052, with 1.0 as the ideal value. The standard deviations of the predicted local velocities were found to be 0.0075 m/s minimum and 0.1238 m/s maximum, and of the measured one with 0.0084 m/s as the minimum and 0.1342 m/s maximum.

In most cases, the higher the standard deviations are the lower the correlation coefficients become.

5.8 Experimental Errors

5.8.1 Sources of Errors

The sources of experimental errors during the laboratory testings can be classified as follows:

- 1. Flow depth and distance measurements:
 - (a) Variations of channel bed ±0.100" (0.254 cm).
 - (b) Reference datum recording (still water level) ±0,005" (0.0127 cm).
 - (c) Point gauge reading ±0.005" (0.0127 cm).
 - (d) Water surface fluctuation in still water wells upstream ±0.1" (0.254 cm); downstream ±0.05" (0.127 cm).

- (e) Distance measurement between station (1)
 and station (2) ±0.05" (0.127 cm).
- 2. Local velocity measurements:
 - (a) For the pitot tube, a common instrument precision error of ±1% was assumed.
 - (b) Manometer reading ±0.10" (0.254 cm) including fluctuation.
 - (c) For the miniature current meter, a common instrument precision of ±1% was assumed.
 - (d) Averaging of dial reading ±1 Hz.
 - (e) Velocity conversion chart accuracy ±3%.
 - (f) Vertical displacement in traverse ±0.005"
 (0.0127 cm).
 - (g) Horizontal displacement in traverse ±0.10" (0.254 cm).
- 3. Total flow measurement:
 - (a) Electro-magnetic flow recorder ± 5 USGPM (3.15 x 10⁻⁴ m³/s.)

5.8.2 General Equation for Errors Estimation

The general equation of the theory of errors can be written as

$$(\delta Q)^2 = (\partial F / \partial x_1)^2 (\delta x_1)^2 + (\partial Q / \partial x_2)^2 (\delta x_2)^2 + \dots$$
(5.8.2.1)

in which $Q = F(X_1, X_2, X_3...)$ is a defined function.

Q is the dependent variable

 x_1, x_2, \ldots are the independent variables

 δQ is the estimated error in Q

 $\delta x_1, \delta x_2, \ldots$ are the specific errors in x_1, x_2, \ldots

that were made during their measurements.

Eq. (5.8.2.1) can be applied to each tests in order to estimate its expected experimental error.

5.8.3 Estimation of Experimental Errors

For the local velocity, the error was estimated
 at ±5% maximum

2. For the average velocity, since V = Q/A (5.8.3.1)

and applying Eq. (5.8.2.1),

$$\delta V = [(\delta Q)^{2} + (\delta A)^{2}]^{1/2}$$
 (5.8.3.2)

where

 $\delta Q = 5\%$ max., $\delta A = 3.4\%$ maximum Therefore, $\delta V \approx \pm 6.1\%$ maximum

3. For Manning's Coefficient, since

$$n = \frac{1}{V} R^{2/3} S_0^{1/2}$$
(5.8.3.3)

applying Eq. (5.8.2.1.)

$$\delta n = [(\delta V)^{2} + \frac{4}{9} (\delta R)^{2} + \frac{1}{4} (\delta S_{0})^{2}]^{1/2} \quad (5.8.3.4)$$

in which $\delta V \approx \pm 6.1$ % maximum

$$\delta R = [(\delta A)^2 + (\delta P)^2]^{1/2} \qquad (5.8.3.5)$$

= $[(3.4)^2 + (2.6)^2]^{1/2} = 4.3$ % maximum $\delta S_0 = 4.9$ % maximum

Therefore
$$\delta n = [(6.1)^2 + \frac{4}{9}(4.3)^2 + \frac{1}{4}(4.9)^2]^{1/2}$$

= 7.2% maximum

The above calculations for various experimental errors are only based on the sensitivity of measuring equipments. Therefore, the figures provide conservative estimates.

5.9 Remarks on Discussion of Results

Generally, the theoretical model which had been presented in Chapter III was tested and good agreement was obtained between theoretical and experimental results. However, field measurements are essential in order to prove its general applicability. Since, there was no suitable field data available during this research to serve the purpose, an extensive field study should be carried out to fulfill the need.

CHAPTER VI

CONCLUSIONS AND RESEARCH SUGGESTIONS

6.1 Conclusions

The general goal of the study was an improved understanding of the characteristics of multiple roughness channels and their related flow patterns. The analytical and numerical models developed here satisfactorily predicted the behavior of flow velocities under laboratory conditions. On the basis of the analytical and experimental results the following conclusions may be summarized:

1. The Composite Roughness Equation (3.8.3) mentioned in Chapter III, Section 3.8 has been found to be inadequate in applying to finite channels of different configurations.

2. The experimental investigation proves that the different channel configurations and boundary conditions offer varying resistances to the flow. The use of shape factors by previous investigators to describe the influence are insufficient for wide general applications.

3. The numerical model mentioned in Chapter III, Section 3.9 has proved to be satisfactory under laboratory conditions. Velocity profiles estimate by this model averaged about ±5% error.

140

4. The velocity profile equation 3.5.15 derived in Chapter III, Section 3.5 can be exmployed by the above numerical model to yield satisfactory results.

5. Precise estimation of composite roughness coefficient for multiple roughness channels can be possible by applying the above model.

6. The Finite Strip Approach for the calibration of roughness elements has been quite successful in defining their friction coefficients.

6.2 Research Suggestions

The results of the present study could probably be extended to further investigations. Some of these suggestions are summarized as follows:

1. The subdivision of a turbulent flow into hydrodynamically independent zones is not in general possible, because the turbulence generated at the bed is definitely diffused throughout the channel. Therefore, more precise experimental investigations are needed and the measurements should be extended to include determinations of turbulence and secondary circulations in three dimensional flows.

2. The laterally varying roughness found in nature is interrelated with the transport of sediment. Investigations are needed to study their complexity.

3. Further investigations on the definition of

friction factor are necessary. Common lining materials should be tested to verify the Finite Strip calibration procedures.

4. Extensive field programs are suggested to verify the model's applicability together with the effects of scale.

APPENDICES

•

APPENDIX A

Numerical Example

.

•

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

•

144-1

144-2

Al. Numerical Example in Demonstrating the Use of Monographs in Finding λ and n_1/n_t Ratio

In this section a numerical example is illustrated to explain the use of the developed charts in finding the values of λ and n_1/n_+ .

- Given: A trapezoidal channel with the following characters are known,
 - : cover underside Manning's roughness is equal to 0.02616,
 - : the channel sides and bed roughness is equal to 0.01,
 - : dimension of the channel;

Fig. A.l.l Channel Cross-Section

Solution:

Wetted perimeter of channel bed and sides $P_1 = 0.8' + 0.66' + 0.8' = 2.26' (0.6889 m)$ Wetted perimeter of channel cover $P_2 = 1.5' (0.4572 m)$ Total wetted perimeter $P = P_1 + P_2 = 2.26' + 1.5' = 3.76' (1.1460 m)$ Wetted perimeter ratio $\alpha = P_1/P = 2.25/3.76 = 0.601064$

The roughness ratio

$$n_1/n_2 = 0.01/0.02616 = 0.382263$$

The total flow area of the channel
 $A = 0.735353$ ft.² (0.06832 m²)
The hydraulic radius of the channel
 $R = A/P = 0.735353/3.76' = 0.195572'$ (0.05961 m)
The value of \oint function
 $\oint = \frac{R^{1/6}}{n_1 g^{1/2}} = \frac{(0.195572)^{1/6}}{0.01(32.2)^{1/2}} = 13.426305$

In order to obtain the value of λ we use Fig. 5.2.1. By $\Phi = 13.43$, $n_1/n_2 = 0.382263$, we read from the chart.

 $(n_1/n_2 = 0.3)$ axis will give $\lambda = 5.03$ $(n_1/n_2 = 0.4)$ axis will give $\lambda = 3.49$

Therefore for $n_1/n_2 = 0.382263$ implies

$$\lambda = 3.49 + \frac{(0.4 - 0.382263)}{(0.4 - 0.3)} (5.03 - 3.49)$$

= 3.763150

And to obtain the value of n_1/n_t , we use Fig. 5.3.1. By $\lambda = 3.76$, $\alpha = 0.601064$, $n_1/n_2 = 0.382263$ From $(n_1/n_2 = 0.3)$ axis, when

$$\alpha = 0.55 + n_1/n_t = 0.463$$

$$\alpha = 0.65 + n_1/n_t = 0.519$$

Therefore for $\alpha = 0.601064$

$$n_1/n_t = 0.519 - \frac{(0.65 - 0.601064)}{(0.65 - 0.85)} (0.519 - 0.463)$$

= 0.491596

From $(n_1/n_2 = 0.4)$ axis, when

$$\alpha = 0.55 \rightarrow n_1/n_2 = 0.5696$$

 $\alpha = 0.65 \rightarrow n_1/n_+ = 0.6235$

Therefore for $\alpha = 0.601064$

$$n_1/n_t = 0.6235 - \frac{(0.65 - 0.601064)}{(0.65 - 0.55)}$$
 (0.6235 - 0.5696)
= 0.597124.

In order to get the final n_1/n_t value for $n_1/n_2 = 0.382263$ we have to take one more interpolation along the n_1/n_2 value.

Therefore for $n_1/n_2 = 0.382263$ $n_1/n_t = 0.597124 - \frac{(0.4 - 0.382263)}{(0.4 - 0.3)} (0.597124 - 0.491596)$

= $0.578406 \rightarrow n_{+} = 0.01/0.578406 = 0.01729$

The percentage in error, using the exact λ and n_1/n_t values as the base.

By the Eq. (3.7.4) and (3.8.3), the exact value of λ and n_1/n_t are

λ = 3.695937, $n_1/n_t = 0.576947$. . % different in λ value

$$\frac{3.763150 - 3.695937}{3.675937} \times 100\% \approx 1.82\%$$

And % different in n₁/n_t value

$$\frac{0.578406 - 0.576947}{0.576947} \times 100\% \approx 0.25\%$$

Notes: The magnitude of the error in percentage depends on two major factors: (1) The accuracy in reading the charts, and (2) the round-off figures during the calculations.

APPENDIX B

List of Computer Programs

•

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-

.

,

WATFIV XXXXXXX ANDREW ANDREW ANDREW WATFIV XXXXXXXX ANDREW ANDREW ANDREW DIMENSION UH(7,7).HD(7,1).HD(1(7,1).HD 2000 UV(7,7).HD(1,7).HD(1,7).VVM2(1,7).VV 2000 UV(7,7).VV1(1,7).VVM2(1,7).VV1(1,7).VV2(1,7).VV1(1,7).UE(7,7).VV1(1,7).UE(7,7).VV1(1,7).UE(7,7	0), INTP,MUH(7,7),MUV 2(7,1),HW(1,7),HRW(7 ,HVMAX(7,1),HVM1(7,1	1.7),VYZ(1.7), VVM(1.7),VVMAX(1.7) UF(7.7),PCEF(7.7),PC				0.0)) GO TU 1
WATFIV XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX ANDREW ANDREW W.LEV(7,1),X(100),Y(10 .HD(7,1),HDL1(7,1),HDL .1),HVS2(7,1),HVM(7,1)),HY2(7,1),NUM(7),CSUM	•VD(1,7)•VRD(7,7)•VY1(7)•VVM1(1,7)•VVM2(1,7) B(7,7)•C(7,7)•UE(7,7)•		.V.VMA) .V.VMA.S.YMAX)	₩.₩UF.₩M.MM.MUV.C.MM) 1.7).I=1.7) .3048	0.0).0R.(C(I.J) .LE. ()//)
	WATFIV XXXXXXXXX REAL N1.N2.N12.LIN DIMENSION UH(7.7). *.HRMW(7.7).HVS1(7. *HVM2(7.1).HV1(7.1)	DIMENSION UV(7,7), *VVSI(1,7),VVS2(1,7 DIMENSION A(7,7),E READ ,IE_	KEAD.V.VMA V=V*0.3048 VMA=VMA*0.3048 PRINT 160 PRINT 310.LL.IE PRINT 51 PRINT 51 PRINT 51	CALL HDRU (UH,WUH, PRINT 51 PRINT 51 PRINT 51 PRINT 51 CALL VERU (UV,MUV, PRINT 160 MM=7	CALL MATMUL (MM.MW. READ, ((UE(I,J),J=1 DU 13 I=1,7 DU 13 J=1,7 UE(I,J)=UE(I,J)*0. KK=1	DU I I=1,7 DU I J=1,7 IF ((UE(1,J),LE, Y(KK)=ALOGIO(UE(I, X(KK)=ALOGIO(C(I,U KK=KK+1 CONTINUE DUTINUE

B.1 Program for Estimating Local Velocity Profile

In this appendix, the computer program which had been employed in

2X, PERCENTAGE DIFFERENT IN LOCAL VELOCITIES USING ES .2X, CORRELATION BETWEEN ESTIMATED AND EXPORIMENTAL 21 0.0).UR.(UE(I,J).LE.0.0)) GU TU MINMAX (X.Y.NN.XMAX.XMIN.YMAX,YMIN) (PCEF(I,J),J=1,7) PRINT 20, I, (PCEE(I, J), J=1,7) COEFF(X,Y.NN,SLOP,INTP) 25.I.(UF(I.J),J=1.7) MEAN(UE, VMEAN2, 7 MEAN (UF, VMEAN1, 7 140, YMAX, V, S 210.XMAX 220.XMIN 250.VMEANI 270.KF 230.YMAX 240.YMIN 200, VMEAN2 IF((UF(1..)) X(KK)=UF(1..)) X(KK)=UF(1..)) KK=KK+1 CUNTINUE PHINT 171 PRINT 171 PRINT 100 NN=KK+1 CALL MINMAX (X. CALL MEAN(UF, VM CALL MEAN(UF, VM CALL MEAN(UF, VM RF=XMAX/VMEAN1 RE=YMAX/VMEAN1 RF=XMAX/VMEAN1 RF=XMAX/VMEAN1 RF=XMAX/VMEAN1 RF=XMAX/VMEAN1 RF=XMAX/VMEAN1 RF=XMAX/VMEAN1 RF=XMAX/VMEAN1 RF=XMAX/VMEAN1 RF=XMAX/VMEAN1 RF=YMAX/VMEAN1 RF=YMAX/VMEAN1 20.1. 280 . RI I=1,7 J=1,7 FURMAT(/// 1 = 1 . . 00 6 0 6 0 15 90 90 90 1 11 11] **=**] FURMAT PRINT CU 12 PRINT PRINT PRINT PRINT PRINT PRINT DRINT 22 PRINT PRINT LUCAL PR INT PR INT PHINI 00 8 KK=1 D0 2 na 10. 90 12 21 ΰ ~ 115 01110 77

.

153

HVM1([,1)=1.00*(HY1([,1))*#0.666667)*SQRT(S)/N1 HVM2([,1)=1.00*(HY2([,1))*#0.6666667)*SQRT(S)/N2 HVM([,1)=0.5*(HVM1([,1))+HVM2([,1))-(1/(3.*VK))*(*HVS1([,1)-HVS2([,1)))*((HY1([,1))-HY2([,1)))/HD([,1)) HVMAX([,1))=0.5*(HVM1([,1))+HVM2([,1)))+(1/(3.*VK)))*(*HVS1([,1))+HVS2([,1))	<pre>IF((HRW(I.J).LE.HDL2(I.1)).UR.(HRW(I.J).GE.HDL1(I,1))) GU TU 7 HRMW(I.J)=HRW(I.J).GE.HY2(I.1) IF (HRMW(I.J).GE.HY2(I.1)) GO TO I3 EPS=HRMW(I.J)/(HY2(I.1)) EPS=2*SORT(1-EPS)-ALCG((I+SURT(1-EPS))/(1-SURT(1-EPS))) UH(I.J)=UH(I.J)/HVM(I.1))*FNEPS/VK MUH(I.J)=UH(I.J)/HVM(I.1)</pre>	<pre>13 HRRW=HD(I.1)-HFRW(I.J) 13 HRRW=HD(I.1)-HFRW(I.J) EPS=HRRMW/HYI(I.1) FNEPS=2*SORT(1-EPS)-ALGG((1+SURT(1-EPS))/(1-SORT(1-EPS))) UH(I.J)=HVMAX(I.1)+HVSI(I.1)*FNEPS/VK MUH(I.J)=LUH(I.J)/HVM(I.1) AUH(I.J)=UH(I.J)/HVM(I.1)</pre>	7 UH(1.J)=0.0 HRMW(1.J)=0.0 MCH(1.J)=0.0 MCH(1.J)=0.0 MCH(1.J)=0.0	PRINT 102 DG 14 1=1.7 PRINT 1C 1.1.1.HDL2(1.1).HY2(1.1).HY1(1.1).HDL1(1.1).HD(1.1) 14 CGNTINUE 101 F UFMAT(1X.12.2X.5(F8.5.1X)) 102 F ORWAT(1X.12.2X.5(F8.5.1X)) 102 F ORWAT(///.2X.11.4X.HDL2'. 6X.HY2'. 6X.HY1'. 5X.	<pre>* HULL1., 6X.HU'./) PRINT 103 UO 15 I=1.7 PRINT 104.[.HVS2([.1]).HVM2([.1]).HVM1([.]).HVM1(</pre>
179 181 181 182	4887887 4907 80787 80787 80787	192 192 192 192 192 192 192 192 192 192	201 201 201 202 202	2022202 2005 2005 2005 2005	209 210 211 212 213 213

١

Ì

FUHMAT(5X,4(E12.5.1X)) FUHMAT(///.2X,'J'.6X,'NI'. 7X,'N2'. 6X,'N12'. 6X, C'ALP'. 6X,'DLIM'. 5X,'TCL'. 7X,'UL'. 5X,'APHI'. C 6X,'LIM'./) C 6X,'LIM'./) ETURN ERTURN ERTURN ERTURN SUBROUTINE FUR SEARCHING LAMDA VALUE	SUBROUTINE LIMGA (N1.N2.ALP.APHI.LIM.K) REAL N1.N2.N12.LIM TOLEN=0.01 DLIM=0.01 DLIM=0.01 DLIM=0.00025 N12=N1/N2 F ((N12.6E.0.4).AND.(N12.LT.6.3)) UL=9.7 F ((N12.6E.0.4).AND.(N12.LT.6.6)) UL=5.75 F ((N12.6E.0.6).AND.(N12.LT.1.0)) UL=2.1 F ((N12.6E.1.5).AND.(N12.LT.1.0)) UL=2.1 F ((N12.6E.1.5).AND.(N12.LT.1.0)) UL=2.8 F ((N12.6E.1.5).AND.(N12.LT.1.2.0)) UL=0.8 F ((N12.6E.2.0).AND.(N12.LT.1.2.0)) UL=0.28 F ((N12.6E.2.0).AND.(N12.LT.4.0)) UL=0.28 F ((N12.6E.2.0).AND.(N12.LT.4.0)) UL=0.28 F ((N12.6E.2.0).AND.(N12.LT.4.4.0)) UL=0.28 F ((N12.6E.2.0).AND.(N12.LT.4.4.0)) UL=0.28 F ((N12.6E.2.0).AND.(N12.LT.4.4.0)) UL=0.28 F (N12.6E.4.0) UL=0.2 F (N12.6E.4.0.0) UL=0.2 F (N12.6E
201 201 201	101 101 101
518 519 320 321	<pre>mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm</pre>

.

