1-1-1979

Behaviour of reinforced and prestressed waffle slabs.

Ibrahim Sayed Ahmed el-Sebakhy
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

el-Sebakhy, Ibrahim Sayed Ahmed, "Behaviour of reinforced and prestressed waffle slabs." (1979).
Electronic Theses and Dissertations. 6726.
https://scholar.uwindsor.ca/etd/6726

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

by
Ibrahim Sayed Ahmed El-Sebakhy

A Thesis
submitted to the Faculty of Graduate Studies through the Department of Civil Engineering in Partial Fulfillment
of the requirements for the degree of Master of Applied Science at The University of Windsor

Windsor, Ontario, Canada 1979

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

> UMİ

UMI Microform EC54719
Copyright 2010 by ProQuest LLC
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ABN483

ABSTRACT

Reinforced concrete waffle slabs have been used quite often in buildings and other structures, resulting in a reduced dead weight and material cost. The use of prestressed concrete waffle slabs for rectangular and skew decks of short and medium span bridges can also lead to further economics in dead weight and material.

In this investigation, a series solution for the analysis of rectangular and skew concrete waffle slabs by the orthotropic plate theory is presented. Single spans of reinforced and prestressed concrete deck bridge models are investigated. The deflection function of the slab is assumed in the form of a Fourier series so as to satisfy the governing differential equation of equilibrium. The arbitrary constants in the deflection function are chosen to satisfy the appropriate boundary conditions. The in-plane prestressing force along the edges and the resulting edge moment are represented by a Fourier series using a graphical technique.

Available computer program for solving orthotropic plates or slabs subjected to lateral loads is modified to compute the stresses and deflection due to the prestressing force. This computer program can be used for reinforced and prestressed concrete waffle slabs of rectangular and skew shapes subjected to uniform as well as concentrated
transverse loads.
The experimental study is carried out on three one-eighth models of reinforced concrete waffle slabs and two one-eighth models of prestressed concrete waffle slabs. The first slab is tested under uniformly distributed load applied by means of air pressure while the remaining slabs are tested under concentrated loads only at various positions; the tests were carried in the elastic domain as bridge slabs and finally to collapse. The effect of concrete cracking on the rigidities of the slabs is studied. The strains and deflections obtained from the tests are found to be in satisfactory agreement with the theoretical solution. Furthermore, theoretical studies are carried out on two types of structures, the waffle-type and the slab-type with a uniform thickness, both structures having the same volume of concrete and reinforcing steel. The comparison of stresses and deflection for the two types of structures show that the waffle type exhibits much smaller deflections and lower stresses, especially for prestressed concrete waffle slabs.

ACKNOWLEDGEMENTS

The author wishes to express his deep appreciation to his supervisor Dr. J.B. Kennedy, Professor of Civil Engineering at the University of Windsor, for his extremely valuable comments, guidance, encouragement, generous aid and constructive criticism.

The author would like to thank Dr. D.S. Gupta, Chief Engineer at Canadian Bridge Division, Windsor, Ontario, for his assistance and guidance in the computer program.

The aid of Mr. G. Michalczuk and Mr. P. Feimer during the experimental work is greatly appreciated. Thanks are also due to the staff of the computer centre for their assistance and help.

The financial assistance given by the National Research Council of Canada under Grant No. A-1896, and the scholarship granted by the University of Windsor are sincerely appreciated.

Thanks are also due to Mrs. Barbara Denomey for typing the manuscript.

TABLE OF CONTENTS

PAGE
ABSTRACT iv
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES XV
LIST OF APPENDICES xvi
LIST OF ABBREVIATIONS xvii
CHAPTER I INTRODUCTION 1
1.1 General 1
1.2 Objective 1
1.3 Scope 2
CHAPTER II HISTORICAL REVIEW 4
2.1 Review of Literature 4
2.2 Prestressed Concrete Slabs 6
CHAPTER III FORMULATION 9
3.1 General. 9
3.2 Assumptions 10
3.3 Governing Differential Equation For The Lateral Loads and Edge Moments 10
3.4 Relation of Stress and Strain For Bending Action 12
3.5 Elastic Properties of the Waffle Slab Model 13
3.6 Rigidities of Uncracked Sections 15
3.6.1 Flexural Rigidities 15
3.6.2 Torsional Rigidities 18
Plane Stress Problem Due To Pre- $3.7 \quad$ Plane Stress Pr 21
3.7.1 Elastic Constants for Membrane Action 21
3.8 Boundary Conditions 23
3.8.1 Bridge Slabs 24 24
CHAPTER IV ANALYTICAL SOLUTION 27
4.1 General 27
4.2 Complementary Solution 27
4.2.1 Waffle Slab Which Is Flexurally Strong and Torsionally Weak 28
4.3 Particular Solution. 30
4.4 Symmetric and Anti-Symmetric Loading 31
4.5 Expansion of the In-Plane Prestressing Force In A Fourier Series by Graphical Method 31
CHAPTER V SATISFACTION OF BOUNDARY CONDITIONS 33
5.1 Symmetric Load 33
5.2 Anti-Symmetric Load 39
CHAPTER VI EXPERIMENTAL PROGRAM. 44
6.1 Scope of the Experimental Program. 44
6.2 Materials 44
6.2.1 Concrete 44
6.3 45
6.3.1 Mild Steei For Reinforced Concrete Slabs 45
6.3.2 High Tensile Steel For The Pre- Stressed Concrete Slabs 46
6.4 Formwork 46
6.5 Experimental Equipment 47
6.5.1 Prestressing Equipment 47
6.5.2 End Bearing Plate 47
6.5.3 The Steel Frame For Producing Uniformly Distributed Load 48
6.6 The Construction of the Slab Models. 49
6.7 Instrumentation 50
6.7.1 Strain Gauges On The Reinforcement........ 50
6.7.2 Strain Gauges on The Concrete 51
6.7.3 Mechanical Dial Gauges 51
6.7.4 Load Cells. 52
6.7.4(a) Universal Flad Load Cell 52
6.7.4(b) Cylindrical Load Cell 52
6.8 Experimental Setup and Test Procedure 52
6.8.1 Reinforced Concrete Waffle Slabs, Group A. 52
6.8.1(a) Slab A.1 52
6.8.1(b) Slab A.2. 53
6.8.1(c) Slab A.3 54

PAGE
6.8.2 Prestressed Concrete Waffle Slabs, Group B 55
6.8.2(a) Slab B.1 55
6.8.2(b) Slab B.2 55
CHAPTER VII DISCUSSION OF RESULTS 57
7.1 General 57
7.2 Reinforced Concrete Waffle Slabs (Group A) 57
7.2.1 Rectangular Slab Under Uniform Load (Slab A.1) 57
7.2.2 Rectangular Slab Under Concen- trated Load (Slab A.2) 58
7.2.3 45° Skew Slab Under Concentra- ted Load (Slab A.3) 61
7.3 Prestressed Concrete Waffle Slabs Group B) 61
7.3.1 Rectangular Slab Under Concen- trated Load (Slab B.l) 61
7.3.2 450 Skew Slab Under Concentra- ted Load (Slab B.2) 62
7.4 Comparison Between the Behaviours of a Waffle Slab and a Uniform Thickness Slab Having the Same Volume of Con- crete and Reinforcement. 63
7.5 Sources of Errors 65
CHAPTER VIII CONCLUSIONS AND RECOMMENDATIONS 67
8.1 Conclusions 67
8.2 Suggestions 69
FIGURES 70
APPENDIX A 143
APPENDIX B 149
APPENDIX C 153
APPENDIX D. 155
APPENDIX E 160
APPENDIX F 169
BIBLIOGRAPHY 206
VITA AUCTORIS. 209

IIST OF FIGURES

FIGURE PAGE
3.1 Bottom Plan Layout Waffle Slabs A_{1} and A_{2} 71
3.2 Geometric Shape of the Ribs and the Plate for Waffle Slab. 72
3.3 Orthotropic Rigidities of Waffle Slab. 73
3.4 Lateral Loading Cases for Group A Slabs 74
3.5 Lateral Loading Cases for Group B Slabs 75
4.1 Steel Loading Plates 75
4.2 Expansion of the Load in Fourier Series. 76
6.1 The Reinforcing Steel and Anchorage System 77
6.2 Form Before Casting the Concrete. 77
6.3 Hydraulic 20 KIP Prestressing Jack 78
6.4 End Blocks and Load Cells for Prestressed Skew Slab. 78
6.5 Loading System for Uniform Load. 79
6.6 Regulator System and Pressure Gauges 79
6.7 Transverse Section for the Loading Frame 80
6.8 Longitudinal Section for the Loading Frame 81
6.9 Reinforced Concrete Waffle Slab A.l. 82
6.10 Reinforced Concrete Waffle Slab A. 2 83
6.11 Reinforced Concrete Skew Waffle Slab A. 3, Skew of 45° 84
6.12 Prestressed Concrete Waffle Slab B.l 85
6.13 Prestressed Concrete Waffle Slab B. 2 86
6.14 Dial Gauges In Position 87
6.15 Point Loading System 87
6.16 Loading System for Slab A. 2. 88
6.17 Loading System for the Skew Slab A.3 88
6.18 Loading System for Prestressed Slab B.l. 89
6.19 Loading System for Prestressed Skew Slab B. 2 89
6.20 Prestressing Force and Edge Moments For Slab B.l 90
6.21 Prestressing Force and Edge Moments For Skew Slab B. 2 91
7.1 Slab A.l Failure 92
7.2 Slab A.l Cracks 92
7.3 Load Deflection Relationship for Slab A. 1. 93
7.4 Load Deflection Relationship for Slab A. 1 94
7.5 Transverse Deflection 95
7.6 Longitudinal Deflection 96
7.7 Load Strain Relationship for Slab A.l At Centre 97
7.8 Load Strain Relationship for Slab A.l At the Free Edge. 98
7.9 Deflection Shape for Slab A. 2 99
7.10 Slab A. 2 Cracks 99
7.11 Load Deflection Relationship for Slab A. 2 100
7.12 Load Deflection Relationships for Slab A.2, Load at the Edge 101
7.13 Transverse Deflection for Slab A. 2 ($p=1$ Kip) 102

Longitudinal Deflection Along Line A-A	
	$(p=1$ Kip).. 103

7.15 Load Strain Relationship for Slab A.2, 104

7.16 Load Strain Relationship for Slab A.2,	
	Load at the Free Edge..................... 105

7.17	Strain Distribution for Slab A. 2 at
	Bottom Fibre due to 1 Kip at Centre...... 106

7.18 Crack Development in Slab A.3............ 107
7.19 Bottom Cracks for Slab A.3................ 107
7.20 Load Deflection Relationship for Skew
Slab A.3... 108
7.21 $\begin{array}{ll}\text { Load Deflection Relationship for Skew } \\ \text { Slab A.3... } 109\end{array}$

7.24 Load Strain Relationship for Skew Slab 112
$\begin{array}{ll}7.25 & \text { Strain Distribution for Skew Slab A.3 } \\ \text { at Bottom Fibre for Loading At Centre.... } 113\end{array}$
7.26 Cracks Development for Slab B.l.......... 114
7.27 Cracks Failure For Slab B.1............... 114
$\begin{array}{ll}7.28 & \text { The Upward Deflection in Slab B.l Due } \\ & \text { To Prestressing.................................... } 115\end{array}$
$\begin{array}{ll}\text { 7.29 } & \text { Top Fibre Strain Distribution for Slab } \\ \text { B.l Due to Prestressing................... } 116\end{array}$
7.30 Bottom Fibre Strain Distribution for
Slab B.l Due to Prestressing.............. 117
7.31 Load Deflection Relationship for Slab $\quad 118$
7.32 Load Deflection Relationship for Slab $\quad 119$
7.33 Load Strain Relationship for Slab
B.l at Centre................................... 120

Load Strain Relationship for Slab B.1	
	(Loading at Point 1)........................... 121

7.35 Cracks Failure for Slab B.2.............. 122
7.36 Cracks Development for Slab B.2........ 122
7.37 Punching Failure of Slab B.2............. 123
7.38 Cracks Failure for Slab B.2............. 123
$\begin{array}{ll}\text { 7.39 Deflection Distribution for Skew Slab } \\ & \text { B. } 2 \text { Due to Prestressing Force........... } 124\end{array}$
$\begin{array}{ll}\text { 7.40 } & \text { Strain Distribution in Slab B. } 2 \text { at Top } \\ & \text { Fibre due to Prestressing Force......... } 125\end{array}$
7.41 $\quad \begin{aligned} & \text { Strain Distribution in Slab B. } 2 \text { at } \\ & \text { Bottom Fibre due to Prestressing........ } 126\end{aligned}$
7.42 Load Deflection Relationship for Slab
B.2.. 127
7.43 Load Deflection Relationship for Slab 128
7.44 Load Deflection Relationship for Slab
B.2 (Ultimate Load).......................... 129
7.45 Load Strain Relationship for Slab B.2... 130
7.46 Load Strain Relationship for Slab B.2... 131
$\begin{array}{ll}7.47 & \text { Deflection Pattern for Rectangular Slab } \\ \text { Due to Uniform Load of } 0.01 \text { Ib/in }\end{array}$
$\begin{array}{ll}\text { 7.48 } & \text { Strain Pattern at Top Fibre due to } \\ \text { Uniform Load of } 0.01 \text { lb/in }\end{array}$
$\begin{array}{ll}\text { 7.49 Variation of Deflection Along the Trans- } \\ & \text { verse for Point Load at } 1 \text { and 2.......... } 134\end{array}$
7.50 Variation of Strains Along the Transverse Axis At Top Fibre due to Concentrated Load 1 Kip at Point 1 and 2 .

7.51	Variation of Strains Along the Transverse Axis at Bottom Fibre due to Concentrated Load 1 Kip...................... 136
7.52	Deflections due to Uniform Load of
7.53	Strain Pattern at Top Fibre Due to Uniform Load of $0.01 \mathrm{lb} / \mathrm{in}^{2}$.................. 138
7.54	Deflection Pattern due to Concentrated Load 1 Kip at Point 1 and 2................ 139
7.55	Strain Pattern at Top Fibre Due to 1 Kip at Point 1 and 2................................. 140
7.56	Deflection due to Prestressing Force...... 141
EI	Calibration of Reinforcing steel Wires.... 161
E2	Load Deflection for High Tensile Steel Wire.................................... 162
E3	Load Strain Relationship (Load Cell, 5 Kips)... 163
E 4	Load Strain Relationship (Load Cell, 25 Kips).. 164
E5	Load Strain Relationship (1-5, Load Cell).. 165
E6	Load Strain Relationship (6-11, Load Cell)... 166
E7	Load Strain Relationship (12-20, Load Cel1).. 167
E8	Load Strain Relationship (21-38, Load Cell)... 168

TABLE PAGE
D-1 Properties and Strength of Concrete Mixes 156
D-2 Geometry and Properties of Slab Models. 158
D-3 Orthotropic Rigidities of Slab Models 159

IIST OF APPENDICES

APPENDIX PAGE
A Expressions For Matrix Elements 143
B Fourier Coefficients For Lateral Load 149
C Fourier Expansion for In Plane-Forces.. 153
D Design of Concrete Mix 155
E Calibration of Load Cell 160
F Computer Program (WAFFLE) 169

$A_{j 1}-A_{j 8}$
A_{n}
$A_{s}\left(A_{s}^{\prime}\right)$
a
$B_{j 1}-B_{j 2}$
B_{n}
b
$b_{y}\left(b_{x}\right)$
$C_{1 n}-C_{16 n}$
$\mathrm{c}_{17}-\mathrm{c}_{24}$
c
D
D_{x}, D_{y}
$D_{X Y}, D_{Y X}$
D_{1}, D_{2}
$\mathrm{d}^{\prime \prime}$ (d^{\prime})
EI
E

Definite integrals (Appendix A) Arbitrary function in n (Equation 5.1) Area of tension steel in longitudinal (transverse) rib

Skew semi-width of the slab Definite integrals defined (Appendix A) Arbitrary function in n (Equation 5.1) Half span length of the slab

Width of longitudinal (transverse) rib
Arbitrary functions dependent on n
Arbitrary constants
$\cos \theta$
Flexural rigidity of the flange plate with respect to its middle plane Flexural rigidities of the slab per unit width and length respectively Transverse and longitudinal torsional rigidities respectively

Coupling rigidities - contribution of bending to torsional rigidity of the slab

Concrete cover to centre of longitudinal (transverse) reinforcement Flexural rigidity of the edge beam Modulus of elasticity of concrete

$e_{x}\left(e_{y}\right)$	Depths of neutral plane from top fibre for bending in the $x-(y)$ directions
f^{\prime}	28-days compressive strength of
	concrete
$G_{X Y}, G_{Y X}$	Shear modulii of the orthotropic slab
GJ	Torsional rigidity of the edge beam
H	Effective torsional rigidity of the
	slab
h	Thickness of flange plate
$I_{X}^{\prime}\left(I_{Y}^{\prime}\right)$	Moment of inertia of transverse
	(longitudinal) ribs
$I_{x y}, I_{y x}$	Torsional constants
$M_{x}, M_{y}, M_{x y}$	Bending and torsional moments associ-
	ated with the x and y axis
m	Integer > $1, ~ n u m b e r$ of harmonics
n	Integer > 1 , number of harmonics
Q_{X}	Shear force per unit width of the
	plate
$q(u, v)$	Load function
$S_{x}\left(S_{y}\right)$	Spacing of ribs in transverse
	(longitudinal) direction
W	Deflection function
W_{C}	Complementary solution
W_{p}	Particular solution
x, y, z	Rectangular axes
μ	Poission's ratio of concrete
θ	Skew angle

α_{m}	$=m \pi / a$
α_{n}	$=n \pi / a$
β_{m}	$=m \pi / b$
β_{n}	$=n \pi / b$
$\varepsilon_{X^{\prime}} \varepsilon_{Y}$	Strain in x and y directions
$\tau_{X}{ }^{\prime} \tau_{Y}$	Plane stress per unit width (length)

CHAPTER I

INTRODUCTION

1.1 General

In recent years reinforced and prestressed concrete waffle slabs have become quite popular in buildings and deck bridges. Orthotropic plate structures are often required as component parts of large scale structures as floor system in buildings, auditoriums, aircrafts, ship bottoms, tunnels, highway structures, etc. The trend towards high-rise buildings, modern highway interchanges and the commercial availability of high strength lightweight concrete have re-focused attention on concrete waffle slabs all over the world. The use of prestressed concrete waffle slabs for rectangular and skew decks of short and medium span bridges can also lead to economical design by having a crack-free concrete wearing surface, lower maintenance costs and better live load distribution.

Objective

The primary objective of this investigation is to determine the behaviour of reinforced and prestressed concrete waffle slabs over the total range of loading up to the point of collapse, from the standpoint of deformation, stresses, cracking and ultimate strength capacity. A waffle slab can be ciassified as geometrically orthotropic; as such its orthotropic flexural and twisting rigidities must be accurately predicted before and after cracking of
the concrete in order to reliably estimate its performance under working and collapse loads. In general, the deflection of a concrete waffle slab is rather small in comparison with the thickness of the slab so that for a proper design of such structures a linear (small deflection) analysis is sufficient. An experimental investigation and a theoretical study based on a series solution are undertaken; this solution is found by superimposing three solutions due to three different loadings, namely: the transverse loads (uniform as well as concentrated load at various locations), in-plane edge loads and edge moments, the latter two being due to in-plane prestressing.
1.3 Scope

The test of a structural concrete one-eighth scale "direct" model can simulate the behaviour of the prototype both before and after cracking of the concrete. This investigation covers reinforced and prestressed concrete waffle slabs, including both rectangular and skew plan forms and subjected to uniformly distributed, as well as concentrated lateral loads.

A review of the theoretical and experimental studies of orthotropic structures, reinforced and prestressed concrete waffle slabs are presented together with simple expressions for estimating the orthotropic rigidities. Mathematical formulation of the problem using a Fourier series for lateral and in-plane forces are derived.

Analysis and discussion of the theoretical and experimental results from three reinforced and two prestressed concrete waffle slabs are presented in this work. An approximate method is proposed to solve the inplane stress problem due to the prestressing force along the four sides of the slab.

The experimental work comprises the following two groups:

1) Group A, includes three reinforced concrete waffle slabs. The first and second slabs were rectangular in plan with identical geometry and subjected to uniform and concentrated lateral loads, respectively. The third slab had a skew of 45°, and was subjected to a concentrated lateral load.
2) Group B, includes two prestressed concrete waffle slabs, one was rectangular in plan and the other had a skew of 45°, and subjected to concentrated lateral loads.

All the slab models are analysed as bridge slabs having two opposite edges simply supported and other two edges free (Group A) or elastically supported (Group B).

HISTORICAL REVIEW

2.1 Review of Literature

The study of theory of plates goes back to the French mathematician, Sophie Germain (1816), who obtained a differential equation for vibration of plates, but she neglected the work done by warping of the middle surface. The first corrected differential equation for the free vibration of plates was used by Lagrange by adding the missing term in Sophie's equation. This work, which was improved by researchers such as Navier, Poisson and Kirchoff, is considered to be the basis for the classical thin plate theory. Solutions of many problems in plates of circular, rectangular, skew, triangular shapes are available (see Timoshenko (31) and Szilard (29,30)). The exact solution to a plate problem should satisfy the boundary conditions as well as the governing differential equation of equilibrium or minimize the potential energy of the plate. The deflection function could be in the form of an infinite series and its sum to infinity gives any deflection pattern of the plate which satisfies the imposed geometrical conditions by suitable choice of values for the infinite number of constants of integration. The development of the modern aircraft industry provided another strong impetus toward more rigorous analytical investigations of plate problems. Plates subjected
to in-plane forces, postbuckling loads, stiffened plates, etc., were analyzed by various scientists and engineers. Most recently, the invention of high-speed electronic computers exerted a considerable influence on the static and dynamic analysis of plates. Probably the first approach used in computer analysis was the finite difference method.

Considerable attention has been given recently to developing methods of designing more economical concrete bridges. Various methods of estimating the load distribution in concrete bridge decks have been proposed to date. In all these methods values of the effective flexural and torsional rigidities of the deck system are required before the analysis can proceed. Little information was available as to how these rigidities might be assessed for many of the bridge-deck systems.

In 1956, Huffington (10) investigated theoretically and experimentally the method for the determination of rigidities for metallic rib-reinforced deck structures. It was applied to the case of equally spaced stiffeners, of rectangular cross section, and symmetrically placed with respect to its middle plane.

Methods of analysing rectangular and skew deck plates with simple boundary conditions have been recently investigated by Kennedy et al. $(12,14,15,16)$. They solved the problem of skew plate under uniform load by means of variational techniques and a series solution were
presented for rib stiffened plates under uniform and concentrated loads; the results were verified with experiments. They observed that critical stresses often occur in obtuse corners of such skew plates.

In 1968 Jackson (11) proposed a method to estimate the torsional rigidities of concrete bridge decks, using the membrane analogy and the estimation of the junction effect. The effect of the continuity of the slab on the flange plate was not accounted for.

In 1972, Perry and Heins (21) studied a series of equations for preliminary design of transverse floor beams in orthotropic deck bridges. The applied loads were represented in the form of a Fourier series. This method is not exact since it neglected the effects of contributions of bending to the torsional rigidities of the plate. Cardens et al $(4,5)$ investigated the in-plane and flexural stiffnesses of isotropically and nonisotropically reinforced concrete plates. Results indicated that the stiffness of such plates was related quantitatively to the relative orientation of the reinforcement with respect to the applied forces.

Mathematical analysis of grid systems with particular regard to bridge type was given by Bares and Massonnet (2) and Rowe (24) together with practical applications.
2.2 Prestressed Concrete Slabs

Possibly, Guyon, in the early l950's was the first
to realize that slabs, prestressed in two directions behaved analogously to the two-way arch action of thin shell structures. In the late 1950's several prestressed slab research projects were undertaken in the United States. Scordelis et al, 1960 , $(26,27)$ studied the ultimate strength of continuous prestressed slabs and proposed several design recommendations. They investigated the load distribution between the column and the middle strips and the following conclusions were obtained:

1. The elastic plate theory may be used satisfactorily to predict the behaviour of a prestressed concrete slab loaded within the elastic limit.
2. The slab can sustain a large increase in load before widespread cracking takes place. Possibly the largest stride in the design of prestressed slabs was taken by Lin (18) who was the first to introduce the Load Balancing Method. It was soon made apparent that the tendon profiles could be designed so that the upward cable force neutralized the vertical downward load. Between 1957 and 1969, many researchers developed the method and studied the load distribution in bridge slabs (Sherman (28), Rowe (24) and Wang (32)). In 1969, Muspratt (20) used the load balancing method on prestressed concrete waffle slabs. For other applications of this method in U.S.A. see references (19) and (23). Another investigation was made by Hondros and Smith (9) on
a post-tensioned diagrid flat plate, simply supported on four edges using the link force method of analysis. The force method applies compatability but disregards the influence of torsion on the plate.

Burns and Hemakom in 1977 (3), investigated the problem of post-tension flat plate using frame analysis; furthermore, the cracks were predicted and the stresses compared with that obtained by ACI code (318-71), (1).

Although an appreciable amount of work has been done on the analysis of prestressed flat slabs, very little work is available on prestressed concrete waffle slabs. It is beyond the scope of this thesis to give a comprehensive survey of the entire literature in this field. However, a study of the literature shows that no exact solution is available for prestressed concrete waffle slabs under a general type of lateral load and inplane prestressing force.

