# A micro computer based approach to machine tool selection. 

David Meloche<br>University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

## Recommended Citation

Meloche, David, "A micro computer based approach to machine tool selection." (1987). Electronic Theses and Dissertations. 6825.
https://scholar.uwindsor.ca/etd/6825

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

## NOTE TO USERS

## This reproduction is the best copy available.

## UMI

A MICRD CDMPUTER BASED APPROACH to machine tool selection

BY

## David Meloche

```
A Thesis submitted to the Faculty of Graduate Studies and Research Lhrough the Department of
``` of the requirements for the Degree of Master of Applied Science at the University of Windsor
```

```
Industrial Engineering in partial fulfillment
```

```
Industrial Engineering in partial fulfillment
```

Windsor, Ontario, Canada

## INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI Microform EC54814
Copyright 2010 by ProQuest LLC
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

## 871840

I hearby declare that $I$ am the sole author of this thesis. I authorize the University Of Windsor to lend this thesis to other institutions or individuals for the purpose of scholarly research.

David Meloche

I further authorize the University of Windsor to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

David Meloche

The university of Windsor requires the signature of all persons using or photocopying this thesis. Please sign below, and give address and date.

This thesis is the result of research carried out in the area of computer aided process planning (CAPP). The research focused on the use of a micro computer to aid the process engineer in the development of process plans. The use of a micro computer was an important consideration since it allows for a more wide spread use by todays industries. A procedure to adequately describe the component in terms of shapes to be removed was developed which would allow the system to optimize the machine tool selection procedure. The research focused on the selection of machines and the generation of cutting parameters to aid the process engineer by speeding up the arithematic and heuristic procedures required for the generation of process plans. The procedure allows the system to select machines based on the operations determined by the system, generate the cutting parameters and rank each alternative for selection by the process engineer. The alternatives were ranked according to minimum cost or maximum production rate. As a result of this research, it has been determined that micro-computers can be effectively used to aid the process engineer in the development of process plans in smaller machine shop environments.

## ACKNDWLEDGEMENTS


#### Abstract

I would like to take this opportunity to thank all the people who helped with this research. A special thanks to Dr. Dutta for his guidence and support during the course of this research. I would like to thank all the other members of the committee for there help and useful suggestions during the past two years. Also 1 would like to acknowledge the funding provided for this research by the NSERC grant \#9652.

A special note of thanks to Jacquie Mummery and Tom Williams for there help. Also I would like to thank Doug Bertram and Alf Handy for there input and help on machining practices which are used in industry.


This thesis is dedicated to my wife Debbie, who for the past two years gave me the encouragement and support needed to complete this report.

## TABLE OF CONTENTS

ABSTRACT ..... vi
ACKNOWLEDGEMENTS ..... vii
TABLE DF CONTENTS ..... viii
LIST OF FIGURES ..... $\times$
LIST OF TABLES ..... $x i$
LIST DF APPENDICES ..... xii
Chapter Page
1.0 Introduction ..... 1
1.1 Goal of Computer Aided Process Planning ..... 1
1.2 Potential Benefits of CAPP ..... 3
2.0 Goals and Objectives of Research ..... 5
3.0 Literature Survey ..... 7
3.1 Machine and Tool Selection ..... 7
3.2 Cutting Parameter Estimation ..... 8
3.3 Process Plan Generation ..... 9
3.3.1 Type of Process Planning Systems ..... 9
3.3.1.1 Variant Approach ..... 10
3.3.1.2 Generative Approach ..... 11
3.3.2 Expert Systems ..... 12
3.4 Comparison of Existing Systems ..... 14
3.5 Summary of Literature Survey ..... 17
4.O Developing A Framework For System Design ..... 18
4.1 Micro-Computer Tool Oriented Machine Selection ..... 18
4.2 Processes Considered ..... 21
4.2.1 Rotational Components ..... 21
4.2.2 Prismatic Components ..... 21
4.3 Assumptions ..... 22
5.0 System Design And Validation ..... 25
5. 1 Development Df System Modules ..... 30
5.1.1 Machine Data File ..... 33
5.1.1.1 Machine Characteristics ..... 37
5.1.1.2 Process Characteristics ..... 37
5.1.1.3 Tool Characteristics ..... 39
5.1.2 Component Description ..... 41
5.1.2.1 General Information ..... 42
5.1.2.2 Rotational Part Description ..... 46
5.1.2.3 Prismatic Part Description ..... 49
5.1.3 Selection of Alternative Processes ..... 51
5.1.4 Selection of Machine Tool ..... 55
5.1.5 Maximization of Alteratives ..... 58
5.1.6 Machine Tool Sequencing ..... 61
S.1.7 Consolidation Of Alternatives ..... 63
S.1.8 Determine Machine Charateristics ..... 65
5.1.9 Cost Estimation ..... 70
5.1.9.1 Machine Time Per Piece ..... 70
5.1.9.2 Total Time ..... 71
5.1.9.3 Cost of Each Operation ..... 72
5.1.9.3.1 Total Labour Cost ..... 72
5.1.9.3.2 Tatal Machine Cost ..... 73
5.1.9.3.3 Handling Cost ..... 74
5.1.10 Total Cost ..... 74
5.2 System Dptimization ..... 75
5.2.1 Optimization of ALT1 System ..... 76
5.2.2 Dptimization of ALT2 System ..... 79
5.3 System Dutput ..... 82
5.3.1 ALT1 System Output ..... 83
5.3.2 ALT2 System Dutput ..... 84
5.4 Comparison of ALT1 AND ALT2 ..... 92
6.O Concluding Remarks ..... 94
6. 1 Discussion ..... 94
6.2 Scope for Further Work ..... 97
References ..... 99

## LIST OF FIGURES

Fiqure Page
3.1 Comparison of Variant and Generative Approach ..... 13
4.1 Illustration of Assumptions ..... 23
5.1 System Flow Diagram Initial System ..... 26
5.2 System Flow Diagram Alternative System ..... 27
5.3 Main Menu Listing ..... 29
5.4 Branching From Menu to Programs ..... 31
5.5 Break-up of Single Machine Database ..... 35
5.6 Illustration of Steps and Tapers ..... 48
5.7 Illustration of Prismatic Features ..... 50
S.8 Illustration of Alternative Features ..... 53
5.9 Determination of Speed and Feed Values ..... 67
S. 10 Calculation of Time Based on Amount of Material ..... 69

## LIST OF TABLES

Table Page
3.1 Survey of Computer Aided Process Planning Systems ..... 16
4.1 Listing of Shapes to Describe Features ..... 19
S. 1 Codes to be Inputted in Machine Files ..... 38
5.2 Yes/No Questions for Rotational Components ..... 44
5.3 Yes/no Questions for Prismatic Components ..... 45
5.4 Decision Table for Process Selection ..... 56
5.5 Sample Output for ALT1 ..... 85
5.6 Sample Output for ALT2 ..... 89

## LIST OF APPENDICES

Appendix ..... Page
A. Users Guide ..... 107
B. Flow Chart and Listing of Machine Program ..... 122
C. Description of Rotational Components ..... 129
D. Description of Prismatic Components ..... 135
E. Examples of the Dutput For ALTI ..... 140
F. Examples of the Output For ALT2 ..... 147
G. Flowchart of the Two Systems ..... 160
H. Listing of the Programs ..... 170
I. Description of Input to Machine Records ..... 270


#### Abstract

The selection of machine tools can no longer be left to the judgement of individuals. Markets today have forced industry to streamline production techniques to reduce costs in all areas of manufacturing. This need to reduce costs has resulted in the use of computers to aid in the selection of optimal machine toals for the purpose of process plan generation.

Process planning is the determination of the sequence of cutting tools and the cutting parameters to manufacture a particular component. Computerized process planning will form the link between computer aided design and computer aided manufacturing systems. This thesis discusses a computer based approach that can be used to aid the in this function by selecting suitable machine tools and generating the cutting parameters.


1.1 Goals of Computer Aided Process Planning (CAPP)

In recent years, with the advancements which have been made in manufacturing technology, there has been an increased need to utilize machines to their fullest potential. It has become necessary to ensure that not only
is the proper machine selected for a job, but that the machining parameters are selected such that the part characteristics are achieved at a minimum cost. A problem that has been brought about by more sophisticated machines is that often the individuals developing the plans do not have the experience required to allow them to develop process plans for the new style of modern machines. Younger machinist may never achieve this same level of experience, since the new machines do not require the same level of machining skill to operate as the older manual machines once required.

Today, the task of machine selection is often performed manually by a machinist who selects, in his judgement, the best choice of machine tools available in the shop. The machinist then attempts to determine the optimal machining parameters for the job based on his judgement and past experiences. It has been reported that in most cases the machinist will choose the machine which he is most familiar with (2), which may not be the best alternative available. The ideal solution would be to consider all possible tool combinations available in the shop, and determine the most cost effective plan for the part to be manufactured. Until all combinations of toals can be explored the development of optimal process plans is very unlikely to occur.

A computer based system can be a useful aid to the process planner by considering the potential alternatives


#### Abstract

for manufacturing in order to ensure the best possible process plan can be generated. For small firms; a micro-computer may be all that is required to aid in this function, since the number of alternative machines would be considerably less than in larger firms. The use of a micro-computer could be advantageous for smaller industries since they are less expensive and well within their financial capabilities. Moreover memory requirements need not inhibit their use, since the alternative machines available would normally be less when compared to larger industries.


### 1.2 Potential Benefits of A CAPP System

Benefits other than the selection of machine-tools Which are brought about by computer aided process planning include;

1. The ability to produce plans more rapidly. The Use of a computer allows more rapid generation of process plans. Plans that may have taken days to develop may only take hours with the aid af a computer. As a result there would be a savings in the cost of generating the plans.
2. Reduction in cast by increasing productivity. By selecting the proper machines and the machining parameters to manufacture the part a higher level of
productivity can be achieved since the machines are utilized to their highest potential.
3. Faster implementation of new technologies. By allowing the computer to select machines the installation of new machines will be incorporated into the system immediately and not require the complete learning of the machine's capabilities by the operator.
4. Lower level of machine knowledge. Since the computer is responsible for the selection of machine tools the operator does not require complete knowledge of all machining methods available. Therefore, the higher paid machinist are not required to operate the system and can be used in more important functions on the shop floor.

These and other potential benefits will result in more wide spread use of computers to aid in the generation of process plans. Computer aided process planning systems will be incorporated in industries both large and small. With this increased demand, there is a need to develop a micro computer based system which can be used to aid in the development of process plans.

### 2.0 GOALS AND OBJECTIVES OF RESEARCH

The goal of the research was to determine if a generative process planning system could be developed in a manner requiring the use of only a micro-computer; if such a system were possible, develop a methodology to allow for optimal process plan generation within a reasonable time period. A computer with 512 K of operating memory and with a hard disk capability of 2 megabytes was selected for the study, since this would conform to standard micro computer systems normally used by small industry.

Based on studies and tests of the system it was decided that the optimal generation of process plans could be left to the operator of the system, the operator then uses the computer as an aid in the selection of tools and to provide the recommended cutting parameters. The final selection and sequencing of machine tools would be left to the operator of the system.

The thesis proposes two separate methodologies to develop "optimum" process plans based on component description and capabilities of existing machines on the shop floor as follows:

> 1. Allow for optimal generation of process plans using a micro-computer.

# 2. Use a micro-computer to aid in the selection of appropriate machine tools and cutting parameters. 

The two systems have been developed and compared based on Various parameter characteristics and operating conditions.

Several papers were reviewed covering many different topics related to taol selection, process plan generation as well as papers dealing with machining processes. The wide variety of topics reviewed indicate the difficulty in developing a toal selection procedure especially using only a micro-computer. Many papers dealt with specific areas in the field, with none providing a procedure which can be applied to a micra-based system. The papers were grouped inta different categories as listed below;

1. Machine and Tool selection.
2. Cutting Parameter Estimation
3. Process planning Systems

> a. Variant
> b. Generative
> c. Expert

## 3. 1 Machine and Tool Selection

A few papers dealt with procedures which can be followed in the selection of machine-tools (2,8,18, 19, 22). The selection of appropriate machine tools is one of the most vital steps in the process planning function. It is important to relate the machine tool capabilities to thase required by the component to be manufactured, and also to
determine if simultanequs machining of the component is possible by having more than a single cutting tool in contact with the component at any point in time. The selection usually involves an estimate of the machining cost for a particular machining operation specified by the operator. The specification of the machining operation however, assumes that the machining operation is known. For a truly generative system the machining process required should be generated by the system. This would allow for different alternative operation combinations resulting in the same finished part.

### 3.2 Cutting Parameter Estimation

Once the machine has been selected for a particular operation a number of cutting parameters must be determined to ensure that the specifications of the component are met. These parameters will include machine speeds, tool feeds, etc. In all the papers some form of an assumption is made to simplify the determination of the cutting parameters. In some cases only a single pass was made, or the feed rate was fixed. Based on these assumptions, the remaining parameters were calculated using the toal life equations. Several papers dealt with the generation of cutting parameters, these include $(3,4,5,6,9,13,14,16,24,25)$.

### 3.3 Process Plan Generation

Several papers dealing with process plan generation were reviewed. Process planning invalves both of the previous steps of machine-tool selection and cutting parameter estimation as well as the sequencing of machines to perform the required operation. The overall plan should result in the generation of a process plan that meets the requirements of the part at the Iowest cost.

### 3.3.1 Types of Process Planning Systems

The traditional approach to process planning has been the manual manipulation of information by a skilled machinist to develop a process plan based on an engineering drawing. This approach is quickly being replaced in many industries by computerized approaches to the problem.

There are two computer based approaches;

1. Variant
2. Generative

Each of these approaches is unique in terms of their method of process plan generation. Each will be described in detail as to how they are used to generate or aid in the generation of process plans.

### 3.3.1.1 Variant Approach

A few of the papers dealt with the variant approach of process plan generation. The list of papers include (11, 19,23). In these papers the main objective was to determine an appropriate coding scheme to be used to store and retrieve existińn process plans from storage. The adjustments to machine selection, sequencing, and cutting parameters due to differences in the components was not discussed in detail and was often left to the individual operator of the system.

The Variant approach involves the codification of the component based on predetermined component characteristics. Common coding systems include the Opitz and Miclass coding methods (19). Based on the code devloped by the above methods, an existing process plan is retrieved from storage and manual alterations are made to the plan to allow the component to be manufactured to the new specifications. This procedure requires the manual manipulation of the plan Which could be subject to error or prejudices based on the operator's experience. It is the potential error and prejudices which have to be eliminated in order to ensure the generation of optimal process plans. The Generative approach brings us closer to truly independent and non-prejudicial development of a process plan.

### 3.3.1.2 Generative Approach

Here also, several papers dealt with the components which go into the development of a Generative process planning system. These papers included (9,10,15, 19,21,23). The difficulty with these papers seemed to be the inflexibility of the designed systems and the size of computer which was often required to run the system. The papers dealt with systems which were often designed to suit the needs of one particular user. Dften the design took many man years to develop and required a large computer system to operate. None of the papers dealt with a universal system which could be applicable to a wide number of users through its implementation on a micro-computer.

The Generative approach involves generating new process plans from the beginning each time a part is to be manufactured. The system not only considers the part features and specifications, but also the number of components which are to be manufactured, as well as the current machines available. In Generative process planning the component must be uniquely defined by the operator to the system in terms of features to be removed, the tolerance and the surface finish of each feature. This entirely new plan generation allows the system to consider every possible machine tool combination each time to ensure that an optimal plan is generated. This approach requires a
complete description of all machines and tools to be kept in a machine database. This database is used to compare the requirements of the component with the tools available and their capabilities.

## 3.3 .2 Expert System

Expert systems have been designed for both the Variant and Generative approaches to process planning. The recent trend towards an intelligent system has prompted much research in this area, but, it is still in its infancy. Through the development of more powerful computers and new programming languages such as Prolog, these system may eventually be used to develop complete process plans with very little interaction by the pperator. A few papers were found which did describe systems which utilize this new found knowledge. These include (7,10,15,17).

A comparison of the Variant and Generative approaches is illustrated in Figure 3.1. Under the Variant approach the operator of the system must carry out what is called a "modifying" operation. The operator must take the existing process plan and modify it to suit the characteristics of the current problem. It is in this modification phase that the prejudices of the operator may affect his selection of


Comparison Of The Variant
\& Generative Approaches To
Process Planning

Figure 3.1
alternative choices. The generative approach requires no modification to the process plan, but the complexity of the problem is greatly increased due to the enormous number of calculations required and the number of comparisons to be made between the machine capabilities and the component requirements.

### 3.4 Comparison Of Existing Process Planning Systems

There have been numerous attempts to develop computer aided process planning systems with several successes in both the Variant and Generative approaches. A third approach which is receiving considerable attention is the Expert system of process planning. Each of the first two have been developed in most cases by industry to suit the particular needs of a given company. The Expert systems which are being developed are designed to be applicable to more then a single user. The Expert systems have the capability of learning from their past decisions, so that mistakes in the past will not occur in the future. These systems are capable of making decisions in a similar manner to the human decision process and therefore are capable of learning as the system is utilized. The Expert system is not a new method of process or tool selection, but, is a new approach in system design using advanced computer
languages such as Prolog and Lisp.
Table 3.1 contains a listing of systems which have been developed or are currently in the process of being developed by industry or in research facilities. Each system has been broken down to allow for comparison based on certain definitions such as; system name, type (variant, generative, expert), component type and reference papers where information on the various systems can be found. None of the current systems reviewed have been developed to specifically run on a micro computer, and a great number of these systems have been developed with a particular user in mind.

An indepth review of these systems has indicated a diversity of approaches to the problem of generating process plans. However, the goal of each system is to develop a cost effective plan for the user of the system. Using cost effectiveness as a basis, the system to be used in industry should also be affordable for the user in terms of the initial capital investment. In many of the cases shown in Table 3.1 the system could not be used by a smaller industry, or any other user since it was designed for the particular needs of a specific company. For this reason it is necessary to develop a method to aid in the process planning function which can be used by a number of different companies and which can be run on a

## SYSTEMS IN INDUSTRY

| SYSTEM NAME | TYPE | ROT/PRIS. | REFERENCE |
| :---: | :---: | :---: | :---: |
| APLAN | N/A | ROT | 15 |
| AUTAP | N/A | ROT | 15,23 |
| CADSY | N/A | ROT | 15,23 |
| DREKAL | N/A | ROT | 15 |
| SISPA | N/A | ROT | 15 |
| DISAP | GENERATIVE | PRIS | 15,23 |
| EXCAP | EXPERT/GENER | N/A | 15 |
| COATS | EXPERT | ROT | 12 |
| ACAPS | SEMI-GENERATIVE | N/A | 9,19 |
| XPLANE | EXPERT/GENER | ROT/NRIS | 10 |
| CUTTECH | OP. PLANNING | N/A | 2 |
| ICAPP | VAR/GEN | PRIS | 11 |
| ROUND | GENERATIVE | ROT | 21 |
| XPS-E | EXPERT | ROT/PRIS | 17 |
| MIPLAN | VARIANT | N/A | 19,23 |
| CAPP | VARIANT | N/A | 19,23 |
| APPAS | GENERATIVE | PRIS | 19 |
| GENPLAN | GENERATIVE | ASSEMBLY | 19 |
| CMPP | GENERATIVE | ROT | 19 |
| GARI | N/A | N/A | 23 |
| XPS-1 | EXPERT | N/A | 7 |
| CAPSY | N/A | ROT | 11 |
| MITURN | N/A | ROT | 11 |
| AUTOPLAN | N/A | ROT | 11 |
| SIB | N/A | SHEET | 23 |

The Above Is A List Of
Systems Which Can Be Found
In Industry Or Research
Institutions

Table 3.1
micro-computer. This report focuses on the specific approach to develop optimum process plans using process characteristics based on existing machining capabilities, and to do sa solely within the limitations of a standard micro-computer system.

## 3. 5 Summary of Literature Survey

From the review of these papers it was decided that a micra-computer based system can have a large number of benefits to a great many userss provided the system can be designed for more then one user. Through a review of various papers $(14,16,24,25)$ it was decided that the use of "tool life equation" techniques for cutting parameter estimation would not be used due to the 1 imited applications and the size of optimization procedure which results when salving for the pracess parameters using taol life equations. Instead, standard cutting equations and heuristics can be applied ta determine the individual parameters and still be able to provide near optimal salutions.

Various papers will be referred to throughout this report as the information from these papers is related to the development of the micro-computer based system.

The remainder of this thesis will develop a possible design for a micro-computer based machine selection procedure. Before the details of the system can be developed, it is necessary to propose a framework within which the system will operate.

Under no circumstances can any model be developed to consider all possible situations. There are limitations to all systems no matter how complete they may be. To develop a micra computer based system it was necessary to restrict the size of the problem. Therefore, it was necessary to restrict the number of processes considered, and the type of components which can be handled by the system. The system which will be described in the subsequent chapters uses the tool oriented approach of matching the features to be removed with the tool capabilities of different machines.

### 4.1 Mirro Computer Tool Oriented Machine Selection

The model is able to select machine tools based on the description of the component in terms of identifiable features by the system. The system is currently restricted to known features which are listed in Table 4.1. A detailed description of the classification system for component

## LIST OF SHAPES WHICH ARE

## INCLUDED IN THE SYSTEM

Prismatic shapes; -Rectangles<br>-Triangles<br>-Trapezoid<br>-Rhomboid<br>-Internal Keyway<br>-External Keyway

Rotational shapes; -External cylinder<br>-Internal cylinder<br>-Portion of a cylinder<br>-Tapered surfaces.

The Above List Of Features Are The Only Features Which Are Recognized By the System

Table 4.1.
identification is given in section 5.1.2. The number of features can be expanded to include others, but, for the initial problem the features in Table 4.1 were considered sufficient for fairly complex components. The system was written in "Better Basic" which allowed the computer to use all the available memory in the computer. The system was designed to be run on a IBM AT with a memory of 512 K with hard disk capabilities on which the machine tool records were stored for faster retrieval. The system output was printed using a 132 column Epson printer.

It is important to note that the program was written for interactive use. The system has been designed to be as user friendly as possible in order that it accommodate non expert operators on the shop floor. In Appendix A a users guide is provided to aid the user with any difficulties which may occur. There should be little trouble in allowing the system to be operated by an individual who has little knowledge of computers or the machine selection function.

The initial system considers a limited number of processes for rotational and prismatic components. Although the number of processes is limited, the complexity of the component can be such that the optimal selection of the machine tools by manual methods would prove to be very time consuming.

### 4.2 Processes Considered

The processes were divided among the two types of parts considered (rotational/prismatic). The machine files were designed to group the processes separately to reduce the size of the files, and speed up the machine selection function. The grouping procedure is described in section 5.1.2.

### 4.2.1 Rotational components

Processes included are; -Ext. Turning
-Ext. Grinding
-Int. Drilling
-Boring
-Int. Grinding
-Ext. Drilling, Reaming
-Ext/Int Keyways

### 4.2.2 Prismatic Components

Processes included are:-End milling
-Peripheral milling
-Face milling
-Ext. surface Grinding
-Drilling: Reaming
-Boring
-Int. Grinding
As can be seen by the above list, fairly complex parts can be created since the number and type of processes considered is capable of creating a large number of varied features.

### 4.3 Assumptions

There were a number of assumptions made throughout the research for purposes of model development. These assumptions were necessary to allow the system to be operated on a micro-computer and provide selections in a reasonable amount of CPU time. The assumptions made are listed below with a brief description of each:

1. Dnly consider rotational internal features for both rotational and prismatic components. <exclude sharp corners as found in pockets.) [Figure 4.1a.] By making this assumption the type of operations were restricted. This assumption however, does not restrict the use of internal keyways.
2. All features must run parallel to one of the major axis of the component. (exclude angular cuts) cFigure 4.1b.J This assumption restricts simultaneous movement in two different directions by the tool.
3. Dnly consider one representation of shapes: those provided by the user of the system. Do not consider other shapes which can be derived from combinations of shapes [Figure 4.1c.] The same features can be created by combining other shapes. To restrict considering different combinations of features only the one provided by the operator is used.


FIGURE 4.1b


FIGURE 4.1c
4. There are no special tools such as form tools. Special form tools can create a number of defined features simultanequsly. The system is restricted to creating a single feature with a tool.
5. All tools are either HSS or Carbide. The metal removal rate of these tools will be considered to be constant (no allowance for tool wear). In estimating the tool costs of machining, the tool will qperate as if it were a new tool.
6. Only one tool can be in contact with the component at any one time. There can be no simultaneous machining operations. The remaining assumptions will be outlined as used throughout this thesis.

This chapter discusses the specific sections (modules) for the machine tool selection procedure. The first step in the development of a machine selection procedure is the transformation of component features into alternative processing methods. Once this relationship has been established available machining capabilities are examined to correlate the alternative processes to the machine tools available on the shop floor. The last step is to use a cost justification approach to derive a combination of machine tools to generate various combinations of components. A unique feature of this approach has been the incorporation of batch sizing of the components into the cost justification system.

Figures 5.1 and 5.2 contain a flow diagram of the two approaches taken to aid in the generation of process plans. For the remainder of this report the two approaches will be called ALT1 and ALT2 respectively. The difference between the two systems is that in ALT1 a sequencing of operations is carried out to determine the optimal sequence of machine tools, whereas ALT2 does not sequence the operations, but leaves the sequencing to the operator of the system. In both cases the procedure ranks the alternative outputs based on minimum cost, ALT2 also ranks the output by


FIGURE 5.1

## FLOW CHART FOR ALT2 PROGRAM



FIGURE 5.2
maximum production rate.
Figure 5.1 1 ists the modules developed to include the sequencing of the operations to determine the overall optimal process plan for ALT1. For ALT2 as shown in Figure 5.2 there is no sequencing of operations; instead the system generates and ranks the alternative machine tools for each required operation. The ranking is based on either minimum cost or maximum production rate. Each module in Figures 5.1 and 5.2 will be described as to its contents and the function it performs in the program. Several of the modules of Figures 5.1 and 5.2 are identical in design and function; in these instances only a single description will be provided. However, when differences between the two procedures exist, the module will be discussed separately.

Unlike some systems which require the user to input information using a card deck or in the form of a data file, this system is designed to be user interactive. The system prompts the operator to describe the part in terms of the raw dimensions and features to be machined.

Upon start up of the system, the user has a number of alternative choices in the form of a menu from which to choose. Upon selection of an operation to be performed the system will transfer to the appropriate program and begin execution. The main menu of the system is shown in Figure 5.3. The purpose of this menu is to send control to the

* ..... *
* SELECT THE DPTION THAT YOU WISH TO USE IN ..... *
THE PROCESS PLAN GENERATION PACKAGE ..... *
* ..... *
* CREATED BY DAUID MELOCHE ..... *
* FALL 1986 ..... *
* ..... *
* 1. Edit Machine Records ..... *
* 2. Create Machine Record File ..... *
* 3. Determine Tool Selection (ALT1) ..... *

4. Determine Tool Selection (ALT2) ..... *
5. Return to DOS ..... *

* 
* 
* 
* ..... *
,
* (Press Return After Selection) * ..... *

* 
* __ Selection

Illustration of main menu of program

Figure 5.3
desired program which the operator selected. By selecting the program to be loaded, the amount of memory required to store the program is reduced thus making memory available for other applications in the system. A micro-computer based system requires effective use of available memory in order to handle the complicated analysis and the storage capacity required to develop a process planning system. Figure 5.4 illustrates the procedure of branching to different programs by the system in order to "free up" available memory by not having all the programs loaded simultanequsly.

The modular design and branching techniques were fallowed throughout the development of the system. In subsequent sections, the breakup of the machine files and the component description into modules were necessary to make the entire system more efficient.

### 5.1 Development of System Modules

As shown in Figures 5.1 and 5.2 the task of process planning can be divided into several modules as listed below;

1. Machine description
2. Component description
3. Selection of operations


## BREAK-UP OF PROGRAM INTQ <br> SPECIFIC FUNCTIONS

FIGURE 5.4
4. Selection of machine tools
5. Dperation sequencing
6. Grouping of operations
7. Determination of machining characteristics
8. Time and cost calculations
9. Selection of best process plan
10. Printing of process sheet.

Based on these modules, it is feasible that an optimal process plan can be generated as outlined in Figure 5.1. It will be shown however, that the generation of the optimal process plan may not provide the most useful information to the operator. The generation and ranking of alternatives for each required operation would provide more information to the operator of the system. The system would allow the operator to select which machine to use for an operation from the machines which are currently available. In the case of a rush job, where the machine in the optimal process plan may not be available, the operator can select an alternative machine. Also, there will be increased flexibility in scheduling, by avoiding the over scheduling of a particular machine based on set optimal process plans as determined by ALT1.

Before the program can run, a complete description of the available machines must first be stored as an
accessible database. Therefores before describing the machine tool selection procedure the logical order would be to develop the machine tool database since this serves as the cornerstone for deriving the procedure for process planning.

### 5.1.1 Machine Data File

Before machine tool selection can take place, a complete listing of machines and tools must exist in a database. The database must contain the specific information on the available machines and tools in the shop to allow for the selection of not only the machines, but also the generation of cutting parameters for each of the required operations.

For a micro-computer based system, the procedure of machine selection and cutting parameter generation requires the same information as larger systems. However, for a micro-computer based system the organization of the information must allow for more rapid searching and selection of machines and calculation of cutting parameters. The machine database developed allows the operator of the system to input specific machine characteristics which the system will utilize in its selection of the appropriate machine tool and cutting
parameters. For large computer systems, a single database may be developed to contain all the information on the available machines. This procedure was initially followed for the micro-based system, but when the system was tested the time taken to run the program often took 5-6 hours depending on the size of the problem. As a result, the single database was divided into a number of operation specific databases as illustrated in Figure 5.5.

The machine files were divided in such a manner that the class of operations in each of the files was specific to a particular class of features to be generated. By separating the files, the search time was drastically reduced and only relevant records were searched for each required operation. Since a micro-computer based system is considerably slower than a larger system the task of searching records can be several times longer than in larger computer system. Also a micro-based system may take a considerable amount of time to compute the same amount of information as a mini or mainframe, thus making the system non-economical.

Considering the speed at which the information should be provided by the system to the operator it was necessary to make certain assumptions (as outlined in Section 4.3) to reduce the number of calculations performed. If many of the assumptions were not made, the operator may at times be

## BREAK-UP OF MACHINE FILES

ROTATIONAL FEATURES
PRISMATIC FEATURES


The Above Break Up Of The Machine Files Allows For More Rapia Retrieval Df Information

FIGURE 5.5
better off to develop process plans manually without the aid of a micro-computer. Throughout the design, care was taken to minimize the computing and searching time required in order ta make a micro-based system justified for use in smaller machine shops. The file structure used allowed for rapid searching and locating of specific information and contained the necessary information for machine tool selection. A method which sped up the search process was to create random access machine database files. By creating random access files, specific information can be read for a particular machine tool without a sequential search of all records.

The specific description of the machine file is divided into three categories;

1. Machine Characteristics
2. Process Characteristics
3. Tool Characteristics.

Each of these categories are used to create an individual machine record. A flowchart and listing of the program is contained in Appendix B. The program was developed so the information on a particular machine would not have to be inputted repeatedly for each record. The information would be inputted once and all records for that machine will have access to the information. A similar procedure occurs when an operation can be performed by a


#### Abstract

number of tools on the same machine. The specific information on each of these sections will be outlined in the following sections.


### 5.1.1.1 Machine Characteristics

The first task is to input the general machine characteristics in the program. The information to be inputted includes;

> 1. Machine number
> 2. Machine horse power and
> 3. Number of operations which can be performed on the machine.

A complete listing of operations which are included in the system are listed in Table 5.1. Along with each of the operations in the table, is the operation code which will be inputted in the next portion of the machine description program. Dnce the above information has been inputted the operator must input the process characteristics.
5.1.1.2 Process Characteristics

In this section, a more specific description of the machines and the operations they can perform is required.

## Features And Codes For Alterative Operations

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 20. 

Feature/operation
External Turn
External Cylindrical Grind
Code
1
Rotational Axis Drill
2

Rotational Axis Bore 3

Rotational Axis Grind 5

External Drill
6
Rotational Axis Ream
8
Rotational Axis Ream 4
External Ream 9

Rotational Axis Thread 7
External Thread10

Internal Keyway cutter 13
External Keyway cutter
14
External Rectangle 15
External Triangle
16
External Trapezoid 17
External Rhombaid
18
External Portion of Cylinder 19
Internal Bore
11
Internal Grind 12
External Surface Grind
20

The Above List Contains The Operations<br>And The Codes To Be Inputted Into<br>The Machine Records

Here, the particular operation characteristics are defined for each of the machines.

The inputs required are;

1. Dperation code
2. Set-up cost (\$)
3. Dperator cost (\$/min)
4. Time to load and unload a part (min)
5. Expected \% down time
6. Maximum length of part (mm)
7. Maximum diameter of part (mm)
8. Maximum width of part (mm)
9. Maximum height of part (mm)
10. Number of tools available to perform the machining operation.

Each of the inputs is specific to the operation to be performed and the machine which the operation is to be carried out on. Once the above information has been inputted by the operator, the system begins the description of each of the available tools to perform the operation on the machine.

### 5.1.1.3 Tool Characteristics

In this section, the specific characteristics of each of the tools which are available to perform the specified
operation on the machine are inputted. In this case the input gets more specific as to the capabilities of the toal. Here the input includes;

```
                    1. Tool number
                    2. Tool cost of machining ($/min)
                    3. Tool material
                            4. Number of teeth on the tool
                            5. Tool diameter, (mm) if applicable
                            6. Tool width, (mm) if applicable
                            7. Tool nose radius (mm)
                            8. Maximum metal removal rate (cu.mm/min)
                            9. Maximum depth of cut
                    10. Tolerance attainable (mm) and
                    11. Surface finish attainable (RMS).
```

Under different conditions, certain questions may play a dual role. For instance, in the case of a boring operation the value of the tool diameter will indicate the minimum size of a hale required before this toal can be used. Maximum depth of cut for boring may indicate the maximum depth for each pass, but in the case of a drilling operation it indicates the length of the tool. These dual rales of different tools depend on the tools themselves and will be clearly explained in the users instructions in Appendix A.

Using the above procedure all the available machine tools can be described and stored on file to be used later to select the required alternative combinations of tools to meet the specific requirements of the component. Once the machine tools available in the shop have been inputted to the system they never need to be re-inputted. In Figure 5.3 the main menu indicates the option of editing the machine files. This is only necessary when new machines or tools are introduced onto the shop floor, or machines are to be removed.

In subsequent sections, the machine files will be used to select the tool required and estimate the costs of machining with a specific tool. Appendix 1 contains the data which was inputted into the machine files from which the examples in this report were generated.

### 5.1.2 Component Description

Dnce a machine database exists the next step is to input the description of the component to be manufactured. This involves the description of the component to be manufactured by the operator of the system. Two types of information is required to be inputted;

1. General information and
2. Specific component information.


#### Abstract

For the specific component description, the system divides the problem into two systems;

a. Specific Rotational Information<br>b. Specific Prismatic Information.

The breakup between Rotational/Prismatic components allows the procedure to consider the two problems as separate systems since there is little similarity between the two types of parts. For the purpose of speeding up the process plan generation phase an internal disk drive was created. This drive is accessable like other disk drives, but greatly speeds up the process of reading and writing to files, since the information is contained in the computer memory itself, rather than on disk. The component description will be stored on this disk drive since a permanent record of the component description is not required once the task of machine selection has been completed.


### 5.1.2.1 General Information

The information inputted at the start of the system contains the general information about the part to be manufactured.

The information includes;
Date

```
Dperators name
Part number
Part name
Number of parts per lot
Part material
Maximum production rate or Minimum production
cost and
Part type (rotational/prismatic).
```

Once this information has been inputted, the system enters the appropriate portion of the program based on whether the part is rotational or prismatic. Upon entering the proper program, the system begins to prompt the operator for the specific feature description of the part to be manufactured. Depending on whether the part is a rotational component or a prismatic component, different yes/no questions are asked along with the specific part characteristics. An answer of "no" to any of the questions will result in the system omitting the appropriate portion of the component description program and the subsequent machine selection phases. A listing of the yes/no questions which are asked is contained in Table 5.2 for the rotational components and in Table 5.3, for the prismatic components.

These yes/no questions are used to initiate the different sections of the program only as required, there-by speeding up the interrogation process, and later reducing the required calculation time by eliminating

## Yes/no Questions For

## Rotational Parts

> 1. Are there external turned features?
> 2. Are there internal features along the axis?
> 3. Are the features through the entire part?
> 4. Do the features originate at the reference end?
> 5. Do the features originate at the opposite end?
> 6. Are there any drill holes parallel to the axis?
> 7. Do the drill holes start at the reference end?
> 8. Do the drill holes start at the opposite end?
> 9. Are there any external drill holes?
> 10. For each drill hole, is it threaded?
> 11. Are there any internal keyways?
> 12. Are there any external keyways?

These questions are used to aid in the selection of required operations as well as to determine which portions of the program must be run.

Table 5.2

## Yes/no Questions For Prismatic Parts

1. Are there any surfaces to be machined?
2. Are there any external features to be machined?
3. Does the feature run along an edge?
4. Does the feature run the length of a surface?
5. Are there any internal features to be machined?
6. Are there any external drill holes?
7. Are there any drill holes in positive $x$ direction?
8. Are there any drill holes in negative $x$ direction?
9. Are there any drill holes in positive $y$ direction?
10. Are there any drill holes in negative $y$ direction?
11. Are there any drill holes in positive $z$ direction?
12. Are there any drill holes in negative $z$ direction?
13. For each hole, is the hole threaded.?

These questions are used to aid in the selection of required operations as well as to determine which portions of the program must be run.
certain portions of the program. The yes/no questions are also used to aid in the selection of the processes which are required to manufacture the component as described by the operator. The selection of operations required is generated by arranging the yes/no answers in the form of decision tables.

### 5.1.2.2 Rotational Part Description

Here, along with the questions in Table 5.2, specific information is required such as the dimensions of all the features to be created, along with their tolerances and surface finishes. The descriptions, along with the yes/no questions asked, are then compared to the capabilities of the available machines. The procedure first compares the raw dimensions and, then compares the specific requirements of the component.

The yes/no questions allow the system to break up the component into its individual feature classes, which can be compared to the machine file breakup described in the machine file section of this report. This break-up allows the different component description files to be matched with machining files which are capable of creating the features in the particular class.

The feature description for rotational components is

```
divided into six classes;
    a. External Turned Features
    b. Internal Turned Features
    c. Drill Holes Parallel To Axis
    d. Drill Holes Perpendicular To Axis
    e. Internal Keyways and
    f. External Keyways.
```

The external and internal turned surfaces are described in terms of steps and tapers. An illustration of the meaning of a step and taper is shown in Figure 5.6. Depending on the type of feature present, different information is prompted by the system to be inputted by the operator. The information required for steps and tapers is listed with the illustrations in Figure 5.6.

For each of the yes/no questions of Table 5.2, similar inputs are required to define the features which are to be created. Only when a yes/no question is answered with a "yes" will the system prompt for specific information. If a "no" is entered by the operator for one of the above questions the system assumes that no feature of this type exists, and immediately goes on to the next class of features. A complete list of the descriptions for the rotational components is contained in Appendix C.

## ILLUSTRATION OF TURNED FEATURES



### 5.1.2.3 Prismatic Part Description

For prismatic components the yes/no questions in Table 5.3 perform the same function as for the rotational components. They allow the system to break the component description into distinct classes of features. During later stages, these files can be matched with the machine record files capable of creating the features for each of the classes in the system.

The initial starting shape of the raw material must be described in terms of its shape as well its dimensions. . Here, the system is limited, since the initial raw material must also be one of the pre-defined shapes. Referring to Table 5.1 we can see the prismatic feature and their codes which are acceptable inputs to the system, as described earlier. Figure 5.7 contains the illustrations of the prismatic features which can be created along with their required dimensions. In this case, additional information has to be inputted by the operator to ensure proper selection of tools. This additional information is how the feature to be removed relates to the initial raw material. Through the use of yes/no questions during this phase the system can determine the relative relationship between the raw material and the feature to be removed.

Here, as in the case of rotational components, the


FIGURE 5.7
features are divided into a number of classes, which can be matched to a given file of machine records which are capable of creating each of the classes of features. The individual classes of features for the prismatic component description includes

a. Surfaces to be machined<br>b. External features<br>c. Internal turned surfaces<br>d. Drill hales parallel to an axis.

Here againg each feature must be described in terms of dimensions, tolerances and surface finishes. Refer to Appendix D. for a complete listing of all the information which must be supplied by the user to completely describe a prismatic component.

Once the component description phase has been completed the system can begin to determine which of the machine records are required to create the different features of the component for either a rotational or prismatic component.

### 5.1.3 Selection of Alternative Processes

This section determines the alternative machine selections based on the component description of the part.

In this phase of process plan generation the variant and generative approaches of process planning differ the most. For generative process planning, the basic goal is to determine all feasible process alternatives in order to ensure that the optimal plan is among the ones generated. Thus, for each feature of each class as defined in the component description phase every alternative means of manufacture must be considered. This approach is the method which will be followed by this micra-based system. As would be expected, as the complexity of the part increases, the number of alternative processes increase, and quickly the problem becomes ton 1 arge for a micro-based system to solve. To simplify one aspect of the problem, an assumption was made that states that the shapes to be removed are considered to exist only as described by the operator of the system. This assumption was necessary to reduce the number of alternatives generated. If this assumption was not made, the component could be considered to be created by other combinations of alternative shapes as illustrated in Figure 5.8. Therfore, the number of potential operations would be multiplied by every feasible combination of alternative features. This would result since the system could not assume that the description provided by the operator was the only possible description. This illustrates the need for this assumption considering the

ILLUSTRATION OF ALTERNATIVE FEATURES WHICH CAN BE USED TD DESCRIBE THE SAME CDMPDNENT

PART TO BE DESCRIBED


DESCRIPTION OF FEATURES


FIGURE 5.8a


FIGURE 5.8b
limited capabilities of a micro-computer based system.
The procedure determines all feasible tool combinations to create the features to the specifications as described in the previous section. No attempt has been made to consider different combinations of shapes which will result in the same component. This next section utilizes the yes/no answers of the description phase to determine the type of processes which are required. The yes/no answers are not the only restriction when selecting different processes. Also considered, is the dimension of the feature itself and the required tolerances and surface finishes.

Based on the yes/no answers provided in the component description phase, and the raw material, the system determines which processes are required to create the rough features. In order to determine if a finishing operation is required, the system must compare the capabilities of the initial process selected with the specifications of the features. One assumption made is that if a tool selected for the initial process can achieve the parameters of the feature (tolerance, surface finish), the same tool will be used for both the rough and finishing cuts. For example, in the case of internal features, the system determines that at least two operations are required. First, the system must create a drill hole of appropriate diameters and select the boring process to create the features. The
system cannot, however, determine if internal grinding is required since it has not yet compared the capabilities of the tool to perform the boring operations with the specifications of the component. The system has only selected the initial processes required to create the features. The procedure has not yet determined if the machine tool capabilities exceeds those required by the component. For each class of features, the system will determine the initial operations required based on the "yes/no" answers for the component. The procedure is illustrated in Table 5.4 for a rotational component based on the questions in Table 5.2.

### 5.1.4 Selection of Machine Tools

Dnce the appropriate processes have been selected based on the features to be removed, machine tools are selected from the machine files to perform each of the required processes. Each tool selected must satisfy certain preliminary conditions;

> 1. The machine tool can perform the desired operation and
> 2. The machine can handle the part in terms of its shape and raw dimensions.

## Decision Table for Rotational Components Based On Questions <br> In Table 5.2

