A read-only-memory oriented implementation of the number theoretic transform butterfly unit.

Mahmood Akhtar
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Akhtar, Mahmood, "A read-only-memory oriented implementation of the number theoretic transform butterfly unit." (1981). Electronic Theses and Dissertations. 6754.
https://scholar.uwindsor.ca/etd/6754

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

A READ-ONLY-MEMORY ORIENTED IMPLEMENTATION OF THE

NUMBER THEORETIC TRANSFORM BUTTERFLY UNIT

by

MAHMOOD AKHTAR

A. Thesis

Submitted to the Faculty of Graduate Studies Through the Department of Electrical Engineering in partial fulfillment of the requirements for the Degree of Master of Applied Science at the University of Windsor

Windsor, Ontario, Canada

UMI Number: EC54737

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI'

UMI Microform EC54737
Copyright 2010 by ProQuest LLC
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

(C) Mahmood Akhtar 1981

'763008

ABSTRACT

This thesis is concerned with the design of a hardware implementation of a Number Theoretic Transform butterfly structure. The butterfly is being used as the computational element in a Number Theoretic Transform processor suitable for digital signal processing operations. The butterfly has been realized using arrays of read-only-memory (ROM) and table look-up techniques. All mathematical operations performed by the Number Theoretic Transform butterfly have been carried out using the Residue Number System. The ROM oriented structure lends itself to an efficient realization using very large scale integration (VLSII technology. The use of high density EPROMS in a pipeline configuration results in a structure suitable for real time signal processing applications.

ACKNOWLEDGEMENT

I would like to express my sincere thanks to my supervisor,. Dr. W.C. Miller for many valuable discussions and constructive criticism on this thesis. I am also very thankful to Dr. G.A. Jullien for his advice and assistance throughout the study period. Thanks are due to the other members of the Department and my fellow graduate students, especially Mr. H.K. Nagpal who helped me in various ways.

To my parents, I extend my sincere gratitude. Without their help and love, though far away, this work would not have started.

Thanks are also due to Mrs. Marion Campeau for her diligence in typing this thesis.

TABLE OF CONTENTS

ABSTRACT (i)
ACKNOWLEDGEMENTS (ii)
table of contents(iii)
LIST OF TABLES (vi)
LIST OF FIGURES(vii)
CHAPTER 1 INTRODUCTION 1
1.1 Preamble 1
1.2 Number Theoretic Transform 1
1.3 The NTT Butterfly Unit 3
1.4 Objective and Outline of the Work 4
1.5 Thesis Organization 5
CHAPTER 2 LOOK UP TABLE IMPLEMENTATION OF RESIDUE ARITHMETIC 8
2.1 Introduction 8
2.2 Modular Arithmetic 8
2.3 Residue Number System 10
2.3.1 Representation of Numbers 10
2.3.2 Basic Arithmetic Operations in RNS 11
2.3.3 Conversion From RNS Using Chinese 13 Remainder Theorem
2.4 Implementation of RNS Using Look Up Tables 17
2.4.1 Addition/Subtraction Using Sub-Moduli 20
2.4.2 Multiplication Modulo A Prime Number 26
2.5 Summary 30
CHAPTER 3 DIGITAL CONVOLUTION AND IMPLEMENTATION USING 32 TRANSFORM TECHNIQUES
3.1 Introduction to Digital Convolution 32
3.1.1 Finite Linear Convolution 32
3.1.2 Periodic or Cyclic Convolution 34
3.1.3 Linear Convolution via Cyclic 34 Convolution
3.2 Discrete Fourier Transform 35
3.3 Fast Fourier Transform 36
3.3.1 Decimation in Time Algorithm 38
3.3.2 Decimation in Frequency Algorithm 40
3.4 Number Theoretic Transform 42
3.4.1 Invertibility and Convolution 44Property of NTT-
3.5 Choice of the Parameters for the NTT 46
3.5.1 Transforms Defined Over Galois Fields 48
3.5.2 Construction of Galois Fields GF (m^{n}) 50
3.5.3 Searching for the Generator α in 53 GF (m^{2})
3.6 NTT Using RNS Concepts 54
3.7 Summary 57
CHAPTER 4 IMPLEMENTATION OF AN NTT BUTTERFLY 61
4.1 Introduction 67
4.2 NTT Processor 62
4.2.1 Memory Structure 62
4.2.2 The Butterfly Unit 72
4.2.3 Efficiency of Primes 73
4.2.4 Selection of the Primes for Hardware 76 Implementation
4.3 ROM Realization of Butterfly Structure 81
4.3.1 ROM Realization for $4 n+1$ Primes 81
4.3.2 ROM Realization for $4 n+3$ Primes 84
4.4 Simulation of the Butterfly Structure 86
4.4.1 The Transform of Real and Complex 90 Data for Both Primes
4.4.2 Upper Bound on Convolution 90
4.4.3 Simulation Results 92
4.5 Hardware Implementation of the Butterfly 99Structure
4.5.1 Description of ICs Used 99
4.5.2 Generating and Storing the Tables 104
4.5.3 A Typical Pipeline Interconnection 107
4.6 Clock Circuitry 116
4.7 Experimental Verification 116
4.8 Discussion on the Hardware Realization 120 of the B.F. Unit
4.9 Summary 124
CHAPTER 5 SUMMARY 126
CHAPTER 6 CONCLUSIONS 130
APPENDICES
A Simulation Programs 132
B Programs to Generate Table for Eprom, on Intel 220 157
REFERENCES 184
VITA AUCTORIS 186

LIST OF TABLES

Tables Page
2.1 Index of the Elements Mod 11 27
3.1 Table of First Few Primes and the Associated 56 Transform Length
4.1 Comparison Between the Primes 76
4.2 Table of Primes $m_{i}=4 n+1$ Less Than 9 Bits 77
4.3 Table of Primes $m_{i}=4 n+3$ Less Than 9 Bits 78
4.4 Requirements for Both Type of Primes 84
4.5 Necessary Information on the Hardware Unit 114

LIST OF FIGURES

Figure Page
$2.1 \quad \begin{aligned} & \text { Pipeline Array for the Function }||a \cdot b|+|c \cdot d||_{m} \\ & \text { for } 16<m \leq 32\end{aligned}$ 19
2.2 Modulo 9 Operations With Pre-Multiplied Constant 21
2.3 Addition Modulo 19 Using 6 and 7 as Sub-Moduli 23
2.4 Addition Using Sub-Moduli Approach 25
2.5 Multiplication Using Index Addition and Sub-Moduli 29
2.6 Multiplication Using Index Addition Modulo 191 31
3.1 Explanation of Linear Convolution 33
3.2 Convolution Using DFT Method 37
3.3 2 Point Butterfly (DIT) 41
3.4 Eight Point Butterfly (DIT) 41
3.5 2 Point Butterfly (DIF) 43
3.6 Eight Point Butterfly (DIF) 43
3.7 Implementation of NTT Using RNS for Three Moduli 58
4.1 Conceptual Diagram of NTT Processor 63
4.2 Basic Machine Organization for 0100 66
4.3 Expansion of Transform Matrix for 0100 68
4.4 Flow Graph for an Eight Point OIOO Algorithm 69
4.5 An NTT Processor for OIOO Algorithm 70
4.6 An NTT Processor for Real Time 0 IOO 71
4.7(a) Radix 2 Butterfly for $4 n+3$ Prime 74
Figure Page
4.7(b) Implementation of Radix 2 Butterfly Unit for 74 $4 n+3$ Prime
4.8(a) Butterfly Unit for $4 n+1$ Prime ($n=$ even) 75
4.8(b) Butterfly Unit for $4 n+1$ Prime ($n=$ odd) 75
4.9 Conceptual Diagram of B.F. Unit 82
4.10 Design of NTT Butterfly for $4 n+1$ Prime (193) 83
4.11 Design of NTT Butterfly for $4 n+3$ Prime (191) 85
4.12 Input and Transform of $x(n)$ 93
4.13 Convolution of Real Input 95-96
4.14 Convolution of Complex Input in $\operatorname{GF}\left(449^{2}\right)$ 97-98
4.15 Clock Pulses for the Butterfly Unit 100
4.16 Block Diagram and Pin Configuration of 27081 kx 8 Eprom 102
4.17 Logic Diagram and Pin Configuration of 8212,8 bit 103 Latch
108
4.18 A Typical Pipeline Interconnection
110
4.19 Board 1
111
4.20 Board 2
4.21 Board 3 112
4.22 Board 4 113
4.23 Different View of the Hardware Implemented Butterfly 115
4.24 Clock Circuit for Pipeline Structure 117
4.25 Input-Output of the Butterfly Before-After Changing 119 One Bit
4.26 Addition Modulo 193 Using Adder-Subtractor 121

CHAPTER 1

INTRODUCTION

1.1 PREAMBLE

This thesis describes a hardware realization of a number theoretic transform butterfly. The work forms part of a more general development of a digital signal processing facility that is being constructed by the signal and systems laboratory at the University of Windsor. The authors responsibility in this project was to design an NTT butterfly that can be multiplexed with a memory support structure to ultimately provide a digital filtering capability.

1.2 NUMBER THEORETIC TRANSFORM

Finite digital convolution has many practical applications in digital signal processing. It can be used to implement non-recursive digital filters. It can also be used to carry out auto and cross correlation, as well as, polynomial multiplication. The direct method of computing a convolution sum involves a number of multiplications proportional to the product of the length of the two inputs [14]. Multiplication in a digital system, is a relatively slow operation and. therefore techniques were investigated to minimize the number of multiplications in the convolution sum. The ase of transform techniques to compute convolution is quite popular and the savings in multiplication time over direct method depends upon the transform length.

The characteristic of these transforms are such that the convolution in time domain is equivalent to pointwise multiplication in transform domain.

The discrete Fourier transform (DFTL is defined in the complex number field and is one of the transforms that exhibits the cyclic convolution property. The DFT is defined as

$$
\begin{equation*}
x(k)=\sum_{n=0}^{N-1} x(n) e^{-j \cdot 2 \pi / N \cdot n k}, k=0,1, \ldots, N-1 \tag{1.1}
\end{equation*}
$$

The DFT becomes very attractive to use as it can be implemented efficiently using the Fast Fourier Transform (FFT) type algorithm [15]. The two main disadvantages associated with the FFT are the multiplication by irrational coefficients and the inherent number growth. Both of the above introduce truncation and/or round-off errors when implemented on a finite wordlength machine.

Pollard [4] has shown that transforms defined in a finite ring also exhibit the cyclic convolution property. These transforms are named as Number Theoretic Transforms (NTT) because number theoretic concepts are used in their definition. The number theoretic transform is defined as

$$
\begin{equation*}
x\left[k L=\left|\sum_{n=0}^{N-1} x[n) a^{n k}\right|_{M} k=0,1,2, \ldots, N-1\right. \tag{1.2}
\end{equation*}
$$

where α is the cyclic generator of order N. These transforms are implemented using an integer number system. Since these transforms are defined in finite rings, the number growth problem is inherently solved. The value of M is chosen such that the result of the
convolution is within the defined range. Whenever the result of an operation exceeds M, the number is reduced modulo M and if the final result is within the dynamic range, the intermediate overflows can he ignored. Thus the computation is exact and truncationroundoff errors do not arise.

The proposed implementation of the NTT requires a supporting memory structure and a computational unit commonly known as the butterfly unit (BF). The operations performed by the butterfly unit are addition, subtraction and multiplication, but no division. The complexity of the BF unit depends upon the choice of the field and also the form of the generator, which is used to define the number theoretic transform.

1.3 THE NTT BUTTERFLY UNIT

The binary operations in the BF unit are performed modulo an integer M, which is used in the definition of the NTT. Modulo reduction is not an easy operation unless the modulus M has a simpler form, preferably a power of two for the Binary number system implementation of the BF unit. Radar [6] used the Mersenne number and Agarwal and Burrus [7] used the Fermat numbers to ease of the computation in the $B F$ unit using the binary number system to perform the required arithmetic operations modulo M. McClellan [16] has built hardware for implementing the Fermat number transform and used adders-subtractors to implement the BF unit. The generator was chosen such that the multiplications by twiddle factors were replaced by bit shiftings.

These adders-subtractors and the bit shifting were arranged in a pipeline configuration for a high throughput rate,

In using an array of ROMS, rather than adder-subtractor, etc., an extremely simple structure emerges that offers identical characteristics for any required operation and is inherently simple to pipeline. The use of ROM arrays for implementing BF unit also relaxes the constraints on the choice of the parameters for NTT and they can be chosen freely on purely number theoretic basis to maximize the transform length.

1.4 OBJECTIVE AND OUTLINE OF THE WORK

The use of NTT to compute convolution is very attractive because of its error free computation. The heart of the processor is the computational unit or the Butterfly unit. The orientation in this .work is to utilize the advancement in memory fabrication technology and build up a butterfly unit using arrays of look up tables arranged in a pipeline configuration. The look up table approach is quite attractive because of the fact that multiplication can be performed by accessing the data from the tables and thus the multiplication time is reduced to the access time of the ROMS.

Normally the dynamic range assocaited with an NTT processor would be too large to allow an efficient realization based on table look up techniques. In this work the Residue Number System has been employed so that a problem with a large dynamic range can be converted to a number of parallel operations with small dynamic ranges. In this manner a realization based on array of ROM is not only practical but desirable as it is able to exploit the rapidly evolving VLSI technology associated
with memory fabrication.
The present work was divided into three phases. The first phase of the work consisted of a literature survey to establish the theoretical basis for the design of the NTT processor. Pollard [4] has defined transforms in finite rings/field and has showed the cyclic convolution property (ccp) of the transforms. Agarwal and Burrus [7] have established the necessary conditions for the transforms to exhibit the ccp. Baraniecka [8] has proposed the look-up table approach using the residue number system to implement the computational unit of Number Theoretic Transform (NTT) processor. The use of look-up tables relaxes the constraints on the choice of the parameters of the NTT. Baraniecka [8] also outlined the procedure for selecting the NTT parameters for look-up table implementation.

Pease [9] has presented a procedure for the design of the memory organization of a FFT processor and Corinthois [10]-[11] has used this idea as the basis for a proposed memory organization for a FFT processor. The same memory organization is used for the FNTT processor because of the similar structure of the two transforms.

The second phase of the work was to design a complete read-only-memory oriented hardware implementation of the NTT Butterfly unit. The design utilizes the table look-up approach and employes a pipeline configuration. A computer simulation of the hardware structure of the NTT bufferly and the associated memory organization was carried out on the IBM 370/3031 facility to verify the validity of the proposed structure. The simulation consisted of generating the look-up tables and then arranging them in the pipeline configuration to check the operations of the pipeline. A
convolution of sequences was performed to establish the right selection of the parameters.

The final phase of the work was to actually build a prototype computational unit using 2708 Eproms and 8212 as registers arranged in a pipeline fashion. The registers are necessary for storing the intermediate data to keep the pipeline full. This unit was then tested for real time application.

1.5 THESIS ORGANIZATION

Chapter 2 provides a review of the basic modular arithmetic. used in the design. The advantage of using the RNS for a look-up table implementation, especially for multiplication, is established. Binary operations using sub-moduli techniques are also described and the implementation of addition-subtraction using look up tables is shown. An efficient way of performing multiplication for large primes is also described in this chapter.

Chapter 3 starts with an introduction to digital convolution and its implementation using transform techniques. Decimation in time (DIT) and decimation in frequency (DIF) forms of the FFT algorithm are presented in detail.

The choice of the parameter for the NTT and the construction of the 2nd degree extension Galois fields are reviewed. A suitable choice of parameters for an RNS based implementation of the Number Theoretic Transform is discussed.

The concept of an NTT processor is provided in Chapter 4. A memory structure for real time applications is described and a suitable
memory organization is suggested. The selection of the primes for an efficient hardware realization of the NTT butterfly unit is discussed and a final design of the butterfly structures for both kind of primes is presented. These butterfly structures were simulated on an IBM 370 computer and the details of the simulation are included in this chapter.

The butterfly unit for $4 \mathrm{n}+1$ type primes was then implemented in hardware using 2708 Eproms and 8212 latches. The simplicity of the structure using ROM arrays is obvious from the hardware design. The generation of the look up tables on an Intel 220 system and the other relevant material is discussed, and the clock circuitry for running the pipeline is given.

Chapter 5 summarizes the work presented in the thesis and Chapter 6 presents the conclusions that can be reached regarding this work.

CHAPTER 2

LOOK UP TABLE IMPLEMENTATION OF RESIDUE ARITHMETIC

2.1 INTRODUCTION

The look up table approach offers the potential for a ROM oriented high speed realization. This approach is particularly advantageous in realizing multiplication operations, which now become as simple and fast as addition. The use of the Residue Number System (RNS) to implement addition, subtraction and multiplication in look up tables provides a great saving in hardware and is more efficient than the BNS. The RNS is also an inherently carry-borrow free system and does not introduce internal delays due to carry-borrow digit propagation.

In this chapter a detailed discussion of the residue number system and its implementation using look up tables is presented. The concepts developed here will be applied to the number theoretic transform (NTT) in the next chapter.

The residue number system is an integer number system and in the following discussion, alt the variables take on integer values only.

2.2 MODULAR ARITHMETIC

If two integers, a and m, are related by the following equation

$$
\begin{equation*}
a=q \cdot m+r \tag{2.1}
\end{equation*}
$$

where q and r are integers and $r \varepsilon 0,1, \ldots \ldots, m-1$, then r is the residue of a, modulo m, and is represented as:

$$
\begin{equation*}
r=|a|_{m} \tag{2.2}
\end{equation*}
$$

From eq. (2.1) it is clear that q is the quotient and r is the least positive remainder of $\frac{a}{m}$.

Definition 1: If two integers have the same residue then they are called congruent and represented as:

$$
\begin{equation*}
\mathrm{a} \equiv \mathrm{~b} \quad \bmod \quad \mathrm{~m} \tag{2.3}
\end{equation*}
$$

such that

$$
\begin{equation*}
|a|_{m}=|b|_{m}=r \tag{2.4}
\end{equation*}
$$

This also implies that $(a-b)$ is divisible by m and written as $m(a-b)$.
Thus all integers are congruent mod m to some integer in the finite set $\{0,1,2, \ldots, m-1\}$ and are said to belong to one of the m classes. The residue classes mod m form a commutative ring with identity with respect to modulo m addition and multiplication and is denoted by Z_{m}. For example, if $m=7$, there are seven distinct classes and the integers belonging to these are

$$
\begin{aligned}
& \{0\}=\ldots \ldots \ldots,-14,-7,0,7,14, \\
& \{1\}=\ldots \ldots \ldots,-13,-6,1,8,15 \\
& \{2\}=\ldots \ldots \ldots,-12,-5,2,9,16, \\
& \{3\}=\ldots \ldots \ldots,-11,-4,3,10,17, \\
& \{4\}=\ldots \ldots \ldots,-10,-3,4,11,18 \\
& \{5\}=\ldots \ldots \ldots,-9,-2,5,12,19 \\
& \{6\}=\ldots \ldots \ldots,-8,-1,6,13,20
\end{aligned}
$$

e.g. 13 and 27 belong to the same class as $|13|_{7}=|27|_{7}=6$ or $13 \equiv 27$ $\bmod 7$.

The following basic arithmetic operations are permissible with modulo arithmetic
a) addition: $8+12=20 \equiv 3 \bmod 17$
b) negation: $\quad-7 \times(-7+17=10) \bmod -7$ 그…
c) subtraction: $7-12=7+(-12) \equiv(7+5=-12) \bmod 17$
d) multiplication: $7 \times 12=84 \equiv 16 \bmod 17$
e) division: $\quad \frac{a}{b}$ exists if b has a multiplicative inverse and b divides a

2.3 RESIDUE NUMBER SYSTEM (RNS)

2.3.1 Representation of Numbers

The representation of an integer in the residue number system takes the form of an n-tuple

$$
\begin{equation*}
a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \tag{2.5}
\end{equation*}
$$

of the least positive residue with respect to the set of moduli $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$.

The residues, a_{i}, are formally written $a_{i}=|a|_{m_{i}}$. The residue representation of a number is unique. The converse of this statement is true only if the numbers considered are in the range of 0 to $\mathrm{M}-1$ where

$$
\begin{equation*}
M=\underset{i=1}{n} m_{i} \tag{2.6}
\end{equation*}
$$

and all the m_{i} 's are relatively prime. If negative numbers are to be represented in this system, then the number range can be divided into two parts. The first part represent positive numbers and second, negative numbers.

For $M=$ even

$$
\begin{aligned}
x & =+ \text { ve no. if } x \in\left\{0,1,2, \ldots, \frac{M}{2}-1\right\} \\
& =-v e n o . ~ i f ~
\end{aligned} x \in\left\{\frac{M}{2}, \frac{M}{2}+1, \ldots, M-1\right\}
$$

For $M=$ odd

$$
\begin{aligned}
x & =\text { tve no. if } x \varepsilon\left\{0,1,2, \ldots, \frac{M-1}{2}\right\} \\
& =\text {-ve no. if } \quad x \in\left\{\frac{M+1}{2}, \ldots, M-1\right\}
\end{aligned}
$$

Example 1:
for $n=3$
and $m_{1}=5 ; m_{2}=7 ; m_{3}=9$
$M=\underset{i=1}{3} \dot{m}_{i}=5.7 .9=315$
positive numbers $\varepsilon\{0,1, \ldots, 157\} \dagger$
negative numbers $\varepsilon\{158, \ldots, 314\}$

2.3.2 Basic Arithmetic Operations in the RNS

Definition 2: A binary operation defined on a set s of elements is a rule that assigns to each pair of elements from s a unique element from s.

