University of Windsor Scholarship at UWindsor

Electronic Theses and Dissertations

Theses, Dissertations, and Major Papers

1-1-1979

Behaviour of reinforced and prestressed waffle slabs.

Ibrahim Sayed Ahmed el-Sebakhy University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

el-Sebakhy, Ibrahim Sayed Ahmed, "Behaviour of reinforced and prestressed waffle slabs." (1979). *Electronic Theses and Dissertations*. 6726. https://scholar.uwindsor.ca/etd/6726

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

BEHAVIOUR OF REINFORCED AND

PRESTRESSED WAFFLE SLABS

by

Ibrahim Sayed Ahmed El-Sebakhy

A Thesis submitted to the Faculty of Graduate Studies through the Department of Civil Engineering in Partial Fulfillment of the requirements for the degree of Master of Applied Science at The University of Windsor

> Windsor, Ontario, Canada 1979

UMI Number: EC54719

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI®

UMI Microform EC54719 Copyright 2010 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

> ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

AB19. 4883

CIbrahim Sayed Ahmed El-Sebakhy 1979

713340

To my wife and parents

ABSTRACT

Reinforced concrete waffle slabs have been used quite often in buildings and other structures, resulting in a reduced dead weight and material cost. The use of prestressed concrete waffle slabs for rectangular and skew decks of short and medium span bridges can also lead to further economics in dead weight and material.

In this investigation, a series solution for the analysis of rectangular and skew concrete waffle slabs by the orthotropic plate theory is presented. Single spans of reinforced and prestressed concrete deck bridge models are investigated. The deflection function of the slab is assumed in the form of a Fourier series so as to satisfy the governing differential equation of equilibrium. The arbitrary constants in the deflection function are chosen to satisfy the appropriate boundary conditions. The in-plane prestressing force along the edges and the resulting edge moment are represented by a Fourier series using a graphical technique.

Available computer program for solving orthotropic plates or slabs subjected to lateral loads is modified to compute the stresses and deflection due to the prestressing force. This computer program can be used for reinforced and prestressed concrete waffle slabs of rectangular and skew shapes subjected to uniform as well as concentrated

iv

transverse loads.

The experimental study is carried out on three one-eighth models of reinforced concrete waffle slabs and two one-eighth models of prestressed concrete waffle slabs. The first slab is tested under uniformly distributed load applied by means of air pressure while the remaining slabs are tested under concentrated loads only at various positions; the tests were carried in the elastic domain as bridge slabs and finally to collapse. The effect of concrete cracking on the rigidities of the slabs is studied. The strains and deflections obtained from the tests are found to be in satisfactory agreement with the theoretical solution. Furthermore, theoretical studies are carried out on two types of structures, the waffle-type and the slab-type with a uniform thickness, both structures having the same volume of concrete and reinforcing steel. The comparison of stresses and deflection for the two types of structures show that the waffle type exhibits much smaller deflections and lower stresses, especially for prestressed concrete waffle slabs.

v

ACKNOWLEDGEMENTS

The author wishes to express his deep appreciation to his supervisor Dr. J.B. Kennedy, Professor of Civil Engineering at the University of Windsor, for his extremely valuable comments, guidance, encouragement, generous aid and constructive criticism.

The author would like to thank Dr. D.S. Gupta, Chief Engineer at Canadian Bridge Division, Windsor, Ontario, for his assistance and guidance in the computer program.

The aid of Mr. G. Michalczuk and Mr. P. Feimer during the experimental work is greatly appreciated. Thanks are also due to the staff of the computer centre for their assistance and help.

The financial assistance given by the National Research Council of Canada under Grant No. A-1896, and the scholarship granted by the University of Windsor are sincerely appreciated.

Thanks are also due to Mrs. Barbara Denomey for typing the manuscript.

vi

TABLE OF CONTENTS

	PAGE
ABSTRACT	iv
ACKNOWLEDGEMENTS	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	x
LIST OF TABLES	xv
LIST OF APPENDICES	xvi
LIST OF ABBREVIATIONS	xvii
CHAPTER I INTRODUCTION	l
1.1General1.2Objective1.3Scope	1 2
CHAPTER II HISTORICAL REV	1EW 4
' 2.1 Review of Lite 2.2 Prestressed Co	rature
CHAPTER III FORMULATION	
 3.1 General 3.2 Assumptions 3.3 Governing Diff 	9 In the second
Moments 3 4 Relation of St	loads and Edge
Bending Action 3.5 Elastic Proper	ties of the Waffle
Slab Model	13
3.6 Rigidities of 3.6.1 Flexura	Uncracked Sections 15 1 Rigidities 15
3.6.2 Torsion 3.7 Plane Stress H stressing Ford	Problem Due To Pre- Ce
3.7.1 Elastic Action 3.8 Boundary Condi 3.8.1 Bridge	c Constants for Membrane 21 23 23 24 24

		27
CHAPTER IV	ANALYTICAL SOLUTION	21
4.1	General	27
4.2	Complementary Solution	27
	4.2.1 Wallie Slab Which is flexularly Strong and Torsionally Weak	28
4.3	Particular Solution	30
4.4	Symmetric and Anti-Symmetric	~ 1
4 5	Loading	31
	Force In A Fourier Series by Graphical	
	Method	31
	SATTSFACTION OF BOUNDARY CONDITIONS	33
CHAFIER V	SATISFACTION OF BOONDART CONDITIONS	55
5.1	Symmetric Load	33
5.2	Anti-Symmetric Load	39
CHAPTER VI	EXPERIMENTAL PROGRAM	44
6.1 6.2	Scope of the Experimental Program	44 44
Q • Z	6.2.1 Concrete	44
6.3	Steel	45
	6.3.1 Mild Steel For Reinforced	
	Concrete Slabs	45
	6.3.2 High Tensile Steel For The Pre-	46
6.4	Formwork	46
6.5	Experimental Equipment	47
-	6.5.1 Prestressing Equipment	47
	6.5.2 End Bearing Plate	47
	6.5.3 The Steel Frame For Producing	40
<i>с с</i>	Uniformly Distributed Load	40
6.7	Ine construction of the stab Moders	50
0.7	6.7.1 Strain Gauges On The	•••
	Reinforcement	50
, ,	6.7.2 Strain Gauges on The Concrete	51
	6.7.3 Mechanical Dial Gauges	51
	6.7.4 Load Cells	52
	6./.4(a) UNIVERSAL FIAG LOAG	52
	6.7.4(b) Cylindrical Load	
	Cell	52
6.8	Experimental Setup and Test Procedure	52
	6.8.1 Reinforced Concrete Waltle	50
	SLADS, Group A	52
	6.8.1(b) Slab A.2	53
	6.8.1(c) Slab A.3	54

viii

PAGE

PAGE

	6.8.2	Prestressed Concrete Waffle Slabs, Group B 6.8.2(a) Slab B.l 6.8.2(b) Slab B.2	55 55 55
CHAPTER VII	DISCUS	SION OF RESULTS	57
7.1	General	1	57
1.2	(Group	A) Clab Under Uniform	57
	7.2.1	Load (Slab A.1)	57
	7.2.2	trated Load (Slab A.2)	58
	7.2.3	ted Load (Slab A.3)	61
7.3	Prestr Group	B)	61
	7.3.1	Rectangular Slab Under Concen- trated Load (Slab B.1)	61
	7.3.2	45° Skew Slab Under Concentra- ted Load (Slab B.2)	62
7.4	Compar a Waff	ison Between the Behaviours of le Slab and a Uniform Thickness	
	Slab H crete	Having the Same Volume of Con- and Reinforcement	63
7.5	Source	es of Errors	65
CHAPTER VIII	CONCLU	JSIONS AND RECOMMENDATIONS	67
8.1 8.2	Conclu Sugges	isions stions	67 69
FIGURES			70
APPENDIX A		1	43
APPENDIX B		1	49
APPENDIX C		l	53
APPENDIX D		1	55
APPENDIX E		l	60
APPENDIX F		l	.69
BIBLIOGRAPHY.		2	06
VITA AUCTORIS	5	2	09

LIST OF FIGURES

FIGURE	P	AGE
3.1	Bottom Plan Layout Waffle Slabs A _l and A ₂	71
3.2	Geometric Shape of the Ribs and the Plate for Waffle Slab	72
3.3	Orthotropic Rigidities of Waffle Slab	73
3.4	Lateral Loading Cases for Group A Slabs	74
3.5	Lateral Loading Cases for Group B Slabs	75
4.1	Steel Loading Plates	75
4.2	Expansion of the Load in Fourier Series	76
6.1	The Reinforcing Steel and Anchorage System	77
6.2	Form Before Casting the Concrete	77
6.3	Hydraulic 20 KIP Prestressing Jack	78
6.4	End Blocks and Load Cells for Prestressed Skew Slab	78
6.5	Loading System for Uniform Load	79
6.6	Regulator System and Pressure Gauges	79
6.7	Transverse Section for the Loading Frame	80
6.8	Longitudinal Section for the Loading Frame	81
6.9	Reinforced Concrete Waffle Slab A.l	82
6.10	Reinforced Concrete Waffle Slab A.2	83
6.11	Reinforced Concrete Skew Waffle Slab A.3, Skew of 45 ⁰	84
6.12	Prestressed Concrete Waffle Slab B.l	85
6.13	Prestressed Concrete Waffle Slab B.2	86

6.14	Dial Gauges In Position	87
6.15	Point Loading System	87
6.16	Loading System for Slab A.2	88
6.17	Loading System for the Skew Slab A.3	88
6.18	Loading System for Prestressed Slab B.l	89
6.19	Loading System for Prestressed Skew Slab B.2	89
6.20	Prestressing Force and Edge Moments For Slab B.l	90
6.21	Prestressing Force and Edge Moments For Skew Slab B.2	91
7.1	Slab A.l Failure	92
7.2	Slab A.l Cracks	92
7.3	Load Deflection Relationship for Slab A.l	93
7.4	Load Deflection Relationship for Slab	94
7.5	Transverse Deflection	95
7.6	Longitudinal Deflection	96
7.7	Load Strain Relationship for Slab A.l At Centre	97
7.8	Load Strain Relationship for Slab A.l At the Free Edge	98
7.9	Deflection Shape for Slab A.2	99
7.10	Slab A.2 Cracks	99
7.11	Load Deflection Relationship for Slab A.2	100
7.12	Load Deflection Relationships for Slab A.2, Load at the Edge	101
7.13	Transverse Deflection for Slab A.2 (p = 1 Kip)	102

FIGURE

7.14	Longitudinal Deflection Along Line A-A (p = 1 Kip)	103
7.15	Load Strain Relationship for Slab A.2, Load at the Centre of Slab	104
7.16	Load Strain Relationship for Slab A.2, Load at the Free Edge	105
7.17	Strain Distribution for Slab A.2 at Bottom Fibre due to 1 Kip at Centre	106
7.18	Crack Development in Slab A.3	107
7.19	Bottom Cracks for Slab A.3	107
7.20	Load Deflection Relationship for Skew Slab A.3	108
7.21	Load Deflection Relationship for Skew Slab A.3	109
7.22	Deflection Along Line A-A for Skew Slab A.3 (p = 1 Kip)	110
7.23	Load Strain Relationship for Skew Slab A.3 At Point l	111
7.24	Load Strain Relationship for Skew Slab A.3 At Point 2	112
7.25	Strain Distribution for Skew Slab A.3 at Bottom Fibre for Loading At Centre	113
7.26	Cracks Development for Slab B.l	114
7.27	Cracks Failure For Slab B.l	114
7.28	The Upward Deflection in Slab B.l Due To Prestressing	115
7.29	Top Fibre Strain Distribution for Slab B.l Due to Prestressing	116
7.30	Bottom Fibre Strain Distribution for Slab B.l Due to Prestressing	117
7.31	Load Deflection Relationship for Slab B.l	118
7.32	Load Deflection Relationship for Slab B.l	119

FIGURE

7.33	Load Strain Relationship for Slab B.1 at Centre	120
7.34	Load Strain Relationship for Slab B.l (Loading at Point 1)	121
7.35	Cracks Failure for Slab B.2	122
7.36	Cracks Development for Slab B.2	122
7.37	Punching Failure of Slab B.2	123
7.38	Cracks Failure for Slab B.2	123
7.39	Deflection Distribution for Skew Slab B.2 Due to Prestressing Force	124
7.40	Strain Distribution in Slab B.2 at Top Fibre due to Prestressing Force	125
7.41	Strain Distribution in Slab B.2 at Bottom Fibre due to Prestressing	126
7.42	Load Deflection Relationship for Slab B.2	127
7.43	Load Deflection Relationship for Slab B.2	128
7.44	Load Deflection Relationship for Slab B.2 (Ultimate Load)	129
7.45	Load Strain Relationship for Slab B.2	130
7.46	Load Strain Relationship for Slab B.2	131
7.47	Deflection Pattern for Rectangular Slab Due to Uniform Load of 0.01 lb/in ²	132
7.48	Strain Pattern at Top Fibre due to Uniform Load of 0.01 lb/in ²	133
7.49	Variation of Deflection Along the Trans- verse for Point Load at 1 and 2	134
7.50	Variation of Strains Along the Transverse Axis At Top Fibre due to Concentrated Load 1 Kip at Point 1 and 2	2 135

xiii

FIGURE

•

	Variation of Strains Along the Trans- verse Axis at Bottom Fibre due to Concentrated Load 1 Kip	136
7.52	Deflections due to Uniform Load of 0.01 lb/in ²	137
7.53	Strain Pattern at Top Fibre Due to Uniform Load of 0.01 lb/in ²	138
7.54	Deflection Pattern due to Concentrated Load 1 Kip at Point 1 and 2	139
7.55	Strain Pattern at Top Fibre Due to 1 Kip at Point 1 and 2	140
7.56	Deflection due to Prestressing Force	141
El	Calibration of Reinforcing Steel Wires	161
E2	Load Deflection for High Tensile Steel Wire	162
E3	Load Strain Relationship (Load Cell, 5 Kips)	163
E4	Load Strain Relationship (Load Cell, 25 Kips)	164
E5	Load Strain Relationship (1-5, Load Cell)	165
E6	Load Strain Relationship (6-11, Load Cell)	166
E7	Load Strain Relationship (12-20, Load Cell)	167
E8	Load Strain Relationship (21-38, Load Cell)	168

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

TABLE	F	AGE
D-1	Properties and Strength of Concrete Mixes	156
D-2	Geometry and Properties of Slab Models	158
D-3	Orthotropic Rigidities of Slab Models	159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF APPENDICES

APPENDIX	I	PAGE
A	Expressions For Matrix Elements	143
В	Fourier Coefficients For Lateral Load	149
С	Fourier Expansion for In Plane-Forces	153
D	Design of Concrete Mix	155
E	Calibration of Load Cell	160
F	Computer Program (WAFFLE)	169

xvi

.

LIST OF ABBREVIATIONS

A _{jl} - A _{j8}	Definite integrals (Appendix A)
A n	Arbitrary function in n (Equation 5.1)
A_{s} (A_{s}')	Area of tension steel in longitudinal
	(transverse) rib
a	Skew semi-width of the slab
B _{jl} - B _{j2}	Definite integrals defined (Appendix A)
B _n	Arbitrary function in n (Equation 5.1)
b	Half span length of the slab
b _y (b _x)	Width of longitudinal (transverse) rib
$C_{ln} - C_{l6n}$	Arbitrary functions dependent on n
c ₁₇ - c ₂₄	Arbitrary constants
c	cosθ
D	Flexural rigidity of the flange plate
	with respect to its middle plane
D _x , D _y	Flexural rigidities of the slab per
-	unit width and length respectively
D _{xy} , D _{yx}	Transverse and longitudinal torsional
	rigidities respectively
D ₁ , D ₂	Coupling rigidities - contribution
	of bending to torsional rigidity of
	the slab
d" (d')	Concrete cover to centre of longitu-
	dinal (transverse) reinforcement
EI	Flexural rigidity of the edge beam
E	Modulus of elasticity of concrete

xvii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-

e _x (e _y)	Depths of neutral plane from top fibre
-	for bending in the $x - (y)$ directions
fc	28-days compressive strength of
	concrete
G _{xy} , G _{yx}	Shear modulii of the orthotropic slab
GJ	Torsional rigidity of the edge beam
н	Effective torsional rigidity of the
	slab
h	Thickness of flange plate
I'_{X} (I'_{Y})	Moment of inertia of transverse
	(longitudinal) ribs
I _{xy} , I _{yx}	Torsional constants
M _x , M _y , M _{xy}	Bending and torsional moments associ-
	ated with the x and y axis
m	<pre>Integer > 1, number of harmonics</pre>
n	Integer > 1, number of harmonics
Q _x	Shear force per unit width of the
	plate
q(u,v)	Load function
s _x (s _y)	Spacing of ribs in transverse
	(longitudinal) direction
W	Deflection function
Wc	Complementary solution
₽ ^W	Particular solution
x,y,z	Rectangular axes
μ	Poission's ratio of concrete
θ	Skew angle

xviii

α _m =		mπ/a
^a n =	=	n ∏/a
β _m =	=	mπ/b
β _n =	=	nπ/b
ε _x , ε _y		Strain in x and y directions
^τ x' ^τ y		Plane stress per unit width (length)

xix

CHAPTER I

INTRODUCTION

1.1 General

In recent years reinforced and prestressed concrete waffle slabs have become quite popular in buildings and deck bridges. Orthotropic plate structures are often required as component parts of large scale structures as floor system in buildings, auditoriums, aircrafts, ship bottoms, tunnels, highway structures, etc. The trend towards high-rise buildings, modern highway interchanges and the commercial availability of high strength lightweight concrete have re-focused attention on concrete waffle slabs all over the world. The use of prestressed concrete waffle slabs for rectangular and skew decks of short and medium span bridges can also lead to economical design by having a crack-free concrete wearing surface, lower maintenance costs and better live load distribution.

1.2 Objective

The primary objective of this investigation is to determine the behaviour of reinforced and prestressed concrete waffle slabs over the total range of loading up to the point of collapse, from the standpoint of deformation, stresses, cracking and ultimate strength capacity. A waffle slab can be classified as geometrically orthotropic; as such its orthotropic flexural and twisting rigidities must be accurately predicted before and after cracking of

the concrete in order to reliably estimate its performance under working and collapse loads. In general, the deflection of a concrete waffle slab is rather small in comparison with the thickness of the slab so that for a proper design of such structures a linear (small deflection) analysis is sufficient. An experimental investigation and a theoretical study based on a series solution are undertaken; this solution is found by superimposing three solutions due to three different loadings, namely: the transverse loads (uniform as well as concentrated load at various locations), in-plane edge loads and edge moments, the latter two being due to in-plane prestressing.

1.3 Scope

The test of a structural concrete one-eighth scale "direct" model can simulate the behaviour of the prototype both before and after cracking of the concrete. This investigation covers reinforced and prestressed concrete waffle slabs, including both rectangular and skew plan forms and subjected to uniformly distributed, as well as concentrated lateral loads.

A review of the theoretical and experimental studies of orthotropic structures, reinforced and prestressed concrete waffle slabs are presented together with simple expressions for estimating the orthotropic rigidities. Mathematical formulation of the problem using a Fourier series for lateral and in-plane forces are derived.

Analysis and discussion of the theoretical and experimental results from three reinforced and two prestressed concrete waffle slabs are presented in this work. An approximate method is proposed to solve the inplane stress problem due to the prestressing force along the four sides of the slab.

The experimental work comprises the following two groups:

1) Group A, includes three reinforced concrete waffle slabs. The first and second slabs were rectangular in plan with identical geometry and subjected to uniform and concentrated lateral loads, respectively. The third slab had a skew of 45°, and was subjected to a concentrated lateral load.

2) Group B, includes two prestressed concrete waffle slabs, one was rectangular in plan and the other had a skew of 45[°], and subjected to concentrated lateral loads.

All the slab models are analysed as bridge slabs having two opposite edges simply supported and other two edges free (Group A) or elastically supported (Group B).

CHAPTER II

HISTORICAL REVIEW

2.1 Review of Literature

The study of theory of plates goes back to the French mathematician, Sophie Germain (1816), who obtained a differential equation for vibration of plates, but she neglected the work done by warping of the middle surface. The first corrected differential equation for the free vibration of plates was used by Lagrange by adding the missing term in Sophie's equation. This work, which was improved by researchers such as Navier, Poisson and Kirchoff, is considered to be the basis for the classical thin plate theory. Solutions of many problems in plates of circular, rectangular, skew, triangular shapes are available (see Timoshenko (31) and Szilard (29,30)). The exact solution to a plate problem should satisfy the boundary conditions as well as the governing differential equation of equilibrium or minimize the potential energy of the plate. The deflection function could be in the form of an infinite series and its sum to infinity gives any deflection pattern of the plate which satisfies the imposed geometrical conditions by suitable choice of values for the infinite number of constants of integration.

The development of the modern aircraft industry provided another strong impetus toward more rigorous analytical investigations of plate problems. Plates subjected

to in-plane forces, postbuckling loads, stiffened plates, etc., were analyzed by various scientists and engineers. Most recently, the invention of high-speed electronic computers exerted a considerable influence on the static and dynamic analysis of plates. Probably the first approach used in computer analysis was the finite difference method.

Considerable attention has been given recently to developing methods of designing more economical concrete bridges. Various methods of estimating the load distribution in concrete bridge decks have been proposed to date. In all these methods values of the effective flexural and torsional rigidities of the deck system are required before the analysis can proceed. Little information was available as to how these rigidities might be assessed for many of the bridge-deck systems.

In 1956, Huffington (10) investigated theoretically and experimentally the method for the determination of rigidities for metallic rib-reinforced deck structures. It was applied to the case of equally spaced stiffeners, of rectangular cross section, and symmetrically placed with respect to its middle plane.

Methods of analysing rectangular and skew deck plates with simple boundary conditions have been recently investigated by Kennedy et al. (12,14,15,16). They solved the problem of skew plate under uniform load by means of variational techniques and a series solution were

presented for rib stiffened plates under uniform and concentrated loads; the results were verified with experiments. They observed that critical stresses often occur in obtuse corners of such skew plates.

In 1968 Jackson (11) proposed a method to estimate the torsional rigidities of concrete bridge decks, using the membrane analogy and the estimation of the junction effect. The effect of the continuity of the slab on the flange plate was not accounted for.

In 1972, Perry and Heins (21) studied a series of equations for preliminary design of transverse floor beams in orthotropic deck bridges. The applied loads were represented in the form of a Fourier series. This method is not exact since it neglected the effects of contributions of bending to the torsional rigidities of the plate. Cardens et al (4,5) investigated the in-plane and flexural stiffnesses of isotropically and nonisotropically reinforced concrete plates. Results indicated that the stiffness of such plates was related quantitatively to the relative orientation of the reinforcement with respect to the applied forces.

Mathematical analysis of grid systems with particular regard to bridge type was given by Bares and Massonnet (2) and Rowe (24) together with practical applications.

2.2 Prestressed Concrete Slabs

Possibly, Guyon, in the early 1950's was the first

to realize that slabs, prestressed in two directions behaved analogously to the two-way arch action of thin shell structures. In the late 1950's several prestressed slab research projects were undertaken in the United States. Scordelis et al, 1960, (26,27) studied the ultimate strength of continuous prestressed slabs and proposed several design recommendations. They investigated the load distribution between the column and the middle strips and the following conclusions were obtained:

- The elastic plate theory may be used satisfactorily to predict the behaviour of a prestressed concrete slab loaded within the elastic limit.
- The slab can sustain a large increase in load before widespread cracking takes place.

Possibly the largest stride in the design of prestressed slabs was taken by Lin (18) who was the first to introduce the Load Balancing Method. It was soon made apparent that the tendon profiles could be designed so that the upward cable force neutralized the vertical downward load. Between 1957 and 1969, many researchers developed the method and studied the load distribution in bridge slabs (Sherman (28), Rowe (24) and Wang (32)). In 1969, Muspratt (20) used the load balancing method on prestressed concrete waffle slabs. For other applications of this method in U.S.A. see references (19) and (23). Another investigation was made by Hondros and Smith (9) on

a post-tensioned diagrid flat plate, simply supported on four edges using the link force method of analysis. The force method applies compatability but disregards the influence of torsion on the plate.

Burns and Hemakom in 1977 (3), investigated the problem of post-tension flat plate using frame analysis; furthermore, the cracks were predicted and the stresses compared with that obtained by ACI code (318-71), (1).

Although an appreciable amount of work has been done on the analysis of prestressed flat slabs, very little work is available on prestressed concrete waffle slabs. It is beyond the scope of this thesis to give a comprehensive survey of the entire literature in this field. However, a study of the literature shows that no exact solution is available for prestressed concrete waffle slabs under a general type of lateral load and inplane prestressing force.

CHAPTER III

FORMULATION

3.1 General

With reinforced concrete structures cast in-situ, it is common practice to cast the slab and the supporting beam grid at the same time. The grid elements may be either reinforced or prestressed concrete beam or steel girders. Since a reinforced concrete slab has to withstand the local effects of heavy concentrated loads, the slab thickness is usually substantial, and composite action of the grid-and-slab system must be taken into account. Due to the action of concentrated loads, the transverse direction becomes important and the transverse strength of the structures has to be considered carefully. In dealing, herein with orthotropic concrete structures, it is assumed that orthotropy is a result of geometry and not of material, see Figure 3.1.

3.2 Assumptions

The analytical approach to the problem of the orthotropic plate has to be based on some simplifying assumptions related to the form and material of the plate and to the state of strain induced by the external loading. The assumptions for orthotropic plates are based on the same assumptions used in the analysis of isotropic plates, and they are as follows:

a) The material of the plate is elastic, i.e., the

stress-strain relationship is given by Hooke's law.

- b) The material of the plate is considered to be homogeneous, by transforming the steel area into an equivalent area of concrete.
- c) The thickness of the plate is uniform and small in comparison to the other lateral dimensions of the plate. Thus the shearing and normal stresses to the plane of symmetry are small and can be neglected.
- d) Straight lines normal to the middle plane of the plate remain straight and normal to the middle plane of the plate after bending.
- e) The deflections of the plate are small in comparison with its thickness; and are such that there is no normal strain in planes tangent to the middle plane.

It should be mentioned that the theory of orthotropy is applicable for structures which have a small ratio of stiffness spacing relative to any lateral length of the structure.

3.3 <u>Governing Differential Equation For The Lateral Loads</u> And Edge Moments

It is assumed that the material of the plate has three planes of symmetry with respect to its elastic properties. Taking these planes as the coordinate planes, the relations between the moments and deflections are:

$$M_{x} = -(D_{x}W, xx + D_{1}W, yy)$$

$$M_{y} = -(D_{y}W, yy + D_{2}W, xx)$$

$$M_{xy} = D_{xy}W, xy$$
(3.1)

where,

$$D_x, D_y =$$
 flexural rigidities of the plate per unit
width in x and y directions respectively
 $D_1, D_2 =$ coupling rigidities, measuring the contri-
bution of bending to torsional rigidities
of the plate.

 D_{xy}, D_{yx} = torsional rigidities of the plate and ribs

Substituting expressions 3.1 in the following general differential equation of equilibrium, given by Timoshenko (31),

$$M_{x,xx} + M_{y,yy} - zM_{xy,xy} = -q(x,y)$$
 (3.2)

The following fourth order differential equation governing the deflection of the orthotropic plate is obtained in rectangular coordinate:

$$D_{x}W,_{xxxx} + 2HW,_{xxyy} + D_{y}W,_{yyyy} = q(x,y)$$
(3.3)

where,

$$H = (D_1 + D_2 + D_{xy} + D_{yx})/2$$

and known as the effective torsional rigidity of the plate and characterizes the resistance of the plate element to twisting.

To generalize the solution from the rectangular slab to a skew slab the following transformation is used:

$$u = x/\cos\theta$$

$$v = y - x \tan\theta$$
(3.4)

where, θ is the skew angle.

Equation 3.3, known as Huber's equation, becomes,

$$D_{x}W',uuuu - E_{1}W',uuuv + E_{2}W',uuvv - E_{3}W',uvvv + E_{4}W',vvvv$$

= c'q(u,v) (3.5)

where,

$$E_{1} = 4 sD_{x}$$

$$E_{2} = 2(3D_{x}s^{2} + Hc^{2})$$

$$E_{3} = 4s(D_{x}s^{2} + Hc^{2})$$

$$E_{4} = D_{x}s^{4} + 2Hs^{2}c^{2} + D_{y}c^{4}$$

$$c = \cos\theta \text{ and } s = \sin\theta$$

3.4 Relation of Stress and Strain for Bending Action

Solving equations 3.1 and 3.3 to find $W_{,xx}$ and $W_{,yy}$ and substituting these two terms in the following formulae (31) relating strain to curvature,

$$\varepsilon_{x} = -zW, xx$$

$$\varepsilon_{y} = -zW, yy$$

$$(3.6)$$

yields the strains in x and y directions in terms of the rigidities and moments:

$$\varepsilon_{x} = z (M_{x}D_{y} - M_{y}D_{1}) / (D_{x}D_{y} - D_{1}D_{2})$$

$$\varepsilon_{y} = z (M_{y}D_{x} - M_{x}D_{2}) / (D_{x}D_{y} - D_{1}D_{2})$$

$$(3.7)$$

z is the depth of the neutral axis from the top fibre.

3.5 Elastic Properties of the Waffle Slab Model

As mentioned earlier, the condition of orthotropy for the slabs treated herein, was mainly due to geometry and steel reinforcement. The problem was idealized by assuming that the slab is made of a homogeneous material with different elastic properties in two mutually perpendicular directions. Waffle slab construction considered as a "composite system" consists of two parts, the grid, and the plate. This "composite system" displays a high degree of torsional rigidity, especially for skew slabs. The composite system may be arranged in a sequence of structural forms; the sequence may consist of limiting case having a simple grid with no plate and the other extreme case of a true orthotropic slab; various types of composite systems fall between these two limits.

In addition to the basic assumptions in deriving the governing differential equation for an orthotropic plate, the following assumptions are made with respect to waffle slab construction:

> The number of ribs in both directions is large enough for the real structure to be replaced by an idealized one with continuous properties.

- The neutral plane in each of the two orthogonal directions coincides with the centre of gravity of the total section in the corresponding direction.
- 3. The area of the flange plate is magnified by the factor $1/(1 \mu^2)$ due to the effect of Poisson's ratio μ .

Since the thickness of the slab is constant and the slab material is continuous, as assumed before, the different elastic properties in two principal directions must be due to different moments of inertia per unit width of the slab. The modulus of elasticity in two perpendicular directions are equal ($E_x = E_y = E$) as well as Poisson's ratio ($\mu_x = \mu_y = \mu$) and the torsional rigidities D_{xy} and D_{yx} are equal.

There is no difficulty in determining the flexural rigidities D_x and D_y of the slab models, but the difficulty is to find an accurate value for the torsional rigidities. Various methods of estimating the load distribution in concrete bridge decks (2,13,26) have been proposed to date. In all of these methods, values of flexural and torsional rigidities of the deck structures are required before the analysis can proceed. Some of the methods used for estimating the torsional rigidities are very limited in their application and can lead to appreciable errors in the value of the torsional parameter, unless their limitations are recognized. A method of determination of rigidities was

investigated by Huffington (10).

3.6 <u>Rigidities of Uncracked Sections</u>

3.6.1 Flexural Rigidities

It is assumed that the neutral planes in each of the two coordinate directions coincides with the centre of gravity of the total section. This is an approximation only, since it can be shown that the location of the neutral surfaces is a function of the deflection as well as the geometry of the section.

Figure 3.2 shows a typical section of a waffle-type slab. Based on the assumptions made before, the orthotropic flexural rigidities D_x and D_y , as well as the coupling rigidities D_1 and D_2 due to the Poisson's effect (13) can be put in the form,

$$D_{x} = D + \left\{ Eh(e_{x} - h/2)^{2}/(1 - \mu^{2}) \right\} + EI'_{x}/S_{x}$$

$$D_{y} = D + \left\{ Eh(e_{y} - h/2)^{2}/(1 - \mu^{2}) \right\} + EI'_{y}/S_{y}$$

$$D_{1} = \mu D'_{x}$$

$$D_{2} = \mu D'_{y}$$
(3.8)

where,

D = the flexural rigidity of the flange plate with respect to its middle plane, $Eh^3/12(1 - \mu^2)$. E = modulus of elasticity of the concrete

=
$$57000\sqrt{f_c}$$
 (1)
 $f_c' = 28$ day concrete cylinder strength in psi
h = thickness of the flange plate

$$\mu$$
 = Poisson's ratio of concrete
 $= \sqrt{f'_c}/350$ (8,12)
 S_y = spacing of longitudinal ribs
 S_x = spacing of transverse ribs
 e_x = depth of neutral plane from top fibre for
bending in the x direction
 e_y = depth of neutral plane from top fibre for

bending in the y direction, i.e.,

$$e_{x} = \left\{ b_{x}d_{x}(h + d_{x}/2) + (n - 1)A_{s}(h + d_{x} - d') + S_{x}h^{2}/ \\ 2(1 - \mu^{2})\right\} / \left\{ b_{x}d_{x} + (n - 1)A_{s}' + S_{x}h/(1 - \mu^{2}) \right\} \\ e_{y} = \left\{ b_{y}d_{y}(h + d_{y}/2) + (n - 1)A_{s}(h + d_{y} - d'') + S_{y}h^{2}/ \right\} (3.9) \\ 2(1 - \mu^{2}) \left\} / \left\{ b_{y}d_{y} + (n - 1)A_{s} + S_{y}h/(1 - \mu^{2}) \right\}$$

I' = moment of inertia of transverse rib with
 respect to the assumed neutral axis

I' = moment of inertia of longitudinal rib with
 respect to the assumed neutral axis, i.e.,

$$I_{x} = b_{x}d_{x} \left\{ (h + d_{x}/2) - e_{x} \right\}^{2} + (n - 1)A_{s}' \left\{ (h + d_{x} - d') - e_{x} \right\}^{2} + b_{x}d_{x}^{3}/12$$

$$I_{y}' = b_{y}d_{y} \left\{ (h + d_{y}/2) - e_{y} \right\}^{2} + (n - 1)A_{s} \left\{ (h + d_{y} - d'') - e_{y} \right\}^{2} + b_{y}d_{y}^{3}/12$$

(3.10)

in which,

- n = modular ratio = E_s/E_c b_y = width of longitudinal rib b_x = width of transverse rib d_y = depth of the longitudinal rib
- d, = depth of the transverse rib
- d" = concrete cover to the centre of the longitudinal reinforcements

- A_s = area of reinforcement steel in the longitudinal direction
- A' = area of reinforcement steel in the transverse direction
- D'x = flexural rigidity of the flange plate with respect to the neutral plane of the gross- section associated with bending in the x direction
- D' = flexural rigidities of the flange plate with respect to the neutral plane of the gross- section associated with bending in the y direction

Since it is assumed that the number of ribs in both directions is large, the effective width of the flange plate

acting with one rib is taken as the distance between two adjacent ribs. Most of the investigators who have taken the same effective width have obtained very good results.