```
    Question 1 (Y/N) Y
\begin{tabular}{llllll} 
Question 2 & \((Y / N)\) & \(Y\) & \(Y\) & \(Y\) & \(Y\) \\
Question & 3 & \((Y / N)\) & \(Y\) & \(N\) & \(N\) \\
\(N\) \\
Question 4 & \((Y / N)\) & \(N\) & \(Y\) & \(N\) & \(Y\) \\
Question 5 & \((Y / N)\) & \(N\) & \(N\) & \(Y\) & \(Y\)
\end{tabular}
        Questian S (Y/N) N N Y Y
        Question 6 (Y/N)
        Question 7 (Y/N)
        Question 8 (Y/N)
        Question 9 (Y/N)
        Question 10 (Y/N)
        Question 11 (Y/N) Y
        Question 12 (Y/N) Y
ACTION A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11
Where A1= External Turn
    A2= Internal Bore Through Entire Part
    A3= Internal Bore From Reference End Of Part
    A4= Internal Bore From Dpposite End Of Part
    AS= Internal Bore From Both Ends Df Part
    AG= Drill Parallel To Axis From Reference End
    A7= Drill Parallel To Axis From Opposite End
    AB= Drill Parallel To Axis From Both Ends
    AG\doteq External Drilling Required
A1O= Internal Keyway Cutting Required
A11= External Keyway Cutting Required
The above procedure will determine the initial processes required based on the Yes/No questions answered during the component description portion of the program.
```

Table 5.4

The system begins by selecting each class of features described by the operator and reads the individual records for the features in the class winich are stored on the internal disk. The system searches the appropriate machine file based on the feature class and the raw material to select a possible alternative machine tool record. Only if the tool cannot meet the specifications of the component, in terms of its tolerance and surface finish will the system generate a finishing operation. If a finishing operation is required the system will determine the alternative machine records available to perform the operation. If a tool is capable of creating the desired feature to the specifications described by the operator no finishing operation will be generated.

The system maximizes the number of possible alternatives by considering for each feature(J) of each class and each potential machine record(I,K,L) required to meet the specifications of the component. I,K,L are a combination of machine records which are required to meet the specifications of feature J. The potential tool combinations allow for, at most, three operations to be performed to create a single feature. Considering the case of an internal feature, the operations required are;

Drill, Bore,
and possibly Internal grind.

# Similarly for other feature classes the maximum number of operations required is three. 

### 5.1.5 Maximization of Alternatives

In the machine selection procedures it is important ta consider all feasible alternatives. Only by considering all possible combinations can the procedure guarantee that the optimal alternative will be generated. This maximization of tool combinations considers each tool combination ( $I, K, L$ ) for each feature J. The following equation illustrates how the system considers each toal combination.

$$
\begin{aligned}
& \text { MAX } \sum^{\frac{T}{2}}{ }^{\frac{T}{2}} \sum^{2} \sum^{2} P(I, J, K, L) \\
& \text { Where } \\
& P(I, J, K, L)=1 \text { If machine records } I, K, L \text { are } \\
& \text { feasible and required to } \\
& \text { create feature } J \text {. } \\
& \text { ELSE } \\
& P(I, J, K, L)=0
\end{aligned}
$$

Note that the variables $K$ and $L$ may take on a value of O if the operations associated with them are not requiredy but, $P(I, J, K, L)$ can $s t i l 1$ take on the value of 1. This maximization is carried out over all features in a particular class. The resulting (I,K,L) values are stored as feasible alternatives to create the feature (J). Since this information will not be required ance the pracedure has been completed, the data is stored on the internal
disk. By storing the data on this disk, it speeds up later reading operations performed by the system to select the optimal combination of tools. The above system creates all the feasible tool combinations there-by ensuring that the optimal one is among the ones generated.

Equation (1) simplifies the procedure which is performed by the program at this stage. Many other calculations are required to ensure the proper selection of machine records at this stage. For example, consider the case where there are internal features along the axis of a rotational component. The first requirement is to determine the minimum diameter of all internal features in order to determine the maximum diameter for the drilling tool. This can be illustrated by the following equation;

Let diameter $=100000$


Using equation (2), the system determines the minimum diameter of all internal features. Knowing this value, the drill diameter can be selected accordingly. Incorporated in the system is the fact that the final drill diameter is usually only $3-5$ (mm) less then the smallest feature diameter, provided the smallest diameter is not greater
then 50 mm . Based on this diameter all feasible drilling tool records are compared to this value to see if they meet this requirement along with the other requirements for an acceptable alternative. Dnce the maximum drill diameter has been selected the boring tools are selected by comparing their required diameter restriction with the hole diameter to see which tools can be considered for the boring operation. By comparing the capabilities of the boring tools in terms of tolerance and surface finish the system determines if an internal grinding operation is required. If grinding is required, the system selects an appropriate * tool based on the previous restrictions. The system not only compares the tools, but also the machines to ensure that the selection is feasible based on the raw material dimensions of the part.

The above procedure will result in determining the maximum number of feasible tool combinations to create the features as defined by the operator. Comparisons are made for each class of features, this will result in generating the maximum number of feasible machine tool combinations, thus ensuring that the optimal machine tool combination is among the ones generated.

Once all feasible combinations have been generated for each class of features, the system must sequence the machine tools in order to achieve the final component features.
5.1.6 Machine Tool Sequencing

The sequencing of machine tools within each class of features is determined prior to the selection of alternative machines. This sequencing has been built into the system itself. For a given class of features, there exists a single sequence in which the operations must be performed. Although the machine chosen varies, the operation it will perform is the same. For example, in the case of an internal feature, drilling must be the first operation performed fallowed by boring which must precede internal grinding if grinding is required. Therefore, within a class there exists a predetermined sequence of operations which will result in a predefined sequence of machine tools. However, the sequencing of operations between classes of features cannot be determined in the same manner since the sequence of operations between classes are basically independent of each other. Dperations from different classes can be performed together if the preceding operation restrictions within the class have been satisfied. As an example, the sequencing of operations for the overall component must satisfy the individual sequencing of the feature classes. Therefore, operations from two classes of features can be machined one after the other by the same tool or on the same machine, provided the
features of the two classes are at the stage where the tool/machine is required for both the classes of features. In a truly generative process planning system, the user would input rules to provide a rough framework for the ordering of operations between classes. These rules would apply to classes of features or operational sequences. However, even with these rules there would be a large number of alternative sequences to consider in order to determine the optimal sequence. Consider the simple example where there are two classes of features to be machined and where each class requires only two operations and a limited. number of ten alternative machines for each operation. There could be as many as 60,000 possible sequence combinations to consider. Considering the limited problem size defined above, the difficulty in managing a larger more realistic problem on a micro computer becomes apparent. As a result of the large number of combinations it was decided to rank the alternatives for each required operation, rather than the overall sequenced alternatives that would have resulted in the generation of the optimal process plan. Instead the operations between classes were not intertwined but each class of features was considered separately.

### 5.1.7 Consolidation of Alternative Processes

Once the system has generated the alternatives it finds itself with too large a group of possible alternatives for a micro-based system even with the restrictions previously defined. In the previqus phase, the system generated all tool combinations for each of the individual features in a particular class. At this point a reduction in the amount of available information is required. A likely reduction is to group the stored information to determine which combinations of machine tools are capable of creating all or the majority of features in a particular class of features. In the selection of machine tool portion of the program, each feature, within each class, generated its own set of alternative machine tool combinations. During this section a single machine tool combination is determined which can generate all the features within a particular class of features. For ALT1 and ALT2 the individual class sequences are searcheds each time a tool is found to perform a given operation the system notes the tool and the operation and stores it in memory. If the same tool is found to be performing the same operation but with different toals performing the other operations in the class it is noted, but, not restored. Therefore, the end result is a complete listing of all tools which are used to
machine all the features for a given sequence of operations for each class of features.

In the case of an internal feature as described before, there should exist a combination of drilling, boring, and grinding tools which can create all the features in the class. For the case of internal grinding some features may not require the finishing operation, but for all the features there may exist at least one feature which does. Therefore, the combination will meet all the requirements of the features and reduce the number of alternatives by generating only alternatives which can create all the features in the class. Using this procedure any machine tool combination which can create only a single feature in a class is eliminated and only tools which are common to all features in a class are considered further. This procedure can be illustrated by the following equation:

$$
\begin{align*}
& \forall_{\text {al ternatives }} S_{\text {Where }}=\left(P_{i, j}+P_{k, j}+P_{i, j}\right)  \tag{3}\\
& \begin{array}{lll}
P_{i, j}=1 & \text { if } & I_{j+1}=I_{j} \\
P_{k}=1 & i f & K_{j+1}=K_{j}
\end{array} \\
& \begin{array}{ll}
P_{1, j}=1 & i f \quad \begin{array}{l}
j+1 \\
P_{i}, j=P_{k, j}
\end{array}=P_{1, k}=0
\end{array} \\
& \operatorname{ELSE} P_{i}, j=P_{k, j}=P_{1, k}=0 \\
& I_{j}=\text { Process } I \text { for feature } j \\
& K_{j}=P r o c e s s K \text { for feature } j \\
& \text { Lj=Process L for feature } j
\end{align*}
$$

Since no more then three operations are required to
generate a class of features if $S_{\text {max }}=3 * \mathcal{J}$ (where $J=n u m b e r$ of features in the class) the combination spans all the features and the combination is stored as a feasible alternative. This procedure can be applied only in certain classes of features where one tool combination can create all the features, such as the classes of external turning or internal feature generation. In other classes it may not always be possible to determine a single tool combination and hence no alternative reduction can be carried out in this manner. In such a case, all features within a class which are machined by a common machine tool are determined. This allows the system to determine the minimum number of tools required to complete the feature class.

### 5.1.8 Determination of Machining Characteristics

For optimal machine selection it is not only important to determine the minimum cost or maximum production rate alternative; it is also necessary to determine the cutting parameters of the operations in order to meet the projected cost estimation and still meet the specifications of the part in terms of tolerance and surface finish.

For the micro-based system it was felt that the determination of optimum speeds and feeds should not be generated from "tool life equations", but, instead to use
an approximation based on common machining practices. From the study of different machining handbooks (26,27) and speaking with machinists in inoustries in Windsor it was determined that adjustments to speed and feed are made for different part material and tool material combinations. Finish cutting adjustments are also made to ensure that the finish characteristics are achieved as well. For example, when machining a part if the tool material is changed, the optimum speed at which the operation is performed will change. For rough machining a fixed approximation was made as to the speed change for different part materials. Based : on this the speed and feed can be determined for each of the roughing operations required.

In the tool description phase of the system, one input was the tool nose radius. Based on the tool nose radius, the system can determine the feed rate for both the roughing and finishing operations. Another input was the metal removal rate of the tool. This information will be used along with the maximum depth of cut allowed, to determine the speed at which the machine will operate. The procedure is explained below. The equations used are found in Figure 5.9.

Based on the nose radius of the tool, the system determines the feed rate for the toal in terms of mm/rpm. For example, for rough turning and boring, the feed rate is

## CALCLLLATION OF CUTTING PARAMETERS

```
MRR -METAL REMDVAL RATE DF TODL FDR 1020 STEEL
    PART MATERIAL
TNR -TODL NDSE RADIUS
2 -CORRECTION FACTOR FOR ACTUAL PART MATERIAL
    \(Z=1\) IF MATERIAL \(=1020\) STEEL
    \(Z=.7\) IF MATERIAL=4140 STEEL
    \(Z=1\) IF MATERIAL=CAST IRON
    \(Z=1.4\) IF MATERIAL=BRASS/BRONZE
```

THEREFORE; MMR=MMR*Z
$\left(\mathrm{mm}^{3} / \mathrm{min}\right)$
FEED RATE FOR -ROUGHING OPERATION = TNR
(mm/rev) -FINISHING OPERATION =.25*TNR
DEPTH -RDLGHING MAXIMUM SPECIFIED IN TDOL FILE
-FININSHING $=1 \mathrm{~mm}$
SPEED CALCULATIDN:
SPEED = (MMR) / (TNR*DEPTH) (mm/min)
SPEED=SPEED/1000 (m/min)

This example illustrates the method by which the system is able to determine the various cutting parameters for each of the alternative machine records available.


#### Abstract

equal to the tool nose radius of the tool which was inputted in the machine record files. For finish turning the feed rate should be adjusted to account for the surface finish required. Here a value of (1/4*tool nose radius) is used as an approximation. Based on the predetermined approximations for the metal removal rate found in the machine record file, an adjusted metal removal rate can be determined based on the part material. Using this new metal removal value along with the feed rate and the maximum depth of cut allowed, the system determines the recommended surface speed (mm/min) for the operation. For the finish cut, the final depth of cut would be equal to 1 mm and the feed is equal to ".25*tool nose radius". Based on industry standards the speed is adjusted to ten percent above the roughing speed. Dne assumption made is that the machine is capable of an infinite settings of speed and feed rates. Based on the metal removal rate of the system, an approximate time for machining is calculated. This is done by determining the amount of material to be removed by the operation and dividing this value by the metal removal rate capacity of the tool. An example of the procedure is illustrated in Figure 5. 10, for turned features.


## ESTIMATION OF TIME

BASED ON THE AMDUNT OF MATERIAL
REMOVED DURING A TURINING
DPERATION


MATEFIAL = MAT1 + MAT2

$$
\begin{aligned}
\text { MAT } 1= & \left(3.1415 *(75 / 2)^{2}-3.1415 *(30 / 2)^{2}\right) * 50 \\
& =185550.3
\end{aligned}
$$

```
MAT2=((3.1415*(75/2)2-3.1415*(30/2)2)
    +.5*(3.1415*(75/2)2-3.1415(30/2)2))*100
    =185550.3
```

MATERIAL $=185550+185550$

$$
=371101\left(\mathrm{~mm}^{3}\right)
$$

ASSUME A VALUE FOR MRR $=65000 \mathrm{~mm} 3 / \mathrm{min}$
MACHINING TIME =MAT/MRR
$=371101 / 65000$
$=5.7 \mathrm{~min}$.

FIGURE 5. 10

### 5.1.9 Cost Estimation of Operations

Dnce the determination of speeds and feeds have been completed, the system determines the time and cost for each class of features for each tool performing each of the operations to complete the components.

Information in this section was derived from various sources ( 5,11 ) as well as experience in this area.

The system must calculate;

1. Machining time per piece
2. Total time on machine per lot
3. Total cost per lot
4. Average cost per part.

### 5.1.9.1 Machining Time Per Piece

As described earlier the time taken for a given operation can be approximated based on the tool part combination and the metal removal rate for the operation using a particular tool. Based on this, a machining time per piece can be determined using the following equation.

> Time=Tm/Mrr
where:
Tm=total metal to be removed by the tool Mrr=the adjusted metal removal rate of the tool based on the part material

The determination of the amount of material to be removed is derived from the shape description provided at the start of the program. For external turning refer to Figure 5.10 for a sample calculation.

### 5.1.9.2 Total Time Machine Is In Use

In order to determine the effective cost of the procedure chosen, the system determines the total time which a machine is being used. This value can be divided into two terms;

1. Machining time.
2. Load/unload time

The machining time was determined in the previous section, and the load/unload time was one of the inputs to the machine file. It is, however, important to keep the two separate since the tool cost of machining will only relate to the actual machining time. The total time calculation must be determined for the entire lot size. Therefore, the following equation can be used to determine the total time a machine will be in use.

> Total time= (Mt + LUT)×1هts

$$
\begin{aligned}
\text { Where Mt } & =\text { machine time per part. } \\
\text { Lut } & =\text { load/unload time per part } \\
\text { lots } & =\text { lot size of job }
\end{aligned}
$$

Based on this estimate of the total time required the system can determine the overall cost of production for the particular method for each feasible alternative.

### 5.1.9.3 Cost Df Each Operation

Of importance in any machine selection system is the ability to accurately estimate the cost of production for each of the features to be created as well as the total cost for the part. The total cost is divided into three areas, labour cost, machine cost, handling cost The total cost can be expressed by the following equation.

> Min LC+MC+HC where LC= labour cost MC= machine cost HC= handling cost

### 5.1.9.3.1 Total Labour Cost

Here each cost can be further broken down. Included in the labour cost are;

$$
\begin{aligned}
& \text { i. Handling time } \\
& \text { ii. Machining time } \\
& L C=(L u t+M t) \times(L \$) \times(1 \text { ots }) \\
& \text { Mt= Machining time (min) } \\
& \text { L\$= Labour cost/min } \\
& \text { Here the labour cost is based on a per part basis. }
\end{aligned}
$$


#### Abstract

Looking at the above equation, it would appear that the machine that requires the minimum time and handling would result in the minimum cost. This in some cases will be true but, not in all cases since one of the inputs to the machine files was the labour cost for the particular operation on a particular machine. Therefore, the labour cost can vary from one machine to another and the faster may have a higher operator charge rate resulting in a higher overall cost for the operation.


```
5.1.9.3.2 Total Marhine Cost
```

The total machine cost can be broken into two factors which are; a. Tool cost
b. Set up cost

These will be outlined in the following equation.

```
MC= (Mt) %(Tc)\times(lots) + St
    where Mt= machining time (min)
        Tc= tool cost ($/min)
        St= set up cost ($)
```

For the purpose of this problem the machine time was based on a per lot basis. Based on the above example, it would appear that the machine with the fastest machining time would be the best. Dne input to the machine database
was the cost to set up the machine for a particular job, therefore the faster machine may have a higher set-up cost making the slower machine more cost justified. Another input to the machine file was the tooling cost, a machine with a slower machining rate may have a lower tooling cost and make it more cost justified than a faster machine.

### 5.1.9.3.3 Handling Cost

The handing cost can be considered to be the cost of transporting the material from one machine to the next, the: cost of having the raw material in storage, etc. In this model these costs were not included and the total cost was based only on the labour and machining costs of the component.

### 5.1.10 Total Cost

Based on the cost calculations of the previous sections the total cost to machine a feature on a particular machine using a certain tool is;

```
Total cost=LC+MC
Where LC= total 1 abour cost (\$)
MC= total machine cost(\$)
```

The average cost is determined by dividing the total cost by the lot size to be produced.

Average cost=Total cost/lots

### 5.2 System Optimization

Until this point, ALT1 and ALT2 <sequencing Vs. ranking) are identical to each other in terms of component description, machine tool selection, operation grouping and cost estimation. It is the optimization of the machine selection phase where alternatives from different classes of features are to be combined to determine the overall optimal solution that the differences between ALT1 and ALT2 occur. The procedure used is not an optimization procedure in the strictest sense, the procedure involves enumerating the possible alternatives for each process and determining a ranking for the alternatives. There are no constraint equations since each alternative must be considered in order to determine the optimal alternatives. ALTi has been validated for two classes of a rotational component the results of this approach will be reviewed. ALT2 has been validated for the same two classes of operations as well as two additional classes of features. In ALT2 there was no attempt to combine the operations between the different classes, the optimization is carried out on each of the
operations within the individual classes. For this reason there is no need for the formulation of large matrices to contain the different alternatives required to determine the optimal sequencing of operations. This resulted in a great savings of computer memory. The size of the matrix required by ALT1 to allow for sequencing would have to be a NxJx 10 matrix where $J$ is the number of classes, $N$ is the maximum number of alternative machine files in a class and 10 is the number of different types of information required from each machine record.

The two systems will be discussed separately as to the method of optimization which was carried out.

### 5.2.1 Optimization Of ALT1

At this stage ALT1 combines the operation classes to determine the combination of machine tools which will result in the minimum overall cost per lot. There was no attempt to generate the maximum production rate alternative since it would be for only a two stage example and since this system was eventually modified to the new system. Since no sequencing rules were incorporated into the system, the sequence of operations was predetermined prior to running the system. The procedure was able to generate optimal process plans for all combinations of machine tools
for each of the operations in a predefined sequence. For the optimization, the system considered all feasible remaining tool alternatives for each process in order to ensure the best alternative was generated. Only tools which were able to create all the features within a class were considered. In the case of external turning and internal boring there is a total of five different operations, These are;

1. Turning
2. External grinding
3. Drilling
4. Boring and
5. Internal grinding.

In order to determine all feasible combinations, the system considered each alternative for an operation in combination with each alternative for all the other operations. For example, assume there are only ten alternatives for each operation; the system would make $10 \times 10 \times 10 \times 10 \times 10=100,000$ comparisons. Even for a micro-system the amount of time taken may be fairly small when compared to manual methods. However, consider that before a comparison can be made the system must first read each record from the appropriate file, calculate the total cost, and then compare it with the other alternatives. The end result could easily approach several hours of computer time.

If ALT1 were allowed to consider the alternative operation sequences between the classes of features, considerably longer run times would have resulted, since for this two stage example there would have been "nine" additional sequences resulting in ten times the number of calculations and comparisons. It can be shown that for additional classes to be considered, the number of alternative sequencing combinations will increase and the time taken will increase significantly, making prompt results unattainable. In order for the system to provide information to the operator quickly, ALT2 was developed. For ALT1 the cost formula took the form of equation (11) as shown below.

Rank
Minimum $\quad T_{i}+E G_{j}+D_{k}+B_{1}+I G_{m}-P_{i, j}-P_{j, k}-P_{k, 1}$

$$
-P_{1, m}
$$

where $T_{i}=$ alternative machine record $i$ for turning $E_{j}=$ alternative machine record $j$ for external grinding
$\mathrm{D}_{\mathrm{K}}=$ alternative machine record $k$ for drilling
$B_{1}=$ alternative machine record 1 for boring $I_{G}=$ alternative machine record $m$ for internal grinding
$P_{i, j}=$ reduction due to alternative $i$ being on same machine as operation $j$
$P_{j, k}=$ same as $P_{i, j}$
$P_{k, 1}=$ same as $P_{i}, j$
$P_{1}, m=$ same as $P_{i}, j$

For example purposes, the value of $P_{i, j}$ was taken to be . S* (set up cost)/(lot size). This value was used only as
an approximation. In order for the system to determine the optimal process plan, the system would determine if two operations should be performed on a part before the next part is loaded onto the machine. This would have to be based on the load/unl oad times as well as the additional cost to set up two operations on the same machine. This problem is beyond the capabilities of the system and would result in even further expansion of the time taken to determine an optimal process plan.

From initial studies of ALT1, it was found that the system is capable of generating simplified process plans the output from the procedure will be examined in section 5.3. The time taken for this two stage problem was found, however, to be considerable. For this reason ALT2 was developed as an aid to the process planner, not as a process planning system. The alternative system considers all operations as being independent of the other operations.

### 5.2.2 Dptimization Of ALT2

For the optimization of ALT2 the task was simplified since there was no need to sequence the operations. There was no need to consider the possibility of operation interaction between different operations within a class or
between classes. Each operation was considered to be independent of the others and the optimization was carried out on each single operation within each class of features. Because of this the system did not need to determine the total cost for all operations or the reduction in cost due to sequential operations being performed on the same machine. The simplified optimization equation is shown below:

$$
\begin{aligned}
& \text { For each } i \quad \text { Rank the Minimum=TC } i, j \\
& \text { where } T C_{i, j}=\begin{array}{l}
\text { cost of operation } i \text { on each } \\
\\
\text { alternative tool } j
\end{array} \\
& \text { In addition to the minimization of cost for each }
\end{aligned}
$$ operation ALT2 can also determine the optimal machine selection for maximum production rate. The procedure is based on the amount of material to be removed and the metal remaval rate of the alternative machine selected. The equation is outlined below:

$$
\begin{aligned}
& \text { For each } i \quad \text { Rank the Minimum=Mat/Mrri } \\
& \text { where Mat }= \text { amount of material to be } \\
& \text { removed during the operation. } \\
& \text { Mrr }_{j}= \text { rate at which alternative tool } \\
& j \text { can remove material. }
\end{aligned}
$$

Since there is no comparison between operations and no summing over all the possible combinations, the system was able to operate much faster and provide the information to
the operator in a fraction of the time taken by ALT1. By not generating an optimized alternative for the entire process plan there was no need to create the large arrays to store the combined optimized operation sequence alternatives. Simpler arrays were constructed to manipulate the data for each operation and subsequent optimization. Upon completion of an operation the arrays were re-intialized and used for the next required operation, there-by greatly reducing the amount of memory required. As a result, it was found that for the ALT1 system; the two stage example of external turned surfacesg and internal.. surfaces could use virtually all the available memory when the system is expanded for a more realistic size problemg even when there was no allowance for inter-sequencing of operations between classes of features. As a result, this preliminary system is only able to consider a two stage pracess of external turning and internal turning. As the size of the machine file grows and becomes more realistic the number of alternative machine records would increase for each alternative operation and the size of the required matrix would increase. Therefores for each lapp of the program the system will have to perform several extra calculations and comparisons. For exampley in the two stage case where there was 10 feasible alternatives for each of the required operations it was shown that a total of

100,000 calculations were required, a increase of just one alternative for one operation will result in an additional 10,000 calculations and comparisons. As a result, for such a small number of machine tools it was decided that this procedure should be altered to make the system faster and more of an aid to the process planner rather than a process plan generator.

From preliminary comparisons of the output from ALT1 it was found that the difference between two sets of ranked alternatives was only a single operation. This is illustrated in Appendix $E$ which contains sample output for .. ALT1. Therefore, ALT2 which provides individual rankings of all the alternatives for each operation in a given class may provide more vital information to the user of the system rather than just outputting the optimal plan.

As an example, if the machine selected as part of the optimal plan by ALT1 were not available, the operator would have to generate a plan manually, but through ranking, the revised system would allow the user to select from one of the other ranked alternatives which is currently available.

### 5.3 System Output

The output from the two systems consisted of machines, speeds, feeds, costs and other information required to
machine the component. ALT1 outputted information relative to the individual operations as well as the combined operations. This section compares the two outputs from ALTi and ALT2.

### 5.3.1 ALT1 System Output

The output from ALTi provided the first twenty ranked alternative process plans to create the part as described by the operator. The ranking was based on the minimum cost plan. The output from ALT1 includes information for each .. operation and the order in which the operations are to be performed; since the order was fixed only a single sequence was generated.

The output for each required operation included:
-Machine number
-Tool number
-Machining time for the operation
-Average cost per part for the operation
-Suggested speeds (mm/min)
-Suggested feeds (mm/rev)

The information provided by this system could be taken directly to the machine shop floor and used to set-up the machine and manufacture the component. Additionally, for
each process plan generated, the total average cost per part using the above toals was provided. Loaking at the examples in Appendix $E$ the total cost for each plan may not be the same as the sum of the individual cost elements. The difference occurs since the cost is reduced when a machine can perform two operations in a row on the same part as outlined in the optimization phase of this problem. One additional bit of information is the time taken by the computer to generate the output. A sample output is contained in Table 5.5. A number of sample outputs for different parts can be seen in Appendix E.

### 5.3.2 ALT2 System Dutput.

Unlike ALTi, the output from this program does not include the sequenced operations to produce the component. The sequencing is left to the Process Engineer and as a result he/she will be able to select the sequence of operations which will result in a more efficient process plan generation. In this case each operation is ranked according to either minimum cost or maximum production rate which is chosen by the operator. The information provided along with the rankings include;
-Machine number
-Tool number

Example Froblem


## COMPONENT DESCRIPTION,

$$
\begin{aligned}
\text { Part Name } & =\text { Pully } \\
\text { Part Number } & =9138 \\
\text { Start Diameter } & =200 \mathrm{~mm} \\
\text { Start Length } & =400 \mathrm{~mm} \\
\text { Material } & =1020 \text { steel } \\
\text { Lot size } & =120
\end{aligned}
$$

