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ABSTRACT

î-îultiple isoacceptor tENAs have been observed in the cells of 
many organisms (plant and animal) at different stages of differentiation, 
in tumor tissues, in transformed tissues or in cells grown under different 
culture conditions.

Fractionation of total cell tRNA^^^ by RPC-5 column chromatography 
revealed the presence of five lysine-specific tRNA isoacceptors in soybean 
cotyledons. One isoacceptor appears to be localized in the chloroplasts 
(tRNA^^^), three (tRNA^^^, tRNA^^^, and tRNA^^^) are ccmmon to the mito
chondria and the cytoplasm and tRNA^g^ is cytoplasm-specific.

Total lysyl-tRNA synthetase from soybean cotyledons can be separated 
into three peaks of activity by hydroxylapatite column chromatography. Frac
tionation of the organelle lysyl-tRNA synthetases by HA column and cross- 
aminoacylation reaction with different tRNAs shows that isoenzyme 1 is present 
in the chloroplasts, isoenzyme 2 in the cytoplasm and isoenzyme 3 in the 
mitochondria. The chloroplast enzyme (isoenzyme 1) aminoacylates chloroplast 
tRNA^^^ and E. coli tRNA. The cytoplasmic enzyme (isoenzyme 2) aminoacylates 
four lysyl-tRNAs, isoacceptors 2, 3, 4, and 5. The mitochondrial enzyme (iso
enzyme 3) aminoacylated three tRNA^^^ isoacceptors tRNA^2 ,̂ tRNA^^^, and 
tRNA^^^ in the mitochondrial tRNA. These isoacceptors are common to the 
cytoplasm as well.

EjgDeriments performed on aging soybean cotyledons have revealed age- 
related quantitative and qualitative changes in tRNAs^^® and lysyl-tRNA syn
thetases. These changes involve a loss in aminoacylation capacity in tRNAs 
from older cotyledons by synthetases from the same tissue and ultimately the 
inability of older enzymes to aminoacylate efficiently all isoaccepting 
tRNAs.
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INTRODUCTION;

In replication and transcription, genetic information is trans
ferred fron one nucleic acid molecule to another. Information transfer 
in these steps is basically a copying process. At the stage of trans
lation a more catplex form of information transfer is taking place. The 
message is encoded in a triplet code which has to be translated into the 
sequence of single amino acids, a decoding mechanism requiring specific 
adaptor molecules which recognize and interact with both the trinucleo
tide codons and the corresponding amino acids.

Involvement of an "adaptor" in the transfer of amino acids to 
the site of protein synthesis was first hypothesized by Crick (Crick, 
1957). The messenger RNA synthesis (transcription) and amino acid poly
merization (translation) represent two sequential levels of control of 
protein synthesis, so possible qualitative and quantitative changes in 
tRNAs and aminoacyl-tRNA synthetases during differentiation may be of 
great inportance. The studies performed in animal systems have suggested 
that the availability of one or several of isoaccepting tRNA species may 
be a limiting factor in the translation if the minor tRNA is the only 
tRNA vhose anticodon messenger RNA is able to read in a given tissue or 
at a given time, (Osterman, 1979) .
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REVIEW OF LITERATURE:

Multiplicity of tRNA:

Ever since the initial work of Holley and his associates 
(Holley et al., 1959) showing the existence of multiple isoaccepting 
species of a particular tRNA in rat liver, followed by the work of Doctor 
(Doctor et al., 1961) on the multiple species of leucyl- and threonyl-tRNAs 
in yeast, ample evidence has accumulated regarding the multiplicity of 
tRNAs, raising a question of possible degeneracy of tRNA complement in a 
cell. The number of species of tRNA for each amino acid may vary consid
erably between different organisms (Caskey et al., 1968). The recognition 
of the importance of two macrcmolecules : tRNA and aminoacyl-tRNA synthe
tase in protein synthesis and regulation, initiated a tremendous amount 
of work in the past years. Many studies have been devoted to tRNAs in 
bacteria (Berg et al., 1961), fungi, and animal cells. As a result of 
technical difficulties in extraction and purification, plant tRNAs and 
aminoacyl-tRNA synthetases have been, in the past, studied less. However, 
in recent years much progress has occurred in the field of protein syn
thesis in green plants (Lea and Norris, 1977; Weil, 1979). During the 
last years multiplicity of isoaccepting tRNA species has been demonstra
ted in plants (Sueoka and Kano-Suecka, 1970; Merrick and Dure, 1972; Hiat 
and Snyder, 1973; Cornells et al, 1975). Isoacceptors have been charac
terized for the plant tRNAs specific for almost all twenty amino acids.

The multiplicity of tRNAs and aminoacyl-tRNA synthetases in 
green plants has been attributed to the fact that protein synthesis in a 
plant cell takes place in three cell compartments: in the cytoplasm, in the
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chloroplast, and in the mitochondria. Each one of these cell ccmpartments 
has a complete functional apparatus for protein synthesis. The smaller 
size of riboscmes (Lyttleton, 1962), the formylation of organelle initi
ator methionyl-tRNA. (Bianchetti et al., 1971; Burkard et al., 1969) and 
the sensitivity of organelle protein synthesis to chloramphenicol 
(Boulter et al., 1972) have suggested that in many respects protein syn
thesis in organelles resemble protein synthesis in prokaryotes, especi
ally bacteria (Fairfield and Barnett, 1971).

Aminoacyl-tRNA synthetases;

The aminoacyl-tRNA synthetases, first described by Hoagland 
and his co-workers (Hoagland, 1955; Hoagland et al., 1956) are a multi
substrate class of enzymes vhich catalyze the first step in protein bio
synthesis. These enzymes attach amino acids to the 3' end of cognate 
tRNA, catalyzing the formation of aminoacyl-tRNA, thus they may be di
rectly or indirectly involved in the regulation of the expression of 
certain genes. The great diversity of these enzymes in their subunit 
structure and size is puzzling since they all have a ccmraon function; 
the aminoacylation of tRNA (Schimmel and Soil, 1979) . Growing evidence 
for the occurrence of multiple isoaccepting tRNAs prompted a search for 
multiple aminoacyl-tRNA synthetases. In prokaryotic cells there is usu
ally only one synthetase for each amino acid (Bennet, 1969; NOvelli, 1967) . 
In higher plants, in addition to the enzymes in the cytoplasm, chlor
oplast and mitochondria contain their own synthetases different in their 
chromatographic mobility and tRNA specificity frcm their cytoplasmic 
counterparts. Multiplicity of these enzymes in eukaryotic cells has been
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well established (Weil et al., 1977; Weil and Parthier, 1982).
In contrast to prokaryotic enzymes, where aminoacyl-tRNA syn

thetases occur as free diffusible enzymes, unbound to other material, 
eukaryotic enzymes are usually occurring in high molecular complexes 
(Soil and Schimmel, 1974). Ihese complexes may contain proteins other 
than synthetases (Agris et al., 1976), lipids (Saxholm and Pitot, 1979), 
tRNA (Bandyopadhyay and Deutcher, 1971, 1973), rRNA and elongation factors 
(Smulson et al., 1975). The presence of these corplexes has been well 
established in mammals and recently they have also been found in plants 
(Quintard et al., 1978). The physiological significance of these com
plexes is not cotpletely understood. They may be inportant in stability 
or activity of the enzymes as shown, for example, in experiments perform
ed on lupin seedlings (Jakubowski, 1979).

The studies on the origin of Euglena chloroplast-specifdc amino
acyl-tRNA synthetases suggests that they are transcriptional products of 
nuclear genes, synthesized on cytoplasmic riboscmes and then transported 
into chloroplasts (Reger et al., 1970; Parthier, 1973; Hecker et al.,
1974). Distinct nuclear genes have been recently shown to exist for 
yeast cytoplasmic and mitochondrial Met-tRNA synthetase (Schneller et al.,
1978), so it can be concluded with almost a certainty that all aminoacyl- 
tRNA synthetases are transcribed frcm the nuclear gencme.

Organelles;

Chloroplasts;

Chloroplast DNA was first detected in the early 1950's (Chiba,
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1951) but the discovery was not confirmed until 1962. In 1962 Ris and 
Plaut showed the existence of DMA. in chloroplasts of Chlamydcmonas (Ris 
and Plaut, 1962). Almost simultaneously Chun and his associates (Chun et 
al., 1963) found that DNA in chloroplasts of beet and spinach differs in 
its buoyant density frcm the one found in cytoplasm. The first knowledge 
of the possible existence of chloroplast-specific tRNAs different from 
their cytoplasmic counterparts was put forward by Aliev and Filipovich 
(Aliev and Filipovich, 1968). After a report showing the presence of 
formyl-methionyl-tRNA in a cell-free system on Euglena chloroplast ribo
scmes (Schwartz et al., 1967) N-formylmethionine tRNA was characterized 
in the chloroplast of Phaseolus vulgaris (Burkard et al., 1969) and then 
in mitochondria andetiqplasts of the same plant (Guillemaut et al., 1972). 
The absence of N-formyl-methionyl-tRNA in cytoplasm of the same plant 
suggested the possible prokaryotic nature of chloroplast protein-synthe
sizing machinery.

Several authors have pointed out striking differences in protein 
synthesis between chloroplast and cytoplasm. These differences are 
revealed in the differential influence several factors have on amino acid 
activation and on aminoacyl-tRNA formation (Burkard et al., 1970) in cyto
plasm and chlorc^last. Differences in the heat stability between cyto
plasmic and chloroplastic aminoacyl-tRNA synthetases (Parthier and 
Krauspe, 1973, 1974); differences in their chrcmatographic mobilities and 
substrate specificities confirms this assunption. The presence of chlor- 
oplast-specific tRNAs was further substantiated by the discovery of two 
sets of tRNAs in Euglena; light-inducible and constitutive (Barnett et 
al., 1969).
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The existence of different isoacceptor tRNAs raised a question 
of possible origin of chloroplast-specific tRNAs. The elucidation of 
this problem was made possible by ENA-tRNA hybridization experiments. 
Teseri and Wildman (Tewari and Wildman, 1970) first demonstrated that 
chloroplast tRNAs frcm tobacco hybridize with chloroplast DNA. Schwartz- 
bach et al. (1976) concluded frcm DNA-tRNA hybridization experiments that 
Euglena chloroplast tRNAs are transcriptional products of chloroplast 
gencme. In addition to work performed on Euglena (Schwartzbach et al., 
1976), tea (Tewari and Wildman, 1970), maize (Haff and Bogorad, 1976), 
bean (Steinmetz and Weil, 1976) and other plants have suggested that a 
carplete set of tRNAs can be transcribed frcm chloroplast DNA .

