University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers
1-1-1981

A read-only-memory oriented implementation of the number
theoretic transform butterfly unit.

Mahmood Akhtar
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Akhtar, Mahmood, "A read-only-memory oriented implementation of the number theoretic transform
butterfly unit." (1981). Electronic Theses and Dissertations. 6754.
https://scholar.uwindsor.ca/etd/6754

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/6754?utm_source=scholar.uwindsor.ca%2Fetd%2F6754&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A READ-ONLY-MEMORY ORIENTED IMPLEMENTATION OF THE

NUMBER THEORETIC TRANSFORM BUTTERFLY UNIT

by

MAHMOOD AKHTAR

A- Thesis
Submitted to the Faculty of Graduate Studies
Through the Department of Electrical
Engineering in partial fulfillment of
the requirements for the Degree of
Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada

1981

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: EC54737

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC54737
Copyright 2010 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@ Mahmood Akhtar 1981

763008

\
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

This thesis is concerned with the design of a hardware
implementation of a Number Theoretic Transform butterfly structure.
The butterfly is being used as the computational element in a
Number Theoretic Transform processor suitable for digital signal
processing operations. The butterfly has been realized using
arrays of read-only-memory (ROM) and table Took-up techniques. A1l
mathematical operations performed by the Number Theoretic Transform
butterfly have been carried out using the Residue Numbeyr System.
The: ROM oriented structure lends itself to an efficient realization
using very large scale integration (VLSI) technology. The use of
high density EPROMS in a pipeline configuration results in a

structure suitable for real time signal processing applications.

(1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENT

I would like to express my sincere thanks to my supervisor,.
Dr. W.C. Miller for many valuable discussions and constructive
criticism on this thesis. I am also very thankful to Dr. G.A.
Jullien for his advice and assistance throughout the study period.
Thanks are due to the other members of the Department and my fellow
graduate students, especially Mr. H.K. Nagpal who helped me in
various ways.

To my parents, I extend my sincere gratitude. Without their
help and 16ve, though far away, this work would not have started.

Thanks are also due to Mrs. Marion Campeau for her diligence

in typing this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT _ (1)
ACKNOWLEDGEMENTS (i1)
TABLE OF CONTENTS (ii1)
LIST OF TABLES (vi)
LIST OF FIGURES _ (vii)
CHAPTER 1 INTRODUCTION 1
1.1 Preamble 1
1.2 Number Theoretic Transform]
1.3 The NTT Butterfly Unit 3
1.4 Objective and Qutiine of the Work 4
1.5 Thesis Organization 5
CHAPTER 2 LOOK UP TABLE IMPLEMENTATION OF RESIDUE ARITHMETIC 8
2.1 Introduction 8
2.2 Modular Arithmetic 8
2.3 Residue Number System 10
2.3.1 Representation of Numbers 10
2.3.2 Basic Arithmetic Operations in RNS 11
2.3.3 Conversion From RNS Using Chinese 13

Remainder Theorem
2.4 Implementation of RNS Using Look Up Tables 17

2.4.1 Addition/Subtraction Using Sub-Moduli 20
- 2.4.2 Multiplication Modulo A Prime Number 26

2.5 Summary - 30
CHAPTER 3 DIGITAL CONVOLUTION AND IMPLEMENTATION USING 32

TRANSFORM TECHNIQUES '
3.1 Introduction to Digital Convolution 32
3.1.1 Finite Linear Convolution 32
3.1.2 Periodic or Cyclic Convolution 34
3.1.3 Linear Convolution via Cyclic 34

Convolution
(1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Discrete Fourier Transform
3.3 Fast Fourier Transform

3.3.1 Decimation in Time Algorithm
3.3.2 Decimation in Frequency Algorithm

3.4 Number Theoretic Transform

3.4.1 Invertibility and Convolution
Property of NTT

3.5 Choice of the Parameters for the NTT

3.5.1 Transforms Defined Over Galois Fields
3.5.2 Construction of Galois Fields GF(m")
3.5.3 Searching for the Generator o in

GF (m2)

3.6 NTT Using RNS Concepts
3.7 Summary '

CHAPTER 4 IMPLEMENTATION OF AN NTT BUTTERFLY
4.1 Introduction
4.2 NTT Processor
4.2.1 Memory Structure

4.2.2 The Butterfly Unit
4.2.3 Efficiency of Primes
4.2.4 Selection of the Primes for Hardware

Implementation
4.3 ROM Realization of Butterfly Structure

4.3.1 ROM Realization for 4n + 1 Primes
4.3.2 ROM Realization for 4n + 3 Primes

4.4 Simulation of the Butterfly Structure

4.4.1 The Transform of Real and Complex
Data for Both Primes

4.4.2 Upper Bound on Convolution

4.4.3 Simulation Results

4.5 Hardware Implementation of the Butterfly
Structure

4,5.1 Description of ICs Used
4.5.2 Generating and Storing the Tables
4.5.3 A Typical Pipeline Interconnection

4.6 Clock Circuitry _
4.7 Experimental Verification

(iv)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35
36

38
40

42
a4
46
48
53

54
57

61
61
62

62
72
73
76

81

81
84

86
90

90
92
99

99
104
107

116
116

4.8 Diséussion on the Hardware Realization
of the B.F. Unit

4.9 Summary

CHAPTER 5 SUMMARY

CHAPTER 6 CONCLUSIONS

APPENDICES

A Simulation Programs

B Programs to Generate Table for Eprom, on Intel 220

REFERENCES

VITA AUCTORIS

(vl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

124

126

130

132
157

184

186

Tables
2.1

3.1

4.1
4.2
4.3
4.4
4.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Index of the Elements Mod 11

Table of First Few Primes and the Associated
Transform Length

Comparison Between the Primes

Table of Primes ms 4n + 1 Less Than 9 Bits

Table of Primes m, 4n + 3 Less Than 9 Bits

Requirements for Both Type of Primes

"Necessary Information on the Hardware Unit

(vi)

Page

27

56

76
77
78
84

14

Figure

2.1

2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6

4,7(a}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Pipeline Array for the Function ||a-b|+[c-d]]
for 16 <m < 32

m
Modulo 9 Operations With Pre-Multiplied Constant
Addition'Modulo 19 Using 6 and 7 as Sub-Moduli
Addition Using Sub-Moduli Approach

Multiplication Using Index Addition and Sub-Moduli

Multiplication Using Index Addition Modulo 191

Exp]anatfon of Linear Convolution

Convolution Using DFT Method

2 Point Butterfly (DIT)

Eight Point Butterfly (DIT)

2 Point Butterfly (DIF)

Eight Point Butterfly (DIF)A

Implementation of NTT Using RNS for Three Moduli

Concgptua] Diagram of NTT Processor

Basic Machine Organization for QIQ0
Expansion—of Transform Matrix for 0I00

Flow Graph for an Eight Point 0I00 Algorithm
An NTT Processor for 0I0O0 Algorithm

An NTT Processor for Real Time 0I00

Radix 2 Butterfly for 4n + 3 Prime

(vii)

Page

19

21
23
25
29
31

33
37
41
4
43
43
58

63
66
68
69
70
A
74

Figure
4.7(b)

.8(a)
.8(b)

.10
11
.12
.13
.14
.15
.16
17

et S S — N Y . - T - S -

4.20
4.21
4.22
4.23
4.24
4.25

4.26

Implementation of Radix 2 Butterfly Unit for
4n + 3 Prime

even)

odd)

Butterfly Unit for 4n + 1 Prime (n

Butterfly Unit for 4n + 1 Prime (n
Conceptual Diagram of B.F. Unit
Design of NTT Butterfly for 4n + 1 Prime (193)

Design of NTT Butterfly for 4n + 3 Prime (191)

Input and Transform of x(n)

Convolution of Réa] Input

Convolution of Complex Input in GF(4492)

Clock Pulses for the Butterfly Unit

B]oék Diagram and Pin Configuration of 2708 1kx8 Eprom

Logic Diagram and Pin Configuration of 8212, 8 bit
Latch

A Typical Pipeline Interconnection

Board 1

Board 2

Board 3

Board 4

Different View of the Hardware Implemented Butterfly
Clock Circuit fof Pipeline Structure

Input-Output of the Butterfly Before-After Changing
One Bit :

Addition Modulo 193 Using Adder-Subtractor

(viii)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page

74

75
75

83

85

93

95-96

97-98
100
102
103

108
110
1m
112
113
115
117
119

121

CHAPTER 1

INTRODUCT ION

1.1 PREAMBLE

This thesis describes a hardware realization of a number
theoretic transform butterf}y. The work forms part of a more general
-development of a digital signal processing facility that is being
constructed by the signal and systems laboratory at the Uﬁiversity
of Windsor. The authors responsibility in this project was to design
an NTT butterfly thét can be mu1tip1exed_with a memory support structure

to ultimately provide a digital filtering capability.

1.2 NUMBER THEORETIC TRANSFORM

Finite digital convolution has many practical applications in
digital signal processing. It can be used to implement non-recursive
digital filters. It can also be used to carry out auto and cross
correlation, as well as, polynomial multiplication. The direct
method of computing a convolution sum involées a number of multiplications
proportional to the product of the length of the two inputs [14].
Multiplication in a digital system, is a relatively slow operation
and. therefore techniques were investigated to minimize the number of
multiplications in the convolution sum. The use of transform
techniques to compute convo]ut%on is quite popular and the savings in

multiplication time over direct method depends upon the transform length.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The characteristic of these transforms are such that the
convolution in time domain is equivalent to pointwise multipiication
in transform domain. |

The discrete Fourier transform (DFT)] is defined in the comﬁ]ex
number field and is one of the transforms that exhibits the cyclic

convolution property. The DFT {s defined as

N-1 -j.2n/N.nk -
X(k} = § x(n)e , k=0,T,...,N-1 (1.1)
n=0

The DFT becomes very attractive to use as it can be implemented
efficiently using the Fast Fourier Transform (FFT) type algorithm
[15]. The two main disadvantages associated with the FFT are the
mu]tip]icatioh by irrational coefficients and the inherent ndmber
growth. Both of the above introduce truncation and/or round-off
errors when implemented on a finite wordlength machine.
Pollard [4] has shown that transforms defined in a finite ring
also exhibit the cyclic convolution property. These transforms are
-~ named as Number Theoretic Transforms (NTT) because number theoretic

concepts are used in their definition. The number theoretic

transform is defined as
X(_k), = | Z X(n) o l k = 0’],2,-0-,N-1 (]'2)
n=0 M
where o is the cyclic generator of order N. These transforms are
implemented using an integer number system. Since these transforms are

defined in finite rings, the number growth problem is inherently

solved. The value of M is chosen such that the result of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conyolution i{s within the defined range. Whenever the result of an
operation exceeds M, the number is reduced modulo M and if the

final result is within the dynamic range, the intermediate overflows
can he {gnored. Thus the computation is exact and truncation-
roundoff errors do not akfse.

The proposed fmplementation of the NTT requires a supporting
memory structure and a éomputatfona1 unit commonly known as the
butterfly unit (BF).. The operations performed by the butterfly unit
are addition, subtraction and multiplication, but no division. The
complexity of the BF unit depends upon the choice of the field and
also the form of the generator, which is used to define the number

theoretic transform.

1.3 THE NTT BUTTERFLY UNIT

The binary operations in the BF unit are performed modulo an

integer M, which is used in the definition of the NTT. Modulo reduction
is not an easy operation unless the modulus M has a simpler form,
preferably a power of two for the Binary number system implementation

of the BF unit. Radar [6] used the Mersenne number and Agarwal and
Burrus [7] used the Fermat numbers to ease of the computation in

the BF unit using the binary number system to perform the required
arithmetic operations modulo M. McClellan [16] has built hardware

for implementing the Fermat number transform and used addéfs-subtractors
to implement the BF unit. The generator was chosen such that the

multiplications by twiddle factors were replaced by bit shiftings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These adders-subtractors and the bit shifting were arranged in a pipeline
configuration for a high throughput rate,

In using an array of ROMS, rather than adder-subtractor, etc., an
extremely simple structure emerges that offers identical characteristics
for any required operation and is inherently simple to pipeline. The
use of ROM arrays for implementing BF unit also relaxes the constraints
on the choice of the parameters for NTT and they can be chosen freely

on purely number theoretic basis to maximize the transform length.

— 1.4 0BJECTIVE AND OUTLINE OF THE WORK

The use of NTT to compute convolution is very attractive because
of its error free computation. The heart of the processor is the
computational unit or the Butterfly unft. The orientation in this
work is to utilize the advancement in memory fabrication technology
and build up a butterfly unit using arrays of look up tables arranged
in a pipeline configuration. The look up table approach is quite attractive
because of the fact that mu1tip1fcation can be performed by
accessing the data from the tables and thus the multipTication time
is reduced to the access time of the ROMS.

Normally the dynamic range assocaited with an NTT processor would
be too large to allow an efficient realization based on table Took up
techniques. In this work the Residue Number System has been employed
so that a problem with a Targe dynamic range can be converted to a number
of parallel opérations with small dynamic ranges. In this manner a real-
ization based on array of ROM is not only practical but desirable as it

is ahle to exploit the rapidly evolving VLSI technology associated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with memory fabrication.

The present wokk was divided into three phases. The first phase
of the work consisted of a literature survey to establish the
theoretical basis for the design of the NTT processor. Pollard [4]
has defined transforms in finite rings/field and has showed the cyclic
convolution property (ccp) of the transforms. Agarwal and Burrus [7]
have established the necessary conditions for the transforms to exhibit
the ccp. Baraniecka [8] has proposed the look-up table approach using
the residue number system to implement the computational unit of
Number Theoretic Transform (NTT) processor. The use of Took-up tables
relaxes the constraints on the choice of the parameters of the NTT.
Baraniecka [8] also outlined the procedure for selecting the NTT para-
meters for look-up table implementation.

Pease [9] has presented a procedure for the design of the memory
organization of a FFT processor and Corinthois [10]-[11] has used this
idea as the basis for a proposed memory organization for a FFT processor.
The same memory organization is used for the FNTT processor because of
the similar structure of the two transforms.

The second phase of the work was to design a complete read-only-memory
oriented hardware implementation of the NTT Butterfly unit. The design
utilizes the table look-up approach and employes a pipeline configuration.
A computer simulation of the hardware structure of the NTT bufferly and
the associated memory organization was carried out on the IBM 370/3031
facility to verify the validity of the proposed structure. The simulation
consisted of generating the look-up tables and then arranging them in the

pipeline configuration to check the'operations of the pipeline. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

convolution of sequences was performed to establish the right
selection of the parameters.

The final phase of the work was to actually build a prototype
computational unit using 2708 Eproms and 8212 as registers arranged
in a pipeline fashion. The registers are necessary for storing the
intermediate data to keep the pipeline full. This unit was then

tested for real time application.

1.5 THESIS ORGANIZATION

Chapter 2 provides a review of the basic modular arithmetic .

usea in the design. The advantage of using the RNS for a Took-up
table implementation, especially for multiplication, is established.
Binary operatibns using sub-moduli techniques are also described and
the‘implementation of addition-subtraction using look up tables is
éhown. An efficient way of performing multiplication for large
primes is also described in this chapter.

Chapter 3 starts with an introduction to digfta]_convo]ution and
its implementation using transform techniques. Decimation in time
(DIT) and decimation in frequency (DIF) forms of the FFT algorithm are

presented in detail.

The choice of the parameter for the NTf and the construction of
the 2nd degree extension Galois fields are reviewed. A suitable
choice of parameters for an RNS based implementation of the Number
Theoretic Transform is discussed.

The concept of an NTT processor is provided in Chapter 4. A

memory structure for real time applications is described and a suitable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

memory organization is suggested. The selection of the primes for
an efficient hardware realization of the NTT butterfly unit is
discussed and a final design of the butterfly structures for both
kind of primes is presented. These butterfly structures wefe
simulated on an IBM 370 computer and the details of the simulation .
are included in this chapter.)

The butterfly unit for 4n + 1 type primes was then implemented
in hardﬁare using 2708 Eproms and 8212 latches. The simplicity of
the structure using ROM arrays is obvious from the hardware design.
The generation of the look up tables on an Intel 220 system and
the other relevant material is discussed, and the clock circuitry
for running the pipeline is given.)
Chapter 5 summarizes the work presented in the thesis and

Chapter 6 presents the conclusions that can be reached regarding this

work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

LOOK UP TABLE IMPLEMENTATION OF RESIDUE ARITHMETIC

2.1 INTRODUCTION

The Took up table approach offers the potential for a ROM oriented
high speed realization. This approach is particularly advantageous in
realizing multiplication operations, which now become as simple and fast
as addition. The use of the Residue Number System (RNS) to‘imp1ement addition,

.subfraction and hu]tip]ication in look up tables provides a great saving in
hardware and is more efficient than the BNS. The RMS is also an inhérent1y
carry-borrow ffee system and does not introduce internal delays due to
carry-borrow digit propagation.

Ih'this'chapter a detailed discussion of the residue number system
and its implementation using look up tables is presented. The concepts
developed here will be appiied to the number theoretic transform (NTT)
in the next chapter.

The residue ngmber system is an integer number éystem and in the

fo11owing discussion, alT_the variables take on integer values only.

2.2 MODULAR ARITHMETIC

If two integers,a and m,are related by the following equation
a=q.m+r \ o (2.1)

where q and r are integers and r e 0, 1,, m=1, then r

is the residue of a, modulo m, and is represented as:

8
. .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 1:

such that

r=|al, (2.2)
From eq. (2.1) it is clear that q is the quotient and r is the
least positive remainder of % .
If two integers have the same residue then they are
calied congruent and represented as:
a=b mod m (2.3)
lal,=1bl =r (2.4)

This also implies that (a-b) is divisible by m and written as m|(a-b).

Thus all integers are congruent mod m to some integer in the finite set

{0,1,2,...

sm-1} and are said to belong to one of the m classes.

The

residue classes mod m form a éommutative ring with identity with respect to

modulo m addition and muTtip]ication and is denqgted by Zm’ For example, if

m=7,-there are seven distinct classes and the integers belonging to these are

{0} = civevnnnnn s =14, =7, 0, 7, 14, vrieeeveens
{1} = ieieennn. s =13, -6, 1, 8, 15, ..ccvvo..,
{2} = iiieeeen. s =12, =5, 2, 9,16, cevvvnnnn.
{3} = ceenennns , =11, =4, 3,10, 17, eeeennnnn.
{4} = tieienannn s =10, =3, 4, 11, 18, cceviuene.
{5} = cees =9, =2, 5,12, 19, ciovunnnn.
{6} = i s -~ 8, -1,6, 13, 20, ceveveenn.
e.g. 13 and 27 belong to the same class as |13|7 = |27|7 =6 or 13 = 27

mod 7.

The following basic arithmetic operations are permissiblie with

modulo arithmetic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

a) addition: 8+ 12 =20 =3 mod 17
b) negation: -7 & (=7 + 17 = 10) mod:-1Z~
7 + (-12) = (7 +5 = 12) mod 17

c) subtraction: 7 -12

8 =16 mod 17

d) multiplication: 7 x 12

e) division: g-exists if b has a multiplicative inverse and

b divides a

2.3 RESIDUE NUMBER SYSTEM (RNS)

2.3.1 Representation of Numbers

The representation of an integer in the residue number system
takes the form of an n-tuple —

a-= (a1, 8ys .evs an) (2.5)

of the least positive residue with respect to the set of moduli
\
(m], Mys vevs mn).
The residues, a;, are formally written a, = Ial"&. The residue
representation of a number is unique. The converse of this statement
is true only if the numbers considered are in thé range of 0 to M-l

)
where

] ,
M= T m, (2.56)

and all the mi's are relatively prime. If negative nﬁmbers are to be

represented in this éystem, then hhe number range can be divided into

two parts. The first part represent positive numbers and second, -
negative numbers.

For M = even

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

x =+ve no, if xe{0,1,2,..., g—-— 1}

. M M -
-ve no. if X S{E“ §-+ Ty eeeey M=11}

"

For M = odd

x = +ve no. if «x é{0,1,2,...,—§—

= -ve no. if x s{Mil-, ve.s M-11

positive numbers ¢ {0,1,...,157} T

negative numbers ¢ {158,...,314}

2.3.2 Basic Arithmetic Operations in the RNS

Definition 2: A binary operation defined on a set s of elements is
a rule that assigns to each pair of elements from s a unique element

from s.

4Definition 3: A set s is closed with respect to binary operations if
adb=c (2.7)
where a, b and c are any element in s and is the binary operation. The

residue number system is, in general, not closed under the binary operation of

+ The conversion from the residue number system to signed number
system is explained in Sect. 2.3.3 by giving an example.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

division as the result of division may not be an integer.
The residue number system is inherently a carry/borrow free
system. The binary operations under which the system is closed can

be performed by independent operations on the respective digits, i.e.,

Z=x [0y implies Z; = Ixi Oy (2.8)

1‘|m1-
where [J represents the allowed binary operations. .

It is useful to be familiar with the idea of the multiplicative inverse

before considering division in the residue number system.

Assume it is desired to divide x by y in the real number system,

%-can be written as §»= X . %- where %-is'the multiplicative inverse
of y, and thus division by y can be replaced by multiplication with %-.

then

If £ is not an integer in the real number system, then it can

not be represented in the residue number system and division of x by
y is not defined in the RNS. But for %-an integer, in other words, when

X is a multiple of y, the idea of a multiplicative inverse can be used

.to perform division.

Definition 4: If0 <a <mand [ab] =1, then a is called the multiplicative

inverse of b.mod m and is denoted by a = l%]m .
The quantity [3] exists if and only if (b,m) = 1 and [b] 70 .

In this case I%lm js unique and division can be performed as

2 = 1% 5lnly (2.9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

2.33 Conversion From RNS Using Chinese Remainder Theorem (CRT)

In this section conversion from the RNS to any other number system is
discussed. This conversion is made possible using a theorem from number
theory [1] called the Chinese Remainder Theorem.

Given the residue representation (ry, ry, ..., r) of x, the
Chinese Remainder Theorem makes it possible to determine leM, provided
the greatest common divisor of any pair of moduli is one or modili are

pairwise relatively prime. |x|y is then given by the following equation:

iy = 13 f 1A (2.10)
Xig = m., | = .10
M 5=1 J mj mj M ,

n A M g
where M = 131.mi, m, = E;' and (mi,mj) =1 fori#]

| %= I represents the multiplicative inverse of ﬁj mod mj.
m.
j J

The following example illustrates the procedure to convert a

number from its residue representation using Chinese Remainder Theorem.

Example 2:
let my = 5, m, = 7, ms = 9
3
then M= 1 m, = 5.7 .9=315
i=1

|5 =2 since [63x2[g =1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

1 1 . _
| =1 = |=];=5 since |45 x 5|, =1
R, ™ 45 7 7
| - 1 _ . - 1
| = |m = | = lg = 8 since |35 x 8|
mg 3 35
Chinese Remainder Theorem
r) r A r :
[x b I hy L)+, £ vhy 2] (2.11)
my 1 m, 2 my Mg M
or
| x ly= 163 [y 2lg+a5 | ry,.5];+35]ry. 8lglgg (2.12)
Addition .
- moduli 5 7 9
x = 173 —> 3 5 2
+y = 94 > 4 3 4+

267 375 = 267 —> 2 1 6

using equation (2.12) where ry 2, rp = 1 and ry = 6
|xly = 163.4 + 45.5 + 35.3]5;5 = |582| 415 = 267

which is the correct result of addition.

Subtraction
moduli 5 7 9
X =173 > 3 5 2
-y = 94 &> 4 3 4 -
79 > 4 2 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using eq. (2.12) for (4,2,7) as (r],rz,r3)
|63.3 + 45.3 + 35.2|3]5 = 79,

If ~-ve nos. are also to be represented then the number range,
0 to 314, is divided as
0, 1,2, ..., 157 positive numbers

158, 159,..., 314 negative numbers.

The following eXamp1e explains the procedure when the result of

subtraction is negative

moduli 5 7 9

x= 94 >4 3 4
y=173 “——— &3 5 2
-79 > 1 5 2

using equation (2.12), (1,5,2)‘¢,236 since the result lies in the
negative number range, it is a negative result therefore: subtract 315

from this, 236 - 315 = -79 which is the correct result of subtraction

in signed number representation.

Multiplication

Choose the numbers such fhat the result of multiplication is

contained in the dynamic range

modu1i 5 7 9
X = 41 s | 6 5
y = 6 >] 6 . 6 X
246 e 1 13

using (2.12) (1,1,3) + 246.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Division
x =312 = (2,4,6)
y = 13 = (3,6,4)

First find the multiplicative inverse of yi's

1 1 - . -

| =T lm1 = [5lg=2 since |3x2{g =1

L = 11| =6 since |6x6], =1
Y M 6

| L | = | 1 la = 7 since |4x7|q = 1
Y3 'mq 49 9

Division can now be performed by multiplying xi‘s with multiplicative

inverses of yi's

moduli 5 7 9
X = 312 > 2 4 6
% s 2 6 7 X
4 3 6
312

using equation (2.12), (4,3,6) -+ 24 which is =7 -

To verify that division in RNS will not produce the closest integer value if

X is not divisible by y, take

x =311 = (1,3,5)
y= 13 = (3,6,4)
X = =
| 7 1375 = (1,3:5) . (2,6,7) = (2.4.8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

X1 =
(2,4,8) - 242 # [yﬂR = 24

where [.JR indicates rounding to nearest integer. Note that there

is no relation between and |§1 . The reason is quite obvious.
315

%-is not an integer and so |§1 has no meaning in the RNS. Two
315

conclusions can be drawn from the above examples: (i) The RNS is not
a weighted magnitude representation. The residue representation does
not give any idea of magnitude and sign of the number represented.
(ii) Division is not a simple operation. (iii) Operations on a pair

of residues is independent of other residue operations.

2.4 TIMPLEMENTATION OF RNS USING LOOK UP TABLES

Recent advances in high density memory techno}ogy have made it
possible to implement the RNS operations using look-up tables stored in
ROMS. The results of the operations can be precalculated and stored
in the locations addressed by the input data. Binary operations are
then reduced to the accessing of data from the stored tables. This is
particularly advantageous in multiplication which becomes as simple and
fast as addition. Speed of operation is then dependent only on the
access time of the ROMS.

For a given modulus, m; < 32, the operation of multiplication and
addition modulo m, of the two numbers can be computed by looking up
the result in a 1k x 8 bits commercially available ROMS. Using the
same approach, operation moduli m;, 32 < m, < 64, would require a 4k x 8
bits ROM or four 1k x 8 bits ROMS and so on.

The RNS is more efficient than the binary number system for look

up table jmplementation as it requires less memory for the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

dynamic range. For example, with a wordlength of B bits, ZB numbers

B B 2B

can be represented and therefore a total of 2° . 27 = 2" entries are

required to store the result of operations in look up tables. For
: n
the same dynamic range, mi's can be choosen such that T m; > 23, then
=1
2 i

each m, requires m, entries in the table. Hence a total of

n
¥ mi2 entries are needed as compared to the direct implementation
i=1

m.2 and for a reasonable value of n and mi's

which requires 22B ~ 3
1

i

N=as

B

<< 2

i1
=
-—de
N
N

.i

As an example of an RNS implementation using look up table, Fig. 2.1
illustrates a residue multiplier for modulo 31, followed by a
residue adder to implement the function la.b|3] + Ic.dl31 31+ The input
to each table,modulo 31, can be represented by a maximum of 5 bits

and the total of the two inputs require ten address Tines, the

output is five bits and so commercially available 1k x 8 bits ROMS can
be used to implement this function. A total of three 1k x 8 ROMS and
two stages are required to compute the result. From Fig. 2.1, it is
noted that ROM arrays offer the possibility of easy pipelining for high
throughput. The data.from each ROM is latched and used as a partial
address for the next ROM. The only control function required is a latch
pulse. For every latch pulse, new input is accepted and a new output

is generated. The throughput rate of the system is equal to the

inverse of the access time of ROM plus latch settling time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

- . E L] .
Z€ > w > gL 403 | (P-2)+(9°2)| NOILONNA 3JHL 04 AVHYMY INITAdId

U
LU

S3SNd HILVT

Ul (p+2)+(q-e)|

HILY

L2 *bid

WOY
114
84l

3718vL(+)

W
[p°o]

1]
{q-e|

WoY
L

I1avL(x)

HILY

WO
8x31

31avL(x)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Another advantage of the look-up table is that it does not
require any extra hardware for addition or multiplication with a
constant. The constant can be pre-multiplied or added and can be

stored along with the result of the operation.

Ekamp?e 3:
' For modulus m = 9 compute

Z= |5 bl +3 lc.dl |, with a=3, b=4, c=6, d=8.

