
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-1981

A read-only-memory oriented implementation of the number A read-only-memory oriented implementation of the number

theoretic transform butterfly unit. theoretic transform butterfly unit.

Mahmood Akhtar
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Akhtar, Mahmood, "A read-only-memory oriented implementation of the number theoretic transform
butterfly unit." (1981). Electronic Theses and Dissertations. 6754.
https://scholar.uwindsor.ca/etd/6754

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/6754?utm_source=scholar.uwindsor.ca%2Fetd%2F6754&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A READ-ONLY-MEMORY ORIENTED IMPLEMENTATION OF THE

NUMBER THEORETIC TRANSFORM BUTTERFLY UNIT

by

MAHMOOD AKHTAR

A- Thesis
Submitted to the Faculty of Graduate Studies

Through the Department of Electrical
Engineering in partial fu lfillm ent of

the requirements for the Degree of
Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

1981

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: EC54737

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI Microform E C 54737
Copyright 2010 by ProQuest LLC

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Mahmood Afch±ar 19-81

763008

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

This thesis is concerned with, the design of a hardware

implementation of a Number Theoretic Transform b u tte rfly structure.

The butterfly is being used as the computational element in a

Number Theoretic Transform processor suitable for d ig ita l signal

processing operations. The b u tte rfly has been realized using

arrays of read-only-memory (ROM), and table look-up techniques. All

mathematical operations performed by the Number Theoretic Transform

b u tte rfly have been carried out using the Residue Number System.

The; ROM oriented structure lends i ts e lf to an e ffic ie n t realization

using very large scale integration CVLSIl technology. The use of

high density EPROMS in a pipeline configuration results in a

structure suitable for real time signal processing applications.

\

(1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I
ACKNOWLEDGEMENT

I would like to express my sincere thanks to my supervisor,.

Dr. W.C. M ille r for many valuable discussions and constructive

criticism on this thesis. I am also very thankful to Dr. G.A.

Jullien for his advice and assistance throughout the study period.

Thanks are due to the other members of the Department and my fellow

graduate students, especially Mr. H.K. Nagpal who helped me in

various ways.

To my parents, I extend my sincere gratitude. Without their

help and love, though far away, this work would not have started.

Thanks are also due to Mrs. Marion Campeau for her diligence

in typing this thesis.

CiiL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT Ci)

ACKNOWLEDGEMENTS (_ii)

TABLE OF CONTENTS (i l l)

LIST OF TABLES (V1)

LIST OF FIGURES (vH)

CHAPTER 1 INTRODUCTION 1

1.1 Preamble 1

1.2 Number Theoretic Transform 1

1.3 The NTT Butterfly Unit 3
1.4 Objective and Outline of the Work 4
1.5 Thesis Organization 5

CHAPTER 2 LOOK UP TABLE IMPLEMENTATION OF RESIDUE ARITHMETIC 8

2.1 Introduction 8

2.2 Modular Arithmetic 8

2.3 Residue Number System 10
2.3.1 Representation of Numbers 10
2.3.2 Basic Arithmetic Operations in RNS 11
2.3 .3 Conversion From RNS Using Chinese 13

Remainder Theorem
2.4 Implementation of RNS Using Look Up Tables 17

2.4.1 Addition/Subtraction Using Sub-Moduli 20
2.4.2 Multiplication Modulo A Prime Number 26

2.5 Summary - 30

CHAPTER 3 DIGITAL CONVOLUTION AND IMPLEMENTATION USING 32
TRANSFORM TECHNIQUES
3.1 Introduction to Digital Convolution 32

3.1.1 Fin ite Linear Convolution 32
3.1.2 Periodic or Cyclic Convolution 34
3.1.3 Linear Convolution via Cyclic 34

Convolution

C iii)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Discrete Fourier Transform 35
3.3 Fast Fourier Transform 36

3.3.1 Decimation in Time Algorithm 38
3.3.2 Decimation in Frequency Algorithm 40

3.4 Number Theoretic Transform 42
3.4.1 In v e rtib ility and Convolution 44

Property of NTT
3.5 Choice of the Parameters for the NTT 46

3.5.1 Transforms Defined Over Galois Fields 48
3.5.2 Construction of Galois Fields GFCirf1) 50
3.5.3 Searching for the Generator a in 53

GF(m2)
3.6 NTT Using RNS Concepts 54
3.7 Summary 57

CHAPTER 4 IMPLEMENTATION OF AN NTT BUTTERFLY 61
4.1 Introduction 61
4.2 NTT Processor 62

4.2.1 Memory Structure 62
4.2.2 The Butterfly Unit 72
4.2 .3 Efficiency of Primes 73
4.2 .4 Selection of the Primes for Hardware 76

Implementation
4.3 ROM Realization of Butterfly Structure 81

4.3.1 ROM Realization for 4n + 1 Primes 81
4.3.2 ROM Realization for 4n + 3 Primes 84

4.4 Simulation of the Butterfly Structure 86

4.4.1 The Transform of Real and Complex 90
Data fo r Both Primes

4.4.2 Upper Bound on Convolution 90
4.4 .3 Simulation Results gg

4.5 Hardware Implementation of the Butterfly 99
Structure
4.5.1 Description of ICs Used 99
4.5 .2 Generating and Storing the Tables 104
4.5 .3 A Typical Pipeline Interconnection 107

4.6 Clock Circuitry 116
4.7 Experimental Verification H 6

Civ)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Discussion on the Hardware Realization 120
of the B.F. Unit

4.9 Summary 124

CHAPTER 5 SUMMARY 126

CHAPTER 6 CONCLUSIONS 130

APPENDICES
t

A Simulation Programs 132

B Programs to Generate Table for Eprom, on Intel 220 157

REFERENCES . 184

VITA AUCTORIS 186

Cvl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LrST OF TABLES

Tables Page

2.1 Index of the Elements Mod 11 27

3.1 Table of F irs t Few Primes and the Associated 56
Transform Length

4.1 Comparison Between the Primes 76

4.2 Table of Primes m- = 4n + 1 Less Than 9 Bits 77

4.3 Table of Primes m. = 4n + 3 Less Than 9 Bits 78

4.4 Requirements for Both Type of Primes 84

4.5 Necessary Information on the Hardware Unit 114

(v i)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page

2.1 Pipeline Array for the Function ||a*b |+ |c*d ||
for 16 < m < 32 m

19

2 . 2 Modulo 9 Operations With Pre-Multiplied Constant 21

2.3 Addition Modulo 19 Using 6 and 7 as Sub-Moduli 23

2.4 Addition Using Sub-Moduli Approach 25

2.5 Multiplication Using Index Addition and Sub-Moduli 29

2 . 6 Multiplication Using Index Addition Modulo 191 31

3.1 Explanation of Linear Convolution 33

3.2 Convolution Using OFT Method 37

3.3 2 Point Butterfly (DIT) 41

3.4 Eight Point Butterfly CD IT) 41

3.5 2 Point Butterfly CDIF) 43

3.6 Eight Point Butterfly CDIFl 43

3.7 Implementation of NTT Using RNS for Three Moduli 58

4.1 Conceptual Diagram of NTT Processor 63

4.2 Basic Machine Organization for 0100 66

4.3 Expansion of Transform Matrix for 0100 68

4.4 Flow Graph for an Eight Point 0100 Algorithm 69

4.5 An NTT Processor fo r 0100 Algorithm 70

4.6 An NTT Processor for Real Time 0100 71

4 .7 0 1 Radix 2 Butterfly for 4n + 3 Prime 74

Lvii)
✓

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure Page

4.7(b) Implementation of Radix 2 Butterfly Unit for 74
4n + 3 Prime

4.8(a) Butterfly Unit for 4n + 1 Prime (n = even) 75

4.8(b) Butterfly Unit fo r 4n + 1 Prime (n = odd) 75

4.9 Conceptual Diagram of B.F. Unit 82

4.10 Design of NTT Butterfly for 4n + 1 Prime (193) 83

4.11 Design of NTT Butterfly for 4n + 3 Prime (191) 85

4.12 Input and Transform of x(n) 93

4.13 Convolution of Real Input 95-96

4.14 Convolution of Complex Input in GF(449) 97-98

4.15 Clock Pulses for the Butterfly Unit 100

4.16 Block Diagram and Pin Configuration of 2708 lkx8 Eprom 102

4.17 Logic Diagram and Pin Configuration of 8212, 8 b it 103 -
Latch.

4.18 A Typical Pipeline Interconnection 108

4.19 Board 1 110 ,

4.20 Board 2 111

- 4.21 Board 3 112

4.22 Board 4 113

4.23 Different View of the Hardware Implemented Butterfly 115

4.24 Clock C ircuit for Pipeline Structure 117

4.25 Input-Output of the Butterfly Before-After Changing 119
One Bit

4.26 Addition Modulo 193 Using Adder-Subtractor 121

(v i i i)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

1.1 PREAMBLE

This thesis describes a hardware realization of a number

theoretic transform b u tte rfly . The work. forms part of a more general

-development of a d ig ita l signal processing fa c i l i ty that is being

constructed by the signal and systems laboratory at the University

of Windsor. The authors responsibility in this project was to design

an NTT b u tte rfly that can be multiplexed with a memory support structure

to ultim ately provide a d ig ita l f i lte r in g capability.

1.2 NUMBER THEORETIC TRANSFORM

Fin ite d ig ita l convolution has many practical applications in

d ig ita l signal processing. I t can be used to implement non-recursive

d ig ita l f i l te r s . I t can also be used to carry out auto and cross

correlation, as well as, polynomial m ultip lication. The direct
✓

method of computing a convolution sum involves a number of m ultiplications

proportional to the product of the' length of the two inputs [143.

M ultiplication in a d ig ita l system, is a re la tiv e ly slow operation

and. therefore techniques were investigated to minimize the number of

multiplications in the convolution sum. The use of transform

techniques to compute convolution is quite popular and the savings in

m ultiplication time over direct method depends upon the transform length.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

The characteristic of these transforms ara such that the

convolution in time domain is equivalent to pointwisa multiplication

in transform domain.

The discrete Fourier transform CDFT) is defined in the complex

number f ie ld and is one of the transforms that exhibits the cyclic

convolution property. The DFT is defined as
N-l -j.2ir/N.nfc. •

XQc) = I xCnl e , Ic = 0 ,1 , . . . ,N-1 U *U
n=0

The DFT becomes very attractive to use as i t can be implemented

e ffic ie n tly using the Fast Fourier Transform (FFT) type algorithm

[15]. The two main disadvantages associated with the FFT are the

m ultiplication by irra tional coefficients and the inherent number

growth. Both of the above introduce truncation and/or round-off

errors when implemented on a f in ite wordlength machine.

Pollard [4] has shown that transforms defined in a f in ite ring

also exhibit the cyclic convolution property. These transforms are

named as Number Theoretic Transforms (NTT) because number theoretic

concepts are used in th e ir defin ition . The number theoretic

transform is defined as

N - 1 n l r
XCRL = | I *CnI a | k • 0 ,1 ,2 , . . . ,N-1 0 .2)

n=0 M

where a is the cyclic generator of order N. These transforms are

implemented using an integer number system. Since these transforms are

defined in f in ite rings, the number growth problem is inherently

solved. The value of M is chosen such that the result of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

convolution is within the defined range. Whenever the result of an

operation exceeds M, the number is reduced modulo M and i f the

fina l result is within the dynamic range, the intermediate overflows

can Be ignored. Thus the computation is exact and truncation-

roundoff errors do not arise.

The proposed implementation of the NTT requires a supporting

memory structure and a computational unit commonly known as the

b utte rfly unit CBFJ.- The operations performed by the butterfly unit

are addition, subtraction and m ultip lication, but no division. The

complexity of the BF unit depends upon the choice of the fie ld and

also the form of the generator, which is used to define the number

theoretic transform.

1.3 THE NTT BUTTERFLY UNIT

The binary operations in the BF unit are performed modulo an

integer M, which is used in the definition of the NTT. Modulo reduction

is not an easy operation unless the modulus M has a simpler form,

preferably a power of two fo r the Binary number system implementation

of the BF unit. Radar [63 used the Mersenne number and Agarwal and

Burrus [73 used the Fermat numbers to ease of the computation in

the BF unit using the binary number system to perform the required

arithmetic operations modulo M. McClellan [163 has b u ilt hardware

for implementing the Fermat number transform and used adders-subtractors

to implement the BF unit. The generator was chosen such that the

multiplications by twiddle factors were replaced by b it shiftings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

These adders-suhtractors and the h it shifting were arranged tn a pipeline

configuration for a high, throughput rate.

In using an array of ROMS, rather than adder-subtractor, e tc . , an

extremely simple structure emerges that offers identical characteristics

for any required operation and is inherently simple to pipeline. The

use of ROM arrays for implementing BF unit also relaxes the constraints

on the choice of the parameters for NTT and they can be chosen freely

on purely number theoretic basis to maximize the transform length.

1.4 OBJECTIVE AND OUTLINE OF THE WORK.

The use of NTT to compute convolution is very attractive because

of its error free computation. The heart of the processor is the

computational unit or the Butterfly unit. The orientation in this

.work, is to u t iliz e the advancement in memory fabrication technology

and build up a b u tte rfly unit using arrays of look up tables arranged

in a pipeline configuration. The look up table approach is quite attractive

because of the fact that multiplication can be performed by

accessing the data from the tables and thus the multiplication time

is reduced to the access time of the ROMS.

Normally the dynamic range assocaited with an NTT processor would

be too large to allow an e ffic ie n t realization based on table look, up

techniques. In th is work the Residue Number System has been employed

so that a problem with a large dynamic range can be converted to a number

of paralle l operations with small dynamic ranges. In th is manner a re a l­

ization based on array of ROM is not only practical but desirable as i t

is ahle to exploit the rapidly evolving VLSI technology associated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

with memory fabrication.

The present work was divided into three phases. The f ir s t phase

of the work consisted of a litera ture survey to establish the

theoretical basis for the design of the NTT processor. Pollard [4]

has defined transforms in f in ite rings/fie ld and has showed the cyclic

convolution property (ccp). of the transforms. Agarwal and Burrus [7]

have established the necessary conditions for the transforms to exhibit

the ccp. Baraniecka [8] has proposed the look-up table approach using

the residue number system to implement the computational unit of

Number Theoretic Transform (NTT) processor. The use of look-up tables

relaxes the constraints on the choice of the parameters of the NTT.

Baraniecka [8] also outlined the procedure for selecting the NTT para­

meters for look-up table implementation.

Pease [9] has presented a procedure for the design of the memory

organization of a FFT processor and Corinthois [1 0] - [l l]h a s used this

idea as the basis for a proposed memory organization for a FFT processor.

The same memory organization is used for the FNTT processor because of

the similar structure of the two transforms.

The second phase of the work was to design a complete read-only-memory

oriented hardware implementation of the NTT Butterfly unit. The design

u tilizes the table look-up approach and employes a pipeline configuration.

A computer simulation of the hardware structure of the NTT bufferly and

the associated memory organization was carried out on the IBM 370/3031

fa c il i ty to verify the va lid ity of the proposed structure. The simulation

consisted of generating the look-up tables and then arranging them in the

pipeline configuration to check the operations of the pipeline. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

convolution of sequences was performed to establish the right

selection of the parameters.

The fina l phase of the work was to actually build a prototype

computational unit using 2708 Eproms and 8212 as registers arranged

in a pipeline fashion. The registers are necessary for storing the

intermediate data to keep the pipeline fu l l . This unit was then

tested for real time application.

1.5 THESIS ORGANIZATION

Chapter 2 provides a review of the basic modular arithmetic -

used in the design. The advantage of using the RNS for a look-up

table implementation, especially for m ultip lication, is established.

Binary operations using sub-moduli techniques are also described and

the implementation of addition-subtraction using look up tables is

shown. An e ffic ie n t way of performing multiplication fo r large

primes is also described in this chapter.

Chapter 3 starts with an introduction to d ig ita l convolution and

its implementation using transform techniques. Decimation in time

CDITl and decimation in frequency (DIF) forms of the FFT algorithm are

presented in deta il.

The choice of the parameter for the NTT and the construction of

the 2nd degree extension Galois fie lds are reviewed. A suitable

choice of parameters for an RNS based implementation of the Number

Theoretic Transform is discussed.

The concept of an NTT processor is provided in Chapter 4. A

memory structure for real time applications is described and a suitable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

memory organization is suggested. The selection of the primes for

an e ffic ie n t hardware realization of the NTT butterfly unit is

discussed and a final design of the butterfly structures for both

kind of primes ,is presented. These butterfly structures were

simulated on an IBM 370 computer and the details of the simulation ,

are included in this chapter.

The butterfly unit for 4n + 1 type primes was then implemented

in hardware using 2708 Eproms and 8212 latches. The sim plicity of

the structure using ROM arrays is obvious from the hardware design.

The generation of the look up tables on an Intel 220 system, and

the other relevant material is discussed, and the clock c ircu itry

for running the pipeline is given.

Chapter 5 summarizes the work presented in the thesis and

Chapter 6 presents the conclusions that can be reached regarding this

work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

LOOK UP TABLE IMPLEMENTATION OF RESIDUE ARITHMETIC

2.1 INTRODUCTION

The look up table approach offers the potential fo r a ROM oriented

high speed rea lization . This approach is p articu la rly advantageous in

rea liz ing m ultip lication operations, which now become as simple and fas t

as addition. The use of the Residue Number System (RNS) to implement addition,

subtraction and m ultip lication in look up tables provides a great saving in
!

hardware and is more e ff ic ie n t than the BNS. The RMS is also an inherently

carry-borrow free system and does not introduce internal delays due to

carry-borrow d ig it propagation.

In 'th is chapter a detailed discussion of the residue number system

and its implementation using look up tables is presented. The concepts

developed here w ill be applied to the number theoretic transform (NTT)

in the next chapter.

The residue number system is an integer number system and in the
i

following discussion, a l l the variables take on integer values only.

2.2 MODULAR ARITHMETIC

I f two integers,a and m,are related by the following equation

a = q . m + r (2 . 1)

where q and r are integers and r e 0 , 1 , ____ _ m-1 , then r

is the residue of a, modulo m, and is represented as:

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

From eq. (2.1) i t is clear that q is the quotient and r is the

least positive remainder of — .m

Definition 1: I f two integers have the same residue then they are

called congruent and represented as:

a h b mod m

such that

I a I = I b | = r'm 1 'm

This also implies that (a-b) is d ivisible by m and written as m|(a-b).

Thus a ll integers are congruent mod m to some integer in the f in ite set

(0 , 1 , 2 , . . . ,m-l} and are said to belong to one of the m classes. The

residue classes mod m form a commutative ring with identity with respect to

modulo m addition and multiplication and' is denoted by Z^. For example, i f

m=7,*there are seven d is tinct classes and the integers belonging to these are

{0} = -14, -7 , 0, 7, 14,
{1}..= -13, - 6 , 1, 8 , 15,
{2}..= -12, -5 , 2 , 9, 16,
(3> = -11 . -4 , 3, 10, 17,
{4} = -10, -3 , 4, 11, 18,
{5}..= - 9, -2 , 5, 12, 19,
{ 6}..= - 8 , -1 , 6 , 13, 20,

e.g. 13 and 27 belong to the same class as |13|^ = |27|^ = 6 or 13 = 27

mod 7.

The following basic arithmetic operations are permissible with

modulo arithmetic

(2 . 2)

(2.3)

(2 .4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

a) addition: 8 + 12 = 20 s 3 mod 17

b) negation: -7 s (-7 + 17 » 10) mod»-T2™-~

c) subtraction: 7 - 12 = 7 + (- 12) = (7--M>-= -12) mod 17

d) m ultiplication: 7 x 12 = 84 = 16 mod 17

e) division: ^-exists i f b has a m ultip licative inverse and

b divides a

2.3 RESIDUE NUMBER SYSTEM (RNS)

2.3.1 Representation of Numbers

The representation of an integer in the residue number system

takes the form of an n-tuple

a = (a-j, a2 , . . . , an) (2 . 5)

of the least positive residue with respect to the set of moduli

(m-j, , . . . , mn). '

The residues, a^, are formally written a.. = |a |^ . The residue

representation of a number is unique. The converse of this statement

is true only i f the numbers considered are in the range of 0 to M-l

where
M = n m. (2.6)

i= l 1

and a ll the m.'s are re la tive ly prime. I f negative numbers are to be

represented in this system, then the number range can be divided into

two parts. The f i r s t part represent positive numbers and second,

negative numbers.

For M = even

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

x = +ve no i f x e { 0 , 1 ,2

-ve no i f x e{£, !r+ ^ • * • • > M-n

For M = odd

x = +ve no. i f x e{Q ,l ,2 9 • • •

-ve no. i f • • • 9 M -n

Example 1:

fo r n = 3

and m̂ = 5; = 7; = 9

3
M = n m. = 5 . 7 . 9 = 315

- i= l 1

positive numbers e {0 *1 , . . . *157} f ”

negative numbers e {158*...*314}

2 .3 .2 Basic Arithmetic Operations in the RNS

Definition 2: A binary operation defined on a set s of elements is

a rule that assigns to each pair of elements from s a unique element

from s.

Definition 3: A set s is closed with respect to binary operations i f

where a, b and c are any element in s and is the binary operation. The

residue number system is , in general, not closed under the binary operation of

t The conversion from the residue number system to signed number
system is explained in Sect. 2 .3 .3 by giving an example.

a □ b = c (2 .7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

division as the resu lt o f division may not be an integer.

The residue number system is inherently a carry/borrow free

system. The binary operations under which the system is closed can

be performed by independent operations on the respective d ig its , i . e . ,

Z = x □ y implies I . = |x. □ y .| (2 .8)

where Q represents the allowed binary operations.

I t is useful to be fa m ilia r with the idea of the m ultip licative inverse

before considering division in the residue number system.

Assume i t is desired to divide x by y in the real number system,
y y 1 1

then — can be w ritten as ^ = x . — where — is the m ultip licative inverse
j y j j

of y , and thus division by y can be replaced by m ultiplication with j .

I f ^ is not an integer in the real number system, then i t can

not be represented in the residue number system and division o f x by

y is not defined in the RNS. But fo r y an integer, in other words, when

x is a multiple o f y , the idea o f a m ultip licative inverse can be used

to perform division.

Definition 4: I f 0 < a < m and l ab |m = ^en a 1S ca^ed the m ultip licative

inverse of b. mod m and is denoted by a * |g jm .

The quantity |g |m exists i f and only i f (b,m) = 1 and |b |m i 0 .

In this case |g |m is unique and division can be performed as

ljH« = 'x • 'jUm (2-9>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

13

2.3.3 Conversion From RNS Using Chinese Remainder Theorem (CRT)

In this section conversion from the RMS to any other number system is

discussed. This conversion is made possible using a theorem from number

theory [1] called the Chinese Remainder Theorem.

Given the residue representation (r-j, r2 , . . . , rn) of x, the

Chinese Remainder Theorem makes i t possible to determine |x |^ , provided

the greatest common divisor of any pair of moduli is one or moduli are

pairwise re la tive ly prime, l-xl^ is then given by the following equation:

III *

J J

The following example illu s tra tes the procedure to convert a

number from its residue representation using Chinese Remainder Theorem.

Example 2:

le t m-j = 5, m2 = 7, = 9

3 ,
then M = H m. = 5 . 7 . 9 = 315

i= l 1

m-j = 63, m2 = 45, m̂ = 35.

n r .
(2 . 10)

n
where M = n m.,

i= l 1

m. "i.
represents the m ultip licative inverse of m̂ mod m̂ .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

nu 2 45 7

' i '-3 '3 3
= 1 = In = 8 since |35

35 y
x 8|

Chinese Remainder Theorem

(x L,= | in-, I — L + mo I == L +M 1 1 1 r; 'm, 2 1 i 'm ,m-j 1 * -
fi3 1 f

m3

o r

1 x lM= 1 63 . | r-j . 2 | 5 + 45 | r£ . 5 >7 +

Addition
moduli 5 7 9

x * 173 & 3 5 2

+y = 94 /| 3 4 +

|267|315 = 267 -------2 1 6

using equation (2.12) where ^ = 2 , ^ = 1 and r 3 :

|x |M = |63.4 + 45.5 + 35 .3 |3]5 = 1582 J315 = 267

which is the correct resu lt o f addition.

Subtraction
moduli 5 7 9

.x = 173 rt ? 5 2J W

-y = 94 /I 1 4 -

(2 . 11)

315 (2 . 12)

79 > 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

using eq. (2.12) for (4 ,2 ,7) as (r-j»r2 , r 3)

|63.3 + 45.3 + 35.2 | 315 = 79.

I f -ye nos. are also to be represented then the number range,

0 to 314, is divided as

0, 1, 2, . . . , 157 positive numbers

158, 1 5 9 , . . . , 314 negative numbers.

The following example explains the procedure when the result of

subtraction is-negative
moduli 5 7 9

x = 94 - - r * 4
3 4

-y = 173 — 1> 3 5 2

-79 - —o 1 5 2

using equation (2 . 12) , (1 ,5 ,2) ^236 since the result lies in the

negative number range, i t is a negative result therefore: subtract 315

from this^236 - 315 = -79 which is the correct result of subtraction

in signed number representation.

Multiplication

Choose the numbers such that the result of m ultiplication is

contained in the dynamic range
moduli 5 7 9

y = 6 1> 1 6 6 x

246 o 1 1 3

using (2.12) (1 ,1 ,3) - 246.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Division

x = 312 = (2 ,4 ,6)

y = 13 = (3 ,6 ,4)

F irs t find the m ultip licative inverse of y^'s

1

lml 1 3 I5

1 | = I 1 1

H 'm2 1 5
1
7

i | = 1 1 1

y3 3 1 4 '9

= 2 since |3x2|g = 1

Division can now be performed by multiplying x..'s with m ultip licative

inverses of y . 's

moduli 5 7 9

x = 312----------------------------- > 2 4 6

1 ̂ 2 6 7 x=-- o
y

312
using equation (2 .1 2), (4 ,3 ,6) -> 24 which is - y j •

To ve rify that division in RNS w ill not produce the closest integer value i f

x is not d iv is ib le by y , take

x = 311 = (1 ,3 ,5)

y = 13 = (3 ,6 ,4)

| | | 315 = C l.3 ,5) . (2 ,6 ,7) = (2 ,4 ,8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

(2 ,4 ,8) - 242 f [£]r = 24

where [.J R indicates rounding to nearest integer. Note that there

is no relation between ^7 and |£-| . The reason is quite obvious.
y y 315

7̂ is not an integer and so |̂ -| has no meaning in the RNS. Two
y y 315
conclusions can be drawn from the above examples: (i) The RNS is not

a weighted magnitude representation. The residue representation does

not give any idea of magnitude and sign of the number represented.

(i i) Division is not a simple operation. (i i i) Operations on a pair

of residues is independent of other residue operations.

2.4 IMPLEMENTATION OF RNS USING LOOK UP TABLES

Recent advances in high density memory technology have made i t

possible to implement the RNS operations using look-up tables stored in

ROMS. The results of the operations can be precalculated and stored

in the locations addressed by the input data. Binary operations are

then reduced to the accessing of data from the stored tables. This is

particularly advantageous in multiplication which becomes as simple and

fast as addition. Speed of operation is then dependent only on the

access time of the ROMS.

For a given modulus, m. <. 32, the operation of m ultiplication and

addition modulo m. of the two numbers can be computed by looking up

the result in a Ik x 8 bits commercially available ROMS. Using the

same approach, operation moduli m-, 32 < m. <_64, would require a 4k x 8

bits ROM or four Ik x 8 bits ROMS and so on.

The RNS is more e ffic ie n t than the binary number system for look

up table implementation as i t requires less memory for the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

D
dynamic range. For example, with a wordlength of B b its , 2 numbers

p p OR
can be represented and therefore a total of 2 . 2 = 2 entries are

required to store the result of operations in look up tables. For
n Bthe same dynamic range, m.'s can be choosen such that n m. > 2 , then

2 1=1 each m. requires m. entries in the table. Hence a total of

n 2£ m. entries are needed as compared to the direct implementation
i= l 1

or n p
which requires 2 n m. and for a reasonable value of n and m.'s

i= l 1 1

I m, 2 « 22B .
i= l 1

As an example of an RNS implementation using look up tab le, Fig. 2.1

illu s tra tes a residue m ultip lier for modulo 31, followed by a

residue adder to implement the function | |a .b |3-j + J c . d j 3-j. The input

to each tab lesmodulo 31, can be represented by a maximum of 5 bits

and the total of the two inputs require ten address lines, the

output is five bits and so commercially available Ik x 8 bits ROMS can

be used to implement this function. A total of three Ik x 8 ROMS and

two stages are required to compute the result. From Fig. 2 .1 , i t is

noted that ROM arrays o ffer the possibility of easy pipelining fo r high

throughput. The data .from each ROM is latched and used as a partia l

address for the next ROM. The only control function required is a latch

pulse. For every latch pulse, new input is accepted and a new output

is generated. The throughput rate o f the system is equal to the

inverse of the access time of ROM plus latch settling time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

(x
)T

A
B

LE

lk
x

8
RO

M

i 1 4
in , m

£
fO

_S
JS

CMcn
V I

V

VO

s-
.0

■o
u

-Q

ft]

zo
»—I

dz=3
LU

LU

zo
>-<zz<
ui

z
I—t

z

LU
—I •
03 CM
C
r— co s •x 0
*>< z z • r *

LU

in 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Another advantage of the look-up table is that i t does not

require any extra hardware for addition or multiplication with a

constant. The constant can be pre-multiplied or added and can be

stored along with the result of the operation.

Example 3:

For modulus m = 9 compute

Z = | 5 |a . bI + 3 fc .d [| with a=3, b=4, c=6 , d=8 .
9 9 9

The resu lt of the computation using residue arithmetic is 6 . Fig. 2.2

shows the entries and the interconnections between the look up tables.

Two m ultiplication and one addition table is required to compute Z.

The f i r s t mil tip iica tio n table generates the result of m ultiplication

per-multiplied by 5, modulo 9, and second table generates the result of the

second m ultiplication pre-multiplied by 3, modulo 9. Note that

jnuItiplication by 3 and 5 does not require any extra storage and does

not introduce any extra delay.

2.4.1 Addition/Subtraction Using Sub-Moduli

As mentioned e a r lie r , commerically available ROMS can be used to

store tables for the RNS arithmetic, but this imposes an upper lim it

on the largest modulus to be used. To implement arithmetic modulo

m. < 32, Ik x 8 bits ROMS can be used, operation modulo 32 < m.. ^ 6 4

would require a 4k x 8 bits ROMS or four Ik x 8 bits ROMS and operation

modulo 64 < m. <, 128 would require 16k x 8 bits ROM or sixteen of Ik x 8

bits ROMS and so on. As w ill be explained in the next chapter, prime

moduli, 64 < m̂ < 512, are required to implement a pratical NTT, the use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ilu
ltl

pH
ca

tlo
n

Ta
bl

e
21

u*

CMCO
CM00

09

<noo CSIMSuv

oo ous
os

o CMUSncm

oo ous1*1

00

cnCMO
CM

mcn

03 cnUS o oCM

«o< <3 OOo ao
cn© va

a cn U9US

oo oo oo

cn o VOoCM
us
X

03

O a o a o
CO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

2.2

MO

OU
IO

9
OP

ER
AT

IO
NS

WI

TH

PR
E-

HU
LT

IP
LI

ED

CO
NS

TA
NT

22

of sixteen or more ROMS does not seem a very e ff ic ie n t approach. In

order to increase the implementation e ffic iency , the same technique

of Breaking a large dynamic range into smaller moduli can be used to

implement the addition/subtraction modulo a large modulus. The

only constraints on the choice of sub-moduli is that they should be

large enough to contain the result o f the operation modulo main

modulus and should be re la tiv e ly prime. For example, i f main modulus

is m.j, then the maximum number which can occur is m.. - 1. The maximum

result of addition is 2 (m.. - 1) and therefore the sub-moduli should be

chosen such that th e ir product is greater than 2(m. - 1). Mathematically

the condition can be represented as

ml i x m2 i > 2 m̂i " ^ (2 * 13)

where m .̂ and are the sub-moduli.

M ultip lication can not be implemented e ff ic ie n tly using the sub-moduli

approach as more than two sub-moduli are required to contain the result of

m ultip lication , modulo the main modulus. However, for prime moduli, there

exists an e ff ic ie n t method to implement m ultip lication u tiliz in g the •

sub-moduli approach and w ill be dealt with la te r .

Fig. 2.3 illu s tra tes the addition modulo 19 using 6 and 7 as sub­

moduli. F irs t note that 6.7 > 2 0 9 -1) and so these are appropriate

sub-moduli, which w ill produce the correct result of addition modulo 19.