```
Feature, \(1 .=75 \mathrm{~mm}\)
            3. \(=67 \mathrm{~mm}\)
            5. \(=133 \mathrm{~mm}\)
            7. \(=60 \mathrm{~mm}\)
            9. \(=180 \mathrm{~mm}\)
            11. \(=70 \mathrm{~mm}\)
    13. \(=100 \mathrm{~mm}\)
Surface Finish \(=75\) Rms
        Tolerence \(=.02 \mathrm{~mm}\)
```

                                2. \(=40 \mathrm{~mm}\)
                                4. \(=67 \mathrm{~mm}\)
                                6. \(=133 \mathrm{~mm}\)
                                B. \(=120 \mathrm{~mm}\)
                                10. \(=20 \mathrm{~mm}\)
                                12. \(=100 \mathrm{~mm}\)
                                14. \(=200 \mathrm{~mm}\)
    Table 5.5
    

| C－1802 | TUC－E11 | 39.1213 | 1378.584 | 11.4865 | ． 16 | 231250 | 4．0E－02 | 254375 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1－11 | DRH－D35 | 3．3．333．3E－03 | 65.51046 | ． 5442539 | ． 26 | 1627.885 | 4．0E－02 | 25437 |
| C－1500 | BOH－A11 | 2.925907 | 173．162 | 1.443016 | ． 22 | 99350.65 | 5．SE－02 | 109285.7 |
| COST FOR THIS PLAN IS＝ 13.47 .3 B |  |  |  |  |  |  |  |  |
| C－1802 | TUC－B11 | 39.1213 | 1378.384 | 11.48653 | ． 16 | 231250 | 4．OE－O2 | 254375 |
| 1－11 | DRH－D35 | さ．353S3JE－03 | 65.51046 | ． 5442539 | ． 26 | 1627.885 |  |  |
| F－37 | 80H－B46 | 2.57278 | 173．9479 | 1.449566 | ． 26 | 167307.7 | 6．5E－62 | 184038.5 |
| COST FOR THIS PLAN IS $=13.480 .35$ |  |  |  |  |  |  |  |  |
| $\begin{aligned} & c-1802 \\ & 1-11 \end{aligned}$ | $\begin{aligned} & \text { TUC-B11 } \\ & \text { DRH-DJJ } \end{aligned}$ | 39．1213 3.3505 | 1578.584 65.31046 | 11.48655 .5442559 | ： 16 | $\begin{aligned} & 231750 \\ & 1627.885 \end{aligned}$ | 4．0E－02 | 254375 |
| F－37 | BOH－B15 | 2.8696 .39 | 185.8503 | 1.531919 | ． 14 | 557142.9 | ． 035 | 612857.2 |
| COST FOR THIS PLAN 1S＝ 13.5627 |  |  |  |  |  |  |  |  |
| C－1802 | TUC－E11 | 39.1213 | 1378．384 | 11.48653 | ． 16 | 231250 | 4．0E－02 | 254.375 |
| 1－11 | DRH－DSS | 3． ²゙らごJE－03 $^{\text {a }}$ | 65.31046 | ． 5442539 | ． 26 | 1627.885 |  |  |
| c－1802 | $\mathrm{BOH}-\mathrm{Cl}_{1}$ | 2.925967 | 186．9．327 | 1.557773 | ． 18 | 212500 | 4．5E－102 | 233750 |

TIME TAKEN TO RUN PROGFAM＝ 5.155692 （MIH）

> -Machine time/part
> -Total Time/Lot
> -Total Cost/Lot
> -Average cost/part
> -Suggested speeds (mm/min)
> -Suggested feeds (mm/rev)
> -Suggested depth (mm)
and when necessary -If a finishing operation is required The output is arranged according to the required operation. The operator has the choice as to which machine he/she wishes to use and in which order to arrange the operations. The system tells the operator the ranked order, and as a result if the highest rank alternative machine is not available he/she can select from any of the other alternatives. The operator also has the choice of selecting alternatives which allow for more then one operation to be performed on a machine. The final cost for production must be calculated by the process plariner, by taking into consideration the sequencing interactions of the operations. A sample output for the system is shown in Table S.6, several outputs from the system are contained in Appendix F.


## COMPDNENT DESCRIPTIDNs

$$
\begin{aligned}
\text { Part Name } & =\text { Pully } \\
\text { Part Number } & =9138 \\
\text { Start Diameter } & =200 \mathrm{~mm} \\
\text { Start Length } & =400 \mathrm{~mm} \\
\text { Material } & =1020 \mathrm{steel} \\
\text { Lats Size } & =120
\end{aligned}
$$

Features, 1. $=75 \mathrm{~mm}$
3. $=67 \mathrm{~mm}$
5. $=133 \mathrm{~mm}$
7. $=60 \mathrm{~mm}$
9. $=180 \mathrm{~mm}$
11. $=70 \mathrm{~mm}$
13. $=100 \mathrm{~mm}$
2. $=40 \mathrm{~mm}$
4. $=67 \mathrm{~mm}$
6. $=133 \mathrm{~mm}$

日. $=120 \mathrm{~mm}$
10. $=20 \mathrm{~mm}$
12. $=100 \mathrm{~mm}$
14. $=200 \mathrm{~mm}$

Surface finish $=75$ Rms
Tolerence $=.02 \mathrm{~mm}$

Table 5.6
OPERATOR：
D．MELDChE
DATE：
APRIL $16 / 87$

LOT SI2E： 120
家

OPERATION REDUIRED TO GENERATE
THE EXTERNAL FEATURES
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

TOOLS AVAILABLE FOR TURNING

| MACHINE | TOOL | tIME PER PART | tOTAL TIME | TOTAL COST | ave COST | DEPTH （mm） | $\begin{aligned} & \text { Rougt } \\ & \text { FEED } \\ & \text { (mm/RPM) } \end{aligned}$ | h cut SPEED （mm／min） | Finish FEED （mm／RPM） | cut <br> SPEED <br> （mm／min） | GRINDING REDUIRED |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C－1802 | TUC－823 | 36.98751 | 4678.591 | 1こ07．2J5 | 10.89362 | 15 | ． 48 | 33335．35 | ． 12 | 36666.67 | $Y$ |
| C－1802 | TUC－B21 | 37.9154 | 4789.848 | 15.3 .087 | 11.15072 | 11 | .34 | 62566.84 | ． 085 | 68823.53 | $\boldsymbol{r}$ |
| F－37 | TUH－C41 | 37.9154 | 4801.948 | 1549.687 | 11.24739 | 11 | ． 5 | 42545．45 | －125 | 46800 | $\boldsymbol{Y}$ |
| C－1802 | ruc－815 | 38.89212 | 4907．054 | 1370.565 | 11.42136 | 9 | ． 26 | 97455.9 | 6．SE－02 | 107179.5 | $N$ |
| C－1802 | TUH－ALS | 39.40001 | 4968．001 | 1385.906 | 11.54922 | 13 | ． 48 | 36057.69 | ． 12 | 39663.46 | $\gamma$ |
| F－37 | TUC－B12 | 37.40001 | 4980．101 | 1401．367 | 11.67805 | 9 | ． 26 | 96153.85 | 3．EE－02 | 105769.2 | $Y$ |
| C－1802 | TUH－A21 | 39.92163 | 5030.596 | 1403．229 | 11.69358 | 9 | ． 34 | 72549.02 | ． 085 | 79803．93 | $\boldsymbol{r}$ |
| C－1802 | tuc－811 | 89．9216 | 5070.596 | 1404．794 | 11.70662 | 6 | ． 16 | 231250 | $4.0 E-02$ | 254375 | N |
| J－19 | ruc－811 | 39．92163 | 4982.596 | 1412.724 | 11.7727 | 16 | ． 42 | 33035.71 | ． 105 | 36539.29 | $\gamma$ |
| F－37 | TUH－C11 | 39.92163 | 5042．596 | 1416.394 | 11.80329 | 9 | ． 34 | 72549.02 | ． 095 | 79803.93 | $Y$ |
| C－1802 | TUH－A11 | 40．457E5 | 5094.906 | 1421.027 | 11.84189 | 7 | ． 26 | 120329.7 | 6．SE－02 | 132362.6 | $N$ |
| c－1802 | TUH－AT | 41．00835 | 5161.001 | 1439．319 | 11.99435 | 4 | ． 16 | 337500 | $4.0 E-02$ | 371250 | N |
| J－19 | TUC－817 | 42.15716 | 5250.859 | 1487.234 | 12.38562 | 13 | .28 | 57692.3 | ． 07 | 6381.54 | $\boldsymbol{\gamma}$ |
| J－19 | TUH－CE1 | 42．7565 | 5522．784 | 1504.694 | 12．53911 | 13 | ． 36 | 44220.77 | 9.0 －02 | 48653．85 | $\boldsymbol{r}$ |
| B－30 | TUC－H11 | 44.00897 | こ5こ1．1976 | 1551.49 | 12.92009 | 12 | ． 26 | 64423．0日 | 6． $\mathrm{EE}-92$ | 70865．39 | $N$ |
| J－19 | TUH－C17 | 44.66565 | 5951．638 | 1568.144 | 15.06786 | 11 | ． 26 | 69230． 77 | 6． $5 E-02$ | 76153．85 | $N$ |
| H－91 | tuc－cis | 44.66365 | 3575． 0 －8 | 1570．821 | 13.09018 | 5 | ． 14 | 282857.2 | ． 035 | 311142.9 | N |
| H－91 | TUH－Cis | 46.7524 | 5826． 288 | 1639.436 | 13.66197 | 2 | ． 1 | 945000 | ． 025 | 1039500 | N |
| 日－30 | TUC－H16 | 46.7524 | 5850．288 | 1642.874 | 13.69062 | 7 | ． 18 | 150000 | 4． 5 E－02 | 165000 | N |
| J－19 | TUH－CI | 48．25905 | 5983．084 | 1687．762 | 14.06468 | 5 | .18 | 203333.3 | $4.5 E-02$ | 223666． 7 | N |
| B－30 | TUH－Hi 4 | 49．86781 | 6254．130 | 1744．686 | 14．55905 | 5 | ． 18 | 196666.7 | 4． $5 \mathrm{E}-02$ | 216335.3 | $N$ |


| machine W | KOOL | TIME PER PART | $\begin{aligned} & \text { rotal } \\ & \text { rime } \end{aligned}$ | total COST | ave cost | $\begin{aligned} & \text { DEPTH } \\ & (\mathrm{mm}) \end{aligned}$ | FEED （mm／RPM） | SPEED （RPM） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EG－40 | ERG－E21 | ． 8 | 504 | 215.4 | 1.795 | 2.26661 | 8.75 | 4418.937 |
| EG－40 | ERG－ETJ | ． 8 | 504 | 215.4 | 1.795 | 2.26661 | 8.75 | 4418.937 |
| EG－40 | EFG－E16 | ． 8 | 504 | 215.4 | 1.775 | 2.26661 | 8． 75 | 4418.937 |

drilling records available
GRINDING
REGUIRED



|  |  |
| :---: | :---: |
|  |  |
|  | 吕点めの＊い＊ |
| － |  | TOTAL

TIME
296.892
$\mathbf{3 O E} .06$


NO TODLS GUAILABLE TO PERFGRY GRINDING
TIME TAKEN TO RUN PROGRAM＝ 5.461509

### 5.4 Comparison of ALT1 AND ALT2

Alt1 was developed to perform all aspects of process plan generation, such as determining which machines the operations should be carried out on, which will result in the minimum cost. As well the system calculated the machining parameters required to meet the specifications of the part and considered the cost reduction due to the operation sequence to be followed.

ALT1, however, is limited in many ways when one thinks of a truly generative system.

These limitations include;
-The system does not consider alternative descriptions of the component, since alternative descriptions would result in a greater number of alternatives to consider further increasing the memory required,
-The system only considers one order of operations, due to the complexity and size when allowing the system to generate alternative sequencing, -The system does not allow for one machine to perform simultaneous machining operations and -The system does not consider the non-availability of a machine.

Although, ALT2 does not provide the sequence of operations, it does provide the user with very important
information, which includes;

> -The ranking of alternatives for a particular operation based on minimum cost or maximum production rate,
> -All relevant information for machining, including speeds, feeds and depths of cut,
> -Allows the operator to sequence operations to the best alternatives,
> -In ALTl if a machine is not available the process plan is no longer acceptable, but, by using ALT2 the operator can select the next alternative from the list,
> -The system can be expanded to generate information for all classes of features and
> -The system gives the user the final say in the process plan which will give the operator the satisfaction of making the final decision.

It is felt that ALTZ would give the process planner more flexibility when developing process plans. The process engineer will be able to generate more reliable process plans than the manual approach and the system will provide other useful information other than just a process plan. A flow chart for ALT1 and ALT2 is listed in Appendix G. A complete listing of the program for ALT1 is contained in Appendix $H$ along with the portion of the modified program for ALT2.

## 6.O CONCLUDING REMARKS

### 6.1 Discussion

The system described in this thesis is able to generate process plans faster and more accurately then manual pracedures. It does not however eliminate the need for process planners since decision based on the output must still be made. Compared to other systems its ability to determine required processes based on part description and consider more then a single operation makes it more advantageous then other systems. The major point is its ability to perform the steps outlined in this report only utilizing a micro-computer.

Of the two systems described in this report it is felt that ALT2 would provide more information and more flexibility to the Procees Engineer. Because of the complexity of the first system and the time taken to select an optimal sequence of machine tools only a sample solution was considered, and no further extension of the system would be possible.

For ALT2 where the system ranks the individual operations, the program has been completed for four classes of features and expansion of the system is possible. In ALT2 the operator can select from the ranked alternatives to select machines which are best suited under the current
situation. By allowing the operator the final sequencing of machines the overall optimal sequence may not be generated. The trade off is that when a particular machine in not available when required the operator can select from the alternatives. Alsa, this procedure would provide better scheduling of machines by not overloading a particular machine that could be used by a number of parts.

Although ALTi does not meet the initial expectations, it does provide a method through which a micro-based system can be effectively used to aid the operator in the generation of process plans. The user of the system should have a working knowledge of machining practices, but, does not have to be an expert on the tools which are available on the shop floor. The system will generate the ranking of all operations to be performed and using cost formulas and intuition the operator can determine the best selection from each of the operations to be performed. The final generation of the sequenced operations in the development of process plans has been left to the operator of the system. The system as designed will allow the operator to generate more feasible process plans than are currently being developed manually. The micro-computer will save the process engineer time by performing the calculations required to generate detailed process plans. This system would be applicable where there are $10-50$ machine tools in
the shop resulting in $100-500$ machine records. For a smaller number manual methods would likely prove to be better, and for systems larger than this a larger computer would be required to manipulate the information.

As a result of the research a procedure was developed which can effectively be used to describe a component to the computer for the purpose of machine tool selection. The modular development of both the machine description and the subsequent machine toal selection provides the ability for a micro-computer to aid the process planner in process plan generation. Although ALT1 does not measure up to the initial expectations, the modified version can be used in the future by the Process Engineer to aid in process plan generation. The development of this micro-based system provides a system which can be applied to a wide number of companies, since the system was not designed for a particular user. The machine database individualizes each system to the needs of each user, since users create their own unique machine files. The system is capable of running on a micro-computer and as a result can be applied to a much larger group of users than most other systems which often require the use of a mainframe system. From the literature survey, no micro-based system before now has been developed which would allow the selection of operations and generation of cutting parameters based only on the description of the component.

### 6.2 Scope for Further Work

During the development of the two systems there was no attempt to determine the type or form of jig and or fixture required to accurately machine the part. The selection was left to the operator of the system. A possible extension would be to have the system search a jigffixture file to determine which jig/fixture is required for the machine selected to manufacture the component.

Additional research may include the use of the computer to generate optimal cutting parameters based on toal life equations and using geometric programming as outlined by Sundaram and Cheng.

Another, possible extension of the work can be the generation of alternative shapes to describe the component. This procedure wauld not assume that the description provided by the operator is the only possible description, and as a result the system wauld generate alternative descriptians of the component, then select machine tools based on alternative systems.

A fourth extension would be ta consider alternative process sequencing between operations from different classes of features. This would allow for the optimal generation af plans considering alternative operation sequencing and consider simultanequs machining of the
component.
A fifth area which could be incorporated into future research would be the inclusion of the quality level for each machine and an overall acceptance level for the product to be manufactured.

Also not included in this report was the problem of machine chattering which would affect the quality of the part. A method of using stability charts could be included to further extend the research described in this report.

A final possible extension would be to link the system to a CAD database so information can be taken directly from. the CAD system and a machine tool selection will be outputted automatically.

## REFERENCES

1. BANDYOPADHYEY S, DUTTA S.P, MELDCHE D, RANA S.P "COMPONENT DESCRIPTION FOR KNOWLEDGE BASED PROCESS PLANNING", International Journal of Advanced Manufacturing Technology, 1986 Vol 1, no 3 pp 55-74
2. BARKDCY B.E, ZDEBLICK, "A KNOWLEDGE-BASED SYSTEM FDR MACHINING OPERATION PLANNING", Metcut Research, 1985. pp 2.11-2.23
3. BERRA P.B, BARASH M.M, "AUTOMATIC PROCESS PLANNING AND OPTIMIZATION FOR A TURNING OPERATION", International Journal of Production Research, 1968 vol 7 no 2 pp 93-103
4. BHATTACHARYYA S.K, COATES J.B, "THE ASSESMENT OF MANUFACTURING TECHNOLOGY", Int. Journal of Production Research, 1974, vol 12 no 2 pp 159-177
5. CHANG T.C, WYSK R.A, "AN INTERGRATED CAD/AUTOMATED PROCESS PLANNING SYSTEM", Sept 1981, val 13 no 3,AIIE Transactions pp 223-232
6. CHANG T.C, WYSK R.A, DAVIS R.P, CHOI B, "MILLING PARAMETER OPTIMIZATION THROUGH A DISCRETE VARIABLE TRANSFORMATION": Int. Journal of Production Research, 1982, vol 20 no 4 pp 507-516
7. CHRYSSOLDURIS $G$, CHAN $S$ "AN INTEGRATED APPROACH TO PROCESS PLANNING AND SCHEDULING" AnחUals of CIRP,1985, vol 34 no 1 pp 413-417
8. DAVIES B.J, DARBYSHIRE I.L, "THE USE DF EXPERT SYSTEMS IN PROCESS PLANNING", CIRP Anחals 1984 vol 33 no 1 pp 303-306
9. EMERSON C, HAM I, "AN AUTOMATED CODING AND PROCESS PLANNING SYSTEM USING A DEC PDP-10": Computers \& Industrial Engineering 1982 val 6 no 2 pp 159-169
10. ERVE A.H, KALS H.J "XPLANE, A GENERATIVE COMPUTER AIDED PROCESS PLANNING SYSTEM FOR PART MANUFACTURING", Annuals of Cirp, 1986, vol 35 no 1
11. ESKICIOGLU H, DAVIES B.J "AN INTERACTIVE PROCESS PLANNING SYSTEM FOR PRISMATIC PARTS (ICAPP)" Annuals of Cirp, 1983, vol 32 no 1 pp 365-370

|  | GIUSTI F, SNATOCHI M, DINI G "COATS: AN EXPERT MODULE FOR OPTIMAL TOOL SELECTION" Annual of CIRP, 1985 vol 35, no 1 pp 337-340 |
| :---: | :---: |
| 13. | GDPALAKRISHNAN U.K, VIJAYARAGHAVEN L, KRISHNAMURTHY R, "CUTTING FORCES IN INTERNAL BROACHING", Int. Journal of |
|  | Production Research 1983 vol 21 no 1 pp 53-61 |
| 14. | HAKIM M.A, AWAM A.M, SABBAGH A.S, "A COMPUTER PROGRAM FOR THE OPTIMIZATION OF THE MACHINING VARIABLES", |
|  | Computers \& Industrial Engineering, 1983 val 7 no 4 pp 317-336 |
| 15. | ING, EVERSHEIM, ESCH "AUTOMATED GENERATION OF PROCESS PLANS FOR PRISMATIC PARTS" AnחUals of CIRP, 1983, vol |
|  | 32 no 1 pp 561-564 |
| 16. | LAMBERT B.K, WALVEKAR A.G, "OPTIMIZATION OF MULTI-PASS MACHINING OPERATIONS", Int. Journal of Production |
|  | Research, 1978, vol 16 no 4 pp 259-265 |
| 17. | LATOMBE J, DUNN M.S, "XPS-E: AN EXPERT SYSTEM FOR PROCESS PLANNING": SEAI Technical Publications 1984 |
|  | pp 3.7-3.15 |
| 18. | NAU D.S, CHANG T.C, "PROSPECTS FOR PROCESS SELECTION USING AI", COMPUTERS IN INDUSTRY 4, 1983, Vol 4 |
|  | pp 253-263 |
| 19. | STEUDEL H.J, "CDMPUTER-AIDED PROCESS PLANNING:PAST, PRESENT AND FUTURE", Int. Journal of Production |
|  | Research 1984, vol 22 no 2 pp 253-266 |
| 20. | SUNDARAM R.M, CHENG T.J, "MICROCOMPUTER-BASED PROCESS PLANMING USING GEOMETRIC PROGRAMMING", International |
|  | Journal of Production Research 1986, vol 24, no 1, pp 119-127 |
| 21. | VAN HOUTON F.J "STRATEGY IN GENERATIVE PLANNING OF TURNING PROCESSES" Annuals of Cirp 1986 vol 35 no 1 |
| 22. | WANG H.P; WYSK R.A, "AN EXPERT SYSTEM FOR MACHINE DATA SELECTION", Computers and Ind. Eng. vol 10 no 2, 1986, pp 99-107. |
| 23. | WEILL R, SPUR G, EVERSHEIM W "SURVEY OF COMPUTER AIDED PROCESS PLANNING SYSTEMS" Annuals of Cirp 1992 vol 31 no 2 pp 539-551 |

24. WDNG W.C.K, MIDDLETON D, "ON THE ESTIMATION OF PARAMETERS FOR A MONLINEAR MODEL OF A MILLING PROCESS": Int. Journal of Production Research 1984, val 22 no 2 pp 247-252
25. YELLOWLEY I, "A FUNDAMENTAL EXAMINATION OF THE ECONDMICS OF THE TWO PASS TURNING OPERATION", Int. Journal of Production Research 1983, val 21 no 5 pp 617-626
26. COLVIN, STANLEY "THE NEW AMERICAN MACHINIST'S HANDBOOK", 1955, McGRAW-HILL
27. DRDZDA, WICK "TOOL AND MANUFACTURING ENGINEERS HANDBDOK", 4th Edition, 1983, McGraw-Hill

## RESULT OF LITERATURE SLRVEY AND BIBLIDGRAPHY

The list of papers found in this section will be of use to students interested in continueing the reseach topics propased in this report. Also the information can be useful to individuals doing research in related topics.

## PAPERS

1. ALTY J.L, "LSE OF EXPERT SYSTEMS", Computer-aided Engineering Journal, Feb 1985, pp 2-9
2. BANDYOPADHYEY S, DUTTA S.P, MELDCHE D, RANA S.P, "CDMPDNENT DESCRIPTION FOR KNOWLEDGE BASED PROCESS PLANNING", Int. Journal of Advanced Manufacturing Technologys 1986 Vol 1, no 3 pp 55-74
3. BARKDCY B.E, ZDEBLICK, "A KNDWLEDGE-BASED SYSTEM FOR MACHINING DPERATION PLANNING", Metcut Research, 1985. pp 2.11-2.23
4. BERGLUND J, HALLDEN L, "A DISCUSSION ON A CRITERION FQR THE CHOICE BETWEEN MANUFACTURING ON A POSITIONALLY CONTRDLLED MILLING MACHINE AND A CONVENTIDNAL MACHINE", Int. Journal of Production Researchy 1963 pp 95-105
5. BERRA P.B, BARASH M.Ms "AUTOMATIC PROCESS PLANNING AND OPTIMIZATION FQR A TURNING OPERATION", Int. Journal of Production Research, 1968 val 7 no 2 pp 93-103
6. BHATTACHARYYA S.K, COATES J.B, "THE ASSESMENT OF MANUFACTURING TECHNOLOGY", Int. Journal of Production Research; 1974; vol 12 no 2 pp 159-177
7. BOLZ R.W "PRODLCTION PRDCESSES", Conquest Publications, Novelty OHIO, 1974
8. BULLERS W.I, NDF S.Y, WHINSTON A.S, "ARTIFICIAL INTELLIGENCE IN MANUFACTURING AND CONTROL", DEC 1980, vol 12 no 5, AIIE Transactions pp 351-363
9. CHANG T.C, WYSK R.A, "AN INTERGRATED CAD/ALTOMATED PROCESS PLANNING SYSTEM", SEpt 1981, vol 13 no 3, AIIE Transactions pp 223-232
10. CHANG T.C, WYSK R.A, DAVIS R.P, CHOI B, "MILLING PARAMETER OPTIMIZATION THRQUGH A DISCRETE VARIABLE TRANSFORMATION", Int. Journal af Production Reseasch, 1982, vol 20 no 4 pp 507-516
11. CHANG T.C, WYSK R.A "AN INTRODUCTION TO AUTOMATED PROCESS PLANNING SYSTEMS", 1985, Prentice-Hall
12. CHRYSSQLDURIS G, CHAN 5 "AN INTEGRATED APPROACH TD PROCESS PLANNING AND SCHEDULING" Annuals of CIRP; 1985,val 34 no 1 pp 413-417
13. CLLLINANE T, MOQRE J.M, "NETWDRKS PUT YOLR PROBLEM INCDMPUTER LANGUAGE", Industrial Engineering pp 28-34
14. DAVIES B.J, DARBYSHIRE I.L, "THE USE OF EXPERT SYSTEMSIN PROCESS PLANNING", CIRP Annals 1984 val 33 no 1pp 303-306
15. DOHNAL M. "APPLICATIONS OF A UNIVERSAL EXPERT SYSTEM ININDUSTRY", Computers In Industry 1985, val 6 pp $115-121$
16. DOYLE L.E, "MANUFACTURING PROCESSES AND MATERIALS FDR ENGINEERS, SECDND EDITION", Prentice Hall Inc. New Jersey, 1969
17. DYCK F.V, TSENG M.M, LASCDE D.D, "A STUDY DF CDMPUTERIZED PRDCESS PLANNING WITH CONTINUQUS AND DISCRETE DATA BASE" AIIE Transactions, val B no 3 , pp 320-327
18. EMERSON C, HAM I, "AN AUTOMATED CODING AND PROCESS PLANNING SYSTEM USING A DEC PDP-10", Computers \& Industrial Engineering 1982 vol 6 na 2 pp 159-169
19. ERVE A.H, KALS H.J "XPLANE, A GENERATIVE CDMPUTER AIDED PROCESS PLANNING GYSTEM FOR PART MANUFACTURING", Annuals of Cirp: 1986, vol 35 no 1
20. ESKICIOGLU $H_{y}$ DAVIES B.J "AN INTERACTIVE PROCESS PLANNING SYSTEM FOR PRISMATIC PARTS (ICAPP)" Annuals of Cirp, 1983, val 32 no 1 pp 365-370
21. FIENBERG B. "AMP-SYSTEM SQLUTIDN TO MANUFACTURING PLANNING", ToロI \& Manufacturing Engineer Dec 1965 pp 70-72
22. GIUSTI F, SNATOCHI M, DINI G "COATS: AN EXPERT MODULE FOR DPTIMAL TOQL SELECTION" AnतUal Of CIRP, 1985 vol 35, no 1 pp 337-340
23. GOPALAKRISHNAN V.K, VIJAYARAGHAVEN L, KRISHNAMURTHY R, "CUTTING FORCES IN INTERNAL BROACHING", Int. Jaurnal of Production Research 1983 val 21 no 1 pp 53-61
24. GORANSKII G.K, "THEORY OF AUTOMATION DF PRODUCTION PLANNING", Wiener Bindery Ltd. Jerusalmy 1967.
25. HAKIM M.A, AWAM A.M, SABBAGH A.S, "A CDMPUTER PRDGRAM FOR THE OPTIMIZATIUN QF THE MACHINING VARIABLES", Computers \& Industrial Engineering, 1983 val 7 no 4 pp 317-336
26. HALEVI G, "NEW APPROACH TO CAM PRODUCTION PLANNING" Journal of Industrial Engineering, 1975 pp 287-296
27. HALEVI G, "THE RZLE OF COMPUTERS IN MANUFACTURING PROCESSES" Jahn Wiley and Sans New Yark, 1980
28. HENDERSON M.R, ANDERSON D. C, "CDMPUTER RECOGNITION AND EXTRACTION OF FDRM FEATURES: A CAD/CAM LINK": Computers in Industry 1984 val 5 pp 329-339
29. ING, EVERSHEIM, ESCH "AUTOMATED GENERATION OF PRDCESS PLANS FQR PRISMATIC PARTS" AnNLIIS of CIRP, 1983, vol 32 no 1 pP 561-564
30. KDRNBLUTH $J$ "ENGINEERING DESIGN: APPLICATIDNS DF GDAL PROGRAMMING AND MULTIPLE OBJECTIVE LINEAR AND GEDMETRIC PROGRAMMING" Int. J. Prad. Res. 19日6, vol 24, no 4 pp 945-953
31. LAMBERT B.K, WALVEKAR A.G, "OPTIMIZATION OF MLLTI-PASS MACHINING DPERATIONS"; Int. Journal of Production Research, 1978, vol 16 no 4 pp 259-265
32. LATOMBE J.C, DESCOTTE Y, "MAKING COMPRIMISES AMDNG ANTOGONIST CONSTRAINTS IN A PLANNER", Artificial Intelligencey vol 27,1985 pg 183-217
33. LATOMBE J, DLNN M. S, "XPS-E: AN EXPERT SYSTEM FOR PRDCESS PLANNING", SEAI Technical Publications 1984 pp 3.7-3.15
34. LEWIS W. C, BARTLETT E, FINFTER I.I, BARASH M.M, "EFFICIENT FQRMLLATION OF COMPUTER ALOGORITHMS TO PLAN MACHINING PROCESSES", Journal of Manufacturing Systems, val 2 no 1 pp 31-3B
35. LEWIS W.L, BARTLETT E, FINFTER I.I, BARASH M.M, "TODL OREINTATED AUTOMATIC PRDCESS PLANNING" Int: Journal of Prad. Res. pp 421-427
36. LINDBERG R.A, "PROCESSES AND MATERIALS OF MANUFACTURE" , John-Wiley and Sons, Boston, 1965
37. LIU D, "UTILIZATION OF ARTTIFICIAL INTELLIGENCE IN MANUFACTURING": SEAI Technical Publications 1984 pp 8.9-8.27

| 38. | MALSTROM E.M, "MANUFACTURING COST ENGINEERING HANDBODK", Marcel Dekker Inc. New York, 1967 |
| :---: | :---: |
| 39. | MARSHALL P, "COMPUTER-AIDED PROCESS PLANNING AND ESTIMATING AS PART OF AN INTERGRATED CADCAM SYSTEM", |
|  | Computer Aided Engineering Journal, Oct 1985 pp 167-172 |
| 40. | MCPHERSON D, "ADVANCES IN COMPUTER-AIDED MANUFACTURE" Proceedings of the Third International IFIP/IFAC Conference June 1976, North Holland Publishing Co. |
| 41. | MELOCHE $D$, "DEVELOPMENT OF A GENERATIVE TYPE PROCESS PLAN ON THE IBM-PC", UNPUBLISHED FQurth Year Project, 1985, Department of Industrial Engineering. University of Windsor |
| 42. | MILNER D.A. "THE USE OF DECISIDN TABLE LOGIC IN A MANUFACTURING SYSTEM", Int. Journal of Production Research, 1977, vol 15 no 1 pp 17-26 |
| 43. | MOSENG B, NES B.H, "INTERGRATION OF CAD/CAM AS SEEN FROM THE PRODUCTION PLANNERS POINT OF VIEW", COmputers in Industry 1984, val 5 pp 341-350 |
| 44. | NAU D.S, CHANG T.C, "PROSPECTS FOR PROCESS SELECTION USING AI", COMPUTERS IN INDUSTRY 4; 1983, Vol 4 pp 253-263 |
| 45. | PARSONS C.W, "ESTIMATING MACHINING COSTS", Mcgraw-Hill, New York, 1957 |
| 46. | PETROPOULOS P.G, "OPTIMAL SELECTION OF MACHINING RATE VARIABLES BY GEOMETRIC PROGRAMMING", Int. Journal of Production Research 1973, vol 11 no 4 pp 305-314 |
| 47. | POLLACK S.L, HICKS H.T, HARRRISON W. , "DECISION TABLES: Theory and Practice", John-Wiley and Sons Ltd. Toronto |
| 48. | RUSSELL, "AUTOMATED MANUFACTURING PLANNING", University of Windsor Library |
| 49. | SMITH R.M, "MANUFACTURING PLANNING UIA CDMPUTER", Manufaturing Engineering \& Management, pp 28-30 |
| 50. | SOLBERG J.J, "THE OPTIMAL PLANNING OF COMPUTERIZED MANUFACTURING SYSTEMS". Schoal of Industrial Engineering; Purdue University 1980. |
| 51. | STEUDEL H.J, "COMPUTER-AIDED PRDCESS PLANNING: PAST, PRESENT AND FUTURE", Int. Journal of Production Research 1984, vol 22 no 2 pp 253-266 |

52. SUNDARAM R.M, CHENG T.J, "MICROCOMPUTER-BASED PRDCESS PLANNING USING GEDMETRIC PROGRAMMING", Int. Journal of Production Research, vol 24, no 1 1986, pp 119-127
53. SWIFT K.G, MATTHEWS A, FIRTH P, SYAN C. S, "ARTIFICIAL INTELLIGENCE IN ENGINEERING DESIGN", SEAI Technical Publications 1984; Pp 5.21-5.29
54. SZADKDWSKI J, "AN APPRDACH TO MACHINING PROCESS OPTIMIZATION", Int. Journal of Production Research 1971, vol 9 no 3 pp 371-376
55. TUDDR P "CAPP- THE ENGINEERING DATABASE" Effective Cad/Cam 1985, Conference Held at Fitzwilliam College, Cambridge July 1985
56. VAN HDUTDN F.J "STRATEGY IN GENERATIVE PLANNING OF TURNING PRDCESSES" Annuals of Cirp 1986 vol 35 no 1
57. VERNADAT F, "QUERVIEW QF AI APPLICATIONS IN CAD/CAM", NRC COLNCIL, PP 7.9-9.16
58. WALVEKAR A.Gy LAMBERT B.K, "AN APPLICATIQN OF GEOMETRIC PRQGRAMMING TQ MACHINING VARIABLE SELECTION", Int. Journal of Production Research 1970 vol 9 no 3 pp 241-245
59. WANG H.P, WYSK R.A, "AN EXPERT SYSTEM FQR MACHINE DATA SELECTION", Computers and Ind. Eng. val 10 no 2, 19B6, pp 99-107.
60. WEILL R, SPUR G, EVERSHEIM W "SURVEY OF COMPUTER AIDED PROCESS PLANNING SYSTEMS" Annuals of Cirp 1982 val 31 no 2 pp 539-551
61. WINSTON P, "ARTIFICIAL INTELLIGENCE: THE FUTURE OF THE COMPUTER", CAM-I Arlington Texas 1985 pp 2.1-2.19
62. WDNG W.C.K, MIDDLETDN D, "DN THE ESTIMATION OF PARAMETERS FOR A NONLINEAR MDDEL OF A MILLING PROCESS'", Int. Journal of Production Research 1984, vol 22 no 2 pp 247-252
63. YELLOWLEY I, "A FUNDAMENTAL EXAMINATION OF THE ECONOMICS DF THE TWD PASS TURNING DPERATION", Int. Journal of Production Research 1983, vol 21 no 5 pp 617-626
64. ZHANG S, GAO W.D, "TOJICAP- A SYSTEM OF CDMPUTER AIDED PROCESS PLANNING SYSTEM FOR ROTATIONAL PARTS", ANIUAI 5 of the CIRP vol 33 no 1 1984, pp 299-301
65. . "Better Basic Propramming System Version 2.0": Summit Software Technolggy Inc. 1985

- 107 -


## Appendix A

## USERS GUIDE

## APPENDIX A


#### Abstract

The users guide contained in this appendix is not designed to take the operator step by step through the program. The intent of the guide is to provide a reference manual which can be used by the operator when difficulties or ambiguities occur. Since the entire system is menu driven and user interactive there should be few problems in running the system. Once the operator becomes familiar with terms used in the system he should have no troubles with the system.


There are only two times that the operator must interact with the system, once when the operator is creating the machine files, and the other when the operator describes the component. The creation of the machine files is performed only at the initialization of the system. It is important however, that the creation of these files is performed correctly since these files form the basis from which the system selects the alternatives.

Each area will be discussed separately on the following pages, beginning with the machine description files.

## MACHINE DESCRIPTION

It is important that each of the question prompted during the machine description phase be answered, since any omission may result in sub-optimal selection of machine tools and there cutting parameters at later stages. The purpose of the stage is to describe all machining alternatives available to the system. The system begins by prompting the operator for three types of information; a. Machine data

$$
\begin{aligned}
& \text { b. Process information for the machine } \\
& \text { c. Tool information for each } \\
& \text { machine/process combination. }
\end{aligned}
$$

## a. Machine Data

1. Machine number -the operator can input any alphanumeric 6 digit code which identifies the particular machine.
2. Horse power -the operator inputs the rated horse power of the particular machine
3. Number of operations -the operator must input the number of operations which can be performed on a particular machine. Ex. A lathe may be able to turng axial drill, and bore therefore the operator would input "3" for the number of operations.

Once the operator has inputted the above information the system begins to prompt the operator for information on each process the machine can perform.

## b. Process Information

1. Dperation code -the operator must input the operation code (Table 5.1) for each operation the machine can perform.
2. Set-Up Cost -the operator inputs the cost to set-up the machine for the particular operation. (\$) - 3. Operator cost -the operator must input a dollar value for the cost of the machinist operating the process on the particular machine. ( $\$ / m i n u t e$ )
3. Load/Unload time -for a particular operation the operator must input the estimated loading and unloading time on a per part basis. (minute)
4. Expected Down Time -each machine will have a history of down times vs. up time a percent value is inputted to give a better estimate of the time taken to machine the components. (\%)

The next section determines the maximum part dimensions the particular operation on the machine can handle.
6. Maximum length of part -maximum length allowed on the machine. (mm)
7. Maximum diameter -the maximum diameter of part which can be machined. (mm) If no rotational parts can be machined enter "O".
B. Maximum width -the maximum width of part which can be handled. (mm)
9. Maximum Height -the maximum height of part which can be handled. (mm)
10. Number of tools -the operator must input the number of tools which are available to perform the operation on the particular machine.

Ex. Turning on a lathe -there may be "5" different tools available each with it's own characteristics.

The next section looks into the details of each of the tools to perform the operation on the particular machine.

## c. Tool Characteristics

1. Tool Number -the operator can input any six digit alphanumeric code to identify the particular tool.
2. Toal cost -in order for the system to generate
costs it must consider the toal cost. The operator must input this cost based on tool replacement. Dollars/min of machining time, since the tool cost only occurs during contact with the part.
3. Tool material -Based on the tool material and the part material combination there will be changes in the cutting parameters. Tool material can be either;

HSS -high speed steel
CAR -carbide tool
4. Number of teeth -the operator must input the number of terth on the tool in order to aid in the cutting parameter estimations.
5. Tool diameter -in certain cases a tool will have a certain diameter ex. drills, end mills, etc. In other circumstances the tool diameter will indicate the hole diameter required prior to using the tool.

Ex. Boring operation -prior to a boring operation a hole must exist of a least a certain value to allow clearance of the tool during operation. Other operations would include; Internal keyways and Tapping.
6. Tool Width -the width of the tool to perform the operation. (mm)
7. Tool nose radius -most machining operations have individual cutters that come in contact with the parts each of these cutters has a radius associated the it's tip this radius must be inputted to aid in generating
feeds for the operation (mm).
8. Maximum metal removal rate -For a particular operation using a certain tool on a machine there will be a maximum amount of metal which can be removed in a minute based on the part material being 1020 steel. This metal removal rate must be inputted to allow for an estimated machine time for the machine/operation/ tool combination. (mm3/minute)
9. Maximum depth of cut -the maximum depth of cut which can be made in a single pass where the part material is 1020 steel is inputted (mm). For some operations such as drilling, reaming; and tapping the maximum depth of cut refers to the length of the tool.
10. Tolerance attainable -in order for the system to select appropriate tools the system must know the tolerance which. the tool can achieve for the process on the particular machine. (mm)
11. Surface Finish -the system must also know the surface finish which the machine/process/tool combination can achieve. (Rms)

## CDMPONENT DESCRIPTION


#### Abstract

As indicated in the report a modular approach to machine description was taken that allows the matching of operations required for a particular class of operations to particular machine files. This process greatly speeds up the generation and selection phase of the program. The individual modules will be described for the system which have been completed.

The system has been designed for the description of both rotational components as well as prismatic components.

Rotational components are components which require external turning operations on a lathe to create there external features. They may include internal rotational features to be machined by a boring operation. Also included are drilling operations and both internal and external keyway cutting. Other features cannot be described by the system; nor can machine tool selection take place for other features on a rotational component. Prismatic components are components which require mostly none rotational machining. The majority of features are a block type. The system also includes drilling operations which may be performed on any surface of the component.


## General Information

Upon entering the systen the operator must input certain general information which includes;

1. Date -the current date
2. Name -the name of the operator running the system
3. Part number -the number of the part which the operator will be describing.
4. Part name -the name given to the part.
5. Part material -the material the component is made of will affect the estimation of cutting time and machining parameters so the material must be inputted. The materials which the operator has a choice of inputting are;
a. Cast Iron
b. 1020 Carbon steel
C. 4140 Steel
d. Brass
6. Maximum production rate or minimum cost
-the operator indicates the ranking of the machine selected for each of the processes, based on either minimum cost or maximum production rate.
7. Type of part (Rotational/Prismatic) -based on this input the system will begin to prompt the operator for the appropriate information on the features of the part.

## Rotational Component Description

Along with the Yes/No questions asked by the system as shown in Table 5.2 the operator must input certain specific information for the description of the individual features in a class.

## First C1ass -External Turned Surfaces

In this class of there can be two forms of features, stepped, and tapered as illustrated in Figure 5.6. The information required from each feature is given bel ow.

Stepped Features -a step feature consists of a cylinder of uniform diameter along the axis of the part, the required inputs are;
-Length, and Tolerance
-Diameter, and Tolerance
-Surface Finish

[^0]
#### Abstract

As can be seen there is no need to input the location of the feature since the description starts at one end of the part and the features across the part are inputted as they appear on the part.


Once the operator has finished the description of the external features the system prompts for the description of the internal features.

Second Class. -Internal Turned Features<br>In this class of features there are three sub classes;

Features that extend the length of the part
Features that originate from the reference end
Features that originate from the none reference end Where the reference end is determined by the operator prior to describing the component and must remain the same throughout the description.

Each class of internal shapes are described using the same features as the External Turned Feature class.

## Third Class -Parallel Drill Holes

In this class of features the operator inputs the description of drill holes which are parallel to the axis of the part. Here as above the drill holes can originate from the reference end or the opposite end. The additional information required is listed below.

Distance From end
On/Dff the axis
Diameter, and Tolerance
Depth, and Tolerance
If the Drill Hole is Threaded

## Fourth Class -External Drill Holes

In this class the information required is the same as above, except the question of being On/Off the axis is not asked.

Fifth And Sixth Classes - Internal/External Keyways
In these two classes of features the operator must indicate if there are any internal/external keyways to be machined. If there were no internal features (class two) the system will skip the internal keyway portion. The information required to describe the features are;

Width of Keyway
Length of Keyway

Depth of Cut
Distance From Reference/Opposite End.

The above describes the input required from the operator to describe the features of a rotational component

## Prismatic Component Description

This next section takes you through the possible information for the description of a prismatic component and the features to be removed to create the desired finished product.

## First Class - External Surfaces

The operator must input the surfaces of the component which require machining. The operator inputs a rectangular box to indicate the area to be machined, although the actual material may not be a. rectangle. The input includes;
-Length
-Width
-Depth, and Tolerance
-Surface Finish.
No tolerance is required for the length and width since it is assumed that the rectangle travels the length and width of the surface.

## Second Class -External Features

The operator inputs the features orner tnen-surfaces to be machined. Here the operator must first select the feature to be machined from one of the following; Rectangle, Triangle, Trapezoid, Rhomboid, and Portion of a Cylinder. Upon selection the operator must input the Description of the feature. A complete listing of the required input is found in Appendix $D$.

## Third class -Internal Turned Features

In this class of features the operator uses the same terms as in the internal features for rotational components. The system asks the operator to indicate the axis which the feature is parallel to so the system can determine the orientation of the features.

## Fourth Class -Drill Holes

The last description is of the individual drill holes to be machined on the component. The features are divided into six sub-classes, two for each of the three axis of the part, since they can be either in the positive or negative direction relative to the axis. The information required for each hole includes;

```
-Drill Diameter, and Tolerance
-Drill Depth, and Tolerance
-Surface Finish
-If the drill hole is threaded.
```


#### Abstract

As shown above the entire component can be easily described in terms of the above features to the system. The input is easy to follow and understand and the operator should have no trouble using the system to aid in the selection of appropriate machine tools.


## APPENDIX B <br> FLOW CHART AND LISTING OF MACHINE DESCRIPTION PROGRAM



```
SOURCE
PRECISION= 7
AUTODEF=DFF
OPTION BASE=0
ERL=DFF
ERRORMODE=LOCAL
RESUME=LINE
FORMODE=BB
SCOPE=ON
PFOCS=0
STRHETURE: BMMM
    INTEGER: JJ,NT
    HEAL: LLL,DDD,ND,HET,TOL,SUF,TC
    REAL: TM,TTD,TH,TNK,EFF,OC,SC,TAA
    STRING: COMB[16],SIM[16],RULE[16],MNS[16],TNS[16]
    REAL: HF,LUT,EBDM,MRR
END STRUCTURE
MMMK: P3!
INTEGER: M,F,I,PPA,J,PPF,TJ,K
STRINE: M率[16],TTT$[16]
REAL: AA, BB,CC,DD,EE,FF,EG
REAL: HH,Il,JA,KK,LL,MM,NN,OO
REAL: PF,OQ, FMR,DA
INTEGER: TT,F1,F2,F3,F4
INTEEER: F5,Fb,F7,FB
STR!NE: YY[16],Ccc[16]
```


## 'MAIN Frograe:

```
10 'THIS PRDGRAM HUST BE DIVIDED UF TO CREATE SEPERATE FILES FOR DIFFERENT
20 'TYPES DF MACHINING OPERATIONS SINCE IT MAS FOUND THAT FOR LARGE
30 'DATABASES THE TIME TO SEARCH ALL THE RECORDS WITH A MICRO-COMPUTER
40 'hould taye to much time
50 CLS
60 CLOSE
70 PRINT "NUMBER OF MACHINES IN THE SHDP"
80 LOCATE 1,32: INPUT - ";
90 DPEN "C:AAA" AS I! LEN=SIIE (P31)
100 READ RECDRD 111 P31
110 LET FI=P31.NT+1
120 CLOSE
130 OFEN "C:BBB" AS II LEN=SIIE(P31)
140 READ RECORD 11 ! P31
150 LET F2=PJ1.NT+1
160 CLOSE
170 DPEN 'C:CCC' AS I! LEN=SIZE(P31)
180 READ RECORD 11 P31
190 LET F3=P31.NT+1
```

```
200 CLOSE
210 DPEN "C:DDD" RS \1 LEN=SIZE(P31)
220 READ RECORD & & P3!
230 LET F4=P31.NT+1
240 CLOSS
250 DFEN "C:EEE" AS \1 LEN=SIIC(P31)
260 READ RECORD &1 & P3!
270 LET F5=P31.NT+1
280 CLOSE
290 DPEN 'C:FFF' AS |1 LEN=SIIE(P31)
300 READ RECORD \1 \ P3!
310 LET FG=PJI.NT+1
320 CLOSE
330 OPEN 'C:665' AS 11 LEN=SIZE(P31)
340 READ RECORD & 1 P31
350 LET F7=P31.NT+1
360 CLOSE
370 CLS
38C F1=2:F2=2;F3=2:F4=2:F5=2:Fb=2:F7=2
390 FOR I=1 TO M
4 0 0 ~ C L S ~
410 PRINT "MACHINE NUMBER="
420 PRINT "HORSE POMER OF MACHINE"
430 LOCATE 1,17:INPUT * ",MMS
440 LOCATE 2,24:INFUT " -,AA
450 PRINT "NUMBER OF PROCESSES MHICH CAN BE PERFORMED ON MACHINE";MM$
460 PRINT 'IS"
470 LOCATE 4,4:INPUT * ",PPA
480 PRINT:PRINT
490 INPUT "IS ABOVE CORRECT (Y/N)",YY
500 IF YY="N' THEN GOTO 400
510 CL5
520 FOF J=1 TD PPA
530 CLS
540 PRINT "PROCESS NUMBER"
550 PRINT "CLAMPING DEVICE"
560 PRINT "SET UP COST ($)"
570 PRINT "OPERATOR COST ($/HR)*
580 PRINT "TIME TO LOAD AND UNLOAD PART (HIN)"
590 PRINT "EXPECTED BREAK, DOWN MULTIPLE"
600 PRINT "EFFIENCY AT THE SPINDLE (%)*
610 PRINT "MAX LENETH OF PART (Ea)"
620 PRINT "MAX DIAMETER OF PART (na) IF APPLICABLE ELSE 0)"
630 PRINT "MAX KIDTH DF PART (ma) IF APPLICABLE ELSE O):
640 PRINT "MAX HEIGHT OF PART (an) IF APPLICABLE ELSE O)"
650 LOCATE 1,16:INPUT * *,PPP
660 LOCATE 2,17:INPUT - ',CEE
670 LOCATE 3,17: INPUT * 'BB
680 LOCATE 4,22:INPUT " ',CC
690 LOCATE 5,36:INPUT * ',DD
700 LOCATE 6,30:INPUT * ',DA
```

| 710 | LOCATE 7,29: INPUT * EE |
| :---: | :---: |
| 720 | LOCATE 8,25:INPUT • ${ }^{\text {,FF }}$ |
| 730 | LDCATE 9,49: 1 NPUT - ",66 |
| 740 | LOCATE 10,46: INPUT * "HH |
| 750 | LDCATE 11,47: INPUT " ",II |
| 760 | PRINT "NUMBER OF TOOLS Which are available to perform process"j |
| 770 | PRINT 'IS" |
| 780 | LOCATE 13,4:INPUT * •,TJ |
| 790 | INPUT "IS ABOUE CORRECT (Y/N)", YY |
| 800 | IF YY='N' THEN 60TO 530 |
| 810 | FDR $K=1$ TO TJ |
| 820 | CLS |
| 830 | PRINT 'TOOL NUMBER" |
| 840 | PRINT 'TOOL COST OF MACHINING ( $\$ / \mathrm{HR}$ ) ${ }^{\text {P }}$ |
| 850 | PRINT 'TDOL HATERIAL" |
| 860 | PRINT "NUMBER OF TEETH ON TOOL" |
| 870 | PRINT "TDOL DIAMETER (EA) If APPLICABLE ELSE 0" |
| 880 | PRINT "TOOL MIDTH (ma) IF APPLICABLE ELSE 0* |
| 890 | PRINT "TOOL NOSE RADIUS (an) If APPLICABLE ELSE 0" |
| 900 | PRINT "MAXIMUK METAL REMOVAL Rate (cu.an/min.)" |
| 910 | PRINT "MAXIMUK DEPTH OF CUT (an)" |
| 920 | PRINT "TOLERENCE ATTAINABLE (an)" |
| 930 | PRINT "SURFACE FINISH ATTAINABLE (RMS)" |
| 940 | LOCATE 1,13:INPUT" ',TTTS |
| 950 | LOCATE 2,31:INPUT * ",JA |
| 960 | LOCATE 3,15: IMPUT * KK |
| 970 | LOCATE 4, 25: INPUT *,TT |
| 980 | LOCATE 5,4l:INPUT * "LL |
| 990 | LOCATE 6,38: INPUT - ", MM |
| 1000 | LOCATE 7,44: INPUT - ",NK |
| 1010 | LOCATE 8,41:INPUT " , MAR |
| 1020 | LOCATE 9,27: INPUT " ",00 |
| 1030 | LOCATE 10,27: INPUT " "PP |
| 1040 | LOCATE 11,33: INPUT * 0 ,08 |
| 1050 | PRINT:PRINT |
| 1060 | INPUT "IS ABOUE CORRECT (Y/M)",YY |
| 1070 | IF YY= ${ }^{(N: ~ T H E N ~ 60 T 0 ~} 820$ |
| 1080 | P31.JJ=PPP:P31. TOL=PP:P31. SUF=80:P31.LLL=FF:P31. DDD $=66$ : P31. WD $=H H$ |
| 1090 | P31. $\mathrm{HGT}=11: P 31 . T C=J A: P 31 . T M=K K: P 31 . T T D=L L: P 31 . T W=M K: P 31 . T N R=N N ~$ |
| 1100 | P31. TAA $=00: P 31 . E F F=E E: P 31.0 C=C C: P 31 . S C=B B: P 31 . H P=A A: P 31 . L U T=D D ~$ |
| 1110 |  |
| 1120 | P31. COME = Cec |
| 1130 | IF PPP $=1$ OR PPP=2 THEN GOSUB 1460 |
| 1140 | If PPP $=3$ OR PPP $=5$ OR PPP $=6$ THEN 60SUB 1510 |
| 1150 | IF $P P P=3$ DR $P P P=8$ OR $P P P=4$ OR $P P P=9$ OR PPP $=7$ OR PPP $=10$ THEN G0SUB 1560 |
| 1160 | IF PPP $=8$ OR PPP $=9$ OR PPP $=10$ THEN GOSUB 1610 |
| 1170 | IF PPP $=13$ OR PPP $=16$ THEN GLSUB 1660 |
| 1180 | IF PPP $=15$ OR PPP $=16$ OR PPP $=17$ OR $P P P=18$ OR PPP $=19$ OR PPP $=20$ OR PPP=21 THEN 60SUB 1710 |
| 1190 | IF PPP=8 OR PPP=11 OR PPP=12 THEN GOSUB 1760 |
| 1200 | CLS |
| 1210 | NEXT K |

```
1220 NEXT J
1230 NEXT I
1240 P31.NT=F1
1250 FI=1
1260 60SUB 1460
1270 P3I.NT=F2
1280 F2=1
1290 GOSUB }151
1300 P31.NT=F3
1310 FJ=1
1320 60SUB 1560
1330 P31.NT=F4
1340 F4=1
1350 6OSUB 1610
1360 P31.NT=F5
1370 F5=1
1380 GOSUB }166
1390 P31.NT=F6
1400 F6=1
1410 60SUB 1710
1420 PJI.NT=F7
1430 F7=1
1440 GOSUB 1760
1450 STOP:END
1460 OPEN "C:AAA" AS $1 LEN=SIZE(P31)
1470 WRITE RECORD $1 FI P31
1480 F1=F1+1
1490 CLOSE
1500 RETURN
1510 OPEN "C:BBE' AS II LEN=SIIE(P3I)
1520 MRITE RECORD \1 F2 P31
1530 F2=F2+1
1540 CLOSE
1550 RETURN
1560 OPEN "C:CCC" AS &1 LEN=SIZE(P3I)
1570 NRITE RECORD $1 FJ P3!
1580 FJ=F3+1
1590 CLOSE
1600 RETURN
1610 OPEN "C:DDD" AS $1 LEN=SIZE(P3I)
1620 WRITE RECORD \1 F4 P31
1630 F4=F4+1
1640 CLOSE
1650 RETURN
1660 DPEN 'C:EEE" AS $1 LEN=SIZE(P31)
1670 URITE RECORD :1 F5 P31
1680 F5=F5+1
1690 CLOSE
1700 RETURN
1710 OPEN "C:FFF' AS $1 LEN=SIZE(P31)
1720 MRITE RECORD $1 F6 P31
```

|  | $F 6=F 6+1$ |
| :---: | :---: |
| 1740 | CLOSE |
| 1750 | RETURN |
| 1760 | OPEN "C:G6E" AS \$1 LEN=SIZE(P31) |
| 1770 | URITE RECORD II F7 P3! |
| 1780 | F7 7 F7+1 |
| 1790 | CLOSE |
|  | RETURN |

ENDFILE

## APPENDIX C

DESCRIPTION FOR ROTATIONAL COMPONENT

## DESCRIPTION FOR A RDTATIONAL COMPONENT

1. Are there any external turned features ( $y / n$ )

If no go to question 2.

Starting from one end of the part describe each feature.

```
1a. I# feature mtepped/tapered (s/t)
    If t goto 1b.
    Input; Length of step, Tolerance
        Diameter, Tolerance
        Surface Finish
```

    1b. Input; Length of taper, Tolerance
    Start diameter: Tolerance
    Finish diameter, Tolerance
    Surface Finish
    2. Are there any internal turned features ( $y / n$ ) If no goto question 3.
2.1 Does the feature pass through the part $(y / n)$ If no goto question 2.2

Starting from one end of the part describe each
feature.
2.1a Is feature stepped/tapered (s/t)
Ift goto 2.1b
Input; Length of step, Tolerance
Diameter,
Surface Finish
2.1b Input; Length of taper, Tolerance Start diameter, Tolerance Finish diameter, Tolerance Surface Finish
2.2 Does feature originate from reference end $(y / n)$ If no goto question 2.3

Starting from one end of the part describe each feature.
2.2a Is feature stepped/tapered (s/t)

If $t$ goto 2.2b
Input; Length of step; Talerance
Diameter, Tolerance
Surface Finish
2.2b Input! Length of taper, Tolerance Start diameter, Tolerance

## Finish diameter, Tolerance Surface Finish

2. 3 Does feature originate from reference end ( $y / n$ ) If no goto question 3

Starting from one end of the part describe each feature.
2.3a Is feature stepped/tapered (s/t)
If $t$ goto 2.3b
Input; Length of step, Tolerance
Diameter,
Surface Finish
2.3b Input; Length of taper; Tolerance Start diameter: Tolerance Finish diameter, Tolerance Surface Finish
3. Are there any drill holes parallel to axis $(y / n)$ If no goto question 4
3.1 Do they originate in the direction of the reference end ( $y / n$ )

If no goto question 3.2
Input: Number of Drill hales
For each drill hole Input; Length, Tolerance

\[\)|  Diameter, Tolerance  |
| :--- |
|  |
|  Threaded $(y / n)$ |
|  |
|  Surface Finish  |
|  |
|  Distance from center axis  |
|  |
|  Distance from reference end  |

\]

3.2 Do they originate in the direction of the opposite end $(y / n)$

If no goto question 4
Input; Number of Drill hales
For each drill hole Input; Length, Tolerance
Diameter, Tolerance
Threaded ( $y / n$ )
Surface Finish
Distance from center axis
Distance from opposite end
4. Are there any external drill holes ( $y / n$ ) If no goto question 5.

Input; Number of Drill holes
For each drill hole Input; Length, Tolerance Diameter, Tolerance Threaded $(y / n)$ Surface Finish

## Distance from reference end

```
5. Are there any internal keyways (y/n) If no goto question 6.
```

Input; Number of internal keyways For each internal keyway Input;

Start distance from Reference end
Length, Tolerance
Depth, Tolerance
Width, Tolerance
6. Are there any external keyways ( $y / n$ )

If no stop

Input; Number of internal keyways
For each internal keyway Input;
Start distance from Reference end
Length, Tolerance
Depth, Tolerance
Width, Tolerance

## APPENDIX D

DESCRIPTION OF PRISMATIC COMPONENTS

## DESCRIPTION OF PRISMATIC FEATURE CLASSES

```
1. Input the description of the raw material
    Rectangle
    Triangle
    Trapezoid
    Rhomboid
    Input the dimensions for each raw material
form.
```

```
2. Are there any external surfaces to machine ( \(y / n\) )
    If no then goto question 3.
```

    Input number of surfaces
    For each surface Input; Length
Width
Depth, Tolerance
Surface Finish

```
3. Are there any external features to machine (y/n)
    If no then goto question 4.
```

    Input number of features
    For each feature Input;

Feature (rectangle, triangle, trapezoid, rhomboid, portion of cylinder)

Based on feature Input; Dimensions, Tolerances Surface Finish $X, Y, Z$ coordinates of end of
feature. Direction of travel ( $X, Y, Z$ )
4. Are there any internal features to machine ( $y / n$ ) If no goto question 5.

Input number of groups
For each group
Input number of features in the group

```
4.1 Starting from the external surface is the feature stepped or tapered (s/t)
If \(t\) then goto 4.2
Input; Length, Tolerance
Diameter, Tolerance
Surface Finish
```

4.2 Input; Length, $\quad$ Tolerance $\quad$ Tolerance