159

~

DU 2 J=1.7 SUM=0.0 K=1 DJ 1 I=1.7 F(A(I.J).LE.0.0) GD TC 1 SUM=SUM+A(I.J) SUM=SUM+A(I.J) K=K+1 CONTINUE NUM(J)=K 1 CONTINUE NUM(J)=K 1 CONTINUE NUM(J)=SUM CUNTINUE NUM=NUM(I)+NUM(7)+3*(CUM(2)+NUM(3)+NUM(5)+CSUM(5)+CSUM(5)) SUM=CSUM(1)+NUM(7)+3*(CSUM(2)+CSUM(3)+CSUM(4)+CSUM(5)) VMEAN=TSLP/TNUM KETURN END 2 61

\$ENTRY

		LIN	11111111 0000000 0000000 00000000 000000		
		THey	10.05223 10.150523 10.10079 50333 50035 50035 50035 501485 501485		
		٩L	11110000000 11111111111111111111111111		
	K Coe Jo	Tut	00000 00000 00000 00000 00000 0000 0000 0000		
	22 0•440	MIJO	0,000255 0,0000255 0,0000555 0,0005555 0,00055555 0,00055555 0,00055555 0,00055555 0,00055555 0,00055555 0,00055555 0,00055555 0,000555555 0,000555555 0,000555555 0,00055555555	Ĥ	0.44558 0.41656 0.35306 0.28448 0.21644 0.16542 0.17018
	S 0•15624E-(ALP	00000000000000000000000000000000000000	HDL 1	0.45335 0.45688 0.40613 0.37664 0.33762 0.33762 0.31369
ANALYSIS	VMA 814E 00	21N		НҮІ	0.22475 0.20828 0.17653 0.14224 0.10922 0.09271 0.08509
L STRIPS	00 0°53	N2	0.01580 0.01580 0.01583 0.01583 0.01583 0.01583 0.01580 0.5830	нүг	0.22479 0.22479 0.17653 0.14224 0.16922 0.09271 0.06509
HORIZONTA	V 0.43779E	111	0.01580 0.01580 0.01550 0.01550 0.01580 0.01580 0.01580 0.01580	HDL 2	0.00381 0.02032 0.05207 0.08636 0.11938 0.13589 0.14351
3		-	-10m4100r	1	-00400r

--

UU RUN NUMBER E-62

.

			٤.	0.42799 0.41148 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000		LL.	0.77663 0.56494 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
нимах	1.01386 0.96467 0.86610 0.75246 0.63363 0.53871 0.53871	ARY #2	ш	0.37719 37719 0.326068 0.326068 0.000000 0.000000 0.000000 0.000000 0.000000	IPS	'n,	0.92209 0.85664 0.69513 0.00000 0.00000 0.00000 0.00000 0.00000
МVН	0.52490 0.87904 0.78727 0.68170 0.68170 0.57163 0.51246 0.48358	AUN BOUNC	n	0.30059 0.28448 0.25273 0.25273 0.25273 0.25273 0.25273 0.25273 0.25273 0.25273 0.25273 0.25273 0.255273757777777777777777777777777777777	UNTAL STR	Ω	0.99155 0.64003 0.63523 0.76980 0.56480 0.56480 0.39531
HV S1	0.05671 0.05651 0.05263 0.05203 0.046570 0.046570 0.046570 0.03612	VECTORS P	CL	0.22479 0.17653 0.17653 0.14224 0.14224 0.06509 0.06509	FOR HCRIZ	СL	1.01386 0.96467 0.86610 0.75240 0.63363 0.56559 0.56559 0.53671
IMVH	C.92490 0.87904 0.78727 0.58170 0.551163 0.51246 0.48358	POSITIGN	U	0.14859 0.132208 0.132208 0.132208 0.132008 0.132008 0.13200000000000000000000000000000000000	LGCITIES	U	0.99155 0.94003 0.84603 0.70980 0.56480 0.356480 0.35651
HVM2	0.92490 0.87904 0.78727 0.57163 0.57163 0.51246 0.51246	RÉLATIVE	8	0.07239 0.055588 0.024133 0.00000 0.000000 0.000000 0.000000 0.000000	LOCAL VE	Э	0 • 92209 0 • 65514 0 • 00000 0 • 000000
HVS2	0.05871 0.056871 0.05651 0.05203 0.04670 0.04670 0.03771 0.03612		۷	0.000000 0.000000 0.0000000 0.0000000 0.000000		A	0.77663 0.55494 0.00000 0.00000 0.00000 0.00000 0.00000
-	-0M41092		I	-024MVF		I	

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

163

4	>	>	ЧA	S	>	×			
	0•43779E	00 0•53	814E 00	0.15624E-	02 0.440	COE 00			
7	IN	NZ	N12	ALP	DLIM	TUL	٥L	1 Hc V	LIM
-07	0.01580 0.01580 0.01580	0.01580 0.01580	1.00000 1.00000	0.50000 0.50000	0.00025 0.00025	0.01000 0.01000	1 • 00020 1 • 00000 1 • 00000	7.04022 5.09784 8.0784	1.00000 1.00000
) 4 W	0.01580	0.01580	1.00000	C. 50000	0.00025	0.01000	1,00000	6. 47402 6. 47402	1.00000 1.20000
26	0,01580	0.01530 0.01580	1.00000	0. 50000 0. 50000	0. 00025 0. 00025	0.01000	1.00000	8,09784 7,04022	1.00000 1.00000
7	VY2	٧٢١	۵v						
-0m400r	0.08280 0.08280 0.08280 0.08280 0.08280 0.08280 0.08280 0.08280	U.01930 0.04470 0.08280 0.08280 0.08280 0.04470 0.1930	0.03861 0.03861 0.16561 0.16561 0.08561 0.08561 0.08561						
,	1 1 1 1 1	* * * * * *							

.

VERTICAL STRIPS ANALYSIS

1

ł

			F 0.03312 0.00000 0.000000 0.000000 0.000000 0.000000	L.S	0.25457 0.17513 0.00000 0.00000 0.00000 0.00000 0.00000
VVMAX	0.20610 0.35479 0.52927 0.52927 0.52927 0.35479 0.20610	RY #2	F 6 0.01656 0.03312 0.00000 0.00000 0.00000 0.00000 0.00000	LPS L	0.33554 0.33554 0.33554 0.00000 0.00000 0.00000
*>>	0.18003 0.31512 0.47527 0.47527 0.47527 0.51512 0.18003 0.18003	OM BOUNCA	0.01656 0.01656 0.03312 0.05244 0.13249 0.13249 0.15733	TICAL STR D E	0.44031 0.644031 0.62376 0.52376 0.46762 0.46762 0.38839
1577	0.01721 0.02618 0.03563 0.03563 0.03563 0.03563 0.03563 0.01721	ECTORS FF	CL 0.01656 0.03312 0.056724 0.15736 0.15736 0.15733 0.15733	S FUR VER CL	C.44031 C.44031 C.44031 C.44031 C.44031 C.44031 C.44031 C.34633
IWVV	0.18003 0.31512 0.47527 0.47527 0.47527 0.31512 0.18003 0.18003	OSITICN V	C 0 0 0 0 0 0 0 0 0 0 0 0 0	VELUCITIE G	0.44031 0.44031 0.48762 0.48762 0.48762 0.48762 0.44031 0.38835
VVM2	U.18003 0.31512 0.47527 0.47527 0.47527 0.31512 U.18003 U.18003	ELATIVE P	B 2 0 • 01656 0 • 003312 0 • 00000 0 • 00000 0 • 00000 0 • 00000 0 • 00000	LÜCAL B	0.00000 0.00000 0.000000 0.000000 0.000000
VVS2	0.01721 0.J2618 0.03563 0.03563 0.03563 0.01721	x	J A 0.00000 0.01656 0.000000 0.000000 0.000000 0.000000	۷-	0.20457 0.17513 0.00000 0.00000 0.00000 0.00000 0.00000
ר	-01400r		II 23450ァ	-	

•

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

165

	0.95414 0.62518	1.01433 1.07792	0.59319 1.09715	1.01553 1.12551	0.59319 1.05715	1.01433 1.07792	0.95414 0.62518
រុងល	0.0000	000000	1.01371	1.21640 1.13726	1 • 14745 1 • 14745 1 • 01371	000000	
92	0.00000 0.00000	0.00000	0.84335	09506.0	0. £4335 0. £7422	0.00000	0,00000
FOR	MUL AT IUN	OF COEFFI	C IENT EQU	ATION			
	*** SLUF	ое = 0.89	10 6 3 2 6 E C 0	***			
	*** INT	ERCEPT = -	0.3827522	E-02 ***	·		
	*** STAI	NDARD DEVI	ATION OF	x = 0.80	73747E-01	***	
	*** STA	NDARD DEVI	ATION OF	Y = 0.72	10 30E3E	***	
	*** CÜEł	FICIENT O	F CURRELA	TICN = 0	•9940878E	*** 00	
		·					
THE	CUEFFIC	IENT EQUAT	- SI NOI.	N=V*E1*((*((₩ヘヘノヘ	*E2. WHEN
	*** E1 -	= 0.99122	46E 00 **	*			
	*** E2 =	= 0.89063	156E 00 **	*			

•

0.12184286 01

ił

*** E3

WHEKE

PRUDUCT OF (UH/HVW)*(UV/VVM) , U_

لنا

С

СГ

υ

æ

4

1.01433

0.95414

.

Reproduced with permission of the copyright owner	. Further reproduction prohibited without permission.
---	---

166

STN A LEVEL 0.41386 2 0.28665 3 0.00000 5 0.00000 6 0.00000 7 0.00000 7 0.00000 8 ESTIMATED LUC	B 0 • 4 9 0 • 459 42 0 • 60 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 0 428 0 42833 0 49216 0 49216 0 498435 0 43583 0 37217 0 30631	CL 0.43653 0.556722 0.550394 0.580394 0.47225 0.39722	D 0.42833 0.47495 0.47495 0.48439 0.48439 0.43587 0.37217 0.37217 0.37217	П Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	00000000000000000000000000000000000000
LEVEL 1 2 2 3 0.286655 3 0.286655 4 0.00000 5 0.00000 7 0.00000 7 0.00000 6 0.00000 6 0.00000 6 0.00000 1 0.00000 1 0.00000 1 0.00000 0.00000 1 0.00000 1 1 1 1 1 1 1 1 1 1 1 1 1	0000000 0000000 00000000 00000000 000000	0 42633 742633 74264 91226 91226 0 31256 0 30631 0 30631	0.43653 0.56722 0.553814 0.550894 0.47225 0.47225 0.39725	0.42833 0.47495 0.49216 0.48439 0.43587 0.37217 0.37217 0.30631	0.4360 0.45932 0.45932 0.00000 0.00000 0.00000	000000 000000 000000 0000000 0000000
2 0.28665 3 0.286655 4 0.00000 5 0.00000 6 0.00000 6 0.00000 7 0.00000 ESTIMATED LUC		0.4269 0.47456 0.49216 0.43567 0.37217 0.37217	0.43653 0.56722 0.563814 0.56894 0.47225 0.47225 0.39725	0.42833 0.47495 0.49216 0.43587 0.37217 0.37217 0.30631	0.45932 0.45932 0.45932 0.45932 0.45932 0.45932 0.45932 0.45932 0.45932 0.45932 0.45932 0.45932 0.45932 0.45932 0.45932 0.45932 0.45932 0.45932 0.45932 0.45593200000000000000000000000000000000000	0 4 1 386 0 4 1 386 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0.00000 5 0.000000 6 0.000000 7 0.000000 6 0.000000 6 ESTIMATED LUC	000000000000000000000000000000000000000	0.49216 0.48435 0.37217 0.37217 0.30631	0.53814 0.50894 0.48075 0.47225 0.39722	0.49216 0.48439 0.43587 0.37217 0.37217 0.30631	0.40865 0.00000 0.00000 0.00000 0.00000	000001
5 0.000000 6 0.000000 7 0.000000 ESTIMATED LUC		0.43587 0.37217 0.30631	0.39725 0.47225 0.39722 0.39722	0.43587 0.43587 0.37217 0.30631	0.00000	
6 0.00000 7 0.00000 ESTIMATED LUC		0.37217 0.30631	0.47225	0.37217 0.30631		
ESTIMATED LUC		0•30631		1.005-0		0100010
ESTIMATED LUC			•			
ESTIMATED LUC						
	AL VELDC	ITIES BY	THE COEFF	ICIENT EQ	UATION (M/S)
S TN A	Ð	υ	CL	a	ш	ينا
		1	(T T F F F F			1 1 1 1 1
1 0.41618 2 0.25560	0.43548	C. 43132	0.43995	0.43132	0.43943	0.41618
3 0, 0000	0.41075	0.49876	0.51514	0.49876	0.41075	0,00000
4 0.0000	0.00000	0.49050	0.51667	0.49050	0.00000.0	0.0000
200000	0 • 00 00 • 0	0.43925	0.46062	0.43925	00000.0	0,00000 0,00000
7 0• 00000	0.0000	0.37266 0.30547	0.44541 0.35883	0.37286 0.30547	0.00000.0	0,00000 0,00000

າກ

.

•

•

ЫАSE	
AS	
VALUES	
ESTIMATED	
N SI NG	
VELUCITIES	
IN LOCAL	
DIFFERENT	
ER CENT AGE	

AS		91000000 91000000	UES		000000
VALUES	ù.	00000000000000000000000000000000000000	AL VAL	ئ ى	00000000000000000000000000000000000000
STIMATED	ш	0.77458 0.99591 0.99591 0.00000 0.00000 0.00000 0.00000 0.00000	EXP ER I MENT	ш	0.78062 1.00593 0.51472 0.00000 0.00000 0.00000 0.00000
s using f	ũ	0.65331 0.77362 1.32281 1.24670 0.76790 0.18306 0.27472 0.27472	s USING F	ŋ	0.65815 0.76768 1.34054 1.26244 0.77384 0.18339 0.27356
VELOCITIE	СL	0.77558 5.16536 4.46512 1.45588 1.45588 1.20736 0.40465 0.40465	VELůCI TIE	CL	0.78265 4.91436 4.27427 1.51659 1.22125 5.68181 0.40629
IN LOCAL	U	0.69331 0.77362 1.32261 1.24670 0.76790 0.18309 0.27472	IN LOCAL	J	0.69815 0.76768 1.34054 1.26244 0.77364 0.18342 0.27356
IFFERENT	B	0,77458 0,95591 0,00000 0,00000 0,000000 0,000000 0,000000	IFFERENT	B	0.78062 1.00553 0.51469 0.00000 0.00000 0.00000
CENTAGE D	A	0. 55683 0. 26754 0. 00000 0. 00000 0. 00000 0. 00000 0. 00000 0. 00000	CENTAGE D	×,	0. 55595 0. 36620 0. 00000 0. 00000 0. 00000 0. 00000 0. 00000 0. 00000 0. 00000
PER	H	- << > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > <	PER	щ	-004500r

AS BASE

APPENDIX C

,

.

. د. ر

Experimental Results

C.1 Roughness Elements Calibration Data

In this appendix, the data which had been used in calibrating the roughness elements are listed in the following tables. The symbol which had been used are as follows:

Q Experimental Total Flow Rate

V Experimental Mean Velocity

Del Different in elevations between station (1) and (2) per 12 ft. (3.658 m) of channel length.

TABLE C.1.1

Calibtration by Standard Approach

n_P

Q (USGPM)	V (ft/S)	DEL (ft.)	N _R X10 ⁻⁴	n	С
180	0.240	0.001167	2.8745	0.0357	6.431
320	0.400	0.000833	5.1103	0.0185	12.474
460	0.548	0.001500	7.3460	0.0182	12.705
590	0.679	0.002166	9.4221	0.0178	13.040
9 30	0.984	0.000833	14.8520	0.0079	29.524
770	0.848	0.000833	12.2966	0.0089	26.145
180	0.242	0.000333	2.8745	0.0189	12.152
310	0.391	0.001167	4.9506	0.0223	10.334
390	0.478	0.000334	6.2281	0.0098	23,467
500	0.592	0.000001	7.9848	0.0004	542.160
630	0.721	0.000167	10.0608	0.0047	49.260
775	0.855	0.001167	12.3764	0.0106	21.875
950	1.003	0.002501	15.1711	0.0134	17.357
1135	1.157	0.000667	18.1254	0.0059	39.550

*1 USGPM = $6.3 \times 10^{-5} \text{ m}^3/\text{s}$ **1 ft. = 0.3084 m

-

.

TABLE	с.	1		2
-------	----	---	--	---

TABLE C.1.2 Calibration by Standard Approach

			<u>-</u> Λ		
Q (USGPM)	V (ft/S)	DEL (ft.)	N _R X10 ⁻⁴	n	С
125	0.174	0.001333	1.996	0.0520	4.4036
200	0.265	0.001500	3.194	0.0368	6.2492
300	0.380	0.001082	4.791	0.0219	1.0481
390	0.478	0.002499	6.228	0.0268	8.6207
490	0.580	0.001499	7.825	0.0172	13.4470
605	0.697	0.002999	9.661	0.0204	11.3730
710	0.797	0.002666	11.338	0.0169	13.7590
800	0.876	0.003166	12.776	0.0168	13.8410
920	0.982	0.005167	14.692	0.0192	12.1060
1020	1.065	0.005167	16.289	0.0178	13.1120
120	0.164	0.000499	1.916	0.0339	6.7490
200	0.264	0.000329	3.193	0.0173	13.2640
260	0.334	0.000499	4.152	0.0169	13.5800
335	0.417	0.000167	5.349	0.0789	29.2220
440	0.528	0.000667	7.026	0.0125	18.3930
520	0.611	0.001517	8.304	0.0165	14.0630
575	0.666	0.003917	9.182	0.0243	9.5193
660	0.747	0.001583	10.540	0.0139	16.7480
720	0.803	0.002749	11.498	0.0170	13.6450
800	0.876	0.003833	12.776	0.0185	12.5670
880	0.948	0.004582	14.053	0.0187	12.4270
960	0.101	0.003583	15.331	0.0155	15.0050

*USGPM = 6.3 x 10^{-5} m²/s

TABLE C.1.3

Calibration by Standard Approach

r.F.

~				L.	
Q (USGPM)	V (ft/s)	DEL (ft.)	N _R X10 ⁻⁴	n	С
1085	1.096	0.009333	17.327	0.0234	9.9863
9 40	0.981	0.011750	15.011	0.0292	7.8960
860	0.916	0.009583	13.734	0.0281	8.2855
790	0.857	0.008833	12.616	0.0288	8.0835
730	0.806	0.008833	11.658	0.0268	8.6602
680	0.761	0.006166	10.859	0.0269	8.6267
630	0.716	0.005999	10.061	0.0281	8.2506
555	0.645	0.005666	8.863	0.0302	7.6745
485	0.578	0.004333	7.745	0.0294	7.8809
415	0.507	0.003749	6.627	0.0310	7.4601
350	0.438	0.004582	5.589	0.0394	5.8614
425	0.517	0.005999	6.787	0.0384	6.0119
475	0.567	0.005080	7.585	0.0324	7.1485
515	0.606	0.005167	8.224	0.0306	7.5607
570	0.660	0.008166	9.102	0.0355	6.5293
630	0.717	0.006249	10.061	0.0287	8.0924
690	0.770	0.006916	11.019	0.0282	8.2365
750	0.823	0.007333	11.977	0.0273	8.5334
800	0.866	0.007999	12.776	0.0271	8.5816
835	0.897	0.007999	13.335	0.0262	8.8859
940	0.983	0.010833	15.011	0.0279	8.3390

 $*USGPM = 6.3 \times 10^{-5} m^2/s$

**1 ft. = 0.3084 m

TABLE	c.	1	. 4	1
	<u> </u>	-	•	*

nP

•

TABLE C.l.4 Calibration by Vertical Strip Approach

Q (USGPM)	V (ft/s)	DEL (ft.)	N _R X10 ⁻⁴	n	С
22.0	0.511	0.000999	6.3384	0.0289	9.271
7.2	0.248	0.001999	2.2697	0.0656	3.839
9.0	0.302	0.002750	2.5871	0.0640	3.949
11.2	0.363	0.000417	3.2339	0.0212	11.996
13.0	0.416	0.000333	3.7513	0.0166	15.317
19.3	0.609	0.000417	5.5622	0.0129	19.710
22.5	0.692	0.000334	6.4677	0.0104	24.667
26.5	0.799	0.001000	7.6319	0.0159	16.239
30.1	0.889	0.000583	8.6667	0.0108	24.007
27.9	0.756	0.000333	8.0199	0.0103	25.314
34.2	0.904	0.000334	9.8309	0.0088	29.742
40.5	1.167	0.001000	11.6419	0.0113	22.928
45.0	1.267	0.000668	12.9354	0.0087	30.019
46.5	1.302	0.000083	13.3752	0.0029	87.181
53.1	1.440	0.000501	15.2638	0.0068	38.453
57.6	1.688	0.000667	16.5573	0.0059	44.113
63.0	1.801	0.000749	18.1096	0.0058	44.098
73.3	1.671	0.000499	21.0847	0.0061	43.889
88.0	1.804	0.000501	23.2838	0.0063	43.249
82.3	1.829	0.000499	23.6719	0.0057	47.763
90.8	1.933	0.000667	26.1296	0.0064	42.912

*USGPM = 6.3 x 10^{-5} m³/s

.