This example is c learly not an e ff ic ie n t one as only one ROM would be

necessary to implement addition modulo 19 but this e x p lic it ly shows the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig.
2.3

ADDITION
:

!I
19

USING
6

and
7

as
SUB-M

ODULI

©©
o O

03

- CO on © CO 4k cn o

ro 4k On “■* 4k cn ©

u> on © ro cn o — ro

4> on m* ■ CO o - ro CO

o f\5 4k ro CO

SOmi/>
os m r - m
cn

©
on

m 4 * u> ro ~ eTI co ro —*

§

© s
©

CO fO —« o

Rr>

s
-H
g

f
On ro CD in <0 ©

•o
CO © On ro 0»

Mi
CO o ro 00

H i
CO 4k CO ID cn ro

.
cn ro o On CO CO

f •hJ «h4
CO cn 4k o On

*

OH

£Z

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

24

implementation using sub-moduli.

Example 4:

Assume Ik x 8 bits ROMS are available to implement addition/

subtraction modulo 191. Numbers from 0 to 190 can be represented

by 8 b its and hence a to ta l of 16 input (address) lines are required

and therefore the memory needed is 64k x 8 b its or 64 ROMS of Ik x 8

bits each. The maximum value o f the sub-moduli that can be chosen

is 31 which have five b it representation and the look up table w ill

require a to ta l of 10 address lines and so Ik x 8 ROMS can be used

to store the tables. Fig. 2.4 shows the implementation using sub­

moduli 17 and 23, both have five b it representation. In the f i r s t

stage, the numbers to be added are reduced modulo 17 and 23. In the

next stage, addition modulo 17 and 23 is performed and in the fin a l stage,

the result is reconstructed and corrected using Chinese remainder

theorem to produce the resu lt modulo 191.

A to ta l of seven Ik x 8 ROMS are required to implement addition/

subtraction. I t is obvious from th is example that sub-moduli scheme

saves a lo t of memory at the cost o f increasing the time of operation.

I t requires three stages to compute the result whereas direct implementation

would have required only one stage but the tremendous saving in hardware

is obviously more advantageous.

For implementing subtraction, the same scheme is used except that

subtraction tables are required in the 2nd stage of Fig. 2.4 and the

entries in reconstruction tables are d iffe ren t.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RESIDUE
TABLES

ADDITION
TABLES

RECONSTRUCTION
TABLE

256x8
bits

256x8

bits

lkx8

bits

lkx8

bits

lkx8

b,i ts

256x8

bits

256x8
bits

c= [atb |iQ1

LATCH PULSES

Fig. 2.4 ADDITION USING SUB-MODULI APPROACH

26

2.4 .2 M ultip lication Modulo A Prime Number

As explained in the previous section, look up tables speed up

the operation of addition-m ultip lication , i f they can be implemented

e ff ic ie n tly in hardware. For moduli m.. <_32, commercially available

lk x 8 ROMS can be used to store the tables of addition/m ultip lication .

For large moduli, addition/subtraction can be implemented e ff ic ie n tly using

the sub-moduli approach. For m u ltip lication , however; the d irect application

of the sub-moduli scheme does not o ffe r an e ff ic ie n t way. Taylor [2] recently

proposed a scheme to implement m ultip lication modulo (2njJ ,2 n)'. Jull.ien [3]

presented an e ff ic ie n t scheme to implement m ultip lication modulo a prime

number. For practical NTT's, moduli of in te rest are primes and

therefore Ju llie n 's scheme can be used to implement m ultip lication .

A complete description of the scheme is as follows.

The residue classes (mod m) form a, commutative ring with iden tity

with respect to addition and m ultip lication modulo m, tra d itio n a lly

known as the ring of integers modulo m or the residue ring and denoted

by Zm> The ring of residue classes (mod m) contains exactly m d is tin c t

elements. The ring o f the residue classes (mod m) is a f ie ld i f and

only i f m is a prime number. Thus the non-zero classes of Zm form a

cyclic m ultip lication group o f order m-1 , { 1 ,2 , . . ,m -l}, with

m ultip lication modulo m, isomorphic to the addition group {0 ,1 ,2 , . . ,m-2 }

with addition modulo m-1 .

This property of isomorphism can be used to implement m ultip lication

and is analogous to m ultip lication using logarithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

For a prime modulus, there exists a set of integers, called prim itive

roots, whose repeated m ultiplications generates a ll the elements of the

m ultip licative group.

\at \m = a e (1 ,2 ,. . ,m-l > (2.14)

where a is the prim itive root and t is the index of a. For d iffe ren t

values of t , d is tin c t elements o f the f ie ld are generated. Note that

zero does not have an index and therefore m ultip lication by zero needs

extra care. However in look up table implementation, m ultip lication

by zero can be taken care o f easily.

Example 5:

For modulus 11, the prim itive root is 2. Table (2 .1) shows the

element and the respective indices o f the f ie ld . M ultiplication |6xl0|-j^=5

can be mapped into addition of indices |9+5|^q=4. 4 is the index of

5 and the correct result of m ultip lication is obtained. In th is way

X indg *

1 0
2 1
3 8
4 2
5 4
6 9
7 7
8 3
9 6

10 5

Table 2 .1 : Index of the elements mod 11.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28 ~

m ultip lication is replaced by addition and can be implemented using the

sub-moduli approach fo r large moduli.

The following steps are required to perform m ultip lication

using the index method.

CiI Find the indices of the numbers to be m ultip lied.

C iil Add indices mod m-1.

C i i i l Perform inverse index operation.

Our main in terest is in look up table implementation and therefore

a sub-modular ROM adder can be considered. Here the modulus is

decomposed into two re la tiv e ly prime moduli and the addition is

carried out within this two moduli system. The fina l result is re­

constructed using another look up table. This reconstruction table can

include:

Ci) sub-moduli reconstruction using Chinese remainder theorem.

C ii) Modulus over flow correction.

C iii) Inverse index look up.

The following example illu s tra te s the complete procedure. Consider the

operation, |x.y|^g=Z and choose sub-moduli 6 and 7 which gives a composite

modulus 6x7 = 42 > 2x19. Fig. C2.5) shows the required tables and

appropriate interconnection. M ultip lication by zero is invalid using the

index method, an invalid index (in this case,7), is stored as the index of

zero. In the inverse look up, knowing that 7 w ill never occur except

by m ultip lication of zero, zero is stored to give the correct result

of m ultip lication . Consider x=13 and y=15, the resu lt is |13xl5|^g=5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

at

vo
cnLALA

CO COCOCOCO CM

CM

<n VO

LA

VO
VO cnCMa

CMcn LA

CM CMCM

LAO
a

voCM

VOo

Q CMcn
CM

o CM

00 00COCO00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g,

2.5

M

UL
TI

PL
IC

AT
IO

N
US

IN
G

IN
DE

X
AD

DI
TI

ON

AN
D

SU
B-

M
OD

UL
I

30

I f the look up tables of Fig. (25) are followed (resu lt at every

stage is in square) the correct resu lt is obtained.

Fig. (2 .6) shows the block diagram for m ultip lication modulo

191 using sub-moduli 30 and 31. Note the s im ila rity between Fig. (2 .4)

to perform addition and Fig. (2 .6) to perform m ultip lication . Both

operations now take the same time, number o f stages and same number

of ROMS.

2.5 SUMMARY

In th.is chapter the basic idea of modular arithm etic was presented.

The residue number system was described and was applied to perform

binary operations namely addition, subtraction, m ultip lication and

division. The method was c learly illu s tra te d by using examples. The

a d o p tib ility of the RNS fo r a look up table implementation of

m ultip lication and addition was shown.

From the discussion in th is chapter i t can now be concluded that

the RNS is an e ff ic ie n t and fas t way of performing addition, subtraction

and m ultip lication since i t is inherently a carry borrow free system and

there is no in te rd ig it dependence. Division is possible only in certain

cases.

The RNS also offers the best resu lt fo r hardward implementation

using look up tables. M ultip lication modulo a prime number can be

e ff ic ie n t ly implemented and offers the same speed of operation as

addition.

The ideas w ill now be used in the next chapter fo r the defin ition and

implementation of NTTs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

INDEX
TABLES

Ib|

ADDITION
TABLES191

RECONSTRUCTION
TABLE

c= | a. b | ig-j

LATCH PULSES

191

256x5
bits

256x5
bits

lkx8

bits256x5
bits

lkx8

bits
256x5

bits

CO

Fig. 2.6 MULTIPLICATION USING INDEX ADDITION MODULO 191

CHAPTER 3

DIGITAL CONVOLUTION AND IMPLEMENTATION

USING TRANSFORM TECHNIQUES

3.1 INTRODUCTION TO DIGITAL CONVOLUTION

Fin ite d ig ita l convolution has many powerful applications in

d ig ita l signal processing. I t is used to implement non-recursive

or f in ite impulse response d ig ita l f i l te r s . I t is also used to carry

out auto and cross correlation as well as fo r computation such as

polynomial m ultip lication [43.

3.1.1 F in ite Linear Convolution

Fin ite lin ear discrete convolution of two sequences is mathematically

represented as
n.,+n2- i

yCn) = £ h(n-m) x(m) n=0 , l , 2 , . . .(N-,+N9 - l) (3 .1)
m=0 1 *

where x (n), h(n) and y(n) are the f in ite d ig ita l sequences of length

N.j, N2 and N-j+Ng-l respectively. Fig. 3.1 shows a simple p ic toria l

representation of how linear convolution is carried out in practice.

Fig. .3 . 1 (a) shows a typical sequence x(n) that is non-zero in the range

0 < n < 4. Fig. 3.1(b) shows the sequence h(n) that is non-zero for

0 <_ n _< 7. Fig. 3.1(c) shows the mirror image of h(n) along the y-axis.

Fig. 3.1(d) to Cf) show simultaneous plots of x(m) and h(n-m). for

n=T j4 , 11 . Clearly fo r n < 0 and n > 11, there is no overlap between

x(m) and h(n-m), therefore y(n) is exactly zero. F inally Fig. 3.1(g)

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

x(n)

; C * ¥

n n
Ca)

0

h(n)

i-L-L
(b)

Q
h(-fl)

i i I I I I

(0

a
hO»fl)

« * ; ft x *

M r 1 1 1 n

Cd)

hi 4-n)

, I 1

i- ft ji

1 1'

a ;I
n

-3 4

(a)

h(Tl-n)

h » y ft ft
I I I

(f)

n)
n

(g)

n

Fly. 3.1 Explanation of linaar convolution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

shows y (n), which is the desired convolution.

"3.1 .2 Periodic or Cyclic Convolution

I f h(n) represents one period of the periodic sequence hp(n),

and xCn) represents that of xp(n), of both period N samples, then the

periodic or cyclic convolution of h(n) and x(n) is defined as

N-l
yCn) = I x(m) h |n -m |N fo r n = 0 , 1 , . . ,N-1 (3 .2)

m=0

and is represented as y(n) = x(n) * h(.n). Because of the

period ic ity , sequences x (n) and h (n-m) are considered
r r

only in the interval 0 _< m <_ N -l.

As the samples of hp(n-m) slide past m=N-l, the identical samples

appear at m=0. Thus the term cyclic convolution is a description of

the convolution of two sequences defined on a c irc le . When two periodic

sequences are convolved, the output sequence is periodic and of the same

period.

3 .1 .3 Linear Convolution Via Cyclic Convolution

Consider two f in ite duration sequences x(n) and h(n). The duration

of x(n) is N-j and the duration of h(n) is Ng. The lin ear convolution of

x(n) and h(n) yields the sequence y (n) of duration N^+Ng-l. To obtain

th is sequence using cyclic convolution, both input sequences should also

be of period N -j+ ^ -l. Zeros can be appended to these input sequences

to make them of duration N^+Ng-l and then c ircu lar convolution can be

used to obtain y (n).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

3.2 DISCRETE FOURIER TRANSFORM

Fin ite d ig ita l convolution can be implemented using transforms

having the cyclic convolution property (ccp). The characteristics of

these transforms are such that the transform of convolution in the time

domain is equal to the term by term product in the transform domain.

One of the transforms that exh ib it ccp is the Discrete Fourier

Transform (DFT) and is given by

N-l nl>
DFT X(k) = I x(n) W , k = 0,1

n=0

where W = exp (-0 j|p).

N-l (3 .3)

The inverse transform (_IDFT) is given by

(3.4)

Then the cyclic convolution property is given as

I f yCn) - x(n) (*) h(n)
(3 .5)

then Y(k) = X(k) . H(k)

where X, H and Y are the respective transforms of x, h and y.

To prove the ccp of DFT, take

N-l
(3 .6)

Take the transform of both sides of equation (3.6)

YDCk) = I I I x CD hCn-D } e
p n=0 1=0 p

N-l N-l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

N-l N-lIN-1 N - l
I -xD0 1 i I h(n-U • e

1=0 p n=0_______ __

, 2* Cn-l)-k
N } e

J

KpCk)

XpCk)

or

YpCk} = XpCk) • HpCk). which is the desired resu lt.

Using the ccp of DFT, convolution can be implemented in the

following way

i) take the DFT of both the input sequences

i i) obtain the term by term product in transform domain

i i i l perform the inverse DFT to obtain the output sequence.

The block diagram of Fig. 3.2 shows the complete procedure to

perform convolution.

3.3 FAST FOURIER TRANSFORM (FFT)

The term FFT refers-to a number of algorithms that employ a

number of methods for reducing the computation time required to

compute a DFT. They make use of the symmetry and periodicity of

the exponential factors, W, used in the defination of DFT, to de-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x(k). x(n)

H(k)h(n)

DFT

IDFT

DFT

Fig. 3.2 Convolution using DFT method

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

compose a long DFT computation into smaller length DFT computations.

To compute an N point DFT, a to ta l o f (N -l) complex m ultiplications

and N(N-l) additions are required while using the FFT for the same
Ntransform requires approximately loggN m ultip lication and N log2N

addition for radix 2 algorithm. Basically there are two types of

FFT algorithms, called'decimation in time (DIT) and decimation in

frequency (D IF).

3.3.1 Decimation in Time Algorithm (DIT)

The algorithm in which the input sequence (time domain) is

decomposed into smaller sequences is called a DIT algorithm. The

procedure is illu s tra te d fo r an N point sequence where N = 2r ,

r is an integer.

By defin ition :

N- 1 _ u
X(k) = I x(n) W k = 0 ,1 ,2 , . . ,N-l

n=0

Define two point sequences x-j(n) and x2 (n) as the even and odd

members of x(n).

x-j (n) = x (2n) '
n = 0 , 1 ,2 , . . , | - 1

x2 (n) = x(2n+l)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Then N-point DFT is

Xtk) = I x(2n l W?n k + I aC2n+l) WNC2n+1)k
n=0 n n=0 N

. 2 ir 0 . 2u/N/2
? M * “J

where WN = e = e = WN /2

N , n ,
2 2

XCk) = J x-jCn) Wjk2 + wĵ I x2 (n) wj] k 2

= X-j (k) + Wk X2 Ck)

where X-jCk) and X2 Ck) are point DFT's, and of period ^ . Therefore,

XCk) = X1 Ck) + Wk X2Ck) 0 < k < | - 1

= X1 Ck-J-) + wj X2Ck4) | < k £ N-l .

2As mentioned, fo r d irect evaluation of an N point DFT, N m ultiplications
Nare required. S im ilarly , d irect eva-luation of an ^ point DFT, requires

t?r} 2 m ultip lications. I f the above procedure is used to compute an N point

DFT, a to ta l of

m 2
Ĉ -) • 2 + N m ultiplications are required and

i.2 ^2
fo r F » N approximately g- m ultip lication are required and

a 50% saving over the d irect evaluation of an N point DFT is obtained fo r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

a reasonably large N, The procedure is repeatedly applied to each of the

successive subsequences, until only two point DFT's are le f t to be

evaluated.

A flow graph representing the basic operation o f the decimation in

time algorithm is called a b u tte rfly and has inputs A and B that are

combined to give two outputs x and y via the operation

-X = A + B

y = A - wj; b.

Fig. 3.3 shows the b u tte rfly unit and Fig. 3.4 shows the flow graph

fo r 8 point DIT algorithm.

3.3 .2 Decimation in Frequency Algorithm DIF

In this version of the FFT, the.input sequence x(n) is partitioned

into two sequence each of length jj- in the following manner. The f i r s t

sequence xq(n) consists of f i r s t rj- points of x(n) and the second

sequence x2 (n) consists of the la s t j points of x (n). Thus
M

x-j(n) = x(n) n = 0 , 1 , 2 , . . . ,^ -1

x2 (n) = x(n + ?[■) n = 0 , 1 ,2 , . . . , | - 1 .

The N- point DFT o f x(n) is then

L i N.!

X(k) = I x-,(n) Wjjk + I x2 (n) wjjk+NK/ 2
n=0 1 N n=0 ̂ N

N- l
2 _ - j TTk k

= I CxqCn) + e x«Cn)) WN
n=0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

X « A + Wjj B

4**N

F i g . 3.3 2 point butterfly (DIT)

x(0) X(0)

x(7) X(7)

F1g. 3.4 Eight point butterfly (DIT)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Decompose X(_kl into even and odd sample sequence

2T 1
XC2k}= I £x1Cni + *,CnU wjrk

n=0

N_!
2
* ,nkJ(C2k) = ^ Cx-,Cn> + *2(n)) wf™2 (3.7)

and

n=0

N 1 r1
XC2k+l) = I Cx, Cn) - x2 (n)) w|](2k+1)

n=0

N 1 r1
I {Cx-jCn) - x,Cn) wjj } V # 2 (3 .8)

n=0

(3 .7) and (3.8) are equivalent to two points DFT's. The procedure is

repeatedly applied to each of the even and odd samples output subsequences

until f in a lly two point DFT's are le f t to be evaluated. Fig. 3.5 shows

the b u tte rfly unit and Fig. 3.6 shows the flow graph fo r 8 point DFT

using DIF algorithm.

3.4 NUMBER THEORETIC TRANSFORM (NTT)

Agarwal and Burrus [5] have showed that the existence of an N point

transform having the cyclic convolution property depends on the existence

of a .generator alpha (a) that is a root of unity of order N, and the

existence of N"^. In the complex number f ie ld , the DFT is the transform

which exh ib it cyclic convolution property with a equal to exp (,-j j^-)*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

A

B

X * A + B

Y » (A-B) W,N

Fig. 3.5 2 point butterfly (DIF)

x(0)

* 0)

x(2)

x(3)

x(4)

x(5)

x{6)

x(7) X(7)
J--------------------►! Stage 0 J*. -►{Stage 1 |«— Stage 2

F1g. 3.6 Eight point butterfly (DIF)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

I t supports any length of the transform because of the variable periodic ity of

exp C-j . 2 tt/N) but at the same time i t involves m ultip lication by

irra tio n a l coefficients (sines and cosines) making exact computation

impossible on a d ig ita l machine. At each stage, the output has to be

scaled down to avoid overflow thus requiring some kind of scaling

operation and at the same time introducing extra computational errors.

Pollard [4] has shown that transforms defined in a f in ite ring or

f ie ld exh ib it the cyclic convolution property with a suitable choice of

the ring or f ie ld and the appropriate alpha. These transforms are

known as Number theoretic transforms (NTT) and defined as

XCkl - I I Jt(nl cnk' | (3 .9)
n=0 M

and

*Cn) = | N" 1 I X(k) c fnk | (3.10)
k=0 M

where N” ̂ belongs to the r in g /f ie ld . Unlike the DFT, NTT's do not

allow arb itrary transform lengths. The maximum attainable length N,

depends upon the choice of the ring or f ie ld and alpha. Before discussing

the choice of parameter, the in v e r t ib i l i ty and convolution property of

NTT is established in the next section.

3.4.1 In v e r t ib ili ty and Convolution Property o f NTT

I f a is the root o f unity o f order N, which is one of the basic

conditions fo r the existence of the NTT, then the following relation holds

|aN jlM-l = 0 j = an integer (3.11)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

which can be factored aŝ

N- 1 n-i
Cot - 1 } 1 ct = 0

p=0

Therefore

N" 1 n i
I aPJ = N i f j 3 0 mod N

p=0

N-l .
£ ap = 0 otherwise

p=0

since fo r j t 0 aJ - 1 f 0

In v e r t ib ility

Assuming a ll the operations are performed mod m, substituting

C3.9) into C3.10) and using C3.13)

.1 N-1 n\f i N-l N-l nlr
JcCn) = N X XCk) ct = N 1 1 * (u) a . a

k=0 k=0 u=0

1 N "1 N - 1 V (n
= N I I x(u) aktu' n) = x(n)

k=0 u=0

and hence the in v e r t ib il i ty of NTT is proved.

Convolution
N-l f

Let X (f) = I uCt) a
t =0

N-l
H (f) = 1 hCv) ct

v=0

Y (f) = X (f) . HCf)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(3.12)

(3.13)

46

Then, by (J3.101, the inverse transform o f Y (f l

1 N-l
yCsl = n” I x i f t • HCfi • o'

f =0

-fs

N-l N-l N-l
= N I I I -xCtJhCv) afCv+t-s)

f =0 t=0 v=0

I aCtlhCs-t) • N - I x (t)h (s - t)
t =0

Since the summation is modulo N, hence this is the

cyclic convolution and the CCP is proved.

3.5 CHOICE OF THE PARAMETERS FOR THE NTT

Practical considerations dictate a selection of r in g /f ie ld that

supports a transform whose parameters lead to e ff ic ie n t implementation

of modular arithm etic, e ith e r in hardware or software. Most o f the

reported work on the NTT has supposed that the hardware w ill be

implemented using the binary number system. In the conventional binary

arithm etic, residue reduction is p articu larly easy when the modulus can

be represented as power of two. Also m ultip lication by a w ill be simpler

i f a is also a power of two. In that case m ultip lication by o reduces

to b it sh iftin g . These restric tions severly l im it the maximum a tta in ­

able transform length.

We are interested in the implementation of NTT using ROM arrays

and therefore the moduli and generators can be selected purely on number

theoretic basis to maximize the transform length. The following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

definitions and theorems w ill be helpful in determining the attainable

transform length fo r d iffe re n t .moduli.

Definition 1: The Euler's to tie n t function t (M} is defined as the number

of integer in ZM that are re la tive prime to M, e .g ., fo r M = 5 ’i'CS) = 4.

Definition 2: For M a prime number HM) = M -l.

r l r 2 r nD efin ition 3: I f M can be represented as M = p̂ . Pg . . . Pn

where p .'s are primes than 'i'CMl = M(1 - ^—) 0 - -J—) . . . 0 -)•

Theorem 1: Euler's theorem states that the maximum order of an element

in ZM is ^CM).

The implications of Euler's theorem are that maximum order o f a

in the ring ZM is ^(M) th at is 1 or the maximum value of transform

length in Z ̂ is ^CM). Mathematically Nmax = y (M) and the allowed transform

lengths should divide

Consider the case when M is even, then i t contains a factor of 2

and therefore the maximum transform length is one, which is p rac tica lly

useless. This implies that M can not be taken as a m ultiple of two.

Next take the case when M is odd and represented as 2 - 1. Let

k be composite and represented as pQ, with p prime, then 2 ^ - 1 divides

2 ^ - 1 and the maximum transform length is 2? - 1. Therefore only

prime values o f k need to be considered. These numbers are known as

Mersenne numbers. Radar [6] has proposed transforms defined in the ring

of integers modulo Mersenne nuntoer. These transform are referred to as

Mersenne Number Transform CMNT).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

I t has been shown that transform of length 2p exists and the

corresponding a is -2. The disadvantage of th is m ultiplication free

MNT is that the transform length, is not a power of 2 and not even highly

composite and therefore fast FFT-type computational algorithm can not

be used.
k k+1For M = 2 + 1 and k odd, 3 divides 2 and the maximum transform

length is 2. Consider k even and le t k = s • 2t where s is odd. Then

2 ̂ + 1 divides 2 S* ̂ + 1 and the length of the possible transform w ill
2̂ 2*” be governed by 2 + 1 . Therefore, integers o f the form 2 + 1 are of

in terest. These numbers are known as Fermat numbers. Agarwal and

Burrus [7J proposed transforme defined in the ring of integers modulo

Fermat number. These transforms are referred to as Fermat number

transforms. Fermat numbers up to F ̂ are primes. In [7] , i t has been

shown that an FMT-with a = allows N = 2t+^.

However the main disadvantage of the MNT and FNT is the rig id

relationship between the dynamic range and attainable transform length.
32For example, with a 32 b it word machine using Fg = 2 + 1, N = 128 for

a = fZ . There is also a lim ited choice of possible word lengths.

Other authors have used d iffe ren t fie lds but s t i l l the

transform length is severly lim ited. The solution to this problem

is found by computing the transforms over extension fie lds .

3.5.1 Transforms Defined Over Galois Fields

Definition 4: For any prime m and any positive integer n, there exists

a f in ite f ie ld with m11 elements. This unique f ie ld is commonly denoted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

by the symbol GF(mn) and is called a Galois f ie ld . Any f in ite fie ld

with mn elements is a simple algebric extension of the f ie ld Z^.

Let F be a f ie ld . Then any f ie ld K containing F is an extension

of F. I f x is a root of some irreducible polynomial f(x) e F[x] such

that fOO = 0, then the extension f ie ld arising from a f ie ld F by the

adjunction of a root X is called a simple algebric extension,denoted

by FCx). Each element of FCx) can be uniquely represented as a polynomial.

3q ̂ â x "J* a ̂ i ^ , â e F.

The f ie ld of complex numbers is an example of an extension of

the f ie ld of real numbers, i t is generated by adjoining a root j = S-\
?

of the irreducible polynomial a + 1 .

I f f (x) is an irreducible polynomial of degree n over Z^, m prime,

then the Galois f ie ld with m11 elements GF (mn) is defined' as the f ie ld

of residue class o f polynomial of Zm [x] reduced modulo (fO O).

Pollard [4] has shown that transforms of the form

N-l .
X(k) = I x(n) a

n=0

l N" 1 n b
xCn) = N I x tk) a

k=0

defined over the Galois fie lds of mn elements, where m is a prime, also

exh ib it ccp. The maximum attainable transform length is given by Nmax=mn - 1

with, restric tion that a is cyclic of order N in GF (m11).

Thus the extension fie ld s allow a greatly increased transform length

fo r the same value of m and the problem of obtaining large transform

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

length is resolved. In order that the implementation of

e ff ic ie n t , two things must be considered a fte r the choice of m and

N:

Ci) construct the Galois f ie ld GF (mn) such that the m ultip lication

and addition of f ie ld elements require the smallest possible

number of operations;

C i i l search fo r the generator o f an N element cyclic sub-group in

GF Crnn 1» a, that has the simplest form possible so that the number

o f operations required fo r m ultiplications by powers of a are

minimized.

3.5 .2 Construction of Galois Field GF Cm11)

To construct a Galois f ie ld o f m11 elements, f i r s t an irreducible

polynomial is to be formed. The form o f the irreducible polynomial

dictates the complexity of the computation in the f ie ld since addition

and m ultip lication is defined as the polynomial addition and

m ultip lication , followed by polynomial reduction modulo f (x) . We re s tr ic t

our in terest to GF of 2nd degree as they s t i l l o ffe r simple hardware

implementation and prov-fde transform lengths which are quite suitable

fo r practical purposes. We take the two cases o f irreducible polynomial

and find out the complexity o f the computation.

p
Case 1: Let f (x) = x + x + 1 be an irreducible polynomial o f degree

2 over GF (m). Then, the extension f ie ld in which the given polynomial

has a root, denoted by w, may be described by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

GFCm2) = {a + bw| a, b e GFCm}}

and w2 + w + 1 = 0 in GFCm2).

Take the m ultip lication of two elements of the fie ld

| (a + bw) • (a 1 + b'w) |m

= | (aa1 + bb'w2). + wCab' + a 'b) |m

2Dividing the result by w + w + 1

= | (a 1a - bb') + wCab' + a'b - bb') |

Thus m ultip lication of f ie ld elements require 4 binary m ultiplications

and three binary additions.

p
Case 2: Let f (x) = x - r r e GFCm). Then the extension f ie ld , in

which the given polynomial has a root is described by

GFCm2) = {a + Ab| a, b e GFCm)}

and A2 - r = 0.

M ultip lication of two elements is now performed as

Ca + bA) • Ca‘ + b'x) = | (a a ' + bb'A2) + A(ab' + a 'b) |m

= |Caa' + r b b ') + A(ab‘ + a1 b) | m

2 2 Residue reduction mod (a - r) is simple since A = r. M ultip lication of

f ie ld elements require 4 binary m ultip lication and 2 addition. Since

ROM arrays w ill be used fo r the implementation of NTT, m ultip lication by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

constant, r does not require separate stage. Because of the
2sim plicity of the (x - r) polynomial, i t is used to construct the 2nd

order Galois f ie ld .

After the structure for irreducible polynomial has been decided,
p

the next problem is to find a suitable value of r such that x = r (mod m)

is not solvable in GF(m).

Baraniecka [8] has described a complete procedure for finding the

values of r for d iffe ren t fie ld s . Following is a b rie f discussion of

the method presented in [8] ,

All the prime numbers can be divided into two groups.

4n + 1 e .g ., 1, 5, 13, 17, . . .

4n + 3 e .g ., 3, 7, 11, 19, . . .

The most t r iv ia l value o f r is -1 but for the case of 4n + 1 type

p rim e s ,/T can be considered as a member of GF(m) and hence Galois
p

fie lds of 2nd degree can not be constructed using the polynomial, x + 1 .

For example, i f m = 5, f -T is congruent modulo 5 to 2 and 3. For 4n + 3

type primes, / T can be used to construct Galois fie lds of 2nd degree
2

and GF(m) is isomerphic to the residue class of complex, so called

Gaussian integers. The elements of the f ie ld are defined as

a + /^T b, a, b e GF(m). To find an irreducible polynomial for primes

of 4n + 1 type, we make use of the following theorem.

Theorem 2: I f g is a generator for the m ultip licative group GF(m) - {0} >
2

then x - g is an irreducible polynomial in GF(m).

For example, 13 is a prime of 4n + 1 type. I t 's generator of the

cyclic group is 2 . I t can be easily verified that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

p
x = 2 mod (13) has no solution

2
or x - 2 is an irreducible polynomial in GF(m). Hence a Galois f ie ld

of 2nd degree can be constructed using r= 2. The elements of GF(m)

w ill be defined as a + b, a, b e GF(m).

3 .5 .3 Searching fo r the Generator a in GF(m)

We f i r s t summarize what has been presented so fa r:

(i) choose the transform length N which is suitable for the application

(i i) choose the prime which w ill give this transform length over a Galois

f ie ld of 2nd degree

(iii)c o n s tru c t the 2nd order fie lds in which binary operations are simpler.

The next problem is now to find out the generator,a,which is of

the order N in GF(m). To search fo r the generator a fo r 4n + 3 type,

the following theorem is stated. The prime, m. = 4n + 3, can be represented

as m. = q . 2 ̂ -1 with q odd.
2Theorem: Given a base f ie ld Zm and an irreducible polynomial x - r

over GF(m), the extension f ie ld Zm(/ r) has a cyclic subgroup of order
D

N = 2 . The maximum value of B is P + 1* The generator a has the form

3 + y v ' r .

For 4n. + 3, a prime m. = r can be taken as -1 and hence the general form

of a is 3 + YvCf . Transforms over GF(m2) with r = -1 can be used

to compute convolution on. complex data or convolution on two blocks of

real data.
3

Example: For m = 7 =1.2 - 1 the maximum radix two transform

over GF(72) is N = 2 ^ = 16. a fo r th is prime can be chosen to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

2 + 3-7-T and i t can be verified that the generator has order 16.

Other values of a are also possible and can be used fo r the transform.

4n + 1 primes can be represented as m = q • 2P + 1 where (q,2) = 1. The

largest possible radix 2 transform length in GF(n£), is N = 2P+^. For

primes of th is form, the generator has a simple form a = where
2 2x - r is an irreducible bionomial in GF(m) . This property is obtained

from the following theorem.

Theorem 3: Let m = q • £ + 1, be an odd prime number. Then:

i) I f g is generator: for the m u ltip licative group GF(m) - (0) , then

x - g is an irreducible polynomial in GF(m).

i i) I f g is as in (i) , then >̂g has m ultip licative order q • 2k+1 in GF(m)̂

where elements are given as a + bv'g a, b e GF(m).
_ k+1

iii)W e can find a generator vr, of a cyclic subgroup or order 2 in

GF(m)̂ where r = geq with (e ,2) = 1 and x ̂ = r an irreducible polynomial

in GF(m).

Example: Let the prime be m = 97 = 3.2 + 1. Maximum radix 2 transform

length over GF(97^) is N = 2^ = 64. From the tables of the prim itive

roots, i t can be found out that for the prime 97, g = 5.

According to theorem 3, v̂5 w ill generate a cyclic subgroup of order 192,

and the generator of the m u ltip lica tive order 64 is given by a = / r = (y ^ 3e

where (e ,2) = 1. A rb itra r ily choosing e = l , a = >^8^ i t can be verified

that this a has order of 64 in GF(97^).