3.6.2 Torsional Rigidities

Reliable information on the estimation of the torsional rigidities of a bridge deck are very limited. The effective torsional rigidities H, in Eq. 3.3 is given by,

$$H = (D_{xy} + D_{yx} + D_{1} + D_{2})/2$$
 (3.11)

For the analysis of reinforced concrete slabs with different reinforcements in the two prependicular directions, Huber recommended the expression, $H = \sqrt{D_x D_y}$; such an expression gives a too high an estimate for T-beam section.

The main problem lies in finding the values of D_{xy} and D_{yx} , which are given by

$$D_{xy} = G_{xy} I_{xy}$$

$$D_{yx} = G_{yx} I_{yx}$$

$$\left. \begin{array}{c} (3.12) \\ \end{array} \right\}$$

where,

 $G_{xy} = G_{yx}$ = shear modulus = E/2(1 + μ) I_{xy} and I_{yx} are the torsional constants

A number of investigators have obtained the torsional constants for structural steel and aluminum-alloy sections, using membrane analogy and/or numerical methods. Massonet and Rowe (2,25) have determined the torsional constants by dividing open section into a number of rectangular areas. Thus the torsional constant is given by,

 $I_{xy}S_{x}$ or $I_{yx}S_{y} = (\frac{1}{2}k_{1}a_{1}^{3}b_{1} + \sum_{l=2}^{n}K_{i}a_{i}^{3}b_{i})$ (3.13) where,

S_x,S_y = spacing of transverse (longitudinal) ribs
a₁ = the smaller dimension of the cut area
b₁ = the larger dimension of the cut area
K = factor depend on the ratio a_i/b_i (31)

Jackson (11) has considered the value mentioned above as not accurate enough since it neglects the junction effect on the torsional rigidity. The twisting rigidity of the uncracked section of concrete waffle-type slab is estimated by means of the membrane analogy method (31) taking into account the stiffening effect afforded by the ribs in the orthogonal direction to the one under consideration. Considering the geometry of the deflected membrane, the torsional constant for the rectangular sections 1, 2 and 3 as shown in Figure 3.3 are calculated to give the total torsional constant, I_{xy} .

$$I_{xy} = I_{xy_1} + I_{xy_2} + I_{xy_3}$$
 (3.14)

in which,

$$I_{xy_1} = \frac{1}{2}k_1 S_y h^3$$

$$I_{xy_{2}} = k_{1} d_{y} b_{y}^{3} \quad (if d_{y} b_{y}) \\ = k_{1} b_{y} d_{y}^{3} \quad (if b_{y} b_{y}) \\ I_{xy_{3}} = 4k_{1} (n - 1) (A_{s}')^{2} / \pi \quad (13)$$

$$(3.15)$$

where,

 I_{xy_1} is reduced by factor $\frac{1}{2}$ which accounts for the continuity of the flange plate. The torsional constant I_{xy_1} is modified by (Kennedy and Bali (13)) taking into account the effect of transverse ribs in both directions. It is assumed that the presence of the transverse rib will increase the torsional constant of the slab as:

$$I_{xy_1} \pmod{\text{ified}} = I_{xy_1} \binom{I_{xy}}{X_{(S+W)}} \binom{I_{xy}}{X_{(S)}}$$
(3.16)

in which,

Equation 3.14 becomes

$$I_{xy} = I_{xy_1} (\text{modified}) + I_{xy_2} + I_{xy_3}$$
(3.17)

in which,

Similarly, the torsional rigidities D_{yx} can be calculated in the same way.

3.7 Plane Stress Problem Due To Prestressing Force

3.7.1 Elastic Constants For Membrane Action

Assuming the corresponding strains in the flange plate element (deck) and the ribs are equal, and that shearing action is resisted by the flange plate alone, the following relations for equivalent elastic constants can be developed. The stress resultants per unit length in an isotropic flange plate element, shown in Figure 3.2, are:

$$\begin{array}{c} (\tau_{x})_{1} = \sigma_{x}h = h(E_{x}/(1 - \mu^{2}))(\varepsilon_{x} + \mu\varepsilon_{y}) \\ (\tau_{y})_{1} = \sigma_{y}h = h(E_{y}/(1 - \mu^{2}))(\varepsilon_{y} + \mu\varepsilon_{x}) \\ (\tau_{xy})_{1} = \tau_{xy}h = hG\gamma_{xy} \end{array} \right\}$$
(3.18)

where E, G and $\boldsymbol{\mu}$ are the material properties of the concrete.

For the same strains in the rib, the stress resultants per unit length, are:

$$\begin{pmatrix} \tau_{x} \end{pmatrix}_{2} = E_{x} \varepsilon_{x} A_{x}^{*}$$

$$\begin{pmatrix} \tau_{y} \end{pmatrix}_{2} = E_{y} \varepsilon_{y} A_{y}^{*}$$

$$\begin{pmatrix} \tau_{xy} \end{pmatrix}_{2} = 0$$

where A_x^* and A_y^* are the cross-sectional areas per unit length of the ribs in the x and y directions, respectively. The total stress resultants per unit length of an element are:

$$\begin{cases} \tau_{x} \\ \tau_{y} \\ \tau_{xy} \end{cases} = h \begin{vmatrix} E_{x} 1/(1-\mu^{2}) + A_{x}^{*}/h & \mu E_{y}/(1-\mu^{2}) & 0 \\ \mu E_{x}/(1-\mu^{2}) & E_{y} 1/(1-\mu^{2}) + A_{y}^{*}/h & 0 \\ 0 & 0 & G \end{vmatrix} \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{vmatrix}$$

$$= h \begin{vmatrix} E_{x}' & E_{1} & 0 \\ E_{2} & E_{y}' & 0 \\ 0 & 0 & G \end{vmatrix} \begin{vmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{vmatrix}$$

$$(3.20)$$

where,

$$E'_{x} = E_{x}(1/(1-\mu^{2}) + A_{x}^{*}/h)$$

$$E_{1} = \mu E_{x}/(1-\mu^{2})$$

$$E_{2} = \mu E_{y}/(1-\mu^{2})$$

$$E'_{y} = E_{y}(1/(1-\mu^{2}) + A_{y}^{*}/h)$$

Based on the directions of the axes, x and y, as shown in Figure 3.2,

$$A_x^* = (b_x) (d - h) / S_x$$

 $A_y^* = (b_y) (d - h) / S_y$

solving equations 3.20 to find the strains in both directions yields,

$$\varepsilon_{x} = ((\tau_{x}/h)E_{y}' - (\tau_{y}/h)E_{2})/(E_{x}'E_{y}' - E_{1}E_{2}) \\ \varepsilon_{y} = ((\tau_{y}/h)E_{x}' - (\tau_{x}/h)E_{1})/(E_{x}'E_{y}' - E_{1}E_{2})$$
(3.21)

in which ε_x and ε_y are the strains in the x and y directions due to the in-plane prestressing.

It should be noted that the deflection due to inplane stresses is very small and can be neglected. Therefore the total deflection in the slab can be considered to be due to the lateral loads and the edge moments. On the other hand, the total strain in the slab is due to the lateral loads, in-plane forces and edge moments.

3.8 Boundary Conditions

A solution for the deflection function $W_{(x,y)}$ in cartesian coordinates or for $W_{(u,v)}$ in oblique coordinates to the plate problem must be consistent with the conditions at the edges of the plate. The kind of support is theoretically defined by three "boundary conditions" along each edge. The boundary conditions have to be re-formulated first in terms of the deflection, if the solution is to be based on the deflection. Thus rectangular and skew slabs have 12 boundary conditions which are to be satisfied by the solution of the partial differential equation governing the problem. However, this governing equation is of the fourth order in the variables x and y or u and v, and its solution involves only 8 arbitrary constants. These constants can be made to fit only 8 boundary conditions, two for each edge, so that the three conditions mentioned above must be reduced to two conditions. The boundary conditions for single span waffle slabs are presented below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.8.1 Bridge Slabs

The simple bridge type shown in Figures 3.4, 3.5 is simply supported along two opposite edges ($v = \pm b$) and free or elastically supported at the remaining two edges ($u = \pm a$).

At the simply supported edges, there is no vertical deflection, and the bending moments about these edge-lines equal the edge moments due to the prestressing. These two boundary conditions can be formulated as follows:

1.
$$W_{(v=\pm b)} = 0$$
 for $-a < u < a$ (3.22)

2.
$$M_{n(v=\pm b)} = M_{x}s^{2} + M_{y}c^{2} + (M_{xy} - M_{yx})sc$$
$$(v=\pm b)$$
$$= M_{external}(v=\pm b)$$

or

$$R_1W'uv + R_2W'vv = M_{external}$$
 at v=tb for -a < u < a
(3.23)

where

$$R_{1} = s(2D_{x}s^{2}/c^{2} + 2D_{2} + D_{xy} + D_{yx})$$

$$R_{2} = -s^{2}(D_{x}s/c^{2} + 2H) - c^{2}D_{y}$$

It should be noted that $W_{,uu} = 0$ and $W = W_{,u} = 0$ on the simple support

3. According to Timoshenko (31), combining the shear force along the edge with forces replaced by the twisting couples and equating this to the pressure transmitted from the plate to the supporting edge beam, lead to the following equation:

$$-(Q_{x} - M_{xY,Y}) = EI W,_{YYYY}$$

i.e.,
$$D_{x}W,_{xxx} + (D_{1} + D_{xY} + D_{yx})W,_{xY} = EI W,_{YYYY}$$

or
$$R_{3}W,_{uuu} + R_{4}W,_{uuv} + R_{5}W,_{uvv} + R_{6}W,_{vvv} - EI W,_{vvvv} = 0$$

$$@ u = \pm a \text{ for } -b < v < b \qquad (3.24)$$

where,

$$R_{3} = D_{x}/c^{3}$$

$$R_{4} = -3D_{x}s/c^{3}$$

$$R_{5} = (3D_{x}s^{2}/c^{2} + D_{1} + D_{xy} + D_{yx})/c$$

$$R_{6} = -s(D_{x}s^{2}/c^{2} + D_{1} + D_{xy} + D_{yx})/c$$

EI = flexural rigidities of the edge beam

4. Along the elastically supported edge $(u = \pm a)$, equating the external moment due to prestressing force combined with the change in twisting moment in the edge beam to the plate internal moment parallel to the x-axis, yield:

$$-M_{x} = -GJ(W, xy, y) - M_{ext.(u=\pm a)}$$

i.e.,
$$D_{x}W, xx + D_{1}W, yy = -GJ(W, xyy) - M_{ext.(u=\pm a)}$$

or

$$R_7^W$$
, uu + R_8^W , uv + R_9^W , vv + GJW , uvv + R_{10}^W , vvv = $-cM_{ext}$.

$$0 u = \pm a \text{ for } -b < v < b$$
 (3.25)

where,

$$R_{7} = D_{x}/c$$

$$R_{9} = -2D_{x}s/c$$

$$R_{9} = (D_{x}s^{2} + D_{1}c^{2})/c$$

$$R_{10} = -sGJ$$

$$GJ = torsional rigidity of the edge beam$$

The boundary conditions for the bridge slab where the two edges are free are obtained by putting the rigidities for the edge beams EI and GJ equal to zero.

.

CHAPTER IV

ANALYTICAL SOLUTION

4.1 General

The mathematical solution comprises of finding a suitable complementary function which satisfies the governing equation (Eq. 3.5), and a particular solution which satisfies all the given boundary conditions. Combining the two solutions, a complete solution for the slab is obtained as follows:

$$W = W_{C} + W_{D} \tag{4.1}$$

where,

4.2 Complementary Solution

According to Levy's solution, the deflection of the plate surface is assumed in the form of a Fourier series as

$$W_{c} = \sum_{n=1}^{\infty} e^{\lambda_{n} u} (P_{n} \sin \beta_{n} v + Q_{n} \cos \beta_{n} v) \qquad (4.2)$$

where,

 λ_n , P and Q are basic functions of the elastic properties and the geometry of the plate; n equals number

of harmonics chosen to make the series closely convergent; and, $\beta_n = n\pi/b$

Solving equations 4.1 and 3.5 for q(u,v) equals zero, and equating the coefficients of sin $\beta_n v$ and cos $\beta_n v$, yields two equations in P_n and Q_n . According to Gupta (8) the final expression for λ_n is

$$\lambda_{n} = \left\{ \pm \left[(H \pm \sqrt{H^{2} - D_{x}D_{y}})/D_{x} \right]^{0.5} c \pm is \right\} \beta_{n}$$
(4.3)

It can be observed, from equation 4.3, that there are eight possible values for λ_n which give rise to eight possible solutions.

For the slab model considered herein, it is assumed that the slab is flexurally stiff and torsionally weak, i.e., $(H^2 < D_x D_y)$. This case includes all T-beam and open rib deck bridges.

4.2.1 Waffle Slab Which is Flexurally Strong and Torsionally Weak

The solution of a waffle slab can be taken as

$$W_{cl} = \sum_{n=1}^{\infty} (C_{ln} \cosh k_3 \beta_n u + C_{2n} \sinh k_3 \beta_n u) \cos (k_4 u + v) \beta_n$$

$$+ (C_{3n} \cosh k_3 \beta_n u + C_{4n} \sinh k_3 \beta_n u) \sin (k_4 u + v) \beta_n$$

$$+ (C_{5n} \cosh k_3 \beta_n u + C_{6n} \sinh k_3 \beta_n u) \cos (k_5 u - v) \beta_n$$

$$+ (C_{7n} \cosh k_3 \beta_n u + C_{8n} \sinh k_3 \beta_n u) \sin (k_5 u - v) \beta_n \quad (4.4)$$
in which λ_n for this case can be written in the form

$$\lambda_n = \pm (k_1 \pm is)\beta_n \quad \text{or} \quad \pm (k_2 \pm is)\beta_n \quad (4.5)$$

where,

$$k_{1} = (c(H + \sqrt{H^{2} - D_{x}D_{y}})/D_{x})^{0.5}$$

$$k_{2} = (c(H - \sqrt{H^{2} - D_{x}D_{y}})/D_{x})^{0.5}$$

 C_{ln} to C_{8n} are arbitrary constants dependent on n and adjusted to satisfy the boundary condition. See references (7,8) and Appendix (A) for a more general representation of the deflection function W. Another possible complementary solution of W can be written as;

$$W_{c2} = \sum_{n=1}^{\infty} (C_{9n} \cosh x_2 k_3 \alpha_n v + C_{10n} \sinh x_x k_3 \alpha_n v) \cos (x_2 k_4 v + u) \alpha_n + (C_{11n} \cosh x_2 k_3 \alpha_n v + C_{12n} \sinh x_2 k_3 \alpha_n v) \sin (x_2 k_4 v + u) \alpha_n + (C_{13n} \cosh y_2 k_3 \alpha_n v + C_{14n} \sinh y_2 k_3 \alpha_n v) \cos (y_2 k_5 v - u) \alpha_n + (C_{15n} \cosh y_2 k_3 \alpha_n v + C_{16n} \sinh y_2 k_3 \alpha_n v) \sin (y_2 k_5 v - u) \alpha_n + (C_{15n} \cosh y_2 k_3 \alpha_n v + C_{16n} \sinh y_2 k_3 \alpha_n v) \sin (y_2 k_5 v - u) \alpha_n + (4.6)$$

where,

$$\alpha_{n} = n\pi/a$$

$$x_{1} = 1/(k_{1}^{2} + s^{2})$$

$$x_{2} = 1/(k_{2}^{2} + s^{2})$$

The boundary conditions used for the slab are eight in number (two along each edge) and the deflection function is made to satisfy these boundary conditions. Expanding each boundary condition in a Fourier series, will yield three equations and hence 24 equations for the eight

boundary conditions.

To use the same number of arbitrary constants in the deflection function, the following polynomial function is assumed and added:

$$W_{c3} = \left\{ C_{17} + C_{18} u/a + C_{19} v/b + C_{20} u^2/a^2 + C_{21} v^2/b^2 + C_{22} u^3/a^3 + C_{23} v^3/b^3 + C_{24} (Tu^4 - v^4)/b^4 \right\}$$
(4.7)

in which,

1

$$T = (s^4D_x + 2s^2c^2H + c^4D_y)/D_x$$

 C_{17} to C_{24} are arbitrary constants. Thus the total complementary solution becomes,

$$W_{c} = W_{c1} + W_{c2} + W_{c3}$$
 (4.8)

4.3 Particular Solution

The particular solution has to be determined and added to the complementary solution and must satisfy the boundary conditions. The uniform load or concentrated load acting on a limited area as shown in Figure 4.1 is expanded into double Fourier series over the entire area of the slab. Following Gupta (8) the particular solution can be taken as:

$$W_{p} = \begin{cases} (a_{0}c^{4}/4E_{4}) (v^{4}/24 - v^{2}b^{2}/4 + 5b^{4}/24) \\ + 1^{\Sigma^{\infty}}(T_{5m}cos\alpha_{m}u + T_{7m}sin\alpha_{m}u) \\ + 1^{\Sigma^{\infty}}(T_{6n}cos\beta_{n}v + T_{8n}sin\beta_{n}v) \end{cases}$$

$$+ \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} (K_{mn} \cos \alpha_{m} u \cos \beta_{n} v + p_{mn} \sin \alpha_{m} u \cos \beta_{n} v + Q_{mn} \cos \alpha_{m} u \sin \beta_{n} v + L_{mn} \sin \alpha_{m} u \sin \beta_{n} v) \right\}$$
(4.9)

4.4 Symmetric and Anti-Symmetric Loading

The loading on the structure is divided into symmetric and anti-symmetric components. This division is applied to the lateral load and the prestressing force along the edges of the slab. For symmetric loading odd terms vanish, i.e.,

 $C_{2n} = C_{3n} = C_{6n} = C_{7n} = C_{10n} = C_{11n} = C_{14n} = C_{15n} =$ $C_{18} = C_{19} = C_{22} = C_{23} = Q_{7m} = Q_{8n} = Q_{3mn} = Q_{4mn} = 0$ (4.10)

For the anti-symmetric loading, all even terms vanish, i.e.,

 $C_{ln} = C_{4n} = C_{5n} = C_{8n} = C_{9n} = C_{l2n} = C_{13n} = C_{16n} = C_{17} =$ $C_{20} = C_{21} = C_{24} = a_0 = Q_{5m} = Q_{6n} = Q_{1mn} = Q_{2mn} = 0$ (4.11)

By superposition, the results for any lateral loading can be obtained with the added advantage that the number of boundary conditions is reduced to four for each loading component.

4.5 <u>Expansion of the In-Plane Prestressing Force In a</u> Fourier Series by Graphical Method

When the equation for a periodic function is not known but a graph of the waveform is available (such as a variable prestressing force along the edges of a slab bridge), it is possible to obtain an approximate solution for the Fourier coefficients by means of graphical techniques (17,33). Actually this method represents a concept of graphical integration. This is accomplished by dividing one cycle into m equal divisions. The dependent-variable value (donated by Y_k 's) in Figure 4.2 is obtained at the mid-point of each of these intervals. The coefficients of the Fourier series representing the in-plane prestressing force can be shown to be, (See Appendix C),

$$a_{0} = (2/m) \sum_{k=1}^{m} Y_{k}$$

$$a_{n} = (2/m) \sum_{k=1}^{m} (-1)^{n} Y_{k} \cos(2n\pi/m) (k - \frac{1}{2})$$

$$b_{n} = (2/m) \sum_{k=1}^{m} (-1)^{n} Y_{k} \sin(2n\pi/m) (k - \frac{1}{2})$$

$$(4.12)$$

CHAPTER V

SATISFACTION OF BOUNDARY CONDITIONS

To obtain the matrix equations, the deflection function must satisfy the boundary conditions for the slab subjected to any arbitrary lateral load. This is accomplished by dividing such a load into symmetric and antisymmetric loads.

5.1 Symmetric Load

1) The deflection must be zero at the edge $v = \pm b$. Substituting equations 3.22, 4.4, 4.6, 4.7, 4.8, 4.9 and 4.10 in equation 4.1, the following equation is obtained (8).

$$f_{0}(u) + \sum_{n}^{\infty} (f_{n}(u) + A_{n} \cos \alpha_{n} u + B_{n} \sin \alpha_{n} u)$$
$$= -\sum_{n}^{\infty} T_{5m} \cos \alpha_{m} u - \sum_{n}^{\infty} (-1)^{n} T_{6n} - \sum_{n}^{\infty} \sum_{n}^{\infty} (-1)^{n} K_{mn} \cos \alpha_{m} u \quad (5.1)$$

in which

$$f_{0}(u) = C_{17} + C_{20} u^{2}/a^{2} + C_{21} + C_{24}[(T u^{4}/b^{4}) - 1]$$

$$f_{n}(u) = (-1)^{n}[C_{1n}\cosh u_{3n}\cos u_{4n} + C_{4n}\sinh u_{3n}\sin u_{4n}$$

$$+ C_{5n}\cosh u_{3n}\cos u_{5n} + C_{8n}\sinh u_{3n}\sin u_{5n}]$$

$$A_{n} = C_{9n}K_{1n} + C_{12n}K_{2n} + C_{13n}L_{1n} + C_{16n}L_{2n}$$

and

$$B_n = -C_{9n}K_{4n} + C_{12n}K_{3n} + C_{13n}L_{4n} - C_{16n}L_{3n}$$

In which, u_{3n} , u_{4n} , u_{5n} , K_{1n} to K_{8n} and L_{1n} to L_{8n} are defined in Appendix (A).

The function $f_0(u)$ and $f_n(u)$ must be expanded in Fourier series to satisfy the boundary condition along the entire length of the edge, thus:

$$f_{0}(u) = a_{00} + \sum_{n=1}^{\infty} (a_{0m} \cos \alpha_{m} u + b_{0m} \sin \alpha_{m} u)$$

$$f_{n}(u) = c_{n0} + \sum_{n=1}^{\infty} (c_{nm} \cos \alpha_{m} u + d_{nm} \sin \alpha_{m} u)$$
(5.2)

where, a_{00} , a_{0m} , b_{0m} , c_{n0} , c_{nm} and d_{nm} are Fourier coefficient and defined in Appendix (B).

Substituting equation 5.2 in equation 5.1 and equating the coefficients of $\sin\alpha_m^{}u$ and $\cos\alpha_m^{}u$ and the constant term to zero, the following three equations are obtained:

$$a_{00} + \sum_{n=1}^{\infty} c_{n0} = -\sum_{n=1}^{\infty} (-1)^{n} T_{6n}$$

$$a_{nm} + \sum_{n=1}^{\infty} c_{nm} + A_{m} = -T_{5m} - \sum_{n=1}^{\infty} (-1)^{n} K_{mn}$$

$$B_{m} = 0 \quad \text{for each m.}$$

$$(5.3)$$

Substituting the Fourier coefficients in equation 5.3, yields three equations:

$$C_{17} + C_{20/3} + C_{21} + C_{24}[(T a^{4}/5b^{4}) - 1]$$

$$+ \frac{\Sigma^{\infty}(-1)^{n}(C_{1n}W_{1n} + C_{4n}W_{2n} + C_{5n}W_{3n} + C_{8n}W_{4n})$$

$$= -\frac{\Sigma^{\infty}(-1)^{n}T_{6n}}{(5.4)}$$

$$C_{20}I_{1m} + C_{24}T I_{3m} a^{4}/b^{4}$$

$$+_{1}\Sigma^{\infty}(-1)^{n}(C_{1n}A_{j1} + C_{4n}A_{j2} + C_{4n}A_{j2} + C_{5n}A_{j3} + C_{8n}A_{j4})$$

$$+C_{9m}K_{1m} + C_{12m}K_{2m} + C_{13m}L_{1m} + C_{16m}L_{2m}$$

$$=-T_{5m} - 1\Sigma^{\infty}(-1)^{n}K_{mn}$$
(5.5)

$$-C_{9n}K_{4n} + C_{12n}K_{3n} + C_{13n}L_{4n} - C_{16n}L_{3n} = 0$$
 (5.6)

2) Boundary condition 3.23 relates the moment normal to the support to the deflection function. Thus,

$$f_{0}(u) + 1^{\sum_{n=1}^{\infty} (f_{n}(u) + A_{n}\cos\alpha_{n}u + B_{n}\sin\alpha_{n}u)}$$

$$= \sum_{n=1}^{\infty} (-1)^{n} \beta_{n}^{2} T_{6n} R_{2} + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (-1)^{n} \beta_{n} (R_{2}K_{mn}\beta_{n} - R_{1}L_{mn}\alpha_{m})\cos\alpha_{m}u$$

$$+ (1/m_{u})_{k=1}^{\sum_{n=1}^{m}} m_{k} + (2/m_{u})_{k=1}^{\sum_{n=1}^{m}} \sum_{n=1}^{n} (-1)^{n} m_{k}\cos[n\pi(k - \frac{1}{2})/m_{u}]$$

$$(5.7)$$

where,

$$f_{0}(u) = 2C_{21}R_{2}/b^{2} - 12C_{24}R_{2}/b^{2}$$

$$f_{n}(u) = (-1)^{n}\beta_{n}^{2} \Big\{ C_{1n}(A_{7}\cosh u_{3n}\cos u_{4n} - R_{1}K_{3}\sinh u_{3n}\sin u_{4n}) + C_{4n}(R_{1}K_{3}\cosh u_{3n}\cos u_{4n} + A_{7}\sinh u_{3n}\sin u_{4n}) + C_{5n}(B_{7}\cosh u_{3n}\cos u_{5n} + R_{1}K_{3}\sinh u_{3n}\sin u_{5n}) + C_{8n}(-R_{1}K_{3}\cosh u_{3n}\cos u_{5n} + B_{7}\sinh u_{3n}\sin u_{5n}) + C_{8n}(-R_{1}K_{3}\cosh u_{3n}\cos u_{5n} + B_{7}\sinh u_{3n}\sin u_{5n}) \Big\}$$

$$A_{n} = \alpha_{n}^{2} \Big\{ C_{9n}(A_{8}K_{1n} + A_{9}K_{2n}) + C_{12n}(-A_{9}K_{1n} + A_{8}K_{2n}) + C_{13n}(B_{8}L_{1n} + B_{9}L_{2n}) + C_{6n}(-B_{9}L_{1n} + B_{8}L_{2n}) \Big\}$$

$$B_{n} = \alpha_{n}^{2} \Big\{ C_{9n} (-A_{8}K_{4n} + A_{9}K_{3n}) + C_{12n} (A_{9}K_{4n} + A_{8}K_{3n}) \\ + C_{13n} (B_{8}L_{4n} - B_{9}L_{3n}) + C_{16n} (-B_{9}L_{4n} - B_{8}L_{3n}) \Big\}$$

the values of A₇, A₈, ...B₉ are defined in Appendix (A)
m_u = total number of concentrated edge moments (for
 -a<u<a) due to prestressing force (m_v is for
 -b<v<+b).</pre>

 m_k = an edge moment at any point along the support. The second set of three equations due to the boundary condition (Equation 3.23) is obtained using the same procedure. Hence,

$$2C_{21}R_{2}/b^{2} - 12C_{24}R_{2}/b^{2} + \sum_{n=1}^{\infty} (-1)^{n}\beta_{n}^{2} C_{1n}(A_{7}W_{1n} - R_{1}K_{3}W_{2n}) + C_{4n}(R_{1}K_{3}W_{1n} + A_{7}W_{2n}) + C_{5n}(B_{7}W_{3n} + R_{1}K_{3}W_{4n}) + C_{8n}(-R_{1}K_{3}W_{3n} + B_{7}W_{4n}) \Big\} = 1^{\sum_{n=1}^{\infty} (-1)^{n}\beta_{n}^{2}T_{6n}R_{2}} + (1/m_{u})_{k} \sum_{n=1}^{m_{u}} m_{k}$$

$$(5.8)$$

$$n^{\sum_{n}^{\infty}(-1)^{n}}\beta_{n}^{2}\left\{C_{1n}(A_{7}A_{j1} - R_{1}K_{3}A_{j2}) + C_{4n}(R_{1}K_{3}A_{j1} + A_{7}A_{j2}) + C_{5n}(B_{7}A_{j3} + R_{1}K_{3}A_{j4}) + C_{8n}(-R_{1}K_{3}A_{j3} + B_{7}A_{j4})\right\}$$

$$+\alpha_{m}^{2}\left\{C_{9m}(A_{8}K_{1m} + A_{9}K_{2m}) + C_{12m}(-A_{9}K_{1m} + A_{8}K_{2m}) + C_{13m}(B_{8}L_{1m} + B_{9}L_{2m}) + C_{16m}(-B_{9}L_{1m} + B_{8}L_{2m})\right\}$$

$$= n^{\sum_{1}^{\infty}(-1)^{n}}\beta_{n}(R_{2}\beta_{n}K_{mn} - R_{1}\alpha_{m}L_{mn}) + (2/m_{u})$$

$$k^{\sum_{1}^{mu}(-1)^{n}}m_{k}\cos[2n\pi(k - k_{2})/m_{u}] \text{ for } m \ge 1$$

$$(5.9)$$

$$\alpha_{n}^{2} \Big\{ C_{9n} (-A_{8}K_{4n} + A_{9}K_{3n}) + C_{12n} (A_{9}K_{4n} + A_{8}K_{3n}) \\ + C_{13n} (B_{8}L_{4n} - B_{9}L_{3n}) + C_{16n} (-B_{9}L_{4n} - B_{8}L_{3n}) \Big\} = 0 \quad (5.10)$$
for $n \ge 1$

3) The third boundary condition (Equation 3.24
for -b
$$24C_{24}(R_{3}T_{a} + EI)/b^{4} + {}_{1}\Sigma^{\infty}(-1)^{n}\alpha_{n}^{4} \{C_{9n}(A_{5}W_{5n} + A_{6}W_{6n}) + C_{12n}(-A_{6}W_{5n} + A_{5}W_{6n}) + C_{13n}(B_{5}W_{7n} + B_{6}W_{8n}) + C_{16n}(-B_{6}W_{7n} + B_{5}W_{8n}) \} = c^{4}a_{0}EI/4E_{4}$$
(5.11)

$$\begin{split} \sum_{m=1}^{\infty} (-1)^{m} \alpha_{m}^{4} \Big\{ C_{9m} (A_{5}A_{j5} + A_{6}A_{j6}) + C_{12m} (-A_{6}A_{j5} + A_{5}A_{j6}) \\ &+ C_{13m} (B_{5}A_{j7} + B_{6}A_{j8}) + C_{16m} (-B_{6}A_{j7} + B_{5}A_{j8}) \Big\} \\ &+ \beta_{n}^{3} \Big\{ C_{1n} (-EI\beta_{n}K_{5n} + A_{10}K_{7n} + A_{11}K_{8n}) \\ &+ C_{4n} (-EI\beta_{n}K_{6n} - A_{11}K_{7n} + A_{10}K_{8n}) \\ &+ C_{5n} (-EI\beta_{n}L_{5n} + B_{10}L_{7n} + B_{11}L_{8n}) \\ &+ C_{8n} (-EI\beta_{n}L_{6n} - B_{11}L_{7n} + B_{10}L_{8n}) \Big\} \\ &= \sum_{n=1}^{\infty} (-1)^{m} K_{mn} \beta_{n}^{4} EI + T_{6n} \beta_{n}^{4} EI , \quad \text{for } n \ge 1 \end{split}$$
(5.12)

$$-24C_{24}R_{6}I_{5n}/b^{3} + 1^{\sum^{\infty}(-1)}R_{m}a_{m}^{3}\left\{C_{9m}(A_{12}B_{j5} + A_{13}B_{j6})\right\}$$
$$+C_{12m}(-A_{13}B_{j5} + A_{12}B_{j6}) + C_{13m}(B_{12}B_{j7} + B_{13}B_{j8})$$
$$+C_{16m}(-B_{13}B_{j7} + B_{12}B_{j8})\right\}$$

$$+\beta_{n}^{3} \left\{ C_{1n} (A_{11}K_{5n} - A_{10}K_{6n} + EI\beta_{n}K_{8n}) + C_{4n} (A_{10}K_{5n} + A_{11}K_{6n} - EI\beta_{n}K_{7n}) + C_{5n} (-B_{11}L_{5n} + B_{10}L_{6n} - EI\beta_{n}L_{8n}) + C_{8n} (-B_{10}L_{5n} - B_{11}L_{6n} + EI\beta_{n}L_{7n}) \right\}$$

$$= \sum_{n}^{\infty} (-1)^{m} \left\{ -\beta_{n} (R_{4}\alpha_{m}^{2} + R_{6}\beta_{n}^{2})K_{mn} + \alpha_{n} (R_{3}\alpha_{m}^{2} + R_{5}\beta_{n}^{2})L_{mn} \right\}$$

$$-R_{6}c^{4}a_{0}bI_{5n}/4E_{4} - T_{6n}\beta_{n}^{3}R_{6}$$
(5.13)