The result of the computation using’residue arithmetic is 6. Fig. 2.2
shows the entries and the interconnections between the look up tables.

Two multiplication and one addition table is reduired to compute Z.
The first multiplication table generates the result of multiplication
per-multiplied by 5, modulo 9, and second table generatesthe result of the
second multiplication pre-multiplied by 3, modulo 9. Note that
multiplication by 3 and 5 does not require any extra storage and does
not introduce any extra delay.

2.4.1 Addition/Subtraction Using Sub-Moduli

As mentioned earlier, commerically available ROMS can be used to
store tables for the RNS arithmetic, but this imposes an upper limit
on the largest modulus to be used. To implement arithmetic modulo
m; £ 32, 1k x 8 bits ROMS can be used, operation modulo 32 < m, < 64
would require a 4k x 8 bits ROMS or four 1k x 8 bits ROMS and operation
modulo 64 < m, < 128 would require 16k x 8 bits ROM or sixteen of 1k x 8
bits ROMS and so on. As will be explained in the next chapter, prime

moduli, 64 < m, < 512, are required to implement a pratical NTT, the use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

INVISHOD Q31141LIH-34d NLIN SHOILVYIJO 6 0IN0OW 2°2 '514

el 9jolelolofclolo L
slefoloflelofofe]of
& pou ololojJolojlofjo]lofo L
oLeeL vopaipry el 9fjofeloflo]le] o] ol
L efz] 8 |s] ol efololcelololc] ofy
9 2|t]o t |t olojofojofo]ol|ol ole
m:._..urnz...:&_ S tjoyjs 9 |9 El]9jojej9joje]ol] olc
1 'RERE s |s slelololefofolef| o
e € 'RNAE v |y | of ojofolojolo]ol o]o
— 2 t|9ls e |e \ - Aue.m y nr 2 . T
t 9 |s|y 2 |z alqel w1} 1dia L,
0 slvlce t sltjolz|clcfa]v] ol
8 Y E o o tjzjefrlslole]s] ot
L8 y t_ ¢ L 9sjcloflolclolofc]ols
‘ gl viole| tlels]|efols
Lty sfelvisjoteiz] ol
el 9foflelojofe]o] ofe,——
sl ejolstvrle|z]] ofz
violele|lzjoslo]s]| o]t
6l ojofoloejololo}]o 0
\ L8 i 9 5 v mr Z 10,

1.4
alqe; wopyesqdiymy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

of sixteen or more ROMS does not seem a very efficient approach. In
order to increase the implementatign efficiency, the same technique

of breaking a large dynamic range into smaller moduli can be used to
implement the addition/subtraction modulo a 1arge modulus. The

only constraints on the choice of sub-moduli is that they should be

large enough to contain the result of the operation modulo main

modulus and should be relatively prime. For example, if main modulus

is m s then the maximum number which can occur is m, - 1. The maximum
result of addition is 2(mi - 1) and therefore the sub-moduli should be
chosen such that their product is greater than Z(mi - 1). Mathematically

the condition can be represented as

Myg X My, > 2(1m,i - 1) (2.13)

where'mH and m,; are the sub-moduli.

Multiplication can not be implemented efficiently using the sub-moduli
approach as more than two sub-moduli are required to contain the result of
multiplication, modulo the main modulus. However, for prime moduli, there
exists an efficient method to implement multiplication utilizing the.
sub-moduli approach and will be dealt with later.

Fig. 2.3 illustrates the addition modulo 19 using 6 and 7 as sub-
moduli. First note that 6.7 > 2(19-1) and so these are gppropriate
sub-moduli, which will pfoduce the correct result of addition modulo 19.

This example is clearly not an efficient one as only one ROM would be

necessary to implement addition modulo 19 but this explicitly shows the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bl

MOD 6

T2 5 !
0 3|4 (ol 23] als
5 2 | 3 W12 J3afals]o
4 1] 2 223 |a]|s]o]|n
I3 0 alala{s]aol1]2
. — ,
0 314 41afs jol1]2]3 MoD 6
5 112 s|sfo |1]2]3]4
3 0
6 oD 7 o1 7 3 4.5
1 a - oo | 7)w| 2| 9]t
RESIDUE . ADDITION TABLE Wiz talslis| 3w
TABLES HOD 6 : MOD 6
. . S——— —r 2n [l 2] 9] 6] 4
r MOD 7 c=jatb|,q
0 3|4 ofo|1l2,]3]als]s als |12 o] 3lw|w
5 2 |3 Hilz2|3flals]e o ahe |6 (131 aln
3[4 0 33 fafs |6 fofr |2 A A I A
0D 7 B
0 3 |4 ala |sielof1]2 |3 RECONSTRUCTION TABLE
5 |6 1 |2 sls |s]o|1 |23 |4 ,
3 |4 6 |o 6|6 Jol1 |2 3]s |s
1 |2 3
ADDITION TABLE
‘ MOD 7 *
Fig. 2.3 ADDITION MODULO 19 USING 6 and 7 as SUB-MODUL]

€¢

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

implementation using sub-moduli.

Example 4:

Assume 1k x 8 bits ROMS are available to implement addition/
subtraction modulo 191. Numbers from O to 190 can be represented
by 8 bits and hence a total of 16 input (address) lines are required
and therefore the memory needed is 64k x 8 bits or 64 ROMS of 1k x 8
bits each. The maximum value of ;he sub-moduli that can be chosen
is 31 which have five bit representation and the look up table will
require a total of 10 address Tines and so 1k x 8 ROMS can be used
to store the tables. Fig. 2.4 shows the implementation using sub-
moduli 17 and 23, both have five bit representation. In the first
stage, the numbers to be added are reduced modulo 17 and 23. In the
next stage, addition modulo 17 and 23 is performed and in the final stage,
the result is reconstructed and corrected using chinese remainder
theorem to produce the result modulo 191.

A total of seven 1k X 8 ROMS are required to implement addition/
subtraction. It is obvious from this example that sub-moduli scheme
saves a lot of memory at the cost of increasing the time of operation.
It requires three stages to compute the result whereas direct implementation
would have required only one stage but the tremendous saving in hardware
is obviously more advantageous.

For implementing subtraction, the same scheme is used except that
subtraction tables are required in the 2nd stage of Fig. 2.4 and the

entries in reconstruction tables are different.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

"uoissiwiad noyum paugiyosd uononpoidas sayung “Jaumo WBUAdoo sy Jo uoissiwiad yum peonpoiday

lalg1

o
—
(Vo)

{

.__.__.f.__

RESIDUE

o]

TABLES
5
2568 /
bits
ADDITION
TABLES
5
-
2 9 RECONSTRUCT ION
bits %? bits 5
; ? bits 1
1 1x8 ;) LATCH PULSES
5
256x8 4 bits / I AJ-H
bits 5 — |
[4
5
256x8 p
[4
bits

Fig. 2.4 ADDITION USING SUB-MODULI APPROACH

26

2.4.2 Multiplication Modulo A Prime Number

As explained in the previous section, look up tables speed up
- the operation of addition-multiplication, if they can be implemented

efficiently in hardware. .For moduli m, < 32, commercially avajlable
1k x 8 ROMS can be used to store the tables of addition/multiplication.
For large moduli, addition/subtraction can be implemented efficiently using
the sub-moduli approach. For multiplication, however the direct application
of the sub-moduli scheme does not offer an -efficient way. Taylor [2] recently
proposed a scheime to implement multiplication modulo (anJ,Z"Y. Jullien [3]
presented an efficient scheme to implement multiplication modulo a prime
number. For practical NTT's, moduli of interest are primes and
therefore Jullien's scheme can be used to implement multiplication.
A complete description of the scheme is as follows.

The residue classes (mod m) form a commutative ring with identity
with respect to addition and multiplication modulo m, traditionally
known as the ring of integers modulo m or the residue ring and denoted
by Zm’ The ring of residue classes (mod m) contains exactly m distinct
elements. The ring of the residue classes (mod m) is a field if and
only if m is a prime number. Thus the non-zero classes of Zm form a
cyclic multiplication group of order m-1, {1,2,..,m-1}, with
multiplication modulo m, isomorph{c to the addition group {0,1,2,..,m-2}
with addition modulo m-1.

This property of isomorphism can be used to implement multiplication

and is analogous to multiplication using Tlogarithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

For a prime modulus, there exists a set of integers, called primitive
roots, whose repeated multiplications generates all the elements of the

multiplicative group.
t
|

la¥| = aell,2,..,m-1} (2.14)

where o is the primitive root and t is the index of a. For different
values of t, distinct elements of the field are generated. Note that
zero does not have an index and therefore multiplication by zero needs
extra care. However in look up table implementation, multiplication

by zero can be taken care of easily.

Example 5:

For modulus 11, the primitive root is 2. Table (2.1) shows the
element and the respective indices of the field. Multiplication [6x10|;;=5
can be mapped into addition of indices |9+5|]0=4. 4 is the index of

5 and the correct result of multiplication is obtained. In this way

X 1nd2 X
1 0
2 1
3 8
4 2
5 4
6 9
7 7
8 3
9 6
10 5

Table 2.1: Index of the elements mod 11.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28 -

multiplication is replaced by addition and can be implemented using the
sub-moduli approach for large moduli.

The following steps are required to perform multiplication
using the index method.

(i) Find the indices of the numbers to be multiplied.
(ii) Add indices mod m-1.
(ii1) Perform inverse index operation.

Our main interest is in look up table implementation and therefore
a sub-modular ROM adder can be considered. Here the modulus is
decomposed into two relatively prime moduli and the addition is
carried out within this two moduli system. The final result is re-
constructed using another look up table. This reconstruction table can
include:

(i) sub-moduli reconstruction using chinese remainder theorem.
(ii) Modulus over flow correction.
(ii1) Inverse index Tlook up.

The following example illustrates the complete procedure. Consider the
operation,lx.yl19=2 and choose sub-moduli 6 and 7 which gives a composite
modulus 6x7 = 42 > 2x19. Fig. (2.5) shows the required tables and
appropriate interconnection. Multiplication by zero is invalid using the
index method, an invalid index (in this case,7), is stored as the index of
zero. In the inverse look up, knowing that 7 will never occur except
by multiplication of zero, zero is stored to give the correct result

of multiplication. Consider x=13 and y=15, the result is [13x15]|,4=5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

1IN00H-9NS ONY NOIL100V X3ONI DNISH MulLVIITdILTM §°2 “614

L ele e el e 82
L slelz]i]o]o vz
L
L ez 1]o]o9}s b= (AN 8l
_ L i lols|s]e r.__ zlelv] o
L tlolsls|v]e | Ty lolsti] a
) oo lslvlc]e sleltlel]s
ELl § gl £ L L 91 6§ 1 Z £ 21! 9 0 2 2 ¥
al ol 21 : lu 2 slvlelzl}o tltlolclo
] ol ol s t | ¢ rom X30NI
v NOILIOOV
el s | st zlu eVl w1
at] a1l a1 2 1
oty ty 8 vt L ele e el e g
TV € 0 7 ve| |
2l
L slelz}u]oals S=l (A0 02
L elzli|o]s]y l_ _ | el v|v] o
T78V1 dN %007 ISHIANI
) tfolstvlcele 0 |s|zlels
, L olslelcel el o |z vzl
L slv|elz]t]o vivfofef o] ey
[4 S ¥ £ 2 1 0 Lt A 1 0
) _ | an %001
X30NI

9 P 1319yl no1L100v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the look up tables of Fig. (25) are followed (result at every
stage is in square) the correct result is obtained.
Fig. (2.6) shows the block diagram for multiplication modulo
- 191 using sub-moduli 30 and 31. Note the similarity between Fig. (2.4)
to perform addition and Fig. (2.6) to perform multiplication. Both

operations now take the same time, number of stages and same number

of ROMS.

2.5 SUMMARY

In this chapter the basic idea of modular arithmetic was presented.
The residue number system was described and was applied to perform
binary operations namely addition, subtraction, multiplication and
division. The method was clearly illustrated by using examples. The
adoptibility of the RNS for a look up table implementation of
multiplication and addition was shown.

From the discussion in this chapter it can now be concluded that
the RNS is an efficient and fast way of performing addition,subtraction
and multiplication since it is inherently a carry borrow free system and
there is no interdigit dependence. Division is possible only in certain
cases.

The RNS also offers the best result for hardward implementation
using look up tables. Multiplication modulo a prime number can be
efficiently implemented and offers the same speed of operation as
addition.

The ideas will now be used in the next chapter for the definition and

implementation of NTTs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum pasonpoldey

INDEX
TABLES

bits

256x5

by

256x5
bits

b

256x5
bits

N -

256x5
bits

S

ADDITION
5 TABLES
-
wxe | |2 RECONSTRUCTION
5| bits | [' TABLE
y 5
f 8
5 1kx8
5 /~ bit
y i
"1 1kx8 5
5 | bits '
f

c=|a.b|

1

191
LATCH PULSES

|

1]

Fig. 2.6 MULTIPLICATION USING INDEX ADDITION MODULO 191

L1

LE

CHAPTER 3

DIGITAL CONVOLUTION AND IMPLEMENTATION
USING TRANSFORM TECHNIQUES

3.1 INTRODUCTION TO DIGITAL CONVOLUTION

Finite digital convolution has many powerful applications in
digital signal processing. It is used to implement non-recursive
or finite impulse response digital filters. It is also used to carry
out auto and cross-corre1ation as we11 as for computation such as
polynomial multiplication [4].

3.1.1 Finite Linear Convolution

Finite linear discrete convolution of two sequences is mathematically

represented as
N1+N2-1
y(n) = Y . h(n-m) x(m) n=0,1,2,..(N]+N2-1) (3.1)
m=0

where x(n), h(n) and y(n) are the finite digital sequences of length
N1, N2 and N1+N2-1 respectively. Fig. 3.1 shows a simple pictorial
representation of how linear convolution is carried out in practice.
Fig. .3.1(a) shows a typical sequence x(n) that is non-zero in the range
0 <n <4, Fig. 3.1(b) shows the sequence h(n) that is non-zero for
0 <n < 7. Fig. 3.1(c) shows the mirror image of h(n) along the y-axis.
Fig. 3.1(d) to (f) show simultaneous plots of x(m) and h(n-m) for
n=l 2,11, Clearly forn <0 and n > 11,.there is no overlap between

x(m) and h(n-m), therefore y(n) is exactly zero. Finally Fig. 3.1(q)

-

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x(n)
(a)
AARA ,,
I 4
h(p)
. . (b)
'lll[ll n
0 7
h(-n)
(e)
EERR I N
-7 a
h{1-n)

. » XX (d)
1lr|‘|tT n
-5 1

h{4=n)
’ - ' (e)
LT ,.
-3 3
h(11=n)
lx-x % (n
C e I l '"
- 4 1
y(n)
(g)
i
0 ‘ n

Fig. 3.1 Explanation of linear ca:;volution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

34

shows y(n), which is the desired convolution.

"3.1.2 Periodic or Cyclic Convolution

If h(n) represents one period of the perjodic sequence hp(n),
and x(n) represents that of xp(n), of both period N samples, then the

periodic or cyclic convolution of h(n) and x(n) is defined as

N-1
y(n) = § x(m) h|n-m “4 forn = 0,1,..,N-1 (3.2)
- m=0
and is vrepresented as y(n) = x(n) * h(n). Because of the

periodicity, sequences _xp(n) and hp(n-m) are considered
only in the interval 0 < m < N-1.
As the samples of hp(n-m) slide past m=N-1, the identical samples
appear at m=0. Thus the term cyclic convolution is a description of
the convolution of two sequences defined on a circle. When two periodic

sequences are convolved, the output sequence is periodic and of the same

period.

3.1.3 Linear Convolution Via Cyclic Convolution

Consider two finite duration sequences x(n) and h(n). The duration
of x(n) is N, and the duration of h(n) is No. The linear convolution of
x(n) and h(n) yields the seqhence y(n) of duration N]+N2-1. To obtain
this sequence‘using cyclic convolution, both input sequences should also
be of period N1+N2-1. Zeros can be appended to these input sequences
to make them of duration N1+N2-1 and then circular convolution can be

used to obtain y(n).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

3.2 DISCRETE FOURIER TRANSFORM

Finite digital convolution can be implemented using transforms
having the cyclic convolution property (ccp). The characteristics of
these transforms are such that the transform of convolution in the time
domain is equal to the term by term product in the transform domain.

One of the transforms that exhibit ccp is the Discrete Fourier
Transform (DFT) and is given by

N-1

DFT X(k) = 3 x(n) WK, Kk =0,1,... N1 (3.3)
n=0

where W = exp (-j %ﬂ-.

The inverse transform (IDFT) is given by

N=1
Tox(k) WK, p
k=0

IDFT x(n) =

1
N 0,1,..,N=1 | (3.4)

Then the cyclic convolution property is given as

If y(m) = x(n) (*) h(n)

(3.5)
then Y(k) = X(k) . H(k)
where X, H and Y are the respective transforms of x, h and y.
To prove the ccp of DFT, take
yp(n) = 120 xp(1) hp(n—1) - (3.6)
Take the transform of both sides of equation (3.6)
N-1 N-1 -3 &L - nk
Yp&)= Y ' ¥ x () h(n-1) Y e
n=0 1=0 P

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2r (n-1)-k 5 2mqy
=}:.x(_ﬂ_{2h(_n1) . e N
N — _J
Hp(k)
. 2T
N-1 -j =— . 1k
SHEKY - T x@) e N
1=0 P
\ —— J
Xp(k)

ar

Yp(k) = Xp(k) . Hp(k) which is the desired result.

Using the ccp of DFT, convolution can be implemented in the

following way

i) take the DFT of both the input sequences
ji) obtain the term by term product in transform domain

iii) perform the inverse DFT to obtain the output sequence.

The block diagrah of Fig. 3.2 shows the complete procedure to

perform convolution.

3.3 FAST FOURIER TRANSFORM (FFT)

The term FFT refers- to a number of algorithms that employ a
number of methods for reducing the computation time required to

compute a DFT. They make use of the symmetry and periodicity of

the exponential factors, W, used in the defination of DFT, to de-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.x(n) OFT x(k)
IDFT |yl
h(n) > OFT H(k)

Fig.'3.2 Convolution using DFT method

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

38

compose a long DFT computation into smaller length DFT computations.
To compute an N point DFT, a total of (N-1)2 complex multiplications
and N(N-1) additions are required while using the FFT for the same
transform requires approximately g-logzN multiplication and N 1092N
addition for radix 2 algorithm. Basically there are two types of
FFT algorithms, called decimation in time (DIT) and decimation in

frequency (DIF).

3.3.1 Decimation in Time Algorithm (DIT)

The algorithm in which the input sequence (time domain) is
decomposed into smaller sequences is called a DIT algorithm. The
procedure is illustrated for an N point sequence where N = Zr,

r is an integer.

By definition:

N"] hnk
X(k) = ¥ x(n) W k = 0,1,2,..,N-1
n=0

Define two g-point sequences x1(n) and xz(n) as the even and odd

members of x(n).

x(2n) g
n =0,1,2,..

xq(n)

3?"']

x2(n) x(2n+1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Then N-point DFT is

ﬂ 1 ﬂ_1
X(k) = 2 x(zn) % & T aamen) w2nHIK
n=0
2) -j ﬁ_‘ﬂ'. . 2 ‘j ZW/N/Z
where NN = g = g = NN/Z
N4 N,
X(k) = \ K nk
(k) = Z Xy (n) ’N/z Uy Iox(n) W,

X (k) + Wlﬁ X, (k)

where Xl(k) and Xz(k) are g-point DFT's, and of period g-. Therefore,

X(K) = Xy (k) + W x(K) 0 <k <
= N k N N
= Xy (k-5) + W Xo(k—) ><k <N-1

As mentioned, for direct evaluation of an N point DFT, N2 multiplications

are required. Similarly, direct evaluation of an g-point DFT, requires
(gdz multiplications. If the above procedure is used to compute an N point

DFT, a total of

()2 . 2+ N multiplications are required and

2 2
for %— >> N approximately g- multiplication are required and

a 50% saving over the direct evaluation ofan N point DFT is obtained for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

a reasonably large N, The procedure is repeatedly applied to each of the
successive subsequences, until only two point DFT's are left to be
evaluated.

A flow graph representing the basic operation of the decimation in
time algorithm is called a butterfly and has inputs A and B that are

combined to give two outputs x and y via the operation

i k
_ k
y = A- W B.

Fig. 3.3 shows the butterfly unit and Fig. 3.4 shows the flow graph
for 8 point DIT algorithm. '

3.3.2 Decimation in Frequency Algorithm DIF

In this version of the FFT, the.input sequence x(n) is partitioned
into two sequence each of length g-in the following manner. The first
sequence x1(n) consists of first %-points of x(n) and the second

sequence xz(n) consists of the last g-points of x{n). Thus

- - N,
X1(n) - X(n) n= 09],230'-,2 1

_]] N
XZ(n) - X(n + E) n= 0,],2,...,2]-

The N- point DFT of x(n) is then
' N

N N
2 2
X(k) = nZO xa(n) wgk + nzo xz(n) wgk+NK/2
3-1
-J mk nk
= nZO (xq(n) + e X5 (n)) Wy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A = -+ K B
X A HN
- Y = K

Y

- :’ ?0
- 0‘ '

Fig. 3.4 Eight point butterfly (DIT)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X(0)

x(1)

x(2)

X(3)

X(4)

X(5)

x(6) "

X(7})

41

42

Decompose X(k) into even and odd sample sequence

w
X(2k) = Z Gy (n) + x,(n}) WG
N
. L
X2kl = b Cqln) + x,0n) wN/z | (3.7)
and N
7 | |
X(2kH1) = T (x;(n) - x,(n)) W2k
n=0
51
= nEO {{x4(n) - xz(n) w } wN/2 (3.8)

.(3.7) and (3.8) are equivalent to two g-points DFT's. The procedure is
repeatedly applied to each of the even and odd samples output subsequences
until finally two point DFT's are left to be evaluated. Fig. 3.5 shows
the butterf]y'unft and Fig. 3.6 shows the flow graph for 8 pqint DFT
using DIF algorithm.

3.4 NUMBER THEORETIC TRANSFORM (NTT)

Agarwal and Burrus [5] have showed that the existence of an N point
transform having the cyclic convolution property depends on the existence

of a .generator alpha (a) that is a root of unity of order N, and the

']. In the complex number field, the DFT is the transform

which exh1b1t cyclic convolution property with « equal to exp (-j 21

existence of N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X=A+B

Y = (A-B)

Fig. 3.5 2 point butterfly (DIF)

x(0) .

:::: ,@’\ w

S0 X N
S ANYP
x(5)
x(6)
3
.
x(7)
} —»f Stage 0 g %Sun]_k_qSﬁWZI

Fig. 3.6 Eight point butterfly (DIF)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X
Wy

x(0)

X(4)

X(2)

X(6)

XM

x(5)

X(3)

X(7)

43

44

It supports any length of the transform because of the variable periodicity of
exp-(~j . 2n/N) but at the same time it involves multiplication by

irrational coefficients (sines and cosines) making exact computation
impossible on a digital machine. At each stage, the output has to be

scaled down to avoid overflow thus requiring some kind of scaling

operation and at the same time introducingextra computational errors.

Pollard [4] has shown that transforms defined in a finite ring or

field exhibit the cyclic convolution property with a suitable choice of
the ring or field and the appropriate alpha. These transforms are

known as Number theoretic transforms (NTT) and defined as

N-1 nk-
X(k} =] ¥ x(n) o | (3.9)
n=0 M
and
-1 Ndd -nk |
x(n) = | N7)} X(k) a | (3.10)
k=0 M

where N™| belongs to the ring/field, Unlike the DFT, NTT's do not

allow arbitrary transform lengths. The maximum attainable length N,
depends upon the choice of the ring or field and alpha. Before discussing
the choice of parameter, the invertibility and convolution property of

NTT is established in the next section.

3.4.1 Invertibility and Convolution Property of NTT

If o is the root of unity of order N, which is one of the basic

conditions for the existence of the NTT, then the following relation holds

I“leM'] = 0 j = an integer (3.11)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45 .

which can be factored as:

. N-T ..
-1 § oM=0 (3.12)
p=0 .
Therefore

N-1 .

}ooaPl =y i3 =0 mod N

=0
N-1 . - (3.13)
I M=o otherwise
p=0

since for j#20 ol -1£0

Invertibility

‘Assuming all the operations are performed mod m, substituting

(3.9) into (3.10) and using (3.13)

N-1 N-T N-1
x(n) = N 2 X(k) « = N7 Z 2 x(u) o¥¢ . o K
N-T N-1
= N7)) 2 x(u) Gklu-n) _ x(n)
k=0 u=0

and hence the invertibility of NTT is proved.

Convalution
N=1 ft
Let X(f) = } u(t) e
t=0
N-1
H(F) = § h(v) o't
v=0
Y(f) = X(f) . H(F)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

Then, by (3.10), the inverse transform of Y(f)

y(s)

N-1 .
NNTOX(F) 2 H(FY - oTS
£20

_7 N=T N=T A=

T 5 7 x(t)h(v) of(V¥t-s)
f=0 t=0 v=0

N

.1 N=1 N-1
N } x(t)h(s-t) - N = tZO x(t)h(s-t)

z af(\)‘*‘t-S)

v
cyclic convolution and the CCP 1is proved.

Since the summation ; is modulo N, hence this is the

3.5 CHOICE OF THE PARAMETERS FOR THE NTT

Practical considerations dictate a selection of ring/field that
supports a transform whose parameters lead to efficient implementation
of modular arithmetic, either in hardware or software. Most of the
reported work on the NTT has supposed that the hardware will be
implemented using thé binary number system. In the conventipna1 binary
arithmetic, residue reduction is particularly easy when the modulus can
be represented as power of two. Also multiplication by a will be simpler
if a is also a power of two. In that case multiplication by o reduces
to bit shifting. These restrictions severly Timit the maximum attain-
able transform length. _

We are interested in the implementation of NTT using ROM arrays
and therefore the moduli and generators can be selected purely on number

theoretic basis to maximize the transform length. The following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

definitions and theoréﬁs will be helpful in determining the attainable
transform length for d%fferent.mbduli.
Definition 1: The Euler's totient function ¥(M) is defined as the number
of integer in Zy that are relative prime to M, e.g;, for M =5 y(5) = 4. ,
Definition 2: For M a prime number ¥(M) = M-1.

r ry r

Definition 3: If M éan be represented as M = Py - Pp " ... P n
1

where p.'s are primes than ¥(M) = M(1 - 1—0 a - 1—0 ... (1 - 1—0.
1 Pq Pa Pn

Theorem 1: Euler's theorem states that the maximum order of an element
in ZM is ¥(M). \
~ The implications of Euler's theorem are that maximum order of
in the ring Zy is ¥(M) that is'q?(M)= 1 or the maximum value of transform
length in Z, is ¥(M). Mathematically Noax = ¥(M) and the allowed transform
1enéths should divide ¥(M).
Consider the case when M is even, then it contains a factor of 2
and therefore the maximum transform length is one, which is practically
useless. This implies that M can not be taken as a multiple of two.
Next take the case when M is odd and represented as 2k - 1. Let
k be composite and represented as pQ, with p prime, then 2P - 1 divides
- 2PQ _ 1 and the maximum transform Tength is 2P - 1. Therefore only
prime values of k need to be considered. These numbers are known as
Mersenne numbers. Radar [6] has proposed transforms defined in the ring
of integers mecdulo Mersenne number. These transform are referred to as

Mersenne Number Transform (MNT).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

It has been shown that transform of length 2p exists and the
corresponding o is -2. The disadvantage of this multiplication free
MNT is that the transform length is not a power of 2 and not even highly
composite and therefore fast FFT-type computational algorithm can not

be used.

k

For M=2" + 1 and k odd, 3 divides 2k+1 and the maximum transform

Tength is 2. Consider k even and let k = s - Zt where s is odd. Then

t t
22" + 1 divides 252
t

+ 1 and the length of the possible trgnsform will
2

be governed by 2 2

+ 1. Therefore, integers of the form 2= + 1 are of
interest. These numbers are known as Fermat numbers. Agarwal and
Burrus [7] proposed transforme defined in the ring of integers modulo
Fermat number. These transforms are referred to as Fermat number
transforms. Fermat numbers up to F4 are primes. In [7], it has been
shown that an FNT-with o = v2 allows N = 2%,

However the main disadvantage of the MNT and FNT is the rigid

" relationship between the dynamic range and attainable transform length.
For example, with a 32 bit word machine using F5 = 232 + 1, N = 128 for
a« = ¥2. There is also a limited choice of possible word lengths.