```
5. Are there any external drill holes (y/n)
If no then stop
```

5.1 Are there any in positive $x$ direction ( $y / n$ ) If no goto question 5.2

Input; Number in direction
For each drill hole Input; Length, Tolerance Diameter: Tolerance Threaded (y/n) Surface Finish
5.2 Are there any in negative $x$ direction $(y / n)$ If no goto question 5.3

Input; Number in direction
For each drill hole Input; Length, Tolerance Diameter, Tolerance Threaded ( $y / n$ ) Surface Finish
5.3 Are there any in positive y direction (y/n) If no goto question 5.4

Input; Number in direction
For each drill hole Input; Length, Tolerance Diameter, Tolerance Threaded (y/n)

Surface Finish
5.4 Are there any in negative y direction ( $y / n$ )
If no goto question 5.5
Input; Number in direction
For each drill hole Input; Length, Tolerance
Diameter, Tolerance
Threaded (y/n)
Surface Finish
5.5 Are there any in positive z direction ( $y / n$ ) If no goto question 5.6

Input; Number in direction
For each drill hole Iriput; Length, Tolerance
Diameter, Tolerance
Threaded (y/n)
Surface Finish
5.4 Are there any in negative $z$ direction ( $y / n$ ) If no then stop

Input; Number in direction
For each drill hole Input; Length, Tolerance Diameter, Tolerance Threaded (y/n) Surface Finish


PART \# 9871 PART NAME - SPINDLE
COMPONENT INFORMATION,
Part Name = SHAFT
Part Number $=124$
Start Diameter $=110 \mathrm{~mm}$
Start Length $=400 \mathrm{~mm}$
lot size $=200$ material $=$ cast iron

Features, $1=100 \mathrm{~mm}$
$2=50 \mathrm{~mm}$
$3=40 \mathrm{~mm}$
$3 a=200 \mathrm{~mm}$
$4=100 \mathrm{~mm}$
$5=100 \mathrm{~mm}$
$6=90 \mathrm{~mm}$
Surface Finish $=60$ Rms
Tolerance $=.02 \mathrm{~mm}$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




COMPONENT INFORMATION,
Part Name = Center
Part Number $=1427$
Start Diameter $=120 \mathrm{~mm}$
Start Length $=180 \mathrm{~mm}$
Material $=4140$ steel
Lot Size $=100$
Features, $1=40 \mathrm{~mm}$
$3=30 \mathrm{~mm}$

| 2 | $=20 \mathrm{~mm}$ |
| ---: | :--- |
| 4 | $=30 \mathrm{~mm}$ |
| 6 | $=60 \mathrm{~mm}$ |
| 8 | $=75 \mathrm{~mm}$ |
| 10 | $=18 \mathrm{~mm}$ |
| 12 | $=45 \mathrm{~mm}$ |
| 14 | $=90 \mathrm{~mm}$ |

Surface Finish $=50$ Rms
Tolerance $=.02$

| TODAYS | 5 date | APRIL 16／87 |  |  | LOT SI2E＝ 200 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PART | NAME＝ | SPINDLE |  |  | PART NUMEER＝ 9871 |  |  |  |
| machine | TOOL | MACHINE TIME （min） | total COST／LOT （ $\left.{ }^{( }\right)$ | AVECOST／PART（ $\$ 1$ | ROUGH CUT |  | FINISH CUT |  |
|  |  |  |  |  | PART | PART | PART | PART |
|  |  |  |  |  | FEED | SPEED | FEED | SPEED |
|  |  |  |  |  | （mm／RPM） | （mm／min） | （mm／RPM） | （ma／min |
|  |  |  |  |  |  |  |  |  |
| C－1802 | Tuc－B11 | 19.50944 | 1199.496 | 5.997482 | ． 16 | 231250 | $4.05-02$ | 254375 |
| K－21 | DRH－A45 | ．0040004 | 92.92058 | ． 4641029 | ． 4 | 220.4208 |  |  |
| F－37 | 80H－813 | 3．005108E－07 | 130.1 | ．6505001 | ． 14 | 371391.4 | ． 035 | 408530.6 |
|  | COST FOR THIS PLAN 15＝7．1120日S |  |  |  |  |  |  |  |
| C－1802 | Tuc－811 | 19．50944 | 1199.496 | 5.997482 | .16 | 231250 | 4．OE－02 | 254375 |
| K－21 | DRH－A4S | ． 00404094 | 92.92058 | ． 4641029 | ． 4 | 220.4208 |  |  |
| C－1802 | BOC－CJ | 2．790458E－97 | 131．3 | ．6565 | .18 | 103693.3 | 4．5E－02 | 114062.7 |
|  | COST FOR THIS PLAN 15＊ 7.118085 |  |  |  |  |  |  |  |
| C－1802 | TUC－B11 | 19.50944 | 1199.496 | 5.997482 | ． 16 | 251250 | 4．OE－02 | 254375 |
| K－21 | DFH－A4．5 | ． 00400004 | 92． 32058 | ．4641029 | ． 4 | 220.4208 |  |  |
| A－90 | BOC－D9 | 2．7904こ8E－97 | 154．82 | ． 6741 | .16 | 116655 | 4． $0 \mathrm{E}-02$ | 129320．5 |
|  | COST FOR THIS PLAN 1S＝7．135685 |  |  |  |  |  |  |  |
| C－1802 | TIJC－H11 | 19.50944 | 1179.496 | 5.797482 | .16 | 251250 | $4.0 \mathrm{E}-02$ | 254375 |
| K－21 | DRH－m4S | － 11940094 | 92.32058 | ． 4641029 | ． 4 | 220.4208 |  |  |
| A－90 | EOH－DJ | こ．U05109E－67 | 154．82 | ． 6741 | ． 12 | 433290 | ． 03 | 476619 |
|  | COST FOR IHIS PLAN 15－7．1356日5 |  |  |  |  |  |  |  |
| C－1802 | TUC－E11 | 19．50944 | 1197.496 | 5.997482 | .16 | 231250 | 4．0E－02 | 254575 |
| C－1802 | DFiH－CEJ | 4． $182041 \mathrm{E}-\mathrm{C}$ | 121．525 | ． 6076252 | ． 4 | 205.0768 |  |  |
| C－1802 | BOC－CJ | 2．7904E日E－17 | 131.3 | ． 6565 | ． 18 | 103693．3 | 4．5E－02 | 114062.7 |
|  | COST FOR THIS PLAN 15－7．130日S8 |  |  |  |  |  |  |  |
| C－1802 | TUC－811 | 19．50944 | 1199.496 | 5.997482 | .16 | 231250 | 4．0E－02 | 254375 |
| C－1802 | Df\％－COC | 1．002041E－43 | 121．5こ5 | ．6076252 | ． 4 | 205．0768 |  |  |
| F－57 | BOH－8i＝ | $3.005108 E-07$ | 130.1 | ．6505001 | ． 14 | 371391.4 | ． 035 | 408530.6 |
|  | COST FOR THIS PLAN 15： 7.199858 |  |  |  |  |  |  |  |
| c－1802 | TUC－812 | 17.30944 | 1199.496 | 5.997482 | ． 16 | 231250 | 4．OE－02 | 254375 |
| C－1802 | DRH－CJ5 | $4.082041 \mathrm{E}-9 \mathrm{~J}$ | 121．525 | ． 6076252 | ． 4 | 205.0768 |  |  |
| A－90 | BOC－D9 | 2．790458E－．77 | 1こ4．82 | ． 6741 | ． 16 | 116655 | 4．0E－02 | 128320.5 |
|  |  | ST FOR THIS PL | AN IS＝ 7.22 | 58 |  |  |  |  |
| C－1802 | TUC－811 | 19．50944 | 1199.496 | 5.997462 | ． 16 | 221250 | 4． $0 \mathrm{E}-02$ | 234375 |
| C－1802 | ORH－Tここ | 4.482041 E －， 3 | 121．525 | ． 0076252 | ． 4 | 205.0768 |  |  |
| A－90 | QOH－EJ | J．005108E－07 | 1：4．82 | ． 6741 | ． 12 | 435290 | ． 03 | 476619 |

371250
408530.6
371250
114062.7



| c-1802 | TUH-A7 | 20.05157 | 1228.636 | 6.14318 |
| :---: | :---: | :---: | :---: | :---: |
| K-31 | DRH~A45 | . 004150104 | 92.82058 | . 4641029 |
| $\mathrm{F}-37$ | 8OH-815 | 3.005109E-07 | 130.1 | .6505001 |
|  | COST FOR IHIS PLAN IS* 7.257783 |  |  |  |
| C-1802 | TUH-AT | 20.05137 | 1228.656 | 6.14318 |
| K-21 | DRH-845 | . 0040004 | 92.82058 | . 4641029 |
| C-1802 | B0C-C3 | 2.790458E-97 | 131.3 | . 6565 |
| COST FGR THIS PLAN 1Sm 7.263783 |  |  |  |  |

## APPENDIX F

## EXAMPLES FROM ALT2 SYSTEM



CDMPONENT INFDRMATION,

| Part Name | $=$ Shaft |
| ---: | :--- |
| Part Number | $=9871$ |
| Start Diameter | $=110 \mathrm{~mm}$ |
| Start Length | $=400 \mathrm{~mm}$ |
| lot size | $=200$ |
| material | $=$ cast iron |

Features; $1=100 \mathrm{~mm}$
$2=50 \mathrm{~mm}$
$3=40 \mathrm{~mm}$
$3 a=200 \mathrm{~mm}$
$4=100 \mathrm{~mm}$
$5=100 \mathrm{~mm}$
$6=90 \mathrm{~mm}$
Surface Finish $=60$ Rms
Tolerance $=.02 \mathrm{~mm}$

PART NAME：SPINDLE
OPERATOR：
D．meloche
DATE：
APRIL 11／B7

LDT SIZE： 200

OPERATION REQUIRED TO GENERATE
THE EXTERNAL FEATURES

TOCLS AVAILABLE FOR TURNING

| machine | TOOL | TIME PER PART | tOTAL TIME | total CDST | ave COST | DEPTH （mm） | $\begin{gathered} \text { Rougl } \\ \text { FEED } \\ (\mathrm{mm} / R P M) \end{gathered}$ | h cut SPEED （mm／min） | $\begin{aligned} & \text { Finish } \\ & \text { FEED } \\ & \text { (mm/RPM) } \end{aligned}$ | cut <br> SPEED <br> （mm／min） | GRINDING REOUIRED | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C－1002 | TUC－825 | 6.522495 | 1704.499 | 481．8179 | 2.409089 | 9.999 | ． 48 | 33533.35 | ． 12 | 36666.67 | $Y$ | $\cdots$ |
| c－1802 | TUC－821 | 6.674254 | 1734．87 | 491）． 208 | 2.45104 | 7.3326 | ． 34 | 62566． 84 | ． 085 | 88823． 53 | $\gamma$ | A |
| $\mathrm{C}-1802$ | TuC－815 | 6．8こ4ご5 | 1766．841 | 499.0399 | 2.4952 | 5.9994 | ． 26 | 97453.89 | 6．5E－02 | 107179.5 | $\boldsymbol{Y}$ | 10 |
| C－1802 | TUH－AES | $6.717 \pm 08$ | 1783．466 | 503.5797 | 2.516898 | 8．6658 | ． 48 | 36057.69 | ． 12 | 39663．46 | $\gamma$ | ， |
| M－24 | TUC－C19 | 7.090405 | 1759．081 | 503.5141 | 2.51757 | 11.9988 | ． 26 | 46794.87 | $6.5 E-02$ | 51474.36 | $Y$ | 1 |
| F－37 | TUH－C41 | 6．674こ54 | 1754．a7 | 504.008 | 2.52004 | 7． 3 ご¢ | ． 5 | 42545.45 | ． 125 | 46800 | $Y$ |  |
| J－19 | TUC－E11 | 7．002697 | 1120.509 | 504.8612 | 2.524306 | 10.6656 | ． 42 | 35035.71 | ． 105 | 36339.79 | $\boldsymbol{Y}$ |  |
| c－1802 | TUH－H21 | 7.002697 | 1800.54 | 508.093 | 2.540465 | 5.9994 | .34 | 72549.02 | ． 085 | 79803.92 | Y |  |
| c－1802 | TUC－E11 | 7．002697 | 1800.54 | 508． 349 | 2.541745 | 3.9996 | ． 16 | 231250 | $4.0 \mathrm{E}-02$ | 254575 | N |  |
| C－1802 | TUH－A1： | 7．0964ics | 1818．） U1 $^{\text {d }}$ | 512.9352 | 2.564676 | 4.6602 | ． 26 | 120329.7 | 6． $\mathrm{EE}-02$ | 132362.6 | $Y$ |  |
| F－57 | TUC－B12 | 6． 11 フこa | 1805．466 | 517.9115 | 2.589057 | 5.9994 | ． 26 | 96153.84 | 6． $\mathrm{EE}-02$ | 105769.2 | Y |  |
| C－1802 | TUH－¢i7 | 7.18055 | 18ご． 11 | 517.4122 | 2.589561 | 2.8664 | ． 26 | 337500 | $4.0 \mathrm{E}-12$ | 371250 | $N$ |  |
| F－37 | TUH－C1 1 | 7． 1002697 | 1820．539 | 522.149 | 2.610745 | 5.7994 | ． 34 | 72549.02 | ．085 | 79803.92 | V |  |
| J－19 | TUC－817 | 7．368560 | 157． 715 | Eこ5． 1047 | 2.625524 | 8.6651 | ． 28 | 57692.3 | ． 07 | 63461.54 | V |  |
| C－1801 | TUC－C17 | 7．27ごご | 1854.647 | 528.6964 | 2.643482 | 7.9992 | ． 34 | 52205．88 | ． 085 | 57426．47 | $y$ |  |
| M－24 | TUH－817 | 7．56764 | 1853．523 | 529．3522 | 2.646811 | 10.6656 | ． 28 | 455j5． 71 | ． 07 | 50089．28 | V |  |
| M－24 | TUC－01t | 7.56764 | 1853．5こ8 | 529.9196 | 2.649598 | 10.6656 | －18 | 70833.35 | $4.5 E-02$ | 77916．66 | $\boldsymbol{\gamma}$ |  |
| J－19 | TUH－CEI | 7.46666 | 1813．352 | 530.1204 | 2.650602 | 8． 6658 | ． 36 | 44230.77 | 9．0E－1）2 | 18653．85 | $Y$ |  |
| C－1801 | TUC－C？ | 7．368566 | 1873．715 | 533．9663 | 2.669852 | 5． 3528 | ． 26 | 100961．5 | $6.5 E-02$ | 111057.7 | $Y$ |  |
| c－1801 | TUH－H6 | 7.56764 | $1915.5 \% 3$ | 544.8318 | 2.724159 | 5． 3520 | ． 5 | 84999.99 | ． 075 | 93499．99 | $Y$ |  |
| C－1801 | TUC－C9 | 7.56734 | 1913.528 | 544.7712 | 2.724956 | 3． 353 | ． 18 | 226666.7 | 4．2E－02 | 249353．3 | N |  |
| M－24 | TUH－DII | 7．8892こ5 | 1917．845 | 547.1297 | 2．735648 | 5．3328 | ． 2 | 121875 | ． 05 | 134062.5 | $\gamma$ |  |
| J－19 | TUH－E17 | 7．778782 | 1875．756 | 547.3713 | 2.756857 | 7.3526 | ． 26 | 69230.77 | 6．SE－02 | 76153.85 | V |  |
| H－91 | TUC－C45 | 7．7ア日732 | 1915．756 | 553．7149 | 2.168574 | 3.353 | ． 14 | 282857．1 | ． 035 | 311142.8 | $N$ |  |
| B－50 | TUC－HII | 7.671636 | 1934．－27 | 553.9322 | 2.76966 | 7.9992 | ． 26 | 64423.08 | $6.5 \mathrm{E}-02$ | 70865.39 | $\gamma$ |  |
| c－1801 | TUH－HE | 7．889ここら | 1977．845 | 562.6023 | 2.813015 | 2.6664 | ． 2 | 243750 | ． 05 | 268125 | $N$ |  |
| c－1800 | TUC－E2 | 7.88764 | 2013． $5=8$ | 569.2409 | 2.846205 | 7.9992 | ． 26 | 65384.62 | $6.5 E-02$ | 71923.08 | V |  |
| H－91 | TUH－Ciこ | 8．1206こ日 | 1984．126 | 572．4651 | 2.862325 | 1．3352 | ． 1 | 944999.9 | ．02］ | 1059500 | N |  |
| C－1800 | TUH－A | 7.671056 | 2034．3こ7 | 574．7079 | 2.873 ごの | 5.9994 | ． 52 | 69791.66 | B．0E－02 | 76770.84 | $\boldsymbol{r}$ |  |
| B－30 | TUC－H15 | 8．120628 | 2024.126 | 578.766 | 2.89385 | 4.6662 | ． 18 | 150000 | 4． $\mathrm{EE}-122$ | 165000 | $N$ |  |
| J－19 | TUH－C1 | B． 61201 | 1993.441 | 579．8976 | 2.899468 | 3． 35 | ． 18 | 203353.5 | $4.5 E-02$ | 223666.7 | Y |  |
| ᄃ－1800） | TUC－gi | －．889225 | 2077.845 | 597．0212 | 2.935106 | 3.353 | ． 16 | 243750 | $4.0 \cdot \mathrm{E}-02$ | 288125 | Y |  |
| c－180） | TUH－AE | 8． 1206 | 2124.126 | 590.5147 | 2.997574 | 3.9996 | ． 24 | 131250 | ． 06 | 144575 | $\boldsymbol{r}$ |  |
| －-30 | TUH－H14 | 9． 5 Some | 2126.1 | 806．0459 | 3．035229 | 3．3．35 | ． 18 | 196666.7 | 4． $5 E \rightarrow$ ，2 | 216353.3 | N |  |
| C－1800 | TUH－H1 | 9．49600 | 2199.5 J | 620.2905 | 3.10145 | 1.9998 | ． 158 | 379746.8 | ． 0395 | 417721.5 | N |  |
| A－4E | Tuc－mil | 9．9！ごア4 | 2182．455 | 840.5455 | 3． 202726 | 6.606 | ． 24 | 71250 | ． 06 | 78375 | $\boldsymbol{Y}$ |  |
| A－45 | TUH－619 | $7.2145: 7$ | 2242．010 | 657.8965 | 2．286985 | 3．コニコ | ． 24 | 137500 | ． 06 | 151230 | $N$ |  |

grinding tools available


drilling records available


grinding tools available
boring records avaiadle

号嵒是 $n$

TOTAL
TIME
7040
8649
18640
（MIN）
TIME TGKEN to PUN fROGRAM＝1こ．17E84


COMPDNENT INFORMATION,

$$
\begin{aligned}
\text { Part Name } & =\text { Center } \\
\text { Part Number } & =1427 \\
\text { Start Diameter } & =120 \cdot \mathrm{~mm} \\
\text { Start Length } & =180 \mathrm{~mm} \\
\text { Material } & =4140 \text { steel } \\
\text { Lot size } & =100
\end{aligned}
$$

Features, $1=40 \mathrm{~mm}$

| 3 | $=30 \mathrm{~mm}$ |
| ---: | :--- |
| 5 | $=60 \mathrm{~mm}$ |
| 7 | $=25 \mathrm{~mm}$ |
| 9 | $=100 \mathrm{~mm}$ |
| 11 | $=35 \mathrm{~mm}$ |
| 13 | $=45 \mathrm{~mm}$ |


| 2 | $=20 \mathrm{~mm}$ |
| ---: | :--- |
| 4 | $=30 \mathrm{~mm}$ |
| 6 | $=60 \mathrm{~mm}$ |
| 8 | $=75 \mathrm{~mm}$ |
| 10 | $=18 \mathrm{~mm}$ |
| 12 | $=45 \mathrm{~mm}$ |
| 14 | $=90 \mathrm{~mm}$ |

Surface Finish $=50$ Rms Tolerance $=.02 \mathrm{~mm}$

PART NAME: CENTER
OPERATOR:
D. meloche
DATE:
APRIL 16/87

LOT SI2E: 100

```
O*****************************
```

THE EXTERNAL FEATURES
**********F**日*****************

TDOLS AVAILABLE FOR TURNING


GRINDING TOOLS AVAILABLE

| machine - | TOOL | TIME PER PART | tatal TIME | ratal COST | ave Cost | DEPTH <br> (mm) | FEED (mm/RPM) | SPEED (RPM) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EG-40 | ERG-EJJ | 5.428443 | 742.3444 | 216.8542 | 2.168542 | 6.3 | . 34 | 72549.02 |
| EG-40 | ERG-E21 | 5. 36673 | 736.673 | 215.1441 | 2.151441 | 9.097999 | . 48 | 36057.69 |
| EG-40 | ERG-E16 | 5.306643 | 730.6642 | 213.6593 | 2.156594 | 6.3 | . 26 | 97435.9 |
| EG-25 | ERG-E17 | 5.191087 | 719.1087 | 210.4527 | 2.104527 | 7.7 | . 34 | 62566.84 |
| EG-25 | ERG-E14 | 5.08151 | 708.131 | 207.4064 | 2.074064 | 10.5 | . 48 | 33333.33 |

**************************
OFERATIONS REQUIRED TO
GENERATE INTERNAL FEATURES
WHICH PASS THROUGH THE PART

DRILLING RECORDS AVAILABLE

| MACHINE | $\underset{N}{\text { TOOL }}$ | TIME PER PART | $\begin{aligned} & \text { TOTAL } \\ & \text { TIME } \end{aligned}$ | toral COST | ave COST | $\begin{gathered} \text { FEED } \\ \text { (mm/RPM) } \end{gathered}$ | SPEED <br> (mm/min) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K-21 | DRH-AES | . 2740355 | 167.40こ5 | 61.66886 | . 6166886 | . 14 | 2298.972 |
| I-11 | DRH-DE1 | . 2740 -55 | 177.4036 | 64.51886 | . 6451866 | . 154 | 2089.975 |
| H-47 | DRH-AIS | . 2671846 | 196.7185 | 71.02429 | . 7102429 | 9.8E-02 | 3368.457 |
| C-1801 | DRH-H11 | . 2485439 | 204.8544 | 71.0623 | . 710623 | . 126 | 2816.405 |
| M-24 | DRH-DEI | .2740-35 | 217.1055 | 75.81612 | . 7581612 | . 126 | 2554.413 |
| A-90 | DRH-H11 | . 2428951 | 214.2995 | 79.18497 | . 7918497 | . 154 | 2357.92 |



GRINDING TODLS AVAILABLE

| MACHINE | rool " | TIIIE FER PART | TOTAL TIME | tOTAL COST | ave cost | rODL DEPTH | $\begin{aligned} & \text { TOQL } \\ & \text { FEED } \end{aligned}$ | $\begin{aligned} & \text { TOOL } \\ & \text { SPEED } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16-10 | IRG-15 | 36.6 | -760 | 1338.24 | 13.3824 | 1 | 2.5 | 9200 |
| 1G-10. | 1RG-13 | 72.6 | 7560 | 25こ5 | 25.23 | . 5 | 1.25 | 35200 |

YIME TAKEN TO RUN PROGRAIY $=12.376=7$ (MIH)


## COMPONENT INFORMATION,

$$
\begin{aligned}
\text { Part Name } & =\text { Spindle } \\
\text { Part Number } & =124 \\
\text { Start Diameter } & =125 \mathrm{~mm} \\
\text { Start Length } & =350 \mathrm{~mm} \\
\text { Material } & =\text { Brass } \\
\text { Lot size } & =300
\end{aligned}
$$

Feature, $1=100 \mathrm{~mm}$
$2=50 \mathrm{~mm}$
$3=150 \mathrm{~mm}$
$4=100 \mathrm{~mm}$
$5=100 \mathrm{~mm}$
Surface Finish $=30$ Rms
Tolerance $=.02 \mathrm{~mm}$



 \& ¢ $\dot{\sim}$


 *******************************
OPERATION REDUIRED TD GENERATE
THE EXTERNAL FEATURES
todls auailable for turning


grinding tools available

| mACHINE . | TOOL | TIME PER PART | - tロTAL TIME | TOTAL COST | ave cost | DEPTH <br> (mm) | FEED (mm/RPM) | SPEED (RPM) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EG-40 | ERG-EJJ | . 6 | 1200 | 459 | 1.53 | 3.4 | 8.75 | 6628.571 |
| EG-40 | ERG-E16 | -6 | 1200 | 457 | 1.53 | 3.4 | 日. 75 | 6629. 571 |
| EG-40 | ERG-E21 | . 6 | 1200 | 459 | 1.53 | 3.4 | 8.75 | 6628.571 |

TIME TAKEN TO RUN PROGRAM= 5.622694 (MIN)

## APPENDIX $\mathbf{G}$

## FLOW CHART OF SYSTEM











## APPENDIX H <br> LISTING DF PROGRAMS

```
SOURC
    !c CLS
```



```
    Z0 PEIN: TAE:G% '% %
```




```
    60 FFINT TAR!12:"! "
```



```
    B0 PR:NT TAB!:2 "t FAC! !0ge i"
    11O FFIN: TAE:!2)"! %
    120 FENH TAE!:2! '1 1. ERY MARHNE ESORDE %
```





```
    160 PETNT TAE(D2) ": E. RETLPN TO DDS !"
    !00 FF!NT TAB(12) '& {"
    200 FEINT TAE!L!' '! %"
    20 PFINT TAE(:2) "% SEIECTION "
    220 PFINT TAE!!2! "! ;"
```




```
    260 LOCETE 16,30
    270 INFY: ""Abs
    27E AE=VAL(的s)
    280 IE AF=: CHG!N "EMACH"
    2OO IF 4E=? CHAIN MACH"
    300 IE AE=? CHFIN "SEERHTE*
    3!0 IF AE=L CMOMN "EDTH"
    320 IF AF=E SYETEM
    2S EDTC 10
    340 STOF:END
EMIFILE
```

```
SQJFES
PFECIS10:= 7
A.T\IEF=ヷFF
OF-ION EfSE=0
EF:=OE:
ERP:JFNOJE=CNR!
FES:ME=\:1E
FDFYOEE=E:
3こく:こ=う4
FFO%S=0
```



```
    I:"EGE5: J,N林
    RE:_: _._, SNT,ME,HET,TD_, SUE,TE
    FEAL: TH, CTE,TE,TME,EFF,OE,SC,TAG
```



```
    FEA_: HF,LUT,EEEN,MET
EN: ETRURTUSE
MMMM: FJ!
INTEEEF: M,F,I,PFA,S,PDE,TI,G
STFINE: M*S:!é],TTI&:16]
REAL: A'́,BE,EN,DL,EE,FF,ES
FEAL: HH,:I,J:,NK,LL,MR,NI,OD
REFL: FS',GC,MMS,DE
INTEEER: TY,F:,=R,F?,F4
INTEGEF: FE,FE,F7,FE
STFIME: Yソ[:E:,CES:16]
MALN Frag-ex;
    IO 'THIS PFDFFFY MLEE EE DTVDEE DF TO CESATE SEPERATE FILES FDF: DIFFERENT
    20 'TYFES DF MACHININE OFEFIATIONS E!HLE IT WAS FOUHE THAT FRE LARGE
    30 'DATABASES THE TIME TO GEARCH ALL THE RECORDS WITH A MICFS-COMFUTEE
    40 'HOULU TAKE TC MUCH TIME
    50 CLS
    be CLCSE
    70 FEIHT 'NUMEEF DF MACHINES IN THE SHOP"
    80 LOSATE 1,32:INPUT " ";K
    90 DFEN "C:AAA" A5 $1 LEN=SIZE(P31)
    100 READ RECDRD #1 1 P31
    110 LET FI=F31.NT+!
    120 CLOSE
    130 OFEN "C:BES" AS I! LEN=SITE(FJI)
    140 FEAD RECORD #! : FJI
    150 LET F2=F31.NT+1
    160 CLOSE
    170 DFEK; C:CCC' AS \1 LEN=SITE(FSL)
    190 PEAD RECOFD K! : P3!
    1OO LET FI=P3!.NT+1
```

```
200 Cnge
2!( DES: "C:DDD" AS &! LEN=E!TE(FJ!!
23! FERAR RECN:! %! ! [3!
2S! LET FS=FS!.NT-!
24 CLOSE
```



```
20( FEAT FECDE: F: : FO:
270 LET FE=F:..NT+:
980 C.05E
2只 n*EN "C:FFF" AE &: LEN=E!7E!F?!!
3OO REA[ FECOFE #! : ES:
3!0 LET FE=F31.NT+:
300 CLOSE
```



```
S4C FEATS RECDFT #: ! FS1
350 LET :7=F?:.NT+:
30% CLOSE
3! C!E
3B:F1=":F2=2:F3=2:F4=2:F5=2:F6=":F7=2
3CO FOF l=: TO M
400 CiE
410 PFIMF MACHINE NJMEER='
420 FFSNT "HOFSE FOKEF OT MACHINE"
40C LOCATE 1,17:INPUT : ",MMs
440 :CChTE 2,24:INDJY " ",AA
450 PFINT "NUMPEF OF FFDCESSES MHICH CAN BE PERFOFMED OR MASHINE";NMS
450 PFIITT "IS"
470 LDEATE 4,4:INFLT ' ',PPF
4E@ FFINT:PEINT
4%O INPUT EIS APDUE CORRECT (Y/N)',YY
SNO IF YY='I'' THEN EDTS 400
5l0 CLS
520 FOR J=1 TO PPA
530 [LS
5%0 PFINT "PROCESS NUMBER'
550 PFINT "CLAMFINE DEVICE"
560 PRINT "SET UF COST ($)*
570 FFINT "OPESATOF COST ($/HK)"
590 PFINT "TIME TO LOAD AND UNLOAD PART (MIN)"
590 PRINT "EXFECTED gREAK. DOUN MULTIPLE"
600 PKINT "EFFIENCY AT THE SPINDLE (%)"
610 PRINT "MAX LENETH OF PAFT (an)"
620 FRINT "MAX DIAMETE: OF PART (as) IF APPLICABLE ELSE O)"
6j0 FRINT "MAY WIDTH DE PART (mo) IF APFLICAELE ELSE 0)"
640 PFINT 'MAX HE!EHT OF PART (a|) IF APPLICAELE ELSE O)"
650 LDCATE 1,16:INFUT " ",FFF
660 LOEATE 2,17:INPUT - ",Ccc
670 LOCATE 3,17:INPUT = %,BB
6gO LOCATE 4,22:INPUT * ',CC
690 LDCATE 5,36:INFUT : ',DD
700 LOCATE 6,30:INPUT " *,DA
```

```
LOCATE ?.2F:INELT " *EE
LOCATE 5.25:INDU: " '.FF
LNCATE C.4P:IMFLT " ',EE
LOSATE 10,4E:JNDLTT " "HH
LCOATE :1,47! !MO!T : :OI
PRINT EHDMPEF OF TOOLS HHICL ARE AVAILABLE TC PEFFDFTN PROCEEEN:I
PFINT "IE"
LOCATE 1E.4:!NPUT " ",TS
INPLTY "S ABC'VE CDORECT IY/N:",YY
IF YY="!" THEN GOTC 530
FOF: }:=:=TOT
    CLE
    PF:INT "TOQ' NLYPEF*
    FFINT ETOM: SOE: QF MAMHININE (&/HE!"
    FFINT ":DOL MATEE!AL"
    PFINT "PMMES' OF TEETH ON TOO!"
    PFIN: "TOJ_ [JAMETEF (aN' JF ADPGICAELE ELEE ("
    PFINT "TOC: KIDTH (aR) IF APPLICAELE ELSE O*
    PFINT 'TOOL NDSE RADIUS (EE) IF APFLICAELE ELSE (*
    PFILTT "MAXIMUF, METAL FEMOVAL RGTE (EL.qE/Ejf.)"
    PFINT "MAXIMUM DEPTH DF CUT (ME)"
    PFINT "TOLERENCE GTTAINASEE (RO)"
    PRINT "SUFFANE FINISH ATTGINABLE (RMS)*
    LOCATE 1,IJ:INFUT" ",TTTS
    LOCATE 2,31:INPUT " "JA
    LOCATE 3,15:INPUT " ",KK
    LDCATE 4,25:IMFUT : ",TT
    LOCATE E,41:IMFUT* ",LL
    LOCATE 6,3E:INPUT * ",MM
1000 LOCATE 7,44:INFU?" "NN
1010 LDCATE E,4:!INPLIT ",MME
1030 LOCATE 5.27:INFLT * ",00
1030 LDCATE 10,27:INPUT = ",PF
1040 LOCATE 11,3J:INSYT" *,昭
1050 PFINT:FFINT
1050 INPUT "IS ABOUE CORRECT (Y/N)",YY
1070 IF YY='N' THEN 60TO 820
10B0 FJ1.JJ=PPF;FJ1.TOL=PF:PJ1.SuF=Q0:P31.LLL=FF:P3!.DDD=65:P?:.WI=HH
1090 F31.HET=II:P31.TC=JA:FJ1.TK=KH:F31.TTD=LL:F3!,TH=MK:F31.TNK=NN
1100 F31.TAA=00:F31.EFF=EE;F31.DC=CC:P31.SC=BE:F31.HF=4A:FJ1,LUT=DD
1110 F31.HNS=TTTS:P31.TN$=MM:P31.MRR=MMR:P31.EBDN=DA:P31.NT=TT
1120 PJ\.CDME=CEE
1130 IF PFF=1 OF PFF=2 THEN GOSUB 1460
1140 IF PPP=3 OE PPF=5 OF PPF=6 THEN EOSUS 1510
1150 IF PPF=3 DF PPF=8 OE PPF=4 OF PPF=9 OF PPP=7 OF PPF=10 THEN 605UE 1560
1160 IF PPP=8 OR PPF=9 OF PPF=10 THEN GOSUE 1610
1170 IF PPP=13 OFPPPP=16 THEN 60SU5 1660
1180 IF PPF=15 DF FPP=16 OF PFF=17 OF PPF=1B OF PPF=1% OF PPF=20 OF, PPF=21 THEN GOSUE :710
1190 IF PPF=& OF: FPF=1! OF PPP=12 THEN 60SUE 1760
1200 CLS
1210 NEXT K
```

```
:220 NEXT J
123:M NEXY I
1240 P3!.NT=F1
1250 F:=1
:25! 60SJF:460
127%:こ:.NT=F?
1280 FO=:
12OC ECEUP IE:S
1300 F?:.:\T=FJ
15t0 5?=1
132: 50:UN 1560
1530 P-:NT=F4
15:0 F=S;
155 52:1F !6!9
13&:FR:NT=?5
13?. 5%=:
138: ESE:4:560
1509 PJ.,17==6
140% Fo=1
```



```
142! 5...i"s=%
1430 F?:!
144!1 65E!5 1750
145N STCPE:%
146(105!: "E:TAE" AE #1 LEN=SI2E(P31)
1470 RRITE RECOFD E: F! P3!
1480 F!=F!+!
1490 CLOSE
150: RETUEN
IEIN OFEN "C:BBR" AS 11 LEN=SITE:F::%
1520 WFITE SECDED &! F2 P3I
1536 F2=F2+1
1540 CLOSE
155: FETURH
1560 DFEN "C:CCC" AS 11 LEN=SIIEIF3!;
150 WRITE RECORD &1 FS P31
1580 F3=F3+1
1590 CLOSE
1600 RETUSM
1610 OOEN 'C:DDD' AS E1 LEN=SI2E(P31)
1t20 WRITE RECDRD II F4 FSI
1630 F4=F4+1
1640 CLOSE
1650 RETURN
166! OPEN 'C:EEE' AS #: LEN=SIIE(PTH)
1670 WRITE RECORD $! F5 FJ!
1690 F5=F5+1
1690 CLOSE
1700 RETURM
1710 OFEN 'C:FFF" AS 11 LEN=SIZE(F3I)
1720 WRITE RECORD $! FG P31
```

```
1730 Fs=Fat!
:740 CIOEE
17E: PETVFN
```



```
1770 WEITE EECORI *! FO EOI
1780 F:=F?+1
:790 CLISE
180% 㐌T!R:
```


## EmRTMS

```
SOLENE
PEECIETON= ?
AL?DEF=莫
OFTION ER5E=0
EF=ごに
ERFDFMDEE=LCCAL
RESMPELSNE
FORYCLE=BE
5COF5=?!
Prgas=0
STF:TNSE: MMM
    INEEE5: Ji,NT
    F%:-: LL_,MFg,HE,HET,TO_,SuT,TS
    REAL: T:, - S, i\hbar, TNE,EFF,OF, SS,TAP:
```



```
    REAL: HF,LUT.EEDN,MEF
EMO STFICTUFE
MMMM: FSI
INTEGEF:: K,F,I,PPA,J,PPF,TJ,K
STRINE: MMS:16],TTTS[16]
REAL: Af,BE,CC,DD,EE,FF,SE
REAL: HH,II,JA,KK,LL,MK,NH,OC
REAL: PF,GG,MMF,DA
INTEEEF: TT,F:F2,F3,F4
INTEGER: F5,FE,F7,FE
STRING: YY[16:,Cce[16]
MAIN Progran;
10 C!5
20 FRINT:PRINT
```



```
40 PFINT * PFGERAK TO EDIT THE MRCHINE PECOROS **
50 PKINT " ! *
6O PRINT " 1. ADD AN ADDITIONAL MACHINE I'
70 PRINT : 2. ELIMIMATE A MACHINE %"
80 PRINT : % RETURN TO MAIN MENU t'
90 PRINT * t
```



```
110 LOCATE 12,20:INPIT ESELECTION F,M
120 CLS
130 IF M=3 CHAIN "MENU" 'CHAIN TO MAIN MENU
140 DFEN 'C:AAA" AS \! LEN=S!2E(FSI)
150 READ RECORD \1 & P31
150 FI=P3!.NT
170 CLOSE !
1BO DPEN 'C:EBE' AS I! LEN=SIIE(P31)
190 READ RECORD :1 1 P31
```

```
200 F2=FS1.NT
210 CLOSE
220 DFER 'C:CCC" AS 11 LEN=EITESF`:
ITO FEAD RECOFI $1 1 FJ!
240 FS=FJI.NT
250 CLOSE
2G! OFEN 'C:DCN: AE \! LEN=S:ZE!Fこ!!
270 READ RECJPD #! 1 P3!
2BC F4=P31.NT
290 CIDSE
30: DPEN "C:EEE" AS {: LENSSIZEIFS!!
310 READ RECDED E! 1 FJ!
320 F5=F?:.仿
E30 CLDSE
34% CFEN 'C:FFF* AE #1 LEN=EIZE(DS!!
350 REG[ RENCPJ I1:FS!
360 FO=FS:.NT
376 CLOSE
38% OFEN 'C:665' AE II LEN=S!IE!FJI:
39(1 REAE RECOFL $! 1 [3]
400 FT=FJI.NT
410 CLOSE
450 IF }k=1\mathrm{ 605UE 450
430 IF M=2 50S:IE 1920
440 EETE 10
450 C.5
4E': FI=F!+1:F2=:2+1:F3=FS+!:F4=F4+1
470 F5=F5+1:FO=FE+1:F7=F7+1
4E! PFINT "NUMEEF DF MACHINES TC EE ADDET TO THE SHOFW
450 LOCATE 1,32:INPUT * ";M
500 FOF J=1 TO M
E1C CLS
520 PEINT "MACHINE NUMDEF="
530 PRINT "HORSE POWER DF MACHINE"
540 LOCATE 1,17:INCUT ' ',MM$
550 LOCATTE 2,24:INPUT * ",AA
560 FRINT "NUMEEE OF PROCEESES WHICH CAN EE PERFDFMED ON MACHINE:MME
570 PRINT "!5"
580 LOCATE 4,4:INPUT : "PPA
5 9 0 ~ P R I N T : P R I N T ~
600 INPUT 'IS AROVE CORREET (Y/N)',YY
O10 IF YY="N" THEN GOTO 510
6 2 0 ~ C L S ~
630 FOR J=1 TO PPA
640 CLS
650 PRINT "PROCESS NUMEER"
660 FRINT "CLAMFING DEVICE"
670 PRINT "SET UF COST ($)"
680 PRINT 'DFERATTOF COST ($/HB)'
6OO PFINT "TIME TO LOAD AND UNLDAD PAET (YIN)"
700 PRINT "EXPECTED BREAK DDHN MLLTIPLE"
```

| 710 | PEINT EEFFIENEY GT THE SEINDLE (\%)" |
| :---: | :---: |
| 720 | PFIMH "MA\% LENGTH OF FART (2, ${ }^{\text {( }}$ " |
| 730 | PFilft "Mali diAmetef of faft (nc) If apflicatie else 0)" |
| 740 | PFIN: "KAX WIDTH OF PART (ma) IF APPLICABLE ELSE (1)" |
| 750 | PRINT "MAX HEIGH: DF PAFt (AE: IF APFİICAELE ELSE O)" |
| 760 | LDCATE 1,16: INFUT * PFF\% |
| 7? | LOCATE 2,17:JHPLT * CLE |
| 780 | LUCATE 3.17:INFUJT " EP |
| 790 | LOCFTE 4, 2E:INFUT " ",CC |
| 800 | LOCATE 5,3L: INFUT " . DI |
| E10 | LOEATE E.30:JNPUT *, DA |
| 820 |  |
| E? | LDEATE E,25:INPUT * .FF |
| 840 | LOCATE D,45: INFLLT *,EE |
| 850 | LCCATE 10,4E: INPUT * HH |
| 865 |  |
| 870 | PRIN: "NULEES DF TDOE WHICH AFE AVGIJAB'E TO FEFFOPM PFESEES*: |
| RE 0 | PFINT "!E" |
| 950 | LCCATE EF,4:INPLT * *, TJ |
| 900 | INFUT 'IE ABDUE COERECT (Y/N)', YY |
| 910 | IF $Y Y=$ 'N' THEl' 60TO 640 |
| 920 | FOF $\mathrm{V}=1$ TC TJ |
| 930 | CLS |
| 940 | PRINT "TOD NUMEEF" |
| 950 | PRINT *TOQ COST DF MACHIHINE (\$/HF)" |
| 96: | PRINT "TDOL MATERIA! ${ }^{\text {P }}$ |
| 970 | PFINT "NJMEEP OF TEETH Dit TNOG" |
| 980 | PEINT "TODL DIAMETEF (am) If APFLICAELE ELSE 0" |
| 990 | PRINT -TOCL KIDTH (ILE) IF APPLICAPIE ELSE (1) |
| 1000 | PF:INT "TDOL NOSE FADIUS (as) IF APPLICABLE ESE O" |
| 1010 | PRINT "KAxImJM METAL FE\%OVAL RATE (Elier/Ein.)" |
| . 1020 |  |
| 1030 | PFiSNT "TOLERENCE ATTAINABLE (AE)" |
| 1040 | PRINT "SUFFEACE FINISH ATTAINABLE (RMS)* |
| 1050 | LOCATE 1.13: INPUT' ',TTTS |
| 1080 | LOCATE 2,31: INFUT * , JA |
| 1070 | LOCATE 3,15:INPUT ', KK |
| 1080 | LOCATE 4,25: INFIT * ",TT |
| 1190 | LDCATE 5,4: INPUT * ',LL |
| 1110 | LOCATE 6,38: INPUT * ', M |
| 1110 | LOCATE 7,44:IRPUT * ${ }^{\text {, NN }}$ |
| 1120 | LOCATE 8,41:INPUT ' ', MM |
| 1130 | LOCATE 9,27:INFU' " ${ }^{\text {P }}$, 00 |
| 1140 | LOCATE 10,27: INPLT " ",PF |
| 1150 | LOCATE !1,33:INPUT ' ',8日 |
| 1160 | PRINT: PFINT |
| $1: 70$ | INPUT 'IS GEDVE CORFECT (Y/N)', YY |
| 1180 |  |
| 1190 |  |
| 1200 |  |
| 1210 |  |


こご $\quad$ FI．COME＝CES
1240 IF FFF $=:$ DF PFF $=2$ THET，EDSUE 1576


：270 IF FFF＝E OF PFF＝G DF PFF＝10 THEN EOSUE 1720
12g：IE OPF＝12 OE FFF＝！ O THEN EDEJE 17O
：290 IF PPF＝15 OF $F P F=16$ OF：$F F F=17$ OF：$P P F=16$ OF $P P F=19$ OF $P P F=20$ OF：FFF $=2:$ THE：EOSUJ 1620
1300 IF $F F F=8$ OF $F F F=1$ ！OF $F F F=$ ！ 2 THEN GOSUE $1 E \cdot 0$
1 EVO Cis
1320 REXTK
DES NEXT J
1340 NEXT I
：TEN FS：NT＝F！
15t F：$=:$
157：6CEUE ： 570
1389 F1．Ni＝F2
130 ${ }^{5} \mathrm{C}=1$
149：E35．JV 1500

$140.5=1$
1430 ESive 1670
1440 『2．1．1＂ニF4
1450 F5＝i
140：300：：7n0
1470 F？ $2 ., 1:==5$
1480 5E＝．
149人 60 SUE：：770
150：PT： $1^{\top}==$
1510 $\mathrm{F}=1$
152：ERED ：Ero
1530 Fご， $\mathrm{K}^{*}=$ F＇$^{\circ}$
154C F？＝1
1550 EOETH ：E？
15SU RETE：

1580 HEITE RECQEV E：F：ES
$1590 \mathrm{~F}=51+1$
1600 CLOSE
1610 RETURM
1620 OFEN ${ }^{\text {C：}}$ EEE AS 11 LEN＝SITE：FE！
1630 WFITE RECOFD \＃！F2 F3I
$1640 \mathrm{~F} 2=F 2+1$
1650 CLOSE
1660 RETURN
1670 OFER＂C：CCC＂AS 11 LEN＝SIZE（PJI）
1680 HRITE RECORD 11 FJ F3！
$1690 \mathrm{FT}=\mathrm{FJ}+1$
1700 CLOSE
17：0 RETURN
1720 OPEN＂C：DDD＂AS \＃1 LEN＝SITE（PJ1）

```
    17SC WRITE REEDFD E: F4 FSI
    1740 F4=F4-:
    175i: C!DSE
    17E: RET:F!
    1770 OFER"S:EEE" AE &! LEN=5IZETF:S
    1780 HF:TE RECDPE #1 5E Fこ!
    1790 F5=F5+!
    1800 CLOSE
    lalO RETUEN
    1R20 GFEN 'C:FFF' AE & LEN=EIZESO:)
    1630 WEITE RECJRD I: F6 FOL
    1640 Fo=Fí+1
    1850 C!OSE
    1860 RETUFN
```



```
    1B80 WRITE RECORT $: F7 FJI
    1870 F7=F7+:
    1900 CLOSE
    191C FETURN
    1030 CLS
    1CS: INFUT" MAEHINETD RE ELIMINATED *,MMS
    1940 !=2
    1OE\\ OPELI 'C:AAA" AE & LEN=SITE(ES:)
:Cbう FOF, I=2 TF F!
1070 FEAD RECORN \1 I FS:
1980 IF ESI,THS=MRS THEH GOTD 2010
1500 EF:TE NECOF: # M FOL
200% H= K+1
201S NEXT!
```




```
#S&C Sige5
COE:LEFF!=N
Oger Y=2
20?! [FEN "E:BRE" AS {: LEN=E12E(F31)
2COC FCF I=2 TE F2
20CO REATI RECOFD \1 : FJ!
2!00 IF FSI.TN&=MME THEN 60TO 2130
2110 KRITE RECORD #1 N F3I
2120 K= K+1
2130 HEXT !
2140 EJI.NT=Y.
2150 WRTE FECORD \1 \ F3I
2:6C CLOSE
2170 LET F2=M
2:EO M=2
2!90 IPEN "C:CLC" A5 |1 LEN=SITE(FJ!)
2200 FOF: I=2 10 FJ
2:10 READ RECOFD II I PS!
2250 :F F31.TNS=MM# THEN 60TO 2250
2230 HRITE RECORJ $1 H FS!
```

```
=4% n= n+!
nne( NE% :
Z-g( ご:.NT=M
2FC GFITE EECOEG #: 1 FE!
こご: CiCSE
```



```
20% r=:
```



```
ここO FIF 1=? T: 54
ZごG AEAN RECORI #! : :こ:
```





```
2-%:%!
```




```
-余 - - = =
```



```
#%*
```



```
2ใ&: FOF: l=% TO F5
2AEO REAE RESORL E1 1 ESI
Z%6% IF FS:.TKS=MHF THEN EOTO 2490
2470 NFITE RECORD &: M FSI
C4EO K=M+1
C490 NEXT 1
250A 5:!.NT=H
2E:S WRTTE RECDED 11 ! PJ!
252! C.0SE
2E3: LEF F5=4
ESAM M=2
```



```
256% FOF I=2 TE Fb
2E7: KEAD FECDRD #! |FI
25BC IF F3:.TN5=MM THEN EOTD 2610
2590 HEITE FECORD &1 H FJI
260% K=M+1
2610 REXT I
2E20 Fこ!.NT=K
203O WEITE RECOFD $1 1 POJ
2E40 CLDSE
2650 LET Fb=M
2560 M=2
2CTO OPEN "C:EGE" AS |! LEN=SI2E(PS!)
2680 FOF I=2 TO F7
2E70 READ FECOKD &1 \PSI
27CO IF FO1.TNS=MMS THEN: GOTO 2730
2710 HR:TE FECORD &! Y. PJI
2720 K=M+1
2750 HEXT I
2740 FE:.NT=M
```



```
ZOOCSOSE
27% LET F7=K
OE: geturi
```

E:n:?:

```
SQUPCE 
AUTDDEF=DPF
OPTION BASE=O
ERL=0F:
EPF:ORMODE=LOCAL
RESURE=LINE
FORMODE=BE
SCDPE=ON
FPOCS=?
REM'L: X,II
STRINE: NAMES[?],DDDOS[?]
REAL: PNU
STFINE: PNS[?],MATS[?]
STRUCTURE: EXTF
    STFINE: EFS[2],THS[2]
    REAL: L,TL,D,TD
    REAL: SF,SD,TSD,FD,TFD
END STRUCTURE
STRINE: PRS[2]
REAL: LP,DF
STRINE: AS[2],BS[2],CS[21,DS[2],ES[2]
INTEGER: NEF,I,Nif
INTEGER: Nifr,NifO, DHR, DHO, EDH, INK,EXK,
EXTF: PlO
STFUCTURE: INTF
    REAL: LG,TLA
    REAL: DA,TDA, SFA, SDA,TSDA,FDA,TFDA
    STFING: IFÁs[2],THAS[2]
END STRUCTURE
INTF: PlI
STRUCTURE: INTFR
    REAL: LE,TLE,DB,TDB,SFB,5DB,TSDB,FDB
    REAL: TFDE
    STFINE: IFRBS[2],THBS[2]
ENO STRUCTURE
INTFR: P12
STRUCTURE: INTFO
    REAL: LC,TLC,DC,TDC,SFC,SDC,TSDC,FDC
    REAL: TFDC
    STRINE: IFDE$[2],THC$[2]
END STRUCTURE
INTFD: FI3
STRUCTURE: DRILLR
    REAL: DPD, TDPD,DD,TDD,DISD
    GTRING: THDS[2]
END STRUCTURE
```

DEILLE: F14
STFIICTURE: DRILLD
REAL: DPE,TDPE,DE,TDE,DISE
STRINE: THeS[2]
ENI STRUCTURE

DRILLO: FIS
STFUCTURE: EXDRILL
FEAL: EDRF, DPF,TDPF,DF,TDF
STRING: THF\$[2]
enc structure

EXDRILL: P16
STRUCTURE: INTKEY
REAL: STDG, FNDE, IKDE, TIHDE, IDPG, TIDPE, IK.SFG
END STRUCTURE

INTYEY: PI7
STRUCTURE: EXTKEY
REAL: STDH, FNDH, EKDH, TENDH, EDPH, TEDPH, EKSFH
END STRUCTURE

EXTKEY: PIE
INTEGEF: J
REAL: AA, AAF, BE, $B B B, C C, E E, E E E, F F$
REAL: FFF, $66,666, H H$
STFINE: DDs[2],F\$[2],6s[2],Hs[2],15[2]
STRINE: J\$[2],K\$[2]
STRUCTURE: DRILLX
REAL: DPN, TDPN, DN, TON, XN, YK, SFN
REAL: $2 N$
STRINE: THNS[2]
ENJ STRUCTURE

DPIILLX: P23
INTEEER: NE, NEFR, NSS, DHX, DHNX, DHY, DHNY, DH?
INTEGER: DHNZ
STRUCTURE: DRILLNX
REAL: DPO, TDPO, DOO, TDO, SFO, XO, YO, 20
STRINE: THOS[2]
END STRUCTURE

DRILLNX: P24
STRUCTURE: ORILLY
REAL: DPP, TDPP, DDF, TDDP, SFP, XF,YF, IP
STRIN5: THP\$[2]
ENS STRUCTURE

DRILLY: F2S
STRUCTURE: DRILLNY

REAL: DPG,TDPG,DG,TDQ,5FQ,XB,YD,20
STEINE: THES[2]
END STRUCTLIRE

DRILINY: F2G
STRUCTURE: DRILLZ
FEAL: DPF, TDPF, DR, TDR, SFF, XR, YR, 2R
STRINE: THRS[2]
END STRUCTURE
DRILLI: F27
STRUCTURE: DRILLNZ
REAL: DPS, TDPS, DDS, TDDS, SFS, XS, YS, 25
STRINE: THS\$[2]
END STRUCTURE

DF:'LN2: F28
STRUCTURE: INTFEA
REAL: LH, TLH, DH, TDH, SFH, SDH, TSDM,FDH
REAL: TFDH,XH,YH,2H,NS6
STRING: INFMS[2],THMS[2],NAMs[2],NBM\$[2]
STRINE: NCHS[2]
END STRUCTURE

INTFEA: P22
STKUCTURE: EXTS
REAL: LK., TLK, BK, TBK., HK, THK, AK, UBK
REAL: TUBK, LEKK, TLSK, SFK, XAK, XBK., XCK, YAK.
REAL: YBK, YCK, ZAK., ZBK, ZCK
STRING: DIRK,\$[21,EXSKS[16]
END STRUCTURE
EXTS: P20
STRUCTURE: EXTFE
REAL: $L L, T L L, B L, T B L, H L, T H L, A L, U B L$
REAL: TUBL, LSL , TLSL, SFL, XAL, XBL, XCL, YAL
REAL: YBL, YCL, 2AL, $2 B L, 2 C L$
STRINE: DIRL\$[2],EXFL\$[16],RSLL\$[2],RAE\$[2]
END STRUCTURE

EXTFE: P21
STRING: SHAPS[10],L\$[2], $\mathrm{HS}[2], N S[2], 0 \$[2], P \$[2], 0 \$[2]$
REAL: XXA, XXB
REAL: XXC, YYA, YYB, YYC, ZZA, ZIB, IZC
STRINE: RS[2],5\$[2]
STRINE: TS[2],US[2]
REAL: CCC
STRUCTURE: Pris
REAL: LT, TLT, BT, TBT, HT, THT, AT
REAL: UBT, TUBT, LSTT, TLST, XAT, XBT, XCT, YAT
REAL: YBT, YCT, ZAT, ZBT, ZCT

STRINE: DIRTS[2],PRISTS[16] END STRUCTURE

Pris: P3o
STRUCTURE: AltI
IHTEEER: AL,A2, A $3, A 4$
END STRUCTURE
Altl: P40
STRUCTUFE: Alt2
INTEGER: B1,B2,B3,B4
END STRUCTURE
Alt2: P41
structure: Alt3
INTEGER: C1,C2,C3,C4
END STRU:TURE
Alt3: P42
STRUCTURE: Alt4
INTEEER: D1,D2,D3,D4
END STRUCTURE
Alt4: P43
STRUCTURE: Alts
INTEEER: E1,E2,E3,E4
END STRUCTURE
Alt5: P44
STRUCTURE: Alt6
INTEEER: F1,F2,F3,F4
END STRUCTURE
Alto: P45
STRUCTURE: Alt7
INTE6ER: 61,62,63,64
END STRUCTURE
Alt7: P46
STRUCTURE: Alt 8
INTEEER: $\mathrm{HI}, \mathrm{H} 2, \mathrm{H3}, \mathrm{H} 4$
END STRUCTURE
Alt8: P47
STRUCTURE: Alt9
INTEEER: 11,I2,I3,14
END STRUCTURE

## Alt9: P48

STRUCTURE: Alt10
INTEEER: J1, $32,33,34$

EN: STRUCTURE
Altlo: P50
STRUCTURE: Alt11
INTEEER: Hh1,Hh2,Hh3,Hh4
END STRUCTURE
AltII: PEs
STRUCTURE: Alt12
INTEEER: LI,L2,L3,L4,LE
END STRUCTURE
Altiz: PE?
STRUCTUPE: Alt13
INTESER: M1, $\mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{MA}_{4}$
END STRUCTURE
Alt13: P53
STRUCTURE: Alt14
INTEGER: N1,N2,NJ,N4
END structure
Alt14: P54
STRUCTURE: Alt15
IWTEGEK: 01,02,03,04
END STRUCTURE
Alt15: P55
STRUCTURE: Alt16
INTEEER: P1, P2, P3, P4
END STRUCTURE
Altit: P56
STRUCTURE: AltI7
INTEGER: $01,02,83,04$
END STRUCTURE
Alt17: P57
STRUCTURE: AItIB
INTEEEK: F1,R2,R3,R4
END STRUCTURE
Alt18: P5B
STRUCTURE: Mama
INTEEER: Jj,NT
REAL: Lll, Ddd, Wd, Hgt, Tol,Suf,TC
REAL: TM, TTD, TH, TNR, EFF, OC, SC, TAA
STRINE: Conb[16],Sia[16],Rule[16], KNs[16], TNs[16]
REAL: HP, LUT, EEDM, HRR
END STRUCTURE

## Manf: PIL

STRINE: ARS[16]
INTEGER: AA1,BE1,CC1, DD1,EE1,FF1,661,HI!
INTEEEF: 11!, JI!,HH11,LL!,MM1,NN1,001,PP1
INTEGEF: QQI, RRI, MFA, MFB, MFC, MFD, MFE, MFF
INTEGEK: MFG,Lots
STRINE: ChDices[16]

PFIDCEDURE: Mach
END FRDCEDURE

PROEEDURE: Both
END PROCEDURE

```
PF.DEEDURE: Mach
    EXTERNAL: P30,P2O,P21,P22,P23,P24,P25,P26
    EXTERNAL: P27,P28,F10,F11,L1,DF,P12,P13
    EXTERKAL: P14,F15,F1E,P17,P18,P40,P41,P42
    EXTERNAL: P4J,P44,P45,F46,P47,P48,P50,P51
    EXTERNAL: P52,P5J,P54,P55,P5L,P57,P58
    INTEGER: A
    EXTERNRL: P3I
    INTEGER: I,I
    INTEGER: I,K,L
    EXTERNAL: PR$,AS,NEF,BS,CS,NIF
    EXTERNAL: DS,NIFR,E$,NIFD,FS,6$,DHR,HS
    EXTERNAL: DHO,IS,EDH,J$,IN!,K{,EXK,L$
    EXTERNAL: NS,MS,NEFR,N&,NSS,OS,PS,DHX
    EXTERNAL: BS,DHNX,RS,DHY,SS,DHNY,TS,DHZ
    EXTEFNAL: US,DHNI,LP
    INTEEER: 2I,KK
    RERL: F,DIAM, DIA
    EXTERNAL: AA!,BBI,CCI
    EXTEENAL: DDI,EE1,FFI,G61,HI1,III,JJ!,HHI!
    EXTERNAL: LLI,MR1,NN1,O01,PP1,Q01,RR1,MFA
    EXTERNAL: MFB,MFC,MFD,MFE,MFF,MFG
        1060TO 40
        20 IF PRS="N" GOTD 5960
        30 IF A$='N' GOTO 540
        40 OPEN "c:AAA" AS $1 LEN=SIIE(P3I)
        50 A=1
        60 READ RECORD $1 A P3!
        70 LET A=P3I.NT-1
        80 MFA=A
        90 OPEN "D:EXTF,DAT" AS $2 LEN=SIIE(PIO)
        100 OPEN "D:ALTI" AS IS LEN=SIZE(P40)
        110 2=1
        120 FOF I=2 TO A
        130 READ RECDRD $1 J PJ!
        140 IF P31.JJ=1 AND PJI.LLL>LP AND PJI.DDDSDP THEN GOTO 160
```

```
150 GOTO 490'NEXT I
160 FOR J=1 TO MEF
170 READ RECORD 12 J PIO
180 K=0:L=0
190 IF P10.EF$='T' 60TO 340
200 IF P3I.TOL\P1O.TD AND P31.SUF\P10.GF THEN 60TD 300
210 FOR K=2 TO A
220 READ RECDRD |! K. P3!
230 IF P31.JJ=2 AND P31.LLLMLP AND P31.DDD\DF THEN 60TO 250
240 60T0 2BO 'NEXT K
250 P40.A1=1:P40.A2=U:P40.A3=R:P40.A4=L
260 MEITE RECDRD {S 2 P4O
270 l=?+1
280 NEXT K
290 60TO 470 'NEXT J
300 P40.AI=1:P40.A2=J:P40.A3=K:P40.A4=L
310 MPITE RECORD \3 I P40
320 l=2+1
330 60TO 470 'NEXT J
340 IF P31.TOL<P10.TSD AND P31.TOL\P10.TFD AND P31.SUF\PIO.SF THEN GOTO 440
350 FOR K=2 TO A
360 READ RECORD #1 K. P31
370 IF P31.JJ=2 AND P31.LLL)LF AND P31.DDDDDP THEN 60TO 390
3BO 60TD 420 'MEXT K.
390 P40.A1=I:P40.A2=J:P40.A3=R:P40.A4=L
400 WRITE RECORD 13 2 P40
410 l=z+1
4 2 0 ~ N E X T ~ K ~
430 60TO 470'NEXT J
440 P40.A1=I:P40.A2=J:P40.A3=R:P40.A4=L
450 WRITE RECORD 3 2 P40
460 l= Z+1
470 READ RECDRD | | P3I
4 8 0 ~ N E X T ~ J ~
4 9 0 ~ N E X T ~ I ~ I ~
500 AAI=Z
510 P40.A1=0
520 WRITE RECORD I3 l P4O
530 CLDSE:50TO 560
540 IF Bs='N' 60T0 2620
550 IF CS='N' 60TO 1220
560 DPEN 'C: BBB' AS $1 LEN=SIZE(P3!)
570 A=1
5BO READ RECORD II A P3!
590 LET A=P3I.NT
6 0 0 ~ A F B = A
610 DPEN 'D:INTF.DAT' AS $2 LEN=SIZE(PII)
620 DPEK 'D:ALT2' AS $3 LEN=SIIE(P41)
630 l=1
640 DIAM=1000000
60 FOR J=1 TO NIF
```

```
    660 READ RECORD 12 J PII
    6 7 0 ~ I F ~ P 1 1 . I F A S = ~ ' T " ~ 6 0 T 0 ~ 7 0 0 ~
    680 IF DIAMPPII.DA THEN DIAM=PIL.DA
    6 9 0 ~ 6 0 T 0 ~ 7 2 0 ~
    700 IF DIAM>P11.SDA THEN DIAM=P11.5DA
    710 IF DIAM>P11.FDG THEN DIAM=P11,FDA
    720 NEXT J
    730 FOF I=? TO A
    740 READ RECORD 11 I P3!
    750 IF (F31.JJ=亏 AND PJ1.LLL)LF AND F31.DDD>DF AND F31.TTD<DIAK AND P31.TTD>(DIAK-3I) THEN
60T0}77
    760 60T0 1160 'NEXT I
    770 DIA=P31.TTD
    7B0 FOFK=2 TO A
    790 READ RECORD I1 K. P3!
    800 [F P31.JJ=5 AND P31.LLL>LP AND P31.DDD\DP AND F31.TTD<DIA THEN GOTO }82
    810 EDTO 1150 'NEXT K.
    820 FOR J=1 TO NIF
        L=0
        READ RECORD 12 J P1I
        IF P11,IFAS='T' THEN GOTO 1000
        IF P31.TDL{F11.TDA AND F31.SUF<P11,SFA THEN 60TD 960
        FOR L=2 TO A
            READ RECDKD II L P31
            IF P31.JJ=6 AND P31.LLL\LF AND P31.DDD>DP AND F3I.TTD\DIAM THEN 60TO 910
            60TO 940'NEXT L
            P41, B1=I:P41, B2=J:P41.B3=K:P41, B4=L
            MRITE RECORD {3 l P4!
            l=l+1
        NEXT L
        60TD 1130 'MEXT J
        P41,B1=1:P41.B2=1:P41.B3=K:P41,B4=L
        MRITE RECORI {3 1 P4!
        l=2+1
        60TD 1130 'MEXT J
        IF P31.TOL<P11.TSDA AND P31.TOL\PII.TFDA AND PJI.SUFSPII.SFA THEN 6OTO 1100
        FOR L=2 TO A
            READ RECORD {! L P3!
            IF P31.JJ=6 AND P31.LLL)LF AND P31.DDD\DP AND P31.TTD<DIAM THEN 60TO 1050
            G0TO 1080 'WEXT L
            P41, B1=I:P41,B2=J:P41.B3=R:P41,B4=L
            WRITE RECORD {3 ? P4I
            z=2+1
        NEXT L
        60TO 1130 'WEXT J
        P41,B1=I:P41,82=J:P41,B3=K;P41,84=L
        MRITE RECDRD I3 2 P4:
        l=2+1
        READ RECORD :1 K P31
        NEXT J
        NEXT K
```

```
1160 NEXT I
117: BB!=I-1
118! P41.81=0
119% WRITE RECORD 13 I P41
120C CLOSE:60TO 10900
1210 60TD 2020'SKIP TO DRILL HOLE SECTION
1220 IF DS='N" G0TO 1910
12JO DFEN "C:BEP" AE If LEN=SIZE(PSI)
1240 A=1
1250 READ RECDRD $1 A P31
1260 IF P31.TNs="LAST" THEN GOTO 1290
1270 A=A+1
1280 60TO 1250
1290 A=A-1
1300 MFE=A
131C DPEN "INTFR" AS {2 LEN =SI2E(P12)
1320 DPEN "ALTJ" AS $J LEN=SIZE(P42)
1330 I=!
1340 DIAM=1000000
1350 FOR \=1 TO NIFR
1360 READ FECORD $2 J P12
1370 lF P12.IFRES='T" THEN 60TD 1400
1380 IF DIAM`P12.DB THEN DIAM=P12.DB
1390 EOTO 1420
1400 IF DIAKPP12.SDE THEN DIAM=P12.SDB
1410 IF DIAM>P12.FDB THEN DIAM=P12.FDB
1420 NEXT J
1430 FDF I=1 TO A
1440 READ RECORD $1 I PJI
1450 IF PJ1.JJ=J AND F31.LLL\LF AND P31.DDD\DF AND P3I.TTD<DIAM THEN 60TD 1470
1460 60TO 1860 'NEXT I
1470 DIA=P31.TTD
1480 60TO 1860 'NEXT I
1490 FOF: K=1 YD A
1500 READ RECORD II Y. P31
1510 IF P31.JI=5 AND P31.LLL>LP AND P31.DDD>DF AND FJ1.TTDSDIA THEN 60TD I5SO
1520 EDTD 1850'NEXT K
1530 FOR J=1 TO NIFR
1540 L=0
1550 READ RECDRD 12 J Pl2
1560 IF P12.JFRBs="T" THEN 60TO }171
1570 IF P31.TOL<P12.TDB AND P31.SUF<P12.SFB THEN 60TO 1670
1580 FOR L=1 TO A
1590 READ RECOKD |1 L P31
1600 IF P31.JJ=6 AND P31.LLL>LP AND P31.DDD>DF AND P31.TTD<DIAK THEN 60TO 1620
1610 60TO 1650'NEXT L
1620 P42.C1=1:P42.C2=3:P42.C3=%:P42.C4=L
1630 HRITE RECORD IT I P42
1640 T=2+1
1650 NEXT L
1660 GOTO 1840 'NEXT J
```

1670 P42.C1=1:P42.C2=J:P42.CJ=K:P42.C4=L
1680 WRITE RECORD is 2 P42
$1690 \quad l=2+1$
1700 GOTO 1840 'MEXT J
1710 IF P31.TOLSP12.TSDB AND P31.TOL<P12. TFDE AND F31.SUFLP12.SFB THEN $60 T D 1810$
1720 FOF: $L=1$ TO A
1730 READ RECORD 11 L F31
$1740 \quad 1 F$ P31.JJ=6 AND P3!.LLL $2 L F$ AND F31.DDDYDF AND P31.TTDKDIAK THEN $60 T O 1760$
1750 6070 1790 'NEXT L
$1760 \quad$ P42. $\mathrm{C} 1=1: P 42 . C 2=\mathrm{J}: \mathrm{P} 42 . \mathrm{C} 3=\mathrm{K}:$ P42. $\mathrm{C4}=\mathrm{L}$
1770 MRITE RECORD 132 P42
$1780 \quad 2=2+1$
1790 NEXT L
1800 60TO 1840 'NEXT J
1810 P42.C1=1:P42.C2=J:P42.C3=K:P42.C4=L
1820 WRITE RECDRD する 1 P42
1830 $\quad=?+1$
1840 NEXT J
1850 NEXT :
1850 NEXT I
1870 CC1=2
1880 P42.CI $=0$
1890 URITE RECORD 132 P42
1900 CLOSE
1910 IF Es='N' $60 T 02620$
1920 I=1
1930 DPEN "C:BBE' AS II LEN=SIZE(P31)
1940 IF MFB)O THEN $60 T 02020$
$1950 \mathrm{~A}=1$
1960 READ RECDRD 11 A P31
1970 IF P31.TNS="LAST' THEN $60 T 02000$
$1980 A=A+1$
199060701960
$2000 \quad A=A-1$
$20!0 \mathrm{MFB}=\mathrm{A}$
$2020 \mathrm{~A}=\mathrm{HFE}$
2030 DPEN 'INTFO' AS 12 LEN=SIIE(P13)
2040 DPEN "ALTA" AS IJ LEN=SIIE (P43)
2050 DIA $=1000000$
2060 FOR J=1 TO NIFO
2070 READ RECORD 12 J PIJ
2080 IF P13.IFOCS='T" THEN GOTO 2110
2090 IF DIAMYP13.DC THEN DIAK=PIJ.DC
2100 60TO 2130
2110 IF DIAMPP13.5DC THEN DIAH=P13.SDC
2120 IF DIAMPPIJ.FDC THEN DIAK=PIJ.FDC
2130 MEXT J
2140 FOR I=1 TO A
2150 READ RECDRD 11 I P31
2160 IF P31.JJ=3 AND P31.LLL>LP AND P31. DDDDDP AND P31.TTDSDIAM THEN $60 T O 2180$ $2170 \quad 60 T 02570$ 'NEXI I

```
21B0 DIA=P31.TTD
2190 60TO 257% 'NEXT I
2200 FOF K=1 TD A
2210 READ RECORD &! K: PJ1
2220 IF P31.JJ=5 AND P31.LLL\LP AND F31.DDD\DF AND F31.TTDCDIA THEN GDTO 2240
2n30 60TO 2560 NEXT I:
2240 FOR J=1 TO NIFD
2250 L=0
2260 READ RECORD 12 J P13
2270 IF P1J.IFDC$='T' 6DTO 2420
22B0 JF P31.TDL<F1J.TDC AND P31.SUF<PIJ.SFC THEN 60TO 2380
2290 FOF. L=1 TO A
2300 READ RECORD I1 L PJI
2310 IF P31.JJ=6 AND F31.LLL\LF AND P31.DDD>DF AND P31.TTD<DIAM THEN 60TD 2330
2320 60TO 2360 'NEXT L
2330 P43.D:=1:P43.D2=J:P43.D3=K:P43.D4=L
2340 WF!TE RECDRD IS 2 P43
2J50 l=?+!
2360 NEXT L
2370 60TD 2550 'NEXT J
2380 P43.DI=1:P43,02=J:P43.D3=K:P43.D4=L
2390 WRITE RECDRD {3 I P43
2400 l= l+1
2410 EDTD 2550 'NEXT J
2420 IF F31.TOL<P13.TSDC AND P31.TOL<P13.TFDC AND P31.SUF<P13.5FC THEN 6OTO 2520
2430 FOR L=1 TO A
2440 READ RECORD I1 L P31
2450 IF P31.JJ=G AND PJ1.LLL)LF AND P31.DDDJOP AND P31.TTD<DIAM THEN 6OTO 2470
2460 GOTO 2500 'NEXT L
2470 P4J.D1=[:P43.D2=J:P43.D3=K:P43.D4=L
2480 HRITE PECORD $? I P43
2490 l= l+1
2500 NEXT L
2510 60TD 2550 'NEXT J
2520 P43.D1=1:P4?.D2=J:P43.D3=K.:P43.D4=L.
2530 WRITE RECOK:D &3 l P43
2540 l= 2+1
2550 NEXT J
2560 NEXT K
2570 NEXT I
2580 DDI=0
2590 P43.DI=0
2600 URITE RECORD $3 I P43
2610 CLOSE
2620 IF Fs='N" 6070 4700
2630 IF 65='N" 60TD 3660
2640 OPEN "C:CCC' AS I! LEN=SIIE(F31)
2650 A=1
2660 READ RECORD I! A P3!
2670 IF P31.TN$="LAST' THEN GOTO 2700
2680 A=A+1
```

```
    2690 60TO 2660
```

    \(2700 \mathrm{~A}=\mathrm{A}-1\)
    \(2710 \mathrm{MFC}=\mathrm{A}\)
    \(27200^{\circ}\) EN 'DRILLR' AS 12 LEN=SIZE(FI4)
    2730 OPEN "ALY5" AE \#3 LEN=SIZE(P44)
    2740 \(\mathrm{l}=1\)
    2756 FOR 1=1 TO A
    2760 READ RECDKR 11! P3!
    2770 IF P31.Jiliz OR P31.JJ=e THEN GOTO 2790
    2780 60TC 3610'KEXT 1
    2790 FOF J=1 TO DHR
    2800 READ RECORD 12 J P14
    \(2810 \quad K=L=0\)
    2820 IF (PSI.JJ=3 OF P31.JJ=8) AND F14.DISD=0 ANS P31.TTD=P14.DD THEN GOTO 2860
    2830 IF F31.JJ=3 AND P14.DISD>O THEN \(60 T 03600\) 'NEKT J
    2840 IF P31.JJ=8 ANE P14.DISD>0 AND P31.TTD=P14.DD THEN \(60 T 03240\)
    2950 60TO 3600 'NEXT J
    2860 IF P31.LLL 1 LP AND P31.DDD.DP AND P31.TTD=P14.DD THEN \(60 T 02880\)
    267060703600 'NEXT J
    2880 IF F31.TOLLFI4.TDD THEN 60TO 3090
    2890 FOP. \(k=1\) TO A
    2900 READ RECORD 11 K FII
    2910 L=0
    2920 JF (P31.JJ=4 DF P31.JJ=9) AND P31.LLL \(7 L P\) AND P31.DDD \({ }^{2}\) DP AND P31.TTD=P14.DD THEN 60
    T0 2940
2930 60TO 3070 'NEXT K.
2940 IF PI4.THDS = 'N' THEN $60 T 03040$
$2950 \quad$ FOF $L=1$ TO A
2960 READ RECORD 11 LPJ
2970 IF (PJI.JJ=7 DR P3I.JJ=10) AND P31.LLL)LLP AND P3I.DDD $)$ DP AND P31.TTD=P14.DD THEN
GOTO 2990
2980 60TO 3020 'NEXT L
$2990 \quad$ P44.EI $=1:$ P44,E2=J:F44.E3=K:P44.E4=L
3000 WRITE RECORD 132 P44
$3010 \quad z=2+1$
3020 NEXT L
3030 60T0 3070 'NEKT K
$3040 \quad$ P44.E1=I:P44, E2=J:P44, E3=K:P44.E4=L
3050 MRITE RECORI 132 P44
$3060 \quad z=2+1$
3070 NEXT K.
3080 60TD 3600' REXT J
$3090 \quad K=0$
3100 IF P14.THDS $={ }^{\prime} N^{2}$ THEN $\operatorname{EDTO} 3200$
3110 FOR L=! TO A
3120 READ RECORD $\$ 1$ LP3!
3130 IF (P31.JJ=7 OF P31.JJ=101 AND F31.LLL)LP AND P31.DDDPDF AND P31.TTD=P14.DD THEN 6
OTD 3150
$3140 \quad 60 T 03180$ 'MEXT L
$3150 \quad$ P44.EI $=1:$ P44.E2 $=\mathrm{J}: P 44 . E J=K: P 44 . E 4=\mathrm{L}$
3160 WRITE RECDRD 33 ? P44

```
3170 l=2+1
3180 NEXT L
3190 E0TO 3600 'NEXT J
3200 P44.EI=I:P44.E2=J:P44.E3=K:P44.E4=L
3210 HRITE RECORD IS 2 P44
3220 2=2+1
3230 60TO 3600 'NEXT J
3240 IF P31.LLL\LF AND F31.DDD>DF THEN EOTO 3260
3250 60TO 360@ 'NEXT J
3260 IF P3I.TOL<PIA.TDD AND PI4.THDS='N' THEN 60TO 3470
3270 IF F31.TOL<PI4.TDD THEN GOTO 3510
3280 FOF K=1 T0 A
329(1) L=0
3300 READ RECOKD 11 F.F3!
J310 IF P31.JJ=日 AND P31.LLL\LP AND P3I.DDD\DP AND F31.TTO=P14.DD THEN 6DTO 3330
3320 60T0 3460 'NEXT K.
3330 IF PI4.THDS='N" THEN 6OTO 3430
S340 FOK L=1 TO A
3550 READ RECDRD II L PSI
3360 IF P31.J1=10 AND P31.LLL\LF AND F31.DDD\DP AND F31.TTD=P14.DD THEN EOTD 33BO
3370 G0TO 3410'NEXT L
3380 P44.E!=1:P44,E2=J:P44.EJ=K,P44,E4=L
T390 MRITE RECORD & l P44
3400 l=2+1
3410 NEXT L
3420 60TO 3460'NEXT K
3430 P44.EI=I:P44.E2=J:P44.E3=R:P44.E4=L
3440 WRITE RECDRD \3 2 P44
3450 z=?+1
3460 NEXT K
3470 P44,EI=I:P44.E2=J:P44,E3=K:P44,E4=L
3480 WRITE RECORD IJ I P44
3490 l=l+1
3500 60TO 3600 'NEXT J
3510 K=0
3520 FDR L=1 TD A
3530 READ RECDRD II L P3!
3540 IF P31.JJ=10 AND P31.LLL.SLP AND P31.DDD\DP AND P31.TTD=P14.DD THEN 60TO 3560
3550 60TO 3590 'NEXT L
3560 P44.EI=1:P44.E2=J:P44.EJ=K:P44.E4=L
3570 MRITE RECDRD $3 1 P44
3580 I=2+1
3590 NEXT L
3600 NEXT J
3610 NEXT I
3620 EEI=?
363C P44.E1=0
3640 MRITE RECDRD $3 1 P44
3650 CLDSE
3660 IF H$=*N" THEN 60TO 4700
3670 OPEN 'C:CCC' AS \1 LEN=SIZE (P31)
```

3680 IF MFC>O THEN 60TD 3760
3590 A=1
3700 READ RECDRD 11 A P31
3710 JF PJ1.TNS='LAST' THEN $60 T 03740$
$372(1)=P+1$
3730 60TO 3700
$3740 \mathrm{~A}=\mathrm{A}-1$
$3756 \mathrm{MFC}=\mathrm{A}$
$3760 \mathrm{~A}=\mathrm{HFC}$
3770 OFEN'DRILLO" AS $\$ 2$ LEN=SIZE(P15)
37B0 OPEN 'ALT6' AS 13 LEN $=S I Z E(P 45)$
3790 2=1
3800 FOF $\mathrm{I}=\mathrm{I}$ TO A
38:0 READ RECDRD II I P3I
3820 IF P31.JJ=? OR P31.JJ $=8$ THEN $60 T 03840$
3830 60TO 4850 'NEXT I
3840 FOK $\mathrm{J}=$ : TO DHO
3850 KEAD RECORD I2 J PIS
$3860 \quad k=L=0$
3870 IF (P31.JJ=3 DF P31,JJ=8) AND P15.DISE=0 AND P31. TTD=F15. DE THEN EDTO 3910
38B0 IF PJI.JJ=? AND PI5.DISE>O THEN G0TO 4640 'NEXT J
3890 IF P3I.JJ=E AND FI5.DISE>0 THEN 60TO 4280
3900 60T0 4640 'NEXT J
3910 IF F3I.LLLLLF OR P3I.DDDCDF THEN GOTO 4640 'NEXT J
3920 IF P31.TOLCPI5.TDE AND P15.THEs='N' THEN $60 T 04240$
3930 IF P31.TOLCFI5.TDE THEN GOTO 4140
$3940 \quad F O R K=1$ TO A
$3950 \quad L=0$
3960 READ RECORD 11 K P3!
3970 IF (P31.JJ=4 DR P31.JJ=9) AND P31.LLL)L PAND P31.DDD>DP AND P31.TTD=FIE.DE THEN 60
T0 3990
3980 6DTO 4120 'NEXT .
3990 IF P15.THES='N' THEN $60 T 04090$
$4000 \quad$ FOR L=1 TO A
4010 READ RECORD 11 L P3I
4020 IF (P31.JJ=7 OR P31.JJ=10) AND P31.LLL)LLP AND P31.DDDPDF AND P31.TTD=P1E.DE THEN
$60 T 04040$
4030 EDTD 4070' NEXT L
$4040 \quad$ P45,FI=I:P45.F2=J:P45.F3=K.:P45.F4=L
4050 Witt record 43 I P45
$4060 \quad l=l+1$
4070 NEXT L
$4080 \quad 60704120$
$4090 \quad$ P45.F1=1:P45.F2=J:P45.F3=K:P45.F4=L
4100 WRITE RECORD $\$ 3$ P45
$4110 \quad l=2+1$
4120 NEXT K
4130 GOTD 4640 'NEXT J
$4140 \quad \mathrm{~K}=0$
4150 FOR L=1 TD A
4160 READ RECORD $\$ 1$ L P31

```
    4170 IF (P31.JJ=7 DR P31.J\=10) AND F31.LLLMLF AND F31.DDD\DE AND F31.TTD=P15.DE THEN }
OTO }419
    4180 60TO 4220'NEXT L
    4190 P45.F1=1:P45.F2=J:P45.F3=1:P45.F4=L
    4200 WIITE RECORD IE 2 P45
    42!0 l=l+1
    4220 NEXT L
    4230 EOTO 4640 'NEXT J
    4240 P45.F1=1:P45.F2=J:P45.F3=K:P45.F4=L
    4250 MEITE FECDRE IS 2 P45
    4260 l=l+1
    4270 60T0 4640 'NEXT J
    4280 IF P31.LLL<LP DF F31.DDDKDP THEN EOTD 4640 'NEXT J
    4290 IF PEL.TOL<PIE.TDE AND PIE.THES='N'THEN 6OTO 4610
    4300 IF P3I.TO_<PI5.TDE THEN 60TO 4510
    4310 FOR K=1 TC A
    4320 L=0
    4330 READ RECORD $1 K. P3I
    1340 IF P31.JI=9 AND P31.LLLDLP AND P31.DDD\DF AND P31.TTD=F15.DE THEN 60TD 4360
    4350 60T0 4490 'NEXT K.
    4360 IF P15.THEs='N" THEN GOTD 4460
    4370 FDR L=! TO A
    43B0 PEAD RECORD II L PJI
    4 3 9 0
    4 4 0 0
    4410 P45.F1=1:P45.F2=J:P45.F3=%:P45.F4=L
    4420 WRITE RECDRD $3 2 P45
    4430 I=l+1
    4 4 4 0 ~ N E X T ~ L ~
    4450 6ID 4490 'NEXT K.
    4460 P45,F1=I:P45,F2=S:P45,F3=K:P45,F4=L
    4470 MRITE KECDRD \S 2 P45
    4480 2=?+1
    4490 NEXT K
    4500 GOTO 4640 'NEXT J
    4510 k=0
    4520 FOR L=1 TO A
    4530 READ RECORD &! L PJ!
    4540 IF P31.JJ=10 AND P31.LLL)LP AND F31.DDD\DP AND P31.TTD=PI5.DE THEN 60TD 4560
    4550 60TO 4590 'NEXT L
    4560 P45.FI=I:P45.F2=J:P45.F3=R.:P45.F4=L
    4570 WRITE RECORD I3 I P45
    4580 l= l+1
    4 5 9 0 ~ N E X T ~ L ~
    4600 60TO 4640 'MEXT J
    4610 P45.FI=I:P45.F2=J:P45.FJ=K:P45.F4=L
    4620 WRITE RECORD 13 l P45
    4 6 3 0 ~ l = 2 + 1
    4640 NEXT J
    4 6 5 0 ~ N E X T ~ ] ~
    4 6 5 0 ~ C L D S E ~
```

```
    4670 FFI=?
    4690 F45.FI=0
    4690 WFITE RECORD I3 I P45
    4700 IF Is='N' 60TD 5320
    4710 OPEN "C:DDD' AE | LEN=SIIE (P31)
    4 7 2 0 ~ A = !
    4 7 3 0 ~ R E A D ~ R E C O R D ~ I 1 ~ A ~ P 3 1 ~
    4740 IF PJ1.TNS="LAST" THEN 60TO 4770
    4750 A=A+!
    4760 EOTC 4730
    1770 A=A-1
    47E0 MFD=A
    4700 OPEN "EXDRILL" AS 12 LEN=SIIE(P16)
    4800 DPEN 'ALT7' AS #? LEN=SI2E (P46)
    4810 l=1
    4E20 FOF I=1 TO A
    4930! FEAD RECORD |1 1 PJ!
    4840 IF F31.JJ=8 AND P31.LLL\LF AND P31.DDD>DF THEN 60TO 4860
    4850 60TO 5270'NEXT I
    4 8 6 0 ~ F D R ~ J = 1 ~ T D ~ E D H
    4870 READ RECORD 12 J P16
    4880 K=L=0
    4890 IF FS!.TTD=PI6.DF THEN 60TO 4910
    4900 60T0 5260 'NEXT J
    4910 IF P31.TDL`PIG.TDF AND P16.THF:='N' THEN 6DTD 5230
    4 9 2 0 ~ I F ~ P 3 1 . T O L < P I 6 . T D F ~ T H E N ~ G O T O ~ 5 1 3 0 ~
    4930 FOR K=1 TD A
    4940 L=0
    4950 READ RECORD II K P31
    4960 IF P31.JJ=9 AND P31.LLL\LP AND P31.DDD\DP AND P31.TTD=F16.DF THEN 6OTD 4980
    4970 60TO 5110 'NEXT K.
    4980 IF P16.THF:= 'N' THEN EOTO 50B0
4990 FDR L=1 TO A
5000 READ RECORD &1 L P3!
5010 IF P31.JJ=10 AND P31.LLL\LP AND P31.DDD\DP AND P31.TTD=P16.DF THEN GOTD 5030
5020 60TO 5060 'NEXT L
5030 P46.61=1:P46,62=J:P46.63=K:P46,64=L
5040 WRITE RECORD {3 l P46
5050 l= 2+1
5050 NEXT L
5070 EDTO 5110 'NEXT K
5080 P46.61=1:P46.62=J:P46.G3=K:P46.64=L
5090 URITE RECORD 13 I P46
5100 l= l+1
5110 NEXT K
5120 GOTO 5260
5130 K=0
5140 FOR L=1 TO A
5150 READ RECDRD :1 L P31
5160 IF P31.JJ=10 AND P31.LLL)LP AND F31.DDD\DP AND P31.TTD=P16.DF THEN 60TD 5180
5170 GOTO 5210 'NEXT L
```

```
    5180
    5190
        P4E.GI=I:P46.G2=J:P46.ES=R':P46.64=L
        HEITE RECORD IS l P46
        l=l+!
    5200
    5210
        NEXT L
    5220 EDTO 5260 'NEXT J
    5230 P46.61=1:P46.62=J:P4t.63=1.:P46.64=L
    5240 WRITE RECORD ES I P46
    5250 l=2+1
    5260 NEXT J
    5270 NEXT I
    5280 EGI=?
    5290 P46,61=0
    5300 WRITE RECOKD $J I P46
    5310 CLOSE
    5320 IF J5="N" THEN EOTO 5600
    5330 2=1
    5340 OPEN "C:EEE" AS $1 LEN=SIZE(P31)
    5350 A=1
    5360 READ RECDRD I! A P31
    5370 IF P31.TNS="LAST" THEN GOTO 5400
    5380 A=A+1
    5390 60TO 5360
    5400 A=A-!
    5410 MFE=A
    5420 DPEN 'INTKEY" AS 12 LEN=5IZE(P17)
    5430 DPEN "ALTG' AS &? LEN=SIIE(P47)
    5440 FOR I=1 TO A
    5450 READ RECORD \1 \ PJ!
    5460 FOR J=1 TO INK.
    5470 READ RECORD $2 J P17
    5480 K=L=0
    5490 IF P31.JJ=1` AND F31.LLL\LF AND P31.DDD\DP THEN 60TD 5510
5500 6DTO 5540 'NEXT J
5510 P47.H1=I:P47.H2=3:P47.H3=K:P47.H4=L
5520 WFITE RECORD \3 L P47
5530}\quadl=l+
5540 NEXT J
5550 NEXT I
5560 H11=2
5570 P47.HI=0
5580 WRITE RECORD IS 2 P47
5590 CLOSE
5600 IF K$='N' 60T0 5920
5610 OPEN "C:EEE" A5 $1 LEN=SIIE(P31)
5620 IF MFE>O THEN GOTO 5700
5630 A=1
5640 READ RECORD &1 A P31
5650 IF P31.TNS="LAST" THEN 60TO 5680
5660 A=A+1
5670 60T0 5640
56BO A=A-1
```

```
    5590 MFE=A
    5700 A=KFE
    5710 0'EN "EXTKEY` AS 12 LEN=5IIE(PIE)
    5720 DPEN 'ALTO" AS \3 LEN=SIZE(P4日)
    5730 l=1
    5740 FOF I=1 TO A
    575! READ FECOPD I! I P31
    5760 FOF J=! TO EXH:
    5770 READ RECDRD I2 J P1B
    5780 k=L=0
    5790 IF P3!.J\=16 AND (LEFTs(P31.HNs,3)='EMC' OF LEFTs(P31,HNS,3)='EMH') ANO P31,LLL\LF A
ND PSI.DDO\DF THEN 6OTO 5810
    5800 GOTO 5860'NEXT J
    5810 IF F3I.TOL&P18.TENDH AND P3I.TOL\P18.TEDFH AND F31.SUF<PI8.EYSFH THEN 6OTO 5830
    5820 60TO 5860
    5830 P4B.11=1:P48.12=1:P4B.13=R:P48.14=L
    5840 WRITE RECDRD $3 2 P4B
    5850 i=l+1
    5850 NEXT J
    5870 NEKT I
    5880 111=2
    5890 P48.11=0
    5900 URITE RECORD \3 I P48
    5910 CLOSE
    5920 'THIS COMPLETES THE SECTION FOF THE SELECTIDN OF ALL POSSIBLE MACHINE
    5930 'TODLS TO GENERATE THE INDIVIDUAL FEATURES FOR ROTATIONAL COMPDNENTS.
    5940 'THIS MEXT SECTION HILL PERFORM THE SAME RESULTS FOR PRISMATIC CDMPONENTS
    5950 50T0 10900
    S9.50 DPEN 'PRIS' AS :1 LEN=SITE(P3O)
    5970 READ RECDRD #! 1 F30
    5980 CLCSE
    5990 IF LS='N' 60T0 6370
    6000 DPEN 'C:FFF' AS I1 LEN=SIZE(P3I)
    601C A=1
    6020 READ RECDRD $1 A P31
    6030 IF P31.TNS="LAST' THEN EDTO 6060
    6040 A=A+1
    6050 EDTD 6020
    6050 A=A-1
    6070 MFF=A
    60BO OPEN 'ALT10' AS $3 LEN=SI2E(P50)
    6090 OPEN "EXTS" AS $2 LEN=SIZE(P20)
    6100 2=1
    6110 FOR I=1 TO A
    6120 READ RECORD i! I P3!
    6130 IF (P31.JJ=15 0R P31.JJ=21) AND P31.LLL>P30.LT AND PJ1.ND\P30.BT AND P31.HET)P30.HT TH
EN EDTO 6150
```



```
    6150 FOR J=1 TO NS
    6160 READ RECORD 12 J P2O
    6170 K=L=0
```

6180 IF P31.TOLSP20.THK OR P31.SUF PF20.5F1. THEN GOTO 6230
6!90 P50.J1=I:P5C.J2=J:P50.j3=1::P50.j4=L
6200 WRITE RECORD 132 P50
$6210 \quad 2=2+1$
622(1) EOTO 6310 'NEXT J
6230 FOF $K=1$ TO A
6240 READ RECORD $11 \mathrm{KP} \mathrm{F}!$

20. THF. ANI FJI, SUF $\leqslant$ F2O. SFK: THEN GOT

06276
6260 GOTO 6300 'NEXT K.
$6270 \quad P 50 . J 1=1: P 50 . J 2=J: P 50 . J 3=K: P 50 . J 4=L$
G280 WFITE RECOFD 132 P50
$6290 \quad \tau=I+1$
6300 NEXT K
6310 NEXT J
6520 NEXT !
6330 2il=2
6340 P50. $31=0$
6350 HRITE RECOFD 132 P50
6360 CLOSE
6370 IF $M \$={ }^{\prime} N^{\prime} 60706880$
6380 QEEN "C:FFF" AS 11 LEN=SIZE (P31)
6390 IF MFF $O$ THEN 50106470
6400 A=1
64: 1 READ RECDPD 11 A P3I
6420 IF P31.TNS="LAST" THEN $60 T 06450$
$6430 A=A+1$
644060706410
$6450 \mathrm{~A}=\mathrm{A}-1$
$6450 \mathrm{MFF}=\mathrm{A}$
6470 A $=\mathrm{MFF}$
-6450 UPEN "EXTFE" AS $\$ 2$ LEN=SIZE(P21)
6490 OPEN 'ALTII' AS 13 LEN=SIZE (P51)
$6500 \quad 2=1$
6510 FOR I=1 TO A
6520 READ RECORD 11 I P3!
6530 IF $\operatorname{PP31.JJ=16~OF~PJI.JJ=17~OR~P31.JJ=18~OR~PJ1.JJ=19~OR~P31.JJ=20)~AND~P31.LLL)P30.LT~}$
ANS P31.WDJP3O.BT AND P3!. H5T PP $30 . H$
I THEN EDTO 6550
$6540 \quad 60706830$ 'NEXT I
6550 FOR $\mathrm{J}=1$ TO NEFF
6560 READ RECORD 12 J P21
$6570 \quad L=K=0$
6580 IF P21.EXFL $\$=$ RECT' THEN $27=16$
6590 IF P21.EXFL $\$=$ 'TRIA' THEN $2 I=17$
6600 IF P21.EXFL $\$=$ TRAP" THEN $22=18$
6610 IF P21.EXFL $\$={ }^{2}$ ROMB ${ }^{2}$ THEN $22=19$
6620 IF F21.EXFLS="PCYL" THEN I2=20
6630 IF P31.JJ=2L THEN 60106650
664060566820 'NEXT J