4) The fourth boundary condition (Equation 3.25) for -b < v < b) gives the following equations:

$$2C_{20}R_{7}/a^{2} + 2C_{21}R_{9}/b^{2} + 12C_{24}(R_{7}Ta^{2} - R_{9}b^{2}/3)/b^{4}$$

$$+1^{\Sigma^{\infty}(-1)}n\alpha_{n}^{2}\left\{C_{9n}(A_{17}W_{5n} + A_{18}W_{6n}) + C_{12n}(-A_{18}W_{5n} + A_{17}W_{6n})\right\}$$

$$+C_{13n}(B_{17}W_{7n} + B_{18}W_{8n}) + C_{16n}(-B_{18}W_{7n} + B_{17}W_{8n})\right\}$$

$$=-R_{7}\left\{1^{\Sigma^{\infty}(-1)}(-1)^{m}(-T_{5m}\alpha_{m}^{2})\right\} + a_{0}c^{4}b^{2}R_{9}/12E_{4} - c(1/m_{v})_{k} \stackrel{\Sigma}{=} 1^{m}m_{k}$$

$$(5.14)$$

$$-12C_{24}R_{9}I_{1n}/b^{2} + 1^{\sum^{\infty}(-1)^{m}\alpha_{m}^{2}} \left\{ C_{9m}(A_{17}A_{j5} + A_{18}A_{j6}) + C_{12m}(-A_{18}A_{j5} + A_{17}A_{j6}) + C_{13m}(B_{17}A_{j7} + B_{18}A_{j8}) + C_{16m}(-B_{18}A_{j7} + B_{17}A_{j8}) \right\}$$

$$+C_{16m}(-B_{18}A_{j7} + B_{17}A_{j8}) \left\{ +B_{2}^{2} \left\{ C_{1n}\{A_{14}K_{5n} + A_{15}K_{6n} + \beta_{n}(-GJK_{3}K_{7n} + A_{16}K_{8n})\} + C_{4n}\{-A_{15}K_{5n} + A_{14}K_{6n} + \beta_{n}(-A_{16}K_{7n} - GJK_{3}K_{8n})\} + C_{5n}\{B_{14}L_{5n} + B_{15}L_{6n} + \beta_{n}(-GJK_{3}L_{7n} + B_{16}L_{8n})\} \right\}$$

$$+C_{8n} \{-B_{15}L_{5n} + B_{14}L_{6n} + \beta_{n} (-B_{16}L_{7n} - GJK_{3}L_{8n})\} \}$$

$$=-c^{4}a_{0}b^{2}R_{9}I_{1n}/8E_{4} + T_{6n}\beta_{n}^{2}R_{9}$$

$$+_{1}\Sigma^{\infty} (-1)^{m} \{(\alpha_{m}^{2}R_{7} + \beta_{n}^{2}R_{9})K_{mn} - L_{mn}\alpha_{m}\beta_{n}R_{8}\} \}$$

$$-c \{(2/m_{v})_{-1}\Sigma^{mv} (-1)^{n}m_{k}\cos 2n\pi (k - \frac{1}{2})/m_{v}\}, \text{ for } n \ge 1$$
(5.15)

$$-24C_{24}R_{10}I_{5n}/b^{3} + 1^{\Sigma^{\infty}(-1)}m_{\alpha_{m}^{3}} \{C_{9m}(A_{19}B_{j5} + A_{20}B_{j6}) + C_{12m}(-A_{20}B_{j5} + A_{19}B_{j6}) + C_{13m}(B_{19}B_{j7} + B_{20}B_{j8}) + C_{16m}(-B_{20}B_{j7} + B_{19}B_{j8}) \} + \beta_{n}^{2} \{C_{1n}\{\beta_{n}(A_{16}K_{5n} + GJK_{3}K_{6n}) + A_{15}K_{7n} - A_{14}K_{8n}\} + C_{4n}\{\beta_{n}(-GJK_{3}K_{5n} + A_{16}K_{6n}) + A_{15}K_{7n} - A_{14}K_{8n}\} + C_{5n}\{\beta_{n}(-B_{16}L_{5n} - GJK_{3}L_{6n}) + A_{14}K_{7n} + A_{15}K_{1n}\} + C_{5n}\{\beta_{n}(GJK_{3}L_{5n} - B_{16}L_{6n}) - B_{15}L_{7n} + B_{14}L_{8n}\} + C_{8n}\{\beta_{n}(GJK_{3}L_{5n} - B_{16}L_{6n}) - B_{14}L_{7n} - B_{15}L_{8n}\} \} = -c^{*}a_{0}bR_{10}I_{5n}/4E_{4} - T_{6n}\beta_{n}^{3}R_{10} - 1^{\Sigma^{\infty}}(-1)^{m}\beta_{n}^{2}(R_{10}\beta_{n}K_{mn} - GJ\alpha_{m}L_{mn}) \qquad \text{for } n \ge 1 \qquad (5.16)$$

5.2 Anti-Symmetric Load

Proceeding as mentioned before for symmetric
 loads, the first boundary condition (Equation 3.22) gives
 the following three equations:

$$C_{19} + C_{23} = 0$$
 (5.17)

$$C_{10n}K_{3n} + C_{11n}K_{4n} + C_{14n}L_{3n} + C_{15n}L_{4n} = 0$$
 for $n \ge 1$ (5.18)

$$C_{18}I_{5n}/a + C_{22}I_{7n}/a^{3} + {}_{1}\Sigma^{\infty}(-1)^{m}$$

$$(C_{2m}B_{j1} + C_{3m}B_{j2} + C_{6m}B_{j3} + C_{7m}B_{j4})$$

$$-C_{10n}K_{2n} + C_{11n}K_{1n} + C_{14}L_{2n} - C_{15n}L_{1n}$$

$$= -T_{7n} - {}_{1}\Sigma^{\infty}(-1)^{m}P_{nm} \text{ for } n \ge 1$$
(5.19)

2) The second boundary condition (Equation 3.23) along the support gives the following equations: $6C_{23}R_2/b^2 = 0$ (5.20) $\alpha_n^2 \left\{ C_{10n} (A_8 K_{3n} + A_9 K_{4n}) + C_{11n} (-A_9 K_{3n} + A_8 K_{4n}) \right\}$ $+C_{14n}(B_8L_{3n} + B_9L_{4n}) + C_{15n}(-B_9L_{3n} + B_8L_{4n}) = 0$ for n>1 (5.21) $1^{\Sigma^{\infty}(-1)} {}^{m}\beta_{m}^{2} \Big\{ C_{2m} (A_{7}B_{j1} - R_{1}K_{3}B_{j2}) + C_{3m} (R_{1}K_{3}B_{j1} + A_{7}B_{j2}) \Big\}$ $+C_{6m}(B_7B_{j3} + B_1K_3B_{j4}) + C_{7m}(-B_1K_3B_{j3} + B_7B_{j4})$ $+\alpha_{n}^{2}\left\{C_{10n}(A_{9}K_{1n} - A_{8}K_{2n}) + C_{11n}(A_{8}K_{1n} + A_{9}K_{2n})\right\}$ $+C_{14n}(-B_{9}L_{1n} + B_{8}L_{2n}) + C_{15n}(-B_{8}L_{1n} - B_{9}L_{2n})$ $= \sum^{\infty} (-1)^{m} \beta_{m} (R_{2} \beta_{m} P_{nm} + R_{1} \alpha_{n} Q_{nm})$ $+(2/m_{11}) \sum_{k=1}^{m_{11}} (-1)^{n} \sin 2n\pi (k - \frac{1}{2})/m_{11}$ for $n \ge 1$ (5.22)

3) The following three equations result from the third boundary condition (Equation 3.24):

$${}^{6C}_{22}R_{3}/a_{3}^{3} + {}^{6C}_{23}R_{6}/b^{3} + {}^{5}_{n \equiv 1}(-1)^{n}\alpha_{n}^{3}\left\{C_{10n}(A_{12}W_{5n} + A_{13}W_{6n}) + C_{14n}(-A_{13}W_{5n} + A_{12}W_{6n}) + C_{14n}(B_{12}W_{7n} + B_{13}W_{8n}) + C_{15n}(-B_{13}W_{7n} + B_{12}W_{8n})\right\} = {}^{5}_{m \equiv 1}(-1)^{m}T_{7m}\alpha_{m}R_{3}$$

$$(5.23)$$

$$1^{\sum^{\infty}(-1)} {}^{m} \alpha_{n}^{3} \Big\{ C_{10m} (A_{12}A_{j5} + A_{13}A_{j6}) + C_{11m} (-A_{13}A_{j5} + A_{12}A_{j6}) \\ + C_{14m} (B_{12}A_{j7} + B_{13}A_{j8}) + \\ + C_{15m} (-B_{13}A_{j7} + B_{12}A_{j8}) \Big\} \\ + \beta_{n}^{3} \Big\{ C_{2n} (A_{10}K_{5n} + A_{11}K_{6n} - EI\beta_{n}K_{7n}) \\ + C_{3n} (-A_{11}K_{5n} + A_{10}K_{6n} - EI\beta_{n}K_{8n}) \\ + C_{6n} (B_{10}L_{5n} + B_{11}L_{6n} - EI\beta_{n}L_{7n}) \\ + C_{7n} (-B_{11}L_{5n} + B_{10}L_{6n} - EI\beta_{n}L_{8n}) \Big\} \\ = T_{8n}\beta_{n}^{3}R_{6} + m^{\sum_{1}^{\infty}(-1)} \Big\{ \lambda_{m} (\alpha_{m}^{2}R_{3} + \beta_{n}^{2}R_{5})P_{mn} \\ + \beta_{n} (\alpha_{m}^{2}R_{4} + \beta_{n}^{2}R_{6})Q_{mn} \Big\} \text{ for } n \ge 1$$

$$(5.24)$$

$$\begin{split} \Sigma_{1}^{\infty}(-1)^{m} \alpha_{m}^{4} \Big\{ C_{10m}(A_{5}B_{j5} + A_{6}B_{j6}) + C_{11m}(-A_{6}B_{j5} + A_{5}B_{j6}) \\ &+ C_{14m}(B_{5}B_{j7} + B_{6}B_{j8}) + C_{15m}(-B_{6}B_{j7} + B_{5}B_{j8}) \Big\} \\ &+ \beta_{n}^{3} \Big\{ C_{2n}(EI\beta_{n}K_{6n} + A_{11}K_{7n} - A_{10}K_{8n}) \\ &+ C_{3n}(-EI\beta_{n}K_{5n} + A_{10}K_{7n} + A_{11}K_{8n}) \\ &+ C_{6n}(-EI\beta_{n}L_{6n} - B_{11}L_{7n} + B_{10}L_{8n}) \\ &+ C_{7n}(-EI\beta_{n}L_{5n} - B_{10}L_{7n} - B_{11}L_{8n}) \Big\} \end{split}$$

$$=\beta_{n}^{4}T_{8n} + \Sigma^{\infty}EI\beta_{n}^{4}(-1)^{m}Q_{mn} \quad \text{for } n \ge 1 \quad (5.25)$$

42

.

4) Finally, the following three equations are
obtained from the fourth boundary condition (Equation 3.25):

$$6R_7C_{22}/a^2 + 6R_{10}C_{23}/b^3 + 1^{\Sigma^{\infty}(-1)}n_{\alpha_n^3}C_{10n}(A_{19}W_{5n} + A_{20}W_{6n})$$

 $+C_{11n}(-A_{20}W_{5n} + A_{19}W_{6n}) + C_{14n}(B_{19}W_{7n} + B_{20}W_{8n})$
 $+C_{15n}(-B_{20}W_{7n} + B_{19}W_{8n}) = 0$ (5.26)
 $m_{-14m}^{\Sigma^{\infty}(-1)}n_{\alpha_m^3}^{\gamma} \Big\{ C_{10m}(A_{19}A_{15} + A_{20}A_{16}) + C_{11m}(-A_{20}A_{15} + A_{19}A_{16})$
 $+C_{14m}(B_{19}A_{17} + B_{20}A_{18}) + C_{15m}(-B_{20}A_{17} + B_{19}A_{18}) \Big\}$
 $+\beta_n^2 \Big\{ C_{2n}\beta_n(-GJK_3K_{5n} + A_{16}K_{6n}) + A_{14}K_{7n} + A_{15}K_{8n}$
 $+C_{3n}\beta_n(-A_{16}K_{5n} - GJK_3K_{6n}) - A_{15}K_{7n} + A_{14}K_{8n}$
 $+C_{6n}\beta_n(-GJK_3L_{5n} + B_{16}L_{6n}) + B_{14}L_{7n} + B_{15}L_{8n}$
 $+C_{7n}\beta_n(-B_{16}L_{5n} - GJK_3L_{6n}) - B_{15}L_{7n} + B_{14}L_{8n} \Big\}$
 $=T_{8n}\beta_n^3R_{10} + 1^{\Sigma^{\infty}(-1)}n_{\beta_n^2}(GJ\alpha_mP_{mn} + R_{10}\beta_nQ_{mn}),$
 $n \ge 1$ (5.27)

$${}^{6R_{9}C_{23}I_{6n}/b^{3}} + {}_{1}\Sigma^{\infty}(-1){}^{m}\alpha_{m}^{2} \Big\{ C_{10m}(A_{17}B_{j5} + A_{18}B_{j6}) \\ + C_{11m}(-A_{18}B_{j5} + A_{17}B_{j6}) + C_{14m}(B_{17}B_{j7} + B_{18}B_{j8}) \\ + C_{15m}(-B_{18}B_{j7} + B_{17}B_{j8}) \Big\} \\ + \beta_{n}^{2} \Big\{ C_{2n} A_{15}K_{5n} - A_{14}K_{6n} + \beta_{n}(A_{16}K_{7n} + GJK_{3}K_{8n}) \Big\}$$

$$+C_{3n} A_{14}K_{5n} - A_{15}K_{6n} + \beta_{n}(-GJK_{3}K_{7n} + A_{16}K_{8n}) +C_{6n} -B_{15}L_{5n} + B_{14}L_{6n} + \beta_{n}(-B_{16}L_{7n} - GJK_{3}K_{8n}) +C_{7n} -B_{14}L_{5n} - B_{15}L_{6n} + \beta_{n}(GJK_{3}L_{7n} - B_{16}L_{8n}) =\beta_{n}^{2}T_{8n}R_{9} + 1^{\sum^{\infty}(-1)^{m}} \left\{ R_{8}\alpha_{m}\beta_{n}P_{mn} + (R_{7}\alpha_{m}^{2} + R_{9}\beta_{n}^{2})Q_{mn} \right\} - c \left\{ (2/m_{v})_{k} \sum_{l}^{m_{v}} (-1)^{n} \sin[2n\pi(k - \frac{1}{2})/m_{v}] \right\}$$
 $n \ge 1$ (5.28)

It should be noted that for one boundary condition, (2n+1) equations are obtained. For the slab bridge with four boundary conditions, (8n+4) equations are obtained, so that for each case of loading (symmetric or antisymmetric) the size of the matrix will be (8n+4).

Once the matrix equation is formulated and solved for the unknown constants, the deflection function is known over the entire area of the slab. The moments and strains can be computed readily as follows:

$$M_{x} = (-D_{x}/c^{2})W, uu + (2D_{x}s/c^{2})W, uv - (D_{x}s^{2}/c^{2} + D_{1})W, vv$$
(5.29)

$$M_{y} = (-D_{2}/c^{2})W, uu + (2D_{2}s/c^{2})W, uv - (D_{2}s^{2}/c^{2} + D_{y})W, vv$$
(5.30)

$$M_{xy} = (0)W_{,uu} + (D_{xy}/c)W_{,uv} - (D_{xy}s/c)W_{,vv}$$
(5.31)

The strain can be obtained from Equation 3.7 by substituting for M_x and M_y .

CHAPTER VI

EXPERIMENTAL PROGRAM

6.1 Scope of the Experimental Program

To verify the analytical approach proposed in Chapters III, IV and V, tests were carried out on two groups of concrete waffle-type slabs: reinforced and prestressed. The waffle slabs tested were one-to-eight scale models of concrete bridge decks. The tests were aimed at obtaining the deflections, stresses and bending moments at various points and determining the cracking and ultimate loads.

The first group consisted of three reinforced concrete waffle slabs, two were rectangular and the third had a 45° skew. One rectangular slab was tested for a uniformly distributed load by means of air pressure and a rubber membrane while the other two slabs were under concentrated loads only. The second group consisted of two post-tensioned rectangular and 45°-skew prestressed concrete waffle slabs, each subjected to edge prestressing forces and external concentrated loads applied transversely at various points.

6.2 <u>Materials</u>

6.2.1 Concrete

High Early Strength Portland Cement (CSA) manufactured by Canada Cement Company was used in all slab models. This type of cement provides high strength within a week. A clean sand free of impurities was used. The maximum size of aggregate was restricted to 0.25 inch (6 mm) since the narrowest dimension between the sides of the formwork was equal to 1.25 inch (32 mm) and the concrete cover to the reinforcing wires was 0.375 inch (10 mm). The combined aggregate was prepared according to the ACI code (1) by mixing 40 to 60% fine aggregates of the total aggregates. This combination gave a well-graded aggregate mix with a fineness modulus equal to 2.50. The coarse aggregates used were crushed stones with hard, clean and durable properties. Natural water having no impurities was used to obtain different concrete pastes and varying maximum strength for the concrete specimens.

Five trial mixes of air-entrained concrete of medium consistency and different water cement ratio varying between 40% to 70% were examined. Mixing was done in an Eerich Counter Current Mixer, Model EA2(2W) with five cu. ft. charging capacity and manually operated. Two batches of concrete mix were required for each slab model, each weighing 700 lbs. The compressive strength of all specimens were measured after seven, fourteen and twenty-eight days as shown in Appendix (D).

6.3 Steel

6.3.1 Mild Steel For Reinforced Concrete Slabs

To fulfill the code requirements (1), and using the minimum area of steel, three one-eighth inch (3.2 mm)

in diameter mild steel wires were used. The wires were straightened and twisted in the laboratory, keeping the cross-sectional area the same along the whole length by providing the wires with constant number of pitches per unit length. The wires were cut into different lengths, hooked at both ends and cleaned from rust. The stress-strain relationship for the reinforcing wire is shown in Appendix (E); the yield strength was found to be 33,000 psi (227.7 MN/m^2). The modulus of elasticity was determined from the calibration test using strain gauges mounted on the wire and was found to be 30,000 ksi (207 GN/m^2).

6.3.2 <u>High Tensile Steel for the Prestressed</u> Concrete Slabs

High tensile steel wire of 0.196 inch (5 mm) in diameter were used for the prestressed concrete waffle slabs. Tensile tests on the wire indicated an ultimate strength of 225,000 psi (1.553 GN/m^2), and a yield stress of 29,700 psi (204.9 MN/m^2); see Appendix (E). This wire gave good resistance against slippage from the grips. Figure 6.1 shows the twisted reinforced steel wire and the high tensile steel wire used in the slab models.

6.4 Formwork

Two forms were made from plywood, 3/4 inch (19 mm) thick, and wood joists, 2 x 4 inches (51 x 102 mm) crosssectional dimension, were used as stiffeners. The first form was rectangular in shape and used for casting three

slabs, two reinforced concrete and the third being the prestressed concrete slab. The second form was used for casting the reinforced and prestressed concrete slabs of 45° skew as shown in Figure 6.2. Styrafoam cubes were used for producing the waffle shape; styrafoam plates of 3 inch (76 mm) thickness were cut into cubes of 3 x 4 x 4 inches (76 x 102 x 102 mm) dimensions, to fit the clearance between the ribs.

6.5 Experimental Equipment

6.5.1 Prestressing Equipment

The prestressing equipment used in prestressing the wires, were manufactured by Cable Covers Ltd., England. A hydraulic jack of twenty kips (89 KN) capacity was used for post-tensioning as shown in Figure 6.3. The mechanical gripping devices of the open grip type and washers shown in Figure 6.1, were very simple and quick to use. Black wax lubricant was applied to the wedges to make it easier to release the grips after completing the prestressing operation.

6.5.2 End Bearing Plate

Fifty-eight end bearing plates, 0.25 inch (6.4 mm) thick, with holes of 0.25 inch (6.4 mm) diameter and of 1.5×3.0 inches (38 x 76 mm) dimensions, were used to distribute the prestressing force at each end of the rib. Twenty-six steel blocks of $1.5 \times 1.5 \times 3.0$ inches (38 x 38 x 19 mm) were used for the prestressed skew slab.

Each steel block was provided with two perpendicular eccentric holes to fit the wires in two directions. Figures 6.1 and 6.4 show the end bearing plates and the grooves in the concrete skew slab to accommodate the steel blocks.

6.5.3 The Steel Frame For Producing Uniformly Distributed Load

The purpose of the steel loading frame, Figures 6.5 and 6.7, was to apply a uniformly distributed load by means of an air chamber and a rubber membrane. The top of the air chamber was made of a stiffened steel plate, 0.25 inch (6.4 mm) thick and, 104.25 x 87.50 inches (2.65 x 2.22 mm) in plan. The bottom of the air chamber was a rubber membrane, 0.09 inch (2.4 mm) thick and 134.25 x 117.5 inches (3.41 x 2.98 m) in plan. The steel cover plate was placed on the top of the rectangular steel frame made of two steel channels as shown in Figures 6.5 and 6.6. Figures 6.7 and 6.8 show the longitudinal and transverse sections in the steel loading frame. Two steel rods of 1.25 inch (31.8 mm) diameter, were placed on the top flange of the beams to be used as simple supports for the slab. Styrafoam strips were placed inside the channel of the air chamber to avoid any damage to the rubber membrane from the sharp corners of the steel frame.

All supporting beams were tack-welded onto the floor to avoid any sliding or uplift during the experiment. Two steel rods, 0.25 inch (6.4 mm) in diameter were tack-welded

onto the flange plate around the supporting steel rods to prevent sliding and to allow rotation. Three pressure gauges, two valves and a regulator were fixed on the steel plate to measure and control the air pressure as shown in Figure 6.6. Heavy steel clamps were used to clamp the steel plate and the rubber membrane with the steel frame as shown in Figure 6.5.

6.6 The Construction of the Slab Models

Figures 3.2 and 3.3 show the dimension of the crosssections of the five one-eighth scale model slabs. Figures 6.9 to 6.13 show the layout of the five slabs. The reinforced concrete slabs (Group A) are denoted by A.1, A.2 and A.3, while the prestressed concrete slabs (Group B) are referred to as B.1 and B.2. The required form was prepared as shown in Figure 6.2 and then painted with grease material, Vitrea Oil 150, for easy form release after the concrete has set. The twisted steel wires for group A were placed in the form; they were instrumented with electric strain gauges. The bottom steel layer was supported on steel wire chairs which provided a clear cover of 0.5 inch (12.7 mm) from the bottom. The second steel layer was supported directly over the first layer and fixed with thin wires. All reinforcing wires were hooked at both ends.

For the group B slabs, rubber hoses having an inner diameter of 0.25 inch (6.4 mm) and 0.062 inch (1.6 mm)

thick were used to cover the steel wires during casting of the concrete. The first layer of the steel wires was placed at a distance of one inch from the bottom, and supported on thin steel wires fixed between the styrafoam cubes. The second layer was placed directly over the first layer.

To determine the compressive strength of the concrete, six 3 x 6 inches (76 x 152 mm) cylinders were cast with each model.

All concrete in the slab models was vibrated with a high frequency vibrator. Care was taken during casting and vibrating to ensure that no segregation occurred. The top surface of the slab models was troweled smooth after casting. The slab models and the cylinder specimens were cured in water for 14 and 28 days and then were allowed to dry at least four days before mounting the strain gauges.

6.7 Instrumentation

6.7.1 Strain Gauges on the Reinforcement

The longitudinal and transverse wires were instrumented with electric strain gauges as shown in Figures 6.10 and 6.11. The gauges used were metal gauges of type EA-06-062AP-120. The surface of the reinforcing wire was prepared by cleaning it using fine silicon carbide paper and acetone. The gauge was mounted using Eastman M-Bond 200 adhesive with 200 catalyst as bonding agent according to the manufacturer's recommendations. The lead wires were then soldered to the gauges and water-proofed with a

plasticised epoxy resin system, Bean Gagekote #3. After curing for 24 hours at room temperature a layer of wax was applied on the gauge and plastic tape for further protection from the wet concrete.

6.7.2 Strain Gauges On The Concrete

To measure the strain on the top and the bottom surfaces of the slab models, electric strain gauges of type EA-06-500 BH-120 were used. Three-legged rosette gauges were used also on the deck surface of the skew model at the obtuse corner. All gauges had a nominal gauge length of 0.50 inch (12.7 mm). The locations of the strain gauges are shown in Figures 6.9 to 6.13.

The concrete surfaces at the locations of the gauges were smoothed using sandpaper, all dust was removed and then the surfaces were cleaned with acetone. Surface cavities were then filled by applying an epoxy of high strength (RTC). This epoxy was mixed by one volume activator B, and the same volume of resin A. After the surface was dry, it was again smoothed and the gauge was mounted, soldered with lead wires and covered by coating epoxy Bean Gagekote #3. The gauges were then connected to a strain indicator, Strainsert model TN 20C.

6.7.3 Mechanical Dial Gauges

The deflections were measured using mechanical dial gauges having 0.001 inch (.025 mm) travel sensitivity. The locations of the dial gauges are shown in
Figures 6.9 to 6.13, and are seen in position in Figure 6.14. In group A slabs, the dial gauges were placed at the bottom surface of the slab. In group B slabs, the dial gauges were placed at the top surface of the slab and supported by a light steel frame.

6.7.4 Load Cells

a) Universal Flat Load Cell

Two universal flat load cells, having capacities of 5 kips (22.25 KN), and 25 kips (111.3 KN), were used in reinforced and prestressed concrete slabs respectively to determine the value of the applied concentrated load through the hydraulic jack as shown in Figure 6.15. The calibrations of these load cells are given in Appendix (E)

b) Cylindrical Load Cell

Thirty-eight cylindrical load cells were used to measure the prestressing force in the wires. The calibration of these load cells is given also in Appendix (E). Figure 6.4 shows the cylindrical load cells in position.

6.8 Experimental Setup and Test Procedure

Due to the heavy weight of each slab model and the difficulty in handling, it was decided to cast the slabs near the portal loading frame and in the vicinity of a crane.

6.8.1 <u>Reinforced Concrete Waffle Slabs, Group A</u>a) Slab A.1

Reinforced concrete slab A.l was subjected to a uniform load, applied by pumping compressed air into a chamber formed by a rubber membrane and a steel frame as shown in Figures 6.7 and 6.8. The setup was designed and fabricated. Care was taken to insure that the rubber membrane was in contact with the slab's surface, without allowing any tension in the membrane, which might affect the results. Shims were provided along the support rods so that uniform contact was maintained between the supports and the slabs. Clearance of 0.125 inch (3.15 mm) was allowed between the edges of the slab and the edge of the steel frame to allow rotation of the slab during the test. To ensure that the air chamber is totally air tight, heavy steel clamps were used every ten inches along the steel plate.

To measure the air pressure inside the air chamber three pressure gauges of 0.15 lb/in² (l07 KN/m²) accuracy were used at various points as shown in Figure 6.6. A regulator valve was used to control the air pressure and for loading and unloading as shown in Figure 6.6. Fortytwo strain gauges were mounted on the concrete, at top of the deck and bottom surface of the longitudinal and transverse ribs and at mid-depth of the rib to observe the strain gradient through the depth of the rib. Nine dial gauges were used to measure the deflections as shown in Figure 6.9.

b) Slab A.2

Slab A.2 was identical in geometric shape and amount of steel to slab A.1, but was tested under transverse

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

concentrated loads, applied through a rigid portal frame supporting a cross I beam and a hydraulic jack of 20,000 1bs. (89 KN) capacity. The arrangement was such that the concentrated load could be applied anywhere without moving the slab; see Figure 6.16. The transfer of the load from the hydraulic jack to the slab was made through a small rectangular steel plate, 1 inch (25.4 mm) thick and 5 x 6 inches (127 x 152 mm) in plan. Grooves of 0.187 inch (4.8 mm) thickness and 0.75 inch (19 mm) width were made on the bottom of the steel loading plate to avoid contact with the strain gauge located at loading positions. Loading and unloading were applied three times before starting the test, to minimize the residual strains and for proper seating of the slab on the supports. Figure 3.4 shows the loading points: points 1 to 6 for the working load stage, and point 7 up to failure of the model.

The strains were measured by thirty-five electric strain gauges mounted on the concrete and steel. Deflections were measured by sixteen mechanical dial gauges as shown in Figure 6.10. The readings from loading and unloading were recorded and averaged.

c) Slab A.3

The dimensions of this slab are shown in Figure 6.11 and its loading system is shown in Figure 6.17. The loading plate was one inch (25.4 mm) thick and 6×7 inches (152 x 179 mm) in plan as shown in Figures 4.1 and 6.15. The slab was tested under concentrated load at eight

locations, Figure 3.4. Twenty-three electric strain gauges were used to measure the strains in the concrete. and steel. Ten mechanical dial gauges were used to measure the deflections; see Figure 6.11.

6.8.2 Prestressed Concrete Waffle Slabs, Group_B

This group consisted of two post-tensioned waffle slabs, a rectangular slab B.l and a 45⁰ skew B.2.

a) Slab B.1

Forty-five strain gauges were used to measure the strain on the concrete surfaces and eleven mechanical dial gauges were used to measure the deflections as shown in Figure 6.12. The slab was prestressed by twenty-nine high tensile steel wires, each one connected to a cylindrical load cell to measure the prestressing force.

All care and adequate precautions were taken during the prestressing process. To avoid any distortion in the edge beam and/or local failure, the wires were tensioned in a sequence starting with the odd-numbered wires and followed by tensioning the even-numbered wires. Figures 6.18 and 6.20 show the loading system and the final amount of prestressing force.

The slab was tested under concentrated load through a universal load cell of twenty-five kips capacity. Figure 3.5 shows the loading points: points 1 and 2 for the working load stage, and point 3 up to failure of the model.

b) Slab B.2

The slab was mounted with twenty-five strain gauges

to measure the strain on the concrete surfaces and eleven dial gauges to measure the deflections as shown in Figure 6.13. The slab was prestressed by thirty-eight high tensile steel wires in both directions, thirteen wires in the longitudinal direction (parallel to the traffic) and twenty-five wires were perpendicular to the edge beams. To prestress the wires along the skew supports, steel end blocks were placed in ninety degree grooves formed before casting the concrete; see Figure 6.4. The wires were tensioned in the sequence mentioned earlier for slab B.1.

The loading system used is shown in Figure 6.19. The slab was tested at four points; Figure 3.5 shows the loading points: points 1,2,3 and 4 for the working load stage, and again at point 1 up to the failure of the model.

CHAPTER VII

DISCUSSION OF RESULTS

7.1 General

The theoretical and experimental results for deflections and strains of reinforced concrete waffle slabs are compared in Figures 7.3 to 7.8, Figures 7.11 to 7.17 and Figures 7.20 to 7.25. The upward deflections (camber) and strains of group B slabs due to prestressing force are presented in Figures 7.28, 7.29, 7.30, 7.39, 7.40 and 7.41.

The comparisons between experimental and theoretical results for stresses and deflections for group B slabs, are given in Figures 7.31 to 7.34 and Figures 7.42 to 7.46.

Finally, comparisons between the results for the waffle slab type and those for the slab type with uniform thickness and having the same volume of concrete and amount of steel, are given in Figures 7.47 to 7.56.

7.2 Reinforced Concrete Waffle Slabs (Group A)

7.2.1 Rectangular Slab Under Uniform Load (Slab A.1)

Figures 7.3 and 7.4 show the comparison between the theoretical and experimental results for the load-deflection relationships at various points on the centre line and on the free edge of the slab. Figures 7.5 and 7.6 show the comparison between the theoretical and experimental deflections for a uniform load of 0.3 lb/in^2 (2 KN/m²) before

cracking. Close agreement is observed in the results before reaching the cracking load, with a maximum difference between the theoretical and experimental results of varying from 5 to 7%.

Load-strain relationships for points at the centre and at the free edge are plotted in Figures 7.7 and 7.8, showing the strains at the top and bottom fibres in the x and y directions. Close agreement between the theoretical and experimental results is observed before cracking of the concrete. Considering the maximum moments due to selfweight of the slab, the microcracking occurs at a strain of approximately 100 x 10^{-6} in/in, which agrees with the results formed by Evans (6).

Figure 7.2 shows the crack progression during loading of slab A.1, and finally the failure of the slab as shown in Figure 7.1. It can be observed that the cracks appear in the longitudinal ribs between the supports with no cracks in the transverse ribs. Figure 7.8 shows that the maximum strain occurs in the longitudinal ribs, while the strain in the transverse ribs is very small. The final failure of the slab occurs when the maximum tensile stress due to bending is reached at the centre of the slab. The microcracking loads starts at a load equal to one-third the ultimate load.

> 7.2.2 <u>Rectangular Slab Under Concentrated Load</u> (Slab A.2)

Figure 7.11 shows the load-deflection curves up to

the ultimate load due to a concentrated load at the centre of the slab. A very good agreement is observed between the theoretical and experimental results before microcracking. The microcracking occurs at 0.70 of the experimental cracking load and 0.50 of the ultimate load.

Since the slab was tested first up to 0.60 of the yield stress of the steel for various locations, local cracks occurred near the loading point. It is found that these local cracks reduce the rigidities of the slab by a ratio of 65 to 75%. Figure 7.12 shows the load-deflection curves up to 0.60 yield stress in the steel due to a concentrated load at the central point on the free edge. For this loading case if one accounts for the presence of local cracks by multiplying the experimental deflections by 0.70 (due to reduced rigidity of the slab) the adjusted experimental results become much closer to the theoretical ones.

Figures 7.13 and 7.14 show the theoretical and experimental deflection patterns for a one-kip (4.45 KN) concentrated load at various positions. Curve #1 represents the deflection due to a concentrated load at the centre of the slab and shows good agreement with the theoretical results. Curves #2 and #3 show the theoretical and experimental deflections due to a one-kip load at points 2 and 3; it is observed that 70% of the experimental deflections, gives good agreement with the theoretical deflections; as explained before, this percentage reduction

is applied because of the reduced rigidities at points 1 and 2 due to local cracking resulting from prior loading of the slab at these points.

Figures 7.15 and 7.16 show the load-strain relationships for concentrated loading at the centre and at the free edge. There is better agreement between the theoretical and experimental results for a concentrated load at the centre; comparing the results in Figure 7.15 with the results for uniform loading, Figure 7.7, the orthotropic slab subjected to a concentrated load is more efficient than one loaded by a uniform load. In the case of concentrated load, the transverse ribs are working effectively together with the longitudinal ribs to transmit the load to the supports; which in the case of uniform load the slab acts as a wide beam. The differences in the strains in the transverse ribs for both slabs can also be noted. Figure 7.10 shows the cracks in the bottom fibres of the slab A.2, before failure. It is observed that the majority of the cracks occur in the longitudinal ribs, while only haircracks appear in the transverse ribs.