Other authors have used different fields but still the
transform length 1is severly limited. The so]utidn to this problem

is found by computing the transforms aver extension fields.

3.5.1 Transforms Defined Over Galois Fields

Definition 4: For any prime m and any positive integer n, there exists

a finite field with m" elements. This unique field is commonly denoted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

by the symbol GF(m") and is called a Galois field. Any finite field

with m"

elements is a simple algebric extension of the field Zm.
Let F be a field. Then any field K containing F is an extension
of F. If X is a root of some irreducible polynomial f(x) ¢ F[x] such
that f() = 0, then the extension field arising from a field F by the
adjunction of a root A is called a simple algebric extension,denoted
by F(1). Each element of F(A) can be uniquely represented as a polynomial.

n-1

g tagrt..oa 4, a, e

The fieid of complex numbers is an example of an extension of
the field of real numbers, it is generated by adjoining a root j = /=1
of the irreducible po'lynomia1.x2 + 1.

If f(X) is an irreducible polynomial of degree n over Zm, m prime,
then the Galois field with m" elements GF (m") is defined as the field
of residue class of polynomial of Zm [x] reduced modulo (f(x)).

Pollard [4] has shown that transforms of the form

N-1
x(k) = § x(n) K
n=0
N-1
x(n) = N7V T x(k) oMK
k=0

defined over the Galois fields of m" elements, where m 1is a prime, also
exhibit ccp. The maximum attainable transform length is given by Nmax=mn -1
with restriction that o is cyclic of order N in GF (m").

Thus the extension fields allow a greatly increased transform length

for the same value of m and the problem of obtaining large transform

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

length is resolved. In order that the implementation of

efficient, two things must be considered after the choice of m and

N:

(1) construct the Galois field GF (m") such that the multiplication
and addition of field elements require the smallest possible
number of operations;

(ii] search for the generator of an N element cyclic sub-group in
GF (nP), a, that has the simplest form possible so that the number
of operations required for multiplications by powers of a are

minimized.

3.5.2 Construction of Galois Field GF (m")

To construct a Galois field of m" elements, first an irreducible
polynomial is to be formed. The form of the irreducible polynomial
dictates the complexity of the computation in the field since addition
and multiplication is defined as the polynomial addition and
multiplication, followed by polynomial reduction modulo f(x). We restrict
our interest to GF of 2nd degree as they still offer simple hardware
implementation and provide transform lengths which-are quite suitable
for practical purposes. We take the two cases of irreducible polynomial
and find out the complexity of the computation.

Case 1: Let f(x) = x2 + x + 1 be an irreducible polynomial of degree

2 over GF (m). Then, the extension field in which the given polynomial

has a root, denoted by w, may be described by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

GF(m2) = {a + bw| a, b e GF(m)}

and w2 +w+1=01in GF(mZ).

Take the multiplication of two elements of the field
|(a + bw) - (a' + b'w) lm
= |(aa' + bb'wz)_+ wab' + a'b) Im

2

Dividing the result by w- + w + 1

= |(a'a - bb') + w(ab' + a'b - bb')lm

Thus multiplication of field elements require 4 binary multiplications

and three binary additions.

Case 2: Let f(x) = xz - r re GF(m). Then the extension field, in

which the given polynomial has a root is described by

GF(°)

and AZ -r

"{a + Ab] a, b e GF(m)}

0.

Multiplication of two elements is now performed as

(a+bxr) - (a* +b'A) = |(aa" + bb'xz) + r(ab' + a'b)]m

|(aa' +rbb') + afab' +a'b)|

Residue reduction mod (12 - r) is simple since Az = r. Multiplication of

field elements require 4 binary multiplication and 2 addition. Since

ROM arrays will be used for the implementation of NTT, multiplication by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

constant, r does not require separate stage. Because of the
simplicity of the (x2 -r) po]yhomia], it is used to construct the 2nd
order Galais field.

After the structure for irreducible polynomial has been decided,
the next problem is to find a suitable value of r such that x2 z r (mod m)
is not solvable in GF(m).

Baraniecka [8] has described a complete procedure for finding the
values of r for different fields. Following is a brief discussion of
the method presented in [8].

A11 the prime numbers can be divided into two groups.

4n + 1 e.q., 1, 5, 13, 17, ...

4n +3 e.q., 3,7, 11, 19, ...

The most trivial value of r is -1 but for the case of 4n + 1 type
primes,/:T\ can be considered as a member of GF(m) and hence Galois
fields of 2nd degree can not be constructed using the polynomial, x2 + 1.
For example, if m = 5, v~1 is congruent modulo 5 to 2 and 3. For 4n + 3
type primes, /=1 can be used to construct Galois fields of\an degree
and GF(ﬁi is isomerphic to the residue class of complex, so called
Gaussian integers. The elements of the field are defined as
a+ /-1b, a, be GF(m). To find an irreducible polynomial for primes
of 4n + 1 type, we make use of the following theorem.

Theorem 2: If g is a generator for the multiplicative group GF(m) - {0},
then x2 - g is an irreducible polynomial in GF(m).

For example, 13 is a prime of 4n + 1 type. It's generator of the

cyclic group is 2. It can be easily verified that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

x2 = 2 mod (13) has no solution
or x2 - 2 is an irreducible polynomial in GF(m). Hence a Galois field
of 2nd degree can be constructed using r= 2. The elements of GF(mZ)
will be defined as a + v2 b, a, b € GF(m).

3.5.3 Searching for the Generator a in GF (m°)

We first summarize what has been presented so far:
(i) choose the transform length N which is suitable for the application
(i1) choose the prime which will give this transform length over a Galois
field of 2nd degree
kiii)construct the 2nd order fields in which binary operations are simpler.
The next problem is now to find out the generator,a,which is of

2). To search for the generator o for 4n + 3 type,

the order N in GF(m
the following theorem is stated. The prime, m; = 4n + 3, can be represeﬁted
as m; =g . 2P -1 with q odd.
. Theorem: Given a base field Zm and an ifreducib]e polynomial x2 -Tr
over GF(m), the extension field Zm(/F) has a cyclic subgroup of order
N = ZB. The maximum value of B is P + 1, The generator o« has the form
B+ v /r.
For 4n + 3, a prime m. = r can be taken as -1 and hence the general form
of « is B + v=1 . Transforms over GF(mz) with r = -1 can be used
to compute convo]ution on_complex data or convolution on two blocks of
real data.
Example: Form=7 =1.23 - 1 the maximum radix two transform

over GF(7%) is N = 2P*1 = 16. a for this prime can be chosen to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

2 + 3/~T and it can be verified that the generator has order 16.

Other values of o« are also possible and can be used for the transform.
4n + 1 pfimes can be represented as m = q - Zp + 1 where (q,2) = 1. The
largest possible radix 2 transform length in GF(mzl,is N = 2p+]. For
primes of this form, the generator has a simple form a = /r where

xz - r is an irreducible bionomial in GF(mz). This property is obtained
from the‘fo110wing theorem.

Theorem 3: lLetm=gq - éf + 1, be an odd prime number. Then:

i) If g 1is generator for the multiplicative group GF(m) - {0}, then
x2 - g is an irreducible polynomial in GF(m).

Hk+1

ii) If g is as in (i), then Yg has multiplicative order q - in GF(mZ)

where elements are given as a + b¥g a, b e GF(m).

iii)We can find a‘generator /r, of a cyclic subgroup or order 2k+1 in

GF(mz) where r = geq with (e,2) = 1 and x2 = r an irreducible polynomial
’ in GF(m).

Example: Let the prime be m = 97 = 3.25 + 1. Maximum radix 2 transform

Tength over GF(972) is N = 26

= 64, From the tables of the primitive
roots, it can be found out that for the prime 97, g = 5.

According to theorem 3, v5 will generate a cyclic subgroup of order 192,
and the generator of the multiplicative order 64 is given by a = /r = (/§)3e
where (e,2) = 1. Arbitrarily choosing @ = 1, a = /28,1t can be verified

that this a has order of 64 in GF(37%).

3.6 NTT USING RNS COMCEPTS

From the previous discussion, it can be seen that the NTT defined over an.

order Galois fields, yields a practicable transform length and these 2nd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

order fields can be constructed using polynomials for which the binary
operation in GF(mz) is simplest. Although the transform length achieved
is large enough for practical purposes, dynamic range is still severely
1imited. This problem can be solved using RNS concepts. The NTT can be
performed over different Galois fields and then the final result can be
reconstructed using the chinese remainder theorem or a mixed radix
conversion scheme [8]. Thus computing the transform over a finite

ring which is isomorphic to a direct sum of several Galois field of 2nd

degree, R = GF(m]z) S SR + GF(mnz) increases the dynamic range to
n

i mi. The conditions for the existence of the NTT over the finite
i=1

ring can now be restated.

i) For each mes oy must be a primitive Nth root of unity in GF(miZ)
ii) N [(mi2 -1 i=1,2,..,n or in other words ngcd(mi2 -1,

i = 1,...,“

As a practical example, assume a transform length of 32 points is
| required. The prime moduli 17, 31 and 47 can be used and the dynamic

14.65 and therefore

range is then given by their product 17x31x47 = 2
a word length of approximately 14 bits is achieved. These are not the
only choice of primes. Other primes can also be used for the same
transform length but which will .give different dynamic ranges.

Table 3.1 shows the primes and the maximum transform length that
can be achieved using these primes. It may be noted that for any

transform length N and the generator a, the transform. length is

halved if o is raised to power two, for example, for prime 193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ASSOCIATED TRANSFORM LENGTH.

_ Maximum | Maximum
Primes Factorization Factori 2gati on Eggghz Egg;::(hz

m. of m,-1 of m;-1 in in

! ! ! 6F(m.) | GF(md)

3 2 ' 23 2 8

5 22 3.23 4 8

7 3.2 3.2% 2 16
1 5.2 5.23 2 . 8
13 3.22 7.3.23 4 8
17 24 3.25 16 32
19 2.2 5.32.23 2 8
23 1.2 11.3.2% 2 16
29 7.2% 7.5.3.23 4 8
31 5.3.2 5.3.2° 2 64
37 32,22 19.32.23 4 8
Iy 5,23 7.5.3.2° 8 16
43 7.3.2 11.7.3.2°3 2 8
47 23.2 23.3.25 2 32
53 13.2° 13.33.23 4 8
59 29.2 29.5.3.23 2 8
61 5.3.2° 31.5.3.23 4 8

Table 3.1 TABLES OF FIRST FEW PRIMES AND THE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

57

the maximum transform length is 128 and the corresponding o is

/125. This same prime can be used for tramsform length 64 and the

o would be 125, for N = 32, ; = 185 and so on. Thus for the smaller

transform length, large primes can be used to provide large dynamic range.
Fig. 3.7 shows a conceptual block diagram to implement an NTT Using

the RNS. At the first stage a distributor is required which can feed the data

modulo respective primes to different units. Each prime requires a

supporting memory structure and a computational unit. The advantage

of using RNS is that the computation can be performed in parallel and the

speed of operation does not depend upon the number of primes used and

hardware is the only limitation on the number of primes to be used.

After the computation, the final result of the transform can be

reconstructed in a reconstruction stage, using the ch. rem. theorem

or mixed radix conversion.

3.7 SUMMARY

In this chapter, the implementation of convolution using transform
technique has been discussed. It was shown that certain transforms
exhibit cyclic convolution property and can be used to implement circular

or linear convolution. The general structure of these transforms is

N-1
X(k) =)} x(n) o"® where o is the Nth root of unity and N is the
n=0
. 2T

=3
transform length. In a complex number field for a = e N » the

transform is known as the DFT and exhibits the cyclic convolution

property. The main disadvantage of the DFT is the muliplication by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

1nd1no

<

Luog
*d

OLLINYLSNOITY

—

IR TE

oy

LIND °9

"pLnpou 934y} 404 SNY Bupsn LIN jo uojjuswsiduy (g *6}d

|

<

T e

4OLNAIYLSIC
Sy
¥/a

LT
LIND °J

by AvOWIH

1NdNI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

~

irrational coefficients, thus making it impossib]e to compute
the transform exactly using binary arithmetic.
It was shown by different authors that the NTT defined over

finite rings or fields also exhibit the ccp for suitable a. It was
assumed that these transforms will be implemented using binary
arithmetic and thus stress was given to the field for which residue
reduction was simpler. « was chosen to have a simpler form preferably
a- power of 2 so that multiplication by a reduces to bit shifting.
This severly restrictes the choice of ring/field and also o« can not
be chosen to yield the maximum transform length. In this chapter it
has been assumed that the NTT will be implemented using ROM arrays
and therefore the moduli and o can be chosen freely to obtain the
maximum transform length. A ROM array implementation still did not
allow a suitable large transform 1éngth in GF of 1st degree and therefore
GF of 2nd degree were introduced. The implementation of NTT in GF of
2nd degree were discussed and also it was shown that using GF of 2nd
degree increases the transform length to more than the square of the
transform length in the Ist degree fields. The use of 2nd degree field,
though increasing the transform length, does not solve the problem of
dynamic range. For an increased dynamic range, large moduli were
‘to be used,,which are not efficient for hardware implementation. This
problem 1is solved through the use of the RNS by computing transform

in parallel,modulo several primes, {mi}, so that the dynamic range is

=3

given by M= 1T m,.

j=1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

In summary, the following procedures may be fo11oweﬁ for
selecting the parameters of NTT.
(1) Choose the desired transform length N for the particular
application.
(2) Find the dynamic range required for the particular application.
(3) Depending upon the dynamic range and transform length, choose
the suitable prime. For N > 64 and for large dynamic range
requirements, it is more efficient to go for the 2nd degree fields.
(4) Construct the 2nd order fields using a simple form of jrreducible
polynomial.
(5) Find out the generator o, which has the simplest form and have

an order of N.

The complete discussion on choosing these paramete%s was presented
in this Chapter. The above procedure is a tentative procedure and the
final choice of the parameter is dictated by the efficient hardware
rea{ization and the cost of the system. In the following chapter, a

detailed discussion on efficient hardware realization will be presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

IMPLEMENTATION OF AN NTT BUTTERFLY

4.1 INTRODUCTION _)

The NTT processor mainly consisté of a supporting memory structure
and a computational unit commoﬁ]y known as the butterfly unit. The
main aim of the work presented, is to realize the butterfly unit in
hardware, compatib1e with the memory structure used with the NTT
processor.

In this chapter the design of the NTT butterfly is developed. The
associated memory structure to support the NTT butterfly is discussed
‘as required but the actual hardware design of the memory structure is
not undertaken. A multiplexed butterfly unit was designed for hardware
imp1ementatipn,using look up tables and the pipeline configuration, for
real time applications. A detailed simulation of the basic required
memory structure and the butterfly unit designed for hardware implementation
was done. After the verification of the simulation results, the
butterfly unit was imb]emented-in hardware using look up tables stored ~
in Eproms. The onTx,contro1 required to run the butterfly unit is
a clock pulse and a circuitry was designed and built for generating

control pulses.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

4.2 NTT _PROCESSOR

The NTT has the same structure as the DFT and therefore for highly
composite transform length N, the fast algorithm for computing the DFT
can also be used to compute the NTT. Analogous to the FFT, the fast algorithm
to compute the NTT will be called FNTT. Usually a sequential type
processor is used to compute the transform,.which saves hardware at the
cost of slowing down the speed of computation. A multiplexed radix r
butterfly is used as a computational unit with some supporting memory
N

structure. This butterfly is accessed %— X logr

radix of the FNTT algorithm and N is the transform length. A conceptual

times where r is the

block diagram of the NTT processor is shown in Fig. 4.1. The supporting memory
is used to store the input data and the intermediate results of the
computation. A control unit is also required to control the data

flow to and from the memory, to keep ﬁrack of stage of computation and the
position of the butterfly in that stage.

4,2.1 Memory Structure

A great deel- of literature is available-for the memory organization
of a FFT processor’and is equally applicable to the FNTT. Pease [9]
brought out an idea to use slow memory efficiently by splitting main
memory into several sub-memories. Corinthois [10] used the idéa presented
by Pease and came up with an 0I00 (ordered input-ordered output)
algorithm which makes use of sequential memory.

A radix 2 butterfly unit requires a minimum of hardware and we restrict
our interest to Radix 2 transform. The transform matrix can be

represented as the product of matrices givesn by equation 4.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

Jossasoad JIN J0 weuabejp penjdasuo) |°y °bi4

43 77104.LNOD
R | —P
40 JUNLINYLS
LINN NOILYLAAWOD ¢ > AUOWIW
.. ONILY0dNS

>

L I—

Lnd1no

1NdNI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Ty= T p' u s (4.1)
N mep MO
where n = 1092N and s = (IN‘X TZL and” x represents Kronecker product
2
and
1 1
T, = (4.2)
2 11 4
p'; = 121-1 X Pﬂ_ (4.3)
i-1
o1
U‘ = Izi_] X DN—‘-] (.4'4)
21"
p'n = un = IN (.4'5)

The operator, s, performs the two point traﬁsform on the input fed to
the computational unit. The two- point transform requires only addition
and subtraction of the input data as is obvious from the operator s.
The input data accessed from the memory are always %—points apart. The
operator u performs multiplication by twiddle factors and p' is the
permutation operator which shuffles the data to obtain the final output
in ordered form.

This machine oriented algorithm requires two memory buffers, the

input memory and the output memory, consisting of long shift

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

registers and a computational unit. The input memory is divided into
two sub-memories which store g-points. The one input from each sub-
memory is fed to the computational unit and the output from the
computational unit is stored in the output memory. After completion of
each stage (g-butterf1y computation), the data from the output memory
is fed to the input memory and the shuffling on the data is performed
as required by the operator p'm in equation (4.1). A block diagram

of the processor is shown in Fig. 4.2.

The main drawback to this kind of implementation is that each
stage calls for a feedback phase in which data are serially moved
from the output buffer to the input buffer in an order determined
by the permutation operator. Corinthois [11] modified the above
algorithm to eliminate the feedback process and the final form is

given by the following equations.

Ty = m§1 Uy Sp (4.6)
where in general
Spe1 = S P (4.7)
.S, =S (4.8)
uy = Iy (4.9)

where u and p have been defined earlier. In this algorithm, the
operator s always calls for data that are at 'Ieast-l:- words apart

except at the first stage where they are g-words apart.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwad Inoyum paygiyosd uononpoidas Jayung “asumo JybLAdoo sy} o uoissiuad ypm psonpoiday

INPUT MEMORY

Controller

W

%-words __;_____; g-words
Computation lnit
Nz-words " -g— words
OUTHUT MEMIRY

¢

Fig. 4.2 Basic machine organization for 0I00.

\

99

67

Example 1: Consider the case when N=8. The matrix is given as:

3
T, = I Uu_S_ = USq; U,S, U,S (4.10)
8 1 m™m 171 272 7373
since uy = IN
Tg = SqUp SpU3 s3 (4.11)
and S35 = 14 X T2 (4.12)

The expansion of these métrices is shown in Fig. 4.3, and the fiow
graph implementing the transform is shown in Fig. 4.4. This algorithm
does not require an extra feedback operation. The input and output
memory consists of FIFOs and can be divided into 4 sub-memories which
store %- words. The data flow can be handled according to

the operator s_

n at each stage.

A block diagram of the above processor is shown in Fig. 4.5.
Assuming the input is already stored in MEMORY 1, the input data is
fed to the computational unit and the output from the computational
unit ' is then stored in MEMORY 2. ~ After the first §tage,
the role of the wmemory 1is changed and MEMZ now becomes the

" input memory and MEM1 the output memory, and so on.

- For real time applications, three memory buffers are required.
Hhile two buffers are being used for the computation, the third

buffer can then- be-used to store the input sequence and also to supply

the transformed sequence. A conceptual block diagram for a real time

processor is shown in Fig. 4.6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~
@ -} Q L Q (-} [~} -]
— (=} (-3 Q - [—] < S
L (-] L (-}] L~ — Qo
r
Lond [(-}] Lo < (-] Q ‘_Q - ‘_N .:! ‘-- ‘_la ~'°
L | L
] 1 f
~
] < [~} < < (=] [~] 3 [~] [~} Lnd =} (-} -}
~
Q a -]) =) =) a [) < < - -] =] < -
S
-] Q) -]] g =] =] =] — -] [] < -]
a
]] a < s a < =] - [}) [~} - -}]
£ “
] [} @ -—) -]]] [~] a -] Ld S [~} -]
a (-] - - < (-] S S (=] Q — o (-} Q L
< — -} < -} S < =) (=} [[~] a -] - [}
- S -] <] a -]] — -} - a Lo =] -
| ! |
] 1 i
<] a — < S < - a) -] [] -] Q <
‘o4
(=] (-} ld <> [~} Q - (-] <@ Q S [~} < -} 2
-—
a =] <« Ld o =] =] el Q]] < -] s =)
=]
a] -]] -] -— a D < =] < £ -] <
lﬂ- _ﬂ
< - = < @ - E)] = a) =) — =]) <
Ld [<« < -T (] -] <9 < Q — < (-] < [~}
-] -] -] =] (d a [~] -] - =] =] [~ -] =}
— =] a < o =) <] ~— = < E) =] =] =]
{] L
1)
1 L
=] — o~ - - v a ~
[Ty [y ™™ ™ ™™ [T [Ty e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Flg. 4.3 EXPANSION OF TRANSFOM MATRIX FoR 0100

68

69

ey jroBre QIO Jujod Y540 ue Joj ydeab mold vy 614

JESNYADN /
VLG Lo o
ISR KX KKK

T
IR

— RS
N\ VAN

of the copyright owner. Further reproduction prohibited without permission

Reproduced with permission

70

wyy jaoBiv 0010 403 Jtossazoad (N uy §°p B1d

Y3 TI041N0D

¢ X1avy

LINN
Ady3ung

i

FP=-======-= 3
S 7 v O
e — e | N :
ﬂlllolu..lnll.-l
|}
rv_ Wi _ 1 s
¢ NOWIH

e ms

m‘._ ZL] | —

| S - -3

[

Y D 7
ll\v;---;.--: EREER
L 8ns L

) ———

1 AHOHM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BUF 1

INPUT
I¥PUT £ BUF 2 MOX RADIX 2
——— DISTRIB~ | ; ;
UTOR UTTERFL'

.2..
BUF 3 OUTPUT b
MUX
L

- DT

OUTZUT

71

Fig. 4.6 An NTT procassor for real time 0I00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

The addition-subtraction of the input points and the multiplication
by the twiddle factors is performed in the computational unit. The computation
is done in two stages, the addition-subtraction stage and the multiplication
stage, the order determined by the algorithm used. For a high throughput,
the structure of Fig. 4.6 requires that the input-out rate of the
computational unit should be equal to the data rate of the memory structure.
A pipeline structure seems a very good choice for the computational unit.
It will be shown that the ROM oriented structure is extremely simple to
pipeline and thus can be used with the above memory organization. The
computational unit from now on in the thesis, will be referred to as a

butterfly structure and will be restricted to radix 2, as mentioned earlier.

4,2.2 The Butterfly Unit

The input to this unit from the memory structure is two input complex
points. The control unit supplies the information about the stage of _
computation and the position of the butterfly in that stage. The twiddle
factors are generated in this unit and multiplied at the appropriate
stage in the butterfly unit. By looking at the matrix expansion of the
transform matrix (Fig. 4.3) we note that the FNTT algorithm obtained is
of DIF type where the input points are first added-subtracted and then
multiplied by the twiddle factors.

The selection of the field for NTT dictates the form of the
cyclic generator and thus the twiddle factors. Therefore the field
or the prime moduli should be chosen such that the generator is simple
and also such that the resulting butterfly unit requires less hardware.
The concept developed in the previous chapter will be applied for selecting

the primes for efficient hardware realization of the butterfly unit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

4.2.3 Efficiency of Primes

Large transform length--is achieved by the use of prime
moduli., Prime moduli can be divided into two groups, -4n +1 -~
type and 4n + 3 type. For 4n + 3 type primes, the generator is of

the form vy + BY/=1 where v & B8 ¢ GF(m) and x°

+ 1 is an irreducible
polynomial in the first order field. Fig. 4.7(a) shows the radix
2, DIF type butterfly and Fig. 4.7(b) shows the implementation of
the butterfly using look up tables. The operation represented by
(:) are performe? in look up tables. The input points are the
elements of GF(miz) and can be considered as complex points. In the
first stage, addition-subtraction is performed. The subtracted part is
then multiplied with the proper twiddle factors. A1l the binary
operation performed are complex. Multiplication by twiddle factors
requires 4 multiplications and one addition and subtraction. A total
of three stages and 10 binary operations are required to obtain the
output points.

For 4n +-1 type primes, a can have the simple form /v where
re GF(m]) and xz-r is an irreducible polynomial in first order field. Fig.
4.8 shows the implementation of the butterfly unit for 4n + 1 type prime.
Two different configurations are shown for the multiplications by powers of «.
Even.powers of a can be considered as purely real and therefore only-real
multiplications- are required. The odd powers of « require a muitiplexing stage
after multiplication and also an additional multiplication by r which in
Took up table implementation does not require any extra stage.
Two stages and 6 binary operations are required to compute the

output points. A comparison between two kind of primes is shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cu(A®8) et =T d

. Beav/=T b’

"Fig. 4.7 a) Radix 2 butterfly for 4n+3 prime

D=(A-8} xa=cw=T d" ~

2 >
b - >
¥ > 2, ()

® > (O 2>, >-
Y >) ;f-i-\ P
8 — e -

Fig. 4.7 b) Implementation of radix 2 buttarfly unit for 4n+3 prime

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

75

\
)
.‘.
Y
a.

™
)
A 4

1]

o,
4
/d
A
‘5
D-‘

"= >
a"=q _
Fig. 4.8 a) Butterfly unit for 4n+l prime (n=even)
3 > g ! [
b d
'Y e
v d’
a=p /T

Fig 4.8 b) Butterfly unit for 4n+1 prime (n=odd)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

the following table

primes add. subt. mult. stages
4n + 3 3 3 4 3
dn + 1 2 2 2 2

Table 4.1: Comparison between the
primes.

From the table, it is obvious that 4n + 1 type primes are
more efficient than 4n + 3 type primes. They not only require
less number of stages, but also require less number of binary
operations. Therefore, while choosing the primes for NTT, the
preference should be given to 4n + 1 type primes. Tables 4.2 and
4.3 1ist the suitable primes and the transform length associated

with them.

4,2.4 Selection of the Primes for Hardware Implementation

Discussed in the previous chapter, the NTT is computed over a
ring which is a direct sum of several second order Galois fields for
a large dynamic range. A transform length of 128 points is quite
reasonable for practical application. The primes will be selected to
provide thfs transform length and a reasonable dynamic range.

4n + 1 type primes can be represented as m = q . 2P + 1 where
q is odd and the maximum transform length over the second order field is
equal to 2p+1. Fora 128 point transform length, p is 6 and the first

few selections are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transform Length | Representation of Representation 01"W
: Primes for Trans- Prime my in Number of
N = 2k+] form Length N ms Bits

ok

m.=q 27+1
32 = 2% q=1 1.2% 17 4.087
q=7 7.2%1 113 6.820
q=15 15.2%1 | 24 7.913
q=21 21.2%1 | 337 8.397
q=25 -25.2%1 | am 8.647
q=27 27.2%1 | 433 8.758
64 = 291 q=3 3.2%41 97 6.644
q=11 11.2%41 353 8.464
128 = 261 q=3 3.2%41 | 193 7.592
q=7 7.2541 | a4 8.811

Tahle 4.2 TABLES OF PRIMES m; = 4n + 1 LESS THAN

9 BITS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transform Length Representation of Representation
Primes for Trans- Prime in Number of
N = 2P*! form Length N m, Bits
= q-2P.
m. = q 2" -1
32 = 241 q=3 3.2% 47 5.555
qg=5 5.2%.1 79 6.304
q=15 15.2%1 | 239 7.901
q=17 17.2% | 2n 8.082
- q=23 23.2%1 | 367 8.520
q=27 27.2%1 | a3 8.752
q=29 29.2%1 | 463 8.855
64 = 2°*1 g=1 1.2%-1 31 4.954
q=7 7.25.1 | 223 7.801
q=15 15.25-1 | 479 '8.904
128 = 26%1 q=3 3.251 | 91 7.577
256 = 27+ q=1 1.270 | 127 6.989
q=3 3.27.1 | 383 8.581
Table 4.3 TABLES OF PRIMES m, = 4n + 3 LESS THAN

g BITS

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

m=gq. 26 + 1
for q = 1 m = 65 which is not a prime
for q = 3 m= 193
for q =5 m = 321 which is not a prime
for q = 7 m = 449
forq=9 m = 557 .,

The dynamic range associated with the first three moduli is:

m, = 193 x 449 x 577 = 2256 hich is quite

i=1

tll 31w

reasonable for most of the applications. We are interested in
implementing addition-subtraction using sub-moduli and 1K x 8
commercially available ROMS. The 1K x 8 ROMS have 10 address lines
and the two numbers which are to be added-subtracted should not have
a combined address of more than 10 bits. The sub-moduli are chosen
such that their product is equal to or greater than two times the
main modulus and thefefore the main modulus should not have more than
9 bits representation. Moduli 193 and 449 have nine bits representation
and a coﬁbined dynamic range of approximately 16 bits. If a dynamic
range of more than 16 bits is required, then we are forced to use
moduli of 4n + 3 type which are less efficient than 4n + 1 type.

k

The moduli of 4n + 3 type can be represented as m= 71, 2" -]

where r is odd and the maximum transform length in 2nd order field

is equal to 2k+].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

For N equal 128, k is 6 and the first few selections are as

- follows:
m=r.2% -1
for r=1 m = 63 which is not a prime
for r=3 m = 191
for r=15 m = 319 which is not a prime
for r=7 m = 447 which is not a prime

For r > 7, moduli have more than 9 bits representation
and are not useful for our purposes. Table 4.3 shows that modulus
127 can also be used for a transform length of 128 points. For the
same transform length, 191 provides larger dynamic range than 127.
The final selection of moduli, from hardware constraints, is then m, =
191,m, = 193 and M= 449, and the dynamic range is 23.98 bits. This
is equivalent to saying that the number theoretic transform is
computed over a finite ring which is isomorphic to the direct sum of three

Galois fields of second degree that is:

R ~0GF(191%) ® GF(193%) ® GF(4492).