Definition 3: A set s is closed with respect to binary operations if
a$b=c$
where a, b and c are any element in s and is the binary operation. The residue number system is, in general, not closed under the binary operation of

+ The conversion from the residue number system to signed number system is explained in Sect. 2.3.3 by giving an example.
division as the result of division may not be an integer.
The residue number system is inherently a carry/borrow free system. The binary operations under which the system is closed can be performed by independent operations on the respective digits, i.e.,

$$
\begin{equation*}
z=x \square y \text { implies } z_{i}=\left|x_{i} \square y_{i}\right|_{m_{i}} \tag{2.8}
\end{equation*}
$$

where \square represents the allowed binary operations.
It is useful to be familiar with the idea of the multiplicative inverse before considering division in the residue number system.

Assume it is desired to divide x by y in the real number system, then $\frac{x}{y}$ can be written as $\frac{x}{y}=x \cdot \frac{1}{y}$ where $\frac{1}{y}$ is the multiplicative inverse of y, and thus division by y can be replaced by multiplication with $\frac{1}{y}$.

If $\frac{x}{y}$ is not an integer in the real number system, then it can not be represented in the residue number system and division of x by y is not defined in the RNS. But for $\frac{x}{y}$ an integer, in other words, when x is a multiple of y, the idea of a multiplicative inverse can be used to perform division.

Definition 4: If $0<a<m$ and $|a b|_{m}=1$, then a is called the multiplicative inverse of b. mod m and is denoted by $a=\left|\frac{1}{b}\right|_{m}$.

The quantity $\left|\frac{1}{b}\right|_{m}$ exjsts if and on ly if $(b, m)=1$ and $|b|_{m} \neq 0$. In this case $\left|\frac{l}{b}\right|_{m}$ is unique and division can be performed as

$$
\begin{equation*}
\left|\frac{x}{y}\right|_{m}=\left.\left.|x \cdot| \frac{1}{\bar{y}}\right|_{m}\right|_{m} \tag{2.9}
\end{equation*}
$$

2.3.3 Conversion From RNS Using Chinese Remainder Theorem (CRT)

In this section conversion from the RNS to any other number system is discussed. This conversion is made possible using a theorem from number theory [1] called the Chinese Remainder Theorem.

Given the residue representation $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ of x, the Chinese Remainder Theorem makes it possible to determine $|x|_{M}$, provided the greatest common divisor of any pair of moduli is one or moduli are pairwise relatively prime. $|x|_{M}$ is then given by the following equation:

$$
\begin{equation*}
|x|_{M}=\left.\left.\left|\sum_{j=1}^{n} \hat{m}_{j}\right| \frac{r_{j}}{\stackrel{\tilde{m}_{j}}{ }}\right|_{m_{j}}\right|_{M} \tag{2.10}
\end{equation*}
$$

where $M=\prod_{i=1}^{n} m_{i}, \quad \hat{m}_{i}=\frac{M}{m_{i}}$ and $\left(m_{i}, m_{j}\right)=1$ for $i \neq j$
$\left|\underset{\hat{m}_{j}}{l}\right|_{m_{j}}$ represents the multiplicative inverse of $\hat{m}_{j} \bmod m_{j}$.

The following example illustrates the procedure to convert a number from its residue representation using Chinese Remainder Theorem.

Example 2:

$$
\begin{aligned}
& \text { let } m_{7}=5, m_{2}=7, \quad m_{3}=9 \\
& \text { then } M=\prod_{i=1}^{3} m_{i}=5.7 .9=315 \\
& \hat{m}_{7}=63, \quad \hat{m}_{2}=45, \quad \hat{m}_{3}=35 . \\
& \left|\frac{1}{\hat{m}_{7}}\right|_{m_{1}}=\left|\frac{1}{63}\right|_{5}=2 \text { since }|63 \times 2|_{5}=1
\end{aligned}
$$

$$
\begin{aligned}
& \left|\frac{1}{\hat{m_{2}}}\right|_{m_{2}}=\left|\frac{1}{45}\right|_{7}=5 \quad \text { since }|45 \times 5|_{7}=1 \\
& \left|\frac{1}{\underline{\hat{m}_{3}}}\right|_{m_{3}}=\left|\frac{1}{35}\right|_{9}=8 \\
& \text { since }|35 \times 8|=1
\end{aligned}
$$

Chinese Remainder Theorem
or

$$
\begin{equation*}
|x|_{M}=\left.|63 \cdot| r_{7} \cdot 2\right|_{5}+45\left|r_{2} \cdot 5\right|_{7}+\left.35\left|r_{3} \cdot 8\right|_{9}\right|_{315} \tag{2.12}
\end{equation*}
$$

Addition

using equation (2.12) where $r_{1}=2, r_{2}=1$ and $r_{3}=6$
$|x|_{M}=|63.4+45.5+35.3|_{315}=|582|_{315}=267$
which is the correct result of addition.

Subtraction

using eq. (2.12) for $(4,2,7)$ as $\left(r_{1}, r_{2}, r_{3}\right)$
$|63.3+45.3+35.2|_{315}=79$.
If -ve nos. are also to be represented then the number range, 0 to 314, is divided as
$0,1,2, \ldots, 157$ positive numbers
158, $159, \ldots, 314$ negative numbers.

The following example explains the procedure when the result of subtraction is negative

using equation (2.12), ($1,5,2$) \rightarrow, 236 since the result lies in the negative number range, it is a negative result therefore: subtract 315 from this, $236-315=-79$ which is the correct result of subtraction in signed number representation.

Multiplication

Choose the numbers such that the result of multiplication is contained in the dynamic range

using (2.12) $(1,1,3) \rightarrow 246$.

Division

$$
\begin{aligned}
& x=312=(2,4,6) \\
& y=13=(3,6,4)
\end{aligned}
$$

First find the multiplicative inverse of y_{i} 's

$$
\begin{array}{ll}
\left|\frac{1}{\overline{y_{1}}}\right|_{m_{1}}=\left|\frac{1}{3}\right|_{5}=2 & \text { since }|3 \times 2|_{5}=1 \\
\left|\frac{1}{\overline{y_{2}}}\right|_{m_{2}}=\left|\frac{1}{6}\right|_{7}=6 & \text { since }|6 \times 6|_{7}=1 \\
\left|\frac{1}{\overline{y_{3}}}\right|_{m_{3}}=\left|\frac{1}{4}\right|_{9}=7 & \text { since }|4 \times 7|_{9}=1
\end{array}
$$

Division can now be performed by multiplying x_{i} 's with multiplicative inverses of $y_{i}{ }^{\prime} s$

using equation (2.12), $(4,3,6) \rightarrow 24$ which is $\frac{312}{13}$.
To verify that division in RNS will not produce the closest integer value if x is not divisible by y, take

$$
\begin{aligned}
& x=311=(1,3,5) \\
& y=13=(3,6,4) \\
& \left|\frac{x}{y}\right|_{315}=(1,3,5) \cdot(2,6,7)=(2,4,8)
\end{aligned}
$$

$$
(2,4,8) \rightarrow 242 \neq\left[\frac{x}{y}\right]_{R}=24
$$

where $[.]_{R}$ indicates rounding to nearest integer. Note that there is no relation between $\frac{x}{y}$ and $\left|\frac{x}{y}\right|_{315}$. The reason is quite obvious. $\frac{x}{y}$ is not an integer and so $\left|\frac{x}{y}\right|_{315}$ has no meaning in the RNS. Two conclusions can be drawn from the above examples: (i) The RNS is not a weighted magnitude representation. The residue representation does not give any idea of magnitude and sign of the number represented. (ii) Division is not a simple operation. (iii) Operations on a pair of residues is independent of other residue operations.

2.4 IMPLEMENTATION OF RNS USING LOOK UP TABLES

Recent advances in high density memory technology have made it possible to implement the RNS operations using look-up tables stored in ROMS. The results of the operations can be precalculated and stored in the locations addressed by the input data. Binary operations are then reduced to the accessing of data from the stored tables. This is particularly advantageous in multiplication which becomes as simple and fast as addition. Speed of operation is then dependent only on the access time of the ROMS.

For a given modulus, $m_{j} \leq 32$, the operation of multiplication and addition modulo m_{i} of the two numbers can be computed by looking up the result in a $1 \mathrm{k} \times 8$ bits conmercially available ROMS. Using the same approach, operation moduli $m_{i}, 32<m_{i} \leq 64$, would require a $4 k \times 8$ bits ROM or four $1 k \times 8$ bits ROMS and so on.

The RNS is more efficient than the binary number system for look up table implementation as it requires less memory for the same
dynamic range. For example, with a wordlength of B bits, 2^{B} numbers can be represented and therefore a total of $2^{B} \cdot 2^{B}=2^{2 B}$ entries are required to store the result of operations in look up tables. For the same dynamic range, m_{i} 's can be choosen such that $\prod_{i=1}^{n} m_{i}>2^{B}$, then each m_{i} requires $m_{i}{ }^{2}$ entries in the table. Hence a total of $\sum_{i=1}^{n} m_{i}{ }^{2}$ entries are needed as compared to the direct implementation which requires $2^{2 B} \approx \underset{i=1}{n} m_{i}^{2}$ and for a reasonable value of n and $m_{i}{ }^{\prime}$ s

$$
\sum_{i=1}^{n} m_{i}^{2} \ll 2^{2 B}
$$

As an example of an RNS implementation using look up table, Fig. 2.1 illustrates a residue multiplier for modulo 31, followed by a residue adder to implement the function $\left||a . b|_{31}+|c . d|_{31}\right|_{31}$. The input to each table, modulo 31, can be represented by a maximum of 5 bits and the total of the two inputs require ten address lines, the output is five bits and so commercially available $1 \mathrm{k} \times 8$ bits ROMS can be used to implement this function. A total of three $7 k \times 8$ ROMS and two stages are required to compute the result. From Fig. 2.1, it is noted that ROM arrays offer the possibility of easy pipelining for high throughput. The data.from each ROM is latched and used as a partial address for the next ROM. The only control function required is a latch pulse. For every latch pulse, new input is accepted and a new output is generated. The throughput rate of the system is equal to the inverse of the access time of ROM plus latch settling time.

Another advantage of the look-up table is that it does not require any extra hardware for addition or multiplication with a constant. The constant can be pre-multiplied or added and can be stored along with the result of the operation.

Example 3:

For modulus $\mathrm{m}=9$ compute

$$
Z=|5| a .\left.b\right|_{9}+\left.3|c . d|_{g}\right|_{9} \text { with } a=3, b=4, c=6, d=8 \text {. }
$$

The result of the computation using residue arithmetic is 6 . Fig. 2.2 shows the entries and the interconnections between the look up tables.

Two multiplication and one addition table is required to compute Z. The first multiplication table generates the result of multiplication per-multiplied by 5 , modulo 9 , and second table generatesthe result of the second multiplication pre-multiplied by 3, modulo 9. Note that multiplication by 3 and 5 does not require any extra storage and does not introduce any extra delay.

2.4.1 Addition/Subtraction Using Sub-Moduli

As mentioned earlier, commerically available ROMS can be used to store tables for the RNS arithmetic, but this imposes an upper limit on the largest modulus to be used. To implement arithmetic modulo $m_{i} \leq 32,1 k \times 8$ bits ROMS can be used, operation modulo $32<m_{i} \leq 64$ would require a $4 k \times 8$ bits ROMS or four $1 k \times 8$ bits ROMS and operation modulo $64<m_{i} \leq 128$ would require $16 k \times 8$ bits ROM or sixteen of $7 k \times 8$ bits ROMS and so on. As will be explained in the next chapter, prime moduli, $64<m_{i}<512$, are required to implement a pratical NTT, the use

fig. 2.2 hodul. 9 deperaions with pre-hultiplied constant
of sixteen or more ROMS does not seem a very efficient approach. In order to increase the implementation efficiency, the same technique of breaking a large dynamic range into smaller moduli can be used to implement the addition/subtraction modulo a large modulus. The only constraints on the choice of sub-moduli is that they should be large enough to contain the result of the operation modulo main modulus and should be relatively prime. For example, if main modulus is m_{i}, then the maximum number which can occur is $m_{i}-1$. The maximum result of addition is $2\left(m_{i}-1\right)$ and therefore the sub-moduli should be chosen such that their product is greater than $2\left(m_{i}-1\right)$. Mathematically the condition can be represented as

$$
\begin{equation*}
m_{1 i} \times m_{2 i}>2\left(m_{i}-1\right) \tag{2.13}
\end{equation*}
$$

where $m_{1 i}$ and $m_{2 i}$ are the sub-moduli.
Multiplication can not be implemented efficiently using the sub-moduli approach as more than two sub-moduli are required to contain the result of multiplication, modulo the main modulus. However, for prime moduli, there exists an efficient method to implement multiplication utilizing the . sub-moduli approach and will be dealt with later.

Fig. 2.3 illustrates the addition modulo 19 using 6 and 7 as submoduli. First note that $6.7>2(19-1)$ and so these are appropriate sub-moduli, which will produce the correct result of addition modulo 19.

This example is clearly not an efficient one as only one ROM would be necessary to implement addition modulo 19 but this explicitly shows the

implementation using sub-moduli.
Example 4:
Assume $1 \mathrm{k} \times 8$ bits ROMS are available to implement addition/ subtraction modulo 191. Numbers from 0 to 190 can be represented by 8 bits and hence a total of 16 input (address) lines are required and therefore the memory needed is $64 k \times 8$ bits or 64 ROMS of $1 k \times 8$ bits each. The maximum value of the sub-moduli that can be chosen is 31 which have five bit representation and the look up table will require a total of 10 address lines and so $1 \mathrm{k} \times 8$ ROMS can be used to store the tables. Fig. 2.4 shows the implementation using submoduli 17 and 23, both have five bit representation. In the first stage, the numbers to be added are reduced modulo 17 and 23 . In the next stage, addition modulo 17 and 23 is performed and in the final stage, the result is reconstructed and corrected using chinese remainder theorem to produce the result modulo 191.

A total of seven $1 k \times 8$ ROMS are required to implement addition/ subtraction. It is obvious from this example that sub-moduli scheme saves a lot of memory at the cost of increasing the time of operation. It requires three stages to compute the result whereas direct implementation would have required only one stage but the tremendous saving in hardware is obviousiy more advantageous.

For implementing subtraction, the same scheme is used except that subtraction tables are required in the 2nd stage of Fig. 2.4 and the entries in reconstruction tables are different.

Fig. 2.4 AdDItion using sub-MODULI APPROACH

2.4.2 Multiplication Modulo A Prime Number

As explained in the previous section, look up tables speed up the operation of addition-multiplication, if they can be implemented efficiently in hardware. For moduli $m_{i} \leq 32$, commercially available $1 k \times 8$ ROMS can be used to store the tables of addition/multiplication. For large moduli, addition/subtraction can be implemented efficiently using the sub-moduli approach. For multiplication, however, the direct application of the sub-moduli scheme does not offer an efficient way. Taylor [2] recently proposed a scheme to implement multiplication modulo $\left(2^{n} \pm 1,2^{n}\right)$. Jullien [3] presented an efficient scheme to implement multiplication modulo a prime number. For practical NTT's, moduli of interest are primes and therefore Jullien's scheme can be used to implement multiplication. A complete description of the scheme is as follows.

The residue classes (mod m) form a commutative ring with identity with respect to addition and multiplication modulo m, traditionally known as the ring of integers modulo m or the residue ring and denoted by Z_{m}. The ring of residue classes (mod m) contains exactly m distinct elements. The ring of the residue classes $(\bmod m)$ is a field if and only if m is a prime number. Thus the non-zero classes of Z_{m} form a cyclic multiplication group of order m-1, $\{1,2, \ldots, m-1\}$, with multiplication modulo m, isomorphic to the addition group $\{0,1,2, \ldots, m-2\}$ with addition modulo m-1.

This property of isomorphism can be used to implement multiplication and is analogous to multiplication using logarithms.

For a prime modulus, there exists a set of integers, called primitive roots, whose repeated multiplications generates all the elements of the multiplicative group.

$$
\begin{equation*}
\left|\alpha^{t}\right|_{m}=a \varepsilon\{1,2, \ldots, m-1\} \tag{2.14}
\end{equation*}
$$

where α is the primitive root and t is the index of a. For different values of t, distinct elements of the field are generated. Note that zero does not have an index and therefore multiplication by zero needs extra care. However in look up table implementation, multiplication by zero can be taken care of easily.

Example 5:

For modulus 11, the primitive root is 2. Table (2.1) shows the element and the respective indices of the field. Multiplication $|6 \times 10|_{17}=5$ can be mapped into addition of indices $|9+5|_{10}=4.4$ is the index of 5 and the correct result of multiplication is obtained. In this way

x	ind $_{2} x$
1	0
2	1
3	8
4	2
5	4
6	9
7	7
8	3
9	6
10	5

Table 2.1: Index of the elements mod 11.
multiplication is replaced by addition and can be implemented using the sub-moduli approach for large moduli.

The following steps are required to perform multiplication using the index method.
(i) Find the indices of the numbers to be multiplied.
(ii) Add indices mod $m-1$.
(iii) Perform inverse index operation.

Our main interest is in look up table implementation and therefore a sub-modular ROM adder can be considered. Here the modulus is decomposed into two relatively prime moduli and the addition is carried out within this two moduli system. The final result is reconstructed using another look up table. This reconstruction table can include:
(i) sub-moduli reconstruction using chinese remainder theorem.
(ii) Modulus over flow correction.
(iii) Inverse index look up.

The following example illustrates the complete procedure. Consider the operation, $|x \cdot y|_{19}=Z$ and choose sub-moduli 6 and 7 which gives a composite modulus $6 \times 7=42>2 \times 19$. Fig. (2.5) shows the required tables and appropriate interconnection. Multiplication by zero is invalid using the index method, an invalid index (in this case, 7), is stored as the index of zero. In the inverse look up, knowing that 7 will never occur except by multiplication of zero, zero is stored to give the correct result of multiplication. Consider $x=13$ and $y=15$, the result is $|13 \times 15|_{19}=5$.

Fig. 2.5 multiplication using index adolition ano sub-modull

If the look up tables of Fig. (25) are followed (result at every stage is in square) the correct result is obtained.

Fig. (2.6) shows the block diagram for multiplication modulo 191 using sub-moduli 30 and 31. Note the similarity between Fig. (2.4) to perform addition and Fig. (2.6) to perform multiplication. Both operations now take the same time, number of stages and same number of ROMS.

2.5 SUMMARY

In this chapter the basic idea of modular arithmetic was presented. The residue number system was described and was applied to perform binary operations namely addition, subtraction, multiplication and division. The method was clearly illustrated by using examples. The adoptibility of the RNS for a look up table implementation of multiplication and addition was shown.

From the discussion in this chapter it can now be concluded that the RNS is an efficient and fast way of performing addition, subtraction and multiplication since it is inherently a carry borrow free system and there is no interdigit dependence. Division is possible only in certain cases.

The RNS also offers the best result for hardward implementation using look up tables. Multiplication modulo a prime number can be efficiently implemented and offers the same speed of operation as addition.

The ideas will now be used in the next chapter for the definition and implementation of NTTs.

Fig. 2.6 MULTIPLICATION USING INDEX ADDITION MODULO 191

CHAPTER 3

DIGITAL CONVOLUTION AND IMPLEMENTATION USING TRANSFORM TECHNIQUES

3.1 INTRODUCTION TO DIGITAL CONVOLUTION

Finite digital convolution has many powerful applications in digital signal processing. It is used to implement non-recursive or finite impulse response digital filters. It is also used to carry out auto and cross correlation as well as for computation such as polynomial multiplication [4].

3.1.1 Finite Linear Convolution

Finite linear discrete convolution of two sequences is mathematically represented as

$$
\begin{equation*}
y(n)=\sum_{m=0}^{N_{1}+N_{2}-1} n(n-m) x(m) \quad n=0,1,2, \ldots\left(N_{1}+N_{2}-1\right) \tag{3.1}
\end{equation*}
$$

where $x(n), h(n)$ and $y(n)$ are the finite digital sequences of length N_{1}, N_{2} and $N_{1}+N_{2}^{-1}$ respectively. Fig. 3.1 shows a simple pictorial representation of how linear convolution is carried out in practice. Fig. 3.1(a) shows a typical sequence $x(n)$ that is non-zero in the range $0 \leq n \leq 4$. Fig. 3.1 (b) shows the sequence $h(n)$ that is non-zero for $0 \leq n \leq 7$. Fig. 3.1(c) shows the mirror image of $h(n)$ along the y-axis. Fig. 3.1(d) to (f) show simultaneous plots of $x(m)$ and $h(n-m)$ for $n=7,4,11$. Clearly for $n<0$ and $n>11$, there is no overlap between $x(m)$ and $h(n-m)$, therefore $y(n)$ is exactly zero. Finally Fig. 3.1(g)

Fig. 3.1 Explanation of Ifnear convolution
shows $y(n)$, which is the desired convolution.
3.1.2 Periodic or Cyclic Convolution

If $h(n)$ represents one period of the periodic sequence $h_{p}(n)$, and $x(n)$ represents that of $x_{p}(n)$, of both period N samples, then the periodic or cyclic convolution of $h(n)$ and $x(n)$ is defined as

$$
\begin{equation*}
y(n)=\sum_{m=0}^{N-1} x(m) \quad n|n-m|_{N} \text { for } n=0,1, \ldots, N-1 \tag{3.2}
\end{equation*}
$$

and is represented as $y(n)=x(n) * h(n)$. Because of the periodicity, sequences $x_{p}(n)$ and $h_{p}(n-m)$ are considered only in the interval $0 \leq m \leq N-7$.