The strain patterns at the bottom fibre due to a onekip load at the centre of the slab are shown in Figure 7.17. It can be observed that the strains in the transverse ribs at the loading point equal about 50% of the strains in the longitudinal ribs at the same point. The recorded ultimate load for this slab was 2.25 kips (10 KN) with the corresponding deflection of 2.50 inches (64 mm),

7.2.3 <u>45^o Skew Slab Under Concentrated Load</u> (Slab A.3)

Figures 7.20, 7.21 and 7.22 show the loaddeflection results before and after cracking and the deflection pattern along the transverse direction. A very good agreement between the theoretical and experimental results is obtained before cracking as shown in Figure 7.20. It is observed that the experimental results in Figures 7.21 and 7.22 when scaled down by 70% (due to the reduced rigidities) are in close agreement with the theoretical ones.

Figures 7.23, 7.24 and 7.25 show the load-strain relationships and the strain pattern in both directions and in the top and bottom fibres. A study of Figure 7.23 reveals good correspondence between the theoretical and experimental results and demonstrates that in skew slabs, the transverse ribs work effectively together with the longitudinal ribs to transmit the load to the supports.

Figures 7.18 and 7.19 show the diagonal cracks in the bottom fibre at the free edge. Referring to Figures 7.10 and 7.19 and comparing the two patterns of cracks, it is observed that the cracks in the rectangular slab is due to flexure while the cracks in the skew slab is due predominantly to twisting.

7.3 <u>Prestressed Concrete Waffle Slabs (Group B)</u> 7.3.1 <u>Rectangular Slab Under Concentrated Load</u> (Slab B.1)

Figure 7.28 shows the upward deflection due to prestressing force and edge moment, while Figures 7.29 and 7.30 show the strain pattern in the top and bottom fibres of the slab due to prestressing force in both directions. The variation in the strain along the edge beam is due to the variation in the prestressing force.

Figures 7.31 and 7.32 show the load-deflection relationship for a concentrated load at the centre and on the edge beam respectively. It can be observed that there is very good agreement between the theoretical and experimental results before reaching the cracking load with a percentage difference of about 1%.

Load-strain relationships are shown in Figures 7.33 and 7.34 for concentrated loading at the centre of the slab and at the centre of the edge beam. It can be observed that there is close agreement between the theoretical and experimental results. From Figure 7.34 it can be noted that the cracks start due to flexure under the concentrated load, followed by another crack developing in the top fibre leading to the formation of a yield line as shown in Figure 7.26. Figure 7.27 shows the final collapse due to punching shear around the loading plate.

7.3.2 <u>45^o Skew Slab Under Concentrated Load</u> (Slab B.2)

Figures 7.39, 7.40 and 7.41 show the deflection pattern and strain distribution in the top and bottom fibres over the entire area of the slab. The differences

between the theoretical and experimental deflections (camber) and strains vary between 4 to 6%.

Figures 7.42, 7.43 and 7.44 show the load deflection curves for the theoretical and experimental results; very good agreement is obtained before reaching the cracking load, the difference between the results being less than 2%. Figures 7.45 and 7.46 show the load-strain relationships for concentrated loading at the centre and at the free edge. Point 3 located near the obtuse corner, Figure 7.46, appears to be the critical point on the slab as indicated by the magnitude of strains in the bottom and top fibres. For concentrated loading at the centre of the slab, the cracks start first at the bottom fibre under the load, followed by cracks appearing close to the obtuse corner as shown in Figure 6.4. Figures 7.35 and 7.36 show the development of these cracks. The cracking load for the concentrated load at the centre is 6 kips (26.7 KN) and the slab continues to carry load up to 11 kips (49 KN) and finally fails in punching shear as shown in Figure 7.37. Figure 7.38 shows the number and direction of cracks in the bottom fibre for the same slab under load.

7.4 <u>Comparison Between the Behaviours of a Waffle Slab</u> and a Uniform Thickness Slab Having the Same Volume of Concrete and Reinforcement

An analytical study, using the computer program and the proposed formulae to estimate the rigidities (13) is made on two types of orthotropic slabs. The first type is a waffle slab structure and the second is a slab

structure with uniform thickness, both structures having the same volume of concrete and reinforcing steel. The study includes prestressed concrete waffle slabs as well as reinforced concrete waffle slabs before cracking.

According to the proposed formulae for flexural and torsional rigidities, the values of the flexural rigidities of the orthotropic slab of uniform thickness are approximately one-half of the investigated waffle slabs in both directions; however, the torsional rigidity of the former is four times that of the latter. Figures 7.47 to 7.56 show the results for deflection and strain patterns over the entire area of the slab due to uniform load as well as concentrated load.

Rectangular and skew slabs are considered in this study. The figures show the comparison for deflections and strain between the waffle slab and the slab with uniform thickness. It can be observed from these figures that the waffle slab exhibits much lower stress. For example, the reinforced concrete waffle slabs of rectangular shape and subjected to uniform load have deflections at the centre and centre of the free edge of 43% and 51%, respectively, of those obtained in a slab of uniform thick-These ratios increase for the skew type to 88% and ness. 948. The higher flexural rigidities of the waffle slabs produce much smaller deflections and lower stresses, particularly for the rectangular slab. It should also be mentioned that increase in skew leads to a decrease in the

advantages cited above as well as when the concentrated load moves away from the centre of the slab.

One advantage of waffle slabs over slabs of uniform thickness is in prestressed construction. The efficiency of the prestressed waffle slabs in carrying load is much higher than that of slabs of uniform thickness of the same volume of concrete and amount of steel. This is due to the presence of the ribs which contribute to increased eccentricities in waffle slabs for prestressing. Figure 7.56 shows a comparison for the deflection pattern between the two types.

7.5 Sources of Error

The discrepancies between the experimental and theoretical results can be attributed to several sources of error such as:

- 1. The assumptions made in the theory.
- Estimates of Poisson's ratio and the modulus of elasticity of concrete by means of empirical formulas.
- 3. Approximation of the plane stress problem encountered in the prestressed waffle slab.
- Estimating the strength of the concrete from tests on 3 x 6 inches cylinder.
- Distortion in the formwork due to effect of water, and lack of complete contact between the support and the test model.
- 6. Positioning of reinforced and prestress wires.

7. The calibration of load cell, sensitivity and drag in mechanical dial gauges, the stability of strain gauges and the strain gauge measuring device.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The overall objective of this study was to obtain a better understanding of the behaviour of reinforced and prestressed concrete waffle slabs, before and after cracking of the concrete. A Fourier series method of analysing single span rectangular and skew waffle slabs by orthotropic plate theory was presented; uniform load as well as concentrated loads were considered. Proposed theoretical formulae for calculation of the various orthotropic rigidities were used. The theoretical solutions were supported by the experimental results obtained from tests on prestressed and reinforced concrete models. An analytical study and comparison between the behaviour of a waffle slab and a uniform thickness slab having the same volume of concrete and reinforcement were made.

Based on the results obtained from the theoretical and experimental studies the following conclusions are drawn:

- The good agreement between the experimental and theoretical results supports the reliability of the proposed formulae for estimating the orthotropic rigidities.
- The theoretical solution gives good convergence in the results for uniform and concentrated loads at the centre of rectangular

slabs. Such degree of convergency decreases as the concentrated load moves away from the centre of the slab or when the skew angle increases.

- 3. The discrepancies between the theoretical and the experimental results for reinforced concrete slabs are due to microcracking.
- Local cracks produced near the concentrated load in reinforced concrete slabs can reduce the stiffness of the slab by as much as 30%.
- 5. The torsional rigidity of the slab plays an important part on the behaviour of a skew slab as well as when a concentrated load is close to the unsupported edges.
- 6. The behaviour of prestressed waffle slabs can be much better predicted than that for reinforced concrete waffle slabs; this is due to absence of local cracking and microcracking.
- 7. The presence of the ribs in waffle slab construction makes it possible to accommodate the prestressing steel more readily and at varying levels of eccentricity, and therefore the realization of its use for longer span, resulting in substantial economy.
- 8. In general reinforced and prestressed waffle slabs are structurally more efficient than

slabs with uniform thickness.

8.2 Suggestions For Future Research

The following suggestions are recommended for future research:

- An exact solution for the plane stress problem for rectangular and skew prestressed concrete waffle slabs is required for better predictions.
- The after cracking behaviour of reinforced and prestressed concrete waffle slabs up to failure of the slab should be investigated.
- 3. The effect of edge beam with different cross sections is of practical interest.
- 4. An analysis based on a finite element method or finite difference technique should be established to deal with the problem of varying rigidities of the slab due to cracking of the concrete at various locations.

FIGURES

.

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•

FIGURE 3.1 BOTTOM PLAN LAYOUT WAFFLE SLABS A AND A 2.

(l in. = 25.4 mm)

.

71

.

.

FIGURE 3.2 GEOMETRIC SHAPE OF THE RIBS AND THE PLATE FOR WAFFLE SLAB.

(1 in. = 25.4 mm)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

LONGITUDINAL SECTION (Y AXIS) TRANSVERSE SECTION (X AXIS) a) REINFORCED CONCRETE (GROUP A)

LONGITUDINAL SECTION (Y AXIS) TRANSVERSE SECTION (X AXIS) b) PRESTRESSED CONCRETE (GROUP B)

FIGURE 3.3 ORTHOTROPIC RIGIDITIES OF WAFFLE SLAB. (1 in. = 25.4 mm)

74

c) SLAB A.3

FIGURE 3.4 LATERAL LOADING CASES FOR GROUP A SLABS

FIGURE 3.5 LATERAL LOADING CASES FOR GROUP B SLABS

Thickness of plate = 1"

a) RECTANGULAR PLATE

FIGURE 4.1 STEEL LOADING PLATES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

FIGURE 4.2 EXPANSION OF THE LOAD IN FOURIER SERIES.

FIGURE 6.1 THE REINFORCING STEEL AND ANCHORAGE SYSTEM.

FIGURE 6.2 FORM BEFORE CASTING THE CONCRETE.

FIGURE 6.3 HYDRAULIC 20 KIP PRESTRESSING JACK.

FIGURE 6.4 END BLOCKS AND LOAD CELLS FOR PRESTRESSED SKEW SLAB.

FIGURE 6.5 LOADING SYSTEM FOR UNIFORM LOAD.

FIGURE 6.6 REGULATOR SYSTEM AND PRESSURE GAUGES.

FIGURE 6.7 TRANSVERSE SECTION FOR THE LOADING FRAME.

(1 in. = 25.4 mm)

FIGURE 6.8 LONGITUDINAL SECTION FOR THE LOADING FRAME.

(1 in. = 25.4 mm)

FIGURE 6.10 REINFORCED CONCRETE WAFFLE SLAB A.2. (1 in. = 25.4 mm)

SKEW OF 45°.

(l in. = 25.4 mm)

.

.

FIGURE 6.12 PRESTRESSED CONCRETE WAFFLE SLAB B.l. (1 in. = 25.4 mm)

FIGURE 6.13 PRESTRESSED CONCRETE WAFFLE SLAB B.2. (1 in. = 25.4 mm)

.

FIGURE 6.14 DIAL GAUGES IN POSITION.

FIGURE 6.15 POINT LOADING SYSTEM.

FIGURE 6.16 LOADING SYSTEM FOR SLAB A.2.

FIGURE 6.17 LOADING SYSTEM FOR THE SKEW SLAB A.3.

FIGURE 6.18 LOADING SYSTEM FOR PRESTRESSED SLAB B.1.

FIGURE 6.19 LOADING SYSTEM FOR PRESTRESSED SKEW SLAB B.2.

FIGURE 6.20

PRESTRESSING FORCE AND EDGE MOMENTS FOR SLAB B.1.

(1 KIP = 4.45 KN)

FIGURE 6.21

PRESTRESSING FORCE AND EDGE MOMENTS FOR SKEW SLAB B.2.

(1 KIP = 4.45 KN)

FIGURE 7.1 SLAB A.1 FAILURE.

FIGURE 7.2 SLAB A.1 CRACKS.

FIGURE 7.3 LOAD DEFLECTION RELATIONSHIP FOR SLAB A.1.

FIGURE 7.4 LOAD DEFLECTION RELATIONSHIP FOR SLAB A.1.

LOAD STRAIN RELATIONSHIP FOR SLAB A.1 AT CENTRE. FIGURE 7.7

(1 KIP = 4.45 KN)

97

X

FIGURE 7.9 DEFLECTION SHAPE FOR SLAB A.2.

FIGURE 7.10 SLAB A.2 CRACKS.

FIGURE 7.11 LOAD DEFLECTION RELATIONSHIP FOR SLAB A.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1 KIP = 4.45 KN)

(1 in = 25.4 nm)

(1 KIP = 4.45 KN)

(1 KIP = 4.45 KN)

(1 in = 25.4 mm)

FIGURE 7.16 LOAD STRAIN RELATIONSHIP FOR SLAB A.2, LOAD AT THE FREE EDGE

Theor.

Exp.

FIGURE 7.17 STRAIN DISTRIBUTION FOR SLAB A.2 AT BOTTOM FIBRE DUE TO 1 KIP AT CENTRE.

FIGURE 7.18 CRACK DEVELOPMENT IN SLAB A.3.

FIGURE 7.19 BOTTOM CRACKS FOR SLAB A.3.

FIGURE 7.21 LOAD DEFLECTION RELATIONSHIP FOR SKEW SLAB A.3.

(1 in = 25.4 mm)(1 KIP = 4.45 KN)

FIGURE 7.26 CRACKS DEVELOPMENT FOR SLAB B.1.

FIGURE 7.27 CRACKS FAILURE FOR SLAB B.1.

FIGURE 7.29 TOP FIBRE STRAIN DISTRIBUTION FOR SLAB B.1 DUE TO PRESTRESSING.

FIGURE 7.30 BOTTOM FIBRE STRAIN DISTRIBUTION FOR SLAB B.1 DUE TO PRESTRESSING.

1 1 1

FIGURE 7.32 LOAD DEFLECTION RELATIONSHIP FOR SLAB B.I

FIGURE 7.34 LOAD STRAIN RELATIONSHIP FOR SLAB B.1 (LOADING AT POINT 1).

FIGURE 7.35 CRACKS FAILURE FOR SLAB B.2.

FIGURE 7.36 CRACKS DEVELOPMENT FOR SLAB B.2.

FIGURE 7.37 PUNCHING FAILURE OF SLAB B.2.

FIGURE 7.38 CRACKS FAILURE FOR SLAB B.2.

.

FIGURE 7.39 DEFLECTION DISTRIBUTION FOR SKEW SLAB B.2 DUE TO PRESTRESSING FORCE.

124

FIGURE 7.42 LOAD DEFLECTION RELATIONSHIP FOR SLAB B.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 7.43 LOAD DEFLECTION RELATIONSHIP FOR SLAB B.2.

FIGURE 7.44 LOAD-DEFLECTION RELATIONSHIP FOR SLAB B.2 (ULTIMATE LOAD).

FIGURE 7.45 LOAD STRAIN RELATIONSHIP FOR SLAB B.2.

47 DEFLECTION PATTERN FOR RECTANGULA SLAB DUE TO UNIFORM LOAD OF .01 lb/in².

.

FIGURE 7.56 DEFLECTION (CAMBER) DUE TO PRESTRESSING FORCE.

141

,

APPENDICES

•

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

`

Expressions For Matrix Elements

$$A_{1} = 2k_{3}k_{4}$$

$$A_{2} = k_{3}^{2} - k_{4}^{2}$$

$$A_{3} = k_{3}(k_{3}^{2} - 3k_{4}^{2})$$

$$A_{4} = k_{4}(3k_{3}^{2} - k_{4}^{2})$$

$$A_{5} = -EI(A_{2}^{2} - A_{1}^{2})x_{2}^{4}$$

$$A_{6} = 2EIx_{2}^{4}A_{1}A_{2}$$

$$A_{7} = -R_{1}k_{4} - R_{2}$$

$$A_{8} = -x_{2}(R_{1}k_{4} - R_{2}x_{2}A_{2})$$

$$A_{9} = -x_{2}(R_{1}k_{3} + R_{2}x_{2}A_{1})$$

$$A_{10} = R_{3}A_{3} - R_{4}A_{1} - R_{5}k_{3}$$

$$A_{11} = -R_{3}A_{4} - R_{4}A_{2} + R_{5}k_{4} + R_{6}$$

$$A_{12} = -x_{2}(R_{4}k_{3} + R_{5}x_{2}A_{1} - R_{6}x_{2}^{2}A_{3})$$

$$A_{13} = R_{3} + R_{4}x_{2}k_{4} - R_{5}x_{2}^{2}A_{2} - R_{6}x_{2}^{3}A_{4})$$

$$A_{14} = R_{7}A_{2} - R_{8}k_{4} - R_{9}$$

$$A_{15} = -R_{7}A_{1} - R_{8}k_{3}$$

$$A_{16} = GJk_{4} + R_{10}$$

$$A_{17} = -R_{7} - R_{8}x_{2}k_{4} + R_{9}x_{2}^{2}A_{2})$$

$$A_{18} = -x_{2}(R_{8}k_{3} + R_{9}x_{2}A_{1})$$

$$A_{19} = -x_{2}^{2}(GJA_{1} - R_{10}x_{2}A_{3})$$

$$A_{20} = -x_2^2 (GJA_2 + R_{10}x_2A_4)$$

$$A_{21} = -T_nk_3$$

$$A_{22} = T_nk_4 - 1/c$$

$$A_{23} = x_2k_3/c$$

$$A_{24} = T_n - x_2k_4/c$$

$$A_{25} = k_3/c$$

$$A_{26} = T_n - k_4/c$$

$$A_{27} = -T_nk_3x_2$$

$$A_{28} = -1/c + T_nk_4x_2$$

$$B_1 = 2k_3k_5$$

$$B_2 = k_3^2 - k_5^2$$

$$B_3 = k_3(k_3^2 - 3k_5^2)$$

$$B_4 = k_5(3k_3^2 - k_5^2)$$

$$B_5 = -EIY_2^*(B_2^2 - B_1^2)$$

$$B_6 = 2EIY_2^*B_1B_2$$

$$B_7 = R_1k_5 - R_2$$

$$B_8 = y_2(R_1k_5 + R_2y_2B_2)$$

$$B_9 = y_2(R_1k_3 - R_2y_2B_1)$$

$$B_{10} = R_3B_3 + R_4B_1 - R_5k_3$$

$$B_{11} = -R_3B_4 + R_4B_2 + R_5k_5 - R_6$$

$$B_{12} = -y_2(R_4k_3 - R_5y_2B_1 - R_6y_2^2B_3)$$

$$B_{13} = -R_3 + R_4y_2k_5 + R_5y_2^2B_2 - R_6y_3^2B_4$$

.

$$B_{14} = R_{7}B_{2} + R_{8}k_{5} - R_{9}$$

$$B_{15} = -R_{7}B_{1} + R_{8}k_{3}$$

$$B_{16} = GJk_{5} - R_{10}$$

$$B_{17} = -R_{7} + R_{8}Y_{2}k_{5} + R_{9}Y_{2}^{2}B_{2}$$

$$B_{18} = Y_{2}(R_{8}k_{3} - R_{9}Y_{2}B_{1})$$

$$B_{19} = Y_{2}^{2}(GJB_{1} + R_{10}Y_{2}B_{3})$$

$$B_{20} = -Y_{2}^{2}(GJB_{2} - R_{10}Y_{2}B_{4})$$

$$B_{22} = T_{n}k_{5} + 1/c$$

$$B_{23} = k_{3}Y_{2}/c$$

$$B_{24} = -T_{n} - k_{5}Y_{2}/c$$

$$B_{26} = -T_{n} - k_{5}/c$$

$$B_{27} = -T_{n}k_{3}Y_{2}$$

$$B_{28} = 1/c + T_{n}k_{5}Y_{2}$$

$$d_{11} = -D_{x}/c^{2}$$

$$d_{12} = 2D_{x}s/c^{2}$$

$$d_{13} = -(D_{x}s^{2}/c^{2} + D_{1})$$

$$d_{21} = -D_{2}/c^{2}$$

$$d_{23} = -(D_{2}s^{2}/c^{2} + D_{y})$$

$$d_{31} = 0$$

$$d_{32} = D_{xy}/c$$

.

$$d_{33} = -D_{xy}s/c$$

$$K_{1n} = \cosh R_{1n}\cos R_{r1}$$

$$K_{2n} = \sinh R_{1n}\cos R_{r1}$$

$$K_{3n} = \sinh R_{1n}\cos R_{r1}$$

$$K_{4n} = \cosh R_{1n}\sin R_{r1}$$

$$K_{5n} = \cosh R_{2n}\cos R_{r2}$$

$$K_{6n} = \sinh R_{2n}\sin R_{r2}$$

$$K_{7n} = \sinh R_{2n}\cos R_{r2}$$

$$K_{8n} = \cosh R_{2n}\sin R_{r2}$$

$$L_{1n} = \cosh R_{2n}\sin R_{r2}$$

$$L_{1n} = \cosh R_{2n}\sin R_{r2}$$

$$L_{1n} = \sinh R_{1n}\cos S_{s1}$$

$$L_{2n} = \sinh S_{1n}\cos S_{s1}$$

$$L_{3n} = \sinh S_{1n}\sin S_{s1}$$

$$L_{5n} = \cosh R_{2n}\sin S_{s2}$$

$$L_{6n} = \sinh R_{2n}\cos S_{s2}$$

$$L_{6n} = \sinh R_{2n}\sin S_{s2}$$

$$L_{7n} = \sinh R_{2n}\sin S_{s2}$$

$$L_{7n} = \sinh R_{2n}\sin S_{s2}$$

$$L_{8n} = \cosh R_{2n}\sin S_{s2}$$

$$R_{r1} = x_{2}k_{4}\alpha_{n}b$$

$$R_{r2} = k_{4}\beta_{n}a$$

$$R_{1n} = x_{2}k_{3}\alpha_{n}b$$

$$R_{2n} = k_{3}\beta_{n}a$$

$$S_{aa} = 2/(\beta_{n}^{2}a^{2}(\beta_{n}^{2}a^{2}/x_{2}^{2} + 2A_{2}m^{2}\pi^{2}) + m^{4}\pi^{4})$$

$$S_{a1} = S_{aa}m\pi(-1)^{m}$$

$$S_{a2} = S_{aa}\beta_{n}a(-1)^{m}$$

$$S_{ba} = 2/(\beta_{n}^{2}a^{2}(\beta_{n}a^{2}/y_{2}^{2} + 2B_{2}m^{2}\pi^{2}) + m^{4}\pi^{4})$$

$$S_{b1} = S_{ba}m\pi(-1)^{m}$$

$$S_{b2} = S_{ba}\beta_{n}a(-1)^{m}$$

$$S_{s1} = y_{2}k_{5}\alpha_{n}b$$

$$S_{s2} = k_{5}\beta_{n}a$$

$$S_{xa} = 2/(x_{2}^{2}\alpha_{n}^{2}b^{2}(\alpha_{n}^{2}b^{2} + 2A_{2}m^{2}\pi^{2}) + m^{4}\pi^{4})$$

$$S_{x1} = S_{xa}m\pi(-1)^{m}$$

$$S_{y2} = S_{xa}\alpha_{n}b(-1)^{m}$$

$$S_{y1} = S_{ya}m\pi(-1)^{m}$$

$$S_{y2} = S_{ya}\alpha_{n}b(-1)^{m}$$

$$S_{1n} = y_{2}k_{3}\alpha_{n}b$$

$$T_{a1} = A_{1}\beta_{n}^{2}a^{2}$$

$$T_{a3} = k_{3}(\beta_{n}^{2}a^{2}/x_{2} + m^{2}\pi^{2})$$

$$T_{b1} = B_{1}\beta_{n}^{2}a^{2}$$

$$T_{b2} = B_{2}\beta_{n}^{2}a^{2}/y_{2} + m^{2}\pi^{2}$$

$$T_{b3} = k_{3} (\beta_{n}^{2} a^{2} / y_{2} + m^{2} \pi^{2})$$

$$T_{b4} = k_{5} (\beta_{n}^{2} a^{2} / y_{2} - m^{2} \pi^{2})$$

$$T_{x1} = A_{1} \alpha_{n}^{2} b^{2} x_{2}^{2}$$

$$T_{x2} = A_{2} \alpha_{n}^{2} b^{2} x_{2}^{2} + m^{2} \pi^{2}$$

$$T_{x3} = x_{2} k_{3} (x_{2} \alpha_{n}^{2} b^{2} + m^{2} \pi^{2})$$

$$T_{x4} = x_{2} k_{4} (x_{2} \alpha_{n}^{2} b^{2} - m^{2} \pi^{2})$$

$$T_{y1} = B_{1} \alpha_{n}^{2} b^{2} y_{2}^{2}$$

$$T_{y2} = B_{2} y_{2}^{2} \alpha_{n}^{2} b^{2} + m^{2} \pi^{2}$$

$$T_{y3} = k_{3} y_{2} (y_{2} \alpha_{n}^{2} b^{2} - m^{2} \pi^{2})$$

$$T_{y4} = y_{2} k_{5} (y_{2} \alpha_{n}^{2} b^{2} - m^{2} \pi^{2})$$

$$u_{3n} = k_{3} \beta_{n} u$$

$$u_{4n} = k_{4} \beta_{n} u$$

$$u_{5n} = k_{5} \beta_{n} u$$

$$v_{3n} = x_{2} k_{3} \alpha_{n} v$$

$$v_{4n} = x_{2} k_{4} \alpha_{n} v$$

$$v_{5n} = y_{2} k_{5} \alpha_{n} v$$

•

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

APPENDIX (B)

Fourier Coefficients For Lateral Load

The Fourier coefficients of Equation 5.2 are evaluated below:

$$a_{QQ} = (1/2a) \int_{-a}^{a} f_{0}(u) du$$

= $(1/2a) \int_{-a}^{a} \{c_{17} + c_{20}(u^{2}/a^{2}) + c_{21} + c_{24}(Tu^{4}/b^{4} - 1)\} du$
= $c_{17} + 1/3c_{20} + c_{21} + c_{24}(Ta^{4}/5b^{4} - 1)$
$$a_{0m} = (1/a) \int_{-a}^{a} f_{0}(u) \cos \alpha_{m} u du$$

= $c_{20}I_{1m} + c_{24}T I_{3m}a^{4}/b^{4}$

The integrals ${\rm I}_{\rm lm},~{\rm I}_{\rm 3m},$ etc. are defined at the end of this appendix

$$b_{om} = (1/a) \int_{-a}^{a} f_{o}(u) \sin \alpha_{m} u \, du = 0$$

$$c_{no} = (1/2a) \int_{-a}^{a} f_{n}(u) \, du$$

$$= (C_{1n}W_{1n} + C_{4n}W_{2n} + C_{5n}W_{3n} + C_{8n}W_{4n}) (-1)^{n}$$

$$c_{nm} = (1/a) \int_{-a}^{a} f_{n}(u) \cos \alpha_{m} u$$

$$= (C_{1n}A_{j1} + C_{4n}A_{j2} + C_{5n}A_{j3} + C_{8n}A_{j4}) (-1)^{n}$$

$$d_{nm} = (1/a) \int_{-a}^{a} f(n) \sin \alpha_{m} u \, du = 0$$
Fourier Expansions and Definite Integrals
$$I_{1n} = (1/a) \int_{-a}^{a} (u^{2}/a^{2}) \cos \alpha_{n} u \, du$$

$$= (1/b) \int_{-b}^{b} (v^{2}/b^{2}) \cos \beta_{n} v \, dv$$

$$= 4 (-1)^{n}/n^{2}\pi^{2} \quad \text{and so on.}$$

$$I_{3n} = 8 (-1)^{n} (1 - 6/n^{2}\pi^{2})/n^{2}\pi^{2}$$

$$I_{5n} = -2 (-1)^{n}/n\pi$$

$$I_{7n} = -2 (-1)^{n} (1 - 6/n^{2}\pi^{2})/n\pi$$

$$W_{1n} = (1/2a) \int_{-a}^{a} \cosh u_{3n} \cos u_{4n} \, du$$

$$= x_{2} (K_{3}K_{7n} + K_{4}K_{8n})/a \beta_{n}$$

$$W_{2n} = x_{2} (K_{3}K_{8n} - K_{4}K_{7n})/a\beta_{n}$$

$$W_{3n} = y_{2} (K_{3}L_{7n} + K_{5}L_{8n})/a\beta_{n}$$

$$W_{4n} = y_{2} (K_{3}L_{8n} - K_{5}L_{7n})/a\beta_{n}$$

$$W_{5n} = (K_{3}K_{3n} + K_{4}K_{4n})/b\alpha_{n}$$

$$W_{6n} = (K_{3}K_{4n} - K_{4}K_{3n})/b\alpha_{n}$$

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

•

÷

$$\begin{split} w_{7n} &= (K_{3}L_{3n} + K_{5}L_{4n})/b\alpha_{n} \\ w_{8n} &= (K_{3}L_{4n} - K_{5}L_{3n})/b\alpha_{n} \\ A_{j1} &= (1/a) \int_{-a}^{a} \cosh u_{3n} \cos u_{4n} \cos \alpha_{m} u \, du \\ &= s_{a2}(T_{a3}K_{7n} + T_{a4}K_{8n}) \\ A_{j2} &= (S_{a2}(-T_{a4}K_{7n} + T_{a3}K_{8n}) \\ A_{j3} &= S_{b2}(T_{b3}L_{7n} + T_{b4}L_{8n}) \\ A_{j4} &= S_{b2}(-T_{b4}L_{7n} + T_{b3}L_{8n}) \\ A_{j5} &= S_{x2}(T_{x3}K_{3n} + T_{x4}K_{4n}) \\ A_{j6} &= S_{x2}(-T_{x4}K_{3n} + T_{x3}K_{4n}) \\ A_{j7} &= s_{y2}(T_{y3}L_{3n} + T_{y4}L_{4n}) \\ A_{j8} &= S_{y2}(T_{y4}L_{3n} - T_{y3}L_{4n}) \\ B_{j1} &= (1/a) \int_{-a}^{a} \sinh u_{3n} \cos u_{4n} \sin \alpha_{m} u \, du \\ &= s_{a1}(-T_{a2}K_{7n} - T_{a1}K_{8n}) \\ B_{j2} &= S_{a1}(T_{a1}K_{7n} - T_{a2}K_{8n}) \\ B_{j3} &= S_{b1}(-T_{b2}L_{7n} - T_{b1}L_{8n}) \end{split}$$

•

-

$$B_{j4} = S_{bl} (T_{bl}L_{7n} - T_{b2}L_{8n})$$

$$B_{j5} = S_{xl} (-T_{x2}K_{3n} - T_{xl}K_{4n})$$

$$B_{j6} = S_{xl} (T_{xl}K_{3n} - T_{x2}K_{4n})$$

$$B_{j7} = S_{yl} (-T_{y2}L_{3n} - T_{yl}L_{4n})$$

$$B_{j8} = S_{yl} (T_{yl}L_{3n} - T_{y2}L_{4n})$$

.

.

.

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

APPENDIX (C)

The Fourier series is given by

$$y = f(x) = a_0/2 + \sum_{n=1}^{n=\infty} (a_n \cos 2n\pi x/x + b_n \sin 2n\pi x/x)$$

where X is the total length of the cycle.

The coefficients for Fourier series are obtained by evaluating the following definite integrals (33);

$$a_{0} = (2/X) \int_{-X/2}^{X/2} f(x) dx$$
 (C.1)

$$a_{n} = (2/X) \int_{-X/2}^{X/2} f(x) \cos(2n\pi x/X) dx \qquad (C.2)$$

$$b_{n} = (2/X) \int_{-X/2}^{X/2} f(x) \sin(2n\pi x/X) dx \qquad (C.3)$$

From Figure 4.2,

The width of one division = dx = X/m

 $x = \{(x/m) (k - \frac{1}{2}) - x/2 \}$

$$x/x = \{(1/m)(k - \frac{1}{2}) - \frac{1}{2}\}$$

Substituting in Equation (C.1)

$$a_{0} = (2/x) \sum_{k=1}^{m} y_{k} (x/m)$$

= $(2/m) \sum_{k=1}^{m} y_{k}$ (C-4)

Substituting in Equation (C.2)

$$a_{n} = (2/X) \sum_{k=1}^{m} Y_{k} \left\{ \cos 2n\pi (1/m (k - \frac{1}{2}) - \frac{1}{2}) \right\} X/m$$
$$= (2/m) \sum_{k=1}^{m} (-1)^{m} Y_{k} \cos \left\{ (2n\pi/m) (k - \frac{1}{2}) - n\pi \right\}$$

$$a_n = (2/m) \sum_{k=1}^{m} (-1)^m y_k \cos (2n\pi/m) (k - \frac{1}{2})$$
 (C.5)

Substituting in Equation (C.3) and following the same procedures the final equation is obtained,

$$b_{n} = (2/m) \sum_{k=1}^{m} (-1)^{m} y_{k} \sin (2n\pi/m) (k - \frac{1}{2})$$
(C.6)

APPENDIX (D)

Design of Concrete Mix

Five trial mixes were made to meet the following conditions: concrete is required for reinforced and prestressed concrete waffle slab deck bridges; <u>Concrete mix must have</u>: 3 to 4 in. range in slump, suitably vibrated and adequately cured. Cement content: Different cement contents range from 660

to 750 lbs. per cu. yd. and air content of 5% were used in the concrete mixes.

<u>Strength</u>: Two different concrete mixes for strength equal to 4000 and 6000 psi were required for the reinforced and prestressed concrete slab models, respectively.

Aggregates: Maximum size of coarse aggregate was chosen as $\frac{1}{4}$ in. with a specific gravity equal to 2.65.

<u>Assumptions</u>: According to reference (22, Table 10), the amount of water required per cubic yard was 300 lb. The percentage of fine aggregate to the total aggregate was assumed between 40 to 70% for the different trial mixes. <u>Quantities per cubic yard</u>: From the information given, the absolute volume occupied by the paste was calculated as:

Cement, abs. vol. = $750/(3.15 \times 62.4)$ = 3.81 cu. ft. Water, abs. vol. = $300/(1.0 \times 62.4)$ = 4.81 cu. ft. Air, abs. vol. = 5×0.27 = 1.35 cu. ft. Paste, total vol. = 3.81 + 4.81 + 1.35 = 9.97 cu. ft. Aggregate, abs. vol. = 27 - 9.97 = 17.03 cu. ft. Coarse aggregate, wt. = $17.6 \times .40 \times 2.65 \times 62.4 = 1126$ lbs. Fine aggregate, wt. = $17.6 \times .60 \times 2.65 \times 62.4 = 1689$ lbs.