The generator for these primes are as follows:

modulus my = 191 ay = 66 + 6/-1
modulus m, = 193 a, = Y125
modulus ms = 449 ay = v391

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 ROM REALIZATION OF BUTTERFLY STRUCTURE

A conceptual block diagram of the butterfly unit is shown in
Fig. 4.9. The two input points are supplied to the butterf1§
unit along with the stage of computation and the position of the
butterfly. Another control is required to distinguish between the
direct or inverse transform for generating the proper twiddle
factors. For each input set of data, an output set is obtained with
an initial lag of 5 or 7 stages depending upon the primes used.
The computation inside the butterfly unit is performed using sub-

moduli for efficient hardware realization.

4,3.1 ROM Realization for 4n + 1 Primes

Fig. 4.10 shows the implementation of the butterfly unit for a
4n + 1 type prime. Eéch rectangular block represents a ROM and a
latch. For the DFT-algorithm, the input points are first added and
subtracted. The first stage therefore consists of residue tables, named
as TRSM, sub-modulo 30 and 31. Eight tables are required to reduce
the input data points modulo the sub-moduli. In the 2nd stage, sub-modulo
addition is performed and at the 3rd stage the added part is
reconstructed whereas the subtracted part is first reconstructed and
then is converted into index form, again in sub-moduli. Reconstruction,
index Took up and sub-modulo reduction is performed in one table for
each input and each sub-modulus. The twiddle factors in index form
are also accessed at this stage. The fourth stage consists of addition

of indices using sub-moduli. An extra multiplication table for pre-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

INPUT A (A+R) | OUTPUT C
R — -
n
INPUT B & OUTPUT D
—» —>
(A-B) ol

CONTROLS

— TWIDDLE FACTORS A

CONTROLS:
DIRECT/INVERSE: DIRECT OR INVERSE TRANSFORM
STAGE : STAGE OF COMPUTATION
POST: POSITION OF THE BUTTERFLY

IN THE STAGE

Fig. 4.9 CONCEPTUAL DIAGRAM OF THE BUTTERFLY UNIT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

-

W8 GZUF 4¥ = 2 10dIN0
8 521/ +V = | 1nd1n0

(€6t) Miyd | + vy

304 ATJH3LING 1IN 40 NOIS3D Oy “B)d

«9 SZLA 4.% = 2 ANdN1
9 521 + ® = | 1ndN]

e S M
P e fe 13 ¢ {
< P g P pe——7—— o1s
"84 7 XM F-~t---4 U | F--t---- " 7 £
P 8 © ol
7 ot M - 0f F——7— 1504
8 9
ﬁw_.-a& 3 nivi WV
} e [4ls” € [€ 7 (i
, e . A o 5
‘< A AT T
’ Q\ XMH e N\ \\ " \N\ n* \\ L 9
e ot M\ o M\ ot J : ot
ANIL 0ovL NInSL ans1 HSY1
\
/- e L |s, 1€
N Y
¢ 2 W rcu%oinL [1---.1.-:.”*‘*:! q
8 ’
va ot <, oe fdJ 8
4 €7
HILV1 HIVY NIt gav1 S WSY1
et " -’
1 = i€ 4 N I 3
e L L L T .
8 o [ot | 5" e [T | ot
. e , 7 15
. WLV ANIL oov1 . s NImS1 5 ans1 WSEL
VA
€ g o
v+ s 7 — B ik SEEET B LI B SEES SR v
8]] ? ,
7 o |19, o
S
min w1 HIV N141 govL HSY1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

multiplication by r is also required at this stage and depending upon
the power of alpha, the proper table is enabled. The fifth stage consists
of accessing of the result of the multiplication from inverse look

up tables and the multiplexing of the result according to even-odd
powers of alpha. Looking at this structure, we find that after an -
initial delay of five stages, an output will be obtained and there is

always a lag of five stages between input and output data.

4.3.2 ROM Realization for 4n + 3 Primes

Fig. 4.11 shows the implementation of the butterfly structure
for 4n + 3 type primes. The first three stages of this structure are
the same as that of 4n + 1 fype. Multiplication by twiddle factors
is complex for 4n + 3 type and therefore a complex multiplier is
required. At the fourth stage, the addition of the indices is performed

and then the fifth stage computes the real multiplications. An extra

addition-subtraction is required to complete the complex multiplication
which is done in the-6th and 7th stages. A total of seven stages are
required to compute the two point butterfly and a lag of seven stages
is presented between input and output. Table 4.4 shows the requirement

for both type of primes.

primes ROMS Stages MUX
dn + 3 a8 7 -
4n + 1 32 5 2

Table 4.4 Requirements for both type of
primes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

ML MY e 2 Idi0
217 SV et Inain0

(161} Mg T +

w04 AVp2itne 11N 30 WI1S30

e 3

RN URE RS NI
[SUREERN |

Z y A
PR /
1t e ffs 1t 1|,
IR el o LI | U o O O W Y4
z
o 7 ot o
1 S 7. ot
w1 s oav1 s)it
— N
7 7 it { o e P
. w <7 e Lo 1 { .
7 7 | 4 S eV o
—] i ' | BN B -efe - - ' /
v , L - * ot LY S
L 2 4 5’2 ® 54 or o fe——
7 7 w\ r rl 9
miat ’ ws1 §. AL ouvi (71 o wm
ya -] N\ I\\\
B 7 XY e iy 8 _! - o s 1w fens i€ .
N S - I TN BN B ¥ AU U S S rt S R .
N4 17, i o o Vi « N o .4_ -.
v . « [w (15 A -
J % s s Wit
it oov1 i oovt ‘ winss st
yi ’ N
_ s’ 3 — " 2 1t
14 Ja It M N! N ry ...n.l-nLua“ﬂ-IJ
i T oc ~7 of -
of K7, 9 ﬁ, 7 b\‘
4 N [s
it s oovi i oovt wul
0 M.i\l_ T JM n
s
£ f— SN PR— P R b oo o m A 3
94— s a 4 L4 , I al;—s 4 ’
'))) . o A o
5 &
W rﬂ v 3113 —R®r - % T3 T_ WAL
” -
L 1t S, it
§ 7 *
3 Nv B — yJ SIS PR [TP N . AN
A;||\s.|l|||
v ﬂ\] 8] # o mu\ o
_ s
W1V 43IV WY W (TP ooVl s 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

From table 4.4, it 14is obvious that 1f both type of primes
are used, then for 4n + 1 type primes, a delay of two stages should

be introduced in the pipeline.

4.4 COMPUTER SIMULATION OF THE BUTTERFLY STRUCTURES

The butterfly structures for the three moduli were simulated on an
IBM 370 using look up tables. The exact structures shown in Fig. 4.10
and Fig. 4.11 were simulated and the pipeline structure was preserved
during simulation. The basic requirements for memory organization were
used in the simulation part and the program for simulating memory structure
was simplified. = The shuffle operators were not used in the memory
simulation part and the output obtained was in bit reversed form. A standard
shuffle routine was used to change the bit reversed output into ordered
output. This does not affect the butterfly structure in any way. The
simulation programs were divided into three parts.

(i) MAIN PROGRAM: From Fig. 4.10 and 4.11, we note that output from

each table is latched on each clock pulse. The latching is necessary

to allow the (i+1)th stage to capture data before the address lines of

the ith stage change. A pointer was initialized in the main program

to clear all the registers before the application of the first data set.

The subroutine table is then called to generate all the tables required

for the butterfly unit. A double DO loop is used to keep track of each stage
of the computation and the position of the butterfly. The input data

points which are always g-points apart are fed to the NTT subroutine and

the output is stored in the consecutive memory locations. After the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

completion of the transform, the data is then shuffied to obtain the
ordered output.

The subroutine NTT {s the simulation of the butterfly structure.
The controls to this subroutine are passed in the calling argument.

The NTT call is

CALL NTT (INV, INP1, INP2, STG, POST,-OUT1, 0UT2).

The multipliication by N'1 for inverse transform is also performed
in the main program although for hardware implementation, multiplication
by N"1 can be performed before starting the processing. The main
program is the essential part for testing the working of the butterfly

structure.

(ii) SUBROUTINE TABLE: This program generates all the required tables

for each moduli. Modulo reduction was done using the instruction
mode

IR = MOD (IR, MMOD)
where MMOD is the modulus and IR is the number to be reduced. The NTT
is an integer number system and the implicit integer statement was used to
declare all the variables as integers. The index and inverse index
tables are quite easy to generate. The following six statements generates
the complete index as well as inverse index table. PRIM is the
primitive root and PER is the order of the primitive root. Starting value
of VAL is one as zero does not have any index. IND is the index of

the number and IIND is the inverse index

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

DO 21 K = 1,PER
VAL = VAL * PRIM

VAL MOD (VAL, MMOD)
IND (VAL#1) = K

IIND (K+1) = VAL

21 CONTINUE

The following steps were required to generate the powers of o

(a) dnitialize the value of o

(b) multiply the value with a. The multiplication performed is
an extension field multiplication

(c) reduce the value to proper modulus

(d) store the value of o as the next value

(e) repeat step (b) till | N 'm = 1

Pg

128 l = 1, the powers of alpha for the inverse transform

are obtained by adding 128 to negative powers, e.g., a-3 = a]28'3 = a125.

Noting that | « n

Other parts of the subroutine table are self explanatory. The complete

listing of the program is given in the Appendix.

(i11)SUBROUTINE NTT: This program simulates the butterfly structure.

This part assumes that the butterfly structure is arranged in pipeline
éonfiguration. Each call to this subroutine shifts the data to one
stage. The subroutine call is

CALL NTT (INV, INP1, INP2, STG, POST, OUT1, OUT2},

where INV is for direct or inverse transform. INP1 and INP2 are the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

two complex input points. STG is the stage of the computation and
POST is the position of the butterfly in that stage. OUT1 and 0UT2
are the output points of the butterfly. A1l the registers are
numbered and , before applying any input to the NTT, these registers are
initialized by the control pointer named point, which clears all the
registers when the subroutine is called for the first time. The twiddle
factors for a particular butterfly are generated in this routine. The
powers of o from O to 64 are stored in a table TF. The address for the
twiddle factor is generated as follows:
(1) butterflies are numbered from 0 to 63 starting from the top in
the flow graph, e.g. Fig. 3.6
(2) stages are numberéd from O to 6
(3) the proper address is then generated by masking the number of
bits equal to the stage number starting from the least
significant bit, e.g., for stage 2 and butterfly 8, the power

of o is given by

power of o POST/(2**STG) * (2**STG)

—8 42 =4 and the twiddle factor is o-.

22
Multiplexing is also required for the moduli of a 4n + 1 type prime. The

power of o is checked for even or odd and then the appropriate action is taken.
The statements check are the status of multiplexer control.
The other parts of the program are self explanatory. The complete

program can be found in Appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

4.4.1 The Transform of Real and Complex Data for Both Primes

Before discussing the results of the simulation, the procedure for
convolving real and complex data using the NTT is described. As mentioned
in the previous chapter, 2nd order Galois field is isomorphic to the
complex residue ring for 4n + 3 type prime. Therefore. the complex
data can be convolved using 4n + 3 primes. In the case of real data,
two successive blocks of the data can be transformed simultaneously by
feeding one block as the real part of the data and the other block as the
imaginary part. This effectivg]y increases the transform length in the
case of real data.

For primes of 4n + 1 type, vY~1 can be considered as a member of
the field and therefore the maximum order of any element in the
multiplicative group of the complex ring is ms - 1, i.e., the length of
the transform is the same as in the real residue field modulo ms . One
possible implementation of the transform of the complex data is to

separately transform the real and imaginary parts in two Galois fields

GF(m) for 4n + 1 type prime. .

4.4.2 Upper Bound on the Convolution

To compute the convolution unambigously, the components of the
circular convolution sum in a single Galois field, are required to have

an upper bound ms s i.e., signed numbers should remain in the interval

- m.-1 m, =1
i <y < i

2 2

The absolute upper bound on the input

sequences is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

m.-1
i

2N

max |x| . max |h| < (4.13)
where x(n) and h(n) are the input sequences. This bound on the

dynamic range is pessimistic for many practical applications and if

the sequence h(n) is known, it is enough to have

m.-1

max |x| < (4.14)

If the input sequence consists of a set of positive numbers, the above
can be restated as

mi-]

N-1

¥ |h(t)]
t=0

max x| < (4.15)

The components of the complex circular convolution of sequences
x(t) = xz(t) + xi(t) and h(t) = hr(t) + j hi(t) are required to

have an upper bound ms. Hence the absolute upper bound on x and h is:

. m.-1
max [x | + max |h | - max |x;| - max [h;] < - .. (4.16)
TN
mi~] (4.17
and max |x.| . max |h.| + max |x;| + max |h | < —— - 17)
r i i rt S o

when the convolution is performed over residue class rings (more than one

modulus), all m; are to be replaced by M in the above equations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

4,.4,3 Simulation Results

Three main programs were written to test the pipelined butterfly
structure for both kind of primes. The first program tests the
invertibility of NTT. The 2nd program was written to test the convolution
property of NTT using one block of real data. The 3rd program was to
convolve two different sets of real data with a sequence with constant
value in the defined interval. The details are as follows:

(1) Two separate sequences were taken as input. The real part
consisted of a RAMP function, rising from 0 to 127. The imaginary
part was also a ramp from 127 to 0. The 1st part of the program
consists of initializing the tablesby calling subroutine TABLE. The
input data is then initialized and a double DO loop then computes the
transform. Input data is divided into two blocks of gi points. The
input to butterfly consists of one point from each part. Thus, the
input points are always g-points apart. After the transform is
computed, it is permuted to produce an ordered output. INV control is then
set to one and the transformed sequence is used as input for the inverse

transform. After the inverse transform, each point is multipliied by

]%Jm_ to produce the original sequence. When implementing in hardware,
i

multiplication by N-1 is implemented in look up tables and does not
require any extra stage or delay. The above procedure was repeated
for three choqsen moduli and invertibility was proved. Fig. 4.12(a)
shows the real and imaginary parts of the input sequence. Fig. 4.12(b)

shows the transformed sequence in GF(1932) and Fig. 4.12(c) shows the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

90

60

30

130

120

60

360

240

120

N - 120
- 90 -
- 60
- ”l o “
|”|” { 0 i “JII.)
80 50 %0 1 20 30 80 90 120
REAL x(n) IMAG x(n)
- : 180
n 120 |
-ll ‘ ' ‘) -.
30 60 90 120 2 30 60 90 120
REAL X(n) G?(1937) IMAG X(h)
R 360 |
A 240 |
120
! »'I. 'II 0 I L I L ,[‘ e)
30 60 90 120 2 30 60 90 120
REAL - X(n) GP(4497) IMAG X(n)

Pig. 4.12 TINPUT AND TRANSFORM OF x(n)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

transformed sequence in GF(A4921, Different transformed sequences
are obtained in different fieids for the same input sequence. After
taking the inverse transforms in both the fields, same input sequence
was obtained.
(2) This part was written to perform convolution of two sequences.

Only one block of data was taken and was fed as the real part. The imaginary
part was set to zero. To avoid ambiguity, the input sequences were
chosen such that the result of the convolution is contained within the
dynamic range. The 1st sequence was a rectangular pulse of height 1.
The 2nd sequence was another rectangular pulse of height 2. These
sequences were transformed, multiplied and then an inverse transform was
performed to obtain convolution of the sequence. Zeros were appended)
to both the input sequences to compute linear convolution using the ccp of
the NTT. Fig. 4.13(a) shows the real part of the two input sequence.

-~ The imaginary part of the sequences were taken as zero. Fig. 4.13(b)

| shows the transform of x(n) and Fig. 4.13(c) shows the transform of
h(n) in GF(]932). Note that imaginary parts are present in the

- transform domain although the original sequences had no imaginary
parts. Fig. 4.13(d) shows the result of the convolution in GF(]932).

(3) This program was the same as in part two except that the one

of the input sequence was taken as a complex sequence. This sequence
was convolved with another sequence whose imaginary part was set to
zero. Fig; 4.14(a) shows the input sequence x(n) and Fig. 4.14 (c)
shows the sequence h(n). Fig. 4.14(b) shows the transform of x(n)
and Fig. 4.14(d) shows the transform of h(n) in GF(4492)1 Fig. 4.14(e)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 2
1 i 1
0 Illll |l|l 0
V\ll I] 1B L | i
30 ‘60 90 120 30 60 90 120
REAL x{n) REAL h(n)
180 | 180 -
120 120 _
66 4| - ' 50 _ J '
0 l ‘ { ! l [l , l ,
1 T 1 0 1 T
3 60 90 120 3 60 30 120
REAL X(n) 6F(193%) MG X(n)

F13. 4.13 CONVOLUTION OF REAL INPUT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a)

180 180

120 o 120

60 - l " ’ 60

0 — L1 0
30 60 90 120

REAL H{n) GF(193%)

180 - 180

120 - 120

0 l | s g o T Il 0
30 60 90 120

REAL ¥{n) 6F(193%)

Fig. 4.13 CONVOLUTION OF REAL INPUT

|

i

30 60 90 120
IMAG H(n)

30 60 S0 iz20
IMAG y{n)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c)

d)

480

360

240

120

i

1
120
REAL xin)
-
L} 1 1 B}
30 60 9% 120
REAL X(n)

Fig. 4.14 CONVOLUTION OF COMPLEX INPUT IN GF(449

360

240.

120

30 60 9% 120
IMAG x{n)
Il! | DO i
36 60 90 120
M8 X(n)
2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

b)

480

360

240

120

240

180

120

60

L

REAL h(n)

20

HRiAr lu

|

i) ¥

0 60 90 120
REAL H(n)

L
1 1

REAL y(n)

—

[=]

480

-360

‘2%

120

240

180

120

60

a8

—T T T c)
30 60 90 120
IMAG h{n)
l ; 1 ! | d)
30 60 90 120
IMAG H(n)
I 1 L ! [l ! e)
30 60 90 120
IMAG y{(n)

Fig. 4.14 CONVOLUTION OF COMPLEX INPUT IN GF(4492)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

shows the results of the conyolution in GF(44921. In this way two
blocks of the real data can be simultaneously convolved with the other
sequence and the effective transform length for the input. sequence is

doubled. The simulation programs can be faund in Appendix A.

4.5 HARDWARE IMPLEMENTATION OF THE BUTTERFLY STRUCTURE

A complete butterfly structure for modulus 4n + 1 was implemented
in hardware. The modulus 193 was choosen because it yields hardware:
of the simpler form. The hardware implementation is that of a proto type and
the Eproms used are not the fastest available in the market. The
access time of the Eproms used is 450 nsec and the registers used
have a settling time of 30 nsec. The butterfly structure is a
pipeline structure and the throughput rate depends on the access time
of the ROMS and latch settling time. The data on the output of the
ROM is latched before the new address is supplied. The clock pulses
are therefore delayed for every stage starting from the output stage.
Fig. 4.15 shows the clock pulses required for latching the data, from
the Eproms, at each stage. ‘

The width of the clock pulses is equal to the latch settling time
say tg nsec. Before the clock pulse can be applied to any stage, the
address lines on Eproms should be stable for at least tacc ns (address

to output delay) and therefore the maximum rate at which the pipeline

i .t + .
can run is equal to 2 ts tacc

4.5.1 Description of ICs Used

(i} Eproms 2708 were used to store the look up tables for the butterfly

structure for mod 193. The complete data for this Eprom can be found

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

30 nSec
k- 450 nSec A
STAGE 6
])
'30 | N
STAGE 5
\ STAGE 4
STAGE 3
STAGE 2

- - e

Fig. 4.15 Clock pulses for the Butterfly unit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

in [12]. Fig. 4.16 shows the pin connections of the 2708.
The Eprom requires three power supplies in the read mode, Vcc’ VBB
and VDD which are +5, ~5 and 12 volt respectively. It is a 1k x 8
bits Eprom and has 10 address lines and 8 data lines. Higher address
Tines are grounded if they are not in use, e.g., table of residues
where only 8 address lines are required for modulus 193. A1l the
computation in the butterfly was done using the sub-modular approach,
therefore, only five data lines were used. The other three data
lines can be used as controls, e.g., for parity check. We have used
the 6th data 1ine as a control line for multiplexers. The Eproms
can be programed on an Intel universal prom programmer. These Eproms
have tristated outputs which are controlled by the voltage level on cs/WE pin.
Thus the output of more than one Eprom can be hooked together without
any problem of a bus-conflict. The access time of the Eprom is 450 nsec.
(ii) 8 bit input output port, 8212 was used as the latch. This is
a very powerful chip and can be used for multiple purposes. The
pin configuration is shown in Fig. 4.17. To use it as a latch, the
device selection logic (DSI* DS2) is set true and the mode pin is
kept at high level. The strobe pin is used as input for clock pulses.
When the strobe is high, the output follows the input and for strobe
low, output does not change. The maximum latch settling time is 30 nsec.
and therefore the clock pulse which is used to strobe the data
has a pulse width of 30 nsec. The CLR pin is permanently kept

high for the latch operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-~ PIN CONFIGURATIONS

el

Him n 3\@

- a2 2] ae
' mt] 2{] ~vote
aJe 21 Jves
s(s 2 ;Em
A 708/ 191 %o
S ™ " gnocnu
a]e 171{J0s
o[w[Joy

- 02Jr 1570
Y m Rl u{Jos
we[J2 13{ 0.
e o g

PIN NAMES
| Agwhy | ADDRESSINAUTS
1040g_| DATA OUTPUTS — "
/WE . CHIP SELECT/WRITE ENASLE INPUT -

BLOCK DIAGRAM

DATA QUTPUT
8y-0,
1
T ¥
3
CHIp SELECT
Swe Logic OQUTPUT BUFSERS
PR | .
%——-' DECOOEA B vaanva
—
AoOREsS
et |a, .
‘~——-< .
¢ x 4 X129
‘:’, p— DECOOSA : AGM ARRAY
~—-‘
L]

PIN CONNECTION DURING READ OR PROGRAM

PIN NUMBER
MOOE | 3111317 12 [i 0 o
REAQ Sour Vas Vis Voo Y i Vi | Ve
PROGRAM Dy Vg [] Voo Virew Ves |
Vet { i

Fig. 4.16 BLOCK DIAGRAM AND PIN CONFIGURATION OF

2708, 1K x 8 EPROM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

PIN CONFIGURATION LOGIC DIAGRAM
) SEAVICE REQUEST FF
wo (2 iNT oavice u\ucnon s o
o {3 ot = | s»
so. [« oo, & = mE>
o, s cl, > osu _D"‘ -, enveom
29, L, ¢ 09 D wmo wA
o, 7 o4 L |
0oyl 00, > sme ~ 1 Y oureur
o ¢ ot I L susren
0o, 00, ! r ~
sta cta Doy 1 :_’ e o0 [
T, g e
aND os, OATALATCH | | } l
o1y ° of T ooz [€>
I Hew i
Do e St o >
I Fca l
i |
oy 0 arrt T %
PIN NAMES ' 'L_J‘“)
V=R
gg‘.ou OATAIN ool {10 Qf—r7 l oog (>
00e SATAQUT ..IC
AR s, oEvICK SILicT : :_ : |
o “30¢ Yy
- sTa STROVE >0, 1 G o ™ 0cg 2>
) W TERAGPT (ACTIVE Lowt ~Cn |1] :
4w { CLIAR (ACTIVE LOWI : ! Bl—
. 1o a} 20, [
> oy 1 e 1 1 oy B>
! LE T |
B>on LG G oo B>
aeseromven | Ue |
\J\A' !
E>cin acTivetow ¥ L L _:_ _:

Fig. 4.17 LOGIC DIAGRAM AND PIN CONFIGURATION -
OF 8212, 8.BIT LATCH

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

The 8212 was also used as a multiplexer. When the device selection
logic is zero, the output goes to a high impedence making

multiplexing possible.

4.5.2 Generating and Storing The Tables

For the storing of the tables, a universal prom programmer, by
Intel, was used and the tables were generated using assembly language to
program an Intel 220 system. The Intel 220 system is a microprocessor
based system and uses an 8085, 8 bit, microprocessor chip as the central
processor unit.

A1l the programs written to generate tables can be found in
the Appendix R. Modulo reduction is not as simple as in WATFIV and
separate subroutines were written to reduce modulo 30, modulo 31
modulo 1923 modulo 193 and modulo 930. Two more subroutines were
written to compare the results to 738 for negative numbers and to
reduce negative numbers modulo 193, namely COM738 and NEGCON. These
were required to obtain the correct result after the subtraction of numbers
using sub-moduli. The maximum result of addition of two numbers, modulo
193 is 384 and the maximum negative result is -192. When the final
result is reconstructed using the Chinese Remainder Theorem, the negative
number, say X, will be represented as 30 - 31 - x or 930 - X and
therefore the number range 738 to 929 is used for negative numbers. The
division of the dynamic range is as follows:

0 <x < 384 positive numbers

384 < X < 738 - nrohibited combinations, they never
occur as a result of an operation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

738 < x < 929 negative numbers

After the reconstruction, i{f the number occurs in the negative
range, it has to be represented modulo 193 and correction has to
be done. Subroutine COM738 is called to find out the range in
which number 1ies. If the number is greaterthan or equal to 738, then
subroutine NEGCON is called to convert the negative number to mod 193.
Consider the numbers 30 and 182. The result of subtraction is
30 - 182 = -152, which in sub-moduli will be represented as 778.
To convert it to main moduli, subtract 930 from it and add 193 which
is 778 - 930 + 193 = 41 and is the actual representation of -152
modulo 193. Thg»fo]]owing is a listing of the program which converts

the negative number to modulo 193.

PUBLIC NEGCON
CSEG
NEGCON: PUSH H
LXI - H, 8400H; no. to be converted is in
memory location 8400H
MoV A,M
SuI 162
ADI 193
MOV M,A
POP H
RET
END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

930 can be represented as 00000011 10100010 in the binary number
system. Subtracting 930 frcm any number, greater than or equal to 738,
is equivalent. to subtracting the lower byte of 930,which is 162, from
the number and then adding 193. The one byte result is the correct
conversion of the negative number. The reader can verify that the above
program converts all negative numbers from 738 to 929 correctly.

The main programs for addition table, subtraction table, index
table, inverse index table, twiddle factors table, and the reconstruction
table were written separately and are given in the appendix. The generation
of the twiddle factor table requires special attention. The memory
organization which is used for this impiementation simplifies the
generation of the twiddle factors. The following procedure was used
to generate the table.

(i} store the values of the powers of alpha from 0 to 63

(i1). number the butterfly from 0 to 63 in binary number system from the
top where the T1st input point is supplied as input

({11)number the stages from 0 to 6

(iv) mask the number of least significant bits equal to the number of

stage, e.g., for stage 2, numbered as one, only one bit is masked.

butterfly no. masked bit power of «
000000 000000 0
000001 000001 0
000010 : 000010 2
000011 000011 2
000100 000106 4
ooo1to1 » 000101 4
000110 000110 6
000111 000111 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

Hence the correct twiddle factors are generated for each stage. There are
64 butterfly computations per stage and seven stages, therefore a storage

of 64 x 7 words is required for the twiddle factors for a direct transform.
to A .