** 1 ft = 0.3084 m

.

TABLE C.1.5

Calibration by Vertical Strip Approach

Q (USGPM)	V (ft/s)	DEL (ft.)	N _R X10 ⁻⁴	n	с
9.4	0.2137	0.000667	2.7164	0.0579	4.663
14.0	0.3063	0.001167	4.0244	0.0548	4.958
20.0	0.4190	0.000083	5.7347	0.0109	24.904
26.9	0.5533	0.000250	7.7469	0.0146	18.844
32.5	0.6524	0.001916	9.3566	0.0347	7.938
41.3	0.8010	0.000916	11.8719	0.0199	13.896
46.9	0.8951	0.001333	13.4816	0.0217	12.794
53.9	0.1076	0.002920	15.4938	0.0258	10.681
61.2	0.1192	0.003333	17.6066	0.0253	10.954
74.5	0.1636	0.008667	21.4295	0.0267	10.092
82.6	0.1765	0.006833	23.7436	0.0224	12.168
89.6	0.1871	0.008999	25.7557	0.0245	11.152
97.6	0.1988	0.008582	28.0697	0.0228	12.041
102.6	0.2055	0.009667	29.4782	0.0236	11.666
109.9	0.2157	0.009333	31.5910	0.0223	12.384
116.9	0.2254	0.105830	33.6031	0.0229	12.098
123.9	0.2637	0.016833	35.6147	0.0224	12.201
135.1	0.2799	0.021249	38.8337	0.0238	11.488
144.2	0.2929	0.018667	41.4498	0.0214	12.810

*USGPM = $6.3 \times 10^{-5} \text{ m}^3/\text{s}$ **1 ft = 0.3084 m

TABLE	c.	1.	6
			_

Calibration by Vertical Strip Approach

Q (USGPM)	V (ft/s)	DEL (ft.)	N _R X10 ⁻⁴	n	С
13.3	0.506	0.001667	3.8231	0.027	9.105
17.6	0.635	0.011167	5.0519	0.058	4.314
21.8	0.775	0.001833	6.2809	0.019	12.619
25.5	0.769	0.000668	7.3186	0.013	19.181
29.4	0.868	0.001167	8.4652	0.016	16.125
34.9	0.997	0.003333	10.0221	0.024	10.754
46.5	1.072	0.003167	13.3809	0.025	10.658
56.0	1.244	0.001667	16.1117	0.016	16.671
63.4	1.543	0.002666	18.2145	0.015	18.072
70.3	1.676	0.002333	20.2079	0.013	20.893
78.6	1.821	0.004499	22.5838	0.016	16.221
89.0	1.999	0.005168	25.5877	0.018	14.854
96.6	2.131	0.004333	27.7723	0.014	19.146
105.0	2.269	0.005332	30.3119	0.015	18.273
114.0	2.412	0.004667	33.0428	0.013	20.669
124.0	2.555	0.006166	35.7735	0.014	18.991
145.0	3.948	0.032500	41.6938	0.014	19.005
155.0	3.224	0.013998	44.6481	0.016	16.981
165.0	3.372	0.013332	47.6521	0.015	18.236
180.0	3.578	0.014166	51.8847	0.015	18.865
193.0	3.965	0.019999	55.5704	0.014	19.012

 $*USGPM = 6.3 \times 10^{-5} m^3/s$

**1 ft = 0.3084 m.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

ⁿc

C.2 Theoretical Results on Covered Channels

In this Appendix, the theoretical results on covered channels with different shapes and boundary roughness are presented. The symbols which had been used in the tables are as follows:

- n_p Manning's Coefficient for Plywood
- n_{+m} Theoretical Composite Manning's Coefficient
- n_{tE} Experimental Composite Manning's Coefficient

			TABLE	C.2.1			<u>۲</u>	<u>_</u>
	Comp	osite Ro	ughness	for Cove	red Cha	nnel 🔪		
N _R X10 ⁻⁴	ⁿ 1	ⁿ 2	A (ft ²)	R (ft <u>)</u>	λ	α	n _{tT}	n _{tE}
4.41 4.67 5.97 7.25 8.70 10.63 12.06 14.65 17.23	0.0225 0.0210 0.0166 0.0152 0.0157 0.0165 0.0167 0.0167 0.0167	0.0135 0.0123 0.0077 0.0063 0.0062 0.0072 0.0077 0.0082 0.0083	0.7096 0.7149 0.5817 0.6285 0.6816 0.5524 0.6144 0.6795 0.6582	0.1745 0.1751 0.1579 0.1642 0.1710 0.1539 0.1623 0.1707 0.1680	0.583 0.577 0.381 0.296 0.296 0.380 0.381 0.382 0.382	0.5858 0.5858 0.5858 0.5858 0.5858 0.5858 0.5858 0.5858 0.5858	0.0189 0.0175 0.0133 0.0119 0.0122 0.0129 0.0133 0.0135 0.0135	0.0181 0.0164 0.0126 0.0150 0.0158 0.0133 0.0126 0.0146 0.0127

*1 ft = 0.3084 m

	TABLE	C.2.	.2	
Composite	Roughness	for	Covered	Channel

N _R X10 ⁻⁴	nl	ⁿ 2	A (ft ²)	R (ft)	λ	α	ⁿ tT	n _{tE}
3.62	0.0320	0.0200	1.3535	0,2894	0.590	0.6792	0.0284	0.0156
3.72	0.0307	0.0193	1.3640	0.2908	0.588	0.6802	0.0272	0.0153
4.58	0.0215	0.0127	1.4069	0,2964	0.500	0.6871	0.0189	0,0158
6.48	0.0160	0.007	1.3302	0.2864	0.336	0.6771	0.0134	0.0081
9.02	0.016Ü	0.0062	1.4255	0.2987	0.294	0.6857	0.0133	0,0065
11.82	0.0166	0.0075	1.3732	0.2920	0.337	0.6810	0.0140	0.0122
15.50	0.0167	0.0083	1.2836	0.2801	0.379	0.6727	0.0142	0.0139
18.08	0.0167	0.0083	1.3521	0.2893	0.379	0.6791	0.0143	0.0129
20.54	0.0167	0.0083	1.4122	0.2970	0.379	0.6845	0.0143	0.0131
23.69	0.0167	0.0083	1.3173	0.2847	0.379	0.6759	0.0143	0.0144

*1 ft = 0.3084 m

•

.

			TADLE	0.2.5			<u> </u>	<u> </u>
	Compo	osite R	oughnes	s for (Covere	d Chann		
N _R X10 ⁻⁴	nl	ⁿ 2	A (ft ²)	R (ft)	λ	α	ⁿ tT	ntE
3 71	0 0290	0.0192	0 6038	0 1617	0 587	0.5628	0.0249	0 0153
4.58	0.0220	0.0130	0.6574	0.1690	0.507	0.5637	0.0183	0.0114
5.65	0.0175	0.0087	0.5274	0.1506	0.381	0.5613	0.0139	0.0118
6.53	0.0160	0.0070	0.5695	0.1568	0.333	0.5622	0.0125	0.0119
7.08	0.0155	0.0065	0.7159	0.1767	0.315	0.5646	0.0119	0.0148
7.84	0.0153	0.0060	0.6335	0.1658	0.287	0.5633	0.0117	0.0145
9.68	0.0162	0.0067	0.5977	0.1608	0.311	0.5627	0.0125	0.0133

0.1744

0.1799

0.1707

0.347

0.347

0.347

0.5644

0.5648

0.5639

0.0129

0.0129

0.0131

0.0157

0.0153

0.0156

_n_P

<u>n</u>c

TABLE C.2.3

*1 ft = 0.3084 m

0.0165

0.0165

0.0166

0.0075

0.0075

0.0077

0.6986

0.7266

0.6701

10.97

11.24

12.07

1

TABLE C.2.4 Composite Roughness for Covered Channel

N _R X10 ⁻⁴	nl	ⁿ 2	A (ft ²)	R (ft)	λ	α	ⁿ tT	n _{tE}
3.46	0.0350	0.0220	1.2350	0.2810	0.561	0.6586	0.0308	0.0161
4.58	0.0220	0.0130	1.2903	0.2888	0.504	0.6643	0.0192	0.0096
6.74	0.0157	0.0067	1.2113	0.2776	0.320	0.6562	0.0129	0.0114
9.59	0.0162	0.0067	1.3173	0.2925	0.308	0.6669	0.0134	0.0076
12.23	0.0167	0.0077	1.2158	0.2783	0.351	0.6566	0.1390	0.0123
14.32	0.0167	0.0082	1.2793	0.2873	0.273	0.6632	0.0137	0.0121
16.21	0.0167	0.0083	1.3357	0.2949	0.377	0.6688	0.0142	0.0125
17.81	0.0167	0.0083	1.1069	0.2621	0.378	0.6448	0.0140	0.0132
18.63	0.0167	0.0083	1.1262	0.2651	0.378	0.6469	0.0140	0.0132
20.88	0.0167	0.0083	1.1832	0.2736	0.378	0.6531	0.0141	0.0126

*1 ft = 0.3084 m

个

TABLE C.2.5								
	Comp	osite F	loughne	ss For	Covere	ed Cham	nel 🗸	
N _R X10 ⁻⁴	nl	^{67 n} 2	A (ft ²)	R (ft)	λ	α	ⁿ tT	n _{tE}
2.22 4.06 6.42 8.41 10.28 12.66 14.49 16.68	0.0350 0.0270 0.0160 0.0155 0.0163 0.0166 0.0166	0.0270 0.0167 0.0071 0.0060 0.0070 0.0078 0.0082	0.911 0.8879 0.8749 0.8500 0.8043 0.8660 0.8659 0.8395	0.2341 0.2299 0.2276 0.2230 0.2147 0.2259 0.2258 0.2258	0.760 0.542 0.337 0.281 0.325 0.359 0.376 0.380	0.6147 0.6116 0.6098 0.6066 0.6006 0.6087 0.6087	0.0319 0.0233 0.0128 0.0122 0.0129 0.0135 0.0136	0.0111 0.0146 0.0209 0.0195 0.0160 0.0165 0.0160
18.34 20.55	0.0166	0.0083	0.8242	0.2179	0.380	0.6032	0.0136	0.0136 0.0145 0.0142

*1 ft = 0.3084 m

TABLE C.2.6 Composite Roughness For Covered Channel										
N _R X10 ⁻⁴	nl	ⁿ 2	A (ft ²)	R (ft)	λ	α	n _t T	n _{tE}		
3.91 6.33 8.40 11.93 12.89 14.09 16.47 17.96 19.03 20.06	0.028 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.017	0.028 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.017	0.7473 0.7488 0.7644 0.7735 0.7944 0.8035 0.8239 0.8854 0.9010 0.9107	0.2040 0.2043 0.2072 0.2088 0.2126 0.2142 0.2177 0.2279 0.2299 0.2314	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.5935 0.5937 0.5956 0.5967 0.8994 0.6006 0.6032 0.6115 0.6138 0.6152	0.0280 0.0160 0.0155 0.0166 0.0166 0.0166 0.0166 0.0166 0.0166	0.0170 0.0178 0.0205 0.0185 0.0189 0.0189 0.0189 0.0243 0.0253 0.0247		

*1ft = 0.3084 m

.

-

181

	Compo	.el (<u> </u>					
N _R X10 ⁻⁴	nl	ⁿ 2	A (ft ²)	R (ft)	λ	α	n _{tT}	ntE
2.00 4.34 5.52 7.44 9.13 11.21 12.70 14.45 16.29 18.39	0.0350 0.0185 0.0175 0.0153 0.0160 0.0150 0.0166 0.0166 0.0166	0.0270 0.0145 0.0090 0.0062 0.0064 0.0075 0.0079 0.0082 0.0083 0.0083	1.8250 1.8161 1.7725 1.8279 1.7085 1.7694 1.7508 1.8024 1.7688 1.7362	0.3570 0.3561 0.3516 0.3573 0.3447 0.3513 0.3493 0.3547 0.3512 0.3477	0.746 0.763 0.398 0.299 0.295 0.378 0.361 0.374 0.378 0.378	0.7065 0.7059 0.7025 0.7068 0.6973 0.7022 0.7007 0.7048 0.7022 0.7022 0.6996	0.0327 0.0174 0.0152 0.0129 0.0134 0.0130 0.0143 0.0144 0.0144 0.0144	0.0850 0.0426 0.0236 0.0100 0.0175 0.0153 0.0055 0.0076 0.0133 0.0108

*1 ft = 0.3084 m

TABLE C.2.8 <u>n</u>c Composite Roughness for Covered Channel

N _R X10 ⁻⁴	nl	ⁿ 2	A (ft ²)	R (ft)	λ	α	ⁿ tT	ⁿ tE
1.89	0.0350	0.3500	1.8378	0.3583	1.000	0.7075	0.0350	0.1018
3.83	0.0290	0.0290	1.6902	0.3427	1.000	0.6958	0.0290	0.0404
5.44	0.0180	0.0180	1.7713	0.3515	1.000	0.7024	0.0180	0.0311
7.13	0.0153	0.0153	1.8476	0.3595	1.000	0.7083	0.0153	0.0191
9.13	0.0160	0.0160	1.6727	0.3408	1.000	0.6944	0.0160	0.0069
11.09	0.0166	0.0166	1.7362	0.3477	1.000	0.6996	0.0166	0.0035
13.30	0.0166	0.0166	1.8116	0.3556	1.000	0.7055	0.0166	0.0134
14.95	0.0166	0.0166	1.7051	0.3444	1.000	0.6971	0.0166	0.0141
18.09	0.0166	0.0166	1.7418	0.3483	1.000	0.7000	0.0166	0.0107
18.55	0.0166	0.0166	1.8116	0.3556	1.000	0.7055	0.0166	0.0152

*1 ft = 0.3084 m

TABLE	C.2.9
	· · · · · · · · · · · · · · · · · · ·

Composite Roughness for Covered Channel

- ⁿc

-n_C

N _R X10 ⁻⁴	nı	ⁿ 2	A (ft ²)	R (ft)	λ	α	ⁿ tT	n _{tE}
4.31 5.87 7.88 9.00 11.17 14.18 14.93 17.07 17.79	0.0235 0.0170 0.0153 0.0160 0.0165 0.0166 0.0166 0.0166 0.0166	0.0235 0.0170 0.0153 0.0160 0.0165 0.0166 0.0166 0.0166 0.0166	0.6046 0.6656 0.6247 0.6795 0.6116 0.6152 0.6788 0.6572 0.6989	0.1610 0.1689 0.1636 0.1706 0.1619 0.1622 0.1702 0.1673 0.1722	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.5858 0.5858 0.5858 0.5858 0.5858 0.5858 0.5858 0.5858 0.5858	0.0235 0.0170 0.0153 0.0160 0.0165 0.0166 0.0166 0.0166 0.0166	0.0153 0.0177 0.0165 0.0174 0.0139 0.0139 0.0139 0.0166 0.0146 0.0169
18.55	0.0166	0.0166	0.7613	0.1797	1.000	0.5858	0.0166	0.0182

*1 ft. = 0.3084 m

TABLE C2.10

Composite Roughness for Covered Channel

N _R X10 ⁻⁴	ⁿ 1	ⁿ 2	A (ft ²)	R (ft)	λ	α	ⁿ tT	n _{tE}
3.69 4.50 5.37 7.29 9.23 11.85 15.37 18.29 19.61 22.89	0.0310 0.0217 0.0182 0.0153 0.0160 0.0166 0.0166 0.0166 0.0166	0.0310 0.0217 0.0182 0.0153 0.0160 0.0166 0.0166 0.0166 0.0166	1.4062 1.2635 1.2487 1.3177 1.4053 1.2826 1.3592 1.3936 1.3936 1.3936	0.2963 0.2773 0.2830 0.2753 0.2847 0.2962 0.2799 0.2902 0.2946 0.2792	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.6839 0.6707 0.6747 0.6693 0.6759 0.6839 0.6726 0.6797 0.6828 0.6721	0.0310 0.0220 0.0180 0.0160 0.0166 0.0166 0.0166 0.0166 0.0166	0.0208 0.0113 0.0078 0.0151 0.0174 0.0147 0.0143 0.0153 0.0141

*1 ft = 0.3084 m

183

	Comp	osite R	loughnes	ss for	Covere	d Chanr	el	<u> </u>
N _R X10 ⁻⁴	nl	ⁿ 2	A (ft ²)	R (ft)	λ	α	n _{tT}	ntE
3.58	0.0350	0.0350	0.5545	0.1546	1.000	0.5619	0.0350	0.0134
4.18	0.0250	0.0250	0.5916	0.1599	1.000	0.5626	0.0250	0.0131
4.67	0.0207	0.0207	0.6223	0.1642	1.000	0.5631	0.0207	0.0149
6.06	0.0166	0.0166	0.5403	0.1525	1.000	0.5616	0.0166	0.0128
8.05	0.0155	0.0155	0.4571	0.1385	1.000	0.5594	0.0155	0.0178
8.95	0.0159	0.0159	0.5440	0.1529	1.000	0.5616	0.0159	0.0121
10.53	0.0163	0.0163	0.5662	0.1560	1.000	0.5621	0.0163	0.0123
11.65	0.0167	0.0167	0.6516	0.1676	1.000	0.5636	0.0167	0.0158
12.74	0.0167	0.0167	0.7323	0.1781	1,000	0.5648	0.0167	0.0164
11.59	0.0167	0.0167	0.6243	0.1739	1.000	0.5631	0.0167	0.0148

*1 ft = 0.3084 m

TABLE C.2.12

Composite Roughness for Covered Channel

N _R X10 ⁻⁴	nı	ⁿ 2	A (ft ²)	R (ft)	λ	α	ⁿ tT	n _{tE}
3.64	0.0320	0.0320	1.2526	0.2836	1.000	0.6605	0.032	0.0263
4.75	0.0205	0.0205	1.3100	0.2915	1.000	0.6662	0.0205	0.0025
7.15	0.0153	0.0153	1.2924	0.2891	1.000	0.6645	0.0153	0.0068
9.66	0.0162	0.0162	1.2623	0.2849	1.000	0.6614	0.0162	0.0138
12.78	0.0166	0.0166	1.1736	0.2721	1.000	0.6522	0.0166	0.0150
14.69	0.0166	0.0166	1.2340	0.2809	1.000	0.6585	0.0166	0.0146
17.12	0.0166	0.0166	1.3079	0.2912	1.000	0.6660	0.0166	0.0146
19.77	0.0166	0.0166	1.2012	0.2761	1.000	0.6550	0.0166	0.0147
16.46	0.0166	0.0166	1.3024	0.2904	1.000	0.6655	0.0166	0.0149
14.85	0.0166	0.0166	1.2502	0.2832	1.000	0.6602	0.0166	0.0132

*1 ft = 0.3084 m

184

TABLE C.2.11

-n_C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•

TABLE C.2.13

*1 ft = 0.3084 m

TABLE C.2.14

Composite Roughness for Covered Channel

N _R X10 ⁻⁴	n ₁	ⁿ 2	A (ft ²)	R (ft)	λ	α	n _{tT}	n tE
3.11	0.0350	0.0350	2.0869	0.3609	1.000	0.7406	0.0350	0.0330
4.87	0.0200	0.0200	2.0484	0.3574	1.000	0.7383	0.0200	0.0146
6.31	0.0162	0.0162	2.1067	0.3627	1.000	0.7418	0.0162	0.0083
8.14	0.0155	0.0155	2.0454	0.3572	1.000	0.7381	0.0155	0.0146
9.89	0.0162	0.0162	2.1741	0.3685	1.000	0.7457	0.0162	0.0932
11.24	0.0165	0.0165	1.7641	0.3296	1.000	0.7197	0.0165	0.0154
12.78	0.0166	0.0166	1.8176	0.3351	1.000	0.7234	0.0166	0.0172
14.37	0.0166	0.0166	1.8708	0.3405	1.000	0.7269.	0.0166	0.0176
16.29	0.0166	0.0166	1.9353	0.3468	1.000	0.7312	0.0166	0.0196

*1 ft = 0.3084 m

np

C.3 Results of Statistical Analysis on Velocity Profiles

In this appendix, the results obtained from statistical analysis on velocity profiles are presented. The symbols which had been used in the tables are as follows:

E-13	Experiment run number
σ _{UT}	Standard deviation for theoretical velocity profile
σUE	Standard deviation for experimental velocity profile
m	Slope of regression line
r	Correlation coefficient
V _{max} T	Theoretical maximum point velocity
V _{maxE}	Experimental maximum point velocity
V _{meanT}	Theoretical mean velocity
V _{meanE}	Experimental mean velocity

.