As the samples of $h_{p}(n-m)$ side past $m=N-1$, the identical samples appear at $m=0$. Thus the term cyclic convolution is a description of the convolution of two sequences defined on a circle. When two periodic sequences are convolved, the output sequence is periodic and of the same period.

3.1.3 Linear Convolution Via Cyclic Convolution

Consider two finite duration sequences $x(n)$ and $h(n)$. The duration of $x(n)$ is N_{1} and the duration of $h(n)$ is N_{2}. The linear convolution of $x(n)$ and $h(n)$ yields the sequence $y(n)$ of duration $\left.N_{1}+N_{2}-\right]$. To obtain this sequence using cyclic convolution, both input sequences should also be of period $N_{7}+N_{2}-1$. Zeros can be appended to these input sequences to make them of duration $N_{1}+N_{2}-1$ and then circular convolution can be used to obtain $y(n)$.

3.2 DISCRETE FOURIER TRANSFORM

Finite digital convolution can be implemented using transforms having the cyclic convolution property (ccp). The characteristics of these transforms are such that the transform of convolution in the time domain is equal to the term by term product in the transform domain.

One of the transforms that exhibit ccp is the Discrete Fourier Transform (DFT) and is given by

DFT

$$
\begin{equation*}
x(k)=\sum_{n=0}^{N-1} x(n) w^{n k}, k=0,1, \ldots, N-1 \tag{3.3}
\end{equation*}
$$

where $W=\exp \left(-j \frac{2 \pi}{N}\right)$.
The inverse transform (IDFT) is given by
IDFT $\quad x(n)=\frac{1}{N} \sum_{k=0}^{N-1} x(k) W^{-n k}, n=0,1, \ldots, N-1$

Then the cyclic convolution property is given as
If $\quad y(n)=x(n)(*) h(n)$
then $\quad Y(k)=X(k) \cdot H(k)$
where X, H and Y are the respective transforms of x, h and y.
To prove the ccp of DFT, take

$$
\begin{equation*}
y_{p}(n)=\sum_{l=0}^{N-1} x_{p}(T) h_{p}(n-1) \tag{3.6}
\end{equation*}
$$

Take the transform of both sides of equation (3.6)

$$
Y_{p}(k)=\sum_{n=0}^{N-1} \cdot\left\{\sum_{1=0}^{N-1} x_{p}(1) h(n-1)\right\} e^{-j \frac{2 \pi}{N} \cdot n k}
$$

$$
\begin{aligned}
& =\sum_{1=0}^{N-1} x_{p}\left(1 \left[\left\{\sum_{H_{p}(k)}^{N-1} h(n-1): e^{-j \frac{2 \pi}{N}(n-1) \cdot k}\right\} e^{-j \frac{2 \pi}{N} 7 k}\right.\right. \\
& =H(K) \cdot \sum_{j=0}^{N-1} x_{p}(1) e^{-j \frac{2 \pi}{N} \cdot 1 k} \\
& \underbrace{}_{x_{p}(k)}
\end{aligned}
$$

or
$Y_{p}(k)=X_{p}(k) \cdot H_{p}(k)$ which is the desired result.
Using the cap of DFT, convolution can be implemented in the following way
i) take the DFT of both the input sequences
ii) obtain the term by term product in transform domain
iii perform the inverse DFT to obtain the output sequence. The block diagram of Fig. 3.2 shows the complete procedure to perform convolution.

3.3 FAST FOURIER TRANSFORM (EFT)

The term FFT refers to a number of algorithms that employ a number of methods for reducing the computation time required to compute a DFT. They make use of the symmetry and periodicity of the exponential factors, W, used in the defination of DFT, to de-

Fig. 3.2 Convolution using DFT method
compose a long DFT computation into smaller length DFT computations. To compute an N point DFT, a total of $(N-1)^{2}$ complex multiplications and $N(N-1)$ additions are required while using the FFT for the same transform requires approximately $\frac{N}{2} \log _{2} N$ multiplication and $N \log _{2} N$ addition for radix 2 algorithm. Basically there are two types of FFT algorithms, called decimation in time (DIT) and decimation in frequency (DIF).

3.3.1 Decimation in Time Algorithm (DIT)

The algorithm in which the input sequence (time domain) is decomposed into smaller sequences is called a DIT algorithm. The procedure is illustrated for an N point sequence where $N=2^{r}$, r is an integer.

By definition:

$$
x(k)=\sum_{n=0}^{N-1} x(n) w^{n k} \quad k=0,1,2, \ldots, N-1
$$

Define two $\frac{N}{2}$ point sequences $x_{1}(n)$ and $x_{2}(n)$ as the even and odd members of $x(n)$.

$$
\begin{aligned}
& x_{1}(n)=x(2 n) \\
& x_{2}(n)=x(2 n+1)
\end{aligned}
$$

Then N-point DFT is

$$
x(k)=\sum_{n=0}^{\frac{N}{2}-1} x(2 n) W_{N}^{2 n k}+\sum_{n=0}^{\frac{N}{2}-1} x(2 n+1) W_{N}^{(2 n+1) k}
$$

where $W_{N}^{2}=e^{-j \frac{2 \pi}{N} \cdot 2}=e^{-j 2 \pi / N / 2}=W_{N / 2}$

$$
\begin{aligned}
x(k) & =\sum_{n=0}^{\frac{N}{2}-1} x_{1}(n) w_{N / 2}^{n k}+w_{N}^{K} \sum_{n=0}^{\frac{N}{2}-1} x_{2}(n) w_{N / 2}^{n k} \\
& =x_{1}(k)+w_{N}^{k} x_{2}(k)
\end{aligned}
$$

where $X_{1}(k)$ and $X_{2}(k)$ are $\frac{N}{2}$ point DFT's, and of period $\frac{N}{2}$. Therefore,

$$
\begin{aligned}
x(k) & =x_{1}(k)+W_{N}^{k} \quad x_{2}(k) & & 0 \leq k \leq \frac{N}{2}-1 \\
& =x_{1}\left(k-\frac{N}{2}\right)+W_{N}^{k} x_{2}\left(k-\frac{N}{2}\right) & & \frac{N}{2} \leq k \leq N-1 .
\end{aligned}
$$

As mentioned, for direct evaluation of an N point DFT, N^{2} multiplications are required. Similarly, direct evaluation of an $\frac{N}{2}$ point DFT, requires $\left(\frac{N}{2}\right)^{2}$ multiplications. If the above procedure is used to compute an N point DFT, a total of

$$
\begin{array}{ll}
\left(\frac{N}{2}\right)^{2} \cdot 2+N & \text { multiplications are required and } \\
\text { for } \quad \frac{N^{2}}{2} \gg N \quad \text { approximately } \frac{N^{2}}{2} \text { multiplication are required and }
\end{array}
$$

a 50% saving over the direct evaluation of an N point DFT is obtained for
a reasonably large N. The procedure is repeatedly applied to each of the successive subsequences, until only two point DFT's are left to be evaluated.

A flow graph representing the basic operation of the decimation in time algorithm is called a butterfly and has inputs A and B that are combined to give two outputs x and y via the operation

$$
\begin{aligned}
& x=A+W_{N}^{k} B \\
& y=A-W_{N}^{k} B
\end{aligned}
$$

Fig. 3.3 shows the butterfly unit and Fig. 3.4 shows the flow graph for 8 point DIT algorithm.

3.3.2 Decimation in Frequency Algorithm DIF

In this version of the FFT, the input sequence $x(n)$ is partitioned into two sequence each of length $\frac{N}{2}$ in the following manner. The first sequence $x_{1}(n)$ consists of first $\frac{N}{2}$ points of $x(n)$ and the second sequence $x_{2}(n)$ consists of the last $\frac{N}{2}$ points of $x(n)$. Thus

$$
\begin{array}{ll}
x_{1}(n)=x(n) & n=0,1,2, \ldots, \frac{N}{2}-1 \\
x_{2}(n)=x\left(n+\frac{N}{2}\right) & n=0,1,2, \ldots, \frac{N}{2}-1
\end{array}
$$

The N - point DFT of $x(n)$ is then

$$
\begin{aligned}
x(k) & =\sum_{n=0}^{\frac{N}{2}-1} x_{1}(n) W_{N}^{n k}+\sum_{n=0}^{\frac{N}{2}-1} x_{2}(n) W_{N}^{n k+N K / 2} \\
& =\sum_{n=0}^{\frac{N}{2}-1}\left(x_{1}(n)+e^{-j \pi k} x_{2}(n)\right) W_{N}^{n k}
\end{aligned}
$$

Fig. 3.32 point butterfly (DIT)

Fig. 3.4 Eight point butterfly (DIT)

Decompose $X(k)$ into even and odd sample sequence

$$
\begin{align*}
& x(2 k)=\sum_{n=0}^{\frac{N}{2} 1}\left(x_{1}(n)+x_{2}(n)\right) w_{N}^{2 n k} \\
& x(2 k)=\sum_{n=0}^{\frac{N}{2} 1}\left(x_{1}(n)+x_{2}(n)\right) w_{N / 2}^{n k} \tag{3.7}
\end{align*}
$$

and

$$
\begin{align*}
x(2 k+1) & =\sum_{n=0}^{\frac{N}{2} 1}\left(x_{1}(n)-x_{2}(n)\right) W_{N}^{n(2 k+1)} \\
& =\sum_{n=0}^{\frac{N}{2} 1}\left\{\left(x_{1}(n)-x_{2}(n) W_{N}^{n}\right\} W_{N / 2}^{n k}\right. \tag{3.8}
\end{align*}
$$

(3.7) and (3.8) are equivalent to two $\frac{N}{2}$ points DFT's. The procedure is repeatedly applied to each of the even and odd samples output subsequences until finally two point DFT's are left to be evaluated. Fig. 3.5 shows the butterfly unit and Fig. 3.6 shows the flow graph for 8 point DFT using DIF algorithm.

3.4 NUMBER THEORETIC TRANSFORM (NTT)

Agarwal and Burrus [5] have showed that the existence of an N point transform having the cyclic convolution property depends on the existence of a generator alpha (α) that is a root of unity of order N, and the existence of N^{-7}. In the complex number field, the DFT is the transform which exhibit cyclic convolution property with α equal to $\exp \left(-j \frac{2 \pi}{N}\right)$.

Fig. 3.52 point butterfiy (DIF)

Fig. 3.6 Eight point butterfly (DIF)

It supports any length of the transform because of the variable periodicity of $\exp (-j, 2 \pi / N)$ but at the same time it involves multiplication by irrational coefficients (sines and cosines) making exact computation impossible on a digital machine. At each stage, the output has to be scaled down to avoid overflow thus requiring some kind of scaling operation and at the same time introducing extra computational errors.

Pollard [4] has shown that transforms defined in a finite ring or field exhibit the cyclic convolution property with a suitable choice of the ring or field and the appropriate alpha. These transforms are known as Number theoretic transforms (NTT) and defined as

$$
\begin{equation*}
x(k)=\left|\sum_{n=0}^{N-1} x(n) \alpha^{n k}\right|_{M} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
x(n)=\left|N^{-1} \sum_{k=0}^{N-1} x(k) \alpha^{-n k}\right|_{M} \tag{3.10}
\end{equation*}
$$

where N^{-1} belongs to the ring/field. Unlike the DFT, NTT's do not allow arbitrary transform lengths: The maximum attainable length N, depends upon the choice of the ring or field and alpha. Before discussing the choice of parameter, the invertibility and convolution property of $N T$ is established in the next section.

3.4.1 Invertibility and Convolution Property of NTT

If α is the root of unity of order N, which is one of the basic conditions for the existence of the NTT, then the following relation holds

$$
\begin{equation*}
\left|a^{N j}\right|_{M^{-1}}=0 \quad j=a n \text { integer } \tag{3.11}
\end{equation*}
$$

which can be factored as:

$$
\begin{equation*}
\left(\alpha^{j}-1\right) \sum_{p=0}^{N-1} \alpha^{p j}=0 \tag{3.12}
\end{equation*}
$$

Therefore

$$
\begin{array}{ll}
\sum_{p=0}^{N-1} \alpha^{p j}=N & \text { if } j \equiv 0 \bmod N \\
\sum_{p=0}^{N-1} \alpha^{p j}=0 & \text { otherwise } \tag{3.13}
\end{array}
$$

since for $j \neq 0 \quad \alpha^{j}-1 \neq 0$

Invertibility

Assuming all the operations are performed mod m, substituting (3.9) into (3.10) and using (3.13)

$$
\begin{aligned}
x(n) & =N^{-1} \sum_{k=0}^{N-1} x(k) \alpha^{-n k}=N^{-1} \sum_{k=0}^{N-1} \sum_{u=0}^{N-1} x(u) \alpha^{u k} \cdot \alpha^{-n k} \\
& =N^{-1} \sum_{k=0}^{N-1} \sum_{u=0}^{N-1} x(u) \alpha^{k(u-n)}=x(n)
\end{aligned}
$$

and hence the invertibility of NTT is proved.

Convolution

Let $X(f)=\sum_{t=0}^{N-1} u(t) \alpha^{f t}$

$$
\begin{aligned}
& H(f)=\sum_{v=0}^{N-1} h(v) a^{f t} \\
& Y(f)=X(f) \cdot H(f)
\end{aligned}
$$

Then, by (3.10), the inverse transform of $Y(f)$

$$
\begin{aligned}
y(s) & =N^{-1} \cdot \sum_{f=0}^{N-1} x(f) \cdot H(f) \cdot \alpha^{-f s} \\
& =N^{-1} \sum_{f=0}^{N-1} \sum_{t=0}^{N-1} \sum_{v=0}^{N-1} x(t) h(v) \alpha^{f(v+t-s)} \\
& =N^{-1} \sum_{t=0}^{N-1} x(t) h(s-t) \cdot N=\sum_{t=0}^{N-1} x(t) h(s-t)
\end{aligned}
$$

Since the surmation $\sum_{f} \sum_{V} \alpha^{f(v+t-s)}$ is modulo N, hence this is the cyclic convolution and the CCP is proved.

3.5 CHOICE OF THE PARAMETERS FGR THE NTT

Practical considerations dictate a selection of ring/field that supports a transform whose parameters lead to efficient implementation of modular arithmetic, either in hardware or software. Most of the reported work on the NTT has supposed that the hardware will be implemented using the binary number system. In the conventional binary arithmetic, residue reduction is particularly easy when the modulus can be represented as power of two. Also multiplication by will be simpler if α is also a power of two. In that case multiplication by α reduces to bit shifting. These restrictions severly limit the maximum attainable transform length.

We are interested in the implementation of NTT using ROM arrays and therefore the moduli and generators can be selected purely on number theoretic basis to maximize the transform length. The following
definitions and theorems will be helpful in determining the attainable transform length for different moduli.

Definition 1: The Euler's totient function $\Psi(M)$ is defined as the number of integer in Z_{M} that are relative prime to M, e.g., for $M=5 \quad \Psi(5)=4$. Definition 2: For M a prime number $\Psi(M)=M-1$.
Definition 3: If M can be represented as $M=p_{1}{ }^{r_{1}} \cdot p_{2}^{r_{2}} \ldots p_{n} r_{n}$ where p_{i} 's are primes than $\Psi(M)=M\left(1-\frac{1}{p_{1}}\right)\left(l-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{n}}\right)$. Theorem 1: Euler's theorem states that the maximum order of an element in Z_{M} is $\Psi(M)$.

The implications of Euler's theorem are that maximum order of α in the ring Z_{M} is $\Psi(M)$ that is $\alpha^{\Psi(M)}=1$ or the maximum value of transform length in Z_{M} is $\Psi(M)$. Mathematically $N_{\max }=\Psi(M)$ and the allowed transform lengths should divide $\Psi(M)$.

Consider the case when M is even, then it contains a factor of 2 and therefore the maximum transform length is one, which is practically useless. This implies that M can not be taken as a multiple of two.

Next take the case when M is odd and represented as $2^{k}-1$. Let k be composite and represented as $p Q_{\text {, with }} p$ prime, then $2^{p}-1$ divides $2^{p Q}-1$ and the maximum transform length is $2^{p}-1$. Therefore only prime values of k need to be considered. These numbers are known as Mersenne numbers. Radar [6] has proposed transforms defined in the ring of integers modulo Mersenne number. These transform are referred to as Mersenne Number Trans form (MNT).

It has been shown that transform of length $2 p$ exists and the corresponding α is -2 . The disadvantage of this multiplication free MNT is that the transform length is not a power of 2 and not even highly composite and therefore fast FFT-type computational algorithm can not be used.

For $M=2^{k}+1$ and k odd, 3 divides 2^{k+1} and the maximum transform length is 2 . Consider k even and let $k=s \cdot 2^{t}$ where s is odd. Then $2^{2^{t}}+1$ divides $2^{s .2^{t}}+1$ and the length of the possible transform will be governed by $2^{2^{t}}+1$. Therefore, integers of the form $2^{2^{t}}+1$ are of interest. These numbers are known as Fermat numbers. Agarwal and Burrus [7] proposed transforme defined in the ring of integers modulo Fermat number. These transforms are referred to as Fermat number transforms. Fermat numbers up to F_{4} are primes. In [7], it has been shown that an FNT with $\alpha=\sqrt{2}$ allows $N=2^{t+2}$.

However the main disadvantage of the MNT and FNT is the rigid relationship between the dynamic range and attainable transform length. For example, with a 32 bit word machine using $F_{5}=2^{32}+1, N=128$ for $\alpha=\sqrt{2}$. There is also a limited choice of possible word lengths.

Other authors have used different fields but still the transform length is severly limited. The solution to this problem is found by computing the transforms over extension fields.

3.5.1 Transforms Defined Over Galois Fields

Definition 4: For any prime m and any positive integer n, there exists a finite field with m^{n} elements. This unique field is commonly denoted
by the symbol $\mathrm{GF}\left(\mathrm{m}^{\mathrm{n}}\right)$ and is called a Galois field. Any finite field with m^{n} elements is a simple algebric extension of the field Z_{m}.

Let F be a field. Then any field K containing F is an extension of F. If λ is a root of some irreducible polynomial $f(x) \varepsilon F[x]$ such that $f(\lambda)=0$, then the extension field arising from a field F by the adjunction of a root λ is called a simple algebric extension, denoted by $F(\lambda)$. Each element of $F(\lambda)$ can be uniquely represented as a polynomial.

$$
a_{0}+a_{1} \lambda+\ldots a_{n-1} \lambda^{n-1}, a_{i} \varepsilon F
$$

The fied of complex numbers is an example of an extension of the field of real numbers, it is generated by adjoining a root $j=\sqrt{-1}$ of the irreducible polynomial $x^{2}+1$.

If $f(x)$ is an irreducible polynomial of degree n over Z_{m}, m prime, then the Galois field with m^{n} elements GF (m^{n}) is defined as the field of residue class of polynomial of $Z_{m}[x]$ reduced modulo $(f(x))$.

Pollard [4] has shown that transforms of the form

$$
\begin{aligned}
& x(k)=\sum_{n=0}^{N-1} x(n) a^{n k} \\
& x(n)=N^{-1} \sum_{k=0}^{N-1} x(k) \alpha^{-n k}
\end{aligned}
$$

defined over the Galois fields of m^{n} elements, where m is a prime, also exhibit ccp. The maximum attainable transform length is given by $N_{\max }=m^{n}-1$ with restriction that α is cyclic of order N in $G F\left(m^{n}\right)$.

Thus the extension fields allow a greatly increased transform length for the same value of m and the problem of obtaining large transform
length is resolved. In order that the implementation of efficient, two things must be considered after the choice of m and N :
(i) construct the Galois field GF (m^{n}) such that the multiplication and addition of field elements require the smallest possible number of operations;

Ciil search for the generator of an N element cyclic sub-group in GF ($\left.\mathrm{m}^{\mathrm{n}}\right), \alpha$, that has the simplest form possible so that the number of operations required for multiplications by powers of α are minimized.

3.5.2 Construction of Galois Field GF $\left(\mathrm{m}^{\mathrm{n}}\right)$

To construct a Galois field of m^{n} elements, first an irreducible polynomial is to be formed. The form of the irreducible polynomial dictates the complexity of the computation in the field since addition and multiplication is defined as the polynomial addition and multiplication, followed by polynomial reduction modulo $f(x)$. We restrict our interest to GF of 2nd degree as they still offer simple hardware implementation and provide transform lengths which are quite suitable for practical purposes. We take the two cases of irreducible polynomial and find out the complexity of the computation.