3.1 General

With reinforced concrete structures cast in-situ, it is common practice to cast the slab and the supporting beam grid at the same time. The grid elements may be either reinforced or prestressed concrete beam or steel girders. Since a reinforced concrete slab has to withstand the local effects of heavy concentrated loads, the slab thickness is usually substantial, and composite action of the grid-and-slab system must be taken into account. Due to the action of concentrated loads, the transverse direction becomes important and the transverse strength of the structures has to be considered carefully. In dealing, herein with orthotropic concrete structures, it is assumed that or thotropy is a result of geometry and not of material, see Figure 3.1.

3.2 Assumptions

The analytical approach to the problem of the orthotropic plate has to be based on some simplifying assumptions related to the form and material of the plate and to the state of strain induced by the external loading. The assumptions for orthotropic plates are based on the same assumptions used in the analysis of isotropic plates, and they are as follows:
a) The material of the plate is elastic, i.e., the
stress-strain relationship is given by Hooke's law.
b) The material of the plate is considered to be homogeneous, by transforming the steel area into an equivalent area of concrete.
c) The thickness of the plate is uniform and small in comparison to the other lateral dimensions of the plate. Thus the shearing and normal stresses to the plane of symmetry are small and can be neglected.
d) Straight lines normal to the middle plane of the plate remain straight and normal to the middie plane of the plate after bending.
e) The deflections of the plate are small in comparison with its thickness; and are such that there is no normal strain in planes tangent to the middle plane.

It should be mentioned that the theory of orthotropy is applicable for structures which have a small ratio of stiffness spacing relative to any lateral length of the structure.
3.3 Governing Differential Equation For The Lateral Loads And Edge Moments

It is assumed that the material of the plate has three planes of symmetry with respect to its elastic properties. Taking these planes as the coordinate planes, the relations between the moments and deflections are:

$$
\begin{align*}
M_{x} & =-\left(D_{x} W_{x x}+D_{1} W_{y} y_{y}\right) \\
M_{y} & =-\left(D_{y} W_{y} y_{y}+D_{2} W_{x x}\right) \tag{3.1}\\
M_{x y} & =D_{x y} W_{x y}
\end{align*}
$$

where,

$$
\begin{aligned}
& D_{x}, D_{y}= \text { flexural rigidities of the plate per unit } \\
& \text { width in } x \text { and } y \text { directions respectively } \\
& D_{1}, D_{2}= \text { coupling rigidities, measuring the contri- } \\
& \text { bution of bending to torsional rigidities } \\
& \text { of the plate. } \\
& D_{X Y}, D_{Y x}= \text { torsional rigidities of the plate and ribs } \\
& \text { Substituting expressions } 3.1 \text { in the following }
\end{aligned}
$$ general differential equation of equilibrium, given by Timoshenko (31),

$$
\begin{equation*}
M_{x, x x}+M_{y, y y}-z M_{x y, x y}=-q(x, y) \tag{3.2}
\end{equation*}
$$

The following fourth order differential equation governing the deflection of the orthotropic plate is obtained in rectangular coordinate:

$$
\begin{equation*}
D_{x} W_{x x X x}+2 H f_{X X Y Y}+D_{Y} W_{Y Y Y Y}=q(x, Y) \tag{3.3}
\end{equation*}
$$

where,

$$
H=\left(D_{1}+D_{2}+D_{X Y}+D_{Y x}\right) / 2
$$

and known as the effective torsional rigidity of the plate and characterizes the resistance of the plate element to twisting.

To generalize the solution from the rectangular slab to a skew slab the following transformation is used:

$$
\begin{align*}
& \mathrm{u}=\mathrm{x} / \cos \theta \\
& \mathrm{v}=\mathrm{y}-\mathrm{x} \tan \theta \tag{3.4}
\end{align*}
$$

where, θ is the skew angle.
Equation 3.3, known as Huber's equation, becomes,

$$
\begin{align*}
& =c^{4} q(u, v) \tag{3.5}
\end{align*}
$$

where,

$$
\begin{aligned}
E_{1} & =4 s D_{x} \\
E_{2} & =2\left(3 D_{x} s^{2}+H C^{2}\right) \\
E_{3} & =4 s\left(D_{x} s^{2}+H c^{2}\right) \\
E_{4} & =D_{x} s^{4}+2 H s^{2} C^{2}+D_{y} c^{4} \\
c & =\cos \theta \text { and } s=\sin \theta
\end{aligned}
$$

3.4 Relation of Stress and Strain for Bending Action

Solving equations 3.1 and 3.3 to find $W_{I_{x x}}$ and W_{y} and substituting these two terms in the following formulae (31) relating strain to curvature,

$$
\left.\begin{array}{l}
\varepsilon_{x}=-z W_{1} x \tag{3.6}\\
\varepsilon_{y}=-z W_{y}
\end{array}\right\}
$$

yields the strains in x and y directions in terms of the rigidities and moments:

$$
\left.\begin{array}{l}
\varepsilon_{x}=z\left(M_{x} D_{y}-M_{y} D_{1}\right) /\left(D_{x} D_{y}-D_{1} D_{2}\right) \tag{3.7}\\
\varepsilon_{y}=z\left(M_{y} D_{x}-M_{x} D_{2}\right) /\left(D_{x} D_{y}-D_{1} D_{2}\right)
\end{array}\right\}
$$

z is the depth of the neutral axis from the top fibre.

3.5 Elastic Properties of the Waffle Slab Model

As mentioned earlier, the condition of orthotropy for the slabs treated herein, was mainly due to geometry and steel reinforcement. The problem was idealized by assuming that the slab is made of a homogeneous material with different elastic properties in two mutually perpendicular directions. Waffle slab construction considered as a "composite system" consists of two parts, the grid, and the plate. This "composite system" displays a high degree of torsional rigidity, especially for skew slabs. The composite system may be arranged in a sequence of structural forms; the sequence may consist of limiting case having a simple grid with no plate and the other extreme case of a true orthotropic slab; various types of composite systems fall between these two limits.

In addition to the basic assumptions in deriving the governing differential equation for an orthotropic plate, the following assumptions are made with respect to waffle slab construction:

1. The number of ribs in both directions is large enough for the real structure to be replaced by an idealized one with continuous properties.
2. The neutral plane in each of the two orthogonal directions coincides with the centre of gravity of the total section in the corresponding direction.
3. The area of the flange plate is magnified by the factor $l /\left(1-\mu^{2}\right)$ due to the effect of Poisson's ratio μ.

Since the thickness of the slab is constant and the slab material is continuous, as assumed before, the different elastic properties in two principal directions must be due to different moments of inertia per unit width of the slab. The modulus of elasticity in two perpendicular directions are equal ($E_{x}=E_{y}=E$) as well as Poisson's ratio ($\mu_{x}=\mu_{y}=\mu$) and the torsional rigidities $D_{x y}$ and $D_{Y x}$ are equal.

There is no difficulty in determining the flexural rigidities D_{x} and D_{y} of the slab models, but the difficulty is to find an accurate value for the torsional rigidities. Various methods of estimating the load distribution in concrete bridge decks $(2,13,26)$ have been proposed to date. In all of these methods, values of flexural and torsional rigidities of the deck structures are required before the analysis can proceed. Some of the methods used for estimating the torsional rigidities are very limited in their application and can lead to appreciable errors in the value of the torsional parameter, unless their limitations are recognized. A method of determination of rigidities was
investigated by Huffington (10).
3.6 Rigidities of Uncracked Sections
3.6.1 Flexural Rigidities

It is assumed that the neutral planes in each of the two coordinate directions coincides with the centre of gravity of the total section. This is an approximation only, since it can be shown that the location of the neutral surfaces is a function of the deflection as well as the geometry of the section.

Figure 3.2 shows a typical section of a waffle-type slab. Based on the assumptions made before, the orthotropic flexural rigidities D_{X} and D_{Y}, as well as the coupling rigidities D_{1} and D_{2} due to the Poisson's effect (13) can be put in the form,

$$
\begin{align*}
& D_{x}=D+\left\{E h\left(e_{x}-h / 2\right)^{2} /\left(1-\mu^{2}\right)\right\}+E I_{x}^{\prime} / S_{x} \\
& D_{y}=D+\left\{E h\left(e_{y}-h / 2\right)^{2} /\left(1-\mu^{2}\right)\right\}+E I_{y}^{\prime} / S_{y} \tag{3.8}\\
& D_{1}=\mu D_{x}^{\prime} \\
& D_{2}=\mu D_{y}^{\prime}
\end{align*}
$$

where,

$$
\begin{align*}
D= & \text { the flexural rigidity of the flange plate with } \\
& \text { respect to its middle plane, Eh }{ }^{3} / 12\left(1-\mu^{2}\right) . \\
E= & \text { modulus of elasticity of the concrete } \\
= & 57000 \sqrt{f_{C}^{\prime}} \cdot(1) \tag{1}\\
f_{C}^{\prime}= & 28 \text { day concrete cylinder strength in psi }
\end{align*}
$$

$$
\begin{align*}
& h=\text { thickness of the flange plate } \\
& \mu=\text { Poisson's ratio of concrete } \\
& =\sqrt{f_{c}^{\prime} / 350}(8,12) \\
& S_{Y}=\text { spacing of longitudinal ribs } \\
& S_{x}=\text { spacing of transverse ribs } \\
& e_{x}=\text { depth of neutral plane from top fibre for } \\
& \text { bending in the } x \text { direction } \\
& e_{Y}=\text { depth of neutral plane from top fibre for } \\
& \text { bending in the } y \text { direction, ide., } \\
& e_{x}=\left\{b_{x} d_{x}\left(h+d_{x} / 2\right)+(n-1) A_{s}\left(h+d_{x}-d^{\prime}\right)+s_{x} h^{2} /\right. \\
& \left.2\left(1-\mu^{2}\right)\right\} /\left\{b_{x} d_{x}+(n-1) A_{s}^{\prime}+S_{x} h /\left(1-\mu^{2}\right)\right\} \\
& e_{Y}=\left\{b_{Y} d_{Y}\left(h+d_{Y} / 2\right)+(n-1) A_{S}\left(h+d_{Y}-d^{\prime \prime}\right)+s_{Y} h^{2} /\right. \\
& \left.2\left(1-\mu^{2}\right)\right\} /\left\{b_{y} d_{y}+(n-1) A_{s}+S_{y} h /\left(1-\mu^{2}\right)\right\} \\
& I_{X}^{\prime}=\text { moment of inertia of transverse rib with } \\
& \text { respect to the assumed neutral axis } \\
& I_{y}^{\prime}=\text { moment of inertia of longitudinal rib with } \\
& \text { respect to the assumed neutral axis, ide., } \\
& I_{x}^{\prime}=b_{x} d_{x}\left\{\left(h+d_{x} / 2\right)-e_{x}\right\}^{2}+(n-1) A_{s}^{\prime}\left\{\left(h+d_{x}-d^{\prime}\right)-e_{x}\right\} 2 \\
& +b_{x} d_{x}^{3 / 12} \\
& \begin{aligned}
I_{Y}^{\prime} & =b_{Y} d_{Y}\left\{\left(h+d_{Y} / 2\right)-e_{Y}\right\}^{2}+(n-1) A_{s}\left\{\left(h+d_{Y}-d^{\prime \prime}\right)-e_{Y}\right\}^{2} \\
& +b d^{3}
\end{aligned} \\
& +b_{Y} d_{Y}^{3 / 12} \tag{3.10}
\end{align*}
$$

in which,

$$
\begin{aligned}
& \mathrm{n}=\text { modular ratio } \\
& =E_{S} / E_{C} \\
& b_{y}=\text { width of longitudinal rib } \\
& b_{x}=\text { width of transverse rib } \\
& d_{y}=\text { depth of the longitudinal rib } \\
& d_{x}=\text { depth of the transverse rib } \\
& d^{\prime \prime}=\text { concrete cover to the centre of the longitudinal } \\
& \text { reinforcements } \\
& d^{\prime}=\text { concrete cover to the centre of the transverse } \\
& \text { reinforcements } \\
& A_{S}=\text { area of reinforcement steel in the longitudinal } \\
& \text { direction } \\
& A_{s}^{\prime}=\text { area of reinforcement steel in the transverse } \\
& \text { direction } \\
& \text { respect to the neutral plane of the gross- } \\
& \text { section associated with bending in the } x \\
& \text { direction } \\
& D_{y}^{\prime}=f l e x u r a l \text { rigidities of the flange plate with } \\
& \text { respect to the neutral plane of the gross- } \\
& \text { section associated with bending in the } y \\
& \text { direction } \\
& \text { Since it is assumed that the number of ribs in both } \\
& \text { directions is large, the effective width of the flange plate }
\end{aligned}
$$

acting with one rib is taken as the distance between two adjacent ribs. Most of the investigators who have taken the same effective width have obtained very good results.

3.6.2 Torsional Rigidities

Reliable information on the estimation of the torsional rigidities of a bridge deck are very limited. The effective torsional rigidities H, in Eq. 3.3 is given by,

$$
\begin{equation*}
H=\left(D_{x y}+D_{y x}+D_{1}+D_{2}\right) / 2 \tag{3.11}
\end{equation*}
$$

For the analysis of reinforced concrete slabs with different reinforcements in the two prependicular directions, Huber recommended the expression, $H=\sqrt{D_{X} D_{Y}}$; such an expression gives a too high an estimate for T beam section.

The main problem lies in finding the values of $D_{x y}$ and $D_{y x}$, which are given by

$$
\begin{align*}
& D_{x y}=G_{x y} I_{x y} \tag{3.12}\\
& D_{y x}=G_{y x} I_{y x}
\end{align*}
$$

where,

$$
\begin{aligned}
G_{x y} & =G y x \\
& =\text { shear modulus } \\
& =E / 2(1+\mu)
\end{aligned}
$$

$$
I_{X y} \text { and } I_{Y x} \text { are the torsional constants }
$$

A number of investigators have obtained the torsional constants for structural steel and aluminum-alloy sections,
using membrane analogy and/or numerical methods. Massonet and Rowe $(2,25)$ have determined the torsional constants by dividing open section into a number of rectangular areas. Thus the torsional constant is given by,

$$
\begin{equation*}
I_{X Y} S_{x} \text { or } I_{y x} S_{y}=\left(\frac{1}{2} k_{1} a_{1}^{3} b_{1}+\sum_{I}^{\sum_{2}^{n}} k_{i} a_{i}^{3} b_{i}\right) \tag{3.13}
\end{equation*}
$$

where,

$$
\begin{aligned}
s_{x}, s_{y} & =\text { spacing of transverse (longitudinal) ribs } \\
a_{1} & =\text { the smaller dimension of the cut area } \\
b_{1} & =\text { the larger dimension of the cut area } \\
k & =\text { factor depend on the ratio } a_{i} / b_{i}(31)
\end{aligned}
$$

Jackson (11) has considered the value mentioned above as not accurate enough since it neglects the junction effect on the torsional rigidity. The twisting rigidity of the uncracked section of concrete waffle-type slab is estimated by means of the membrane analogy method (31) taking into account the stiffening effect afforded by the ribs in the orthogonal direction to the one under consideration. Considering the geometry of the deflected membrane, the torsional constant for the rectangular sections 1,2 and 3 as shown in Figure 3.3 are calculated to give the total torsional constant, $I_{x y}$.

$$
\begin{equation*}
I_{x y}=I_{x y_{1}}+I_{x y_{2}}+I_{x y_{3}} \tag{3.14}
\end{equation*}
$$

in which,

$$
I_{x y_{1}}=\frac{1}{2} k_{1} S_{y} h^{3}
$$

$$
\begin{align*}
I_{X y_{2}} & =k_{1} d_{y} b_{y}^{3} \quad\left(\text { if } d_{y}>b_{y}\right) \\
& =k_{1} b_{y} d_{y}^{3} \quad\left(\text { if } b_{y}>d_{y}\right) \tag{3.15}\\
I_{X y_{3}} & =4 k_{1}(n-1)\left(A_{S}^{\prime}\right)^{2} / \pi
\end{align*}
$$

where,

$$
I_{X Y_{1}} \text { is reduced by factor } \frac{1}{2} \text { which accounts for the }
$$ continuity of the flange plate. The torsional constant $I_{x y_{I}}$ is modified by (Kennedy and Bali (13)) taking into account the effect of transverse ribs in both directions. It is assumed that the presence of the transverse rib will increase the torsional constant of the slab as:

$$
\begin{equation*}
I_{x y_{I}}(\text { modified })=I_{x y_{I}}\left(I_{x y_{(S+W)}} / I_{x y_{(S)}}\right) \tag{3.16}
\end{equation*}
$$

in which,

$$
\begin{aligned}
I_{X Y}(S+W)
\end{aligned}=\begin{gathered}
\text { torsional rigidity of slab and rib of } \\
\\
\\
\text { the transverse or longitudinal ribs }
\end{gathered}
$$

Equation 3.14 becomes

$$
\begin{equation*}
I_{x y}=I_{x y_{1}}(\text { modified })+I_{x y_{2}}+I_{x y_{3}} \tag{3.17}
\end{equation*}
$$

in which,

$$
\begin{aligned}
I_{X Y_{3}}= & \text { torsional rigidity of transformed section } \\
& \text { of steel (13) }
\end{aligned}
$$

Similarly, the torsional rigidities $D_{Y x}$ can be calculated in the same way.

3.7 Plane Stress Problem Due To Prestressing Force

3.7.1 Elastic Constants For Membrane Action

Assuming the corresponding strains in the flange plate element (deck) and the ribs are equal, and that shearing action is resisted by the flange plate alone, the following relations for equivalent elastic constants can be developed. The stress resultants per unit length in an isotropic flange plate element, shown in Figure 3.2, are:

$$
\left.\begin{array}{l}
\left(\tau_{x}\right)_{1}=\sigma_{x} h=h\left(E_{x} /\left(1-\mu^{2}\right)\right)\left(\varepsilon_{x}+\mu \varepsilon_{y}\right) \tag{3.18}\\
\left(\tau_{y_{1}}\right)_{1}=\sigma_{y} h=h\left(E_{y} /\left(1-\mu^{2}\right)\right)\left(\varepsilon_{y}+\mu \varepsilon_{x}\right) \\
\left(\tau_{x y}\right)_{1}=\tau_{x y} h=h G_{x y}
\end{array}\right\}
$$

where E, G and μ are the material properties of the concrete.
For the same strains in the rib, the stress resultants per unit length, are:

$$
\begin{align*}
& \left(\tau_{x}\right)_{2}=E_{x} \varepsilon_{x} A_{x}^{*} \\
& \left(\tau_{y}\right)_{2}=E_{y} \varepsilon_{y} A_{y}^{*} \tag{3.19}\\
& \left(\tau_{x y}\right)_{2}=0
\end{align*}
$$

where A_{X}^{*} and A_{Y}^{*} are the cross-sectional areas per unit length of the ribs in the x and y directions, respectively. The total stress resultants per unit length of an element are:

$$
\begin{align*}
& \left.=h \left\lvert\, \begin{array}{ccc}
E_{X}^{\prime} & E_{1} & 0 \\
E_{2} & E_{Y}^{\prime} & 0 \\
0 & 0 & G
\end{array}\right.\right\}\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{Y} \\
\gamma_{X Y}
\end{array}\right\} \tag{3.20}
\end{align*}
$$

where,

$$
\begin{aligned}
& E_{X}^{\prime}=E_{X}\left(1 /\left(1-\mu^{2}\right)+A_{X}^{*} / h\right) \\
& E_{1}=\mu E_{X} /\left(1-\mu^{2}\right) \\
& E_{2}=\mu E_{Y} /\left(1-\mu^{2}\right) \\
& E_{Y}^{\prime}=E_{Y}\left(1 /\left(1-\mu^{2}\right)+A_{Y}^{*} / h\right)
\end{aligned}
$$

Based on the directions of the axes, x and $y, ~ a s$ shown in Figure 3.2,

$$
\begin{aligned}
& A_{x}^{*}=\left(b_{x}\right)(d-h) / s_{x} \\
& A_{y}^{*}=\left(b_{y}\right)(d-h) / s_{Y}
\end{aligned}
$$

solving equations 3.20 to find the strains in both directions yields,

$$
\left.\begin{array}{l}
\varepsilon_{x}=\left(\left(\tau_{x} / h\right) E_{y}^{\prime}-\left(\tau_{y} / h\right) E_{2}\right) /\left(E_{x}^{\prime} E_{y}^{\prime}-E_{1} E_{2}\right) \tag{3.21}\\
\varepsilon_{y}=\left(\left(\tau_{y} / h\right) E_{x}^{\prime}-\left(\tau_{x} / h\right) E_{1}\right) /\left(E_{x}^{\prime} E_{y}^{\prime}-E_{1} E_{2}\right)
\end{array}\right\}
$$

in which ε_{x} and ε_{y} are the strains in the x and y directions due to the in-plane prestressing.

It should be noted that the deflection due to inplane stresses is very small and can be neglected. Therefore the total deflection in the slab can be considered to be due to the lateral loads and the edge moments. On the other hand, the total strain in the slab is due to the lateral loads, in-plane forces and edge moments.

3.8 Boundary Conditions

A solution for the deflection function $W_{(x, y)}$ in cartesian coordinates or for $W_{(}(u, v)$ in oblique coordinates to the plate problem must be consistent with the conditions at the edges of the plate. The kind of support is theoretically defined by three "boundary conditions" along each edge. The boundary conditions have to be re-formulated first in terms of the deflection, if the solution is to be based on the deflection. Thus rectangular and skew slabs have 12 boundary conditions which are to be satisfied by the solution of the partial differential equation governing the problem. However, this governing equation is of the fourth order in the variables x and y or u and v, and its solution involves only 8 arbitrary constants. These constants can be made to fit only 8 boundary conditions, two for each edge, so that the three conditions mentioned above must be reduced to two conditions. The boundary conditions for single span waffle slabs are presented below.

3.8.1 Bridge Slabs

The simple bridge type shown in Figures $3.4,3.5$ is simply supported along two opposite edges ($\mathrm{v}= \pm \mathrm{b}$) and free or elastically supported at the remaining two edges ($u= \pm a$) .

At the simply supported edges, there is no vertical deflection, and the bending moments about these edge-lines equal the edge moments due to the prestressing. These two boundary conditions can be formulated as follows:

1. $W_{(v= \pm b)}=0$ for $-a<u<a$
2. $M_{n(v= \pm b)}=M_{x} s^{2}+M_{y} c^{2}+\left(M_{x y}-M_{y x}\right) s c_{(v= \pm b)}$

$$
=M_{\text {external }}^{(v= \pm b)}
$$

or

$$
\begin{equation*}
R_{1} W_{u v}+R_{2} W_{v v}=M_{\text {external }} a t v= \pm b \text { for }-a<u<a \tag{3.23}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{1}=s\left(2 D_{x} s^{2} / c^{2}+2 D_{2}+D_{x y}+D_{y x}\right) \\
& R_{2}=-s^{2}\left(D_{x} s / c^{2}+2 H\right)-c^{2} D_{y} \\
& \text { It should be noted that } W_{Y u}=0 \text { and } W=W_{\prime_{u}}=0
\end{aligned}
$$ on the simple support

3. According to Timoshenko (31), combining the shear force along the edge with forces replaced by the twisting couples and equating this to the pressure transmitted from the plate to the supporting edge beam, lead to the following

equation:

$-\left(Q_{x}-M_{x y, y}\right)=E I W_{y} y_{Y Y}$
i.e.,
$D_{X} W_{x X X}+\left(D_{1}+D_{x Y}+D_{Y X}\right) W_{r_{X Y}}=E I W_{Y Y Y Y}$
or
$R_{3} W_{\text {, uuu }}+R_{4} W$ ' uuv $^{\prime}+R_{5} W_{\text {, uvv }}+R_{6} W_{\text {, vvv }}-E I W_{\text {, vvvv }}=0$

$$
\begin{equation*}
@ \mathrm{u}= \pm \mathrm{a} \text { for }-\mathrm{b}<\mathrm{v}<\mathrm{b} \tag{3.24}
\end{equation*}
$$

where,

$$
\begin{aligned}
& R_{3}=D_{x} / c^{3} \\
& R_{4}=-3 D_{x} s / c^{3} \\
& R_{5}=\left(3 D_{x} s^{2} / C^{2}+D_{1}+D_{x y}+D_{y x}\right) / C \\
& R_{6}=-s\left(D_{x} s^{2} / c^{2}+D_{1}+D_{x y}+D_{y x}\right) / C \\
& E I=\text { flexural rigidities of the edge beam }
\end{aligned}
$$

4. Along the elastically supported edge ($u= \pm a$), equating the external moment due to prestressing force combined with the change in twisting moment in the edge beam to the plate internal moment parallel to the x-axis, yield:
$-M_{X}=-G J\left(W,_{x y_{r} Y}\right)-M_{\operatorname{ext}}(u= \pm a)$
i.e.,
$D_{x} W_{\prime_{x}}+D_{1} W_{Y Y}=-G J\left(W,{ }_{x y Y}\right)-M \operatorname{ext} \cdot(u= \pm a)$
or

$$
\begin{equation*}
@ \quad u= \pm a \text { for }-b<v<b \tag{3.25}
\end{equation*}
$$

where,

$$
\begin{aligned}
R_{7} & =D_{x} / c \\
R_{9} & =-2 D_{x} s / c \\
R_{9} & =\left(D_{x} s^{2}+D_{1} c^{2}\right) / C \\
R_{10} & =-s G J \\
G J & =\text { torsional rigidity of the edge beam }
\end{aligned}
$$

The boundary conditions for the bridge slab where the two edges are free are obtained by putting the rigidities for the edge beams $E I$ and $G J$ equal to zero.