TABLE C.3.1

Results of Statistical Analysis on Velocity Profile

Run No.	σ _{UT} Theory	σ _{UE} Exper.	M Slope	r Cor	V maxT	V meanT	V maxE	V meanE
E-13	0.034	0.0350	0.999	0.956	0.2907	0.2510	0.2982	0.2511
	0.0490	0.0515	1.007	0.957	0.4092	0.3509	0.4251	0.3509
E-15	0.0522	0.0539	0.983	0.952	0.4768	0.4146	0.4785	0.4152
E-10	0.0409	0.0402	0.965	0.982	0.2/11	0.2100	0.2648	0.2102
E-17 E-19	0.0394	0.0401	1.005	0.989	0.2670	0.2085	0.2639	0.2086
E = 10	0.0039	0.0092	1.000	0.900	0.3303	0.2323	0.3491	0.2520
E-19	0.0391	0.0403	1 014	0.971	0.2000	0,2347	0.2915	0.2345
E = 20	0.0275	0.0207	0 000	0.908	0.2902	0.2003	0.2975	0.2572
E-21 E-22	0.0002	0.0316	1 003	0.904	0.4095	0.4012	0.4785	0.2570
E-23	0.0290	0.0550	1 004	0.944	0.2940	0.2570	0.2900	0.2570
E-24	0.0683	0.0732	1,033	0.963	0.4967	0 4069	0.4231	0.4083
E-25	0.0338	0.0356	1.013	0.962	0.3009	0.2606	0.3116	0.2612
E-26	0.0552	0.0568	0.995	0.967	0.4238	0.3582	0.4184	0.3591
E-27	0.0521	0.0576	0,997	0.901	0.4829	0.4225	0.4919	0.4247
E-28	0.0287	0.0327	1.007	0.887	0.3173	0.2808	0.3249	0.2830
E-29	0.0373	0.0422	1.010	0.893	0.4242	0.3769	0.4451	0.3777
E-30	0.0381	0.0447	1.029	0.878	0.4402	0.3923	0.4652	0.3946
E-31	0.0367	0.0399	1.001	0.920	0.3802	0.3343	0.3975	0.3330
E-32	0.0222	0.0258	1.005	0.867	0.3333	0.3062	0.3459	0.3036
E-33	0.0267	0.0282	0.946	0.896	0.3375	0.3009	0.3265	0.2995
E-34	0.0273	0.0293	0.949	0.882	0.3370	0.3034	0.3329	0.3070
E-35	0.0335	0.0364	0.979	0.899	0.3439	0.3046	0.3620	0.3054
E-36	0.0267	0.0293	1.011	0.922	0.3332	0.3000	0.3459	0.3000
E-41	0.0621	0.0627	1.002	0.991	0.3539	0.2861	0.3650	0.2863
E-42	0.0593	0.0773	1.026	0.788	0.5205	0.4402	0.5720	0.4456
E-43	0.1238	0.1342	1.052	0.971	0.8775	0.7043	0.9267	0.7043
E-45	0.0446	0.0499	0.977	0.873	0.6458	0.6024	0.6599	0.6029
ビー46 アー47	0.0246	0.0296	1.029	0.854	0.3266	0.2973	0.3449	0.2977
E-4/	0.0486	0.0591	0.995	0.818	0.7662	0.7156	0.7976	0.7192
E-40	0.1100	0.1157	1,005	0.957	0.0911	0.7732	0.9207	0.7740
E-50 E-51	0.0279	0.0294	1 007	0.951	0.3465	0.3103	0,2003	0.3104
E-JI E-52	0.0290	0.0299	1.007	0.993	0.2913	0.2020	0.2724	0.2024
E-52 E-53	0.00014	0.0014	0.999	0.999	0.3232	0.4000	0.7076	0.4000
E-55	0.0324	0.0341	1.013	0.962	0.3582	0.3367	0.3624	0.3374
E-56	0.0251	0.0251	1,000	0,999	0.2568	0.2389	0.2568	0.2389
E-57	0.0091	0.0136	0.983	0.655	0.4123	0.3989	0.4123	0.4027
E-58	0.0960	0.0996	1,007	0,970	0.7788	0,6660	0.7976	0.6657
E-60	0.0501	0.0519	1.020	0,983	0.4310	0.3583	0.4611	0.3593
E-61	0.0152	0.0171	0.998	0.886	0.2655	0.2496	0.2679	0.2502
E-62	0.0646	0.0655	1.005	0.991	0.5167	0.4376	0.5381	0.4378

-

.

Run	σ _{UT}	σ _{UE}	m	r	V	V	V	V
No.	Theory	Exper.	Slope	Cor.	maxT	meanT	maxE	meanE
E-63	0.0716	0.0779	1.021	0.938	0.7798	0.6803	0.7976	0.6842
E-65	0.0356	0.0383	1.027	0.954	0.4183	0.3781	0.4478	0.3799
E-66	0.0215	0.0221	1.014	0.982	0.2315	0.2065	0.2332	0.2067
E-67	0.0399	0.0477	1.010	0.846	0.6553	0.6137	0.7170	0.6171
E-68	0.0689	0.7063	1.001	0.976	0.8242	0.7550	0.8429	0.7568
E-70	0.0317	0.0324	0.979	0.958	0.3179	0.2722	0.3123	0.2729
E-71	0.0567	0.0596	1.012	0.962	0.5563	0.4749	0.5520	0.4759
E-72 E-74 E-75 E-76	0.0809 0.0239 0.0427	0.0910 0.0246 0.0460	1.048 1.007 1.027	0.931 0.976 0.952	0.8210 0.3491 0.5506	0.7078 0.3214 0.5017 0.6278	0.8299 0.3516 0.5735 0.7331	0.7089 0.3217 0.5037
E-78 E-79 E-80	0.0343 0.0873 0.0276 0.0499	0.0399 0.0909 0.0279 0.0551	1.018 1.010 1.051	0.978 0.998 0.951	0.6021 0.1475 0.4249	0.5084 0.1082 0.3666	0.1499	0.5092 0.1086 0.3679
E-81	0.0804	0.0805	0.985	0.983	0.7611	0.6604	0.7559	0.6590
E-82	0.0334	0.0353	1.048	0.989	0.1869	0.1485	0.1887	0.1497
E-83	0.0463	0.0531	1.029	0.896	0.5805	0.5429	0.6068	0.5473
E-84 E-87 E-88 E-88	0.0276 0.0190 0.0283	0.0341 0.0199 0.0295	1.003 1.022 1.011	0.811 0.979 0.972	0.7143 0.9930 0.2159	0.6890 0.0748 0.1841	0.7262 0.1010 0.2297	0.6860 0.0754 0.1843
E-90 E-91 E-92 E-93	0.0265 0.0075 0.0178 0.0551 0.0246	0.0272 0.0084 0.0189 0.0550 0.0247	1.013 0.956 0.982 0.994	0.936 0.913 0.901 0.984 0.992	0.1061 0.1913 0.3286 0.1846	0.2985 0.9849 0.1705 0.2657 0.1581	0.3285 0.1164 0.1827 0.3152 0.1827	0.2981 0.9849 0.1713 0.2653 0.1582

.

.

.

•

C.4 Experimental and Theoretical Velocity Profiles

In this appendix, the theoretical results on velocity profiles are listed as below. The symbols which had been used in the tables are as follows:

represents the stations shown in STN A Fig. 4.3.3.1 Level 1 represents the dimensionless depths shown 4.3.3.1 in Fig. Μ in meter M/s in meter per second E-13 Experiment run number Manning's Coefficient for Coarse Wire n_C Mesh $(2 1/2" \times 1 1/4")$ Manning's Coefficient for Fine Wire n_F Mesh $(1 1/2" \times 3/4")$ Manning's Coefficient for plywood. np

•

•

ц Ч

-

.

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

ч Ч

Ŀ

с^р

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

р ц с ц

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193

с ц

S

	-		3				
STN	ų	51	Ċ	, CL	د	п.	7
	0.157.14			0.26.490			
•~•	6 • 1 c d J	10400 	0.31521	0.01551	0.31521	0.25405	
μ	0.22200	C.29213	0.31663	J. 54 211	J. 31 403	0.29213	0.2220
` +	0.20100	0.59213	0.31521	0.34004	J. 11 52 1	3.29213	0.20102.0
ົນ	0.1.0.7	0162220	C.Slocl	0.5lc/l	0.31521	0.225.0	U.130.7
0	0.1c123	0.20665	0.22573	0.25370	0.4~.70	0.20665	0-101-0
2	0.12733	0.1u2č3	0.178.0	J.15580	0.17339	J •10203	ú.12734
Ļ						1 101140	
s Is	A		ر	С	<i>ב</i> .	12	£
		F				Arristan (n. 1990).	
-	U.1 001	0.2523	0 - 24 54 7	C.25412	0.24257	16302.0	0.1000
2	0.10113	· 0 • • • • • • • •	0.5.7.1	3. J. Cuto	5 - 20 T +	0.23212	C.101.0
m	0.20007	U • • 6 7 9 5	0 • 40400 0	C+35927	J. (3405	0.25795	u • 2008 /
4	0.206.57	0.28795	0.3345	C. 35027	0.3.5435	0.257.0	0.20021
הי	0.13113	0.25212	0.2527+	0.10000	0.29274	0.15212	0.1011,
c	0.1.002	0.20010	0.24251	C.25412	0.24257	C 2 0 6 9 1	0.1000
~	L U. 11 047	0.10025	0.1920	0.1028	20cv1.0	0.10029	0.11.47

с д

n_D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

197

a d

> n UC

198

	Ł	711 127 2 1 10 <u>2</u> 11 1					
STN	Ą	U	C	CL	D	Ē	ŀ
LEVEL	12 (바 BB) RD (그) (28 67 68) 68	나 신) 위, 이 이 이 이 (P 전)	نای که جد ک ار که جو اور دان زی	ان این اور بین میں ایک تک تک تک	4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		******
1	0.22675	0.25144	0.25813	0.25813	0.23141	0.22593	0+1779
2	141ن2•0	0•20484	0.29820	0.29152	0.26480	0.24027	6.2047
3	0.25813	0.29820	0.29152	0.29152	0.29152	0.25144	0.2071
4	0,27148	0.29152	0.28484	J•27810	0.29152	0.27148	0.2105
5	0.25144	C.25144	0.20480	0.27148	C•27148	0+26480	0.2071
6	0.21830	0.25023	0.25144	0.25144	0.25144	0.25144	0.2047
7	0.21047	0.23141	0.23809	0.23809	0.23809	- d. 21 c.17	0.1714
9 (19 69 . 19 (19 . 19 . 19 . 19 . 19 . 19 . 19	ی اور			G = U # B # D = D			
••••• •••• ا، •••••		CAL VELUC	ITIES BY	The CuEFF	ICIENT FO	UATIUN (
LS STN	TIATLU LU A	CAL VELUC	ITIES BY C	The CuEFF CL	ICIENT FO	L L	 :4/5) 4 ⁻
LS STN LEVEL	TI 14TLU LU A	CAL VELUC	ITIES BY C	The Cueff CL	ICIENT FO	LATIUN (AZS) 17
LS STN LEVEL	TI 14TLU LU A 0.23CUU	CAL VELUC H 0.25497	ITIES BY C 0.26387	111c CUEFF CL C. 26018	TCTENT F 0 D 0.25086	UATIUN (U.2297)	4/5) 1 0,18.9
LS STN LEVEL 1 2	TI 44TLU LU A 0.2000 0.24552	CAL VELUC B 0.25497 .0.27147	1TIES BY C 0.26387 0.26095	1116 CUEFF CL C. 26018 0. 277 02	ICIENT F 0 D 0.25086 0.20710	UATIUN (L J.22975 J.24402	4/5) F 0.18.9 0.2011
LEVEL 1 3	TI 44TLU LU A 0.25C00 0.24552 0.25553	CAL VELUC H 0.25497 0.27147 0.2330	UTIES BY C 0.26387 0.26095 0.29371	1HE CUEFF CL C. 26018 0. 27702 0. 28560	ICIENT FO D 0.25086 0.20710 0.27923	UATIUN (U.22975 0.22975 0.24402 0.2557+	0.18.9 0.18.9 0.2011 0.2100
LS STN LEVEL 1 2 3 4	0.2000 0.24502 0.2500 0.2500 0.25003	CAL VELUC B 0.25497 0.27147 0.20380 0.2380	UTIES BY C 0.26387 0.26095 0.29371 0.29371	CL CL C. 26018 0. 27702 0. 28560 C. 28560	O.25086 0.25086 0.20710 0.27923 0.27923	UATIUN (UATIUN (U.22975 0.24402 0.25574 0.25574	0.1110 4/5) F 0.18.9 0.2011 0.2011 0.2100 0.2100
LEVEL 1 2 4 5	0.2000 0.2000 0.24002 0.25003 0.25003 0.24052	CAL VELUC B 0.25497 0.27147 0.20380 0.23380 0.27147	ITIES BY C 0.26387 0.26095 0.29371 0.29371 0.28095	1116 CUEFF CL C. 26018 0. 27702 0. 28960 C. 28960 0. 27702	ICIENT F 0 D 0.25086 0.20710 0.27923 0.27923 0.20710	UATIUN (U.22975 0.24402 0.25574 0.25574 0.25574 0.24402	0.18.9 0.18.9 0.2011 0.2100 0.2100 0.2100 0.2100
LEVEL 1 2 3 4 5 0	0.2500 0.2500 0.24552 0.2500 0.24552 0.25003 0.24552 0.25003	CAL VELUC H 0.25497 0.27147 0.20380 0.2380 0.2380 0.27147 0.25497	UTIES BY C 0.26387 0.26095 0.29371 0.29371 0.29371 0.28095 0.20387	1HE CUEFF CL C. 26018 0. 27702 0. 28960 C. 28960 C. 28960 J. 27702 0. 26018	TCTENT FO D 0.25086 0.20710 0.27923 0.27923 0.26710 0.25386	UATIUN (L U.22975 0.24402 0.25574 0.25574 0.25574 0.25574 0.24402 0.22573	0.18.9 4/5) 4 0.18.9 0.2011 0.2011 0.2100 0.2100 0.2100 0.2100 0.2100

.

ng

.

,

199 n_F

54 Д

200

	فد	XPERIMENT	AL LUCAL	VELLCITIE	S (R/S)		
STN	A	6	U	сL	G	<u>11</u>	الم
LEVEL	0.31302	0.37815	0-14265	0.44269	2023E.0		
• 71	0.245.49	0.42055	C.47455	0.47455	0.44262	0.37815	0.31302
n	0.30202	35424.0	0.4 JIC5	C•451C9	0.45482	0.44209	0.30002
4	0. 3942)	0.47495	0.19109	6015t °C	0.47495	0.44269	0.300.4
.0	0.34509	6 • 4 + 2 5 5	0.47455	0.47495	0.45382	0.34231	<i><i>colc•υ</i></i>
٥	0.31362	0.37915	0.44265	0.44269	0.37815	0.34711	U.20135
2	0.23717	0.3223	0.344CE	0.33841	0.31384	0.25135	0.24309
E S	TIMATLU LG	CAL VELLC	ITLES BY	THE CULFF	ICLENT EC	LATION (M/5)
STN	4	ĩ	ر	CL	C	L	┵
		0.45502		0.41348	0. 19235	0. 34404	0.25354
Ń	0.57000	· C.43545	0.40338	0.45020	0.4.292	 000.0	C • 2022 3
رر	0.39604	0.40727	0.4)673	0.44510	0 • 40408	0.40741	0.30532
4	0 • 39604	0 • 40 727	C.49673	C.42510	0.46408	16704.0	0.30332
ŝ	0.0012.0	C.43535	C.40338	C.45026	0.43292	0.13052	6.2852.0
c	0.33531	0.35502	C•41553	0.41348	0. 55233	0.34484	9.25.54
~	0.70.70		C. (705H	0. 306.45		$O = A O^{2} O^{2}$	マド じろ ひ・ つ

ц

n_C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202

 $n_{\rm P}$

ม_{ูก}

уC

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203

n_p

<u>h</u> H

> D U C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

np

n_F

цС

с ц

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ວ_u

u_

٦.

3

5

 \circ

2

Ċ

5 TN

Q. |

(N/2)

VELUCITIES

LUCAL

LAPCRI MENTAL

E---10

NUMBER

NOX

ပို

208

<u>u</u> NUMBER NUN

04

IE-

1

11111

(M/S)

VELUCITIES

LGCAL

EXPLRIMENTAL

20000 2000 2000 2000 2000 2000 200 200		20040 20040 20040 20040 20040 20040
	ATLUN (AZ	0.31379 0.31834 0.31834 0.31698 0.31191 0.31191 0.30015 0.28612 0.28612 0.28612 0.28612 0.9.
	ICIENT EGU	0.22953 0.32953 0.322953 0.31050 0.21050 0.29524 0.29524 0.29524
	THE CLEFF	
	111ES EY	 - - - - - - - - - - - - -
	CAL VELCC	
	FLAATED LÖ A	0.29479 0.279479 0.29450 0.27450 0.27791 0.27791 0.27791
	LEST S TN	

0.20492 9.25040 0.30015 0.28612 0.27050 1 1 0.29620 0.28010 0.31080 1 6.31420 0.25352 0.26317

ENERGY SLUPE= J.229126-03 VMEAN= 0.3036 M/S

1

1

Σ

YMAA= 0.3442

m

RUN JUTIBER L-32

2

ŝ

<u>u</u>_

ш

Q

С

J

Э

<

STN STN

þ

EXPLRIMENTAL LUCAL VELOCITIES (M/S)

١

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209

du

с ц

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ĵ,

210

2

		XPENIMENT	AL LUCAL	VELCCITIE	(S/W) S		
STN	A	T	U U	CL	Q	<u>ы</u>	<u>'۲</u> .
LEVEL							
	0.201240	ションマーキン	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	0.01000	0.30039	いっていてする	
<u>س ا</u>	0.32007	0.22330	0.32258	0.35293	0.33298	0.32330	0.35.0
4	0.33671	0.51035	0.31035	0.J1362	0.31039	0.31039	0.30071
ິດ ເ	0.29420	0.25745	0.30717	C•31039	0.30717	0.29745	0.25426
<u>مد</u>	0.249J9 0.21082	0.231J5 0.23295	0.25426 0.25135	C. 26C71 0.26135	0.29426 0.28135	0.28135 0.23295	0.24000 0.21032
	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	¶ 	2 7 7 1 1 1 1	1 1 1 1 1 1 1	 . x [*] 	 	1 7 1 1 1 7 1 1 1
ES	TIMATÉD LO		ITLES BY	THE CUEFF	ICIENT EC	LATIUN (H/S)
STN	۲	n	c	CL	0	س	<u>9.</u>
רבעבר		0 0 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 2 1 1	t 	t 	
	0.20349 2.20349	6.51223	C.32619	0.33067	0.32619	0.31225	0.24349
ر . ۱	0.23754	0.21670	0. 40044	0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	0.35086	0.31070	0.28754
4	0.26133	0.31041	C.32425	0.32874	0.32425	0.31041	0.23143
ហ្	0.20863	0,29587	C.305C9	0.31333	0.30509	0.29567	0.26603
<u>ں</u>	0.25332	0.27868	0.29114	0.25513	0.29114	0.27003	0.2500
2	0.23585	C+ 255277	0.27138	0.27510	0.27133	0.25977	0.23035

du du

nc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

? .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

E-30

NUMBER

NUN

• ò

Ethev . のへょ ~ いこう

ڻ.

ų AN

• ?

• 29JU 3E-0.