3.6 NTT USING RNS CONCEPTS

From the previous discussion, i t can be seen that the NTT defined over 2nd

order Galois f ie ld s , yields a practicable transform length and these 2nd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

order fie lds can be constructed using polynomials for wh-ich the binary

operation in GF(m) is simplest. Although the transform length achieved

is large enough fo r practical purposes, dynamic range is s t i l l severely

lim ited. This problem can be solved using RNS concepts. The NTT can be

performed over d iffe ren t Galois fie lds and then the fina l result can be

reconstructed using the Chinese remainder theorem or a mixed radix

conversion scheme [8] . Thus computing the transform over a f in ite

ring which is isomorphic to a d irect sum of several Galois f ie ld of 2nd
2 2 degree, R = GF(m-|) + + GF(mn) increases the dynamic range to

n
n m.. The conditions for the existence of the NTT over the f in ite

i= l 1
ring can now be restated.

2
i) For each m., must be a prim itive Nth .root of unity in GF(m..)

i i) N [(m . 2 - 1) i = 1 ,2 , . . ,n or in other words N|gcd(m..2 - 1),

i 1 , . . . ,n

As a practical example, assume a transform length of 32 points is

required. The prime moduli 17, 31 and 47 can be used and the dynamic
14 65range is then given by th e ir product 17x31x47 - 2 ' and therefore

a word length of approximately 14 b its is achieved. These are not the

only choice of primes. Other primes can also be used for the same

transform length but which w ill give d iffe ren t dynamic ranges.

Table 3.1 shows the primes and the maximum transform length that

can be achieved using these primes. I t may be noted that for any

transform length N and the generator a , the transform, length is

halved i f a is raised to power two, fo r example, fo r prime 193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Primes
m.

Factorization
of m .-l

Factorization
of m2- l

Maximum
Radix 2
Length

in
GFCm.)

Maximum
Radix 2
Length

in
GFCm?)

3 2 2 3 2 8

5 22 3.23 4 8

7 3.2 3.24 2 16

11 5.2 5.23 2 8

13 3.22 7 .3 .2 3 4 8

17 2 * 32 .2 5 16 32

19

C
M

C
MC

O 5.32 .2 3 2 8

23 1 1 .2 11.3.24 2 16

29 7.22 7 .5 .3 .23 4 8

31 5.3 .2 5 .3 .26 2 64

37 32 .22 19.32 .23 4 8

41 5.23 7 .5 .3 .2 4 8 16

43 7.3.2 11 .7 .3 .23 2 8

47 23.2 23 .3 .25 2 32

53 13.22 13.33.23 4 8

59 29.2 2 9 .5 .3 .23 2 8

61
2

5 .3 .1c 31 .5 .3 .23 4 8

Table 3.1 TABLES OF FIRST FEW PRIMES AND THE
ASSOCIATED TRANSFORM LENGTH.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

the maximum transform length is 128 and the corresponding a is

/125. This same prime can be used for transform length 64 and the
\

a would be 125, for N = 32, a = 185 and so on. Thus fo r the smaller

transform length, large primes can be used to provide large dynamic range.

Fig. 3.7 shows a conceptual block diagram to implement an NTT using

the RNS. At the f i r s t stage a d is tribu tor is required which can feed the data

modulo respective primes to d iffe ren t units. Each prime requires a

supporting memory structure and a computational un it. The advantage

of using RNS is that the computation can be performed in para lle l and the

speed of operation does not depend upon the number of primes used and

hardware is the only lim ita tion on the number of primes to be used.

After the computation, the fina l resu lt of the transform can be

reconstructed in a reconstruction stage, using the ch. rem. theorem

or mixed radix conversion.

3.7 SUMMARY

In this chapter, the implementation of convolution using transform

technique has been discussed. I t was shown that certain transforms

exh ib it cyclic convolution property and can be used to implement c ircu la r

or lin ea r convolution. The general structure of these transforms is

N ~ 1 n kX(k) = I x(n) a where a is the Nth root of unity and N is the
n=0

- i —*Ntransform length. In a complex number f ie ld fo r a = e , the

transform is known as the DFT and exhibits the cyclic convolution

property. The main disadvantage of the DFT is the m uliplication by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

-3

.7
Im

pl
em

en
tlo

n
of

NTT

us
in

g
RN

S
fo

r
th

re
e

m
od

ul
i.

59

irra tion a l coeffic ients , thus making i t impossible to compute

the transform exactly using binary arithm etic.

I t was shown by d iffe ren t authors that the NTT defined over

f in ite rings or fie lds also exhibit the ccp for suitable a. I t was

assumed that these transforms w ill be implemented using binary

arithmetic and thus stress was given to the f ie ld for which residue

reduction was simpler, a was chosen to have a simpler form preferably

a power of 2 so that m ultip lication by a reduces to b it sh ifting .

This severly restric tes the choice of r in g /f ie ld and also a can not

be chosen to y ie ld the maximum transform length. In this chapter i t

has been assumed that the NTT w ill be implemented using ROM arrays

and therefore the moduli and a can be chosen free ly to obtain the

maximum transform length. A ROM array implementation s t i l l did not

allow a suitable large transform length in GF of 1st degree and therefore

GF of 2nd degree were introduced. The implementation of NTT in GF of

2nd degree were discussed and also i t was shown that using GF of 2nd

degree increases the transform length to more than the square of the

transform length in the 1st degree fie ld s . The use of 2nd degree f ie ld ,

though increasing the transform length, does not solve the problem of

dynamic range. For an increased dynamic range, large moduli were

to be used, which are not e ff ic ie n t fo r hardware implementation. This

problem is solved through the use of the RNS by computing transform

in parallel^modulo several primes, (m^}, so that the dynamic range is
n

given by M = n m..
i= l 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

In summary, the following procedures may be followed for

selecting the parameters of NTT.

(1) Choose the desired transform length N fo r the particu lar

application.

(2) Find the dynamic range required fo r the particu lar application.

C3) Depending upon the dynamic range and transform length, choose

the suitable prime. For N > 64 and for large dynamic range

requirements, i t is more e ffic ie n t to go fo r the 2nd degree fie ld s .

(4) Construct the 2nd order fie lds using a simple form of irreducible

polynomial.

(5) Find out the generator a, which has the simplest form and have

an order of N.

The complete discussion on choosing these parameters was presented

in this Chapter. The above procedure is a tentative procedure and the

fina l choice of the parameter is dictated by the e ff ic ie n t hardware

realization and the cost of the system. In the following chapter, a

detailed discussion on e ffic ie n t hardware realization w ill be presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

IMPLEMENTATION OF AN NTT BUTTERFLY

4.1 INTRODUCTION >

The NTT processor mainly consists of a supporting memory structure

and a computational unit commonly known as the b u tte rfly unit. The

main aim of the work presented, is to rea lize the b u tte rfly unit in

hardware, compatible with the memory structure used with the NTT

processor.

In th is chapter the design of the NTT b u tte rfly is developed. The

associated memory structure to support the NTT b u tte rfly is discussed

as required but the actual hardware design of the memory structure is

not undertaken. A multiplexed b u tte rfly unit was designed fo r hardware

implementation,using look up tables and the pipeline configuration*for

real time applications. A detailed simulation of the basic required

memory structure and the b u tte rfly unit designed fo r hardware implementati

was done. A fter the verifica tio n of the simulation resu lts, the

b u tte rfly unit was implemented in hardware using look up tables stored

in Eproms. The only control required to run the b u tte rfly unit is

a clock pulse and a c irc u itry was designed and b u ilt fo r generating

control pulses.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 NTT PROCESSOR

The NTT has the same structure as the DFT and therefore for highly

composite transform length N, the fas t algorithm fo r computing the DFT

can also be used to compute the NTT. Analogous to the FFT, the fast algorithm

to compute the NTT w ill be called FNTT. Usually a sequential type

processor is used to compute the transform*-which saves hardware a t the

cost of slowing down the speed of computation. A multiplexed radix r

b u tte rfly is used as a computational unit with some supporting memory
N Nstructure. This b u tte rfly is accessed — x logr times where r is the

radix of the FNTT algorithm and N is the transform length. A conceptual

block diagram of the NTT processor is shown in Fig. 4 .1 . The supporting memory

is used to store the input data and the intermediate results of the

computation. A control unit is also required to control the data

flow to and from the memory, to keep track of stage of computation and the

position of the b u tte rfly in that stage.

4.2.1 Memory Structure

A great deel- of lite ra tu re is availab le -fo r the memory organization

of a FFT processor and is equally applicable to the FNTT. Pease [9]

brought out an idea to use slow memory e ff ic ie n tly by s p littin g main

memory into several sub-memories. Corinthois [10] used the idea presented

by Pease and came up with an 0100 (ordered input-ordered output)

algorithm which makes use of sequential memory.

A radix 2 b u tte rfly unit requires a minimum of hardware and we re s tr ic t

our interest to Radix 2 transform. The transform matrix can be

represented as the product of matrices givesn by equation 4 .1 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

>—i

o
i— i

U_
CQ

Oo

CD

ac
c
CL.

o=5cc
CO

cc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

4.1

Co

nc
ep

tu
al

di

ag
ra

m

of
NT

T
pr

oc
es

so
r

64

Tm = n p' um s n " m m C4.1)
m=n

whera n =

and

log2 ̂ and s = (1 ̂ * TgL and .x represents Kronecker product
2

T2
1 1

1 -1
(4 .2)

p' i = r2 1-l X PN C4.3)
i - l

ui = ^ i - l x °N (4 .4)
T -l

P'n = un = TN (4.5)

The operator, s, performs the two point transform on the input fed to

the computational unit. The two point transform requires only addition

and subtraction of the input data as is obvious from the operator s.
NThe input data accessed from the memory are always j points apart. The

operator u performs m ultip lication by twiddle factors and p' is the

permutation operator which shuffles the data to obtain the fina l output

in ordered form.

This machine oriented algorithm requires two memory buffers, the

input memory and the output memory, consisting of long s h ift

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

registers and a computational un it. The input memory is divided into
Ntwo sub-memories which store ^ points. The one input from each sub­

memory is fed to the computational unit and the output from the

computational unit is stored in the output memory. A fter completion of

each stage (|- b u tte rfly computation), the data from the output memory

is fed to the input memory and the shuffling on the data is performed

as required by the operator p ^ in equation (4 .1). A block diagram

of the processor is shown in Fig. 4.2.

The main drawback to this kind of implementation is that each

stage ca lls fo r a feedback phase in which data are s e ria lly moved

from the output buffer to the input buffer in an order determined

by the permutation operator. Corinthois [113 modified the above

algorithm to eliminate the feedback process and the fina l form is

given by the following equations,

n
Th = n um sm (4 .6)N m m

where in general

V l = s Pm (4 ' 7)

sn = s (4 .8)

u-, - I N (4 .9)

where u and p have been defined e a r lie r . In th is algorithm, the
Noperator s always ca lls for data that are at least 4- words apart

Nexcept at the f i r s t stage where they are ^ words apart.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

INPUT MEMORY

UT MEMORYOUTf

Controller o words

words•o words

words

Computation Unit

Fig. 4.2 Basic machine organization for 0100.
•'

v

67

Example 1: Consider the ease when N=8 . The matrix is given as:

graph implementing the transform is shown in Fig. 4 .4 . This algorithm

does not require an extra feedback operation. The input and output

memory consists of FIFOs and can be divided into 4 sub-memories which

the operator sn at each stage.

A block diagram of the above processor is shown in Fig. 4.5.

Assuming the input is already stored in MEMORY 1, the input data is

fed to the computational unit and the output from the computational

u n it' is then stored in MEMORY 2. " A fter the f i r s t stage,

the role of the memory is changed and MEM2 now becomes the

input memory and MEM! the output memory, and so on.

For real time applications, three memory buffers are required.

While two buffers are being used fo r the computation, the th ird

buffer can then-be-used to store the input sequence and also to supply

the transformed sequence. A conceptual block diagram for a real time
9

processor is shown in Fig. 4 .6 .

3
(4.10)

since

C4.l l)

and s3 = s = ! 4 x t 2 (4.12)

The expansion of these matrices is shown in Fig. 4 .3 , and the flow

Nstore — words. The data flow can be handled according to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

4.3

EX

PA
NS

IO
N

Of
TR

AN
SF

OR
M

MA
TR

IX
FO

R
OI

OO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ME
MO

RY

1
ME

MO
RY

2

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fig

4.5

An
HTT

pr

oc
es

so
r

for

01
00

al

go
rit

hm

71

RADIX 2BUF 2 MUX
DISTRIB­
UTOR BUTTERFLY

MUX

Fig. 4.6 An NTT pro cessor f o r real time 0100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

The addition-subtraction of the input points and the m ultiplication

by the twiddle factors is performed in the computational unit. The computation

is done in two stages, the addition-subtraction stage and the m ultiplication

stage, the order determined by the algorithm used. For a high throughput,

the structure of Fig. 4.6 requires that the input-out rate of the

computational unit should be equal to the data rate of the memory structure.

A pipeline structure seems a very good choice for the computational un it.

I t w ill be shown that the ROM oriented structure is extremely simple to

pipeline and thus can be used with the above memory organization. The

computational unit from now on in the thesis, w ill be referred to as a

b u tte rfly structure and w ill be restricted to radix 2 , as mentioned e a rlie r .

4.2.2 The B utterfly Unit

The input to this unit from the memory structure is two input complex

points. The control unit supplies the information about the stage of

computation and the position o f the b u tte rfly in that stage. The twiddle

factors are generated in th is unit and m ultiplied at the appropriate

stage in the b u tte rfly unit. By looking at the matrix expansion of the

transform matrix (Fig. 4.3) we note that the FNTT algorithm obtained is

of DIF type where the input points are f i r s t added-subtracted and then

m ultip lied by the twiddle factors.

The selection of the fie ld for NTT dictates the form of the

cyclic generator and thus the twiddle factors. Therefore the fie ld

or the prime moduli should be chosen such that the generator is simple

and also such that the resulting b u tte rfly unit requires less hardware.

The concept developed in the previous chapter w ill be applied for selecting

the primes for e ff ic ie n t hardware realization of the b u tte rfly unit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

4.2 .3 Efficiency of Primes

Large transform length- is achieved by the use of prime

moduli. Prime moduli can be divided into two groups, • 4n •**' 1

type and 4n + 3 type. For 4n + 3 type primes, the generator is of
p

the form y + b / - T where y & B e GF(m) and x + 1 is an irreducible

polynomial in the f i r s t order f ie ld . Fig. 4 .7 (a) shows the radix

2, DIF type b u tte rfly and Fig. 4.7(b) shows the implementation of

the b u tte rfly using look up tables. The operation represented by

o are performed in look up tables. The input points are the
* 2elements of GF(m.) and can be considered as complex points. In the

f i r s t stage, addition-subtraction is performed. The subtracted part is

then m ultiplied with the proper twiddle factors. All the binary

operation performed are complex. M ultip lication by twiddle factors

requires 4 m ultiplications and one addition and subtraction. A to ta l

of three stages and 10 binary operations are required to obtain the

output points.

For 4n + 1 type primes, a can have the simple form / r where

r e GF(m-j) and x - r is an irreducible polynomial in f i r s t order f ie ld . Fig.

4.8 shows the implementation of the b u tte rfly unit fo r 4n + 1 type prime.

Two d iffe ren t configurations are shown for the m ultiplications by powers of a.

Even.powers af a can be considered as purely real and therefore only-real

m ultiplications-are-required. The odd powers of a require a multiplexing stage

a fte r m ultiplication and also an additional m ultiplication by r which in

look up table implementation does not require any extra stage.

Two stages and 6 binary operations are required to compute the

output points. A comparison between two kind of primes is shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

A«W=T b

B-aV^T b*

0(A+8)«cV^T d

* — i -- m

0«{A-3> xan»c+/pT d'

T lg v 4.7 a) Radix 2 butterfly for 4n+3 prime

/

Fig. 4.7 b) Implementation of radix 2 butterfly unit for 4n+3 prime

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

on»q

a

b

»
a

b'

Fig. 4.8 a) Butterfly unit for 4n+l prime (n-even)

a ’-p /F "

F1g 4.8 b) Butterfly unit for 4n+1 prime (n-odd)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

the following table

primes add. subt. mult. stages

4n + 3 3 3 4 3

4n + 1 2 2 2 2

Table 4.1: Comparison between the
primes.

From the tab le , i t is obvious that 4n + 1 type primes are

more e ff ic ie n t than 4n + 3 type primes. They not only require

less number of stages, but also require less number of binary

operations. Therefore, while choosing the primes fo r NTT, the

preference should be given to 4n + 1 type primes. Tables 4.2 and

4.3 l i s t the suitable primes and the transform length associated

with them.

4 .2 .4 Selection of the Primes fo r Hardware Implementation

Discussed in the previous chapter, the NTT is computed over a

ring which is a d irect sum of several second order Galois fie ld s for

a large dynamic range. A transform length of 128 points is quite

reasonable fo r practical application. The primes w ill be selected to

provide this transform length and a reasonable dynamic range.

4n + 1 type primes can be represented as m = q . 2P + 1 where

q is odd and the maximum transform length over the second order f ie ld is

equal to 2P+^. Fora 128 point transform length, p is 6 and the f i r s t

few selections are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 7

Transform Length

N = 2k+1

Representation of
Primes fo r Trans­
form Length N

m. = q*2 k+l

Prime
m.

- ■" 1 i
Representation of
m̂ in Number of

Bits

32 = 24+1 q = 1 1 .2 4+1 17 4.087
q = 7 7.24+l 113 6.820

-q = 15 15,24+l 241 7.913
q = 21 2 1 .2 4+l 337 8.397
q = 25 25.24+l 401 8.647
q = 27 27.24+l 433 8.758

64 = 25+1 q = 3 3.25+l 97 6.644
q = 11 1 1 .2 5+l 353 8.464

128 = 2 6+1 q = 3 3 .26+l 193 7.592
q = 7 7.26+l 449 8.811

Tahle 4.2 TABLES OF PRIMES m. = 4n + 1 LESS THAN

9 BITS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

Transform ^ength

N = 2p+1

Representation of
Primes for Trans­
form Length N

m. = q*2 p- l

Prime
m.

... '
Representation
in Number of

Bits

+
C

MIIC
M

CO q = 3 3 .24- l 47 5.555
q = 5 5.24- l 79 6.304
q = 15 15.24-! 239 7.901
q = 17 17.24—1 271 8.082

- q = 23 23.24- l 367 8.520
q = 27 27.24—1 431 8.752
q = 29 29.24—1 463 8.855

64 = 25+1 q = 1 1 .25-! 31 4.954
q = 7 7 .25—1 223 7.801
q = 15 15.25-! 479 8.904

128 = 26+1 q = 3 3 .26-1 191 7.577

256 = 27+1 q = 1 1 . 2 7-! 127 6.989
q = 3 3 .27- l 383 8.581

Table 4.3 TABLES OF PRIMES m. = 4n + 3 LESS THAN

9 BITS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

m = q . 2 6 + 1

for q = m = 65 which, is not a prime

for q = 3 m = 193

for q = 5 m = 321 which is not a prime

m = 449for q = 7

fo r q = 9 m = 557 .

The dynamic range associated with the f i r s t three moduli is:

3
n m. = 193 x 449 x 577 * 2

i= l 1
2 5 ,6 which is quite

reasonable for most of the applications. We are interested in

implementing addition-subtraction using sub-moduli and IK x 8

commercially available ROMS. The IK x 8 ROMS have 10 address lines

and the two numbers which are to be added-subtracted should not have

a combined address of more than 10 b its . The sub-moduli are chosen

such that th e ir product is equal to or greater than two times the

main modulus and therefore the main modulus should not have more than

9 b its representation. Moduli 193 and 449 have nine b its representation

and a combined dynamic range of approximately 16 b its . I f a dynamic

range of more than 16 b its is required, then we are forced to use

moduli of 4n + 3 type which are- less e ff ic ie n t than 4n + 1 type.

The moduli of 4n + 3 type can be represented as m = r . 2 - 1

where r is odd and the maximum transform length in 2nd order f ie ld

is equal to 2 * ^ .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

For N equal 128, k is 6 and the f i r s t few selections are as

follows:

m = r . 2 6 - 1

fo r r = 1 m = 63 which is not a prime

for r = 3 m = 191

for r = 7

for r = 5 m = 319 which is not a prime

m = 447 which is not a prime

For r > 7, moduli have more than 9 bits representation

and are not useful fo r our purposes. Table 4.3 shows that modulus

127 can also be used fo r a transform length of 128 points. For the

same transform length, 191 provides larger dynamic range than 127.

The fina l selection of moduli, from hardware constraints, is then m1 =

191,mg ~ and nî = 449, and the dynamic range is 23.98 b its . This

is equivalent to saying that the number theoretic transform is

computed over a f in ite ring which is isomorphic to the d irect sum of three

Galois fie lds of second degree that is :

R r^GF0912l 0 GF0932) © GFC4492).

The generator for these primes are as follows:

modulus m.j = 191 = 66 + 6 / T

modulus mg = 193 ag = A 25

modulus m3 = 449 = /391

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

4.3 ROM REALIZATION OF BUTTERFLY STRUCTURE

A conceptual block diagram of the b u tte rfly unit Is shown In

Fig. 4.9. The two input points are supplied to the b u tte rfly

unit along with the stage of computation and the position of the

butte rfly . Another control is required to distinguish between the

d irect or inverse transform fo r generating the proper twiddle

factors. For each input set of data, an output set is obtained with

an in i t ia l lag of 5 or 7 stages depending upon the primes used.

The computation inside the b u tte rfly unit is performed using sub­

moduli fo r e ff ic ie n t hardware rea lization .

4.3.1 ROM Realization for 4n + 1 Primes

Fig. 4.10 shows the implementation of the b u tte rfly unit for a

4n + 1 type prime. Each rectangular block represents a ROM and a

latch. For the DFT- algorithm, the input points are f i r s t added and

subtracted. The f i r s t stage therefore consists of residue tables, named

as TRSM, sub-modulo 30 and 31. Eight tables are required to reduce

the input data points modulo the sub-moduli. In the 2nd stage, sub-modulo

addition is performed and at the 3rd stage the added part is

reconstructed whereas the subtracted part is f i r s t reconstructed and

then is converted into index form, again in sub-moduli. Reconstruction,

index look up and sub-modulo reduction is performed in one table for

each input and each sub-modulus. The twiddle factors in index form

are also accessed at th is stage. The fourth stage consists of addition

of indices using sub-moduli. An extra m ultip lication table fo r pre-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INPUT A OUTPUT C

INPUT B OUTPUT D

CONTROLS

TWIDDLE FACTORS

CA+B)

CONTROLS:
DIRECT/INVERSE: DIRECT OR INVERSE TRANSFORM

STAGE: STAGE OF COMPUTATION

POST: POSITION OF THE BUTTERFLY

IN THE STAGE

Fig. 4.9 CONCEPTUAL DIAGRAM OF THE BUTTERFLY UNIT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TR
SM

TA

DO

TF
IN

LA

TC
H

LA
TC

H
LA

TC
H

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

4.1

0
DE

SIG
N

OF
NTT

6U

TT
ER

FL
T

FO
R

4n
♦

1
PR

IM
E

(1
93

)

84

m ultip lication by r is also required at th is stage and depending upon

the power of alpha, the proper table is enabled. The f i f th stage consists

of accessing of the resu lt of the m ultip lication from inverse look,

up tables and the multiplexing of the resu lt according to even-odd

powers of alpha. Looking at th is structure, we find that a fte r an

in i t ia l delay of five stages, an output w ill be obtained and there is

always a lag of five stages between input and output data.

4.3.2 ROM Realization for 4n + 3 Primes

Fig. 4.11 shows the implementation of the b u tte rfly structure

for 4n + 3 type primes. The f i r s t three stages of this structure are

the same as that of 4n + 1 type. M ultip lication by twiddle factors

is complex for 4n. + 3 type and therefore a complex m u ltip lie r is

required. At the fourth stage, the addition of the indices is performed

and then the f i f th stage computes the real m ultip lications. An extra

addition-subtraction is required to complete the complex m ultiplication

which is done in the~6th and 7th stages. A to ta l of seven stages are

required to compute the two point b u tte rfly and a lag of seven stages

is presented between input and output. Table 4.4 shows the requirement

fo r both type of primes.

primes ROMS Stages MUX

4n + 3 48 7 -

4n + 1 32 5 2

Table 4.4 Requirements for both type of
primes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

\
(OA
+
1

' s

a a

£ £
i i

f
I

t1
1h* 3

i

S i s1
H T h r r

1a < st
T4 -V +

a
■ i t “ ■ft

a j z
•t - r - -r

-.'j. Mi

5«■
11

|
t1

i
a • s

i1a j s a 1 a a

¥
*

¥
**

V ¥
la

£ £

N S .\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Id)
3MIN

c
♦

•»
mi nmum

n«
*>

w
ish

irt
•in

86

From table 4 .4 , -ft is obvious that i t both type of 'primes

are used, then fo r 4n + 1 type primes, a delay of two stages should

be introduced in the p ipeline.

4.4 COMPUTER SIMULATION OF THE BUTTERFLY STRUCTURES

The b u tte rfly structures fo r the three moduli were simulated on an

IBM 370 using look up tables. The exact structures shown in Fig. 4.10

and Fig. 4.11 were simulated and the pipeline structure was preserved

during simulation. The basic requirements fo r memory organization were

used in the simulation part and the program for simulating memory structure

was sim plified. The shuffle operators were not used in the memory

simulation part and the output obtained was in b it reversed form. A standard

shuffle routine was used to change the b it reversed output into ordered

output. This does not a ffec t the b u tte rfly structure in any way. The

simulation programs were divided into three parts.

f i) MAIN PROGRAM: From Fig. 4.10 and 4.11, we note that output from

each table is latched on each clock pulse. The latching is necessary

to allow the (.i+l) th stage to capture data before the address lines of

the ith stage change. A pointer was in it ia liz e d in the main program

to clear a ll the registers before the application of the f i r s t data set.

The subroutine table is then called to generate a ll the tables required

for the b u tte rfly unit. A double DO loop is used to keep track of each stage

of the computation and the position of the b u tte rfly . The input data

points which are always ^ points apart are fed to the NTT subroutine and

the output is stored in the c o n s e c u t i v e memory locations. A fter the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

completion of the transform, the data is then shuffled to obtain the

ordered output.

The subroutine NTT is the simulation of the b u tte rfly structure.

The controls to th is subroutine are passed in the calling argument.

The NTT call is

CALL NTT CINV, INP1 , INP2, STG, POST,"OUT!, 0UT2).

The m ultip lication by N” 1 fo r inverse transform is also performed

in the main program although fo r hardware implementation, m ultip lication

by N"̂ can be performed before starting the processing. The main

program is the essential part fo r testing the working of the b u tte rfly

structure.

f i i) SUBROUTINE TABLE: This program generates a ll the required tables

for each moduli. Modulo reduction was done using the instruction

mode

IR = MOD (IR , MMOD)

where MMOD is the modulus and IR is the number to be reduced. The NTT

is an integer number system and the im p lic it integer statement was used to

declare a ll the variables as integers. The index and inverse index

tables are quite easy to generate. The following six statements generates

the complete index as well as inverse index tab le. PRIM is the

primitive root and PER is the order of the prim itive root. Starting value

of VAL is one as zero does not have any index. IND is the index of

the number and IIND is the inverse index

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

DO 21 K. = 1, PER

VAL = VAL * PRIM

VAL = MOD (VAL, MMOD).

IND CVAL+1) = K.

I IND O U = VAL

21 CONTINUE '

The following steps were required to generate the powers of a

(a) in i t ia l iz e the value of a

(b) m ultiply the value with a. The m ultip lication performed is

an extension f ie ld mil tip iic a tio n

(c) reduce the value to proper modulus

(d) store the value of a as the next value

(e) repeat step (b) t i l l | c/* |m = 1

128Noting that | a | = 1, the powers of alpha for the inverse transform
"3 128 -3 125are obtained by adding 128 to negative powers, e .g ., a " = a = a

Other parts of the subroutine table are s e lf explanatory. The complete

lis tin g of the program is given in the Appendix.

(iii)SUBROUTINE NTT: This program simulates the b u tte rfly structure.

This part assumes that the b u tte rfly structure is arranged in pipeline

configuration. Each call to this subroutine sh ifts the data to one

stage. The subroutine call is

CALL NTT (INV, INP1, INP2, STG, POST, 0UT1, 0UT2),

where INV is for d irect or inverse transform. INP1 and INP2 are the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

two complex input points, STG is the stage of the computation and

POST, is the position of the b u tte rfly in that stage. 0UT1 and 0UT2

are the output points of the b u tte rfly . A ll the registers are

numbered and , before applying any input to the NTT, these registers are

in it ia liz e d by the control pointer named point, which clears a ll the

registers when the subroutine is called fo r the f i r s t time. The twiddle

factors fo r a particu lar b u tte rfly are generated in this routine. The

powers of a from 0 to 64 are stored in a table TF. The address fo r the

twiddle factor is generated as follows:

Cl) b u tte rflies are numbered from 0 to 63 starting from the top in

the flow graph, e.g. Fig. 3.6

C2) stages' are numbered from 0 to 6

(31 the. proper address is then generated by marking the number of

bits equal to the stage number starting from the least

sign ificant b i t , e .g ., fo r stage 2 and b u tte rfly 8 , the power

of a is given by

power of a = P0ST/C2**STG) * C2**STG)

8 4= — 5- x 2 = 4 and the twiddle factor is a .
2

Multiplexing is also required fo r the moduli of a 4n + 1 type prime. The

power of a is checked for even or odd and then the appropriate action is taken.

The statements check are the status of m ultiplexer control.

The other parts of the program are s e lf explanatory. The complete

program can be found in Appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

4.4.1 The Transform of Real and Complex Data for Both. Primes

Before discussing the results of the simulation, the procedure fo r

convolving real and complex data using the NTT is described. As mentioned

in the previous chapter, 2nd order Galois f ie ld is isomorphic to the

complex residue ring fo r 4n + 3 type prime. Therefore the complex

data can be convolved using 4n + 3 primes. In the case of real data,

two successive blocks of the data can be transformed simultaneously by

feeding one block as the real part of the data and the other block as the

imaginary part. This e ffe c tiv e ly increases the transform length in the

case of real data.

For primes of 4n + 1 type, / T can be considered as a mentier of

the f ie ld and therefore the maximum order of any element in the

m ultip licative group of the complex ring is m. - 1 , i . e . , the length of

the transform is the same as in the real residue f ie ld modulo m.. One

possible implementation of the transform of the complex data is to

separately transform the real and imaginary parts in two Galois fie lds

GF(m) fo r 4n + 1 type, prime.

4 .4 .2 Upper Bound on the Convolution

To compute the convolution unambigously, the components of the

c ircu la r convolution sum in a single Galois f ie ld , are required to have

an upper bound m.*, i . e . , signed numbers should remain in the interval

- m .-l m .-l
—— < y < ---------- . The absolute upper bound on the input

2 2

sequences is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

m.-l
max |x| . max |h-t < —■— (4.13)

2N

where x(ji) and h(n) are the input sequences. This bound on the

dynamic range is pessimistic fo r many practical applications and i f

the sequence h(n) is known, i t is enough to have

m.-l
max |x| £ ------- (4.14)

N-l
2 I IhCt) 1

t =0

I f the input sequence consists of a set of positive numbers, the above

can be restated as

m.-l
max [x (<-------- (4.15)

N-l
I IhCtll

t =0

The components of the complex c ircu la r convolution of sequences

x (t) = XgCt) + j x . (t) and hCt) = hr (t) + j h . (t) are required to

have an upper bound m.. Hence the absolute upper bound on x and h is :

m .-l
max I x l • max | h l - max |x .| • max |h. | < -------- - . . . (4.16)

r r 1 1 2N
m. —1 (a i 7 ^

and max |xr | . max |h.j| + max |x .| • max 1 hr | <_ —— - ' J

when the convolution is performed over residue class rings (more than one

modulus), a ll m̂ are to be replaced by M in the above equations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

4.4 .3 Simulation Results

Three main programs were written to tes t the pipelined b u tte rfly

structure for both kind of primes. The f i r s t program tests the

in v e r t ib ili ty of NTT. The 2nd program was written to tes t the convolution

property of NTT using one block of real data. The 3rd program was to

convolve two d iffe re n t sets of real data with a sequence with constant

value in the defined in te rva l. The details are as follows:

(1) Two separate sequences were taken as input. The real part

consisted of a RAMP function, ris ing from 0 to 127. The imaginary

part was also a ramp from 127 to 0. The 1st part of the program

consists of in it ia l iz in g the tablesby ca lling subroutine TABLE. The

input data is then in it ia liz e d and a double DO loop then computes the
Ntransform. Input data is divided into two blocks of ^ points. The

input to b u tte rfly consists o f one point from each part. Thus, the
Ninput points are always ^ points apart. A fter the transform is

computed, i t is permuted to produce an ordered output. INV control is then

set to one and the transformed sequence is used as input for the inverse

transform. A fter the inverse transform, each point is m ultiplied by

|= lm. to produce the original sequence. When implementing in hardware,

m ultip lication by N ̂ is implemented in look up tables and does not

require any extra stage or delay. The above procedure was repeated

for three choqsen moduli and in v e r t ib i l i ty was proved. Fig. 4.12(a)

shows the real and imaginary parts of the input sequence. Fig. 4.12(b)

shows the transformed sequence in GF(193) and Fig. 4.12(c) shows the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

90

60

30

0
10 60
REAL x(n)

10 120

120

90

60

30

0
30 60
IMAG x(n)

ISO

120

60

0
30 60 90 120

240

120

REAL X(n)

180

120

60

GF(1932)

0
30 60 90 120

0

60 9030 120
REAL ' X(n) GF(4492)

Fig. 4.12 INPUT AND TRANSFORM OF x<n)

IMAG X(a)

IMAG X(n)

360

240

120

0

30 60 90 120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

2
transformed sequence in GF(449)_. D ifferent transformed sequences

are obtained in d iffe ren t fie lds fo r the same input sequence. A fter

talcing the inverse transforms in both the fie ld s , same input sequence

was obtained.