ANALYTICAL SOLUTION

4.1 General

The mathematical solution comprises of finding a suitable complementary function which satisfies the governing equation (Eq. 3.5), and a particular solution which satisfies all the given boundary conditions. Combining the two solutions, a complete solution for the slab is obtained as follows:

$$
\begin{equation*}
W=W_{c}+W_{p} \tag{4.1}
\end{equation*}
$$

where,

$$
\begin{aligned}
W & \text { The total deflection at a point on the } \\
& \text { plate } \\
W_{c}= & \text { Deflection found from the complementary } \\
& \text { solution of the homogeneous equation (Eq. 3.5) } \\
W_{p}= & \text { Deflection from the particular solution of } \\
& \text { the non-homogenous equation. }
\end{aligned}
$$

4.2 Complementary Solution

According to Levy's solution, the deflection of the plate surface is assumed in the form of a Fourier series as

$$
\begin{equation*}
W_{c}=\sum_{n=1}^{\infty} e^{\lambda_{n} u}\left(P_{n} \sin \beta_{n} v+Q_{n} \cos \beta_{n} v\right) \tag{4.2}
\end{equation*}
$$

where,

$$
\lambda_{n}, P_{n} \text { and } Q_{n} \text { are basic functions of the elastic }
$$ properties and the geometry of the plate; n equals number

of harmonics chosen to make the series closely convergent; and, $\quad \beta_{n}=n \pi / b$

Solving equations 4.1 and 3.5 for $q(u, v)$ equals zero, and equating the coefficients of $\sin \beta_{n} v$ and $\cos \beta_{n} v$, yields two equations in P_{n} and Q_{n}. According to Gupta (8) the final expression for λ_{n} is

$$
\begin{equation*}
\lambda_{n}=\left\{ \pm l\left(H \pm \sqrt{\left.H^{2}-D_{x} D_{Y}\right) / D_{x}}\right]^{0.5} c \pm i s\right\} \beta_{n} \tag{4.3}
\end{equation*}
$$

It can be observed, from equation 4.3, that there are eight possible values for λ_{n} which give rise to eight possible solutions.

For the slab model considered herein, it is assumed that the slab is flexurally stiff and torsionally weak, i.e., $\left(H^{2}<D_{X} D_{Y}\right)$. This case includes all T-beam and open rib deck bridges.

4.2.1 Waffle Slab Which is Flexurally Strong and Torsionally Weak

The solution of a waffle slab can be taken as $W_{C l}=\sum_{n=1}^{\infty}\left(C_{1 n} \cosh k_{3} \beta_{n} u+C_{2 n} \sinh k_{3} \beta_{n} u\right) \cos \left(k_{4} u+v\right) \beta_{n}$
$+\left(C_{3 n} \cosh k_{3} \beta_{n} u+C_{4 n} \sinh k_{3} \beta_{n} u\right) \sin \left(k_{4} u+v\right) \beta_{n}$
$+\left(C_{5 n} \cosh k_{3} \beta_{n} u+C_{6 n} \sinh k_{3} \beta_{n} u\right) \cos \left(k_{5} u-v\right) \beta_{n}$

$$
\begin{equation*}
+\left(C_{7 n} \cosh k_{3} \beta_{n} u+C_{8 n} \sinh k_{3} \beta_{n} u\right) \sin \left(k_{5} u-v\right) \beta_{n} \tag{4.4}
\end{equation*}
$$

in which λ_{n} for this case can be written in the form

$$
\begin{equation*}
\lambda_{n}= \pm\left(k_{1} \pm i s\right) \beta_{n} \text { or } \pm\left(k_{2} \pm i s\right) \beta_{n} \tag{4.5}
\end{equation*}
$$

where,

$$
\begin{aligned}
& k_{1}=\left(c\left(H+\sqrt{\left.H^{2}-D_{X} D_{Y}\right)} / D_{X}\right)^{0.5}\right. \\
& k_{2}=\left(c\left(H-\sqrt{H^{2}-D_{X} D_{Y}}\right) / D_{X}\right) 0.5
\end{aligned}
$$

$C_{1 n}$ to $C_{8 n}$ are arbitrary constants dependent on n and adjusted to satisfy the boundary condition. See references $(7,8)$ and Appendix (A) for a more general representation of the deflection function W. Another possible complementary solution of W can be written as;

$$
\begin{align*}
& W_{c 2}= \\
& \sum_{n=1}^{\infty}\left(c_{9 n} \cosh x_{2} k_{3} \alpha_{n} v+c_{10 n} \sinh x_{x} k_{3} \alpha_{n} v\right) \cos \left(x_{2} k_{4} v+u\right) \alpha_{n} \\
& +\left(c_{11 n} \cosh x_{2} k_{3} \alpha_{n} v+c_{12 n} \sinh x_{2} k_{3} \alpha_{n} v\right) \sin \left(x_{2} k_{4} v+u\right) \alpha_{n} \\
& +\left(c_{13 n} \cosh y_{2} k_{3} \alpha_{n} v+c_{14 n} \sinh y_{2} k_{3} \alpha_{n} v\right) \cos \left(y_{2} k_{5} v-u\right) \alpha_{n} \\
& +\left(c_{15 n} \cosh y_{2} k_{3} \alpha_{n} v+c_{16 n} \sinh y_{2} k_{3} \alpha_{n} v\right) \sin \left(y_{2} k_{5} v-u\right) \alpha_{n} \tag{4.6}
\end{align*}
$$

where,

$$
\begin{aligned}
& \alpha_{n}=n \pi / a \\
& \dot{x}_{1}=1 /\left(k_{1}^{2}+s^{2}\right) \\
& x_{2}=1 /\left(k_{2}^{2}+s^{2}\right)
\end{aligned}
$$

The boundary conditions used for the slab are eight in number (two along each edge) and the deflection function is made to satisfy these boundary conditions. Expanding each boundary condition in a Fourier series, will yield three equations and hence 24 equations for the eight
boundary conditions.
To use the same number of arbitrary constants in the deflection function, the following polynomial function is assumed and added:
$W_{c 3}=\left\{c_{17}+c_{18} u / a+c_{19} v / b+c_{20} u^{2 / a^{2}}+c_{21} v^{2} / b^{2}+\right.$

$$
\begin{equation*}
\left.c_{22} u^{3} / a^{3}+c_{23^{2}} v^{3} / b^{3}+c_{24}\left(T u^{4}-v^{4}\right) / b^{4}\right\} \tag{4.7}
\end{equation*}
$$

in which,

$$
T=\left(s^{4} D_{x}+2 s^{2} c^{2} H+c^{4} D_{y}\right) / D_{x}
$$

C_{17} to C_{24} are arbitrary constants. Thus the total complementary solution becomes,

$$
\begin{equation*}
w_{c}=w_{c 1}+w_{c 2}+w_{c 3} \tag{4.8}
\end{equation*}
$$

4.3 Particular Solution

The particular solution has to be determined and added to the complementary solution and must satisfy the boundary conditions. The uniform load or concentrated load acting on a limited area as shown in Figure 4.1 is expanded into double Fourier series over the entire area of the slab. Following Gupta (8) the particular solution can be taken as:

$$
\begin{aligned}
W_{p} & =\left\{\left(a_{0} c^{4} / 4 E_{4}\right)\left(v^{4} / 24-v^{2} b^{2} / 4+5 b^{4} / 24\right)\right. \\
& +I^{\Sigma^{\infty}\left(T_{5 m} \cos \alpha_{m} u+T_{7 m} \sin \alpha_{m} u\right)} \\
& +I^{\Sigma}{ }^{\infty}\left(T_{6 n} \cos \beta_{n} v+T_{8 n} \sin \beta_{n} v\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
+I^{\Sigma^{\infty} I^{\infty}\left(K_{m n} \cos \alpha_{m} u \cos \beta_{n} v+p_{m n} \sin \alpha_{m} u \cos \beta_{n} v\right.} \\
\left.+\quad Q_{m n} \cos \alpha_{m} u \sin \beta_{n} v+L_{m n} \sin \alpha_{m} u \sin \beta_{n} v\right) \tag{4.9}
\end{array}\right\}
$$

4.4 Symmetric and Anti-Symmetric Loading

The loading on the structure is divided into symmetric and anti-symmetric components. This division is applied to the lateral load and the prestressing force along the edges of the slab. For symmetric loading odd terms vanish, i.e.,
$c_{2 n}=c_{3 n}=c_{6 n}=c_{7 n}=c_{10 n}=c_{11 n}=c_{14 n}=c_{15 n}=$

$$
\begin{equation*}
c_{18}=c_{19}=c_{22}=c_{23}=Q_{7 m}=Q_{8 \mathrm{n}}=Q_{3 \mathrm{mn}}=Q_{4 \mathrm{mn}}=0 \tag{4.10}
\end{equation*}
$$

For the anti-symmetric loading, all even terms vanish, i.e.,

$$
c_{1 n}=c_{4 n}=c_{5 n}=c_{8 n}=c_{9 n}=c_{12 n}=c_{13 n}=c_{16 n}=c_{17}=
$$

$$
\begin{equation*}
c_{20}=c_{21}=c_{24}=a_{0}=Q_{5 m}=Q_{6 n}=Q_{1 m n}=Q_{2 m n}=0 \tag{4.11}
\end{equation*}
$$

By superposition, the results for any lateral loading can be obtained with the added advantage that the number of boundary conditions is reduced to four for each loading component.
4.5 Expansion of the In-Plane Prestressing Force In a Fourier Series by Graphical Method

When the equation for a periodic function is not known but a graph of the waveform is available (such as a variable prestressing force along the edges of a slab
bridge), it is possible to obtain an approximate solution for the Fourier coefficients by means of graphical techniques (17,33). Actually this method represents a concept of graphical integration. This is accomplished by dividing one cycle into m equal divisions. The dependent-variable value (donated by Y_{k} 's) in Figure 4.2 is obtained at the mid-point of each of these intervals. The coefficients of the Fourier series representing the in-plane prestressing force can be shown to be, (See Appendix C),

$$
\begin{aligned}
& a_{0}=(2 / m) \underset{k=1}{\sum_{i}^{m}} Y_{k}
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{b}_{\mathrm{n}}=(2 / \mathrm{m}) \mathrm{k}_{\mathrm{E}}^{\mathrm{E}}{ }_{1}^{\mathrm{m}}(-1)^{\mathrm{n}_{\mathrm{K}}} \sin (2 \mathrm{n} \pi / \mathrm{m})\left(\mathrm{k}-\mathrm{b}_{\mathrm{L}}\right) \tag{4.12}
\end{align*}
$$

CHAPTER V

SATISFACTION OF BOUNDARY CONDITIONS

To obtain the matrix equations, the deflection function must satisfy the boundary conditions for the slab subjected to any arbitrary lateral load. This is accomplished by dividing such a load into symmetric and antisymmetric loads.

5.1 Symmetric Load

1) The deflection must be zero at the edge $v= \pm b$. Substituting equations $3.22,4.4,4.6,4.7,4.8,4.9$ and 4.10 in equation 4.1 , the following equation is obtained (8).

$$
\begin{align*}
& f_{0}(u)+\sum_{1} \sum^{\infty}\left(f_{n}(u)+A_{n} \cos \alpha_{n} u+B_{n} \sin \alpha_{n} u\right) \tag{5.1}
\end{align*}
$$

in which

$$
\begin{aligned}
f_{0}(u) & =C_{17}+C_{20} u^{2} / a^{2}+C_{21}+C_{24}\left[\left(T u^{4} / b^{4}\right)-1\right] \\
f_{n}(u) & =(-1)^{n}\left[c_{1 n} \cosh u_{3 n} \cos u_{4 n}+C_{4 n} \sinh u_{3 n} \sin u_{4 n}\right. \\
& \left.+C_{5 n} \cosh u_{3 n} \cos u_{5 n}+C_{8 n} \sinh u_{3 n} \sin u_{5 n}\right] \\
A_{n} & =C_{9 n} K_{1 n}+C_{12 n} K_{2 n}+C_{13 n} L_{1 n}+C_{16 n} L_{2 n}
\end{aligned}
$$

and

$$
B_{n}=-C_{9 n} K_{4 n}+C_{12 n^{\prime}} K_{3 n}+C_{13 n} L_{4 n}-C_{16 n} L_{3 n}
$$

In which, $u_{3 n}, u_{4 n}, u_{5 n}, K_{1 n}$ to $K_{8 n}$ and $I_{1 n}$ to $I_{8 n}$ are defined in Appendix (A).

The function $f_{o}(u)$ and $f_{n}(u)$ must be expanded in Fourier series to satisfy the boundary condition along the entire length of the edge, thus:

$$
\begin{align*}
& f_{0}(u)=a_{00}+\sum_{1} \sum^{\infty}\left(a_{o m} \cos \alpha_{m} u+b_{o m} \sin \alpha_{m} u\right) \tag{5.2}\\
& f_{n}(u)=c_{n 0}+\sum_{1} \sum^{\infty}\left(c_{n m} \cos \alpha_{m} u+a_{n m} \sin \alpha_{m} u\right)
\end{align*}
$$

where, $a_{00}, a_{o m} b_{o m}, c_{n o}, c_{n m}$ and $d_{n m}$ are Fourier coefficient and defined in Appendix (B).

Substituting equation 5.2 in equation 5.1 and equating the coefficients of $\sin \alpha_{m} u$ and $\cos \alpha_{m} u$ and the constant term to zero, the following three equations are obtained:

$$
\begin{align*}
& a_{00}+\sum_{1}^{\sum^{\infty} c_{n O}=-\sum_{1}^{\infty}(-1)^{n} T_{6 n}} \\
& a_{n m}+1_{1}^{\sum^{\infty} c_{n m}+A_{m}=-T_{5 m}-1_{1} \sum^{\infty}(-1)^{n} K_{m n}} \tag{5.3}\\
& B_{m}=0 \quad \text { for each } m .
\end{align*}
$$

Substituting the Fourier coefficients in equation 5.3, Yields three equations:

$$
\begin{align*}
& C_{17}+c_{20 / 3}+c_{21}+C_{24}\left[\left(T a^{4} / 5 b^{4}\right)-1\right] \\
+ & 1^{\sum^{\infty}(-1)^{n}\left(C_{1 n} W_{1 n}+C_{4 n} W_{2 n}+C_{5 n} W_{3 n}+C_{8 n} W_{4 n}\right)} \\
= & -\sum_{1}^{\sum^{\infty}(-1)^{n} T_{6 n}} \tag{5.4}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{C}_{20} \mathrm{I}_{1 \mathrm{~m}}+\mathrm{C}_{24} \mathrm{TI}_{3 \mathrm{~m}} \mathrm{a}^{4} / \mathrm{b}^{4} \\
& +\Sigma_{1} \Sigma^{\infty}(-1)^{n}\left(C_{1 n} A_{j 1}+C_{4 n} A_{j 2}+C_{4 n^{A}}{ }_{j 2}+C_{5 n} A_{j 3}+C_{8 n} A_{j 4}\right) \\
& +C_{9 m}{ }_{1 m}+C_{12 m} K_{2 m}+C_{13 m}{ }^{L}{ }_{1 m}+C_{16 m}{ }^{L} 2 m \\
& =-T_{5 m}-I^{\Sigma^{\infty}(-1)^{n^{2}}} \mathrm{~K}_{\mathrm{mn}} \tag{5.5}\\
& -C_{9 n} K_{4 n}+C_{12 n} K_{3 n}+C_{13 n} L_{4 n}-C_{16 n} I_{3 n}=0 \tag{5.6}
\end{align*}
$$

2) Boundary condition 3.23 relates the moment normal to the support to the deflection function. Thus,

$$
\begin{aligned}
& f_{0}(u)+I^{\Sigma^{\infty}}\left(f_{n}(u)+A_{n} \cos \alpha_{n} u+B_{n} \sin \alpha_{n} u\right)
\end{aligned}
$$

$$
\begin{align*}
& +\left(1 / m_{u}\right)_{k} \underline{\underline{\varepsilon}}_{1}^{m_{u}} m_{k}+\left(2 / m_{u}\right){ }_{k} \underline{\underline{\varepsilon}}_{1}^{m_{u}} n_{n}^{\underline{\varepsilon}_{1}^{n}}(-1)^{n_{k}} m_{k} \cos \left[n \pi\left(k-\xi_{\Sigma}\right) / m_{u}\right] \tag{5.7}
\end{align*}
$$

where,

$$
\begin{aligned}
f_{0}(u)= & 2 C_{21} R_{2} / b^{2}-12 C_{24} R_{2} / b^{2} \\
f_{n}(u)=(-1)^{n} \beta_{n}^{2}\{ & C_{1 n}\left(A_{7} \cosh u_{3 n} \cos u_{4 n}-R_{1} K_{3} \sinh u_{3 n} \sin u_{4 n}\right) \\
& +C_{4 n}\left(R_{1} K_{3} \cosh u_{3 n} \cos u_{4 n}+A_{7} \sinh u_{3 n} \sin u_{4 n}\right) \\
& +C_{5 n}\left(B_{7} \cosh u_{3 n} \cos u_{5 n}+R_{1} K_{3} \sinh u_{3 n} \sin u_{5 n}\right) \\
& \left.+C_{8 n}\left(-R_{1} K_{3} \cosh u_{3 n} \cos u_{5 n}+B_{7} \sinh u_{3 n} \sin u_{5 n}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
A_{n}= & \alpha_{n}^{2}\left\{C_{9 n}\left(A_{8} K_{1 n}+A_{9} K_{2 n}\right)+C_{12 n}\left(-A_{9} K_{1 n}+A_{8} K_{2 n}\right)\right. \\
& \left.+C_{13 n}\left(B_{8} I_{1 n}+B_{9} I_{2 n}\right)+C_{6 n}\left(-B_{9} I_{1 n}+B_{8} I_{2 n}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& B_{n}=\alpha_{n}^{2}\left\{C_{9 n}\left(-A_{8} K_{4 n}+A_{9} K_{3 n}\right)+C_{12 n}\left(A_{9} K_{4 n}+A_{8} K_{3 n}\right)\right. \\
&\left.+C_{13 n}\left(B_{8} L_{4 n}-B_{9} L_{3 n}\right)+C_{16 n}\left(-B_{9} L_{4 n}-B_{8} L_{3 n}\right)\right\}
\end{aligned}
$$

the values of $A_{7}, A_{8}, \ldots B_{9}$ are defined in Appendix (A) $m_{u}=$ total number of concentrated edge moments (for $-a<u<a)$ due to prestressing force (m_{v} is for $-b<v<+b)$.
$m_{k}=a n$ edge moment at any point along the support. The second set of three equations due to the boundary condition (Equation 3.23) is obtained using the same procedure. Hence,

$$
\begin{align*}
& 2 C_{21} R_{2} / b^{2}-12 C_{24} R_{2} / b^{2}+{ }_{n} \underline{\underline{E}}_{1}^{\infty}(-1)^{n_{B_{n}}\left\{C_{1 n}\left(A_{7} W_{1 n}-R_{1} K_{3} W_{2 n}\right)\right.} \\
& +C_{4 n}\left(R_{1} K_{3} W_{1 n}+A_{7} W_{2 n}\right)+C_{5 n}\left(B_{7} W_{3 n}+R_{1} K_{3} W_{4 n}\right) \\
& \left.+C_{8 n}\left(-R_{1} K_{3} W_{3 n}+B_{7} W_{4 n}\right)\right\}={ }_{1} \Sigma^{\infty}(-1)^{n_{n}^{2} T_{6 n} R_{2}+\left(1 / m_{u}\right){ }_{k} \underline{\underline{\Sigma}}_{1}^{m} u_{m_{k}}} \tag{5.8}
\end{align*}
$$

$$
\begin{align*}
& { }_{n}^{\sum_{1}^{\infty}}(-1)^{n_{\beta_{n}^{2}}^{2}}\left\{C_{1 n}\left(A_{7} A_{j 1}-R_{1} K_{3} A_{j 2}\right)+C_{4 n}\left(R_{1} K_{3} A_{j 1}+A_{7} A_{j 2}\right)\right. \\
& \left.+C_{5 n}\left(B_{7} A_{j 3}+R_{1} K_{3} A_{j 4}\right)+C_{8 n}\left(-R_{1} K_{3} A_{j 3}+B_{7} A_{j 4}\right)\right\} \\
& +\alpha_{m}^{2}\left\{C_{9 m}\left(A_{8} K_{1 m}+A_{9} K_{2 m}\right)+C_{12 m}\left(-A_{9} K_{1 m}+A_{8} K_{2 m}\right)\right. \\
& \left.+C_{13 m}\left(B_{8} L_{1 m}+B_{9} I_{2 m}\right)+C_{16 m}\left(-B_{9} L_{1 m}+B_{8} L_{2 m}\right)\right\} \\
& ={ }_{n} \sum_{1}^{\infty}(-1)^{n} \beta_{n}\left(R_{2} \beta_{n} K_{m n}-R_{1} \alpha_{m} L_{m n}\right)+\left(2 / m_{u}\right) \\
& k^{\underline{E}_{1}^{m_{u}}}(-1)^{n_{k}} m_{k} \cos \left[2 n \pi\left(k-1_{2}\right) / m_{u}\right] \text { for } m \geqslant 1 \tag{5.9}
\end{align*}
$$

$$
\begin{align*}
& a_{n}^{2}\left\{C_{9 n}\left(-A_{8} K_{4 n}+A_{9} K_{3 n}\right)+C_{12 n}\left(A_{9} K_{4 n}+A_{8} K_{3 n}\right)\right. \\
& \left.\quad+C_{13 n}\left(B_{8} L_{4 n}-B_{9} I_{3 n}\right)+C_{16 n}\left(-B_{9} L_{4 n}-B_{8} L_{3 n}\right)\right\}=0 \tag{5.10}
\end{align*}
$$

$$
\text { for } n \geqslant 1
$$

3) The third boundary condition (Equation 3.24 for $-b<v<b)$ yields the following three equations:

$$
\begin{align*}
& 24 C_{24}\left(R_{3} T a+E I\right) / b^{4}+\sum^{\infty}(-1)^{n} \alpha_{n}^{4}\left\{C_{9 n}\left(A_{5} W_{5 n}+A_{6} W_{6 n}\right)\right. \\
& +C_{12 n}\left(-A_{6} W_{5 n}+A_{5} W_{6 n}\right)+C_{13 n}\left(B_{5} W_{7 n}+B_{6} W_{8 n}\right) \\
& \left.+C_{16 n}\left(-B_{6} W_{7 n}+B_{5} W_{8 n}\right)\right\}=c^{4} a_{0} E I / 4 E_{4} \tag{5.11}
\end{align*}
$$

$$
m_{m}^{\sum_{1}^{\infty}}(-1)^{m} \alpha_{m}^{4}\left\{C_{9 m}\left(A_{5} A_{j 5}+A_{6} A_{j 6}\right)+C_{12 m}\left(-A_{6} A_{j 5}+A_{5} A_{j 6}\right)\right.
$$

$$
\left.+C_{13 m}\left(B_{5} A_{j 7}+B_{6} A_{j 8}\right)+C_{16 m}\left(-B_{6} A_{j 7}+B_{5} A_{j 8}\right)\right\}
$$

$$
+B_{n}^{3}\left\{C_{1 n}\left(-E I B_{n} K_{5 n}+A_{10} K_{7 n}+A_{11} K_{8 n}\right)\right.
$$

$$
+C_{4 n}\left(-E I \beta_{n} K_{6 n}-A_{11} K_{7 n}+A_{10} K_{8 n}\right)
$$

$$
+C_{5 n}\left(-E I B_{n} L_{5 n}+B_{10} L_{7 n}+B_{11} L_{8 n}\right)
$$

$$
\left.+C_{8 n}\left(-E I \beta_{n} L_{6 n}-B_{11} I_{7 n}+B_{10} L_{8 n}\right)\right\}
$$

$$
\begin{equation*}
=I_{1} \Sigma^{\infty}(-1)^{m_{K}}{ }_{m n} \beta_{n}^{4} E I+T_{6 n} \beta_{n}^{4} E I \text {, for } n \geqslant I \tag{5.12}
\end{equation*}
$$

$$
-24 C_{24} R_{6} I_{5 n} / b^{3}+\Sigma^{\infty}(-1)^{m_{\alpha_{m}^{3}}^{3}}\left\{C_{9 m}\left(A_{12} B_{j 5}+A_{13} B_{j 6}\right)\right.
$$

$$
+C_{12 m}\left(-A_{13} B_{j 5}+A_{12} B_{j 6}\right)+C_{13 m}\left(B_{12} B_{j 7}+B_{13} B_{j 8}\right)
$$

$$
\left.+C_{16 m}\left(-B_{13} B_{j 7}+B_{12} B_{j 8}\right)\right\}
$$

$$
\begin{align*}
& +\beta_{n}^{3}\left\{C_{1 n}\left(A_{11} K_{5 n}-A_{10} K_{6 n}+E I \beta_{n} K_{8 n}\right)\right. \\
& +C_{4 n}\left(A_{10} K_{5 n}+A_{11} K_{6 n}-E I \beta_{n} K_{7 n}\right) \\
& +C_{5 n}\left(-B_{11} I_{5 n}+B_{10} L_{6 n}-E I \beta_{n} L_{8 n}\right) \\
& \left.+C_{8 n}\left(-B_{10} L_{5 n}-B_{11} I_{6 n}+E I \beta_{n} I_{7 n}\right)\right\} \\
& ={ }_{1} \Sigma^{\infty}(-1) m\left\{-\beta_{n}\left(R_{4} \alpha_{m}^{2}+R_{6} \beta_{n}^{2}\right) K_{m n}+\alpha_{n}\left(R_{3} \alpha_{m}^{2}+R_{5} \beta_{n}^{2}\right) L_{m n}\right\} \\
& -R_{6} C^{4} a_{0} b I_{5 n} / 4 E_{4}-T_{6 n} \beta_{n}^{3} R_{6} \tag{5.13}
\end{align*}
$$