```
    6650 IF P21.FSLLS='Y" AND PII.RAEs="N" AND {LEFTS(P31.MN!,3)="EMC" OF LEFTS(P31.MNs,3)="E
MH' OR LEFT:(PJI.HNs,3)="FMC" OR LE
FT$(F3!.MNs,3)="PHH') AND F31.TH:P21.BL THEN EDTD 6EP0
    6660 IF (P21.RSLLS="Y* OR P21.RSLLS='N") AND P21.RAEs="Y" THEN 60T0 6690
    6670 IF F2L.RAEs="N' AND F21.RSLI$="N" AND (LEFTS(P31.MNs,3)="EMC" OF LEFTS(P31.MNS,3)="E
MH') THEN EOTO 6E90
    66B0 60TO 6820 'NEXT \
    66O0 1F P31.TOL>P21.TLL OF P31.TO_)F21.TEL DF FZ1.TDL\P21.THL OF F31.SUFYF21.SFL THEN GOT
06740
    6700 P51.HHI=1:P51.HH2=J:P51.HH3=K:P51.HH4=L
    6710 WRITE RECORD $3 2 P5!
    6720 2= l+1
    6730 60T0 6820'NEMT J
    6740 FDF K=1 TD A
    6750 PEAD RECORD \1 K. P31
    6760 IF P31.JJ=21 AND P31.LLL\P30.LT AND F31.WD\P30.RT AND F31.H6T>P30.HT THEN 60TO 678
O
    6770 60TO 6810 'NEXT K
    6780 P51.HH1=1:P51.HH2=\:P51.HH3=K:P51.HH4=L
    6790 HRITE RECORD 13 2 P51
    6800 2=2+1
    6810 NEXT K
    6E20 NEXT J
    6830 NEXT I
    6840 HH1I=?
    6850 P51. HHI=0
    6860 WRITE RECORO \3 2 P51
    6 8 7 0 ~ C L O S E ~
    6880 IF Ns=`N" 60T0 7580
    6890 DPEN "C:6GG" AS $| LEN=SI2E(P31)
    6900 A=1
    6O10 READ RECORD $1 A P3!
    6920 IF PJ1.TN$='LAST" THEN 60TD 6950
    60301 A=A+!
    6940 60TO 6910
    6950 A=A-1
    6960 MFE=A
    6970 DPEN "INTFEA" AS $2 LEN=SIIE(P22)
    6980 OPEN "ALT12" AS #3 LEN=512E(PS2)
    690 2=1
    7000 FOR KK=1 TO NSS
    7010 DIAM =1000000
    7020 FOR J=1 TO P22.NSG
    7030 READ RECORD 12 J P22
    7040 IF P22.INFHS="T' 60TO 7070
    7050 IF DIAM>P22. DH THEN DIAM=P22.DM
    7060 60T0 7090
    7070 IF DIAM>P22.SDM THEN DIAM=P22.5DK
    70B0 IF DIAM\P22.FDM THEN DIAM=P22.FDK
    7090 NEXT J
    7100 FOR I=1 TO A
```

```
    7110 RERD FECORD I! 1 P3!
    7120 IF P31.JJ=8 AND P3!.LLLPF30.LT AND PJ1.WD\F30.BT AND F31.HET\P30.HT AND PJ1.TTD\TIAN
THEN 6OTO 7140
    7130 EOTO 7520'NEXT I
    7140 DIA=P31.TTD
    7150 FOF K=1 TD A
    7160 READ RECORL I1 K FS!
    7170 IF F31.JJ=11 AND P31.LLL\PJO.LT AN[ PJ1.ND\FSO.BT AND PJ1.HGT\PJO.HT AND FSI.TTOCI
IA THEN 60TO 7190
    7180 GOTD 75!0 'NEXT K
    7190 FOR J=! TO F22.N5G
    7200 READ RECDRD 12 J P22
    72!0 60T0 7500 'NEXT J
    7290 IF P22.INFMS='T" THEN EDTO 7370
    7230 IF P31.TOL<P22.TDH AND P31.SUF\P22.SFM THEN 60TO 7330
    7240 FOR L=1 TO A
    7250 READ RECOFD &1 L P3!
    7260 IF P31.JJ=12 AND P31.LLL\PJO.LT AND P31,WD\PJO.BT AND F31.HETDFJO.HT AND FSI.T
TDSDIAM THEN GOTO 7280
    7270 60TO 7310'NEXT L
    7280 FS2.L1=1:P52.L2=J:PE2.LJ=K:P52.L4=L
    7290 MFITE RECDRD $3 1 P52
    7300 I=I+1
    7310 NEXT L
    7320 GOTD 7500 'next J
    7330 O PF2,L!=I:P52.L2=3:P52.LJ=K:P52.L4=L
    7340 MRITE RECDFD \3 L P52
    7350 I=I+1
    7350 EOTO 7500 'NEXT J
    7370 IF F31.TOL<P22.TSDN AND P31.TOL<P22.TFDM AND P31.SUF<P22.SFM THEN 6OTG 7470
    7380 FOF L=1 TO A
    7390 READ RECDFD &1 L P31
```



```
TD\DIAM THEN GOTO 7420
    7410 50TO 7450 'NEXT L
    7420 P52.LI=?:P52.L2=J:P52.LJ=K:P52.L4=L
    7430 MRITE RECORD $3 I P52
    7440 I=I+1
    7450 NEXT L
    7460 60TO 7500'NEXT K.
7470 P52.LI=I:P52.L2=J:P52.L3=K:P52.14=L:P52.L5=KK
7400 URITE RECORD \3 ? P52
7470 I=I+1
7500 NEXT J
7510 NEXT K
7520 NEXT I
7550 NEXT KK
7540 LL!=2
7550 P52.LI=0
7560 WRITE RECORD $3 I P52
7570 CLOSE
```

7580 IF $05=1 \mathrm{~N}$＇ 607010900
7590 OPEN＂C：DDS＂AS 11 LEN＝SIZE（P31）
$7600 \mathrm{~A}=1$
7610 REAT PECDRD 11 A PJ！
7620 IF F3I．TNS＝＇LAST＇THEN $60 T 07650$
$7630 \mathrm{~A}=\mathrm{A}+$ ！
7640 ECTC 7610
7E5！$A=A-1$
760 MED＝A．
76？：If P！＝＇N＂THEN 60TD 8210
768 CPEN DRILLX：AS 12 LEN＝SI2E（P23）

$77002=1$
7710 FOF I＝1 T0 A
7720 READ RECORD 11 ！P3！

50
7741 EDTO 8160 ＇NEXT ！
7750 FOF $\mathrm{J}=$ ！TO DHX
7760 READ RECORD 12 J P23：
$7770 \quad K=L=0$
7780 IF P31．TTD＝P23．DN THEN EOTO 7800
7790 60TD 8150 ＇NEXT J
7800 IF P31．TOL＜P23．TDN AND P31．SUFくF23．SFN AND P23．THNS＝＂N＇THEN $60 T 08020$
7810 IF P31．TOLくP23．TDK AND P31．SUFくF23．SFK THEN $60 T 08060$
7820 FOR $K=1$ TO A
7830 READ RECORD 11 K P31
$7840 \quad L=0$
$7 E 50$ IF P31．JJ＝9 AND P31．LLLDP30．LT AND P31．NDPP30．RT AND P31．HETYP3O．HT ANI F31．TTD＝F2
3．DN THEN EOTO 7870
7860 EOTO 8000 ＇NEYT K．
7670 IF P23．THN $={ }^{2} \mathrm{~N}$＇THEN 69TO 7970
－78BO FOE L＝1 TD A
7990 READ RECORD II L P3！
7900 IF P31．JJ＝10 AND P3！．LLLSP30．LT AND F31．NDYP30．旦 AND P31．HET＞P30．HT AND F31．TTD
＝P23．DK THEK GOTO 7920
7910 60TO 7950＇NEXT L

7930 MEITE RECORD 131 P53
$7940 \quad l=l+1$
7950 NEXT L
7960 60TO 8000 ＇NEXT K

7980 WRITE RECORD 13 I P53
$7990 \quad 2=2+1$
8000 NEXT K
8010 60TO 日150＇MEXT J

bo30 MRITE RECDRD 131 P53
$8040 \quad l=l+1$
8050 EOTO 8150 ＇MEXT J

```
    8060 k=0
    BO7O FOR L=1 TD A
    808: READ RECDRD |1 L P31
    8090 IF P31.JI=10 AND P31.LLL>P3O.LT AND PJ1.HD\P3O.BT AND PS1.HST>P30.HT AND P31.TTD=F
23.DN THEN 60YO 6110
    8100 60T0 8140 'NEXT L
    E110 PFJ.M1=1:P53.M2=1:P5J.MT=K:P53.M4=L
    B120 HEITE RECORD &J 2 PS:
    8130 2=l+1
    8140 NEXT L
    EJEO NEXT J
    8160 NEXT I
    8170 Mmt=?
    8180 P53.M1=0
    8190 WRITE RECORD ES I P5J
    8200 CLDEE 2,3
    8210 IF 0%=3N'THEN GOTO 8740
    8220 OPEN 'DRILLNX' AS I2 LEN=SIIE(P24)
    8230 DPEN "ALT14" AS $? LEN=SI2E(P54)
    8240 l=1
    E250 FOR I=1 TO A
    8260 READ RECORD \1 I P3!
    8270 IF P31.JJ=B AND P31.LLL\P3O.LT AND P3!.HD\F3O.BT AND F31.HGT\F3O.HT THEN 60TO 8290
    8280 EDTO 8690 'NEXT !
    8290 FOR J=1 TD DHNX
    B300 READ RECORD \2 J F24
    E310 K=L=0
    8320 IF P3!.TTD=P24.DOD THEN GOTD 8340
    G330 60TO 86BO 'NEYT J
    9340 IF P31.TOL_F24.TDD AND P31.SUF/F24.SFD AND P24.TKD%='N" THEN 6DTO 8550
    8350 IF P31.TOL<P24,TDO ANE P?1.SUE\P24.SFO THEN GOTO 8590
    23E0 FOF: K=1 TO A
    8J70 READ RECORD $1 K P3!
    83B0 L=0
    8390 IF P31.JJ=9 AND F31.LLL\P30.LT AND F31.MD\PJO.BT AND F31.HGTPPJO.HT AIIC FJI.TID=F:
4.DOO THEN EOTO 841O
    B400 GOTD 8540 'NEXT K
    8410 IF P24.THOS='N' THEN 60TO 8510
    B420 FOR L=1 TO A
    8430 READ RECORD \1 L P31
    8440 IF P31.JI=10 AND F3!.LLL)P30.LT AND P31.HD>P30.BT AND F31.H6T\FSO.HT AND P31.TTD
=P24.DOO THEN GOTO }846
    8450 60T0 8490'NEXT L
    B460 P54.NI=I:P54.N2=J:P54.N3=K:P54.N4=L
    8470 MRITE RECDRD :3 2 P54
    8480 l=2+1
    8490 NEXT L
    8500 60TD 8540'NEXT K.
    8510 P54.NI=I:P54.N2=J:P54.N3=Y:P54.N4=L
    8520 WRITE RECORD $3 I P54
    8530 l=l+1
```

```
    2500 NEMT K
    B550 P54,NI=1:P54,N2=J:P54,N3=K:P54,N4=1
    8550 WE!TE RECORD 1? ? P54
    8570 !=7+!
    gEg( GOTO 869O 'NEXT J
    E50!: F=?
    350! FOF L=! TO A
    9510 FEAI RECDRD |1 L P31
```



```
24.00% THEN ECTO 8440
    8GS0 GOTD 8670 'NEXT L
    864C P54.NI=!:PS4,N2=J:P54,N?=R:P54.N4=L
    BE50 HF!TE RECORC IS? P54
    8660 i=2+1
    8G70 NEXT L
    ESg! NEXT J
    OGQC MEXT I
    0?(0) Man!=?
    ET!C P54.N1=0
    ET20 HRITE PECORD IS I PS4
    9730 CLOSE 2,?
    E740 IF Rt='N' 60T0 9280
    B75: OPEN "DRIL!Y' AE 12 LEN=SITE(P2E)
    876\ DPEN "R!T!E" AS #S LEN=SI2E(PES)
    9770 l=!
    6790 FOF:! =1 TO A
    8900 READ RECORI \! \ P3!
```



```
    8810 6RTO 9230 'NEXT I
    BE2:\ FOR J=1 TO DHY
    887% READ RECQPD 12 J F25
    8840 Y=L=0
    8850 IF P31.TTI=F25.DDP THEN GOTO 8870
    8E5! GOTO 9220 'NEXT J
    887(1) IF P31.TOKPP25.TDDF AND PJ!.SUF\P25.SFF ANN P25.THPS="N" THEN EOTD POOO
    8880 IF F31.TOL<F25.TDOF ANL P31.SUF<P2E,SFF THEN GOTO 9130
    8890 FOR K=1 TO A
    8900 L=0
    8910 PEAD RECDFD |! K F3!
    8920 IF P31.JI=9 AND P31.LLL\P3O.LT AND P31.KDYPSO.BT AND F31.HET\PSO.HT AND FS1.TTL=F2
5. DDP THEN 50TO B940
    8930 60TO 9070 'NEXT K.
    9940 IF P25.THPS="N" THEN EOTG }904
    8050 FDR L=1 TO A
    8960 READ RECORD \1 L P31
    8970 IF P31.JJ=10 AND P31.LLL\P3O.LT AND P31.NDSPSO.RT AND P31.HET\FJO.HT AND P31.TTI
=P25. DDF THEN GOTO 8990
    8980 60T0 9020 'NEXT L
    8990 P55.01=1:P55,02=1:P55.03=K:P55.04=L
    9000 WRITE RECDRD ET 2 P55
    9010 }\quad2=z+
```

```
    9020 NEXT L
    9030 60TO 9070 'NEXT K.
    9040 P5E.01=1:P55.02=J:P55.0?=Y:P55.04=L
    9050 HRITE RECDRD EP I P55
        ?=7+1
        NEYT K
        60TO 9220 'NEXT J
        F5E,0!=1:P55,C2=\:P55,03=k:P55.04=L
        HF!TE RECORD {2 : P55
        ?=?+1
        60TO :220 'NEYT {
        r=0
        FOF: L=1 TO A
        REA! RECOFD \! L F3!
```



```
2E.DOP THEN 60T0 9180
    9170 EOTO 9230 'MEXT L
    9180 PE5,0!=!:P5E.N2=1:P55,0S=\:P55,04=L
    S190 NEITE FECDFD IE 2 FES
    9200 }=2=?+
    92!0 NEXT L
    9220 NEXT J
    92?: NEXT 1
    9240 001=2
    925% P5E,0!=0
    9260 KFITE PECORT [? ? P5E
    9270 CLOSE 2,?
    C280 IF E$="|" 6[T0 9820
    9290 OFEN "DRILIN"" 4S $2 LEN=SI2E(F2E)
    9300 OPEN *ALTIE' GE ET LEN=S!2E(P56)
    9310 2=1
    9320 FOF I=! T0 A
    9330 READ FECDRD 1! I FSI
```



```
    OZ50 60TO 9770 'NEXT I
    9360 FDR J=1 TO DHNY
    9370 READ RECORD $2 d P31
    9300 K=L=0
    9PO IF F31.TTD=F26.DO THEN GOTO 9410
    9400 EOTO 9760 'NEXT J
    9410 IF FSL.TOL<P2E.TDO AND P3I.SUF<P2b.SFG AND F2E.THOS='N'THEN 6OTD OESO
    9420 IF PSI.TOL<P26.TDQ AND F31.SUF\P26.SFG THEN 6OTO }967
    9430 FOR K=1 TO A
    9440 READ RECORD \1 K P3I
    9450 L=0
    9460 IF F31.JJ=9 AND P31.LLL\P30.LT AND P31.ND\F30.BT AND F31.HETYP30.HT AND F31.TTD=P2
6.0日 THEN GOTO 9480
    9470 60T0 96!0'NEXT K.
    9480 - IF F26.THG&='N" THEN 60TO 9580
    9490 FOF L=1 T0 A
    9500 READ FECDER \1 LF3!
```



```
=P2t.01O THEN EOTD 9530
    9E20 60TO O5SC'NEX: L
    0530 P5L,F1=I:P5L.P2={:P5t.P3=R:P56.P4=L
    O54! WKITE RECDFI IE:P56
    0550 l=2+1
    OESO NEYT L
    9570 60TC 9610'NEXT K
    9580 P5&,P!=1:P55.P2=J:P5t.PS=K:P55.P4=1,
            MF:TE RECDRE E? ? PSt
            l=Z+!
        HEYT K.
        60TO 97EO'NEKT \
        PE{,F!=1:P5E,P:=J;P5E.P?=1::F5L,P4=L
        WFITE RECOKT 1E ? P5
        2=?+1
        EET\ 9760 'NEYT \
        K=0
        FOF!=! T0 A
            REAL RECORD I! L PTI
```



```
26.0日 THEN 60TD 9720
    97!0 60TO 9750 'NEXT!
    9720 P5t.P1=1:P56.F2=1:P5E.P3=K:P5t.P4=L
    9730 WRITE RECORE IS I P5L
    9740 l=2+1
    9750 NEXT L
    9 7 6 0 ~ N E X T ~ J ~
    9770 NEKT I
    9780 FFI=2
    9700 P5j.F'=0
    9800 HRITE FECOFD IS I PEb
    98:( CLOSE 2,j
    9820 IF Ts="N" EOTD 10360
    9ET(0) DPEN 'DRILIZ" AS 12 LEN=E\ZE(F27)
    9840 DPEN "ALT17*AS $3 LEN=S!2E (P57)
    9850 l=1
    985'J FOR I=1 TO A
    9270 READ RECORD \1 | F3!
```



```
    9890 EOTO 10310'NEXT I
    9900 FOR J=1 TO DHZ
    9910 READ FECOKD 2 J P27
    9 9 2 0 ~ K = L = 0
    9930 IF P31.TTD=F27.DF THEN GOTO 9950
    9940 60T0 10300'NEXT J
    9950 IF P31.TOL<P27.TDF AMS FS1.SUF\P27.SFR AND P27.THES="N" THEN 60TO 10170
    9960 IF P31.TOL<P27.TDR ANO P31.SUF<P27.SFE THEN 60TO 10210
    9970 FOR K=1 TO A
    9980 READ RECORD II K P3!
9990 L=0
```

10000
 T.DFT THEN 60io :00?

10010 SOTO 10150 'NEXT K
10020 IF F27.THF:S = 'M' THEN 60TO 10120
$10030 \quad$ FOR L=1 TD A
10040 READ REEDRI \#1 LP3I

$=F 27$. DR THEL EOTO 10070
$1006060 T 010100$ 'NEXT L
$10070 \quad$ P5:. $01=1: P 57.02=1: P 57.03=1,757.04=L$
10080 WFITE RECDFD IS 2 P5Z
$10090 \quad l=Z+1$
10100 NEXT L
10110 GOTO 10150 'NEXT K.

$10: 30$ KF!TE RECDFD 232 F57
$10140 \quad 2=2+1$
10150 NEXT K
10560 EOTO 10360 ' NEXT J
$10170 \quad$ P57. $01=1:$ P57.02 $=1: P 57.03=1: P 57.04=1$
10180 WESTE RECDRD $\$ 32$ P57
$10190 \quad 2=2+1$
10200 GOTD 10300 'NEXT
$10210 \quad k=0$
10220 FOR $L=1$ TOA
10230 READ RECORD 11 LP31

22.DF THEN $60 T O 10250$

10250 GOTO 10290 'NEXT L

10270 WFITE RECORD $\ddagger 5$ ! PET
$10280 \quad 2=7+1$
10290 NEXT L
10300 NEXT J
10310 NEYT:
$10: 20$ QE: $=2$
103.30 PET. $81=0$

10340 WR:TE PECORD 132 P57
10350 CLOSE 2,3
10360 IF US $=$ " 1 R 607010900
10370 CPEN "DRILLN?" AS I2 LEN=SIZE(F2B)
10380 OPEN "ALT18" AS ? LEN=SIZE (P58)
$103907=1$
10400 FOR I=1 TC A
10410 FEAD RECOFD 111 PJI

10430 60TO 10850 'NEXT I
10440 FOE $\mathrm{J}=\mathrm{I}$ TO DHNZ
10450 FEAD RECORD $12 \mathrm{~J} \mathrm{P28}$
$10460 \quad K=L=0$
10470 IF P31.TTD=P2B.DDE THEN EOTO 10490

```
    104EO 6ITO 10840 'HEXT :
```



```
    1050C IF FT1.TO_SF2E.TDDS ANE Fこ..SUF:!2E.SFS THEN GOTO 10750
    105:10 FOF Y=1 TO A
    105?C L=0
    10E30 READ RECORS I! Y PIT
```



```
E.DUS THEN GOTO 10560
    10550 ECTO 10590 'NEXT K.
    10560 IF P2E.THES='N' THE:Y 60TO 10660
    10570 FOR L=1 TO A
    10580 READ RECORT {1 L PSI
```



```
=P28.DDS THEN GITC 1OG10
    10500 GDTO 10640 'HEXT L
    10E!0 FSE.RII=I:PS5.R2=\:P5E.FOY=K:P58.F4=L
    10620 RRITE RESOFL &: E P58
    10530 l= 2+1
    10540 NEXT L
    10E50 EDTO 10590 'NEXT K
    10650 F5B,R!=1:P5S,R2=J:P5S.R3=K:P5S.F4=L
    10570 HEITE RECORD ET I P5B
    10580 2=2+!
    10E90 NEXT K
    10700 6DTE 10840'NEXT J
    10710 P58.R!=1:P5S.R2=J:P5E,RJ=K:P5S,R4=L
    10720 WRITE RECORD S3 I P58
    10730 2=?+1
    10740 6DTO 10540'NEXT J
    10750 r=0
    1075% FOF L=1 TO A
    10770 READ RECOFD :1 L F3I
    10780 IF PZ1.JJ=10 AND PSI.LLISPSO.LT AND P31.WD\PJO.DT AND P31.HGTYF30.HT AND PJI.TTD=F
28.DDE THEN GOTO 10800
    10790 GOTO 1083O 'NEXT & 
    10800 P58,F1=I:P5S.F2=J:P58.P.3=1::P5R.R4=L
    10810 HEITE RECDRD $3 l P5:
    1CE20 I= z+1
    10830 NEXT L
    10840 NEXT J
    10850 NEXT I
    10860 REI=2
    10870 P5B.FI=0
    10880 WRITE RECORD IJ 2 P5B
    1089(1 CLDSE 2,3
    10900 CLOSE
END PRDCEDUFE
PROCEDUPE: Eoth
    EXTERNAL: F!O,ए11,P31,P40,F4!,N!!,Ne?,Aa!
    EXTERNAL: Et1,Met?,Lot5,Choice%
```

```
SOURCE
    10 DPEN "D:EXTF.DAT" AS Il LEN=SIZE(PIO)
    20 Mat1=0:Mat2=0:LEN6THx0
    30 FOR I=1 TO Mef
    40 READ RECORD II I PIO
    50 JF PIO.EFS='Y" THEN 6OTD BO
    60 Mat1=Hat!+(P)O.LI(3.14151(DP)^2/4-3.14158(P10.D)^2/4))
    70 60T0 90
```



```
10.SD)^2/41)
    90 NEXT I
    100 CLOSE
    110 DPEN "D:INTF.DAT" AS &1 LEN=SIIE(PII)
    120 Djan=10000000
    130 FOR I=1 TD Mif
    140 READ RECORD | \ PII
    150 LENGTH=LENGTH+P11.LA
    160 IF PIl.IFAS="T' THEN EOTD 200
    170 Mat2=Hat2+(P11.LAI(3.1415t(P11.DA)^2/4))
    180 IF Dian>PII.DA THEN Dian=PII.DA
    190 60TO 230
    200 Kat2=Ha&2+(P11.LA1((3.1415:(P11.5DA)^2/4)+(.5%(3.1415!(P11.FDA)^2/4)-3.1415!(P11.5DA)^2/4
11)
    210 IF Dia@>P11.SDA THEN Diam=P11.SDA
    220 IF Dian>PII.FDA THEN Dian=PII.FDA
    230 NEXT I
    240 Kat2=Nat2-(3.1415*(Dian)^2/4) &LENGTH
    250 CLOSE
    260 P=1:日=1:R=1:S=1:T=1
    270 OPEN "D:ALT!" AS I! LEN=SIIE(P40)
    2BO DPEN 'C:AAA" AS $2 LEN=SIZE(P3I)
    290 OPEN "D:EXTF.DAT' AS IS LEN=SIZE(PIO)
    300 Aal=Aal-1
    310 FOR I=1 TO Aal
    320 READ RECORD \1 I P40
    330 READ RECORD $2 P40.A1 P3I
    340 Toll=P31.TOL: 5fl=P31. SUF
    350 IF P40.A3=0 THEN GOTO 390
    360 READ RECORD }2\mathrm{ P40.AJ P3!
    370 TO12=P31.TOL:S{2aP31.SUF
    380 EOTD 400
    390 Tol2=100:5F2=100
    400 IF Tol1>Tol2 THEN Toll=Tol2
    410 IF Sf1>S{2 THEN Sfl=5f2
    420 FOR J=1 TO NEF
    430 READ RECORD ES J PIO
    440 IF P1O.EF&='T THEN GOTD 470
    450 IF TOIJ<P1O.TD AND S&I<P1O.SF THEN 6DTO }49
    4 6 0 ~ E X I T ~ T O , 6 4 0 ~
    470 IF TOII<P1O.TSD AND TOLI<P1O.TFD AND S{1<P1O.SF THEN 6DTD 490
    480 EXIT TO,640
```

```
4 9 0 ~ M E X T ~ J ~
500 LET AltII(P)=P40.AI
510 IF P40.A3=0 THEN 6RI(P)='N" ELSE ERI (P)='Y"
5 2 0 ~ I F ~ P < 2 ~ T H E N ~ 6 0 T O ~ 5 6 0 ~
530 FDF: J=1 TD P-1
540 IF Alt1I(J)=AltII(P) THEN EXIT T0,570
550 NEXT J
560 P=P+1
570 LET AltI3(R)=P40.A3
580 IF P40.AJ=0 THEN 60TO }64
590 IF R<2 THEN 60TD G3O
60 FOR J=1 TO R-1
            IF Alt!3(J)=AltI3(R) THEN EXIT T0,640
        MEXT J
        R=R+!
640 NEXT I
6 5 0 ~ C L O S E ~
660 DPEN 'D:ALT2' AS II LEN=SIZE(P41)
670 DPEN 'C:BPB' AS $2 LEN=SIIE (PJI)
GBO OPEN 'D:INTF.DAT' AS &3 LEN=SIIE(PII)
690 FOR I=1 TO BbI
700 READ RECORD \1 I P4!
710 READ RECDRD 12 P41.BJ P31
720 T01I=P31.TOL:Sf1=P31.SUF
730 IF P41.84=0 THEN 60TO 760
740 READ RECORD $2 P41.B4 P31
750 T012=P31.TOL:Sf2=P31.SUF:60TO 770
760 T012=100:5{2=100
770 IF Tol1)Tol2 THEN Tolj=Tol2
7BO IF 5f1>Sf2 THEN 5f1=5{2
790 FDR J=1 TO Mif
BOO READ RECORD I3 J P11
810 IF PII.IFAS='T" THEN GOTO 840
820 IF Yol1<P11.TDA AND SfI<PII.SFA THEN 60TO 860
830 EXIT TO,1070
840 IF Tol1<PII.TSDA AND TDIL<PII.TFDA AND 5fI<PII.5FA THEN EDTD B60
850 EXIT TO,1070
860 MEXT J
870 LET Alt21(8)=P41.Bl
880 IF Q<2 THEN 60TO 920
890 FOR J=1 TO O-1
    IF Alt2d(J)=Alt21(0) THEN EXIT TO,930
    MEXT J
    Q=Q+1
    LET Alt23(S)=P41,BJ
    IF P41.84=0 THEN ER2(S)= 'N' ELSE GR2IS)="Y'
    IF S<2 THEN GOTO 990
    FOR J=1 TD 5-1
        IF Alt23(J)=Alt23(S) THEN EXIT T0,1000
        MEXT J
        S=5+1
```

| 1000 | JF P41.84=0 THEN GOTD 1070 |
| :---: | :---: |
| 1010 | LET AIt24 (T) $=$ P41.84 |
| 1020 | IF T<2 THEN GOTO 1060 |
| 1030 | FOR $\mathrm{J}=1$ TO T-1 |
| 1040 | If Alt24(J)=Alt24(T) THEN EXIT TD, 1070 |
| 1050 | MEXT J |
| 1060 | $T=T+1$ |
| 1070 NEXT I |  |
| 1080 CLOSE |  |
| 1090 P $=P-1: R=R-1: Q=0-1: S=S-1$ |  |
| $1100 \mathrm{~T}=\mathrm{T}-1$ |  |
| 1110 OPEN "C:AAA" AS I L LEN=SIZE(P31) |  |
| 1120 FOP $\mathrm{I}=1$ TO P |  |
| 1130 | READ RECORD 11 Alt11(I) P3! |
| 1140 | IF Mats= ${ }^{\circ}{ }^{\text {' }}$ THEN $22=.6666$ |
| 1150 | IF Mats= ${ }^{\text {2 }}$ THEN $27=1$ |
| 1160 | IF Mats= $3^{\prime \prime}$ THEN $21=.70$ |
| 1170 | IF hats= 4' $^{\prime \prime}$ THEN $72=1$ |
| 1180 | Al (1) mat I/ (P3I. MRRtI2) 'KACHINING IIME |
| 1190 | B1III Lotsi (Al 11$)+P 31 . L U T)$ 'TIME PART ON MACHINE |
| 1200 | $\mathrm{CI}(1)=B 1(1) *(P 31.0 C)+(P 31 . T C) 1(A 1(1))+$ P31.5C 'TOTAL COST/LDT |
| 1210 | D1(I)x[1(1)/Lots 'AVE, COST PER PART |
| 1220 | EI(I)xP3I.TNR '24=5PEED FOR 1020 STEEL AND CARBIDE TOLL |
| 1230 |  |
| 1240 | $61(1)=P 31$. TNR1.25 'FINISH FEED |
| 1250 | HI(I)=FI(I)t1.1 'FINISH SPEED |
| 1260 MEXT I |  |
| 1270 FOR I=1 TO R |  |
| 1280 | READ RECORD If Alt13(I) P31 |
| 1290 | IF Mats=1" THEN 2I=1 |
| 1300 | IF Mats= ${ }^{\prime \prime}$ " THEN $21=1$ |
| . 1310 | If Mats='3' THEN $27=1$ |
| 1320 | IF Mats=3' ${ }^{\text {a }}$ THEN $27=1$ |
| 1330 | A2(I) =.2tNeftLENETH/1000 '+LENGTH/FEED:Z2 1000=1M/MIN |
| 1340 | B2(l) $=($ A2 (I) + P31.LUT)iLots 'TIME ON NACHINE ENTIRE LOT |
| 1350 |  |
| 1360 | D2(I) $=$ C2(I)/Lots 'AVERAGE COST PER PART |
| 1370 | E2(I) $=.25!\mathrm{PJI}$. TH |
| 1380 | F2(I) = P31.HRRIZ2/E2(I) |
| 1390 MEXT I |  |
| 1400 CLOSE |  |
|  |  |
| 1420 FOR I=1 TO D |  |
| 1430 | READ RECDRD \|1 Alt2! (I) P3! |
| 1440 | IF Mats: ${ }^{\prime \prime}{ }^{\prime \prime}$ THEN $77=.6666$ |
| 1450 | IF Hats= $\mathrm{C}^{2}$ THEN 77x1 |
| 1460 |  |
| 1470 | IF hats= ${ }^{\text {a }}$ ' THEN $17=1$ |
| 1480 | IF P31. $\mathrm{ARR}=0$ THEN P31. $\mathrm{HRR}=15000$ |
| 1490 | AJ (I) =LENGTH/(P31. MRR127) |
| 1500 | BJ 1 ) $=$ Lotst (A3 (I)+P3I.LUT) 'TOTAL TIME OK MACHINE |

```
1510 C3(I)=B3(1):(P31.0C) +(P31.TC){A3(1)+P31.SC 'TOTAL CDST PER LDT
1520 D3(I)=C3(1)/Lot5
1530 E3(I)=P31.TNR 'CALCULATE TODL FEED
1540 FJ(I)=P3!.MRS12L/(EJ(1)&(3.1415!(P3I.TTD)^2/4)) 'CALCULATE TOOL SPEED
1550 NEXT I
1560 FOR I=1 TO S
1570 READ RECDRD 11 Alt23(I) P3!
1580 IF Hat$='l' THEN 22=.6666
1590 IF Hat!='2" THEN 22=1
1600 IF Hat$="3' THEN Z2=,7
1610 IF Mats='4" THEN 27=1
1620 A4(I)=Mat2/(P31.MRR\22)
1630 B4(1)=LOt51(A4(1)+P31.LUT) 'TOTAL TIME ON MACH.
1640 C4(I)=B4(I)&(P3).OC)+(P31.TC)&(A4(I))+P31.SC 'TOTAL COST
1650 D4(I)=C4(1)/Lot5
1660 E4(1)=P31.TNP 'TOOL FEED
1670 F4(I)=P31.MRRII2/(P31.TAAIE4(I)) 'TOOL SPEED ma/ain
1680 64(1)=P31.TNR1.25
1690 H4(1)=F4(1):11.1
1700 NEXT I
1710 FOR I=1 TO T
1720 READ RECORD $1 Alt24(I) P3!
1730 IF Kats='1" THEN I2=1
1740 IF Mats="2" THEN I2=1
1750 IF hats="3" THEN 12x1
1760 IF Mat$='4' THEN I7=1
1770 A5(I)=.21Nif:IZ+LENGTH/1000 ' LENETH/1000=1%/HIN
1780 B5(I)=Lot58(A5(I)+P31.LUT) 'TOTAL TIME OF PART HADLINE+MACHINING
1790 C5(I)= P5(I)&(P31.0C)+(P31.TC)I(A5(I)-.2#Nif)+P31.5C
1800 D5(1)=[5(1)/Lots
1810 IF P31.TH=0 THEN P31.TH=25
1820 E5(1)=.258P31.TM
1830 F5(I)=P31.MRR122/(E5(I))
1840 NEXT I
1850 CLOSE
1860 OPEN "C:AAA" AS 11 LEN=SIIE(P31)
1870 OPEN "C:BEB" AS 12 LEN=SILE(P31)
1880 l=1
1890 FOR I=1 TO P
1900 FOR J=1 TO R
1910 FOR K=1 TO Q
1:20 FOR L=1 TO S
1930 FOR M=1 TO T
1940 AC=DI(I)+D3(K)+D4(L)
1950 IF ERI(I)="Y" THEN AC=AC+D2(J)
1960 IF 6R2(L)="Y" THEN AC=AC+D5(M)
1970 READ RECORD |1 AltII(I) P31
1980 NM=P31.TMS
1990 IF ERI(1)="N" THEN 60TO 2030
2000 READ RECORD $1 Alt13(J) P3!
2010 IF MH=P31.TNS THEN AC=AC-.51P31.SC/Lots
```

```
2020
    MM=P31.TNS
    READ RECORD \2 Alt2! (K) P3!
    IF MM=P31.TNS THEN AC=AC-.5$P31.SC/Lots
    MM=P31.TN$
    READ RECORD $2 Alt23(L) P3!
    IF MM=P31.TNS THEN AC=AC-.5$P31.SC/Lots
    MM=P31.TNS
    IF GR2(L)="N" THEN GOTD 2120
    READ RECORD :2 Alt24(M) P31
    IF MM=P31.TNS THEN AC=AC-.5{P31.SC/Lots
    VI(Z)=I:XI(Z)=K:YI(Z)=L
    IF GRI(l)='N' THEN W!(Z)=0 ELSE WI(Z)=J
    IF GR2(L)='N' THEN II(Z)=0 ELSE II(I)=M
    IF l<2 THEN GOTO 2190
    FOR A=1 TO I-1
        IF VI(I)=VI(A) AND WI(I)=WI (A) AND XI(I)=XI(A) AND YI (I)=YI (A) AND II(I)=I!(A)
THEN EXIT TO,2270
    2180 NEXT A
        ACC (Z)=AC
        IF ?<2 THEN GOTD 2260
        FOR A=1 TO l-1
            If Acc(A)<Acc(Z) THEN GOTO 2250
            SWAP ACC(A),ACC(Z):SNAP VI(A),VI(I):SWAP WI(A),WI(I):SWAP XI (A), XI(Z)
            SHAP Y1(A),Y!(Z):SHAP ZI(A),ZI(Z)
            NEXT A
            IF 2<25 THEN I= l+1
            NEXT M
            NEXT L
            NEXT K
        NEXT J
            2310 NEXT !
            2320 CLOSE
```




```
    2340 LPRINT:LFRINT TAB(6) *TDDAYS DATE ",DDEDS;TAB(60) "LDT SIIE= ",Lots
    2350 LPRINT:LPRINT TAB(6) 'PART NAME= ',PNs, TAB(60) 'PART NUMBER= ',PNU
```




```
    2370 LPRINT
    2380 DPEN "C:AAA" AS 1! LEN=SIZE(P31)
    2390 OPEN "C:BBB' RS 12 LEN=SI2E(P3I)
    2400 LPRINT • ROUGK CUT
        FINISH CUT*
    2410 LPRINT "MACHINE TOOL MACHINE TOTAL AVE PART PART
    PART PART" TIME COST/LOT COST/PART FEED SPEED
    2430 LPRINT *
                                (ain)
                                ($)
                                    ($)
                                    (Ma/RPM)
                                    (na/ain)
(an/RPM) (am/ain"
```




```
2450 LPRINT
2460 FOR I=1 TO 10
2470 READ RECORD &| AltIIIVI(I)) P3!
2480 LPRINT TAB(1) P31.TNs;TAB(12) P31.MN5;TAB(22) Al{VI(1));TAB(37) CI(VI(1));TAB(50) DI(VI(I
11;TAB(65) EIIVI(II);TAB(75) FIIVI(
1));TAB(85) 61(VI(I));TAB(95) HI(VI(I))
    2490 IF WI(I)=0 THEN GOTO 2520
    2500 READ RECORD II AltI3(WI(I)) PJ!
    2510 LPRINT TAB(1) P31.TN$;TAB(12) P31.HNs;TAB(22) A2(H1(I));TAB(37) C2(H1(1));TAB(50) D2(M111
1);TAB(85) E2(WI(I));TAB(95) F2(W11
1)
    2520 READ RECDRD 12 Alt2l(X1(l)) P3!
    2530 LPRINT TAB(1) P31.TNS;TAB(12) P31.MN$;TAB(22) A3(X11I));TAE(37) [3(XI(1));TAB(50) DJ(X1)!1
1);TAB(65) EJ(X!(1));TAB(75) FJ(XIC
J))
    2540 READ RECORD {2 Alt23(Y!(1)) P31
    2550 LPRINT TAB(1) P31.TN&;TAB(12) P3I.MN5;TAB(22) A4(Y1(1));TAB(37) C4(YI(1));TAE(50) D4(Y!(I
11;TAB(65) E4(Y!(1));TAB(75) F4(YIl
1));TAB(85) 64(Y1(I));TAB(95) H4(Y1(1))
    2560 IF 21(1)=0 THEN GOTO 2590
    2570 READ RECORD 12 Alt24(7](I)) F3!
    25B0 LPRINT TAB(1) P31,TNS;TAB(12) P31.MN$;TAB(22) A5(21(1));TAB(37) C5(21(1));TAB(50) D5(211I
1);TAB(85) E5(21(1));TAB(95) F5(211
I)
    2590 LPRINT
    2600 LPRINT TAB(20) "COST FOF THIS PLAN IS=" AcEII)
    2610 LPRINT
    2620 MEXT I
    2630 CLOSE
ENDFILE
```

```
    2310 OFE! 'C:ARAN' AE 1! LEN=SITE!FJ!)
    332( OPEN "C:REF" AE $2 LEN=SIIE(F3!)
    2330 LPRINT * ROUGH CUT
    FINISP CUT"
    2340 LPEINT MAELHINE TODL MACHINE TOTAL AVE PAFT FAFT
FART FAFT: FIME COET/LOY COETIFART FEED SPEE:
FEED SPEED'
```




```
    2570 LPRINT
    2380 FOF I=: TC 20
    2390 READ RECDRD 1! AltII(VI!I)) F3!
    2400 LPEINT TAE(1) FE!.TN&:TAE!15! P3!.MN&;TAE(22) A!(UI(I));TAR(35) CI(VI(1));TAB(50) D!!V
1(!));TAE(&5) EI(VI(I)!;TAE(75) FI!
VI(I)!:TAE(E5! EI(VI(1));TAE!O5: H!(V!(I))
    2410 IF HICI!=0 THEN GOTS 2440
    2420 READ FECDFD 1! AltIS{K}(I)) P3!
    2430 LPFINT TAE(1) P31.TNs;TAE(15) P3:.MN&;TAE(22) A2(H1(1));TAE:O5) C2(N1(1));TAE(50) D2(K
1(1));TAE(B5) E2(H1(I));TAE(95) F21
M(1))
    2440 READ RECORD 12 Alt21(XI(1)) P31
    2450 LPRINT TAE(1) FSI.TN$;TAB(15) F31.HN$;TAB(22) A3(XI(I));TAE(35) CJ(X1(1));TAE(50) DS(X
1(1));TAB(65) E3(XI(1));TAE(75) F3(
XI(])
    2460 READ RECORD $2 Alt2S(YI(I)) P3!
    2470 LPRINT TAE(1) P31.TN$;TAB(15) P31.MN&;TAB(22) A4!Y1(1));TAB(35) [4(Y1(1));TAE(50) D4(Y
1(1));TAB(65) E4(YI(1));TAB(75) F3(
YI(I))TAE(BE) 63(Y!(1)!;TAE(95) H4!Y1(1):
    2480 IF 2!(I)=0 THEN GOTO 2E10
    2490 READ RECORD 12 Alt24!21(1)) P31
    2500 LPEINT TAE(1) FJI.TN&;TAS!5: FSI.MN&;TAE(22) A5(II(1));TAE(S5) C5(II!I);;TAE(EO) [5:E
1(1));TAB(85) E5(Z1(1));TAB(95) F51
21(I))
    2510 LFRINT TAB(20) "CDST FOF THIS METHOD 15=' Acc(I)
    2520 LPRINT
    2530 NEXT I
END PROCEDURE
'MAIN Program:
10 WIDTH 'LPTI:',132
20 DF=140:LP=550
30 Nif=2:NEF=2:MATS='2":EOTC 5600
40 'FROGRAM TO DISPLAY THE OBJECTIVE DF THE PFDGRAM
50 CLS
```



```
70 PRINT TAB(B)"1
                !"
8O PFINT TAB(B)": PROEFAM TO AID IN THE DEVELOPMENT OF A MICRO-BASED :"
90 PRINT TAB(8)"! !
```

100 PRINT TAB（8）：
PROCESS PLANHINS SYSTEM
110 PRINT TAE ( 8 )"

MEITTEN BY DAVID MELOCHE
110 PRINT TAE（8）＂！
12（ PRINT TAB（B）＇is
FALL DF 1980
136 PRINT TAE（E）＂！
14：PRINT TAE（8：＂：
15：PFINT TAE（8）＂！
！

170 60SUE 5640
180 INFUT＇PRESS 〈ENTER；TO CDNTINUE＇；X
190 CLS
200 ＇PROGRAM TO fEATURES OF FART TO EE MANUFACTURED
210 FFINT TAE（g）＂THIS PORTIOK OF THE PROGFAY HILL IHTEFFOEATE YOU TO＂
220 FFINT TAE（B）DESCF！EE THE INDIVIDJAL FEATURES OF THE CDMPONENT．＂
230 PRINT TAECE！＇YOU WILL REQUIRE SPECIFIC INFORMATION SUCH AS THE SHAPE＊
240 PFINT TABIB：＇TC BE CREATED，ITE DIMENSIONS，LOCATIDN，TOLERENCE AND＇
25¢ FFINT TAE（8）＂SURFACE FINISH，AS HELL YOU ARE REQUIRED TO ANSUEF：－
26（ PRINT TAE（B）＂SESEIFIC YES／ND QUESTIDNS CONCERNING THE COMPONENT＂
270 GOSU：5540
280 INPUT＂FFESS 〈ENTER〉 TO CONTINUE＂；$X$
290 ELS
300 ＇FOFTIDN TO INDICATE THE EENERAL INFDRMATION
310 PFINT＂EENERAL INFOFMÁTION＂
320 EDSUE 56BO
330 INPUT＂NAME DF OFERATDR＇；NAME
340 INEUT＂TDDAY5 DATE＂：DDDD
350 INPUT PPART NUMBER ；FNU＇
360 INFUT PART NAME＂；PN\＄
370 60SUE 5680
380 INPUT＂FRESS＜ENTER；TO CONTINUE＂；$X$ ．
390 CLS
400 PRINT＂SFECIFIC PART INFOEMATION＂
410 60SUE 5680
420 PFINT TAB（B）＂TYPES OF RATEFIAL THE SYSTEM CAN CONSIDER＂
430 PRINT
440 FFINT TAB（12）＂FOR CAST IRDN INPUT．．．．．．．．．．（1）＂
\＆50 PRINT TAB（12）${ }^{\circ}$ FOR 1020 STEEL INPUT．．．．．．．．（21＂
460 PRINT TAB（12）＂FOR 4140 STEEL INPUT．．．．．．．．（ङ）＂
470 PRINT TAE（12）${ }^{\circ}$ FOR ERASS INPUT．．．．．．．．．．．．．．．（4）＂
48（1）605UE 5680
490 INPUT＇PART MATERIAL IS＇；MATS
500 CLS
510 INPUT＇IS PART ROTATIDNAL Y／N＇；PRS
520 IF PRt＝＇N＇ $60 T 02790$
530 PRINT＇INPUT THE DIMENSIDNS OF THE FAB KATERIAL＂
540 PRINT • •
550 INPUT＂LENETH DF PART＂；LP
560 INPUT＂DIAMETER OF PART＇；DP
570 605UE 56B（
580 INPUT＂PRESS 〈ENTER〉 TO CONTINUE＂；$X$
590 CLS
600 PRINT＂SPECIFIC FEATUFE DESCFIPTIDM＂