(21 This part was w ritten to perform convolution of two sequences.

Only one block, of data was taken and was fed as the real part. The imaginary

part was set to zero. To avoid ambiguity, the input sequences were

chosen such that the result of the convolution is contained within the

dynamic range. The 1st sequence was a rectangular pulse of height 1.

The 2nd sequence was another rectangular pulse of height 2. These

sequences were transformed, m ultiplied and then an inverse transform was

performed to obtain convolution of the sequence. Zeros were appended

to both the input sequences to compute lin ear convolution using the ccp of

the NTT. Fig. 4.13Ca). shows the real part of the two input sequence.

The imaginary part of the sequences were taken as zero. Fig. 4.13(b)

shows the transform of x(n) and Fig. 4.13(c) shows the transform of

h (n l in GFC193). Note that imaginary parts are present in the

- transform domain although the original sequences had no imaginary

parts. Fig. 4.13(d) shows the result of the convolution in GFQ93).

(3L This program was the same as in part two except that the one

of the input sequence was taken as a complex sequence. This sequence

was convolved with another sequence whose imaginary part was set to

zero. Fig. 4.14(a) shows the input sequence x (n l and Fig. 4.14 (c)

shows the sequence h (nl. Fig. 4.14(b) shows the transform of x(n)

and Fig. 4.14(d) shows the transform of h(n) in GF(4492) . Fig. 4.14(e)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

— i------------1—
30 ' 60 90 120

 1------1----
30 60 90 120

a)

REAL xtn) EEAL-h (n)

I

180 180 _

120

60 _

0
120 30 60 90 120

IMAG X(n)REAL X(n)

b)

F1g. 4.13 CONVOLUTION OF REAL INPUT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

180

120

60

0

180

120

60

0

REAL H{n) GF(1932)

30 60 90

I HAS H(n)

20
c)

180

120

60 -

120

180

120

60

0

REAL y(n) GF<1932) IMAG y(n)

F1g. 4.13 CONVOLUTION OF REAL INPUT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

2 -

30 60 90 120

SEAL xtn)

2

1

0 a)

480

360

240

120 "

12060 9030

360 -

120 '

1209030 60
REAL X(n) IKAS X(n)

Fig. 4.14 CONVOLUTION OF COMPLEX INPUT IN GF(4492)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

0

REAL h(n)

REAL H(n)

2 -

1 -

480

360

240

120

0
90 12030 60

240

180

120

60

0
12030 60 90

1
30 60 90

IMAG h(n)

IMAG H(n)

“i—
120

480

360

240

120

0
30 60 90 120

■d)

240

180

120

30 90 12060
■e)

REAL y(n) IMAG y(n)

Fig. 4.14 CONVOLUTION OF COMPLEX INPUT IN GF(449‘:)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

p
shows the results of the convolution in GF(449 L. In th is way two

blocks of the real data can be simultaneously convolved with the other

sequence and the e ffec tive transform length, for the input, sequence is

doubled. The simulation programs can be found in Appendix A.

4.5 HARDWARE IMPLEMENTATION OF THE BUTTERFLY STRUCTURE

A complete b u tte rfly structure for modulus 4n + 1 was implemented

in hardware. The modulus 193 was choosen because i t yields hardware

of the simpler form. The hardware implementation is that of a proto type and

the Eproms used are not the fastest available in the market. The

access time of the Eproms used is 450 nsec and the registers used

have a settling time of 30 nsec. The b u tte rfly structure is a

pipeline structure and the throughput rate depends on the access time

of the ROMS and latch se ttling time. The data on the output of the

ROM is latched before the new address is supplied. The clock pulses

are therefore delayed for every stage starting from the output stage.

Fig. 4.15 shows the clock pulses required for latching the data, from

the Eproms, at each stage.
1

The width of the clock pulses is equal to the latch settling time

say t s nsec. Before the clock pulse can be applied to any stage, the

address lines on Eproms should be stable for at least t _ ns (address
cLCC

to output delay) and therefore the maximum rate at which the pipeline

can run is equal to Z^t,. + t 3„ .5 qCl

4.5.1 Description of ICs Used

(i) Eproms 2708 were used to store the look up tables for the butterfly

structure for mod 193. The complete data for this Eprom can be found

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30 nSec

1*- 450 nSeG -*

30

100

STAGE 6

STAGE 5

STAGE 4

STAGE 3

STAGE 2

F1g. 4.15 Clock pulses fo r the B u tte rfly un it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

in [12]. Fig. 4.16 shows the pin connection* of the 2708.

The Eprom requires three power supplies in the read mode, V , VDD
CC d o

and VDQ which are +5, -5 and 12 vo lt respectively. I t is a Ik x 8

b its Eprom and has 10 address lines and 8 data lines. Higher address

lines are grounded i f they are not in use, e .g ., table of residues

where only 8 address lines are required fo r modulus 193. All the

computation in the b u tte rfly was done using the sub-modular approach,

therefore, only five data lines were used. The other three data

lines can be used as controls, e .g ., fo r parity check. We have used

the 6th data lin e as a control lin e fo r multiplexers. The Eproms

can be programed on an In te l universal prom programmer. These Eproms

have tris ta ted outputs which are controlled by the volta.ge level on ci/WE pin.

Thus the output of more than one Eprom can be hooked together without

any problem of a bus-conflict. The access time of the Eprom is 450 nsec.

(i i) 8 b i t input output port, 8212 was used as the latch. This is

a very powerful chip and can be used for multiple purposes. The

pin configuration is shown in Fig. 4.17. To use i t as a latch , the

device selection logic (DSI* DS2) is set true and the mode pin is

kept at high leve l. The strobe pin is used as input for clock, pulses.

When the strobe is high, the output follows the input and fo r strobe

low, output does not change. The maximum latch s e ttlin g time is 30 nsec.

and therefore the clock, pulse which is used to strobe the data

has a pulse width of 30 nsec. The CLR pin is permanently kept

high fo r the latch operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

PIN CONFIGURATIONS BLOCK DIAGRAM

" jN O T f 1

" j PffOGAAM

O Tt 1 2704: PIN 22 " V *.
2704: P1N22-A*

data output

CHI# SCLtCT
IOC 1C

OICOOCR

occoot*

output tu # « tM

PIN NAMES

\ ii AOOAES4 INPUTSio,-o« |I DATA OUTPUTSf&w« :CHI# m iC T M M M T t IN A 41E INPUT

PIN CONNECTION OURING READ OR PROGRAM

PIN NUMMR
MOOC M l . 13-17 U 1 i t I f 20 1 21 24

fttAO °OUT v » I V"
vD0 Vn. : v M 1 VCCPftOQAAM va P iling

1 Vm# . V0O ViMHt v «

Fig. 4.16 BLOCK DIAGRAM AND PIN CONFIGURATION OF

27o8, IK x 8 EPROM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

PIN CONFIGURATION

uIs • 1 24 Û CC
moQ; 2 23 H int
oi, Ci 3 22 H oi,
00, C 4 21 □ oo,
0',C_ $ 20 □ ci,
00, C 1 1* H 0O7
01, C 7 1212 It Hoi,
00, C■ « 17 Hoo,
01, C■I * IB Hoi,
00, C1 to IS Hoo,
STB £ , tl 14 H clb
GNOC3 12 13 Dos,

PIN NAMES

O h-01, DATA INr 0 0 , .00 ,
n 'S S ;.o s ,

SATA OUT
O IVICC SELECT

VO VO O *
I T I it n o s e

INT l/ITENNUAT IACT1V4 LOWI
~ t a CLEAN (ACTIVE LOWI

LOGIC DIAGRAM
urvici bequest ff

\
O lV IC t S IL iCTIO N

_ \
O i« - e r - " > k

7-I /

r x > 0*0
sn

c
3 > INT m>

(active iomnr> oil

tn>JTi

DATA LATCH

LL>°lj

■ a i
- 08, [7g>

oo7G2>

00, u?>
N IU tO ft lV E H

I2>cl« (ACTIVI LOW I I_____ I___ 1

F1g. 4.17 LOGIC DIAGRAM AND PIN CONFIGURATION i
OF 8212, 8:B IT LATCH

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

The 8212 was also used as a m ultiplexer. When the device selection

logic is zero, the output goes to a high impedence making

multiplexing possible.

4.5.2 Generating and Storing The Tables

For the storing of the tables, a universal prom programmer, by

In te l1, was used and the tables were generated using assembly language to

program an Intel 220 system. The Intel 220 system is a microprocessor

based system and uses an 8085, 8 b it , microprocessor chip as the central

processor unit.

All the programs w ritten to generate tables can be found in

the Appendix R. Modulo reduction is not as simple as in WATFIV and

separate subroutines were written to reduce modulo 30, modulo 31

modulo 192* modulo 193 and modulo 930. Two more subroutines were

written to compare the results to 738 fo r negative numbers and to

reduce negative- numbers modulo 193, namely C0M738 and NEGC0N. These

were required to obtain the correct resu lt a fte r the subtraction of numbers

using sub-moduli. The maximum resu lt of addition of two numbers, modulo

193, is 384 and the maximum negative result is -192. When the fina l

resu lt is reconstructed using the Chinese Remainder Theorem, the negative

number, say x, w ill be represented as 30 • 31 - x or 930 - x and

therefore the number range 738 to 929 is used fo r negative numbers. The

division of the dynamic range is as follows:

0 < x < 384 positive numbers

384 <_x < 738 - prohibited combinations, they never
occur as a resu lt of an operation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

738 <- .x < 929 negative numbers

A fter the reconstruction, i f the number occurs in the negative

range, i t has to be represented modulo 193 and correction has to

be done. Subroutine C0M738 is called to find out the range in

which number lie s . I f the number is greater than or equal to 738, then

subroutine NEGCON is called to convert the negative number to mod 193.

Consider the numbers 30 and 182. The result of subtraction is

30 - 182 = -152, which in sub-moduli w ill be represented as 778.

To convert i t to main moduli, subtract 930 from i t and add 193 which

is 778 - 930 + 193 = 41 and is the actual representation of -152

modulo 193. The following is a lis tin g of the program which converts

the negative number to modulo 193.

PUBLIC NEGCON

CSEG

NEGCON: PUSH H

LXI ' H, 8400H; no. to be converted is in
memory location 8400H

MOV A,M

SUI 162

ADI 193

MOV M,A

POP H

RET

END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

9.30 can he represented as 00000011 10100010 in the binary number

system. Subtracting 930. frcm any number, greater than or equal to 738,

is equivalent, to subtracting the lower byte of 930,which is 162>from

the number and then adding 193. The one byte resu lt is the correct

conversion of the negative number. The reader can verify that the above

program converts a ll negative numbers from 738 to 929 correctly.

The main programs for addition tab le , subtraction tab le , index

tab le , inverse index tab le , twiddle factors tab le , and the reconstruction

table were written separately and are given in the appendix. The generation

of the twiddle factor table requires special attention. The memory

organization which is used fo r th is implementation sim plifies the

generation of the twiddle factors. The following procedure was used

to generate the table.

C.iL s to re the values o f the powers o f alpha from 0 to 63

C i i l number the b u t te r f ly from 0 to 63 in b inary number system from the

top where the 1st in p u t p o in t is supplied as in pu t

C tiiInum ber the stages from 0 to 6

Civ) mask the number of least s ign ificant b its equal to the number of

stage, e .g ., fo r stage 2 , numbered as one, only one b it is masked.

b u tte rfly no. masked b it power of a

000000 000000 0
000001 0 0 0 0 0 1 0
000010 000010 2
000011 000011 2
000100 0001 Off 4
000101 000101 4
000110 000110 6
000111 00011T 6

• • •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

Hence the correct twiddle factors are generated for each stage. There are

64 b u tte rfly computations per stage and seven stages, therefore a storage

of 64 x 7 words is required fo r the twiddle factors fo r a d irect transform.

Aq to Ag address lines on the Eproms were used for specifying the b u tte rfly

position, and Ag to Ag to specify stage of the computation of the

transform. The Ag address lin e is used fo r addressing the twiddle

factors fo r inverse transform.

The addition table storage is quite simple. The f i r s t five

address lines are for the addend and the next five the adder. The

f i r s t f iv e address lines on the subtraction table are for the subtractor

and the next five fo r subtrahend.

The inverse look, up table TINV and fina l look up table TFIN

are stored such that input modulo 30 is applied on Ag - Â and

modulo 31 on Ag - Ag.

In the index look up tab le , 31 is stored as the index of zero.

In the index addition tab le, which is same as the standard addition tab le ,

31 is stored in the locations addressed by 31. TINV tables contains zero

in the location addressed by 31, so that the correct result of

m ultip lication by zero is obtained.

4 .5 .3 A Typical Pipeline Interconnection_____

Fig. 4.18 shows a typical connection between Eproms and the latches.

The address to the Eproms comes from the previous stage. Every look

up table (Eprom) requires ten address lines, except the tables of

residues which require only 8 lines. The other inputs to the Eproms are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TA
DO

30

LA
TC

H
x

12
5

108

5S
O U J HHZV)

o o a S i S S e o r s t o u)
< « < > , * - * • > 0 (0 0 o o o

03 n d l §S Q C < ^ Olut ^(O
s «z.r

CJ
S O 00 N I f l U l V

s <?/.r
r*»̂0 in entsj r— o

,H- CO Q0f-» CO AO'tf? t/)0£
>55 S oS S S 5 2>d

w n ' w w <r v s oSq Sa 8 S S o S 5 S

a t CMIJ <2UtP" QJ oi

> 5 2 SS

_ i-»̂ - cmc4 tn jn *m o
S aS oa q S o Sin 5

s

tn
2o
9

~ a » ^ a s ~ aS O t «c at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

4.1

8
A

TY
PI

CA
L

PI
PE

LI
NE

IN

TE
RC

ON
NE

CT
IO

N

109

connected to the power supply at proper voltage levels as required.

The output data from the tables is fiv e b its since a ll the computation

is done using sub-moduli. These data lines are connected to the

input of the latch. The remaining three input lines to the latch are

obtained from the other table. The 8212 is used as a latch and appropriate

input levels are supplied to i t . When the clock 'pulse is applied on the

strobe input of 8212, the data from the Eproms is latched and is available

on the output lines of 8212 a fte r 30 nsec. Two separate tables for

m ultip lication by twiddle factors are required fo r even and add

powers of a. One of the m ultip lication

pre-m ultiplication by r fo r odd powers of a. The sixth b it from the

twiddle factor table is used to select/deselect the proper m ultip lication

table. The cTs/we pin on the Eprom is used for selecton of the table. The

tr is ta te output of the Eproms enables the connection of the output of two

tables together. An inventer is used to select-deselect the tables

for even/odd powers of alpha.

Fig. (4.19) to Fig. (_4.22l shows the block diagram of the b u tte rfly

structures, which was b u ilt on protoboards. These figures are included

to help the debugging of the un it. Table 4.5 gives the necessary

information about the control connections and the power supply connection

fo r both, Eproms and the latches. Fig. 4.23" shows the photograph of

the b u tte rfly un it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TRS
M

30
TA

DD

30
TF

IN

no

t
CM

coo\
- * » CO
(9

CM
CO

CM

§

‘I

S CM

CMCO

E

CM

5

COo

I
WO0

00ar»»
oCO
2?

0**r*
CO
as

00Qr-
CM »-* rt rt04/) WO

CM

5

CO S CO
0CO ee 0

ea O c a 0 o
r***CM s r-

CM
=9WO r-*

CM 5? r«*
CM

fr­ H* fr—

j
CM
CO

OT .* - CM

GOOr**
CM

J
a
WO
0

COo
CO 0X Owo r**0 CMfr—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

4.1

9
BO

AR
D

1

m

<o
ca

oo

CO

03

CM

CM

CM

CMOO

4 \

CP

CO

m
CM

U)

m ir>

co
CM

CM

CM
CO

CM

r-
CM

CO

• s l *
OS O VO
Lk-ca o

l auvoa woua

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

4.2

0
BO

AR
D

2

TRM
S

30
TAD

O
30

TF
IN

112

I
OQ£<oaa

cna\

cn 00CO 00COCO

u .
CMCM CMCMCM C/>

m

CMCM CM

CM
CO

CMCO

cn co co00coor-*
CM

COCO
CM CMCM

i n

CM CMCM

m

' • CM

cncn
X 00COCO

CM CMCMCM

00* .
CO

m CO
< <: t i cn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

4.2

1
BO

AR
D

3

I
113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

4.2

2
BO

AR
D

4

114

COLOUR OF WIRES FUNCTION

BLACK GND

RED + 5 V

ORANGE - 5 V

BLUE + 12V

YELLOW CONTROLS FOR EVEN/ODD POWER OF ALPHA

WHITE CLOCK FOR THE LATCHES

Table 4.5 NECESSARY INFORMATION ON THE

HARDWARE UNIT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

p s i w ;

Fig. 4.23 DIFFERENT VIEWS OF THE HARDWARE IHPLEHEHTED BUTTERFLY UNIT

9

116

4.6 CLOCK. CIRCUITRY

A specific clock, pulse is required to s h ift the data in the pipeline.

The c irc u it diagram for the generation of the clock, pulse is given in

Fig. 4.24. The square wave from the function generator is made TTL

compatible by using an NPN transistor. The output from the transistor

stage is then fed to a 4 b it binary counter. The outputs of the

counter are then fed to one of sixteen decoders. Only one output line

of the decoder goes low at each count. This negative going pulse is

then fed to an invertor, to obtain a positive going pulse. A buffer

is used to supply enough current to operate the latches at each stage.

The alternate pulses were taken from the decoder for each stage.

The b u tte rfly unit has five stages of computation and only five pulses

from the decoder are used. The frequency of the function generator

can be varied up to 1.96 MZ without affecting the working of the pipe­

lin e .

4.7 EXPERIMENTAL VERIFICATION

The B utterfly structure, was tested for real time application.

An input data from the simulation results was used for testing the

b u tte rfly . The answer was verified from the simulation results. The

input data, the b u tte rfly position and the stage number are:

input point 1 30 + 65 A 25

input point 2 41 + 103 A 25

stage 2

b u tte rfly 4

The value of a fo r the 2nd stage and the 4th b u tte rfly is 125. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ST
AG

E

117

i— CM ro ^ T LfJ

j d

h
CM

N03

in
«r—
in

A
AAA

COcn

f

ino
CQ

—^\AA

a:o

LU
ZUJ
CD

ot—«HO
b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

4.2

4
CL

OC
K

CI
RC

UI
T

FO
R

PI
PE

LI
NE

ST

RU
CT

UR
E

118

b u tte rfly input and outputs are shown in Fig. 4 .25(a}. The working

of the pipeline can not be tested fo r real time application i f the

input is fi:xed. One b it o f the data was therefore constantly varied

and the intermediate results were checked on a display. The rate

of data input and the frequency of the clock pulses were varied to

see the e ffec t on the pipeline structure. I t was noted that

when the clock pulse rate was slower than the rate of change of input

data, the output was not correct. The

b it of the data are shown in Fig. 4.25Cb1. The input and output are:

a + f\2 5 b = 30 + 65 AZ5 = 00011110 + 01000001 /125

a' + AZ5 b '= 41 +103 A 25 = 00101001 + 01100110 AZ5

c + f\Z 5 d = 71 +168 AZ5 = 01000111 + 10101000 f\Z5

c* + f\2 5 d ' =169 + 75 AZS = 10101001 + 01001011 AZ5

changing the least s ign ificant b it of a, gives the results as:

a + /f25* b = 31 + 65 AZ5 = 00011111 + 01000001 AZ5

a' + /n n r b'= 41 +103 = 00101001 + 01100111 f i2 5

c + A 25" d = 72 +168 AZ5 = 01001000 + 10101000 /125*

c1 + A25 d* =101 + 75 f\2S = 01100101 + 01001011 f\2S

e .g ., by changing the least s ign ifican t b it of a from 0 to 1 changes

the most s ign ificant b it of c1 from 1 to zero and also the other b its

of c and c‘ change. Thus any b it of c or c 1 can be checked to verify
r

the working of the pipeline.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

30+65 /T2?T

41+103/125

7T.+168/T2T

169+75/125

a)

31+65 M S

41+103 ^25"

72+168 VT?5

101+75 vT25

b,)

F1g. 4.25 INPUT-OUTPUT OF THE BUTTERFLY
BEFORE-AFTER CHANGING ONE BIT

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

4.8 DrSCUSSION ON THE HARDWARE REALIZATION OF THE B.F. UNIT

The b u tte rfly unit for modulus 193 was realized using 2708 Eproms

and 8212 latches. The addition-subtraction in the B.F. unit is

performed using sub-moduli 30 and 31. The m ultip lication is performed

using the index addition method and the addition of the indices is

done using the sub-moduli method.

In comparison with the d irect method of implementing addition-

subtraction using look up tables, the sub-moduli approach offers

a saving in the storage fo r tables. Another way of implementing

addition-subtraction is the use of an adder-subtractor followed by a ROM

fo r the correction look up. Fig. 4.26 shows the implementation of

addition-subtraction using an adder-subtractor fo r modulus 193.

The two inputs, modulo 193,are fed to the adder-subtractor and

the 9 b it resu lt of addition is then fed to a ROM which contains

the corrected result of addition modulo 193. The correct resu lt is

stored in the location addressed by the 9 b it result of addition. For

example i f a=l91 and b=189, the resu lt from the adder is 380 and

represented as 101111100. The correct resu lt of addition modulo 193

is 187 and therefore 187 can be stored in the location with the

address 101111100 .

The adder-subtractor which is commercially available* performs 4

b it addition-subtraction and use two's complement arithm etic. The

clock to output time is 14 nsec for an Am25LS15 (Advanced Micro-Devices).

Addition modulo 193 would require two packages and one ROM. Assuming

that the input is in sub-moduli form and no residue tables are required,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

coa*

ie
ITo

o
*—«j -o
= 5 U i oc _i
L— CD
CO < 3= H- ©

O 'LU

CD©
COIDC
LUa□<

CDICO

cor ^01ot* '

r̂ .01*3-U

PO«oIol20_

c o
.OIo
XL

COa

> •
4-> s - 4 J
. a i - „X J

4-> Z3 ta ■*■> =s
-v - in u T * 4A
XL 1 X 1

1 • - + 1 .
■ a
■ a -o
■a «a

r".
toi*3"tO

GO GO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

4.2

6
AD

DI
TI

ON

MO
DU

LO

19
3

US
ING

AD

DE
R-

SU
BT

RA
CT

ER

AN
D

RO
M

122

three ROMs are required to perform addition-subtraction using sub­

moduli CFig. 2.4) . The package count is the same fo r adder-subtractor

or sub-moduli implementation. Tf the input is not in sub-modular

form, then sub-moduli approach requires 7 ROMs and three stages as

compared to 3 packages and 2 stages fo r adder-subtractor approach.

Thus, the choice of implementation depends on the form of the input.

Another c rite rio n fo r the choice of adder-subtractor is the type

of ROMs which are used fo r the implementation of the complete butter­

f ly structure. The pipeline structure of the b u tte rfly unit requires

latches a t the output of each computation stage and i f Shottky Proms

63RA883 are used, no additional latches are required as these Proms

contain latches at the output o f the Proms. I f the adder-subtractor

are used, then fo r the pipeline structure,an additional 18 b it latch

w ill be required.

The m ultip lication in the b u tte rfly structure is performed by the

addition of indices method. The addition of indices modulo 192 is

performed using sub-moduli method. In the sub-moduli approach, the

m ultip lication by zero can be eas ily corrected and no extra logic is

required fo r detecting the m ultip lication by zero. However, i f the

adders are used to perform indices addition, extra logic is required fo r

zero m ultip lication [13].

The complexity of the structure increases i f d iffe ren t kinds of

IC's are used. Because of the s im plic ity of the ROM based structure,

the a d d e r - subtractors were not used in the hardware realization and the

prototype unit was b u ilt using 2708 Eproms. The ROM based structure is

preferred because of the fac t that i t can immediately make use of the

advances in the VLSI technology associated with memory fabrication. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

Eproms used can he replaced by fas t memory for a p articu lar application.

The 8212 registers were used to la tch the data at the Ci+11th

stage before the data changes at the i t h stage. These registers are

level sensitive and the output follows the input as long as the clock

is high. A delayed clock pulse fo r every stage is required as shown in

Fig. 4.15. The access time of the ROM is 450 nsec and the latch se ttling

time is 30 nsec. , The rate of clock pulses is equal to the access

time of the ROM plus two times the latch se ttlin g time. From Fig.

4.15 i t is seen that there is an overlap at the negative going pulse

and the positive going pulse of successive stages, showed in the figure

by dotted lines. This overlap created a problem in running the

structure for real time data. The clock pulses were generated using

a one of 16 decoder and alternate pulses were used to strobe the data

so that enough time was available between transitions. This in e ffe c t,

slowed down the clock rate and the theoretical maximum speed could

not be achieved. These latches were used because of th e ir a v a ila b ility .

The remedy to th is problem is the use of latches which are edge

trigged, e .g. , Am 25LS07 (Advanced Micro-Devices). These latches

are positive edge triggered and have a latch se ttlin g time of 17 nsec.

The same clock pulse can be applied to a ll the stages. At the

positive edge, the data w ill be latched at a ll the stages and the output

of the ROMs w ill not change un til 17 nsec. The clock rate is then the access

time of the ROM plus the latch settling time which is now only 17 nsec,

and thus the b u tte rfly unit can run at a faster rate.

Assuming that the two output points from the pipe!ined b u tte rfly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

unit are obtained a fte r every t nsec, where t is equal to the

access time of the ROM plus latch se ttlin g time, then the time to

compute one stage of the NTT transform is equal to 64t for a

transform length of 128 points. The radix 2, 128 point transform

length requires seven stages and the time to compute d irect or

inverse transform of an input sequence is equal to 7 x 64 x t nsec.

The Eproms used in the implementation of the b u tte rfly unit

have an access time of 450 nsec and i f the AM25LS07 latches are

used then t is equal to 467 nsec and the maximum clock rate is then

equal to 2.14 MHz. Thus th is b u tte rfly unit can be used with a

memory structure which supplies data at 2.14 MHz rate.

4.9 SUMMARY

The design of an NTT processor was described in th is Chapter.

A study of the supporting memory structure was also undertaken.

The choice of primes fo r NTT fo r e ff ic ie n t hardware implementation

was discussed and i t was shown that 4n + 1 type primes not only require

less hardware but also require less number of stages fo r the b u tte rfly

unit. A procedure was described to choose the primes for e ffic ie n t

hardware rea liza tion o f the b u tte rfly un it. A ROM structure fo r both

kinds of primes fo r b u tte rfly unit was suggested for pipeline configuration.

The simulation of both kinds of structures was done and the

convolution property of NTT fo r the selected primes was v e rifie d . The

deta ils of the simulation were presented in this Chapter.

F in a lly , a b u tte rfly structure for 4n + 1 type primes was b u ilt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

using ROM arrays and a complete discussion was presented. The pipeline

structure was tested using time varying data. This b u tte rfly u n it,

b u ilt in hardware, w ill be used to perform number theoretic transforms

with a supporting memory structure.

/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

SUMMARY

The Number Theoretic Transform has a recent origin and is useful

for the applications where exact computation is required. The NTT is

defined over an f in ite ring or f ie ld and has the same structure as

the DFT. I t can thus be computed e ff ic ie n t ly using fas t algorithms

fo r high-ly composite transform length. A machine that computes-the

number theoretic transform of a sequence is called an NTT processor.

The basic parts of the NTT processor are the supporting memory structure

and a computational unit commonly known as the b u tte rfly unit. A

saving in hardware of the NTT processor is achieved i f a sequential

type of processor is b u ilt . Such a processor requires some supporting

memory and a multiplexed b u tte rfly unit which is accessed N /r logrN

times where N is the transform length and r is the radix of the fast

number theoretic transform. The binary operations of addition,

subtraction and the m ultip lication on the input sequence are performed

in the b u tte rfly u n it. The parameters o f the NTT given by a, N and

m, determine the complexity of the b u tte rfly un it. The binary

number system has usually been used to perform arithmetic operations

in the b u tte rfly unit and consequently restric tions were imposed

on the parameters of the NTT to allow fo r an e ff ic ie n t realization of

the computational requirements of the B.F. u n it. These restrictions

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

made i t impossible to choose the parameters of the NTT on a purely

number theoretic basis and thus the effic iency of the NTT was much less

than the lim iting theoretical effic iency.

The recent advances in VLSI technology associated with memory

fabrication have aroused in te rest in the implementation o f the

b u tte rfly unit using look up tables stored in high density ROMs.

The look-up table approach relaxes the constraints on the parameters

of the NTT and thus the theoretical e ffic iency of the NTT can be

reached. I f the binary number system is used, then the look-up table

approach does not seem very promising because of the tremendous size of

memory required to store the tables, e . g . , the addition modulo 193

would alone require 64k o f memory.

The use of the residue number system allows one to break a large

dynamic range problem into a number of smaller dynamic range problems.
L

The combined dynamic range of L moduli is given as M = n m*. These m.'s
i= l 1 1

can be chosen to be small enough fo r an e ff ic ie n t rea lization of arithmetic

operations moduli m.. The operations modulo m̂ can be performed

in para lle l because of the in te rd ig it independence

property of the residue number system, e . g . , modulo 193 addition can

be implemented in 7k memory using m.'s as 30 and 31.

The use of the RNS allows one to implement the b u tte rfly unit in

look-up tables e ff ic ie n tly . The large dynamic range is achieved by

implementing the B.F. in para lle l in smaller moduli and then recombining

the resu lt using the Chinese remainder theorem or a mixed radix

conversion scheme.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

The modular addition-subtraction requirement in the B.F. unit

does not o ffer any prohlem and can be e ff ic ie n t ly implemented e ither

using the sub-moduli approachor using adders-subtractors. The

complexity of performing m ultip lication by the twiddle factors in the

B.F. unit depends upon the f ie ld or prime used , and the generator

a. The primes are divided into two groups, the 4n + 1 type and

4n + 3 type. The 4n + 1 type primes o ffe r a simpler structure fo r the

b u tte rfly u n it, and are preferred over 4n + 3 type primes.

In th is work, the objective was to design a b u tte rfly unit for

number theoretic transform capable of exploiting the recent advances

in memory technology. A structure fo r a NTT processor has been

developed which is useful fo r real-tim e applications. A pipelined

butte rfly structure was found to be most suitable for use with the

supporting memory structure fo r the real time applications. The

b u tte rfly units for both kinds of primes were designed using a

pipeline structure. The structure based on the look-up tables stored

in ROM is simplest to p ipeline, and requires only a clock pulse to

s h ift the data in the p ipeline, thus the control c irc u itry is

extremely simple. The package count fo r the b u tte rfly unit fo r 4n + 1

and 4n + 3 type primes is 32 and 48 respectively including the

storage tables fo r twiddle factors. The number of stages for 4n + 1

type primes is 5 and for 4n + 3 is seven.

The b u tte rfly units were simulated on an IBM-370 computer along

with the basic required memory structure to establish the fe a s ib ility

of the proposed NTT processor. After the verification of the

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

simulation results, the b u tte rfly unit for modulo 193 (a 4n + 1

type primel was implemented in hardware using 2708 Eproms and

8212 latches. The addition subtraction operations were realized

using the sub-moduli approach. This approach was used because

of the a v a ila b ility of Eproms and also for the sim plicity of Eprom

based structures. The package count fo r the b u tte rfly unit is 32

Eproms, 31 latches and 4 multiplexers. The 8212's were used as

latches and i t was found out that they are not suitable fo r a

pipeline structure since they slow down the speed of operation.

Edge trigged latches are recommended. The 8212 latches were used

because of th e ir a v a ila b ility .