A address Tlines on the Eproms were used for specifying the butterfly

0 5
position, and A6 to A8 to specify stage of the computation of the
transform. The A9 address line is used for addressing the twiddle
factors for inverse transform.
The addition table storage is quite simple. The first five
address lines are for the addend and the next five the adder. The
first five address lines on the subtraction table are for the subtractor
and the next five for subtfahend. |
The inverse look up table TINV and final look ub table TFIN
are stored such that input modulo 30 is applied on A0 - A4 and
modulo 31 on A5 - Ag.
In the index Took up table, 31 is stored as the index of zero.
In the index addition table, which is same as the standard addition table,
31 is stored in the locations addressed by 31. TINV tables contains zero

in the location addressed by 31, so that the correct result of

multiplication by zero is obtained.

4.5.3 A Typical Pipeline Interconnection

Fig. 4.18 shows a typical connection between Eproms and the latches.
The address to the Eproms comes from the previous stage. Every look
up table (Eprom) requires ten address lines, except the tables of

residues which require only 8 lines. The other inputs to the Eproms are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

0V1S
13K
oL

354 X071

LI

NOILOANNOOYILNI 3NIT3dId WOIdAL ¥V 81°¥ *Bi4

oo o aw
Yo mm?l_ As+ — Zsg e mc Mc —
50 Eo) as+ —1 41 als 30 0
— 9 <0 — men Yog 1— we Nc
—1 o L —{%10 ‘o f— —| b Lo
— % Oy —1 9% £oa | mo o %
o] o ¢ —<
—{o0¥d ~ ly o, -10 5044 !
—0 > ¥ — Ms - MS ——] 00 ° M<
wm/sy € —lgla o S0 m/so™ ty
—— a8y q« —1 80a Loo —] 5gy by
by Sy —8g lg ~ M< by
8 % —1 i L] v
— Su Ly —1 1s0 [39 Ly
of 0avl HIV
{og)41
o o ojo
]
)
—{ ¥ Sy AS+ s aw “c no .
S0 foi— e —HE ass 1 S 0
— % % : A — % &
— Lp lp Sig Vig — o c“
s O %0 % €00 18 &
—Joodd o, ly %0 ¥t N
~—00y © oy og v Yy —1 a0, - M<
/sy By Ligw 20 ————] aM/sd v<
—agy by 80q loa — {9 v
by Sy 810 tia by Sy
By ¥ —] i M — 8y W
— Ly - o 2, Y
gL X W
0F Oav1
o€ NInS

V1S
ut-1)

T E]
SS3Iyoay

39¥1S
1(1-4)
HOY4
553400V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

connected to the power supply at proper voltage levels as required.

The output data from the tahles is five bits since all the computation

is done using sub-moduli. These data lines are connected to the

input of the Tatch. The remaining three input lines to the latch are
obtained from the other table. The 8212 is used as a latch and appropriate
input levels are supplied to it. When the clock 'pulse is applied on the
strobe input of 8212, the data from the Eproms is latched and is available
on the output lines of 8212 after 30 nsec. Two separate tables for
multiplication by twiddle factors are required for even and add

powers of o. One of the multiplication

pre-muitiplication by r for odd -powers of «. The sixth bit from the
twiddle factor table is used to select/deselect the proper multiplication
table. The cs/we pin on the Eprom is used for selecton of the table. The
‘tristate output of the Eproms enables the connectiop of the output of two
tables together. An inventer 1is used to select-deselect the tables

for even/odd powers of alpha. ’

Fig. (4.19) to Fig. (4.22) shows the block diagram of the butterfly
structures, which was built on protoboards. These figures are included
to help the debugging of the unit. Table 4.5 gives the necessary
‘information about the control ;onnections and the power supply connection
for both, Eproms and the latches. Fig. 4.23 shows the photograph of
the butterfly unit. . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

4—— 2 qyvog

L ouvog 61°b 614
y 4 Y
] 802 ¢ 4 _ goLz {4
t 8
€ 8nsL L€ WSHL
——f——— % 1ndNI
8
m N~ ‘lr -N
44—+ e [{} At B # gozz |, Zles . .m goLz [
m M m Jq
S
L€ NINS 0t ansi . 0t WsH1
m t
yi
8oLt + 4 £ 4
A‘lll*.ll.ll' 4 AJ\ I‘.. \- €
g S 2L ¢ goce 4 At I 80L2
1€ aavl L€ WSyl
0F NINS e
' % ' 8
8 y . /
“ -u 4) A m
AIJT;IS_ 80£2 / rAL::) f goLz [2z 4 80LZ [¢—
(,e40) S S 8 S
NI4L 0t gavl 0F HsH1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

Z2uyvos 02y °6}4

c—c N ac
v auvod
' HoY4
A lw\
\\ ydia:s 89LT |e ﬂ 1o \ : te NINS
A 1 S
1g aayl
Sqa -4
b evvod
noyd
S
. . o 1l
yi « / . . MY ol
v ayvog - 7 80/2 [¢— 2Les 80L2 [4—/ cles j4— 0E NINS
8 8 5
ANIL ot aavl
vV «——7/— 2z |« 2128 |e 7- @ [NIdL
8 8 8

l Q¥v0g Woud

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

€ yv08 t2'v ‘613

5
4——— e
5 _ 6
BT . , ‘ v 193410/ ANI ; “
: = 3L (v-ov)
9 muused (Cv-v)
5
5, A A v
4— 8oLz 7 PA LA "1 8042 ‘.q.. AR — 80L2 [*
5 l t
ot 41 1€ 8nsL LE WYL . o Lnaw
g] . m 2 . .
4—V Quvoe ———o—] 8012 l¢3 e LH_ + 80L2 —1 228 —+— 80L2 fe
G § § £
{€ NINS A oc ansi " 0 WSHY
5 _11. 5
y] A N] ” .
4 8oz (¥ ztes lﬂnl.r 8oLz [3 —1 e ¢ ¢ 80L2
3)
ot NINS L€ gavl LE WSuL
—F——— q 1ndNI
8
G g
. f :
44— 8022 2 L] 7—| 8012 487 2LZ8 ¢ f 80L2
E6L(, q4q) g S 5

NIdL . 0t aavl 0t SHil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

ctes

~

eLes

v auvod 2Z°v 614

¢les

[-op

L /s %00 I 41
2 ’ 4 T04LNOD
rA¥a ! 5 . 440 2tz et
YW 1§ VL 0y . 44
5
l (a/s3 L
4/ Nh . A —M {{e))
2128 {47 2z / 8022 Jedp 7 18 .
¢l ¢ ~[1
9
0]
te oavl € QUV08 WO¥dG—
L aM/S2 %
c t 1t uh
¢ iy & e —— m 0t NIOS
2e8 [4 < L g0tz 1 - rAks: IIA\«'I oc Ml
€ ouvog ¢ %
a-"Yo
XM 0€ TWOVL € - lg
L £ Ouv09
L - am/sd # %
£
| —— : —FH 0F 41
clZs (e rA Yt W 8012 Nu PARA:S y: 0f NINS
8 g
Xw 0c aavL
a L1 2t / 2128 M—p—— N1
8 8 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

COLOUR OF WIRES : FUNCTION
BLACK GND
RED + 5V
ORANGE -5V
BLUE + 12V
YELLOW CONTROLS FOR EVEN/ODD POWER OF ALPHA
WHITE CLOCK FOR THE LATCHES

Table 4.5 NECESSARY INFORMATION ON THE
- HARDWARE UNIT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum pasonpoldey

!

Fig. 4,23 DIFFERENT VIEWS OF THE HARDWARE IHPLEMENTED BUTTERFLY UNIT

GLL

116

4.6 CLOCK CIRCUITRY

A specific clock pulse is required to shift the data in the pipeline.
The circuit diagram for the generation of the clock pulse is given in
Fig. 4.24, The square wave from the function generator is made TTL
compatible by using an NPN transistor. The output from the transistor
stage is then fed to a 4 bit binary counter. The outputs of the
counter are then fed to one of sixteen decoders. Only one output Tine
of the decoder goes Tow at each count. This negative going pulse is
then fed to an invertor, to obtain a positive going pulse. A buffer
is used to supply enough current to operate the latches at each stage.

The altemate pulses were taken from the decoder for each stage.
The butterfly unit has five stages of computation and only five puilses
from the decoder are used. The frequency of the function generator
can be varied up to 1.96 MZ without affecting the working of the pipe-

line.

4.7 EXPERIMENTAL VERIFICATION

The butterfly structure, was tested for real time application.
An input data from the simulation results was used for testing the
butterfly. The answer was verified from the simulation results. The

input data, the butterfly position and the stage number are:

input point 1 30 + 65 Y125
input point 2 41 + 103 /125
stage 2
butterfly 4

The value of o for the 2nd stage and the 4th butterfly is 125. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

~ STAGE

JL
11

—
8212 .

w
[~
=
[t
(&)
-
(=4
—_
[72]

Y
j$8)
<
L =
—
-
¥}
]~ e
P
. [~
S
et
-
ol
-
']
9 =
= o
o~ o
; —\' u
o
—— -
[
-t
o~
*
¢
*
o
L g
L.

BC5417

FUNCTION GENERATOR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

butterfly input and outputs are shown in Fig. 4.25(a). The working
of the pipeline can not be tested for real time application if the
input is fixed. One bif of the data was therefore constantly varied
and the intermediate results were checked on a display. The rate
of data inp&t and the frequency of the clock pulses were varied to
see the effect on the pipeline structure. It was noted that
when the clock pulse rate was slower than the rate of change of input
data, the output was not correct. The
bit of the data are shown in Fig. 4.25(b). The input and output are:

a + /125 b = 30 + 65 Y125 = 00011110 + 01000001 vi25

a' + /125 b'= 41 +103 4125 = 00101001 + 01100110 /125

¢ + /125 d = 71 +168 /125 = 01000111 + 10101000 /725

c' + /125 d'=169 + 75 Y125 = 10101001 + 01001011 /125

changing the least significant bit of a, gives the results as:

a + /125 b = 31 + 65 /125 = 00011111 + 01000001 Y125
a' + /125 b'= 41 +103 /125 = 00101001 + 01100111 /125
c + /125 d = 72 +168 Y125 = 01001000 + 10101000 Y125
c¢' + /125 d'=101 + 75 /125 = 01100101 + 01001011 /125

e.g., by changing the least significant bit of a from 0 to 1 changes
the most significant bit of ¢' from 1 to zero and also the other bits

of ¢ and c¢' change. Thus any bit of ¢ or c¢' can be checked to verify

”

the working of the pipeline,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

3o+§5fﬁ25 71+16§%ﬁ§§
41+103 /125 169+75/125
31465125 72+168 V125
41+103 /125 101475125

b)

‘Fig. 4.25 INPUT-OUTPUT OF THE BUTTERFLY
BEFORE-AFTER CHANGING ONE BIT

i .
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

4.8 DISCUSSION ON THE HARDWARE REALIZATION OF THE B.F. UNIT

The butterfly unit for modulus 193 was realized using 2708 Eproms
and 8212 latches. The addition-subtraction in the B.F. unit is
performed using sub-moduli 30 and 31. The multiplication is performed
using the index addition method and the addition of the indices is
done using the sub-moduli method.

In comparison with the direct method of implementing addition-
subtraction using look up tables, the sub-moduli approach offers
a saving in the storage for tables. Another way of implementing
addition-subtraction is the use of an adder-subtractor followed by a ROM
for the correction ook up. Fig. 4.26 shows the implementation of
addition-subtraction using an adder-subtractor for modulus 193.

The two inputs, modulio 193,are fed to the adder-subtractor and
the 9 bit result of addition is then fed to a ROM which contains
the corrected result of addition modulo 193. The correct result is
stored in the location addressed by the 9 bit result of addition. For
example if a=191 and b=189,-the result from the adder is 380 and
represented as 101111100. The correct result of addition modulo 193
is 187 and therefore 187 can be stored in the location with the
address 101111100.

The adder-subtractor which is commercially available, performs 4
bit addition-subtraction and use two's complement arithmetic. The
clock to output time is 14 nsec for an Am25LS15 (Advanced Micro-Devices).
Addition modulo 193 would require two packages and one ROM. Assuming

that the input is in sub-moduli form and no residue tables are required,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

mm—_n+m_no

.

WOY ONY Y¥3LOVYLENS-YIAOY ONISN €61 OINOOW NOILIGQY 92°% "bd

ot 7, /
| ‘qus-cppe | V1 =
A BX2lS ¢ Ff AITEY § Lty 8
6 \ <G—] *3qns-°ppe _ £ 0 /
’ 1 ey a7
€504 +—— 8
€404
vl . .
NOILONYLSNOD3Y ¥31ovylans-y3aay L19-8

€61q|

E6L)g|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

three ROMs are required to perform addition-subtraction using sub-
moduli (Fig. 2.4). The package count is the same for adder-subtractor
or sub-moduli implementation. If the -input is not in sub-modular
form, then sub-moduli approach requires 7 ROMs and three stages as
compared to 3 packages and 2 stages for adder-subtractor approach.
Thus, the choice of implementation depehds on the form of the input.

Another criterion for the choice of adder-subtractor is the type
of ROMs which are used for the implementation of the complete butter-
fly structure. The pipeline structure of the butterfly unit requires
latches at the output of each computation stage and if Shottky Proms
63RA883 are used, no additional latches are required as these Proms
contain latches at the output of the Proms. If the adder-subtractor
are used, then for the pipeline structure,an additional 18 bit latch
will be required.

The multiplication in the butterfly structure is performed by the
addition of indices method. The addition of indices modulo 192 is
performed using sub-moduli method. In the sub-moduli approach, the
multiplication by zero can be easily corrected and no extra logic 1is
required for detecting the multiplication by zero. However, if the
adders are used to perform indices addition, extra logic is required for
zero multiplication [13].

The complexity of the structure increases if different kinds of
IC's are used. Because of the simplicity of the ROM based structure,
the adder-subtractors were not used in the hardware realization and the
prototype unit was Built using 2708 Eproms. The ROM based structure is
preferred because of the fact that it can immediately make use of the

advances in the VLSI technology associated with memory fabrication. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

Eproms used can be replaced by fast memory for a particular application.
The 8212 registers were used to latch the data at the (i+1)th

stage before the data changes at the ith stage, These registers are

level sensitive and the output follows the input as long as the clock

i{s high., A delayed clock pulse for every stage is required as shown in

Fig. 4.15. The access time of the ROM {s 450 nsec and the latch settling

time is 30 nsec. ., The rate of clock pulses is equal to the access

time of the ROM plus two times the latch settling time. From Fig.

4.15 it is seen that there is an overlap at the negative going pulse

and the positive going pulse of successive stages, showed in the figure

by dotted 1ines. This overlap creéted a problem in running the

structure for real time data. The clock pulses were generated using

a one of 16 decoder and altemate pulses were used to strobe the data

so that enough time was available between transitions. This in effect,

slowed down the clock rate and the theoretical maximum speed could

not be achieved. These latches were used because of their availability.
The remedy to this problem is the use of Tatches which are edge

trigged, e.g., Am 25LS07 (Advanced Micro-Devices). These latches

are positive edge triggered and have a latch settling time of 17 nsec.

The same clock pulse can be applied to all the stages. At the

positive edge, the data will be latched at all the stages and the output

of the ROMs will not change until 17 nsec. The clock rate is then the access

time of the ROM plus the latch settling time which is now only 17 nsec,

and thus the butterfly unit can run at a faster rate.

Assuming that the two output points from the pipelined butterfly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

unit are obtained after every t nsec, where <t is equal to the
access time of the ROM plus latch settling time, then the time to
compute one stage of the NTT transform is equal to 64t for a
transform length of 128 points. The radix 2, 128 point transform
1ength.requ%res seven stages and the time to compute direct or
inverse transform of an input sequence is equal to 7 x 64 X t ngec.
The Eproms used in the implementation of the butterfly unit
have an access time of 450 nsec and if the AM25LS07 latches are
used then t is equal to 467 nsec and the maximum clock rate is then
equal to 2.14 MHz. Thus this butterfly unit can be used with a

memory structure which supplies data at 2.14 MHz rate.

4,9 SUMMARY

The design of an NTT processor was described in this Chapter.
A study of the supporting memory structure was also undertaken.

The choice of primes for NTT for efficient hardware implementation
was discussed and it was shown that 4n + 1 type primes not only require
less hardware but also require less number of stages for the butterfly
unit. A procedure was described to choose the primes for efficient
hardware realization of the butterfly unit. A ROM structure for both
kinds of primes for butterfly unit was suggested for pipeline configuration.

The simulation of both kinds of structures was done and the
coﬁvo]ution property of NTT for the selected primes was verified. The
details of the simulation were presented in this Chapter.

Finally, a butterfly structure for 4n + 1 type primes was built

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

using ROM arrays and a complete discussion was presented. The pipeline

structure was tested using time varying data. This butterfly unit,

built in hardware, will be used to perform number theoretic transforms

with a supporting memory structure.

i
t
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

SUMMARY

‘The Number Theoretic Transform has a recent origin and is useful
for the applications where exact computation is required. The NTT is
defined over an finite ring or field and has the same structure as
the DFT. It can thus be computed efficiently using fast algorithms
for highly composite transform length. A machine that computes-the
number theoretic transform of a sequence is called an NTT processor.
The basic parts of the NTT processor are the supporting memory structure
and a computational unit commonly known as the butterfly unit. A
saving in hardware of the NTT processor is achieved if a sequential
type of processor is built. Such a processor requires some supporting
memory and a multiplexed butterfly unit which is accessed N/r 1ong
times where N is the transform length and r is the radix of the fast
number theoretic transform. The binary operations of addition,
subtraction and the multiplication on the input sequence are performed
in the butterfly unit. The parameters of the NTT given by «, N and
m, determine the complexity of the butterfly unit. The binary
number system has usually been uysed to perform arithmetic operations
in the butterfly unit and consequeht]y restrictions were imposed
on the parameters of the NTT to allow for an efficient realization of

the computational requirements of the B.F. unit. These restrictions

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

made it imﬁossib1e to choose the parameters of the NTT on a purely
number theoretic basis and thus the efficiency of the NTT was much less
than the 1imiting theoretical efficiency.

The recent advances in VLSI technology associated with memory
fabrication have aroused interest in the implementation of the
butterfly unit using look up tables stored in high density ROMs.

The look-up table approach relaxes the constraints on the parameters

of the NTT and thus the theoretical efficiency of the NTT can be
reached. If the binary number system is used, then the look-up table
approach does not seem very promising because of the tremendous size of
memory required to store the tables, e.g., the addition modulo 193
would alone require 64k of memory.

The use of the residue number system allows one to break a large
dynamic range problem into a number of smaller dynamic rﬁnge problems.
The combined dynamic range of L moduli is given as M= I m;. Theselni's

i=1
can be chosen to be small enough for an efficient realization of arithmetic

operations moduli m.. The operations modulo m; can be performed
in parallel becausé of tﬁe interdigit independence
property of the residue number system, e.g., modulo 193 addition can
be implemented in 7k memory using mi's as 30 and 31. _

The use of the RNS allows one to implement the butterfly unit in

Took-up tables efficiently. The large dynamic range is achieved by

implementing the B.F. in parallel in smaller moduli and then recombining
the result using the chinese remainder theorem or a mixed radix

conversion scheme.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

The modular addition-subtraction requirement in the B.F. unit
does not offer any problem and can be efficiently implemented either
using the sub-moduli approachor using adders-subtractors. The
complexity of performing multiplication by the twiddle factors in the
B.F. unit depends upon the field or prime used , and the generator
¢. The primes are divided into two groups, the 4n + 1 type and
4n +‘3 type. The 4n + 1 type primes offer a simpler structure for the
butterfly unit, and are preferred over 4n + 3 type primes.

In this work, the objective was to design a butterfly unit for
number theoretic transform capable of exploiting the recent advances
in memory technology. A structure for a NTT processor has been
developed which is useful for real-time applications. A pipelined
butterfly structure was found to be most suitable for use with the
supporting memory structure for the real time applications. The
butterfly units for both kinds of primes were designed using a
pipeline structure. The structure based on the Took-up tables stored
in ROM is simplest to pipeline, and requires only a clock pulse to
shift the data in the pipeline, thus the control circuitry is
extremely simple. The package count for the butterfly unit for 4n + 1
and 4n + 3 type primes is 32 and 48 respectively including the
storage tables for twiddle factors. The number of stages for 4n + 1
type primes is 5 and for 4n + 3 is seven,

The butterfly units were simulated on an IBM-370 computer along
with the basic required memory structure to establish the feasibility

of the proposed NTT processor. After the verification of the

i
H

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

|

129

simulation results, the butterfly unit for modulo 193 (a 4n + 1
type prime) was implemented in hardware using 2708 Eproms and

8212 latches. The addition subtraction operations were realized
using the sub-moduli approach. This approach was used because

of the availability of Eproms and also for the simplicity of Eprom
based structures. The package count for the butterfly unit is 32
Eproms, 31 latches and 4 multiplexers. The 8212's were used as
latches and it was found out that they are not suitable for a
pipeline structure since they slow down the speed of operation.
Edge trigged latches are recommended. The 8212 latches were used

because of their availability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

CONCLUSIONS

The design of a ROM oriented implementation of an NTT butterfly
has been carried out in this work. The butterf]y‘has been
realized using Eproms and latches in an extremely simple pipeline
structure. Level sensitive latches require slower clock rates to
function effectively and hence edge triggered latches are preferable.

The addition-subtraction operations have been carried out using
sub-moduli approach because_of the simplicity of the resulting \
pipeline structure. The adder-subtractor approach requires less
number of stages and a .small package count but increases the complexity
of the unit. The adder-approach for summing indices to implement
multiplication is not thét viable as it requires extra logic circuitry
to detect zero multiplication and thus further increases the complexity
of the butterfly unit.

A memory support structure has been simulated at the logic
level in order to investigate the feasibility of the NTT processor
descr%ﬁed in the thesis. The proposed structure is such that the data
transfer time associated with the memory is the same as the computational
time of the butterfly unit. This further enhances the NTT processor's
capability as a real-time signal processing facility. The memory

structure can be realized using long shift registers for the dynamic

130

j L]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

storage of the data. The use of these shift registers eliminates
the need for addressing the data.

Future work in this area will be to actually implement the
memory support structure in hardware and to ultimately construct

the complete NTT processor.

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

SIMULATION PROGRAMS

" The éimuTatidn of the butterfly unit was done on an IBM-370-3031

computer. Listings of the programs are given here.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

373700

))

700

00

D00

SRy

ke

-~

133

S A0 20 8 S St i ot S Rl SRR S SR S T 20 22U E i Sh SRl S T SR S LR RELET SR SRR St S S S S aE) SRS 28 S TR R e A e R S]

> MEIN PROGRAM TO ESTASLISH

..... THE
H 24

ITHRWERTIEI

t

LITY

-y y

oF HTT

~»
E

shrodradredindesdredr b s nhn b ofesradecdo e sdrodtdesdi o b oot st s s v e s st s s s b e b s b s b s s b s s i o e

IMPLICTIT IMTEGERYA—H. O=Z
DIMEMSTION MR LIS, 2o,
DIMEMSTION INPLCZ N, IMNFICE.
COoOMMOR TINWOE. ae TR,
COMMOR TRIMOZ. L3100, TRDDOE, 22, 220
COMMiGE POINT

TEMOLZS, 20

T, T

- et O}
P .

~

GEMERSTE THE THBILES FOR NTT BUTTERFLY

MMOD IS
FERD IS,

MODALUE, IS THE

PO, I

HT Y

.~

HE MEIN
'1-]

T
o

FORMATIZ. Te. TN
CALL TASLES

SET THE FOINTEF FOR CLEARFING LATOHES

INFUT

DO SA I=t, A2
MLIDP ST, 3=CI-10
MUDR I, 20=0128=10

CONT INUE

SEVEN =

~{

A

G
m
in

STRERT THE COMPUTATION FOR

OO L L=t T
STG=L—1

Mii IS FOR THE POSITION OF BUTTERFLY IN

DD I M=t a4

THPE CAM=RUOP M, Lo
IMPLL2=NUTF (MR, 25
INP2 LY =HLIDR (HM+ L.
THE2C23=HUGE CNm+-Sa.

FOST=MHH-1

CRLL THE HKTT T2 COMPUTE THO POINT

TEMOHI+L, .
TEMONI+L, 20
MI=MI+2
AT TR IS

TSUINCZ, 24,

QLT CZ0, QUT2 D
b TETHCIH

Do I

- .2

BUTTERFLY

)
(32}
0
=
[RX]
:'-.
I
n
._|
b
n
[}
1
...'
|:|
b
-
!,4
~
O
.
...{
*)
e

I

8y

m

16, TRICR,

S, 20
TFLZ, 4. 20

MULTIPLICRTIVE

-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INVERSE

Gr

IOy

=
4
C
c
c
o=s
20

-]

S
@

'-A
12
(BN

i}
m

INFL L =THE L 20 =THED A
CRLL MNTTOINY, THEL, IR,

TEMOMI, A0=0UT10LD
TEMORT, 2=0UT1 20
TEMONI+1, L0=0UT2 L
TEMHI+L, Z0=0UT2¢2 0
HI=NI+2

CORTINUE

oo S K=t 129

DO S KR
HUDD CF BRI =TEM K, KR

CCOMTINUE

COMTINUE

USE THE SHUFFLE FROGRS
Hid=4122

M REIULS T
MFL=HU-1
J=1

0o 248y Is=s3, ML

IFCT. Ge. Ty GO 70 258
RE=HUQRP T, L2

HUQF T, Lo=NUQeR T, 40
RUIOE T, L=RE

TT"‘NL'!"F CJT. 32

MHUQR T, S0=MJOP <. &2
NUQFCT, 20=IM

=2

ISR, GE. Jo GO TO 207
J=J-F
W=pl A2
Qo TO
J=J+1
FPRINT
FORMAT " —",
Do ':- T"....- -
FRINT. (HJOP (M
COMTINUE
IFTIN, EQL L
Irpt=1

GO 7O "'ﬁ
oo 118
sl u] 11_@
S=NOF .
MNIQRC T, ,-=r-u:-‘- L AT
COMTINUE

PRINT T2

FORMBARTY =7, 29,

oo TL O J=21. 2

PRINMNT.
COMNTINUE
STOR

-
-
e

[
~

15, KOUMT., INY

e,

OETAIN THE ORDERED

EOUNT=", 12

CHUIOR ML T MM=L

134
PIPELINE BUTTERFLY

QUTPUT

. @M. 7 THY=C, 123

FIMAL RESULT >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TUNIT

135

i sprigrdi b b od e rhnat e s T e b s bt s e s 1 e ade st e b s e it e g g e e b b s e R M N T T T s N M e
e MAITH PROGRAM TO CORVOLYE THO SEQUENCES. IMASIMNARY #
FARRTE RRE ZERQO
B B
shesgerperbinbudespinptbi s o bt ogrsinadiae s e o b s s st e e s s s et de s b e e b b s bt R s o b S R R e
IMFLICTIT INTEGER(F-H. O=Z>
CIMENZTON NUQOPCLZE 20, TEMOLZS, 20, TEMLILZE. 20
DIMEMIION IMPLOZN, INPZCZN, DUTLCR20, QUTZCZ
COMMOM TIMNWOZ 22, 20, TEUSCZ, Z0, 240, TRIMNCIE, J40, TFIC2, &4, 20
CQMMAt TRIMOZ, L300, TARDDCE, Z2: 320, TSUTHCZL 24, 340, TFCZ, 84, 2>
COMMON POINT

R RN Ry

GEMERRTE THE TRBLES FOR MHTT BUTTERFLY

OO0

MMOD IS THE MAIM MODDULUS, HIRY IS THE MULTIFLICATIYE INVERSE OF
RERDCT, ZaLd MMOD, MIMNY

FORMBTIIZE, S, I3

CALL TRELES

)
)
’.‘A

SET THE FOINTER FOR CLEARING LATCHES
POIMT=5

INITILLIZE THE COUMTER TO FERFORM TRAMSFORMS

D00 090

KOUNT=a
THY=&

INITILIZE

0N

HE IMNFUT .
&

0O Se I=d. o
HUQE (I, Lo=1
HUQR T, 22=06
S8 COMTIMNUE
Lo 1 I=c
HUQP{I. 2
HUQFC T, 25
S1 COMTINUE

L 122

o
(5

num

-t

START THE COMPUTARTION FOR SEVEN STARGES. L IS FOR STAGE

D00

Mid IS FOR THE FPOSITION OF BUTTERFLY IM THE STAGE

OO

Do 2 M=l g4

INFPL CL3=MNUIIP CHE. LD
INFAL 2 =HUQR CHN. 22
IMNPES LY =HUIGE (Nil+ed. |
INPES 20 =HUOF M+,
FOST=NH-1

ta

.2
3

]