4) The fourth boundary condition (Equation 3.25) for $-\mathrm{b}<\mathrm{v}<\mathrm{b}$) gives the following equations:

$$
\begin{aligned}
& 2 C_{20} R_{7} / a^{2}+2 C_{21} R_{9} / b^{2}+12 C_{24}\left(R_{7} T a^{2}-R_{9} b^{2} / 3\right) / b^{4} \\
& +{ }_{1} \Sigma^{\infty}(-1)^{n_{n}} \alpha_{n}^{2}\left\{C_{9 n}\left(A_{17} W_{5 n}+A_{18} W_{6 n}\right)+C_{12 n}\left(-A_{18} W_{5 n}+A_{17} W_{6 n}\right)\right. \\
& \left.+C_{13 n}\left(B_{17} W_{7 n}+B_{18} W_{8 n}\right)+C_{16 n}\left(-B_{18} W_{7 n}+B_{17} W_{8 n}\right)\right\} \\
& =-R_{7}\left\{\sum_{1} \Sigma^{\infty}(-1)^{m}\left(-T_{5 m} a_{m}^{2}\right)\right\}+a_{0} C^{4} b^{2} R_{9} / 12 E_{4}-c\left(1 / m_{v}\right)_{k} \sum_{1}^{m_{1} u_{m_{k}}}
\end{aligned}
$$

$$
\begin{equation*}
-12 C_{24} R_{9} I_{1 n} / b^{2}+I^{\Sigma^{\infty}(-1)^{m} \alpha_{m}^{2}\left\{C_{9 m}\left(A_{17} A_{j 5}+A_{18} A_{j 6}\right)\right.} \tag{5.14}
\end{equation*}
$$

$$
+C_{12 m}\left(-A_{18} A_{j 5}+A_{17} A_{j 6}\right)+C_{13 m}\left(B_{17} A_{j 7}+B_{18} A_{j 8}\right)
$$

$$
\left.+C_{16 m}\left(-B_{18^{A}}{ }_{j 7}+B_{17^{A}}\right)\right\}
$$

$$
+\beta_{n}^{2}\left\{C_{1 n}\left\{A_{14} K_{5 n}+A_{15} K_{6 n}+\beta_{n}\left(-G J K_{3} K_{7 n}+A_{16} K_{8 n}\right)\right\}\right.
$$

$$
+C_{4 n}\left\{-A_{15} K_{5 n}+A_{14} K_{6 n}+\beta_{n}\left(-A_{16} K_{7 n}-G J K_{3} K_{8 n}\right)\right\}
$$

$$
+C_{5 n}\left\{B_{14} L_{5 n}+B_{15} L_{6 n}+\beta_{n}\left(-G J K_{3} L_{7 n}+B_{16} L_{8 n}\right)\right\}
$$

$$
\begin{align*}
& \left.+C_{8 n}\left\{-B_{15} L_{5 n}+B_{14} L_{6 n}+\beta_{n}\left(-B_{16} L_{7 n}-G J K_{3} L_{8 n}\right)\right\}\right\} \\
& =-c^{4} a_{0} b^{2} R_{9} I_{1 n} / 8 E_{4}+T_{6 n} B_{n}^{2} R_{9} \\
& +I_{1} \Sigma^{\infty}(-1)^{m}\left\{\left(\alpha_{m}^{2} R_{7}+\beta_{n}^{2} R_{g}\right) K_{m n}-L_{m n} \alpha_{m}{ }^{\beta} n^{R_{8}}\right\} \\
& -c\left\{\left(2 / m_{v}\right) I^{\varepsilon^{m_{v}}}(-1)^{n_{k}} m_{k} \cos 2 n \pi\left(k-\frac{1}{2}\right) / m_{v}\right\} \text { for } n \geqslant 1 \tag{5.15}\\
& -24 C_{24}{ }^{R_{10}} I_{5 n} / b^{3}+{ }_{1} \Sigma^{\infty}(-1)^{m_{\alpha_{m}^{3}}}\left\{C_{9 m}\left(A_{19} B_{j 5}+A_{20} B_{j 6}\right)\right. \\
& +C_{12 m}\left(-A_{20} B_{j 5}+A_{19} B_{j 6}\right)+C_{13 m}\left(B_{19} B_{j 7}+B_{20} B_{j 8}\right) \\
& \left.+C_{16 m}\left(-B_{20} B_{j 7}+B_{19} B_{j 8}\right)\right\}+B_{n}^{2}\left\{C _ { 1 n } \left\{B_{n}\left(A_{16} K_{5 n}+G J K_{3} K_{6 n}\right)\right.\right. \\
& \left.+\mathrm{A}_{15} \mathrm{~K}_{7 \mathrm{n}}-\mathrm{A}_{14} \mathrm{~K}_{8 \mathrm{n}}\right\}+\mathrm{C}_{4 \mathrm{n}}\left\{\mathrm{~B}_{\mathrm{n}}\left(-\mathrm{GJK}_{3} \mathrm{~K}_{5 \mathrm{n}}+\mathrm{A}_{16} \mathrm{~K}_{6 \mathrm{n}}\right)\right. \\
& \left.+\mathrm{A}_{14} \mathrm{~K}_{7 \mathrm{n}}+\mathrm{A}_{15} \mathrm{~K}_{1 \mathrm{n}}\right\}+\mathrm{C}_{5 \mathrm{n}}\left\{\mathrm{~B}_{\mathrm{n}}\left(-\mathrm{B}_{16} \mathrm{~L}_{5 \mathrm{n}}-\mathrm{GJK}_{3} \mathrm{~L}_{6 \mathrm{n}}\right)\right. \\
& \left.{ }^{-B_{15}}{ }^{L}{ }_{7 n}+B_{14} L_{8 n}\right\}+C_{8 n}\left\{B_{n}\left(G J K_{3} L_{5 n}-B_{16} L_{6 n}\right)\right. \\
& \left.\left.-B_{14} L_{7 n}-B_{15} L_{8 n}\right\}\right\}=-c^{4} a_{0} b R_{10} I_{5 n} / 4 E_{4}-T_{6 n} B_{n}{ }^{3} R_{10} \tag{5.16}
\end{align*}
$$

5.2 Anti-Symmetric Load

1) Proceeding as mentioned before for symmetric loads, the first boundary condition (Equation 3.22) gives the following three equations:

$$
\begin{equation*}
c_{19}+c_{23}=0 \tag{5.17}
\end{equation*}
$$

$C_{10 n} K_{3 n}+C_{11 n} K_{4 n}+C_{14 n} L_{3 n}+C_{15 n} L_{4 n}=0$ for $n \geqslant 1$

$$
\begin{align*}
& C_{18} I_{5 n} / a+C_{22} I_{7 n} / a^{3}+I^{\Sigma^{\infty}(-1)^{m}} \\
& \left(C_{2 m} B_{j 1}+C_{3 m^{B}} B_{j 2}+C_{6 m^{B}} B_{j 3}+C_{7 m} B_{j 4}\right) \\
& -C_{10 n} K_{2 n}+C_{11 n} K_{1 n}+C_{14} L_{2 n}-C_{15 n^{L} L_{1 n}} \\
& =-T_{7 n}-1_{1} \Sigma^{\infty}(-1)^{m} P_{n m} \text { for } n \geq 1 \tag{5.19}
\end{align*}
$$

2) The second boundary condition (Equation 3.23) along the support gives the following equations:

$$
\begin{align*}
& 6 \mathrm{C}_{23} \mathrm{R}_{2} / \mathrm{b}^{2}=0 \tag{5.20}\\
& \alpha_{n}^{2}\left\{C_{10 n}\left(A_{8} K_{3 n}+A_{9} K_{4 n}\right)+C_{11 n}\left(-A_{9} K_{3 n}+A_{8} K_{4 n}\right)\right. \\
& \left.+C_{14 n}\left(B_{8} I_{3 n}+B_{9} L_{4 n}\right)+C_{15 n}\left(-B_{9} L_{3 n}+B_{8} L_{4 n}\right)\right\}=0 \\
& \text { for } n>1 \tag{5.21}\\
& 1^{\Sigma^{\infty}(-1)} m_{B_{m}^{2}}^{2}\left\{C_{2 m}\left(A_{7} B_{j 1}-R_{1} K_{3} B_{j 2}\right)+C_{3 m}\left(R_{1} K_{3} B_{j 1}+A_{7} B_{j 2}\right)\right. \\
& \left.+C_{6 m}\left(B_{7} B_{j 3}+R_{1} K_{3} B_{j 4}\right)+C_{7 m}\left(-R_{1} K_{3} B_{j 3}+B_{7} B_{j 4}\right)\right\} \\
& +\alpha_{n}^{2}\left\{C_{10 n}\left(A_{9} K_{1 n}-A_{8} K_{2 n}\right)+C_{11 n}\left(A_{8} K_{1 n}+A_{9} K_{2 n}\right)\right. \\
& \left.+C_{14 n}\left(-B_{9} I_{1 n}+B_{8} I_{2 n}\right)+C_{15 n}\left(-B_{8} L_{1 n}-B_{9} I_{2 n}\right)\right\} \\
& ={ }_{1} \Sigma^{\infty}(-1)^{m_{B_{m}}}\left(R_{2} \beta_{m}{ }^{P}{ }_{n m}+R_{1} \alpha_{n} Q_{n m}\right) \\
& +\left(2 / m_{u}\right) \quad k \underline{\underline{E}}_{1}^{m_{u}}(-1)^{n_{s}} \sin 2 n \pi\left(k-\frac{1}{\xi}\right) / m_{u} \text { for } n \geq 1 \tag{5.22}
\end{align*}
$$

3) The following three equations result from the third boundary condition (Equation 3.24):

$$
\Sigma_{1}^{\infty}(-1)^{m} \alpha_{m}^{4}\left\{C_{10 m}\left(A_{5} B_{j 5}+A_{6} B_{j 6}\right)+C_{11 m}\left(-A_{6} B_{j 5}+A_{5} B_{j 6}\right)\right.
$$

$$
\left.+C_{14 m}\left(B_{5} B_{j 7}+B_{6} B_{j 8}\right)+C_{15 m}\left(-B_{6} B_{j 7}+B_{5} B_{j 8}\right)\right\}
$$

$$
+\beta_{n}^{3}\left\{C_{2 n}\left(E I \beta_{n} K_{6 n}+A_{11} K_{7 n}-A_{10} K_{8 n}\right)\right.
$$

$$
+C_{3 n}\left(-E I \beta_{n} K_{5 n}+A_{10} K_{7 n}+A_{11} K_{8 n}\right)
$$

$$
+C_{6 n}\left(-E I \beta_{n} L_{6 n}-B_{11} L_{7 n}+B_{10} L_{8 n}\right)
$$

$$
\left.+C_{7 n}\left(-E I B_{n} L_{5 n}-B_{10} L_{7 n}-B_{11} L_{8 n}\right)\right\}
$$

$$
\begin{align*}
& 6 C_{22} R_{3} / a_{3}^{3}+6 C_{23} R_{6} / b^{3}+{ }_{n=1}^{\sum_{1}^{\infty}}(-1)^{n}{ }_{\alpha_{n}^{3}}\left\{C_{10 n}\left(A_{12} W_{5 n}+A_{13} W_{6 n}\right)\right. \\
& +C_{11 n}\left(-A_{13} W_{5 n}+A_{12} W_{6 n}\right)+C_{14 n}\left(B_{12} W_{7 n}+B_{13} W_{8 n}\right) \\
& \left.+C_{15 n}\left(-B_{13} W_{7 n}+B_{12} W_{8 n}\right)\right\}=m_{\sum_{1}}^{\infty}(-1)^{m_{T}} 7 m_{m} \alpha_{3} \tag{5.23}\\
& 1^{\Sigma \infty}(-1)^{m} \alpha_{n}^{3}\left\{C_{10 m}\left(A_{12} A_{j 5}+A_{13} A_{j 6}\right)+C_{11 m}\left(-A_{13} A_{j 5}+A_{12} A_{j 6}\right)\right. \\
& +C_{14 m}\left(B_{12} A_{j 7}+B_{13} A_{j 8}\right)+ \\
& \left.+C_{15 m}\left(-B_{13} A_{j 7}+B_{12} A_{j 8}\right)\right\} \\
& +B_{n}^{3}\left\{C_{2 n}\left(A_{10} K_{5 n}+A_{11} K_{6 n}-E I B_{n} K_{7 n}\right)\right. \\
& +C_{3 n}\left(-A_{11} K_{5 n}+A_{10} K_{6 n}-E I B_{n} K_{8 n}\right) \\
& +C_{6 n}\left(B_{10} L_{5 n}+B_{11} L_{6 n}-E I B_{n} L_{7 n}\right) \\
& \left.+C_{7 n}\left(-B_{11} L_{5 n}+B_{10} L_{6 n}-E I B_{n} L_{8 n}\right)\right\} \\
& =T_{8 n} \beta_{n}^{3} R_{6}+m \sum_{1}^{\infty}(-1) \prod_{m}\left(\alpha_{m}^{2} R_{3}+\beta_{n}^{2} R_{5}\right) P_{m n} \\
& \left.+\beta_{n}\left(\alpha_{m}^{2} R_{4}+\beta_{n}^{2} R_{6}\right) Q_{m n}\right\} \text { for } n \geq 1
\end{align*}
$$

$=\beta_{n}^{4} T_{8 n}+1^{\Sigma^{\infty} E I B_{n}^{4}(-1)^{m} Q_{m n} \quad \text { for } n \geqslant 1}$
4) Finally, the following three equations are obtained from the fourth boundary condition (Equation 3.25):

$$
\begin{aligned}
& 6 R_{7} C_{22} / a^{2}+6 R_{10} C_{23} / b^{3}+\sum_{1} \sum^{\infty}(-1)^{n_{\alpha_{n}^{3}} C_{10 n}\left(A_{19} W_{5 n}+A_{20} W_{6 n}\right)} \begin{array}{l}
\quad+C_{11 n}\left(-A_{20} W_{5 n}+A_{19} W_{6 n}\right)+C_{14 n}\left(B_{19} W_{7 n}+B_{20} W_{8 n}\right) \\
\quad+C_{15 n}\left(-B_{20} W_{7 n}+B_{19} W_{8 n}\right)=0
\end{array} \quad \text { (5.26) }
\end{aligned}
$$

$$
\sum_{m=1}^{\infty}(-1)^{m_{\alpha_{m}^{3}}^{3}}\left\{C_{10 m}\left(A_{19} A_{j 5}+A_{20} A_{j 6}\right)+C_{11 m}\left(-A_{20} A_{j 5}+A_{19} A_{j 6}\right)\right.
$$

$$
\left.+C_{14 m}\left(B_{19} A_{j 7}+B_{20} A_{j 8}\right)+C_{15 m}\left(-B_{20} A_{j 7}+B_{19} A_{j 8}\right)\right\}
$$

$$
+\beta_{n}^{2}\left\{C_{2 n} B_{n}\left(-G J K_{3} K_{5 n}+A_{16} K_{6 n}\right)+A_{14} K_{7 n}+A_{15} K_{8 n}\right.
$$

$$
+C_{3 n} B_{n}\left(-A_{16} K_{5 n}-G J K_{3} K_{6 n}\right)-A_{15} K_{7 n}+A_{14} K_{8 n}
$$

$$
+C_{6 n} B_{n}\left(-G J K_{3} L_{5 n}+B_{16} L_{6 n}\right)+B_{14} L_{7 n}+B_{15} L_{8 n}
$$

$$
\left.+C_{7 n} \beta_{n}\left(-B_{16} L_{5 n}-G^{\prime} K_{3} L_{6 n}\right)-B_{15} L_{7 n}+B_{14} L_{8 n}\right\}
$$

$$
=T_{8 n} B_{n}^{3} R_{10}+I_{1} \Sigma^{\infty}(-1)^{m_{B_{n}^{2}}^{2}}\left(G J \alpha_{m} P_{m n}+R_{10} B_{n} Q_{m n}\right),
$$

$$
\begin{equation*}
n \geq 1 \tag{5.27}
\end{equation*}
$$

$$
\begin{aligned}
& 6 R_{9} C_{23^{I}}{ }_{6 n} / b^{3}+1^{\Sigma^{\infty}(-1)^{m} m_{\alpha_{m}^{2}}\left\{C_{10 m}\left(A_{17} B_{j 5}+A_{18} B_{j 6}\right)\right.} \\
& \quad+C_{11 m}\left(-A_{18} B_{j 5}+A_{17} B_{j 6}\right)+C_{14 m}\left(B_{17} B_{j 7}+B_{18} B_{j 8}\right) \\
& \left.+C_{15 m}\left(-B_{18} B_{j 7}+B_{17} B_{j 8}\right)\right\} \\
& +B_{n}^{2}\left\{C_{2 n} A_{15^{K}} K_{5 n}-A_{14} K_{6 n}+B_{n}\left(A_{16} K_{7 n}+G J K_{3} K_{8 n}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& +C_{3 n} A_{14} K_{5 n}-A_{15} K_{6 n}+B_{n}\left(-G J K_{3} K_{7 n}+A_{16} K_{8 n}\right) \\
& +C_{6 n}-B_{15} L_{5 n}+B_{14} L_{6 n}+B_{n}\left(-B_{16} L_{7 n}-G J K_{3} K_{8 n}\right) \\
& \left.+C_{7 n}-B_{14} L_{5 n}-B_{15} L_{6 n}+B_{n}\left(G J K_{3} L_{7 n}-B_{16} L_{8 n}\right)\right\} \\
& =B_{n}^{2} T_{8 n} R_{9}+1^{\Sigma^{\infty}(-1)^{m}\left\{R_{8} \alpha_{m} B_{n} P_{m n}+\left(R_{7} \alpha_{m}^{2}+R_{9} B_{n}^{2}\right) Q_{m n}\right\}} \\
& -C\left\{\left(2 / m_{v}\right) k^{\sum_{1}^{m}}(-1)^{n} \sin \left[2 n \pi\left(k-\frac{1}{2}\right) / m v\right]\right\} n \geq 1 \tag{5.28}
\end{align*}
$$

It should be noted that for one boundary condition, $(2 n+1)$ equations are obtained. For the slab bridge with four boundary conditions, ($8 \mathrm{n}+4$) equations are obtained, so that for each case of loading (symmetric or antisymmetric) the size of the matrix will be ($8 \mathrm{n}+4$).

Once the matrix equation is formulated and solved for the unknown constants, the deflection function is known over the entire area of the slab. The moments and strains can be computed readily as follows:
$M_{x}=\left(-D_{x} / c^{2}\right) W, u u+\left(2 D_{x} s / c^{2}\right) W, u v-\left(D_{x} s^{2} / c^{2}+D_{1}\right) W, v v$
$M_{y}=\left(-D_{2} / c^{2}\right) W_{\text {uu }}+\left(2 D_{2} s / c^{2}\right) W_{\text {uv }}-\left(D_{2} s^{2} / c^{2}+D_{y}\right) W_{v v}$
$M_{X Y}=(0) w_{u u}+\left(D_{x y} / c\right) W_{u v}-\left(D_{X Y} s / c\right) W_{v v}$

The strain can be obtained from Equation 3.7 by substituting for M_{x} and M_{Y}.

EXPERIMENTAL PROGRAM

6.1 Scope of the Experimental Program

To verify the analytical approach proposed in Chapters III, IV and V, tests were carried out on two groups of concrete waffle-type slabs: reinforced and prestressed. The waffle slabs tested were one-to-eight scale models of concrete bridge decks. The tests were aimed at obtaining the deflections, stresses and bending moments at various points and determining the cracking and ultimate loads.

The first group consisted of three reinforced concrete waffle slabs, two were rectangular and the third had a 45° skew. One rectangular slab was tested for a uniformly distributed load by means of air pressure and a rubber membrane while the other two slabs were under concentrated loads only. The second group consisted of two post-tensioned rectangular and 45°-skew prestressed concrete waffle slabs, each subjected to edge prestressing forces and external concentrated loads applied transversely at various points.

6.2 Materials

6.2.1 Concrete

High Early Strength Portland Cement (CSA) manufactured by Canada Cement Company was used in all slab models. This type of cement provides high strength within a week.

A clean sand free of impurities was used. The maximum size of aggregate was restricted to 0.25 inch (6 mm) since the narrowest dimension between the sides of the formwork was equal to 1.25 inch (32 mm) and the concrete cover to the reinforcing wires was 0.375 inch (10 mm) . The combined aggregate was prepared according to the ACI code (I) by mixing 40 to 60% fine aggregates of the total aggregates. This combination gave a well-graded aggregate mix with a fineness modulus equal to 2.50. The coarse aggregates used were crushed stones with hard, clean and durable properties. Natural water having no impurities was used to obtain different concrete pastes and varying maximum strength for the concrete specimens.

Five trial mixes of air-entrained concrete of medium consistency and different water cement ratio varying between 40% to 70% were examined. Mixing was done in an Eerich Counter Current Mixer, Model EA2(2W) with five cu. ft. charging capacity and manually operated. Two batches of Concrete mix were required for each slab model, each weighing 700 lbs. The compressive strength of all specimens were measured after seven, fourteen and twenty-eight days as shown in Appendix (D).
6.3 Steel
6.3.1 Mild Steel For Reinforced Concrete Slabs

To fulfill the code requirements (1), and using the minimum area of steel, three one-eighth inch (3.2 mm)
in diameter mild steel wires were used. The wires were straightened and twisted in the laboratory, keeping the cross-sectional area the same along the whole length by providing the wires with constant number of pitches per unit length. The wires were cut into different lengths, hooked at both ends and cleaned from rust. The stressstrain relationship for the reinforcing wire is shown in Appendix (E) ; the yield strength was found to be $33,000 \mathrm{psi}\left(227.7 \mathrm{mN} / \mathrm{m}^{2}\right)$. The modulus of elasticity was determined from the calibration test using strain gauges mounted on the wire and was found to be $30,000 \mathrm{ksi}$ (207 $\mathrm{GN} / \mathrm{m}^{2}$).
6.3.2 High Tensile Steel for the Prestressed

Concrete Slabs

High tensile steel wire of 0.196 inch (5 mm) in diameter were used for the prestressed concrete waffle slabs. Tensile tests on the wire indicated an ultimate strength of $225,000 \mathrm{psi}\left(1.553 \mathrm{GN} / \mathrm{m}^{2}\right)$, and a yield stress of $29,700 \mathrm{psi}\left(204.9 \mathrm{MN} / \mathrm{m}^{2}\right.$); see Appendix (E). This wire gave good resistance against slippage from the grips. Figure 6.1 shows the twisted reinforced steel wire and the high tensile steel wire used in the slab models.

6.4 Formwork

Two forms were made from plywood, $3 / 4$ inch (19 mm) thick, and wood joists, 2×4 inches ($51 \times 102 \mathrm{~mm}$) crosssectional dimension, were used as stiffeners. The first form was rectangular in shape and used for casting three
slabs, two reinforced concrete and the third being the prestressed concrete slab. The second form was used for casting the reinforced and prestressed concrete slabs of 45° skew as shown in Figure 6.2. Styrafoam cubes were used for producing the waffle shape; styrafoam plates of 3 inch (76 mm) thickness were cut into cubes of 3 x 4 x 4 inches ($76 \times 102 \times 102 \mathrm{~mm}$) dimensions, to fit the clearance between the ribs.

6.5 Experimental Equipment

6.5.I Prestressing Equipment

The prestressing equipment used in prestressing the wires, were manufactured by Cable Covers Ltd., England. A
 post-tensioning as shown in Figure 6.3. The mechanical gripping devices of the open grip type and washers shown in Figure 6.1, were very simple and quick to use. Black wax lubricant was applied to the wedges to make it easier to release the grips after completing the prestressing operation.

6.5.2 End Bearing Plate

Fifty-eight end bearing plates, 0.25 inch (6.4 mm) thick, with holes of 0.25 inch (6.4 mm) diameter and of 1.5 x 3.0 inches ($38 \times 76 \mathrm{~mm}$) dimensions, were used to distribute the prestressing force at each end of the rib. Twenty-six steel blocks of $1.5 \times 1.5 \times 3.0$ inches ($38 \times$ 38 x 19 mm) were used for the prestressed skew slab.