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

CONCLUSIONS

The design of a ROM oriented implementation of an NTT b u tte rfly

has been carried out in th is work. The b u tte rfly has been

realized usTng Eproms and latches in an extremely simple pipeline

structure. Level sensitive latches require slower clock rates to

function e ffe c tive ly and hence edge triggered latches are preferable.

The addition-subtraction operations have been carried out using

sub-moduli approach because of the sim plicity of the resulting

pipeline structure. The adder-subtractor approach requires less

number of stages and a small package count but increases the complexity

of the unit. The adder-approach fo r summing indices to implement

m ultip lication is not that viable as i t requires extra logic c irc u itry

to detect zero m ultip lication and thus further increases the complexity

of the b u tte rfly unit.

A memory support structure has been simulated at the logic

level in order to investigate the fe a s ib ility of the NTT processor

described in the thesis. The proposed structure is such that the data

transfer time associated with the memory is the same as the computational

time of the b u tte rfly unit. This further enhances the NTT processor's

capability as a real-tim e signal processing fa c i l i ty . The memory

structure can be realized using long s h ift registers fo r the dynamic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

storage of the data. The use of these s h ift registers eliminates

the need for addressing the data.

Future work in th is area w ill be to actually implement the

memory support structure in hardware and to u ltim ately construct

the complete NTT processor.

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

SIMULATION PROGRAMS

The simulation of the b u tte rfly unit was done on an IBM-370-3031

computer. Listings of the programs are given here.

132
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

t+c:+c:+: :4: :4'*±i:4-::4::+: >4: :+::4: mM :+::+::+::+t •+• 'M i4: '4*:+: :4::4**4‘ :4::+: t+::+: :4? *4: -4- *4-: 4 : *4* *4- :4̂ *4: "4: :4: *K:4c :4c :4t :4:*4: :4: :4: r4:

* MR IN PROGRAM TO E S T A B L IS H T H E IN V E R T IE - 1 L I T V OF N T T *
:4* :4:

:4 : : 4 t? 4 : t4 : - 4 * :4 t? 4 - t4 ^ 4 ! - 4 t :4 ^ 4 t :4 * :4 r * 4 : t4 < ^ - 4 - 4 t t4 - 4 - • 4 : ,-4?^4::4; H , :4, t4 ::4 ::4^4 ::4cH ‘i ,.4;r+:*4:!4*54-4rr4tJ-fc:4:*-4-4t?4tt4!:4;:4::4?t4t?4-:i4<:4^

I M P L I C I T IN T E G E P .< A —H , 0 - Z >
D IM E N S IO N NUOP
D IM E N S IO N I N P i 1
COMMON T IN V < 2 ,

1 2 P., 2 > .• T E M < 1 2 S , 2 >
2 > , I N F 2 < 2 > , 0 U T K 2 X . 0 U T 2 - '.2 >

2 2 ::- , 7 S U E X 2 , 2 1 , 2 1 > , T F I N < 2 0 , 3 1 X T F K 2 , £ 4 , 2 >
COMMON T P .S M < 2 , 1 9 1 !:- , T A D D < 2 , 2 2 , 2 2 X T S U IN < 2 , 2 1 , 2 1 X T F < 2 , 6 4 , 2 >
COMMON P O IN T

C
C G E N E R A T E T H E T A B L E S FO R N T T B U T T E R F L Y
C
C MMOD I S T H E M A IN M O DULUS. N IN Y I S T H E M U L T IP L IC A T IV E IN V E R S E OF

R E A D < 5 , 20:1..' MMOD, N IN V
2 0 1 FO R M AT ‘11 2 , 5 N , I2 ? 1

C A L L T A B L E S
C
C S E T T H E P O IN T E R FO R C L E A R IN G L A T C H E S
C

P O IN T - 0
I N V = 0

C
C I N I T I L I Z E T H E IN P U T
C

DO 5 0 1 = 1 , 1 2 S
N U O P -C l, i > = < I —1 >
N U O P - II , 2::' = < 1 2 S - I >

5 0 C O N T IN U E
C
C S T A R T T H E C O M P U T A T IO N FO R S E V E N S T A G E S . L I S FO R S T A G E
C

2 0 DO 1 L = i , 7
S T G = L —1
N J = i

C
C NN I S FO R T H E P O S IT IO N OF B U T T E R F L Y IN T H E S T A G E
r.

DO 2 N N = i , 6 4
I N P i < 1 > =N U O P CNN, 1 ;>
I N P i < 2 > =N U O P < N N , 2
IN P 2 1 > =N U O P < N N + 6 4 , 1 >
IN P 2 < 2 > =N U O P >1 N N * S 4 , 2 >
P O S T = N N —1

r
C C A L L T H E N T T TO C0i*1F'UTE TWO P O IN T B U T T E R F L Y
C

C A L L N 7 T C IN V , I N P I , IN P 2 , S T G , P O S T , 0 U T 1 , 0 U T 2 >
C
C DO NOT S T O R E O U T P U T FOP. I N I T I A L 7 S T A G c D tL A Y
r

IF C N N . L T . ? > GO TO 2
TEM < N J , 1 > = O U T 1 < 1 !:*
T E M C N J , 2 > = 0 U T i< 2 r *
TEM < N J - i , 1 > -O U T ? . < 1 :•
T E M N J - i , 2 > = 0 U T 2 ■: 2 >
N J = N J + -2

-■ mv.iTTKJi i r _____ __

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

C O E 'T R IN T H E LP .S T S E V E N P O IN T S FROM T H E P I P E L I N E B U T T E R F L S
r

[■0 4 J J = i - 7

i N P i ■: i > = i n p i •: 2 :• = i N P 2 <: i > = i n p s •: 2 > =0
C P L L N T T < IN V - I N P I - IN P 2 - S T G - P O S T - 0 U T 1 - 0 U T 2 >
T E M N .J - 1 > = Q U T i < i >
TEM N J - 2 > = 0 U T 1 < 2 >
TE M N J + i - 1 = 0 U T 2 <; 1 ;<
TE M < N J + 1 - 2 = 0 U T 2 < 2 :■
N J = N J + 2

4 C O N T IN U E
DO 5 K = l - L 2 S
DO 5 K K = 1 - 2
N U O P C K - K K > = T E M < K - KK."1

5 . C O N T IN U E
1 C O N T IN U E

C
C U S E T H E S H U F F L E PROGRPM TO Q B T R IN T H E O R D ER ED O U T P U T
r

N U = i2 = ?
N V 2 = N U /2
N M :1 .=N U -1
J = i

 _______ DO 2 0 7 1 = 1 - Ni-11
I F < I . GE. J > GO TO 2 5 5
R E -N U O P •' J - 1 >
n u o r < j - j . :• = n u o p i - ± ; -
N U O P •' I - i : - = R E
IM = N U O P < J - 2 >
n u o p < j , 2 :■ = n u o p < i - 2 >
N U 0 P < I - 2 > = IM

2 5 5 K = N V 2
2 0 S I F CH. GE. J:< GO TO 2 0 7

J - J —K
K = K / 2
GO TO 2 0 S

2 0 7 J = T + K
P R IN T 1 0 1 - K O U N T - IN V

1 0 1 F O R M R T •' 2 0 X - 'K O U N T = '- 1 2 - 2 0 X - ' I N V = - ' - 1 2 11
DO 5 o J = l - 2
P R IN T - '.NUOP'CNN- J > - N N = i- 1 2 0 >

5 S C O N T IN U E
I F < IN V . EG. i > GO TO 1 0 2
I N V = 1
GO TO 2 0

1 0 2 DO 1 1 0 1 = 1 - 1 2 c
DO 1 1 0 J —1 - 2
R =N U O P < I . J > * N I N V
NUO P < I - J :■ =MOD < R- 1 9 1 >

1 1 0 C O N T IN U E
P R IN T 7 0

7 0 F O R M R T < • ' - • ' - 2 0 X - T H IS I S T H j=. F I N R L R E S L 'L T "
DO 7 1 J = l - 2
P R IN T - vN U O P ':M M - J > - H M = 1 - 1 2 S O

7 1 C O N T IN U E
S T O P

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

’ UNIT

135

C * MR I K PROGRAM TO C O N V O LV E TWO SEQ UEN C ES. IM A G IN A R Y *
C + P A R T S R EE ZERO *
r- *

I M P L I C I T IN T E G E R C A -H , 0 - Z >
D IM E N S IO N N U O P < 1 2 3 , 2 > , T E M < 1 2 3 , 2 > , T E M K 1 2 3 , 2>
D I MENS I ON I N P I < 2 > , IN P 2 < 2 >, O U T 1 < 2 i>, 0 U T 2 < 2 :<
COMMON T IN V < 2 , Z 2 , 3 2 >, T S U B < 2 , Z l , 3 1 > , T F IN < 3 0 , 3 i . \ . T F I < 2 , 6 4 , 2 >
COMMON T E S M < 2 , 1 9 1 >, T f lD D < 2 , 3 2 , 3 2 > , T S U IN < 2 , 3 1 , 3 1 > , T F < 2 , 6 4 , 2 >
COMMON P O IN T

C
C G E N E R A TE T H E T E B L E S FOR N T T B U T T E R F L V
C
C MMOD I S T H E M R IN MODDULUS. N IN V I S T H E M U L T IP L IC A T IV E IN V E R S E OF

R E R D < 5 , 2 0 1 :■ MMOD, N IN V
2 0 1 FO R M R T< 1 3 , 5 X , I 2 > *

C R L L T R B L E S
C
C S E T TH E P O IN T E R FOR C L E A R IN G L A T C H E S
C

P O IN T = 8
C
C I N I T I L I Z E TH E CO UNTER TO PERFO RM TR AN SFO R M S
C

KO U N T=Q
IN V = G

C
C I N I T I L I Z E T H E IN P U T
C

DO 5 0 1 = 1 , 6 4
N U O P < I , 1 > = 1
N U O P < I , 2 : -= 0

5 0 C O N T IN U E
DO 5 1 1 = 6 5 , 1 2 B
NUOP < I , 1 > = 0
N U O P < I , 2 > = 0

5 1 C O N T IN U E
C
C S T A R T T H E C O M P U T A T IO N FOR S E V E N S TA G E S . L I S FOR S T A G E
C

2 0 DO 1 L = i , 7
S T G = L - 1
N J = ±

C
C NN I S FOR TH E P O S IT IO N OF B U T T E R F L V IN TH E S TA G E
r

DO 2 N N = i , 6 4
I N P I < 1 =N U O P < N N , 1 >
I N P I < 2 >=N U O P < NN, 2 >
IN P 2 < 1 :■ =N U O P < N N + 6 4 , 1 >
IN P 2 < 2> =N U O F < N N + 6 4 , 2
P O S T = N N -1

C
C C R L L T H E N T T TO COM PUTE TWO P O IN T B U T T E R F L V
C

C R L L N T T < IN V , I N P i , IN P 2 , S T G , P O S T , O U T i, 0 U T 2 >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c
C DO NOT S TO R E O U TP U T FOR I N I T I A L 7 S TA G E D E L A V 136
0

IF < N N . L T . S' > GO TO 2
te m •: n j , i y = o u t i < i :■
TEM < N X 2 y =O UT:l. •'. 2
TEM < N J -* - i, i > = 0 U T 2 1 !•''
T E M <N J + 1 , 2?■ = 0 U T 2 C 2 >
N .J = N J -2

2 C O N T IN U E
r
C O R T A IN TH E L A S T S E V E N P O IN T S FROM TH E P IP E L IN E B U T T E R F L V
<-sL..

DO 4 J J - 1 , 7

I N P I < 1 = I N P I < 2 > = IN P 2 < 1 > = IN P 2 < 2 > = 0
C A L L N T T < IN V , IN P 'l. . IN P 2 , S T G , P O S T , G U T 1 , 0 U T 2 >
T E M C N X 1) = 0 U T 1 < 1)
TEM >: N J , 2 > - Q U T i < 2 >
TEM N J-4- ! , 1 } = 0 U T 2 < 1 *
T E M < N J + 1 , 2 > = 0 U T 2 < 2 >
H J = N J + 2

4 C O N T IN U E
DO 5 K = l , 1 2 3
DO 5 K K = 1 , 2
NUOP < K , K K >= T E M <K , K K > •

. . . . 5 C O N T IN U E
1 C O N T IN U E

C
C USE TH E S H U F F L E PROGRAM TO O B T A IN T H E O RDERED O U TP U T
r

N U = 1 2 3
N V 2 = N U /2
N M i= N U - i
J = i
DO 2 0 7 1 = 1 , NM1
I F 1-. I . GE. J> GO TO 2 5 5
R E = N U O P < J , i : -
NUQP < X 1 > =N iJO P < 1 , 1
NUOP < I , 1 > = R E
IM = N U O P < J , 2 >
N IJO P < J , 2 > =N U O P < I ,
NUOP< I , 2 > = IM

2 3 5 K = N V 2
2 0 F IF < K . GE. J '' GO TO 2 '3 7

r = j-k
K = K / 2
GO TO 2 0 F

2 0 7 J = J * K
P R IN T 1 0 1 , KO U N T, IN V

10:1. F O R M A T 1' 2 0 X , 'K O U N T = -- ', 1 2 , 2 0 X , ■' IN V = - " , 12l>
DO 3 F J = i , 2
P R IN T , <N U O P <N N , J > , N N = i , 1 .20>

5 F C O N T IN U E
K O i.JN T = K O U N T + l
I F < IN V . EG. !;■ GO TO 1 0 2
I F ‘'K O U N T . GT. i > GO TO 1 0 2

C
C S TO R E T H E F IR S T TR AN SFO R M ED SEQ U EN C E

U N IT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DO 5 7 1 = 1 , 1 2 ?
H'L' ? r' -■ = -.-'
TEM :! < 1 , J :•■ -M U O P I . 7 7 137

5 7 C O N TIN U E.
C
C IN 'JT T L . 7 Z F TH E SECOND SEO UENCE
r

DO 5 -? I “ I , -F4
NDO 1 > = 2
N v D - P I 1 : "-0

5 0 C O N T IN U E
DO- 5 ? “ —r 7 . 1 2 '?
DO 5? 7~L. 0
M i.. * ? >! J .■ 7 :• •=0

5 ? C O N T IN U E
t?
C TRANSFO RM TH E EEC O N f - SEQ UENCE
C

GO TO 2 0
C
C M U L T IP L Y TH E SEQ U EN C ES IN THE TR AN SFO R M S DOME IN
0

1 0 7 DO SQ 1 = 1 , 1 2 ?
r = n u o p >-:i , 1 >
p=nuqf •: j,
c = t f :m i < i , i . '
D = T E M 1< I . 2 . '
RC'—R+:;7

RC=NOR •'! FiC, MMOD
P D = B + D
E'tD=M0D’'IED , MMOD
R D = f i* D
RD=MOD»'.AD. MNOD>
E 'C =F :*'C
p c = m o d -:E'C, m m o d :-
R E = R C -B D
r e = m c d <:e e , m m o d :-
T F < RE. !.T . 0 > RE=RE+M M OD
NUOP C I .• : ! . / =R E
JM A = R D *= C
NUOP*'. I.- 2 > =MOD C I MR, MMOD 7

0 0 C O N T IN U E
C
C TRK.E TH E IN V E R S E TRANSFO RM
r

T N V = 1
GO TO 2 0

C
C M U L T IP L Y N IT H N IN v'E .R EE
(-•

1 0 7 DO ;1:10 1=1, 12?
DO _ ! !0 7 = 1 , 2
R=NUOF ■" J. .TV*NINV
n u o p •: i , j :• = m o d r , m m od >

1 1 0 C O N T IN U E
P R IN T 7 0

7 0 FO RM AT-! - N 2 0 X . " T H IS I S TH E F IN R L R E S U u T ' !•
DO 77 7 = 1 . 2
P R IN T , -’INUOF <MN, J :- , M M =1, 12? .:-

7:1 C O N T IN U E

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

* M A I N P R O G R A M T O C O N V O L V E A C O M P L E X S E Q U E N C E . *
* S E C O N D S E O U E N C E I S R E A L . *
:+:

I M P L I C I T I N T E G E R < R - H - 0 - 2 5
D I M E N S I O N N U O P < 1 2 3 - 2 > - T E M < 1 2 3 / 2 > - T E M 1 < 1 2 8 - 2 >
D I M E N S I O N I N P I < 2 !• - I N P 2 < 2 > - 0 U T 1 < 2 >.. 0 U T 2 < 2 >
C O M M O N T I N V 2 / 2 2 . - 2 2 > - T S U B < 2 - 2 1 - 2 1 5 - T F I N < 2 0 - 2 1 X . T F K 2 - 6 4 - 2 >
C O M M O N T F : S M 2 - 1 9 1 > - T A l> D < 2 - 2 2 - 2 2 > - T S U I N C 2 - 2 1 - 2 1 > - T F < 2 - 6 4 - 2 >
C O M M O N P O I N T

C
C G E N E R A T E T H E T A B L E S F O R N T T B U T T E R F L V
C
C M M O D I S T H E M A I N M O D D U L U S . N I N V I S T H E M U L T I P L I C A T I V E I N V E R S E O F f

R E A D < 5 - 2 0 1 > M M O D - N I N V
2 0 1 F O R M A T < 1 2 - 5 X - 1 2 >

C A L L T A B L E S
0
C S E T T H E P O I N T E R F O R C L E A R I N G L A T C H E S
C

P 0 I N T = 0
C
C I N I T I L I Z E T H E C O U N T E R T O P E R F O R M T R A N S F O R M S
C

K O U N T = Q
I N V = 0

C
C I N I T I L I Z E T H E I N P U T
C

D O S O 1 = 1 - 6 4
N U Q P < I - 1 > = 1
N U O P < I - 2 > = 0

5 0 C O N T I N U E
D O 5 1 1 = 6 5 - 1 2 3
N U O P ''. I - i : : - = 0
N U O P < I - 2 :■ = 0

5 1 C O N T I N U E
C
C S T A R T T H E . C O M P U T A T IO N F O R S E V E N S T A G E S . L I S F O R S T A G E
C

2 0 D O 1 L = l - 7
S T G = L - i
N J = 1

0
C N N I S F O R T H E P O S I T I O N O F B U T T E R F L V I N T H E S T R G E
C

D O 2 N N = i - 6 4
I N P I < 1 > = N iJ O P < H N - 1 >
I N P I < 2 :• = N U G F •' N N - 2 >

’ I N P 2 < 1 > = N U O P < N N + S 4 - 1 >
I N P 2 2 :>= N U O P < N N + 6 4 - 2 >
P O S T = N N —1

C
C C A L L T H E N T T T O C O M P U T E T W O P O I N T B U T T E R F L V
C

C A L L N T T < I N V - I N P I - I N P 2 - S T G - P O S T - O U T i - 0 U T 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c
c

DO NOT STO R E O U TP U T FOR I N I T I A L 7 S TA G E D E L A V

I F ''N N . L T . SO GO TO 2 139
TEM < N J , ± > =O U T:l. < 1 !:•
T E M <N X 2 > = 0 U T 1 < 2 >
TEM < N J + ± , 1 = 0 U T 2 < ± >
TEM C N J + ± , 2 = 0 iJ T 2 < 2
N J = N J + 2

2 C O N T IN U E
C
C O B T A IN T H E L A S T S E V E N P O IN T S FROM TH E P IP E L IN E B U T T E R F L V U N IT
C

DO 4 J J = ± , 7

I N P ± < 1 > = I N P I C 2 > = I N P 2 < :1. > = I N P 2 < 2 5 = 0
C A L L N T T < I N V , I N P I , I N P 2 , S T G , P O S T , O U T ± , 0 U T 2 ?
T E M < N J , 1 > = 0 U 7 ± 1 >
T E M ■' N J , 2 = O U T ± < 2 >
T E M C N J + l , 1 > = 0 U T 2 < 1 >
T E H C N J + i , 2 > = 0 U T 2 C 2 >
N J » N J + 2

4 C O N T IN U E -
D O 5 K = l , ± 2 8
D O 5 K K = 1 , 2
N U O P < K, KK = T E M • 'K , KK>...

5 C O N T I N U E
1 C O N T I N U E

C
C U S E T H E S H U F F L E P R O G R A M T O O B T A I N T H E O R D E R E D O U T P U T
C

N U = ± 2 S
N V 2 - N U / 2
N M ± = N U - ±
J = ±
D O 2 0 7 I = 1 , H M ±
I F 1' I . G E . J > G O T O 2 5 5
R E - N U O P \ J , ± ; -
n u o p < J , ± > = n u o p •: i , i >
N U O P < I , ± > = R E
I M = N U O P < J , 2 >
N U O P < J , 2 = N U O P < 1 , 2 >
N U O P - ' . I , 2 * I M

2 5 5 K * N V 2
2 0 6 J F O C G E . J > G O T O 2 0 7

J = . J - K
K = K , - '2
G O T O 2 0 6

2 0 7 J = J -)-K
P R I N T ± 0 : 1 , K O U N T , I N V

± 0 1 F O R M A T '.- ; - - - ' , 2 0 N , " K O U N T * " , 1 2 , 2 0 X , " I N V * " , I 2 >
D O 5 6 J = ± , 2
P R I N T , (N U O P < N N , J > , N N = ± , ± 2 8 >

5 6 C O N T I N U E
K O U N T = K O U N T + ±
I F - ; I N V . EC!. ± > G O T O ± 0 2
I F - ; K O U N T . G T . ± > G O T O ± 0 2

C
C S T O R E T H E F I R S T T R A N S F O R M E D S E Q U E N C E

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DO 5 7 I - I . . - ± 2 0
DO 5 7 J = ± , 2 140
7 c M i ■' I.. J>~N U O P< I.- J>

5 7 C O N TIN U E
C
C I N I T I L . I Z E THE SECOND SEQUENCE
C

DO 5 0 I —± , 5 4
NUOP': I..- ±v1 = 2
n u o p < i , 2 :>=o

5 8 C O N TIN U E
DO 5 ? 1 = 5 5 , ± 2 8
DO 5 8 J = ± , 2
NUOP C l , J > = 0

5 8 C O N TIN U E
C
C TRANSFORM THE SECOND SEQUENCE
C

GO TO 2 0
C
C M U L T IP L Y THE SEQUENCES IN THE TRANSFORME D O M AIN
C

± 0 2 DO 5 0 I = ± , 1 2 3
R=NUOP>-.I, ±>
E?=NUOP< I , 2>
C = T E M ± -'.I, ±>
D = T E M ± < I, 2>
A C = A *C

AC=MOD ■; AC, MMOD >
BD,= B :+:D
ED=MOD<BD, MMOD >
R D =A *D
AD=M OD<AD, MMOD'.-1
B C = B *C
BC=M0D*CBC, MMOD >
R E = A C -B D
r e = m o d -:r e , m m o d >
IF ':R E . LT . GO RE=RE+MMQD
N U O P ':I, ± > =RE
TM A-R D +BC
N U O P < I, 2 !> = M 0D < IM A , MMOD>

5 0 C O N TIN U E
C
C TA K E THE IN V E R S E TRANSFORM
C

IN V = ±
GO TO 2 0

C
C M U L T IP L Y W IT H N IN V E R S E
C

± 0 7 DO ± ± 0 I = ± , ± 2 3
DO ± ± 0 J = ± , 2
R=NUOP I , J > +-NINV
NUOP< I , J>=M O D <A , MMODO

± 1 0 C O N TIN U E
P R IN T 7 0

7 0 F O R M A T ' : 2 0 N , ' T H IS IS THE F IN A L R ESU LT
DO 71 J = ± , 2
P R IN T , ■:NUOP';MM, J >, MM=±, ± 2 8 >

7 1 C O N TIN U E
STOP
END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

no
n

o
o

o
no

n
bo

n
o

o
o

o
o

141

& ■■¥
* S U B R O U T IN E TO GENERATE LO O K -U P T A B LE S FOR N T T *
* M 0 D U u U 5 = l? L *
:i> r-K:+; -+r:+!:+::+: :+!:•»<■+• :+::+t s+'Mc+st+T:*:̂ *f+t :+c jf;:4<:4<;4: :•*■:

S U B R O U T IN E T A B LE S
I M P L IC IT IN T E G E R < A -H , 0 - 2 5
D IM E N S IO N M 0 D L K 2 5 , IN D < 1 9 1 5 , 11 HD < 1 9 1 5 , A i_P A < 2 , 1 2 8 , 25
COMMON T IN V < 2 , 32.. 2 2 5 , T S U B < 2 , 3 1 , 3 1 5 , T F IN < 3 6 , 3 1 5 , T F I < 2 , 6 4 , 25
COMMON TR S M <2, 1 9 1 5 , T A D D < 2 , 3 2 , 3 2 5 , T S U IN C 2 , 2 1 , 2 1 5 , T F < 2 , 6 4 , 2 5
COMMON P O IN T
M M O D -191
P R IM = 1 9
M O D U L I5 =30 ;. M G D U < 2 5 = 2 1
IN D < 1 5 = 2 1 .: I NO < 2 5 =0.: 11ND < 1 5 = 1
P E R = M M 0D -2
PRO=MODU < 15 *M O D U < 2 5
NMOD=MMOD-1
V A L - 1

IN D E X T A B LE

DO 2 1 K = l , PER
V A L = V A L + P R IM
VAL=M OD < V A L , MMOD 5
IN D < V A L + 1 5= K
11 Ni5 < K+i 5 = V A L

2 1 C O N T IN U E

SUB M O D U LI R E S ID U E T A B L E

DO 1 1 = 1 , 2
DO 2 N = l , MMOD
A =N —1
TR SM < I , N 5 = M 0 D < A , MODU< I 5 5

2 C O N T IN U E
MM=MODU<I 5

A D D IT IO N T A B L E

DO 1 1 N = i , MM
DO 1 1 N N = 1 , MM
A = N + N N -2
TADD< I , N , N N 5 =M OD< A , MODU< 15 5

1 1 C O N T IN U E

S U B T R A C T IO N T A B L E

DO 3 1 K = l , MM
DO 2 2 1 = 1 , MM
A = K - J
I F < A. L T . 0 5 A =A *M M
T S U B < I, K , J 5 = A

2 2 C O N T IN U E
2 1 C O N T IN U E

1 C O N T IN U E

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r
p
r

IN V E R S E LOOK UP T A B L E 142

DO 5 0 11 = ± .' DO
DO 5 1 J J = 1 . 3:1
X i = C I I - l > * l
v : ; = j j —i ;■< * DO
x 2 = m o d c x 2 . d i >
X D = < X 1 *M G D U C 2 > + X 2 * M 0 D U < 1 > >

> i4 = M 0 D C X 2 . PRO';*
X 5 = M 0 D C X 4 . NHOD>
X = 11 ND C X 5 -K l. >
t i h v < i. . T i .• j j :•= m o d •: x . m o d u c i > >
I 1 N V .4 , I I . J = M O D X, M 0D U C 2> !'•

* .

•_ ! i-itfL h PDF. F I N A L LO O K U P
r% f

M O D S = P P. O—M N O D
IF C X 4 . L E . M O DS!' GO TO 5 2
X 4 = X 4 —PRO
X 4 = X 4 + M M G D
GO TO 5 D

5 2 X 4 = M G D C X 4 . MMOD >
5D- T F I N C I I . J J > = X 4

C
C S U B T R A C T IO N T A B L E IN D E X E D
C

b = i n d c x 4 + i >
T S U IN C 1 -. I I . . j j > = m o d c b . d o
IF C X 4 . EQ. 0 > T S U IN C 1 . I I . . J J > = 2 1
T S U IN C 2 . I I . J J> = M O D C B .. 2 1 >
IF C X 4 . EQ. 0 > T S U IN C 2 . I I . J J > = 2 1

5 1 C O N T IN U E
5 0 C O N T IN U E

C
C T A B L E FO R POW ERS O F A L P H A
C

A A = 6 S .; B B =S .; C C =S S .i D D = S
A = IN D C 2 >
C = IN D C 6 7 >
D = I ND C 7
A L P A C l.. 1.. 1 > = M G D C A . 2Q >
A L P A C 2.. 1 . 1 > =M OD C A . 2 1 >
A L P A C 1 .. 1.. 2 > = 2 1
A L P A C 2 . 1 . 2 > = 2 1
A L P A C 1 .. 2 . 1 > =M OD C C . 2 B >
A L P A C 2 . 2.. 1 > = M 0 D C C . 2 1 >
A L P A C l. 2 . 2 > = M 0 D C D . 2Q >
A L P A C 2 . 2 . 2 > = M 0 D C D . 2 1 >
DO 6 1 N H = 2 . 1 2 7
R E = A A :+:C C —B B :+=DD
.RE= MOD C R E . MMOD >
I F C R E. L T . O > R E =R E +M M O D
IM A G= A A * D D B B * C C
IM A G = M O D C IM A G . MMOD >
f l= I N D C R E * l>
B = I ND C IM A G -*-i >
A L P A C1 . N N * 1 . 1 > =M OD C A . DO >
I F C A. EQ. 2 1 > AL.P A C1 . N N + 1 . i > = 2 1
A L P A C 2 . N N + :U 1 > = M 0 D C A . 2 1 >
T ^ o a p M r . i j . - 1 -1 - t - 1 _______ _____

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

R LPR >'.L , N N + 1 , 2 > = M 0 D -:B , 2 0 ;*
IF '- .B . EQ. 2 1 > f l L P R i ' i , N N + 1 , 2 > = 2 1
R L P R C 2 , N N + 1 , 2 > = M 0 D < B , 2 1 >
IF C B . EQ. 2 1 > R L P R C 2 , N N + 1 , 2 > = 2 1
R R =R E
B B = IM R G

6 1 C O N T IN U E
C
C T R B L E FO R T W ID D L E FR C TO R S
C

DO 6 2 1 1 = 1 , 6 4
T F C 1 , I I , l > * R L P f i < l , I I , 1 >
T F < 1 , I I , 2 > = R L P R < 1 , I I , 2 >

‘ T F < 2 , I I , 1 > = R L P R « :2 , I I , i >
T F < 2 , I I , 2 > = R L P R C 2 , I I , 2 >

C
C T R B L E FO R IN V E R S E N T T T W ID D L E FR C TO R S
0

I N K = I I —1
IF 's IN K . NE. 0 > I N K = 1 2 S - I N K
T F I < 1 , 1 1 , 1 > = R L P R < 1 , IN K + 1 , 1 >
T F i a , I I , 2 > = R L P f i« '. i , I N K + i , 2 >
T F I C 2 , I I , l> = f lL P R C 2 , IN K + 1 , 1 >
T F I < 2 , I I , 2 > = R L P R C 2 , IN K + 1 , 2 >
T T = IN K + 1

6 2 C O N T IN U E
C
C C O R R E C T IO N FO R ZE R O M U L T IP L IC R T IO N
r ___________

DO 2 3 1 1 = 1 , 2
DO 2 5 2 J = l , 2 2
T R D D < I , 2 2 , J > = 2 1
T IN V < 1 , 2 2 , J > = ©

2 3 2 C O N T IN U E
DO 2 5 2 1 = 1 , 2 2
T R D D C I, J , 2 2 > = 2 1
T I N V C I , J , 2 2 > = 0

2 5 2 C O N T IN U E
2 5 1 C O N T IN U E

R E TU R N
END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

do

o
o

o
o

o
o

o
o

o
o

r>

144

;+ : :+ •■ :+ ::+ ::+ :i t : :+ : :+ r:+ : v f { ^ H ” +" +: :+c

* it:
* S U B R O U T IN E TO G E N E R A T E L O O K -U P T A B L E S FOR N T T *
* M 0 D U L U 5 = ± 9 2 *
h*: : f - i t : :+ : : f - i t : i f - '•+ "+ :i t : i t : i t : i t : i t : i t : i t : i t : i t : : t : i t : :+ i t : i t : J t: : t : it i> k : t : i t : i t : '- t : i t : :+ :

S U B R O U T IN E T A B L E S
I M P L I C I T IN T E G E R <A - H , O - Z ?
COMMON T R S M C 2, ± 9 2 ? , T A D D C 2 , 2 2 , 2 2 ? , T A D M U L < 2 , 2 2 , 2 2 ? , T S U 3 < 2 , 2 ± , 2 1 ?
COMMON T S U IN < 2 , 2 1 , 2 1 ? , T IN V -C 2 2 , 2 2 ? , T F IN C 2 0 , 2 1 ? , T F < 2 , 6 4 ? , T F I < 2 , 6 4 ?
COMMON P O IN T
D I MENS I ON MQDU 2 ? , I ND < 1 9 2 ? , 11 ND < 1 9 2 ? , A L P A *C 2 , 1 2 S ?
M M 0 D = ± ? 3 ; P R IM = C ; IN D > ;± ? = 3 ± ; IN D - '.2 ? = G ; I IN O < :± ? = ±
MODU< 1 ? = 2 0 ; MODU< 2 ? = 2 1
PER=M M OD—2
N M O D = M M O D -l
PRO=MODU < 1 ? +-MODU < 2 ?
MODS=PP.O—MMOD
V A L = 1

IN D E X T A B L E

DO 2 1 K = ± , P E R ..
V A L= 'v ’A L :+:PR IM
V A L=M O D -C V A L , MMOD ?
I ND •' V A L 4- ! ? = K
I I ND K + l ? = V A L

2 1 C O N T IN U E

T A B L E FOR POWER OF A L P A

A A = Q ; B B = ± ; C C =Q ; D D = 1
A L P A 1 , 1 ? = 0 ; A L P A < 2 , ± ? = 8 ; A L P A ' : ! , 2 ? = 0 .* A L P A C 2 , 2 ? = 0
DO 2 1 N N = 2 , 1 2 7
R E = A A * :C C + ± 2 ? * B B * D D
IM A G = A A *D D + C C *B B
RE=M OD C R E , MMOD ?
IM AG=MOD >: I MAG, MMOD ?
I F ''R E . HE. 0 ? T E M =R E
I F < I MAG. NE. 0 ? T E M = I MAG
A = I ND < TE M -*-! ?
A L P A < 1 , N N + 1 ? = M 0 D * '.A , 2 8 ?
A L P A < 2 , N N -1 ? = M 0 D -::A , 2 1 ?
A A = R E
B B - IM A G

2 1 C O N T IN U E

T A B L E FOR T W ID D L E F A C T O R S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

DO 3 4 11 = ± , 6 4
DO 3 5 I - ± , 2
T F I , I I i'' = A L P A ■:! 1 , 1 1 >

r
C T R B L E FOP. IN V E R S E T W ID D L E F A C T O R S
C

I N K = I I - ±
I F 1' IN K . N E . 0 > I N K = ± 2 3 - 1 N K
T F I •' I , I I j = A L P A •' I , I N K + 1 >

3 5 C O N T IN U E
3 4 C O N T IN U E

DO 1 I = ± , 2
M S U B = M O D U < I>

C
C S U B -M O D U L I R E S ID U E T R B L E
C

DO 2 H = ± , MMOD

R = N - ±
T R S M < I , N ::*= M O D ''.f i, M S LE O

2 C O N T IN U E
C
C A D D IT IO N T A B L E
C

DO ± ± N = ± , M S U B
DO ± ± N N = ± , M S U B
A = N + N N —2
T R D D < I , N , N N > = M O D < A , M S U B >

C
C • T R B L E W IT H M U L T I P L I E R
r

B = N + N N —2 + 3
T R D M U L 1' I , N , N N 5 = M O D C B , M S U B j

± ± C O N T IN U E
C
C S U B T R A C T IO N T R B L E
r ___________________

DO 1 5 K = ± , M S U B
DO 1 5 K K = ± , M S U B
f l= K - K K
I F '- i f i . L T . 0 > A = A + M S U B
T S 'J B < I , K , k j o = r

1 5 C O N T IN U E
1 C O N T IN U E

DO 4 G 1 1 = 1 , 3 0
DO 4 1 J J = ± , 3 1
N l= <11 —1 > +1
X2= < J J -1 :> +30
:••••:2=MOD < V 2 , 3 1 >
X 3 = < X l+ M O D U < 2 :• + X 2 + M 0 D U 1 >>
N 4 = M 0 D < !::!3 , PR O ">

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n
a

o
n

o
o

o
n

n
o

n
o

146

T R B L E FO R IN V E R S E LO O K UP

X 5 = M 0 D < X 4 , NMOD?
11 ?-Jl> i' Xci-*-!