Mitochondria;

After the discovery of mitochondrial DNA in 1965 (Kislev et al.,
1965) experimental evidence of the possible existence of tRNAs and amino
acyl-tRNA synthetases unique to mitochondria and different fron those found 
in cytoplasm was provided by Barnett and Brown (Barnett and Brown, 1967) 
in Neurospora. Since this initial discovery mitochondrial tRNAs have been 
studied extensively in a large number of organisms, especially in yeast 
and animal cells, reviewed by Barnett (Barnett et al., 1978). Mitochon
dria contain a partially autonomous protein-synthesizing system, the 
mitochondrial genome coding for only a limited number of gene products 
(Borst and Grivell, 1978). Presently, little is known about mitochondrial 
tRNAs from higher plants except that plant mitochondria contain specific 
tRNAs and in seme instances specific aminoacyl-tRNA synthetases (Guille-
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maut et al., 1973; Shridhar and Pillay, 1976; Sinclair and Pillay, 1981).
Fewer studies have been devoted to the conparison of tRNAs and 

aminoacyl-tRNA synthetases in the three cell ccnpartraents. Such studies 
have been performed on Euglena (Kislev et al., 1972; Parthier et al., 1972), 
tobacco (Guderian et al., 1972), bean (Guillemaut et al., 1975; Guillemaut 
and Weil, 1976; Jeannin et al., 1976, 1978), lupin seeds (Augustyniak and 
Pawelkiewicz, 1978) and soybean (Shridhar and Pillay, 1976; Sinclair and 
Pillay, 1981; Swaitty and Pillay, 1982) . With regard to their tRNA speci
ficity mitochondrial aminoacyl-tRNA synthetases show vast differences.
Gross-aminoacylation experiments have suggested that in the case of bean
tRNA^^ (Guillemaut et al., 1975), tRNA^^®, tRNA^° (Jeannin et al., 1976) 

Pheand tRNA (Jeannin et al., 1978) mitochondrial tRNAs can be aminoacylated 
by mitochondrial, chloroplastic and E. coli enzymes but not by cytoplasmic, 
suggesting their prokaryotic nature. Experiments performed in this lab
oratory on soybean tRNA^^^, tRNA^^, tRNA?^ (Swany and Pillay, 1982) 
produced similar results. In contrast to these observations mitochondrial 
tRNA^u fron the same tissue, soybean cotyledons, are readily aminoacylated 
by mitochondrial and cytoplasmic enzymes but not by chloroplastic or 
E. coli enzymes (Sinclair and Pillay, 1981). For the possible origin of 
mitochondrial tRNAs the same question can be raised: are mitochondrial
tRNAs coded for by mitochondrial genes?

The existence of cistrons for seme mitochondrial tRNAs on mito
chondrial DNA has been established without doubt (Casey et al., 1974; Nass 
and Buck, 1970). The cistron number estimated by hybridization studies 
performed in different organisms is usually smaller than predicted by the 
"wobble" hypothesis (Crick, 1960). Several suggestions have been put
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forward to account for the deficit. Chiu (Chiu et al., 1975) proposed 
the existence of two sets of tRNAs in Tetrahymena pyriformis, one trans
cribed on mitochondrial genome, the other transcribed on nuclear gencme 
and transported into mitochondria. The inport of one of lysyl-tRNA into 
mitochondria was reported in Saccharcmyces cerevisiae (Martin et al.,
1979). While several yeast mitochondrial tRNAs have been sequenced 
(Gauss and Sprinzl, 1981; Vfesolonski and Fukuhara, 1979) no plant mito
chondrial tRNA has been sequenced so far. Mapping of mitochondrial plant 
tRNA genes appears to be difficult as a result of heterogeneity of mito
chondrial DNA (Bonen and Gray, 1980). Limitation of current techniques 
may be one of the possible reasons for the lower number of tRNA genes 
found on mitochondiral gencme. Using cloned yeast mitochondrial tRNA 
gene as a probe Martin and Underbrink-Lyon (1981) have shown that in 
Saccharomyces cerevisiae a mitochondrial locus is absolutely necessary 
for the synthesis of mitochondrial seryl-tRNA. The advancement of current 
techniques and new developments may soon help to solve this problem. It 
is possible that mitochondria contain most tRNA-specific genes.

All information gathered so far on translation and the coding 
properties of tRNAs have shown that in the plant kingdom the genetic code 
shows no deviation from the "universal". Two isoacceptors specific for 
tRNA^^^ in black peas recognize AAA and AAG codons (Hague and Kbfoid,
1971). In many instances chloroplast tRNAs recognize certain codon words, 
unrecognizable by cytoplasmic tRNAs (Augustyniak and Pawelkiewicz, 1978; 
Ramiasa et al., 1977) . From these findings one may conclude that chloro
plast tRNAs are coded for by the same or similar genes on chloroplast DNA.
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Similar results with mitochondrial tRNAs in Tetrahymena pyriformis 
(Chiu et al., 1974; 1975) may indicate that organelle-specific tRNAs 
translate codons present in organellar mRNA Wiich would not be recognized 
by cytoplasmic tRNA.

Aging;

The possibility that cell differentiation, cell specialization, 
or neoplasia are regulated at a translational level has been well sub
stantiated. Cellular differentiation is thought to be associated with a 
loss in capacity for growth and cell division (Anderson and Cherry, 1969) . 
Transfer RNAs and aminoacyl-tRNA aynthetases are key elements of regula
tion at a translational level. The levels of these two macrcmolecules in 
a cell determine vhich proteins, unique to a cell physiological state, 
can be made substantiating the proposition that translational control is 
a crucial part of control systems operating during development.

Quantitative variations in specific tRNA isoacceptors can mark
edly affect the rate of protein synthesis. Anderson (Anderson, 1969) 
concluded that the rate of protein synthesis could be regulated by the con
centration. of arginyl-tRNA in the reaction mixture. Extensive differences 
have been observed in tRNA and/or aminoacyl-tRNA synthetases between dif
ferent plant tissues and in the senescence of plant organs. An organ- 
specific deficiency has been observed in tRNAp^^ (Anderson and Cherry, 1969) 
and in leucyl-tRNA synthetase (Kanabus and Cherry, 1971) in soybean. A 
similar deficiency has been observed in germinating pea cotyledons (Patel 
and Pillay, 1976). Significant tRNA differences have been found between 
dividing and non-dividing cells in the root of pea seedlings (Vanderhoef
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and Key, 1970). Marked differences occur in Tenebrio molitor (Ilan et 
al., 1970) and sea urchins (Taylor et al., 1971). Several examples exist 
which show similar changes in Amphibia (W. de Witt, 1971; Gaston, 1971), 
in birds (Lee and Ingram, 1967; Portugal, 1972) and maimals (Wavers et al.,
1966).

Senescence is the final phase of growth and development. Streh- 
ler (Strehler, 1967) suggests that senescence and cell death are the results 
of a loss of certain translational capacities, especially changes that occur 
in particular tRNA species and/or aminoacyl-tRNA synthetases. Moreover, 
it seems likely that different types and amounts of nucleic acids are 
produced in senescence. In the ultimate stage of development, in cell death, 
different cell types utilize only restricted code words, resulting in dele
terious effects on a long-term cell function (Strehler et al., 1967).

Soybean cotyledons, being a highly differentiated tissue are a 
good model to study the mechanism of aging. During the germination, coty
ledons support the growing embryonic axis with the hydrolytic products of 
stored material but do not themselves undergo further differentiation.
Several laboratories have used soybean cotyledons to show pronounced changes 
in tRNAs and/or aminoacyl-tRNA synthetases with the seedling age. Strildng 
changes in the relative amounts of tRNA^^ and tRNA*^^^ were observed during 
the senescence of soybean cotyledons (Bick et al., 1970). Parallel changes 
have been observed in leucyl-tRNA synthetase of senescing soybean cotyledons 
(Bick and Strehler, 1971). As a consequence of senescence the relative 
amounts of chloroplast leucyl-tRNAs were decreased in yellowing pea leaves 
(Wright et al., 1972/73).
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Previous work in our laboratory has shown that changes in 
tPNA population and in aminoacyl-tPNA synthetases seem to correlate with 
changes in growt±i, development and senescence (Pillay and Cherry, 1974) .
In aging soybean cotyledons there is a decrease in amino acid acceptor 
activity for a number of amino acids tested (Pillay and Gowda, 1981) .
At the same time few tRNAs have shown an increase in amino acid acceptor 
activity. The significance of such differences in amino acid acceptor 
activity is unknown. Fractionation of aminoacyl-tRNAs from young and 
old cotyledons revealed qualitative and quantitative changes in chrcma
tographic profiles of these tRNAs (Pillay and Gowda, 1981). These 
changes (Pillay and Gowda, 1981) involve; displacement of chrcmatographic 
peaks, disappearance of seme isoaccepting species, and formation of new 
isoaccepting species.

The inportance of amino acid lysine in plant nutrition and the 
lack of knowledge concerning localization and property of tRNAp^^ and lysyl- 
tRNA synthetase prompted us to undertake this study. Localization and 
substrate specificity of lysyl-tRNAs and lysyl-tRNA synthetases have been 
investigated in only two other higher plants, in Phaseolus vulgaris 
(Jeannin et al., 1976) and in Lupinus luteus (Augustyniak and Pawelkiewicz, 
1978).
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MATERIALS AND METHODS;

Plant material;

Soybean seeds (Glycine max L. var. Harcor) were soaked in 
water for four hours and sown in moist vermiculite in shallow pans. Coty
ledons were harvested 5, 10, 15, and 20 days following germination in the 
dark at 25-27°C. Hypocotyls were harvested after 5 days of germination 
in the dark. For chloroplast isolation soybean plants were grown in 
growth chambers at a temperature of 27°C with 12-14 hours of light peri
ods and harvested 10-12 days following germination.