Each steel block was provided with two perpendicular eccentric holes to fit the wires in two directions. Figures 6.1 and 6.4 show the end bearing plates and the grooves in the concrete skew slab to accommodate the steel blocks.
6.5.3 The Steel Frame For Producing Uniformly Distributed Load

The purpose of the steel loading frame, Figures 6.5 and 6.7, was to apply a uniformly distributed load by means of an air chamber and a rubber membrane. The top of the air chamber was made of a stiffened steel plate, 0.25 inch $(6.4 \mathrm{~mm})$ thick and, 104.25×87.50 inches ($2.65 \times 2.22 \mathrm{~mm}$) in plan. The bottom of the air chamber was a rubber membrane, 0.09 inch (2.4 mm) thick and 134.25×117.5 inches (3.41 x 2.98 m) in plan. The steel cover plate was placed on the top of the rectangular steel frame made of two steel channels as shown in Figures 6.5 and 6.6. Figures 6.7 and 6.8 show the longitudinal and transverse sections in the steel loading frame. Two steel rods of 1.25 inch (31.8 mm) diameter, were placed on the top flange of the beams to be used as simple supports for the slab. Styrafoam strips were placed inside the channel of the air chamber to avoid any damage to the rubber membrane from the sharp corners of the steel frame.

All supporting beams were tack-welded onto the floor to avoid any sliding or uplift during the experiment. Two steel rods, 0.25 inch (6.4 mm) in diameter were tack-welded
onto the flange plate around the supporting steel rods to prevent sliding and to allow rotation. Three pressure gauges, two valves and a regulator were fixed on the steel plate to measure and control the air pressure as shown in Figure 6.6. Heavy steel clamps were used to clamp the steel plate and the rubber membrane with the steel frame as shown in Figure 6.5.

6.6 The Construction of the Slab Models

Figures 3.2 and 3.3 show the dimension of the crosssections of the five one-eighth scale model slabs. Figures 6.9 to 6.13 show the layout of the five slabs. The reinforced concrete slabs (Group A) are denoted by A.1, A. 2 and A.3, while the prestressed concrete slabs (Group B) are referred to as B.l and B.2. The required form was prepared as shown in Figure 6.2 and then painted with grease material, Vitrea Oil 150, for easy form release after the concrete has set. The twisted steel wires for group A were placed in the form; they were instrumented with electric strain gauges. The bottom steel layer was supported on steel wire chairs which provided a clear cover of 0.5 inch (12.7 mm) from the bottom. The second steel layer was supported directly over the first layer and fixed with thin wires. All reinforcing wires were hooked at both ends.

For the group B slabs, rubber hoses having an inner diameter of 0.25 inch (6.4 mm) and 0.062 inch (1.6 mm)
thick were used to cover the steel wires during casting of the concrete. The first layer of the steel wires was placed at a distance of one inch from the bottom, and supported on thin steel wires fixed between the styrafoam cubes. The second layer was placed directly over the first layer.

To determine the compressive strength of the concrete, six 3 x 6 inches ($76 \times 152 \mathrm{~mm}$) cylinders were cast with each model.

All concrete in the slab models was vibrated with a high frequency vibrator. Care was taken during casting and vibrating to ensure that no segregation occurred. The top surface of the slab models was troweled smooth after casting. The slab models and the cylinder specimens were cured in water for 14 and 28 days and then were allowed to dry at least four days before mounting the strain gauges.

6.7 Instrumentation

6.7.1 Strain Gauges on the Reinforcement

The longitudinal and transverse wires were instrumented with electric strain gauges as shown in Figures 6.10 and 6.11. The gauges used were metal gauges of type EA-06-062AP-120. The surface of the reinforcing wire was prepared by cleaning it using fine silicon carbide paper and acetone. The gauge was mounted using Eastman M-Bond 200 adhesive with 200 catalyst as bonding agent according to the manufacturer's recommendations. The lead wires were then soldered to the gauges and water-proofed with a
plasticised epoxy resin system, Bean Gagekote \#3. After curing for 24 hours at room temperature a layer of wax was applied on the gauge and plastic tape for further protection from the wet concrete.

6.7.2 Strain Gauges on The Concrete

To measure the strain on the top and the bottom surfaces of the slab models, electric strain gauges of type EA-06-500 BH-120 were used. Three-legged rosette gauges were used also on the deck surface of the skew model at the obtuse corner. All gauges had a nominal gauge length of 0.50 inch (12.7 mm). The locations of the strain gauges are shown in Figures 6.9 to 6.13.

The concrete surfaces at the locations of the gauges were smoothed using sandpaper, all dust was removed and then the surfaces were cleaned with acetone. Surface cavities were then filled by applying an epoxy of high strength (RTC). This epoxy was mixed by one volume activator B, and the same volume of resin A. After the surface was dry, it was again smoothed and the gauge was mounted, soldered with lead wires and covered by coating epoxy Bean Gagekote \#3. The gauges were then connected to a strain indicator, Strainsert model TN 20C.

6.7.3 Mechanical Dial Gauges

The deflections were measured using mechanical dial gauges having 0.001 inch (. 025 mm) travel sensitivity. The locations of the dial gauges are shown in

Figures 6.9 to 6.13, and are seen in position in Figure 6.14. In group A slabs, the dial gauges were placed at the bottom surface of the slab. In group B slabs, the dial gauges were placed at the top surface of the slab and supported by a light steel frame.
6.7.4 Load Cells
a) Universal Flat Load Cell

Two universal flat load cells, having capacities of 5 kips (22.25 KN), and $25 \mathrm{kips}(111.3 \mathrm{KN})$, were used in reinforced and prestressed concrete slabs respectively to determine the value of the applied concentrated load through the hydraulic jack as shown in Figure 6.15. The calibrations of these load cells are given in Appendix (E)
b) Cylindrical Load Cell

Thirty-eight cylindrical load cells were used to measure the prestressing force in the wires. The calibration of these load cells is given also in Appendix (E). Figure 6.4 shows the cylindrical load cells in position.

6.8 Experimental Setup and Test Procedure

Due to the heavy weight of each slab model and the difficulty in handling, it was decided to cast the slabs near the portal loading frame and in the vicinity of a crane.
6.8.1 Reinforced Concrete Waffle Slabs, Group A
a) Slab A.l

Reinforced concrete slab A.l was subjected to a uniform load, applied by pumping compressed air into a
chamber formed by a rubber membrane and a steel frame as shown in Figures 6.7 and 6.8. The setup was designed and fabricated. Care was taken to insure that the rubber membrane was in contact with the slab's surface, without allowing any tension in the membrane, which might affect the results. Shims were provided along the support rods so that uniform contact was maintained between the supports and the slabs. Clearance of 0.125 inch (3.15 mm) was allowed between the edges of the slab and the edge of the steel frame to allow rotation of the slab during the test. To ensure that the air chamber is totally air tight, heavy steel clamps were used every ten inches along the steel plate.

To measure the air pressure inside the air chamber three pressure gauges of $0.15 \mathrm{lb} / \mathrm{in}^{2}\left(107 \mathrm{KN} / \mathrm{m}^{2}\right)$ accuracy were used at various points as shown in Figure 6.6. A regulator valve was used to control the air pressure and for loading and unloading as shown in Figure 6.6. Fortytwo strain gauges were mounted on the concrete, at top of the deck and bottom surface of the longitudinal and transverse ribs and at mid-depth of the rib to observe the strain gradient through the depth of the rib. Nine dial gauges were used to measure the deflections as shown in Figure 6.9.
b) Slab A. 2

Slab A. 2 was identical in geometric shape and amount of steel to slab A.l, but was tested under transverse
concentrated loads, applied through a rigid portal frame supporting a cross I beam and a hydraulic jack of 20,000 lbs. (89 kN) capacity. The arrangement was such that the concentrated load could be applied anywhere without moving the slab; see Figure 6.16. The transfer of the load from the hydraulic jack to the slab was made through a small rectangular steel plate, 1 inch (25.4 mm) thick and 5 x 6 inches ($127 \times 152 \mathrm{~mm}$) in plan. Grooves of 0.187 inch $(4.8 \mathrm{~mm})$ thickness and 0.75 inch (19 mm) width were made on the bottom of the steel loading plate to avoid contact with the strain gauge located at loading positions. Loading and unloading were applied three times before starting the test, to minimize the residual strains and for proper seating of the slab on the supports. Figure 3.4 shows the loading points: points 1 to 6 for the working load stage, and point 7 up to failure of the model.

The strains were measured by thirty-five electric strain gauges mounted on the concrete and steel. Deflections were measured by sixteen mechanical dial gauges as shown in Figure 6.10. The readings from loading and unloading were recorded and averaged.
c) Slab A. 3

The dimensions of this slab are shown in Figure 6.11 and its loading system is shown in Figure 6.17. The loading plate was one inch (25.4 mm) thick and 6×7 inches (152 $\times 179 \mathrm{~mm}$) in plan as shown in Figures 4.1 and 6.15. The slab was tested under concentrated load at eight
locations, Figure 3.4. Twenty-three electric strain gauges were used to measure the strains in the concrete. and steel. Ten mechanical dial gauges were used to measure the deflections; see Figure 6.ll.

6.8.2 Prestressed Concrete Waffle Slabs, Group B

This group consisted of two post-tensioned waffle slabs, a rectangular slab B. 1 and a 45° skew B. 2 .
a) Slab B. 1

Forty-five strain gauges were used to measure the strain on the concrete surfaces and eleven mechanical dial gauges were used to measure the deflections as shown in Figure 6.12. The slab was prestressed by twenty-nine high tensile steel wires, each one connected to a cylindrical load cell to measure the prestressing force.

All care and adequate precautions were taken during the prestressing process. To avoid any distortion in the edge beam and/or local failure, the wires were tensioned in a sequence starting with the odd-numbered wires and followed by tensioning the even-numbered wires. Figures 6.18 and 6.20 show the loading system and the final amount of prestressing force.

The slab was tested under concentrated load through a universal load cell of twenty-five kips capacity. Figure 3.5 shows the loading points: points 1 and 2 for the working load stage, and point 3 up to failure of the model.
b) Slab B. 2

The slab was mounted with twenty-five strain gauges
to measure the strain on the concrete surfaces and eleven dial gauges to measure the deflections as shown in Figure 6.13. The slab was prestressed by thirty-eight high tensile steel wires in both directions, thirteen wires in the longitudinal direction (parallel to the traffic) and twenty-five wires were perpendicular to the edge beams. To prestress the wires along the skew supports, steel end blocks were placed in ninety degree grooves formed before casting the concrete; see Figure 6.4. The wires were tensioned in the sequence mentioned earlier for slab B.l. The loading system used is shown in Figure 6.19. The slab was tested at four points; Figure 3.5 shows the loading points: points $1,2,3$ and 4 for the working load stage, and again at point I up to the failure of the model.

DISCUSSION OF RESULTS

7.1 General

The theoretical and experimental results for deflections and strains of reinforced concrete waffle slabs are compared in Figures 7.3 to 7.8 , Figures 7.11 to 7.17 and Figures 7.20 to 7.25. The upward deflections (camber) and strains of group B slabs due to prestressing force are presented in Figures 7.28, 7.29, 7.30, 7.39, 7.40 and 7.41 .

The comparisons between experimental and theoretical results for stresses and deflections for group B slabs, are given in Figures 7.31 to 7.34 and Figures 7.42 to 7.46.

Finally, comparisons between the results for the waffle slab type and those for the slab type with uniform thickness and having the same volume of concrete and amount of steel, are given in Figures 7.47 to 7.56 .

7.2 Reinforced Concrete Waffle Slabs (Group A)

7.2.1 Rectangular Slab Under Uniform Load (Slab A.1)

Figures 7.3 and 7.4 show the comparison between the theoretical and experimental results for the load-deflection relationships at various points on the centre line and on the free edge of the slab. Figures 7.5 and 7.6 show the comparison between the theoretical and experimental deflections for a uniform load of $0.3 \mathrm{lb} / \mathrm{in}^{2}\left(2 \mathrm{KN} / \mathrm{m}^{2}\right)$ before
cracking. Close agreement is observed in the results before reaching the cracking load, with a maximum difference between the theoretical and experimental results of varying from 5 to 7\%.

Load-strain relationships for points at the centre and at the free edge are plotted in Figures 7.7 and 7.8, showing the strains at the top and bottom fibres in the x and y directions. Close agreement between the theoretical and experimental results is observed before cracking of the concrete. Considering the maximum moments due to selfweight of the slab, the microcracking occurs at a strain of approximately $100 \times 10^{-6} \mathrm{in} / \mathrm{in}$, which agrees with the results formed by Evans (6).

Figure 7.2 shows the crack progression during loading of slab A.l, and finally the failure of the slab as shown in Figure 7.1. It can be observed that the cracks appear in the longitudinal ribs between the supports with no cracks in the transverse ribs. Figure 7.8 shows that the maximum strain occurs in the longitudinal ribs, while the strain in the transverse ribs is very small. The final failure of the slab occurs when the maximum tensile stress due to bending is reached at the centre of the slab. The microcracking loads starts at a load equal to one-third the ultimate load.
7.2.2 Rectangular Slab Under Concentrated Load (Slab A.2)

Figure 7.11 shows the load-deflection curves up to
the ultimate load due to a concentrated load at the centre of the slab. A very good agreement is observed between the theoretical and experimental results before microcracking. The microcracking occurs at 0.70 of the experimental cracking load and 0.50 of the ultimate load.

Since the slab was tested first up to 0.60 of the yield stress of the steel for various locations, local cracks occurred near the loading point. It is found that these local cracks reduce the rigidities of the slab by a ratio of 65 to 75%. Figure 7.12 shows the load-deflection curves up to 0.60 yield stress in the steel due to a concentrated load at the central point on the free edge. For this loading case if one accounts for the presence of local cracks by multiplying the experimental deflections by 0.70 (due to reduced rigidity of the slab) the adjusted experimental results become much closer to the theoretical ones. Figures 7.13 and 7.14 show the theoretical and experimental deflection patterns for a one-kip (4.45 KN) concentrated load at various positions. Curve \#l represents the deflection due to a concentrated load at the centre of the slab and shows good agreement with the theoretical results. Curves \#2 and \#3 show the theoretical and experimental deflections due to a one-kip load at points 2 and 3; it is observed that 70% of the experimental deflections, gives good agreement with the theoretical deflections; as explained before, this percentage reduction
is applied because of the reduced rigidities at points 1 and 2 due to local cracking resulting from prior loading of the slab at these points.

Figures 7.15 and 7.16 show the load-strain relationships for concentrated loading at the centre and at the free edge. There is better agreement between the theoretical and experimental results for a concentrated load at the centre; comparing the results in Figure 7.15 with the results for uniform loading, Figure 7.7, the orthotropic slab subjected to a concentrated load is more efficient than one loaded by a uniform load. In the case of concentrated load, the transverse ribs are working effectively together with the longitudinal ribs to transmit the load to the supports; which in the case of uniform load the slab acts as a wide beam. The differences in the strains in the transverse ribs for both slabs can also be noted. Figure 7.10 shows the cracks in the bottom fibres of the slab A.2, before failure. It is observed that the majority of the cracks occur in the longitudinal ribs, while only haircracks appear in the transverse ribs.

The strain patterns at the bottom fibre due to a onekip load at the centre of the slab are shown in Figure 7.17. It can be observed that the strains in the transverse ribs at the loading point equal about 50% of the strains in the longitudinal ribs at the same point. The recorded ultimate load for this slab was 2.25 kips (10 KN) with the corresponding deflection of 2.50 inches (64 mm),

Figure 7.9.
$7.2 .3 \frac{45^{\circ} \text { Skew Slab Under Concentrated Load }}{}$
(Slab A.3)

Figures 7.20, 7.21 and 7.22 show the loaddeflection results before and after cracking and the deflection pattern along the transverse direction. A very good agreement between the theoretical and experimental results is obtained before cracking as shown in Figure 7.20. It is observed that the experimental results in Figures 7.21 and 7.22 when scaled down by 70% (due to the reduced rigidities) are in close agreement with the theoretical ones.

Figures 7.23, 7.24 and 7.25 show the load-strain relationships and the strain pattern in both directions and in the top and bottom fibres. A study of Figure 7.23 reveals good correspondence between the theoretical and experimental results and demonstrates that in skew slabs, the transverse ribs work effectively together with the longitudinal ribs to transmit the load to the supports.

Figures 7.18 and 7.19 show the diagonal cracks in the bottom fibre at the free edge. Referring to Figures 7.10 and 7.19 and comparing the two patterns of cracks, it is observed that the cracks in the rectangular slab is due to flexure while the cracks in the skew slab is due predominantly to twisting.
7.3 Prestressed Concrete Waffle Slabs (Group B)
7.3.1 Rectangular Slab Under Concentrated Load (Slab B.1)

Figure 7.28 shows the upward deflection due to prestressing force and edge moment, while Figures 7.29 and 7.30 show the strain pattern in the top and bottom fibres of the slab due to prestressing force in both directions. The variation in the strain along the edge beam is due to the variation in the prestressing force.

Figures 7.31 and 7.32 show the load-deflection relationship for a concentrated load at the centre and on the edge beam respectively. It can be observed that there is very good agreement between the theoretical and experimental results before reaching the cracking load with a percentage difference of about 1%.

Load-strain relationships are shown in Figures 7.33 and 7.34 for concentrated loading at the centre of the slab and at the centre of the edge beam. It can be observed that there is close agreement between the theoretical and experimental results. From Figure 7.34 it can be noted that the cracks start due to flexure under the concentrated load, followed by another crack developing in the top fibre leading to the formation of a yield line as shown in Figure 7.26. Figure 7.27 shows the final collapse due to punching shear around the loading plate. 7.3.2 $\frac{45^{\circ} \text { Skew Slab Under Concentrated Load }}{\text { (Slab B. 2) }}$
(

Figures $7.39,7.40$ and 7.41 show the deflection pattern and strain distribution in the top and bottom fibres over the entire area of the slab. The differences
between the theoretical and experimental deflections (camber) and strains vary between 4 to 6%.

Figures $7.42,7.43$ and 7.44 show the load deflection curves for the theoretical and experimental results; very good agreement is obtained before reaching the cracking load, the difference between the results being less than 2 . Figures 7.45 and 7.46 show the load-strain relationships for concentrated loading at the centre and at the free edge. Point 3 located near the obtuse corner, Figure 7.46, appears to be the critical point on the slab as indicated by the magnitude of strains in the bottom and top fibres. For concentrated loading at the centre of the slab, the cracks start first at the bottom fibre under the load, followed by cracks appearing close to the obtuse corner as shown in Figure 6.4. Figures 7.35 and 7.36 show the development of these cracks. The cracking load for the concentrated load at the centre is $6 \mathrm{kips}(26.7 \mathrm{KN})$ and the slab continues to carry load up to $11 \mathrm{kips}(49 \mathrm{KN})$ and finally fails in punching shear as shown in Figure 7.37. Figure 7.38 shows the number and direction of cracks in the bottom fibre for the same slab under load.
7.4 Comparison Between the Behaviours of a Waffle slab and a Uniform Thickness Slab Having the Same Volume of Concrete and Reinforcement

An analytical study, using the computer program and the proposed formulae to estimate the rigidities (13) is made on two types of orthotropic slabs. The first type is a waffle slab structure and the second is a slab
structure with uniform thickness, both structures having the same volume of concrete and reinforcing steel. The study includes prestressed concrete waffle slabs as well as reinforced concrete waffle slabs before cracking.

According to the proposed formulae for flexural and torsional rigidities, the values of the flexural rigidities of the orthotropic slab of uniform thickness are approximately one-half of the investigated waffle slabs in both directions; however, the torsional rigidity of the former is four times that of the latter. Figures 7.47 to 7.56 show the results for deflection and strain patterns over the entire area of the slab due to uniform load as well as concentrated load.

Rectangular and skew slabs are considered in this study. The figures show the comparison for deflections and strain between the waffle slab and the slab with uniform thickness. It can be observed from these figures that the waffle slab exhibits much lower stress. For example, the reinforced concrete waffle slabs of rectangular shape and subjected to uniform load have deflections at the centre and centre of the free edge of 43% and 51%, respectively, of those obtained in a slab of uniform thickness. These ratios increase for the skew type to 88% and 94\%. The higher flexural rigidities of the waffle slabs produce much smaller deflections and lower stresses, particularly for the rectangular slab. It should also be mentioned that increase in skew leads to a decrease in the
advantages cited above as well as when the concentrated load moves away from the centre of the slab.

One advantage of waffle slabs over slabs of uniform thickness is in prestressed construction. The efficiency of the prestressed waffle slabs in carrying load is much higher than that of slabs of uniform thickness of the same volume of concrete and amount of steel. This is due to the presence of the ribs which contribute to increased eccentricities in waffle slabs for prestressing. Figure 7.56 shows a comparison for the deflection pattern between the two types.

7.5 Sources of Error

The discrepancies between the experimental and theoretical results can be attributed to several sources of error such as:

1. The assumptions made in the theory.
2. Estimates of Poisson's ratio and the modulus of elasticity of concrete by means of empirical formulas.
3. Approximation of the plane stress problem encountered in the prestressed waffle slab.
4. Estimating the strength of the concrete from tests on 3 x 6 inches cylinder.
5. Distortion in the formwork due to effect of water, and lack of complete contact between the support and the test model.
6. Positioning of reinforced and prestress wires.
7. The calibration of load cell, sensitivity and drag in mechanical dial gauges, the stability of strain gauges and the strain gauge measuring device.

8.1 Conclusions

The overall objective of this study was to obtain a better understanding of the behaviour of reinforced and prestressed concrete waffle slabs, before and after cracking of the concrete. A Fourier series method of analysing single span rectangular and skew waffle slabs by orthotropic plate theory was presented; uniform load as well as concentrated loads were considered. Proposed theoretical formulae for calculation of the various orthotropic rigidities were used. The theoretical solutions were supported by the experimental results obtained from tests on prestressed and reinforced concrete models. An analytical study and comparison between the behaviour of a waffle slab and a uniform thickness slab having the same volume of concrete and reinforcement were made.

Based on the results obtained from the theoretical and experimental studies the following conclusions are drawn:

1. The good agreement between the experimental and theoretical results supports the reliability of the proposed formulae for estimating the orthotropic rigidities.
2. The theoretical solution gives good convergence in the results for uniform and concentrated loads at the centre of rectangular
slabs. Such degree of convergency decreases as the concentrated load moves away from the centre of the slab or when the skew angle increases.
3. The discrepancies between the theoretical and the experimental results for reinforced concrete slabs are due to microcracking.
4. Local cracks produced near the concentrated load in reinforced concrete slabs can reduce the stiffness of the slab by as much as 30%.
5. The torsional rigidity of the slab plays an important part on the behaviour of a skew slab as well as when a concentrated load is close to the unsupported edges.
6. The behaviour of prestressed waffle slabs can be much better predicted than that for reinforced concrete waffle slabs; this is due to absence of local cracking and microcracking.
7. The presence of the ribs in waffle slab construction makes it possible to accommodate the prestressing steel more readily and at varying levels of eccentricity, and therefore the realization of its use for longer span, resulting in substantial economy.
8. In general reinforced and prestressed waffle slabs are structurally more efficient than

slabs with uniform thickness.

8.2 Suggestions For Future Research

The following suggestions are recommended for future research:

1. An exact solution for the plane stress problem for rectangular and skew prestressed concrete waffle slabs is required for better predictions.
2. The after cracking behaviour of reinforced and prestressed concrete waffle slabs up to failure of the slab should be investigated.
3. The effect of edge beam with different cross sections is of practical interest.
4. An analysis based on a finite element method or finite difference technique should be established to deal with the problem of varying rigidities of the slab due to cracking of the concrete at various locations.

FIGURE 3.1 BOTTOM PLAN LAYOUT WAFFLE SLABS A_{1} AND A_{2}.
(1 in. $=25.4 \mathrm{~mm})$

$\begin{array}{ll}\text { FIGURE } 3.2 \text { GEOMETRIC SHAPE OF THE RIBS AND THE } \\ & \text { PLATE FOR WAFFLE SLAB. }\end{array}$

$$
(1 \mathrm{in} .=25.4 \mathrm{~mm})
$$

TRANSVERSE SECTION (x AXIS)
a) REINFORCED CONCRETE (GROUP A)

LONGITUDINAL SECTION (Y AXIS) TRANSVERSE SECTION (X AXIS)
b) PRESTRESSED CONCRETE (GROUP B)

FIGURE 3.3 ORTHOTROPIC RIGIDITIES OF WAFELE SLAB.
$(1$ in. $=25.4 \mathrm{~mm})$

FIGURE 3.4 LATERAL LOADING CASES FOR GROUP A SLABS

Thickness of plate $=1 "$
a) RECTANGULAR PLATE

b) SKEW PLATE

FIGURE 4.2 EXPANSION OF THE LOAD IN FOURIER SERIES.

FIGURE 6.1 THE REINFORCING STEEL AND ANCHORAGE SYSTEM.

FIGURE 6.2 FORM BEFORE CASTING THE CONCRETE.

FIGURE 6.4 END BLOCKS AND LOAD CELLS FOR PRESTRESSED SKEW SLAB.

FIGURE 6.5 LOADING SYSTEM FOR UNIFORM LOAD.

FIGURE 6.6 REGULATOR SYSTEM AND PRESSURE GAUGES.

Pressure gages

FIGURE 6.7 TRANSVERSE SECTION FOR THE LOADING FRAME.

FIGURE 6.8 LONGITUDINAL SECTION FOR THE LOADING FRAME.
(1 in. $=25.4 \mathrm{~mm}$)

$\square \square \square \square \square \square$ SEC. A-A

FIGURE 6.9 REINFORCED CONCRETE WAFFLE SLAB A. 1
$(1$ in. $=25.4 \mathrm{~mm})$

FIGURE 6.10 REINFORCED CONCRETE WAFFIE SLAB A. 2.

$$
(1 \mathrm{in} .=25.4 \mathrm{~mm})
$$

Figure 6.12 prestressed concrete waffle slab b.l.
($1 \mathrm{in} .=25.4 \mathrm{~mm}$)

FIGURE 6.13 PRESTRESSED CONCRETE WAFFLE SLAB B. 2. $(1 \mathrm{in} .=25.4 \mathrm{~mm})$

FIGURE 6.15 POINT LOADING SYSTEM.