Case 1: Let $f(x)=x^{2}+x+1$ be an irreducible polynomial of degree 2 over GF (m). Then, the extension field in which the given polynomial has a root, denoted by w, may be described by

$$
G F\left(m^{2}\right)=\{a+b w \mid a, b \varepsilon G F(m)\}
$$

and

$$
w^{2}+w+1=0 \text { in } G F\left(m^{2}\right)
$$

Take the multiplication of two elements of the field

$$
\begin{aligned}
& \left|(a+b w) \cdot\left(a^{\prime}+b^{\prime} w\right)\right|_{m} \\
= & \left|\left(a a^{\prime}+b b^{\prime} w^{2}\right)+w\left(a b^{\prime}+a^{\prime} b\right)\right|_{m}
\end{aligned}
$$

Dividing the result by $w^{2}+w+1$

$$
=\left|\left(a^{\prime} a-b b^{\prime}\right)+w\left(a b^{\prime}+a^{\prime} b-b b^{\prime}\right)\right|_{m}
$$

Thus multiplication of field elements require 4 binary multiplications and three binary additions.

Case 2: Let $f(x)=x^{2}-r \quad r \varepsilon \operatorname{GF}(m)$. Then the extension field, in which the given polynomial has a root is described by

$$
\operatorname{GF}\left(m^{2}\right)=\{a+\lambda b \mid a, b \varepsilon G F(m)\}
$$

and

$$
\lambda^{2}-r=0
$$

Multiplication of two elements is now performed as

$$
\begin{aligned}
(a+b \lambda) \cdot\left(a^{\prime}+b^{\prime} \lambda\right) & =\left|\left(a a^{\prime}+b b^{\prime} \lambda^{2}\right)+\lambda\left(a b^{\prime}+a^{\prime} b\right)\right|_{m} \\
& =\left|\left(a a^{\prime}+r b b^{\prime}\right)+\lambda\left(a b^{\prime}+a^{\prime} b\right)\right|_{m}
\end{aligned}
$$

Residue reduction mod $\left(\lambda^{2}-r\right)$ is simple since $\lambda^{2}=r$. Multiplication of field elements require 4 binary multiplication and 2 addition. Since ROM arrays will be used for the implementation of NTT, multiplication by
constant, r does not require separate stage. Because of the simplicity of the ($x^{2}-r$) polynomial, it is used to construct the 2nd order Galais field.

After the structure for irreducible polynomial has been decided, the next problem is to find a suitable value of r such that $x^{2} \equiv r(\bmod m)$ is not solvable in $G F(m)$.

Baraniecka [8] has described a complete procedure for finding the values of r for different fields. Following is a brief discussion of the method presented in [8].

All the prime numbers can be divided into two groups.
$4 n+1$ e.g., $1,5,13,17, \ldots$
$4 n+3$ e.g., 3, 7, 11, 19,.
The most trivial value of r is -1 but for the case of $4 n+1$ type primes, $\sqrt{-7}$, can be considered as a member of $\mathrm{GF}(\mathrm{m})$ and hence Galois fields of 2 nd degree can not be constructed using the polynomial, $x^{2}+1$. For example, if $m=5, \sqrt{-1}$ is congruent modulo 5 to 2 and 3 . For $4 n+3$ type primes, $\sqrt{-1}$ can be used to construct Galois fields of 2nd degree and $G F\left(\frac{2}{m}\right)$ is isomerphic to the residue class of complex, so called Gaussian integers. The elements of the field are defined as $a+\sqrt{-T} b, a, b \varepsilon G F(m)$. To find an irreducible polynomial for primes of $4 n+1$ type, we make use of the following theorem.

Theorem 2: If g is a generator for the multiplicative group $G F(m)-\{0\}$, then $x^{2}-g$ is an irreducible polynomial in $G F(m)$.

For example, 13 is a prime of $4 n+1$ type. It's generator of the cyclic group is 2 . It can be easily verified that

$$
x^{2} \equiv 2 \bmod (13) \text { has no solution }
$$

or $x^{2}-2$ is an irreducible polynomial in $G F(m)$. Hence a Galois field of 2nd degree can be constructed using $r=2$. The elements of $G F\left(m^{2}\right)$ will be defined as $a+\sqrt{2} b, a, b \in G F(m)$.
3.5.3 Searching for the Generator α in $\operatorname{GF}\left(\mathrm{m}^{2}\right)$

We first summarize what has been presented so far:
(i) choose the transform length N which is suitable for the application (ii) choose the prime which will give this transform length over a Galois field of $2 n d$ degree
(iii)construct the 2nd order fields in which binary operations are simpler.

The next problem is now to find out the generator, α, which is of the order N in $\operatorname{GF}\left(m^{2}\right)$. To search for the generator α for $4 n+3$ type, the following theorem is stated. The prime, $m_{i}=4 n+3$, can be represented as $m_{i}=q \cdot 2^{p}-1$ with q odd.
Theorem: Given a base field Z_{m} and an irreducible polynomial $x^{2}-r$ over $G F(m)$, the extension field $Z_{m}(\sqrt{r})$ has a cyclic subgroup of order $N=2^{B}$. The maximum value of B is $P+1$. The generator α has the form $\beta+\gamma \sqrt{r}$.

For $4 n+3$, a prime $m_{i}=r$ can be taken as -1 and hence the general form of α is $\beta+\gamma \sqrt{-1}$. Transforms over $\operatorname{GF}\left(m^{2}\right)$ with $r=-1$ can be used to compute convolution on complex data or convolution on two blocks of real data.
Example: For $m=7=1.2^{3}-1$ the maximum radix two transform over $\operatorname{GF}\left(7^{2}\right)$ is $N=2^{p+1}=16 . \alpha$ for this prime can be chosen to be
$2+3 \sqrt{-1}$ and it can be verified that the generator has order 16. Other values of α are also possible and can be used for the transform. $4 n+1$ primes can be represented as $m=q \cdot 2^{p}+1$ where $(q, 2)=1$. The largest possible radix 2 transform length in $G F\left(m^{2}\right)$ is $N=2^{p+1}$. For primes of this form, the generator has a simple form $\alpha=\sqrt{r}$ where $x^{2}-r$ is an irreducible bionomial in $G F\left(m^{2}\right)$. This property is obtained from the following theorem.
Theorem 3: Let $\mathrm{m}=\mathrm{q} \cdot \mathbf{2}^{k}+1$, be an odd prime number. Then:
i) If g is generator: for the multiplicative group $\operatorname{GF}(\mathrm{m})$ - \{0\}, then $x^{2}-g$ is an irreducible polynomial in $G F(m)$.
ii) If g is as in (i), then \sqrt{g} has multiplicative order $q \cdot 2^{k+1}$ in $G F\left(\mathrm{~m}^{2}\right)$ where elements are given as $a+b \sqrt{g} a, b \in G F(m)$. iii)We can find a generator \sqrt{r}, of a cyclic subgroup or order 2^{k+1} in $G F\left(m^{2}\right)$ where $r=g^{\text {eq }}$ with $(e, 2)=1$ and $x^{2}=r$ an irreducible polynomial in $G F(m)$.
Example: Let the prime be $\mathrm{m}=97=3.2^{5}+1$. Maximum radix 2 transform length over $G F\left(97^{2}\right)$ is $N=2^{6}=64$. From the tables of the primitive roots, it can be found out that for the prime 97, $g=5$.

According to theorem 3, $\sqrt{5}$ will generate a cyclic subgroup of order 192 , and the generator of the multiplicative order 64 is given by $\alpha=\sqrt{r}=(\sqrt{5})^{3 e}$ where $(e, 2)=1$. Arbitrarily choosing $e=1, \alpha=\sqrt{28}, i t$ can be verified that this α has order of 64 in $\mathrm{GF}\left(97^{2}\right)$.

3.6 NTT USING RNS CONCEPTS

From the previous discussion, it can be seen that the NTT defined over 2nd order Galois fields, yields a practicable transform length and these 2nd
order fields can be constructed using polynomials for which the binary operation in $G F\left(m^{2}\right)$ is simplest. Although the transform length achieved is large enough for practical purposes, dynamic range is still severely limited. This problem can be solved using RNS concepts. The NTT can be performed over different Galois fields and then the final result can be reconstructed using the chinese remainder theorem or a mixed radix conversion scheme [8]. Thus computing the transform over a finite ring which is isomorphic to a direct sum of several Galois field of 2nd degree, $R=G F\left(m_{1}{ }^{2}\right)+\ldots .+G F\left(m_{n}{ }^{2}\right)$ increases the dynamic range to n $\underset{i=1}{\mathbb{I}} \mathrm{~m}_{\mathrm{i}}$. The conditions for the existence of the NTT over the finite ring can now be restated.
i) For each m_{i}, α_{i} must be a primitive Nth root of unity in $G F\left(m_{i}{ }^{2}\right)$ ii) $N\left[\left(m_{i}^{2}-1\right) \quad i=1,2, \ldots, n \quad\right.$ or in other words $N \mid \operatorname{gcd}\left(m_{j}^{2}-1\right)$, $i=1, \ldots, n$

As a practical example, assume a transform length of 32 points is required. The prime moduli 17,31 and 47 can be used and the dynamic range is then given by their product $17 \times 31 \times 47 \simeq 2^{14.65}$ and therefore a word length of approximately 14 bits is achieved. These are not the only choice of primes. Other primes can also be used for the same transform length but which will give different dynamic ranges.

Table 3.1 shows the primes and the maximum transform length that can be achieved using these primes. It may be noted that for any transform length N and the generator α, the transform. length is halved if α is raised to power two, for example, for prime 193

Primes m_{i}	Factorization of $m_{i}-1$	Factorization of $m_{i}^{2}-1$	Maximum Radix 2 Length in $\mathrm{GF}\left(\mathrm{m}_{\mathrm{i}}\right)$	Maximum Radix 2 Length in $\operatorname{GF}\left(\mathrm{m}_{\mathrm{i}}^{2}\right)$
3	2	2^{3}	2	8
5	2^{2}	3.23	4	8
7	3.2	3.24	2	16
11	5.2	5.23	2	8
13	$3.2{ }^{2}$	7.3.2 ${ }^{3}$	4	8
17	2^{4}	$3^{2} \cdot 2^{5}$	16	32
19	$3^{2} .2$	$5.3^{2} \cdot 2^{3}$	2	8
23	11.2	$11.3 .2^{4}$	2	16
29	7.2^{2}	7.5.3.2 ${ }^{3}$	4	8
31	5.3 .2	$5.3 .2^{6}$	2	64
37	$3^{2} .2^{2}$	$19.3^{2} .2^{3}$	4	8
41	5.23	7.5.3.2 ${ }^{4}$	8	16
43	7.3 .2	$11.7 .3 .2^{3}$	2	8
47	23.2	$23.3 .2^{5}$	2	32
53	13.2^{2}	$13.3^{3} .2^{3}$	4	8
59	29.2	29.5.3.2 ${ }^{3}$	2	8
61	5.3.2 ${ }^{2}$	31.5.3.2 ${ }^{3}$	4	8

Table 3.1 TABLES OF FIRST FEW PRIMES AND THE ASSOCIATED TRANSFORM LENGTH.
the maximum transform length is 128 and the corresponding α is $\sqrt{125}$. This same prime can be used for trassform length 64 and the α would be 125 , for $N=32, \dot{\alpha}=185$ and so on. Thus for the smaller transform length, large primes can be used to provide large dynamic range.

Fig. 3.7 shows a conceptual block diagram to implement an NTT using the RNS. At the first stage a distributor is required which can feed the data modulo respective primes to different units. Each prime requires a supporting memory structure and a computational unit. The advantage of using RNS is that the computation can be performed in parallel and the speed of operation does not depend upon the number of primes used and hardware is the only limitation on the number of primes to be used. After the computation, the final result of the transform can be reconstructed in a reconstruction stage, using the ch. rem. theorem or mixed radix conversion.

3.7 SUMMARY

In this chapter, the implementation of convolution using transform technique has been discussed. It was shown that certain transforms exhibit cyclic convolution property and can be used to implement circular or linear convolution. The general structure of these transforms is $x(k)=\sum_{n=0}^{N-1} x(n) \alpha^{n k}$ where α is the Nth root of unity and N is the transform length. In a complex number field for $\alpha=e^{-j \cdot \frac{2 \pi}{N}}$, the transform is known as the DFT and exhibits the cyclic convolution property. The main disadvantage of the DFT is the muliplication by
OUTPUT

Fig. 3.7 Implemention of NTT using RNS for three moduli.
彦
irrational coefficients, thus making it impossible to compute the transform exactly using binary arithmetic.

It was shown by different authors that the NTT defined over
finite rings or fields also exhibit the ccp for suitable α. It was assumed that these transforms will be implemented using binary arithmetic and thus stress was given to the field for which residue reduction was simpler. a was chosen to have a simpler form preferably a power of 2 so that multiplication by a reduces to bit shifting. This severly restrictes the choice of ring/field and also α can not be chosen to yield the maximum transform length. In this chapter it has been assumed that the NTT will be implemented using ROM arrays and therefore the moduli and α can be chosen freely to obtain the maximum transform length. A ROM array implementation still did not allow a suitable large transform length in GF of 1st degree and therefore GF of 2nd degree were introduced. The implementation of NTT in GF of 2nd degree were discussed and also it was shown that using GF of 2nd degree increases the transform length to more than the square of the transform length in the lst degree fields. The use of 2nd degree field, though increasing the transform length, does not solve the problem of dynamic range. For an increased dynamic range, large moduli were to be used, which are not efficient for hardware implementation. This problem is solved through the use of the RNS by computing transform in paralle $\}$, modulo several primes, $\left\{m_{j}\right\}$, so that the dynamic range is given by $M=\underset{i=1}{n} m_{i}$.

In summary, the following procedures may be followed for selecting the parameters of NTT.
(1) Choose the desired transform length N for the particular application.
(2) Find the dynamic range required for the particular application.
(3) Depending upon the dynamic range and transform length, choose the suitable prime. For $N>64$ and for large dynamic range requirements, it is more efficient to go for the 2 nd degree fields.
(4) Construct the 2nd order fields using a simple form of irreducible polynomial.
(5) Find out the generator α, which has the simplest form and have an order of N.

The complete discussion on choosing these parameters was presented in this Chapter. The above procedure is a tentative procedure and the final choice of the parameter is dictated by the efficient hardware realization and the cost of the system. In the following chapter, a detailed discussion on efficient hardware realization will be presented.

CHAPTER

IMPLEMENTATION OF AN NTT BUTTERFLY

4.1 INTRODUCTION

The NTT processor mainly consists of a supporting memory structure and a computational unit commonly known as the butterfly unit. The main aim of the work presented, is to realize the butterfly unit in hardware, compatible with the memory structure used with the NTT processor.

In this chapter the design of the NTT butterfly is developed. The associated memory structure to support the NTT butterfly is discussed as required but the actual hardware design of the memory structure is not undertaken. A multiplexed butterfly unit was designed for hardware implementation, using look up tables and the pipeline configuration, for real time applications. A detailed simulation of the basic required memory structure and the butterfly unit designed for hardware implementation was done. After the verification of the simulation results, the butterfly unit was implemented in hardware using look up tables stored in Eproms. The only control required to run the butterfly unit is a clock pulse and a circuitry was designed and built for generating control pulses.

4.2 NTT PROCESSOR

The NTT has the same structure as the DFT and therefore for highly composite transform length N, the fast algorithm for computing the DFT can also be used to compute the NTT. Analogous to the FFT, the fast algorithm to compute the NTT will be called FNTT. Usually a sequential type processor is used to compute the transform, which saves hardware at the cost of slowing down the speed of computation. A multiplexed radix r butterfly is used as a computational unit with some supporting memory structure. This butterfly is accessed $\frac{N}{r} \times \log _{r} N$ times where r is the radix of the FNTT algorithm and N is the transform length. A conceptual block diagram of the NTT processor is shown in Fig. 4.1. The supporting memory is used to store the input data and the intermediate results of the computation. A control unit is also required to control the data flow to and from the memory, to keep track of stage of computation and the position of the butterfly in that stage.

4.2.1 Memory Structure

A great deat of literature is available for the memory organization of a FFT processor and is equally applicable to the FNTT. Pease [9] brought out an idea to use slow memory efficiently by splitting main memory into several sub-memories. Corinthois [10] used the idea presented by Pease and came up with an OIOO (ordered input-ordered output) algorithm which makes use of sequential memory.

A radix 2 butterfly unit requires a minimum of hardware and we restrict our interest to Radix 2 transform. The transform matrix can be represented as the product of matrices givesn by equation 4.1.
INPUT
OUTPUT
Fig. 4.1 Conceptual diagram of NTT processor

$$
\begin{equation*}
T_{N}=\prod_{m=n}^{1} p_{m}^{\prime} u_{m} s \tag{4.1}
\end{equation*}
$$

where $n=\log _{2} N$ and $s=\left[I_{\frac{N}{2}} \times T_{2} L\right.$ and x represents Kronecker product and

$$
\begin{align*}
& T_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \tag{4.2}\\
& p_{i}^{\prime}=I_{2^{i-1}} \times \frac{P_{N}}{2^{i-1}} \tag{4.3}\\
& u_{i}=I_{2^{i-1}} \times \frac{D_{N}}{2^{i-1}} \tag{4.4}\\
& P_{n}^{\prime}=u_{n}=I_{N} \tag{4.5}
\end{align*}
$$

The operator, s, performs the two point transform on the input fed to the computational unit. The two point transform requires only addition and subtraction of the input data as is obvious from the operator s. The input data accessed from the memory are always $\frac{N}{2}$ points apart. The operator u performs multiplication by twiddle factors and p^{\prime} is the permutation operator which shuffles the data to obtain the final output in ordered form.

This machine oriented algorithm requires two memory buffers, the input memory and the output memory, consisting of long shift
registers and a computational unit. The input memory is divided into two sub-memories which store $\frac{N}{2}$ points. The one input from each submemory is fed to the computational unit and the output from the computational unit is stored in the output memory. After completion of each stage $\left(\frac{N}{2}\right.$ butterfly computation), the data from the output memory is fed to the input memory and the shuffling on the data is performed as required by the operator $\mathrm{P}^{\prime} \mathrm{m}$ in equation (4.1). A block diagram of the processor is shown in Fig. 4.2.

The main drawback to this kind of implementation is that each stage calls for a feedback phase in which data are serially moved from the output buffer to the input buffer in an order determined by the permutation operator. Corinthois [11] modified the above algorithm to eliminate the feedback process and the final form is given by the following equations.

$$
\begin{equation*}
T_{N}=\prod_{m=1}^{n} u_{m} s_{m} \tag{4.6}
\end{equation*}
$$

where in general

$$
\begin{align*}
s_{m-1} & =s p_{m} \tag{4.7}\\
s_{n} & =s \tag{4.8}\\
u_{1} & =I_{N} \tag{4.9}
\end{align*}
$$

where u and p have been defined earlier. In this algorithm, the operator s always calls for data that are at least $\frac{N}{4}$ words apart except at the first stage where they are $\frac{N}{2}$ words apart.

INPIIT MEMORY

Fig. 4.2 Basic machine organization for 0100 .

Example 1: Consider the case when $N=8$. The matrix is given as:

$$
\begin{equation*}
T_{8}={\underset{m}{m} 1}_{3} u_{m} s_{m}=u_{1} s_{1} u_{2} s_{2} u_{3} s_{3} \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{3}=s=I_{4} \times T_{2} \tag{4.12}
\end{equation*}
$$

The expansion of these matrices is shown in Fig. 4.3, and the flow graph implementing the transform is shown in Fig. 4.4. This algorithm does not require an extra feedback operation. The input and output memory consists of FIFOs and can be divided into 4 sub-memories which store $\frac{N}{4}$ words. The data flow can be handled according to the operator s_{n} at each stage.

A block diagram of the above processor is shown in Fig. 4.5.
Assuming the input is already stored in MEMORY 1, the input data is fed to the computational unit and the output from the computational unit'is then stored in MEMORY 2. 'After the first stage, the role of the memory is changed and MEM2 now becomes the input memory and MEM1 the output memory, and so on.

For real time applications, three memory buffers are required. While two buffers are being used for the computation, the third buffer can then be-used to store the input sequence and also to supply the transformed sequence. A conceptual block diagram for a real time processor is shown in Fig. 4.6.

Fig. 4.5 An NTT processor for real time 0100

The addition-subtraction of the input points and the multiplication by the twiddle factors is performed in the computational unit. The computation is done in two stages, the addition-subtraction stage and the multiplication stage, the order determined by the algorithm used. For a high throughput, the structure of Fig. 4.6 requires that the input-out rate of the computational unit should be equal to the data rate of the memory structure. A pipeline structure seems a very good choice for the computational unit. It will be shown that the ROM oriented structure is extremely simple to pipeline and thus can be used with the above memory organization. The computational unit from now on in the thesis, will be referred to as a butterfly structure and will be restricted to radix 2 , as mentioned earlier.

4.2.2 The Butterfly Unit

The input to this unit from the memory structure is two input complex points. The control unit supplies the information about the stage of computation and the position of the butterfly in that stage. The twiddle factors are generated in this unit and multiplied at the appropriate stage in the butterfly unit. By looking at the matrix expansion of the transform matrix (Fig. 4.3) we note that the FNTT algorithm obtained is of DIF type where the input points are first added-subtracted and then multiplied by the twiddle factors.

The selection of the field for NTT dictates the form of the cyclic generator and thus the twiddle factors. Therefore the field or the prime moduli should be chosen such that the generator is simple and also such that the resulting butterfly unit requires less hardware. The concept developed in the previous chapter will be applied for selecting the primes for efficient hardware realization of the butterfly unit.