L)

CRILL THE MTT TO COMPUTE TWO FOINT BUTTERFLY

OO0

CALL MNTTCIMW. TMPL, INF2, STGE. POST, OUTL, QUTZS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DO MOT STORE QUTRUT FOR INITIARL ¢ ITRCGE DELAY 136

R B

IFCHM. LT, 20 GO TO 2
TEMOHT, A o=0idTL L
TEMONI, Zo=00T L2
TEMORI+FL, 2 0=0idTa L
TEMONI+L, SHh=0TZ 2
HI=HNI+Z

2 TORTIMGE

'-'
o DERTRINMN THE LAST ZEVEM POINTES FROM THE FIFELINE BUTTERFLY UMIT

IH:— A= THRLCZ 3= INES2 L =IHF2 (2 0=0
CARLL MNTTOTIHY. INFL, NP2, STG. POST, QUTL, QUTZ
TEMOMT, La=0U0T4 040
TEHﬁHJ;”‘““HT1fﬁ“
TEM M, 'r-x.l, =0 |T"" 4
TEMOHI+L, 20=0UT220 ‘
HI=NI+Z
S COMTINUE

DO S K=Ll, 123
OO 5 Kk, 2
MO CH, KEDSTEMOK, KEY

T COHTIMUE
1 COMTINUE
C
C LUSE THE SHUFFLE PROGRAM TO OBTARIM THE ORDERED QUTRUT
~
MHLi=122
M 2= 2
Hiti=til-1
J=1
DO 287 I=d1. Nl
IFCI. GR. J» 30 T 255
FE=sHUQR (T, Lo
HLIOP T, A 0= idorCT, 10
HUQPC I, A0=RE
IM=MHIOF T, 22
HUDPC T, Zh=HIOPCT. 20
MUOPC T, 20=1IM
IR R=RE
23s IFCE, GE. F» GO TO 247
J=J-¥
plmts S
G0 TO 2ES
TET T=Ter

PRINT 1&1. FOLRNT. I
A T 29, THOUNT= . T2, 286, TIMY=S. 120

|5
12
1
]
L
T
i,

CHEL T M=, 128
CDHTIHUm

O T= 0T+

IFCING. BEGL A GO TO A6z
IFCKOIMT. GT. 10 GO TO g

a
Ty

STORE THE FIFRST TRAWNSFORMED SEQUEMCE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

oo ST

LooST

TEMAT

=R G 137

ST o
c
C INMITTILIER THI SECINMD ZROVENCE
o
=
=
o
o SRECVENCE
-

S In THE TRAWNSFORME DOPEIN

v ene

NN

AT
IR

'r:#-"‘r"“-l- -.'-—u - ?J!f"!!:itl_'"

-

L MDD

Do, BP0
:y_ ::-:.:H_

B =0T BT, Mo
PE=Ro—-E0
RE=MO00 R :.Mmgpp
TFeRe, L,

il
0]
1]

MR T =0 TR, MMOD
S COMTING

300

M |j u’:'

j
-
A

[}

.—b
1
)

PRINT

TR OFQTRT THTE IS THS FINAL RESULT D
T T
FRIN Pa.PMmL. 132

1 CDHTT?

- —

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

sbrrfraradiadrdr bt de gt ot dn e sde e e g et bbb s b b s s b st o s st sk e s s st g s b M N s s b s e M e e o
2 Y
MAIM PROGRAM TO CORHWILVE B COMPLEX SEQUENCE. e
SECOND SEQUENCE IS RERL.
B Ed
ordeohe e sde s b e bropragi sdrrdnadrado bt g et abodripsnh ab sderde st s e s she s b o e st s s R s SR e st s b s g s e s o s b

IMPLICIT INTEGERCR-H, 0=-Z)

DIMEMNZION MUQPCLZE. 20, TEMLZES, 25, TEMLLLZE, 20

DIMERNITON THPLCZN, INFSCRD, QUTLIZ20, DUTZED

COMMOM TIMNWOZ, 22, 320, TEIECZ, 2L, Z00, TRINCEZD 210, TFICZ. 84, 20

COMMOM TESMOZ, L300, TRDDCZ, 32, 230, TSUINCZ, J1. 310, TRCZ, 4, 22

COMMOM FOTIMNT -

GEMERSTE THE TARRLES FOR NTT SUTTERFLY

D90

MMOD IS THE MAIM MODDULUS, MIMNY TS THE MULTIPLICATIVE IMNVERSE OF
FREADCS, 291 MMOD, HINY

FORMRBTCTZ, Sis IED

CRLL TRELES

)
b
=

SET THE POINTER FOR CLERRING ILRTCHEZ

S ErKs)

POIMT=&

INITILIZE THE COUNTER TO PERFORM TRANSFORMES

0N

FOUNT=G

e

It =i

ITMITILIZE THE IMNPUT

00

DO SO I=i. <
HUDFP I, 10=
HIIOR < T, 20 =6
S0 COMTTHUE
DO S1 I=ES. 123
HUOPC T, L=8
HLOP ST, 2=
S COHTINUE

n
-
[m]
A
15
_|
I
Q)
i

STARRT THE COMPUTRTION FOR SEVEN STAGES. L I

000

2 DD L L=, 7
STG=l~-1
NI=1

Hid TS FOR THE FOSITION OF BUITTERFLY IM THE STRGE

NEN RN

DO 2 M=l 84
THFL L = iR i L
IHFLC2 Y =NUOF (M. 20
IHP S L =D CHiN- S, 10
THFP2 (20 =HLIDF (iS4, 23
FOST=Mi—1

CHLLL TRHE MTT TO COMPUTE THWO POINT EBUTTERFLY

OO0

CALL HTTCINY. IMNFL. IHNF2, STG, POST. OUTL, OUTZD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c OO NOT ZTORE QUTRLUT FOR INITISL 7 STRGSE DELARY

IFCHL LT, &0 G0 TO 2 139
TEMOMNI La=0JTL L0

TEMONT., 23=0U0TLZ20

TREMONI+L, Loa=aUTZ L

TEMOMI+L, 20=00T2020

MHI=MHI+2

COMNTINUE

i3

-4

OETHEIMN THE LRST SEVEN POINTS FROM THE FIFELIMNE BUTTERFLY UMIT

DO

Lo o4 JJ=L. 7

i

IHFLCI = INPL S = TP Ly = INPRC 2 =@
DL MTTCING, INFL, INP2, STG. FOST, QUTL, QUTZ2)
TEMOMT, Lo=0lTLL)
TEMONT, Z0=0UTLC2
TEMORI+1, 10=0UT20LD
TEMCHI+1, Z3=0UT2C20
NI=HI+2 ‘
4 CONTIMUE.
OO S K=l 1329
oS KE=1, Z
O HLUOPE, B =
= COMTIMUE
1 COMTIMUJE

UZE THE SHUFFLE FPROGRSIM TO OBTARIM THE ORDERED OUTRUT

)

Mid=12&

MU 2=HMLL2

Rt =nLI-1,

J=1

[o2 267 I=d. Hild
IFCI. GE. J» 530 TO 255
FE=MLIOF I, L2

HUQP O I, L0=NUOF T, 10
HLUOFP C I, Lo=RE

IM=HMLIOF I, 20

NLIDFE T, 20=HUOP (I, 23
MUOP I, 20=1IM

255 K=pWa

20 TFCK. GRE. T2 GO TQ 287

J=J=¥

B=h 2

G0 TO 26
a7 J=J+k

PRIMT fod, HOUHT. INY

-t
1@ FORMATC =7, 28, "KOUHT=", 12, 28, < IMW=", I2)
DO oSS J=i, 3

FRINT. (HLIOP (MR, J0 Nid=d, 4285
e COMTINMNUE
FGUHT=FOIMT+1
IFCIMY. B L GO TO 4G
TROEOUNT. GT. L G0 7O .

-

RAMSF

2

STORE THE FIRST RMED SEQUENCE

00

1 ety

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A — - — c—

\

D00

NN

00

v
s

Lo 57 IT=1. 122
D oY J=1,2
TEMACI, TamMHUIIFP I, J0
Y OCORTINUIE
TNITILIZE THE SECOHD SEDUENCE
DD SE I=d, Sd
MIAWDFPCIL Aa=2
P,{Lh_h-‘l T, Sh=
oz 'ﬁNTT'UE
Do 58 I=25, A28
L =2 I=1. 2
MCE T T, Th=
T8 COMTINUE

1G2

TN

300

H
)

I o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TRAMSFORM THE SECOHD SEQUENCE

G0 TO 26
MULTIFLY THE

SEQLIEMCES TH THE

DO e I=d., 128
A= T, L
R=HUOPCI. 20

=Ry

o0fonu i

D

ﬂC?HDbﬁRC;MNUQ?
Bzl
Eh=MOn 200 MMOD D
[=ta =R dn
AD=MOC O H/ .
B =+
EC=MODCEC, MMOD
RE=AC-B
RE=MODIRE, MpOD >
IFCRE, LT, Gix RE=
MRUQPCT., La=RE
INR'HD ec
MR T, 20=MO0l IM3, MMOT >
T T INUT

MMQs

FE+MMOD

TRHKE THE THYERSE TRARNSFORIM

THy=1

GO TO =2€

MULTIFLY MWITH N IMNWERSE

DO 4l® Is=1, 122
OO ot1E I=L. 2
B=HUOP T, ThwHINY

FHASEC T, Ta=MOD A, MDD
COMHT IMUE
FRIMT Ta
FLORMATY "=,
DO 7T I=1.2

PRIMNT. (HUOP
COMNTINUE

26, TTHIS IS THE F

CMPL T2 M=, 22320

TRANSFORME DOMARIN

THHRL RESULT "3

140

STOF
r’lL-
e meeee s s . emn

141

s ngeprope sbe s thedrdrsbe e sprabi b bt b b bt b g s s s s s b e e b b i i g b b b s s b ot
» A
* SUBROUTINE TO GEMERATE LOOK-UFR TASLES FOR MTT #*
MODULUS=181 *
b s kb e b bt b s s e b o M s s s gt e e s g b s s b b ade st b e sbn s o b e b b 2 o

SUERGUTTIME TRELES

IMPLICTIT IMTEGERCA-H. O=2Z2

CIMENSION MOADUCEY, THDCASL, TINDCARLY, RLFACZ, 128 25

COMMOM TIRWCE2, T2, 220, TSUEBCZ, 20, 340, TRFINCES, 210, TFICZ, &4, 22

COPQM TRIMOEZ, 1943, TRODC2, 22, Z20, TSUINCE, B4, 310, TFL2, 84, 22

COoMMOr FOTINT s

MMOD=121

PRIM=12 .

MOD UL =203 MODUC20=34

IHD A =300 TN 20=0G TIND(L0=1

PER=MMOL-2

PRO=MODI LD #MODUC I

MHMOD=MMQOD—L

“YRL=SL

00N

INDEX THELE

}.‘)n)
1
)

oo 2l K=il., PER
WAL=YALLHFRIM

WAL =MOD WAL MMOD
IMC VAL +L d =K
IIND K+ 2 =NAL
COMTIMUE

(&)
i

LR MODULLT RESIDUE THRELE

00N
U7}

TRESMO I, HX=MODCA, MODUI(TIN5
2 COMTINUE
MM=MAnUCT 2

ADDITION THELE

000

DO 11 MN=1.MM

0O 24 Mel=t, M

A=H+Hi=-2 : -

TALODC T, Mo M =MOD R MDD T 2
11 CONMTINUE

SUBTRACTION TRRELE

o0

o0 =21 E=41. MM
DO 2 T=1.
A=k-TF
IFTR. LT, G H=S<MM
TSUBLT, K, Th=H - -
£2 COMTIMNUE -
1 COMTINUE -
1 COWNTIMUE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

)

'
'
S=
=
[
o
=
Si
Sg
c
C
C

RIS, L. d 0=

;:,;;.1 ML T, |

F’ﬁ
“S=MO0 Ed L MMOT
_IJP]le'u S
JIo
4

TIMWCL, TI Nnﬁf‘;NDuU'
I

IHEELE FOF FIMSL LOOFLUS
t

MODS=F D=0

IFnxa, LE MODSH G0 TO &2

wad=kd-Fro

Fd =g R FMGD

GO TO EZ2

Ha=POD g, MO

TEIMCII, JToa=xd

SUBTRACTION TARBLE IMDEHED

B=IND Mg +L

TSITIMHCL, II.- JIH=MORCE. 3A
IFCKY, EQ. @2 TSUINCL, I1.JJ5
T’UINu“aIIaJJ)‘MGD‘B-Eib
IFdxg, EQ 92 TSUIMCZ, 11, JJ2
COMTINUE

COMTINJIE

TRELE FOR POWERS OF ALFHA

=25; BE=S: CO=E€&; DD=&
IHD 2

C=INDLET s

D=THDCTS
ALPACL 1, Lo=MAD{R, &>
RLPACZ, 1, L3=MAD A, 40
ALFACL. 1. 20=31
ALPRCZ. L, 20=31
Fi.FPRCL, 2L, Li=M0O0CC, 282
BLFACZ, 20 L2=MODCC, 3>
BLPACL, 2, 23=MOGID, 260
RLFACZ, 26 22 =M00 0L)

i sl Mirl=2. 127
FE=rifxCo—~BEwil
RE=MODCRE, MMOD >
IFCRE, LT, B8 REsSRE+MMOD
IMAG=RA+DL+ER+CC
IMAG=MOD S IMSG, MMQD D
AsTMNIRE=I

E=IMDC ITMAG+L

SLPE A ML, L0=M0O0DCH, 282
IFCA. EGL 240 ALPRCL, M1, L2
RiLPACEs M+l Loa=MODCA. 21>

L X U el s T A [HER T T T N PR R |

1

1000, MODUN]

- N
P
b)

==1
- -

=31

=74

=31

e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

143

ALPRT L, MHi+1, Z0=MOD R, I8
IFCE. BECL 32 ALPACL, Hi+l, 20=31
ALPHCZ. MR+l Z0=M0OD TR, Z15
IFCE. EGL 242 ALPACE NH+L, 23=31
Ar=RE

EE=IMAG

COWTINUE

)
iy

THRELE FOR THWIDDLE FACTORE

OO0

0O €2 II=1, &4
TFOL, T, Lo=RALPACL, I1, 1D
TECL, II, 2=ALPAL, 11, 22

TECR. LI, Lo=Ri.FHECE TT. 20

TECZ, I, 20=8LPACZ. 11, 22

C.
N TRELE FOFR IMNYWERSE MTT TWIDDLE FRCTORES
[:
IMiK=11-1
IFCINE. HE. 80 IMNK=1L2&—-IHMHK
TFRICA, IT, Lor=ALPAL, IMNK+1, L) .
TEICL, IT. 20=ALPRL, TNK+L, 20
TRFICZ2, I1. A0=RALPAC2, THIFRN+L, 13
TFICZ, 11, 20=ALPACZ, THE+L. 22
TT=IMNr+1
&2 COMTINUE
Dy
[y CORRECTION FOR ZERD _NULTIF'LICRTIOP-J

DO 251 I=L.2

DO 252 J=1, =2

TARMDCI, 22, JTa=324

TINWCI, 22, Ja=w
238 CTOMTINUE

Lo 25 JI=1, 22
TADLK I, J. 220=3Z4
TINWCI, J, 220=06 -

252 COMTINUE

251 COMTIRUE
RETURHN
EMi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

mmwmmmwwmmﬁmmw*wwwwmw**ww***m&mwwmwwwwmw***wmwwm**w*

SUBRRQUTIMNE TO GEMERSATE LOOE-UF TRELES FOR NTT *

* MODULUS=152 *

batd a3 30 Bl o o o o Sl 3l i BB Al 2 A g o B B8 i g ok) G 2 i R A 4 o B ah o R RlE sl R h Bt o Gt S
SLUEROUTIMNE TARBLES
IMPLICIT IMNTEGERCR--H. O-Z2
COMMOM TRIMOZ, 2330, TRODCZ, 32, 230, TROMULCZ, 22 220, TSUSCZ, 240, =
COMMOM TSUINCE, 2L, Z40, TIMNWCES, Z20, TRINCEG, ZL0. TEC(Z. 840, TFILZ
COopMMOr POINT
DIMEMSION MODIICZH, IMDOASZN, ITHDCASE b, ALPSCE. 4280
MMOD=153; PRIM=S; INDOLX=Z1: IMDC20=0; TTHO(Lo=1
MODACL =23 MODUC 23=324
FER=MMOD-Z -
HMOD=MMOT—-1
FERA=MADNTL 2 eMODUI 20
MODS=FREO-MMO

WAL =1

D000

i
»

>
S

INDES TRBLE

oo

DO 24 K=l FER
WEL=NYRLHPRIM
WARL=MODCOWARL MM

THD ORI +3 =

IIM O R+Lr="AL

CONTINUE

B
r‘

OO0
..'
D
ol
=
in
‘n
(]
il

0
P
i
1
]
T
()
T
)
o (]

D
)
-
‘-x
|
3
=
L e VR |
S B
)
I
[
1a
o
i
=
I
=
R
I
&
)
i
2
b 1)
i
0
I
Fas ¥
f
i)
s’
i}
[\

[T1 MNiH=3, 427
RE=RM=CO+1L2T+ERwDD
IMRG=FAADD+.CCER
RE=MOD I RE, FMMQD:
IMEG=MOD < ITMAG, MMOD
IFCRE. ME. 82 TEM=REZ
IFCIMAS. ME. 90 TEM=IMA3
A=IMND{TEM=LD
ALPE L ML a=sM0ODCH, 282
ALPA S, MR+ 0=MDO0CR, 240
RA=RE
BE=IMAG

I COMTIMUE

- TRBELE FOR TWIDDLE FRCTORS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

TWIDDLE FACTORS

TNy
....{
I
H)
r
in
-
N
Ki)
]
1

u
)]
ifl

THi=1T-1
TECINE. M 82 THiE=128=IHiK
TEICT, ITH=HLPACI, INR+LD
IS OCOMTINUE
¢ COMTINUE
o 3 I=tLz
MS2=MODLIC T 3

SUE-MODUILT REZSTDUE TARABLE

)3 0)

A=t~
TRSMC I, Ha=MOD < R, MSUED
2 COHTIMLUE

AODITION TRELE

QMmN

Lo Al H=23, MR

OO 11l Hpl=1l. MU

A=H+MH-2
TADDCI M N =MODC R, MSUE >

TRBLE MWITH MULTIFLIER

nan

B=M+NH-2+2

TACMUL C I, M N =MOD (B, MSUE S
11 COMTINUE ‘

SUBTRRCTICON TRBLE
0O 1S K=l. MsUB
00 15 Ei=1, MSUB
A=k =K
IFCA LT, @2 R=A+M2l2
TEUECI. KL KO =H

15 COMTINMUIE

1 COMTINGE
O 46 I1=L2
DO 41 JTI=1. 31
AL=CT I= 040
WE= II=L 20
WE=MOD S, 240
IR MODUCE 0+ MODU L 0
=0T CHE, FROD

hoo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LE FOR INWERS

A0o0
o
]
"J

: MO =S WMDY
T s Si4ed o

T I JI 0=

-0 -'l
H ||

~ W

LOQK WP

T”I”l II'&& :.-1.-

TERO MULTIFPLICATION

~
U TEEI.E FOR FIMAL DO URP
C
IFCHS, LE MODSY GO TO S2
ma=id=-PrRO
:“:4=:"’:4"""1NDL'
GO TOD S22
T2 BA=M0DCES, FPMOD
T2 TFINGCIIL JIa=xd
r: .
C CSURTRACTION TRELE IMODERED
C
E=IHD Cxd+1 0
TSUINCA TI. JT0=MODE, I8
IR, BECL G
o TEUINCZ, II. I30=MOnCB, 21
IF -d, 20 '3:7' TSUINCZ, 11, JJ0=321
41 COMTIMNUE
48 COMTIMUJUE
C
C CORREC TIOM FORE
N
Ly 252 I=A. 2
Lo 252 J=1, 322
TRLDC I, 22, Ir=321
TROMUL LTI, 22, Jo=31
TIHY Z2, Ta=@

232 COMTINUE

Lo 252 J=1. 22
TADDCI, J. Z2a=321
TEDMUL I, J. 220=31
TINW (T, Z20=0

25T CONTIHUE

254 COMTIMJE
FETLIRHM
ErD

Reproduced with permission of the copyright owner.

Further reproduction prohibited without permission.

146

147

m:«:+::+::+:=+::+c:+:=4-:+:=+=:+::+:*:+::«mmm*:«:«m:«w:«:&:*#&#-.«:4-::«:#.:«*:ﬁ****w:«*:«mw***:+:

B e

SUBROUTINE TO GEHERATE LOOK-UF THELES FOR MNTT #:

MODULUS=44S) #:

Bl B 0 S e A e s o g i B b B B o i SRR i s g B G R i B R S b o B B o B b 8 e g
SUBRIUTINE TRELES
IMPLICIT INTEGERYH-H, O-Z3
iuigigtuiy) |W~HL“'44Qv-THuD-' TQJES\.THDMUL(Q =2, 222, TEURCE, 24, 24
COplI0M TSUIMNCE, S, 340, TIMNY(EZ, Z20, TRIMCEZE, S0, TRCZ. &40, TRICE. &1
COpMOE POINT
DIMEMSZION MODUIC2ys ITHDCH430, TIND IS ALPACZ, 1280
MMOD=43; PRIM=ZE: INDCL =34 IHDCR20=8; TIINDCL --L
MODA L o=36: MODUCZ =31
FER=MPMQOD~2Z
HMOD=MMOT—-1
PRO=MODUICE *MODUCS 2
MADS=FRI-MM30D
WAL=

(e N N I

RN

INDE=R TRERLE

0o 24 K=i. PER
VALSMAL*FRIM

WE =G R, MeloD)
IHD o EL =L =k

I IND K1y =AL
COHT IMUE

)
}.\

TRELE FOR POMER OF ALFA

00N

HH=8aBﬁ—_;CP—ﬁ Dh=1
ALFACL, L0=0; ALPRCE, L0=0; BILFACL, 20=0; BLFACZ. 20=0
Lo 21 MH=2, 27 ’
RE=ARHCC+ZIL+ER0D
IMAG=RA+=L0+CO+BR
RE=MODCRE, MMOD
IMAGE=MOD ¢ IMAG. MMOD
IFIRE. ME. 82 TEM=RE
IFCIMAG. ME 62 TEM=IMAS
A=IMNDCTEM+L2
ALFPACL, Wi+ 2=M0O0 A, =
RLFACZ M+l 0=MOD (A, =
AR=RE
eE=IMAG

L COMTINIE

=52
i

TRELE FOF THIDDLE FRACTORS

10

L L o |
[}

[oe)
'.
-k
-4 1ot 44

Rl (I =

~-{
1
4 1)
-t

FOR INVERSE THIDDLE FRCOTORS

7
)
1)
]
r

in

INE=1I-1 A N
TECINK, NE. B THi
TFI«I. II--q S
TS COMTINU
4 CDHTINUE
Do I=L 3
MEUS=MODUC IS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[
C SUS=-MODT PESINIE TERLE ‘ 148
o

D2 M=, MO

2 |-'-f"1|3l_u v-q f""[_’t—)

TREL

m

173473 17)
Ny
Lot
%

-1
14
")

A

18, N=L. MSUE
L1 M=l MSUE
Bzt =2
TRODC T, Mo MH D =MD CR, MSUSD

TARELE WITH MULTIFLIER

117 0)

= A e : .
TADMULC 1. M. MHd Y =MODEE, ML)
11 CONTIMUE

SUBETRACTION TREILE

oo

DO 1S E=21. MSUE

OO 15 Ki=1. MU ‘
A=k =k

IF(A LT, 6 A=A+MZilE
TSUBC L. KL Wk D=H
COMTIMNUE

COMTINUE

D g II=t, 33

DO ol JJ=d, 38

MA=CT =Ll

EEC T IR L IR oo
HI=MODCHI. A

e [y

=
an

[

._." -

=L eMODU 2 0+ R MOTU L
®A=HOD I KE, PRON

TAZLE FOR IMNVEFSE LQdk UF

)0 0Y

SN0 S, MO
M= T IHD (S +10
TIMNYCII, JIo=u

TRELE FOR FIMARL Lo UP

D00

4
4
U
~{
n
At}
i~
n

IMOEWED

SUETEACT

OO0

30 TO 55
4-' '-J-mr-n 0
!‘-‘_ T =
S5 NS =MOD GG, MMODO
SE EmINDHdLD
| TEUTHYL, II. ITF=MODOE, T30
TFRewg, B0 @3 TIUINGL, TI. JTIa=32a

TSUTHCZ, II. JJ0
TFowa, ERL @3 TEUINCZ, TI. I30=32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£

COMT THUE
COHT IMUE 149

s

o

ZERD MHTIPLTICATION

00

TR I, o T
THRDMUILC T, o Ja=31
TIMNVI ZE. ¥
COMNTIMNUE

Myt e — e 4
i ; J=1. 22

e e’

b
ESpat s

TRDOCI. J. 32y=31
TARDOMUL I J. 320=31
TINWET, Z20=0

COHT IMUE

SORT THUE

RETURH

EMD

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

g deedesdrdesdecdrderdesesptade s rbradripi g s b nbesde ode st sde ok nnde e sdr e e s ade s b e sbn she o sde e st bt o sprade s s s s s s st e b e g s s b e e
< e e
o w PROGRSM TO ZIMUBLATE THE HAaRDWARE DESIGH MTT STRUCTURE LS
c ® MORILU T =1 *
g aperde bt e g b b b b b b s b e b b b b e ded b g b b R R TR R N b R e R R b e b e e e
SUBROUTTINE WTTOINY, INFL, IMNFZ. STG, FOST. QUTL, GUTZ2:
IMPLICIT IN 'TETE'-'—"' H=H. l:'—.-;.,
COMMOM TINVIZ, 22, 320, TEUSCZ. 2L, SL0 TETNIZEE. 200, TFICZ. &4, 20
COMPMOHN TF:..H"“E.'.- 1?‘_2'- T‘:L""k..:. E3 320 TEUINCZ, 33, 310, TECZ, 64 20
DIMENIICOH IMPLIZN, INPIC20, DUTLIZN, QUTZIED
COMMOM POINT
IFCRQINT. NE. B8 GO TO 2od
Rl=R2=RE=Rd=RI=Fs=tr=Ra=RA=RLa=Rl]=FLl2=R1Z=R1l4=RIE=FLS=R1 7=R1.2=0
Fe=F =R Rl =R =R R IR =R T =RIAG=RET=R =R R=RIa=RI1=FIZ=RIT=FI4=0
FEE=RIE=FET=REI=FRIa=Raa=R4l=R42=F4F=R44=R4S=Rac=FIT=F18=R4a=RIA=C
RSL=RTo=FT ~‘F':u-‘: RSS=RIE=RTTV=RIS=RTR=Rsg=FCl=FoZ=ReI=Rod=ReT=FRSc=0
C
c LAETCH THE QUTPUT
o '

ZHE OUT1 10 =RsS3
ALUTL T =S
AUTZCL N =RES

QUT2CEN=RES

fahaod=

THE ZEWENTH ZTRGE

09

PET=TF INCRSS+L. RSE+12
RE4=TFIHERTT+L, RS8+1)

‘ EE=TFINCRSE+L, FISE-+1.0
FES=TEINCES1+L, FS2+1)
e
0 THE SIXTH STRGE

)

RES=R4Z
RIE=Rdd
=r=FaS
P ln_'—p"t""
RSa=TIUR L, PaT+ FI::""‘
BEm=TEUS .-a”4°+ . R4+t
=1 = TApD L, Pq-lal‘),-‘_,i-i-‘
So=TelD {2, RTHR+L, RSZ+L2 -

D3
'T. lT| l

FIFTH STRGE

00
-
.L
in

F4Z=RTL

P4a=R32

F4S=RIT

RA€=RId
E4T=TIHW 1, R3S+1. RIE+L0

Fa@=TING . 2. RIS+, FIS+LY

PAQ=TINW L, RIT+1, RIZ-13

PEH=TINV (D, RIT+1, RIT+10

S =TINY (L, RTS+L. Pag-+Lis

PE2=TINY (2, RTR+1, FSG+L1)

PET=TINW(L, RdL+t, B2l

PEg=T TN 2, Pal+l, PdZ+Ll

THE FOURTH STHGE

U IO W |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

000

D aOnN

00N

L.
it
R

463

.__~, '}'.q' W g

FEZ-L, RATS1D

F“'—TFND&-;”_

:‘T?:T:‘r‘lro v,
RE=TRDLE.,

2=TED L,

Cemst e

Ra@=THD 2.