FIGURE 6.16 LOADING SYSTEM FOR SLAB A. 2.

FIGURE 6.17 LOADING SYSTEM FOR THE SKEW SLAB A. 3.

FIGURE 6.18 LOADING SYSTEM FOR PRESTRESSED SLAB B.l.

FIGURE 6.19 LOADING SYSTEM FOR PRESTRESSED SKEW SLAB B.2.

FIGURE 6.20 PRESTRESSING FORCE AND EDGE MOMENTS FOR SLAB B.l.

$$
(1 \mathrm{KIP}=4.45 \mathrm{KN})
$$

FIGURE 6.21 PRESTRESSING FORCE AND EDGE MOMENTS
FOR SKEW SLAB B.2.
$(1 \mathrm{KIP}=4.45 \mathrm{KN})$

FIGURE 7.1 SLAB A.I FAILURE.

FIGURE 7.3 LOAD DEFLECTION RELATIONSHIP FOR SLAB A. 1.

FIGURE 7.4 LOAD DEFLECTION RELATIONSHIP FOR SLAB A. 1.

FIGURE 7.5 TRANSVERSE DEFLECTION.

FIGURE 7.7 LOAD STRAIN RELATIONSHIP FOR SLAB A. 1 AT CENTRE.

$$
(I \mathrm{KIP}=4.45 \mathrm{KN})
$$

FIGURE 7.10 SLAB A. 2 CRACKS.

FOR SLAB A. 2, LOAD
$(1 \mathrm{KIP}=4.45 \mathrm{KN})$

FIGURE 7.14 LONGITUDINAL DEFLECTION ALONG LINE A-A ($\mathrm{p}=1 \mathrm{KIP}$)
(1 $\mathrm{in}=25.4 \mathrm{~mm}$)
$(1 \mathrm{KIP}=4.45 \mathrm{KN})$

FIGURE 7.15 LOAD STRAIN RELATIONSHIP FOR SLAB A.2, roAD AT CENTRE OF SLAB.

FIGURE 7.16 LOAD STRAIN RELATIONSHIP FOR SLAB A. 2 , LOAD AT THE FREE EDGE

$\begin{array}{ll}\text { FIGURE } 7.17 & \text { STRAIN DISTRIBUTION FOR SLAB A. } 2 \text { AT } \\ & \\ & \text { BOTTOM FIBRE DUE TO } 1 \text { KIP AT CENTRE. }\end{array}$

FIGURE 7.18 CRACK DEVELOPMENT IN SLAB A. 3.

FIGURE 7.19 BOTTOM CRACKS FOR SLAB A. 3.

FIGURE 7.20 LOAD DEFLECTION RELATIONSHIP FOR SKEW SLAB A. 3.

FIGURE 7.21 LOAD DEFLECTION RELATIONSHIP FOR SKEW SLAB A.3.

$$
\begin{aligned}
(1 \mathrm{in} & =25.4 \mathrm{~mm}) \\
(1 \mathrm{KIP} & =4.45 \mathrm{KN})
\end{aligned}
$$

FIGURE 7.23 LOAD STRAIN RELATIONSHIP FOR SKEW SLAB A. 3 AT POINT 1.

FIGURE 7.24 LOAD STRAIN RELATIONSHIP FOR SKEW SLAB A. 3 AT POINT 2.

FIGURE 7.26 CRACKS DEVELOPMENT FOR SLAB B.I.

FIGURE 7.27 CRACKS FAILURE FOR SLAB B.1.

FIGURE 7.29 TOP FIBRE STRAIN DISTRIBUTION FOR SLAB B.I DUE TO PRESTRESSING.

FIGURE 7.30 BOTTOM FIBRE STRAIN DISTRIBUTION FOR SLAB B.I DUE TO PRESTRESSING.

FIGURE 7.31 LOAD DEFLECTION RELATIONSHIP FOR SLAB B.l.

FIGURE 7.32 LOAD DEFLECTION RELATIONSHIP FOR SLAB B.I

FIGURE 7.33 LOAD STRAIN RELATIONSHIP FOR SLAB B. 1 AT CENTRE.

FIGURE 7.34 LOAD STRAIN RELATIONSHIP FOR SLAB B. 1 (LOADING AT POINT 1).

FIGURE 7.38 CRACKS FAILURE FOR SLAB B.2.

EIGURE 7.39 DEFLECTION DISTRIBUTION FOR SKEW SLAB B. 2 DUE TO PRESTRESSING FORCE.

FIGURE 7.42 LOAD DEFLECTION RELATIONSHIP FOR SLAB B.2.

FIGURE 7.43 LOAD DEFLECTION RELATIONSHIP FOR SLAB B. 2.

FIGURE 7.44 LOAD-DEFLECTION RELATIONSHIP FOR SLAB B. 2 (ULTIMATE LOAD).

FIGURE 7.45 LOAD STRAIN RELATIONSHIP FOR SLAB B. 2.

FIGURE 7.46 LOAD Strain RELATIONSHIP FOR SLAB B.2.

$\begin{aligned} \text { FIGURE } 7.47 & \text { DEFLECTION PATTERN FOR RECTANGULAR } \\ & \text { SLAB DUE TO UNIFORM LOAD OF .OI } \\ & \text { lb/in }{ }^{2} .\end{aligned}$

_ Waffle
——— Uniform Thickness
_ Simple
Support
Free

FIGURE 7.49 VARIATION OF DEFLECTIONS ALONG THE TRANSVERSE DIRECTION FOR POINT LOAD AT POINT 1 AND 2.

FIGURE 7.50 VARIATION OF STRAINS ALONG THE TRANSVERSE AXIS AT TOP FIBRE DUE TO CONCENTRATED LOAD 1 KIP AT POINT 1 AND 2.

STRAIN

—— Waffle
-—— Uniform Thickness

FIGURE 7.56 DEFLECTION (CAMBER) DUE TO PRESTRESSING

APPENDICES

APPENDIX (A)

Expressions For Matrix Elements

$$
\begin{aligned}
& A_{1}=2 k_{3} k_{4} \\
& A_{2}=k_{3}^{2}-k_{4}^{2} \\
& A_{3}=k_{3}\left(k_{3}^{2}-3 k_{4}^{2}\right) \\
& A_{4}=k_{4}\left(3 k_{3}^{2}-k_{4}^{2}\right) \\
& A_{5}=-E I\left(A_{2}^{2}-A_{1}^{2}\right) x_{2}^{4} \\
& A_{6}=2 E I x_{2}^{4} A_{1} A_{2} \\
& A_{7}=-R_{1} k_{4}-R_{2} \\
& A_{8}=-x_{2}\left(R_{1} k_{4}-R_{2} x_{2} A_{2}\right) \\
& A_{9}=-x_{2}\left(R_{1} k_{3}+R_{2} x_{2} A_{1}\right) \\
& A_{10}=R_{3} A_{3}-R_{4} A_{1}-R_{5} k_{3} \\
& A_{11}=-R_{3} A_{4}-R_{4} A_{2}+R_{5} k_{4}+R_{6} \\
& A_{12}=-x_{2}\left(R_{4} k_{3}+R_{5} x_{2} A_{1}-R_{6} x_{2}^{2} A_{3}\right) \\
& \left.A_{13}=R_{3}+R_{4} x_{2} k_{4}-R_{5} x_{2}^{2} A_{2}-R_{6} x_{2}^{3} A_{4}\right) \\
& A_{14}=R_{7} A_{2}-R_{8} k_{4}-R_{9} \\
& A_{15}=-R_{7} A_{1}-R_{8} k_{3} \\
& A_{16}=G J k_{4}+R_{10} \\
& \left.A_{17}=-R_{7}-R_{8} x_{2} k_{4}+R_{9} x_{2}^{2} A_{2}\right) \\
& A_{18}=-x_{2}\left(R_{8} k_{3}+R_{9} x_{2} A_{1}\right) \\
& A_{19}=-x_{2}^{2}\left(G J A_{1}-R_{10} x_{2} A_{3}\right) \\
& A_{1} \\
& A_{1}
\end{aligned}
$$

$$
\begin{aligned}
& A_{20}=-x_{2}^{2}\left(G J A_{2}+R_{10} x_{2} A_{4}\right) \\
& A_{21}=-T_{n} k_{3} \\
& A_{22}=T_{n} k_{4}-1 / C \\
& A_{23}=x_{2} k_{3} / C \\
& A_{24}=T_{n}-x_{2} k_{4} / C \\
& A_{25}=k_{3} / C \\
& A_{26}=T_{n}-k_{4} / C \\
& A_{27}=-T_{n} k_{3} x_{2} \\
& A_{28}=-1 / C+T_{n} k_{4} x_{2} \\
& B_{1}=2 k_{3} k_{5} \\
& B_{2}=k_{3}^{2}-k_{5}^{2} \\
& B_{3}=k_{3}\left(k_{3}^{2}-3 k_{5}^{2}\right) \\
& B_{4}=k_{5}\left(3 k_{3}^{2}-k_{5}^{2}\right) \\
& B_{5}=-E I Y_{2}^{4}\left(B_{2}^{2}-B_{1}^{2}\right) \\
& B_{6}=2 E I Y_{2}^{4} B_{1} B_{2} \\
& B_{7}=R_{1} k_{5}-R_{2} \\
& B_{8}=Y_{2}\left(R_{1} k_{5}+R_{2} Y_{2} B_{2}\right) \\
& B_{9}=y_{2}\left(R_{1} k_{3}-R_{2} Y_{2} B_{1}\right) \\
& B_{10}=R_{3} B_{3}+R_{4} B_{1}-R_{5} k_{3} \\
& B_{11}=-R_{3} B_{4}+R_{4} B_{2}+R_{5} k_{5}-R_{6} \\
& B_{12}=-Y_{2}\left(R_{4} k_{3}-R_{5} Y_{2} B_{1}-R_{6} Y_{2}^{2} B_{3}\right) \\
& B_{13}=-R_{3}+R_{4} Y_{2} k_{5}+R_{5} Y_{2}^{2} B_{2}-R_{6} Y_{2}^{3} B_{4}
\end{aligned}
$$

$$
\begin{aligned}
& B_{14}=R_{7} B_{2}+R_{8} k_{5}-R_{9} \\
& B_{15}=-R_{7} B_{1}+R_{8} k_{3} \\
& \mathrm{~B}_{16}=\mathrm{GJk}_{5}-\mathrm{R}_{10} \\
& B_{17}=-R_{7}+R_{8} Y_{2} k_{5}+R_{9} Y_{2}^{2} B_{2} \\
& \mathrm{~B}_{18}=Y_{2}\left(\mathrm{R}_{8} \mathrm{k}_{3}-\mathrm{R}_{9} \mathrm{Y}_{2} \mathrm{~B}_{1}\right) \\
& { }^{\mathrm{B}}{ }_{19}=\mathrm{Y}_{2}^{2}\left(\text { GaB }_{1}+\mathrm{R}_{10} \mathrm{Y}_{2} \mathrm{~B}_{3}\right) \\
& \mathrm{B}_{20}=-\mathrm{Y}_{2}^{2}\left(\mathrm{GJB}_{2}-\mathrm{R}_{10} \mathrm{Y}_{2} \mathrm{~B}_{4}\right) \\
& \mathrm{B}_{22}=\mathrm{T}_{\mathrm{n}} \mathrm{k}_{5}+1 / \mathrm{C} \\
& \mathrm{~B}_{23}=\mathrm{k}_{3} \mathrm{Y}_{2} / \mathrm{C} \\
& \mathrm{~B}_{24}=-\mathrm{T}_{\mathrm{n}}-\mathrm{k}_{5} \mathrm{Y}_{2} / \mathrm{C} \\
& B_{26}=-T_{n}-k_{5} / C \\
& B_{27}=-T_{n} k_{3} y_{2} \\
& B_{28}=1 / C+T_{n} k_{5} Y_{2} \\
& d_{11}=-D_{x} / c^{2} \\
& d_{12}=2 D_{x} s / c^{2} \\
& d_{13}=-\left(D_{x} s^{2} / C^{2}+D_{1}\right) \\
& d_{21}=-D_{2} / c^{2} \\
& d_{22}=2 D_{2} s / c^{2} \\
& d_{23}=-\left(D_{2} s^{2} / c^{2}+D_{Y}\right) \\
& d_{31}=0 \\
& d_{32}=D_{X Y} / C
\end{aligned}
$$

$$
\begin{aligned}
& d_{33}=-D_{x y} s / c \\
& K_{1 n}=\cosh R_{1 n} \cos R_{r I} \\
& K_{2 n}=\sinh R_{1 n} \cos R_{r l} \\
& K_{3 n}=\sinh R_{1 n} \cos R_{r l} \\
& k_{4 n}=\cosh R_{1 n} \sin R_{r l} \\
& K_{5 n}=\cosh R_{2 n} \cos R_{r 2} \\
& k_{6 n}=\sinh R_{2 n} \sin R_{r 2} \\
& K_{7 n}=\sinh R_{2 n} \cos R_{r 2} \\
& K_{8 n}=\cosh R_{2 n} \sin R_{r 2} \\
& L_{1 n}=\cosh S_{I n_{n}} \cos S_{s l} \\
& L_{2 n}=\sinh s_{l n} \sin s_{s l} \\
& L_{3 n}=\sinh S_{1 n} \cos S_{s I} \\
& L_{4 n}=\cosh S_{1 n} \sin S_{s l} \\
& L_{5 n}=\cosh R_{2 n} \cos S_{s 2} \\
& L_{6 n}=\sinh R_{2 n} \sin S_{s 2} \\
& I_{7 n}=\sinh R_{2 n} \cos S_{s 2} \\
& L_{8 n}=\cosh R_{2 n} \sin S_{s 2} \\
& R_{r 1}=x_{2} k_{4} \alpha_{n}{ }^{b} \\
& R_{r 2}=k_{4}{ }_{n}{ }^{a} \\
& R_{l n}=x_{2} k_{3}{ }^{a} n^{b} \\
& R_{2 n}=k_{3} \beta_{n} a
\end{aligned}
$$

$$
\begin{aligned}
& S_{a a}=2 /\left(B_{n}^{2} a^{2}\left(B_{n}^{2} a^{2} / x_{2}^{2}+2 A m^{2} \pi^{2}\right)+m^{4} \pi^{4}\right) \\
& s_{a l}=s_{a a} m(-1)^{m} \\
& s_{a 2}=s_{a a^{\beta}} n^{a(-1)^{m}} \\
& S_{b a}=2 /\left(B_{n}^{2} a^{2}\left(B_{n} a^{2} / Y_{2}^{2}+2 B 2^{2} \pi^{2}\right)+m^{4} \pi^{4}\right) \\
& S_{b l}=s_{b a} m \pi(-1)^{m} \\
& S_{b 2}=S_{b a} \beta_{n} a(-1)^{m} \\
& s_{s l}=y_{2} k_{5} \alpha_{n} b \\
& s_{s 2}=k_{5}{ }^{\beta}{ }^{a} \\
& S_{x a}=2 /\left(x_{2}^{2} \alpha_{n}^{2} b^{2}\left(\alpha_{n}^{2} b^{2}+2 A_{2} m^{2} \pi^{2}\right)+m^{4} \pi^{4}\right) \\
& s_{x l}=s_{x a} m \pi(-1)^{m} \\
& s_{x 2}=s_{x a} \alpha_{n} b(-1)^{m} \\
& S_{y a}=2 /\left(Y_{2}^{2} \alpha_{n}^{2} b^{2}\left(\alpha_{n}^{2} b^{2}+2 B_{2} m^{2} \pi^{2}\right)+m^{4} \pi^{4}\right) \\
& s_{y l}=s_{y a} m \pi(-I)^{m} \\
& s_{y 2}=s_{y a} \alpha_{n} b(-1)^{m} \\
& s_{\text {ln }}=y_{2} k_{3}{ }^{\alpha}{ }^{b} b \\
& T_{a 1}=A_{1} \beta_{n}^{2} a^{2} \\
& T_{a 2}=A_{2} \beta_{n}^{2} a^{2}+m^{2} \pi^{2} \\
& T_{a 3}=k_{3}\left(B_{n}^{2} a^{2} / x_{2}+m^{2} \pi^{2}\right) \\
& T_{a 4}=k_{4}\left(\beta_{n}^{2} a^{2} / x_{2}-m^{2} \pi^{2}\right) \\
& T_{b l}=B_{1} \beta_{n}^{2} a^{2} \\
& T_{b 2}=B_{2} \beta_{n}^{2} a^{2} / Y_{2}+m^{2} \pi^{2}
\end{aligned}
$$

$$
\begin{aligned}
& T_{b 3}=k_{3}\left(\beta_{n}^{2} a^{2} / y_{2}+m^{2} \pi^{2}\right) \\
& T_{b 4}=k_{5}\left(\beta_{n}^{2} a^{2} / y_{2}-m^{2} \pi^{2}\right) \\
& T_{x 1}=A_{1} \alpha_{n}^{2} b^{2} x_{2}^{2} \\
& T_{x 2}=A_{2} \alpha_{n}^{2} b^{2} x_{2}^{2}+m^{2} \pi^{2} \\
& T_{x 3}=x_{2} k_{3}\left(x_{2} \alpha_{n}^{2} b^{2}+m^{2} \pi^{2}\right) \\
& T_{x 4}=x_{2} k_{4}\left(x_{2} \alpha_{n}^{2} b^{2}-m^{2} \pi^{2}\right) \\
& T_{y 1}=B_{1} \alpha_{n}^{2} b^{2} y_{2}^{2} \\
& T_{y 2}=B_{2} y_{2}^{2} a_{n}^{2} b^{2}+m^{2} \pi^{2} \\
& T_{y 3}=k_{3} y_{2}\left(y_{2} \alpha_{n}^{2} b^{2}+m^{2} \pi^{2}\right) \\
& T_{y 4}=y_{2} k_{5}\left(y_{2} \alpha_{n}^{2} b^{2}-m^{2} \pi^{2}\right) \\
& u_{3 n}=k_{3} \beta_{n} u \\
& u_{4 n}=k_{4} \beta_{n} u \\
& u_{5 n}=k_{5} \beta_{n} u \\
& v_{3 n}=x_{2} k_{3} \alpha_{n} v \\
& v_{3 n}=y_{2} k_{3} \alpha_{n} v \\
& v_{4 n}=x_{2} k_{4} \alpha_{n} v \\
& v_{5 n}=y_{2} k_{5} \alpha_{n} v
\end{aligned}
$$

APPENDIX (B)

Fourier Coefficients For Lateral Load

The Fourier coefficients of Equation 5.2 are evaluated below:

$$
\begin{aligned}
a_{\infty 0} & =(1 / 2 a) \int_{-a}^{a} f_{0}(u) d u \\
& =\underset{-a}{(1 / 2 a)} \int^{a}\left\{c_{17}+c_{20}\left(u^{2} / a^{2}\right)+c_{21}+c_{24}\left(T u^{4} / b^{4}-1\right)\right\} d u \\
& =C_{17}+1 / 3 C_{20}+c_{21}+c_{24}\left(T a^{4} / 5 b^{4}-1\right)
\end{aligned}
$$

$$
a_{o m}=(1 / a) \int_{-a}^{a} f_{o}(u) \cos a_{m} u d u
$$

$$
=C_{20} I_{1 m}+C_{24} T I_{3 m^{a^{4}} / b^{4}}
$$

The integrals $I_{1 m}, I_{3 m}$, etc. are defined at the end of this appendix

$$
\begin{aligned}
b_{o m} & =\underset{-a}{(1 / a)} \int_{-a}^{a} f_{0}(u) \sin \alpha_{m} u d u=0 \\
c_{n o} & =(1 / 2 a) \int_{n}^{a} f_{n}(u) d u \\
& =\left(C_{1 n} W_{1 n}+C_{4 n} W_{2 n}+C_{5 n} W_{3 n}+C_{8 n} W_{4 n}\right)(-1)^{n}
\end{aligned}
$$

$$
c_{n m}=\underset{-a}{(1 / a)} \int_{n}^{a} f_{n}(u) \cos \alpha_{m}^{u}
$$

$$
=\left(C_{1 n} A_{j 1}+C_{4 n^{A}}{ }_{j 2}+C_{5 n^{A}} A_{j}+C_{8 n^{A}}\right)(-1)^{n}
$$

$$
d_{n m}=(1 / a) \int_{-a}^{a} f(n) \sin \alpha_{m}^{u} d u=0
$$

Fourier Expansions and Definite Integrals

$$
\begin{aligned}
I_{1 n} & =(1 / a) \int_{-a}^{a}\left(u^{2} / a^{2}\right) \cos \alpha_{n} u d u \\
& =\underset{-b}{(1 / b)} \int_{\left(v^{2} / b^{2}\right) \cos \beta_{n} v d v}^{b} \\
& =4(-1)^{n / n^{2} \pi^{2} \quad \text { and so on. }} \\
I_{3 n} & =8(-1)^{n}\left(1-6 / n^{2} \pi^{2}\right) / n^{2} \pi^{2} \\
I_{5 n} & =-2(-1)^{n / n \pi} \\
I_{7 n} & =-2(-1)^{n}\left(1-6 / n^{2} \pi^{2}\right) / n \pi \\
& =x_{2}\left(K_{3} K_{7 n}+K_{4} K_{8 n}\right) / a \beta_{n} \\
W_{1 n} & (1 / 2 a) \int^{a} \cosh u_{3 n} \cos u_{4 n} d u \\
W_{2 n} & =x_{2}\left(K_{3} K_{8 n}-K_{4} K_{7 n}\right) / a \beta_{n} \\
W_{3 n} & =y_{2}\left(K_{3} L_{7 n}+K_{5} L_{8 n}\right) / a \beta_{n} \\
W_{4 n} & =y_{2}\left(K_{3} L_{8 n}-K_{5} L_{7 n}\right) / a \beta_{n} \\
W_{5 n} & =\left(K_{3} K_{3 n}+K_{4} K_{4 n}\right) / b \alpha_{n} \\
W_{6 n} & =\left(K_{3} K_{4 n}-K_{4} K_{3 n}\right) / b \alpha_{n}
\end{aligned}
$$

$$
\begin{aligned}
& W_{7 n}=\left(K_{3} L_{3 n}+K_{5} L_{4 n}\right) / b \alpha_{n} \\
& W_{8 n}=\left(K_{3} L_{4 n}-K_{5} L_{3 n}\right) / b \alpha_{n} \\
& A_{j 1}=(I / a) \int_{-a}^{a} \cosh u_{3 n} \cos u_{4 n} \cos \alpha_{m} u d u \\
& =S_{a 2}\left(T_{a 3^{K}} K_{n}+T_{a 4} K_{8 n}\right) \\
& A_{j 2}=\left(S_{a 2}{ }^{\left(-T_{a 4} K_{7 n}+T_{a} K_{8 n}\right)}\right. \\
& A_{j 3}=S_{b 2}\left(T_{b 3} L_{7 n}+T_{b 4} L_{8 n}\right) \\
& A_{j 4}=S_{b 2}\left(-T_{b 4} L_{7 n}+T_{b 3} L_{8 n}\right) \\
& A_{j 5}=S_{x 2}\left(T_{x 3} K_{3 n}+T_{x 4} K_{4 n}\right) \\
& A_{j 6}=S_{x 2}\left(-T_{x 4} K_{3 n}+T_{x 3} K_{4 n}\right) \\
& A_{j 7}=S_{Y 2}\left(T_{Y 3} L_{3 n}+T_{Y 4} L_{4 n}\right) \\
& A_{j 8}=S_{Y 2}\left(T_{Y 4} L_{3 n}-T_{Y} L_{4 n}\right) \\
& B_{j l}=(1 / a) \int_{-a}^{a} \sinh u_{3 n} \cos u_{4 n} \sin \alpha_{m} u d u \\
& =S_{a 1}\left(-T_{a 2^{K}} K_{n}-T_{a 1} K_{8 n}\right) \\
& B_{j 2}=S_{a l}\left(T_{a 1} K_{7 n}-T_{a 2} K_{8 n}\right) \\
& B_{j 3}=S_{b 1}\left(-T_{b 2} L_{7 n}-T_{b 1} I_{8 n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& B_{j 4}=S_{b l}\left(T_{b 1} L_{7 n}-T_{b 2} L_{8 n}\right) \\
& B_{j 5}=S_{x I}\left(-T_{x 2} K_{3 n}-T_{x 1} K_{4 n}\right) \\
& B_{j 6}=S_{x 1}\left(T_{x 1} K_{3 n}-T_{x 2} K_{4 n}\right) \\
& B_{j 7}=S_{Y l}\left(-T_{Y 2} L_{3 n}-T_{Y 1} L_{4 n}\right) \\
& B_{j 8}=S_{Y l}\left(T_{y l} L_{3 n}-T_{Y 2} L_{4 n}\right)
\end{aligned}
$$

APPENDIX (C)

The Fourier series is given by

$$
y=f(x)=a_{0} / 2+\sum_{n=1}^{n=\infty}\left(a_{n} \cos 2 n \pi x / x+b_{n} \sin 2 n \pi x / x\right)
$$

where X is the total length of the cycle.
The coefficients for Fourier series are obtained by evaluating the following definite integrals (33);

$$
\begin{align*}
& a_{0}=(2 / x) \int_{-x / 2}^{x / 2} f(x) d x \tag{C.1}\\
& a_{n}=(2 / x) \int_{-x / 2}^{x / 2} f(x) \cos (2 n \pi x / x) d x \tag{C.2}\\
& b_{n}=(2 / x) \\
& a_{-x / 2}^{x / 2} f(x) \sin (2 n \pi x / x) d x
\end{align*}
$$

From Figure 4.2,
The width of one division $=d x=x / m$

$$
\begin{aligned}
x & =\left\{(x / m)\left(k-\frac{1}{2}\right)-x / 2\right\} \\
x / x & =\left\{(1 / m)\left(k-\frac{1}{2}\right)-\frac{1}{2}\right\}
\end{aligned}
$$

Substituting in Equation (C.l)

$$
\begin{align*}
a_{0} & =(2 / X)_{k} \sum_{1}^{m} y_{k}(x / m) \\
& =(2 / m)_{k=1}^{\sum_{i}^{m}} y_{k} \tag{C.4}
\end{align*}
$$

Substituting in Equation (C.2)

$$
\begin{align*}
a_{n} & =(2 / x){ }_{k=1}^{\sum_{=1}^{m}} y_{k}\left\{\cos 2 n \pi\left(1 / m\left(k-\frac{1}{2}\right)-\frac{1}{2}\right)\right\} x / m \\
& =(2 / m) \quad k_{k=1}^{\sum_{1}^{m}}(-1)^{m} y_{k} \cos \left\{(2 n \pi / m)\left(k-\frac{1}{2}\right)-n \pi\right\} \\
a_{n} & =(2 / m) \quad k_{k=1}^{\sum_{1}^{m}}(-1)^{m} y_{k} \cos (2 n \pi / m)\left(k-\frac{1}{2}\right) \tag{CF}
\end{align*}
$$

Substituting in Equation (C.3) and following the same procedures the final equation is obtained,

$$
\begin{equation*}
b_{n}=(2 / m)_{k=1}^{\sum_{1}^{m}(-1)^{m} y_{k} \sin (2 n \pi / m)\left(k-\frac{1}{2}\right), ~} \tag{C.6}
\end{equation*}
$$

APPENDIX (D)

Design of Concrete Mix

Five trial mixes were made to meet the following conditions: concrete is required for reinforced and prestressed concrete waffle slab deck bridges;

Concrete mix must have: 3 to 4 in. range in slump, suitably vibrated and adequately cured.