4.2.3 Efficiency of Primes

Large transform length is achieved by the use of prime moduli. Prime moduli can be divided into two groups, $4 \mathrm{n}+\boldsymbol{1}$ type and $4 \mathrm{n}+3$ type. For $4 \mathrm{n}+3$ type primes, the generator is of the form $\gamma+\beta \sqrt{-1}$ where $\gamma \& B \varepsilon G F(m)$ and $x^{2}+1$ is an irreducible polynomial in the first order field. Fig. 4.7(a) shows the radix 2, DIF type butterfly and Fig. 4.7(b) shows the implementation of the butterfly using look up tables. The operation represented by () are performed in look up tables. The input points are the elements of $\operatorname{GF}\left(\mathrm{m}_{\mathrm{i}}{ }^{2}\right)$ and can be considered as complex points. In the first stage, addition-subtraction is performed. The subtracted part is then multiplied with the proper twiddle factors. All the binary operation performed are complex. Multiplication by twiddle factors requires 4 multiplications and one addition and subtraction. A total of three stages and 10 binary operations are required to obtain the output points.

For $4 \mathrm{n}+1$ type primes, α can have the simple form $\sqrt{\mathrm{r}}$ where $r \in \operatorname{GF}\left(m_{1}\right)$ and $x^{2}-r$ is an irreducible polynomial in first order field. Fig. 4.8 shows the implementation of the butterfly unit for $4 n+1$ type prime. Two different configurations are shown for the multiplications by powers of α. Even powers of α can be considered as purely real and therefore only-raal multiplications are required. The odd powers of a require a multiplexing stage after multiplication and also an additional multiplication by r which in look up table implementation does not require any extra stage. Two stages and 6 binary operations are required to compute the output points. A comparison between two kind of primes is shown in

Fig. 4.7 a) Radix 2 butterfly for $4 n+3$ prima

Fig. 4.7 b) Implementation of radix 2 buttamfly untt for $4 n+3$ prime

Fig. 4.8 a) Butterfly unit for $4 \mathrm{n}+1$ prime ($n=$ even)

Fig 4.8 b) Butterfly unit for $4 n+1$ prime ($n=0 d d$)
the following table

primes	add.	subt.	mult.	stages
$4 n+3$	3	3	4	3
$4 n+1$	2	2	2	2

Table 4.7: Comparison between the primes.

From the table, it is obvious that $4 n+1$ type primes are more efficient than $4 n+3$ type primes. They not only require less number of stages, but also require less number of binary operations. Therefore, while choosing the primes for NTT, the preference should be given to $4 n+1$ type primes. Tables 4.2 and 4.3 list the suitable primes and the transform length associated with them.

4.2.4 Selection of the Primes for Hardware Implementation

Discussed in the previous chapter, the NTT is computed over a ring which is a direct sum of several second order Galois fields for a large dynamic range. A transform length of 128 points is quite reasonable for practical application. The primes will be selected to provide this transform length and a reasonable dynamic range.
$4 n+1$ type primes can be represented as $m=q \cdot 2^{p}+1$ where q is odd and the maximum transform length over the second order field is equal to 2^{p+1}. For a 128 point transform length, p is 6 and the first few selections are:

Transform Length $N=2^{k+1}$	Representation of Primes for Transform Length N $m_{i}=q \cdot 2^{k}+1$	$\begin{gathered} \text { Prime } \\ m_{i} \end{gathered}$	Representation of m_{i} in Number of Bits
$32=2^{4+1}$	$\begin{aligned} q & =1 & & 1.2^{4}+1 \\ q & =7 & & 7.2^{4}+1 \\ q & =15 & & 15.2^{4}+1 \\ q & =21 & & 21.2^{4}+1 \\ q & =25 & & 25.2^{4}+1 . \\ q & =27 & & 27.2^{4}+1 \end{aligned}$	$\begin{gathered} 17 \\ 113 \\ 241 \\ 337 \\ 401 \\ 433 \end{gathered}$	$\begin{aligned} & 4.087 \\ & 6.820 \\ & 7.913 \\ & 8.397 \\ & 8.647 \\ & 8.758 \end{aligned}$
$64=2^{5+1}$	$\begin{array}{lrl} q=3 & 3.2^{5}+1 \\ q & =11 & 11.2^{5}+1 \end{array}$	$\begin{array}{r} 97 \\ 353 \end{array}$	$\begin{aligned} & 6.644 \\ & 8.464 \end{aligned}$
$128=2^{6+1}$	$\begin{array}{ll}q=3 & 3.2^{6}+1 \\ q=7 & 7.2^{6}+1\end{array}$	$\begin{aligned} & 193 \\ & 449 \end{aligned}$	$\begin{aligned} & 7.592 \\ & 8.817 \end{aligned}$

Table 4.2 TABLES OF PRIMES $m_{i}=4 n+1$ LESS THAN 9 BITS

Transform Length $N=2^{p+1}$	Representation of Primes for Transform Length N $m_{i}=q \cdot 2^{p}-1$	Prime m_{i}	Representation in Number of Bits
$32=2^{4+1}$	$\begin{array}{ll} \mathrm{q}=3 & 3.2^{4}-1 \\ \mathrm{q}=5 & 5.2^{4}-1 \\ \mathrm{q}=15 & 15.2^{4}-1 \\ \mathrm{q}=17 & 17.2^{4}-1 \\ \mathrm{q}=23 & 23.2^{4}-1 \\ \mathrm{q}=27 & 27.2^{4}-1 \\ \mathrm{q}=29 & 29.2^{4}-1 \end{array}$	$\begin{array}{r} 47 \\ 79 \\ 239 \\ 271 \\ 367 \\ 431 \\ 463 \end{array}$	$\begin{aligned} & 5.555 \\ & 6.304 \\ & 7.907 \\ & 8.082 \\ & 8.520 \\ & 8.752 \\ & 8.855 \end{aligned}$
$64=2^{5+1}$	$\begin{array}{lr} \mathrm{q}=1 & 1.2^{5}-1 \\ \mathrm{q}=7 & 7.2^{5}-1 \\ \mathrm{q}=15 & 15.2^{5}-1 \end{array}$	$\begin{array}{r} 37 \\ 223 \\ 479 \end{array}$	$\begin{aligned} & 4.954 \\ & 7.801 \\ & 8.904 \end{aligned}$
$128=2^{6+1}$	$q=3 \quad 3.2^{6}-1$	191	7.577
$256=2^{7+1}$	$\begin{array}{ll} q=1 & 1.2^{7}-1 \\ q=3 & 3.2^{7}-1 \end{array}$	$\begin{aligned} & 127 \\ & 383 \end{aligned}$	$\begin{aligned} & 6.989 \\ & 8.581 \end{aligned}$

Table 4.3 TABLES OF PRIMES $m_{i}=4 n+3$ LESS THAN 9 BITS

$$
\begin{array}{rlrl}
& m=q \cdot 2^{6}+1 \\
\text { for } q=1 & m & =65 \text { which is not a prime } \\
\text { for } q=3 & m & =193 \\
\text { for } q=5 & m & =321 \text { which is not a prime } \\
\text { for } q=7 & m & =449 \\
\text { for } q=9 & m & =557 .
\end{array}
$$

The dynamic range associated with the first three moduli is:

$$
\prod_{i=1}^{3} m_{i}=193 \times 649 \times 577 \simeq 2^{25.6} \text { which is quite }
$$

reasonable for most of the applications. We are interested in implementing addition-subtraction using sub-moduli and $1 \mathrm{~K} \times 8$ commercially available ROMS. The $1 \mathrm{~K} \times 8$ ROMS have 10 address lines and the two numbers which are to be added-subtracted should not have a combined address of more than 10 bits. The sub-moduli are chosen such that their product is equal to or greater than two times the main modulus and therefore the main modulus should not have more than 9 bits representation. Moduli 193 and 449 have nine bits representation and a combined dynamic range of approximately 16 bits. If a dynamic range of more than 16 bits is required, then we are forced to use moduli of $4 n+3$ type which are less efficient than $4 n+1$ type.

The moduli of $4 n+3$ type can be represented as $m=r .2^{k}-1$ where r is odd and the maximum transform length in 2nd order field is equal to 2^{k+1}.

For N equal 128, k is 6 and the first few selections are as follows:

$$
m=r \cdot 2^{6}-1
$$

for $r=1$	$m=63$ which is not a prime
for $r=3$	$m=191$
for $r=5$	$m=319$ which is not a prime
for $r=7$	$m=447$ which is not a prime

For $r>7$, moduli have more than 9 bits representation and are not useful for our purposes. Table 4.3 shows that modulus 127 can also be used for a transform length of 128 points. For the same transform length, 191 provides larger dynamic range than 127. The final selection of moduli, from hardware constraints, is then $m_{1}=$ 191, $\mathrm{m}_{2}=193$ and $\mathrm{m}_{3}=449$, and the dynamic range is 23.98 bits. This is equivalent to saying that the number theoretic transform is computed over a finite ring which is isomorphic to the direct sum of three Galois fields of second degree that is:

$$
R \simeq \operatorname{GF}\left(191^{2}\right) \oplus \operatorname{GF}\left(193^{2}\right) \oplus \operatorname{GF}\left(449^{2}\right)
$$

The generator for these primes are as follows:

$$
\begin{array}{lll}
\text { modulus } & m_{1}=191 & \alpha_{1}=66+6 \sqrt{-1} \\
\text { modulus } & m_{2}=193 & \alpha_{2}=\sqrt{125} \\
\text { modulus } & m_{3}=449 & \alpha_{3}=\sqrt{391}
\end{array}
$$

4.3 ROM REALIZATION OF BUTTERFLY STRUCTURE

A conceptual block diagram of the Gutterfly unit is show in Fig. 4.9. The two input points are supplied to the butterfly unit along with the stage of computation and the position of the butterfly. Another control is required to distinguish between the direct or inverse transform for generating the proper twiddle factors. For each input set of data, an output set is obtained with an initial lag of 5 or 7 stages depending upon the primes used. The computation inside the butterfly unit is performed using submoduli for efficient hardware realization.

4.3.1 ROM Realization for $4 n+1$ Primes

Fig. 4.10 shows the implementation of the butterfly unit for a $4 n+1$ type prime. Each rectangular block represents a ROM and a latch. For the DFT. algorithm, the input points are first added and subtracted. The first stage therefore consists of residue tables, named as TRSM, sub-modulo 30 and 31. Eight tables are required to reduce the input data points modulo the sub-moduli. In the $2 n d$ stage, sub-modulo addition is performed and at the 3 rd stage the added part is reconstructed whereas the subtracted part is first reconstructed and then is converted into index form, again in sub-moduli. Reconstruction, index look up and sub-modulo reduction is performed in one table for each input and each sub-modulus. The twiddle factors in index form are also accessed at this stage. The fourth stage consists of addition of indices using sub-moduli. An extra multiplication table for pre-

CONTROLS:
DIRECT/INVERSE: DIRECT OR INVERSE TRANSFORM
STAGE:
STAGE OF COMPUTATION
POST:
POSITION OF THE BUTTERFLY
IN THE STAGE

Fig. 4.9 CONCEPTUAL DIAGRAM OF THE BUTTERFLY UNIT

fig. 4.10 desich of nit buiterfly for
multiplication by r is also required at this stage and depending upon the power of alpha, the proper table is enabled. The fifth stage consists of accessing of the result of the multiplication from inverse look up tables and the multiplexing of the result according to even-odd powers of alpha. Looking at this structure, we find that after an initial delay of five stages, an output will be obtained and there is always a lag of five stages between input and output data.

4.3.2 ROM Realization for $4 n+3$ Primes

Fig. 4.11 shows the implementation of the butterfly structure for $4 n+3$ type primes. The first three stages of this structure are the same as that of $4 n+1$ type. Multiplication by twiddle factors is complex for $4 \pi+3$ type and therefore a complex multiplier is required. At the fourth stage, the addition of the indices is performed and then the fifth stage computes the real multiplications. An extra addition-subtraction is required to complete the complex multiplication which is done in the"6th and 7th stages. A total of seven stages are required to compute the two point butterfly and a lag of seven stages is presented between input and output. Table 4.4 shows the requirement for both type of primes.

primes	ROMS	Stages	MUX
$4 n+3$	48	7	-
$4 n+1$	32	5	2

Table 4.4 Requirements for both type of primes.

From table 4.4, it is obvious that if both type of primes are used, then for $4 n+1$ type primes, a delay of two stages should be introduced in the pipeline.

4.4 COMPUTER SIMULATION OF THE BUTTERFLY STRUCTURES

The butterfly structures for the three moduli were simulated on an IBM 370 using look up tables. The exact structures shown in Fig. 4. 10 and Fig. 4.11 were simulated and the pipeline structure was preserved during simulation. The basic requirements for memory organization were used in the simulation part and the program for simulating memory structure was simplified. The shuffle operators were not used in the memory simulation part and the output obtained was in bit reversed form. A standard shuffle routine was used to change the bit reversed output into ordered output. This does not affect the butterfly structure in any way. The simulation programs were divided into three parts.
(i) MAIN PROGRAM: From Fjg. 4.10 and 4.11, we note that output from each table is latched on each clock pulse. The latching is necessary to allow the $(i+1)$ th stage to capture data before the address lines of the ith stage change. A pointer was initialized in the main program to clear all the registers before the application of the first data set. The subroutine table is then called to generate all the tables required for the butterfly unit. A double DO loop is used to keep track of each stage of the computation and the position of the butterfly. The input data points which are always $\frac{N}{2}$ points apart are fed to the NTT subroutine and the output is stored in the consecutive memory locations. After the
completion of the transform, the data is then shuffled to obtain the ordered output.

The subroutine NTT is the simulation of the butterfly structure. The controls to this subroutine are passed in the calling argument. The NTT call is

CALL NTT (INV, INP1, INP2, STG, POST, -OUT1, OUT2).
The multiplication by N^{-1} for inverse transform is also performed in the main program although for hardware implementation, multiplication by N^{-1} can be performed before starting the processing. The main program is the essential part for testing the working of the butterfly structure.
(ii) SUBROUTINE TABLE: This program generates all the required tables for each moduli. Modulo reduction was done using the instruction mode

$$
I R=M O D(I R, M M O D)
$$

where MMOD is the modulus and IR is the number to be reduced. The NTT is an integer number system and the implicit integer statement was used to declare all the variables as integers. The index and inverse index tables are quite easy to generate. The following six statements generates the complete index as well as inverse index table. PRIM is the primitive root and $P E R$ is the order of the primitive root. Starting value of VAL is one as zero does not have any index. IND is the index of the number and IIND is the inverse index

DQ $21 \quad K=1, P E R$
VAL $=$ VAL * PRIM
VAL $=$ MOD (VAL, MMODL
IND $(V A L+1)=K$
$\operatorname{IIND}(K+1)=V A L$
21 CONTINUE .

The following steps were required to generate the powers of α
(a) initialize the value of α
(b) multiply the value with a. The multiplication performed is an extension field multiplication
(c) reduce the value to proper modulus
(d) store the value of α as the next value
(e) repeat step (b) till $\left|\alpha^{N}\right|_{m}=1$

Noting that $\left|\alpha^{128}\right|_{m}=1$, the powers of alpha for the inverse transform are obtained by adding 128 to negative powers, e.g., $\alpha^{-3}=\alpha^{128-3}=\alpha^{125}$. Other parts of the subroutine table are self explanatory. The complete listing of the program is given in the Appendix.
(iii)SUBROUTINE NTT: This program simulates the butterfly structure. This part assumes that the butterfly structure is arranged in pipeline configuration. Each call to this subroutine shifts the data to one stage. The subroutine call is

CALL NTT (INV, INP1, INP2, STG, POST, OUT1, OUT2),
where INV is for direct or inverse transform. INP1 and INP2 are the
two complex input points. STG is the stage of the computation and POST: is the position of the butterfly in that stage. OUT1 and OUT2 are the output points of the butterfly. All the registers are numbered and, before applying any input to the NTT, these registers are initialized by the control pointer named point, which clears all the registers when the subroutine is called for the first time. The twiddle factors for a particular butterfly are generated in this routine. The powers of α from 0 to 64 are stored in a table TF. The address for the twiddle factor is generated as follows:
(1) butterflies are numbered from 0 to 63 starting from the top in the flow graph, e.g. Fig. 3.6
(2) stages are numbered from 0 to 6
(3) the proper address is then generated by masking the number of bits equal to the stage number starting from the least significant bit, e.g., for stage 2 and butterfly 8, the power of α is given by
power of $\alpha=$ POST $/(2 * * S T G) *(2 * * S T G)$ $=\frac{8}{2^{2}} \times 2=4$ and the twiddle factor is α^{4}. Multiplexing is also required for the moduli of a $4 n+1$ type prime. The power of α is checked for even or odd and then the appropriate action is taken. The statements check are the status of multiplexer control.

The other parts of the program are self explanatory. The complete program can be found in Appendix A.

4.4.1 The Transform of Real and Complex Data for Both Primes

Before discussing the results of the simulation, the procedure for convolving real and complex data using the NTT is described. As mentioned in the previous chapter, 2nd order Galois field is isomorphic to the complex residue ring fon $4 n+3$ type prime. Therefore the complex data can be convolved using $4 n+3$ primes. In the case of real data, two successive blocks of the data can be transformed simultaneously by feeding one block as the real part of the data and the other block as the imaginary part. This effectively increases the transform length in the case of real data.

For primes of $4 n+1$ type, $\sqrt{-1}$ can be considered as a member of the field and therefore the maximum order of any element in the multiplicative group of the complex ring is $m_{i}-1, i . e$. , the length of the transform is the same as in the real residue field modulo m_{i}. One possible implementation of the transform of the complex data is to separately transform the real and imaginary parts in two Galois fields $G F(m)$ for $4 n+1$ type prime.

4.4.2 Upper Bound on the Convolution

To compute the convolution unambigously, the components of the circular convolution sum in a single Galois field, are required to have an upper bound m_{i}; i.e., signed numbers should remain in the interval
$-\frac{m_{i}-1}{2} \leq y \leq \frac{m_{i}-1}{2}$. The absolute upper bound on the input sequences is

$$
\begin{equation*}
\max |x| \cdot \max |h| \leq \frac{m_{i}-1}{2 N} \tag{4.13}
\end{equation*}
$$

where $x(n)$ and $h(n)$ are the input sequences. This bound on the dynamic range is pessimistic for many practical applications and if the sequence $h(n)$ is known, it is enough to have

$$
\begin{equation*}
\max |x| \leq \frac{m_{i}^{-1}}{2 \sum_{t=0}^{N-1}}|h(t)| \tag{4.14}
\end{equation*}
$$

If the input sequence consists of a set of positive numbers, the above can be restated as

$$
\begin{equation*}
\max |x| \leq \frac{m_{i}-1}{\sum_{t=0}^{N-1}|h(t)|} \tag{4.15}
\end{equation*}
$$

The components of the complex circular convolution of sequences $x(t)=x_{2}(t)+j x_{j}(t)$ and $h(t)=h_{r}(t)+j h_{i}(t)$ are required to have an upper bound m_{i}. Hence the absolute upper bound on x and h is:

$$
\begin{equation*}
\max \left|x_{r}\right| \cdot \max \left|h_{r}\right|-\max \left|x_{i}\right| \cdot \max \left|h_{i}\right| \leq \frac{m_{i}-1}{2 N}-\ldots \tag{4.16}
\end{equation*}
$$

and $\max \left|x_{r}\right| \cdot \max \left|h_{i}\right|+\max \left|x_{i}\right| \cdot \max \left|h_{r}\right| \leq \frac{m_{i}-1}{2 N}-$
when the convolution is performed over residue class rings (more than one modulus), all m_{i} are to be replaced by M in the above equations.