The above quantities per cubic yard were approximate, and used as a preliminary trial batch.

	For	10	lbs.	of	ceme	ent,	a t	rial	batch	consi	sted of	:
Cement	• • •	• • •	• • • •	• • • •		• • • •	• • •			=	10.00	lbs.
Water	• • •	• • •	• • • •	• • • •	• • • •	265	x	10/(750)	=	4.00	lbs.
Fine ag	ggreg	fate		• • • •	• • • •	1746	x	10/(750)	=	22.50	lbs.
Coarse	aggr	ega	te.	• • • •		1164	x	10/(750)	=	15.00	lbs.

Based on the workability and maximum strength of this trial mix, four trial mixes with different water/cement ratio and fine aggregate content were made using Figure 32 in reference (22). The following table shows the proportions of the five mixes and their strength after 7, 14 and 28 days.

TABLE (D.1)

Mix No.	Ratio	by Wei	ght in	Strength in psi				
	Cement	Water	Sand	Gravel	7 days	14 days	28 days	
1	1.0	0.70	3.00	2.00	4000	4670	5090	
2	1.0	0.60	2.50	1.80	5580	5870	6270	
3	1.0	0.50	2.00	1.50	6720	6580	7710	
4	1.0	0.40	1.40	1.20	7045	7965	8275	
5	1.0	0.40	2.25	1.50	6600	7400	7900	

The total volume of the slab and cylinders

 $= 10 ft^{3}$

and the total weight of the concrete mix required

 $= 10 \times 146 = 1460$ lbs.

which was divided into two batches. Mix No. 1 was chosen for the reinforced concrete waffle slabs, and Mix No. 2 for the prestressed concrete waffle slabs.

.

	$E_x = E_y$	Poisson's	Depth of axis	Neutral in <u>c</u> h	Eccentricity of Prestressing Wire			
	XIO DZI	κατιό μ	e _x	еу	ē _x	ēy		
GROUP	5.00	0.200	1.420	1.425	0	0		
A	4.65	0.230	1.405	1.410	0	0		
SLABS	3.90	0.195	1.415	1.420	0	0		
GROUP	5.00	0.250	1.375	1.380	1.400	1.620		
SLABS	5.20	0.260	1.370	1.375	1.400	1.620		

TABLE D.2

GEOMETRY AND PROPERTIES OF SLAB MODELS

TA	BLE	D.	3

	Slab	fc28 psi	Span Inch	Width Inch	Skew Angle	D _x	D y	Dl	D ₂	D _{xy}	Edge xl EI	Beam 0 ⁶ GJ
GROUP A	A.1	5000	84	71.5	0	10.73	10.88	0.78	0.79	1.65	0	0
	A.2	6635	84	71.5	0	12.47	12.48	1.03	1.02	1.85	0	0
	A.3	4690	84	101.1	45	10.34	10.48	0.74	0.73	1.50	0	0
GROUP B	в.1	7665	84	71.5	0	12.91	12.91	1.13	1.14	1.95	60.00	34.30
	В.2	8285	84	71.5	45	13.35	13.40	1.22	1.22	2.05	62.70	35.35

 $D_{x'}, D_{y'}, D_{1}, D_{2'}, \& D_{xy}$ in lb. in²/in x 10⁶

ORTHOTROPIC RIGIDITIES OF SLAB MODELS
APPENDIX E

,

•

CALIBRATION OF LOAD CELLS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

•

FIGURE (E6) LOAD STRAIN RELATIONSHIP (6-11 LOAD CELL).

APPENDIX F COMPUTER PROGRAM (WAFFLE)

•

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

ালা কোঁৱে কোঁৱে কাঁৱে	**********	FFFFFFFFFFFFFFFF	FFFFFFFFFFF F99651556655		seele eesee
- NW 2111 		FF	FF		
NN		FF		la La La La	
নান সভা প্রা প্রার সভা প্রা		FEFFFFF	FFFFFFFF		ELEEEEEE Edzeeee
। রক্ষর বার বার রক্ষর প্রকার রক্ষ	44 44 44 44	FF FF		ել <u>ե</u>	88 98
计算法 化硫酸	44 44 44 44	FF FF	FF FF	ام این ام ایم آم او او این این این این این این ا	JE 199556855566
સંસ હસ	AA AA	FF	FF		

.

//AAFFLE JCB (XXXXXXXXX, 3, 5, 1227), '35BAKHY', 45GLEVELB((...1), CLASSED (Interpretent content of the second content of the *CORTING DIMENSIONAL ARRAY OF DIMENSION(NS,JS) TO STURE THE MATRIX EQUATION *CC=THO DIMENSIONAL ARRAY OF DIMENSION(NS,JS) TO STURE THE MATRIX EQUATION *CC=THO DIMENSIONAL ARRAY OF DIMENSION(NS,LN) TO STURE THE SOL, VECTORS *STOR=2 JIMENSIONAL ARRAY OF DIMENSION(NS,LN) TO STURE THE SOL, VECTORS *ELEMENTS FOR ANTI-SYMMETRIC LOADING *LIGHLAVECTURS OF DIMENSION (NS) *VL=TWO DIMENSIONAL ARRAY OF DIMENSION(1,5).THE FIRST DIMENSION IS THE *SERIAL NUMBER OF THE LOADING CASE AND THE SECOND CNE REPRESENTS USV *CCORDINATES OF THE CENTRE OF PATCH LCAO,THE WIDTH AND THE LENGTH OF THE *PATCH LOAD AND THE TOTAL LOAD RESPECTIVELY. *NS=8N+4 *JS=NS+LN ecogn limites JF THE CENTRE OF PATCH LOAD.THE wiDTH AND THE LENGTH OF THE
PATCH LOAD AND THE TOTAL LOAD RESPECTIVELY.
*NST2=400 AND THE SUPPORT OF HARMONIC
*LTESST THAN JOING ADDING CASES(4).
*Z=LESS THAN JOING ARE NEEDED.
*Z=LESS A NULL IN DEGRES.
*Z=LESS AND JF THE SLAB.
*Z=S=AND JF THE SLAB.
*Z=S=S=Z=AND JF THE SLAB.
*Z=S=Z=AND FROM THE SUPPORT.
*Z=S=Z=AND FORCES ALONG THE SUPPORT.
*Z=S=Z=Z=AND FORCES ALONG THE SUPPORT.
*Z=S=Z=Z=Z=AND FORCE ALONG THE SUPPORT.
*Z=S=Z=Z=Z=AND FORCE ALONG THE SUPPORT.
*Z=S=Z=Z=AND FORCE ALONG THE SUPPORT.
*Z=S=Z=Z=Z=AND FORCE ALON

 *Z,ZA,ZB,YTP,YTY,YTU,THK
 (1x,7F10.0)

 *II,A,D,BA,JA,DY,DI
 (1x,A4.6F10.0)

 *O2,DXY,DYX,EI,GJ,NL,1,NP,0
 (5F10.0.4[5)

 *NGC
 .30TTOM FIBRE([5],IF BOTH OR TOP F(BRE (2(5))

 *CENTRE CDGRJINATES OF THE PATCH LDAD, /ICTH,LENGTH AND TOTAL LOAD OF PATCH

 * (12F6.0) S...... * (10X.6F13.3) * (12F6.0) S..... * (10X.6F13.3) * (10X.6F * * * 51 52 53 4 ٩ ۲ 55 57 4

•	DIMENS	ION F	41 (3)). ≓v	5115). F	46.01	<u>ج</u> ۱.	5 4	7/91		576 (71.	= > 0	(0)	= 10	110	7	58
	lī, ≓lī	(133)	, Fis	່ງ (ວິຣ)	. Fž	1(57	j, i	22(4	•)•	' řží	3(3)		24(3	ົ້	7250	13).	F2	3	60 ·
:	28(3),	# 33 (3	۶ ب(ز	= 3+(3), F	35(3) . F	36(1	31	. FI	37(23.	Ē 27 (91.	Ēīš	(25)	, 2	4	51
		. 7.30	(9).	F31(19),	្រក្ខភ្ល	(13)	5	13(5).	44 (104) <u>.</u> , H	0(1)	0).	HE(1	5).	r	52
-	トースしょううう えてにしてんり	- T(9)	a 2525.⊆ 1.1	1(2).	F.94	(3),	FME	6(12)		= 49 (10), F	12(3	ó),	F14	(13)	. F	4	53
· . •	DATA		•,	,			÷											7	54
	READ	5. F 1	เริ่ม	2 .FM3	. FM4	. 785	. 2 46	. 747		48.F	M9.	FIG	. 511	. 5 13	2.81	3.51	4.5	4	65
1	115,F16	F17,	-18.6	17.7	20.7	21.F	22.5	23.7	24	, F2s	s, é s	25.7	27.6	39.	Fzs.	F29.	F 30	3	66
	2.531.5	321FJ	7 . 2 . 7	1,F35	.F36	• 73 a	.737	•										A	67
	WRITE	(6.FJ	7) 5	11.FN	2 . F.M.	<u>з, г</u> м	4 . F.	15.5	16.1	FMT	FMS	-FM	9. F I	O.F	1115	12.7	13.	А	68C
÷	29.573.		****	17131	P191	20,	F 21	22,	172.	3.72	4.8	-25 .	F26,	F27	• = 39	, 728	+F2	Ą	69C
•	8620 5	а. (н.	5(0)	lat.	31.8	E .HG		нг.	4.1)	- K								A	200
	WRITEL	5,36)	ί ήc	i.	[=1,	3),H	F, HO	нн.	HI	HJ.	нк							-	r 4
	READ 5	6. (H	Ξ(Ι)	.1=1,	15)													4	72
	WRITE	6 •36)	(HE	Ξ([],	[=1,	15)													
,	WEAD (117 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	82			104)												4	73
	P1=2.1	31342	13358	343	L L .+	1.04.1										•			70
	P19=90	121		- • •														3	75
	N = 10																	•	
	LN = 4																		
	15 = 5		♦ • 1																
	NST1 =	115	• •		•														
, ,	NST2 =	4 * .	. + 4	հ + Ն	ы	•.													
· · · ·	NSS =	NS #	45	-														· .	
	CALL I	INIT																	
1 · .	READ (5 . F M2		22.23	• YTP	• ¥T¥	+ YTC	, THK								•	•	2	77C
	c pu= i c		00.																
	WRITE	(5.10	З) сғ	v															
1 38	FORMAT	(50X	. ICPL	J USE	D = 1	,F3.	2,1	SECS	5 *)									,	
					~							•							
	IF (Z.	E0.0.	່ ດີວ່		5'''	• * • *	a r i G		•										70
1.4	READ (51200	i īī (. 2. 3.	SA.D	X .DY	.01.	02.0	XY	CYX	.21	LD.	• NL •	• ,	YNH.	• •	•	-	10
	۱ ^۰ (۱	NP(I)	.1=1.	MNH)	NR .	NGC .	NTP.	NGPS	5		_		~						
	WRITE	6.200) [[· S	SALD	X . DY	.01.	22.0	XY	• CY X	(,E1	(.GJ	و ساخ و	•	ANH.				
	NRC = 1		• L - L i		• 14.4 • •														
	LE (NR	.20.0) NRC	: = 1															
	READ (3,50	1 (()	/ [[]]	3).3	=1.5	3.6=	T M	.).	(VR (: () ,	. t = 1	, NRC	3					
	WRITE	5.33) ((\	/[(_,	7)•7	=1,5),[=	-1 + NL	.),	(VR ((1)	1=1	, NR C	1					
	18514=	5A#P[. 74271	130	•															
	SESINC	тыста Тыста	· ·	•															
	READ (5	76)	É EXC	C.EYC	. AXX	AYY	ANC	J.TK		·									
	WRITE	6.75)	EXC	: EYC	, AXX	• 4Y Y	. AML	I.TK											
76	FORMAT	(13X)	ېF10	.3)	a v														
		*(1./	() • • • •	4.MU## 4.MIT##	21+4.	Ş\$∕+	κ.												
· .	EI=AML	+exc/	(14	AMU# #	2)		~ '												
	E2=AMU	*EYC/	(î»	4 <i>M</i> Ú##	2)														
	READ	201)	નુહુન્સપ્	1.ECU	LEC V														
2.01	FORMAT		1		0.50	v													
	READIS	.73)	(200	().[=	1	3					、								
	WRITE(5.75)	iFüi	(),(=	1.40	j					,				\$				•
-	READIS	.75)	(=v()	(),[=	1, MV)	•												
76	WRITE (4,75)	(77()	[],[=	it i MV)													
	FUTED	1.241	1200	4.04	,														
	215 00.	1=1.	40												*				
215	FUTAFL	T+RÚČ	L) '				-												
	PAYEFL	T(1 • # A)	>															
	00.214	1=10	1V ···																
213	FVT=FV	THEVE	11								•								
	PAX=FV	1/(2.	≆ ਦੇ)	· 、													-		
	OXY1=E	X #EY-	11*C2	2			•												
		シメ チビゾ	ノTスード ノTビード	- 7	1/2	χγι													•
	00 202	[2]	10		2170	~ 1 1													
- 202	FU(1)=	eų (i)	- Ecu		,		,	• -				•							

FV([)=FV([) + 2CV FU1=0 2 03 234 1=1.4 οã 11+70([) 204 F u LI/(2.4A) FV1=0 20 205 [=1,4V 1+FV(1) *FV1/(2 2 35 ËV. *8) ЧИН≠1Э = NHA-.. =NT+NL (NGC.NE.J) 50 TO 104 C = 12 A 112 ({[-1.)*A/4 - (S---(I) = 0. = 0.)+8 Ξ **₹I)**¥8/4. 1 00 3) 3 1 34 26 READ (WRITE (00 10 00 10 YA(1,1 113 10 116 ί NCTH = NTHE=4 (27X.20.3) GD TO BO 1 F GΩ 30 NCH ō 01 91 ĠΠ 32 × 01 22 ESA OT DO LO TO BB 83 ĪF э. NCTH = NTHE = 4
 Im
 < 11 GO . NTHE SÃ 34 SOSOSOSOS 85 30 (V 36 97

 IF
 (VL(L+3)+1)

 CONTINUE

 CONTINUE

 IF
 (NR+22+0)

 OD
 137

 RI
 1

 UR(1)
 (RI-2)

 UR(1+4)
 (RI-2)

 +3).E0.2*A) VL(L.5)=COS(SA*P1/180.)*VLS(L) 90 18 GO TO 106 (1) = (21-3) (1-3) = (41-3) (1+4) = (41-131 = 1,42 (1) = (1,-√ (1) = (1,-√ 17€ (3,F)) (22)) . > = 4 1 07 UR DQ -1.)=4/4. *8 1.06 -8. 5A. JX. 0Y. 01. 02. 0XY DYX:EL.GJ 83 34

%RITE (6.67) IJ.(K.(CD(NJ.NH#(J-1)+K).J=1.8),CD(NJ.NH8+K).K=1.NN) GD TO (23.2J.23.24), NH write (6.f22) (K.(CD(NJ.NH#(J-1)+K).J=1.8),K=5.NH) GD TO 24 154 22 コイイイイ 100 GG TG 24 N|=NH+1 WRITE (3,F2J) (CD(NJ,NH8+K),K=NI,4) WRITE (3,F2+) (CD(NJ,NC+J),J=1,NL) WRITE (6,F34) (HF,[=1,32) 153 153 170 170 171 23 A 24 4 งกกกก A 173 INVERSE THE MATRIX A 174 CALL WINA (P1,NSS,CD,DC,STOR,NS,JS,LN,NST1,NST2,L1,M1,CH) IF (2,GT,J) G0 T0 32 WRITE (6,F3J) 00 31 L=1:4L IF (NH-4) 25,27,27 175 A 176 A 177 ۵. 179 Δ NN=NH A iaó 25 50 TO 23 131 A 27 $\begin{array}{l} & \text{WRITE} \quad (5,F12) \quad L, (\forall L(L,I), I=1,5) \\ & \text{WRITE} \quad (6,F3J) \\ & \text{WRITE} \quad (6,F3J) \\ & \text{WRITE} \quad (6,F23) \quad (K, (C(NH+(J-1)+K,L),J=1,2), DC(NH3+K,L),K=1,NN)) \\ & \text{IF} \quad (NH-4) \quad JJ, 31, 29 \\ & \text{WRITE} \quad (6,F3J) \quad (K, (C(NH+(J-1)+K,L),J=1,2), K=4,NH)) \\ & \text{GC} \quad TO \quad J1 \\ & \text{N1=NH+1} \\ & \text{WRITE} \quad (5,F35) \quad (C(NH3+K,L),K=N1,4)) \\ & \text{WRITE} \quad (6,F44) \quad (HF,I=1,32) \\ \end{array}$ 7 133 184 A 4 125 A 29 A A 138 139 A 199 A 190 A 191 A 192 A 193 30 ND ND ND ND ND ND ND ***** **** CEMPUTE HOMENTS AND DEFLECTIONS A 194 * * * * * * 4 195 A 196 A 197 IF (SYAS) J4+33+33 CALL OS2A (JD, DC, STOR, NS, JS, LN, NST1, NST2) IF (NR, N2.0) CALL OSRA(CD, OC, STOR, NS, JS, LN, NST1, NST2) GO TO 35 CALL CA2A (JD, DC, STOR, NS, JS, LN, NST1, NST2) IF (NR, NE.0) CALL DARA(CD, OC, STOR, NS, JS, LN, NST1, NST2) IF (JYAS) 37, 37, 36 IF (ZA) 12, 37, 37 OD 40 L=1, NL LTX=(L-1) NT +MNH +NHC LTY=LIX +MNH LXY=LIY +MNH LXY=LIY +MNH A 198 A 199 34 201 202 203 4 35 36 A A 2052062072082209210 A A L | T=L | X + 4NH L X Y=L | Y + 4NH L X Y=L | Y + 4NH DC 40 | =1 , , , , X Y = (YA(L TX, [) + YA(L TY, [)) =0.5 X M Y= (YA(L TX, [) - YA(L TY, [)) =0.5 X M Y= (YA(L TX, [) - YA(L TY, [)) =0.5 X M Y= (YA(L TX, [) - YA(L TY, [)) =0.5 X M Y= (YA(L TX, [) - YA(L TY, [)) =0.5 X M Y= (YA(L TX, [) - YA(L TY, [)) =0.5 X M Y= (YA(L TX, [) - YA(L TY, [)) =0.5 YA(L M T, [) = X = Y + XY [I F (X M Y) 33, 39, 39 YA(L M T, [) = X = Y + XY [I F (X M Y) 33, 39, 39 YA(L M T, [) =3) J. CONTINUE [F (Y TP) 41, + G + 4] D STR=(D X = 0 + 0 + MNH + NHC L TY=L T + 1 NH L X Y=L T Y + 1 NH L X Y=L T Y + 1 NH 4 4 211 212 213 214 215 4 4 4 216 4 38 218 219 220 221 221 A A 39 Ą A A 41 A 223 4 LXY=LTY +414H ۵ LSY=LSX+4N4 4 LSY=LSX+4N4 LSU=LSY+4N4 OC 44 I=1,4JC IF (I=NTP) +2,42,43 YA(LSX,I)=YIP=(OY*YA(LTX,I)=O1=YA(LTY,I))/OSTR YA(L3Y,I)=YIY=(OX*YA(LTY,I)=O2*YA(LTX,I))/OSTR YA(L3U,I)=(/A(LSX,I)+YA(LSY,I))=0.5-2.**YTU*YA(I) CA 4 4 4 4 42 4 A(LXY . L)/ (DXY+DYX) *1.E 106 ۵ YA(LSX:I)=YA(LSX:I)=EXX

	PRINT 50 Go To 4 Grave Ko	4	85 86
	WRITE (5,Fl2) (L,(VL(L,(),(=1,5),L=1,NL) IF (Z3) 3,6,7	Ā	33 39
		4	90 91
	PRINT 42 G0 T0 3	4	92 93
	PRINT 63 THETA35A#PI/180.0	4	95
	C=CDS(THETA) S=SIN(THETA)	Å.	.90
	PK=H# #2-0X#) Y		99 99
	WRITE (6, FM3) Yen=Thk+y Tp	Î	ioi
	78U= 12× + 7 T J 70X= 12× + 7 T J		
	PRINT 64, (NP([),[=1,MNH)	A 1	1 0 7
	CCHPUTE CUNSTANTS OF THE SLAB	4 # # # A 1	103
			109
		4 1	119
	NH4NH3+-NH NH5NH4+-NH	A 1 A 1	
	NH6=NH5+NH NH7=NH6+NH	A A	121
	NHB=NH7+NH NB1=NH8+1	A 1 A 1	12.
			12:
	NGANDOTA		
	JC=NC+NL	A. 1 A. 1	12
	JC=NC+NL ************************************	A 4 4 4 4 4 4 4 4 4 4	
		.A 4 4 4 4 4	
	JC=NC+NL CCMPUTE THE MATRIX CCMPUTE THE MATRIX CALL SYLA (HS1+NSL+CD+OC+STOR+NS+IS+IN+NST1+NST2) GO TU 13 CALL SYLA (HS1+NSL+SYAS+CD+OC+STOR+NS+IS+IN+NST1+NST2)	A 4 4 4 4 4 4	
	JC=NC+NL CCMPUTE THE MATRIX CCMPUTE THE MATRIX CALL SYLA (HS1,NSL,CD,OC,STOR,NS,JS,LN,NST1,NST2) GO TO LJ CALL ASLA (HS1,NSL,SYAS,CD,OC,STOR,NS,JS,LN,NST1,NST2) IF (Z,GT.2.) GO TO 25 IF (Z,GT.1.),10.14	1 A 1 4 1 4 1 4 1 4 1 4 1 A 1 A 1 A	
	JC=NC+NL CCMPUTE THE MATRIX CALL SYLA (HS1,NSL,CD,OC,STOR,NS,JS,LN,NST1,NST2) G0 TO 13 CALL ASLA (H31,NSL,SYAS,CD,OC,STOR,NS,JS,LN,NST1,NST2) IF (Z,GT.2.) G0 TO 25 IF (3YAS) 13,14,14 PRINT 45 G0 TO 16	A	
	JC=NC+NL CCMPUTE THE MATRIX CALL SYLA (.451,NSL.CD.OC.STOR.NS.JS.LN.NST1.NST2) GO TO 13 CALL ASLA (.31.NSL.SYAS.CD.OC.STOR.NS.JS.LN.NST1.NST2) IF (Z.GT.2.) GO TO 25 IF (JYAS) 1J.14.14 PRINT 65 GO TO 16 PRINT (5 WRITE (5.F21) ((VL(L.1).L=1.2).[=1.2)	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
,	JC=NC+NL CCMPUTE THE MATRIX CALL SYLA (.451,NSL.CD.OC.STOR.NS.JS.LN.NST1.NST2) G0 T0 13 CALL ASLA (.31.NSL.SYAS.CD.OC.STOR.NS.JS.LN.NST1.N3T2) IF (2.GT.2.) G0 T0 25 IF (3YAS) 1J.14.14 PRINT 45 G0 T0 16 PRINT 65 WRITE (6.F21) ((VL(L.1).L=1.2).[=1.2) WRITE (6.F4.) (HF.L=1.32) D0 20 I=1.3	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	JC=NC+NL CCMPUTE THE MATRIX CALL SYLA (.451,NSL.CD.OC.STOR.NS.JS.LN.NST1.NST2) GO TO 13 CALL ASLA (.31.NSL.SYAS.CD.OC.STOR.NS.JS.LN.NST1.NST2) IF (Z.GI.2.) GO TO 25 IF (3YAS) 1J.14.14 PRINT 65 GO TO 16 PRINT 65 WRITE (6.F21) ((VL(L.1).L=1.2).[=1.2) WRITE (6.F4.) (HF.[=1.32) OO 20 N=1.04 IJ=NH*([-1).F4	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	JC=NC+NL CCMPUTE THE MATRIX CALL SYLA (.451,NSL.CD.OC.STOR.NS.JS.LN.NST1.NST2) G0 TU [J CALL ASLA (.31.NSL.SYAS.CD.OC.STOR.NS.JS.LN.NST1.N3T2) IF (Z.GT.2.) G0 TU 25 IF (3YAS) 1J.14.14 PRINT 65 G0 TU 16 PRINT 65 WRITE (6.F21) ((VL(L.1).L=1.2).[=1.2) WRITE (6.F4.) (HF.[=1.32) 00 20 I=1.3 00 20 N=1.N4 IJ=NH*(I=1).4 G0 TU (17.17.17). NH NN=4 CD TU (17.17.17). NH	A A A A A A A A A A A A A A A A A A A	
	JC=NC+NL CCMPUTE THE MATRIX CALL SYLA (.451,NSL.CD.OC.STOR.NS.JS.LN.NST1.NST2) GO TU IJ CALL ASLA (.131.NSL.SYAS.CD.OC.STOR.NS.JS.LN.NST1.N3T2) IF (Z.GT.2.) GO TO 25 IF (3YAS) 1J.14.14 PRINT 65 GO TU 16 PRINT 65 WRITE (6.F21) ((VL(L.1).L=1.2).I=1.2) WRITE (5.FM+) (HF.I=1.32) OO 20 N=1.NH IJ=NH*(I=1)+4 GO TU 13 NN=A GO TU 13 NN=NH WRITE (6.F21) [.N.(K.(CD(IJ.NH*(J=1)+K).J=1.4).CD(IJ.NH8+K).K=1.NN	A A A A A A A A A A A A A A A A A A A	
	JC=NC+NL CCMPUTE THE MATRIX CALL SYLA (.451.NSL.CD.DC.STOR.NS.JS.LN.NST1.NST2) GO TU 13 CALL ASLA (.131.NSL.SYAS.CD.DC.STOR.NS.JS.LN.NST1.NST2) IF (2.GT.2.) GO TU 25 IF (3MAS) 1J.14.14 PRINT 45 GO TU 16 PRINT 65 GO TU 16 PRINT (5 WRITE (6.F21) ((VL(L.1).L=1.2).[=1.2) WRITE (5.FM+) (HF.1=1.32) OO 20 N=1.NH IJ=NH*(I-1)+4 GO TU (17.17.17), NH NN=4 GO TU 13 NN=NH WRITE (6.F23) I.N.(X.(CD(IJ.NH*(J-1)+K).J=1.4).CD((J.NH8+K).K=1.NN I) GD TU (17.13.19.20). NH	A	
	JC=NC+NL CCMPUTE THE MATRIX CALL SYLA (.451,NSL.CD.OC.STOR.NS.JS.LN.NST1.NST2) GO TO IJ CALL ASLA (.131.NSL.SYAS.CD.OC.STOR.NS.JS.LN.NST1.N3T2) IF (2.GI.2.) GO TO 25 IF (3.45) IJ.I4.14 PRINT 65 GO TO I6 PRINT 65 WRITE (6.F21) ((VL(L.1).L=1.2).[=1.2) WRITE (6.F21) ((VL(L.1).L=1.2).[=1.2) WRITE (6.F21) (IF.I=1.32) OO 20 I=1.3 OO 20 I=1.3 IJ GO TO I3 NN=NH WRITE (6.F23) I.N.(K.(CD(IJ.NH*(J=1)+K).J=1.3).CD((J.NH8+K).K=1.NN I) GO TO (13.I).19.20). NH WRITE (6.F23) (X.(CD(IJ.NH*(J=1)+K).J=1.3).K=5.NH) GO TO 20 Z	A A A A A A A A A A A A A A A A A A A	442# 0# 177288788744444444489585
· · ·	JC=NC+NL CCMPUTE THE MATRIX CALL SYLA (J31,NSL,CD;OC,STOR,NS;JS;LN;NST1;NST2) GALL ASLA (J31,NSL;SYAS;CD;OC,STOR;NS;JS;LN;NST1;NST2) IF (2;GT;2;) GO TO 25 IF (3;AS) 1;J14,14 PRINT 65 GO TO 16 PRINT 65 GO TO 16 PRINT (G;F4)) ((YL(L;1);L=1;2);I=1;2) WRITE (6;F21) ((YL(L;1);L=1;2);I=1;2) WRITE (6;F4)) (HF,I=1;32) DO 20 I=1;d OO 10 (17;I7;I7); NH NN=A CO (10;I3;I3;I3;I2); NH WRITE (6;F21) ((X;(CO(IJ;NH=(J-1)+K);J=1;d);CO((J;NH8+K);K=1;NN)) GO TO (10;I3;I3;I3;I2); NH WRITE (6;F21) (CD(IJ;NH=(J-1)+K);J=1;d);K=5;NH) GU TO 20 NI=NH+1 WRITE (6;F21) (CD(IJ;NH8+K);K=N1;4)	A 2 4 # 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44444449993344444444999334444444499933444444
2 5 3 7 3	JC=NC+NL CCMPUTE THE MATRIX CALL SYLA (.451.NSL.CD.DC.STOR.NS.JS.LN.NST1.NST2) GO TU 13 CALL ASLA (.431.NSL.SYAS.CD.DC.STOR.NS.JS.LN.NST1.NST2) IF (2.GT.2) GO TU 25 IF (3Y45) 1.J.14.14 PRINT 65 GO TU 16 PRINT (G.F21) ((VL(L.1).L=1.2).[=1.2) WRITE (6.F21) (IVL(L.1).L=1.3).CD((J.NH8+K).K=1.NN I) GO TU (17.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	A A A A A A A A A A A A A A A A A A A	
23	JC=NC+NL CCMAUTE THE MATRIX CALL SYLA (.4S1.NSL.CD.OC.STOR.NS.JS.LN.NST1.NST2) GQ TU 1J CALL ASLA (.131.NSL.SYAS.CD.OC.STOR.NS.JS.LN.NST1.NST2) IF (2.GT.2.) GO TD 25 IF (3MAS) 1J.14.14 PRINT 45 GC TJ 16 PRINT (6.F21) ((VL(L.1).L=1.2).[=1.2) WRITE (6.F21) ((VL(L.1).L=1.2).[=1.2) WRITE (5.F4+) (HF.1=1.32) DO 20 I=1.3 OO 20 I=1.3 OO 20 N=1.44 GJ TU (17.17.17), NH NN=A4 GJ TU (17.17.17), NH NN=A4 IJ=NH*([-1).4.3), K=S.NH) GU TO 20 (10.13, NH=(J-1)+K), J=1.3), CD((J.NHS+K).K=1.NN I) GU TO (10.13, 19.20), NH WRITE (6.F21) (X.(CD(IJ.NH=(J-1)+K).J=1.3), K=S.NH) GU TO 20 NL=AH+1 WRITE (5.F21) (CD(IJ.NHS+K).K=N1.4) WRITE (5.F21.4) CD(IJ.NHS+K).K=N1.4 IJ=N+8 NJ=NHS+N	A A A # A A A A A A A A A A A A A A A A	
	JC=NC+NL CCMPUTE THE MATRIX CALL SYLA (.451,NSL,CD:OC.STOR,NS:JS:LN:NST1:NST2) GO TU [J] CALL ASLA (.131,NSL,SYAS,CD:OC.STOR:NS:JS:LN:NST1:NST2) IF (2:GT:2) GO TD 25 IF (3:MS) [J:14:14 PRINT 65 GO TJ 16 PRINT 65 GO TJ 16 PRINT (5:F4) ((YL(L,I):L=1,2):I=1.2) WRITE (5:F4) (HF:I=1:32) OO 20 I=1:4 GO TU (17:I7:I7), NH NA=4 GO TU (17:I7:I7), NH NA=4 GO TU (17:I7:I7), NH WRITE (6:F2) I:N:(X:(CD(IJ:NH*(J-1)+K):J=1:A):CD((J:NH8+K):K=1:NN I] GO TO (19:I9:I9:20): NH WRITE (6:F21) (CD(IJ:NH*(J-1)+K):J=1:A):K=5:NH) GU TO 23 NI=NH+1 WRITE (5:F21) (CD(IJ:NH8+K):K=NI:A) WRITE (5:F21) (A A A M A A A A A A A A A A A A A A A A	