Chemicals;

All chemicals used were reagent grade. Acrylamide and N,N-meth- 
ylenebisacrylamide were purchased frcm BDH. Xylene cyanole FF and 
N ,N ,N ',N '-tetramethylendiamine (TEMED) were purchased frcm Eastman Co. 
Methylene blue, ATP, bovine serum albumin, /i-mercaptoethanol and 2,5 
Diphenyloxazole (PPO) were purchased frcm Sigma. Urea and hydroxylapatite 
(Biogel-HTP) were purchased frcm Bio-rad. E. coli tRNA, yeast tRNA and 
DNase were purchased frcm Boehringer-Manheim. Polyvinylpyrrolidone- 
insoluble form (trade name polyclar AT) was purchased frcm GAF corpora
tion. Chrcmatographic adsorbent for RPC-5 column was purchased frcm Miles 
laboratories. DEAE-cellulose (DE-23 and DE-52), 3 MM filter paper and 
GF/A fiber filters were purchased frcm Whatman. 1,4 bis [2- (phenylox- 
azolyl) benzene] (POPOP), L (4,5- H) lysine monochloride (1 Ci/itmol),
L (U-^^C) lysine monohydrochloride (150 mCi/mmol) and o6 [̂ P̂] ATP (1 
mCi/ml) were purchased frcm Amer sham.
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Preparation of transfer RNA;

Transfer RNA was prepared fron freshly harvested dark grown 
cotyledons or those stored for several days at -20®C according to the 
method described by Burkard et al. (1970) with minor modifications. The 
cotyledons were ground for 2-3 minutes in a Waring blendor in batches of 
100 g with 150 mis of extraction buffer (10 mM Tris-HCl pH 7.6; 60 mM KCl; 
10 mM MgClg and 14 mM B-mercaptoethanol) and an equal volume of buffer 
saturated phenol, in the cold. The hanogenate to vbich 4-5 g of solid 
duponol (SDS) was added, was stirred in the cold for two hours and centri
fuged for 15 minutes at 10,000 x g at 4°C. The supernatant was collected 
and mixed with half volume of aqueous buffer saturated phenol (Buffer A) 
and stirred again for half an hour in the cold. Buffer A was prepared by 
shaking extraction buffer with phenol at the ratio of 10; 8 (v/v) for sev
eral hours and the aqueous buffer phase separated from the phenol. The 
aqueous phase, recovered by centrifugation, was made 2.0 M with respect 
to potassium acetate and two volumes of cold 95% ethanol were added and 
stored overnight at -20°C. The precipitated material was collected the 
following day by centriguation (10,000 x g, 10 minutes, 4°C), extracted 
several times with 2.0 M potassium acetate, pH 6.5 (2 ml/100 g of tissue) . 
All supernatants, collected by centrifugation were pooled, precipitated 
again with cold 95% ethanol and stored in the freezer overnight. The 
crude tRNA precipitate was dissolved in 1.0 M NaCl in buffer B (Buffer B 
contains; 10 mM sodium acetate buffer at pH 4.5 and 10 mM MgCl^). After 
centrifugation the clear supernatant was made 0.3 M in respect to NaCl 
and applied to a small DEAE-cellulose column (2 ml bed volume per 100 g of 
plant material) , previously equilibrated with several volumes of 0.3 M
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NaCl in buffer B. The saitple was washed with the same buffer until Aggg 
dropped below 0.02. The soluble tRNA was eluted with 1.0 M NaCl in buffer 
B, deaminoacylated by incubation in 1.8 M Tris-HCl pH 7.8 at 37°C for 90 
minutes, then precipitated with ethanol and stored in the freezer at -20°C 
for at least 12 hours. Pure tPNA, obtained after centrifugation was dia- 
lyzed against cold distilled water, the concentration of tPNA determined 
based on the A 2 gQ absorbancy and stored in small aliquots for the immedi
ate use or lyophilized for the later use.

Preparation of lysyl-tPNA synthetase;

Freshly harvested cotyledons were ground with the addition of
insoluble polyvinylpyrrolidone (Polyclar AT, 200 mg/g of tissue) using a
chilled pestle and mortar. The grinding was continued for 10 minutes with
stepwise addition of the grinding medium, vhich consisted of 25 mM pota-

_2ssium phosphate at pH 7.8 in buffer C (Buffer C; 10 M/5-inercaptoethanol;
10 ^ M phenylmethyl sulfonylfluoride (PMSF); lO”  ̂M L-lysine saturated to 
30% with ammonium sulfate. The hcmogenate was strained through four layers 
of cheese cloth and centrifuged for fifteen minutes at 27,000 x g. The 
supernatant, after filtration through miracloth, was made 60% with the gradual 
addition of ammonium sulfate and stirred in the cold for 15 minutes. The 
enzyme pellet collected after centrifugation at 10,000 x g at 4 °C for 15 min
utes was either used immediately or stored in the freezer for the later use. 
The pellet was dissolved in 25 mM potassium phosphate in buffer C and 
dialyzed against the same buffer for four hours. The protein dialyzate 
was then adsorbed on a 15 ml DEAE-23 column. The column was equilibrated 
and the sample washed with 25 mM potassium phosphate in buffer C. Enzyme
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elution was performed using 100 niM potassium phosphate pH 7.8 in buffer C,
5 ml fractions were collected and those fractions showing maximum protein 
content, measured as absorbance at 280 and 260 nm on a Beckman DBG spec
trophotometer were pooled and used either as an enzyme source or with the 
addition of 50% glycerol for further enzyme purification. Using the 
and Aggg ratio in the table (Cherry, 1973), protein concentration was 
estimated.

Isolation of lysyl-tRNA synthetase fron chloroplasts and mitochondria:

The method for isolation of lysyl-tENA synthetase fron chloro
plasts and mitochondria is similar to that employed for extraction and 
purification of the enzyme from dark grown cotyledons with minor modifi
cations. Itie organellar pellets were homogenized in extraction medium (25

—2 -5mM phosphate buffer pH 7.8; 10 M/b-mercaptoethanol; 10 M phenylmethyl
sulfonylfluoride (PMSF); triton-x 100 and 20% glycerol) with slow addition 
of insoluble polyvinyl pyrrolidone (10% by weight of the plant material). 
After grinding, the extract was filtered through a cheese cloth and the 
filtrate was subjected to ammonium sulfate precipitation to a final con
centration of 60% in respect to ammonium sulfate and stirred for 30 minutes 
in the cold. The enzyme pellet, collected after centrifugation was dis
solved in extraction buffer, without triton-x 100 and then dialyzed against 
the same buffer in the cold. The dialyzed enzyme was subjected to DEAE- 
cellulose chrcroatography and fractions containing maximum enzyme activity 
were pooled and used either directly for charging tPNAs or loaded onto a 
hydroxylapatite column for further pur if ication.
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Preparation of chrcmatographic adsorbents;

DEAE-23 cellulose was swollen in deionized water and the fines 
removed by pouring off supernatant liquid. Precycling of chrcmatographic 
adsorbent was then ccmpleted according to the literature supplied by 
Whatman.

DEAE-52 (preswollen) was stirred in several volumes of appro
priate buffer, the fines poured off and then thoroughly equilibrated 
before use.

Hydroxylapatite column was prepared by mixing hydroxylapatite 
and Whatman CF 11 cellulose powder in a 9:1 ratio in the starting buffer 
(80 mM potassium phosphate pH 7.5 in buffer C) . The column was packed 
with the addition of 0.5 g of cellulose powder on the top and bottom of 
hydroxylapatite. Equilibration of the column was accomplished by washing 
the column with 20 volumes of the starting buffer. The protein sanple, 
adjusted to pH 7.5 and with KHPO^ concentration adjusted to 80 mM, 
was applied onto the column at 60 ml/h using a peristaltic pump, fol
lowed by 50 ml of the buffer. Elution was performed with 400 ml of a 
linear gradient 0.08M-0.4M of potassium phosphate at 4°C and 4 ml frac
tions were collected.

RPC-5 chromatography was conducted according to Pearson et al. 
(1971) . A mixture of 4 ml of Adogen 464 in 200 ml of chloroform was 
coated onto 100 g of polychlorotrifluoroethylene (Plaskon) support, then 
suspended in 0.5 M NaCl in sodium acetate buffer pH 4.5 (Buffer B), de
ar iated and packed under pressure in a 90 cm x 0.9 cm column. Before 
use the column was saturated with 200 ug of carrier yeast tRNA. Rou
tinely 50,000 CPM of ^H Lys-tRNA were applied to the column, tRNAp^^ was
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eluted with a 400 ml linear gradient of 0.5 M- 1.0 M of NaCl in buffer B 
at a flow rate of 35-40 ml/h and 4 ml fractions were collected. Each 
fraction was precipitated by the addition of 0.4 ml of 55% of TCA, 
the precipitates were collected on GF/A filters and radioactivity was 
determined in a Beckman liquid scintillation counter (LS 3150P) using a 
toluene based scintillation fluid.

Aminoacylation of transfer ENA:

The aminoacylation reaction was carried out at 30®C for 30 
minutes. 1 ml reaction mixture contained 40 mM Tris-HCl pH 7.4; 6 mM 
ATP pH 7.0; 15 mM MgCl^; 0.48 mg of glutathione pH 7.0; 0.08 mg of BSA;
24 mM of KCl; 4-6 units of tPNA; saturated levels of enzyme and 10 ul of 
L- (4,5 ^H) lysine monohydrochloride. The reaction started with the 
addition of the enzyme. Aminoacylation of the tENAs by E. coli enzyme 
was carried out at 37°C for 30 minutes. The radioactivity incorporated 
into tENAs VTas counted either by the method of Mans and Nbvelli (1961) or 
by precipitating the tENAs with 5% TCA and filtering on GF/A glass fiber 
filters.

Aminoacylation assays :

Aminoacylation assays were conducted in the same manner as for 
the aminoacylation of tENA. The reaction was carried out at 30®C, ali
quots of 100 ul of corplete reaction mixture were taken at different time 
intervals, placed immediately onto Whatman paper disks and immersed in 
cold 5% TCA for 15 minutes. The paper disks were washed two more times 
in 5% TCA, followed by two washings in 95% ethanol, dried and trans
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ferred into scintillation vials containing toluene based scintillation 
fluid. All assays were usually done in duplicate and the average values 
determined.

Determination of lysyl-tENA synthetase activity was carried 
out in 50 ul reaction mixture with 10 ul of the enzyme, purified on a 
hydroxylapatite column and with other necessary catponents. The reaction 
was allowed to proceed for 25 minutes at 30°C and terminated by precipi
tation with 5% TCA.

Isolation of organelles;

Chloroplasts ;

Green leaves in batches of 200 g were quickly homogenized in a 
Waring blendor in 700 ml buffer containing 5 x 10 ^ M Tris-HCl pH 8.0;
3 X lO""̂  M EDTA; 10 ^ M B-mercaptoethanol; 0.3 M mannitol and 1% BSA 
(Burkard et al., 1972) . The slurry was then passed through nylon cloth 
of 50 um mesh size with gentle squeezing, followed by a passage through 
a nylon cloth of 25 um mesh size. The final filtrate was centrifuged at 
10,000 X g for 90 seconds, the pellet was dissolved in extraction buffer 
(10 ml/100 g of tissue) and again centrifuged at 2,000 x g for 15 min
utes. The resultant chloroplast pellet was either used immediately or 
stored in the freezer at -20 ®C. All the steps in extraction were carried 
out at 0-4°C. The purity of the chloroplast preparation was, at every 
step' of extraction, checked under a light microscope.