4.4.3 Simulation Results

Three main programs were written to test the pipelined butterfly structure for both kind of primes. The first program tests the invertibility of NTT. The 2nd program was written to test the convolution property of NTT using one block of real data. The 3rd program was to convolve two different sets of real data with a sequence with constant value in the defined interval. The details are as follows:
(1) Two separate sequences were taken as input. The real part consisted of a RAMP function, rising from 0 to 127. The imaginary part was also a ramp from 127 to 0 . The lst part of the program consists of initializing the tablesby calling subroutine TABLE. The input data is then initialized and a double DO loop then computes the transform. Input data is divided into two blocks of $\frac{N}{2}$ points. The input to butterfly consists of one point from each part. Thus, the input points are always $\frac{N}{2}$ points apart. After the transform is computed, it is permuted to produce an ordered output. INV control is then set to one and the transformed sequence is used as input for the inverse transform. After the inverse transform, each point is multiplied by $\left|\frac{l}{\tilde{N}}\right|_{m_{i}}$ to produce the original sequence. When implementing in hardware, multiplication by N^{-1} is implemented in look up tables and does not require any extra stage or delay. The above procedure was repeated for three choqsen moduli and invertibility was proved. Fig. 4.12(a) shows the real and imaginary parts of the input sequence. Fig. 4.12(b) shows the transformed sequence in $\mathrm{GF}\left(193^{2}\right)$ and Fig. 4.12(c) shows the

F1g. 4.12 INPUT AND TRANSFORM OF $x(x)$
transformed sequence in $\operatorname{GF}\left(449^{2}\right.$). Different transformed sequences are obtained in different fields for the same input sequence. After taking the inverse transforms in both the fields, same input sequence was obtained.
(2) This part was written to perform convolution of two sequences. Only one block of data was taken and was fed as the real part. The imaginary part was set to zero. To avoid ambiguity, the input sequences were chosen such that the result of the convolution is contained within the dynamic range. The ist sequence was a rectangular pulse of height 1 . The 2nd sequence was another rectangular pulse of height 2 . These sequences were transformed, multiplied and then an inverse transform was performed to obtain convolution of the sequence. Zeros were appended to both the input sequences to compute linear convolution using the ccp of the NTT. Fig. 4.13(a) shows the real part of the two input sequence. The imaginary part of the sequences were taken as zero. Fig. 4.1.3(b) shows the transform of $x(n)$ and Fig. 4.13(c) shows the transform of $h\left(n L \operatorname{in} \operatorname{GF}\left(193^{2}\right)\right.$. Note that imaginary parts are present in the transform domain although the original sequences had no imaginary parts. Fig. $4.13(\mathrm{~d})$ shows the result of the convolution in $\operatorname{GF}\left(193^{2}\right)$.
(3) This program was the same as in part two except that the one of the input sequence was taken as a complex sequence. This sequence was convolved with another sequence whose imaginary part was set to zero. Fig. 4.14(a) shows the input sequence $x[n]$ and Fig. 4.14 (c) shows the sequence $h(n)$. Fig. 4.14(b) shows the transform of $x(n)$ and Fig. 4.14(d) shows the transform of $h(n)$ in $G F\left(449^{2}\right)$. Fig. 4.14(e)

Fig. 4.13 CONVOLUTION OF REAL IMPUT

Fig. 4.14 CONVOLUTION OF COMPLEX INPUT IN GF $\left(449^{2}\right)$

Fig. 4.14 CONVOLUTION OF COMPLEX INPUT IN GF(449 ${ }^{2}$)
shows the results of the convolution in $\operatorname{GF}\left(449^{2} \mathcal{L}\right.$. In this way two blocks of the real data can be simultaneously convolved with the other sequence and the effective transform length for the input sequence is doubled. The simulation programs can be faund in Appendix A.

4.5 HARDWARE IMPLEMENTATION OF THE BUTTERFLY STRUCTURE

A complete butterfly structure for modulus $4 n+1$ was implemented in hardware. The modulus 193 was choosen because it yields hardware: of the simpler form. The hardware implementation is that of a proto type and the Eproms used are not the fastest available in the market. The access time of the Eproms used is 450 nsec and the registers used have a settling time of 30 nsec . The butterfly structure is a pipeline structure and the throughput rate depends on the access time of the ROMS and latch settling time. The data on the output of the ROM is latched before the new address is supplied. The clock pulses are therefore delayed for every stage starting from the output stage. Fig. 4.15 shows the clock pulses required for latching the data, from the Eproms, at each stage.

The width of the clock pulses is equal to the latch settling time say t_{s} nsec. Before the clock pulse can be applied to any stage, the address lines on Eproms should be stable for at least $t_{\text {acc }}$ ns (address to output delay) and therefore the maximum rate at which the pipeline can run is equal to $2, t_{s}+t_{a c c}$.

4.5.1 Description of ICs Used

(i) Eproms 2708 were used to store the look up tables for the butterfly structure for mod 193. The complete data for this Eprom can be found

Fig. 4.15 Clock pulses for the Butterfly unit
in [12]. Fig. 4.16 shows the pin connections of the 2708.
The Eprom requires three power supplies in the read mode, $V_{C C}, V_{B B}$ and $V_{D D}$ which are $+5,-5$ and 12 volt respectively. It is a $1 k \times 8$ bits Eprom and has 10 address 1 ines and 8 data lines. Higher address lines are grounded if they are not in use, e.g., table of residues where only 8 address lines are required for modulus 193. All the computation in the butterfly was done using the sub-modular approach, therefore, only five data lines were used. The other three data lines can be used as controls, e.g., for parity check. We have used the 6 th data line as a control line for multiplexers. The Eproms can be programed on an Intel universal prom programmer. These Eproms have tristated outputs which are controlled by the voltage level on $\overline{C S} / W E$ pin. Thus the output of more than one Eprom can be hooked together without any problem of a bus-conflict. The access time of the Eprom is 450 nsec .
(ii) 8 bit input output port, 8212 was used as the latch. This is a very powerful chip and can be used for multiple purposes. The pin configuration is shown in Fig. 4.17. To use it as a latch, the device selection logic ($\overline{\text { DSI }} \cdot \mathrm{DS} 2$) is set true and the mode pin is kept at high level. The strobe pin is used as input for clock pulses. When the strobe is high, the output follows the input and for strobe low, output does not change. The maximum latch settling time is 30 nsec . and therefore the clock pulse which is used to strobe the data has a pulse width of 30 nsec. The $\overline{C L R}$ pin is permanently kept high for the latch operation.

PIN NAMES

PIN CONNECTION DURING READ OR PROGRAM

mode	fin mumeta						
	2.11 .1317	12	11	19	\% 0	21	24
REAO	Dour	v_{38}	V_{83}	v_{DO}	\%	v_{80}	$V_{\text {ex }}$
mognam	D_{m}	v_{50}	numa	v_{∞}	$\mathrm{V}_{1 \times 1}$	V_{61}	$v_{e r}$

Fig. 4.16 BLOCK DIAGRAM AND PIN CONFIGURATION OF

2708, $1 \mathrm{~K} \times 8$ EPROM

PIN NAMES

Fig. 4.17 LOGIC DIAGRAM AND PIN CONFIGURATION:-
OF 821.2, 8.BIT LATCH

The 8212 was also used as a multiplexer. When the device selection logic is zero, the output goes to a high impedence making multiplexing possible.

4.5.2 Generating and Storing The Tables

For the storing of the tables, a universal prom programmer, by Intel, was used and the tables were generated using assembly language to program an Intel 220 system. The Intel 220 system is a microprocessor based system and uses an 8085 , 8 bit, microprocessor chip as the central processor unit.

A11 the programs written to generate tables can be found in the Appendix B. Modulo reduction is not as simple as in WATFIV and separate subroutines were written to reduce modulo 30 , modulo 37 modulo 192, modulo 193 and modulo 930. Two more subroutines were written to compare the results to 738 for negative numbers and to reduce negative numbers modulo 193, namely COM738 and NEGCON. These were required to obtain the correct result after the subtraction of numbers using sub-moduli. The maximum result of addition of two numbers, modulo 193 is 384 and the maximum negative result is -192 . When the final result is reconstructed using the Chinese Remainder Theorem, the negative number, say x, will be represented as $30 \cdot 31-x$ or $930-x$ and therefore the number range 738 to 929 is used for negative numbers. The division of the dynamic range is as follows:

$$
\begin{aligned}
0 \leq x \leq 384 & \text { positive numbers } \\
384 \leq x<738 & \text { prohibited combinations, they never } \\
& \text { occur as a result of an operation }
\end{aligned}
$$

$738 \leq x \leq 929$
negative numbers

After the reconstruction, if the number occurs in the negative range, it has to be represented modulo 193 and correction has to be done. Subroutine COM738 is called to find out the range in which number lies. If the number is greater than or equal to 738 , then subroutine NEGCON is called to convert the negative number to mod 193. Consider the numbers 30 and 182. The result of subtraction is $30-182=-152$, which in sub-moduli will be represented as 778 . To convert it to main moduli, subtract 930 from it and add 193 which is $778-930+193=41$ and is the actual representation of -152 modulo 193. The following is a listing of the program which converts the negative number to modulo 193.

PUBLIC NEGCON
CSEG
NEGCON: PUSH H
LXI H, 8400 H ; no. to be converted is in memory location 8400 H

MOV A,M
SUI 162
ADI 193
MOV M,A
POP H
RET
END

930 can be represented as 0000001110100010 in the binary number system. Subtracting 930 from any number, greater than or equal to 738 , is equivalent. to subtracting the lower byte of 930 , which is 162, from the number and then adding 193. The one byte result is the correct conversion of the negative number. The reader can verify that the above program converts all negative numbers from 738 to 929 correctly.

The main programs for addition table, subtraction table, index table, inverse index table, twiddle factors table, and the reconstruction table were written separately and are given in the appendix. The generation of the twiddle factor table requires special attention. The memory organization which is used for this implementation simplifies the generation of the twiddle factors. The following procedure was used to generate the table.
(il store the values of the powers of alpha from 0 to 63
(ii) number the butterfly from 0 to 63 in binary number system from the top where the list input point is supplied as input
(iiilnumber the stages from 0 to 6
(iv) mask the number of least significant bits equal to the number of stage, e.g., for stage 2, numbered as one, only one bit is masked.

butterfly no.	masked bit	power
000000	000000	0
000001	000001	0
000010	000010	2
000011	000017	2
000100	000100	4
000101	$00010 \bar{T}$	4
000110	000110	6
000111	000111	6
\vdots	\vdots	\vdots

Hence the correct twiddle factors are generated for each stage. There are 64 butterfly computations per stage and seven stages, therefore a storage of 64×7 words is required for the twiddle factors for a direct transform. A_{0} to A_{5} address lines on the Eproms were used for specifying the butterfly position, and A_{6} to A_{8} to specify stage of the computation of the transform. The A_{9} address line is used for addressing the twiddle factors for inverse transform.

The addition table storage is quite simple. The first five address lines are for the addend and the next five the adder. The first five address lines on the subtraction table are for the subtractor and the next five for subtrahend.

The inverse look up table TINV and final look up table TFIN are stored such that input modulo 30 is applied on $A_{0}-A_{4}$ and modulo 31 on $A_{5}-A_{9}$.

In the index look up table, 31 is stored as the index of zero. In the index addition table, which is same as the standard addition table, 31 is stored in the locations addressed by 31 . TINV tables contains zero in the location addressed by 31 , so that the correct result of multiplication by zero is obtained.

4.5.3 A Typical Pipeline Interconnection

Fig. 4.18 shows a typical connection between Eproms and the latches. The address to the Eproms comes from the previous stage. Every look up table (Eprom) requires ten address lines, except the tables of residues which require only 8 lines. The other inputs to the Eproms are

FIg. 4.18 A TYPICAL PIPELINE INTERCONNECTION
connected to the power supply at proper voltage leyels as required. The output data from the tables is five bits since all the computation is done using sub-moduli. These data lines are connected to the input of the latch. The remaining three input lines to the latch are obtained from the other table. The 8212 is used as a latch and appropriate input levels are supplied to it. When the clock pulse is applied on the strobe input of 8212, the data from the Eproms is latched and is available on the output lines of 8212 after 30 nsec . Two separate tables for multiplication by twiddle factors are required for even and add powers of α. One of the multiplication pre-multiplication by r for odd powers of α. The sixth bit from the twiddle factor table is used to select/deselect the proper multiplication table. The $\overline{\mathrm{cs}} / \mathrm{we}$ pin on the Eprom is used for selecton of the table. The tristate output of the Eproms enables the connection of the output of two tables together. An inventer is used to select-deselect the tables for even/odd powers of alpha.

Fig. (4.19) to Fig. (4.22) shows the block diagram of the butterfly structures, which was built on protoboards. These figures are included to help the debugging of the unit. Table 4.5 gives the necessary information about the control connections and the power supply connection for both, Eproms and the latches. Fig. 4.23 shows the photograph of the butterfly unit.

Fig. 4.19 BOARD 1

Fig. 4.21 BOARD 3

Fig. 4.22 BOARD 4

COLOUR OF WIRES	
BLACK	FUNCTION
RED	+5 V
ORANGE	-5 V
BLUE	CONTROLS FOR EVEN/ODD POWER OF ALPHA
YELLOW	
WHITE	CLOCK FOR THE LATCHES

Table 4.5 NECESSARY INFORMATION ON THE HARDWARE UNIT.

Fig. 4.23 dIFFERENT VIEWS OF THE HARDHARE IHPLERENTED QUTTERFLY UNIT

4.6 CLOCK CIRCUITRY

A specific clock pulse is required to shift the data in the pipeline. The circuit diagram for the generation of the clock pulse is given in Fig. 4.24. The square wave from the function generator is made TTL compatible by using an NPN transistor. The output from the transistor stage is then fed to a 4 bit binary counter. The outputs of the counter are then fed to one of sixteen decoders. Only one output line of the decoder goes low at each count. This negative going pulse is then fed to an invertor, to obtain a positive going pulse. A buffer is used to supply enough current to operate the latches at each stage.

The alternate pulses were taken from the decoder for each stage. The butterfly unit has five stages of computation and only five pulses from the decoder are used. The frequency of the function generator can be varied up to 1.96 MZ without affecting the working of the pipeline.

4.7 EXPERIMENTAL VERIFICATION

The Бutterfly structure, was tested for real time application. An input data from the simulation results was used for testing the butterfly. The answer was verified from the simulation results. The input data, the butterfly position and the stage number are:
input point 1
$30+65 \sqrt{125}$
input poìnt $2 \quad 41+103 \sqrt{125}$
stage 2
butterfly 4
The value of α for the $2 n d$ stage and the 4 th butterfly is 125 . The
STAGE
Fig. 4.24 CLOCK CIRCUIT FOR PIPELINE STRUCTURE
butterfly input and outputs are shown in Fig. 4.25.(a). The working of the pipeline can not be tested for real time application if the input is fixed. One bit of the data was therefore constantly varied and the intermediate results were checked on a display. The rate of data input and the frequency of the clock pulses were varied to see the effect on the pipeline structure. It was noted that when the clock pulse rate was slower than the rate of change of input data, the output was not correct. The
bit of the data are shown in Fig. 4.25(b). The input and output are:

$$
\begin{aligned}
& a+\sqrt{125} b=30+65 \sqrt{125}=00011110+01000001 \sqrt{125} \\
& a^{\prime}+\sqrt{125} b^{\prime}=41+103 \sqrt{125}=00101001+01100110 \sqrt{125} \\
& c+\sqrt{125} d=71+168 \sqrt{125}=01000111+10101000 \sqrt{125} \\
& c^{\prime}+\sqrt{125} d^{\prime}=169+75 \sqrt{125}=10101001+01001011 \sqrt{125}
\end{aligned}
$$

changing the least significant bit of a, gives the results as:

$$
\begin{aligned}
& a+\sqrt{125} b=31+65 \sqrt{125}=00011111+01000001 \sqrt{125} \\
& a^{\prime}+\sqrt{125} b^{\prime}=41+103 \sqrt{125}=00101001+01100111 \sqrt{125} \\
& c+\sqrt{125} d=72+168 \sqrt{125}=01001000+10101000 \sqrt{125} \\
& c^{\prime}+\sqrt{125} d^{\prime}=101+75 \sqrt{125}=01100101+01001011 \sqrt{125}
\end{aligned}
$$

e.g., by changing the least significant bit of a from 0 to 1 changes the most significant bit of c^{\prime} from 1 to zero and also the other bits of c and c^{1} change. Thus any bit of c or c^{\prime} can be checked to verify the working of the pipeline.

$\begin{array}{ll}\text { Fig. } 4.25 & \text { INPUT-nUTPUT OF THE BUTTERFLY } \\ \text { BEFORE-AFTER CHANGING ONE BIT }\end{array}$

4.8 DISCUSSION ON THE HARDWARE REALIZATION OF THE B.F. UNIT

The butterfly unit for modulus 193 was realized using 2708 Eproms and 8212 latches. The addition-subtraction in the B.F. unit is performed using sub-moduli 30 and 31 . The multiplication is performed using the index addition method and the addition of the indices is done using the sub-moduli method.

In comparison with the direct method of implementing additionsubtraction using look up tables, the sub-moduli approach offers a saving in the storage for tables. Another way of implementing addition-subtraction is the use of an adder-subtractor followed by a ROM for the correction look up. Fig. 4.26 shows the implementation of addition-subtraction using an adder-subtractor for modulus 193.

The two inputs, modulo 193,are fed to the adder-subtractor and the 9 bit result of addition is then fed to a ROM which contains the corrected result of addition modulo 193. The correct result is stored in the location addressed by the 9 bit result of addition. For example if $a=191$ and $b=189$, the result from the adder is 380 and represented as 101111100. The correct result of addition modulo 193 is 187 and therefore 187 can be stored in the location with the address 101111100.

The adder-subtractor which is conmercially available, performs 4 bit addition-subtraction and use two's complement arithmetic. The clock to output time is 14 nsec for an Am25LS15 (Advanced Micro-Devices). Addition modulo 193 would require two packages and one ROM. Assuming that the input is in sub-moduli form and no residue tables are required,

Fig. 4.26 ADDITION MODULO 193 USING ADDER-SUBTRACTER AND ROM
three ROMs are required to perform addition-subtraction using submoduli (Fig. 2.41. The package count is the same for adder-subtractor or sub-moduli implementation. If the input is not in sub-modular form, then sub-moduli approach requires 7 ROMs and three stages as compared to 3 packages and 2 stages for adder-subtractor approach. Thus, the choice of implementation depends on the form of the input.

Another criterion for the choice of adder-subtractor is the type of ROMs which are used for the implementation of the complete butterfly structure. The pipeline structure of the butterfly unit requires latches at the output of each computation stage and if Shottky Proms 63RA883 are used, no additional latches are required as these Proms contain latches at the output of the Proms. If the adder-subtractor are used, then for the pipeline structure, an additional 18 bit latch will be required.

The multiplication in the butterfly structure is performed by the addition of indices method. The addition of indices modulo 192 is performed using sub-moduli method. In the sub-moduli approach, the multiplication by zero can be easily corrected and no extra logic is required for detecting the multiplication by zero. However, if the adders are used to perform indices addition, extra logic is required for zero multiplication [13].

The complexity of the structure increases if different kinds of IC's are used. Because of the simplicity of the ROM based structure, the adder-subtractors were not used in the hardware realization and the prototype unit was Kuilt using 2708 Eproms. The ROM based structure is preferred Бecause of the fact that it can immediately make use of the advances in the VLSI technology associated with memory fabrication. The

Eproms used can be replaced by fast memory for a particular application. The 8212 registers were used to latch the data at the $[i+1$ Ith stage before the data changes at the ith stage. These registers are level sensitive and the output follows the input as long as the clock is high. A delayed clock pulse for every stage is required as shown in Fig. 4.15. The access time of the ROM is 450 nsec and the latch settling time is 30 nsec. The rate of clock pulses is equal to the access time of the ROM plus two times the latch settling time. From Fig. 4.15 it is seen that there is an overlap at the negative going pulse and the positive going pulse of successive stages, showed in the figure by dotted lines. This overlap created a problem in running the structure for real time data. The clock pulses were generated using a one of 16 decoder and altemate pulses were used to strobe the data so that enough time was available between transitions. This in effect, slowed down the clock rate and the theoretical maximum speed could not be achieved. These latches were used because of their availability.

The remedy to this problem is the use of latches which are edge trigged, e.g., Am 25LSO7 (Advanced Micro-Devices). These latches are positive edge triggered and have a latch settling time of 17 nsec . The same clock pulse can be applied to all the stages. At the positive edge, the data will be latched at all the stages and the output of the ROMs will not change until 17 nsec . The clock rate is then the access time of the ROM plus the latch settling time which is now only 17 nsec, and thus the butterfly unit can run at a faster rate.

Assuming that the two output points from the pipelined butterfly
unit are obtained after every τ nsec, where τ is equal to the access time of the ROM plus latch settling time, then the time to compute one stage of the NTT transform is equal to 64τ for a transform length of 128 points. The radix 2,128 point transform length requires seven stages and the time to compute direct or inverse transform of an input sequence is equal to $7 \times 64 \times$ т nsec.

The Eproms used in the implementation of the butterfly unit have an access time of 450 nsec and if the AM25LS07 latches are used then τ is equal to 467 nsec and the maximum clock rate is then equal to 2.14 MHz . Thus this butterfly unit can be used with a memory structure which supplies data at 2.14 MHz rate.

4.9 SUMMARY

The design of an NTT processor was described in this Chapter. A study of the supporting memory structure was also undertaken.

The choice of primes for NTT for efficient hardware implementation was discussed and it was shown that $4 n+1$ type primes not only require less hardware but also require less number of stages for the butterfly unit. A procedure was described to choose the primes for efficient hardware realization of the butterfly unit. A ROM structure for both kinds of primes for butterfly unit was suggested for pipeline configuration.

The simulation of both kinds of structures was done and the convolution property of NTT for the selected primes was verified. The details of the simulation were presented in this Chapter.

Finally, a butterfly structure for $4 n+1$ type primes was built
using ROM arrays and a complete discussion was presented. The pipeline structure was tested using time varying data. This butterfly unit, built in hardware, will be used to perform number theoretic transforms with a supporting memory structure.