 \circ

n

42) (11) 0.30 ił **УМАХ**:

ĉ

212

ЪЪ

цГ

с д

	ີ ມີ ທີ	XEERIMENT	ALLUCAL	VELOCITIE	(S/W) S		
STN	V	בי י	U	CL	a	ω	<u>د</u> .
	0.24909	0.20845 0.10645	0.27450 0.27450	0.28135	0.29095	0.27242	0.23574
1104	0.29368	0.13258 0.1262	0.34585	0.34589 C.320C7	0.33943	0.31362 0.31039	0.20179
ເດິງ	0.23731 0.26199	0.30717 0.25426	0.31362	0.31362	0.30717	0.29749	U • 26345 0 • 24909
	0.24909	0.2045	0.28135	0.25749	0.28781	0.24909	0.23275
							* •
		וכאר עברמכ	ITLES BY	1+E COEFF	ICIENT EC		M/S)
STN	ব	8	C)	CL	O ²	ч	ï
	0.20574.	0.29431			0.29544	0.27732	0.24113
ה גר	0.28434	(.1024 0.52202	0.32104	0.331540	0.31143	0.29233	0.26388
4 in	0.25434	0.31024	C.35322 0.32104	C.33159 C.31346	0.32320 0.31143	0.30342 0.25233	0.20303
	0.26574 0.25302	0.24431 0.27637	6.30455 0.25567	C. 30306	0.29544	0.27732	0.24118 6.22023
XA1:1Y	0	VME AN		EA	 ЮК6Ү ЗЦИР		4E-03

~

,			<u> </u>	· · · · · · · · · · · · · · · · · · ·	
·		000000 000000 000000 000000 000000 00000	1/5) F	0000000	∠E - 0 3
	<u>11</u>	0.0000000000000000000000000000000000000	LATIUN (0.22441 0.22441 0.00000 0.000000 0.000000 0.000000	í= 0.5555
(K/S) 5	a	0.000000000000000000000000000000000000	ICIENT EG	0.000000000000000000000000000000000000	PCY SLUPI
VELOCITIË	CL	1000000 1000000 10000000 10000000 1000000	THE COEFF	0.271 0.31502 0.355024 0.25552 0.255527 0.255527 0.255527 0.255527 0.255527 0.255527 0.4457 0.44572	V/S EN
AL LUCAL	U	0 0 0 0 0 0 0 0 0 0 0 0 0 0		000000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 2000000	0.2663
QUERTMENT,	-	000000 000000 000000 000000 000000 00000	AL VELDC	000000 000000 000000 000000 000000 00000	V ME AN=
(<u>i</u> .	A	000000 000000 0000000 0000000 0000000 0000	FIMATED LOC	0000000 0000000 0000000 0000000 0000000	j.2314 4
	S TN	「 」 しのらかららて 「 」	1991 1991 1991	「しとうちらして」	YMAX= C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5-5

RUN NUABLE

3

3

214

~

с С

רבאבר				, , , ,			t
- 01	0.0000	0,30169	0.42410	C+ 271 CC C+ 47537	0.43519 0.43519	0.39169	C • 28003
ς.	0.0000	0.00000	0.50522	0.57231	0.50522.	0.0000.0	0,0000
4	0.0000	00000000	0.45848	C. 55305	0.45848	0.0000	0.000000
ر. ت	0.00000	C . C 0 0 0 0	0.00000	0.51190	0.00000	0.00000	0.00000
	0.0000	0.0000	C. CCCCC	0.44512	0.00000	0.00000	0.00000
<u> </u>	0.00000	0.00000	00000	0;37166	0.00000	0.0000.0	0.00000
			 	x 	P P 1 1 1 1	 	T 5 6 6 6 6
	1 1 1 1 1 1 1	1		1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	* # # # # # # # #	
З Ц S	TIMATED LO	CAL VELUC	171ES BY	THE CUEFF	ICLENT EC	LATION (1/5)
STM	۲	n	ບ	сĻ	a	ц.	بلد
						1 1 1 1 1 1 1 1 1 1 1	
	0.32368	0.43428	C.4.156	C • 41557	0.43180	0.43428	0.32333
N	0.0000.0	0.40073	0.47553	0.47053	0.41993	0.43075	0000000
5	0.0000	3,00000	0.45425	0.51012	0.48429	0.00000.000	0:00:0
4	C. CCOOO	00000:0	0.34472	C.52055	0. 34472 .	00000.0	00000000
ر .	000000.00	000000.0	0.000.0	0 • 4 c 4 5 9	0.00000	000000.0	0.0000.0
- <i>C</i>	0.0000			0.43669	C. COCOU	0.00000	0.00000
,	0.0000	0	6 • 0 0 0 0 0	21020.0	0.000	000000	

ENERGY SLUPE= 0.138396-02

VACAN= 0.4456 P/5

YHAX= 0.2380 1

RUN NUABER

1

3

<u>ب</u>

ш

0

<u>C</u>

J

 Ξ

∢

STN

EXPERIMENTAL LUCAL VELOCITIES (M/S)

σ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

215

00

БТА В С С С С С С С С С С С С С С С С С С С		C 0.63625 0.42969 0.429699 0.522511 0.522511 0.52000 0.520000 0.520000 0.520000 0.520000	CL 0.63629 0.63629 0.82589 0.82589 0.757683 0.757683 0.57175	D 6 63629 6 83629 6 83629 6 83629 0 63629 0 600000000000000000000000000000000000	M 0 0 0 0 0 0 0 0 0 0 0 0 0	H0000001 H0000001 H000000001 H000000001 H0000000000
ЕVЕL 16 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000		0.55225 0.52625 0.52669 0.5225669 0.5225669 0.5225690 0.5225690 0.5225690 0.5225690 0.5225690 0.5225690 0.5225690 0.5225690 0.5225690 0.5255690 0.5555690 0.5555690 0.5555690 0.5555690 0.5555690 0.5555690 0.5555690 0.5555690 0.5555690 0.5555690 0.55556900 0.55556900000000000000000000000000000000	0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.63629 0.63629 0.53662 0.52989 0.52511 0.52511 0.0000 0.0000 0.0000	0.0000000000000000000000000000000000000	+0000001 +0000001 +00000001 +00000001
N 14 2 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.75762 0.45989 0.522511 0.522511 0.52600 0.52600 0.52600	C. 82549 C. 925C9 0. 75762 0. 0.75762 0. 0.7583 0. 0.7583	C. 79762 C. 32989 C. 32989 O. 52511 O. 52511 O. 60000 O. 60000		
4 2 3 2			0.0544200.05444200.05444200.05444200.05444200.0544420000.0544420000000000	0.0000000000000000000000000000000000000		
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.75762 0.07683 0.57175	0.00000	00000	0001 1 0001 1 00001 1 00001 1 00001 1 00001 1
			0.07683 0.57175	000000	00000	nei i ooi i ooi i ooi i ooi i
	0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					
•				f f f f f f f f	1 1 1 1 1 1 1	
ESTIMATLU I	רמכאר ענומכ	LTIES BY	THE CUEFFI	ICTENT EC	LATICN (1/5)
STII Å	£	J	CL	Э	,]	• •
EVEL 0. 46508	8 Ú • Ł85ć5	0.63475		0.68479		0.46904
	0 0.63219	0.78752	0.76750	0.73792	0.62219	0.00000
	u u.couoc 0 g.ccooc	0.50775	C. # 7750	0.19740		0.00000 0.00000
5 0.000	0 0.0000	0.0000	C.75382	0.00000	0.00000	0.00000
6 0.3000	0 0.54500	c . cooco	0.65419	6.00000	0.00000	0.00000
7 0.0000	0 0.0000	0.00000	0.58019	0.00000	0.00000	0.00000

0 RJN NUMBER E-43

2

1

ń

22

0

<u>د</u>

<u>с</u>

 \mathbb{T}

<

STA

2

12こゅうじて

LUCAL VELUCITIES (M/S)

EXPERIMENTAL

	5			
0.0000000000000000000000000000000000000		4/5)	······································	0.0000 0.0000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000
0.630000 0.600000 0.0000000 0.0000000 0.0000000 0.000000		rå 11 dv	ן ן ן ן ן ן ן	000000 0000000 0000000 0000000 0000000 0000
0.000 0.000 0.000 0.000 0.0000 0.00000 0.00000 0.00000 0.000000		ICLERT EC	2	0000000 0000000 00000000 00000000 000000
00000000000000000000000000000000000000		THE CULF	CL	0000 000 000 000 000 000 000 00
0000000 •••••••••• ••••••••• ••••••••	1 7 1 1 1 1)	00000000 00000000000000000000000000000
00000000 0000000 00000000 00000000 00000		CAL VELUC	[0000000 •••••••••• 0000000 ••••••••••
000000000000000000000000000000000000000			· A	
	F F	ES I	•	

・ミシキシント

L'È V'EL

S TN

t 1

ŧ

ŧ

I ł

1

LN. NGY SLUFUE 0. 609000-02

.

3/5

VALAN= 0.00 ...

17

0.2155

YMAX=

RUN NUMBER E-45

11

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LEVEI ł

L

2	1	8
_		-

			-				
	نگم ا	00000000000000000000000000000000000000		A/S)	• •	000000000000000000000000000000000000000	10- <u>1</u> 0
	ເປ	000000		LATIUN (<u>ц</u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0	6= 0.4255
S (N/S)	a	0.28484 0.31165 0.33169 0.25490 0.00000 0.00000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ICIENT EG	a.	0.30848 0.31910 0.20765 0.25153 0.00000 0.00000	CPGY SLUE
VELUCITIE	CL	0. 28894 0. 2884 0. 34494 0. 28494 0. 28494 0. 28889 0. 28889	- 1 - - - - - - - - - - - - - - - - - -	IHÊ CUEFF	CL	0. 2000 0. 12040 0. 12040 0. 12040 12050 0. 12050 10050 10000000000	V/S EN
IL LUCAL	ບ	0.00 0.22 0.21 0.22 0.22 0.22 0.22 0.22	1 1 1 1 1 1	ITIES EY	· C	00000 0000 0000 0000 0000 0000 0000 0000	- C.2317
(PERIMENT/	Э	00000 00000 000000 000000 000000 000000		AL VLLUCI	e	000000 1.000000 1.000000 4.000000 4.0000000 4.0000000	VAIE AN-
<u>.</u>	А	0.26235 0.2000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000		ΙΜΑΤΕΌ ΓΟΟ	Ą	0 0 0 0 0 0 0 0 0 0 0 0 0 0	, 2618 A
	S TN	下用 人 6, 5, 4 3 2 まて 人 7 5, 5 4 3 5 また	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EST	STN	ー 1 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2	VMAX= J
		5				~	

RUN NUMBER E-46

		EXPORTMENT	AL LUCAL	VELUCIT'IE	s (N/S)	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 7 7 1 8 4 1
5Tu	Y	ŭ -	C	cr	Ċ	भ	ш.
15 15 15 15 15 15 15 15 15 15 15 15 15 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000 000000 000000 000000 000000 00000	0.74000 74902 0.74922 00000000000000000000000000000000000	0 71055 0 71055 0 75762 0 75763 0 73309 0 73309 0 73373 0 0 71373	0.70082 0.74922 0.74922 0.66855 0.66855 0.66855 0.0000 0.00000	0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	000000 0000000 0000000 0000000 000000
sta	TTHATED LU A	ינאריכ אררכ	ر در	Tri CUEFF CL	ICTENT EG D	LATIUN (E	4/S)
し 1 1 1 1 1 1 1 1 1 1 1 1 1		 72644 72644 626650 626650 626650 626650 626650 626650 626650 626650 626500 626500	00000 000000	0.76057 0.76057 0.76057 0.75057 0.75055 0.75055 0.68214 0.68214	0. 75486 0. 75486 0. 72794 0. 60000 0. 60000	52232 52252 52252 52555 52555 52555 52555 55555 55555 55555 55555 55555 55555 5555	
¥нах=	0.2313 4	VHE AN	= 0.7152	k/S En	EKGY SLUP	t= 0.1375	01.462

13 RUN NUMBER E-47

1.

			אר בטראר		「つ」「「」」		
STN	A	n	U	ŭ	Ū	ш	<u>,4</u>
LEVEL 1 2	0.58537	C • 79002 0 • 71655	0.75762	69328-0	0.797622 0.84602	0.79002	0.55537
ლ 4 ს	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,00000 0,00000 0,00000	0.86215 0.59555 0.0000	0.92c69 C.85442 C.76535	0.86215 0.59559 0.00000	0.00000 0.00000 0.00000	0,00000 0,00000 0,00000
-10	0.0000 0.0000	G • C 3 0 1 0 C • C 0 0 0 0	C. 00000 C. 00000	0.68469 0.56372	0. COUOO C. GCC OO	0.00000 0.00000	0.00000 0.00000
	TIMATED LC	כאר עבריככ	ITILS BY	THE COLFF	ICLENT EC	LATIGN (1/5)
STN	A	n	U,	ر ن	ב	יי	<u></u>
	40250.0	22252.0	0.45562		0.85562	0.79723	+8865.0
N") ·	0.00000		0. 40242 C. 79308	C. 45113 C. 95622	0.852.00 0.752.00	0.00000 0.000000 0.000000	
4 iß	0.0000	C. CUCUC	0.57014 c. cocco	u.cc3339 0.78123	0.00000 0.00000	0.00000	0.0000.0 0.0000.0
0 1	0.00000	C. COCOO C. COCOO	C.C.C.C.C.C C.C.D.C.D.O	0.65893 0.61269	0.00000 0.00000	0.00000.0 0.00000	0.000000

					•		
STN	V	.ם	J	CL	Q	ш	Ш.
	0.28678	5510E.0	0.30725	0.31624	0.30729	.0.30199	0.28078
lin 4	0.24342	0.101. 2.0000 2.0000	6.34175 0.31455	0.35820	0.34175 0.31495	0.31013	0.00000
ທັນ	0.00000	C. CO 0 0 C	0.030000	0.31524 0.36543	0. 00000 0. 00000	0.000000	0.00000
/ /	0.0000	C (COOOO)	C. 0 C.0 C C	0.28252	0.00000	0.00000	0.00000
਼ ' ਤੁ	TIMATED LU	וכאך אברככ	ITIES EY	THE COEFF	ICIENT EG	LALIUN (M/S)
SIN	A	0	C	CL	a	ل،	<u>د</u> .
	0.27030				0.30676	0.29912	0-27033
24.55	0.24542	0.21927 0.21728	57224.0	0.32350 0.34664	0.32979 0.34383	0.31537	0.28532
44		C. CCU00	0.32222	0.34046	0.32232	0.00000	0000000
)))))))))	0.00000 0.000000 0.000000			0.12120			

RUN NUMBER E-50

ហ

Š

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

221

сц

STN	ີ	XPERIMENT	AL LUCAL	VELUCITIE	S (N/S)		
	Ý	n	C.	CL	<u>م</u> .	ليا	'1
	5.2.705	0.25086	0.25681	0.25453	0 • 25681	0.25088	0.22705
n n	0.23569 0.17500	0.26809	0.27655 0.26758	C.27511 C.25039	0.28793 0.28793	0.26809 0.26137	0.23969 0.17203
4.	0.00000	0.00000	C. 26813	0.25244	0.26313	0.00000	0.00000
റം	0. 66000 0. 00000	0.00000	0.00000	0.27952	0, 600 00 U, 00000	0.0000000000000000000000000000000000000	0.00000 0.00000
. 7	0.00000	C • C 0 C 0 0	C.00000	0.22473	0,00000	0.0000	ú.00.00.0
	IMATED LO	CAL VELCC		THE CUEFF	ICLENT EC	UATIUN (.	
S TN	V	2	U	CL.	Ċ	ف.	<u>`</u>
LÉVEL	t 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1				
	0.14534 6.74534	0.2454c	0 . N C C C C C C C C C C C C C C C C C C	0.25251	C. 25580	0.24980 0.25710	0.22.0 4.445 ¢. (
ני ו	9.1/3.48	C . 26037	0.23704	0.23295	0. 23704	0.20037	0.17.393
7	6.0000	0.01000	0.20714	0.29151	0.20714	00000.0	0.00000
C.	0.00000	C. 50000	0.00000	0.27255	C • CO • CO	0.0000.0	0000000
-1 G	0.00000 0.00000			0.20084 0.2220	0.00000		0.000000

л С

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

3

	ш.	хреятиент	AL LUCAL	VELUGITIE	(S/M) S		
STN	K	=	U	CL	n	U	<u>L</u>
	0.42819	0. 46347	0.47176	C.46d11	0.47176	0.40347	0.42819
:N 1	0.44661	0.46352	C.50051	0.45320	0.50051	0.43852	0.44001
(Y) <	0.0000	540/5*0.	C.51057	0.52323	0.51657	0.47549	0.31339
ר ד ד					0.0000		
	0.0000	0.0000		0.4720	0.0000		
~	0.00000	0.0000	C.00000	0.44004	0.0000	0.0000	0.00000
ະ <u>ມ</u>	TINATED LU	CAL VELUC	ITTES, EY	The COEFF	ICIENT EQ	LATI UN (M/S)
STN .	V V	2	U	CL	C	ш.	
LEVEL	0 - 42823 -	. 0. 46 348	0.47177		0.47177		
. त्य	0.44003	0.43654	0.50052	C • 4 5 8 2 2	0.50052	0.43851	0.44663
Ĵ,	0.21340	0.47551	0.51655	0.52101	0.51655	0.47551	0.11.390
4	0.0000	C.C0000	0.48c65	C.52322	0 • 48089	0.00000	0.00000
ر. ر	0.00000	0000000	0.0000	. C. 50478	0. 60060	0.0000.0	00000000
ົວ	0.00000	. c • c c o o c	0.00000	0.47360	0.00000	60000.0	0.00000
~	0.0000.0	C+C000C	C. C0300C	0.44773	0.0000	0.00000	0.00000

223

D u C

5 TN	V	n	0	CI.	ġ	tu i	- - -
	0.46131	0.60402	0.60402	0 • 6 C 4 G2	0.60402	0.60402	0.46131
2	0.51735	0.70032	0.74922	0.73309	9.74922	0.73032	0.51735
m	0,0000	0.63629	0.76535	0.75762	0.76535	0.031.29	5-0000 · J
4	0.00000	0.00000	0.64654	0.75762	0.64694	0.0000.00	0.00000
ر ی	0.000.0	0.00000	00000000	0.73399	0.00009	0.00000	0.9006.0
<u>د</u>	000000	0.0000	0.00000	0.62015	0.00000	0.00000	0.00000
. 2	0.0000	0,0000	0.00000	0.55562	0.0000.00	0000000	0000000
			 				1
ι.	STIMATED LO	CAL VELOC	ITTES NY	THE COEFF	TCLENT EC	LATION ((S/N
STN	4	æ	U	, CI.	2	ш	ت
			, ; ; ; ; ;	1 1 1 1 1 1 1 1 1		+ 	F I I I I I I I I I
1	0.47'626	0.58548	0.61627	0. ¢ C1 70	9.61627	0.58943	0.47625
<u>ə</u>	0.57142	C.689914	0.72567	0.71517	0.72587	0.68.091	0.53142
m	0,0000	0.60000	0.73851	C. 81044	0.78851	0.60600	0.0000.0
4	0.00000	0.0000	0.65941	0.82023	0.65941	0.00000.0	0.00000
ŝ	0.0000	0.0001.0	0*00000	0.74234	0.00000	66006.0	0.0000.0
د	0.0000	0.0000.0	0.00000	0.63551	0.00000	00000.00	0:0000•0
7	C. 60000	0.0000	c.coooo	c.53139	000000.0	0.0000.0	0.00000
			=	NJ S/N			

EXPERIMENTAL LOCAL VELOCITIES (A/S)

511

RUN - NUTBER

224

Du

	٣	XPERIMENT	VL LOCAL	VELOCITIE	(S/W) S		
STN	4	<u></u>	ں ·	CL	Q	с Ц.: С	لنہ
LEVLL		• • •		•	•	-	
-	0.23830	0.31320	0.35362	0.35468	0.35362	0.31320	0.24483
<u>م</u> `	0.71414	0.34562	0.355586	0.36234	0.35988	0.34562	0.31414
رب رب	0.23352	0.32755	0.35481	0.36240	0.35481	0.32769	0.23362
4	0 . 0 0 0 0 0 0	0.00000	0.33376	C. 35728	0.33378	0.00000	0.0000.0
S	0.0000	00000.00	00000000	9.34422	0,00000	0,00000.0	0.00000
Q,	0.0000.0	0000000	C. 00000	0.32804	0.00000	0.00000	0.00000
2	0.00000	0.0000.00	0,00000	0.30982	000000	0.00000.0	0.00000
		+ 	€ \$ } ₽ ₽ ₽ ₽ ₽				
							•
	·	,					
	3 1 1 1 1 1 1 1 1 1 1 1 1		t 1 1 1 1 1 1 1 1				
ដ	STIMATED LO	CAL VELCC	ITIES BY	THE COEFF	ICIENT EQ	NUATION (4/S)
11 J	•	=	ر	Ţ	· <u>-</u>	Ŀ	
	:	Ċ	ر		D .	1	
LEVEL		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 		 	1 1 1 1 1 1 1 1
, 	C.31355	6.33977	0.34965	0. 35056	0.34953	0.33977	0.31355
C:	031073	9.34167	0.35565	0.35308	0.35565	0.34167	0.31073
m	0.21147	0.32404	0.35068	0.35615	0.35068	0.32404	0.23147
4	0.0000	00000000	0.33003	0.35312	0.33903	0.00000	00000000
ۍ ۲	0.0000	0.00000	0.0000.0	0.34029	0.0000	00000.0	0.00000
Ś	0.60000	0.0000.0	0.0000.0	0.32433	0.0000	0.00000	0.00000
~	0.0000	666000.	0.0000.0	0.36646	00000.00	0.0000.0	0.00000
			3672 0 -	NJ 57.1			20 22
		ムモビニン		NU [11	REDI SLUF		20-102

E-55

RUN NUMBER

Ń.

er,

225

nc n

ц р

STN							
	A	ĩ.	U	CL	<u>م</u>	'LL	i.
E VEL	0.22094	0.24267	0.25155	0.25294	0.25155	0.24287	0,22094
ର ୍ମ	0.21770	0.24203	0.25355 0.26884	0.25684 0.25444	0.25355 0.24884	0.24203	0.21770 0.15008
)4	0.00000	0.0000	0.23235	C. 25067	0.23235	00000	0.00000
ល	0.0000	0000000000	0.00000	0.24032	000000	0.00000	0.00000
9 M	0.00000	000000000000000000000000000000000000000	0.00000	0.22796 0.21425	0.00000	000000000000000000000000000000000000000	0.0000
Щ	STIMATED LC	יכאר ערוחכ	ITIES BY	THE CORFF	TCIENT EQ	1 401101	11/S)
N1:	4	C	U	CL	a	i.	۲.
		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(0.22094	6.24297	0.25154	0.25294	0.25154	0.24287	0.22054
N M	0.17712.0	C • N4 NO 3	0.24864 0.24864	0. 250533 0. 250033	0.50000 0.00000	0.04700	0.21210
; 4	0.0000	0.0000	0.23235	0.25067	0.23235	0.0000	
с С	0000010	0.0000	0.00000	0.24032	0.0000	0000000	0.000.0
9	0.00000	0.0000.0	0000000	0.22796	0.00000	00000000	0.00000
2	0.0000.0	00000.0	C.03002	0.21424	0.0000	00000.00	0.0000

PUN NUMBER E-56

m .