Mitochondria:
The mitochondria were isolated according to the method of
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Guillemaut et al. (1972). Freshly harvested dark grown hypocotyls were 
ground in batches of 200 g in a Waring blendor with 200 ml of extraction 
medium (0.7 M mannitol; 10 ^ M EDTA.; 4 x 10  ̂M ATP and 1 mg/ml of BSA, 
pH adjusted to 7.2 with triethanolamine) . The hcmogenate was passed 
through a series of nylon cloths of 50 um and 25 um mesh size and centri
fuged at 1,000 X g for 5 minutes. The supernatant was transferred to
fresh centrifuge tubes and a sucrose cushion, consisting of 27% sucrose;
-410 M EDTA and 2 mg of BSA with pH 7.2 adjusted with triethanolamine, 

was gently introduced below the supernatant. The extract was then centri
fuged at 8,000 X g for 10 minutes. The resulting mitochondrial pellet 
was either used immediately or stored in the freezer at -20 ®C. The entire 
process was done in the cold at 4°C and completed within 30 minutes to 
ensure intactness of the organelles.

Preparation of chloroplast and mitochondrial tRNA;

The tRNAs from the chloroplast and the mitochondria were isolated 
according to the method of Burkard et al. (1970). Chloroplast or mito
chondrial pellets were quickly dissolved in a small quantity of extraction 
buffer (10 ^ M Tris-HCl pH 7.4; 10 ^ M MgCl2  and 1% SDS) and poured into 
tubes containing the same volume of cold, water saturated phenol (8:2 
v/v) . The mixture was kept stirring for 30 minutes in the cold and then 
centrifuged at 4,000 x g for 15 minutes. The resulting aqueous phase was 
removed and mixed with 20% potassium acetate pH 5.0 to the final concen
tration of 2% in respect to potassium acetate. With the addition of two 
volumes of 95% ethanol, the solution was stored overnight at -20°C. The 
RNA precipitate, collected by centrifugation was dissolved in 1.0 M NaCl.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

The solution was centrifuged at 1,000 x g for 15 minutes, the superna
tant was then diluted with Tris-HCl buffer pH 7.5 and MgClg to bring the 
final concentration to lo”^ M in respect to Tris-HCl, 10  ̂M with respect 
to MgClg and the NaCl concentration to 0.2 M. This solution was then 
incubated with DNase (10 ug/ml) at 4®C for 90 minutes followed by adsorb- 
tion on a small DEAE-cellulose column previously equilibrated with 0.05 
M Tris-HCl pH 7.4 and 0.2 M NaCl. The column was washed with the same 
buffer until Aggg reached 0.03. The tRNA was eluted with 1.0 M NaCl and 
fractions showing A^gg greater than 0.2 were pooled. The soluble tRNA 
was deaminoacylated by incubation with 1.8 M Tris-HCl pH 7.8 at 37°C for 
90 minutes, precipitated with two volumes of cold 95% ethanol and stored 
overnight at -20°C. The pellet, collected the next day by centrifugation 
was dissolved in distilled water, then lyophilized in small aliquots and 
stored in the freezer for later use.

Two-dimensional polyacrylamide gel electrophoresis of chloroplast tRNA;

Chloroplast tRNA (150-300 ug), dissolved in distilled water and 
mixed with saitple buffer (60% sucrose; 4 M urea; 0.1 M sodium acetate 
buffer pH 4.5 and 1% of xylene cyanole FF) was applied, with the aid of 
micropipette into one of the sample slots of the starting gel. Electro
phoretic separation of chloroplast tRNA in the first dimension was con
ducted on 10% polyacrylamide vertical slab gel (40 cm x 20 cm) in the 
cold at 450 volts. The ccnposition of the polyacrylamide separating gel
in the first dimension was; 10% acrylamide, 0.4% N-N -methylenebisacry-

-4lamide; 4 M urea in 0.1 M Tris-borate buffer pH 8.3 with 4 x 10 M EDTA. 
The acrylamide gel was polymerized with 0.001% ammonium persulfate and 1
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ul/ml N,N,N'-tetramethylethylenediamine (TEMED) . The separation gel was
poured into the space between the glass plates leaving the top 5 cm and
allowed to polymerize. Over the separation gel 5% acrylamide was then
poured leaving a space of 4 mm on the top. A wedge (2 cm x 1 cm x 0.2
cm) was placed between the glass plates on the top to create space in the
gel for sample application. After the polymerization was ccmpleted the
wedge was removed. The polymerization conditions of 5% starting gel were
similar to that of the separation gel. The electrophoresis buffer was

—40.1 M Tris-borate at pH 8.3 with 4 x 10 M EDTA. The electrophoresis 
was allowed to proceed for 40 hours or until the marker dye reached the 
bottom edge of the gel. First dimension polyacrylamide gel fractionates 
tPNAs into bands.

After ccmpletion of the first dimension polyacrylamide gel 
electrophoresis, a narrow strip of 3 cm width, containing bands was cut 
lengthwise enclosing the point of origin of the sample on the top and 
marker dye on the bottom. This strip was then placed horizontally between 
two glass plates (30 cm x 30 cm) approximately 5 cm from the top. A 20% 
polyacrylamide solution was poured into the set, leaving only 0.4 cm on 
the top. The thickness of this gel should be the same as in the first 
dimension. The ccnposition of the 20% acrylamide gel was: 20% acryla
mide; 0.8% N,N-methylenebisacrylamide; 4 M urea in 0.1 M Tris-borate 
buffer pH 8.3. Electrophoresis was conducted in the cold at 350 volts 
for 140 hours. The gel was then removed from the plates and stained with 
0.2% methylene blue in 0.2 M sodium acetate buffer pH 4.5 at room temper
ature for 20-30 minutes. Destaining of the gel was carried out in running 
tap water for 6-8 hours. The tRNAs appear as blue spots.
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Isolation of tRNAs fron the gel;

The tRNA spots were excised from the gel and placed in num
bered tubes. The tRNAs were then extracted from the gel with an 
extraction buffer containing 0.01 M sodium acetate; 0.3 M NaCl and 0.01 
M MgClg, pH 4.6 using a glass rod and an equal volume of water saturated 
phenol. After centrifugation (600-700 x g) the aqueous phase was trans
ferred into another set of tubes, tRNA was precipitated with the addition 
of two volumes of cold 95% ethanol and 200 ug of carrier rRNA. Transfer RNA 
was recovered by centrifugation, dissolved in distilled water and after the 
indentification of a particular chloroplast tRNA and the determination of the 
tRNA concentration, chloroplast tRNA^^^ was purified on a small Sephadex 
G-50 column. Aminoacylation of chloroplast tRNA^^^ was achieved using 
E. coli enzyme. This tRNA was co-chromatographed with total tRNA^^®, 
aminoacylated independently, on RPC-5 column. 50,000 CPM of ^H chloro
plast tRNA^^® and 25,000 CPM of total ^^C tRNA^^® were loaded onto a 
RPC-5 column. Elution was performed with a gradient of 0.5 M - 1.0 M 
NaCl in buffer B.

Preparation of chloroplast tRNAp^^ for hybridization with chloroplast 
ENA;

Removal of CCA terminus;

Removal of CCA terminus was achieved by the incubation of the 
tRNA with snake venom phosphodiesterase. Chloroplast tRNA^^^, separated 
from total chloroplast tRNA by two-dimensional gel electrophoresis was 
subjected to the digestion by the enzyme in reaction mixture containing
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50 mM Tris-Hcl buffer pH 8.0; 10 mM ̂ IgClg and 0.1 ug of snake venom phos
phodiesterase. Aliquots were taken 5, 10, and 15 minutes following the 
digestion. The tRNA was then re-extracted with chloroform: phenol (1:1)
mixture and lyophylized overnight.

Labelling of tRNA^^^ with ATP:

Labelling of chloroplast tRNA^^^ was carried out at its 3' end 
in the reaction mixture containing 50 mM Tris-glycine buffer pH 8.9; 5 x 
10 ^ CTP; 8 mM DTT; 10 mM MgClgT 5.4 ug of yeast nucleotidyl transferase 
(Rather et al., 1974) and 40 uCi of oC[^^P] ATP (1 mCi/ml) at 37®C for 60 
minutes. Unattached label was removed by purification of tRNA on a small 
RPC-5 or DEAE-cellulose column, equilibrated with several volumes of 2 x 
SSC buffer (0.3 M NaCl and 0.2 M sodium citrate pH 7.8) . Labelled tRNA 
was eluted with 300 ul of 8 x SSC buffer (1.2 M NaCl and 0.8 M sodium 
citrate pH 7.8), diluted to 2 x SSC and m d e  50% in respect to formamide. 
The tRNAp^^ is now ready for the hybridization with the DNA.

DNA extraction:

DNA was extracted fron chloroplast pellet according to the 
method of Kolodner and Tewari (1975) with minor modifications.

Digestion of DNA with restriction enzymes:

The digestion of DNA (1-2 ug) was carried out according to the 
instructions provided by the supplier (BRL) at 37®C for 60 minutes using 
the following restriction enzymes: Sac I, Kpn I, Xho I and Pvu II.
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Fractionation of DNA fragments and transfer to nitrocellulose filters;

The DNA fragments obtained by digestion with restriction enzymes 
ware separated by electrophoresis on 0.7% agarose gel (30 cm x 20 cm x 0.5 
cm) . After visualization of DNA bands under UV light the fragments 
ware denatured in alkali, neutralized and transferred to nitrocellulose 
strips, as described by Southern (1975).

Hybridization:

The nitrocellulose filters carrying ENA fragments were incubated 
with labelled tRNA^^^ for 24 hours at 37®C in 2 x SSC and 50% formamide 
according to the procedure of Steinmetz and Weil (1976). Following the 
hybridization nitrocellulose filters were treated with RNase A to remove 
non-hybridized tRNA, washed and exposed to an X-ray film for autoradio
graphy for 2-3 weeks.
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RESULTS;

Optimal levels of ATP and Mg ;

Binding of amino acid to tRNA, the type of reaction catalyzed 
by aminoacyl-tRNA synthetase shows an unquestionable requirement for ATP 
and ions. In addition to tRNA and ATP there is a possibility that
aminoacyl-tRNA synthetases may also be capable of binding Mg ions.
therefore a number of experiments were carried out to optimize Mg and 
ATP concentrations in the assay system. A series of concentrations for 
ATP (1-10 mM) and Mg (2-20 mM) were tested. Results indicated that ATP 
and M g ^  requirement for all three systems (cytoplasm, chloroplast and 
mitochondria) tested, differed only slightly. However, mitochondria appears 
to require slightly higher ATP levels for aminoacylations (8 mM) . Never
theless, for all the three systems the aminoacylation mixture contained 
6 mM ATP and 15 mM MgClg at pH 7.4 (Tris-HCl buffer), vhich was satis
factory. The A T P / ^ ^  ratio of 1/25 in our assays is similar to the 
requirements demonstrated in the case of Lupinus luteus seeds (Augustyniak 
and Pawelkiewicz, 1978).