Cement content: Different cement contents range from 660 to 750 lbs. per cu. yd. and air content of 5% were used in the concrete mixes.

Strength: Two different concrete mixes for strength equal to 4000 and 6000 psi were required for the reinforced and prestressed concrete slab models, respectively. Aggregates: Maximum size of coarse aggregate was chosen as $\frac{1}{4}$ in. with a specific gravity equal to 2.65 .

Assumptions: According to reference (22, Table l0), the amount of water required per cubic yard was 300 lb . The percentage of fine aggregate to the total aggregate was assumed between 40 to 70% for the different trial mixes. Quantities per cubic yard: From the information given, the absolute volume occupied by the paste was calculated as:

Coarse aggregate, wt. $=17.6 \times .40 \times 2.65 \times 62.4=1126$ lbs. Fine aggregate, wt. $=17.6 \times .60 \times 2.65 \times 62.4=1689 \mathrm{lbs}$.

The above quantities per cubic yard were approximate, and used as a preliminary trial batch.

For 10 lbs. of cement, a trial batch consisted of:

Based on the workability and maximum strength of this trial mix, four trial mixes with different water/cement ratio and fine aggregate content were made using Figure 32 in reference (22). The following table shows the proportions of the five mixes and their strength after 7,14 and 28 days.

TABLE (D.1)

| Mix
 No. | Ratio by Weight in lbs. | | Strength in psi | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Cement | Water | Sand | Gravel | 7 days | 14 days | 28 days |
| 1 | 1.0 | 0.70 | 3.00 | 2.00 | 4000 | 4670 | 5090 |
| 2 | 1.0 | 0.60 | 2.50 | 1.80 | 5580 | 5870 | 6270 |
| 3 | 1.0 | 0.50 | 2.00 | 1.50 | 6720 | 6580 | 7710 |
| 4 | 1.0 | 0.40 | 1.40 | 1.20 | 7045 | 7965 | 8275 |
| 5 | 1.0 | 0.40 | 2.25 | 1.50 | 6600 | 7400 | 7900 |

The total volume of the slab and cylinders

$$
=10 \mathrm{ft}^{3}
$$

and the total weight of the concrete mix required

$$
=10 \times 146=1460 \mathrm{lbs} .
$$

which was divided into two batches. Mix No. l was chosen for the reinforced concrete waffle slabs, and Mix No. 2 for the prestressed concrete waffle slabs.

TABLE D. 2

TABLE D. 3

	Slab	$\begin{aligned} & \text { fc28 } \\ & \text { psi } \end{aligned}$	Span Inch	Width Inch	Skew Angle	D_{x}	D_{y}	D_{1}	D_{2}	D_{XY}	Edge Beam$\times 10^{6}$	
$\underset{\mathrm{A}}{\text { GROUP }}$	A. 1	5000	84	71.5	0	10.73	10.88	0.78	0.79	1.65	0	0
	A. 2	6635	84	71.5	0	12.47	12.48	1.03	1.02	1.85	0	0
	A. 3	4690	84	101.1	45	10.34	10.48	0.74	0.73	1.50	0	0
$\begin{gathered} \text { GROUP } \\ \text { B } \end{gathered}$	B. 1	7665	84	71.5	0	12.91	12.91	1.13	1.14	1.95	60.00	34.30
	B. 2	8285	84	71.5	45	13.35	13.40	1.22	1.22	2.05	62.70	35.35

$D_{x}, D_{y}, D_{1}, D_{2}, \& D_{x y}$ in lb. in ${ }^{2} /$ in $x 10^{6}$

ORTHOTROPIC RIGIDITIES OF SLAB MODELS

APPENDIX E

CALIBRATION OF LOAD CELLS

FIGURE (E2) LOAD DEFLECTION FOR HIGH TENSILE STEEL WIRE.

FIGURE (E3) LOAD STRAIN RELATIONSHIP (LOAD CELL 5 KIPS).

FIGURE (E4) LOAD STRAIN RELATIONSHIP (LOAD
CELL 25 KIPS).

FIGURE (E5) LOAD STRAIN RELATIONSHIP
(1-15 LOAD CELI).

FIGURE (E6) LOAD STRAIN RELATIONSHIP (6-11 LOAD CELL).

APPENDIX F
 COMPUTER PROGRAM
 (WAFFLE)


```
        6CH( 76S5
```



```
        *MITE(E:FMI) (HA(I):1=1:104)
```



```
        O\=7C.ノ吅
        N=10
        LN= #
        NS =-3*N + - 
        NST= NS:+
        H3T2 = 4 * .1 + 4 + Lid
        NSS=NS:YS
        GALLTNTNT
```



```
        CPU未igCu/100j0.CPU
    WR:TE (S.10H)CFU
    EORMAT (SOX.'CFU USED =',F3.2,' SECS'%
    CJLLTMTNIT
        YRITE@G.F:AZ) Z.ZN,Z3.YTP.YTY,YTU,TMK
```



```
    1.NAD(NP(1),1=1:NNH;NRONGE NTD:NGPY
    #RITE(G,2JO; ,
    l (NP(1), t=t,MNH),N2,NGC
    NRC =NR
    :F (NR:O..J) NRC=
```



```
    THETA=SA*P!/130.
    C=Gこう(THETA)
    SEESN(THETA)
    REAC(5,15) EXC.EYC.AXX,AYY,AMU.TK
    HRITE(6,75) EXC.EYC,AXX,AYY,AMU:TK
    7 6
```



```
    E!=AMU EXCC{1.-AMU=$2}
    E\Sigma=AMU*EYC/(1.-APMU**2)
    REAJ(E,2Jt) HU,HV,ECU,EEV
    HRITE(O.2OI)MU.MV,ECU.EEV
    FORMAT (211J.2FIO.J)
        75
```



```
        FUT=O
        O021: I=:0.|
2.5
    OAY=FLT
    OC 216 := 1.1V
2!3
    FVT=FGT+FV(b)
    OAX=FYT/(2**U)
```



```
    EYY=(PAY=EX/TX-0 AX=EこJ/0XY:
    OU 202 i=i,1U
```



```
A!2=-x2#(R4**S+R5#x2*al-26*x22*AJ!
```



```
A14=1R7*A2-2.3*<4-29
A15=- स7*A1-R3*KJ
A&=KK4*GJ+F1D
A:T=-R7-Rg4x2 mK4+R9*\times22=42
```



```
A2J=-(A2#GJ+R10=x2*A4)**22
AG=xJ=EJ
B 1=己 *Kこ=Kう
```



```
83=xJ*(2Kx3-J.*P<<5)
```



```
06=2.*01*3コ*Y24=EI
J T=(A1Kj-, 23)
Bg=(R1<j+R2=YZ#EZ)=Y3
```



```
こ14=R 7*12 -2 J*K5-R9
```



```
316=KE#GJ-R!J
```



```
T=コご年生
ci=1.c
TNK4=TN=K*
TNKS=TN*K*
Cx+=x K %/C
<x5=イシノ!
\21=-下ハ*スコ
#22= rnKs-C:
```



```
A25=xコハ
Aこj=AZミミ\2
A2G=TN-CK+
i27=4E!*x2
< 28=-41+TNK+*x2
g2z=T\timesx5CN:
02Ja4z5Y2
8.3#-T:-6x5uy2
020x-TN-CK
927#Aこ!*Y2
g_s=6!+TNK.3*Y2
TNA=-2.*TNな+
TNA3=-40%NAT**AJノ3BQ
TNAJ=-4.0%NJ*
```



```
0日c=0e3ノCイ!2:4.
30TN=EM:TN
```



```
27ニス7ノAA
Sa(1)=-0x<c!
3:2(b)=-2.0.j*s!1b
```



```
g!(2) =-52ノ=
SE(S)=-2.J云=5!(2)
S3(2)=-524Ti**2-Dr
s:{隹)=0.5
52(f)=0:%㲅
GE (3) =-5*53(3)
53(i) = 二..)*Sx54(i)
Su(b) = -7.J*5*34(1)*s
```


$0 Y \times 0=$

($(2)+54(1) * 5-54(2) * C$

\therefore 號

END

[^0]3 END

210

```
7
10
6 KHSL=C.5

```

O !F (H2N-jO.j) 11.11.12

```
O !F (H2N-jO.j) 11.11.12
        ER2=EXF{-コ.& ERZN;
        ER2=EXF{-コ.& ERZN;
    CHR2={1.0+EA=1/2.0
    CHR2={1.0+EA=1/2.0
    SHR2##(!-J-ジ心!/2.0
    SHR2##(!-J-ジ心!/2.0
    G0 TO l]
    G0 TO l]
    CHR2=C.5
    CHR2=C.5
    SHRN=0:5
    SHRN=0:5
    ESI=EXF(-2,0 #SIN)
    ESI=EXF(-2,0 #SIN)
    CHS!={(1:0+E{\}/2:0
    CHS!={(1:0+E{\}/2:0
    G0 rj 16
    G0 rj 16
    CHSt=0.5
    CHSt=0.5
    K\mp@code{N=CHE:zGR2!}
    K\mp@code{N=CHE:zGR2!}
    K3N=SHF!*G.l2!
```

```
    K3N=SHF!*G.l2!
```

```




```

```
    KBN=SMF2* SR`Z
```

```
    KBN=SMF2* SR`Z
        KTN=SHFZ=CRK2
        KTN=SHFZ=CRK2
        KZN=SHF2#CRN2
        KZN=SHF2#CRN2
        G1N=CHSL EJE!
        G1N=CHSL EJE!
    L2Na3n!!#SJj
    L2Na3n!!#SJj
        E*N=CHJ1A SSJ!
        E*N=CHJ1A SSJ!
    #N=CHF2*CHJ\
    #N=CHF2*CHJ\
        LGNSnR2*SSL2
        LGNSnR2*SSL2
        CN=SHR2#CSJ2
        CN=SHR2#CSJ2
        RZN=CRKCzSSコZ/RNR
        RZN=CRKCzSSコZ/RNR
        [5N=-&./マNO= Jid
        [5N=-&./マNO= Jid
        |!N=I EN* 15:1/JN
        |!N=I EN* 15:1/JN
        JN={\N+2:142.
        JN={\N+2:142.
        :7N=!\mp@code{N-R!2!}
```

 :7N=!\mp@code{N-R!2!}
    ```
```

 ON=1 年O
    ```
    ON=1 年O
        SN=-1
        SN=-1
        RN=:4
        RN=:4
        GNP=RA=0!
        GNP=RA=0!
        AN#FRNF/A
        AN#FRNF/A
        AN2=AN##
        AN2=AN##
        CA!=CN*AN
        CA!=CN*AN
        OAKZCN*AN2
        OAKZCN*AN2
        OAz=\AE*AN
        OAz=\AE*AN
        CN=RNP/O
        CN=RNP/O
        GN2=8N+*:
        GN2=8N+*:
        3NJ=GN2*!N
        3NJ=GN2*!N
        9N4=4N2紅N2
        9N4=4N2紅N2
        0日:=こ心*3N
        0日:=こ心*3N
        OB2=CN*BN
        OB2=CN*BN
        INA=3N=A
        INA=3N=A
    ANB=AN#G
    ANB=AN#G
    XAN=X2=Aivヨ
    XAN=X2=Aivヨ
    YAN=Y2 4 Aive3
    YAN=Y2 4 Aive3
        \RR!=ス** XA,
        \RR!=ス** XA,
        RR2=K4 UNA
        RR2=K4 UNA
        SSI=KE*YHN
        SSI=KE*YHN
        SJ2=K * % gidA
        SJ2=K * % gidA
        R:N=KJ##NA
        R:N=KJ##NA
        S 1N#K\#YAi
        S 1N#K\#YAi
        CRR1=EES{AR1
        CRR1=EES{AR1
        SaR!=S (N(2N1)
        SaR!=S (N(2N1)
        GRRE=CCS(RRA)
        GRRE=CCS(RRA)
        SRR2#S1M(284)
        SRR2#S1M(284)
        SNSI=SIN(SJ),
```

 SNSI=SIN(SJ),
    ```


```

 CARBXP(-2.j &R2,N)
    ```
```

 CARBXP(-2.j &R2,N)
    ```


```

 C
    ```
        C
        CHR1=0.
        CHR1=0.
        HR1=0.
        HR1=0.
        3N=\nsi:c⿹弓冫
        3N=\nsi:c⿹弓冫
        L3NCRFL=SS」2
```

 L3NCRFL=SS」2
    ```


```

 {Y!=ANY2=-1!
    ```


```

 2LSN.LON,LHT.CSN.AKZ
    ```


```

 ON=1,C
    ```

```

 CM#-S
 RM=M
 R:1PZ=FMM=P!
 RM22=FNF2目:1P?
 R1424= FM2S#1R,4ご2
 SAA#2./(JNA!*(3NX2+2.*A2%RMこ2)+RM工я)
    ```


```

 JYA=2*'(ANY二*(ANB2+2.*-S2*RM22)+RM24)
 SAL=SAA=R:هण: =CM
 SA:=SAA=RNMO=CM
    ```

```

 JXI=5XA*RNOEOM
 SAZ=3AN *SNA=UM
 SG2=SEA*SNAFOM
 SX\=SXA&ANJ*.JM
 TAこ=42夏N-AM<2
 -92=u录N+R.1J2
 TX==A EAX+R:1\div2
 TY:=8ZAY-A.1廹
 TA J=(ENX+FMC2) =K3
    ```

```

 TOZ={ENY+H.1%二)=<3
 TS4=(ENY-Ri|%%)=KS
    ```


```

 TYJ=(ANY-A:4LZ) =रJ*YZ
 AJ(!)=SAL*(TAJ*KTN+FAL*KSN)
 Aj(2)=SA2*(-TA&*KTH-TA3*&3N)
 AJ(2)=SA2*{一TA&*K7N+TA3&&SN
    ```

```

 AJ(3)=Sx2#(rxJ=KJN+TX&*<\vec{NN}
 AJ(j)=Sxこ*(-TX4&K3N+TX3&K+N+)
 AJ(T)=SY'3 (TYJ=L JN+TY&#L&N)
    ```



```

 GJ(3)=S&1*(-TE2*LTN-T31*LYN)
    ```

```

 \)=SX1 =(-TX2#K3N-TX1*K&N)
 #J(6)=EX! =(TX!EKJN-TXZ*K&N)
    ```

```

 {F (\geq-1) 23.36.2.9
 {F (iNH={HNH} \8,27,23
    ```


```

 19
 HRITE (5.61)(I,1=1,3),(AJ&!),I=1,3),(EJ(1),!=1,3)
 NHM=NH+it
 NH2N=NMZ+4
 NH3M=NHJ+M
 NHaM=NH4-M
 NHSM=NHS-4
 NHCXA=NHS+M
 4H7:A=ANT+M
 CO(NHAN,N)=& (4A」(b)
 CO(NMAM,NHNDI=ON=AJ(3
 CD(NMAM,NHN)=ON&NJ(2)
 CD(NM&M,.1H2.d)=ON*&J(3)
 CS(NHAN,iNH3,N)=ONEAJ(4
 SFBR(NMSM:int i)=ON*SJ(2)
 STER(NHS I NAFHN)=CN=3才(3)
    ```

```

 iF(zE) 29.36.30
    ```


















STUR (NHJM, N) \(=042=(A 17=3 j(5)+A 19 \# B J(5))\)





SMERMATA
-M2FANAM
คMJ=1. 2 \(\ddagger+14\)




\(3 V!=1 N \neq V L!=2\)
CVI=CES(3vに
-uにコルニvにいい


```

 SU!#S{A(AU!}
 1:NN=CL! *C'/
 ココ:AN=SL!*心\
 04iAN=CG!*SV!
 \dot{LQZAM#VL(L,J)ノZ}
 3LS=BN=Yに66*)!/2
 SAん#S!N(\lambdaLR)/ALR
 50@#S1N(3L-j)/8LS
 RS=CH/(R.4N** 2-S.MN=*2)=5AA *SE日=CO(L)
 RSV=RS*RMN
 RSS=RS*SMAN
 KMN=GINN*RSR-O2MN#RSS
 KMN=GINN*RSS-UZMN#RSS
 LMNG2MN*RSA-OL:IN*RSS
 FMNNOSMN*RSN+G4ANN*RSS
 NCL=NC+L
 NAL=NS*
 F}{:1-1},4j.34,4
 34 {F (N=1) +0,35,4

```


```

 EDRNC, TO.
 CD(NC,iNCL)=-COS(L)*334/30.
 F (zG) & O,j3,39
 ES (NC,NCL)=E!=CGS(L)/4.
 ED(:N3{,NG:J=FU1
 CD(NG%.iNEL)=RG*COS(L)*83/ L2.+FV1
    ```

```

 TGN=CES*CVV
 T3N=CGごSV!
 C=(Nab,NCL)=CO(NE:,NCL)-TSN*ON/GNA
    ```


```

 CO(iHH3N,NCLJ=日STN*COS(L):(17N-ISN)-TGN/ENJ#TN
 CO(iNHIN:iNCL)= a&TN*COS(i-)*([TN-2.*!SN)-TSN/ENJ=TN
 STJR(NHEN,ida~)=TN#TBN/GN3
 STOR(NE,NALI = STUR(NC,NAL)-T 3N*CN/O:H/C
 Go [0 +3
 CJ(N.NCL)=-C OS(L)=(IJN/5.-ILH)=UヨA/1S.-TÓN/BN4
 STGR(NnN.NM-)= -TSNIENA
 if (zE) 46,->t,45
 Sigl=-C03(L)*3*!SN/%.-TON/EN
 ED(iN,NELJ=E゙よ % TON
 CD(iNHM,NCL)=RJ*SMI
 C={:NM3N,:1C:d =R10=Sim!
 STCA(N,itAL)=2S*T3N/B:
 STCR(NHN.NA_)=E!=TSN
 STTCR(NH2: sidmL)=R1O*TBN/BN
    ```



```

 CD(:18J,NEL)=CD(NBJ,NCL) +R2*TGN miN/马A2
 OQ 2SJ, K=!!dy
    ```

```

 STCH(N1J:d,V+L)={G*TSN/J:N2-C*VMCI(L)/(2.*E)
 (F (N-1) 47.i+7.52
 COD=CG(L)=S& 人/OX/Z.
 TSM=CCJ*にJ1
 T->M=CCJ*G:J
 CE(NMAMOINC=N =-T5M/4:M4
 STUR(NHSM NNALJ=-T7MA/A H4
 IF (ZE) td,j0.49
 CD(NH7M , NCLJ =-T5M/A:43 #TM1
 STDR(NHGM,NHL)=T7M/4,M3*TN
 STJH(NEZ,NAL)=STOR(N8Z,NAL) -TフY#G:H/AMJ/C
 CD(NC riNC',)=\J (NC .NCL) = T5M=OM/ムM4
 &F (z3) j2.j0.31
    ```

```

 S0 2j7 к=1:\J
    ```

```

 CD(NHEM,.HELJ=UMC(L)/(2.**4)
 Sc 20% <=1,4J
    ```

```

 STOR(NH7!.\ALL)=UMCI(L)//(2.*A)
    ```

```

 うKl=E!#av4
    ```


759 460
461
463 \(46 \frac{2}{3}\) \(+63\) 498 +65
+65 160 467
467 463 469
470 470
471 472
473 475
476 477 479 \(+82\) 483 434 4E5 \(+\) 487
489
```

 SKJ=(GJ*AM2+7S*BN2)*AM
 EXI=AT#A:+2+m9=BN2
 Cx =>-FC=4i4*SN
    ```


```

 CXS=R2**:HN.\NM
    ```

```

 CD(NHAN,NCL)=CD(NHAM,NEL) -KMN*O:1H
    ```

```

 IF (Za) Ej,j5.5N
    ```




```

CD(N:NCL) =%)(N.NCLI-KNN
STOR(NHN,NA-)=STOR(NHN,NALL)-DMA
IF (2\exists) j7.こう,S0
CJ(N.NCL)=CJ{N:NCL} +SKI*X.MN
CD(:YHN,IHCLS = CD(NHN,MCL) - SK2\#KMN+SKS\#LIIN
CO(SHFIM.ICL)=CD(NHJN.NCL) +CKJ*KNHN+CKE*LNN
STCR(N,NHL) = STOR(N:NAL)+SKS FPNN-SK2*GHN
STGR(NHN,INA-)=STCH(NHNM,NAL)+SKL\#SMN
STCR(NH2:H,HL)=STOR(NH2N:NAL) -CK \&*PYN-CK3*OMN
CD(NHZN,IGL)=CD(NHZN,NELSO+CKI=KNN+CK2\#LUN

```

```

 STM,
    ```

```

 CCNTINUE
 SY^S=1.
    ```










```

 5:'TY4:\prime!x.3=ib.8i
    ```

```

 END
    ```

 SUUBLE PRECISICN CH．JC


        !31.02.33:3)
            CCMMCN/ELLS:NHC,NB3,NC,JC,NH2,NH3,NHA ,NHE,NHS,NH7,NHB,NBI, N8:,NH,NL

        bri(nss)
    Oq \(1=1, N C\)
    NCJコNC: \(=(j-1)\)
    OQ:

    NCE =NC:NC
    CALL NINV (E.A.NC.O.L1.Mt.NSS.NS)




    oO 3 , N二: int
    RN=N
    RNEN
PN=PI FEN
    CKN二人2*PN
    PK= = CKin \(/ \mathrm{P}\)
    ERI=EXP (X2\#PくE)
    ER2=Exค (に, Kンの)
    ESt=EXP (Y2*ーKK)
    -ITMFNH+N
    NrMENH+N
NHEHENHE+N

    NHJN=AH3+N
NHAN=NH4
    NHSN=AHS + N
    NHGN=AH6 + N
    NHTNENMTHN



    OC(NHZN,L)=ご (NHZN,L)KER2

    \(0 C(N H 4 N: E)=J C(V H A N: L) / E R:\)
    OC(NHSN,L)=UC(NHSN,L) 1 (NR


    RETURA





```

 *)
 DOUBLE PREこ\SION CH,DC
 GJMFJTE JEFLECTIONS ANO MOMENTS (OLO SERIES)
    ```

```

|N
CCMMON A,PI,SA,C,S,TN,CL, -L,AA3,AA4, Z,SYAS,C2,C3,ST,SF,T,TS,MNM