SUMMARY

The Number Theoretic Transform has a recent origin and is useful for the applications where exact computation is required. The NTT is defined over an finite ring or field and has the same structure as the DFT. It can thus be computed efficiently using fast algorithms for highly composite transform length. A machine that computes-the number theoretic transform of a sequence is called an NTT processor. The basic parts of the NTT processor are the supporting memory structure and a computational unit commonly known as the butterfly unit. A saving in hardware of the NTT processor is achieved if a sequential type of processor is built. Such a processor requires some supporting memory and a multiplexed butterfly unit which is accessed $N / r \log _{r} N$ times where N is the transform length and r is the radix of the fast number theoretic transform. The binary operations of addition, subtraction and the multiplication on the input sequence are performed in the butterfly unit. The parameters of the NTT given by α, N and m, determine the complexity of the butterfly unit. The binary number system has usually been used to perform arithmetic operations in the butterfly unit and consequently restrictions were imposed on the parameters of the NTT to allow for an efficient realization of the computational requirements of the B.F. unit. These restrictions
made it impossible to choose the parameters of the NTT on a purely number theoretic basis and thus the efficiency of the NTT was much less than the limiting theoretical efficiency.

The recent advances in VLSI technology associated with memory fabrication have aroused interest in the implementation of the butterfly unit using look up tables stored in high density ROMs. The look-up table approach relaxes the constraints on the parameters of the NTT and thus the theoretical efficiency of the NTT can be reached. If the binary number system is used, then the look-up table approach does not seem very promising because of the tremendous size of memory required to store the tables, e.g., the addition modulo 193 would alone require 64 k of memory.

The use of the residue number system allows one to break a large dynamic range problem into a number of smaller dynamic range problems. The combined dynamic range of L moduli is given as $M=\prod_{i=1} m_{i}$. These m_{i} 's can be chosen to be small enough for an efficient realization of arithmetic operations moduli m_{i}. The operations modulo m_{i} can be performed in parallel because of the interdigit independence property of the residue number system, e.g., modulo 193 addition can be implemented in $7 k$ memory using m_{i} 's as 30 and 31.

The use of the RNS allows one to implement the butterfly un.it in look-up tables efficiently. The large dynamic range is achieved by implementing the B.F. in parallel in smaller moduli and then recombining the result using the chinese remainder theorem or a mixed radix conversion scheme.

The modular addition-subtraction requirement in the B.F. unit does not offer any problem and can be efficiently implemented either using the sub-moduli approachor using adders-subtractors. The complexity of performing multiplication by the twiddle factors in the B.F. unit depends upon the field or prime used, and the generator α. The primes are divided into two groups, the $4 n+1$ type and $4 \mathrm{n}+3$ type. The $4 \mathrm{n}+1$ type primes offer a simpler structure for the butterfly unit, and are preferred over $4 \mathrm{n}+3$ type primes.

In this work, the objective was to design a butterfly unit for number theoretic transform capable of exploiting the recent advances in memory technology. A structure for a NTT processor has been developed which is useful for real-time applications. A pipelined butterfly structure was found to be most suitable for use with the supporting memory structure for the real time applications. The butterfly units for both kinds of primes were designed using a pipeline structure. The structure based on the look-up tables stored in ROM is simplest to pipeline, and requires only a clock pulse to shift the data in the pipeline, thus the control circuitry is extremely simple. The package count for the butterfly unit for $4 n+1$ and $4 n+3$ type primes is 32 and 48 respectively including the storage tables for twiddle factors. The number of stages for $4 \mathrm{n}+1$ type primes is 5 and for $4 n+3$ is seven.

The butterfly units were simulated on an IBM-370 computer along with the basic required memory structure to establish the feasibility of the proposed NTT processor. After the verification of the
simulation results, the butterfly unit for modulo 193 (a $4 n+1$ type prime) was implemented in hardware using 2708 Eproms and 8212 latches. The addition subtraction operations were realized using the sub-moduli approach. This approach was used because of the availability of Eproms and also for the simplicity of Eprom based structures. The package count for the butterfly unit is 32 Eproms, 31 latches and 4 multiplexers. The 8212's were used as latches and it was found out that they are not suitable for a pipeline structure since they slow down the speed of operation. Edge trigged latches are recommended. The 8212 latches were used because of their availability.

CHAPTER 6

CONCLUSIONS

The design of a ROM oriented implementation of an NTT butterfly has been carried out in this work. The butterfly has been realized using Eproms and latches in an extremely simple pipeline structure. Level sensitive latches require slower clock rates to function effectively and hence edge triggered latches are preferable.

The addition-subtraction operations have been carried out using sub-moduli approach because of the simplicity of the resulting pipeline structure. The adder-subtractor approach requires less number of stages and asmall package count but increases the complexity of the unit. The adder-approach for summing indices to implement multiplication is not that viable as it requires extra logic circuitry to detect zero multiplication and thus further increases the complexity of the butterfly unit.

A memory support structure has been simulated at the logic level in order to investigate the feasibility of the NTT processor described in the thesis. The proposed structure is such that the data transfer time associated with the memory is the same as the computational time of the butterfly unit. This further enhances the NTT processor's capability as a real-time signal processing facility. The memory structure can be realized using long shift registers for the dynamic
storage of the data. The use of these shift registers eliminates the need for addressing the data.

Future work in this area will be to actually implement the memory support structure in hardware and to ultimately construct the complete NTT processor.

APPENDIX A

SIMULATION PROGRAMS

The simulation of the butterfly unit was done on an IBM-370-3031 computer. Listings of the programs are given here.

```
:7777
```



```
                &. MFTM FFOMGF:MM TG ESTEELIEH THE INWEFTIEILIT'G GF NTT *
                    &: . &:
```



```
    IMFLIEIT INTEGEFCFH-H., GーZD
```



```
    COMHiDR FOTMT
    FEFR!E EG!: MMOM, MING
FMFMMTSIE E%.jZ!
    CA!L TAELES
E
E GET THE FGTNTEF: FOR GLEAFING LATGHES
F
    FOINT=5
    IWO
E
C
    IMJTILIZE THE IMFUT
    0015 I=1.12E
    NiOF`I, 1`=にI-4`
    NUMF!I. 2%=\12E-I)
Eg condtiNuE
    GTPRT THE OUMPUTATIDN FGF SEVEN ETRGES.L IS FOR STRGE
2G [G1 L=1.T
    ETC=L-1
    NT=:1
E
C
~
NW IS FQR THE FGEITIGR GF EUTTEFEL＇IN THE STAGE
OOE Nid＝1．E4
TNF：（1）\(=N \mathrm{NHF}(\mathrm{NH}, 1)\)
```



```
FOET＝NU－1
GF：L THE MTT TE COHFUTE TWO FOINT EUTTERFL＇：
GFIL NTTGING INEL IMFZ ETG．FUST，GUTL，OUTE
DG MAT ETORE DUTFUT FQR ENITIE： \(\bar{T}\) ETGGE DELBT
IFCNLLTE GOTO
TEMCNJ，1）＝GuTIく1）
TEMCKT 2？＝0iT162．
TEMCNT－1．1）＝OUTE：1）
TEMMNT－1． \(2:=\) OLT 2 ©
\(N T=N T+2\)
```


TEMCM． $19=$ QuTT 140
TEMCMT， $3=01 T 162$
TEMCNT＋1．1＝OHTEC1

$\mathrm{NT}=\mathrm{MT} \div \mathrm{Z}$
4 EONTIMNE
「4 5 ド＝1 ，ジシ
［ロ
NLIEがいド，＝TEMくK，ド
E．CCIVTITRIE
1．GOHTEMGE
GEE THE EHGFFLE FFDGRAM TO GETAIN THE GRDEFER GUTFUT
$\mathrm{NU}=12 \mathrm{~B}$
NO＝Nidre
NH：1＝NLI -1
$\mathrm{I}=1$
DO このT I＝1，M！1

FE＝MUMF：J．1）
NLOFPS，IV＝PNOFCI．1．
MUOFCI 1．$=$ RE
IM＝NGOCJこ？

？MOF：
25E $\mathrm{K}=\mathrm{NQ}$
2GE IFKG GE IU GO TO 2GT
$I=J-K$ ．
$\mathrm{K}=\mathrm{K}=$
GIGTG 2GE
$207 \quad T=T+K$
FFIMT 161．KOUNT，IN：

Da $56 \quad \mathrm{I}=1,2$
FRINT．©NUOFGNW I．MN＝1． $12 \Xi \%$
Es colltildie
IFCIMW EQ 1：GO TO 10E
IN $\mathrm{C}=1$
Gn TO 2B
10ะ 0110 I＝1．12ะ
$00110 \quad T=1,2$

116 COHTIRNUE
FRINT TE
TG FOFMATC－OG\％THES IE THE FINAL RESULT＂
［0 $71 \quad \mathrm{~T}=1.2$

T1 ECidTIMuE ETGF


```
7700
```



```
* FANTE FRE ZEFO
;+:
IMFLICIT INTEOEFGG-H. O-Z)
```



```
    EOMNOW FGINT
C
gENERGTE THE TPBLEE FOR NTT EUTTEFFL't
MMOD IE THE MGIM MODOLLUE NINQ IS THE MULTIFLJCATIVE INVEFSE GF
    FEFDCE 2GL? MmOD, NINW
201
C
C
    set The fointEF for glfarindg latches
FOJNT=6
C INITIMIZE THE CGUNTER TO FERFQRIM TRANEFGRME
C
    KOUNT=G
    INW=G
C
E
    INITILIZE THE INFUT
    NO 50 I=1.. E4
    NUOF(I.1)=1
    NUMF(I, シ)=0
EG CONTINUE
    DO 51 I=65. 120
    NUOPGI. 1.\=6
    NUOF<J. Z`=G
51 EONTIRUE
C
C
C
    20 00 1 L=1.7
    STE=L-1
    NJ=1.
E
E
C
    NH IE FGR THE FOEITION OF ELTTEFFL't IN THE STRGE
    LN Z NH=1.E4
    INF1(1)=NLMP(NN, 1)
    INF|!2`=N|NFGNWO?
    INFE(1)=NHOF(NN+E4.1.)
    INFS<2:=NWGFCNW+E4, 2)
    FOET= FNN-1
grial the ntt to cohrute tha fuint elittefelit
CALL NTTGIW, IMFL, IMFE ETG FOET, GUT1, GUTE
```



```
            TEMCNT, 1%=0iTM.61%
            TEMMNE 2%=CHIT!*2%
            TEMCHT+1, 1`=RHITE6:O
```



```
            MT=MT+Z
        & EOMTIRNE
            OM F:=1.1こB
            MMEKK=1. 三
```



```
    E EMdTINGE
    I EMTVIMNE
    HEE THE SHLFFLE FFDGFFM TE DETAIN THE QFEEFED GITFUT
    P|I=+.2S
    MOZ=P||N
    NMI=N||-1
    T}=
    L| 2GT I=1. Mi41
```



```
    F:E=\\IOFG.\.1)
    NMOFくT, 10=\NGOFGI, 1%
    MLIFFCI. 1)=FE
    IM=N|にFくJ, こ)
```



```
    N!日FくI. シ%=IM
ES ド=院こ
Z以E IF&K, GE. I% GO TO ZGT
    T=Jード.
    K゙ーぐジシ
    GTO 2-E
#WT
    FFINT 1E:1. EMLINT, ING
```



```
    @O FET=1. 
```



```
    EE CITNTIMLE
```



```
    IFGINY EG. 1) EO TO 1GE
    IF&GGi|TT.GT. I) GU TO 10:
            IFCM&, LT.ES GO TO Z
            TEM4NT, 19=Gi_1:1:
            TEMCNT OO=Ri_T:GO%
            TEM!MT+1.1 人=CuITEM1%
            TEMCNT+1, ב.=Gi|TEC2%
            N.T=N.T-E
            Z COUTINLE
GETEIM THE LHET EEYEN FGINTE FFGM THE FJFELINE EUTTERFL＇G URIT
                            OO 4 TT=\T
```

```
    [品 I=1, IO
    [M ET ?=1, Z
```



```
    C
    G IUTTT:ZFTHE EEEGQR BEGGUNE
    C
    E
%
```



```
    GTO - % 
```



```
    16: r4 -0 I=1. 12:
```



```
    G-TM4%!1.
    I=TEM!!"I."
    FO-B+:
        B=ramemarmem
        ES:=EPE
```



```
        AC=F:+O
```



```
        シーご貌
```



```
        FE=FO-EL
        FE=MDE!PE, MOMO
        TFGFE. U-T. G% F:F=F:E+MME
        NBGFCI I.`=FE
        エロニツ!ーニ゙
```



```
    OE COMTEPN
E
    TGKE THF INYEFEE TFHNEFGFUM
        TM=1
        GTO -T
```



```
        FFTNT FO
```



```
        凸-"=1-
```



```
    T1 GrtT?:B
```

```
            :4.
```



```
            *: EECONE EEG!NENGE IS FEML. **
            &:
```



```
        IMPLISIT IPNTEGEFCP-H, GーZ.
```



```
        COHTHON\ FGIPIT
```

```
            GE!NEF:GTE THE THELEE FGF NTT EiITTEEFLY
        MOE IS THE MFIN MGRELLUE.MIHY IS THE MLIGTIFL.ICATIVE INWEREE QF P
        FEGLGE, ב-1% MMDD. MIM,
きG1 FMR!!RTGIE, E% IE,
    GFill TFELEE
C
C SET THE FGINTEF FQF CLEFFING l_FTCHES
~
    FOIMT=E
C
E IMITILIZE THE GOLIUTEF TO PEFFQRUM TFGRSFGRINE
E
    FCOidNT=G
    IPM,G=E
E
    INTTILIEE THE INFLIT
    L0 50 I=1. E4
    NLDFFI, 1%=1.
```



```
    EG EBr|TJPNE
        OQ EM I=EEM, 1\XiE
        MLIOP:T, 1%=6
```



```
        51 COITTPMLE
    ETHPT THE GOINGITFTION FGF EEVEN ETAGES.L IS FOF STFGE
        2G [i] 1. L=1.T
    STG=!--1
    MT=:1
E
    NW IE FOR THE FOSITION GF EGITTEFELY IN THE ETRGE
    EQ E NTN=1. E4
```



```
    FC:S=?M:{-2
    CFILL THE NTT TG COIMFUTE THO FGINAT ELITTEFFL'Y
```



```
C
            IFCNN!T.E GOTG Z
            TEM!MT:1)= Wi|T!<1:
            TEMCNT, \XiS=にUT1Gこう
            TEMCMT+1.1.1=Q|TT2G1%
            TEMMNT+1, ZO=Gi|TOこ%
            NT=PNT+Z
            E COMTIMIN




```

TEMCMT＋1．1＝GiLTE（1）
TEMCMT＋1，こっ＝DITEくこり
$N, T=N T+2$
4 COITTIRUE
［0 5 K＝1．12
［19 $5 \mathrm{KK}=1.2$

```

```

5 CDidTINiE
1 GOMTISNE
UEE THE GHUFFLE FRGGFAM TO DETAIM THE GFDERED OUTFLT
Nu＝： $2=$
N：コートリレン
$N \mathrm{NiH}=\mathrm{NLL}-1$.
$T=1$
［II $2 \mathrm{O} \quad \mathrm{I}=1 . \mathrm{NiM}$
IF〔I．GE．J）GLTD こEE
F：E：NiNF：J！1）

```

```

Mi＠FにI，1ンFE
JM＝トににFにす。こう

```

```

RUSFF！23＝IM
こ与 $5=\mathrm{N}$

```

```

$T=T-K$
K＝K゙ロ
GT TO OQE
シロ7
$T=J+K$

```




```

EE CRMTIRUE
$K O L T T=K G i \| H T+1$
IF：IHY．EQ．1．GO TG 19E

```

ETGFE THE FTFET TREISFOFUYE EEQUENOE
```

```
    [iT ET I=1. 12E
    @g I=1.E
    TEMI!I.T:=PNGEFCI.J%
    ET GOHTINM音
    C
    C
    IMTTILIZE THE EECOMS EEGGENLE
    ロ! I=1,54
    NNGFCI.1)=こ
```



```
        5E CONTINNE
            DOE I=E5, 1E E
            [0] 5% T=1, 2
            NMにF!I,TV=6
            EG CMO,NING
    C
    TEMHEFGRM THE EECDNA EEQUENEE
    507 T0 20
    MLILTF'L'T'THE EEGLENCES IN THE TEAMSFGFME COMGIM
    162 NQ ES I=1. 12%
    F=|,N\mp@code{CI,1%}
    E=N|OFGI, こう
    G=TEM11.I.1)
    [=TEM:1<I, S.
    AB=B:+5
        AC=FOLCRC.MMOD
        ET:E:+[
        BR=MOLOSO.MMOD\
        A[:A:+ %
        HE=MOU心FD. MNOLO
        EC=E:+6
        EN=MOLGEC, MMON:
        FE=FIC-EC
        FE=MOLGFE. MrODO:
        TFCPE.LT. G% RE=FE+MMOD
        NUDFCT, 1,:=F:E
        IMR=FCH+EC
        NGQFGI, こう=MOOGIMA, MMOOO
        EG EDNTINLE
C
O TFGE THE INWEFSE TFRMEFORU
        INU=1
        GOTG SE
        O
    MLLTIFL't NITH N INWEFEE
    10T [0 110 I=1. 1. %
    00110}T=1,
```



```
    116 COHTIINLE
    FFIMT TG
    FE FGFMATG*-`EOMTHIS IE THE FIMAL EEELHTT``
    OM T1 I=1. ב
    FFIPMT, GNUGFGMM, T% Mm=1, 12E0
    F1. EOTNTINUE
        ETOF
    EME
```



```
CH
C
    EMERGGTJME TAELES
    IMPLIGTT INTEGEFMP-H. E-Z.
```



```
    COMMON FUINT
    MMO==1E1
    PFIM=1S
    MODUK1%=玉W; MODUG2`=玉1
```



```
    PEF:=MMOL-2
    PFO=MOMH心1)+MODUG2つ
    NBOE=MMON-1
    UML=1
F
E INDE% TGELE
    CO 2.1 K゙=エ.FEF
    YHL=W'HL:+FRTM
    URL=MOCOWAL.MMOLO
    INC<ツRL+1.)=K
```



```
    21 COMTIMUE
E
    EUE MOLUI_I FESIDUE TAELE
    OQ 1 I=1, 2
    NO 2 N=1. MWOL
    R=N-1
```



```
        = COMTINUE
            MM=MOLUGI:
    C
    C FDGITION THELE
        DO 11 N=1.MM
        OO 11. NM=1,MM
        R=P1+PN.V-2
```



```
        1:1 COHTINNG
    C
    C ELETEGCTINH TGE:E
    [口 İ K=1. Mm
    [0ZE i=1.dTM
    A=ドーT
    IF!A.LT. G% P=A+MM!
    TEUE:I.K゙:I=F
    Z2 CNHTIPME
    S1 CONTIPNLE
        1 COMTINLE
```

2a $5 \mathbb{E} I=1.20$
[Q 51 TI=: 21
$\therefore 1=1 I I-12+1$.


```
            FLFFG1. NH+1, こ`=MOL!E, =6,
```



```
            FLFHCS.NN+1, 2`=MODGE, 21?
            IFGE. EG. S1) FLFFGS.NN+1, 2\=\Xi1
            FH=RE
            EE=IMAG
        El EONTINDE
    C
    C THELE FOR TMIDCNE FGOTORE
    C
        DO Eこ II=I, E4
        TF(1. II,1)=ALFFG1,II,1)
        TFG1,II, こ)=ALFF(i, II, З)
        .TF!2.II,1)=Hi_FF!2.II.1)
        TF<2,II, こ`=GLFFGS,II, 2>
    E
    THELEE FGP INQEFSE NTT TWIDGLE FPCTORE
        INK=II-1
        IFGINK.NE.G) INK=12E-INK
        TFE(1. II, 1)=Fi_FFG1. INK+1, 1)
        TFI<1. II. 2`=RLPRG1,INK+1. こ)
        TFI(E. II. 1)=ALFAGO. INH+1.1. 1)
        TFI<2.II. 2)=ALFFHG2, INK+1. 2)
        TT=INKK+1
        E2 CONTINLE
    E
    C CORREGTION FOR ZEFG MLILTFLICATION
        DO 251 I=1,2
        0口 こ5` I=1, 32
        TFDDGI, こ`, J=SI
        TINWCI,S2, J`=0
    ESE COMTINHLE
        [0 25S J=1, 22
        TROD(I, J. ミこ`=ミ1.
        TINUSI,J, ミ2`=0
    ZSE CONTINLUE
    251 COMTIRNGE
    FETUFI
    END
```


$E=I N O C 4+13$
TEUING1: Ji. TJう=MOLGE, zG
IFGN4. ED. GY TEUING1. II. IJ $=$ =1
TEUTNGZ II. T = = MORGE. SI)

41 comTIME
40 CONTJPNE
OOPFECTION FOF ZEFO MULTIFLICATION
ロロ $2=1$ I=1. 2
DO $25.3=1.2$
TADCCI. 22. Tン=21
TRDMLI:I. $22 . エ ン=さ 1$
TINUCE2, T)=0
2כe COHTI!Nate
$00253, T=1,22$
TADUGI, $\quad \Sigma 2=31$

TIKNGT, Sこう=
$25 E$ EONTTRLE
2E1. CONTINAT
FETUET
ENT

> SUEFGLITIV TABLES

IMPLIEIT INTEGEFCF－H，QーZ

EEMDIDT FEIIMT

MMOL＝MMOE－ 1

MOLS＝FFOーMIOL
＇\because＇Ri＝1
IMDEN THELE
LQ OM K＝1．FEE
YHi＝4FL＊FFIM

I IN以いK゙＋1 ン＝4RL
2．G ITHTIMUE
TAELE FIR POWEF GF FLFA
$F B=0 ; B E=1 ; \quad C C=[1 ; C D=1$

［0 21 N $N=2 \cdot 127$
$F E=F B+E C+2=1+E E+C \cdot$
IMAG＝FA：＋CL＋CL＊EE
FE＝MCOUFE MMOD
IMFGOMOLく IMRE．MMOD？
IFGFE．NE．G）TEM＝PE
IFGIMAG．NE．Gン TEM＝INAG
$\mathrm{A}=\mathrm{I}$ WDCTEM＋1

AR＝FE
EE＝IMFG
II CDMTINIE
TPELE FGE THIDOLE FACTOR：
［0］ $\mathrm{S} 4 \mathrm{II}= \pm . \mathrm{E} 4$
［2I $\mathrm{Z}=1.2$

TPBLE FGR INUEFEE THINGE FRCTORS
INK＝I：－1

TFIGI．II $\because=$ CiLFFicI．IRK－1
ES CONTIME
24 COUTINE
［日 ！I＝1，Z
$\mathrm{MEUE}=\mathrm{MODUCI}$

```
            B=?\-1
            TESMGI N = MOLHF, MENE:
        Z COMTINLE
    BNNITIGH TAELE
    EM 11. N=1. MELE
    EG 11 Nid=1. MELE
    M= P.N+P|N-2
    THDDGI.N. NW=MOWGF, MELE;
E
    TPRLE MITH MIM_TIEIGEF:
        E=R\M|N-ミ-F
```



```
        11 GOMTIMNIE
    EMETFAGTINN TFEINE
    MO 1S ド=1. MSUE
    [M 15 KR=1. MEUE
    F=K-ゲ!
    IFGF. L.T. Gン F=A+MSi|E
    TSUE|I,F゙, &゙\=S
        1E COHTI!N䍃
        1 EDNTIRMiE
            017 40 II=-1, 20
            014 ET=1, E1
            O1=\II-1%+:1
            \therefore=4TT-1):T*T
            2=MOL"%=31%
```



```
            M4=MOLG?, FFO%
            TABLE FOF INYEFEE LOMK: UF
            NEMCDUN4, NMOD
            *=I IMW:?E+1%
            TINWGII,ITD=%
            THELE FGF FIMARL LOUKG UF
            #=M00624, MMOD%
            TEINGII. ITY=XE
E
                            EUETEGOTIGH TAELE EMESNE
            IFO4. LE. MOLEY EO TO ES
            \4=%4-FFO
            <4=%4+5140
            ETG E%
E5 *4=MOD@&4,MMOL?
EE E=IMDN%%-1
TEMING1, II. TJO=MUNGE. ED:
```



```
TBUIN&2. II. IT%=MODGE. ES%
```


TRDOGI. J. $2:=\Sigma 1$.