ويكرر

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

226

с ц

п_Р

		XPERIMENT	AL LUCAL	VELOCITIE	S (M/S)		
STN	Α.	C	υ	. L	c	Ш,	- <u>11.</u>
- 」 - 」 - 」 - 」 - 」 - 」 - 」 - 」 - 」 - 」	0.36202 0.41042 0.60000 0.00000	5 1 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.40789 0.41099 0.40847 0.30788 0.30788	0.400 0.400 0.41210 0.41210 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.500 0.400 0.500 0.400000000	0.40788 0.41099 0.40847 0.39788	0.40319 0.40319 0.39365 0.00000 0.000000	0.36292 0.41342 0.05000 0.00000
06				0.38624	00000	00000	
	STIMATED, LU		ITLES BY	THE COEFF	ICLENT EQ	UATION (4/5)
STN	V	~	Û,	CL	C,	⁻ L	ن ــ
	0.38865		0.40756	0.46801	0.40758	0.40264	0.38865
רה גי	0.28176	0.40365 0.39245	0.41021	0.41232	0.41091	0.40309	0.23030 0.23176
ন গ	00000000000	C. COUCO	E3725U.0	0.40572	0.39703	0.00000	0.00000
ם ה	0.0000	00000	0.00000	0. 35456	000000	000000000000000000000000000000000000000	0.00000
2	00000000	0.0000	0,00000	0.36470	0.00000	0.00000	0.0000
= X V X X	0.3442 14						
=XVIX=	0 • 34 42 M	V ME VH	= 0.4027	F/S	CRGY SLUP	:E= 0.354	

E-57 PUN NUMBER

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

3

227

с л

n_p

-	11 0000 0000 0000 0000 0000 0000 0000	1	2000 0000 0000 0000 0000 0000 0000 000	,
Ц.	0000000 8400000 7700000	(W/S)	10000000 1000000 1000000 1000000	286 ~0 3
ш	00000 00000 000000 000000 000000000000	TTON .	666634 656634 655873 0.05006 0.00000 0.00000 0.00000	- 0+9585
C	0.70082 0.74922 0.76535 0.59216 0.00000 0.00000 0.00000	ICTENT ECU	9.72166 9.72166 0.728145 0.59933 0.00000 0.00000 0.00000	TEGY SLOPE:
	0.75762 0.75762 0.75762 0.66855 0.57175 0.57175 0.50725	THE COEFF	0.72617 0.77525 0.77883 0.74725 0.66959 0.58089 0.49134	N/S EN
	C.70082 0.76535 0.59216 0.59216 0.00000 0.00000 C.00000	ITTES AY C	C. 72146 0. 72146 0. 72814 0. 59538 0. 63000 0. 63000	= 0.6657
	0 0 0 0 0 0 0 0 0 0 0 0 0 0	сль veloc	6.66634 6.66634 6.66634 6.66000 6.60000 6.60000 6.60000 6.60000	VEE AR
	0.57175 0.47860 0.00000 0.00000 0.00000 0.00000 0.00000	TIMATLO LO	0.52732 0.50250 0.00000 0.00000 0.00000 0.00000	0.3373 N
	「 「 」 (」 () () () ()) () ()) () (STR 5	L F K K K K K K K K K K K K K K K K K K	т =ХАМҮ∙

PUN NUMBER E-53

ស

228

Эu

du

		. In Je Lefter X	AL LUCAL	LUDCI TIE	(5711) 5			
STM	Ω.		U	CL	a	Ŭ	<u>.</u>	
	0.27818	1975.1	0.34665	J. 35485	0. 347.65	0. 33791	0.27313	
7177	0,31524	0.27139	0.38385	C. 39291	0.34385	0.37139	0.31524	
)4	0.000.0	6.21940	0.40863	0146105	0.404.0	0.31940	0.0000	
י הי	0.00000	0.00000	6.36796 2.25796	2005 E.T.	0.36706	0.00000	0.00000	
0 M	0.0000	0.00000 C.CO000	0.24943	024121	C • 51 1 51, 0. 24943	0.0000.00 0.00000	0.0000.0	
	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1			8 2 1 1 1 1 1 1 1 1 1	t 1 1 1 1 1 1 1 1		
;;	STIMATED LO	CAL VELOC	ITIES HY	THE CUEFE	TCIENT EC	, NUITAU	1/S)	
STH	T	<u> </u>	Q	CL	C	121	Li.	
LEVEL			0.34662			0.73546		
•01	0.12304	0.57319			0. 380.02	012220	10) 10) 10) 10) 10) 10) 10) 10) 10) 10)	
n 4	0.00000	0.01020	0.41470	0.4 × 360	0.41472	0.31628	0.00000	
ۍ ا	0.0000	0.50000	0.36835	C. 4 COSS.	0.36339	0.00.00.0	9. 92253	
2 ~	0,00000	0.0000.0	6+ 30744 0+24114	0.31515	0.2114	0.00000	0.00010	
			- 0 - ARGA					-
1<55								

¢

ŋd

	RER E-61		F I I I I I I I I I I I I I I I I I I I		898383837		
		XPERIMENT	AL LECAL	VELOCITIE	5 (3/2)		
STH	F.	3	C	CL	0	ע	_ <u>ti</u>
	07290-0			0.25120			
• 21	0.20501	0.25400	0,25813	0.26234	0.25313	0.25400	0.20501
m ·	0.00000	0.24361	0.26445	0.20769	0.26445	0.24361	0.000000
÷ L	00000.0		0.20284	1 5 / D 7 0 0	0. 20784	0.00000	0.00000
n v			0.255171	0.20141	0.20101	0.00000	0.00000
0 ~	00000.0	0.0000	0.21384	0.21806	0.25145	C00000.0	0.00000
	TIMATED LC	ICAL VELCC	ITIES HY	THE COEFF	ICLENT EC	UATION ,	
5 TN	e	œ.	U	cı.	a	لار	ц.
LEVEL			 		+ 1 1 1 1 1 1		
0	0.24611	6.25142 0.05500	0.24913	C•26074	0.24913	0.25142	0.24641
٩m	0.00000	0.24451	C. 26243	0.26530	0.26243	0.24451	0.0000.0
, †	0.0000	0.00000	0.26191	0.26555	0.26101	0.00000	0.00000
ហ	0.00000	0.0000.0000	0.25111	0.26018	0.25111	0.00000	0.00000
¢٢	0.00000	6. (6000 3. 60000	0.23615 0.21705	0.25173	0.23615	0,00000	C0000.0
			じしけん うこー リ				1 I U

	ήl -	XPERIMENT	AL LOCAL	VELOCITIE	S (IV/S)		
STN	۲.	C *	U	CL	ē	lu	<u>L.</u>
	0.41336	0.43608	0.42833	0.43653	1 0.42933	0.43608	0.41386
	0.28665	0.45932	0.47455	0.50722	0.474.95	0.45932	C.28655
m	0.00000	0.40865	0.4921.6	0.53814	0.49216	0.40865	0.00000
4	0.00000	0.0000	0.48435	0.•56264	0.46139	0.0000.0	0.000.0
n	0.00000	0,00002,00	0.43587	C • 4 8075	0.43587	0.00000	0.0000.0
دا	0.00000	0.0000000000000000000000000000000000000	0.37217	0.47225	0.37217	0.00000	0.00000
_	0.00000	0.0000	0.30631	0.35722	0.30631	00000000	0.00702
ES.	TINATED LO	וכאר ענרמכ	ITIES BY	THE COEFF	ICLENT EQ		4/S)
STN	<	IJ	υ	CL	C	עי	ш.
ונעדער							
-+ (
N	0.20500	0.10399	0.4/1.11	0.48229	9.47131	9.46394	0.28503
m	0.00000	0.41075	0.43876	0.51514	0.49376	0.41075	0.000.0
4	0.00000	C. COOOO	0.49050	C.51667	0.40050	0.00000	0.0000
- L	0.00000	C. COJ 00	0.43925	9.48662	0.43925	00000000	00000.0
9	0.00000	0.0000.000	C. 37286	0.44541	0.37236	0.00000	0.00000
2	0.0000	2.20000	0.30547	0.35383	0.30547	00000-0	0.0000.0

جرّ
						5 † † † † †	t 1 1 1 1
×	دی	XPERIMENT	AL LOCAL	VELOCI T IE	(S/W) 3		
NT S	ধ	C	U_	CL	٥	Ψ	Ľ
LEVEL	0. 61503	0.64536	0.67055	0.68158	0.67056	0-64536	0.615.0-3
י כן הא	0,53160	0.66855	C. 76535 0. 75755	92922.0	0.75799	0.0082	0.030000
ণ গ	0.00000	0.00000	C.74882 0.68479	C:77875 0.74092	0.74382 0.68479	0.00000	0.0000.0
101	000000	0.00000	0.60138 0.50283	0. čE869 0. č2938	0.60138 0.50283	0.0000.0	0.0000.0
r 2 1 1 1 1 1 1 1 1 1 1		8 7 8 8 9 9 1 1	r 1 1 1 1 1 1 1 1	1 7 7 8 9 1 1 8 8	• • • • • • • • • • • • • • • • • • •		
	TIMATED LO	וכאר ענרטכ	17165 BY	THE COEFF	ICIENT EQ	UATION (A/S)
STN	<	5	C	CL	с С	ب ۲	ر <u>ب</u>
	0.62305		0.66503	0. 6.7563			0.63865
ัญภ	0.62593	0.71534	0.75014	0.771332	0.75772	0.67025	0.62553
ተ ሆ •	0.00000	0.00000 0.00000	0. 74755 0. 68008	0.73057	0.74795 0.68008	0.00000	0.00000
102	0.0000	6.0000 6.0000	0. 59230 0. 48554	0.68413	0.59230 0.48954	0.00000	0.0000
=так	0.1339 4	VIE AN	= 0.6841	N/S EN	4078 X939	E= 0.4291	76-02

RUN NUARER E-63

σ

Ś

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

232

лС

ENEPGY SLOPC= 0.053295-03

VAEAN= C. 3536 M/S

YMAX= 0.2540

	INEP_E-65		 	1 	1 	1 1 1 1 1 1 1 1 1	r 1 1 1 1 1 1 - 1
•		тидитарих	ΛΈ ΓΟΟΑΈ	VFLGCITIE	5 (M/S)		•
STIL	4	5 5	U	CL	n N	Ц. ,	Ŀ
LÉVEL	77 Cž L O						
+ N	0.34175	0.42129	0.41021	0.415.94	0.41021	0.42129	0.34175
m	0.31524	0.38456	040825	0.44780	0.40329	0.38453	0.31524
.÷ ۱	0.00000	0.0000000000000000000000000000000000000	0.39658	0.40622	0.39698	0+32540	
n va		0.00000		0.36386	0.33166		
~	000000	0000000	0.31524	0.33763	0.31524	00000-0	0.0000
r 							
					 		L 2 1 1 1 1 1
51	TIMATED LC	CAL VELOC	ITIES BY	THE CUEFF	ICIENT EC	UATION (MZS)
	<	2	U	CL	Q	ند .	• •
LEVEL							
- 0	0.35520	1 U V P P + 0	0,41272	0.41835	0.41272	0.39670	0.35921
e	0.33174	0.33747	C. 41 CE1	0.41642	0.41081	0.38747	0.33174
41	0.00000	95856 °O	19565.0	0.40877	0,35967	0.32898	0.00000
ົດ	0.00000		0.33621	0.34699	0.37102		
, ~	0.00000	00000-0	0.29326	6.34107	C.29325	0.00000	00000.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0

5

233

ES	TIMATED LO	CAL VELCC	ITLES BY	THUE COLFF	ICTENT EQ	LATION ((5/1:
STN	Y		U	٦ [°]	G	, L.	ά.
EVEL	1 	 	1 7 1 1 1 1 1 1		1 7 7 1 1 1 1 1		
1	0.15715	6.21236	0.21460	13712.5	0.21460	0.21230	0.19715
2	36231.0	0.213-01	0.22353	 	0.22153	0.21501	0.15.703
:1	0.6669.0	319916	0.22665	1,23154	0.22009	0.19916	0.0000
4	0.00000	0.00000	C.220f2	. 22738	0.22062	0.00000	0.0000.0
ាល	0.0000	0.00100	0.23244	.21(82	0.20244	0.00000	0.0000
0	0.000.00	00000000	0.17673	261024	0.17379	00000.0	0.0001
~	0.00000	00200.0	0.14850	92351.°°	0.14350	0.0000000	0.0000

0.21806 0.225527 0.222341 0.222333 0.222333 0.20430 0.14075 0.14075

0.21666 0.22627 0.228841 0.228348 0.228348 0.228338 0.228438 0.26436 0.15053

0.15597 0.18597 0.60000 0.00000 0.00000 0.00000 0.00000 0.00000

- N M 4 1 6 1

С СC

0000

1

....

ш

0

5

Ċ

٩

STN

EXPERIMENTAL LUCAL VELOCITIES (M/S)

5-E U

NUMBER

งกะ

11

1 1 234

n_P ЪС

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LEVEL

t

	•		
Ъ.	0.550 0.550 0.550 0.550 0.550 0.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	1/S) F	0 0 0 0 0 0 0 0 0 0 0 0 0 0
<u>11.</u>	0.60105 0.62942 0.62942 0.62015 0.6200 0.00000 0.00000	LATION (0.63172 0.53267 0.59526 0.00000 0.00000 0.00000 0.00000
C	0.60865 0.68469 0.68469 0.64645 0.63361 0.63361 0.57354 0.57354	ICIENT EQ	0.62935 0.64922 0.64922 0.64676 0.63380 0.63380 0.55857 0.55857
CL	0.60364 0.71695 0.65492 0.65492 0.64703 0.64703 0.6229 0.52732 0.52732 0.52739	THE COEFF CL	0.6644 0.66648 0.66623 0.66623 0.64732 0.64732 0.64732 0.61723 0.61723
с С	0.00 0.00	ITILS BY C	0.63936 0.64928 0.64928 0.64676 0.65380 0.55867 0.55867
Э. Э	0 • 60 0 • 60 0 • 60 0 • 62 0 • 62 0 • 62 0 • 62 0 • 62 0 • 62 0 • 60 0 • 60	CAL VELOC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A	0 - 56564 0 - 56564 0 - 564473 0 - 50000 0 - 00000 0 - 00000 0 - 00000 0 - 00000	LINATED LO	0.65558 0.67357 0.60000 0.000000 0.000000 0.0000000000
STN	ー - - - - - - - - - - - - - - - - - - -	STN	「 で よ よ よ よ よ に 「 に 」 し の の の で か よ の し

ENERGY SUDPE= 0.14167E-02

VAEAN= 0.6171 M/S

YMAX= 0.1321 N

RUN - NUMBER E-67

12

Ś

EXPERIMENTAL LOCAL VELOCITIES (M/S)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

235

r p ри С

	<u>'</u> Ц.,	XPERIMENT	AL LUCAL	VELOCITIE	S (11/5)			
	A	E -	U	CΓ	Q	<u>u.</u>	آئے	
000000	72084 69991 69000 00000 60000 60000	0 • 77566 0 • 775566 0 • 76546 0 • 66000 0 • 66000 0 • 66000 0 • 66000 0 • 66000 0 • 60000	C.72685 0.80210 0.82780 C.80600 0.75138 0.65234 C.60774	0.75589 0.81267 0.84295 0.84295 0.75558 0.75528 0.75528	0.78689 0.80210 0.82780 0.82780 0.82780 0.82380 0.65234 0.66774	0.77566 0.77566 0.76946 0.00000 0.00000 0.00000 0.00000	0.72024 0.72024 0.000001 0.000000 0.000000 0.000000	
								· <u> </u>
	A LI			IHE COEFE . CL				
600	73601	0.78867 0.71273	0.79945 0.81472 0.51472	C-3C&06 0.82419	9 - 29945 9 - 81402	0.78273		
000			0.73854	0.81129 0.77048	0.73564			
co		0. CC 0 0 C	0.60567	0.73583 0.73583 0.75315	0.66967 0.59775			
5	1.000	****	1) () (-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E-68

RUN NUMHER

13 . • 236

n L рц

1

4

ENERGY SLUPE= 0.45834t-02

3/2 S/2

0.7567

V REAN=

.