T I N V < I I , J J ? = X

T R B L E FO R F J N R L LO O K UP

IF < X 4 . L E . MODS> GO TO 5 2
X 4 = X 4 - P R 0
X 4 = X 4 + M M 0 D
GO 'T O SB

S 2 X 4 = M 0 D O !4 , MMOD?
S B T F I N I I . - J J ? = X 4

S U B T R A C T IO N T R B L E IN D E X E D

B = IN D < X 4 + 1 ?
T S U I N C I , I I , j j ? = m o d *:b , 3 0 ?
IF C X 4 . EG!. 0 ? T S U IN - C l, I I , J J ? = 3 1

, T S U IN «',2, 1 1 , J J ? =M OD < B , 3 1 ?
I F 4 . EQ. 0 ? T S U I N < 2 , I I , J J ? = 3 ±

4-1 C O N T IN U E
4 0 C O N T IN U E

C O R R E C T IO N FO R Z E R O M U L T IP L IC A T IO N

DO 2 5 1 1 = 1 , 2
DO 2 S 2 J = ± , 3 2
T R D D C I, 3 2 , J ? = 3 1
T R D M U L 1 , 3 2 , J ? = 3 1

T I N V 3 2 , J ? = 0
2 3 2 C O N T IN U E

DO 2 3 3 J = l , 3 2
T R D D < I , J.- 3 2 ? = 3 1
T R D M U L < I , J . 3 2 ? = 3 1
T I N V C J , 3 2 ? = 0

2 5 3 C O N T IN U E
2 3 1 C O N T IN U E

R E T U R N
END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147
I"; : + : : + : :+<:+::+::+::+::+::+: :+::+: >K :+::+: :-K ^ ^ :+::+: :+c *:+:
C :+: *
C * S U B R O U T IN E TO G E N E R A T E L O O K -U P T A B L E S FOR N T T *
C * M 0 D U L U S = 4 4 9 ' *
f: ••+: :+:■+: H: :-K •+"+:'■¥=+"+: +■:+: :+(••+: :+•■:+: :+i 'M ■+■■:+: ■+: :+:*::+: *:+• '•+< *

S U B R O U T IN E T A B L E S
I M P L I C I T IN T E G E R <A - H , O - Z 5
COMMON T R S M < 2 , 4 4 9 5 , TA D D *; 2.' 2 2 , 2 2 5 , T A D M U L C 2 , 2 2 , 2 2 5 , T S U B < 2 , 2 1 , 2 1

. COMMON T S U IN < 2 , 2 1 , 2 1 5 , T IN V < 2 2 , 2 2 5 , T F I N <; 2 0 , 2 1 5 , T F < 2 , 6 4 5 , T F I < 2 ,
COMMON P O IN T
D IM E N S IO N MODU < 2 5 , IN D < 4 4 9 5 , I I N D < 4 4 5 0 , A L P A < 2 , 1 2 S 5
MMOD= 4 4 ? ; PR I M = 2 ; I ND < 1 5 = 2 1 ; I ND < 2 5 = 0 ; 1 1 ND < 1 5 = 1
MODU < 1 5 = 2 G ; MODU < 2 5 = 2 1
FER=M M O D—2
N M 0 D = M M 0 D -1
P R O =M O D U < 1 5 *M O D U < 2 5
M O DS=PRO —MMOD
V A L = i

C
C IN D E X T A B L E
C i

DO 2 1 K = i , P E R _____ _____
V A L = V A L * P R IM
V A L=M G D < V A L , MMOD 5 '
I N D V A L —1 5 = K
I IN D < K + 1 5 « V A L

2 1 C O N T IN U E
C
C T A B L E FO R POWER OF A L P A
C

A A = 0 ; B B = i ; C C = 0 ; D D -1
A L P A < 1 , 1 5 = 0 ; A L P A < 2 , 1 5 = 0 ; A L P A < 1 , 2 5 = 0 ; A L P A < 2 , 2 5 = 0
DO 2 1 N N = 2 , 1 2 7
R E = A A * C C + 2 9 1 * B B * D D
IM A G = A A *D D + C C *B B
R E =M O D <R E , MMOD5
IM A G = M O D < IM A G , MMOD 5
I F < RE. NE. 0 5 T E M = R E
IF < I MAG. NE. 0 5 T E M = I MAG
A = I ND < T E M **-i 5
A L P A C l , N N + 1 5 = M 0 D * ;A , 2 0 5
A L P A < 2 , N N + 1 5 = M 0 D * ;A , 2 1 5
A A = R E
B B = IM A G

2 1 C O N T IN U E
C
C T A B L E FO R T W ID D L E F A C T O R S
C

DO 2 4 11 =1.* S 4
DO 2 5 1 = 1 , 2
T F *; I , I I 5 = A L P A •; I , 1 1 5

C T A B L E FOR IN V E R S E T W ID D L E F A C T O R S
£

I N i<= 11 —1
I F ' I N K . NE. 0 5 I N K = 1 2 8 — I NK
T F T *; I , 11 5 = A L P A*: I , I N K - 1 5

2 ? C O N T IN U E
2 4 C O N T IN U E

DO I. 1 = 1 , 2
M SUB=M ODU < I 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Jt

c
r
r

S U B -M O D U L I R E S ID U E TR B LE

DO 2 N = l , MMOD

148

A = N —I
TRSM < I , N > ®MOD C f i , MSUB >

2 C O N TIN U E
r
0 R D D IT I ON T E B L E
r

DO 1 1 N = i , MSUB
DO 1:1 N N -1 , MSUB
A=N-‘-NN—2
TRDD -I I , N, H N > =MOD < R, MSUB i'1

C
C T R B LE W IT H M U LT T P LT E R
C

B = N + N N -2 -7 . ■
T A D M U L C I, N- N N ^ M O D 'IB , MSUB>

1 1 C O N T IN U E
0
C S U B T R A C T IO N T R B LE

JO. _ - -
DO 1 3 K = l , MSUB
DO 1 3 K K - 1 , MSUB
f l= K -K K
I F < R. L.T. CL- R=A-H ‘1SUB
T S U B C I, K , K K > = A

1 5 C O N T IN U E
1 C O N T IN U E

DO 4 0 1 1 = 1 ,2 0
DO 41 J J - 1 , 2 1
X l= < I i - i : > * i
>=:2=*: j j - i i ' * 2 0
X 2=M 0D '-:X 2 , 21.1
x b = x i * m o d u •: 2 ;•+ X 2 :+'M0DU <: i :> :>
X 4 = M 0 D < X 2 , PRO>

c
C T R B LE FOR IN V E R S E LOOK UP
c

X 5 = M 0 D X 4 , N i’IOD >
X = I IND*:X5-+-1>
t i n v c i i , j j :>=x

r
C T R B LE FOR F IN A L LOOK UP
0

X B =M 0D '1X 4 , MMOD>
T F IN C I I . - j j :> -x b

C
C S U B T R A C T IO N T R B LE IN D E X E D
C

IF C X 4 . LE . MODS> GO TO 5 5
X 4 = X 4 —PRO
X 4 = X 4 M f1 i iJ D
GO TO 5 6

5 ? X 4 = M 0 D < X 4 , MMOD j
5 6 B = I ND < X 4 —1 1'

1 TSU I N C I, I I . ' JJ>=M O D C B , 2 0 >
I F r|X4. EQ. TSU I N C I , I I , J J 1 = 2 1
TSU IN -12 , I I . ' J J 'J' =MOD < B, 2 1 >
t f >:X4. EQ. 0> TSU IN < 2 , I I , J J > = 2 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o
o

*

41 CONTINUE
4 0 CONTINUE

CORRECTION FOR ZERO M U L T IP L IC A T IO N

DO 0 51 1=1... 2
DO 2 5 2 J = ± , Z 2
TRDD1'! . . 22.. J > —2 1
T fiD M U L * '!, 2.2, J> = 2 1
T IN V '3 2 , I)--*

2 5 2 CONTINUE

TfiDD'C I , J , 22> = 21 .
TRDMUL.1' I , J , 2 2 > = 2 1
T IN V 1- J , 2 2 > = 0

2 5 2 CONTINUE
2 5 1 CONTINUE

RETURN
END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

r* & 'M

C * PROGRAM TO S IM U L A T E TH E HARDWARE D E S IG H N T T S TR U C TU R E *
C * M O D U L U S = i? ± *

S U B R O U T IN E N T T ''i IN V , IN P 1 , IN P 2 , STG , P O S T , OUT:L, 0 U T 2 >
I M P L I C I T IN TEG EP. C R -H , G -Z >
COMMON T IN V < 2 , 2 2 , 2 2 > , T S U B -I2 , 21., 2 ± > , T F T H < 2 © , 2 ± > , T F I \ 2 , 6 4 , 2 >
COMMON TR S M C 2, l. :? ± > , T A D D < 2 , 2 2 , 2 2 >, TS U IN < 2 , 2 1 , 2 1 >, T F C 2 , 6 4 , 2 >
D IM E N S IO N I N P i ^ 2 > , IN P 2 'C 2 > , Q U T 1 < 2 > , 0 U T 2 < 2 >
COMMON P O IN T
IF - : POT NT. NE. 0 > GO TO 2 O 0
R ± = R 2 = P .2 = R 4 = R 3 = F :6 = R 7 = P .S = R 9 = R ± 0 = R ± J .= R 1 2 = R 1 2 = R ± 4 = R ± 5 = R ± 6 = R ± 7 = R ± 8 = O
R 1 ? = R 2 0 = R 2 1 = R 2 2 = R 2 2 = R 2 4 = R 2 3 = R 2 6 = R 2 7 = R 2 S = F :2 :? = R 2 0 = R E 1 = = R 2 2 = R 2 2 = R 2 4 = 0
R 2 3 = R 2 6 = R 7 7 = R 2 3 = R 2 S = R 4 O = R 4 1 = R 4 2 = R 4 2 = F :4 4 = R 4 5 = R 4 6 = R 4 7 = R 4 S = R 4 9 = R 3 0 = 0
P .5 2 = R 3 2 = P .5 2 = R 3 4 = R 5 5 = R ? 6 = R 3 7 = R 5 8 = R 3 S = R 6 0 = R S 1 -R 6 2 = R 6 2 = R 6 4 = R 6 5 = R 6 S = 0

C
C LP.TCH TH E O U TPU T
C '

2 0 G O U T ! 1 = R S 2
0 I J T l ‘:2 O = R 6 4
OUTS i '■ = R 6 3
0 U T 2 < 2 :-= R 6 6

C
c TH E S E V E N TH STRG E
C

P .S Z ^T F I N R 5 3 - * - l , R 5 6 -* - l>
F .S 4 = T F IN • 'R 3 7 + 1 , R 53-*-i:>
R S 5 = T F IN C R 5 9 + ± , F :S 0+ 1>
R 6 6 = T F IN ' 'R 6 1 + 1 , P .6 2 + 1 >

C
c TH E S IX T H STRG E
C

R 3 5 = R 4 2
R 3 6 = R 4 4
R 3 7 = F :4 5
R 5 8 = R 4 6
R ? ? = T S U B < i, R 47-H L, R32-*-±>
R 6 0 = T S U B 'C 2 , R 4 9 + 1 , R 3 4 + i>
R S 1 = T A D D < ± , R 4 9 + 1 , &5±->-±:<
R 6 2 = T R D D < 2 , R 3 0 + 1 , R 5 2 + 1 *

C
C T H E F IF T H STAG E
r

F :4 2 = R 2 ±
P .4 4 = R 7 2
R 4 3 = R 2 7
R 4 6 = R 2 4
R 4 7 = T IN V 1 , R 2 3 + 1 , F :2 6 + l>
R 4 £ t= T IN V \2 , R 3 5 + 1 , R E E -^ i;1
P 4 < ? != T IN V < i, P .7 7 + 1 , R 2 c - 1 >
P 5 0 = T I NV < 2 , P.27-+-1, R 2 2 -** l>
R 3 1 - T I N V ' : ± , R 2 S + 1 , P.40-+-±>
R 5 2 = T IN V < 2 , R 2 .9 + 1 , F :4 0 + ± >
R 5 7 = T I NV < 1 , R 4 1 + 1 ., R 4 2 -*- l>
R fi4= rT T N 'v ',' 2 , R 4 ± -* - l, R 4 2 * l>

r
C TH E FO URTH STRGE
C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

no
n

no
n

o
o

o
E 2 i= R i?
R 3 2 = R 2 0
R 73= R 2 :1
R 2 4 = R 2 2
E 3 3 = T R D D R 2 2 + 1 , R 2 7 + l>
R 2 £ = T R D D < 2 , P .2 4 + 1 , P .2 8 + l>

R 3 7 = T R D D < 1 , P .2 3 + 1 , R 2 7 ~ l i'-
R 3 8 = T P .D D < 2 , R 2 6 + 1 , R 2S +±;:.
R 2 9 = T R D D < 1 , R 2 3 + 1 , R 2 9 + 1 i>
R 4 6 - T R D D 2 , P .2 4 + 1 .. R 3 6 + 1 >
R 4 i= T R D D - ' l , R 2 3 + 1 , R 29+ ± ;<
-R 4 2 = T R D D < 2 , P .2S + 1 , R 3 0 + 1 J

T H E T H IR D STR G E

R1.9=R:1.0
R 2 0 = R 1 1
P .2 1 = R 1 2
R 2 2 = R 1 3
R 2 3 = T S U i r K i , R 1 4 + 1 , R 1 5 + i:>
R 2 4 = T S U IN < 2 , P .1 4 + 1 , F M 5 + i>
R 2 3 = T S U I f K l , P . iS + 1 , R 17+1;:*
R 2 S = T S U IN •'2.. R i S + l , R ± 7 + i>
TF-C IN V . NE. 0:.' GO TO 3 6 6
R 2 7 = T F O i, R 1 8 + 1 , I!:.
R 2 8 = T F < 2 , R 1 8 + 1 , 1 >
R 2 9 = T F * : i , P .1 8 + 1 , 2>
R 3 0 = T F < 2 , R 1 8 + 1 , 2>
GO TO 4 9 6

2 6 0 R 2 7 = T F I * '1 , P .1 8 + 1 , J.;:.
R 2 3 ~ T F I < 2 , R i 8 + 1 , 1 !>
R 2 8 = T F I R 1 8 + 1 , 2>
R 3 S = T F I < 2 , R 1 8 + 1 , 2:>

TH E SECOND STRG E

4 0 6 R 1 0 = T R D D < 1 , R l+ 1 , R 5 + l>
R ± i= T R D D < 2 , P .2 + 1 , R S + 1 ?
R 1 2 = T R D D < 1 , R 2 + 1 , R 7 + l>
R 1 2 = T R D D < 2 , R 4 + 1 , R S + 1 >
R 1 4 = T S U B '' i , R l+ 1 , R 5 + l>
R 1 5 = T S U B >C 2 , P .2+ 1 , R 6 + l>
R 1 £ = T S U B < 1 , R 3 + 1 , R 7 + l>
R 1 7 = T S U B ''2 , P .4 + 1 , R S + 1 >
R:1.8=R:9

TH E F IR S T STRG E

T i = I N P i < i > + 1
T 2 “ I N P i •' 2 > + 1

_ T 3 = IN P 2 < 1 > + 1
" T 4 = IN P 2 < 2 > + 1

R 1 = T R S M < 1 , T l>
R 2=TRSM >'.2, T±':‘
R 3= T R S M > '1 , T 2 >
R 4 = T R S M -:2 , T 2 >
R 5 = T R S M -: i, T 3 j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o
n

o

152

R 7=T R £M 7 4 >
F :8 = T R 5 M 2.' T 4 >

GENERP.TE THE POWER OF A LP H A

R 9 = P 0 S T / < 2 :+"+:STQ > * < 2 * * S T G }
P O IN T a P O IN T + 1
RETURN
END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

C :*■■ *
C * PROGRAM TO S IM U L A T E T H E HARDW ARE D E S IG N N T T S T R U C T U R E *
C + M O D U L U S -1 9 3 *
C :+: *

S U B R O U T IN E N T T -C IN V , IN P 1 , IN P 2 , S T G , P O S T , O U T i , O U T 2>
I M P L I C I T IN T E G E R C A -H , G -Z :>
COMMON T R S M < 2 , 1 9 3 > , T R D D C 2 , 3 2 , 3 2 : * , TR D M U L-C 2, 2 2 , 3 2 > , T S U 3 < 2 , 3 1 , 2 1 >
COMMON T S U IN C 2 , 2 1 , 3 1 X . T I N V < 3 2 , 2 2 > , T F I N < 2 0 , 2 1 X T F < 2 , S 4 X T F I < 2 , S 4 >
COMMON P O IN T
D IM E N S IO N I N P 1 < 2 > , I N P 2 < 2 > , O U T 1 < 2 > , 0 U T 2 < 2 >
I F <P O IN T . NE. 0 > GO TO 2 0 0
R 1 = R 2 = R 2 = R 4 = R 5 = R S = R 7 = R S = R 9 = R ± 0 = R 1 1 = R 1 2 = R 1 3 = R 1 4 = R 1 5 = R 1 S = R 1 7 = R 1 S = 0
R l? = R 2 0 = R 2 i= R 2 2 = R 2 3 = R 2 4 = R 2 5 = R 2 S = R 2 7 = R 2 S = R 2 S = R 2 0 = R 3 1 = R 3 2 = R 3 3 = R 3 4 = 0
R 3 3 = R 3 S = R 3 7 = R 2 S = R 2 S = P .4 0 = 0

C
C C H E K S A R E T H E C O N T R O LS FO R E V E N /O D D POWER. O F A L P H A
C

C H E K 1 = C H E K 2 = C H E K 3 = C H E K 4 = C H E K 5 = 0
C '
C L A T C H T H E O U T P U T
C

2 0 0 O U T 1 < 1 > = R 2 7
O U T IC 2 > = R 2 S
0 U T 2 < 1 > = R 2 9
0 U T 2 < 2 > = R 4 ©

C
C T H E F IF T H S T A G E
C

R 3 7 = R 2 3
R 3 8 = R 2 4 {
I F 1'C H E K S . NE. 0 > GO TO 2 O 0
R 2 9 = R 3 5
R 4 0 = R 3 S ,
GO TO 3 0 1

3 0 0 R 3 9 = R 3 S
R 4 0 = R 2 3

3 0 1 R 3 3 = R 2 7
R 3 4 = R 2 S
R 3 E = T IN V <R 3 1 + 1 , R 3 2 + 1 >
C H E K 5 = C H E K 4

C
C T H E FO U R T H S T A G E
C

R 2 7 = R 1 9
R 3 3 = T I N V <R 2 9 + 1 , R 3 0 + 1 >
R 2 8 = R 2 0
R 2 9 = T R D D < 1 , R 2 1 * l , R 2 5 + l>
R 3 0 = T A D D < 2 , R 2 2 + 1 , R 2 S + 1 >
IF < C H E K 3 . NE. 0 > GO TO 3 8 2
R 3 1 = T A D D 1 , R 2 3 + 1 , R 2 5 + 1 >
R 3 2 = T A D D < 2 , R 2 4 + 1 , R 2 S + 1 ;. ;
GO TO 3 0 3 I

3 8 2 R 3 1 = T A D M U L < 1 , R 2 3 + 1 , R 2 S + i;> f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

C T H E T H IR D S TAG E
i—•

3 G 3 C H E K 4 = C H E K 3
R i.? .= T F IN < R 1 0 + 1 , R l± + 1 >
R 2 0 = T F IN < R 1 2 + 1 , R 1 3 + 1 >
R 2 1 = T S U Z N < 1 , R 1 4 + 1 , R 1 5 + 1 >
R 2 2 = T S U IN '::2 .. R 1 4 + 1 , R 1 5 + l>
R 2 2 - TS U IN < 1 , R 1 S + 1 , R 1 7 + i;>
R 2 4 —T S U IF K 2 , R I S + i , R 1 7 + l>
IF O .N V . NE. 0'.> GO TO 4 6 0
R 2 ? = T F '.1 , R 1 8 + i>
R 2 6 = *T F < 2 , R 1 8 + l>
GO TO 4 0 1

4 G 0 R 2 5 = T F I < 1 , R 1 3 + 1 >
R 2 6 = T F I< 2 , R 1 8 + l>

C
C T H E SECOND S TAG E
C

4 0 1 C H E K 3 = C H E K 2
R -1 0 = T R D D -:i, R l+ 1 , R 5 + l>
R 1 1 “ T A D D < 2 , R 2 + 1 , R S + ± >
R 1 2 = T R D D < i, R 3 + 1 , R 7 + l>
R 1 3 = T A D E K 2 , R 4 + 1 , R S + l* 1
R 1 4 = T S U B < 1 , R l+ 1 , R 5 + l>
R 1 5 = T S U B < 2 , R 2 + 1 , R S + 1 >
R lo = T S U B 's l , R 3 + 1 , R 7 + l>
R 1 7 = T S U B < 2 , R 4 + 1 , R S + 1 >

■ R 1 S = R S
CH EK2=C-H EK1

C
C T H E F IR S T S TA G E
C

RsINPi<l>
B = IN P 1 < 2 ; . '
C = IN P 2 < 1 >
D = IN P 2 < 2 >

. R:l. =TR SM < 1 , A + l>
R 2= T R S M < 2 , A + l>
R ":=TR S M < 1 , B + ± >
R 4= T R S M < 2 , E + l>
R 5 = T R S M * '. l, C + l>
R 6 = T R S M < 2 , C + l>
R 7 = T R S M < 1 , D + l>
R S =TR S M •' 2 , D + l>

C
C G E N E R A TE T H E POWER OF A L P H A
C

R 9 = P 0 S T / ■: 2 + + S T G > * < 2 + + S T G >
c h e k :i = m o d <r s , £>
P O IN T = P 0 IN T + 1
RETU RN
END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o
o

o
o

o
o

*
o

n
 o

o
r>

n
n

o
o

o
o

155

/

:+> ^ :+: :** ; + : i+r: + : : + : >K :+*:+: * !:+ : :*::+ : 'M :+: * :+- A * :+ " * :+ :H* :4< s+e ^ ̂ :+: & >fc:+:'M*R'¥■:+::+::+■.:4*:+:^H e H* He:+: He

* PROGRAM TO S IM U L A T E THE HARDWARE D E S IG N N TT STRUCTURE *
+ M Q DULUS=44S *
:+v<f* :A?:+: % ?a» •+• •*: «*• H* ?+•:+: ?+: t+::+::+::+e:+r r+e H: *x*;+: >ft >H:+: :+r :+• H:•+? ?+: H»•+? :+? He H? H? vf:H? H: :4<:+: 'M ?<f::+: r+: !+: *fe t+: He He H* H* HeHeHeHeHe He He ’ ¥

S U BR O U TIN E N T T C IN V , IN P 1 , IN P 2 , STG, POST, O U T i, 0U T 2>
IM P L IC IT IN T E G E R < fi-H , 0 -Z >
COMMON TRSMC2, 4 4 ? >, TRDD<2, 0 2 , 3 2 >, TRDMUL<2 , 2 2 , 2 2 ;-, TSUB<2, 2 1 , 2 1 >
COMMON TSU IN -C 2 , 2 1 , 21 > , T I NV < 2 2 , 2 2 > , T F IN C 2 0 , 21 >, TF < 2 , 6 4 >, TF I < 2 , 6 4 >
COMMON PO IN T
D IM E N S IO N IN P 1 < 2 > , IN P 2 < 2 > , 0 U T 1 < 2 > ,0 U T 2 < 2 >
IF - '.P O IN T . NE. iIC- GO TO 2 0 0
R 1 = R 2 = R 3 = R 4 = R 5 = R S = R 7 = R 3 = R S ^R 1 0 = R 1 1 = F :1 2 = R 1 3 = R 1 4 = R 1 5 = R 1 S = R 1 7 = R ± 8 = 0
R i9 = R 2 O = R 2 i= R 2 2 = R 2 2 = R 2 4 = R 2 f.= R 2 6 = R 2 7 = R 2 8 = R 2 9 = F :3 O = R 2 1 = R 2 2 = R 2 2 = R 2 4 = 0
R 2 5 = R 3 6 = R 3 7 = R 2 -8 = R 3 ? = R 4 0 = 0

CHEKS RRE THE CONTROLS FOR E V E N /O D D POWER OF ALPHA

C H EK.1=C H E K 2=C H E K 3=C H E K 4=C H E K 5=0

LATC H THE OUTPUT

2 0 0 O U T 1 < 1 > = R 2 7
0 U T 1 < 2 > = R 2 8
0 U T 2 -'. 1 ;■ = R 2 ?
TnUT2C2>=R46

THE F IF T H STRGE

R 2 7 -R 2 3
R 3 8 = R 2 4
I F< CHEKS. NE. 0!- GO TO 3 0 0
R 2 9 = R 3 3
R 40= F :36
GO TO 3 0 1

3 0 0 R 3 9 = R 2 6
R 4 0 = R 2 ?

3 0 1 R 2 3 -R 2 7
R 3 4 = R 2 S
R 2 3 = T IN V P .29+1 , R 3 0 + 1 :-
P .26=T IN V R 2 1 + 1 , R 3 2 + 1 ;-
C H EK5«C H EK4

THE FOURTH STRGE

P.27=F:iL='
F .2 8 -R 2 0
R 2 ? = T A D D -'. l, R 2 1 + 1 , P.25+1
R 30=TR D D f. 2 , R 2 2 + 1 , R 2 6 -1 ;:-
IF < C H E K 2 . NE. 0> GO TO 2 0 2
F :3 1 = T R D D -:i, R 2 3 * l , R 2 3 + i>
R 32=TR D D -'.2 , R .24+1 , R 2 6 * i : -
GO TO 2 0 3

3 0 2 R 31=TR D M U L 1 , R 2 2 + 1 , R 2 5 * l>
R 22=TRDM Ui. < 2 , R.24-^1, R 2 6 + l>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

c
C TH E T H IR D STRGE
C

3 0 2 C H E K 4--C H EK 2
E 1 9 = T F IN <R 1 0 + 1 , R ± 1 + 1 >
R 2 0 = T F IN < R 1 2 + 1 , P. 1 3 + 1 >
F :2 2 = T S U T N < i, P .1 4 + 1 , R 1 5 + 1 >
R 2 2 = T S U IN < 2 , R 1 4 + 1 , R 1 5 + l>
R 2 ? - T S U I N v l , R 1 G + 1 , R 1 7 + i>
R 2 4 - T S U IN ■' 2.' R 1 S + 1 , R 1 7 + l>

I F < I N V . NE. {?> GO TO 4 0 8
R 2 3 = T F < 1 , R 1 8 + l>
R 2 F = T F ';2 , R 1 8 + 1 >
GO TO 40-1

4 0 0 R 2 3 = T F T <!.• R i S + i >
R 2 S = T F T < 2 , E 1 S + 1 >

C
C T H E SECO ND S T R G E
C

4 8 2 . C H E K 3 := C H E K 2
R2 0 -T R D D < 2./ R l+ 1 , R 3 + 1 U
R l l= T R D D - '2 , R 2 + 1 , R S + i>

. R 1 2 = T R D C K 1 , R 3 + 1 , R 7 + 1 >
R 1 2 = T R D D < 2 , R 4 + 1 , P .8 + l>
R 1 4 « T S U B < 1 , R l+ 1 , R 5 + i>
R 1 5 = T S U B - :2 , P .2 + 1 , R E + i>
R 1 S = T S U B < 1 , R 3 + 1 , R 7 + l>
R 1 7 = T S U B <2 , R 4 * 1 , R S + 1 >

, . . R 1 S = R ?
C H E K 2 = C H E K 1

C
C T H E F IR S T S T A G E
C

. R = I N P 1 < 1 >
B a IN P 2 < 2 >
C = IN P 2 < 1 >
D = IN P 2 < 2 >
R 1 = T R S M < 1 , f i + l >
R 2 = T R S M < 2 , f i + i >
R G -T R S M -M , B + l >
R 4 = T R S M < 2 , B + l >
R 5 = T R S M < 1 , C + l>
R S = T R S M < 2 , C + l>
R 7 = T R S M * : i, D + i>
R 3 = T P .S M 2 , D + i . '1

C
C G E N E R A T E T H E POWER O F A L P H A
C

R S - P O S T / 2 + + S T G > * < 2 -+ + S T G >
C H E K 2 “ MOD<R S , 2 >
P O IN T = P O IN T + 1
R E TU R N
EN D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

PROGRAMS TO GENERATE TABLES FOR

EPROMS ON INTEL 220

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- E O l h C E F T A T E m F M

: E L ' F r ' O I 1 I N E T u ■ k EL/DCE A '
: iv „ i 10 F t n B b LC E U I E I \
H . • I
: r h E L'L !i

M U I l h b L '3P
c e e c- -

f E L'3P : P O e 'm " D
P L E K ' *

. L X I ~ / h , 8 X j P P H
* MOV ' F , . : M

I \ X H
) M 0 \ l D j M

C w F K : M-OV
■ 0 h A

.10 7 E L'P T 1
MOV ' ■ A j F
C F I . * - 3 0

< J C M O P
LO O P ? EL I . . 3 P✓’ O r I 3 0 .

' J > C L O U P -
i l w r . : * L X J 0 , H X i p p M •

• MOV M i A '
POP • H ‘ „

’ , P v P - - •
- . 1* t T t r • *

E L P H : MOV A , EO •
. i l l 3 P -

MOV E.» A
J i v C C H L K

E L F T 2 : MOV • A , D /
- F I T . , P 1

M 0 V/ • D* A , .
*** ' • J M F ‘ O b *

/ E \ D

]<’ F I T N O . v,0 t ' O L O 3 0 "
m E M . L O O P 11 ON 8 x i p p - s x t f l

i

J '

'V I %*

•* , . ' • > ; • r

' *' ■- -

' - ^ C\ .