Lysyl-tRNAs fron cytoplasm, chloroplast and mitochondria;

The elution profile of ^H tRNA^^^ (from dark grown soybean 
cotyledons) charged by hcmologous enzyme and fractionated by reverse phase 
chromatography (RPC-5) is shown in Figure 1. Of the five peaks of acti
vity, tRNA*^^® and tRNA^^^ are more pronounced than the rest (tRNA^^® 18.8% 
and tRNA^^® 11.8% of total).

In a plant cell protein synthesis occurs in three different com-
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Figure 1 - RPC-5 Fractionation of total cell tRNA^^^ aminoacylated with 
homologous enzyme

Unfractionated tRNA isolated from 5 day old dark grown cotyledons was 
aminoacylated with hcmologous enzyme in 1 ml reaction mixture containing 
4 units of tRNA, 0.3 mg of the enzyme, optimal levels of ATP, Mg*^
and 0.01 mCi of L-Lysine at 30°C for 30 minutes as described in the 
methods. Elution was performed with a linear gradient of 2 x 200 ml of 
0.5 M-1.0 M NaCl in buffer B, pH 4.5. Four ml fractions were collected 
with a flow rate of 35-40 ml/h.
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partments: in the cytoplasm, in the chloroplasts and in the mitochondria.
Occurrence of a number of isoaccepting tRNA species and multiple forms of 
aminoacyl-tRNA synthetases possibly indicate specificity within each ccxn- 
partment of the cell. With this in mind, we attenpted to localize organ
ellar and cytoplasmic tRNAs, after charging with homologous enzymes and 
fractionation on RPC-5 column. Mitochondrial tRNA charged with a crude 
mitochondrial enzyme and subsequently fractionated on RPC-5 column resul
ted in three peaks of activity as presented in Figure 2. These three 
mitochondrial tRNA peaks of activity coincide with the three total tRNA^^® 
(tRNA^2 ^, tRNA^2 ^ and tRNA^^®) obtained after fractionation of total cell 
tRNAp^^ charged by homologous enzyme. It is interesting to note that 
tRNA^2 ^ and tRNAp^^ are the most predominant isoacceptors showing 150% 
increase over the control (Figure 1) vhich indicates the exclusive effi
cient charging of mitochondrial tRNA by mitochondrial enzyme. Similarly, 
E. coli enzyme is used to charge the four isoacceptors in mitochondrial 
tRNA^^® (Figure 3) , shows that tRTCV^^® is the most predominant isoacceptor.

The elution pattern of chloroplast tRNA^^^, charged with 
crude chloroplast enzyme indicated the presence of four peaks of activity 
(Figure 4) . Peak 1 is the most predominant species. It should be cau
tioned here that the presence of four chloroplast tRNA^^^ peaks indicates 
cross-contamination in the enzyme and the chloroplast tRNA. Howsver, when 
chloroplast tRNA, charged with E . coli enzyme was fractionated on RPC-5 
column (Figure 5) only one major peak of activity was observed, vhich 
coincides with tRNA^^® in the control (Figure 1), but with a 25 fold 
increase in the activity.

Cross-contamination in charging tRNAs from different cell com-
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Figure 2 - RPC-5 Fractionation of mitochondrial tRNA^^^ aminoacylated 
with crude mitochondrial enzyme

The aminoacylation reaction was carried out under the conditions described 
in the methods. Elution was performed with 2 x 200 ml gradient of 0.5 M - 
1.0 M NaCl in buffer B with a flow rate of 35-40 ml/h as described in the 
methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

MITO. tRNA  
E. coli ENZ.

X

za.o

<zcc
I

Ul

2-

m

/ W
1000 20 40 60 80

zUJ
Q<
oio

c_>o

FRACTION NUMBER

Figure 3 - RPC-5 Fractionation of mitochondrial tRNA^^® aminoacylated 
with lysyl-tRNA, synthetase from Escherichia coli

The aminoacylation reaction was carried out at 37°C for 30 minutes in a 
standard reaction mixture containing 6 units of tRNA and 0.3 mg of
E. coli synthetase. Elution was performed as described in Figure 1.
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Figure 4 - RPC-5 Fractionation of chloroplast tRNA^^^ aminoacylated with 
crude chloroplast enzyme

ïhe aminoacylation reaction was carried out under conditions described in 
the methods and given in Figure 1. Elution was performed under same con
ditions given in Figure 1.
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Figure 5, - RTC-5 Fractionation of chloroplast tENA^^^ aminoacylated with 
E. coli enzyme

The aminoacylation reaction was carried out at 37®C for 30 minutes in a 
standard reaction mixture containing 6 units of tPNA and 0.3 mg of
E. coli lysyl-tENA synthetase. Elution was performed as described in 
Figure 1.
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partments is usually unavoidable since it is virtually inpossible to 
obtain pure organellar tRNAs and aminoacyl-tRNA synthetases. This is a 
widely acknowledged fact in the literature (Puttney et al., 1981, Guille
maut and Weil, 1975a, Guillemaut et al., 1975b, Jeannin et al., 1976) .
The possibility that lysyl-tRNA synthetases from the three cell compart
ments may possess different aminoacylation capacities had to be tested 
by eliminating cross-contamination from other cell ccnpartments. To accom
plish this, it was necessary to undertake the purification of lysyl-tRNA 
synthetases from three cell compartments by hydroxylapatite column chrom- 
atogra#iy.

Fractionation of lysyl-tRNA synthetase from the three cell compartments:

Fractionation of multiple aminoacyl-tRNA synthetases from var
ious sources by hydroxylapatite column chromatography appears to be one 
of the most successful techniques. This fractionation is based on dif
ferent chromatographic mobilities elicited by synthetases from different 
cell compartments. Using this technique the total cotyledon enzyme was 
separated into three peaks of activity as shown in Figure 6. Generally,
50 mg of crude enzyme, obtained after fractionation on a DEAE-cellulose 
column, was applied onto a hydroxylapatite column previously equilibrated 
with 0.08 M potassium phosphate buffer at pH 7.5 in buffer C as given in 
the methods. Following elution of the enzyme with a linear potassium 
phosphate gradient, alternate fractions were tested for enzyme activity 
using total tRNA in a standard reaction mixture as described in the methods.

Lysyl-tRNA synthetase appears to be a very labile enzyme, with 
its activity decreasing up to 40% within a few hours. The degradative
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Figure 6 - Fractionation of total lysyl-tPNA synthetase by hydroxylapatite 
column

50 mg of the enzyme was applied onto a HA column in 0.08 M potassium phos
phate pH 7.5. Ihe enzyme was eluted with a linear gradient of 0.08 M - 
0.4 M potassium phosphate in buffer C pH 7.5. Four ml fractions were col
lected at a flow rate of 50 ml/h at 4®C. Enzyme activity was tested using 
total cell tRNA^^® in 50 ul reaction mixture containing 0.5 A 2 gQ units of 
tRNA, 10 ul of the enzyme fractionated by HA column, optimal levels of ATP, 
Mg and H L-Lysine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

action of proteolytic enzymes possibly present in the extract may be 
attributed to this effect. To minimize the action of proteolytic enzymes, 
the extraction of the enzyme and other subsequent steps in the purification 
as well as application on hydroxylapatite column and the assays were per
formed with increased speed at 0-4®C.

Upon hydroxylapatite column chromatography of chloroplast pre
paration one major and two minor peaks of enzyme activity were observed 
(Figure 7) . \4hen the fractions were assayed with chloroplast tPNA (o— o ) 
and E. coli tRNA. (A— -a ) the position of the major peak was identical to 
isoenzyme 1 of total cell synthetase fîactionated on the HA column. Appear
ance of two minor peaks, similar to isoenzymes 2 and 3 may be the result 
of cross-contamination between cell compartments. Inclusion of 20% gly
cerol in the grinding medium, minimized contamination of organellar syn
thetases with cytoplasmic, but does not seem to have prevented it conpletely. 
Assay of enzyme fractions with E. coli tRNA (A---A ) results in three peaks 
of activity, with isoenzyme 1 being the major peak with very low activities 
for peaks 2 and 3. These results lead us to conclude the prokaryotic 
nature of isoenzyme 1 and possibly isoenzyme 3. Isoenzyme 1 being the most 
prominent peak appears to be localized in the chloroplast.

Figure 8 shows the hydroxylapatite column fractionation of 
mitochondrial enzyme prepared from dark grown hypocotyls. The isolation 
and purification of lysyl-tRNA synthetase from mitochondria is described 
in the methods. Approximately 26 mg of mitochondrial lysyl-tRNA synthe
tase partially purified by DEAE-cellulose chromatography was applied onto 
hydroxylapatite column. Assay for enzyme activity with mitochondrial 
tRNA, carried out at 30®C for 25 minutes, resulted in three peaks of acti-
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Figure 7 - Fractionation of chloroplast lysyl-tENA synthetase by hydroxy
lapatite chromatography

36 mg of synthetase, purified on a DEAE-cellulose column was applied onto 
a HA column in 0.08 M potassium phosphate pH 7.5. The enzyme was eluted 
with a linear gradient of 0.08 M - 0.4 M potassium phosphate in buffer C, 
pH 7.5 as described in the methods. Four ml fractions were collected and 
assayed for enzyme activity using a) chloroplast tENA (o— o ) and b) E. 
coli tENA (A---A) .
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Figure 8 - Fractionation of mitochondrial lysyl-tENA synthetase by hydrox- 
ylapatite chronatography

26 mg of synthetase was applied onto a HA column, after purification on 
a DEAE-cèllulose column, in 0.08 M potassium phosphate buffer pH 7.5. 
Elution was performed with a linear gradient of 0.08 M - 0.4 M potassium 
phosphate in buffer C, pH 7.5 as described in the methods. Four ml frac
tions were collected and assayed for enzyme activity using a) Mitochon
drial tRNA (o o ) and b) E. coli tRNA (A A ) .
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vity. Isoenzyme peak 3 appears to be localized in the mitochondria.
When the fractions were assayed with E. coli tRNA (at 37°C for 25 minutes) 
three peaks of activity can be observed. Isoenzymes 1 and 3 are more 
pronounced than the isoenzyme 2. This fact may again indicate prokar
yotic nature of isoenzymes 1 and 3. The presence of peaks 1 and 2 in the 
mitochondrial enzyme preparation may be due to cross-contamination fron 
other cell ccnpartments. Attenpts to re-chrcmatograph each of the indi
vidual isoenzymes failed because the enzyme was labile during and after 
HA column chromatography.