Ra1=TADC L.
Rer=TADDC D,

THE THIFD

Fil2=F1a
Po@=FLL
nol=Rl2

RET=TELINS
RI4=TELIING

RES=TZUTHY

FE28=TSUTH

8 ‘,,_-_'.5,4- 1 C:"?.’Hd)
=] -l-l FoSied
Faes1l, RIGE+15

STREE

1. Rid4l, RAS+10
2o, RS0
w BlZed, RAT+L0
2 FAES+l, BATHL

TROINY. HE. 33 GO TO Z5H3

27=TF L, R

121, A0

HZC=TFLuJR18*iJi}
2I3=TF L, Fid+a, 2

RIG=TF{Z. R
G0 TO 463

L&, 20

FITF=TFI{Li, R12+1, 40
RIE=TFT (2, RA2+1, 40

F2a=TFIq,
EIO=TFI 2,

pala=TRDL(L

Fli=TRODCZ.

RL2=TRDD L.

FAZ=TADDC .
(A RAd, BRTS+LD

Rid4=TzU&

FLS=TILIR 2,

RLe=TSlECL

RAT=TEZUR 2.

Rils=R3
THE FIRST

Ti =INPLEA D
=IMFLC2)
TE=INH”'l‘
TA4=IMNPI(ED
Fi=TRIMIL,
= --Tx:- -r1.' =g
Fa=TRS Nf”
RE=TREMIL,

| n"-‘_1 -_ :'
F 3 -.-4-_1.,. 2

STRGE

¢ Pl+A, RS+10
HE*i»RE*iD
RI+1, R7+10
R4+4 Fad s

2+l R+ 0
s RE+4, BT+
Fd+l, R+

STHGE

+31
+1,
+31
+1
TLn
. T2
LTSN
T2
TES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

T=TREMIL, T4l
RE=TRZMCZ, Tan

ENERATE THE POWEFR OF ALFPHA

=t

o N B

RI=POST A2 ETE b (T ST G
POIMNT=FOINT+1

RETLIRH

END * .

TT T ve e W w e e v oee o ee- . - - wmome -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

bbb st e age s s prabragnedn i b gt e s s e sd e e s e s s s T b a i et s st o b b s s s o e s e s s s s s o s o e s e
Y *®
* PROGRRAIT TO SIMILATE THE HARDHWARE DESIGH NTT STRUCTURE *
MODUILUS=15%
B3 . ¥
esptigesdtdeddndnn st ade b b e sf s b s e e et g e s s s s e s s b s g s s e s s g s R e e s s s b i s e s e e o

SUBROLITINE NTTCIMY. IMPL, THP2. STG. POST, QUTL. OUTZ2D

IMPLICIT INTEGERIA-H, 0-Z3

COMMOM TREM{Z. L2330, TRDDCE, 22, 20, TARALMULLZ, 220 2250, TSURCE, 34, 2L

COMMOM TSUIMCE: 3L, ZL0, TINWCER: 220, TRFIMNIZES, FL0, TFLZ2, 642, TFIC2, &4

COMMOM POINT

DIMEMSION IMNFLIES0, THNP2CZ0, OUTLZ0, QUT2CED

IFJPOINT. ME. 92 GO TO 299

Fl=RI=RE=R4=RI=RE=RV=RE=RI=R1G=RL1=R12=R1Z=R14=R15=R1E=RLT=R12=6

FRia=REg=RIL=REZ=RIE=RII=RIL=RIE=RIT=RIS=RZI=REZ5=REZ1=RE2=REZEZ=RI4=0

FES=RIS=RIV=RZZ=RII=R40=0

DO ND

CHEKS ARE THE COWNTROLS FOR EYEN-ODD FOWER. OF ALFHA

009

CHEMA=CHEKS=CHEK3=CHEK 4 =CHEK S =0

LATCH THE OUTPUT

0o

OUTLCA 3 =RIT
QUTLC 2 =REE
QUTZCLY=RIS
OUTZC Ry =Ra3

i)
ot
'-h

D00
-
I
m
"
3 3. -
‘11
=
I
L]
-
D
Gt
m

TFeCHERS. NE. 8 GO TO 269

R4O=RIE z
GO TO 391

I0E RIS=RIE
R4B=RI

e 15 " oun ——
2l RIEZ=RIS

RI4=RZE
RES=TIMVI(RIL+L: REI2+10
CHEKS=CHER4

THE FOURTH STAGE

70

RET=F13
RIT=TINV(RIS+1, RIG+1)

- [
RIE=R29
-

R22=TADD (L, R21+1, RIS+
FIA=TADL 2, REI+L, RIZEFL)
IFCCHEKT. HE. @2 GO TO 302
RI1=TADD L, R23+1. R2T+1)
R22=TAND {2, R24+1. R2E+LD
GO TO ZE3
T3 RIL=TADMUL (L.

[P

22+l F20+L0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 154

THE THIRD SZTRGE

(D EBEE)

IAZ CHERYG=CHEKE
FiB=TFIN{FRLG+L, R11l+10
FaA=TFIMN(RL2+3, BLZ+L0
FI4=TSUINCLl, Rld-+L, R1S+10 »
RAI=TSUINCZ., Rid+1, B1S+10
2= TSUINC L, R+l RATV+LD
Fod=TSUINCZ RAE+1, RAT+LS
IFCIMY, NE. 82 GO TO S8
RIS=TE L, R13+40
RIS=TE (2, FL3+1s
GO TO 484

4G5 RIS=TFI(A. RL12+10
RIe=TFI{ 2, RiS+1lo

HE SECOMD ZTHRGE

00
-

dEL CHERIZ=CHEKS
RAG=TADD L. Ri+l, FJ*l' -
RAA=TRDD (2, R+l RE+1o
PL2=THIDCL, BRI+, RT+40 7
FLZ=THRDD (2. R4+, R3+10
Fld=TIUE L, R+l RS+L1>
FA1S=TRUECZ, R+l RE+1n
FLE=TSUE (4. RI+1, RY+L)
FLT=TSUE 2, Rd+1, RS+
Rl3=R3
CHERZ=CRHEKL

c
c THE FIRST STAHGE
c
A=IMHPLILY
BE=IHFLlZ
C=IMNFICA2
D=INF 2(:.
Fll=TrRSMoL, A+ . -
RZ=TRIMIZ, A+12
P"TE"W L. B2
4=TRIM{Z, B+1 0
Rﬁ“TR-H'lJC*l,
RE=TRIMCZ, C+10
A =STRSMIL, D+dd
FE=STRISMOZ, D+
C
C GERERATE THE FPOWER OF RiLPHA
~ .

P S=ROS T, 2k ST o e STG
CHEKA=MODCRS, 23

POINT=FOINT+1 . _
RETURHM

EMD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

/

PYI3Y P TN STUPRIREFURT ROVALS 1R 220 AL SEL AT SR Y SR TR VRS SRS R CRL SRS R VR KRR SR SR AR RS ST SRR R T S b SR S R) R il g Ul B B g) o o
& #
PROGEAM TO SIMULRTE THE BEARDHARE DESIGH MNTT STRUCTURE *
> MODUL S =445 #
b sdendinbondands oo rbn it bnb ddrdndnd bbbt dodedt b bbb dndigdeodndnpedndndotinkedndndiinibisbedabibodedodaiedndedndeiedo e
SUBROUTINE MTTC IH"-INPl;INH:,dTh-FOJT-HU 1. QUTZ
IMPLICIT INTEGERVA~H, 0=
Coppise TRIMOD 44?JJTRUD(;'?:J::: THUWULK-:::::JJ;TQUB::a:la:i\
COMMOM TSUIH(:;- S EX0, TIMNWCEZ, 225, TRIMNGCEE, 310, TRCE. €42, TFICZ, ed0
COMMON POINT
DIMEMIION THPLC2), INPI2C20, OUTLCZN, QUTEZCZY
IFGFQINT, ME. B2 GO TO 2ea
Pl=RI=RI=F4=PI=RE=FT=R3=RI=F1E=R11=R1 2=R1T=R14=R1 S=F1E=R17=R18=0
FAS=R2a=F =R 22=R 23=RI4=P2N=R 26 =R 27 =R 28 =R2 =R 20=R21=R22=RI3-RI4=0
E=RP TR ISR EA=F g =

> o oa! HCT L~ R TS

NI

D0

THE COMTROLE FOF EVENCQDD POWER OF ALPHS

D on
)
L ’ .'
il
J!:
HY
41]
ki
m

CHERA=CHEK2=CHEKEZ=CHEK4=CHEK S =

LATCH THE OUTRUT

L e

2@ QUTLLx=F27
QUTLC2=RZE2
OUTZC 1 =R3EA

VT2 Z =R

000

GO TO Zaw

GO TO

a6 FIS=FEIE |
F4G=RIT : i

2m4 RIZ=F2T
RI4=F22
ERS=TINWY(RZA+1, FIq+L0
PZE=TINV(RIL+L, RIZ+LD
CHEKS=CHEHS
i
c THE FOURTH STRSE
¢
PIT=RA
RIe=FIG
EE?=THDD(1;R21** PIT+1
RIH=TADD 2. R23+1, R2E+L10
IF(CHEKT. ME. @5 na TO TR
EZL=TADDCL, R2T+L, RET+L0
RI2=TAND(Z. F24+1, RIE+L)
GO TO IET
IE2 FIL=TROMUL <1, FRZ+1, R235+10

R22=Tﬂamusuﬁ Fod+1, R2E+10

st Velte

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

THE THIRD STHE

)N

2R3Z CHeEWd=CHEWZ
PLS=TFTMN(RLE+L, RL1+1D
R2O=TFIMNCRLZ+1, FR1Z+10
Fal=TIUTH{1, Rldd+1, RAS+1L0
ﬁ:E“TcUIN' 2, Rid+1, RAG+10
REZ=TSUIMNL R+l FAT+L:
REG=TEUINCE, RIS+, FLT+10

TFCINY. NE. 80 G0 TO 468
{2T=TF L, RLE+L)
R2E=TF (2, RLG+1L
GoOTO S0

A@F RET=TETLL, RAS+L)
R2E=TFT (2, RLE+L)

. a ot

R

N

ECORD STRAGE

ir

Onn

438 CHEMIZI=CHENZ
FaG=Ta0D L, B+l RS+10
Fll=TRpI I, B2+l RS+1D) .
CRAZ=TARDDCL, R2+1, RT+1 0
FLIZ=TROD 2, R+l B8 +13
Hi4=TaU°fl-Rl+l RS+
FiS=TSUL {2, Ra+L1l. Fh+’)
RLe=TZLR1, FE+1., R7V+1D
FAT=TZUEZ, Rd+1, RI+LD

. L Riz=RES
CHERZ=CHERL

FIRST STRGE

o700
-
€I
i
{

- A=IHPLCAD
E=THFLCZ
C=TIMPZCAY
D=IMNFPI20
Pﬂ-lRINLl F+ll

=TRIMOZ, R+L2
P7 =TREMOL, B+1 D
Ra4=TRZM{Z B13
RS=TRIMOL, C+L2
Re=TRIMIZ, T+l
R7y=TRIML, D+l
RE=TRIMC 2, D+LD

GEMERSTE THE FOWNER QF RALPHA

DON

RE=POST /2SS TG e (S STIZ
CHEKI=MOD(RI, 20
FOIMNT=FOINT+L

RETUEM

ErD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

PROGRAMS TO_GENERATE TABLES FOR

EPROMS ON INTEL 220

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

L

STLRCE STATEWMENT o R
tSUFFOLTINE Tu. REUDCE A°1¢ BIT NO. vOLULO 3
tnvle 30 RE OREDUCEL IS IN MEM. LOCATION =app-s4f]

- T ‘ 1 ‘ . ' : ‘ -
TRESLLT TN RatlH T, T . ..
FLELTL kREDER S - . .

CSEC ' . : ° . . .
RELZPE: FLsH 7D o Lt _ _
FLSH H e e _ , 2
CLXI T jHsgalpH ot 7 . R i

182V} Eom- -, R . . e .
TN x . . ' ~ - Wt R
bomgy T Dam S ‘

CHE%? oL ANN- YN S - . LT
T fiRA A : o

InzZ 0 SURTH P - .

IV £ E. . LT -)

: CFI.. . 3¢ o U = S
- DR | - T0k > o :

Li:QOFs stI. ae i e

< Cr1 T3k . - - S U

L T RVIS] S T)

$1Lkt TLXT Hy HappH - SN RN
' "oV Myp. T '

FOF oA L T s
I ! - LR R W .

SUFI1: MOV - As BT N
sul a3p ., -,
) MQvV Es, A : s . »v‘.v- :
Jne CHEK o T RS

SUR12: MUV #sD - B -
- S oesUT L. S S e Cs

MOV Dy 6.] R - N . , '
~ocedmE 0 CHEX : SN .
/ ~ END < - . ‘e : :

te.. .7 - ~r . . - . - . e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

. e L - e - - -
. R L LRI T R “ .

- . . - -
— . T ey : LR .

<~ SOUKCE STATEMENT)

. - v ,) '_\' >) ’-)
FOUTINE TC CE A 10 FIT. NQ. ¥MOQULO 21 S
SUEFOUTINE TC, REDUCE 12 FIT. NO. OOy
wt. TU FE KEDWBCED IS .TK ME™, LOCATIGN, 'RaPp-R 40] -

e we

T

e

RESULT Td Reperi © I
' FUELIC KEL31 . S -
“ - CSEC .= ' - - ’
RED31: FUSH U o -
. FOSH > e T - |

L CURL o HamappH LT . s
‘Y‘UV N Y N . . .;.‘\- < PN :‘
¥ . I|\K \ " H - - -f ' 3 - . . . - _
o MOV L TbbM ‘ L

LHEK: MOV £,D - ST AR G
5 A L Y - N N - S
S JdNZ . SURTI L st -

L MOV T, AR T T T~
v © CFI 31 1 It - o
o w JC) : ST‘jk N) % i . - . L
“LOOF: © | BUI 31 T T |
- CFT . . 31 T t ‘. - . . . -

\ JINC - LOOF’ S .
STCR:Y _LXT - H,mapeH T o Ce
. v M, A R I
A cieL s s
7‘ . PUF‘ - - U : ‘AI’:"" ' - R '_ z)A o -'.: - . “" - b
H . . . " .

:) }"E’I '. "‘~ , .") - - ‘~ . N B
SUBTIS. MOV 0 CASE T RN R
IR 1 £ SN | ' co=T N T ' et

I MOV AP U L s~ ,
: ~ JINC T CHEK Ay e o
CSUETE: MOV . "R, D = DU

- . . - . N - -A_~ .
; e N T

t \ My : L}) e _ v, ~ - N . . !

! e v 7" - N R

}. / - S e) L‘r-hb(’ S o . ’

L. SURAD T T T -
! L e v s ..;. .. PO HEURPRRCNLIS. Y - . LIRS TSI NS $ e s s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P mcane s

160

. BTCE T STAN TG gmgwes v menenemopeppoTeNes o s ‘..-. s ey S - s - -
L3C . OBJ-: ST LIAE N “OUhCEﬁbTAI&“n\T :
N -] S0~ o \ :
. . -1 SUBROLTINE TO KEDLLE A 40 rIT NQ.MOLLLO 192
- DA ND O EE REDUCED 1S LN MEM. LOCATLN: 7267 —R st [H
- L3 TRESULLT 1IN 4Ew. LOCATION aeey ~ o
T e 0 U RUBLYC RELISS
. - " -= - . 2 -'(..::L__‘ ’ N . <’
ST AT - Y o - £ HEL192: prise u o ' .
ST RS . 7. PLSK H /)
coue Plepze -, B 7 LK Hy R 4P OH
reps S T T - 9 .- Mgy Es
C dore 22 Loe : INX o . ~
_APAT Sh ST I RN MOV [7 LM) B , .
T eadst A L i 212 ROOR:T MOU- A, be SN
ApR9- B7 . TS TE L OkA A v - .. -
Y 021°am C e S TUNZS Y, BSLE C S n
aeeD TR T LT TS T L e MOV ArE v S ~
AOQE FEEQ - 16 - “QFl 152 ~ , -
a@1® DE1Fe@A- -C~° 1T .- - JC 10K - . . i
" AB13 2126FF =18 DSUB: LXI Hy=192 _ .
emle 19 Y9 ' . .DAD "D Lo - .
A7 ER . T 2w - L XCHG o B -
GA13 C3@RAn .~ G "=2) S JME T LooR - - :
AR1IE 210694 - 22 STORS ° LAL H » 8 40 AH .
AALE 77 . - ~23 ... T vov Map ,
e LR EJ ; _"2a - FOF H . y
¢A2p BT ~ 25 - 7 _POGF - 4D S
cE21 C9, . 26 ;. RET. S ' . , -
L . - .27 -’ L. END - ‘U .
. - Il T P - . : - y
T - e e T T ‘ :
, K . . W -;:'\ . R o ’~ i - - -
LCC oRJ *LINE SOUKCE STATBMENT ~ ' 70 7 -
. R . : “ .
- el pSU FhOLTL\E TOTKEDUCE £ 10 FIT NO.WCOLLO 193
. T - 2 »NC.TO TE KEDLCFD TS l‘ SMEML. LOC2TION RAC‘() ;240-1;4
- . .3 SKESULT IN ~EM.. LOCATION RagpW
e ‘. -a ... +, “PUBLIC KED193 N
S .= .8 T .. CSEG)
GAaa €S ‘T . (6 RED193r FULSH .. DU " -
aeAy-E5 ., LT L s FlisH oW 7 C)
. AEPR2 21AERL B LT W LXI . N Hy84GeH T N ~
AROS. SE . - T MOVt EsM S - .
JARE 23 . 10 -. INX A -
aepT Be - 5 SRR [¢ AV P ~
eansg 74 .0 12 LOGF: MOV, CA,D T
QA9 ET .. - 13. -. . DOr& A .
Arpa C21302 C te NN [\ 4 DsUB ')
“eED TE . 15 ~f. SRIVIVAEL R S) : .
FOAE FECI N N LRI 193 , .
welg Gel1BEee . C 17, S J€s - sTOk -
AR13 213FFF 18 D&UB: | LAY H,-193 - T
fgr1e 19 S - "' Dec . D -~
ae17 FE T ea . XCHE ~ o
- Aeir C3rRPA C 21 . AT LOGF ~ .
POLE 2100R4 22 S£T0k: LXI, H, Rap O)
ANE 77 ' . 23 .- - Gy s MR - s .
ACLF E1L T 24 —~ - PP H : . (-
v Cp. o 2s e Y EOP— D o~ '
fP21 €9 26 -~ ~ rET ,
. 27 EnD - .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

.)) r e~ -, - ;w.—\-.‘ ~~-",~‘-~--_- [.. . o ‘ -4--/»—)-7 . i - . . - . . ".f
LCC OBJ -y LINEZ SGURCE STATEVENT 7 A
| . : S ATEY N _)

. -\' “
3 LUBROUTINE TUREDUCE P 11 PIT MO ,MODULT 93¢
;THE‘ MEAEX. o NU' Iu 1860' ‘ " S) -
‘3 NO . KEDUCLD- 10 BE FOUND’ IN BADP=BLRTH . -
B RESONT IN - THE’ SPME LOCATION. o oo)
) VO PUBLIC T kELZ3A 0 T .
S, L sLSEGr. o, o T - o /"
KRED93Fe FUSH " D - - © . - o . ~
: CPLEH L W : :
. LXI Y. F,84peY 3 .
o MOV . JEam " \) - -‘ . -

t

Creee DS \
pee1 ESS T L
rupe el1eess o
pe S SE RN 1
Frne 23 - ,1 | ‘
PPHT =56 - R P MOV DM L
pees 7p T S MOV A,D . = ‘
PPRre FEG3 e JCPI. .. w3 ~ _ ‘3;CHECK HIGHFK EYTE.

S\

—

©INX _.,.: H R

.l
1]

M:*ﬁ\ﬂm-Jmanhiom-*

163]
tr
.~
™
‘(l
L1

AAeR DALCAR? - C 15 . dC 0 BTOR T aNQ (. LACTION o
. eRPE C217?M' C.t 16 o ONZ .. SURT TF HIGHER BYTE CREATER.SUS

Camty TE. v 17 Tt MOV ASED o, T~ |
gr12 FEA2" N I8 Lt GPL e 162\ =3&UM OF LOWER RYTE OF 93
- . S o V) ; s N e " v- '_»-' .‘. - - - " ".. ~ -
" p@la DAICEE C, {9~ . Igc .- S10K - T, ‘
Fe17 21SEFC , 2 SLPT: . ALXI ;v . H,-93¢)\ -7 N
#01A 19 . e - Lo CDAD - . D ot -
. GBIE £E . - . B2 ceo UXCRE T Lo

G 21PCR4 23 +Tuk: _EXI - H,gwA@H. - G . 7 .
PPLE 73 ST~ PRI 1o 1Y SR PN S o
gree 23 . - es ~- ., INX T H T, - e '
. ezt 172 Lo ee T - MOV, I MLDs - .
@@22 E1L- - ..21°] s POP- W A .
623 o1 .ex .. PCP Do L _— PR
R V@g&cg *_.}-‘/ : . 89 \. Lo '-' }‘E._T '.: I R) ¢ . -) .
-, S U NN WAERD o~ o LT -
S L 7 T e N L s Shmer et ...; RN e e L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘r

L¢C OCEJ
YA
RpEr UY,
PPy ES
r ey clrvrf‘
£RO5 Z2EPR
e A
Cef R 1F
AapeE9 %Y -
rens Leivhe
CORL 75
BERETRE
(FOF 27 -
1 TR
-~ 011 1F
. “f‘ld a7 L
C013 79
“arl1e IF
MRS <F
(16 2o ,
He1T CRRTER
‘ 1A PICER 4
feIR 71
1z 22
aeIF e "
c QF2A E’I\

g2t Cl
T pe22 C9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-

- 162

s S TNe v - . ,
LINE o a0k CE \TA1EWENT--»/ i .
l_;&UEhuLTINE TO-MULT!PLx/Tvo s’slf NO.
-2 3N0.TO EE MWLJIPLIED IN REG., L & E —
3 3KRESLLT IN MEM. LOCATION R4BG- sava Ry
L4 T - FUBLIC. MULTIP‘ I SN
.~ 5. - . ’ CSFG’ B . -, L . " . o -
€. MLLTIF: PUSH B ‘51 " - - =
-1 P USH Ho o7l :
g <V LXIL L T Bs@ ,TFMF. RE\ULT IN.nEC.
i - .. T , v
] MV L,B,- : D
e NK;;IT Moy c L AsU T ’
11 s KAk~ Cor
g 0o Moy e 7 o
13 — -JI\-C Ty N0 A”DD'-;/: ’ :
14 MOV - BB -) -
Crs . _ADD - E: -0 <L .
167 - MOV BoA . T
s 17 NOADD; MGV YR I RN s
.ags KRk L < s v
19 3 - ¥GV- E,8. > s
ac v MoV . cesc ! L
211 }‘ph - . X‘l - - -f '
22 3 MOV 2 CaA ‘
23 DCh LA I
N 24 r o JNZ ‘AXTFIT."' :
25 “TLLXxI HsBapEH =- N v _
v 26 MOV, . MSC - S ~
T 27 - PIRX . H T O
-1 _MEY T M,B L -
29 ’ PO-F" \ H' ' . /_\,. 4 f " “
. .30) “pPOP .,*g L Co .
~ 81 CREY LT T T, . '
32 END” R < g _ -
‘ R - i

163

e e ey
1LCC CBJ LANE . SOURCE" £1ATEMENT - o <

B“Lﬁhuurzhs T0 ADD Tw0 16.BIT NS
"iNOSCSTOKED IN . 8210-R413H .o
T PUBLIC = ADSK . .~ " - _a- o

CSECG- ~ — s -
BDSke _»DULR B '

*FUSH - D' .-\ =

_pBeL DS T T
Gpoe2 ES. 7 .
PRI 2110E4 L
peee 4E .V
REET 23

LUOPUSH L o= o ~ .
» '-,\LxLa-‘ HyR&1AH. T . T o
. TLoMOV T Gem . Y Lo T L :
-~ . ANX ‘M L. T LT
neeg 46 SToMOV - R T
UeAS ag ¢ . . INx Hoow e '
. pnrA SF < - 13 - MOV, _ EsM T o S <
L~ emgR 23 - Y e . - CINX T H e T .
- eeeC s& F =18 . MOV, DM . DT T
ARPD <79 ° R £ - R MOV I T T U
FEPE BRI S N A ADD;ﬁvf E 7 . ol L
faRE aF . e o188 T TaooMOv L C,A» Pl
pale 78 . - r‘19g":ﬁ=m~'m0v JRLB YL T e .
pélLE A . - . 2 0T . - ADC ‘D ﬁ--'~. L~ .
gr1e- 47 o . er.\ MOV - BsA, o
PR3 210084 T - ee- . X1 ,BAGMﬁ \; R
pete 71 - L e23 . B To VA M:C - ‘-'_ ST) ' .
¢e¢17 230 0 s 24 IRX o “H T T .
oM e - o, - L 25- coMEVL T MEB T - L T s
P19 EL . v T 26 0.t FGR, v HIL_ 0 oA
. P14 D1 . g7 . BOP. _ D R L

~

@elB C1s - - ek . | POF . B LT T

N

::‘Ogn--lmwhu't\DM

—~
O —

- L - I - ”~ -
Fe1c C9 . -7 i -29 7 . . “RET. R o DR o P ad .
) L g~ - - END | L, Co - :~- _ - o
M e) R o " - e [SR Y \ - A . : N T iew ‘s L e e
* R Sl RIS D R LS S SR RIPNPUNL L. YENLNI-IRI 0 A U PUIPUPEPI 90 S S SO .-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

' R I I R — 1 PRI . K . '] .

.o Lee oy T LINE | SOURCE S1AMEMENT - L
/ J o . o o .
BKOUTINE' TO COMPARE Tvo 16 FIT A0. LI'TH 738

- 3 SUBK
| SNOS. YTORFD IN MEW. LOCATION Rop(=g4ariH
- PUELTC. COM73R i, . -

—~ Cs&FC.- . . 7 - o
COMT3R: PUSH D o o :
- FUSH- H , N - s
I 4 S g;SAQEH- :
- MOV

“epm DS,
Pee1 ES .
PrPR2 21605z

AeP S SE L9 S EsM S i
reoe 23 .. - . e v INX o Hos e
- eraTl- 86 - - v ,1 . LMoV T DM o o IR

PR T L 1

-~

N DO I N b IO~

MOV pB s - RN

Pem9 EEGS.. . |) L ANI -.oopen o .. -
 PORE CRIFRR., C - T vz LESS } j
. mapeE 76 et

0 5 MOV~ A,D
PPEF E601 S : ANT T ey 7L T o
pE11- C2120@~ Ch 11! o - JdNZ T GREAT YL r

erl14 7B - SRR TLMOV AR T N

. m@1S FEE2 © ¢ T-LPr o oades .o, L T :

‘s e@m17 DRIFFE . C- N I ch P Y A S : S
wp1A JEGL GREAT: ~ MVL 8,1 ~ .)
an1C C3219¢ C

e JME- L1 - I . o
. earF 3ERE

. LESS: _' mMyT , v Ry P “\4"*7. o
pE2l 210284 12
eroa 17T

L JLXI 4«ﬂ~H»8492H, STATUS WY MEM.. B4p2H
~ MOV ¢ M e et e

s e o Gt
N0 0 N

-
X

{

D0 N DN, -~
OB~ B0

pees F1 7. . . B6. T L omPOPL . HoTh e o
@@2s D1 . - - . . T-t.. . CFOP . DL

- em27.C9 0 T - .88 RET - . e : | e

Y e . hd .‘:"‘ " ~-. - . - . - '-.,2—?&-:.; J‘.i-"nt ‘L:~§lD.--....,'.\ N e .-:‘v‘“f-b-‘fj«-::;_' ‘—‘ . . . —_— ‘ .I;

R RN R a«hyo@‘,%" 1Y \ '{ P TR LT e Ty g R YAy v‘a '.'r:az' M'“‘bv‘ “-Mm'rvt-‘lf-w 2oy ,q~ ._:-.— ;- -'Z'.T‘\ R GRE -~ . .
LCC “EJ S .LIA£\ S KOURCE\STATEMENT . ;‘J;j-xﬁf} o S

1 LEHOU-TT?\E-' TO Lbf\ V\ERT # T\‘ECATI VE NO ‘4*"DLLC 193
s T e e NOs 110 D ENCONVERTED 1f v EMe LOC. R4RP-R4
i . A’,‘A.- - 01)_* -"l r,f \‘~. - _‘}_‘ : .',’.‘ . i B R .