```



```

2
CEMMJN/SL5/YHC,NEI,NC,JC,NH2,NH3,NHG,NHE,NHG,NH7,NHE,NB1,NS2,NH,NL

```

```

 OIMENS:ON EJ (NS, JS): DE(NS,LN). STGF(NST1.NST2)
 OIMENSIDN SI(20). S2(20), D3(20), 04(20), PS(20), PO(20), כ7(20).
 1PE(20). ce(20.20), SS(20.20)
 L=MNH*1%
 つこ 14,1=1.Nうこ
 u=uC{i)
 v=v\in(1)
 RN=N
 RHP2=RN=OI
 AN=RNF2/A
 シN=RNF2%
 VN=GN*V
 AU=iN*U
 BU=BN*L
 \thereforeV=AN*V
 GVK=AV*K3
 ソコN=Kご3コ」
 VNZAVK*x2
 VコY=AVK*Y2
 U4V=K4*SJ+VV
 USV=K5*BJ-VV
 V4U=K4*x2**v+AU
 VSU=K4*x2#AV+AU
 CHUN=EESH(JONS
 SHUN=S!:VH(JJN)
 P!(N)=CMUN=こOS(U4V)
 Pa(N)=SHJN*SIN(U4V)
 \rhoコ(iv)=CHUN##゙OS(U5V)
 P&(N)=SHJNFSIP(USV)
 PS(N)=CJSH(V 3N)*COS(VQU)
 PC(N)=S:NH(V3N):SIN(VAU)
 2T(N)=CJSH(v3Y)*SOS(VSU)
 Pg(N)=EIHR(V3Y)*SIN(VSU)
 l
 OO ! N=1,N-
 RM=M
 UM=RM*R! *Uノ
 C((M,N)=COS(UM)=EV
 SS(M,N)=SI.&(JM)*SV
 OO 14 &=1.N.
    ```


```

1B4*SE(NC.L)
IF (2E) 3.2.2
kLL=wiL+CO4*(v**4-(v*B)**2*6.+5.*\#B84)/24.
GO TO 4
kLL=mL+CO4*(V**4-(V*B) =* 2=2. +804)/24.
OJ 1J K=1,3
LNN=LNM+iNH*K
NA:=2**S!(K)*NC(N82,L)/A
IF (ZE) 5:3.5
MLS=MS+CO4:(v*v-83)/2.*S3(K)
Cこ「ご年
MLEML+CO4*(V*V-EB/3:)/2.*53(K)
MKi=S!(X)*4z-S2(K):K4-S3(K)
MK2=S1(K)*\&j+52(k)\#K3

	visvvanomarnáaumen wrsmoconvounclunnooma	

```

```

 NK*=(EE(K)\pm人う+SJ(K)=x2*41)* 人2
    ```



```

 MLム=(S2(K)*&3-53(K)*Y2*B1)*Y2
 DJ 12 N=1,iNH
 RN=N
 RNP2=RN*=1
 AN=RNF2/A
 AN=RNF2/A
 SNニRNFI/3
 AN2=AN;*2
 #N2=3N**2
 9NC=3N2:3N2
 3V1=3M*VL(-,2)
 Cvi=CCs!3vij
 SV1=SIN(3V1)
 ELS=SN*V-(_.4)/2.
 SES=S\N(3LSi/ULS
 Oこ 1O N=1 ONT
 AM=RN*F!/A
 AM2=ムN*AM
 GM4=ANE=AN.Z
 AUI=AN*VL(に.1)
 CUJ=CこS{AU1,
 C:Nri=C:I*CVi
 C2MN=SJN(AUL)=SVI
    ```





```

 RSR=RS*RHN
 RSS=RS*SMN
 KMi*=21MN=FSマ-C2MN*RSS
 L पN=O2MH*HJR-O1MN*RSS
 IF (iv.ST.I) GUTTOS
 T5M&xCC6(-)*二J!*SAA/2./OX/AMZ*COS(AM*U)
 ML=ML-TS`a*JI(K)
 IF (K-ETGI) GC TO 9
 KL=WL+TSME/iML
 IF (K.GT:d) =0 TO 9
 O llol
` llol
AKO=3ん*A1*S_(K)
ML=N⿱一⿴囗十一⿺卜丿,
CONTINGE
NHN=NH+N
NH2N=NH2+N
NH3N=NRIZ+N
NHHMN=NRG+N
NNHCHN=NH4+N
NHRSN=MH5+N
NHCN=NHC+N
TCNE=CCS(L)*EV?*53R/2./\&ir2*CDS(JN*V)
IF (X.ET.1) ED TO 1)

```

```

 -L)*P4(N)+JE(NHAN:L)=PS(N)+JC(NHSN.O)*PO(N)+DC(NHGN,L)*F7(N)+DC(NH
 27H,2)*FS(N)+NL
 M+L=N!+AN2N+NL
 NL=ML+AN2*{(-MK3*OE(:N)-MK4*PG(N)) =2({NH4N,L) (MX4*PS(N)-NK3*OG(N))
    ```

```

 2)}*DC(NH7N:-M)
    ```

```

 ML=ML+SN2*{(MKI*P!(N)=MK2*P2(N))*SC(N:L)+(MKZ#P1(N)+MKI*P2(N))*OC(
    ```

```

 CONTINGE
 YA!LNN!:
 YatLNNO:
 YA(LNN,\overline{I})=\alpha
 RAGLNRN
 END
 SV!=Ccs!3vi
 RM=M
 NHN=NH+N
    ```



```

 2-5%(4)
    ```



```

1(20j. \ij(2j). S'(20.20). CS(20.20j
LT=MNH*1O
CO Q I=l, NSE
U=vご:!
V=VG\: \
RN=id
RN=IN
AN=RNF2/\&
3NルRNFごU
VNェミN%Y
\&U=ANまし
GU二Biv*し
\&VEAN*V.
AVK=AV:K3
U3F=r3*3J
VJN=\&VK\&XZ
V`Y=\&VK*YZ
UJV=KESU-VV
V\&U=K4*XZ\#AV+AU
V\&U=K4*XZ*AV+AU
CMUR:=ESH(JSN)
CMUN=SESH(JJN)
SHUN=SINH(NSN
PO(N)=SMJN⿱一𫝀口灬-DS(U4V)
PiO(N)=ENUNFSIN(U4V)
P!i(iv)=SHUN\&EES(USV)
P12(N)=CMUN+S)N(USV)
P!J(N)=31NH(VSN)*COS(V4U)
P1\&(N)=CJSH(VSN)*SIN(V4U)
0:S(N)=5:NA1 v=Y) EOS(V5U)
Pic(N)=CJSA(VFY) SIN(VSU)
CV=COS(Vid)
SV=SIN(vid)
DE:NOL:NH
UM=AM*PI:Uノ\&
SC(N,N)=5L.d(UM)=CV
CS(M,N)=CDS{UN\) SV

```


```

 NL=\C(NOL:
 OE 7 K=1.3
 LNMELNM+YNH*K
    ```

```

 MK\=S\(K)*&2-S2(K)*K4-S3(K)
 14M.2=S!(K)##d+S2(K)#K3
    ```

```

 MK4=(SN(K)*N3+S3(K)*X2#&!)=X2
 MN&=(S2(K)*N3+S3(K)*X2#A!)=X2
 MLこ=S\(K)*S&-S2(K)=Kう
    ```


```

 OO 6,N=1, i|,4
 NN=|
 RNP2=RN*P1
 ANERNFE/A
 UN:RNEE/N
 ANI2=AN&AN
 ANZ=AN#AN
 H
 ll}1
 OD i N=1.NH
 VNEBN*Y.
 U4V=KA*E3N+V
 N(M,N)=5 1.N(UM) =CV
    ```

2
        :
```



```
        )
```



```
H }1
```

```
```

SN\&=ENEFJ:12

```
```

```
```

SN\&=ENEFJ:12

```
```



```
        IF {.NET.{1.EOU.1.ON.1.EO.9)\GOTC.21
    ML=M--75M=##-\(K)/AM#COS(UM)
```



```
        HKE=3N+A+H#S2(K)
        AKE=SN*AH*S自隹)
        MLEML-(NKS*<MN-MKG*LMN: *CC(M,N
        OKG = aN*(AM2*S5(K)+3NZ*S7(K))
        OL=QL+(JKJAKMN-OKS*LHN)FSC(M;N) + (OKG*KMN-OKS*LMN)*CS(M,N)
        HKH=A=NH+N
        NH2H=NH2+N
        NH3:N=NHS+N
        :JH4N=NH4+N
        NHSN=NHS+N
        HHENT=AHG+N
        NHHETN=NHG+N
        MHHFN=NH7+N
        IF (.N゙T:G!, EC,1,OR,1,EO.9) GO TO E3
        HL=ML+A:G2#(i-MK3*DJiNi=MK&*PS(N))*DC(NH&N,L) +(MK4*PS(H)-MK3*PG(N))
```



```
        NL=:L+DN2*((MH1*P!(N)-MK2*PZ(N))*DC(N.LL)+(NK2*P!(N)+MK1*P2(N))*OC(
```



```
        MH3N,LJ)-TS:\=*S3(K)/SN*COS(VN)
```



```
        ! (OKZEJ 9(N)+OKI=PIO(N))=OC(NHN,L)+
        l
        YA(LNF,I)=OL
        {F({IGEQ,I) YA(LNR,IO)=-ML
        if (iNNE,g) GJ TO IA
        YA(LNR,i!j)= MiL
        YA{LNF,ILS = (YA(LNR,I) +YA(LLNR,O)+Z.#(Z.*(YA(LTNR,2)+YA(LNR,4)+
        IYALGNR,C), YA(LNR,B))+YA(LNR,J) +YA(LNR,5)+YA(LNR,T)JJ*A/LZ.
        2CONTINYA(LINR,:DO)+ML
    CJNTINLE
        RETURN
        ENS
G 14i
```



```
    l
```



```
    HMN=NH+N
    ivHzi= =Nr.z}+i
    NHHzN=NH.z+in
    NH3N=NH3+N
    NH4N=NH4+N
    NHSN=NGJ+N
    NHGNZNHG+N
    NH7N=NH7+N
    IF (.NOT:(I.EO.1.JR.I:EO.9)) GJ TO E=
```



```
        !C(I~Nid,L)+{M-1*D11(N)-N-2*OIZ(N))#DDC
```



```
    1
    401 Ci * *こうこ(VN)
    OL=CL+SN3*{(ON{*D & (N)-OK2=P 2(N))*OC(NN:L)+
    \frac{1}{2}
    YA!LNF,:)=, (OL2*D 3(N)+CLJ*D 4(N))*DC(NH3N:L))
        YA{LNF,i)= 2L +YA(LNR,!)
        IF (!&EO.1) Yi(LNF,1O)=-ML+YA(LNN,IO)
        IF (i,N录:9) GO TO 8
        YA(LINR,i:1) = MLLYA(LNR, 11)
        YA(LNF.12)= (YA(LNR,1)+YA(:NF,F)+E.*(2.*(YA{LNR,2)+YA{LNN,4)-
    YA(LNF.O) (YA(LNR,B))+Y&(LNP,3)+YA(LNF,5)+YA(LNR,7)J)*A/I2.
    2
    CENTI+YA(LNA,1O)+ML
```


23
i

LUAUIIHG SYSTEM

| | I DADIHG 1 \vdots 3 4 | rife slafi is Flexuzaley strichg and tursionally weak | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | DEPIIS
 SLAB rod Ga （5）titm | ```s ur H.A. FaCM MHCKHE;3= AGES M GAc,ES``` | | $\begin{aligned} & \text { Prin } \\ & 0000 \end{aligned}$ | $1145-1.1$ | $\begin{gathered} 1730 \\ 1 \end{gathered}$ | $0 \quad-1.3$
 rinetu IIIIU | $\begin{array}{ll} 40 & -1.37 \\ 2 & \end{array}$ | 40 | | |
| | L．UADIHGCASC | | 0.3^{1} | 0.0^{1} | | | wiotit of luav 7． 17000 | | UREACTH OF LGAD 6.00000 | | | | TJIAL．LIAAI 100.00000 | |
| | ．．．． | －．．．${ }^{\text {a }}$ | ．．． | $4^{-\cdots}$ | \cdots | | ： | i | | B | $9^{-\cdots}$ | 10 | ii ${ }^{\text {a }}$ | $1:$ |
| $j=:$ $v=:$ | 30.80 0.0 | $46.8 i^{\circ}$ 0.0 | $\underset{4030}{\substack{0 \\ 0.0}}$ | 1000 0.0 0.0 | 93.33 0.0 | | 7 | 40.670 16.50 | 2 | 23－i3 16.50 | 0.0 0.50 6.50 | 23.33 16.50 | $46,6 i 8$ 16.50 | |
| ：llft＝10： | C47．3430： | 4ट2．240c： | $608.0251:$ | $743.3926:$ | $\text { cot.azis: : }{ }^{06}$ | | OH： | 1．240： | 437 | 7．7173： | 31．5442： | 4．9309： | 37.4 （115： | （0．6ら1）： |
| ： 1111010 | ．3．10＇07： | －1．1115： | 1．7766： | 34.410% | hoheit pallall．
 7． 7760 ： | | $\operatorname{la}_{5}^{0} x-A$ | $\begin{gathered} x \times 10(11 x) \\ 0.9514 \end{gathered}$ | | 4．0256： | 1．1．593／： | 6．5339： | －3．5．311： | －1．16，17： |
| ： $\mathrm{HOH}=10$ ： | 11．653： | ：11．4191： | 11．5001： | 30.4019 ： | mOML：H：BAIRALL
 11．5ر01： | ． 41 | | | | ：5．0．343： | 6．1190： | 1：5434： | 10． 5 ：5iti4： | 12．0151： |
| ：1017＝10： | 0．：3゙うム： | ：0．0454： | 1．2372： | 1．0351： | rwisrin 1.23rt: | | $\begin{aligned} & \text { IMEATHT} \\ & \text { aji: } \end{aligned}$ | $\underset{0.2407:}{\operatorname{MKY}}$ | | 0．10e9： | 0．7007： | 0．0220： | 1．2．113： | 0．1st．i： |
| ： $1111=10$ ： | 11．6．9．30： | ：11．nrat： | 14．956．3： | 55．4809： | $\begin{gathered} \text { PIRIIIC } 1 \text { ! } \\ 11.0505: 1 \end{gathered}$ | | CMEH
 E1： | $\begin{aligned} & 141 \\ & 3.133 r: \end{aligned}$ | | ¿6000：＇ | 13－6৫ッ3： | 15．4210： | 10．0 \％0\％） | 1．1．10¢0： |
| ：111000： | 9．11：02： | ：－1．1713： | 7．4104： | 1．5．1063： | $\begin{aligned} & \text { PIR代10 } \\ & 7.4104: \end{aligned}$ | | $\begin{aligned} & 1 \text { CMECHI } \\ & 11: \end{aligned}$ | $\begin{gathered} M 2 \\ 1.14 \cdot \rho \cdot 1: \end{gathered}$ | | S．659\％： | 6．648\％： | 6．1．147： | －1．0．7．16： | －1．11110： |
| ： $1111=10$ ： | －4．0¢a： 7 | ：－3．4416： | －1604002： | －44．9301： | -10.4utiz: | | $\begin{aligned} & 1110<0 \\ & 10,: \end{aligned}$ | $\text { lunt }-1.9 z 019:$ | － 11 | 1．205゙）： | 5．1560： | －5．316．5： | －6．0091： | －J．IS：B： |
| ：1111－10： | －0．20313： | ：0．22．19： | －3．6912： | －3．2339： | $-0.6 \text { one }$ | 4.21 | $111: A x$ | $\begin{aligned} \times 10 \\ -0.029: 3: \end{aligned}$ | －0 | －0．30．85： | －1．3420： | －0．52110： | 0．：5114： | 0．10：3：4： |
| ：111－10： | －1． 1 8： | ：－1．1956： | －1．129： | －．3．2400： | $-1.1201: 1$ | $\begin{array}{ll} 11 & 11 \\ 1 & 1 \end{array}$ | $256:^{Y-A}$ | K10.11.14: | | －0．41543： | －0．5．e．0n： | －1．：i306： | －1．1100： | －1．3e．14： |

| | | | 0.3^{11} | | $\begin{gathered} v 1 \\ 14.00000 \end{gathered}$ | Worn | | $\begin{aligned} & \text { W'11 } \quad \text { LUAC } \\ & 6.000,0 \end{aligned}$ | | $\begin{aligned} & \text { r111A1. } 1.11011 \\ & 100.800001 \end{aligned}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\cdots{ }^{\prime} \cdot \cdots$ | 2 | 3 | \square^{\cdots} | ．${ }^{\text {c．}}$ ．${ }^{\text {a }}$ | $\%^{\prime} \cdots \cdots \cdots \cdots \cdots$ | | | 10 | | |
| v＝ | 90909 | ${ }_{\substack{96 . i j \\ 0.0}}$ | ij：3i＂： | 0．0．0 | ${ }_{0.0}^{19} 0$ | | －39330 | 10．00 | －39330 | －480．ia 1600 | 50， 00 16.000 |
| | t | | j58．41513： | : | | | | 1s．0．0．．．． | 5．063 | 84 | |
| $\therefore 1111=10{ }^{\circ}$ | －נ．uIs\％： | －4．1340： | T．304s： | 14．4306： | MOME゙NT DALKA G． $102 \mathrm{~S}:$ | | 4．2\％02： | 29．4116： | 6．150：： | －2．015 ${ }^{\text {a }}$ | リ．1 |
| int＝10 | 13．0614： | U．0565： | 11．0073： | O． $13 \times 8=1$ | | | r．6130： | 21．3654： | 12．3634： | T． 5135% | |
| ：111－10： | 0．0310： | 0．0נコ： | 0．9302： | 0．12．¢5： | $\text { o. } 370751$ | | 0．9029： | 0．8326： | －1．0593： | 1．005．5： | 0．0\％30 |
| ：1717＝10： | 13．0614： | 0．9ess： | 14．1065： | 14．5414： | $6.6753 \mathrm{Pac}$ | | 4．0701： | 29．720n： | 12．5644： | r．caur： | ソ．11\％ |
| ：matio： | －：．0r60： | －4．2050： | ：3．7093： | 9．62\％）： | 4.611811" | | S．11324： | 27．0565： | C．6537： | －3．0107： | 9．91315 |
| ：：117＝10： | －0．0947： | -4.0974 | －5．0257： | 3．6st10： | －24．9658： | | －26．01343： | 10．905\％： | －10．5013： | －5．4194： | c． 2.816 |
| ： $1111=10$ | 0．7500： | 0．5114： | －0．4023： | －1．3105： | －0．4c 号： | | －0．5712： | －2．7312： | －0．5911： | 0．31．10： | －0．93＞ |
| ：ths－tu： | －1．4112： | －0．0503： | －1．4601s： | －0．0739： | －0．5934：${ }^{\text {a }}$ | | －0．1304： | －2．5611： | －1．2116： | －0．13841： | －0．11501 |
| | | | | | | iAlif ity $U-A x$ Is
 ＊＊＊＊＊＊＊＊：＊＋＊＊＊＊＊＊：＊＊ | | ***: | | ．．．．．．．．．： | |
| 0.0 | 0.0 | 0.0 | －0．0 | 0.0 | $\text { cpu usicd }=$ | $\begin{aligned} & 811.77 \text { SECS } \\ & 0.0 \end{aligned}$ | | | | | |

BIBLIOGRAPHY

1. American Concrete Institute, "Building Code Requirements for Reinforced Concrete," (ACI 318-71), 1971.
2. Bares, R. and Massonet, C., "Analysis of Beam Grids and Orthotropic Plates by the Guyon-Massonet-Bares Method," Frederick Unger Publishing Co., New York, 1968.
3. Burns, N.H., and Hemakom, R., "Test of Scale Model Post-Tensioned Flat Plate, "Journal of the Structural Division, ASCE; Vol. 103, No. ST6, June, 1977.
4. Cardenas, A.E., and Sozen, M.A., "Flexural Yield Capacity of Slabs," ACI Journal, Feb., 1973.
5. Cardenas, A.E., Lenschow, R.J., and Sozen, M.A., "Stiffness of Reinforced Concrete Plates," Journal of the Structural Division, Proc.r ASCE, Vol. 98 , No. STll, Nov., 1972, pp. 2587-2603.
6. Evans, R.H., and Kong, F.K., "The Extensibility and Microcracking of the In-Situ concrete in Composite Prestressed Concrete Beams," The Structural Engineer Journal, Vol. 42, No. 6, June 1964, pp. 181-190.
7. Gupta, D.S.R., and Kennedy; J.B., "Continuous Skew Orthotropic Plate Structures," Journal of the Structural Division, ASCE, Vol. 104, No. ST2, Feb. 1978, pp. 313-328.
8. Gupta; D.S:R., "Orthotropic Continuous Skew Plates," Ph.D. Thesis, 1974, Dept. of Civil Engineering, ' University of Windsor, Windsor, Ontario, Canada.
9. Hondros, G., and Smith, G.C., "Model and Theoretical Analysis of a Post-Tensioned Diagrid Flat Plate," PCI Journal, April, 1969, pp. 63-87.
10. Huffington, N.J., Jr., "Theoretical Determination of $\frac{\text { Rigidity Properties of orthogonally Stiffened Plat }}{\text { Journal of Applied Mechanics, Transaction } S \text {, ASME, }}$ Vol. 87, March, 1956, pp. 15-20.
11. Jackson, N., "The Torsional Rigidities of Concrete Bridge Decks," Concrete V_{2}, nll, Nov., 1968, pp. 465-474.
12. Kennedy, J.B. and Gupta, D.S.R., "Bending of Skew Orthotropic Plate structures," Journal of the structural Division, Proc., ASCE, Vol. loZ, No. ST8, August, 1976, pp. 1559-1574.
13. Kennedy, J.B., and Bali, S.K., "Rigidities of Concrete Waffle-Type Slab Structures," Accepted for publication in the Canadian Journal of Civil Engineering, March, 1979.
14. Kennedy, J.B., and Martins, I.C., "Stresses Near Corners of Skewed Stiffened Plates," The Structural Engineer, Vol. 41, 1963.
15. Kennedy, J.B., and Huggins, M.W., "Series Solution of Skewed Stiffened Plates," Journal of the Engineering Mechanics Division, ASCE, Vol. 90, No. EMl, Feb., 1964.
16. Kennedy, J.B., and Ng., S.F., "Analysis of Skewed Plate Structures with Clamped Edges," Trans. of the Engrg. Inst. of Canada, paper EIC-6S-BR STR9, Dec., 1965.
17. Lenert, Louis, H. ' "Advanced Technical Mathematics," Charles.E. Merrill publishing Company, A. Bell and Howell Company, Columbus, Ohio, 1970.
18. Lin, T.Y., "Design of Prestressed Concrete Structures," Second Edition, John Wiley and Sons, Inc., 1963.
19. McDonald, J.I., "Design of a Two-Way Post-Tensioned Waffle Slab," Civil Engineering, ASCE, May, 1973.
20. Muspratt, M.A., "Behaviour of a Prestressed Concrete Waffle Slab With Unbonded Tendons," ACI Journal, December, 1969, pp. 1001-1004.
21. Perry, P.G., and Heins, C.P., "Rapid Design of Orthotropic Bridge Floor Beams," Journal of the Structural Division, Proc., ASCE, Vol. 98, No. STll, 1972, pp. 2491-2506.
22. Portland Cement Association, "Design and Control of Concrete Mixtures," Eleventh Edition, 1968.
23. Rawles, R.H., "Dallas Bridge Has Post-Tensioned Concrete Deck," Civil Engineering, ASCE, April, 1973.
24. Rowe, R.E., "Concrete Bridge Design," C.R. Books Limited, 1962 .
25. Rowe, R.E., "Load Distribution in Bridge slabs (With Special Reference to Transverse Bending Moments Determined From Tests on Three Prestressed Concrete Slabs)," Magazine of Concrete Research, Vol. 9, No. 27, November. 1957.
26. Scordelis, A.C., Lin, T.Y., and Itaya, R., "Behaviour of a Continuous Slab Prestressed in Two Directions," Journal of the American Concrete Institute, Dec., 1959, pp: 441-459.
27. Scordelis, A.C., Samarzich, W., and Pirtz, D., "Load Distribution on a Prestressed Concrete Slab Bridge," PCI Journal, June, 1960, pp. 18-33.
28. Sherman, 2., "Testing Post-Tensioned Slab and Beam Without Grouting," Journal of the Structural Division, ASCE, VOl. 83, No. ST4, July, 1957, pp. 1317, 1-17.
29. Szilard, R., "A Simplified Method for Torsional Analysis of Gridworks," ACI SP-35, American Concrete Institute, Detroit, I973.
30. Szilard, R., "Theory and Analysis of Plates: Classical and Numerical Methods," Prentice-Hall Inc. Englewood Cliffs, New Jersey, I974.
31. Timoshenko, S., and Woinowsky-Krieger, S., "Theory of Plates and Shells," McGraw Hill Book Co.. 1959.
32. Wang, C-H., "Direct Design Method for Prestressed Concrete Slabs," PCI Journal, 1968, pp. 62-72.
33. Wylie, C.R., "Advanced Engineering Mathematics," McGraw-Hill Book Company, Inc., 1960.

| 1949 | Born on lst of January in tANTA, EGYPT. |
| :---: | :---: |
| 1967 | Matriculated from Ahmedia School, TANTA, EGYPT. |
| 1968 | Attended the Military Technical College for one year, CAIRO, EGYPT. |
| 1973 | Graduated with Bachelor of Science (Honour) in Civil Engineering, from Alexandria University, ALEXANDRIA; EGYPT. |
| 1973 | Appointed as an instructor in Civil Engineering Department, Alexandria University, ALEXANDRIA, EGYPT. |
| 1973 | Joined as a part-time designer Engineer with Drs. Ebiedo, Fahmy and Korish Consulting Firm for Civil Engineering, ALEXANDRIA, EGYPT. |
| 1976 | Enrolled in a Master's program in Civil Engineering Department, University of Windsor, WINDSOR, ONTARIO, CANADA. |

[^0]:
 147
 148
 148
 3
 148 159
 150

 154
 155