1
•• . *> .

V
\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fcOLihCE M A I t M E M

. ; t UPF*0 U T I V F * TO, > F D UC r A' '1 0 F I T . NO .. w0 DL’LO ' ? 1 '
: N O . TO ' P E t* F Dl i ’C t D I S . T N M Fv - . L O C A T I On • * P 4 0 i O - P W I
U. '
: h F E L ' U T IN

• P O F L I C K F D 3 1
C E EC* _ •

h F D 3 1 P U b H Lr
• P l j E H
• . * ■ L X I. ' H , 8 ^ P * O H

M O V ' ‘ > £ > M)
1 • I - N X V v rt

v ,0 v 1) , M t
X H E K : M O V A , 0
1 O K A - A • - N

JIVZ ' £ v U P T l
I M O V \ A » - £

•f C P I 3 1 /
* J C , S T O P

L O O P : f c U I . 3 1
, C P I . 3 1

F I C k : N _
J N C L O O P '
L X I H, PA&QV.

V M O V ' M , A' • P O P ■ K
• P O P ’ U .

* h E l “ : ’ " ■
L b O P ' T l r M O V a J e .

E L ’ I 3 1
“ M O V • - £ , A \

. J N C ' C H EK ;;
; E U P T 2 : -M. J V . ' ' A , D
i i - t P ("i-
i • ,• ■/ M v W . b , A

f ' ‘ 1 c r b t ^
;LA D , _y„

J > ';

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

L O C . O B J - . L L N E ,,

Sk ;

SOUhC- i K S T A T E M 'P F T-
. ' - .. • • \ - '

S U B K O L T I N E TO. HE D L l E A
n O . - T O B E b ED l-C E D - 1 5 I S

- - V - A p r t v E S U L T I \ m e m - . ; L O C a t I Q *
, "“a ' F I E L I t r* E i J I v -5

■ , 1. / ' • 1. ;• i: f • \
C'i f-ir f- L." •- .£ . /<&[. 1 9 2 : (. r -vw- 0
w c i ■-E S 7 P l . ’S H ' w - •

0 0 V,'? 21 0 0 8 . A 'S3 ■ * ; /? L * I W j « 4 P 0 W
P 0 0 5 5 E ■* 9 M O V . ' E > M.

6 2-2 t - 10 I N . * -W . -
0 0 0) 7 5 6 •. ' - 1 • r v . ‘ ■'.- M O V , . d , m

. 0 0 0 8 * 7 A ‘ • s ' . 1 2 £.00 P r * M O V - ? A 0- v
0 0 0 9
0 0 0 A

B 7 •
G 2 L 3 0 C V

s**,

• - c
l '3 :

• A
O K A ^

■j n z : ,
.A v
& 5 U B

000 0. 7.P — ■ r i _ »»i»‘* >i M O V A > - E
0 0 0 E ' ■p e c e 1 6 Q P I • 1 9 . 2
00-10 D A 1 6 0 0 -C 17- . * J C Sri O h
0 0 1 3 2 I A 0 F F - I S D b U E : L X I 1 9 2 '
0 0 1 6 . 1? . , 1 9 . i - . D A D l - ' .D
0 0 1 7 E « - ' '■ 20 - X - C H - t
00 1 8 C 3 0 8 0 0 c > 21 . J i M P L O O P , -
0 0 I B 12 . 1 0 8 8 4 22 S T O K - P - ’ L x l . ri A 0 0 H
00 1 E 7 7 . ^ 2 3 M O V
0 0 I F E-J / * 2 a P O P ' ‘ H ■
0020 D r ' 2 5 - , w ~ P O P • '■ D
0021 C9 * . 2 6 • t

/. K E T • " ̂ .
.. - 2 7

> •

- - - V EN D ' •

4 0 ? I T N ^ . ^ O C U L O 192
M E M . L C C A T I ' " '*£.£& — '# Ztt/- f I

\

v-_

L O C ' O B J l / I^ E SC/UK C E S 1 A T EALEN1 T
. l

9
* • * * «“

" r 1

• < -

r S U F K Q b T I X E . TO
. ••

* K ED'UC E a 1 0 F I T . M0 D L L O 1 9 3
* “* / ’ 2 P iVO^TO PE K E D L C F D 1 5 I v V E M . L O C A T I O i X 8 A p 0 - 3 . c f * i H

3 ? K E 5 L L T I t \ m e m . . . L O C A T I O N R A 0 0 W
* 1

/ *
' A - - * ’ P L B L I C K E D 1 9 3

r * . - 5 ' , . ' 'CHEC­ '
0 0 0 0 D 5

1 6 KE D 1 9 3 r P U S H • D
0 0 0 1 - E 5 . , ■ 7 - v . • - P l - S H -• H ‘ . ’ • -/ '

... 0 0 0 2 2 .1 P 08-A ' f t '•* - - L X I . ' H , 8 A 0 0 W ‘ ' • '. .
0 0 0 5- 5 E . • -.*9 ' MOV ■ E^M

. 0 0 . 0 6 2 3 - ' ' 1 0 ■ 1 NX __H
0100 T ,56 - 11 . MG.V D , M • ‘
0 0 0 8 7 A ■" 12 L O O P : M OV “ A , D * ' '
0 0 0 9 B 7 13 - O K A A .
0 0 0 A C 2 1 3 0 0 C 1 A - J N E d s U e , ,
0 0 0 D 7 B 1 5 • ’ * . ' MOV A> F -
0 0 0 E F E C I , 16v * . - . ' C P I 19 3
0 C' I 0 DA 1 8 0 0 . c 1 7 ' - / J C >. - 6 T G K
0 0 1 3- 2 1 3 P F F r.8 D S U B : L X I H ^ - 1 9 3 • • - '
0 0 1 6 19 , . 1 9 ! DAD ' . D - ^
00.1 7 ? e " 2 0 XCHL- *
00 ’ 1 R C 3 0 8 0 0 c 2 1 j M p ‘ L O O P '
0 0 l B 2 1 0 0 R a 2 2 S T O P : * L X I „ W j FT400H
? 0 i E •7 7- 2 3 .-MOV » M , A . • ' ; - • *
0 0 T F E l " s ' 2 A POP H . ’ " ■

C 0 2 D D 1 ■ 2 5 . V POP - D - - i . ■ '
0 0 2 1 C9 2 6 >• r - E T t

: 2 7 EN D r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

. r. • .*'* “ — ̂• ,4̂ • .

L C C O B J ’ -1 L I N E ' • ' b G L R C E b T A 7 E M F N T

/ • - 1 l b l 'E K O U T I N E T O h E D . D L L . A 11 1
\ v 'f 2 ; THEj. MAX. . . N O . I b I 8 6 0 .\ • • ~ '/ \ ‘ ? . - 3 .' j n o . k e d u g L d t o •' B E FOUND' ' I N
/ - ‘- ‘J 4 J . h F b O b J ITv TH H' b A M E L O C A T H

’ v - 5 . P U B L I C ' K E D 9 -3 0V
6 - C S E P '

• • >
•• i

'p p p p . D b ' 7 k ED9 3 P t P U b r l ' ■ * ’ D •
P P P 1 F b " ' ' • ' ' 8 *P l)bH ' H '
0 0 0 2 2 1 0 0 8 4 ■ 9 L X . I \ . P , 8 A 0 - 0 H .:
P0-P5. b F ■■ I P MOV ■£>■"' 1 '
P 0 0 6 23 - .1 1* > * ' ’ ' I N X ' H
P P P 7 ■• 5 6 *• . 12 . ' . -MOV • D , M
P P 0 8 7 A ’ > 1 3 b T A R : MOV A , D
0 0 0 9 F F 0 3 • 1 4 ' C P I . . 0 3 " J C
■ 0 00? DA 1 CPP C 15 - \ J C ' •

b T O R " •: N

P 0 P E C 2 1 7 0 0 ' ^ • ' 16 '. ' J N Z • .
T • * i

. S O F T > I F H

0 0 1 1 7 E - i- ' 1 7 MOV A , E. _ 7 ^
0 0 1 2 *> 18 . • • ,c p i . 16 '2 \

— - - . 0 . ' .. ̂» . .

0 0 1 4 .D AJC PP C' 19 J C ^ - • b T O h
P.P 1,7 2 1 5EFC, { 2 0 bU P T : . / L X I f t , - 9 . 3 P

• P P l A 1 9 . ,21 - DAD ' D • • - ■ ■ ■ ' ,*v.
PC; I B £ E , : . '£ .2 • . ' XCKC- ■
0 0 1 C 2 1 P P R 4 2 3 i T u h s * . £ X I . H , 8 4 0 R H '
0 0 1 F 7-3 * 2rA. ^ ^ c M O V - ■
0 0 2 0 2 3 ■ 2 b s - \ ' I 'N X " • H " - ' ■/
0 0 2 1 7 2 ■ V 2 6 ' MOV. ' ; ; -
0 0 2 2 E l ' - . ' ’ 2 7 POP : , H
0 0 2 3 D 1 . 2 8 POP -D ■ •
. 0 0 2 4 C9 j ' . -r* . ? 9 ' • . . R E.T ’ ' ■ . ‘ •

. 0 3 0 . ■ v, .END *t .

* V

' . . A C T I O N

SU m " O F L O N FN F Y T E <JF 9 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 162

L u C 0 E J LINE' ' ^ C U h C E E T A 1 EM E N T
)• •• ^

1 J ,EL'£W 0 UT-r N-E TO Ub f t P L * / TMD * 8 ' B I . f NO .
2 - J N O . T O B E MUL-T I P L I E D I N R E C - / 0 * "
3 ; KE EL'L T I (V M E M . LC)C A T 1 ON B 4 0 0 T 8 4 0 1H
A - F U R L I C » M L L T I , P , \ , '

- ' n - C E F G <
CiPiO-.P C N 6 . M L’L T I P : P O S H

> p r .-1 E E / - ’ 7 ip U E H
f ? C: 2 F 1 r / f * r '0 8 * ' L X I ,

..

f ’ P’0 5 2 E P B . 9 M v r .

- f ; P A 7 _ 7 A - I P N X 7 P 1 T : M O \y
I F - . . "11 / ' K A P ~

' : ■ m o v' 5 7 . 12’
f ' F P A L 2 1000 G 1 3 — J N C
f'.C> K L 7 8 14- M O V
O P P E. " 8 3 . l'S. A D D
& 0 0 F • - r6.

- M O V "
p-p l f: 7 8 ' 1 f N O A D D : M O V

- - f - (11 IE ' ■ AS ' ' P A R
- 0 0 12 , 47 . : • 19 M O V

c-'f’ 1 3 ' 7 9 20 V M O V
• . P P 1 4 I F 21 h A h
■ 0 0 1 5 4 F r 2 2 M O V

0 0 1 6 2 V 2 3 - D C K
I ' f ' M 7 C-2 0 7 0 0 C ' 2 4 »- J N ’ Z

f/ . f / 1 A 2 1 0 0 8 4 / 2 5 '•* - L X I
‘ F f - 1 D 7 1 " 2 6 I' N 10 V .

A F 1 E 2 3 ' 2 7 ' I N X
O F 1 F ' 7 0 , . M O V *

' O F 2 0 E K _ • , 2 ? " P O P : '
. 0 0 2 1 . C i . / - - 3 0 ^ P O P

' P F 2 2 C 9 > 3 1 R E T
-• .

3 2 ' E N D . .
• v. •< -

'F
H
B t P.. J T E M p . R E S U L T I N »BEC- . ’ P A I R B

L j B-«.
: o

' - 0 , A '
■» N 0 A D D ■•./'-

A ' , B '
• E '

B > A -
* A , B ' -

v.. * . ’

HE > A *
A , C '

3 C > AV
Li.. ' ■

' N X 3- P T T .
•- H , . 8 4 0 PH

lM r C *
H ' ■

> i # b ■
v H*. . / . /
- B:.
' •'*7 m

A * . • •

(■

V
V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L C C O B J L / I ■X F . S O U R C E ' S I A T E M E N T
t V .

1 K S y B R O U I I X E T O A D D T w O '1 6 . B I 7
/ 2 1 N O E . S J ' O h E D I N B 4 l 0 U p (4 j 3 H '

, \ ■* •- 3 • : ' P U B L I C A D S K . . : * • /
4 V . C S E O * • 1 ■ ' . .

P 0 P 0 ' C‘5 •
f 5 ' A D b R : . - P U S P f - B

000 1- D 5 • 6 .'/• F U S H - D ‘ , . ~~
' P‘C: 02 £ . 5 . ' . 7 ' P U S H .

P O P 3 2 1 1 0 8 A 8 . ' • • L X I *. H i 8 4 1 0 H
• 0 0 0 6 A F . . " \ 9 \ M O V £ , M •

0 0 0 - 7 . 2 3 " • 1 P . • N X H
p p p r ' A 6 .. 1 1 M O V ■P>.M , ^

■ ' - 0 0 P 9 a : r " 1 2 „ ‘ . I N X ' -H .
. pif/ic*. A . * ■ 1 3 M O V - E - * M • : r ;

- 00 0 R 2 3 1 4 - - - I N X , '’■ H . -A ■

00 0 C 5 6 ' ■ 1 5 . M O ,V . . D > M . • ' ' '
.0 P P D ' 7 9 1 6 • • . m o v ; . A .»• C . * -
P P F E 8 3 ■ _ ^ 1 7 , A D D ■ E / ' ' ' • -
000 F 4 F % - 1 8 . v . • - . . . M O V - C i A - ,

001-0 7 8 - . L . Y 1 9 • •• M O V . , ' A , a : • . • , - • * .
00.1 1= 8 A • 20 ' • - A D C > ' D ; ' X . - • ^
P P 12 - 4 7 21 . 1 ' M O V *■ ' f f / A - . . - ’ - . • » .

. P P 1 3 2 1 0 0 8 A •* 22 ✓ L X ’I * H , 8 4 0 0 ^ , - . . .

m 1 6 7 1 ' - ‘ * 2 3 . M O V r ' M / C
» * . »

P P T 7 2 3 2 4 I i V X . * .

.00 14? 1 7 0 " ' \ 2 5 •M 0 V - ' •M i B
0 P 1 9 " E .1 2 6 . F O R ■

» .• . |
H. . . . :

. 0 0 1 A . D 1 • 2 7 . p o p . D ' ' , . ' ‘

0 0 I B C l ' ■ 2 8 POP' , • b . • x -
p . p 1 C C 9 \ • 2 9 “ - , ' ; RET. • * ,

f * \ 3 0 ~ E N D /
- - i •» . . i ;

\ " %
*

_. ___ , t L '- V * — . - i — 1 ~ - »

NOS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

L O C O B J L I N E S O U R C E S T A T E M E N T

1 r ; B U B k O L ' i r N E f T O C O M P A R E T V O 1 6 F I T N O . <> I - T P 7 3 8
2 5 N O S . . - M O R E D IN- .rvTEM. LO C A TIO N ' P 4 0 0 - 8 4 0 1 W

* 3 • .
/ I - . P U F L ' I C... C O M 7 3 8

. V 5 — C S F C- ■ ' -
0 0 . 0 0 D 5 . * 6 C O M 7 * 3 8 : P U S H D
F O R 1 E 5 . 7 - * P U S H ' ' H

• P 0 0 2 2 1 P O P A 8 - L X I H > 8 4 0 0 H .
. P P P 5 5 E 9 M O V E # M

P P 0 6 2 3 , 1 0 ' \ i n x H. .-■
P 0 0 V 5 6 ' . ‘ , 1 1 M O V D,N»
P P P 8 . 7 A . 1 2 4 M O V ' A / D - -

- 0 0Xi 9 E 6 P 2 • \ ' 1 3 A N I - . ' 0 2 \ -' - 1
P P P B C A 1 F 0 P . C- . \ vJZ U E S S

. R F 0 E 7 A * 1 5.- M O V - . - x A , D .
v P P P F E 6 0 1 •j* I 6 * A N i • ; P i n .. '

p e n C 2 1 A P P .C ' x ’ 1-7 J N Z n G K E A T
0 0 1 4 7 b ■ ' ■ 1 8 . vt O V ‘
00 1 5 F E E 2 1 9 - c p r - 2 : 2 6 • .

' ■* 00 1 7. D A 1 FPPr c 2 P J C ' L E ' S S . .
W l A 3 . E P 1 ' 2 1 G K F A T : ' m v i A , . 1
00 1C. C 3 2 1 j > r A c 2 2 - J ^ p - ■ • L I ’ '

’ \ P P 1 ‘ F S E 'P P .. , 2 .3 L E S S : .* m V T .. 1 A * P-
- . 0 0 2 1 . 2 1 0 2 8 a . ' 2 4 L 1 : \ ; : L X I - H > 8 A 0 2 H '

0 0 2 4 ' 7 7 ^ 5 • M O V . . M i . A
• P 0 2 5 F I ‘ ■ 2 6 ■ -• .- - p o p f . - H, 7 ■

002-6 D 3 ' % . 2 7 - ■ ' P O P , D ' v V
0 0 2 1 . . C 9 : 2 8 •JvE T V - ' *» .*

* - 2 9 4 - *■*"” E N D
- • H. 4*. . r i* n ^

F J " • - . • . L I N E

POPP D5 v '
0 0 0 1 F .5
P P P 2 2 1 f'PP 4 ■
0. P f - 5 . -1 L -
(' C P 6 D 6 A 2
w . P P ^ d 6 C 1 -

i l
' / ■ ! - F 1 1
Pff-C L I ; •'
"’pc- C9

• . .S O U R C E\ S T A T E M E tv 't

- .5 N E G C O N

7
■'■■8 ■ \ •
. 9 . v
'1C
J)
lx ■ "
1 2 ' -
l'A-
1 5

. 1 } S U B R O U T I N E - * T O C O N V E R T -A ' N E G A T I V E N O ' . M O D U L O 1 9 3
• 2 T H E N O . H O - . , F % C O f r V . E H T E £ I E : n t ’M>. L O C . ? 4 R P - P 4

c i x . n o n ' V - ' n ; • . n n - • ..>?: ' • - ’ •
■■3'... •’- 1 •. - P U B L I C T - ' N E G C Q N ’- -• '

o% ' ' •' ■:
- -v-; , _

; -..p u s h t , ; • : . « / . ■--■•J--. '» ,
' ' l d x . I ‘ , 0 " -H>.'8 Af5.0H~ . o '- ; " V ' . ■ .

•' M O V <a ; m ‘ •• ' " 0 .-■ - \
' S U I **-■ 162 i * T H F ' 'B U M L O v E V x - F i q r s 0 F ' 9 3 f -

; A p i . - • 1 ^ 3 . " - . ■
-• - - n - .

 ̂ -pi’ip - . H » • •' . - ̂ - ...
P O P D ”

' P E T - . .. \ ■-
' 0 END . ‘ . / / ' ' / ' :

 ̂ _ *._**«* -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

; PROGRAM TO GENERATE THE S UB-M ODULO 3 1 R E S I D U E TABLE
i T R S M 3 1

CSBG
S T A R T : L X I H, 7 4 0 8 H

M V I B, 1 3 3 ; S T A R T TH E COUNTER
M V I C, 0

L O O P : MOV A.. C
C P I 3 1
JC STORE

S U B T : S U I 3 1
S T O R E : MOV M.. A

MOV C.. A
I NX H
DCF: E
J N Z LOOP
JMP 0 F S 5 5 H
EK'D ST A R T

; PROGRAM TO GENERATE THE S UB-M ODULO 3 0 R E S I D U E T A B L E
i TR S M 30

S T A R T :
CSEG
L X I H.- 7 4 O 0 H
M V I B, 1 9 3
M V I C, 0

L OOP : MOV A, C
C P I 3G
JC STORE

SUBT : S U I 3 0
S T O R E : MOV M, A

MOV C.' A
I NX H
DOR B
J N Z LOOP
JMP 0 F S 5 5 H
END ST AR T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

ASM 80 T - A D D 3 0 . S R C P A G E W I DTH C 3 2)

^ • \

I S I S - I I 8 0 8 0 / 8 0 8 5 MACRO

LOC O B J ' L I N E

■
1
2

0 0 0 0 2 1 0 0 7 4 . 3
0 0 0 3 L0E00 .4
0 0 0 5 1 6 1 E 5
0 0 0 7 0 6 0 0 • 6
0 0 0 ^ I T I E 7
0 0 0 B A F ■ 8
0 0 0 C 7 8 9
0 0 0 D 81 10
0 0 0 E F E 1 E ■ 1 1
0 0 1 0 D A I 5 0 0 C 1 1 2

.0 0 1 3 D6 I E 13,
0 0 1 5 7 7 - 1 4
0 0 1 6 2 3 •' 15
0 0 1 7 0 4 16
0 0 1 8 I D ' ' 17
0 0 1 9 C 2 0 B 0 0 c 18
0 0 1C 2 3 19
0 0 1 D 2 3 2 0
0 0 1 E 0C ‘ 2 1
0 0 1 F 1 5 2 2
0 0 2 0 C 2 0 7 0 0 c -23
0 0 2 3 C3 5 5 F 8 • 2 4
0 0 0 0 ‘ C . 2 5

A S S E M B L E R , V 3 . 0

SOURCE S T A T E M E N T

J A D D I T I
CSEG . ■

S T A R T : . L X I Hi> 7 4 0 0 H
M V I C > 0 /
MVI. D , 3 0

L I : M V I ' 9 » 0 - '
' M V I . E , 3 0

LOOP i , XRA ' A
MOV • A , B ,

’ ' ADD C
* CP. I 3 0

\
j c • STOR

• S U I - 3 0 '
STOR' : M O V’ ' M , A -

I NX 'H
I NR B
DCR e ;
J N Z - LOOP.
I NX 'H
I NX H
I NR C ■
DCR D , .
J N Z L ' l
J M P - 0 F 8 5 5 H

4 • e n d . ,; START, . .

M O D U L E PAGE 1
N

\

ON T A B L E FOR MODULO 3 0

i

; COUNTER FOR M2
' i

J.COUNTER FOR M l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A S M 8 0 T A D D 3 1 • SRC P A G E W I D T H C 3 2)

i I S - I I 8 0 8 0 / 8 0 8 5 m a c r o A S S E M B L E R j V 3 . 0. M O D U L E P A G E
r v

LO C O B J

t

L I N E SOURCE. S T A T E M E N T

t - 1 ; A D D I T I O N T A B L E FOR MODI
2 C SEG

0 0 0 0 2 1 0 0 7 4 3 S T A R T : L X I H j 7 4 0 0 H
0 0 0 3 0 E 0 0 4 M V I C * 0
0 0 0 5 1 6 1 F 5- , • M V I D j 3 1 ; C O U N T E R F O R ' M 2
0 0 0 7 0 6 0 0 6 L 1 : M V I B V 0
0 0 0 9 1 E 1 F V 7 M V I E / 3 1 ; C O U N T E R F O R . M l
0.0 0 B A F 8 L O O P : X R A A / •

*

0 0 0 C 7 8 9 MOV A j B
0 0 0 D . 81 10 ADD c
0 0 0 E F E 1 F 1 1 • C P I 3 i ’
0 0] 0 D A I 5 0 0 C 12 J C - STOR *

0 0 1 3 D 6 1 F 1 3 . S U I 3 1 J >-

' 0 0 1 5 7 7 1 4 S T O R : MOV M>,A
0 0 1 6 2 3 15 I NX H
0 0 1 7 0 4 16 1 I NR . B
00.1 8 I D 17 - DCR E '
0 0 1 9 C 2 0 B 0 0 c 18 J N Z L O O P

t

0 0 1 C 2 3 19 I NX . H
0 0 1 D 0 C 2 0 I NR C"'
0 0 1 E 1 5 . 2 1 DCR D
0 0 1 F C 2 0 7 0 0 c 2 2 J$iZ L I
0 0 2 2 C 3 5 5 F 8 2 3 J M P 0 F 8 5 5 H
0 0 0 0 . c - 2 4 END S T A R T .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

ASM8 0 A D M L 3 0 • SRC P A G E W ID T H C 4 2) '

* ’ ’

I S I S - I I ' 8 0 8 0 / 8 0 8 5 MACRO A S S E M B L E R j V 3 f . 0 M O D U L E - PAGE* ' l

LOC o b j ' • ; L I N E I
* ..

SO U R C E- S T A T E M E N T . '

1
. 1 ' i * , .
' i . A D D I T I O N T A B L E . FOR MODULO 3(

’ ,2 CS EG • > '
0 0 0 0 2 1 0 0 7 4 - •3 S T A R T : L X I . . ' H j 7 4 0 0 H
0 0 0 3 0 E 0 0 4 > M V I C > 0 - . ‘
. 0 0 0 5 1 6 1 E 5 M V I . D j -30 J C O U N T E R FOR M2
0 0 0 7 0 6 0 0 6 L I : M V I / B * 0 - . *
0 0 0 9 1 E 1 E ' 7 • M V I E > 3 0 , J C O U N T E R FOR M l •
0 0 0 B AF. 8 L O O P : XRA ■ . a • • ; .

0 0 0 C 7 8 s 9 MOV. • A , B \ •
0 0 0 D 81 1 0 •ADD- ' c '
0 0 0 E C60.3 1 1 ’ A D I • ' . 0 3 . - . J A D D I N D E X OF, 1 2 5 (3)
0 0 1 0 f e i e ; • . 1 2 C P I • 30 -
0 0 1 2 D A 1 C 0 0 C •13 J C ' STOR • • '
0 0 1 5 ' D61 E - 1 4 S U B T : S U I 3 0 . - V - .
0 0 1 7 F E I E ' ■ • 1 5 C P I 3 0 * ' • . v •
00 r 9 ‘ D 2 1 5 0 0 ,c . 1 6 J N C S U B T . • ,
0 0 1 C 7 7 ‘ 17 S T O R : MOV - Mj A ■ J '
0 0 I D 2 3 • 18 . I NX H , .
0 0 1 E 0 4 * • 1’9 I n r ' B ' • •
0 0 1 F • I D

I -
2 0 DCR . E :

0 0 2 0 C 2 0 B 0 0 ■ c 21 . J N Z . l o o p . , ; • . ■
0 0 2 3 2 3 2 2 • . I NX : h ; ,■ - ' v
0 0 2 4 2 3 * 2 3 . I NX - H ; . ■ •
0 0 2 5 0 C 2 4 I NR C. . ' . . -
• 0 0 2 6 . 1 5

•
2 5 1 DCR . D . \ •

0 0 2 7 C 2 0 7 0 0 c 2 6 • J N Z L I v
0 0 2 A C 3 5 5 F 8 2 7 J M P , 0 F 8 5 5 H
0 0 0 0 , c 2 8 ' END S T A R T •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SO URCE S T A T E M E N T

J A D D I T I O N T A B L E . F O R M ODULO 31
• CSEG

S T A R T : L X I H j 7 4 0 0 H
• MW I C > 0 j

M V I D , 31 .J C O U N T E R FOR M2 . ’ _ ,
L I : M V I ' B j 0

M V I E . , 3 1 i C O U N T E R FOR Ml . :
L O O P : XRA' * A 1• • ^

MOV. A , B -- v ’ * *.
ADD C ‘

f
I

A D I 0 3 3 A D D I 'N D E X OF l *25C3->
C P I ' 31 *• ' *
J C STOR • • - ■

S U B T : S U I ■ 31 \ w -
C P I 3 1 1 ji
J,NC S U B T .. • ' . ✓

S T O R : MOV f t * A V
I NX . H * 7 • . *

I NR ■ B
DCR , ' E
J N Z L O O P -
I NX H t (
I NR C . /
DCR D

* ,

J N Z L I L * 1
. * w ‘ .

JM P 0 F 8 5 5 H * i , «. -

- END- S T A R T , ■%»*+ r».

\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ASM80 T S U B 3 0 • SRC

I S I S - I I ' 8 0 8 0 / 8 0 8 5 MACRO A S S E M B L E R * V 3 . 0 M O D U L E ' P A G E

-r \ y * 1 ' • - k

LO C O B J L i N E
*

S O U R C E S T A T E M E N T

1 C SEG - - t

0 0 0 0 2 1 0 0 7 4 • 2 . S T A R T - : L X I H * 7 4 0 0 H
0 0 0 3 0 E 0 0 • 3 MV-I C * 0 .
0 0 0 5 1 6 1 E 4 i M V I ' D * 3 0 • ; C O U N T E R
0 0 0 7 0 6 0 0 5 L 1 : M V I B / 0 '
0 0 0 9 I E I E ' ' 6 M V I - E * 3 0 - ; C O U N T E R
0 0 0 B A F • 7 L O O P : X R A A
0 0 0 C 7 8 8 MOV A * B •
0 0 0 D 91 9 SUB c - t . ' ’

0 0 0 E D 2 1 ,300 *c. 10 • J N C STO R , •

0 0 1 1 C6 1 E 1 1 A D I - , 3 0 ' - ■

0 0 1 3 1 1 ' ' 1 2 S T O R : . MOV M * A \

0 0 1 4 2 3 13 I N X ’ ' H ‘

0 0 1 5 0 4 1 4 I NR ' .B .

0 0 1 6 I D 1 5 DCR E
0 0 1 7 C 2 0 B 0 0 c 16 J N Z ' . L O O P
0 0 1 A 2 3 • 17 I NX * H ,
0 0 I B 2 3 18 " I NX H :
0 0 1 C 0 C . 1 9 I NR . c •

0 0 1 D 1 5 ' 2 0 * DCR ' ‘ D
0 0 1 E C 2 0 7 0 0 c 21 J N Z L I -

0 0 2 1 C 3 5 5 F 8 2 2 - ' JM P 0 F 8 5 5 H ■ *

0 0 0 0 • c . 2 3 * END ■ S T A R T V

» 1 -»• — “ -• we-." * *■ ■> . . .