YA(LSY,[)=YA(LSY,[)=EYY GO TO 44 YA(LSX,[)=Y3M=(OY=YA(LT) 236 237 238 239 240 0Y#Y4(LTX,[)-01#Y4(LTY,[))/OSTR 0X#Y4(LTY,[)-02#Y4(LTX,[))/OSTR SX,[)+Y4(LSY,[))+0.5-2.#Y8U#Y4(LXY,[)/(0XY+0YX)#1.8 「トトト 43 (A (106 VA(LSX,[)=Y4(LSX,[)=EXX YA(LSY,[)=Y4(LSY,[)=EYY CONTINLE CONTINLE CONTINLE CONTINLE 44 A 241 .4400000 248 SUNMARISE THE RESULTS A 250 IF (YTF) KN=7 GJ IJ 20 49. 48.49 A 252 A 253 A 254 A 255 A 255 A 256 48 $\frac{2}{4R} ITE (5,F(2) L, (VL(L,I), [=1,5)) \\ \frac{2}{4R} ITE (5,F(2) L, (VL(L,I), [=1,5)) \\ \frac{2}{4R} ITE (5,F(2) (HI, I=1,32), HJ, HJ, (I, HJ, [=1,12), HJ, HJ, (VC(I), HJ, I]) \\ \frac{1}{2} L(I, [=1,12), (HI, [=1,32)) \\ \frac{1}{2} L(I, [=1,32)) \\ \frac{1}{2} L(I, [=1,32)) \\ \frac{1}{2} L(I, [=1,32)) \\ \frac{1}{2} L(I, [=1,32)) \\ \frac{1}{4} L(I, [=1,32)) \\ \frac{1}{4} L(I, [=1,33)) \\ \frac{1}{4} RITE (5,F(1) (HJ, NP(N)) \\ \frac{1}{4} L(I, [=1,33)) \\ \frac{1}{4} RITE (5,F(1) (HJ, NP(N)) \\ \frac{1}{4} L(I, [=1,33)) \\ \frac{1}{4} RITE (5,F(1) (HJ, NP(N)) \\ \frac{1}{4} L(I, [=1,33)) \\ \frac{1}{4} RITE (5,F(1) (HJ, NP(N)) \\ \frac{1}{4} L(I, [=1,33)) \\ \frac{1}{4} RITE (5,F(1) (HJ, NP(N)) \\ \frac{1}{4} L(I, [=1,33)) \\ \frac{1}{4} RITE (5,F(1) (HJ, NP(N)) \\ \frac{1}{4} L(I, [=1,33)) \\ \frac{1}{4} RITE (5,F(1) (HJ, NP(N)) \\ \frac{1}{4} L(I, [=1,33)) \\ \frac{1}{4} RITE (5,F(1) (HJ, NP(N)) \\ \frac{1}{4} L(I, [=1,33)) \\ \frac{1}{4} RITE (5,F(1) (HJ, NP(N)) \\ \frac{1}{4} L(I, [=1,33)) \\ \frac{1}{4} RITE (5,F(1) (HJ, NP(N)) \\ \frac{1}{4} L(I, [=1,33)) \\ \frac{1}{4} RITE (5,F(1) (HJ, NP(N)) \\ \frac{1}{4} L(I, [=1,33)) \\ \frac{1}{4} RITE (5,F(1) (HJ, NP(N)) \\ \frac{1}{4} RITE (5,F(1) (H$ 49 KN=10 50 A 258 A 259 A 264 255 2 A 260 261 262 263 Å А LK=LT+(K-1)*MNH #R(T2 (6,FMJ) (HA(K8+[),[=1,8)) WRIT2 (6,71) (HJ,NP(N), (HJ,YA(LK+N,[),[=1,12],HJ,I3L,N=1,MNH) IF (NGC-12) 52,52,51 WRIT2 (6,FM+) (HI,I=1,32) PR(NT 72 WRIT2 (6,63) (HI,I=1,32),HJ,HJ,([,HJ,[=13,24)) WRIT2 (6,70) (HI,[=1,32),HJ,HJ,(UC(I),HJ,[=13,24),HJ,HJ,(I=13,24),(HI,I=1,32) WRIT2 (6,71) (HJ,NP(N). AA A 268 A 269 A 270 A 271 A 272 A 272 A 273 51 ,HJ,[=13,24),HJ,HJ,(VC(1),HJ, (HJ,YA(LK+N,I),I=1,12),HJ,(BL,N=1,HNH) WRITE (5,F4+) (HI,[=1,32) CONTINUE 1 C 52 52 ITE NTINUE (NA .E: TNT 73 3.01 GO TO 103 2 X=1.1R +(X+0)+MNH 2 (5.63) (6.73)).UR(1).HJ,JR(9). RITE (5.71) (HJ.YA(LK+N,1), WRITE (6.F44) (HI.I=1.32) CONTINUE IF(NCTH.NE.1)GO TO 110 IF(NCTH.NE.1)GO TO 110 IF(NCF.E2.3) GU TU 1 GO IO 50 IF (SA.NE.GJ.0) GO TO 74 OU 39 L=1.NL IF (VL(L,3).E0.2*A) VL(L.S)=VLS(L) CONTINUE NTHE = NTHE+1 IF (NTHE.LT.S) GO TO 11 (HJ YA _K+N,[),[=1,[2),HJ,[3L,N=1,MNH) 102 110 39 74 () TE -) TEFT IF (NTHELT.5) GO TO 11 SA =-1.0 IF (NCH.LT.3) GO TO 30 GO TO 1 WRITE (6.F45) CO TO 1 276 277 279 279 291 (6, #195) 4 53 GO TO VRITE 4 4 54 suita stup A 1 5 5 67 39 ** *** 232 7 FORMAT (184++8X) FORMAT (16(5) FURMAT (1295+2+8X) FORMAT (1295+2+8X) FORMAT (754K+3YMMETRIC LOADING GNLY*) ----236

	50	FCRMAT	(/42% GENERAL LOAD (NG(SYMMETRIC &	ANT (SYMMETRIC LOADS) ')	4	297
	51	FCRMAT	(/SOKITHE SLAB IS CLAMPED ON ALL ED	DGES!)	A	288
	52 .	FORMAT	(/ 40% THE SLAB IS ELASTICALLY SUPPO	CRIED ON THE EDGES!)	4	299
6	53	FORMAT	(/ASKITHE SLAB IS SIMPLY SUPPORTED	CN ALL EDGES!)	4	290
6	54 ்	FURHAT	(45%, INUMBER OF HARMONICS ANALYSED	'+4×12+10('+'+12)//)		
	55	FCRMAT	(/54%'SYMMETRIC LOAD SYSTEM')		A	293
6	56	FORMAT	(/SIX'ANTI-SYMMETRIC LOAD SYSTEM!)		A.:	294
	57	FORMAT	(/[],[4,9F14.8/([7,9F14.8))		A	255
	6	FORMAT	(/45% DEPTHS OF N.A. FROM TOP FIERS	E1,3F10.4/		474
		3	45% SLAB THICKNESS = ", FLO.4. INS	S' / ASX'TOP GAGES	Δ	256
		1 1,25X	1 DHRUY, IS/ASX'BOTTOM GAGES', I25, '	THRU1, [5/]	4	297
4	59 .	FURMAT	(2X32A4/2XA1,6XA1,12(15,3XA1))		4	298
	70	FCRMAT	(2X32A4/2XA1,4X*U=*,Al,12(FB.2,1X,/	All/2XAL,4X*V=',AL,12(F8.	4	299
	1	12.12.4)/2X32A4)		4	300
	71	FCRMAT	(2XAL, 1X'NH=+, [2, 12(AL, F0, 4), A1/(A2	2, 41, 16, 12 (41, 59, 4), 41)	Å.	301
	72	FORMAT	(SOX'CONTINUED!)		4	302
	7:	3 FORMAT	(/60x 'REACTIONS'/)			000
;	200	FORMAT	(1XA+,6210.3/5210.3,415,10X/1415,10	0X)		
		END			Δ	303-
			•		•	

с с

t

		-			_	_																																		
****	**	1.J.X	K 78		**	***		.		**	786.7	e 4	#. 4	746 1	K 36	**	e 340 1	* *	¥6.4	8 W -	* *	* *	1 # 3	38.3	* *	* *	**	*	= ≠	**	# 3	X XE	* >	1.38	**		**	a se se s	****	
SURS	ar.	11	ΞĒ		GV	157	Γ	<u> </u>	1) 	-					_			÷.,		• ~																	3.		
291	**: 	, 	2.1											-		-			-		• •	-	. ~ ~	-	• -	-		-	-	-		-	-			-				
- 25พิพี	GN	A	, Þ	t,	<u>چ</u>		:.	s.	T	м.	c.	1 ,	44		22	з.	. ۲.	44		: . :	SY	AS	i.c	2	.c	з.	ST	•	3F	• T	•	гэ	, N	1N	н			ă	3	
ĊĊMM	ΩN.	.1.	36	57	C	3.2	X	.0	Y	.0	X.	۲.	OY	×,	0	1.	0:	2,	ΞI	. <u>.</u> (5 J	• 5	<u>† •</u> V	L	(4	۰5),	Ζ2	3					_				E	4	
<u>, CONM</u>	GN.	\underline{Z}	٦Ļ	1/	Ē	2.5	: g	(4	5	<u>.</u> C	<u></u>	s	7)		<3	, K		• <	5,	35	а.	35	12.	á	94	: ×	2,	¥	2.	71	•	۶Ż	: 7	13	• *	4	•	а	5	
131.0	2 .:	، زرار ۲۰	. 3	÷,	SC		• >	65	3 *	SC	-	, 5	Ĵ	• • 2	5 1	(4	- 1	• 3	ا ب		1.1	2.	163		12		4)	• :	53	(4	1	. 3	0 (4	1.					
ГССИМ	ดกี้	1	śί	21	់គ	τ.	. R	2.	R	з.	à,	ά,	ลร		26	, ē	27	, 7	5	. 2.	9.	ิส เ	.o.,	R	11	.8	12		21	κз		X2.	2.	x	23		X	з	7	
124,4	22	٠Ÿ.	ΞĪ	. 1	24		15		à	ī A	7	12	а.	À	э.	A1	0	. 4	11		A 1	ę,	41	3	• 4	14			5,	A L	ć	• 4	t 7		41	9	•	E	ື່ຄ	
2A20,	42	1,,	λŻ	ц.	23	23.	• -	29		ŽĞ		35	• 3	Ó	• a	7.	93	з.	؟ ن		3 เ	ο,	aı	L	• 8	12	- 1	1.	3,	dι	4	•9	19	5.	91	å	•	3	. 9	
3817,	913	3,4	31	32	02	20	13	22		32	(ລ ສ	, d	24			3,	· / ·	71	١.	. =	10	10	3 4 1	. :	= 7	~ 1	12	-	,									03	10	
	GN.	1	ະລັ	2	4	25	5.	12	6		2	÷:	Å2	8	Э	26		<u>32</u>	ź	32	2g	ìċ	Ξ.	T	NĂ	Ť	NA	ĩ	í۳	NB		TN)	<u>1</u> 4	• •	80	2		a	iż	
108C.	ae.	ÍN	R	21		27	Ā.			•		•••		-												• •		-	• •		•		-					ē.	· 13).	
CCMM	QN.	/0,	41	17	U (20	נכ	• 6	÷v	(2	20	} •	мu	•••	4V	•5	τU	۱.	F١	π.																				
PHAN	a_																																					1	14	
03=0	210	c																																				a	15	
Č4≃Č	2*	č2		1			í	1																														ŝ	17	
ST≓S	15		. `										·																									3	18	
SF=3	T#.	SŢ.	L é	÷.,	à,	í.	,	*		* 7		^																					•					3	19	
- SC 7-	SE	ະປະ ສຸດ.	≠⊃ ≮ *	5	54			εź	24	* 4 ∺+	<i>c</i>	u.≠	OY	,																								ã	20	
SCC=	4.	j¥	ŝ.	57	, * '					•••	٣		۳.																			1						ē	22	
ີ ຣີຣີບັ=	(5	Ť≢:	×دَ	+:	21	×н.) =	4.	• 0	*5	\$																											з	23	
ູວວຸເ	1	= [• N	ز ب لا					- 、		·																											9	24	
	, j = 1 , 1.	23,	57	د مر ۱	5		(L.		2 2	÷		•																										ä	20	
CENT	IN	Ξ	-		· ·		-																				,											a	27	
A	* 4			· · .																																		ã.	29	
-243-	44	#Δ.																																				3	29	
- 2044	22	# A.	۰ 🖈	• • •	· ·			-						۰.																								3	30	
3333	EE.	₹Ū.		. ′				-				,																										ษั	32	
034=	68	*Ū	3																					·		•	• •			•				• •			••••	3.	.33.	•
O XO Y	' ≃ 5	รร	۲ (Эx	*0	YC)																									·						3	34 .	
- 0X2= - YA=(32 37	÷.	0 Z	· • •	()		,							•																			·				3	33.	
PKK.	Ξĉ.	2 .	Ý,																																			3	37.	
K 3=0	*\$	ĞЯ	T (Y٩)																	•					,											8	38	
PXXI	.≊C	* Si	ក្ខុខ	ITC	((Y C	' - r	-)	70	X	2)																				•						3	39	
- K4=2 - K5=0	5 K.	1 -	3.																					-														ີ ຊ	ΔU Δ1	
PKKA	=K	4 *	¥2																																			3	42	
PKKS	зx	5*	#2			,																																з	43	
X2=1		55	KX S	(3)	. 24	SK:	4) _)																															3	44	
- エピール - エンフォ	**2	12	51	ب		5	ິ																															7	40	
x23=	ixē	2.2	Ζa	2																																		3	47	
X24=	: X 2	3#	X2	2																					٠													з	48	
¥223	: Y Z	ŧΥ.	3.																																			7	49	
Y 7 43	172 172	27	Ç,	;	•																																	9	<u>41</u>	
00=0)i +	ōx	Ϋ́	-DY	x																																	3	šż	
TN#3	s∠c																																					ត	53	
	ΧQ	*T	14.3	**:		2	- 0		- 0			n'v	. v 1																									3	54	
82=-	. (s	Í.	77			2.	* -	4) ·	+0	Ŷ	÷Č	ž																										ŝ	56	
83=0	xī	ċз							-		-																											ā	57	
S 7 == -		¢.#	3-	Р.	3		-																		١.													g	58	
- 754(3.	*0	3 l	[+]	20																														•			0 0	59	
8740	- 3 -	è	~	7			-																															3	έĩ	
23=-	2	0.1	5.	#i 2 /	P 1																																	ŝ	62	
29=	ST	+0	1 -	RC 1	2/1	DX) 4	R	7												•				-													3	63.	
R10=	- S	4G	J.	۰ ۲																																		ŋŗ	54 25	
2142	136	1 =	23																																			a	66	
RIK	=R	1.4	κ.	5.						,																												3	57	
71=	• *	ХJ	¢Υ	(1					*									~																				E,	68	
÷2=(<u> </u>	×3	30	×.,	4	٦_	a -		۰ ۱																													μŭ	59	
4 ROG A	≉ ر هدي	5		 	<u>د -</u>	3-	ي در	22	4)	`																							1					л н	71	
1.5=-	Ξī		Ā	2.4.2	2	-1	1	× A .	í i	*>	k 2	4																										ā	72	
-		-																																						

5=2.*A1*A3*X2*E1 7=-RiX-R2 8=-X2*(AiX+-R3*X2*A2) 9=-(Fi(X)R2*X2*A1)*X2 10=R3AJ-R*A1-R3*X3 11=-R3*A4-R4*A2+R3*X3 11=-R3*A4-R4*A2+R3*X3 12=-R3*A4-R4*A2+R3*X3 12=-R3*A4-R4*A2+R3*X3 12=-R3*A4-R4*A2+R3*X3 11=-R3*A4-R4*A2+R3*X3 11=-R3*A4-R4*A2+R3*X3 11=-R3*A4-R4*A2+R3*X3 11=-R3*A4-R4*A2+R3*X3 11=-R3*A4-R4*A2+R3*X3 11=-R3*A4-R4*A3 11=-R3*A4-R4*A3 11=-R3*A4-R4*A3 11=-R3*A4-R4*A3 11=-R3*A4-R4*A3 11=-R3*A4-R4*A3 11=-R3*A4-R4*A3 12=-(A2*C3+R10*X2*A4)*X22 13=-R3*A4*X3 13=-R3*A4*X3+R3*X3 13=-R3*A4*X3+R3*X3 13=-R3*A4*X3+R3*X3 13=-R3*A4*X3+R3*X3*A3 13=-R3*A4*X3+R3*X3*A3 13=-R3*A4*X3+R3*X3*A3 13=-R3*A4*X3+R3*X3*A3 14=-R3*A4*X3+R3*X3*A3 14=-R3*A4*X3+R3*X3*A3 14=-R3*A4*X3+R3*X3*A3 14=-R3*A4*X3+R3*X3*A3 14=-R3*A4*X3+R3*X3*A3 15=-R3*A4*X3+R3*X3*A3 15=-R3*A4*X3+R3*X3*A3 15=-R3*A4*X3+R3*X3*A3 15=-R3*A4*X3+R3*X3*A3 15=-R3*A4*X3+R3*X3*A3 15=-R3*A4*X3+R3 #41#42 1×4-82 2

57X)/C *5 00 00 00 380 890 د 3 /C) S D2+ ō õ 900 כאכ ניז GD 1 0 524 524 526 51(526 521 4 5 (((() 1) 1) 1) 1) * XD XD XD XD XD -51 -51 -52 # # 3 ST ST ST ST (2) (2) (2) ** בכב * +++ α *C *C *C 123 ōΫ * s *Č j * ñ × ž 5ó 57 20. ຓຓຓຓຓຓຓ 147 148 149 150 151 152 155 155 2 .29 5.T TN .X č 5 ŝ s s J S $\overline{}$ C .RIKS R9 ō a <u>9 t</u> 310 .3) . ÷ 3 ā B ã 3 Ś a 31 ā а ġ 88 [] 9. =1 в ó ರ 1 īi 3 ŝ 3 Ċ 3 RET

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-		******
-	SUBROLTINE SYLA (NS1, NSL, CD, DC, STUR, MS, JS, LN, MST1, NST2)	C I
c	a a a a a a a a a a a a a a a a a a a	*****
	DOUBLE PRECISION CHADE	C 2
	REAL X1N, X2N, X3N, K4N, K5N, K6N, K7N, K8N, L1N, L2N, L3N, L4N, L3N, L6N, L7N, L	<u> </u>
	ISN, IIN, ISN, ISN, I7N, KJ, K4, K5, KMN, LMN	C . A
	COMMON AFFISAICIS, FNICG, AA JAAJ, AA4, ZISYAS, C2, C3, STISF, FIF3, MNM	<u> </u>
		<u> </u>
	CUMMUN /3CL/ //CU(4)/CU3(4)/Cu3(4)/3/40/60/60/600/604/22/72/21/1/24/4/444	
		•
	CONNON /31 2/ R1.82.83.34.85.26.87.88.39.810.811.512.81K3.X22.X23.X	c 3
	124. 722. 723. 724. 45. 46. 47. 43. 49. 410. 411. 412. 413. 414. 415. 415. 415. 417. 419.	č .16
	2420, 411, 422, 423, 424, 46, 35, 86, 87, 88, 89, 810, 811, 812, 413, 814, 815, 816,	č il
	3817,313,319,320,822,323,824,418	č iž
	COMMENZESZAHC, NB3, NC, JC, NH2, NH3, NH4, NH5, NH6, NH7, NH9, NB1, NB2, NH, NL	
	CJMMUN /3LJ/ FM2(3);F13(108);F38(71);F19(94);F20(125)	C 14
	CCMMUN /39L/ A25, A26, A27, A28, 825, 928, 758, 758, 758, 768, 768, 768, 768, 768, 768, 768, 76	C 15
	100C, 80TN , R23 , R7A	C 16
	CCMMGN/PM T/F J (20), FV (20), MU, MV, FUT, FVT	- · -
		<u> </u>
		C 18
	NC 1401411	c 10
		C 19
		č ži
	1154=NH0+4	č 22
	NSL=NS4+NL	č 23
		C 25
	00 1 J#1:NSL	C 27
	STOR(I,J)=0.	C 28
1	CONTINUE	C 29
_		C 30
2		C 21
	CD(Xd), N3()=(.3)	2 32
		C 33
	$CD(NB1,NC) = 1 \pm 2 \Delta \lambda / BB \Delta / S_{2} = 1$	C 14
	STCR (NE3, N52)=1.	C 36
	STOR (NEL.NE+)=1.	Č 37
	(F (Z2) 3,5,)	C 38
3	CD(Nd2+32)=2+/4/C	C 39
		C 40
	CD(N43,N43)=8C2	C 41
		C 42
		C 43
	5108(N22)N331=-1772	
	STUR(NCINSI) =-TN/A	C 47
	STOR (NC, NS2) = 1./9/C	C 48
	STOR (NCINSJ) =-TNZA	C 49
	STUR (NC+NS4) =3+/B/C	C - 50
4	CD(NC(N31)=1.	C 51
· ·	CD(NC,N32)=(.	C 52
	CD (NC ,N8J)40 . 333333333333	C 53
		C 37
ร	CD(NC.NC)=24.0*(R3*T*A+E1)/984	Č 58
-	STCR(N21,NSJ)=6. *R3/4A3	Č 59
	STGR(N81,N34)=6. *R6/883	C 60
	STOR (N32, N5+) =6, #R10/983	C 61
G	CD (N82+N42) = 2 + # 8 7A	C 62
		ç 63
	CJ(N824NC)=+4+#R9/23+12+#R7#1#AA/334	C 54
	Luinduine (477,2070) 3773 (867,301) 46, 8073	
	STOR(NCL/NGL) = 02 = 1	C 4A
	VAC(I)=0	
	UMC(1)=0	
	VMC1([)=0	
2 :	0=UNC1(1)=0	

· · ·	•					
ON=L.O						
00 57 N=1,114						
SNP=RN+PL						
ANARNEZA						
	-					
DAZ=GN+AN2						
CA3=UA2 +AN	•					
CA4=0A2+AN2 CN=2NC/3		•				
0N2=8N++2						
3NJ=8N2+9N						
9N4=9N2+8N2 081=0N48N		•				
082=CN+8N2						
AFREARD						
XAN=X2#ANB	,					
YAN=Y2+ANB						,
RRI=KA*XAN						
SS1=K5+YAN						*
352=KS+BNA						
RIN=K2+XAN						
51N#K2*YAN						1
CAR1=CCS(ARL)						
5RR1=SIN(RR1)	· ·					
SRR2=SIN(RR2)						
CSS1=CES(351)						
SSS1=SIN(SS1)						
SSS2=SIN(SS2)		5	•			
(F (R1N-50.J)	3.8.9					
CHO1=/1-3+731	R1N)	•				
SHR1=(1.0-5.1	1/2.0		•			
GO TO 10 '						
CHR1=0.5						
[F (R2N-30.0)	11.11.12					
ER2=EXP(-2.J =	R2N)					
	1/2.0		· · · ·			
	1/2.0					
CHR2=C.5						
5HR2=0.5 [E (11N=50.1)	14.14.15		. •	-		
ES1=EXP(-2.0*	SIN)					
CHS1=(1.0+E-1)/2.0					
- SHSI=(1.0-25) GC [3 16	1/2.0					
CHS1=C.5						
5451=0.5						
	1. 1. N. A.					
K3N=SHA1+C.141				``		
KAN=CHRI#SRRL				,		
	1 - C					
KTN=SHAZ+CRAZ	*					•
Kanachazasara			,			
				•		
LJN=ShSI+CSJI						
L4N#CH31#3551		•				
- L6N=ShR2*53.2		•	. .	•		
LTN=SHR2=CSJ2	· · · ·					
	17N8	•				
15N=-2./2N=+1	N	· ·				
111=155+1511/1	N				•	
I JN=[' N+R[+2 /7x=/example:	•				4	
riv#1294H10			•			
	•••••••					
			· .			× .
· .	,		•_			,

з

	·		
	JNAX= FNAZX"		
	BNAY=ENA/Y2		
	#1(1)=(K3#K7N+K4 #K8N)/3NAX		
	#1(2)=(X3#L7N+K5#L3N)/3NAY		
	41 (4)=(KJ+LJN-K5+L7N)/JNAY		
	31(5)7(KJ#KJN+K4#K4N)/4N8 31(5)7(KJ#KJN-K4#K4N)/4N8		
÷	WI(7)=(K3+LJN+K5+L+N)/ANB		
	W1(3)=(KJ*L+N-K5=L3N)/ANB	•	
	NH2N=NH2+N		
	NH3N=NH3+N		
	NHGN=NHG+N		
	CO(NH4N, NH5A) = K2N		
	CD(NH4N,NH6N) = LIN		
	CD(NH4N,NH7N)#L2N CD(NH4N,NH2)#L1N		,
	CO(NHAN,NC)=T=[3N/884#AA4		
	CD (NH5N , NH4N) =- KAN		
	CD (NH 5N , NH 5N) 4L 4N		
	CD (NH5N 1H7.4) = -L314		,
	CD(N31,NHA)=DN#W1(1)		
	CO(N81,NH21) = GN = W1(3)		
	CO(N81_NH3N) = ON=W1(4)		
	STUR(NH5N,N53)=(7N		
	IF (ZE) 17,19,18		
17	CD (NH2N+N)=JN=(A25#K7N+A25#K8N) CD (NH2N+NH4)=HN=(A25#K7N+A25#K8N)		
	CD(NH2N, NH2N)=8N=(A25=L7N+826*L3N)		
	CD(NH2N, 1HJ1)=8N*(-826+L7N+425=L3N)		
	CD(NHJN:N)=3N#(A25#K5N=A25#K6N) CD(NHJN:NHN)=8N#(A25#K5N=A25#K6N)		
	CD(NHJN+NH2:1)=9N*(-825*L3N+A25*L5N)		
	CD(NH3N,NH3N)=3N#(-A25#L5N-826#L6N) CD(NH3N,N5N)=7N=#(FN)		
	CD(NH3N,NC) = TN84 + 17N		
	CD(NHGN, NH4.1) = AN + (A23 + K3N + A2A + K4N)		
	CD(NHON+NHOA) = AN #(-A24#K3N+A23#K4N) CD(NHON+NHOA) = AN #(32 {# 3N+A24#KAN)		
	CD(NH6N,NH71)=AN*(-324=L3N+323=L4N)		
	CD(NH7N, NH4.1) = AN # (A24 #K1N - A23 #K2N)		
	$CO(NH7N_1NH6N_1=AN*(-B24*L1N+B23*L2N)$	-	
	CD(NH7N,NH7N)=AN*(-823*L1N-924*L2N)		
	CD(NH7N+NE2)=TNA#(5N CD(NH7N+NC)=TNA3#(7N		
	STCR (NH2N +NS4) =- 3 . # TN# [1N/B		
	STUR(N22,N14)=0A1*(-A28**1(5)+A27**1(5))		
	STCR(N82, W12N)=0A1 = (327 = W1(7) + 323 = W1(3))		
١	- 5 TOR (NG2, NH3N) #QA1 #(5	•
	STOR (NC, NHN) =081 *(-A22*W1(1)+A21*W1(2))		· · ·
	STCR(NC,NH2N)=081 *(A21 * W1(3)+622 * W1(4))		
1 a	CD(N:N)=K3N		
	CD(N,NHN)=KôN		
	CD (N + NH3N) = 15N		
	CD(N.N83)=(IN		
	CD(NHA, NHA)=K7N		
	CD (NFN, NH2N) =LBN		
	CD (NHN, NH31) == U7N CD (NC, NH4N) = (NAW 1/5)		•
	CD(NC, NHSN)=0N*+1(6)		
	$CD(NC, NHSN) \approx GN \approx W1(7)$	ŕ	
	CU(NC)/NH/71)20N#WL(S)	•	

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	STOR(NH1,NJ4)=(SN	
	5 Tertannan 5 Jacon 5 Tertan 5 Jacon 5	
	CD(N,N)=BN3+(EIB=K5N+AL0+K7N+ALL+K3N)	
	$CD(N_1,NHN)=0.13+(213+K5N-A11+K7N+A10+K3H)$,
	CD(N,NH2N) = 3NJ = (EIS+L5N+3IO=L/N+3I(+L3N))	
	(C)(N, NAJN)=UNJ=(C)==CON=J(I=C(N+J(U=CON)) (C)(NNAJN)=UNJ=(J)=Z(A)=J(D=Z(A)=J(D=Z(A)=J(D=Z(A)))	
	CO(NHA,N/H) = BN 3 + (A 10 + KSN + A 11 + K6N + = 13 + K7N)	
	$CD(NHN \cdot NH2H) = BNJ * (-B) [*LSN+310*LON+2[J*L3N]$	
	CD (NHN 124 34) = 8N3 + (-510 + L3N - 311 + L3N - 613 + L7N)	
	CD(NHN.NC)=-24.0=R6=[5N/983	
	$CD(NH2N_{14})=3.42*(A14*KSN+A15*K6N+AG40N*K7N+A16*0N*K3N)$	
	$CD(NH2N, NHI)$ = $8N2\pi(-a15\pi K3N+a16\pi K0N-a16\pi K0N\pi K(N-a6\pi K0N+A0))$	
	CO(NE2N) (NE2) = SN2 + (S(4+C)N+S(5-C)N+A(3-C)N+C(1)) + (S(4-C)N+C)N+C(1)) + (S(4-C)N+C)N+C(1) + (S(4-C)N+C)N+C) + (S(4-C)N+C) + (S(4-C)	
**	CO(N+2N+N) = 1N2 = (A15 + 6N + K5N + A6 + 6N + K6N + A15 + K7N - A14 + K3N)	
	CD(NH3N+NH1)=3N2+(-AG+3N+K5N+A15+BN+K6N+A14+K7N+A15+K8N)	
	CD(NH3N+NH21)=BN2*(-010*BN*L5N-AG*BN*L6N-B15*L7N+B14*LBN)	
1	CD(NH3N+AC)==24+0=R10=10A/2002	•
	$CD(NC_{N} M + N) = 0.46 + (A + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $	
	CD(NC.NH6N) = CA4 + (35+w1(7)+86+w1(3))	
	CD(NC,NH7N)=JA4=(-86=W1(7)+85=W1(3))	
	STOR(Nel1/4)=JAJ*(A12*#1(5)+413##1(6))	
	STOR(Nel; Nel) = 0A3#(-A13#W1(5)+A12#W1(6))	
	STOR(NOL,NHIN)=0.404(3[2741(7]+5[044(107)] STOR(NOL,NHIN)=0.404(3[2741(7]+5]044(10))	
	STOR(NG1)(H30)(H00)(-313**(1)(H01)(-61))	
	STOR(N22,N1N) #CA3#(+A20#W1(5)+A19#W1(6))	
•••	STCR (N82, NH2N) = UA3*(819*W1(7)+820*W1(8))	
•	ŠTČR(NŠŽ;NHJ 1)=0,13*(-820*¥1(7)+819=¥1(9))	
	GO TO 21	
	CD(NH2N,N)=3DN2=(A1+FK5N+A-15+FK0N)	
	CO(NH2N, NH3N) = 6N2 * (-613 * L5N + 614 * L5N)	- • •
	CO(NH3N+N)=3N2*(A15#K7N-A14*K8N)	
	CD(NH3N+NHN)=8N2*(A14*K7N+A15*K8N)	
	CD(NH2N+NH2))#8N2#(+815#L7N+814#L3N)	
	$C \supset (N \vdash A \land A \vdash A$	
,	CO(NH6N; NH6:1) = AN2 *(83*L1N+89*L2N)	
	CD(NH6N+1H7N)=AN2*(-89*L1N+88*L2N)	•
	CD(NH7N+HH4+1) = 4N2 = (-A3 = K4N + A3 = K3N)	
÷	CD(Na2,NH4N) = DA2*(A17*WI(5)+A13*WI(0))	
	CD(N82,NH5N) = UA2 * (-A18 # 41(5) + A17 * W1(6))	
	CD(NB2+NH6H) = DA2*(317**1(7)+B18**(1(6)))	
	CD(N82,NH71)=CA2*(-Bld#Wl(7)+Sl/#Wl(3))	
	$C_{1}(N_{3},N) = 0.22 + (A + **(1) + (A + **(2)))$	
	CD[N33,NH2N]=092*(37*W1(3)+R1X3*W1(4))	
	CO(N83,NH34) = OB2*(-R1K3**1(3)+O7**1(4))	
	STCR (NH3N+N34)=6 . 0#R9# (5N/88	•
	A # S NO = S A A	•
	DN12=ENA2/122	
	SNY=BNA2/Y2	
•	AND2=ANE=ANS	
	ANX2= AN32 = X - 2	
	ANY23AN324712	
	ANXTARUZEXC ANYTARUZEXC	
	DZAY=EZ#ANYZ	
	A 23N= A 2* 3NA=	-
	101-401-401-140 	

(Z-1) NY2#41 -1) 23, 23, 25 -4-MNH) 25, 24, 25 (6, Fl9) NH, N, UN, AN, BN, AN2, BN2, AN3, BN3, AN4, [[N, []N, []N, R1N, R2 (6, Fl9) NH, N, UN, AN, KON, KON, KON, RR1, RR2, S51, L[N, L]N, L]N, L4N, (6, Fl9) NH, N, RNP, KON, KON, KON, KON, RR1, RR2, S51, L[N, []N, L]N, L4N, (6, Fl9) NH, N, N, K4N, KON, KON, KON, RR1, RR2, S51, L[N, []N, []N, L4N, (6, Fl9) NH, N, K4N, KON, KON, KON, RR1, RR2, S01, AN4, [[]N, []N, L2N, L3N, L4N, (7, 1, L2N, RNP, RNP5, BNA2, ANBC, BNX2, BNY2, ANX2, ANY2, A2BN, B2BN, B2 (4, BNX, BNY, ANX, ANY, TAL, TB1, TX1, TY1, ([], []1, B), (J1([]), []1, B) 81 N.SIN. $\begin{array}{l} \text{IN}, \text{SIN}, \text{KIN}, \text{KIN}, \text{KIN}, \text{KIN}, \text{KSN}, \text{KSN}, \text{KSN}, \text{KIN}, \text{KSN}, \text{KSN},$ TA (2=3) (2+4) (3+4) (3+2) (2+2) (374, 541, 381, 5X1, 3, TA4, TB4, TX4, TY 3 X A TE ώor (5.61) (1)LE1,(1)LL1,(1)LL1,(1),(E,(1=1,1), 1=1 · a) NH2M=NH2+4

*d1 23

ÌF IF

23 24

25

25

28

3M=NH3+M M=NH++H SN=NHS+4 = NH 5 + M 4=××2+M NHAN .NJ

(NH 3M

(NHAM, NHN) = ON # AJ (2) (NHAM, 1H2.1) = ON # AJ (3) (NHAM, 1H2.1) = ON # AJ (4)

5732(NH5M,1)=0N*6J(1) 5732(NH5M,044,1)=0N*6J(2) 5732(NH54,042N)=6N*6J(3) 5762(NH5M,045N)=6N*6J(4) 17 (29) 29,51,30

, 1) =0N*8J(1)