Aminoacylation by hcmologous and heterologous enzymes and tRNAs fron 
total cell, chloroplast and mitochondria;

Aminoacylation reactions were carried out with tRNAs and amino
acyl-tRNA synthetases from all three ccnpartments. This set of experi
ments was undertaken to establish substrate specificity of lysyl-tRNA 
synthetases from the cytoplasm, the chloroplast, and the mitochondria.
A preference to aminoacylate a tRNA frcm a particular cell coipartment or 
E. coli tRNA may be an indicative of the prokaryotic or eukaryotic nature 
of a particular aminoacyl-tRNA synthetase. Various tRNAs were aminoacy
lated by individual isoenzymes fractionated on the HA column. Ihe reac-

  I Ition mixture (50 ul) contained optimal levels of ATP and Mg , the concen
tration of tRNA was kept constant (0.5 A 2 gQ units) and 10 ul of enzyme 
(eluted frcm hydroxylapatite column). Table 1 shows the results of cross- 
aminoacylations with tRNAs and aminoacyl-tRNA synthetases from different 
cell CQtrpartments. We have previously shown that lysyl-tRNA synthetase 
fron dark grown cotyledons (total cell) fractionates into three peaks of
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Table 1: Aminoacylation by hcmologous and heterologous enzymes and tRNAs
frcm chloroplast, mitochondria and total cell. The aminoacyla
tion reaction was carried out with 10 ul of the enzyme fraction
ated by hydroxylapatite column as described in the methods.

Source of 
tRNA

Enzyme 
Peak No.

Percent of H lysyl-tRNA formed/Total CPM 
Source of Enzyme

Total Cell Chloroplast Mitochondria

Total
Cell

Yeast

E. coli

Chloro.

Mitoch.

1
2
3
1
2
3
1
2
3
1
2
3
1
2
3

7.6
13.6
4.4
1.8
10.8
4.3
5.9
1.1
4.3
2.2
1.2
1.1
1.3 
0.7 
2.0

2.0
3.1
2.0
5.9
1.7 
3.0
9.5
2.7 
2.3

1.8
6.1
4.1
1.4 
2.0
2.2
1.6
1.2
1.4
0.7
0.5
1.6
1.5 
0.7 
5.4
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activity on the HA column (Figure 6) . On a quantitative basis isoenzyme 
2 shows a two and three fold increase in aminoacylation compared to iso
enzymes 1 and 3 respectively when total cell tBNA was used as a substrate. 
Similar results were obtained vhen yeast tiRNA was aminoacylated with iso
enzyme 2 with a ten fold increase compared to the isoenzyme 1 and five 
fold increase caipared to the isoenzyme 3. The preferential aminoacyla
tion of E. coli tRNA and mitochondrial tBNA by isoenzymes 1 and 3 may in
dicate the prokaryotic nature of these isoenzymes, whereas isoenzyme 2 
appears to be eukaryotic and localized in the cytoplasm.

Chloroplast enzyme fractionated on the HA column resolved into 
one major and two very minor peaks of activity (Figure 7). The first peak 
preferentially aminoacylated chloroplast tENA and E. coli tENA, as indi
cated in the Table 1. In the case of chloroplast tENA there is a three
fold increase in enzyme activity compared to the activities of isoenzymes 
2 and 3. Similar increase (three fold) in enzyme activity was observed 
vhen E. coli tENA was used as a substrate, when isoenzymes 1 and 2 were 
compared. This affinity of chloroplast enzyme toward chloroplast tENA^^^ 
and E. coli tENA^^^ could indicate the prokaryotic nature of lysyl-tENA 
synthetase localized in the chloroplast. The isoenzyme 3, vhich appears 
to be mitochondrial seems to aminoacylate E. coli tENA quite well. Ihe 
presence of seme mitochondrial enzyme activity in chloroplast enzyme 
preparations may be attributed to the unavoidable cross-contamination 
between cell compartments. Similarly, in the aminoacylation of yeast tENA 
by chloroplast isoenzyme 2 the same conclusion can be 'drawn suggesting 
enough cytoplasmic enzyme contamination in chloroplast enzyme extract. 
Earlier it was shown that mitochondrial enzyme preparation resolved into
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three peaks of activity upon hydroxylapatite column chromatography, as 
presented in Figure 8. It should be pointed out that isoenzyme 3 showed 
maximal response in charging mitochondrial tRNA.̂ ^̂ , However, the prokar
yotic nature of mitochondrial isoenzyme 3 is not clearly established in 
this case, because the mitochondrial isoenzyme 3 aminoacylates chlorcplast 
tENA quite well hinting at its prokaryotic nature as well as the similar
ity between chloroplast and mitochondrial tENA. Charging of E. coli tENA 
by this isoenzyme 3 shows an increase in aminoacylation compared to mito
chondrial isoenzyme 2. The capacity of mitochondrial isoenzyme 3 to effi
ciently aminoacylate total cell tENA^^^ and yeast tENA^^^ may reflect its 
eukaryotic nature or some contamination of cytoplasmic isoenzymes.

Comparison of tENA^^^ after aminoacylation by purified homologous enzyme 
(HA column) :

Fractionation of chloroplast tENA^^^ after aminoacylation by 
chloroplast enzyme peak 1 (from HA column) is presented in Figure 9. Ihe 
presence of one tENA^^^ peak which coelutes with total tENA^^® (Figure 1) 
suggests the presence of one isoacceptor specific for lysine, in the pool 
of chloroplast tENAs. When this chromatographic profile is compared to 
the profile in Figure 4, where chloroplast tENA was charged with crude 
chloroplast enzyme, the presence of lysyl-tENA isoacceptors 2, 3 and 4 
in addition to isoacceptor 1 may indicate cross-contamination in the 
crude enzyme preparation. Comparison of chromatographic profile of chlor
oplast tENA charged with E. coli enzyme (Figure 5) with the profile in 
Figure 9 suggests the similarity in chloroplast and E. coli tENAp^^, 
vhich elutes as the first peak on the EPC-5 column. Figure 10 shows the
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Figure 9 - RPC-5 Fractionation of chloroplast tRNA^^® aminoacylated with 
homologous enzyme peak 1

The aminoacylation reaction was carried out in a standard reaction mix
ture containing 4 units of tRNA, 0.2 mg of synthetase, obtained 
after fractionation of mitochondrial enzyme on a HA column, optimal levels

4_L 3of ATP, Mg and 0.01 mCi of H L-Lysine as given in Figure 1 and des
cribed in the methods. Elution conditions were given in Figure 1.
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Figure 10 - RPC-5 Fractionation of double labelled H chloroplast
tRNALys 14and C total cell tRNALys

Co-chromatography of chloroplast tRNA^^®, separated by two-dimensional 
polyacrylamide gel electrophoresis, and aminoacylated by E. coli enzyme
( o o ) with ^^c total cell tRNAp^^ aminoacylated by homologous enzyme
( Û— A ). Aminoacylation reaction and elution v^re carried out in the 
same manner as described in Figure 1.
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dual labelling and co-chromatography of total cell tRNA^^® (̂ Ĉ) and 
chloroplast tRNA,^^^ (̂ H) . Chloroplast tRNA was first separated by two- 
dimensional polyacrylamide gel electrophoresis as described in the methods. 
Identification of individual tRNA spots showed the existence of only one 
lysine-specific isoaccepting tRNA (Figure 11). Ihis finding is in agree
ment with past research (Swany, Dr. Sc. Thesis, 1980, University of 
Windsor) . chloroplast tRNA^^^ coelutes with tRNAp^^ of the total 
cell tRNAp^^ preparation (^^C).

Fractionation of total cell tRNA on RPC-5 column, after charg
ing with peak 2 enzyme, obtained after fractionation of total cell enzyme 
cnthe HA column yielded four peaks of activity (Figure 12) . When this 
chromatographic profile is compared to the control (Figure 1), these peaks 
elute in the same regions as tRNAp^^ peaks 2-5. These findings may indi
cate the presence of four isoaccepting tRNAp^^ in the cytoplasm of soy
bean.

I%x3n fractionation of mitochondrial tRNA on RPC-5 column, char
ged with mitochondrial isoenzyme 3 (from HA column), three tRNA^^^ iso
acceptors were observed (Figure 13). Ihese tRNAs^^^ eluted in the same 
regions as isoacceptors 2, 3 and 4 in the control (Figure 1) and tRNA^^® 
seons to be the most abundant species. A similar chromatographic profile 
was observed when mitochondrial tRNA was charged with crude mitochondrial 
enzyme (Figure 2).

Age-related changes in lysyl-tRNAs in germinating cotyledons;

Transfer RNAs and lysyl-tRNA synthetases were isolated from 5,
10, 15, and 20 days old soybean cotyledons. Figure 14 shows a comparison
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Figure 11 - Two-dimensional polyacrylamide gel electrophoresis of 
chloroplast tENA.
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Figure 12 - RPC-5 Fractionation of total cell tFNA^^^ aminoacylated by 
hcmologous enzyme peak 2

The aminoacylation reaction was carried out in a standard reaction mix
ture under conditions described in the methods and given in Figures 1 and 
9. Ihe enzyme used for aminoacylation was obtained after fractionation 
of total cell enzyme on a HA column. Elution conditions were given in 
Figure 1.
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Figure 13 - RPC-5 Fractionation of mitochondrial tRNA,^^^ aminoacylated 
with hcmologous enzyme peak 3

The aminoacylation of mitochondrial tRNA^^^ was carried out with the syn
thetase obtained after fractionation of mitochondrial enzyme on a HA 
column. The condition for aminoacylation and elution are given in 
Figure 1.
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3 3of the incorporation of H lysine into H lysyl-tRNAs from 5, 10, 15 and
3 320 day old cotyledons. A 53% loss of H lysine incorporated into H

lysyl-tRNA can be noted between 5 day old and 10 day old tRNA. However, 
a more dramatic loss is observed vhen 5 and 15 day old tRNAs, charged by 
hcmologous enzymes, are cotpared (78.75%). This loss is even more pro
nounced between 5 and 20 day old tRNAs (85%). The cotyledons serve as 
nutrient suppliers for growing embryonic axis for 6-7 days following the 
onset of germination. With age this ability decreases. Ihis loss of 
role as nutrient supplier may be reflected in decreased amino acid accep
tor ability in older cotyledons. Figures 15 and 16 represent quantita
tive changes in 10 and 15 day old tRNAs^^^ charged by hcmologous enzymes, 
with pronounced changes in 15 day old tRNA^^^ (Figure 16). As cotyledons 
continue to age both quantitative and qualitative changes occur in 
tRNAs^^®. RPC-5 chromatography of 20 day old tRNAp^^, charged by hcmo
logous enzyme shows only four peaks of activity (Figure 17). The disap
pearance of one of isoacceptor tRNAs may be attributed to the inability 
of 20 day old lysyl-tRNA synthetase to aminoacylate efficiently all 
tRNA^ys isoacceptors in aging cotyledons. The relative amounts of each 
of five tRNA^^^ isoacceptors are summarized in Table 2. It is clear frcm 
this table that the amount of lysyl-tRNAs in soybean cotyledons is reduced 
with age. Quantitative levels of lysyl-tRNA isoacceptors varied depending 
on the stage of germinatiœ. The changes are more pronounced in tRNAp^^, 
tRNAp^^, and tRNA^^^. Decrease in the level of aminoacylation of these 
isoacceptors and the most dramatic change, the disappearance of tRNA^^^, 
is most probably the result of decreased ability of lysyl-tRNA synthetase 
to aminoacylate certain isoacceptor tRNAs. In the case of tRNA^^® a slight
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Figure 15 - RPC-5 Fractionation of total cell tRNA^^^ aminoacylated by 
hcmologous enzyme