FOR M2

FOR M l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A S M 8 0 T S U B 3 1 . S R C

I S I S - I I 8 0 8 0 / 8 0 8 5 MACRO A S S E M B L E R ^ V 3 . 0 MOD U LE

LOC O B J L I N E SOURCE S T A T E M E N T

1 CSEG
•

0 0 0 0 2 1 0 0 7 4 • ' ; 2 S T A R T : L X I H / 7 4 0 0 H
; 0 0 0 3 0 E 0 0 3 (M V I C« 0 • *

0 0 0 5 1 61 F 4 « M V I ’ . 0 * 31 ; 'C O U N T E R
0 0 0 7 0 6 0 0 ' 5 L l : M V I * B , 0
0 0 0 9 1 E 1 F 6 M V I E j 3 1 J COU N TER
0 0 0 B AF 7 L O O P : XRA A
0 0 0 C 7 8 8 MOV ' A , B . ' 4

0 0 0 D 91 9 ■ SUB C '
0 0 0 E D 2 1 3 0 0 C. 10 J N C STOR \
0 0 1 1 C 6 1 F 1 1 A D I 31
0 0 1 3 7 7 12 STOR-: MOV 1 M> A
0 0 1 4 2 3 13 $ I N X H
0 0 1 5 0 4 1 4 I N R B
0 0 1 6 I D 15 DCR E
00.1 7 C 2 0 B 0 0 c 16 J N Z ' • LO O P
0 0 1 A 2 3 17 I N X H -

0 0 1 B 0C ‘ 18 . INR C *
0 0 1 C 15 19 DCR . D •
0 0 1 D C 2 0 7 0 0 c ' 2 0 * J N Z L I . y
0 0 2 0 C 3 5 5 F 8 21 JM P 0 F 8 5 5 H 1
0 0 0 0 c 2 2 END S T A R T

PAGE

FOR M 2

FOR M l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S T A R T :

T N I T 1 :

S U B T :

CORRECT
STO R :

172

/ G E N E R A T E S U B T R A C T IO N I N D E X T A B L E
S U I N 7 0

CSEG
L X I S P / S T A C K
L X I H / 7 4 0 0 H
L X I B, 1 0 .24 ; COUNTER .
MOV E, M
PUSH H
MOV A.. E
ORA A
J Z CORRECT ; I F ENTRV I S 0. NO IN D E X E X I S T S
MOV A.. E
C P I 0 F F H ; I F FF . NO A C T I O N
JNC . CORRECT
MOV H/ 7 3 ; IN D E X T A B L E STORED I N 7 3 0 O H
MOV L-.i E
MOV A/ M ; B R IN G TH E IN D E X
C P I CO j REDUCE T H E IN D E X I N SUB-MODULO
JC STOR
S U I SO
C P I 7 3
JN C SUBT
JMP STOR '

M V I A/ 0 F F H ; STORE F F FOR IN D E X OF ZERO
POP H
MOV M/ A
I N X H
DCX B
MOV A/ B
ORA A
J N Z I N T I
JMP S F 8 5 5 H
END S T A R T <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

j G E N t R A T E S U B T R A C T I ON I N D E X T f i B L E
i S U I N Z 1

S T A R T

I N I T i

S U B T

S T O R

C SE G
L X I S F , S T A C K t

L X I H; 7 4 0 0 H
L X I 5 , 1 0 2 4 ; C O U N T E R
MOV E , M
P U S H H
MOV A, E
ORf i A
J Z C O R R E C T ; I F E N T R V I S O. NO I N D E X E X I S T S
MOV A, E
C P I O r F H ; I F F F . NO A C T I O N

' J N C C O R R E C T
MOV H, 7 0 i I N D E X T f i B L E S T O R E D I N 7 3 S 0 H
MOV L , E
MOV A , M B R I N G T H E I N D E X
C P I • Z 1 ; R E D U C E T H E I N D E X I N S U B - M O D U L O
JC S T O R

. S U I Z 1
CPI. Z 1
J N C S U B T
J M P S T O R

C T : M V I A , O F F H j S T O R E . F F F O R I N D E X OF Z E R O
POP H
MOV M, A

-------- I N X H •
D C X B
MOV A , B
ORA A
J N Z I N T I
J M P 0 F O 5 3 H
END S T A R T

\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

T F I N

LOC 'O B J * L I N E SOURCE. S T A T E M E N T

■ ‘ 1 EXTRN RED9 30-* R E D 1 9 3 * R E D 3 0 * R E D 3 1
2 EXTRN,. M U L T I P * A D S R * N E G C O N * C 0 M 7 3 8
3 CSEG

0 0 0 0 3 1 0 0 0 0 S 4 S T A R T : L X I SP r STACK
0 0 0 3 2 1 0 0 7 4 .5 L X i • H * 7 4 0 0 H
0 0 0 6 E5 ’ 6 'PUSH H .
0 0 0 7 0 E 0 0 7 ’ MVI C * 0 J C O U N T E R FOR R2-
0 0 0 9 0 6 0 0 . " 8 L i : , • M V I B i 0 i COUNTER FOR R l
0 0 0 B 59 - 9 ' • MOV E* c

0 0 0 C 1 6 1 E 10 • /M V I D V 3 0 D
0 0 0 E C D 0 0 0 0 E .1 1 1 C A L L • M U L T I P J R E S U L T NOW I N 8 4 0 0 * 8 4 0 1
0 0 1 1 C D 0 0 0 0 E 12 C A L L • R E D 31 . i REDUCE MOD 31.
0 0 1 4 161 E . 13 " M V I . D * 3 0 D ’ } M U L T I P L Y BY M2 BAR
0 0 1 6 2 1 0 0 8 4 1 4 ■ L X I H i 8 4 0 0 H
0 0 1 9 5E 15 ~M0V E i M *
0 0 1 A C D 0 0 0 0 E 16 C A L L M U L T I P
0 0 1 D 5E ■ 17 ’ MOV E *M ,

0 0 1 E 2 3 18 - I N X H - . ! •
0 0 1 F 5 6 19 MOV • D iM 4
0 0 2 0 21 1 0 8 4 2 0

U
L X I .. H j. 8 4 1 0 H i S T O R TH E R E S U L T I N 8 4 1 0

0 0 2 3 7 3 21
n

MOV - m ; e
. .

0 0 2 4 2 3 2 2 I N X . H ' . .

0 0 2 5 7 2 23- MOV ' M» D
0 0 2 6 58 2 4 L 2 : MOV ’ E* B
0 0 2 7 1 6 1 F 2 5 ' - M V I D * 3 1 D
0 0 2 9 C D 0 0 0 0 E 2 6 * C A L L . • M U L T I P •’ 1 M U L T I P L Y BY M l BAR
0 0 2 C 2 1 0 0 8 4 x . 2 7 L X I ‘ H i 8 4 0 0 H -

0 Q 2 F 5E 2 8 MOV ' . E * M - i

• 0 0 3 0 2 3 - - 2 9 I N X . H ’ \ ‘

0 0 3 1 56 ' 3 0 MOV • ' D* m
3 0 3 2 21 1 2 8 4 3 1 .

r L x r H * 8 4 1 2 H
0 0 3 5 7 3 ' 3 2 ,1 MOV M i E ' '■

0 0 3 6 2 3 3 3 I N X H
0 0 3 7 7 2 * . ' 3'4 MOV . , M i D '
0 0 3 8 C D 0 0 0 0 E 3 5 C A L L ADSR ;.ADD: TWO 1 6 B I T NUMBERS
0 0 3 B C D 0 0 0 0 E 3 6 C A L L ■ R ED 9 3 0 . 3 REDUCE MOD M l * M 2
0 0 3 E ■CD0000 E 3 7 O A L L COM7 3 8

\
j c o m p a r e t i . v j l ",

. t - 1 0 2 8 4 .3.P L X I H j 8 4 0 2 H
0 0 4 4 7 E 3 9 MOV A > M 1 CHECK THE S T A T U S
0 0 4 5 5 7 . 40 ORA A .
3 0 4 6 C2 53.30 C 41 J N Z . CON S S T A T U S 1*- GO TO CONVERS

I O N
0 C 4 9 C D 0 0 0 0 E 4 2 C A L L R - E 0 1 9 3 \ J O T H E R W I S E REDUCE MOD 19

0 0 4 C 2 1 0 0 8 4 4 3
o

L X I H j 8 4 0 0 H i

0 0 4 F 5E 4 4 MOV E* m
0 0 5 0 C 3 5 A 0 0 C ' 4 5 . JMP STOR
0 0 5 3 C D 0 0 0 0 E 46 CON: C A L L ' NEGCON
0 0 5 6 21 0 O 8 4 47 L X I H i 8 4 8 0 H
0 0 5 9 - 5E 4 8 MOV • E * M
0 0 5A E l . 49 S T O R : ■ POP v • H
i-t.zv-e* ._ __ C/>__ _________ M m / NL-.r.............. *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I S I S - I I 8 0 8 0 / 8 0 8 5 MACRO ASSEMBLER* V 3 . 0 MODULE

\

LOC OBJ L I N E SOURCE STATEMENT

005C 23 51 . IN X . H ' •
005D E5 52 ‘ PUSH H
0 0 5 E 04 .53 ! i Kir B
00 5F 78 54 . . MOV '• A* B i
0 0 6 0 FE1 E 55 C PI . 30D .
0 0 6 2 C22.600 C 5 6 JNZ L2

'0 0 6 5 El - V 57 POP - H
0 0 6 6 23 ‘ ' 58' INX H
0 0 6 7 23 5.9 IN X . H ’ ‘

' 0 0 6 8 E5 60 • 'PUSH H
0 0 6 9 0C 61 - INR • C '
0 0 6 A 79 62 , MOV A> C
006B FE1F • 63 ■ CPI 31 D
006D C 2 0 9 0 0 C 64 ' ' JNZ L I
0 0 7 0 C3 5 5F8 V 6 5. JMP 0 F 8 5 5 H

. 0 0 0 0 c 66 END « START

PAGE'

\ •

i
\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

ASM8 0 T - I N V . S R C Pa G E W ID T H C A 2)

I S I S - I I 8 0 8 0 / 8 0 8 5 MACRO ASSEMBLER.*. V 3 *

LOC OBJ L I N E , SOURCE.’

- 1 EXTRN
2 EXTRN

/ 3. CSEG ’
0 0 0 0 3 1 0 0 0 0 S 4 S T A R T : L X I .
0 0 0 3 2 1 0 0 7 4 5 * ' L X I
0 0 0 6 E5 . . 6 P U S H ' -
0 0 0 7 0 E 0 0 7 • M V I
0 0 0 9 0 6 0 0 8 L I : M V I -
0 0 0 P 59'. 9 - MOV -
0 0 0 C 1 6 1 E 10 , M V I .
0 0 0 E C D 0 0 0 0 • E 1 1 . C A L L
0 01 1 C D 0 0 0 0 E 12 C A L L
0 0 1.4 1 6-1 E . ‘ 13 t • MV I
0 0 1 6 2 1 0 0 8 4 14 L X I .
0 0 1 9 5E 15 . m o v ;
0 0 1 A C D 0 0 0 0 E . 16 m “' C A L L
0 0 1 D 5E . 17 ; MOV •
0 0 1 E 2 3 18 I N X .
0 0 1 F 5 6 ■ . ‘ . 1 9 MOV
0 0 2 0 .21 1 0 8 4 2 0 L X L

-H ,
0 0 2 3 73 21. MOV
0 0 2 '4 2 3 22* I N X
0 0 2 5 7 2 ' 2 3 MOV'
3 0 2 6 58 2 4 L 2 : -. MOV
0 0 2 7 1 6 1 F 2 5 MVI
0 0 2 9 CD0O0G E 2 6 C A L L
0 0 2 C 2 .1 0 0 8 4 2 7

0 0 3'^ 2 0 2 9 I N X
0 0 3 1 56 ■ 30 , MOV-
0 0 3 2 2 11 2 8 4 31 L X I '
0 0 3 5 7 3 3 2 MOV

, 0 0 3 6 2 3 33- I N X
0 0 3 7 72 . 3 4 MOV •
0 0 3 8 C D 0 0 0 0 r 3 5 CALL.
0O 3 B C D 3 0 0 0 ' E 3 6 C A L L
0 0 3 E C D O 0 00 E 3 7 C A L L

M - 1)’
:0 o 4 1 2-1 008-4 38 L X I
0 0 4 4 5E 39 MOV •
0 0 4 5 2 6 7 9 40 S T O R : ’ m v i

S.E I N D E X . _

•0 M O D U L E ' -PAGE 1

S T A T E M E N T ‘

RED9 30 j RED 192 j RED3 0 j RED31 ,,
v MULTIP> ADSR • . ■ ' • •

S P j S T A C K • . .
K > 7 4 0 0 H .
H'.
C i 0 J C O U N T E R FOR R2
B ^ 0 } C O U N T E R FOR R l
E j C
D / 3 0 D
M U L T I P J R E S U L T NOW I N / 8 4 0 0 , 8 4 0 1
R E D 3 1 i R E D U C E MOD 31
D> 3 0 D ' M U L T I P L Y BY M2. BAR
H * 8 4 0 0 H * • . . . I - '

• E j M ‘ '
M U L T I P

- /E> M ’ •
.H . '* ;

. ,D*M ' " .
i - L 8 4 i 0 H > STOR T H E R E S U L T I N 8 4 1 3

M * E ; ’’ ' '
H
M j D . ' '
E * B
D.» 3 1J3 '

• " - M U L T I P ; M U L T I P L Y BY M l BAR

. < EiM* • • ,

8.4T 2H . , ,
M> E • • -
■H . . ■ - '
mv b
A D S R - J ADD TWO 16 B I T NUMBERS
R E D 9 3 0 ; R E D U C E MOD M 1 *M 2
RED 1 9 2 - ; REDUCE MODULO C

H * 8 j4 00H ■ .
E> M

' H * 79H ; L 0 0 K UP T A B L E ' FOR I N V E R

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 0 4 7 ' 6 B 41 M O V L j e

0 0 - 4 8 5E 4 2 M O V • E j M

0 G 4 9 . E.t - 4 3 p o p - - H

0 0 4.A 7 3 4 4'' ' . . M O V ' M j E

0 0 4 B 2 3 4 5 I N X H

0 0 4.C E 5 4 6 . . ' P U S H ' H

0 0 4 D 0 4 47 I NR ’ B

0 0 4 E 7 8 4 8 M O V • A> B

0 0 4 F F E I E 4 9 C P I ' 3 0 D #

0 0 5 1 0 2 2 6 0 0 C ■50 J N Z . L 2

0 0 5 4 E l 51 POP h ;

* •
I S I S - I I S 0 8 0 / 8 0 8 5 MAC RO A S S E M B L E R j V 3 . 0 M O D U L E

LO C O B J L I N E S O U R C E S T A T E M E N T -

0 0 5 5 2 3 V
0 0 5 6 , 2 3
0 0 5 7 E 5
0 0 5 8 0C
0 0 5 9 7 9 •
0 0' 5 A F E 1 F
0 0 5 ' q C 2 0 9 0 0
0 0 5 F C 3 5 5 F 8
0 0 0 0

52 INX H .
53 . INX H
54 PUSH H
55 INR c ‘
56 MOV A,C . . ' ,
57. c ? r ' 3 i d -

C ’58 JNZ L I ■„
■ 59 JMP 0FB55H

c . 60 e n d ; START'

' P A G E

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

ASM80 INDEX . SRC PAGEW IDTH (3 2)

I S I S - I I 8 0 8 0 / 8 0 8 5 MACRO ASSEMBLER.*. V 3 - 0 , MODULE PAGE . 1 •

L O C O B J • L I N E \ S O U R C E S T A T E M E N T .

1 E X T R N M U L T I P , RED 1 93* -
2 - C S E G ■

. 1

0 0 0 0 3 I 0 0 0 0 • S 3 I N I T : . L X I . S P , S T A C K ' '
0 0 0 3 0 6 B F 4 . M V I • B ^ 1 9 1 i S E T T H E C O U N T E R
0 0 0 5' 0 E 0 1 • 5 M V I ’ cJ. 1 s I N D E X I n REG C- '
0 0 0 7 1 E 0 1

•
6’

A T I ON
M V I ■Ej I * j I N I T I L T Z E T H E M U L T I P L I C

0 0 0 9 1 6 0 5 '7 . M V I D , 5 J P R I M I* T I V E R OO T I S 5

0 0 0 B C D 0 0 0 0 . E 8 MY : C A L L M U L T I P ^ ’

0 0 0 E C D 0 0 0 0 E ■ 9 C A L L ’ R E D 1 9 3 : "
0 0 1 1 2 1 0 0 8 4 10 L X I H ^ 8 4 0 0 H •
■001 4 5 6 1 1 V MOV. - D , M , -

0 0 1 5 2 6 7 8 - 12 • M V I H .* 7 8H
0 0 1 7 6 A 1 3 ' MOV ' L * D

0 0 1 8 7 ! 1 4 • . MOV M , G . . . , - / '
0 0 1 9 0 C • 15 \ I N R c ' •.
0 0 1 A 5 A . . . 16 MOV . E j D ;
0 0 I B 1 6 0 5 17 1 v M V I • \ . . . • . -
0 0 1 D 0 5 . 18 ' DCR B •
0 0 1 E C 2 0 B 0 0 C 19 . J N Z MY .. '

I . 2 0
21

- J I N V E R S E I N D E X T A B L E
»
9

0 0 2 1 2 1 0 0 7 8
2 2
2 3 I N I N D ' : L X I '

• •
. 9

H , 7 8 0 0 H . ■ . ,
0 0 2 4 1 6 7 9 2 4 - M V I D.» 7 9 H i I N V E R S E I N D E X T A B L E S T A

0 0 2 6 0 6 C 1
<' - 2 5

R T A T .7 9 H ’
M V I • B > 1 9 3

0 0 2 8 5 E " - 2 6 . . B E G I N : MOV E ^ M
0 0 2 9 7D ‘ 2 7 ■ - MOV • a > l

0 0 2 A 1 2 - -
i 2 8 S T A X d. ‘ •

0 0 2 'B 2 3 2 9 I N X ; . H ' • V
0 0 2 C - 0 5 ' , " 3 0 DCR B ' ' • * , '
0 0 2 D C 2 2 8 0 0 c 31 J N Z . B E G ! N
, 0 0 3 0
0 0 0 0 '

C 3 5 5 F 8 ' 3 2 * JM P 0 F 8 5 5 H '
■ c . 3 3 E N D . , _ I N I T /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

A) T H I S P R O G R A M G E N E R A T E S THE. V A L U E S OF POWER S OF
. A L P H A . S A M E ' V A L U E ' OF A L P H A I S S T O R E D I N T * 0 .M E M O * I ES

LOC O B J L I N E S O U R C E S T A T E M E N T .

1 CSEG
2. EXTRN

:• 3 STKLN
0 0 0 0 3 1 0 0 0 0 S 4 START: L X I
0 0 0 3 2 1 0 0 7 £ 5 L X I •
0 0 0 6 360 1 . 6 MVI,-
0 00 8 ‘ 23 7 IN X -
0O0 9 3601 • . 8 MVI -
O00B 23 9 INXv
O0OC E5 ' .• 10 ' P U SH
0 0 0 D 0 640 - 1 1 . MVI •
0 0 0 r 1 E0 1 1 2 'MVI
0 O 1 1 167D ' 1 3 B EG IN : MV I
001 3 cnoooo- 14 CALL
00 1 6 CDOOO" ' E 15 CALL
001 9 2 1 OO 8 4 16* L X I
00 1C 5E - ’ 17 '• - MOV
00 I D El - 18 ' STOR: - POP.
00 1 E 73 ' '19' ’* MOV .
00 1 F 23 .2 0 •I NX
0 0 2 0 73

i
21 MOV ,r.

0 0 2 1 23 2 2 * . I N X
0 0 2 2 E5 ■ 2 3 \ . P U S H '
0 0 2 3 - 0 5 - 2 4 • OCR
0 0 2 4 - C 2 1 1 0 0 -C 2 5 : J N Z

2 6
• S

!
2 7

EMOR v 7 8 0 0 H '
0 0 2 7 0 6 8 0 - . 2 8 M V I J -

' L X I - '0 0 2 9 2 1 0 0 7 C i 2 9
3 0 2 C 5 E 3 0 I N D : * / MOV ' 7
0 0 2 D E 5 3H P U S H *
O 0 2 E 2 6 7 8 ’ 3 2 ' M V I
0 0 3 0 6 3 . 3 3 , . ■ MOV

MOV0 0 3 1 5 E 3 4
0 0 3 2 E l ' - '3 5 POP
0 0 3 3 7 3 3 6 MOV
0 0 3 4 2 3 3 7 I N X ^
0 0 3 5 7 3 3 8 MOV
0 0 3 6 2 3 . * 3 9 ' I.N&
0 0 3 7 0 5 ' v 4 0 DCR
0 0 3 8 C 2 2 C 0 0 C 4 l

4 2
T O R S ..

J N Z

M U L T I P j R E D 1 9 3 .
100 .

S P * S T A C K
■ H t l COOH - ..
• M » 1 • , - j
•H
M > 1 •
H •

’ H < 'v'
B j 6 4 i C O U N T E R • ■
E > 'K '5 M U L T I P L I C A N D . ,
D * 1 2 5 ; M U L T I P L I E R
M U L T I P ,
R ED 1 9 3 - . . ' . • .
H j S 4 0 0 H ?
EsM ' - 1 ■
H / " - V ~
M j E .. f. ' ■>t
H
,M> E
'H * -- ' ,
H - .. ,

B : ‘ 1
B E G I N i

. J F I N D T H E I N D E X OF A L P H A

• . ' ’ ; I N D E X T A B L E ST O R ED I N M
t

• B j 1 2 8 i C O U N T E R -
Hs7C0OH

: ELM ’ ' • -.J.'-. ■ ■
* * ■'

H
H j 7 8 H -
L , E '
£ j M
H r
M< E , . ' . '
H -
M j E ' >
H ‘ ’ \ - • ; .
B
I N D . . • . ’

J - I N V E R S E N T T T W I D D L E F A C

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

43. '• J
• i iA . ' ;

0 0 3 B 0 6 0 0 4 5 M V I Bj 0 -

0 0 ’3D 0 E 8 0 4 6 . M V I C> I 2 8
O 0 3 F 2 1 0 0 7 D 47 L I : ' L X I H * 7 D 0 0 H ; I N V E R S E T W . F A .

N MEMORY 7 D 0 0 H
0 0 4 2 E5 4 8 . 1 PUSH H . -
0 0 4 3 79 49 L 2 : ’ MOV a >:c - :

' 0 0 4 4 9 0 • -
-

50 SUB . . B

S I S - 1 1 8 0 8 0 / 8 0 8 5 m a c r o A S S E M B L E R j V 3 • 0 • MODULE PAGE

LOC OBJ L I M E f O U R C E S T A T E M E N T
\

0 0 4 5 2 6 7 C 51 M V I H j .7CH ' -

0 0 4 7 6 F 52 MOV L . A
0 0 4 8 5E 5 3 - MOV • E.» m '
0 0 4 9 E l ■ ' ' 5 4 S T : ' • POP H !
0 0 4 A .7 3 5 5 MOV- M j e

0 0 4 B 2 3 , 56 : I NX H ti
0 0 4 C E5 57 : , . PUSH H*
0 0 4 D 0 4 . ^ 8 • I N R B

’ %

0 0 4 E' 7 8 ’ : 59 MOV ; A ^ B '■
0 0 4 F F E 8 0 • . 6 0 C P I . ' 1 2 8 m
0 0 5 1 D A 4 3 0 0 C 61 . ’ JC • L 2 • •
0 0 5 4 C 3 5 5 F 8 6 2 JMP 0 F 8 5 5 H
0000

/ 1 c 6 3 END S T A R T '
* Vr m. 1 • • t * 1

. . -

I ____
B) T H I S PROGRAM G E N E R A T E S THE Tto T DDLE f a c t o r s .

LOC O B J ■■ L I N E SOURCE STAT E M E N T -
I-

*

\ 1 . CSEG ' ' '
■0000 2 1 0 0 7 4 , * 2 S T A R T : L X I H j 7 4 0 0H

4

0 0 0 3 E5 ' 3 PUSH - H i. T A B L E STORED I N
• 7 4 0 0 H - . "

0 0 0 4 0 6 0 0 4 ‘ M V I
9*0

i STAGE COUNTER
0 0 0 6 58 5 B E G I N : . MOV’ • Z j B

0 0 0 7 3 E F F 6 , M V I A.* 0 F F H
0 0 0 9 1 D 7 L I : DCR -. E
0 0 0 A FA 1 2 0 0 c .8 . . JM . N O S H I F
0 0 0 D B7 • 9 ORA 1 A
0 0 0 E 17 10 R A L
0 0 0 F C 3 0 9 0 0 c 1 1 • JMP L 1
0 0 1 2 ’ 5F ■ 12 N O S H I F : MOV . E> A
0 0 1 3 0 E 0 0 13 • M V I C j 0 ‘

0 0 1 5 7 9 14 L 2 : MOV At C
0 0 1 6 A3 15 - ■ ANA E
0 0 1 7 2 6 7 8 16 M V I H * 7 8H ; A L P H A 1 S T O R E D ’ I N

7 8 0 0 H

STOKED I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

0 0 1 9 6 F 1 7 - MOV l > a '
0 0 1 A 7 E 1 8 MOV A j M .

0 0 1 B E l 1 9 STO R : POP H . '
0 0 1 C 7 7 2 0 MOV M > A
0 0 1 0 2 3 21 I N X H
0 0 1 E E5 2 2 I P U S H H .
0 0 1 F 0 C 2 3 * I N R c ■

. 0 0 2 0 7 9 2 4 - MOV - A , C
0 0 2 1 F E 4 0 2 5 C P I • 6 4 •
0 0 2 3 DA 1 5 0 0 C 2 6 J C L 2 . '
0 0 2 . 6 0 4 27 I N R B
0 0 2 7. .-7 8 28 MOV a , b - '
0 0 2 8 F E 0 7 2 9 ✓ C P I . 7 -
0 0 2 A D A 0 6 0 0 C 3 0

31
3 2
3 3

\ . J C . b e g i n

i I N V E R S E N T T T W I D D L E F A C T O R S
; S T O R E D A T 7 6 0 0 H
J 1 0 T H B I T 1 FOR I N V E R S E .

0 0 2 D 2 1 0 0 7 6 3 4 . L X I V U 7 6 0 0 H - ' .
0 0 3 0 E 5 3 5 P U SH H *
0 0 3 1 0 6 0 0 3 6

i
M V I B > 0

0 0 3 3 5 8 3 7 L 3 : MOV E / B
0 0 3 4 3’E F F 3 8 M V I 1 A> 0 F F H
0 0 3 6 I D .. 3 9 , L 4 : DCR E
0 0 3 7 F A 3 F 0 0 C 4 0 J M , N O S H P
0 0 3 A B 7 41 ORA A .
0 0 3 B 17. . 4 2 « R A L . J

0 0 3 C C 3 3 6 0 0 ■ C -
*>43

J M P L 4 .
0 0 3 F 5 F - 4 4 N O S H F : ' MOV E * a , . '

0 0 4 0 0 E 0 0 4 5 M V I C ^ 0 • '

0 0 4 2 7 9 4 6 L 5 : MOV Aj C ■ \

0 0 4 3 ; A 3 - 4 7 A N A • E ■

0 0 4 4 2 6 7 9 V 4 8 M V I H j 7 9 H '

0 0 4 6 6 F 4 9 MOV L j A - >
0 0 4 7 7 E 5 0 * MOV A j M i ‘ •
0 0 4 8 E l 51 S T R : POP H . , '
0 0 4 9 7 7 . 5 2 MOV M j A

0 0 4 A 2 3 5 3 I I N X H
0 0 4 B E 5 5 4 ■ ■* P U S H ' H '
0 0 4 C , 0 C . ' 5 5 * I N R sc-
0 0 4 D 7 9 5 6 MOV A j C
0 0 A E F E 4 0 57 »

C P I 6 4 . < "
0 0 5 0 DA 45? 0 0 . -C - ■ 5 8 J C L 5
‘0 0 5 3 0 4 5 9 I N R ■ • B • • ,
0 0 .5 a 7 8 ■ 6 0 MOV ' A j B . t
0 0 5 5 F E 0 7 4 61 • C P I 7 .
0 0 5 7 D A 3 3 0 0 c ■ - . 6 2 J C L 3
0 0 5 A C 3 5 5 F 8 6 3

t JM P 0 F 8 5 5 H
0 0 0 0 c 6 4 END S T A R T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

C) - T H I S PROGRAM G E N E R A T E S T W I D D L E F A C T O R S M O D U LO 3 0

!

- '
\ . . .

1 ’ •

A S M 8 0 T F 3 1 . S R C . . , .

I S I S - I I 8 0 8 0 / 8 0 8 5 MACRO A S S E M B L E R j V 3 . 0 M O D U L E P A G E 1

. 1

LO C O B J L I N E S O U R C E S T A T E M E N T
■

1 CSEG
'

0 0 0 0 ? 1 0 0 7 4 2 S T A R T : L X I H , 7 4 0 0 H J I N D E X S T O R E D ' l N 7 4 0 0 H
0 0 0 3 0 1 0 0 0 4 3 L X I ' B * 1 0 2 4 ; C O U N T E R
0 0 0 6 7 E 4 ' L l : MOV A j M ■
0 0 0 7 ' F E F F 5 C P I . 0 F F H ' ' - '
0 0 0 9 C A 1 8 0 0 • C . .6 J Z ' S T O R . 1 *

0 0 0 C F E1 F 7 C'PI . 3 1 /
0 0 0 E DA 1 8 0 0 C - 8 J C STOR
0 0 1 1 0 6 1 F 9 S U B T : S U I | 31
0 0 I 3 F E1 F 10 - C P I ‘ 31
0 0 \ 5 D2 1 1 0 0 C 1 1 J N C S U B T \
0 0 1 8 7 7 12 STOR.: MOV . M j a

0 0 1 9 2 3 1 3 I N X H ' , / '

0 0 1 A 0 B 1 4 DCX B 4 '

0 0 1 B 7 9 1 5 MOV . A j C , *

0 0 1 C B 7 1 6 ORA A
0 0 1 D C 2 0 6 0 0 C. 17 • J N Z L I

»

0 0 2 0 7 8> 1 8 MOV A * B ' ;

0 0 ? 1 B7 19 ORA » A
0 0 2 2 C 2 0 6 0 0 c 2 0 J N Z L I
0 0 2 5 C.3 5 5 F 8 21 JMP 0 F 8 5 5 H
0 0 0 0 c 2 2 • END S T A R T _

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

D) T H I S PROGRAM G E N E R A T E S T W I D D L E F A C T O R S MODULO 31

AS M 80 T F 3 0 . S R C P A G E W I D T H C 4 2)

I S I S - I I 1 8 0 8 0 / 8 0 3 5 MACRO A S S E M B L E R * V 3 . 0 - MOD U LE

LOC O B J L I N E SOURCE

* »
s ta te m e n t"

• ' , 1 CSEG
i i ' . - !

t
0 0 0 0 2 1 0 0 7 4 . 2 . S T A R T s L X I H j 7 4 0 0H .2 I N D E X STORED
0 0 0 3 0 1 0 0 0 4 3 L X I . . B j 1 0 2 4 i COUNTER
0 0 0 6 7E .4' L ' l : MOV A i M
0 0 0 7 F E F F .5 C P I 0 F F H
0 0 0 9 C A 1 8 0 0 . C 6 . J Z STOR . '
0 0 0 C FE1 E 7 C P I . 3 0 ' -

. 0 0 0 E DA 1 8 0 0 c • * 8 ' • J C STOR
0 0 1 1 D6 I E 9 S U B T : - S U I 3 0
0 0 1 3 FE1 E 10 . C P I 3 0 •
0 0 1 5 D 2 1 1 0 0 c 11 v J N C S U B T
0 0 1 8 7 7 12 S T O R : MOV M i A 1
0 0 1 9 2 3 13 I NX ' . h* -
0 0 1 A 0 B 1 4 DCX . B , • • 1 . •
0 0 1 B - 79 15 MOV ’ A ^ C
0 0 1 C B7 1 6 . ORA ' A- :
0 0 1 D C 2 0 6 0 0 c 1 7 J N Z . Ll ' -
0 0 2 0 7 8 18 . MOV ' A , B ' •
0 0 2 1 B7 19 . ORA A • ' ■ * ; . ’
0 0 2 2 C 2 0 6 0 0 c ■ 2 0 J N Z ■ L I
0 0 2 5 C 3 5 5 F 8 21 JMP 0 F 8 5 5 H
0000 c 2 2 END . S T A R T /

1

N 7 4 0 0 H -

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[1] N.S. Szabo and R .I. Tanaka, "Residue Arithmetic and its
Application to Computer Technology", McGraw H i l l , New York,
1976.

[2] F.J. Taylor, "Large Moduli M ultip liers", Proc. International
Conference on Acoust. Speech,. Signal Processing, April 1980.

[3] G.A. Ju llien , "Implementation of Multiplication Modulo a
Prime Number with Application to Number Theoretic Transform",
IEEE Transactions on Computors, Vol C-29, No. 10, October
1980, pp. 899-905.

[4] O.M. Pollard, "The Fast Fourier Transform in a Finite Field",
Math. Comp., V. 25, April 1971, pp. 365-374.

[5] R.C. Agarwal and C.S. Burrus, "Fast Convolution Using Fermat
Number Transform with Applications to Digital F iltering",
IEEE Transactions, Acoust. Speech., Signal Processing,
Vol. ASSP-22, No. 2 , April 1974.

[6] C.M. Rader, "Discrete Convolution Via Mersenne Transform",
IEEE Transactions, Comput., Vol. C-21, December 1972.

[73 R.C. Agarwal and C.S. Burrus, "Number Theoretic Transform to
Implement Fast D igital Convolution", Proc. IEEE, Vol. 63,
April 1975.

[S] A.Z. Baraniecka, "Digital F iltering Using Number Theoretic
Transform", Ph.D. Dissertation, Electrical Engineering, University
of Windsor, Windsor, 1980.

[93 M.C. Pease, "An Adaptation of the Fast Fourier Transform for
Parallel Processing", J. Ass. Comput. Mach., Vol. 15, April 1968.

[10] M.O. Corinthios, "A Time Series Analyzer", Vol. 19, MRI
Symposia Ser., Polytechnic Press, New York, 1969.

[113 M.J. Corinthios, "A Fast Fourier Transform for High Speed
Signal Processing", IEEE Transactions Computors, Vol. C-20,
August 1971.

[123 Data Catalog 1978, In te l.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

r-j3 l M.A. Soderstrand and C. Vernia, "General Modulo P. M u ltip lier
with RNS Arithmetic Operations", Proc. IEEE, Vol. 6 8 ,
No. 4, April 1980.

[143 J.H. McClellan and C.M. Rader, "Number Theory in Digital Signal
Processing", Prentice Hall In c ., New Jersey, 1979.

[15j B.Gold and C.M. Rader, "Digital Processing of Signals", McGraw
ttill Boot Co., New York., 1969.

£163 . J.H. McClellan, "Hardware Realization of a Fermat Number
Transform", IEEE Trans. Acoust., Speech, Signal Processing,
Vo. ASSP-24, No. 3, June 1976.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

1952

1966

1973

1975

1981

Bom on the 15th of January in Rawalpindi, Pakistan

Completed high school in Govt. High School,
Islamabad, Pakistan

Graduate from the University of Islamabad,
Pakistan with the degree of Master of Science in
Physics

Served in Suparco, Islamabad, Pakistan

Candidate for the degree of M.A.Sc. in Electrical
Engineering at the University of Windsor, Windsor,
Ontario, Canada.

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A read-only-memory oriented implementation of the number theoretic transform butterfly unit.
	Recommended Citation

	tmp.1506712331.pdf.DqL3r