	SUIASIN(AUI)	C 139
		C. 460
		C 461
		C 462
	als=8N*VL(L,+)/2.	C 465
	SAA=SIN(ALR) /ALR	C 100
	508=51N(3L5)/8L5 55=61/(3L9)/8L5	C 467
	ASCHARS+RMN	C 469
	RSS=RS *SMN	C 470
	KMN=CINN+RSI-O2MN+RSS	C 471
		C 472
		C 474
	NCL=NC+L	C 475
		C.476
34		C 477
33	IF (22) 36,33,37	C 479
36	CD(NC+NCL)=-CQS(L)*884/180.	C 480
		C 482
U /	LF (78) 43, 14, 39	
33	CD(NC,NCL) = II = CQS(L)/4	C 485
39	CD(N32,NCL)=R9*COS(L) *83/12.+FV1	C 486
40		C 487
	T3N=CCD +SV1	C 489
	CD(NBT WCF)=CD(NBT WCF)-LEN +0N/8N4	C 490
<u> </u>		C 491
+ 1	CO(3)ACL = CO(C) = (1 - (1 - (1 - (1 - (1 - (1 - (1 - (1	C 492
c	CD(NH3N,NCL) = 38TN*CQS(L)*(17N-2.*15N)-T6N/8N3*TN	C 494
	STOR (NHON MAL) = TN#TAN/SN3	C 495
	STUR(NC,NAL) = STUR(NC,NAL) -T BN*UN/DNJ/C	C 496
42	G_{1} (G_{2}) G_{2} (G_{2}) G_{2} (G_{2}) G_{2} (G_{2}) G_{2}) G_{2} (G_{2}) (G_{2} (G_{2}) (G_{2}) G_{2} (G_{2}) (G_{2} (G_{2}) G_{2} (G_{2}) (G_{2} (G_{2}) G_{2} (G_{2}) (G_{2} ($G_{$	C 497
43	STOR (NHN, NAL) =-T BN/BN4	Č 499
	(F (Z2) 46,++,45	C 500
	SM1=-CQ3(L) #3#15N/4T6N/BN	C 501
	CD(NHN.NCL)=C)=CASAMI	C 502
	CD(NH3N,NCL) = R10 = SM1	C 504
	STOR (N +NAL) = 26 # TEN/BN	C 505
	STOR(NHN, NAL) = EI * TSN	C 506
45		C 507
2 36	VMC(L)=VMC(L)+2.# FV(K)#((-1.)##N)*COS(2.*N*P(*(K-0.5)/MV)	
	CD(NH2N,NCL) =- R9# (CQS(L) +88 * (IN/8TEN/8R2) - C*VMC(L)/(2.+8)	
	CD (183, NCL) = CD (N83, NCL) + R 2* T6N *DN/3N2	. C 509
2 0 9	VMC1(L)=VMC1(L)+2.*FV(X)*((-1.)**N)*SIN(2.*N*FI*(K-0.5)/4V)	
	STOR (MI3H , NAL) =R9*T9N/3H2 -C *VMC1 (L)/ (2. +8)	
46	[F (N-1) 47, 47, 52	C 511
47	CODEC(() #54A/DX/2.	<u>C 512</u>
		C 5.14
		C 515
		C 516
A. 3	17 (22) 40-30-49 CO(NETAL)() - TEM 2003 TTM	C 517
	STOR (NH6H NAL) = T7M/AM3+TN	
	STUR (NEZ, NAL) = STOR (NBZ, NAL) - T74=GM/AMJ/C	Č 520
49	CD(NCL)=CD(NCL)=T5M=DM/AM4	<u>C 521</u>
50	LF (23) 32/30/31 Study (34) 132 (35730/081,04) / 20387798,0729	C 522
~ -		
207	UMC(L)=UMC(L)+2.+ FU(K)+((-1.)**N)*COS(2.*N=PI*(K-0.5)/4U)	
2 3 A	UNCI())=UNCI())+2,#FU(X)#((+),)##N)#STN(2,#N#P[#(X+0.5)/44))	
	STDR(NH7M, MAL)=UMC1(L)/(2.+A)	· · ·
51	CD(Nd2,NCL)=CD(NB2,NCL)+R7*T5N#DM/AM2	C 524
52	SK1=E1#8N4 SK2=C21#1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	C 525
		C 325

	· · · · · · · · · · · · · · · · · · ·	
	SKJ=(SJ*4M2+R5*8N2)*4M	: 527
	CK ISH (SAM 2H 980NS	- 529
		529
	CK74-H174647	2 530
	CK4=C4+AH+6H-2	: 531
	CK5=R2=BN2#JNA (: 532
		533
	$CD(NHAH,NCL) \simeq CD(NHAM,NCL) - KMN = O(1M)$	534
	STOR (NH54 -NAL) = STOR (NH5M - NAL) - PANN = CONM	535
	IF (Z2) \$3,33,54	536
33	CD(NH3N,NCL) = CD(NH3N,NCL) - (TN + H' + KNN + AM/C + L' N)	537
	CD(NH7N+NCL) = CD(NH7M+NCL) - (TN+AM+KMN+BN/C+LMN)+CNM	5 3 9
	STCR (NH2N + NAL) = STOR (NH2N + NAL) - AM/C #RMN + TN #8N #CMN	
	STUR (NHSM +NAL) = STOR (NHSM + NAL) + (TN + AM + P 4N - AN/ C + OMN) + ONM	540
54	CD(N, NCL) = CJ(N, NCL) - KMN	5 4 1
	STOR (NHN, NAL) = STOR (NHN, NAL) + OMN	5 6 4 7
	IF (23) 37, 33, 56	5.17
55	$CO(N \cdot NCL) = CO(N \cdot NCL) + SK1 * K VN$	
	CD(NHN+NCL)=CD(NHN+NC))+SK2#KMN+SK3#1 4N	2,44
		. 343
		240
	STER (NHN, NA) = STER (NHN, NAI) + SKI + ONN	. 24/
		540
56		- 549
		220
		531
-		222
57		: 224
		554
		555
-		556
a la	ERRET LAN TONOT TAX IDDOCT TAX TONOCT TAX TONCAL TAX TIMODA TAX	557
20	1616 324 1374 1374 1374 1374 1374 1274 1274 1274 1374 1274 1374 1274 1274 1274 1274 1274 1274 1274 12	558
	1 1 1 1 2 3 4 1 1 3 4 2 1 1 2 4 1 3 1 1 2 1 1 2 4 1 3 4 2 1 1 2 4 1 3 4 1 2 1 1 2 4 1 3 2 1 1 2 4 1 3 2 1 1 2 4	559
	20 1 1 2 X 1 2 2 X 1 2 X 1 3 2 X 1 7 X X 3 4 F 10 8 2 3 X 1 8 X X 1 1 2 X 1 3 X 1 1 2 X 1 4 X X X 2 X	560
		: 561
-		: 562
	- URMA1 (/ JUA ' NH= ' + [5+5X+'N =' + [5+5X, 'M = 1 + [5/)	: 563
- 0		: 564
	LUNA 10, 10, 373X, 1544, 13X, 1584, 13X, 15X4, 13X, 15Y4, 13X, 15A1, 12X	565
	41 301 113X 13X1 113X 13Y1 1/1X 8F16 8/8X 15A21 13X 1322 113X 13X21, C	566
	JUSA, STELLSX, TA2, L3X, TB2, L3X, TX2, L3X, TY2//LX, dF16, d/3X, TA C	: 567
	43',13X,183',13X,1XJ',13X,1YZ',13X,1XA',13X,18X',18X',18X',18A',13X',18A',13X',18A',13X',18A',13X',18A',13X',18A',18A',18A',18A',18A',18A',18A',18A	: 563
	5,11741/1741/17616.8)	569
51	FORMAT (5X,3113/5X,14J 1,5X,8F15,8/5X,18J1,5X,8F15,8)	570
	END	571
		•

SUBRULTINE ASLA. (NSI INSLISYAS, CD. OC, STORINS, JSILNINGT L	NST2)		Ċ
· · · · · · · · · · · · · · · · · · ·		(жже жеж	****
DUBLE PRECISION CHADE			3
CIMONISLESTING NASING JC NASINASINASINASINASINASINASINASIN	181.182	NH .NL	9
O THENSIDN COJ(4), COK(4)		-	0
00 3 J=1, NH4			Q.
		,	0
	,		2
			ŏ
NH41=NH4+1			ō
DO 2 IHAHALAHAB			Э
CO(1,1)=3TJR(1+J)			2
CONTINUE			2
CO(NS1, S) = 0			. ŭ
			ō
CD(N32,NH4J) = STOR(N82,J)			Ō
CD(483+1)=2L38(493+1)			2
			.0
			5
			·5
OC S N=1, NH			0
NHNANF+N			Q
			5
			ă
			õ
NH6N=NH6+N			0
			õ
			- X -
			ŏ
			õ
00 + j=1, +			õ
N(3+(1-1)=N(4+)4			2
			5
			š
			5
CD(INHI,N)=CO(INHN,NHN)			0
CD ([NH I * NHM) = - CD ([NHM * N)			2
CD(INHL,NH24) = -CD(INHN,NH3N)	,		2
CD(INFINE))=CD(INFNINEN)			ă
CD((MHN,MHN) = CDJ(1))			õ
CO((NHN),(HHZ)) = COU(4)			Э
CO(INHN+NH34)=-COJ(3)			2
			5
CD([NH2:NH4]]=CD([NHN:NH2N])			5
CD([Nh2, Nh6, N]) = -CD([NhN, Nh7N])			Ō
CD(INE2,NH7N) = CD(INHN,NH6N)			5
CD ([NEN +4H04]=-COK(S)			Š
CD(INHN, NH3N) = CDK(I)			5
COT(NOR(NOON)=COT(1))	,		ŏ
DO & JANSL			Ď
			0
00 5 I=L,NC			ő
CD([,NH8J)=STOR([,J)			0

C · NST .CH) Ξ บยลด (PLINSS 5. ac. STOR 15 NST2 211 AINA .213 C DUBLE PRECISION CH.JC EAL KJ.K4.K5 CMMON /JL1/ P.CO(4).C 1.J2,J3,J4.SCA.SCB.SC S7(4) CMMON/BL5/34/C.NB3.NC. i www 234 C .C3S(4),K3,K4,K5,88,883,984 SCC.SCD,S1(4),S2(4),S3(4),S 1X21 4(4) 121A 4) A2,A3, ,36(4) NH4.NH5.NH5.NH7.NH8.N81.N82.NH.NL STCR (NST1.NST2), L1 (NS), M1 (NS), C JC NH2 **CHN** CCAMBASION CJ(NS.J) OIMENSION CJ(NS.J) H(NSS) OO 1 [=1,NC NCJ=NC*(J-L) OO 1 [=1,NC CH(NCJ+L)=CJ(1.J) NCC=NC*NC CALL MINV (J.,NC, CALL MINV (J.,NC, CALL MINV (J.,C) OO 2 L=1.NC OC 2 J=1.NC CALL MINV (J.L)+C OC 2 J=1.NC CC 1.L)=C(1.L)+C OC 3.L] CC 1.L]=C(1.L)+C CC 1.L MENSION ան անտանին են երենները որողությունները որողությունները անտանին անտանին անտանին անտանին անտանին անտանին անտանին ΰč 78901234567 ట (NS+JS) NS.LN). 1 LH, NC, O, LI . MI . NSS. NS) 13 2 .L)+CH(NC*(J=1)+1)*CD(J,NC+L) 20 21 N=PI * 5N XN=K2*PN XN=K2*PN K2=CXN/P R1=EXP(X2*P<E) S1=EXP(Y2*PKE) S1=EXP(Y2*PKE) 223425 27 +N 21=1+2+1 30 31 274567890~2745 1444567890~2745 =NH7+N 1=1.N L=1,NL L)=OC(.1 IN,L)=OC L)/ER2 (N+L)=OC(A,L)/ER2 (NHN,L)=OC(NHN,L)/ER2 (NH3N,L)=OC(NH2N,L)/ER2 (NH3N,L)=OC(NH3N,L)/ER2 (NH4N,L)=OC(NH4N,L)/ER1 (NH5N,L)=OC(NH5N,L)/ER1 (NH5N,L)=OC(NH6N,L)/ES1 (NH7N,L)=OC(NH7N,L)/ES1 õč DC(NH4 DC(NH5 DC(NH6 DC(NH7 RETURN З END

				·
***	*****	****	************	*****
St ###	1970LTL1E 41NV (A.N.O.L.M.N. 1997234545444444455555555555555555555555555	53 • NS) • # # # # # # # # # # # # # # # #	******	***************************************
20	UBLE PRESISION A. DC. DABS. BI	GA.HOLD		Ē
0=	MENSIGA A(MSS), L(MS), M(MS)	5.)		1
NK			·	
NK NK	- 13 X-1,1			
<u> </u>	K)=K			Ē
K K	<i>ねるスキズ</i>	·		F
ខា	GARA(KK)			F
12				F
	2 [=K;N =[2+[•	F
19	(F(A05()(GA) - A05(A(())))	15.20.20		Ē
81	(UACS(3IJA)+0A8S(A([J])))))	2 . 2		F
L (K)=1			· F
Ċ	NTINUE ,			Ē
J= te	L(X) (J-X) 5.1.3			F
× i	=K-N			F
СС К 1	4		×	F
HC	LD=-A(XI)			Ē
ן ר ר	=KI-K+J KI)=A(JI)			·
<u> </u>	JI)=HOLD			F
I =	M(K)		•	F
1 I F	(1-K) = 3+3+6			E E
ŏ	7 J=LAN		• • • •	F
۲۱. زنی	= 1 P + 1			F
Ĥ	LD=-A(JK)	•		F
20	J[]=A(][] J[]=ACLD			r F
C C	NTINUE ARIGNI IN DIA			F
5-				F
29	LNT 27			F
00	12 (=1,))			F
11 1 H	= { [- K] [] ; [2 ; [] = NK + [•	Ē
A (IK)=A(IK)/(-BIGA)			F
6		· ·		F
· I X	= NK + [= = 4 (f <)			F
1	= [- N			E
50	- 15 J=1,74 - 15 J=1,74			
IF	(I-K) 13,15,13		-	F =
K.	「 」 - 「 ナ ス 」 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~	١	x	
÷.	[J]=HCLD=4(KJ)+4([J) NT[N]E			r F
×.	AK-N			Ē
00	17 J=1,24 〒KJ+K			. F
i i	(J-K) 13,17,16			Ę
· ĉ	KJ)=A(KJ)/3[GA NT[NUE			. e.
5-	CHUICA			Ē
ĉ	NTINUZ			· 5
K-	N 1 2 - 1 1	`		
				, j

		· · · · ·	
	· · · ·		
		-	
,	۲.		
- .	IF (1-K) 23,23,21		F 75
	JR = N * (1 - 1) DD 22 - 1 - N	· · ·	F 77
	JX = JO + J $HCLD = A(JK)$		F 79 F 80
	J1±JR+J A(JK)=-A(JI)		F 81 F 82
2	A(J1)=HOLD CONTINUE		F 83 F 84 E 95
	J=M(K) IF(J=K) 19,19,24 KI=K=K		F 86
	DD 25 1=1,N KJ=K1+N		F 88 F 89
	HOLD=A(KI) $JI=KI-K+J$	•	F 90 F 91
	A(KI)=-A(JI) A(JI)=H0LD		F 92 F 93
.5	GO TO 19		F 55 F 55 F 04
20	RETURN FORMAT (ZIDITHE MATRIX IS SINCH ART)		F 97
21	END		F 99
			·
		•	
		·	
		•	
		X	,
			 -
		. *.	
			1
	· · · · · · · · · · · · · · · · · · ·		•

SUBROLTINE DS2A (CD.DC.STUR.NS.JS.LN.NSTI.NST2) G DOUBLE PRECISION CH.DC 000 NJ4507890 COMPUTE DEFLECTIONS AND MOMENTS (OLD SERIES) Ğ REAL KMN. NK1 , MK2 , MK3 , MK4 , MK5 , MK5 , ML1 , ML2 , ML3 , ML4 , ML , K3 , K4 , K5 , MF , LM 0000 A3. A4. 181.82.83.84.5CA.SCB.SCC.SCD.51(4).52(4).53(4).54(4).55(4).50(4) 2 S7(4) COMHDN/9L5/NHC.N83.NC.JC.NH2.NH3.NH4.NH5.NH6.NH7.NH8.NB1.N32.NH CDMHON /EX_/ UC(24).VC(24).NGC.YA(400.24).NR.UH(9).VR(3).NP(10) DIMENSION CD(NS.JS). DC(NS.LN). STOK(NST1.NST2) DIMENSION P1(20). P2(20). P3(20). P4(20). P5(20). P6(20). P7(20 1P8(20). CC(20.20). SS(20.20) LT=MNH+10 DC 14 I=1.NJC U=UC(1) V=VC(1) DO 1 N=1.NH RNP2#RN#PI AN=RNF2/A EN=RNF2/A EN=RNF2/A EN=RNF2/A U=UN#U BU=BN#U .NH.NL 14 P6(20), P7(20). 15 16 15 19 ·222224567890123456789 BU=BN+L VK=AV*K3 3N=K2+BJ N=AVK+X Y=AVK *Y2 V=K4+3J+V U4 V=K++ U5V=K5+BJ-VN V4U=K4+X2+AV+AU V5U=K5+Y2=AV+AU CHUN=COSH(JJN) SHUN=SINH(JJN) P1(N)=CHUN=COS(U4V) P2(N)=SHJN+JIN(U4V) OT(N)=CHUN+COS(U5V) +++ IN(U5V) 01234 P2(N)=SHJN=JIN(U4V)
P3(N)=CHJN=CJS(U4V)
P3(N)=CHJN=CJS(U4V)
P5(N)=CJSH(V3N)=CDS(V4U)
P5(N)=CJSH(V3N)=SIN(V4U)
P5(N)=CJSH(V3N)=SIN(V4U)
P3(N)=CJNH(V3Y)=SIN(V5U)
CV=CDS(VA)
SV=SIN(VN)
D0 1 M=1,NH
RM=M
UM=RM=P1=U/4
CC(M,N)=CJS(UM)=CV
SS(M,N)=SIN(JM)=SV
D0 14 L=1,NL
LNW = NHC+(--1)=LT
C04=CCS(L)/4
UM=RM=P1=U/4
CC(NC,L)
D0 14 L=1,NL
LNU=LNE+CQ4=(V=E)==2=6.+5.*DB4)/24.
G0 T0 4
WL=WL+CQ4=(V=E)==2=2.+EB4)/24.
G0 T0 4
WL=WL+CQ4=(V=E)==2=2.+EB4)/24.
D0 13 K=1,3
LNM=LN&+MANHK
ML=2.*S1(K)=DC(NB2,L)/AA+2.*S3(K)=DC(NB3,L)/DB+12.*(T*U=2*S1(K))=JC(NC,L)/BB4
IF (ZE) 6,5.5
ML=ML+CQ4=(V=V-BB)/2.*S3(K)
G0 T0 7
ML=ML+CQ4=(V=V-BB/3.)/2.*S3(K)
ML=S1(K)=A2-S2(K)=K2(K) 4444444 512345 *იიიიიიიიიიიიიი ი* 57 5566666 65 66 67 **S**1 6690 772 73 GU = 10 (ML=ML + CO4 = (V × V − BB/3;) /2. * 53 (K) MK1=S1(K) *42 - S2(K) *K4-S3(K) MK2=S1(K) *4; + S2(K) *K3

0 0 000

1

234

5

67

MKJ=51(K)+J2(K)*X2*K4-S3(K)*X2**2*A2 MK4=(52(K)*K3+S3(K)*X2*A1)*X2 MLJ=51(K)*31+52(K)*K3 MLJ=51(K)*31-52(K)*K3 MLJ=51(K)+52(K)*Y2*K5-53(K)*Y2**2*S2 ML4=(52(K)*K3-53(K)*Y2*S1)*Y2 DD 12 N=1 NM RNP2=RN*P1 AN=RNF2/A DN=RNF2/A DN=RNF2/A BN4=BN*VL(-,2) CV1=S1N(BV1) ELS=BN*VL(-,4)/2. S8B=51N(SL)/SLS DD 10 N=1.NM RM=M AM=2=P-1 75 75 77 79 1089 1109 1111 1123 114 115 З - MK5 * LMN) * S S (M NH3N=NH3+N NH4N=NH4+N NHGH=NEG+N NHGN=NHG+N NH7N=NH7+N TGNH=CGS(L)*CV1*SBB/2./BN2*CDS(DN*V) IF {K.GT.1} GD TO 11 WL=TGNB/BN2+JC(N+L)*P1(N)+DC(NHN+L)*P2(N)+DC(NH2N+L)*P3(N)+DC(NH3N 1.L)*P4(N)+JC(NH4N+L)*P5(N)+DC(NH5N+L)*P6(N)+DC(NH6N+L)*P7(N)+DC(NH ML=HL+AN2*((-MK3*P5(N)-MK4*P6(N))*DC(NH4N+L)+(MK4*P5(N)-MK3*P6(N)) 1*DC(NH5N,L)+(-ML3*P7(N)+ML4*P8(N))*DC(NH6N+L)+(-ML4*D7(N)-MK3*P6(N)) 1*DC(NH7N,_) ML=HL+BN2*((MK1*P1(N)-MK2*P2(N))*DC(N+L)+(MK2*P1(N)+MK1*P2(N))*DC(1NHN+L)+(ML1*P3(N)-ML2*P4(N))*DC(NH2N+L)+(ML2*P3(N)+ML1*P4(N))*DC(N 2H3N+L))-T6N3*S3(K) CDNTINUE YA(LNM+I)=M_ CONTINUE YA(LNM+I)=M_ END 1337890 133744123 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

***** ****	***	**	**	***	. * *	***				. *	**	*	* * *		* *	k #	* 1	* *		1 1 94 - 18		* *	* *		K.#	* *		K 34	**	* 1		= * :		
SUBROUTIN	ر E	42	A # #	(ċż	2, 3	ċ.	ST	OF	<	S S	.J	S	<u>・</u> ビ		115	T	1 .	N	ST	2) * ** :		* *		r = :	* *		= #		* 1		* 4	H ***	**
DOUBLE PR	EC1 N.K1	SI:	0N K2	, M.H	3		(4,	. МК	< 5	. M	ĸs	, 1	ML	. ,	ML	_ 2	• •	41_	3,	M	_4	, M	•	ĸ.	3.	X 4	•••	<5	• •	F	• L	м	I I J	
COMMON A.	ΡΙ,	SA	•c	, s .	тъ		:4.		A	4 A	з,	Α.	44,	z	. s	ΞY	AS	5.	c 2		:3	. s	Τ.	s	F • '	τ.	т	Ξ,	MN	н			H	
COMMON ZE	23/	B	• 0	X, C 0 (4)Y .	DX	Y.			, D	1.	22	2.5	11	- C 9 P	3.	• F 95	4.	VL - E	(4 194	1	5) X 2	; Z	2 2	. A	1,		2,	٨J		44	•	н	
E1.32.33.	ē.	sc	A .	sca	3. S	sce		sci	5.5	51	(4)	. s.	. (4)		S3	3(4)	• 5	54	(4	j.	s:	Ŝ(-	4)	• 5	56	(4	1	•			
COMMON/8L) 5/ 1	140		83,		:	ю.		12	. N	нз		NH		14+	15	. 1	H	6,	N	47	• N	H 8	3.1	NB	1.	N	32	• N	H	• N	L		
COMMON /2	xzł	U.	٢,	24)	• V	i ci	24),		ŞÇ	• Y	Å.	(4)	99	*2 NS	24)	N N	R, ST	0	? ('	9)	, v	R	(3),	N	> (10	>			н	
NEISNENION	ं ५ ५	12	0)	ر دن ان F	>i c	2) (2	ò	131	P	ĩí	12	0),	è	12	2 c	20	5)	,	P	із	(2	0)	+	P	14	-C	20).	F	> 1	5	н	
(20), P15 Litempheio	(2)	• • •	S	C (2	20.	20	. ((: \$	(2	0.	2	0)																				Ĥ	
DD 8 1=1.	NJC																			•													Н	
U=UC(I) V=VC(I)	•																																Ĥ	
DD 1 N=1.	нч	·																															н	
RN=11 R1122=80*2	,	· •										. 1																					Ĥ	
AN=RNF2/A	•																																H	
BNERNF2/B Vnebnøv					•								,							•													H	
AU=AN+L																												•					Н	
BUEBNEU. Aveanev																																	H	
AVK=AV+K3		•																															Ц	
U 3N=K 3 ¥ 3J V 3N= A V K *X	z							`																									н	
VEYEAVKYY	2																																н	
USV=K5+3J	+v 4 +v 4					· ·																											н	
V4U=K4 *X2	TAY	+ 4	U U																		. .										•		H.	-
CHUN=CCSH	ີເມີມ	IN)	U																														H	
SHUN=SINH Daliji=swi	(13	IN J		A 171																													R	
P10(N)=CH	0.44	51	N	Ū4 (22	·																											н	
P11(N)=3H P12(N)=CH			S()	U5 \	/) /)																												ĥ	
P13(N)=51	NHI	хз	N)	÷č;	5 g	V4	U)				,																						н	
P14(N)=CJ P15(N)=S1	SH(V2: V2	N) Y)	* 51 *CC	[N(]5(+U) 5U)															۰.											н	
PIC(N)=CO	SHI	νž	ŶĴ	*51	N (VS	ŝŪĵ	Ι.																									н	
SV#SIN(VN	5										•												•										н	
DC 1 M=1,	NH.							• •																			,						H.	
UM=RM*P1=	UŻA										-																						н	
5C(X,N)=5 (S(N,N)=6	1.1(UM.)*(•							, .																				H	
D0 8 L=1,	NE	07.	, -								•											'											н	
LN% = NHC WL=DC(NA)	+ [· = 1)*! / ^ ·	LT +DC		18.7	1) #			{ ۵	*:	* 34	- 0		N	82	2.	」)	*	12	9+	50	:0	NC	• L	.)	s {	v /	9) *	*	н	
3								•••																									н	
DC 7 K=1. LNM=LNw+4	3 NH#	ĸ																															н	
ML=6.0=51	(2)	₩Ų.	/ A -	A3 *	DC	()	183	3 . L	- > -	۴6	• *	s.	3 ()	1	* V	17	85	33	*:		(N	ς,	(н	
MK2=S1(K)	*11	+5	2()	K) 7	- KC	3	531		,					_																			Ë	
MK3=S1(K)	+34	IK.)*.	X2 1	××4	1-5	53(K) *) • Y 7	x2	**	2	* 42	2																`			Ĥ	
ML1=31(K)	¥32	+ S	2()	K) *	××	5 - 5	530	κ))	-																							ΪI	
ML2=S1(K) ML3=S1(K)	*31	- S.	2()	K) = Y 2 =	к К.З К К Я	3-9	:3((K))*'	Y 2	**	2	* 3 2	2																			н	
ML4= (52 (K)=3	- E	ś3	(k)) # Y	2	Ξġ,		KY2	2		-		-											•								ΗH	
DO G. NE1, RNEH	ын		7																														н	
RNP2=RN+P	1																																ΗH	
ANARNEZZA														•																			н	
AN2=AN+AN																																	E	
BN2#3N#BN						۰.																												

c c
BN4=BN2*JN2 BV1=BN*V_(L.2) CV1=CCS(3V1) SV1=SIN(JV1) BL3=BN*V_(L,4)/2. SB3=SIN(3L3)/3LS DC-4 W=1,NH DW=M DC 4 M=1, NH RM=M AM=RM*PI/A AM2=AM*AM AV4=AA2*AM2 AU1=AV*VL(L,1) CU1=CCS(AU1) SU1=SIN(AU1) G3MN=SU1*CV: Q4MN=CCS(AU1)*SV1 RMN=DX*AA4+SCA*AM2*BN2+SCB*DN4 SMN=(SCC*AM2+SCD*BN2)*AN*BN ALR=AV*VL(L,3)/2. SAA=SIN(ALA)/ALR RS=1./(RM*22-SMN**2)*SAA*SBB*CU(L) RSR=RS*RMN RSS=RS*SMN RSR=RS+RMN RSS=RS*RMN PMN=Q3MN#RS3+04MN#RSS OMN=J4MN#RS3+03MN#RSS IF (N.GT.1) GD TC 2 T7MB=CG(L)#JJI#SAA/2./DX/AM2#SIN(AM#U) ML=ML-I7MB#J1(K) IF (K.GT.1) GD TC 3 WL=WL4T74B/4M2 IF (K.GT.1) GC TO 3 WL=WL4FMN#S5(M.N)+CMN#CS(M.N) MK5=AM2#S1(K)+BN2#S3(K) MK6=BN#A4#S2(K) MK6=BN#A4#S2(K) ML=ML-(MK5#PMN+MK6#OMN)#SC(M.N)-(MKD#PMN+MK5#OMN)#CS(M.N) CONTINUE IMN#NH+N NHN=NH+N NH2N=NH2+N NH3N=NH3+N NHISNENHAFYN NHISNENHAFYN NHISNENHAFYN TBNGECOS(L)#SVI#SBB/2*/BN2#SIN(BN#V) IF (K*GT*1) GD TD 5 *LEWL+JDC(N,L)#PJO(NHN*L)#PIO(N)+DC(NH2N*L)#PII(N)+DC(NH3N*L)# IPI2(N)+JC(NH4N*L)#PI3(N)+DC(NH5N*L)#PIA(N)+DC(NH6N*L)#PIS(N)+DC(NH ZTN*L)#PIG(4)+TBNB/BN2 MLEML+BN2#((HK1#P9(N)-HK2#PIC(N))#DC(NH2N*L)+(HK2#P9(N)+HK1*PIO(N))#D IC(NHN*L)+(M_1#P1(N)-H_2#PI2(N))#DC(NH2N*L)+(HL2#PI1(N)+HL1#PI2(N) 2)#DC(NH3*L))-TBNB#S3(X) MLEML+AN2*((-HK3*PI3(N)-HK4*PI4(N))#DC(NH4N*L)+(HK4*PI3(N)-HK3*PI4 I(N))#DC(NH5*L)+(-HL3*PI5(N)+HL4*PI6(N))#DC(NH6N*L)+(-HL4*PI5(N)-HK 2L#PIC(N))#DC(NH7N*L)) CONTINUE YA(LNM*I)=A_+YA(LNM*I) RETURN END 15N=NH5+N

3

З

4

5

6

78

106

109

111 112

121

122 HH

H

TITII

IIIIII

0 0 000

*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2000 200 200 200 200 200 200 200 200 20		10002 n 10002 n	** ** D
HHUUUUUVVV 1111111110 1000 1000 1000 1000		DOINSI TO O	ЕА ОМ ОМ 1.	** US **
		NHEENSPMI 1	CD L MDD0 H MD02 L	24 20 25 25
	R R R F + * * V S V V 4 5 4 5 C 5 H	LUSS SOL R	MA K NNN S	キュー
				I I D
10H02020202	- DAB BUXYJJANIID	LUZZOZODIJI		* N * R
(SN(()())))))))))))))))))))))))))))))))				* E * C
・ イイノノノノノノノイススイオイオイスススオイオイ へいしし インジスタンシン しょうしん シンシン				د: د د
- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>			s s	* 5 * 5
	ムインショ	N- 52CO	F M ASPC	*2*1 -
************	ב ככ	·CS020		
				at a at a N
13111111111111111111111111111111111111		E349,),F		((
	•	3 • • • • • • • • • • • • • • • • • • • •	5 - C4	H
		Z 250		* * * *
- <		CV (S(Z • Z • • 5	*) *) • 0
			4 4 4 4 4 5	* *
		4 N	× • • • • • •	***
		N) S NA		# 2 5 # 2
			N S S S S S S S S S S S S S S S S S S S	
•	· · ·	2 V D V (
		N DUCA	P. A031	* 5
	•	H	E K 31,4	# 4 # 1
•	•			
	-	N (T	- S - M - A - A - A - A - A - A - A - A - A - A	* * 5 *
•		H400 H	1 4 • K S	* L *
		4014 20	1	¥ バ ギ
-			(() , , , , , , , , , , , , , , , , , , ,	*1
				# 4 V 5 # 3
-	•			57
) 1 1 • •	· · · · · · · · · · · · · · · · · · ·	1
		2	S I SI	*
•	•	TZZD HO		# 1 # 1
	-			57
				2
	-	In >0 OU	5 J U445	*
-	- ·	7())) 4 3 4	#: *:
	-	, 1 9 1 2	• • • 5× (* 4 * 4
	-	· · · · · · · · · · · · · · · · · · ·	در 57 2,	1.4
-		19 V 42	ZY -	*
	•	· R · () O	2 2323	*
	. <i>.</i>		3 - F - 5 (R 4
		B1 3) 0)	, K , T , 1	. *
		•	4	*
	-	287 С С С С С	, × T: A2	7 7 K 2
5		32 9 (9 7 1 5	< 5 2 • 2 •	. * . *
•		1 1 5 (M	* *
		20 2 2	M N 34	*
N.		H> 0 0	F .	* 1 * 1
	•	1 •) ()	• L A 2	¥ 1
		•	_ ?~I	. # # #
				*
000	ຎຎຒຎຎຎຎຎຎຎຎຎຎຎຎ ຎ	000 0	00000000	• • • • • • •
			-	. #
445	aavaavaavaannennennennen			**
£90	1234567890123456769	456	1557890	* * # # 2 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	•		
		G	51
		Ğ	52
	CU = CCS(UN)		
	SS(M,N) = 3J + SV and the second s		
. 1	SC(M,N) = 3J * CV / CS(M,N) = 2J * CV /		
•		S,	55
	LNR = NHC+(L-1)*LT+(J+6)*MNH		
		G	57
	IF (.NCT (I. E 0 . 1 . 0 R . 1 . E 0 . 9)) GO TO 20	G	66
	ML=2, #51(K)#DC(N82,L)/AA+2, #53(K)#DC(N85,L)/CD+12, #C(N0+-2+0)(K) + 1]##2#53(K))#DC(N82,L)/H84+C04#(V*V+58)/2, #S3(K)	•	
	1F (ZĒ) 0,3,5	G	66
	MLHHML+CQ4+(V#V-BB)/2;#S3(K) GD TD 7	Ğ	70
	ML=AL+C34*(V#V-BB/3.)/2.#S3(K)	G	71
	MK1=51(K) *A2+52(K) *K4-33(K)	Ğ	73
	MK3=31(K) + 22(K) + X2 + K4 - S3(K) + X2 + 2 + 42	Ğ	74
	MK 4= (\$2(K)=(3+53(K)=x2=A1)=x2	G	75
	ML 1=51 (K) +32+52 (K) +K5=53 (K) M: 2=51 (K) =31 = 52 (K) +K3=	Ğ	77
	ML3=51(K)-52(K)+Y2=K5=53(K)+Y2==2=82	Ğ	78
	$ML_{4=}(S2(K) \times (3-S3(K) \times Y2 \times 3)) \times Y2$	<u> </u>	14
20	2C = -24 + (5+(5+(5+(5+(5+(5+(5+(5+(5+(5+(5+(5+(5+(+	
	-0K2 = 54(K) + 44 + 55(K) + 42 - 56(K) + K4 - 57(K)		
	0K3 = X2#(S5(K)#K3+S6(K)#X2 = #K1=27(K)#K2#S3+ 0K4 = S4(K1+y2#S5(K)#K4=S6(K)#X2#S7#X2#A2=S7(K)#X2#A3+A4		
	QL1 = S4(K) + 33 + S5(K) + 31 - S6(K) = K3		
	QL2 = S4(K) = 94 - S5(K) = 82 - S6(K) = K5 + S7(K)		
	GL4 = 54(K) - Y2 + 55(K) + K5 - 56(K) + Y2 + Y2 + 52 + 57(K) + Y2 + 32 + 84	~	00
	DD 12 N=1.14	Ğ	81
		Ğ	82
	ANERNEZZA	G	83
		Ğ	85
	BN2=BN++2	୍ତ	86
	AN3 = AN3*AN BN3 = AN3*AN		
		ğ	57
	DV1=3N*Y(_,2)	Ğ	85
		Ğ	90
	BLS=BN * VL(L,4)/2.	S S	91
	SBB=SIN(dLS)/BLS	Ŭ	~~
		Ğ	93
		Ğ	95
	A M 2 = X + 2 + X + 1 - X + 1 - X + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	G	96
	AM&=AN2+AM2	Ğ	98
	AU3=AM4 VL (L, 1) CV3=CFS(AU1)	Ğ	ė ė
	SUI = SIN (AUI)		
	$O_{AMN} = CUI + JVI$	G	1 02
	HMN=DX#AM4+5CA#AM2#BN2+SCB#BN4 SMN=(SCC#AV2+SCB#RN2)#AM#BN	G	103
	ALR=AM+VL(_,3)/2.	G	104
	SAAFSIN(ALR)/ALR ESE1./(DUNER)-SMNER2)ESAAESBRECO(L)	Ğ	106
	RSR#RS#RHN	ی م	107
	RSS=RS*SHN	3	
	NMN = UIMNERSR-UZMNERSS		
	PMN = C3MN+RSR+Q4MN+RSS		
	$OMN \approx G4MN RSR + O3MN RSS$		
	1F (N.GT.1) GU TO S	G	111
	T.SMJ=CC(L)+:JI+SAA/2./DX/AM		