Unfractionated tRNA isolated frcm 10 day old dark grown cotyledons was 
aminoacylated with hcmologous enzyme as described in the methods and 
given in Figure 1. Elution was performed with 2 x 200 ml of a gradient 
of 0.5 M - 1.0 M NaCl in buffer B. Four ml fractions were collected with 
a flow rate of 35-40 ml/h as given in Figure 1.
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Figure 16 - RPC-5 Fractionation of total cell tRNA^^^ aminoacylated with 
homologous enzyme

Total cell tRNA isolated frcm 15 day old dark grown cotyledons was amino
acylated with homologous enzyme under the conditions described in the 
methods and given in Figure 1. Elution was performed with a linear grad
ient o f 0 . 5 M - 1 . 0 M  NaCl in buffer B as given in Figure 1.
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Figure 17 - RPC-5 Fractionation of total cell tRNA^^^ aminoacylated with 
hcmologous enzyme

Ihe aminoacylation of total cell tRNA isolated frcm 20 day old dark grown 
cotyledons was carried out in a standard reaction mixture with hcmologous 
enzyme under the same conditons as given in Figure 1. Elution was per
formed with a linear gradient of 0.5 M - 1.0 M NaCl in buffer B as des
cribed in Figure 1.
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Table 2: Ccnparison of tRNAs^^^ present in soybean cotyledons at dif
ferent stages of germination

Relative amounts of each tRNA,^^^ species % of control

Source of tRNA tRNA^^® tRNA^^® tRNA^^® tRNA^J^ tRNA^^^

5 day* 100 100 100 100 100

10 day 90.0 75.0 85.7 75.0 62.5

15 day 100 46.8 80.0 49.0 50.0
20 day 125 43.0 63.3 31.0

* 5 day old tRNA was used as a control
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increase in aminoacylation was observed in 20 day old tRNA which could be 
attributed to an increase in the amount of chloroplast tRNA and chloro
plast synthetase. Results presented in Figure 18 may confirm the possi
bility that age-related alterations in aminoacyl-tRNA synthetase are 
indeed the cause of inadequate aminoacylation of all tRNAp^^ isoacceptors. 
Upon RPC-5 chromatography 20 day old tRNA^^^, charged with 5 day old 
lysyl-tRNA synthetase yielded five peaks of activity. Elution pattern 
of these five isoacceptors is similar to elution patterns of 5, 10 and 
15 day tRNAs^^^ described before. This clearly shows that lysyl-tRb^ 
synthetase frcm young 5 day old cotyledons has the capacity to amino
acylate all five isoacceptors efficiently vhereas the synthetase frcm 
old 20 day cotyledons has lost this capacity. This enzyme had the capa
city to aminoacylate only four out of five isoacceptors and these to a 
lesser degree. Moreover, a small increase in aminoacylation was observed 
in tRNA^^® and tRNA^^^ vhen elution patterns in Figures 17 and 18 are 
compared.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

20 DAY TOTAL tRNA 
5 DAY TOTAL ENZ.

?o
X

zo_o

<
zcc IV
I
$

Xm

0 10020 40 60

IÜ
Q<CCo
oa

FRACTION NUMBER

Figure 18 - RPC-5 Fractionation of total cell tRNA.̂ ®̂ aminoacylated with 
5 day old enzyme

Total cell tRNA isolated fron 20 day old dark grown cotyledons was amino
acylated with 5 day old synthetase. Conditions for aminoacylation are 
the same as given in Figure 1. Elution was performed in the same manner 
as given in Figure 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

DISCUSSION;

Localization of tRNAs^^^ and lysyl-tRNA synthetase in three cell 
compartments:

A great diversity exists in the number of isoaccepting tRNAs 
and aminoacyl-tRNA synthetases for the same amino acid, as well as for dif
ferent amino acids among the related and unrelated species. This diver
sity is even greater vhen we consider the localization of tRNAs and amino
acyl-tRNA synthetases in each of the three cellular compartments in plant 
systems, vhich complicates the situation even further. Although, tRNA^^^ 
respond to two codons (AAA and AAG) more than two isoaccepting tRNAp^^ 
have been described in the eukaryotic systems.

Soihean cotyledons contain five tRNA^^^ isoacceptors as reveal
ed by RPC-5 chromatography. The same number of tRNAp^^ has been found 
in the seeds and cotyledons of Lupinus luteus (Augustyniak and Pawel- 
kiewicz, 1978), vhereas in Phaseolus vulgaris (Jeannin et al., 1976), 
Triticum aestivum (Norris et al., 1975), cotton seeds (Merrick and Dure, 
1972), apple and pear (Romani et al., 1975), and ethylene ripened tomato 
(Mettler and Romani, 1976) only four lysine isoaccepting tRNAs have been 
detected.

RPC-5 chromatography of soybean chloroplast tRNA^^® resul
ted in only one chloroplastic tRNA^^^. Exactly similar findings were 
reported in Phaseolus vulgaris (Jeannin et al., 1976), Lupinus luteus 
(Augustyniak and Pawelkiewicz, 1978) and in cotton seedlings (Merrick 
and Dure, 1972). Investigations in our laboratory have shown that soy
bean cota ins one chloroplastic tRNA^^^ and tRNA'^^ (Swamy and Pillay,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

1982) and two chloroplastic t R N A ^  (Swamy and Pillay, 1982), and 
Lgu.tRNA (Sinclair and Pillay, 1981). On the other hand in soybean mito

chondria and the cytoplasm there are three and four tRNAs^^^ respectively. 
Among them tRNA^^® species 2, 3 and 4 are common to both the mitochondria 
and the cytoplasm. Such observations have been made in other plants as in
Lupinus luteus (Augustyniak and Pawelkiewicz, 1978) and Phaseolus vulgaris

T 1(Jeannin et al., 1976) and tRNA in soybean (Sinclair and Pillay, 1981) 
and Phaseolus vulgaris (Guillemaut et al., 1975).

Aminoacyl-tRNA synthetases frcm the three cell ccupartments 
differ in their subcellular localization, substrate specificity and 
chromatographic mobility. This last property of aminoacyl-tRNA synthe
tases facilitates their separation on hydroxylapatite column. Total Lys- 
tRNA synthetase from soybean cotyledons resolves into three peaks of 
activity upon hydroxylapatite column chromatography. One isoenzyme ap
pears to be located in each of the three cell compartments. Chloroplas
tic and mitochondrial enzymes are distinguishable from each other, based 
on their aminoacylation specificity. In contrast, Phaseolus vulgaris 
Lys-tRNA synthetases from chloroplast and mitochondria (Jeannin et al., 
1976), Phe-tRNA synthetase, lÿt-tRNA synthetase and Trp-tRNA synthetase 
from soybean are undistinguishable from each other (Swamy and Pillay, 1982). 
In these systems only two enzyme peaks are revealed by hydroxylapatite 
column chromatography and isoenzyme 1 is localized in the chloroplast 
and in the mitochondria whereas isoenzyme 2 is localized in the cytoplasm.

In order to determine the specificity of each isoenzyme homo
logous and heterologous aminoacylations were performed. Total cell iso
enzyme 1 and chloroplast enzyme preferentially aminoacylated tRNA^^^,
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vAiich is localized in the chloroplast. Total cell isoenzyme 2 amino
acylated tRNA^^^ isoacceptors 2, 3, 4, and 5, vhich are localized in the 
cytoplasm. Mitochondrial enzyme (peak 3 frcm HA column) aminoacylated 
tENA^^® isoacceptors 2, 3 and 4, However, mitochondrial tRNA^^® is amino
acylated to a larger extent than, the other two isoacceptors (tRNA^^^ and 
tPNA^^^). Similar results have been shown with tRNA^^ frcm soybean 
(Kanabus and Cherry, 1971; Sinclair and Pillay, 1981). Although, amino
acyl-tRNA synthetases show a strict specificity toward cognate tRNAs 
cross-aminoacylation reactions between tRNAs and aminoacyl-tRNA synthe
tases frcm different cell ccnpartments are possible.

In any investigation concerning the localization of tRNAs and 
aminoacyl-tRNA synthetases, it is essential that pure:.intact organelles, 
free from cytoplasmic contamination are used. In our work this seemed 
to be a constant hindrance. It was virtually impossible to obtain pure

-Vorganellar or cytoplasmic tRNAs and aminoacyl-tRNA synthetases without 
any cross-contamination. Fractionation on hydroxylapatite column did not 
achieve enzyme preparations entirely specific for cytoplasm or organelles. 
Similar problems have also been encountered by other workers (Puttney et 
al., 1981; Guillemaut and Weil, 1975a; Guillemaut et al., 1975b; Jeannin 
et al., 1976).

There appears to be more instances of recognition between chlor
oplast synthetase and prokaryotic tRNA than between these enzymes and
eukaryotic tRNA (Weil, 1979). This is reflected in the charging of ^

Lsucoli tRNA by chloroplast Leu-tRNA synthetase frcm cotton (Brantner 
and Dure, 1975), bean (Guillemaut et al., 1975), soybean (Sinclair and 
Pillay, 1981) and Euglena (Parthier and Krauspe, 1973). We have found
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that Lys-tRNA isoenzyme 1 fron soybean chloroplast aminoacylated E. coli 
tRNA^^® and chloroplast tRNA^^® to a great extent. Similar results were 
reported in the case of Phaseolus vulgaris Lys-tRNA synthetase (Jeannin 
et al., 1976), and Phe-, Tyr-, and Ttp-tRNA synthetase from soybean 
(Swamy and Pillay, 1982). The high degree of affinity between bacterial 
and chloroplast tRNAs and synthetases shows that the genome of higher 
plant chloroplasts are more closely related to genomes of prokaryotes 
than to higher plant nuclear genomes.