```
    610 PFINT "OESCFIFTIDN OF EXTERNAL FEATUFEE'
    620 EDSUE 5680
    630 INFUT "ARE THEFE ANY EXTEFNAL. TUFNED FEATUFES Y/M";AG
    640 IF AS=' }\mp@subsup{\textrm{K}}{}{\prime}607088
    650 INFUT 'NUMBER OF FEATURES";NEF
    660 'SECTION TO DESRIBE THE EXTEFNAL FEGTURES
    67O FRIINT "STARTINE FROH REFERENCE END USE S FOR STEFPED*
    680 PFINT "AND T FOR TAPEE TO DESCfibE fEntufeS OF THE PART"
    690 DPEN "D:EXTF.DAT" RS #1 LEN=SILEIFIO)
    700 605UB 5680
    710 INPUT "FRESS <RETURN> TO CONTINUE";X
    720 FOF: I=1 TO NEF
    730 CLS
    740 PFINT "FEATURE":I:PFINT " "
    750 INPUT "S OF T";FIC.EFS
    760 IF F'JO.EFS='T" GOTO A!O
    770 6OSUF 5720
    78O P1O.L=AN:P10.TL=AARA:P1O.D=EE:P1O.TD=BEG:P1O.SF=CLC:P1C.THS=DD$
    790 HRITE RECORD E!,l,F10
    80% 60TD 840
    B10 GOSUE 5830
    82! P1O.L=EE;P1O.TL=EEE:P10,SD=FF:P1O,TSD=FFF:P10,FD=6G:P1O.TFD=6E5:P10,SF=HH
    830 HRITE RECOFO V!,1,P10
    840 NEXT I
    850 CLOSE 1
    850 605JE 5680
    870 INPUT "FFESS (ENTER) TO CONTINUE";X
    880 CLS
    850 PFINT "DESCRIPTION OF INTERNAL FEATURES'
    900 PRINT " "
    910 INPUT "ARE THERE ANY INTERNAL FEATURES ALONS THE AXIS OF THE PAFT (Y/N)';BS
    920 IF E%='N' EOTO 1700
    930 INPUT 'DO THE FEATURES PASS THFOUEH THE EMTIFE PART (Y/N)';CS
    940 IF CS=*N" 60TO 1230
    950 INFUT "NUMRER OF INTERNAL FEATURES";Nif
    960 'SECTION TO DESCRIBE THE INTERNAL FEATURES
    970 CLS
    980 PRINT *STARTINE FROH REFERENEE END USE S FOF ETEPPED "
    990 PRINT "AND T FOR TAPERE[ TO DESCFIEE THE FEATUREE'
1000 PRINT "OF THE FINISHED PART"
1010 OPEN 'D:INTF.DAT' AS #1 LEN=5IZE(PII)
1020 60SUE 5680
1030 INFUT 'FFEES <ENTEF) TO CONTINUE";X
1040 FOR I=1 TO Nif
1050 CLS
1050 PRINT "FEATURE";I:PRINT **
1070 INFUT "S OF T';Pll.IFAS
1080 IF P11.15A$='T" GOTO 1130
1090 GOSUB 5720
1100 P11.LA=AA:P11.TLA=AAA:P11.DA= 55:P1!.TDA=E5E:P1!.SFA=CCC:P11.THA$=DD&
1110 KRITE GECORD #1,I,P11
```

```
1120 6070 1170
1130 605yE 5830
114.) P!1.LA=EE:P11.TLA=EEE:P11.SDA=FF:F11.TEDA=FFF:P11.FDA=EE:P11.TFDA=EE5
1150 P!1.5FA=HH
11bo WETTE RECORI $1,1,F:!
117C NEXT I
1180 CLOSE
1190 605UE 5680
120% JNOUT PFFESS <ENTEF% TO CONTINUS";X
1210 CLS
1220 ECTD 1700
123: INPUT 'ARE THERE ANY INTERNAL FEATUFES at REFEFENCE END Y/N';DS
1240 IF Ds='N' ESTD 1470
1250 INPIT 'NUMEEF 0F FEATUFES AT REFERENCE END";Nitr
1260 PFiNT - "
1270 PFINT 'STARTINE FKOH REFERENCE END USE S FOR STEPPEL ANL T*
1280 PRINT 'FOE TAFERED TO DESC:IEE FINISHED COMPONENT*
12!0 DPEN "D:INTFF" AS #I LEN=SIIE(P12)
130C EOSUE 5680
IJIC INFUT PFRESS<ENTEF; TD CONTINUE";`
1320 FOF I=1 TO Nifr
1330 CLS
1340 PRINT "FEATURE";I:PRINT ' '
1350 INPUT "S DR T';P12.IFRBS
136(1 IF P12.IFEES='T' 60TO 1400
1370 GOSUE 5720
13BO F12.LE=AA:P12.TLB=AAR:P12.DB=EE:P12.TDK=BBE:P12.5FB=CL:P12.THBS=DDS
1390 G0TO 1430
1400 EDSUE 5830
1410 P12.LE=EE:F!2,TLE=EEE:P12,SDS=FF:P12.TSDR=FFF
1420 P12.FDB=65:P12.TFDE=666:P12.SFE=HH
1430 WRITE RECORD 11,I,P12
1440 NEXT I
1450 CLCSE
1460 CLS
1470 INPUT 'ARE THERE ANY INTERNAL FEATUKES AT OPPOSITE END Y/N";E$
1480 IF E$='N' 60TO 1700
1490 INPUT 'NJMBER DF FEATURES AT OPPOSITE END';Nifo
1500 PRINT •
15IC PRINT "STARTINE FROM OPPOSITE END USE S FOR STEPPED AND T"
1520 PRINT "FOR TAPERED TD DESCRIBE FINISHED FEATURES"
1530 DPEN 'D:INTFO' AS $1 LEN=SIZE(P13)
1540 EOSUB 5680
1550 INPUT 'PRESS (ENTER) TO CONTINUE";X
1560 FOR I=1 TO Nifo
1570 CLS
1580 PRINT 'FEATUFE";I:PFINT ' "
1590 INPUT 'S OR T';PIJ.IFOC$
1600 IF P13.IFOC$='T' 60T0 1640
1610 GOSU8 5720
1620 PI3,LC=AA:P13.TLC=AAA:PI3,DC=BE:P13,TOC=EEB:P13,SFC=CC:P13.THCS=DDS
```

```
1630 60TC 1670
1640 ECSUE 50:0
1650 F1J.LC=5E:P1J.TLC=EEE:P1J.SDC=FF:P13.TSDC=FFF
```



```
1670 HRITE RECORD 11,I,F1S
1680 NEXT I
10% C!OSE
1700 CLS
1710 INFLT "ARE THERE ANY DFILL HOLES PAFALLEL TO AXIS Y/N";Fs
1720 IF F$="N" 60TO 2140
1730 INFUT "AFE THERE ANY IN DIFECTION OF FEFEFENEE FLANE (Y/N)";年
1740 IF 6$='N' 60TO 1940
$750 INFUT 'NUMBEF: IN DIRECTION OF REFERENCE PLANE';DHF
1760 OPEN 'D:DRILLR' AS |! IEN=SIIE(P14)
1770 FOF I=1 TO DH:
1780 CLS
1790 PFINT "DFILL HOLE";I:PRINT " "
1800 PRINT "DISTANCE FRDP END ='
18!0 PRINT 'GEPTH = TOL ="
1220 PFINT DIAMETER= TOL ='
18S:' FFINT 'THKEADED Y/N"
1840 LOCATE 3,20:INFUT ' ',AA$:P14.DISD=VAL (AA$)
185(1 LOCATE 4,8:INPUT ' ',AAL:F14.DPD=VAL (AAS)
1860 LOCATE 4,22;INPUT ' ',AAS:P14.TDPD=VAL (AAS)
1870 LOCATE 5,10:INFUT ' 'ARF:P14.DD=VALIAAS)
1880 LOCATE 5,22:INPUT : ',AAS:P14.TDD=VAL (ARS)
1890 LOCATE B,14:INPUT * ",P14,TH[$
1900 WF.ITE RECORD $1,1,P14
1910 NEXT 1
1920 CLOSE
1930 CLS
1940 INPUT 'ARE THERE ANY DRILL HOLES IN OPFOSITE DIFECTION Y/N';H$
1950 IF HS='N' 60TO 2140
1900 INFUT 'NUMEEF IN DPPOSITE DIRECTION';DHO
19?O OPEN "D:DFILLO" AS $1 LEN =SIZE(F15)
1980 FDR: I=1 TO DHO
1990 CLS
2000 PRINT 'DFILL HOLE";I:PRINT *
2010 PRINT DDISTANES FROH OPPOSITE END="
2020 PRINT "DEPTH= TDL="
2030 PRINT DIAMETER= TOL='
2040 PRINT 'THREAD Y/N'
2050 LOCATE 3,28:INPUT * ',PIS.DISE
2060 LOCATE 4,7:INFUT * ',AAS:P15.DPE=VAL(AA$)
2070 LOCATE 4,21:INPUT ' ',AA$:PI5,TDPE=VAL (AA$)
2080 LDCATE 5,10:INPUT ' ',AAS:FI5.DE=VAL(AAS)
2090 LOCATE 5,21:INPUT ' ',AA$:PIE.TDE=VAL(AA$)
2100 LDCATE 6,12:INPUT ' ',P15.THe$
2110 NRITE RECORD 11,1,P15
2120 NEXT I
2130 CLOSE
```

```
2140 CLS
21FOI INFUT "ARE THERE AN!' DRILL HOLES DN THE EXTEFNGL SURFACE Y/N";IS
2160 IF 1S='N' EDTO 2340
2170 INEUT 'NUMPEF DF DFIIL HOLES ON EXTEFNAL SURFACE":EDH
2180 OREN "D:EXDRILL" AS #\ LEN =SIIE(Fib)
21员 FOF I=1 TO EDH
2200 CLS:PRINT "DRILL HOLE';I:PRINT " "
22!0 PRINT 'DISTANCE FROM FEFERENCE EHD="
2220 PRINT 'OEPTH= TOL='
2230 FRINT 'DIAMETER= TOL="
2240 PRINT "THREADED Y/N"
2250 LOCATE 3,28;INPUT " ",FIO.EDFF
2260 LOCATE 4,7:INDIT * ',AA{:P!C.DPE=VAL (AAS)
2270 LOCATE 4,19:INPUT " ",FIE.TDFE
22g0 LOCATE 5,10:INPUT ' ',AG$:P16.DF=VA'(AAS)
22c0 LOCATE 5,1%:INPUT * ",FlE.TDF
2300 LOCATE 6,14:INFUT * ',P!6.THFS
2310 WEITE RECORD 11,1,P16
2320 NEXT I
2330 CLDSE
2340 CLS
2350 INPUT *ARE THERE ANY INTERNAL REYHAVS Y/N';J$
2360 IF JS="N" 60TO 2560
2370 INPUT "NUMBER DF INTERNAL KEYHAYS';INK:
2380 OFEN 'D:INTKEY' AE #1 LEN=SIZE(F17)
2390 FOR I=1 TO INK:
2400 CLS:PRINT "INTERNA! KEYWAY*;I:PRINT " "
2410 PRINT "STARTING DISTANCE FFDM REFERENCE END=*
2420 FRINT "FINISHINE D!STANCE FFOH FEFEFENCE END="
2430 PRINT *H!DTH= TOL="
2440 PRINT "DEFTH= TOL="
2450 PFINT 'SURFACE FINISH='
2460 LOCATE 3,39: INPUT " ',P17.5TDE
2470 LOCATE 4,37:INPUT - ",F17.FNDE
2480 LDCATE 5,7:INPUT ' ',AA&:P17.IHDE=VAL (AA$)
2490 LOCATE 5,19: INFUTT * *,F17.TIHDG
2500 LOCATE 6,7:INPUT * ',AA$:P!7.1DPG=YAL(AA$)
2510 LOCATE 6,19:INFUT ' ",F17.TIDPE
2520 LOCATE 7,16:INPUT - ',P17.IKSFE
2530 WFITE RECOFD 11,I,P!7
2540 NEXT I
2550 CLOSE
2560 CLS
2570 INPUT "ARE THERE ANY EXTERNAL KEYHAYE Y/N";KS
2580 IF Ks='N' 60T0 2770
2590 INFUT 'NUMBEF OF EXTERNAL KEYNAYS';EXK'
2600 OPEN 'D:EXTKEY" AS #! LEN=SILE(P1g)
2610 EDE I=1 TO EXK
2620 CLS:PRINT "EXTERNAL YEYHAY";I:PSINT " -
2630 PRINT "STARTING DISTANCE FFOH REFERENCE END="
2640 PRINT "FINISHINE DISTANCE FROH REFERERCE END="
```

```
2&50 PFINT 'HIDTH= TOI="
2660 PFINT "DEPTH= TOL="
2670 FFINT "SURFACE FINISH="
2690 LOCATE 3,38:INPUT ' ',F!8.STDH
269% LDSATE 4,39:INPUT * 'P1E.FNDH
2700 LOCATE 5,7:INFUT" ',AQ&:FIE.EKLH=VAL(AAS)
2710 LDCATE 5,20:INFUT " '.PIE.TEKDH
2720 LOこATTE 6,7:INFUT ' ',AR&:P18.EDPH=VAL(AAS)
2730 LOCATE 6,20:INPUT * ',PIB.TEDEH
2740 LOCATE 7,16:INPUT - ',P18.EKSFH
2750 MRITE RECORD $1,1,918
2760 NEYT I
2770 CLOSE
2780 EDT0 5510
2790 CLS
28GO PFINT "THIS SECTIDH WILL INTERFDSATE YOU TO DESCRIEE"
281C PRINT "THE FEGTURES TO BE REMDVED TO MAIE THE FINISHED"
2820 PRIKT 'COMPONENT. THE INITIAL SHAPE MUST BE ONE OF THE '
2EJO PEINT "FOLLOHINS RECTANGLE, TRIANGLE, TRAPIZOID OR ROMBOID"
2840 PFINT 'TO DESCRIBE FRISMATIC CDMPONENTS YOU MUST SET UF A"
2850 PRINT "GLOBAL FRAME OF REFERENCE IN HHICH NO PART OF THE"
2860 PFINT "COMPDNENT HAE A NEEATIVE CDORDINATE POINT*
2870 GISUE 5680
2880 INFUT 'FFESS (ENTEF) TO CONTINUE";X
2890 CLS
2900 OPEN 'PRIS" AS &! LEN=51IE(F30)
```



```
2920 PFINT '& !"
2930 PFINT '! STARTING SHAPE OF RAH MATEFIIAL IS I"
2940 PRINT '!
2950 PRINT "% RECTANGLE INPUT <RECT> !"
2960 PRINT ': TRIANEIE INPUT <TEIA> IN
2970 PRINT ": TRAPE20ID INFUT (TRAP) !"
2980 FRINT it ROMBDID INFUT (ROMB\ i"
2990 FRINT "t
```



```
3010 60SUE 5580
3020 INPUT "SHAPE DF INITIAL KAG MATERIAL IS";PJO.PRISTS
3030 CLS
3040 IF PJO.PRISTS='RECT' THEN 60TO 3050 ELSE 60TO 3120
3050 PRINT "LENGTH OF RECTANaLE="
3060 FRINT 'HIDTH OF RECTANELE='
3070 PRINT "HEIGHT OF RECTANGLE='
3080 LOCATE 1,21:INPUT ' ',AA
3090 LOCATE 2,20:INPUT " ",BB
3100 LOCATE 3,21:INPUT ' ',CC
311060T0 3400
3120 IF F30.FRISTS='TRIA' THEN 60TD 3130 ELSE 6OTD 3224
3130 PFINT "LENETH OF TRIANELE='
3140 PFINT 'BASE HIDTH OF TRIANELE='
3I5O PRINT "HEIGHT OF TRIANGLE="
```

```
3160 FRINT PANELE AT CORNER (0,0,0)='
3:70 LOCATE 1,21:INPUT " ',AA
31BC LDCATE 2,25:INPUT * *,GE
3!90 LOCATE 3,21:INPUT " *,CC
32OO LOCATE 4,26:INPUT * ',EE
3210 60TO 3400
3220 IF P30,PRISTS="TRAP" THEN 6DTD 3230 ELSE 6OTO 3320
3230 FFINT "LENETH OF TRAPEZOID="
3240 FRINT "BOTTOM WIDTH='
3250 PRINT "TOF KIDTH="
3260 PKINT "HEIGHT="
3270 LOCATE 1,22:INFUT ' ',AA
3280 LDCATE 2,15:INPUT ' ',EE
3290 LOCATE 3,12:INPUT ' ',FF
3300 LOCATE 4,9:INPUT " ',CL
3310 EOTO 3400
3320 PRINT 'LENGTH OF ROMEOID='
33O( PRINT "NIDTH OF ROMBOID='
3J40 PFINT "HEIGHT OF ROMBOID='
3350 PRINT "ANGLE AT CORNEP (0,0,0)="
3360 LOCATE 1,20:INPUT ' ',AA
3370 LOCATE 2,19:INPUT ' ',BE
33BO LOCATE 3,20:INPUT : ',CC
3390 LOCATE 4,26:INPUT * ',EE
3400 FJO.LT=AA:P3O.TLT=AAA:PJO.BT=BE:F3O,TBT=BBB:P3O.HT=CC:P3O.THT=CCC
```



```
3420 P30.YCT=YYC:P30.ZAT=12A:P30.2ET=1I8:P3O.ICT=IZC
3430 WFITE RECORD \1,,PJO
3440 CLOSE
3450 CLS
3460 PFINT 'DESCRIPTION OF EXTERNAL SURFACES TO BE MACHINED"
3470 PRINT
3480 INPUT 'ARE THERE EXTERNAL SUFFACES TO BE MACHINED (Y/N)';Ls
3490 JF LS='N' 60TO 3830
3500 INFUT 'NUMEER DF SURFACES";NS
351C OPEN "EXTS' AS $1 LEN=SIZE(P20)
3520 FOR I=1 TO NS
3530 CLS
```



```
3550 PRINT "$ SHAPE TO BE REMOVED IS \"
3560 PRINT ': \"
3570 PRINT '1 RECTANGLE INPUT <RECT> &*
35B0 PRINT ': TRIANELE INPUT <TRIA> I'
3590 PFINT `I TRAPEZOID INPUT <TRAP> #"
3600 PRINT ': ROMBOID INPUT <ROMB> !"
36!0 PRINT "! \'
```



```
3630 605UB 5680
3640 INPUT 'SHAPE TO BE REMOVED';P20.EXSKS
3650 IF P20.EXSKS='RECT' THEN 6OSU& 5950 ELSE 60TO 3680
3660 P20.DIFK:S=DD$
```

```
3670
    60T0 3760
36BO IF F2O.EXSK.S='TRIA' THEN EOSUE 6260 ELSE 50TO 3710
3690 P20.AK=EE:F2O.DIRYS=DDS
3700 60T0 3760
3710 IF F2O.EX51:S='TFAP" THEN EOSUE 6610 ELSE GOTD 3740
3720 F2O.UBK=FF:F2O.TURK=FFF:F2O.DIRK.s=DD&
3730 60T0 3760
3740 IF P2O.EX5K.s='FOME* THEN GOSUE 6970
3750 P2C.AK=EE:P2O.DIFIIS=DDS
3760 P2O.LK=AA:P2O,TLK=AAA:P2O.BK:=BE:P20.TBK=BBE:F2O.HK=CC:P2O,THK=CCC
3770 P20.SFK=6E:P20,XAK=XXA:P2O,XBK=XXE:P2O,XCK=XYC:P2O.YAK:=YYA
```



```
3790 HRITE RECOFL $1,l,P20
3800 NEXT I
3BIO CLOSE
382! EDSIP 5680
3B30 INPUT 'PFEEE <ENTEF` TO CONTINUE":X
3940 CLS
3B50 FRINT "ARE THERE ANY EXTERNAL FEATUSES DTHEE: THEN CURFACES"
3860 INPUT 'TO BE REMDVED Y/K";Ms
3870 IF Ms='N' 60TO 4280
```



```
3890 DPEN "EXTFE" AS 11 LEN=SIIE(PII)
3900 FOR l=1 TO NEFF
3910 CLS
```



```
3930 PFINT "& %"
3940 PRINT * SHAPE TO BE REMOVED IS %"
3050 PRINT "! &"
3960 PFINT 't RECTANGLE INPUT <RECT> %"
3970 PEINT "I TRIANGLE JNPUT <TRIA\rangle \"
3980 PRINT '% TRAPEZDID INPUT <TRAF` &"
3990 PRINT '! ROMBOID INPUT <ROME> I"
4000 PFINT 'I PORTION OF CYLR. INPUT (PCYL> !"
4 0 1 0 ~ P R I N T ~ " ~ ' ~ \$ ~ \$ " ~
```



```
4030 60SUE 5680
4040 INFUT "SHAPE TO BE REHDUED";P21.EXFL$
4050 INPUT "DOES FEATURE RUN FROK SUFFACE TO SURFACE (Y/N)',P2I.RSLL$
4060 INPUT "DDES FEATURE RUN ALONE A EDGE (Y/N)",P21.FIAE$
4070 IF P2I.EXFL$='RECT' 60SUE 5050 ELSE 6STO 4100
4080 P21.DIRL$=DD$
4090 E0TO 4210
4100 IF P2I.EXFLS='TRIA' 60SUB 6260 ELSE 60T0 4130
4110 P21.AL=EE;P21.DIRL$=DD$
4120 60TD 4210
4130 IF F2I.EXFLS='TRAP' GOSUE 6610 ELSE 60TO 4160
4140 P21.UBL=FF:P21.TUBL=FFF:P21.DIRL$=DD$
450 6050 4210
4160 IF P21.EXFLS=*RDMB' GOSUE 6970 ELSE 60TO 4190
4170 P21.AL=EE:P21.DIRL$=DDS
```

```
4180 60T0 4210
4190 IF P2!.EXFLS='PCYL' 6DSUS 7320
4200 P21.AL=HH
4210 P21.LL=AA:P21.7LL=AAA:P21.BL=BB:P21.TEL=BBE:P21.HL=CC:P21.THL=CCC
4220 P21,SFL=66:P21,XAL=XXA:F21.XBL=YX5:F21. XCL=XXC:F21,YAL=YYA
4230 P21.YBL=YYE:P21.YCL=YYC:P21.2AL=2IA:P21.2BL=Z2B:P21.2CL=72C
4240 WRITE RECOFD {1,l,P2!
4250 NEXT\
4 2 6 0 ~ C L O S E ~
4 2 7 0 ~ 6 0 5 U B ~ 5 6 8 0 ~
42B! INEUT "PRESE <ENTER` TO CONTINUE":X
4290 CLS
4300 INPUT 'ARE THERE ANY MAJDF INTEFNAL FEATUREE Y/N';N%
4310 IF NS="N' GOTO 4670
4320 INFUT "NUMBEP DF SEPERATE INTEFNAL GROUPS DF FEATUFES";NSS
4330 OPEN 'INTFEA' AS \1 LEN =SI2E(P22)
4340 PRINT "FOFF EACH SEPERATE GROUF DESCFIBE THE SHAFES"
4350 60SUB 5680
4360 INFUT 'FRESS 〈ENTER> TO CONTINUE';X
4370 FOF:I=1 TO NSS
4380 CLS
4390 PRINT 'NUMEEF OF SHAPES IN THE ERDUF='
4400 PRINT "DOES FEATURE PASS THROUEH THE PART="
4410 PRINT "ARE THE SHAPES RDTATIDNAL Y/N"
4420 PRINT "PARALLEL TO WHICH AXIS X/Y/I"
4430 LDCATE 1,32:INPUT * ',P22.NSE
4440 LOCATE 2,37:INPUT * ',P22.NAMS
4450 LOCATE 3,32:INPUT ' ',P22.NEMS
4460 LOCATE 4,32:INPUT ' ',P22.NCMS
4470 CLE
44BO PRINT 'STARTINE FROM MAJOF SURFACE USE S FOE ETEPPED'
4490 PRINT 'AND T FOF TAFEREL TO DESCRIBE THE FEATURES OF"
4500 PFINT "THE FINISHED PART"
4510 GOSUB 5680
4520 INPUT "PRESS <ENTER> TO CDNTINUE:;X
4530 FOR J=1 TO P22.NS6
4540 CL5:PRINT 'FEATURE";1:PRINT * '
4550 INPUT 'S OR T';P22.INFM:
4560 IF P22.INFMs='T' GOTO 4600
4570 GOSUR 5720
4580 P22.LM=AA:P22.TLK=AAA:F22. DH=BB: P22.TDH=BBE:P22.SFM=CC:P22, THMS=DD$
4590 60T0 4630
4600 EDSUB 5830
4610 P22.LM=EE:P22.TLH=EEE:P22.SDM=FF:P22.TSDM=FFF
4620 P22.FDM=66;P22.TFDH=666:P22.SFM=HH
4630 HRITE RECORD 11,1,P22
4640 NEXT J
4650 NEXT I
4060 CLOSE
4 6 7 0 ~ C L S ~
4680 FRINT "SECTIDN TO DESCEIBE THE EXTEFNAL DFILLL HOLES"
```

```
4600 PFINT - "
4700 INPLT 'ASE THERE ANY EXTERNAL DEILL HOLES Y/N";OS
47!0 IF OS='N" GOTO 5510
4720 60SUE 5580
4730 INPLT 'IN THE FOEITIVE X DIRECTION Y/N';FS
4740 JF PS='N' 6070 4850
4750 OFEN "DRILLX" AE \! LEN=SIZE(PIS)
4760 INPUT 'NUMBER IN THE \ DIRECTION';DHX
4 7 7 0 ~ F D F I = 1 ~ T O ~ D H Y '
4780 CLS:PPINT 'DRILL HOLE ';l:PRINT "'
4 7 9 0 ~ E 0 S U E ~ 7 6 7 0 ~
4800 P23. DFN=AR:F23,TDPN=AAA:F2J.DN=BE:P23.TDN=BEE:P23.SFN=CC
4910 P2J,XN=XXA:P2N.YN=YYA:P2J.2N=T2A:P2J.THN$=DDS
4820 WFITE RECORL 11,I,P23
4830 NEXT I
4B4(CLDSE
4850 CLS
4860 INFUT "ARE THERE ANY IN THE NEGATIVE X DIRECTION";日&
4870 IF QS='N' 60TO 4990
4BEO DFEN 'DRILLNX' AS $: LEN=SIIE(F24)
4890 INFUT 'NUMBER IN NEEATIVE \ DIRECTION';DHNX
4900 FOF I=I TO DHNX
4910 [LS:PRINT "DRILL HOLE";I:PRINT * *
4%20 EOSUE 7670
4930 F24,DPD=AA:P24.TDFD=AAA:P24.DOD=BE:P24.TDO=BBE:P24,5FD=CC
4940 P24, XO=YXA:P24,YO=YYA:P24,20=2IA:P24,THOS=DDS
4950 WEITE RECDRD 11,1,P24
```



```
4970 CLDSE
498C CLS
4970 INPUT "ARE THERE ANY IN THE POSITIVE Y DIRECTION*;R&
5006 IF F%="N" 60TO 5110
5010 OPEN "DFILLY" AS \1 LEN=SIIE (P25)
5020 INPUT "NUMBER IN POSITIVE Y DIRECTION"DHY
5030 FOR I=1 TO DHY
5040 CLS:PRINT "DRILL HOLE';I:PRINT **
5050 GOSLB 7670
5060 F25.DPP=AA:P25,TDPF=AAA:P25,DDP=8B:P25.TDDP=BE&:P25.SFF=CC
5070 P2F, XP=XXA: P25,YP=YYA:P25,ZP=Z2A:P25,THPS=DDS
50BO HRITE RECORD $1,1,P25
5090 NEXT I
5100 CLOSE
5110 CL.S
5120 INPUT 'ARE THERE ANY DRILL HOLES IN THE NEGATIUE Y DIRECTION';S$
5130 IF S$='N" 60T0 5240
5140 INPUT "NUMBEF IN NEGATIUE Y DIRECTION";DHNY
5150 OPEN "DRILLNY' AS II LEN=SIZE(P26)
5160 FOF I=1 TO DHNY
5170 CL5:PRINT "DRILL HDLE';I:PRINT *"
5180 60SUE 7670
5190 P26.DPG=AA: P26,TDFQ=AAA:P2G.DQ=BE:P26.TDQ=BBE:P26, SFQ=CC
```

```
5200 P2E.XG=XXA:P2E.YG=YYA:P26.2G=12A:F2b.THOS=DDS
5210 HRITE RECORD 11,1,P26
5n20 NEXT I
5250 CLOSE
5240 CLS
5250 INPUT 'ARE THERE AN! DFILL HDLES IN THE PDSITIVE ? DIRECTION';TS
5350 If Ts='f"' 60T0 5370
5270 INPUT "NUKEEF IN POSITIVE I DIFECTION";DHE
5280 OPEN "DRILLI' AS 11 LEN=SI2E (F27)
5290 FOF I=1 TC DH?
5300 CLS:PAINT 'DRILL HOLE';I:PRINT " "
5310 6OSUR 7670
5320 P27.DPR=AA:P27.TDPR=AAF:P27.DF=BE:F27.TDK=BEE:P27.SFK=CC
5330 P27,XR=XXA:P27,YF=YYA:F27.2F=Z2A:F27.THRS=DD$
5340 MRITE RECORE $1,1,P27
5350 NEXT I
5360 CLDSE
5370 CLS
5380 INPUT "AFE THERE ANY IN THE NEGAT!VE I DIRECTION";US
5390 ]F US='N' 60T0 55:0
5400 INFUT 'NUMBEF IN NEEATIVE I DIRECTIDN';DHNZ
5410 OPEN "DRILLNZ" AS $1 LEN=SIZE(F28)
5420 FDF I=1 TO DHNZ
5430 CLS:PRINT 'DRULL HOLE`;I:PRINT * *
5440 60SUB 7670
5450 P28.DFS=AA:P2B.TDFS=AAA:P2R.DDS=BE:P2B,TDDS=BBE:P2B.SF5=CL
5460 P2B, XS=XXA:P28,YS=YYA:P28. 2S=22A:P28.THS$=DD&
5470 NFITE RECDRD 11,I,P28
5480 GOSUE 5690
5490 NEXT I
5500 CLOSE
5510 CLE
```



```
5530 PRINT "t t"
5540 PRINT 'I THIS COMPLETES THE SECTION OF PART DESCRIPTION i"
5550 PRINT ": THE SYSTEH NILL KNOH DETERMINE THE OPTIKUM PROCESS !"
5560 PRINT 'f PLAN BASED ON THE DESCRIPTION YOU PROVIDED AND THE t*
5570 PRINT * HACHINES YOU HAVE AVAILABLE IN YOUR SHOP
5580 PRINT '& t"
```



```
5600 Hach
56IO INPUT "THE NUMBER OF PARTS IN THE LOT=';LOt5
5t20 Both
5630 STOF: END
5640 FOR 11=1 TO 10
5650 PRINT * *
5660 NEXT II
5670 RETURN
5680 FOR II=: TO 5
5690 PRINT * "
5700 NEXT II
```

```
5710 RETUFN
5 7 2 0 ~ P F I I T T ~ " L E N E T H = ~ T O L = " ' * )
5730 PRINT DIAMETEF= TOL=*
5740 PFINT "SURFACE FINISH=*
5750 PFINT "THREADED Y/N"
570! LDCATE 4,8:INPUT " ",AAS:AA=VALLAA$!
5770 LOCGTE 4,2J:INPUT * ',AAA
5780 LOCATE 5,10:INPUT * ",ARS:BE=YAL (AAS)
5790 LOCATE 5,23:INPUT ' ',BBE
5800 LOCATE 6,16:INFUT * ",CCC
5810 LOCATE 7,13:INPUT * ',DDS
5820 RETURN
5830 PFINT "LENGTH= TOL="
5840 PRINT "START.OIA. = TOL="
5850 FRINT *FINISH DIA. = TOL=*
58OC PFINT "SURFACE FINISH="
587(1) LOCATE 4,B:INPUT * *,AA!:EE=VRL (AA$)
5980 LOCATE 4,23:INPUT ' ',EEE
5890 LOEATE 5,12: INPUT " ',AA\xi:FF=VAL (AA!)
5900 LOCATE 5,23:INPUT " ',FFF
5910 LOCATE E,13:INPUT ' ',AAS:G5=VALIAAS!
5920 LOCATE 6,23:INPUT * ',656
5930 LOCATE 7,16:INPUT ' ",HH
5940 REJURN
5050 CIS
5960 FRINT 'LENETH OF RECTANELE= TOL="
5970 PRINT "HIDTH OF RECTANGLE= TOL="
5980 FFINT 'HEIGHT OF RECTANGLE= TOL='
5990 PRINT 'SURFACE FINISH OF FEATURE='
6 0 0 0 ~ P R I N T ~ - ~ " ~
6010 PRINT "LOCATE THREE CORNER PTE ON DNE FACE OF REETANELE"
6020 PFINT 'FIRST CORNEF PT; }X=\quadY=\quadz=
6030 FRINT
6040 PRINT SECOND CDRNER PT; }X=\quadY=\quad2=
6050 PFINT " "
6 0 6 0 ~ P R I N T ~ ' T H I R D ~ C O R N E R ~ P T ; ~ X = ~ Y = ~ Z = ' ~
6070 PRINT * ':PRINT 'DIRECTION OF TRAVEL OF RECTANGLE IS \X OF Y OF Z\"
6080 LDCATE 1,21:INPUT " ",AAs:AA=VAL (AK$)
6090 LOCATE 1,3E:INPUT * ",AAA
6100 LOCATE 2,20:INPUT : ,AA&:BR=VAL (AAS)
6110 LOCATE 2,36:INPUT ' ',B8B
6120 LOCATE 3,21:INPUT ' ',ARS:CC=VAL LAAS)
6130 LOCATE 3,36:INPUT " ",CCC
6140 LOCATE 4,27:INPUT: ",66
6150 LOCATE 7,21:INPUT : ,AAS:XXA=YAL (AAS)
6160 LOCATE 7,28:INPUT = ",AAS:YYA=VAL(AAS)
6!70 LOCATE 7,36:INPUT ' ',22A
6180 LOCATE 9,21:INPUT * ",AA$:XXB=VALIAAS)
6190 LOCATE 9,28:INPUT * ',AAS:YYB=VAL (AAS)
6200 LOCATE 9,3E:INPUT = ',12B
6210 LOCATE 11,21:INPUT " ",AAS:XXC=VAL (AAS)
```

```
6220 LOCATE 11,28: INFLIT ' ',AAS:YYC=VAL(AA$)
6230 LOCATE 11,36:INPUT * ',I2C
6240 LOCATE 13,51:INPUT * ',DD$
6250 RETURN
6260 CLS
G270 PRINT "SECTION TO DESCFIBE THE TRIANGLE TO BE REMOVED"
6280 PFIINT " "
6200 FFINT "LENGTH OF TRIANGLE= TOL="
6300 PFINT 'VIDTH OF TRIANGLE= TOL="
GSIO PFINT * HIEEHT= TOL=*
6320 FRINT "SURFACE FINISH 0F FEATURE=*
6330 PFINT "ANELE GT LEFT BASE=*
ES40 FRINT " *
6350 PFINT "LDCATE THREE CDRNEF PTS ON ONE FACE"
6360 PRINT
6J70 PFINT "FIFET COFNEP PT; }X=\quadY=\quadZ=
GS8C FEINT 'SECDND CORNEF. FT; }X=\quadY=\quadZ=
6390 PRINT 'THIRC CORNEF PT; }x=\quadY=\quadZ=
6 4 0 0 ~ P R I N T ~
6410 PRINT 'DIRECTION OF TRAVEL IS \Y DF Y DK 2`';DD$
6420 LOCATE 3,20:INPUT " ',AAS:AA=VAL(AA$)
6430 LOCATE 3,36:INFUT " ",AAA
6440 LOCATE 4,20:INPUT * ",AAS:BE=VAL (AAS)
6450 LOCATE 4, 36: INFUT * ",BBB
6460 LOCATE 5,20:INPUT * ',AAS:CC=VAL (AAS)
6470 LOCATE 5, J6: INPUT * ",CCC
6400 LOCATE 6,27:INPUT * ',6E
6490 LOCATE 7,19: INPUT ' ',EE
6500 LOCATE 11,20:INPUT * ',AAS:XXA=VALIAAS)
6510 LOCATE 11,27:INPUT " ',AA$:YYA=VAL (AAS)
6520 LOCATE 1!,35: INFUT - ',27K
6530 LOCATE 12,20:INFUT " ",AA$:XXE=VAL (AAS)
G540 LOCATE 12,27:INPUT ' ',AA$:YYE=VAL (AMS)
6550 LOCATE 12,35; INPUT " ',72B
6560 LOCATTE 1J,20:INPUT ' ',AAs:XXC=VAL (AAS)
6570 LOCATE 13,27:INFUT ' ',AA&:YYC=VAL(AA$)
G58O LOCATE 13,35: INPITT ' ',72C
t5%0 LDCATE LE,3B:INPUT : ",DDS
6600 RETURN
6610 CLS
6620 PRINT "SECTION TO DESCRIEE THE TRAPEIDID TO BE REMDVED*
6630 PRINT " -
6640 PRINT "LENGTH OF TRAPEZDID= TDL="
6650 PRINT * BOTTOK YIDTH= TOL=*
6660 PRINT : HIEEHT= TOL="
6 6 7 0 ~ P R I N T ~ - ~ T O P ~ H I D T H = ~ T O L = ' '
66B0 PRINT 'SUFFACE FINISH DF FEATUKES='
6890 PRINT " *
670c PFINT "LOCATE THREE CORNER PTS ON ONE FACE"
6710 PRINT * *
6720 PFINT "FIFST CORNER PT; }X=\quadY=\quad Z="
```

```
6730 PFINT 'SECONO CORNER PT }Y=\quadY=\quadZ=
6740 PRINT 'THIRI CORNER FT; }X=\quadY=\quadl=
6756 PF:TNT = "
6760 PEINT *DIRECTION OF TRAUEL IS <X OF Y OR I\'
G770 LDSARTE 3,2!:INPUT * ',AA4:AA=VAL(AAS)
b7g! LDCATE 3, 3b: INPUT : ',AGA
G?O\cap LOCATE 4,21:INPUT - ',AMAS:BF=VAL (AAS)
GOOO LOCATE 4,3k:INFUT * ',BBP
6810 LOCATE E,2I:INPUT " ',AAS:CC=VAL (AAS)
68?0 LOEATE 5, 36:1NPUT " ', CCC
6830 LDCATE 6,21:INPUT ' ',AAS:FF=VAL (AAS)
6840 LOCATE t, Jt:INFUT ' ',FFF
6950 LOSATE 7,2昂INPUT * ',66
6R6(1 LOCATE 1!,20:IMEUT * ',AA!:XYA=VAL (AA$)
687( LOCATE 11,26:INDUT - ',AAS:YYA=YAL (AAS)
688: LOCATE 11,SE:INPUT - ',2ZA
6890 LDCATE 12,20:INPUT : ',AAK:XXS=VAL(AAS)
EOOO LICATE 12.2E:INPUT ' ',AAS:YYE=VA'(AR&)
6910 LOCATE 12,33:INPUT ' ',228
692( LOCATE 13,20:INFUT ' ',AAS: XXC=VAL(AA$)
SOJO LOCATE 1J,26:INPUT " ',AAS:YYC=VAL(AAS)
6940 LDEATE 13,33:INPUT * ',I2C
6950 LOCATE 15,39:INPUT ' ',DDS
6 9 6 0 ~ F E T U F N ~
6 9 7 0 ~ C L S ~
6980 PRINT "SECTION TO DESCRIEE THE ROMEOID TO BE REMOUED"
6 9 9 0 ~ P R I N T ~ * ~ - ~
7000 PEINT "LENETH DF FEATURE= TOL="
7010 PRINT - FEATURE HIDTH= TOL='
7020 PRINT * FEATURE HEIGHT= TOL=*
7030 PEINT "ANGLE OF FEATURE="
7040 PRINT 'SUPFACE FINISH OF FEATURE="
7C50 FRINT "
7060 PRIHT "LOCATE THKEE CORNER PTS ON ONE FACE"
7070 PRINT •
7080 FRINT 'FIRST CORNER PT; }X=\quadY=\quadl=
7090 PRINT 'SECOHD CORNER PT; }X=\quadY=\quadZ=
7100 PFINT 'THIRD CDRNER PT; }X=\quadY=\quadZ=
7110 PRINT " 
712( PRINT 'DIRECTION OF TRAVEL IS (X OR Y OF 2>'
7130 LOCATE 3,19:INPUT ' ',AAS:AA=VAI (AAS)
7140 LOCATE 3,34:INPUT - ",AAR
7150 LOCATE 1,19:INPUT " ',AAS:BB=VAL (AAS)
7160 LOCATE 4,34:INPUT ' ',BBE
7170 LOCATE 5,19:INFUT ' ',AAS:CC=VAL(AAS)
7180 IDCATE 5,34:INPUT * ",CCC
7190 LOCATE 6,19:INFUT " ",EE
7200 LOCATE 7,27:INPUT * ",G5
7210 LOCATE 11,21:INPUT * ',AA$:XXA=VALIAA$)
7220 LOCATE 11,28: INPUT - ',AA$:YYA=VAL (AA$)
7230 LOCATE 11,35: INPUT ' ',22A
```

```
7240 LOCATE 12,21:INPLIT ' ',AAE:XXE=VAL (AAE)
7250 LOCATE 15,2E:INPUT : ',AAS:YYB=VAL (AAS)
7260 LOCATE 12,35:INFUT - ',27B
727O LOCATE I?,21:INPUT - ',AA$:XXC=VAL (AA$)
7230 LICATE 1E,2E:INFUT ' ',AAS:YYC=VAL (GAS)
7290 LOCATE 12,75:INPIT * ',I2C
T3OC IDEATE IE,SQ:INPUT ' ',DN&
7310 RETUFN
7320 CL5
7330 PFINT "SECTION TO DESCFIBE THE POFTION DF A CYLINDEFS TO BE FEMDUED'
7340 PRINT ' '
7350 PFINT "LENETH DF FEATURE= TOL="
7360 PRINT " KIDTH OF 8ASE= TOL="
7570 FFINT " HEIGHT OF ARC= TOL=`
738C PRINY "RADIUS OF ARC="
739C PRINT 'EUFFACE FIMISH DF FEATURE='
740O PFINT " *
74IC PFINT "OCATION DF CENTEF OF DNE BASE:
7420 PFINT ' }X=\quadY=\quad =''
7430 PRINT " -
7440 PEINT "LOCATIOK OF TOF OF ARC"
7450 PRINT ' }X=\quadY=\quad7=
7460 PFINT * *
7470 PFINT "LOCATION DF OPPOS!TE END OF BASE"
7480 PRINT ' }X=\quadY=\quadI=
7490 LOCATE 3,19:INPUT " ',AA$:AA=VAL(AA$)
7500 LOCATE 3,34:INPUT * ',AAA
7510 LDCATE 4,19:INPUT " ",AA$:BB=VAL (AA$)
7520 LOCATE 4,34:INPUT - ',EBB
7530 LOCATE 5,19:INPUT * ',AAS:CC=VAL (AAS)
7540 LOCATE 5,34:INPUT * ',CCC
7550 LOCATE G,1O:INPUT * ",HH
75,50 LOCATE 7,27:INPUT * ',66
7570 LOCATE 10, 3:INPUT * ',AAS: XXA=VAL (AAS)
7580 LOEATE 10,17:INPUT " ',AAS:YYA=YAL (AAS)
7590 LOCATE 10,32:INPUT ' ',IZA
7600 LOCATE 13,3:INPUT * ',AAS:XXB=VAL (AAS)
7610 LDCATE 1J,17:INPUT * ',AAS:YYE=VAL(AAS)
7620 LOCATE 13,32:INPUT " ',72B
7630 LOCATE 16, J:INPUT * ',AAS:XXC=VAL (AA$)
7640 LOCATE 16,17:INPUT * ',AAS:YYC=VAL (AAS)
7650 LOCATE 16,32:INFUT - ",I2C
7660 RETURN
7670 PEINT * DEPTH= TOL=*
76BO PRINT "DIAMETER= TOL="
769(I PRINT 'SURFACE FINISH='
7700 PRIHT 'THREADED Y/N"
7710 PFINT • -
7720 PR!NT "LOCATION OF ORILL HOLE"
7730 PFINT "X-COORDINATE="
7740 PRINT "Y-CODRDINATE='
```

```
775% DSINT "Z-COORDINATE="
7760 LOCATE J.10:INPUT ' ',AAS:AA=VAL (AAS)
777(: LOCATE 3,25: INPUT - ',AAA
77BO LOCATE 4,10:INPUT - ',AAS:BB=YAL (AAS)
770(1 LOCATE 4, n5: IIFUT - ',BBE
78OO LONATE 5::G:INPUT - ',CC
7E!0 LOCATE E,14:INFUT - ",DDS
7820 LOCATE 9,14:INPUT * 'XKA
7ESO LOCATE 10,14:INFUT * 'YYA
78:A LOCATE 11,14:INPUT ' ',IZA
7B5O FETURN
```

EHDEILE