0.1704

YM AX=

-1

k

	1	XPERIMENTA	AL LUGAL	VELUCI 11E	10/11/0		
5TN	F	۲	U	CL	C .	<u>س</u> .	<u>u</u> .
E VEL	 	* 			t 1 1 1 1 1 1 1	† 	
(0.21138	0.27148	0.28484	0.26484	0.28484	0.27143	0.21138
ייז גע	0.041010	0 - 20 - 74 4	21087 · D	01122	0.20275		0.04010 7.00120
14	0.0000	204402.0	0.31225	7.1227	0.312290	0.24402	0.0000.0
S	0.0000	0.000.0	0.27476	0.25426	0.27476	0.00000	0.00000
10	0.00000	0 • C0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.23870 0.15645	0.26943 0.25813	0.23670 0.19645	0•00000 0•00000	0.0000.0 0.00000
	r 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	 	1 1 1 1 1 1				
ũ.'	STIMATED LU	CAL VELDC	ITIES BY	тне слеғғ	ICTENT EG	UATION ((J/W)
STH	V		U	Ĵ	C	U)	ü
'EVEL							
→ Ç.	0.21015	0. 201 00 201 00	0. 100 000 0	0 - 2 5665	0.250220		0.24915
, M	0.24124	57262.0	C. 3101E	0.31659	0.31018	0.29273	0.24124
4	0.0000	9.24693	0.30788	0.31791	0.30768	0.24693	0.0000
ۍ د.	00000000	0.00000	0+57592	0.25515	0.24892		0.00000
~	000000	C* C000C	0.15773	0.24450	0.15773	0100000	

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

کری

237

с д

	· ·	_			
Ľ	000000 000000 000000 000000 000000 00000		(S/H	لف	0.00000 0.4430 0.4430 0.48033 0.000000
ĹIJ	0.52000 0.52000 0.52000 0.54000 0.440082 0.00000 0.000000 0.000000	•	UATION (Ľ	0.44914 0.44914 0.949108 0.931154 0.934440 0.996609 0.96609 0.96609
G	0.45291 0.50757 0.53968 0.53630 0.48910 0.48396 0.35466		ICIENT EQ	۵	0.46080 0.50725 0.54267 0.53892 0.43699 0.41618 0.34200 0.34200
CL	0.44404 0.51784 C.55362 C.55362 C.55362 C.55362 C.55362 0.52191 0.47556 0.47556 0.47556 0.47556		THE CUEFF	ರ	0.47103 0.55477 0.55477 0.55631 0.55531 0.47699 0.47699 0.47699
U	0.45251 0.52757 0.52757 0.5266 0.62636 0.42536 0.42356 0.35466 0.35466		TTES BY	U	0.46C80 0.56726 0.554267 0.538528 0.41618 0.34267 0.41618 0.41618
Ð	0.52000 0.52000 0.52000 0.52000 0.52000 0.52000 0.52000 0.50000 0.50000 0.50000		אר ענרטכו	<u>c:</u>	0.44914 0.44914 0.649914 0.60366 0.60366 0.60366 V 35Ah=
٨	0.37837 0.43000 0.43000 0.00000 0.00000 0.00000 0.00000		FIMATED LOC	V	0.39999 0.49561 0.49561 0.48561 0.48561 0.48561 0.48536 0.60000 0.60000 0.60000 0.60000
STN	「「「「」」へのちゅう。	•	LS3	S TH	ГЕ ГЕ 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EXPERIMENTAL LUCAL VELOCITIES (M/S)

RUN NUMBER E-71

S.

ď

238

с ц

		XPERIMENT	AL LOCAL	VELOCITIE	5 (W/S)		
3111	٨	æ	ຸບ	CL	٩	Ľ?	
「 「 し し し し し し し し し し し し	0.57175 0.568855 0.668855 0.668855 0.668256 0.668256 0.668256 0.66865 0.66866 0.00000 0.00000	0.60402 0.73309 0.73149 0.73149 0.60036 0.60000 0.60000 0.60000	0.62015 0.76535 0.82589 0.82589 0.82589 0.63659 0.54527	0.63629 0.76535 0.76535 0.82589 0.82989 0.74922 0.68855	0.62015 0.76535 0.82939 0.82939 0.82939 0.82939 0.82699 0.5458 0.54527	0.50402 0.73309 0.78149 0.66035 0.0000 0.00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0
ů.	STIMATED LU	י אפרסכ	TTLES BY	THE COEFF	DE TREIT EC	UATION; ((S74
S TN	×	C	U	Ċ.	a .	u,	<u>ــــــــــــــــــــــــــــــــــــ</u>
LEVEL	0.60.04	0.67081	0.63656	C.7 6301	9.68358	0.67031	0.0004
017	0.647)9	9.72940 0.75040	0.75321	0.76355	0.75321	0.72940	0.64709
)' (()			0.79762		0.79752	0.66068	
100	00000 00000 00000 00000		0.62855 0.62855	20683.0	0. 62858 0. 62858 0. 50699		
= XA1: Y	0.2916.1	VVIIIA	1: 0.6517		LAGY SLOP		ес-02 6С-02

ENLAGY SLUPF = 1,16666L-02

р^лс

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RUN NUMBER E-72

	- -	XPERIMENT.	AL LUCAL	VELUCI IIE,	S (M/S)		
5 TH	<	2	U.	CL	0	۳.	<u>.</u>
FVEL	0.31155	6.52111	0.34176	C. 34632	0.34178	0,33111	c.31155
0 M	0.30279 0.28240	0.33295 r.32606	0.34695	0.35155 0.34387	0.34695 0.34427	0.33295	0.30270
; 4	0.0000	0.29245	0.33565	0.34231	0.33585	0.29245	c.0000
ۍ ي	0.0000	0,00000	0.31366	0.32721	0.31386	0,00000	0.00000
92	0.00000.0	000000000000000000000000000000000000000	0.28562 0.25341	0.30487	0.28484	000000000	0,00000 0,00000
ES	ΤΙΜΑΤΕΏ Γι	CAL VELUC	ITTES RY	THE COEFF	ІСТЕНТ ЕС	NATION . (a/s),
STM	л -		U	CL	. C	n. ۲	Li.
LFVFL							
- ~	0.39637	0.0000102 0.000001	C.34063 0.34612	0.54459 0.34913	0.34003	0.33132	0.30760
i m	0.29269	0.32690	0.34261	C.34680	0.34281	0.32690	0.29269
4	00000000	0.29719	0.33546	C.34109	0.33546	0.29719	0.000.0
י <u>ג</u> ו	00000000	0.00000	0.31616	0.32790	0.31616	0.0000	0.0000.0
51	0,00000	0.00000 0.00000	0.26214	0.25358	0.26214	000000000000000000000000000000000000000	0.00000 5.00000

np

nc D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

LEVEL							
	0.43937	0.50722	575250	C.53949	0.53949	0.50722	0.43937
N	0.45832	0.12214	24242*0	1.0104	24242 0	4 TCZC•0	C + 4 5 8 3 3 7
. . 7	0.45482	0.51255	C.54272	0.57354	0.54272	0.51295	0.45382
4	0.00000	0.45738	0.52949	0.55741	0.52949	0.45703	0.00000
ហ	0.00000	C. CC00C	0.49365	0.51547	0.49305	0.00000	0.00000.0
ç	0.00000	0.0000	0.44434	0.46472	0.44134	0.0000.00	0.00000
. 2	0.00000	C • CO 2 0 0	0.39165	0.44447	0.44269	0.00000	0.00000
		•					
	そうかん ほうごうじょう かんしょう						
	STIMATED LI	CAL VLLCC	ΙΤΙΕς ΒΥ	THE COEFF	ICIENT EQ	ILATION (H/S)
S TN	۲	B	C	сr.	G	۰. ا	۱ <u>۲</u>
	; ; ; ; ; ; ; ; ;	1 1 1 1 1 1 1 1 1] 5 1 1 1 1 1	a			
	0.47138	0.51393	0.52326	6.53667	0.52938	0.51393	0.47199
1 ا	0.47487	0.52361	C.54272	C.55019	0.54272	0.52361	C • 4 7 4 8 7
5	0.45098	0.51403	9.54368	0.55056	0.54338	0.51403	0.45093
4	0.00000	0.45451	C.53014	0.54068	0.53014	0.45951	0.00000
ۍ ۲	0.00000	0.0000	C.49463	0.51647	0.49463	C. 00 CCO	0.00000
Ģ	0000000	0.00000.0	0.44705	0.48649	0.44705	0.0000	0.0000
2	0.00000	0.00000	0.3554C	0.45243	0. 39540	0.00000	0.000.0
				111111111111111111111111111111111111111	ñ]]]]	「見中、白」中である「見み」を	
- X 11 X =	0.22224	VIE: AN	= 0.4673	N/S FU	5100 STOP	F = 0.6110	7103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

241

un

u.

ш

0

СĽ

υ

сŗ.

¢

STN

EXPERIMENTAL LUCAL VELUCITIES (M/S)

RUN NUMBER F-75.

.

с ц

₿.,			
0.555 0.55739 0.55739 0.560000 0.5600000 0.5600000 0.5600000 0.560000000000	W/S)	<u></u>	000000 000000 0000000 0000000 0000000 0000
0.60402 0.70082 0.66855 0.57481 0.57481 0.00000 0.00000		د منا	E 0 00000 0.055580 0.057880 0.057320 0.00000 0.000000 0.000000 0.000000 0.000000
0.55242 0.71595 0.67213 0.65262 0.65410 0.56247 0.56247	ICIENT EG	۵.	0. 66309 0. 66309 0. 63959 0. 63944 0. 66392 0. 55935 0. 55935 0. 45935 0. 55935
0.65242 0.72309 0.67464 0.66468 0.663605 0.663605 0.56741	THE CLEFF	CL	×
0.65242 0.71655 0.67213 0.652513 0.651410 0.50246 0.50246	. та сан	Ċ	0.00 0.00
6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	CAL VELCC	æ	く 「 の の の の の の の の の の の の の
0.55789 0.57175 0.57175 0.5000 0.50000 0.50000 0.50000		v.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LEVEL とのなからなーに		STN S	「 に た で し し し し し し し し し し し し し

np

ù.

لية

3

Ċ.

C

-

۲

STR

~

EXPERIMENTAL LOCAL VELOCITIES (M/S).

ION NUMBER E-76

ຸ ເຈ

л^с

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	ت	хРектиент	AL LUCAL	VELUCITIE	S (N/S)			
5TN	K	e	U	ĊĽ	a	ш	1	
	0,41335		0.47132	C•47814	0.47132	0.45395	0.41335	
به	0.47495	0.57175 0.54101	0.53175	0.55349 0.6368	0.59022	0.57175 0.54101	0.47495	
14	0.0000	0.45350	0.57576	C.60439	0.57976	0.45300	0.00000	
เก	0.0000	0.0000	0.50956	0.56634	0.50956	0.00000	0.00000	
1 Qr	0.00000	0.00000 0.00000 0.00000	0.37867	0.51531	0.37867	0.00000	0.00000	
ι Π	STIMATED_LO	ICAL VELCC	ITLES EY	THE CUEFF	ICIENI EC)	M/S)	
NTS	4	Ĩ	C	CL	a .	ຟ		
LEVEL	95044035		0.45871	C + 5056	0.49371	0.48123	0.44035	
ر ب	0.45740	h.5261C	C.55CE8	0.55932	C. 55063	0.52610	0.45749	
J.	0.244.0	C.E3820	0.56763	0.50081	0.58783	0,53820	0.24430	
4	0.0000	0.45018	9.57725	0.60215	0.57729	0.15043	0.00000	
ŝ	0000000	0.0000	0.50651	9.56373	0.50651	0.0000	0.00000	
<u>ى</u>	000000.0	0.00000	0.37491	0.51229	0.37491	0.00000	0.000000	
~	00(00.0	00000000	0000000	0.45348	0.0000	0.00000	0.0000.0	

ENERGY SLOPE= 0.48056E-02

VAEAN= 0.5092 R/S

YHAX= 0.2177 H

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RUN NUMBER E-78

m.

243

л С И

0000		
	M/3) F	000000 000000 0000000 000000
		0.09889 0.118889 0.12889 0.09133 0.000133 0.00000
ÍCIFNT EG	0	0.10001 0.12348 0.12348 0.13646 0.13646 0.13646
	CL	00000000000000000000000000000000000000
	C	C.12001 C.12001 C.12000 C.12000 C.12000 C.12000 C.12000 C.10001 C.100010 C.100010
CAL VELOC	n	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
IMATED LOC	4	0.00000 0.000000 0.000000 0.000000 0.000000
EST	STN	1000000000000000000000000000000000000

おろえ こうそうてき こうきき こうりょうすう

VIIE 3N= 0.1066 M/S

YHAX= 0.2459 1

EALRGY SLUPE= 0.25686E-03

RUN NUMBER E-70

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LFVEL

244

Ľ.

ك

C

С

Q

0

<

STN

EXPERIMENTAL LOCAL VELOCITIES (#/S)

р ц

с Ш	TIMATED LL	CAL VELUC	ITIES BY	THE CUEFF	ICIENT EQ	LATION	112) (S/H
STN	~	2) -	с [.]	CI.	٢.	ц	ب ل ب
FUEL T						• * 7 • 7 • 7	
	0+32211	0.34817	0,3006	0.36128	9.30006	0.34817	0.32211
01	0.33518	C.3763C	0.39262	C. 35-10	0.39232	0.37680	0.33513
м	0.23233	0.00000 0	0.41610	0.42408	0.41610	0. 38555	0.23234
ব	0.0000	0.23326	C.40931	0.42451	0.40931	0. 33320	0.00000
- 20	0.0000.0	0.0000	C.36467	0.40082	0.35467	0,00000	0.0000
9	0.00000	0.0000.0	0.27654	G. 36862	0.27654	00000000	0.0000.0
2	0.00000	0.00000	C.030C0	0.33338	9.00090	000000.00	0.0000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E--30

NU ABER

F.UN

ហ . 245

c U

	-								
0.00000 0.00000 0.000000 0.000000 0.000000		n/5)	L	0.59159	0 • 0 6 6 6 6 F	0.000000	0.00000	0.00000	0.0000010
0.63549 0.71291 0.67713 0.53614 0.00000 0.00000 0.00000		UATION (ш I	0.64128	U. 58558 0. 68261	0.54292	0.00000	0,0000	C. 00000
0.64745 0.71291 0.72355 0.725355 0.725355 0.725355 0.45535 0.455235 0.455235		ICIENT EQ	<u>a</u>	0. 05847	0.74609	0.73223	0.65043	0.46.0.35	0,00000
0.658858 C.72617 0.755454 0.755454 0.71782 0.71291 0.6(373		THE COEFF	CL	C • r 6460	02552.0	C.761C9	C.72309	0.67187	0.61472
0.64745 0.71251 0.72355 0.723555 0.722355 0.726355 0.726355 0.46471 0.46471 0.455355 0.455355 0.00000		17.1ES 87	J	0.65547	0.74605	0.73223	0.65043	0.40035	0.00000
0.63545 0.71291 0.67713 0.63614 0.60000 0.60000		CAL VELUC	с Ш	0+64128	6.63200 0.63200	6.54292	0.00000	0.0000.00	C.53000
0.61628 0.58035 0.00000 0.00000 0.00000 0.00000 0.00000		INATED LG	4	0.59158	0.00000	0.00000	0.00000	000000.00	0,0000
LEVEL 2055 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		EST	STN		N M	4	ហ	0	~

RUN NUMBER E-31

Q

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.655C M/S ENERGY SLUFE= 0.39167E-02

T VITE AN=

YMAX= 0.1511

ч

ш

0

さ

Ċ

5

4

STN

EXPERIMENTAL LUCAL VELOCITIES (M/S)

с ц

0.10379 0.05813 0.05813 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	4/S)	نے ا	000000 1100000 000000 000000 000000 000000
0.14550 0.16002 0.15180 0.11217 0.11217 0.11217 0.0000 0.0000	LATICN (Ш	0 14668 0 15929 0 15229 0 11514 0 00000 0 00000 0 00000
9.15067 0.18669 0.18388 0.17054 0.14165 0.16649 0.0000	ICTUNT EC	0	0.15708 0.17283 0.17283 0.172683 0.172683 0.172683 0.172683 0.172683 0.172683 0.172683 0.172683 0.172683 0.172683 0.172683 0.172683 0.157683 0.157683 0.157683 0.172883 0.172883 0.172883 0.172883 0.172883 0.172883 0.172883 0.172883 0.172883 0.172883 0.172883 0.177883 0.0000000000000000000000000000000000
0.16222 0.18683 0.18683 0.18373 0.18353 0.18356 0.13355	IFC CHEFF	C	0.16227 0.16227 0.17367 0.173672 0.16572 0.15572 0.15573 0.15573
0.15667 0.18669 0.188669 0.17388 0.17388 0.17388 0.17584 0.17584 0.106455	ΙΤΙΕS ΒΥ	U .	
0.14556 0.155602 0.15180 0.115180 0.6000 0.6000 0.6000 0.6000	AL VELLC	а. 	0 15065 15065 0 15025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.10579 0.11176 0.05813 0.00000 0.00000 0.00000	ΙΜΑΤΕύ Ευθ	V	00000000000000000000000000000000000000
ーミライのらて	ES I	'S TN	「 」 と 「 ろ の の な の の の の の の の の の

рu

Ľ.

ш

0

5

J

-

<

STN

LFVFL

1

1

V LOCITIES (M/S)

UXPLPIAFNIAL LUCAL

247

~ Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RUN NUARER E-92

ENERGY SLOPL= 0.27300E+03

V1EAP = 0.1447 2/5

YMAX= 0.2270

~

		n 900 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-				62700000 627000000 6270000000	
	لت	4.0000			(M/S)	السا	0000001 0000001 0000001	726-02
×	Ľ	0.58670 0.58670 0.588370 0.55370 0.54059	C • 00000 C • 00000 D • 00000		, DUA TI DN	ш	0 - 55175 0 - 55964 0 - 55964 0 - 50869 0 - 50000 0 - 500000 0 - 500000 0 - 500000 0 - 50000000000	:E= 0.100
ES (M/S)	а	0 58766 0 58766 0 58766 0 58402 0 57123	0.55384 6.40105 0.00000		ICIENT E	Q	0.56315 0.57367 0.57394 0.56339 0.556339 0.55154 0.46756	VERGY SLOP
VELUCITIE	CL	C+57551 0+67587 0+59200 0+59200	0.56296 0.52679 0.50699		THE CUEFF	CL	0 0 0 0 0 0 0 0 0 0 0 0 0 0	43 S/4
AL LUCAL	ງ	C • 56404 C • 56404 C • 56404 C • 56406 C • 56402 C • 57123	0.55324 0.461C5 C.000C0		ITLES BY	U	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1= 0.5473
IX PERIMENT	£	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000 0000 0000 0000 0000 0000 0000 0000 0000	• •	CAL VELDG	9		VHE AN
	K	0.46482 0.46482 0.48756 0.40303 0.00000	0,0000 0,00000 0,00000 0,00000		TIRATED LO	A	0.52556 0.52556 0.39640 0.00000 0.00000 0.00000	ā. 22 20 ₫
	NTS	н С С С С С С С С С С С С С С С С С С С				NIS	「「「「」」とのとなるで、「「」」」	Үмдх=