Most studies ccnceming organellar and cytoplasmic enzymes did 
not include mitochondrial tRNAs and synthetases, due to a low amount of 
these macrcmolecules in a plant cell and the inability to obtain pure 
preparations of mitochondrial tRNAs and aminoacyl-tRNA synthetases. As 
far as substrate specificity of mitochondrial synthetase is concerned, 
the enzyme shows in seme instances affinity toward cytoplasmic tRNAs and 
in other cases toward E. coli and chloroplast tRNAs. Mitochondrial Leu- 
tRNA synthetase from Euglena gracilis (Muller et al., 1981) is similar to 
chloroplastic enzyme in its elution pattern, kinetic property and tRNA 
specificity. Similar results were obtained with isoenzymes of Pro-,
Phe-, and Lys-tRNA synthetase of Phaseolus vulgaris (Jeannin et al., 1976, 
1978) and Phe-, Trp-, and Tyr-tRNA synthetases of soybean (Swamy and 
Pillay, 1982). However, mitochondrial Leu-tRNA synthetase from soybean 
(Sinclair and Pillay, 1981) and from Phaseolus vulgaris (Guillemaut et al., 
1975) appear to be similar to the cytoplasmic enzyme. It has been found 
that these isoenzymes readily aminoacylate mitochondrial as well as cyto
plasmic tRNAs (Sinclair and Pillay, 1981; Guillemaut et al., 1975). Such 
similarity has also been reported in tobacco (Guderian et al., 1972) and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

Euglena (Kislev et al., 1972). Thus it is clear that mitochondrial tRNA 
synthetase sometimes behaves like bacterial and/or chloroplastic synthe
tase and at other times like a cytoplasmic synthetase depending upon the 
amino acid in question.

Mitochondrial Lys-tRNA synthetase from soybean appears to re
semble chloroplastic enzyme in its substrate specificity, as revealed by 
cross-aminoacylation reactions presented in Table 1. However, RPC-5 
fractionation of mitochondrial tRNA, aminoacylated by isoenzyme 3, (ob
tained after fractionation of mitochondrial enzyme on HA column), reveal
ed that this isoenzyme charged three tRNA^^^ isoacceptors. The tRNA^^® iso
acceptors 2, 3, and 4 are observed in the total cell as well as in the mito
chondrial chrcmatograms. This raises the question whether these three 
species are ccmmon to both subcellular fractions. Similar problem has 
been encountered with tRNA^^® from Lupinus luteus (Augustyniak and 
Pawelkiewicz, 1978) . These authors (Augustyniak and Pawkiewicz, 1978) 
speculated that certain tRNA^^^ isoacceptors, vhich in Lupinus luteus 
were ccmmon to all three cell compartments, may belong to those organellar 
tRNAs that are coded for by the nuclear gencmie and appear in cytoplasm 
before they are Imported into chloroplasts and mitochondria. Presently, 
nothing conclusive is known about the localization of all tRNA genes in 
mitochondria of higher plants. However, the nuclear origin of seme mito
chondrial tRNAs has been reported in Tetrahymena pyriformis (Chiu et al., 
1975) and in Saccharcmyces cerevisiae (Martin et al., 1979) . Seme or all 
of the mitochondrial tRNAp^^ of Glycine max may have been transcribed on 
nuclear gencme and then transported into mitochondria. In the mitochondria 
polynucleotide chains of these tRNAs may have been then post-transcrip-
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tionally modified by méthylation to such an extent that they are now 
recognized by the mitochondrial or E. coli enzyme (Dubois et al., 1974) . 
Studies have shown that the mitochondria possess at least one methylase 
vdiich is absent from the cytoplasm (Klagsbrun, 1973). This methylase may 
be capable of modifying the tRNA and rendering it recognizable by mito
chondrial synthetase. Hovever, it is not known whether these organellar 
tRNA methylases function in the tRNAs coded for by organellar or by nuc
lear DNA. Aminoacylation of tRNA^^^ isoacceptors 2, 3, and 4 of mito
chondrial tRNA by E. coli enzyme and by mitochondrial isoenzyme 3 may 
suggest that these three isoacceptors are ccmmon to cytoplasm as well as 
to mitochondria. The detection of modified (or unmodified) tRNAs by 
currently used chromatographic methods may be limited.

The solution to the problem of possible origin of mitochondrial 
lysyl-tRNAs in soybean may be obtained by evaluating the coding specifi
city of each of the individual tRNA^^® isoacceptors. If particular tRNA^^ 
isoacceptors are indeed transcribed on nuclear gencme and then transported 
into the mitochondria, then they would exhibit the same or similar coding 
specificity as the corresponding cytoplasmic tRNAs. An additional tool 
in providing the evidence of the origin of mitochondrial tRNAs^^® is 
DNA-tRNA hybridization experiments. Selective hybridization of seme or 
all of mitochondrial tRNA^^ isoacceptors to nuclear gencme but not to 
mitochondrial may suggest the nuclear origin of these particular iso
acceptors. In any one of these sets of experiments a great care should 
be taken to ensure pure DNA and tRNA preparations without any trace of 
cross-contaminations.
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Aging;

Studies based on the chrcraatographic elution profiles of isoac
cepting tRNAs from organisms at different stages of development and aging 
have shown alterations in tRNAs and aminoacyl-tRNA synthetases. It has 
been suggested (Strehler, 1966; Strehler et al., 1971) that changes in 
isoaccepting tRNAs and/or their synthetases may play a role in the aging 
process.

Quantitative and qualitative changes in tRNA^^® and in lysyl- 
tRNA synthetase have been observed in aging soybean cotyledons. Similar 
changes have been observed in tRNA^^ and tRNA^^^ during senescence of 
soybean cotyledons (Bick et al., 1970; Pillay and Cherry, 1974), in 
tRNA^^ in pea seeds (Patel and Pillay, 1976) and in tRNA^^^ and tRNA^° 
in vheat grain (Norris et al., 1975) . Emergence and disappearance of 
certain tRNA isoacceptors specific for tRNA has been observed during 
the seedling growth in barley (Hiatt and Snyder, 1973) . Comparison of the 
elution profiles of tRNAp^^ have revealed that the age-related changes 
are more pronounced in certain isoacceptors (Table 2). It is tempting 
to speculate here that tRNA^^^ peak 2 and 4, in viiich these changes are 
more pronounced, could be of mitochondrial origin. Ihe presence of these 
peaks in mitochondrial tRNA^^® (Figures 2, 12) is possibly a reflection 
of a number of hydrolytic enzymes synthesized for degradation of stored 
products in the cotyledons.

The increase in chloroplastic tRNAp^^, observed in aging soy
bean cotyledons, also noted in the developing lupin seeds (Augustyniak and 
Pawelkiewicz, 1975) has been attributed to the increase in the amount of
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chloroplast tRNA ±n these fractions especially as the levels of chloro
plast enzymes increase in germinating cotyledons (Merrick and Dure,
1972).

Decrease in protein synthesis, a factor that often accotpanies 
aging of tissues and organs may be attributed to one or more of the dif
ferent corponents: decreased availability of mRNA, changes in the amount of 
tRNA species, aminoacyl-tRNA species and various factors (initiation, 
elongation, termination, etc.). Age-related changes observed in tRNAp^^ 
of aging soybean cotyledons are probably a result of conformational chan
ges (Rothstein, 1977) in aminoacyl-tRNA synthetases which may affect the 
extent of tRNA aminoacylation. There is also a possibility for the exi
stence of repressors in old cotyledons, which may react with aminoacyl- 
tRNA synthetase. The enzyme conformation may thus be altered (Bick et 
al., 1972) which in turn may result in incomplete aminoacylation of all 
tRNA isoacceptors. The aminoacyl-tRNA synthetases of eukaryotic plant 
cells usually participate in large multimolecular complexes which contain 
various factors. Changes in these factors may affect the functioning of 
aminoacyl-tRNA synthetases. Enzymatic catalysis occurs by slightly dif
ferent mechanism according to whether the enzyme is free or associated 
in complexes (Katchalki et al., 1971).

The presence of one tRNA^^® in the chloroplasts of soybean, 
revealed by RPC-5 chromatography raised a question of possible presence of 
tRNA^^^ gene on the circular chloroplast DNA. Unfortunately, the attempts 
to localize this gene by DNA;tRNA hybridization experiments have failed. 
Several reasons may account for this failure, inefficient removal of CCA 
terminus by snake venom phosphodiesterase, the inability of yeast nucleo-
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tidyl transferase to attach the radioactive label to the 3' end of tRNA.
and possible inability of radioactive probe to hydridize to the DNA. Our
work was performed on the basis of previously reported results (Steinmetz
and Vfeil, 1976) . It may be necessary to carry out a full range of kinetic
experiments for the removal of CCA terminus by snake vencm phosphodiesterase

32and also for the attachment of [ P] ATP by nucleotidyl transferase.
The choice of hybridization temperature may be a crucial factor deter
mining the success in these experiments. Our choice of hybridization 
temperature of 37°C, based on previous experience by other workers 
(Driesel et al., 1979; Steinmetz and Weil, 1976) may have not been the 
best choice.
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SUMMARY

1. Total tRNA^^ fractionates into five peaks of activity on RPC-5 
column.

2. Total lysyl-tRNA synthetase fractionates into three peaks of 
activity on HA column.

3. Organellar lysyl-tRNA synthetases (chloroplastic and mitochon
drial) fractionate into one major peak each on HA.

4. Cross-aminoacylation reactions have revealed that:
a) total enzyme peak 1 and chloroplastic enzyme preferentially

aminoacylate chloroplast and E. coli tRNAs ̂  ;
b) total enzyme 2 aminoacylates total and yeast tRNA ̂  ;
c) mitochondrial and total enzyme 2 aminoacylate mitochondrial 

and to sane extent E. coli tRNA ̂  .
5. Fractionation of chloroplast tRNA^^^ on RPC-5 yielded one peak 

of activity after acylation with chloroplast (HA) or E. coli 
enzyme. This peak of activity co-incides with tRNA ̂  of total.

6. Fractionation of total tRNA^^® on RPC after acylation with total 
enzyme peak 2 yielded four peaks of activity, isoacceptors 2, 3, 
4, and 5.

7. Fractionation of mitochondrial tRNA^^® on RPC-5 after acylation 
with mitochondrial enzyme (HA) or E. coli enzyme revealed three 
isoacceptors in mitochondria, tPNAs 2, 3, and 4.

8. Age-related quantitative and qualitative in senescing soybean 
cotyledons :
- a loss in amino acid acceptor activity;
- disappearance of one of tRNA isoacceptors.
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