```
SOURCE
```



```
    20 LPRINT ` DPERATION REQUIRED TO GENERATE *
    3O LPRINT : THE EXTERNAL FEATURES
```



```
    50 LPRINT:LPRINT
    60 OPEN "D:EXTF.DAT" AS II LEN=SI2E(PIO)
    70 A=3.1415265: nATT=0
    BO FOR I=1 TO NEF
    90 READ RECORD :1 I PIO
    100 IF P10.EFS="T' THEN 60TO !30
    110 MATT=HATT+(P1O.LI(AI (DF)^2/4-At(P1O.D)^2/A)I
    120 60TO }14
    130 MATT=MATT+P10.LI((AZ(DP)^2/4-AZ(P10.FD)^2/4)+.5t(AB(PIO.FD)^2/4-AZ(F10.5D)^2/4))
    140 MEXT I
    150 CLOSE
    160 OPEN 'D:ALTI' AS I1 LEN=SILEIF40)
    170 DPEN 'C:AAA' AS 12 LEN=SILE(PJ!)
    180 OPEN 'D:EXTF.DAT' AS 13 LEN=SIZE(PIO)
    190 P=1:R=1
    200 AAI=AAI-!
    210 FOR I=1 TO AAI
    220 READ RECORD $1 1 P40
    230 READ RECDRD $2 P40.A1 P31
    240 TO.1=P31.TOL:SFI=P31.SUF
    250 IF P40.A3<O THEN P4O,A3=0
    260 IF P40.AJ=0 THEN EOTD 300
    270 READ RECORD :2 P40.AS P31
    280 TOL2=P31.TOL:S52=P3!.SUF
    290 6070 310
    300 TOL2=100:SF2=100
    310 IF TOLI>TOL2 THEN TOLI=TOL2
    320 IF SF1>SF2 THEN SF1=SF2
    330 FOR J=! TO NEF
    340 READ RECDRD {3 J PIO
    350 IF P10.EF$=1T' THEN 60TO 380
    360 IF TOLI<P1O.TD AND SFI<P1O.SF THEN 60TO 400
    370 EXIT TO,540
    380 IF TOLI<PIO.TSD AND TOLI<PID.TFD AND SFI<PIO.5F THEN 60TD 400
    390 EXIT T0,540
    400 NEXT J
    410 LET ALTII(P)=P40.AI
    4 2 0 ~ I F ~ P < 2 ~ T H E N ~ G O T D ~ 4 6 0 ~
    430 FOR J=1 TO P-1
    440 IF ALTII(J)=ALTII(P) THEN EXIT TO,48O
    4 5 0 ~ M E X T ~ J ~
    460 IF P40.A3=0 THEN HH(P)='N' ELSE HH(P)='Y=
    4 7 0 \quad P = P + 1
    480 LET ALTI3(R)=P40.A3
    490 IF R<2 THEN 60TO 530
    500 FOR J=1 TO R-1
```



```
    970 NEXT J
    980 HEXT I
    990 6070 1140
    1000 FOR I=1 T0 P
    1010 FOR J=1 TO P
1020 IF AA(I)SAA(J) THEN EOTD 1120
1030 SNAF ALTII(I),ALTII(J)
1040 SHAP AA(I),AA(J)
1050 SMAP BB(I),BB(J)
1060 SNAP CC(I),CC(J)
1070 SHAP DD(1),DD(J)
1080 SNAP EE(I),EE(J)
1090 SHAP FF(I),FF(J)
1100 SHAP GE(1),G6($)
1110 SNAP HH(1),HH(J)
1120 NEXT J
1130 NEXT I
1140 FOR I=1 TO P
1150 READ RECOPD $2 ALTII(I) P3I
1160 DEF=P31.TNF1.25
1170 ACP=55111$1.1
1180 LPRINT TAB(1) P3I.TN$;TAB(11) P31.MNs;TAB(20) AA(1);TAB(33) BB(1);TAB(46) [C(1);TAS(57) D
D(1);TAB(68) EE(I);TAB (76) FF(1);T
AB(82) 6E(I);TAB(95) DEP;TAB(104) ACP;TAE(119) HH(I)
    1190 NEXT I
    1200 LPRINT:LPRINT
    1210 IF R>O THEN EOTO }124
    1220 LPRINT "ND GRINDING TOOLS AVAILABLE TO PERFORM THE OPERATION"
    1230 6070 1820
    1240 LPRIMT "ERINDING TODLS AVAILAELE":LPRINT:LPRINT
```



```
PH) (RPM)*
1270 FOR J=1 YO R
1280 IF ALTI3(R)=0 THEN 60TO 1480 'MEXT R
1290 READ RECORD $2 ALT13(R) P3I
1300 IF MATs=1'1' THEN 21=,6666
1310 IF MATS='2' THEN 2I=1.3333
1320 IF MATs='3" THEN 2I=1
1330 IF MATs=34' THEN 2L=2
1340 KTP=.2tNEF '1+LENGTH/FEED1:2I
1350 TT= (NTP+P31.LUT) &!OTS
1360 TC=TT:P31.0C+P31.TC&(HTP-.2&NEF)+P31.SC
1370 ACP=TC/LOTS
1380 DEP=P31.TAAIZ2
1390 LET AA\dI=MTP
1400 LET BB(J)=TT
1410 LET CC(J)=TC
1420 LET DD(J)=ACP
1430 LET EE(J)=DEP
```

```
1440 DEF=P31.TM1.25
1450 LET FF(J)=DEP
1480 DEP=P31. MRRIIZ/(FF(J))
1470 LET 66(J)=DEP
1480 NEXT J
1490 IF CHDJCE$="PRF* THEN EDTO 1640
1500 FDR I=1 TO R
1510 FOR J=1 TO R
1520 IF DD(I)<DD(J) THEN 60TO 1610
1530 SMAP ALTI3(I),ALTI3(J)
1540 SUAP AA(I),AA(J)
1550 SMAP BB(I),BB(J)
1560 SWAP CC(I),CC(J)
1570 SHAP DD(I),DD(J)
1580 SMAP EE(I),EE(J)
1590 SWAP FF(I),FF(J)
1600 SHAF G6(l),G6(J)
1610 NEXT J
1620 NEXT I
1630 60T0 }177
1640 FOR I=1 T0 R
1650 FDF J=1 TO R
1660 IF AA(J)KAA(J) THEN GOTO 1750
1670 SNAP ALTIJ(I),ALT13(J)
1680 SWAP AA(1),AA(J)
1690 SMAP BB(1),BB(J)
1700 SMAP CC(]),CC(J)
1710 SWAP DD(I),DD(J)
1720 SHAP EE(I),EE(J)
1730 SMAP FF(I),FF(J)
1740 SNAP 6E(I),6E(J)
1750 MEXT J
1760 NEXT I
1770 FOR I=1 TO R
1780 IF ALT13(I)=0 THEN GDTO 1810 'NEXT I
1790 READ RECORD $2 ALTI3(I) P31
1800 LPRINT TAB(1) P31.TNS;TAB(12) P31.MNs;TAB(23) AA(1);TAB(38) BB(1);TAB(49) CC(1);TAB(59) D
D(1);TAB(66) EE(I);TAB(79) FF(1);TA
B(B9) 56(I)
    1810 NEXT I
1820 CLOSE
1830 LPFINT:LPRINT
ENDFILE
SOURCE
```



```
    20 LPRINT " OPERATIONS REQUIRED TO
    30 LPRINT : GENERATE INTERNAL FEATURES *
    40 LPRINT * UHICH PASS THROU5H THE PART *
```



```
    60 LPRINT:LPRINT
    70 DPEN 'D:INTF.DAT" AS II LEN=SIZE(PII)
```

```
    BO Matt=0:LENGTH=0
    90 Diam=1000000
    100 FOR I=1 TO Nit
    110 READ RECDRD 1! ! P1!
    120 LENGTH=LENETH+P1I.LA
    130 IF P11.IFAS=`T* THEN 60TD }17
    140 Matt=Hatt+(P11.LAI(3.14151(P11,DA)^2/4))
    150 IF Dian)P11.DA THEN Diam=PII.DA
    160 60T0200
    170 Matt=Katt+(P11.LAI((3.1415t(P11.SDA!^2/4)+1.5\1`.14:5t(P11.FDA)^2/4)-3.1415:(P11. SDA)^2/4
II
    180 IF DiaA>P11.SDA THEN Diam=P11.SDA
    190 IF Dia^)P1!.FDA THEK Dian=P11.FDA
    200 MEXT I
    210 CLOSE
    220 Matt=Matt-3.1415tLENGTH:(Dian)^2/4
    230 OPEN 'D:ALT2' AS II LEN=SIIE(P41)
    240 DPEN 'C: BBB' AS $2 LEN=SIZE(PJ1)
    250 OPEN 'D:INTF.DAT' AS $3 LEN=SIZE(PII)
    260 P=1:R=1:Q=1
    270 FOK I=! TO 昛
    2B0 READ RECORD \1 I P41
    290 READ RECORD 12 P41.B3 P3!
    300 TolI=P31.TOL:St1=P31.5UF
    310 IF P41,B4=0 THEN 60TO 340
    320 READ RECDRD $2 P41.B4 P3!
    330 TOl2=P31.TOL:5f2=P31.SUF:EOTO 350
    340 Tol 2=100:5{2=500
    350 IF Toli>Tol2 THEN Told=Tol2
    360 IF Sfl>St2 THEN Sfl=5f2
    370 FOF J=1 TO Mif
    3B0 READ RECDRD I3 J Pl!
    390 IF P11.IFAs='Y' THEN GOTO 420
    400 IF TOI1<P11.TDA AND Sf1<P11.SFA THEN 60TD 440 'NEXT J
    4 1 0 ~ E X I I ~ T 0 , 6 5 0 ~ ' N E X T ~ I ~ I - ~
    420 IF Tol1<P11.TSDA AND Toll<P11.TFDA AND SF1<PI1.SFA THEN 60TO 440
    430 EXIT TO,650
        MEXT J
        LET Alt2!(P)=P41.81
        IF P<2 THEN 60TO 500
        FOR A=1 TO P-1
            IF Alt2l(A)=Alt21(P) THEN EXIT T0,510
        MEXT A
        P=P+1
        LET Alt23(R)=P41.B3
        IF P41.84=0 THEN 6RS(R)="N' ELSE GRs(R)="Y"
        IF R<2 THEN GOTO 570
        FOR A=1 TO R-1
            IF Alt23(A)=Alt23(R) THEN EXIT TO,580
        MEXT A
        R=R+1
```



```
1070 SWAP DDD(1),DDD(J)
1080 SMAP EEE(I),EEE(J)
1090 SWAP FFF(I),FFF(J)
1100 SWAP Alt2!(1),Alt21(J)
1110 NEXT J
1120 NEXT !
1130 FDR 1=! TO P
1140 READ RECORD $2 Alt21(1) P31
1150 LPRINT TAE(1) P31.TNs;TAE(13) P31.MNs;TAB(27) AAA(1);TAB(42) BBB(I);TAB(56) CCC(1);TAB(67
) DDD(1);TAB(81) EEE(1);TAB(92) FFF
(1)
1160 MEXT I
1I70 LPRINT:LPRINT
1180 IF R\O THEN 60TO 1200
1190 60TD 1750
1200 LPRINT 'BORINE RECORDS AVAIABLE':LPRINT:LPRINT
1210 LPRINT*
ROUEH CUT
FIMISH CUT'
1220 LPRINT 'MACHINE TDOL TIME PER TOTAL TOTAL AVE TOOL FEED SP
EED FEED SPEED 6
RINDING"
1230 LPRINT : PART TIME COST COST DEPTH (na/Rpa) (an/
ain) (am/kpa) (ma/ain) R
EQUIRED"
1240 FOR I=1 TO R
1250 READ RECORD {2 Alt23(I) P3!
1260 IF MATS='1' THEN 22=,66666
1270 IF KATs='2' THEN 22=1
1280 IF MATs='3' THEN 2L=.70
1290 IF MATs='4' THEN Il=1
1300 AAA(1)=Hatt/F31.MRRI22+.2tNif TTME TO MACHINE
1310 BBB(I)=LOTS8(AAA(I)+P31.LUT) 'TOTAL MACHJNE TIME
1320 CCC(1)=BBE(I)IP31.OC+P31.TCI(AAA(I)-.2#Nif)+P31.SC 'TOTAL COST
1330 DDD(I)=CCC(I)/LDTS 'AVERAGE COST
1340 EEE(I)=P31.TAA&2Z 'DEPTH DF CUT
1350 IF P31.TMR=<0 THEN P31.TMR=1
1360 FFF(1)=P31.TNR
1370 666(I)=(P31.MRR&ZZ)/(FFF(I)\EEE(I))
1380 MEXT I
1390 IF CHOICES='PRR' THEN 60TO 1540
1400 FOR I=1 TO R
1410 FOR J=1 TOR
1420 IF DDD(I)\DDD(J) THEN 60TO 1520
1430 SMAP Alt23(1),Alt23(J)
1440 SMAP AAA(I),AAA(J)
1450 SMAP BBB(I),BBB(J)
1460 SMAP CCC(1),CCC(J)
1470 SMAP DDD(D),DDD(J)
1480 SMAP EEE(J),EEE(J)
1490 5MAP FFF(1),FFF(J)
1500 SHAP 666(1),666(J)
```

1510 SHAP GRS(1),GRS(J)
1520 NEXT J
1530 NEXT 1:60TO 1680
1540 FOR $I=1$ TO $R$
1550 FOR $\mathrm{J}=1$ TD R
1560 IF AAA(l))AAA(S) THEN $60 T O 1660$
1570 SHAF Alt23(I),Alt23(J)
1580 SWAP AAA(I),AAA(J)
1590 SWAP BBB(1), BBB(J)
1600 SWAP CCC(1), CCC(J)
1610 SWAP DDD(1),DDD(J)
1620 SHAP EEE (l),EEE(J)
1630 SWAF FFF (1),FFF(J)
1640 5WAP 656(1),666(J)
1650 SWAP 6RS(I),GRS(J)
1660 NEXT J
1670 NEXT I
1680 FOR I=! TO R
1690 READ RECDRD 2 Alt23(I) P3!
1700 DEP=665 (1) 11.1
1710 ACP=P31.TNR1. 25

DDD(1); TAB(61) EEE(1); TAB(70) P31.
TNR;TAB(80) 666(1);TAB(92) ACP;TAB(103) DEP;TAB(122) 6Rs(1)
1730 NEXT I
1740 LPRINT:LPRINT
1750 IF $9>0$ THEN $60 T 01780$
1760 LPRINT "nd tdols available to perfork brinding"
1770 60TO 2290
1780 LPRINT '6RINDING TOOLS AUAILABLE':LPRINT:LPRINT


1810 FOR I=1 TO O
1820 READ RECORD 12 Alt24(1) P31
1830 IF MATs='1" THEN $27=1$
1840 IF MAT $5==^{\circ} 2^{\prime}$ THEN $2 Z=1$
1850 JF MATs $==^{\prime} 3^{\prime}$ THEN $27=1$
1860 IF MATS='4' THEK $22=1$
1870 IF P31.TWC=0 THEN P3I.TW=25
1880 AAA(I) $=$.28Niftl2+LENETH/(.5tP3I.TW) 'MACHINE TIME PER PART
1890 BBB(I)=LOTSt (AAA (I) + P31. LUT)
1900 CCC(I) $2 B B B(1)$ PPJI.OC+P31.TC\& (AAA(1)-.2tNif)+P31.SC 'TOTAL COST
1910 DDD (I) $=$ CCC( 1 )/LOTS 'AVERAEE COST PER PART
1920 EEE (I)=P31.TAA:Z2
1930 FFF ( 1 )=P31. TM\&. 25
1940 666(J)=P31. MRR223/(EEE(I) IFFF (I))
1950 MEXT I
1960 IF CHOICES='PRR' THEN 60102110
1970 FOR I=1 TO Q

1980 FOF $\mathrm{J}=1 \mathrm{TO} \mathrm{E}$
1990 IF DDD(I) $>0 D D$ (J) THEN EOTO 2080
2000 SWAP Alt24(I), Alt24(J)
2010 SNAP AAA(I), AAA (J)
2020 SWAP BBB (J), BBB (J)
2030 SWAP CCC(I),CCC(J)
2040 SWAP DDD (II,DDD(J)
2050 SHAP EEE (II, EEE (J)
2060 SWAP FFF (I), FFF (J)
2070 SHAP 66G(1),6E6(J)
2080 NEXT J
2090 NEXT I
$210060 T 02240$
2110 FOR $1=1$ T0 0
2120 FDF $\mathrm{J}=1$ TO 0
2130 IF AAA(I) DAAA(J) THEM EOTD 2220
2140 SHAP Alt24(1), Alt24(J)
2150 SWAP ARA (ll, AAA (J)
2160 SHAF BBE(I),BBB(J)
2170 SWAF CCC(I),CCC(J)
2180 SWAP DDD(I),DDD(J)
2190 SWAP EEE(II,EEE(J)
2200 SWAP FFF (I), FFF (J)
2210 SWAP G65(I),665(J)
2220 NEXT J
2230 NEXT I
2240 FOR $I=1$ TO 0
2250 READ RECORD 12 Alt24(1) P31
2260 LPRINT TAB(1) P31.TNs; TAB(11) P31. HN\$;TAE(24) AAA(1);TAB(38) BBB(I);TAB(49) CCC(1);TAB(62
) $\operatorname{DDD}(1) ; T A B(75) \operatorname{EEE}(1) ; T A B(86) \mathrm{FFF}$
(I); TAB(95) 666(I)

2270 NEXT I
2280 LPRINT:LPRINT
2290 CLDSE
ENDFILE
SOURCE

20 LPRINT : OPERATIONS REGUIRED TO"
JO LPRINT " gENERATE INTERNAL FEATURES"
40 LPRINT * WHICH ORIGINATE FROM THE *
50 LPRIRT * REFERENCE END *
60 LPRINT "1titititititititititititititt"
70 LPRINT:LPRINT
80 OPEN "D:INTFR' AS \# LEN=SI2E (P12)
$90 \mathrm{Diam}=1000000$
100 Matt=0:Length=0
110 FOR I=1 TO NIFRR
120 READ RECORD 11 Pl2
130 Length=Length+P12.LB
140 IF P12.IFRBs="Y' THEN EOTO 180
150 Matt=Matt+(P12.LB)(3.1415 (P12.DB)^2/4))

```
    160 IF Diaa>P12.DE THEN Dias=P12.DB
    170 6070 210
    180 Matt=Matt+(P12.LBt(13.1415&(F12.SDB)^2/4)+1.51(3.1415:(P12.FDB)^2/4)-3.1415:(P12.SDB1^2/4
II)
    190 IF Diam>P12.FDB THEN Diam=P12.FDB
    200 IF Dia&P12.SDB THEN Djan=P12.SDB
    210 MEXT I
    220 CLOSE
    230 Matt=Matt-3.14154Lengtht(Dian)^2/4
    240 DPEN "D:ALT3' AS 11 LEN=SIZE(P42)
    250 DPEN 'C: BBE" AS $2 LEN=SIZE(P3I)
    260 OPEN 'D:INTFR' AS $3 LEM=SI2E(PI2)
    270 P=1:R=1:Q=1
    280 FOR I=1 TO CcI
    290 READ RECORD I1 I P42
    300 READ RECORD I2 P42.CJ P31
    310 T011=P31.TDL:S{1=P31.SUF
    320 IF P42.C4={0 THEN 60TO 350
    330 READ RECDRD $2 P42.C4 P31
    340 T012=P31.TOL:Sf2=P31.SUF:60TO 360
    350 Tol2=100:5f2=500
    360 IF Told>Tol2 THEN Toll=Tol2
    370 IF Sf1>5f2 THEN Sf1=5f2
380 FOR J=1 TO Nifr
390 READ RECORD 13 J P12
400 IF P12.IFRBS='T' THEN 60TO 430
410 IF TOl\<P12.TDR AND Sf1<P12,SFB THEN GOTO }45
420 EXIT T0,660
IF TOl\<P12.TFDB AND TOLI<P12.TSDB AND 5$1<P12.SFB THEN 60TO 450
        ExIT T0,660
    MEXT J
    LET Alt3I(P)=P42.Cl
    IF P<2 THEN 6070 510
    FOR A=1 TO P-1
        IF Alt31 (A)=Alt31(P) THEN EXIT TO,520
    NEXT A
    P=P+1
    LET AltJZ(R)=P42.C3
    IF P42.C4=0 THEN Grs(R)='N' ELSE Grs(R)='Y'
        IF RC2 THEN GOTD 5BO
        FOR A=1 TD R-1
        IF AltJ3(A)=Alt33(R) THEN EXIT TO,590
        MEXT A
        R=R+1
        IF P42.C4=0 THEN 60TO }66
        LET Alt34(日)=P42.C4
        IF Q<2 THEN 60TO 650
        FOR A=1 TO Q-1
        IF Alt34(A)=Alt34(0) THEN EXIT T0,660
        NEXT A
        Q=0+1
```

```
    660 NEXT I
    670 P=F-1:R=R-1:0=0-1
    680 IF P>(I THEN GOTO 710
    60 LPRINT "NO DRILLINE TODLS AVAILABLE"
    700 60TO 1190
    710 LPRINT 'DRILLINE TODLS AVAILABLE":LPKINT:LPRINT
    720 LPRINT "MACHINE TOOL TIME PER TOTAL TOTAL AVE
```



```
an/RPK) (am/ain)"
    740 FOR I=1 TO P
    750 READ RECORD \2 Alt31(1) P3!
    760 IF Rat $='1" THEN 21=.6666
    770 IF hat$='2' THEN 2I=1
    780 IF kats='3' THEN 22=.70
    790 IF Mats='4' THEN 2I=1
    800 AA(I)={Length$3.1415t(Diar)^2/4)/P31.MRR 'LENGTH/FEED RATE
    810 BE(I)=Lots! (AA(I)+P3I.LUT)
    820 CC(I)=BB(I):P31.OC+P31.TC\AA(I)+P31.SC 'TOTAL CDST
    830 DD(l)=CC(l)/Lots 'AVERAGE COST
    840 IF P31.TMR<=0 THEN P3!.TNR=2
    850 EE(I) =P31.TARt.25 'FEED RATE
    860 FF(I)=P31.MRR&2I/(EE(I)&(3.14151(Diam)^2/4)) 'SPEED
    070 NEXT I
    880 IF Choice$=*PRR" THEN GOTO 1020
    890 FDR {=1 T0 P
    900 FOR J=1 TD P
    910 IF DD(I)>DD(J) THEN EDTO 990
    'MEXT J
    920 SHAP AA(I),AA(J)
    930 SWAP BB(I),BB(J)
    940 SMAP CC(I),CC(J)
    950 SWAP DD(I),DD(J)
    960 SWAF EE(I),EE(J)
    970 SWAP FF(I),FF(J)
    980 SNAP Alt3I(I),AltJI(J)
    9 9 0 ~ N E X T ~ J ~
1000 NEXT I
1010 60TD 1140
1020 FOR l=1 TO P
1030 FOR J=1 TO P
1040 IF AA(I)>AA(J) THEN EOTO 1120
1050 SNAP AA(I),AA(J)
1060 SWAP BB(I),BB(J)
1070 SHAP CC(I),CC(J)
10BO SHAP DD(I),DD(J)
1090 SWAP EE(I),EE(J)
1100 SNAP FF(I),FF(J)
1110 SHAP Alt3!(1),Alt3!(3)
1120 NEXT J
1130 REXT I
1140 FOR I=1 TO P
```




```
2070 SWAP FF(I),FF(J)
2080 SMAP 6E(I),6E(J)
2090 NEXT J
2100 NEXT I
2110 605D 2250
2120 FOK I=1 T0 O
2130 FDR J=1 TD 日
2140 IF AA(I))AA(J) THEN 60TO 2230
2150 SMAP Alt34(1),Alt34(J)
2160 SMAP AA(l),AA(J)
2170 SHAF BB(I),BB(J)
21BO SMAF CC(I),CC(J)
2190 SHAP DD(I),DD(J)
2200 SNAP EE(I),EE(J)
2210 SWAP FF(I),FF(J)
2220 SWAP 6E(1),66(J)
2230 MEXT J
2240 MEXT I
2250 FOR 1=1 TO Q
2250 READ RECORD $2 Alt34(1) P31
2270 LPRINT TAB(1) P31.TNs;TAB(1!) P3!.NNs;TAB(25) AA(1);TAB(38) BB(1);TAB(48) CC(1);TAB(60) D
D(I);TAB(72) EE(I);TAB(B2) FF(I);TA
8(92) 65(I)
2280 NEXT I
2290 LPRINT:LPRINT
2300 CLOSE
ENDFILE
SOURCE
```



```
        20 LPRINT - OPERATIONS TO GENERATE FEATURES *
        30 LPRINT * AT OPPOSITE END DF FEATURE
```



```
        50 LPRINT:LPRINT
        60 CLOSE
        70 DPEN 'D:INTFO" AS II LEN=SILE(P13)
        80 DIAM=1000000
        90 FOR I=1 TD MIFD
    100 READ RECORD !1 \PIJ
    110 LENETH=LENGTH+PIJ.LC
    120 IF PIJ.IFOCs='T' THEN 60TO 160
    130 MATT=HATT+(PI3.LCt(3.1415t(PI3.DC)^2/4))
    140 IF DIAM\PIJ.DC THEN DIAM=PIJ.DC
    150 60TO 190
    160 MATT=NATT+(P13.LCt((3.1415t(PI3.SDC)^2/4)+1.5t(3.1415t(P13.FDC)^2/4)-3.1415t(PI3.5DC)^2/4
II
    170 IF DIAKPP13.FDC THEN DIAK=P13.FDC
    180 IF DIAMPP13.SDC THEN DIAM=P13.SDC
    190 NEXT I
    200 CLOSE
    210 MATT=MATT-((DIAM)^2/4)13.1415&LENGTH
    220 OPEN 'D:ALT4' AS 11 LEM=SILE(P43)
```

```
    230 OPEN 'C:BBB' AS I2 LEN=5ILE(P3!)
    240 DPEN "D:INTFO" AS IJ LEN=S!2E(PIJ)
    250 P=1:R=1:Q=1
    260 FOR I=1 TO DDS
    270 READ RECORD || I P43
    2B0 READ RECDRD $2 P43.D\ P3!
    290 TOLI=P31.TOL:5FI=P31.SUF
    300 IF P43.D4=<0 THEN 60TO 330
    310 READ KECORD 12 P43.D4 PJ!
    320 TOL2=PJ1.TOL:SF2=P31.SUF:50T0 340
    330 TOL2=100:5F2=100
    340 IF TOL1)TOL2 THEN TOL1=TOL2
    350 IF SFI)SF2 THEN SFI=SF2
    360 FOF J=1 TO NIFO
    370 READ RECORD $3 J Pl3
    380 IF PIJ.IFOCS="T" THEN GOTO 410
    390 IF TOLI<FIS.TDC AND SFI<PIJ.SFC THEN 6OTO 430
    'NEXT J
        EXIT TO,640
        IF TOLI<PI3.TSDC AND TOLI<PI3.TFDC AND SF1<PI3,SFC THEN GOTO 430
        ExIT T0,640
        MEXT J
        LET ALTA1(P)=P43.D1
        IF P<2 THEN 60TO 490
        FOR A=1 TO P-1
        IF ALTA1(A)=ALT41(P) THEN EXIT TD,500
        MEXT A
        P=F+1
        LET ALT43(R)=P43.DJ
        IF P43.D4=0 THEN GRS(R)='N" ELSE 6RS (R)='Y"
        IF R<2 THEN 60TO 560
        FOF: A=1 TO R-1
            IF ALT43(A)=ALT43(R) THEN EXIT TO,570
        NEXT A
        R=R+1
            570 IF P43.D4=0 THEN 60TO }64
            580 LET ALT44(D)=P43.D4
            590 IF Q<2 THEN 6DTO 630
            600 FOR A=1 TO Q-1
            610 IF ALT44(A)=ALT44(Q) THEN EXIT TO,640
            6 2 0 ~ N E X T ~ A ~
            630 D=041
```



```
            650 P=P-1:R=R-1:Q=Q-1
            6 6 0 ~ I F ~ P > O ~ T H E N ~ 6 0 T O ~ 6 9 0 ~
            670 LPRINT "ND DRILLING TOOLS AVAILABLE TO PERFORM THE OPERATION"
            680 60TO 1180
            690 LPRINT "DRILLING RECORDS AVAILABLE"
            700 LPRINT:LPRINT:LPRINT
            710 LPRINT "MACHINE TOOL TIME PER TOTAL TOTAL AVE F
                EED SPEED'
                    720 LFRINT * 
                    PART TIME
                            COST
                            COST
```

```
/RPM) (ma/Ein)*
    730 FOR I=1 TO P
    740 READ RECORD 12 ALT41(1) P3I
    750 IF MATS='1" THEN II=.66666
    760 IF MATS='2' THEN 22=!
    770 IF MATS='3* THEN 12=.70
    780 IF MAT&=4' THEN 2L=1
    790 AA(I)=(LENETH&3.1415%(DIAM)^2/4)/P31.MRR
    800 BE(I) =LOTSI (AA(I)+P31.LUT)
    B10 CC(1)=B8(I)IP31.OC+P31.TCIAA(I)+P31.SC
    820 DD(1)=CC(1)/LOTS
    830 IF P3!.TNR=0 THEN P31.TNR=2
    B40 EE(I)=P31.TNR$.25
    850 FF(I)=P31.MFR/(EE(I):(3.14158(DIAM)^2/4))
    860 NEXT I
    870 IF CHOICE$='PRR' THEN EOTD 1010
    880 FOR I =1 T0 P
    890 FDR J=1 TO P
    900 IF DD(I)>DD(J) THEN EOTO 980
    910 SMAP AA(I),AA(J)
    920 SMAP BB(I),BB(J)
    930 SHAP CC(I),CC(J)
    940 SWAP DD(IJ,DD(J)
    950 SWAP EE(I),EE(J)
    960 SNAP FF(I),FF(J)
    970 SUAP ALT41(I),ALT41(J)
    980 MEXT J
```



```
    10006070 1130
    1010 FOK 1=1 TD P
. 1020 FOR J=1 TO P
    1030 IF AA(I)\AA(J) THEN GOTO 1110
    1040 SNAF AA(I),AA(J)
    1050 SWAP BB(I),BE(J)
    1060 SNAF CC(II,CC(J)
    1070 SWAP DD(I),DD($)
    1080 SHAP EE(I),EE(J)
    1090 SWAP FF(I),FF(J)
    1100 SHAP ALT41(I),ALT41(J)
    1110 NEXT J
    1120 NEXT I
    1130 FOR I=1 TO P
    1140 READ RECORD $2 ALT41(1) P3!
    1150 LPRINT TAB(1) P31.TN$;TAB(12) P31.TN$;TAB(22) AA(1);TAB(35) BB(1);TAB(4B) CC(I);TAB(65) D
O(1);TAB(82) EE(I);TAB(97) FF(I)
1160 NEXT I
1170 LPRINT:LPRINT
11BO IF RDO THEN GOTO 1210
l190 LPRINT "NO BORING TDOLS AVAILABLE TO PERFORM THE OPERATION"
1200 60TO }175
1210 LPRINT"AVAILABLE BORING RECORDS`:LPRINT:LPRINT
```



```
1680 FOR I=! TO R
1690 READ RECORD 12 ALT43(I) P3!
1700 DEP=65(1)$1.1
1710 ACP=P3!.TNRt.25
1720 LPEINT TAB(1) P31,TN!;TAB(12) P31.MN%;TAB(21) AA(1);TAB(33) BB(1);TAB(45) CC(1);TAB(55) D
D(1);TAB(67) EE(1);TAB(76) P31.TNR;
TAB(84) 65(1);TAB(97) FF(1);TAB(104) DEP;TAB(11B) ER$(1)
1730 NEXT I
1740 LPRINT:LPRINT
1750 IF Q>O THEN 6OTO }178
l760 LPRINT *NO ERINDING TDOLS AVAILABLE TD PERFORM THE DPERATION'
1770 GOTO 2270
1780 LPRINT * AVAILABLE GRINDINE RECORDS':LPRINT:LPRINT
1790 LPRINT MACHINE TODL TIME PER TOTAL TOTAL AVE TOLL
TOOL TOOL"
1800 LPRINT - PART TIME COST COST DEPTH
FEED SPEED'
1810 FOR I=1 TD Q
1820 READ RECORD 12 ALT44(1) P31
1830 ]F MATS="1" THEN Z2=1
1840 JF MATS="2' THEN 2L=1
1850 IF MATS='3' THEN 22=1
1860 IF MAT$="4' THEN 2I=1
1870 AA(I)=.2&NIFD+LENGTH/(.5$P31.TH)
1880 BB(I)=LOT5: (AA(1)+P31.LUT)
1890 CC(I)=BB(I)&P31.OC+P31.TCI(AA(I)-. 2%NIFD)+F31.SC
1900 DD(1)=CC(1)/LOTS
1910 EE(I)=P31, TAA:Z2
1920 FF(I)=P3I.THt.25
1930 6E(I)=P31.HRR122/IEE(I)IFF(I))
1940 NEXT I:IF CHOICES='FRR' THEN 60TO 2090
1950 FOR I=1 TO D
1960 FOR J=1 TO O
1970 IF DD(I)\DD(J) THEN GDTO 2060
1980 SWAP ALT44(I),ALT44(J)
1990 SHAP AA(I),AA(J)
2000 SHAP BB(I),BB(J)
2010 SUAP CC(I),CC(J)
2020 SMAP DD(I),DD(J)
2030 SNAP EE(I),EE(J)
2040 SMAP FF(I),FF(J)
2050 SHAP GE(I),G6(J)
2060 NEXT J
2070 NEXT I
2080 60TO 2220
2090 FOR I=1 TO Q
2100 FOF J=1 TO O
2110 IF AA(I)>AA(3) THEN GDTO 2200
2120 SWAP ALT44(I),ALT44(J)
2130 SHAP AA(I),AA(J)
2l40 SNAP BB(I),BE(J)
```

```
    2150 5KAP CC(1),CC(J)
2160 SWAP DD(1),DD(J)
2170 SWAP EE(I),EE(J)
2180 SWAP FF(I),FF(J)
2190 SWAP 66(1),GE(J)
2200 NEXT J
2210 MEXT I
2220 FOR 1=1 TO Q
2230 READ RECORD {2 ALT44(1) P31
2240 LPRINT TAB(1) P31.TNs;TAB(12) P31.MNs;TAB(23) AA(1);TAB(37) BB(I);TAB(49) CC(I);TAB(61) D
D(1);TAB(74) EE(1);TAB(84) FF(1);TA
B(94) 6E(I)
    2250 NEXT I
    2260 LPRINT:LPRINT
    2270 CLOSE
ENDFILE
```


## APPENDIX I

## DESCRIPTION OF MACHINE RECORDS

## Abbriviations For Tables of Machine Files

```
A. Machine Number
B. Horse Power
C. * of operations which can be performed
D. Code for each operation
E. Set-up cost of operation on the machine
F. Dperator Cost ($/min)
G. Load/Unload time (min)
H. % Down Time for machine
I. Effeciency of spindle
J. Maximum Length of part which can be machined (mm)
K. Maximum Diameter of part which can be machined (mm)
L. Maximum Width of part which can be machined (mm)
M. Maximum Height of part which can be machined (mm)
N. # of tools available to perform the operation
O. Tool Number
P. Tool Cost ($/min)
Q. Tool material (HSS=1, Carbide=2)
R. # of teeth on tool
S. Tool Diameter (mm)
T. Tool Width (mm)
U. Tool Nose Radius (mm)
V. Metal Removal Rate (mm3/min)
W. Maximum Depth of cut (mm)
X. Tolerence Achievable
Y. Surface Finish Achievable
```

Note all information is considering the part
material to be 1020 steel. The information which was inputted for the examples shown in the report are listed in the following tables.




 F000000000000000000000000000000000000000000


SQuoxad allilovi so ajava $\simeq$



| $=\mathrm{n}$ | in | in | $n$ | $\star$ | m | c | $\infty$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 玉c | c | 0 | c | 0 | － | － | e |
| －o | － | c | 0 | － | － | c | c |
| $x \text { in }$ | 응 | $\underset{\sim}{\mathrm{N}}$ | 으N | $\stackrel{\sim}{\sim}$ | E | $\underset{\sim}{\text { c/n }}$ | $\stackrel{i}{\sim}$ |
| $\rightarrow \text { 会 }$ | 응 | $\underset{\mathrm{C}}{\mathrm{C}}$ | in | $\underset{\sim}{C}$ | 앙 | $\begin{aligned} & \mathrm{O} \\ & \mathrm{C} \end{aligned}$ | E |
| $-n$ | \％ | C－ | 客 | $\mathfrak{\sim}$ | c | c | ¢ |
| $=\mathrm{n}$ | $\cdots$ | $n$ | $\square$ | $a$ | $a$ | c | $c$ |
| $e_{i}^{i n}$ | $\stackrel{c}{\dot{\sim}}$ | $\begin{aligned} & \text { in } \\ & \dot{N} \end{aligned}$ | $\stackrel{\mathrm{C}}{ }$ | $\stackrel{\sim}{i}$ | $\stackrel{m}{\sim}$ | $\begin{aligned} & \text { C- } \\ & \dot{N} \end{aligned}$ | $\stackrel{\square}{\sim}$ |
| $=\stackrel{i n}{N}$ | $\stackrel{\sim}{n}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{n}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{n}{n}$ | $\stackrel{\sim}{N}$ |
| $=\dot{n}$ | $\underset{\sim}{\stackrel{\rightharpoonup}{i}}$ | $\dot{m}$ | $\begin{aligned} & \oplus \\ & \dot{0} \end{aligned}$ | $\stackrel{\sim}{-}$ | $\stackrel{¢}{\sim}$ | $\begin{aligned} & \bullet \\ & \bar{\square} \end{aligned}$ | $\underset{\sim}{\sim}$ |
| ＝－ | m | in | － | $m$ | $\sim$ | － | m |
| Um |  |  | m |  |  | m |  |
| $\infty \stackrel{n}{\square}$ |  |  | $\underset{\sim}{ \pm}$ |  |  | $\bar{\sim}$ |  |
| $<\frac{\underset{\sim}{c}}{\substack{\text { E } \\ \hline \\ \hline}}$ |  |  | $\xrightarrow{-}$ |  |  | $\stackrel{N}{\underset{E}{N}}$ |  |





 000000000000000000000000000000000 ninininincicinninnoce






|  |  |  | 5 | 26.8 | . 275 | 1.9 | 10 | 80 | 500 | 250 | 0 | 0 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N-45 | 11 | 1 | 1 | 20.5 | . 283 | 2 | 5 | 90 | 600 | 175 | 0 | 0 | 2 |
| A-90 | 13 | 2 | 3 | 16.8 | . 291 | 1.9 | 15 | 85 | 550 | 190 | 0 | 0 | 4 |
|  |  |  | 5 | 12.6 | . 291 | 2.1 | 5 | 90 | 550 | 190 | 0 | 0 | 4 |
| B-30 | 21 | 3 | 1 | 19.8 | . 275 | 2.0 | 15 | 80 | 700 | 220 | 0 | 0 | 3 |
|  |  |  | 3 | 23.5 | . 275 | 2.0 | 15 | 80 | 600 | 200 | 0 | 0 | 8 |
|  |  |  | 5 | 25.5 | . 275 | 1.8 | 15 | 75 | 600 | 200 | 0 | 0 | 2 |
| B-31 | 24 | 2 | 3 | 17.4 | . 283 | 1.5 | 12 | 78 | 500 | 100 | 0 | 0 | 4 |
|  |  |  | 5 | 26.6 | . 283 | 1.9 | 12 | в0 | 500 | 100 | 0 | 0 | 3 |
| 16-10 | 17 | 1 | 6 | 33.6 | . 325 | 3.0 | 15 | 70 | 300 | 200 | 0 | 0 | 3 |
| IG-50 | 19 | 1 | 6 | 35.8 | . 383 | 2.8 | 10 | 78 | 1000 | 300 | 0 | 0 | 4 |
| EG-25 | 8 | 1 | 2 | 39.8 | . 341 | 3.3 | 13 | 80 | 300 | 175 | 0 | 0 | 2 |
| EG-40 | 12 | 1 | 2 | 39.0 | . 35 | 3.4 | 15 | 85 | 1000 | 250 | 0 | 0 | 3 |
| F-37 | 21 | 2 | 1 | 19.9 | . 275 | 2.1 | 15 | 90 | 1000 | 300 | 0 | 0 | 3 |

 Nō óo









| n $n$ | $\checkmark$ | $\infty$ | $\sim$ | m | $\bigcirc$ | $\infty$ | n | － | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| －c | － | c | c | － | － | c | c | $c$ | $\bigcirc$ |
| $0 \quad 0$ | － | c | － | c | － | c | c | c | c |
| －¢ | $\underset{\sim}{\text { c }}$ | 음 | $\stackrel{\text { 알 }}{ }$ | $\stackrel{\sim}{n}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\text { e }}{\text { e }}$ | E | E | － |
| 은 亭 | $\stackrel{\text { 앋 }}{ }$ | \％ | ¢ | $\stackrel{\circ}{\square}$ | 응 | $\stackrel{\sim}{6}$ | $\stackrel{\text { ç }}{\text { c }}$ | \％ | m |
| $\stackrel{\text { ¢ }}{\sim}$ | $\stackrel{\square}{\circ}$ | $\underset{\sim}{\infty}$ | 思 | G | $\stackrel{\square}{\circ}$ | $\stackrel{\circledR}{\infty}$ | $\stackrel{\sim}{\sim}$ | 囬 | ¢ |
| $\cdots$ | $\sim$ | ㄷ | 』 | n | $\cong$ | － | $=$ | $\stackrel{\sim}{\sim}$ | c |
| $\stackrel{\text { ® }}{\sim}$ | ミ | $\stackrel{9}{\square}$ | $\stackrel{\square}{-}$ | $\stackrel{\infty}{\square}$ | う | $\stackrel{\sim}{\sim}$ | $\stackrel{\square}{-}$ | F | $\because$ |
| $\stackrel{n}{\underset{\sim}{n}} \quad \stackrel{n}{n}$ | $\stackrel{n}{\vdots}$ | $\stackrel{\text { in }}{\underset{\sim}{n}}$ | $\stackrel{\sim n}{\approx}$ | $\stackrel{\sim}{n}$ | $\stackrel{\sim}{N}$ | $\stackrel{\sim}{n}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{\sim}$ |
| $\stackrel{\infty}{\sim}$ | $\stackrel{\Xi}{\underset{~}{\Sigma}}$ | $\begin{aligned} & \stackrel{ᄃ}{\dot{\circ}} \\ & \hline \end{aligned}$ | $\stackrel{\sim}{\sim}$ | $\dot{\tilde{\sim}}$ | $\begin{aligned} & \dot{9} \\ & \dot{\square} \end{aligned}$ | $\stackrel{\sim}{n}$ | $\begin{aligned} & \stackrel{\leftrightarrow}{\dot{N}} \\ & \dot{\sim} \end{aligned}$ | $\begin{aligned} & \underset{\sim}{\sim} \\ & \hline \end{aligned}$ | N |
| － | － | m | $\cdots$ | － | m | m | － | － | in |
|  | m |  |  | $\sim$ |  | － | m |  |  |
|  | $\pm$ |  |  | $\stackrel{\square}{-}$ |  | $\stackrel{\sim}{\sim}$ | $\bar{\sim}$ |  |  |
| $\stackrel{\square}{\square}$ | $\begin{aligned} & \underset{\sim}{2} \\ & \end{aligned}$ |  |  | $\underset{\underset{I}{I}}{i}$ |  | $\cdots$ | $\frac{\sigma}{\vdots}$ |  |  |



|  |
| :---: |
|  |  |
|  |  |


| $\cdots$ | $\sim$ | $m$ | $n$ |
| :---: | :---: | :---: | :---: |
| c | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| $\begin{aligned} & 0 \\ & N \\ & N \end{aligned}$ | $\underset{\sim}{\underset{N}{n}}$ | $\begin{aligned} & 0 \\ & \stackrel{i}{N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$ |
| O | $\underset{\sim}{\circ}$ | $\begin{aligned} & 0 \\ & i n \end{aligned}$ | $\begin{aligned} & \text { C } \\ & \hline 0 \\ & \hline \end{aligned}$ |
| $\underset{\sim}{\boldsymbol{\sigma}}$ | c | $\underset{\sim}{n}$ | $\underset{6}{C}$ |
| $\underset{\sim}{n}$ | $\cdots$ | $0$ | $\underset{\sim}{C}$ |
| $\dot{\sim}$ | $\underset{\sim}{\bullet}$ | $\stackrel{\square}{\square}$ | $\because$ |
| $\stackrel{n}{\underset{\sim}{N}}$ | $\stackrel{\sim}{\underset{N}{N}}$ | $\stackrel{\sim}{\sim}$ | $$ |
| $\begin{aligned} & \text { e } \\ & \text { n } \end{aligned}$ | $\stackrel{I}{0}$ | $\begin{aligned} & 0 \\ & \dot{n} \end{aligned}$ | $\dot{\sim}$ |
| m | $m$ | $\cdots$ | $m$ |
| - | N |  | $\cdots$ |
| $0$ | $\mathfrak{\sim}$ |  | 등 |
| \# | $\begin{aligned} & \text { C } \\ & \text { in } \\ & \text { Ú } \end{aligned}$ |  | $\stackrel{\text { c }}{\text { C }}$ |

The author was borm February 271962 in Windsor, Ontario. In September 1981 he attended the University $0 f$ Windsor and joined the department of Industrial Engineering. In June 1985 he graduated from the department with a Bachelor's degree in Industrial Engineering. Thereupon he enrolled as a graduate student in the department of Industrial Engineering.


[^0]:    Tapered Features -a tapered feature unlike a stepped feature has a diameter which changes as you travel the length of the feature. The change is uniform along the length of the part.

    The inputs required are;
    -Length, and Tolerance
    -Start Diameter, and Tolerance