TINWCT, 2こ: =
EES COHTINHE
251 codtinde
FETUFW
ERO

 IHPL IGIT INTEEEFGKーH．Q－Z

EDiMMEM FGI！MT
IECPOIST．NE Q）EOTO EEG

Ene git1 $11=F=\mathrm{E}$
NIT14こ：＝F：
GUT2ヶ1）＝RES
ロuTコにごったE
THE EEMFRTH ETAGE

FEU＝TFINSF：
FES＝TFINCPBE＋1，FEEG＋1．
FEE＝TFIMPPS1＋1．F6S＋1）
THE EIMTH STHEE
FES＝R42
FEE＝F．44
P．ETTF：4E
$\mathrm{FSE}=\mathrm{F} 4 \mathrm{4}$

F：$=1=$ TRDC： $1, R 4 G+1, R= \pm+1$ ）
F：E＝TRUM（2，REE＋1，REE＋1）
THE FIFTH ETREE
F:4E=F:E1
F:4E=F:E1
F.44=FE=
F.44=FE=
F4E=R=3
F4E=R=3
R4E=F24
R4E=F24
F4T=TINMS1, F:SE+1. FEE+1)
F4T=TINMS1, F:SE+1. FEE+1)
F4E=TINOS RSE+1., F:EE+12
F4E=TINOS RSE+1., F:EE+12
P4O=TrNUC1, FST+1. PEE-1)
P4O=TrNUC1, FST+1. PEE-1)
FER=TINWGS.FET+1, F:EE+1)
FER=TINWGS.FET+1, F:EE+1)
FE:=TINWG1, FES+1. F4G+1)
FE:=TINWG1, FES+1. F4G+1)
FES=TINYCZ, FSO+1. F4O+1:
FES=TINYCZ, FSO+1. F4O+1:
FE==TINWC1, R41+1, P42+1)
FE==TINWC1, R41+1, P42+1)
F.4=TINUS2.F.41+1, F.42+1)
F.4=TINUS2.F.41+1, F.42+1)
THE FGURTH STEGE
THE FGURTH STEGE

	FSE＝TPRD¢Q，ROE＋1，FES＋1）
，	
\bigcirc	
Γ	THE THIFD ETFIEE
	F：1．9＝Fid． 1
	P．E．EFO：11
	FO：1－F：12
	Fご＝F\％
	JFiIfw ME W9 GE TG EEE
	F．マT＝TEG1．Fis＋1，1）
	FSE＝TF：2，R：E 2 ＋1．1）
	G0 TO 406
玉心E	PVT＝TFI（1．F1． $2+1.13$
	R2E＝TFIC2，F1E＋1，1）
C	
6	THE EECOHL ETGGE
C	
400	
	$F: 1.1=T A D C O, F-1, F E+12$
	$F \cdot 1 \in T S L E G 1 . F E+1 . F T+1 \%$
	$F \cdot 1=T E$ UE $6 . R 4+1, F E+1 \%$
	R：S $\mathrm{S}=\mathrm{F}: 3$
E	
－	THE FIFET ETAGE
C	
	$T 1=I T P F 1612+1$
	Tこ＝INF＇1： 2 ＋
－	
	T4＝IMPEくこ？＋1
	F：1＝TFEMS1，T1．
	Fこ＝TEEMS．T1．
	PS＝TFSMCI．Tご，
	F．4＝TFSME．T 2
	FS＝TFEMG1．TE

F:T=TF:MM1. T4
F: E=TFEMOZ T4
GENEFGTE THE FGWEF GF HLFHM

FDIVT=FIDINT +1
FETLPR
EML


```
        GLIT1&Sう=REE
        OUTご1ン=RES
        GuTこGこう=R4G
    THE FIFTH ETHIGE
    FS=F2T
    F:E=FF%4
```



```
    Fこ=FFSE
    P4G=FEE
    GO TO 2゙G1
```



```
    F4ほ=Fごこ
    ミN! Fここ=Rご
    Fこ4=F゙ぎこ
    FごE=TIR\`Fご+1.Fこご+1)
    EHEKS=CHEK4
C
E
C
```

```
C
G THE THIFD ETAGE
    203 CHEK4=CHEKS
    F:1P=TFINGF15+1, R11+1)
    FOG=TFINGF:IZ+1.*NS+1)
    F2I=TEUIN(1, F14+1. FIE+1)
    F2こ=T\xiUIMC2. FU.4+1, F1E+1)
    R2S=TEUTWG1. F1E+1. F1T+1)
        F24=TEUING2.F1E+1,F1TT+1)
        IFCINM.NE E% Gu TO 4EG
        F:25=TF(1. F:18+1)
        FOE=TF(2, F1E+1)
        G0 TO 4E1
    400 RS==TFI{1. F1E+1)
        FこE=TFIG2, R1E+1)
c
E THE SECONO ETAGE
C
    4O1 CHERS=CHERS
        FIEM=TADOC1.F:1+1. FEO+1%
        FL1=TFDOCZ. F:S+1.. FE+13
        F12=TROO(1, FZ+1, FT+1)
        F:12=TFDOCS, F4+1, FE+1)
        F14=TEUE:1, F1+1, FEN+1)
        FIE=TEUECZ, FO+1., RE+1)
        RIE=TGUEG1.RT+1, RT+1)
        FIT=TSUEG2.R4-1, RO+1.)
        F1E=FS
        CHEKE=CHEK1
E
E THE FIFET ETHGE
C
    F=INFIG1%
    E=INF゙MG%
    C=INFこG1)
    D=INFこに)
    FI=TFSNC1.F+12
    F2=TFSM62, F+1)
    FS=TREM(1, E+1)
    F:4=TRSM:2, E+1)
    FS=TF:EM(1, C+1)
    RE=TFOM(2.C+1)
    RT=TRGM(1. [1+1)
    FE=TREM(2, D+1)
E
c. gerefiate the fower of mlqha
C
```



```
    CHEKI=MODGES, 2)
    FOINT=FOINT+1
    PETUFN
    END
```

```
ロロロロロ
C CHENS GFE THE CONTFDLS FOF EVENGODD FGiER OF RLPHM
    CHEK1=CHEKS=CHEKS=CHEK4=CHEK5=G
r
O LATCH THE OLITPIIT
C
    204 0UT:161`=F3%
    OUT16ミ\=FSE
    OUTEC1)=FSS
    nilTCG3=F4G
E
E THE FIFTH ETPGE
E
    FRT=F:SS
    FSE=FS4
    IFCHERENSE G% GO TO SOE
    FES=FSE
    R4G=FSE
    GO TO E01
    zac FSE=FSE
    F4G=RSE
    SG1 RSI=R27
    F24=023
    FSE=TINW(FSJ+1,FSE+1)
    RIE=TINQ(RI1+1, RE\Sigma+1)
    CHEKS=CHE%4
    THE FGuPTH ETfuE
    P.ST=F:1S
    F2S=FEG
```



```
    F.ZO=TADC(2.R22+1, R2E-1)
    IFGCHEKE NE G% GU TO EGE
    F:I=THOC!1, R2S+L, RSE+1,
    FS2=TARDS: F24+1, R2E+1;
    G0 TO =G-
SQ2 F:SI=TFDMUL_1, FSE+1, R2E+1)
    FSS=TROML4 CPE4+1, R2E+1`
```

```
E THE THIRN ETGGE
E
    EOE CHER4=CHE!C3
    F:1S=TFINGF:1Q+1. F:LI+1)
    F2G=TFIMGF:1E+1. F:IS+1. 
    F:D1=TEUTNO1.F:14+1, R:15+12
    F:2\Omega=TSUING2, F14+1, F:1E+1)
    F2S=TEUIN,1, FLE+1, F:1T+1,
    F24=TEITNG2, FIE+1. FIT+1)
        TF\INU.NE. 日) G0 TO 40G
        RES=TFG1. P1S+1)
        FSE=TF:2R1S+1)
        G0 TO 46:1
    4gG FOE=TFTG1. FiE+1)
        FQE=TFT:2,F1E+1)
C
C THE SECGNE STAGE
C
    402 CHEKE=CHERO
    F:IE=TCOOG1, F:L+1, F:E+1)
    F11=TRODUS, F:Z+1. RE+1?
    F:1E=TADCM1, RE+1. RT+1)
    F:12=TFD[(2. R4+1. RS+1)
    F:14=TEUSO1. F:1+1. F:5+1)
    F:15=TSUSG2,F:Z+1.F(6+1)
    F:LE=TEUE(1., F:S+1. FTT+1)
    FM.
    F:1G=F:=
    CHEKS=CHEKI
    THE FIRST ETHGE
    A=I\F゙1<1)
    E=INF:\\?
    C=INFEG1:
    0=IMFごこ`
    FI=TREMG1.f+13
    FS=TFSM!2, F+1%
    F2=TF:NM1.E+1)
    P4=TN:MSE.E+1%
    RE=TREMG:C+1)
    RE=TREMGE.E+1`
    FT=TF:MM1, [+1%
    FS=TFSMG2.D+1%
    gENERETE THE FONEF OF AlpHA
```



```
    CHEK1=MOECFO, 2)
    FOIMT=FOIMT +1
    FETIFTN
    ENE
```


APPENDIX B

PROGRAMS TO GENERATE TABLES FOR

EPROMS ON INTEL 220

LUC' OEJ. : LINE: \because SOUKCEASTATEMEST

LOC' ORJ

LINE
SClikCe siatement

LOC EEJ. \because LINE, . \because SOURCESTATEMENT
1...1;SURKOUTINETO CHVVERT A NEEATIVE NO: nODLLC 193

3 14

RLBLTC: NECCON

; FROLFFiM TO GENEFGTE THE ELB-MGCULO SG FEEIDUE TAELE ; TFSME
EEDG
ETFPT: LXI
MUI E, 1ES ; ETAPT THE CMUNTEF MUI
LGIDP: MO9 EFI IC
EMET: EMI
ETRFE: MOY Mg -

TN:
CEF TV: TMF EMi:
H. T4ENH
C. 0
A. C
± 6
ETGFE

- MO:

E
M. B
C.
$\stackrel{H}{H}$
H
E
LOMF g=SEEH ETAFT


```
ASM80 ADML 30.SRC PAGEWIDTH(42)
```

ISIS-II' 808018085 MACRO 'ASSEMBLER, VJ'0
MODULE PAGE• •1

SOURCE STATEMENT


```
ISIS-II. 8080%8085 MACRO ASSEMBLER, V3.0 M MODULE PAGE I
```



```
ISIS-II 8080/8085 MACRO ASSEMELER; V3.0 MODULE PAGE I
```

LOC	OBJ		INE		SOURCE	Statement			
			1		CSEG				
0000	210074		2	START:	LXI	$\mathrm{H,7400H}$			
0003	0 E 00		3		MVI	$\mathrm{C}, 0$			
0005	1615		4		MVI.	D, 31	;COUNTER	FOR	M2
0007	0600		5	L1:	MVI :-	B, 0			
0009	1EIF.		6		MVI	E, 31	; COUNTER	FOR	M1
000 B	$A F$		7	LOOP:	XRA	A			
000 C	78		8		MOV	A, B.			
000 D	91		9		SUB	C			
000 E	D21300	C	10		JNC	STOR			
0011	C61F		11		ADI	31			
0013	77		12	STOR:	MOV	M, A			
0014	23		13		INX	H			
0015	04		14		INR	B			,
0016	10		15		DCR	E			
00.17	c20800	C	16		JNZ	, LOOP			
D01A	23	.	17		INX	H		-	
0018	OC		18		INR	C	-•		
001 C	15		19	-	DCR	D			
0010	C20700	C	20		JNZ	L1			
0020	C355F8		21		JMP	0 E 855 H	1		
0000		C	22		END	START			-

			; GENERATE SUETRECTION INDEX TAELE : EUINEA
	ceser		
Start:	$1 \times \mathrm{T}$	EF. ETALK	
	LXI	H. T 4 mbH	
	LYT	E. 1E04	: GULITEF:
INIT1:	Mow	EM	
	Fi 12 H	H	
	MCW	F. E	
	DEF	F	
	T	CGFRECT	: IF ENTRT IS E. NG INDEX EXISTS
	Mov	F. E	
	CFJ	GFFH	; IF FF. NG FCTION
	TNE	CORRECT	
	MOW	H. Fe	
	Mow	LSE	
	Mov'	F. ${ }^{\text {a }}$: ERING THE IREE:
	GFI	30	; REDLICE THE INDEX in EUE-MODLLA 30
	IT	ETOF	
SHET:	SUI	50	.
	EFI	30	
	THE	guet	
	IMP	STOF:	
CORPEET	: HW	A. EFFH	: STORE FF FGR IMOES OF SERO
STOF:	FOF	H	
	Mロ'	M F	
	IW\%	H	
	OC\%	E	
	Mry	F. E	
	OFA	A	
	TRE	IPTT:L	-
	TMF	GIFESEH	
	Enci	START	

			; GENEFGTE GURTRACTIOM INDEN TRELE ; ELINEI
	CSES		
STAFT:	LYI	EF, STACK	
	LKI	H. T4Eni	
	LSX	E. 10.84	; CULHTEF
INITI	NO\%	E. M	
	FidEH	H	
	Mov'	F. E	
	ORe:	Fi	
	IE	CRERECT	: IF ENTF'T IS E. NO INDEX EXISTS
	M0\%	F. E	
	GFI	EFFH	\therefore IF FF. MO Fiction
	THE	CRREECT	
	M0\%	H, TE	; INDEX TRELE STORED İM PEQGH
	M109	L.E	
	Moy	F.M	: ERING THE INEEX
	CFI	31	; RECUCE THE IMDEX IN SUE-MODULO 1
	IE	ETGR	
SLET:	ElI	21	
	CFI	21	
	JME	Elet	
	JMF	STOF:	
COFPECT	MrI	F. GFFH	SETGRE FF FOR INDEX QF ZERO
STOR:	FQP	H	
	Mav'	M. A	
..- ---	INX:	H	-... -
	[C\%	E	
	Mnu	F. E	
	DEA	H	
.	Jkz	INTI	
	JMF	GFEESH	
	ENE	ETAFT	

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISIS-II	8080/8085	MACRO	ASSEMBLER; V3.0	$0 \quad$	MODULE	PAGE	2
		-	\cdots. 1	-	-'	-	
LOC	¢¢	LINE	SOURCE	STATEMENT			
005 C	23	51	INX	H			
005 D	E5	52	PUSH	H			
005 E	04	53.	INR	B			
005 F	78	54	MOV	A, B			
0060	FE1E	55	CPI	30 D	-	\cdots	
0062	C22600 C	56	$\therefore \quad J N Z$	L2			\because
-0065	E1	$\therefore 57$	POP	H	: •		
0066	23	58^{\prime}	INX	H		'-	
0067	23	5.9	INX	H			
0068	E5	60	"PUSH	H		$:$	
0069	OC	61	INR	C	,	\bullet	
$006 A^{\circ}$	79	62	.. $:$ MOV	A; C			
0068	FEIF.	63	CPI	31 D			
0060	C20900 C	64	JNZ	L1			
0070	C355F8	65.	JMP	OF855H			
0000	c	66	... END	- START			

ISIS-II $5080 / 8085$ MACRO ASSEMBLER」 V3:̈̈ $\therefore \therefore$ MODULE PAGE 2

ISIS-II 8080/8085 MACRO ASSEMBLER, V3.0 MODULE PAGE . 1.

ISIS-I BO8G/8085 MACRO ASSEMBLER, V3.0. MODULE PAGE 2

C) - THIS PROGRAM GENERATES TNIDDLE FACTORS MODULO 30

```
ASM80 TF31.SRC
```

ISIS-II $8080 / 8085$ MACRO ASSEMBLER, V3.0 MODULE PAGE 1

REFERENCES

[1] N.S. Szabo and R.I. Tanaka, "Residue Arithmetic and its Application to Computer Technology", McGraw Hill, New York, 1976.
[2] F.J. Taylor, "Large Moduli Multipliers", Proc. International Conference on Acoust. Speech, Signal Processing, April 1980.
[3] G.A. Jullien, "Implementation of Multiplication Modulo a Prime Number with Application to Number Theoretic Transform", IEEE Transactions on Computors, Vol C-29, No. 10, October 1980, pp. 899-905.
[4] J.M. Pollard, "The Fast Fourier Transform in a Finite Field", Math. Comp., V. 25, Apri1 1971, pp. 365-374.
[5] R.C. Agarwal and C.S. Burrus, "Fast Convolution Using Fermat Number Transform with Applications to Digital Filtering", IEEE Transactions, Acoust. Speech, Signal Processing, Vo1. ASSP-22, No. 2, April 1974.
[6] C.M. Rader, "Discrete Convolution Via Mersenne Transform", IEEE Transactions, Comput., Vol. C-21, December 1972.
[7] R.C. Agarwal and C.S. Burrus, "Number Theoretic Transform to Implement Fast Digital Convolution", Proc. IEEE, Vol. 63, April 1975.
[8] A.Z. Baraniecka, "Digital Filtering Using Number Theoretic Transform", Ph.D. Dissertation, Electrical Engineering, University of Windsor, Windsor, 1980.
[9] M.C. Pease, "An Adaptation of the Fast Fourier Transform for Parallel Processing", - J. Ass. Comput. Mach., Vol. 15, April 1968.
[10] M.J. Corinthios, "A Time Series Analyzer", Vol. 19, MRI Symposia Ser., Polytechnic Press, New York, 1969.
[11] M.J. Corinthios, "A Fast Fourier Transform for High Speed Signal Processing", IEEE Transactions Computors, Vol. C-20, August 1971.
[12] Data Catalog 1978, Inte1.
[13] M.A. Soderstrand and C. Vernia, "General Modulo P; Multiplier with RNS Arithmetic Operations", Proc. IEEE, Vol. 68, No. 4, April 1980.
[14] J.H. McClellan and C.M. Rader, "Number Theory in Digital Signal Processing", Prentice Hall Inc., New Jersey, 1979.
[15] B.Gold and C.M. Rader, "Digital Processing of Signals", McGraw Hill Book Co., New York, 1969.
[16] J.H. McClellan, "Hardware Realization of a Fermat Number Transform", IEEE Trans. Acoust., Speech, Signal Processing, Vo. ASSP-24, No. 3, June 1976.

VITA AUCTORIS

1952

1966 Completed high school in Govt. High School, Islamabad, Pakistan

1981
Born on the 15th of January in Rawalpindi, Pakistan

Graduate from the University of Islamabad, Pakistan with the degree of Master of Science in Physics

Served in Suparco, Islamabad, Pakistan

Candidate for the degree of M.A.Sc. in Electrical Engineering at the University of Windsor, Windsor, Ontario, Canada.