n_P

сл

80

RUN NUMBER E-83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	ند	XPLFIMEN	AL LUCAL	VELUCI 112			
STN	K	E	U .	CL	i C	U	1. •
EVEL	0.60180	0.69153		0.70326	0.70458	0.65153	0.66130.
0m	0.72617 0.64603	0.69927 6.63809	0,71561 6.71459	0.72063 0.72174	0.71459	0.69927 0.68809	C.72617 0.64663
) ব	0.0000	0.64782	C.70275	0.71388	0.70275	0.54782	0.0000
ינו	0.00000	0.0000	0.66843	0.05435	0.66843	0.00000	0.00000
- A Q	0*0000 •	C. CO 00C	0.00000 C.00000	0.64205 0.64205	0.00000 •0	0.00000	0.00000
SE	TIMATED LC	ICAL VELCC	111ES BY	THE CLEFF	ICIENT EG) NO IL VI	(571
STN	•	8	IJ	CL	۵ _.	نىا	u.
EVEL							* * * * *
~~~	0.67570	0.69500 0.69500	0.710361 6.71036	C. 70641	0,70,362	0.69500 0.69500	0.67570
1 17	0.61454	0.69276	21201.0	0.71427	0.70.72	0.05278	0.01454
4	0.0000	.0.66655	C.70218	0.76929	0.70217	0.66655	0,00000
വ	00000000	000000	0.68005	08959.0	0.63000	0.00000	0.00000
<u>ە</u>	0.00000.0	C. COCOC C. COCOC	0.00000 0.00000	0.662E15 0.662E1	0.63401 0.63990	00000000000000000000000000000000000000	0.00000 0.00000

Φ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

249

no.

р и

ENERGY SLOPE= 0.24583F-02



0.417235-04

SL0PE=

ENERGY

C.0754 N/5

VI45 Ah=

Ζ

4224.

 $c_{i}$ 

PUN NUMBER E-87

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

250

¹C

np d



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

251

с С

n_l



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

252

р_ис

du up



ŋC

STN	Ľ	XPERIMENT	AL' LUCAL	VELUCITIE	5 (W/S).		
	. V	£,	U	CL	5	<u>ن</u> ن	L.
LEVEL 1	0.09528	0.09623.	C. 09652	C+C5652	0.09652	0.09623	0,09528
с] г 	0.09652	0.10373	C. 10315	0.10315	0.10315	0.09652	0.09652
) <del>.</del>	0.08245	0.04652		0.11111	0.10315	C • 0 9 6 5 2	6.03245
ຕ໌. 	0.00000	0.08491	0.10645	0.11111	0.10645	0.08491	0,00000
0~	000000	0.00000	C.080C7	0.05520	0.09007	0.0000	0.0000.0
<u> </u>	STIMATLO LO	ICAL VELGC	ITIES BY	THE COEFF	ICTENT EG	LATION (	M/S),
NT 5	ন্	Û.	C	Ъ	٩	ju L	<u></u>
LEVEL 1	0.09361	0.55778	¢•¢6262	0.15020	0.09959.	0.0773	0.0361
1 to	0.00042	C•10:027	G.10254	0.10360	0.10294	0.10097	0.09642
n.e	0.08214	C • 10073	55501.0	6.1C610	0.10499	0.10073	0.02214
S	00000	0.58424	0.10143	0.10373	0.10148	0.00424	0.0000.0
<b>د ۲</b>	0.00000	0.00000	0,08009	0.1.0050	0.03515 0.03009	C. 00000 C. 00000	0.000000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	-			
0.15074 0.15074 0.126074 0.0000550 0.0000550 0.0000550	1 1 1 1 1	N/S)	<u>11</u>	000000 2000000 20000000 20000000 2000000
0.16618 0.18269 0.18269 0.18269 0.18269 0.16943 0.16943 0.16943	1 7 8 8 8 8 8 8	) 4011AU	نیا	0.16598 0.17538 0.17538 0.17538 0.17539 0.17539 0.17539 0.17539 0.17639 0.17639 0.17639
C.17324 0.18269 0.18269 0.13269 0.13269 0.13269 0.15617	                   	ICTENT EC	2	0.17164 0.13164 0.13161 0.13604 0.13604 0.13604 0.12388 0.12388
0.17563 0.16269 0.16269 0.18269 0.18269 0.18269 0.17269 0.17269 0.17269	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	не соегг	J.	0.17355 0.17355 0.15120 0.15120 0.15455 0.17455 0.16354
C.17224 C.17224 C.18269 C.18269 C.18269 D.18269 D.188169 D.18617	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		U.	9.17164 0.17164 0.18666 0.18664 0.18664 0.18664 0.18663 0.18366
0 • 1 • • • • • • • • • • • • • • • • •	, , , , , , , , , , , , , , , , , , ,	AL VELCCI	ĩ	0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000
0.15074 0.15074 0.15405 0.12560 0.00000 0.00000		IMATED LOC	×	0.15312 0.15155 0.15155 0.15096 0.14096 0.00000 0.00000 0.00000
ー ド ト ー ー ー ー	 	E a T	nts -	「 王 人 で の の か よ る の と 一 に し て に し て に し し し ろ の の こ の つ

ENGPGY SLUPE= 0.152756-03

VMEAN= 0.1713 N/S

Y 1505.0 = XARY



14

u_

۱. ۱.

2

ن ت

.0

 $\mathbb{Z}$ 

٩

STH

EXPERIMENTAL LUCAL VELUCITIES (M/S)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

254

р_ц

	<b>نی</b> ن	XPEFIMENT	AL LOCAL	VELOCITIE	S (M/S)		
STN	ব.	<b>C</b>	U	CL	0	<del>ت</del> ا	<u>t.</u>
	0.22452 0.22452 0.24818	0.25955 0.28955 0.28965	0.27655	C. 28238	0.27659 0.28873	0.25993	0.22452 0.22452 0.24818
IN 4	0.25139	0.202733	0.31524	0 • 11624 0 • 11624	0.01624	0.28673	0.25189
ۍ ۲	0.0000	0.15617	0.29440	0.31524	0.29440	0.15617	0.00000
- CC	0.00000	0.00000 0.00000	0.13613	0.21524	0.22245	0.00000	
	TIMATED LO		ITTES BY	THE COLFF	ICLERT EC	LATION (	
STN	R	E .	U .	CL	<del>ر</del> .	<u>ц</u>	<u></u>
	0.22357		C • 27041	C. 27958	C + 27241	0.25551	0,22357
רה ניז	0.24424	0 • 29259 0 • 29259	0.424116 0.42116	0.30528 0.32315	0.32115	0,28703 0,29959	0.24327
41	0.15034	0.27999	0.21810	0.12355	0.31910	0.27099	0.15034
n @	c • 00000	0.0000	C • 20240	0.278c0	0.23546	0,00000	000000
2	0.00000	0.0000.0	0.14154	0.24739	0.14194	0.00000	0.00000

**ENLPGY SUDFL= 0.13541L-02** 

VMEAN= 0.2661 M/S

YMAX= 0.3538

FUN NUTHER. E-92

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

255

с ц



-93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ú

RUM NUMBER

**1**6

256

, e.

np

с ц

C.5 Values of Velocity Exponent E2

In this appendix, the experimental values of velocity exponent E2 had been recorded. . , · · · . · · 24 A . . . · · . . . . . . . . • • · 1 . ħ . . . . . ۰. . 1 . ، <u>ب</u> .... , · · · . 

257

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE	с.	5	•	1

Values of E2

Run Number	E2	Run Number	E2	Run Number	E2	Run Number	E2
E13	0.9979	E.33	9,6816	E61	0.1638	E87	0.9578
. E14	0.1002	E34	0.6149	E62	0.8906	E88	0.9587
E15	0.9148	E35	0.6600	E63	0.8728	E89	0.4834
E16	0.1561	E36	0.5771	E65	0.6082	E90	0.3387
'E17	0.1507	E41	0.1186	E66	0.4051	E91	0.6164
E18	0.2064	E42	0.1493	E67	0.4249	E92	0.1086
E19	0.1273	E43	0.1838	E68	0.4750	E93	0.8895
E20	0.7487	E45	0.4369	.E70	0.1025		
E21	0.1243	E46	0.6870	E71	0.9792		
E22	0.7103	E47	0.7205	E72	0.9204		•
E23	0.9683	E48	0.1399	E74	0.5430		x "
E24	0.1067	E50	.0.8122	E75	.0.6070		
E25	0.7701	E51	0.8631	E76	0.6132		
E26	0.9220	E52	0.6599	E78	0.9837		
E27	0.7153	E53	0.1821	E79	0.1226		
E28	0.5148	E55	0.5579	E80	0.9222		
E29	0.4767	E56	0.6585	E81	0.8507		
E30	0.4583	E57	0.2478	E82	0.1015		
E31	0.7608	E58	0.1643	E83	0.3804		
E32	0.4934	E60	0.1156	E84	0.2243		

## APPENDIX D

## Nomenclature

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D.1 List of Nomenclature

•

.

In this appendix, the nomenclature and subscripts used in this thesis are presented. Each term is also defined as it first appears.

•

## NOMENCLATURE

A _i	-	effective flow area of section
a	-	P ₂ /P ₁
aŕ	-	experimental coefficient
aś	-	experimental coefficient
В	-	the width of the channel
C _i	-	Chezy's coefficient for the section
ct	-	Chezy's coefficient for the channel
E	-	coefficient
El		velocity coefficient which indicates the magnitude of the flow
E2	-	velocity exponent which indicates the velocity gradient steepness
E3	-	velocity coefficient where E3=E1. $(V_{max}/V)$
е	-	the rate of dissipation of turbulent energy
exp	-	exponent of e
F	-	general function
Fix	-	body force
Funct	-	general function
fi	-	Darcy-Weisbach friction factor of section
f _{MOD}	-	modified Darcy-Weisbach friction factor for the channel
G	-	turbulent energy production by the mean motion
g	-	gravitational acceleration
Н	-	the mean elevation of the bottom of a transverse cross-section of open-channel
h _ξ	-	scale factor

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

261

h _ŋ	- scale factor
i	- number of strips within one section
j	- number of sections within the reach
k	- kinetic energy of turbulent motion
k _i	<ul> <li>absolute roughness height of the boundary</li> </ul>
k s	- Nikuradse's sand roughness size
L	- length along each section
ln	- natural logarithm
log	- logarithm to base 10
N _R	- Reynolds number
ⁿ 1	- channel roughness
n ₂	- covered channel roughness
n _C	- Manning's coefficient for coarse wire mesh
n _F	- Manning's coefficient for fine wire mesh
n _P	- Manning's coefficient for plywood
nt	- composite channel roughness
n _{tE}	- experimental composite Manning's coefficient
n _t T	- theoretical composite Manning's coefficient
P _i	- wetted perimeter of section
P	- average pressure
Q	- total measured flow rate
đ	- unit flow rate
R _i	- effective hydraulic radius of section
R	- effective hydraulic radius
Rt	- hydraulic radius of the channel
r	- coefficient of correlation

r	- nondimensional coefficient
so	- energy slope of the channel (bed slope)
$s_{\phi}$	- volumetric source rate of $\boldsymbol{\varphi}$
t	- time
U _i	- local velocity
ប	- average velocity in x-direction
U´	- local velocity variation x-direction
Us	- point velocity within the strip
u	- instantaneous velocity fluctuation in x
v	- channel mean velocity
V _i	- mean velocity of sections
v*	- local shear velocity
$\overline{v}_{\star}$	- mean shear velocity
V _{max}	- maximum velocity of cross-section
vs	- mean velocity for the particular strip
$\overline{v}$	<ul> <li>average velocity in y-direction</li> </ul>
v _{n*}	- the value of $v_{\eta}$ at a boundary point
v1	<ul> <li>local velocity in y-direction</li> </ul>
v ₁	- x _l component of flow velocity
v	- instantaneous velocity fluctuation in y
W	- mean velocity in z-direction
w	- instantaneous velocity fluctuation in z
lxl	- absolute value of x
Y	- maximum flow depth of the channel
Y _i	- flow depth of section
Y _i	- distance from the boundary
z	- empirical constant

α	-	wetted perimeter ratio P ₁ /P
β _i	-	empirical coefficient
γ	-	unit weight of the fluid
δ _i	-	laminar sublayer thickness
ε	-	sand roughness
ε _i	-	relative depth ratio
٤*	-	ratio between local shear velocity and mean shear velocity
ξ _R	-	rotation of fluid particle
ξo		empirical coefficient
η <b>*</b>	-	depth ratio from the boundary
ĸ	-	Von Karman's constant
λi	-	hydraulic radius ratio R ₂ /R ₁
$\lambda'_{i}$	-	composite friction coefficient
μ	-	viscosity
ν	-	kinematic viscosity
ρ	-	fluid density
σ	-	normal stress
τ _i	-	shear stress
τ _L	-	turbulent shear
φ	-	shape factor
φ	-	scalar quantity such as concentration in mass transfer
<u></u>	-	a functional group
ψ	-	sectional shape coefficient
θ		channel bed slope
θι		local product of point velocities
Σ		summation

## REFERENCES

- Bruk, S. and Volf, Z., "Determination of Roughness Coefficients for very Irregular Rivers with Large Dloodplains," 12th Contress, International Association for Hydraulics Research, 1967, pp. 95-99.
- Carey, K. L. "Observed Configuration and Computed Roughness of the Underside of River Ice," U.S. Geological Survey Prof. Paper 550B, 1966, pp. B192-B198.
- Carey, K. L., "The Underside of River Ice, St. Croix River, Wisconsin," U.S. Geological Survey Prof. Paper 575C, 1967, pp. C195-199.
- Carey, K. L., "Analytical Approaches to Computation of Discharge of an Ice-covered Stream," U.S. Geological Survey Prof. Paper 575C, 1967, pp. C200-C207.
- 5. Chatfield, C., Statistics for Technology, 2nd ed. London, Chapman and Hall Ltd., 1976, pp. 166-196.
- 6. Chee, S. P., Haggag, M. R. and Wong, Y. F., "Channel Configuration and Streamflow," International Conference on Water Resources Development, Taiwan, Republic of China, May 1980, pp. 651-660.
- 7. Chin, C. L., Lin, H. C., and Mizumura, K. "Simulation of Hydraulic Processes in Open Channels," Journal of the Hydraulics Division, ASCE, Vol. 102, No. HY2, Proc. Paper 11905, Feb. 1976, pp. 185-206.
- Chin, C. L., Hsuing, D. E., and Lin, H. C., "Three-Dimensional Open Channel Flow," Journal of the Hydraulics Division, ASCE, Vol. 104, No. HY8, Proc. Paper 13963, Aug. 1978, pp. 1119-1136.
- 9. Chin, C. L., Hsuing, D. E., and Lin, R. C. "Secondary Currents under Turbulence in Open Channels of Various Geometrical Shapes," Proceedings of the XVIIIth Congress of the International Association for Hydraulic Research, Sept. 1979, pp. 10-14.
- 10. Chin, C. L., and Hsiung, D. E., "Secondary Flow, Shear Stress and Sediment Transport," Journal of the Hydraulics Division, ASCE, No. HY7, Proc. Paper 16365, July 1981, pp. 879-898.

265

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 11. Chow, V. T., Open Channel Hydraulics, McGraw-Hill Book Co., New York, N.Y., 1959.
- 12. Chuang H. and Cermak, J. E., "Turbulence Measured by Electrokinetic Transducers," Journal of the Hydraulics Division, ASCE, No. HY6, Proc. Paper 4526, Nov. 1965, pp. 1-8.
- 13. Dul'nev, V. B. (1962), On the Motion of the Flow Under an Cover. Meteorology and Hydrology, No. 7.
- 14. Einstein, H. A., and Li, Huon, "Secondary Currents in Straight Channels," Trans. Amer. Geophys. Union, V. 39, 1958, pp. 1085-1088.
- Emelyanov, K. S., I. M. Konovalov, and P. N. Orlov (1952), Principles of Ice Technology of the River Transport. Rechizdat, L-M.
- 16. "Factors Influencing Flow in Large Conduits," Progress Report of the Task Force on Flow in Large Conduits of the Committee on Hydraulic Structures, Journal of Hydraulics Division, ASCE, No. HY6, Nov. 1965, pp. 123-149.
- 17. Haggag, M. R., "Hydraulics of Ice Covered Channels," M.A.Sc. thesis presented to the Faculty of Graduate Studies, University of Windsor, Windsor, Ontario. Canada, 1976.
- 18. Hancu, S. (1967). Modelarea Hidraulica in Curenti de aer sub presiune, Editura Academiei Rpublicii Socialiste Romania (text in Romanian).
- 19. Hey, R. D., "Flow Resistance in Gravel-Bed Rivers," Journal of the Hydraulics Division, ASCE, No. HY4, Proc. Paper 14500, April 1979, pp. 365-379.
- 20. Howarth, L., "Concerning Secondary Flow in Straight Pipes," Proc. Camb. Phil. Soc., V. 34, 1938, pp. 335-344.
- 21. Hwang, L. S. and Laursen, E. M., "Shear Measurement Technique for Rough Surfaces," Journal of the Hydraulics Division, ASCE, No. HY2, Proc. Paper 3451, March 1963, pp. 19-37.
- 22. Kazemipour, A. K., and Apett, C. J., "Shape Effects On Resistance to Uniform Flow in Open Channels," Journal of Hydraulics Division, IAHR., Jan. 1979.

- 23. Ko, S.C., "Measurements of Turbulence in Water at High Velocity," Journal of the Hydraulics Division, ASCE, No. HY12, Dec. 1972, pp. 2253-2257.
- 24. Krishnamurthy, M., and Christensen, B.A., "Equivalent Roughness for Shallow Channels," Journal of Hydraulics Division, ASCE, No. HY12, Dec. 1972, pp. 2257-2263.
- 25. Larsen, P. A. (1969). Head Losses Caused by an Ice Cover on Open Channels, J. Boston Society Civil Engineers, Vol. 56, No. 1, pp. 45-67.
- 26. Lau, Y. L. and Krishnappan, B. G., "Ice Cover Effects on Stream Flows and Mixing," Journal of the Hydraulics Division, ASCE, No. HY10, Proc. Paper 16602, Oct. 1981, pp. 1225-1242.
- 27. Launder, B. E., and Spalding, D. B., "The Numerical Calculation of Turbulent Flows," Computer Methods in Applied Mechanics and Engineering, Vol. 3, 1974, pp. 269-289.
- 28. Levi, I. I. (1948). Dynamics of Open Channel Flows, (text in Russian).
- 29. Marchi, E., "Sid moto uniforme turbolento delle correnti liquide," Rend. Accad. Naz. dei Lincei, Serie VIII, Vol. XXIX, Fasc. 5,6 - Nov. Dec. 1960.
- 30. Marchi, E., ""Resistance to Flow in Fixed-Bed Channels with the Influence of Cross-Sectional Shape and Free Surface," 12th Congress, International Association for Hydraulics Research, 1967, pp. 32-40.
- 31. McQuivey, R. S., and Keefer, T. N., "Measurements of Velocity-Concentration Covariance," Journal of the Hydraulics Division, ASCE, No. HY9, Proc. Paper 9184, Sept. 1972, pp. 1625-1646.
- 32. Morris, M. H., and Wiggert, J. M., "Applied Hydraulics in Engineering," 2nd ed., New York, The Ronald Press Company, 1972.
- 33. Nezhikhovskiy, R. A. (1964), Coefficients of Roughness of Bottom Surface of Slush-Ice Cover, Soviet Hydrology: Selected Papers, No. 2, pp. 127-150.
- 34. Nakuradse, J., "Untersuchung uber die geschwindigkeitsventeilung in turbulenten stromungen," VDI Forschungsarbeiten, Heft 281, 1926.
- 35. Nikuradse, Johann, "Stromungsgesetze in rauhen Rohren," Foreschungs. Arb. Ing.-Wesen, n. 361, Berlin, 1933.
- 36. Overton, D. E., "Flow Retardance Coefficients for Selected Prismatic Channels," Transactions, American Society of Agricultural Engineers, Vol. 10, No. 3, 1967.
- 37. Patankar, S. V., and Spalding, D. B., "Heat and Mass Transfer in Boundary Layers," Intertext Publishers, London, England, 1970.
- 38. Rouse, H., "Critical Analysis of Open-Channel Resistance," Journal of the Hydraulics Division, ASCE, No. HY4, Proc. Paper 4387, July 1965, pp. 1-25.
- 39. Shiperko, E. E. (1961), Hydraulic Design of Channels with Nonuniform Roughness. Bull. Inst. of Higher Learning. Mining Journal No. 7.
- 40. Sinotin, V. J., "Velocity Structures of Flow Under Ice Cover," 11th Congress, International Association for Hydraulics Research, Leningrad, 1965, pp. 435-437.
- 41. Sumbal, J. and Komora, J., "Determination of the Tangential Stress Acting on the Ice Cover in a Rectangular Flume," 12th Congress, International Association for Hydraulics Research, 1967, pp. 255-259.
- 42. Taylor, R. H., "Exploratory Studies of Open-Channel Flow over Boundaries of Laterally Varying Roughness," U.S. Department of the Interior, Geological Survey, Report No. KH-R-4, July 1961.
- 43. Tracy, H. J., "Turbulent Flow in a Three-Dimensional Channel," Journal of the Hydraulics Division, ASCE, No. HY6, Proc. Paper 4530, Nov. 1965, pp. 9-35.
- 44. Trufanov, A. A. (1954), On the Question of Hydraulics of the Flow Under Ice Cover. Meteorology and Hydrology.
- 45. Uzuner, M. S., "The Composite Roughness of Ice Covered Streams," Journal of Hydraulics Research, IAWH, No. 1, 1975, pp. 79-102.
- 46. Yen, C. L., and Overton, D. E., "Shape Effects on Resistance in Flood-Plain Channel," Journal of Hydraulics Division, ASCE, No. HY1, Proc. Paper 9506, Jan. 1973, pp. 219-238.

47. Yu, K. H., W. H. Grah, and G. Levine (1968), "The Effect of Ice on the Roughness Coefficients of the St. Croix River, Proc. 11th Conf. Great Lakes Res., Assoc. Great Lakes Res., pp. 668-680.

.

.

•

.

## VITA AUCTORIS

- 1954 Born on the 30th of December in Hong Kong.
- 1973 Matriculated from Rosaryhill Secondary School, Hong Kong.
- 1979 Graduated with a B.A.Sc. in Civil Engineering University of Windsor, Windsor, Ontario, Canada.
- 1979 Enrolled in the Faculty of Graduate Studies, Department of Civil Engineering in Master program at the University of Windsor, Windsor, Ontario, Canada.
- 1981 Degree of B.A. in Mathematics was conferred at the University of Windsor, Windsor, Ontario, Canada.