7

(1.E0.1.0R.1.E0.9)) 1441(K)/AM#COS(UM) 545#54(K)#SIN(UM) (1.E0.1.0R.1.E0.9)) 11(()+BN2#S3(K) 155/(K) GD TD-21 21 = (*NDT*([*E4*1*07*1*E0*9)) GD TD 22 5=*M2*31(4)+BN2*53(K) 6=3N+A4*52(K) =ML-(MK5*4MN-MK6*LMN)*CC(M*N)+(MK6*KMN-MK5*LMN)*SS(M*N) 5 = AH*(A42*54(K)+BN2*S6(K)) 6 = BN*(A42*55(K)+BN2*S7(K)) =QL+(3K3*KMN-OK6*LMN)*SC(M*N)+(OK6*KMN-OK5*LMN)*CS(M*N) N=NH+N 2N=NH+N ē G 119 G 120 22 Or OK6 1 22 1 23 1 24 1 25 1 26 1 27 1 28 10 00000000 2N=NH2+N 3N=NH3+N N=NH4+N N=NHS+N 7N=NH7+N N3=CCS[L (.NGT.(7+N S(L) *CV1 *SBB/2./BN T.(1.5G.1.0R.1.60.9)) GO TO 23 N2*((-MK3 *P5(N)-MK4* P6(N))*DC(NH4N.L)+(MK4 N-: 1+(-ML3*P7(N)+ML4*P8(N))*DC(NH6N.L)+(-M 134 135 136 137 138 139 P5(N)-MK3*P6(N)) 4*P7(N)-ML3*P8(N 0000000 11 *DC(NH5N.L)))*DC(NH7N. $1(N) - MK2 = P2(N) + DC(N \cdot L) + (MK2 = P1(N) + MK1 = P2(N)) = DC(N - ML2 = P3(N) + ML1 = P4(N)) = DC(N)$ ML=ML+BN2+((MK NHN,L)+(HL1+P3 (H3N,L))-T613+S (N)-ML2*P (3(K)/9N*C 2H3N. N) 23 QL GL+AN3 123 ν́мJ * S1 N (VN] (OK1*P 9(N)-OK2*P10(N))*DC(N,L)+ (OK2*P 9(N)+OK1*P10(N))*DC(NHN,L)+ (QL1*P11(N)-CL2*P12(N))*DC(NH2N,L)+ (QL2*P11(N)+QL1*P12(N))*DC(NH3N,L)) 12 Q1. CL+3:13+ (= 2 3 (QL2*PI1(N)+QL1++12....) = QL (1) YA(LNR,10) == ML (2) = ML (2) = ML (2) = (YA(LNR,1)+YA(LNR,9)+2.*(2.*(YA(LNR,2)+YA(LNR,4)+) + YA(LNR,8))+YA(LNR,3)+YA(LNR,5)+YA(LNR,7)))*A/12. (LNR,10)+ML LNR, I) = (1.EQ.1) (LNR,11) (LNR,12) (LNR,G) R+6 +YA CONTIN RETURN END 14 G 144 G 145-

199

с :

2134567 MK6.ML1.ML2.ML3.ML 4 нн TIT н 11 12 13 14 TTT ġс, 3 I=1 UF(I) æ DO 1 N=1 . NH 800-NM4507800-NM5490 00 1 N RITEN RNP2=RN#PI AN=RNF2/A DN=RNF2/3 VN=3N#V AU=AN#U в BN*U ANSV VXXX 3 FI ... *3J CDSH(JJN) CDSH(JJN) CDSH(JJN) CDSH(V3N) CDSH(V3N) CDSH(V3Y) CDS(J4V) CDS(J4V) CDS(J4V) CDS(J4V) CDS(V4U) 1310) SHUN=SI CHVN = SHVN SHVY CU4 SU4 CU5 SU5 σσσσσσσσσ CCS5544554455 CCS5544554455 CS5554455 CS5554455 CS5554455 ********* 5478 5478 5478 5478 5475 p P Ρ 45 40 47 49 cs IIIII ċυ z CESIUM

 $\begin{aligned} & \text{SU} = \text{SIN}(J4) \\ & \text{CC}(M,N) = \text{CJ} * \text{CV} \\ & \text{SS}(M,N) = \text{JJ} * \text{SV} \\ & \text{SC}(M,N) = \text{JJ} * \text{SV} \\ & \text{SC}(M,N) = \text{CJ} * \text{SV} \\ & \text{DO} & \text{SL}=1, NL \\ & \text{LNR} = \text{NHC} + (L-1) * LT + (J+6) * MNH \\ & \text{K} = 4 \\ & \text{IF} & (-NCT, (I, EG, I, OR, I, EO, 9)) & \text{GU} & \text{TD} 20 \\ & \text{ML}=0, OTSI(K) * U/AA3 * DC(NR3, L) + (6, *S3(K)) * V/BB3 * DC((NC, L)) \\ & \text{MK} 1 = \text{SI}(K) * 4J + S2(K) * K4 - S3(K) \\ & \text{MK} 2 = \text{SI}(K) * 4J + S2(K) * K4 - S3(K) \\ & \text{MK} 2 = \text{SI}(K) + 3J + S2(K) * K3 \\ & \text{MK} 4 = (S2(K) * (3 + S3(K) * X2 * 4 + S3(K)) * X2 * 2 * 42 \\ & \text{ML} 1 = \text{SI}(K) = 3J + S2(K) * K5 - S3(K) \\ & \text{ML} 2 = \text{SI}(K) = 3J + S2(K) * K5 - S3(K) \\ & \text{ML} 2 = \text{SI}(K) = 3J + S2(K) * K5 - S3(K) \\ & \text{ML} 2 = \text{SI}(K) = 3J + S2(K) * K3 - S5(K) * 14 - S6(K) * K3 \\ & \text{GK2} = 34(K) * 44 + S5(K) * A2 - 56(K) * K4 - S7(K) \\ & \text{GK3} = \\ & \text{A2} * (S5(K) * K3 + S6(K) * K2 - S7(K) \\ & \text{GK3} = \\ & \text{A2} * (S5(K) * K3 + S6(K) * K3 - S7(K) \\ & \text{GK3} = \\ & \text{A2} * (S5(K) * K3 + S6(K) * K3 - S7(K) \\ & \text{GL1} = 34(K) * 23 + S5(K) * 81 - S6(K) * K3 \\ & \text{GL1} = 34(K) * 23 + S5(K) * 81 - S6(K) * K3 \\ & \text{GL1} = 54(K) * 23 + S5(K) * 81 - S6(K) * K3 \\ & \text{GL1} = 54(K) * 23 + S5(K) * 82 - S6(K) * K3 + S7(K) \\ & \text{GL3} = \\ & \text{Y2} * (S5(K) * K3 - S6(K) * Y2 * 2 * 2 + S7(K) * Y2 = Y2 * B3) \\ & \text{GL4} = 54(K) - Y2 * S5(K) * 82 - S6(K) * Y2 * 2 * 2 + S7(K) * Y2 = Y2 * B3) \\ & \text{GL4} = 54(K) - Y2 * 55(K) * 83 - S6(K) * Y2 * 2 * 2 + S7(K) * Y2 = Y2 * B3) \\ & \text{GL4} = 54(K) - Y2 * 55(K) * 85 - S6(K) * Y2 * 2 * 2 + S7(K) * Y2 * 3 * 3 + 3 \\ & \text{DO} = 6 \quad N = 1, N \\ & \text{RNP2} \\ & \text{RNP2} = \text{RN} = \text{I} \end{aligned}$ 52 58 59 60 TITITITI 0123456 666666 20 67890122 7777 LILI RN=N RNP2=RN=PI RNP2=RN=PI AN=RNF2/3 AN2=RNF2/3 AN2=AN=AN BN2=BN=BN AN2 = AN2=AN BN3 = EN2=3N BN3 = EN2=3N BN4=BN2=3N BN4=BN2=3N BN4=BN2=3N SV1=EN=V SV1=SIN(BV1) BLS=BN=VL(L,4)/2. SBB=SIN(BLS)/BLS VN = EN=V DO 4 M=I.NH RM=M AM=RM=PI/A н 74 75 76 77 79 III HHH 80 ITITITI 81 82 KM=M AM=RM#PI/A AM2=A**AM AM2=A**AM AM2=A**AM AM2=A**AM AM2=A**AM AM2=A**AM AM2=A**A**AM AM2=A**A**AM2 AU1=A***V((,1) CU1=CCS(AU1) SU1 = SIN (AU1) OIMM = CU1*3V1 RMN=CU1*3V1 CMN=CU1*3V1 CMN=CU1*3V1 CMN=CC**A***CO1*3V2 SAA=SIN(ALR)/ALR SSA=S**SMN KMN = CIMN*R2-SHN**2)*SAA*SBB*CO(L) RSS=RS*RMN RSS=RS*RMN RSS=RS*RMN KMN = CIMN*RSR-O2MN*RSS LMN = CIMN*RSR-O4MN*RSS DMN = CIMN*RSR-O4MN*RSR DMN = CIMN*RSR-O4MN*RSR DMN = CIMN*RSR-O4MN*RSR DMN = CIMN*RSR-O4MN*RSR DMN = CIMN*RSR DMN = C AMERMAPIZA 83 84 95 86 99123456 IIIIII QÇ н 2 1 2 107 HH

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+GKS#QMN) C (M,N) + (CN6 1 10 1 1 1 1 12 1 13 1 14 1 15 1 16 TTTTTTT 3N=NH3+N 4N=NH4+ N H4N=NH4+N H5N=NH5+N H5N=NH5+N H7N=NH7+N 8N3=CGS(L)#5V1# F (,NGT.(l)#5V1# L=ML+BN2*((4K1# (1AHN,L)+(M_1*P) *25(NH3N)))=78 ≠ 5V1 *****S88/2) GD TO 23 10(N))*JC(N,L 2(N))*DC(NH2N *SIN(VN) *P14(N))*DC(N (N))*D H 122 H 123 5 UNE3N 125 126 127 ML=ML+AN2*(((N))*2C(AH5A L3*P16(N))*3 TIT DC (NH4N (N)) + DC (NH6N, L) + (-ML 4= 215(N) -M 6(N))#3 6L+AN3# JC(NH4N.L N) +DC(NH5N.L P B(N) +DC(NH5N.L -JLJ*P B(N) +DC(NH7N.L) (JK2*P 1(N)+OK1*P 2(N))*DC(NH7N.L) (OL1*P J(N)+OK1*P 2(N))*DC(NH7N.L)+ (OL2*P J(N)+OL1*P 4(N))*DC(NH2N.L)+ (OL2*P J(N)+CL1*P 4(N))*DC(NH2N.L)+ (OL2*P J(N)+CL1*P 4(N))*DC(NH3N.L)) (A(LNR.1]) = JL +YA(LNR,10) F (1.*N5.9) GO TO 8 A(LNR.11) = ML+YA(LNR.11) A(LNR.11) = ML+YA(LNR.11) A(LNR.0) + YA(LNR.1)+YA(LNR.9)+2.** A(LNR.6) + YA(LNR.8))+YA(LNP.7) +YA(LNR.10)+ML ID 6{N})*DC(NH4N+L}+ 6{N}}*DC(NH5N+L}+ B{N}}*DC(NH5N+L}+ B{N}}*DC(NH6N+L}+ B{N}}*DC(NH7N+L})-TSNB*S7{K} 23 QL 3 7 Ĺ aL 1 2.#(YA(LNR:2) LNR:5)+YA(LNR LNR.2)+YA(L YA(LNR.7))) CONTIN RETURN END 8 H 132 H 133-

202

• • •		•	:	20000			A1 0-		5: 560.6519: 1: -1./61/:	4: 12.77545	3: 0 86223	9: 14.0260:	.:6414*1- :9	:[;[]	N: 0, 10551.	0: -1+36.14:	
	•	•		1111AL LU/ 100.00000 100.000000 100.000000		•	100-001	-46.61	9: 539.460 0: -1.530	835-01-3855	1.24/	05 1 0*640	679-1- :1	9: -6+0U	0: 0.250	c: _1+110	• • • •
				9		3740	QA	- 23 31 - 23 31	554.930 6.511	15.3431	0.429	15.421	4.4.14	-5, 116	: -0.520	: -1.530	•
			, •	DTH UF LU 6. 00000 6. 00000 6. 00000 6. 00000		740 -1. 12 12	0111 0F LO	0.0	537.54423	6.1190	0.7007	13:6693	6-6484	5 - 1 566	-1.3420	-0-2004	* * * * * *
			150401.2	LULEA L	ALLY WEAK	E-1- 0E	N DHO	8 23. 13 16. 50	4.0256:	5.0343:	0.70691	5.4000:	3.6599:	-21.2059:	-0.3685:		
AII NUMREN AAFF LKPUT DATA	CF SLAD CF SLAD 26 SLAD 27 SLAD 22 00 11.40 11.40 11.42 11.22		JING SYSTEM	WIDTH 1F LUAD 2.97000 7.97000 7.97000 7.97000	LY SUPFORTED UN TWO E	10P F 10RE -1. J. 4.0000 HIS -1. J.	#10111 JE LUAD 7.07000	66 7 7 50 -46.67 46.61	EFLECTTON 622.2480: 471.2402: 4 LLEL TO X-AXIS (11X) -1.1145: 0.9574:		1 NG NUMENT MAY 0. 2451: 0.2407:	ПРАС МСИСИТ И. 11.4761: 8+1337:	.[PAL MCMLNT M2 -1.1713: 0.9493:	ПРАС ВІНССТІЛИ -3.04161 -1.92081	14114 [14 X-AX15 0.22J1: -0.0221:	14 11 14 Y - AXIS -1.1956: -0.4342:	la [1] [N U-AXIS 1 4 1 1 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4
۰. ۲.	11411 - 21010 11415 - 21411 2861 - 21411 2861 - 21411 2861 - 21411 2811 - 214111 2811 - 2141111 2811 - 214111 2811 - 214111 2811 - 214111 2811 - 2141111 2811 - 2141111 2811 - 2141111 2811 - 2141111 2811 - 21411111 2811 - 21411111111111111111111111111111111	07 07 07 07 07 07 07	LUAI 1.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	14-0000	1 15 CLASTICALI 11 15 FLEXU2ALI	7115 UF N.A. F AD THICKHE 33 = 7 CAGES TTUH GAGES	17	23.33	0 26: 607.0251: Hohent Pana 87: 7.7665	1065-11 - 56F	14151 1.2372:	11,950,11 : Pa	11111 11111 11111 11111 111111 111111 1111	:2007*91- :108 94 Bd	13 19: -0.6342	110: -1.1291	
	. •		Vil giv giv		נוים ארי גוים ארי	2200			. 748.J 	. Ja . 4 a	f0.1 :	1 p.il. :	: J.S. 40	-44-9	:5.6- :	: -3.24	*
•	``````````````````````````````````````			J1 7,J 23,J2999 46,66899		·	10		607.0251 7.7766	11.5901	1.2372	11.9563	1-4104	-14.4002		1671-1-	• • • • • • • •
· .	· · ·	-		Ц З	,		VSC	2 46.67	622 - 24 8 C :	:[614.11	0,0354:	11.4761:	-1.1713:	-].8416:	:1622.0	-1.1956:	
			. '	t OABIIG CA J C J C C C C C C C C C C C C C C C	2	·		0.0) :8646.143 :1973.6	11.0535:	0.15564:	:0603.11	3.0202:	-4.0627:	- 0 - 2888:	-1.17205	****
	•	2 M	·				-		:01=111 :	: 111=10:	:01=101 :	: 1111=10:	:01=1111 :	: 111=10:	:01-1111 :	:01-111) :	•:01=111 :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ų	LUADING	CASE	JL 21, J2497	×	0.0		11 11 1.UAU 7. J7000	0 404EA	40111 01 LUA 6.40000	- -	101.00000 00.00000	
•••	• • •	. 2		· · · · · · · · · · · · · · · · · · ·	· · · ·				· · · · · · · · · · · · · · · · · · ·			
нн Э>	50.50	10.0		0.0	-21.33 :	-46.67	46.67	23-33	0-0	16.50	-46.67 :	-53.50
:01=111			r9u. Juil2:	543.4211:	400-56 JU: 4	FLECT 1014	:091 c. c04	601.6943:	520.46.14:	:1120.016		
:01-INI	-30.2967:	-16-6230:	29.1979:	4 3.039.1	40MENT PARAL 3.9274:	LCL TO X-/ 16.9212:	(XM) 5 IX((XM) 5 IX(6. 7546:	: 4995- E	:6190"F	-4.9301:	5 1. 0521 :
111-10:	24.0628:	:2012-1	13.1260:	10-0072:	ICHCHT PARAL	LEL TU Y-/	1.4578:	9-7969:	14.4120:	9.1505:	1.4632:	0.48193
:01=111	-2.22.7:	1.2000:	1,2415:	1.0040	1415141	NG MUNLAT 0.4650:	HAY -0.2231:	0.5799:	:[579.0	:0.57.0	0.6173	-1-5714
:01=110:	23,9539:	1.2742:	.:0104.it	11.329:	PRINCI	PAL MCPEN	11 .4625:	9411:	14.0521:	9.2370:	3.50431	5J.10523
101=101	-30.3076:	- 16.64JS:	21. 5229:	:1012-0	PHL/1C1 3+66'12:	PAL MCMEN1 16.0692:	-2-1015:	6.6055:	:19261:	2.9754:	-4.9752:	.6117.0.0
:01=180	2. 3472:	-2.0090:	-12.4917:	-25-5821:	17.3072:	PAL DIRECI	10H 1.2101:	- 4 . () 74 :	: 2v6f•f-	-6.7498:	-4.10363	-1.81923
:01=110	J. 1570:	1.706.1	-2.1470:	-0-0121:	: 1915 -0-	-1.5501:	115 0 • 954 2:	-0.6156:	-0.2143:	-0.2300:	0.5423:	-5.4700
:01=11)	-2.7636:	-0,9062:	-1. 3629:	-1-0359:	518A -0.6199:	14 1N Y-AX -2.0222:	(15 -0.2375:	-0-9478:	-1.5043:	-0-9206:	-0-4001 :	0.41293
:01=14			• • • • • • • •	• : • • • • • •	**********	14 14 U - V - VI	.15	* : * * * * * *	* * * * * * * *	• . • • • • • •	* :* ** * * * *	• • • • • • •
,	LUADING (CASE	J1 16.46879	•	17 0.0	N 10	H UF LUAD 7. 07 000	DHCA	0111 015 LUA		01746 1400 00.00000	
••••	• • • • • • • • • • • • • • • • • • •		•	•		9		5			•	
# # 2 >	0.0	46.67		0.0	·	0.0	46.67	23.33	0.0	-23.33	-46.67 :	-50-50
:01=11V	1 (14 4 - (1) 5 4 5 : 1	1403.3520:	Í11.4900:	* * <i>1</i> .0358:	J61 - 7495 : 41	FLECT 10H 82-5201:11	89.1978:	744,8938:	430-5667:	314.0842:	355.7027:	1114 1 04
111-1 U	-96+9419:	-22.4142:	-1.4676:	H :0916.4	104CHT PARAL	LEL TO X-A 29.0201: -	XIS (MX) 12.6892:	-14.7204:	-2.5512:	2.1774:	-9.0404:	1020.19
:01-10:	61.5071:	39.0759:	: 1646.+11	H . 704.5:	10HCHT PARAL	LEL TU Y -/ 32.0005:	XIS (MY) J.5422:	21 - 5336:	9.45081	6.7459:	-1.12555	1.11-0 - 0-
:01=110	-4.34721	1.2.195:	1. JJA7:	0.9421:	TWISTI 0. 7684 :	NG MUMENT 0.4.371:	MAY -1.6701:	0.6674:	:010:0	10 NY 210	.0.30.30	-3.7524
111=10	67.6616:	:2001.02	11.1063:	1.9525:	FRI HCI.	FAL MCMENI 32,8634:	HI U-6728:	21.5459:	9.5051:	6.4329:	:001-1-	97.1230
111-10:	-57.0463:	:1005*28-	- 1. 2017 :	4.1207:	PRI HC 1 2. 7066 :	PAL NEWENT	42 12-11-70:	:1667.61-	-2*6516:	2.6904:	-9.05892	-7.12.34
:01-HH	2.0165:	:1631-1-	-4.4052:	-14.7613:	PH14C1-	PAL D 1865	100	-1-05431	: +[[]]	: 725 [• 8 -	-2.7707:	-2.0624
111=10:	6-52365	:1:29:2	0.4409:	:9616-0-	5 7 11 A -0.24 81 :	-2-1129:	:15 1.J923:	1.7251:	0.3570:	:[[22.0-	0.92305	-10.0773
111-1-0:	- 7. 5455:	-4.5003	-1,1767:	-0"1200:	5324 : -0.5324 :	.11 11 Y-V)	:13 -1 -0068:	:E#16.5-	: 400-1-	:1619.0-	:1160-0	1.645.32
					55155555555555555555555555555555555555	XA-U HI MI.	15					

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V=1 0.0 0.1 0		6 5010101	CASIC	11.0	÷	VI 14.000UJ	018	114 UL LUAD 7. J7000	1424	10111 (11 LUA 6.00030	0	11141, LUAD 00.00000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•	•••	•			· · · · · · · · · · · · · · · · · · ·			Ŧ	5	01	· · · ·	C I
$ \begin{array}{c} (1 - 1) (1 - 1$	- - - - - - - - - - - - - - - - - - 	50.50	46.67	21.33	0.0	0-0 0-0	-46.67		23.23	0.0	16.50	16.50	-50.50
H=10: -5.403: 5.404: FAAJOA: 5.404: 5.410: 5.416: 5.416: 5.416: 6.456: 5.404: 5.410: 5.416: 6.404: 5.416: 6.416:	:01=11	614.1040:	592.65 je:		:[6[7.615	441-9343: 4	FLCCT104	455.434525	456.48542	571.0043:	445.0633:	424-04335	449.4434343
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11=1 0:	:0018-0-	-4.1.400	3.3005	14.4101.4.41	40HEAT PAKAL 5.1023:	-tEL TC X- 2.9623:	-2.J042:	6.2.002:	29.4116:	r • 8501 :	-2.9151:	9.186.623
III=10: 0.0JJ0: 0.JJ37: 0.J720: 0.JA71: 0.J041: 0.J041: 0.J0221: 1.06931: 0.J0531: 0.J011:	11=10:	1 3.0614:	U.0565:	: 5703.11	9.7300:	404641 PARAL 6-1934:	-LEL TO Y-	(1) SIXA	7.6130:	21.3654:	12.3684:	7.5054:	, 9+0925
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:01=H	:0rco.0	:1564.0	0. 9 192:	9.1296:	141511	115 MOHEUT 0.5047:	HXY U.J041:	0.9029:	0.8520:	:1.0593:	1+0031	0.0030
$ \begin{aligned} H=10: -5.0760: -4.2050: 5.709J: 9.6279: 4.6204: 2.9314: -2.J140: 5.0324: 27.0565: 6.6537: -3.0107: 9.0015\\ H=10: -0.0997: -5.0257: 0.6J100: -20.9652: -3.50561: -1.59972: -2.6.0003: 19.9059: -10.501J: -5.4194: (.7%6)\\ H=10: 0.7J00: 0.5114: -0.462J: -1.J995: -0.46 HI -0.2006: 0.2990: -0.5742: -2.7712: -0.5911: 0.37J0: -0.93J0\\ H=10: -1.4112: -0.950J: -1.4600: -0.67739: -0.5974: -1.1310: -0.5901: -0.7J04: -2.5611: -1.2166: -0.01140: -0.031\\ H=10: -1.4112: -0.950J: -1.4600: -0.0574i: -1.1310: -0.5901: -0.5901: -0.7J04: -2.5611: -1.2166: -0.01140: -0.031\\ H=10: H=$	111=10:	: 4:00.61	0.9235:	14.7065:	14-5414:	PRLINCT 6.6753:	11.2001:	T ML 0.4503:	J.0708:	29.7204:	12.5648:	7.6807:	5710-V
$ \ \ = \ \ \ = 0.049711 - 4.097411 - 4.027111 - 0.462111 - 0.465211 - 3.565411 - 1.591921 - 20.40143111 - 19.90591 - 10.50131 - 5.419411 (7).63 \\ \ \ = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	11=10:	-9.4760	-4.2050;	5.7091:	9.6279:	PRINC1 4.6204:	1 PAL MCMER	IT H2 -2.3140:	1,42LU	21-0565:	6.6537:	-3.0107:	9.08151
$ \ \ = \ 0 : \ 2 \cdot \ 2 \cdot \ 1 - \ 0 \cdot \ 6 \cdot \ 1 - \ 1 \cdot \ 1 - \ 1 \cdot \ 1 - \ 1 \cdot \ 1$	81=10:	:1660-0-	- 4.0974:	-9.0257:	U•6380:	PH10C1 -28,9652:	1946 D 1860	r tun -1 -9872:	:E000*97-	19-9059:	104-01-	-5.4194:	(- Th63
$ \ \ = \ \cdot \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $:01=11	:0057.0	0-5114:	-0.46231	:5666.1-	518A -0.46 M:	VIN IN X-A	X15 0.2990:	-0-5782:	-2.74123	-0-5911:	:0110.0	116.0-
11=10:+++++++:++++++++++++++++++++++++++	11:=10:	-1.4112:	-0-1503:	-1-4600:	-0-0739:	518A -0.5944:	111 111 Y-A	×15 -0-5901:	-0.1304:	-2.5611:	-1.2186:	-0.8144:	-0.11501
0.0 0.0 0.0 0.0 CPU USED = 111.77 SECS	:01=11		* : * * * * * * * *		• • • • • • • •	**:*********		X IS +++++++2+1	* : * * * * * * *	*:****	*****	• : • • • • • • • •	* 7 * * * * * *
		0.0	0.0	0.0	0.0	PU USED = 0.0	111.77 SE	SO	•				

205

BIBLIOGRAPHY

- 1. American Concrete Institute, "<u>Building Code Require-</u> ments for Reinforced Concrete," (ACI 318-71), 1971.
- Bares, R. and Massonet, C., "<u>Analysis of Beam Grids</u> and Orthotropic Plates by the <u>Guyon-Massonet-Bares</u> <u>Method</u>," Frederick Unger Publishing Co., New York, 1968.
- 3. Burns, N.H., and Hemakom, R., "Test of Scale Model <u>Post-Tensioned Flat Plate</u>, "Journal of the Structural Division, ASCE, Vol. 103, No. ST6, June, 1977.
- 4. Cardenas, A.E., and Sozen, M.A., "Flexural Yield Capacity of Slabs," ACI Journal, Feb., 1973.
- 5. Cardenas, A.E., Lenschow, R.J., and Sozen, M.A., "Stiffness of Reinforced Concrete Plates," Journal of the Structural Division, Proc., ASCE, Vol. 98, No. ST11, Nov., 1972, pp. 2587-2603.
- 6. Evans, R.H., and Kong, F.K., "<u>The Extensibility and Microcracking of the In-Situ Concrete in Composite Prestressed Concrete Beams</u>," The Structural Engineer Journal, Vol. 42, No. 6, June 1964, pp. 181-190.
- 7. Gupta, D.S.R., and Kennedy, J.B., "<u>Continuous Skew</u> <u>Orthotropic Plate Structures</u>," Journal of the Structural Division, ASCE, Vol. 104, No. ST2, Feb. 1978, pp. 313-328.
- Gupta, D.S.R., "Orthotropic Continuous Skew Plates," Ph.D. Thesis, 1974, Dept. of Civil Engineering, 'University of Windsor, Windsor, Ontario, Canada.
- 9. Hondros, G., and Smith, G.C., "Model and Theoretical Analysis of a Post-Tensioned Diagrid Flat Plate," PCI Journal, April, 1969, pp. 63-87.
- 10. Huffington, N.J., Jr., "<u>Theoretical Determination of</u> <u>Rigidity Properties of Orthogonally Stiffened Plates</u>," Journal of Applied Mechanics, Transaction S, ASME, Vol. 87, March, 1956, pp. 15-20.
- 11. Jackson, N., "<u>The Torsional Rigidities of Concrete</u> Bridge Decks," Concrete V₂, nll, Nov., 1968, pp. 465-474.
- 12. Kennedy, J.B. and Gupta, D.S.R., "Bending of Skew Orthotropic Plate Structures," Journal of the Structural Division, Proc., ASCE, Vol. 10Z, No. ST8, August, 1976, pp. 1559-1574.

- 13. Kennedy, J.B., and Bali, S.K., "<u>Rigidities of Concrete Waffle-Type Slab Structures</u>," Accepted for publication in the Canadian Journal of Civil Engineering, March, 1979.
- 14. Kennedy, J.B., and Martins, I.C., "<u>Stresses Near</u> <u>Corners of Skewed Stiffened Plates</u>," The Structural Engineer, Vol. 41, 1963.
- 15. Kennedy, J.B., and Huggins, M.W., "Series Solution of Skewed Stiffened Plates," Journal of the Engineering Mechanics Division, ASCE, Vol. 90, No. EML, Feb., 1964.
- 16. Kennedy, J.B., and Ng., S.F., "Analysis of Skewed Plate Structures with Clamped Edges," Trans. of the Engrg. Inst. of Canada, paper EIC-6S-BR STR9, Dec., 1965.
- 17. Lenert, Louis, H., "Advanced Technical Mathematics," Charles E. Merrill Publishing Company, A. Bell and Howell Company, Columbus, Ohio, 1970.
- 18. Lin, T.Y., "Design of Prestressed Concrete Structures," Second Edition, John Wiley and Sons, Inc., 1963.
- 19. McDonald, J.L., "Design of a Two-Way Post-Tensioned Waffle Slab," Civil Engineering, ASCE, May, 1973.
- 20. Muspratt, M.A., "<u>Behaviour of a Prestressed Concrete</u> <u>Waffle Slab With Unbonded Tendons</u>," ACI Journal, December, 1969, pp. 1001-1004.
- 21. Perry, P.G., and Heins, C.P., "Rapid Design of Orthotropic Bridge Floor Beams," Journal of the Structural Division, Proc., ASCE, Vol. 98, No. ST11, 1972, pp. 2491-2506.
- 22. Portland Cement Association, "Design and Control of Concrete Mixtures," Eleventh Edition, 1968.
- 23. Rawles, R.H., "Dallas Bridge Has Post-Tensioned Concrete Deck," Civil Engineering, ASCE, April, 1973.
- 24. Rowe, R.E., "Concrete Bridge Design," C.R. Books Limited, 1962.
- 25. Rowe, R.E., "Load Distribution in Bridge Slabs (With Special Reference to Transverse Bending Moments Determined From Tests on Three Prestressed Concrete Slabs)," Magazine of Concrete Research, Vol. 9, No. 27, November, 1957.

- 26. Scordelis, A.C., Lin, T.Y., and Itaya, R., "<u>Behaviour</u> of a Continuous Slab Prestressed in Two Directions," Journal of the American Concrete Institute, Dec., 1959, pp. 441-459.
- 27. Scordelis, A.C., Samarzich, W., and Pirtz, D., "Load Distribution on a Prestressed Concrete Slab Bridge," PCI Journal, June, 1960, pp. 18-33.
- 28. Sherman, Z., "<u>Testing Post-Tensioned Slab and Beam</u> <u>Without Grouting</u>," Journal of the Structural Division, ASCE, Vol. 83, No. ST4, July, 1957, pp. 1317, 1-17.
- 29. Szilard, R., "<u>A Simplified Method for Torsional</u> <u>Analysis of Gridworks</u>," ACI SP-35, American Concrete Institute, Detroit, 1973.
- 30. Szilard, R., "<u>Theory and Analysis of Plates: Classical</u> and Numerical <u>Methods</u>," Prentice-Hall Inc. Englewood Cliffs, New Jersey, 1974.
- 31. Timoshenko, S., and Woinowsky-Krieger, S., "Theory of Plates and Shells," McGraw Hill Book Co., 1959.
- 32. Wang, C-H., "Direct Design Method for Prestressed Concrete Slabs," PCI Journal, 1968, pp. 62-72.
- 33. Wylie, C.R., "Advanced Engineering Mathematics," McGraw-Hill Book Company, Inc., 1960.

VITA AUCTORIS

IBRAHIM SAYED AHMED EL-SEBAKHY

1949	Born on 1st of January in TANTA, EGYPT.
1967	Matriculated from Ahmedia School, TANTA, EGYPT.
1968	Attended the Military Technical College for one year, CAIRO, EGYPT.
1973	Graduated with Bachelor of Science (Honour) in Civil Engineering, from Alexandria University, ALEXANDRIA, EGYPT.
1973	Appointed as an instructor in Civil Engineering Department, Alexandria University, ALEXANDRIA, EGYPT.
1973	Joined as a part-time designer Engineer with Drs. Ebiedo, Fahmy and Korish Consulting Firm for Civil Engineering, ALEXANDRIA, EGYPT.
1976	Enrolled in a Master's program in Civil Engineering Department, Uni- versity of Windsor, WINDSOR, ONTARIO, CANADA.

20<u>9</u>