. i K u;;i PUEJC“NEHmN_?14§}ff;ff*f;ff -
I ?'l' - - w . A— . -.- - x* Bt s ;, I‘C QEC ’ q--'. :'.'-.— K ?" a:'-:-;‘ :" :; : . .. ’ ':" .. ._ \ - Y
ware LS .0 . e, ﬁECCDN‘ “EUsH Df\aAb~vEf S X

7Rel RS D

b } LT PURH (. HI “"5""’_‘ -..' R ",,\._-“:" Ny
: o L'XI‘ . HaBd@QU-r L --;\ - .

PEES 21PER 4 . . ‘ s
' MOV T e

REY S AE

;)\ - _;..l

WK Y- ?odu'qq«.(n_};,ﬁ,

nEie D6A2 L9 SUL T 1625 THE %vv Lu»Er rrq OF 93¢ .
<« wees CeCr. T T -ﬂ ADJ. ;"141 e . .-
e e 7 R R P "\ R '

NG .1 SPOFE L H T I A
LmeeC 1 L1a “FOF D - R A
Al g [' L‘;‘ . -1 : P‘ET . . \."‘ .- . . ’
' 1 CEND T I
NN e . B eare m m as R T 1;-_.... p———— - B SRRt ST JOP - I RN JOU N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

;s PROGRAM TO GEMERATE THE SUE~-MODULD Z1 RESIDUE TARBLE
s TRSMZEL

.-
[}

i

"I
M T
MY

1
-4
D
K1)
~t
= ¢

-,

COUMTER

)
-4
D
Al
-
-4
o
il

LAty DO I0E

LOOP ! Mo P
ORI X
JC TORE
SURT CEA NS L

TTORE : [inET M, A
IR U =
I H
Lo &
JHE LoQP ‘
JiE GFES
E ML =T

; PROGRAM TO GEMNERRATE THE SUR-MODULG =8 RESIDUE TRELE
i TREMZE

s STRRT THE COUNTER

-

5
LMW DO M
0@~

STORE: MOV M. A
M W
TH H
Der =
JHE L0
JMP GFEES
E M STRRT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ASM8@ TADD3@.SRC PAGEWIDTH(32)

ISIS-11 8GRO/80O8S MACRO ASSEMBLER, V3.0

LocC

oBJ " . LINE SOURCE S
1 -
_ 2 " CSEG
D200 2108074 .- 3 START: LXI
2003 QENG 4 MVI
@005 161E 5 MV
0007 0600 6 L1t MV1
@3RS VF1E 7 " MV
, DPPOB AF 8 LOOP: . XRra -
206C 78 9 - MoV
200D 81 . 10 ADD
@OOE FEIE 11 ‘CPI
0010 DA1500 C 12 A JC -

0013 D61LE 13, Sur. .
®015 77 - 14 STOR: MOV’

- PB16 23" 15 - INX
@17 Q4 ’ .16 INR
%018 1D " - S i DCR
@B19 C20BPO - C 18 JNZ -

" @@lc 23 e 19 INX
P21D 23 : 20 INX
GG1E BC 21 - INR -
@B1F 15 , 22 . w- DCR
0020 C20700 [os 23 JNZ
@p23 C355F8 T 24 . JMP -
0200 'cC. 2% .- < END_, .

.- .STAR..’r\u.-- =Y [T SR >

166

“r

~ . 4

MODULE’ PAGE 1

TATEMENT .
3ADDITION TABLE FOR MODULO 38

H>7400H. . ,
C,0 .
D,30
Bg@A“-"
E»30
A .
AsB
C

<
STOR - . e
‘3@ '

"MsA

5 COUNTER FOR 92

TR

3_EJOU\1TER FOR M1

[

. 'H

B
E 3

“LOOP. . - T
brana

H

c

D .

L1

OF855H

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ASM8@ TADD3!.SRC PAGEWIDTH(¢32)

IS1S-11 8080/8085 MACRO

Loc

2000
0003
0005

0ee7

0009
2008
0Qac

200D,

PBOE
0010
2013

‘8015
0016
2017
2018
0019
BG1C
@@1D
001E
BO1F
2022
2000

0BJ

t

210074
0EGD
161F
B600
1E1F
AF

78

g1
FEIF
DA 1500
D6IF
77

23

Q4

1D
C20B0Q
23

7o

15

c20700

C355F8

—
—
2 -
m

VNN DH WK —

ASSEMBLER, V3.0 -

SOURCE?STATEMENT

CSEG
LX1I
MVI
- MVI
- MVI
MVI
XRA
MOV
ADD
" CP1
JC
SUI
MOV
INX
' INR
. DCR
"JNZ
INX .
INR
DCR -
JNZ
JMP
END

START?

L1

LOOP

STOR:

’

sADDLTION TABLE FOR MODULO 31

Hs 7400H

C,2
D,31
B'JQ _
E»31
Ay
AsB
C

31
STOR
31 .
MsA .
H

B .

E . .
LOOP
H

c”

D .

L1

S

.. MODULE PAGE

r

T -

N

3COUNTER FOR M2

3 COUNTER FOR M1

A

OF8SSH

START .

. ameaade een s

) PN AR OF I TN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

l .

168

ASMB@ ADML3@.SRC PAGEWINTH(42)

- . . L0 ' ‘
: e Lo i - -,
Y . . S - ; . . R PSS -
- . s . - S - h
§ AN ' . N i . - .
. . . - - . . Ca

- /‘ . * ‘._ - \‘ .. . " . A
ISIS-11' 8080/8085 MACRO 'ASSEMBLER, V3.0 ~ = 'MODULE- PAGE

-

|

Loc ©0BJ % T LINE. , SOURCE STATEMENT . °

Y

1 R "5ADDITION TABLE.FOR MODULO 30 -
2 CSEG . . -+ ... A

0000 210074 - 3 START: LXI . * H,7400H

¢BB3 BEQD - 4 . MVI . Cs0 Co .

@GBS 161E S © MVI. = Ds,30 3COUNTER FOR M2

. 8007 0600 6 L1: . MVI [/ " B,B - . . Lo

Q009 1EIE 7 7. MVI = E,38 , 3COUNTER FOR M-
A0BB AF. 8 LOOP: XRA ™~ . A - . 0T
geec 78 . N9 T oMOu, * A,B T . \
gean 81 - ;18 . . ADD _ " C. . . & _ -
PPOE C603 1 "ADI - . ..@3 - . ;ADD INDEX OF. 125(3)
016 FEI1E .- J1e CPI . 30 - .- . .

@12 DAICOB® C 43 7 .J4Cc - STOR - - S .
@15 D6IE . 14 SuBT: SUr . 30.- . - S
@17 FEIEE - -15 25 - | B C N
@19 D215@@ - C 16 - -JNT SUBT. -~ .- - ‘
@ei1c 77 © 17 STOR: MOV -~ M,A = - [«

201D 23 ' -18 - . INX. H

PG1E 04 - T &2 INR - B

eer1F-1p - T 20 DCR- - | E ¢ S

@920 c2eeee 'C 21 T .uNz, ©, LOOP. - . .-

923 23 - -. 22 . . INX LR o

@e24 23 Coe3 e e INXC - THA

@625 acC .24 - INR-C T,

-BB26. 15 " 2s . DCR , D.~ ;.- o -
@P27 C20780 . C - 26 LT INZ Lt . - s o ‘
@B2A C3S55F8 et - JMP , QFBS55H ; - S

_ eeoco . c 28 . END START -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

» - . -

SOURCE STATEMENT - = . . -
;ADDITION TABLE.FOR MODULO 31
- CSEG : o T
. START: LXI H,7400H .
‘ MVI C.0 i o
. MV D, 31 3 COUNTER FOR M2 .
L1z MV1 "B.B - _—) |
MVI " E»31 ' COUNTER FOR M1 °
"LOOP: XRA . A T . _
' MOV. AsB -~ N e e s '
~. ADD AP o B ' S . . -
ADI 23 5ADD INDEX OF 125(3)
.CP1! 31T SR .

o ©JC . STOR -
SUBT: SUI . 3T
CPI 31 S
JNC suBT .. ol :
STOR: - MOV M,A L T
INX ‘ M ' . : . .o t
INR ~ B S
DCR ™~ E
JNZ LOOP . S
. .. INX H - T - .
L INR C. e T
f ~ ~ .DCR. . D . .. o 8
| JINZ O T Y
. JM4P @F8SSH 0t L
- END- START, 2o

L e

Yo e
»

K

AN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ASM8Q TSUB3@.SRC

1515-11 8080/8085 MACRO ASSEMBLER, V3.D

- LOC

2000
0003
0005
2007
0009
0008
000C
Q@80
" @OBE
0011
2013
0014
2015
0016
0017
201A

2018

@01C
201D
@B1E
021
2000

0BJ

210074
QEQ0O
161E
8600
1E1E
AF

78

91
D21300
C61E
777

23

Q4

1D
C20BR0
23

23 "
ac ’
15 °
C2p700
C355F8 .

!

e 8 el e S

\ B ‘s

MODULE - PAGE

' c.

. LINE, SOURCE STATEMENT
1, CSEG - . ' .
‘ 2| START: LXI1 H,>'7 400H
-3 ©oMVI Cs0 .
4 [MVI - D30 s COUNTER FOR M2
S| L1 MVI BJD’ ’
6 .- MVI. E»30 . 3COUNTER FOR M]
. 7} LOOP: XRA .A 7 :
- 8| MOV = A,B ..
: 9 sus- ' ¢ - -
“C. 18| . JNC 'STOR
R S ADI' - 38 - -
12| STOR: . MOV - MsA -
13 INX =~ "H - oo
‘14 INR . B~ .
15 DCR E
o 16 JNZ * LOOP \
17 - INX = H 7,
18 TINX " H : -
19 "INR. - C '
.28, .DCR " D
c 21 JNZ R |
‘ 22 JMP " @FBSSH . .
. Cc . 2;[‘ - END . START . . ° L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

ASMB@ TSUB31!.SRC

ISIS-1I1 8880/8085

LOC

neno
0003
nAvs
2007
0Q@029
2208
P20C
200D
000K
0911
@213
NO1 4
0e1s
0016
aev7
PO1A
0018
Pa1C
201D
fa2e
0009

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0BJ

210074
PEBGD
161F .
0600
1E1F
AF

78

91

D21300

Co1F
77

23

04

1D
c22B8@0
23

ecC

15

c26700

C355F8

MACRO

LINE

VOO WA LN —

ASSEMBLER, V3.8

START:

Lls

LOOP:

"STOR2

CSEG

LXI
MVI

. ML
MVI

MVI
XRA

MOV
. SUB

JNC
ADI

- MOV

INX

INR -
DCR -

JNZ
INX
INR

DCR .

JNZ
JMP

END

| - ‘ ’
SOURCE STATEMENT

H» 7 400H
C»0

- D, 31

B,
E>31

A
“ALB.
. C - .

STOR
31

™MiA

H

L1

@F8S5H
START

o

C." ;5

$COUNTER FOR M2

{

MODULE

3 COUNTER FOR ™M1

i

171

1

172

; GEMERATE SUETRACTION ITHDEX THELE
FEUINZE

H. TdenaH
BE. L824 s COUNTER
THRITL . O .M
FiIEH H
MCH F. E
DFEH F
JzZ CORRECT IF EMTRY IS G HO THDEX EXRISTS
Mo H B
cPT BEFH J IF FF. MG ACTION
JHC CORRECT :
Mo H. ¥& s IMDEX THELE STORED IN Fasdd
Fc . &
Moy A, M s BRIMNG THE IMDEX

38

START: 1L« TSP, STACK
I
I

crlo AL ; REDUCE THE THDEX ITH SUBS-MODULO =26
JC STOR
SURT. ST =2

CRT ol

JHE SUBT

JHe STOR
RECT : MW A, BFFH ; STORE FF FOR THDEX OF ZERO
F: POP H

M M, B

IH H

B E

M A, E

CIRA A

JHZ INTL

IMF SFESSH

ENL START

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

; GEMNERSTE SURTRACTION IMNDEX TRELE
s SUIMEL

E

1 SF. STRCE S

I H. Taenan

Ll 2, 1029 5 COUNTER
RIuLYy E. M

FiJaH H

1))

-{

I

R

|
rr.o

Los]
ol
pow
i~
-
'.a

Mo H. E

arH o

JZ CORRECT IF EMTRY 1S5 @ MO IMDEX EXISTS
Rk H. & .

R arrFH i IF FF. MO RCTION

BRI CORRECT

MO H, ¥ ; INDEX TRELE STORED IM Tagad

P LLE
MO Fia M BRING THE IMDEX
CPT g R ; REDUCE THE IMDEX IM SUB-MODULO 34

‘ Jo STOR
SLET . iR =1
CFT =1

JNC SUBRT

RECT (MWI A, BFFH ., STORE FF FOR INDEX QF ZEROQO

” L
DC E
Mo R B
OrRA H
JHE IKNTL
JrE SFSSSH
ENL START)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LOC

2000
0003
0006

0007
0009
P00B
eooC
000E
0011
6014
2016
o019
0G1A
@01D

001E

PO1F
0o20

@023
0024
0A2Ss
0026
- 0027
0029
002C
0Q2F
0030
0031
2032
0e3s
0036
0037
2038
003B
003E

-

-1

‘8044

3345

ANas
0049

@0 4C
OCaF
eeS0
6053
0056

8059

eesaA

"OBJ

310000
210074
ES"
0EQQ -,
0600
59
161E

‘CDB0oA0

CNRooe
161E
210084
5E
CDOBRO
SE -
23

.56

211084

73 -

23

72

S8
161F°
CDE00O0

210084

SE
23 7

Se6
211284
73

23

72
CcDRReO
CDRRO0
CDPRED

c10284
1E

=7

€25330
CDEOoo
010084
SE -
C35A00
CD2OOO

210e84
SE

£l

-

Ea o B ol oo DU o B o S vu

CLINE

m'mm

,

R

VORI U D W —

10

11

12
13
14
15
16
1'7.
18
19
20

START:

H -

21
22

24 L2

25"
26
27
28
29
3o
31,
32
33
34 -
35

4

36 ...

37

37

39

-

40

41

N

42

43
44
45,

ION

37

—
(1]

rd

46 CON:

a7
48

49 STOR:-

en .

174

TFIN

SOURCE., STATEMENT

EXTRN
EXTRN,
CSEG
LX1I
LX1
"‘PUSH

' MVI
MV
MOV

C MVI

' CALL -

_CALL

T MVI

L LXI
“MOV
CALL

' MOV
INX
MOV
LXI

MOV
INX

MOV, -

MOV -
MVI
CALL._
LXI
S MOV
INX
MOV
LXT
MOV -
INX
MOV
CALL

CALL .

CALL

LAI
MOV
ORA
JNZ,

CALL
: L
LXI
MOV
JMP
CALL'
LXI
MOV

POP -

MO\

..MJE

"DsM

RED93C.,RED193, RED30,RED31
MULTIP,ADSR,NEGCON, COM738

SP,» STACK

Hs7400H

-

H- ‘

Cs® ~~ 3COUNTER FOR RZ-

B30 - $COUNTER FOR RI

E,C -)

D, 30D

MULTIP RESULT NOW IN 8400.8401
RED31. 3REDWCE MOD 31

. D,30D ° 3MULTIPLY BY M2 BAR

H,8400H

"E.M
. MULTIP

E.M
H - T N

‘DsM

H»8410H 3 STOR THE RESULT IN 8410

H
M,D

-E'B ' .) 'l '

D,31D

© MULTIP - sMULTIPLY BY M1 BAR

H,B400H

T EsM - ,

H

H,8412H .

MsE <

H i -

Ms>D .J - - '_
ADSR 5.ADD: TWO 16 BIT NUMBERS

- RED930 .3 REDUCE MOD ‘M1xM2

COM738 ; CO\"P—\‘C & 4 { \..».‘0 . - . ‘ -:

Hs8402H .

AstM 3CHECK THE STATUS

A : ;

con 5STATUS 1, GO TG CONVERS

RED193 3 OTHERWISE REDUCE MOD 19

H:&4@0H !

EsM

STOR

NEGCON -
H,B84800H e

EsM -

H- . S . =

MaE. ‘ <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISIS-1I §08Q/8685 MACRO ASSEMBLER, V3.0 .~ MODULE PAGE
- 4 ° \ . = "

Loc <QBJ - LINE SOURCE STATEMENT

e@esC 23 51 INX. H

@OSD ES 52 PUSH H

@OSE 04 53, INR B

OO5F 78 54 MOV " AKB .

0060 FEIE 55 CPI . 36D .- - - -

@062 C22600 56 SJdNZ | Le ‘
0065 EI ; ‘o 57 POP - H -

2066 23 58 INX H . T

0067 23 s9 INX . H - \
@068 ES 60 "PUSH H o

069 @C 61 INR . -C o .

B6A 79 62 MOV T AsC o

@06B FEIF © 63 - - CPI | 31D

Ge6D C20900 64 .- T JNZ . L1 o

@870 C355F8 - 65, JMP ° @F8S5S5H .
.0000 | 66 END - START S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

[SIS-11 BGBA/808S MACRO ASSEMBLER..

“LOC

0000
0003
Pa0s
aro7

2609

0MAR
0e0oC
APOE
2011
20 1.4
RB16
0019
001A
2010
@O1E
0o F
Rpo20

0023
eo24
0e25
5026
0027
?229
@u2c

aAran
. 0031
a032
@nas
0036
2037
0338
CO3R
Q23%

DN4a
NG44

fBRas

R LI

ASMEQ thv SRC PAGENIDTH(A2):,'

084

V3.0

176

D I L

MODULE PAGE 1

LINE SOURCE;STAIEMENT~
o EXTRN RED930,RED192,RE039,R5031
-2 EXTRN '\ MULTIP:ADSR o
- oo 3. CSEG" = C
310000 S 4 START: LXI . SP,STACK S
210074 5 * LXI H» 7400H -
ES ., 6 PUSH - - H : :
PEOQ T - MVI . Cs0 YyCOUNTER FOR R2 -
0600 - 8 Li: MV B~@ .. 3COUNTER FOR R}
59. S . MOV - E,C - o ’
161E 10 MVI. - 'D,'30D S :
CcDOeee . E 11 CALL MULTIP RESULT NOw IN/B8400,848]
cnenen E 12 CALL - RED3! ;REDUCE ‘MOD 31 .
161E " 13 T MVI 0,30D ~ 3MULTIPLY BY M2 BAR
210084 14 LXI . H,8400H «o .D -
SE 15 . MOV . E-M L e oo
CDhOC0oa E. 16. CALL =~ MULTIP. . -7 : .
S5E 17, MOV . 1 E.M .
23 18 CINX . H T
56 19 } MOV . D.M T T .
211084 26 - LXL =~ H,8410H 3;STOR THE RESULT IN 8410
.o o . e o . S
73 21 Moy o wM,EC - T : -
23, 22 INX | H " e i
72 23 "MOV- M. D _ S : T
58 ! 24 L2: MOV EsB . R -
1617 25 MV D,310 ~ . - -
cnecese E 26 ; CALL .~ MULTIP 3MULTIPLY BY 41 BAR
210084 27 e o |
: c COVU e EaMe T b .
o0 29 < . . INX H - "‘,i ST . 4
56 - 30 MOV. D»M \r._- oo
211294 31 LXI - Hs,8412H L
73 32 MOV MsE . - o
23 33 INX - H . S
72 : T .34 MOV . M3D o .)
cneaae £ 35 cALL ADSR" 5ADD TwO 16 BIT NUMBERS
CPBBOa E 35 'CALL , RED930 ;REDUCE MOD M1%xM2 CL
cnoran E 37) CALL . REDI92 = .. $REDUCE MODULO ¢
M=-1) - T -
2105083 38 . LXI H»8400H
SE 33 . MOV EoM .
25679 40 STOR: MVl "H>79H ,,Loox upP TABLE FOR INVER
‘ SE INDEX . Ll i 2 e et

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0047
0648

DC49.

. BD04A
. 004B
00 4C
QA 4D
PB4
BB 4rF
.@a51
RUS4

‘&R

S
£l

73

23"
ES
a4
78

FEIE
C22600

El

c

L4l

42 -

43

44
45

46
47
48
.49

.SG .

51

ISIS-11 S@80/8085 MACRO

Loc

0BS5S

BBS6,

0057
2858
@59
0G5A
‘eegc
@ASF

(Jaulolo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0BJ
23
23

ES
ec -

79 -

FE1

c20900
C355F8

LINE

52
53
S4
S5
56
57

c 'S8

' S9

c . 60 .

S POP-

MOV
MOV

MOV
INX
PUSH ~
‘INR
MOV
CPI
JNZ
PQOP

ASSEMBLER. V3.0

’

SOURCE STATEMENT

INX

MODULE PAGE

.
b

. H'.
. INX H oL
PUSH H
INR c
MOV AsC. ., -
CPI’ 31D
CANZ Ll -
. JMP | BFBSS5H

END - -

.~

v

RGN

 START - .

L.

E2W

Al

-

«

- PR

lokiomamne o o

~

177

2

| ASMB@ INDEX.SRC PAGEWIDTH(32) '

ISIS-I1 8(280/808S MACRO

© LOC

0000

0003
0005

0007

- POR9
2008
POAE
2011
2014
go15
o117

. PP18

; o119
) ga1A
Qo118
221D
gale

- @021
. 0924

- 0028
. B8o29
, . 902A
| 2028

peac-

. 082D
- p230

. 0000 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a026

oBJ -

310000
Q6BF
PED1

1ED1

1605
CDoBeR
CDoBEO
210084
56 -
2678
6A
71

ec

54
1605
s

C20B0G0O

i

210078

1679

P6eC1
S5
7D)
12-.

23
s -

c22800
C355F8

J

ASSEMBLER,. V3.0

- LINE -

D P EXTRN
= " - CSEG .
3 INIT: . LXI
2 - . .MVI-

.5 - MVI
6 ‘ MV
ATION. .

7 C . MVI
8 MY: cAaLL
-9 . CALL
10 LXI -
1y v MOW
12 MVI
13 MOV’
14 . MoV
15 -y INR
16 ' MOV
17 y . MVI
18 - ¥ DCR ~
19 . JNZ
20 S

21
22 Co .
23 ININD: LXI
24' MVI

" RT. AT .79H
25 . MV I
26, BEGIN: MOV
27 - MOV -
28 STAX
29 - “INX
30 DCR
31 JINZ
32 JMP
33 END _

'« SOURCE STATEMENT

YV CL JINDEX IN REG C.

4

fmlow

SINIT

178

_'MODULE PAGE . 1 -

‘MULTIP,RED193 -

. SP, STACK o

Bs191 3SET THE COUNTER .

‘Es1- ' SINITILIZE THE MULTIPLIC

D,5 . $PRIMFTIVE ROOT IS 5
MULTIP — - |

A}

"RED193 .

H»B8400H

2 DsM L .

H,78H
L,D’ -
M)C R . - s > l. -
C . ' R . .
E,sD |
D»>5 " ... o » _— -
B i - L, .. - N

\MY) - -

INVERSE INDEX TABLE

3
'H,78BOH . L L
Ds79H - 5INVERSE'INDEX TABLE STA

-B»193
E.m
AJL;
D.

CHUT ST e ey

BEGIN. L
@FBSSH - . °

.
DR 2 IR W LI R

179

[; P THIS PROGRAM GRNERATES THE VALUES OF POWERS OF
— .. ALPHA.SAME VALUE,OF ALPHA IS STORED 1IN TwO MEMORIES

LOC O0BJ LINE SOURCE STATEMENT .
1 CSEG o o
2. . EXTRN MULTIP,RED193
v -3 STKLN. 180 . . .
0O0@ 310000 S 4 START: LXI~ . SP,STACK . ‘
0ee3 21007C S LXI @ ~H,7CeeH - . - o .
QeB6 3501 6 - MV M1 . . \
0a0g 23 7 INX - HoL SRR :
acas 3621 8 MVI =~ | M,
cegB 23 _ S INXS - H N]
@pec ES - 1@ o PUSH - 'H S e
AEND Q640 . 11 . - MVI' - Bs64 5 COUNTER
noaF 1EQL ‘ 12 CMVI . E51, 0 T MULTIPLICAND
#7111 167D © 13 BEGIN: wm™VI D,125 5SMULTIPLIER '
0013 'CDGC’!W',- " “1a . caLl, ‘ MULTIP. | . -) -
8016 Chapna» °E s . ¥ CALL RED193° .~ .
PB19 210224 16 . LXIC S Hs8400H . .
ARIc s - 1T - MOV . EsM A U .
S a01n EY ©, 18 STOR: - POP. -~ H [" .o o b T
. koI1E T3 - 19 v T MOV -, MO E L e K
ANIF 23 a .20 L INX TR S ‘)
ao2m 73 ' -2 MOV ML E . T
@e21 23 - - ez . .INX Hoo= o~ .
@022 ES - 23 PUSH - H . T
023-05 - 24 . -DCR ~ .B : oL ~
Bo24-C21108 € 25 7 0. JNZ BEGIN® Cooe
! . 26 . Lo e 5FIND THE INDEX OF ALPHA
o : 27 o : , . " 3INBEX TABLE STORED IN ™
: : .. EMORY -78e¢@H-° 5 A : :
..Q027 0680 . 28 : MVI} - .B,128 FCOUNTER ™ | - <
. .0029 21087C .29 0 T LXLT . HsTCBOH. T ~
. Q@2C SE - ©1 30 IND:t - MOV Y SESM Lo et
ee2D ES | R = I PUSH™ - H - . . e .
.. DDP2E 2678 - 32, 7 owmvL Hs 78H o - S
. 830 683 .33 0 MOV - LeE S . '
.. @@31 SE o 34 - MOV "E.M L
@@A32 E1 -~ . - -35 - POP . H r :
2033 73- . 36 . MOV T MLE ‘
G034 23 .. 37T - INX ~ H S -
g@3s 73 - .-: 38 . - MOV -~ - MLE = . ; T ‘ _
036 23 N 239 . . TUINK - H - ©- ~ " S e
. 8037 85 - 40 DCR . B SR T
038 Cc22Ca2e c - 41 - - CJNZ . IND L « e,
o a2 : , 5 INVERSE 'NTT TWIDDLE FAC
e TORS ... e e C e e ’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43. 3
. as |’ K H
Ae38 0602 4s . - MVI B,0 -
6O3D 0ESD 46 L. MVIL Cs128 S
GO3F 212070 47 L1z LXI | H,7DOOY ; INVERSE Tw.FA. STOKED I
' . 'N MEMORY 7DOOH ' :
G642 ES 48 . PUSH . H
a43 79 49 L2: - MOV . <L ALCE
"BB44 90 s . ~ suB . B
"ISIS-11 BB8M/8085 MACRO ASSEMBLER, V3.0 - MODULE = PAGE 2 .
Loc o08J LINE ~ ' SOURCE STATEMENT S
2045 267C 51 . MV I Hs7CH -
(O47- 6F 52 MOV LsA o T
048 SE - - . 53" . MOV« E.M . o . , -
0049 E1 ' * 54 ST: ~ - POP Ho) o o f
@B4A 73 55 MOV. ML E ' C
004B 23 . 56 CINX - H ;
BB4aC ES 7. © .. PUSH - ~ .
B@4D 04, 58 .. -+ INR B Lo e
@R4E 78 . 59 - MOV | AsB IR
@Q4F FEBO . 60 CPI 128 - .
0051 DA43A0 o 61 ' Jc L2 .
@54 C355F8 62 CJMP @FB85SH)
oenn ! C 63 END START ~ = . .~
?eyy-.--v;.._ - - vn sremnm o . R R SR .) . =
3 . By R = .
A E. : THIS PROGRAM GENERATES THE TWIDOLE rQCTOKb.-”
»LOC OBJ - LINE _ ~ SOURCE STATEMENT-
S R by CgsEG . LT
¢ 00Q0 210074 , 2 START: LXI H, 7408H : .
'~ @003 ES 3 : PUSH - H "~ - ;TABLE STORED IN MEMORY!
' - T408H- . B . - . . ,
0004 0600 4 . MVI 8,0 . 3 STAGE COUNTER
0066 S8 5 BEGIN: . MOV - Es»B .
@007 3EFF 3 © . -MVI AsOFFH
2009 1D 7 Lt - DCR~ L E -
POOA FAI1208 C 8 . . JM . . NOSHI
6aN RB7 9 ORA . ' A .
BABE 17 10 - RAL
OPAF C30900 C 1 gMP T L)
@012 SF . . .12 NOSHIF: MOV E>A
2013 QEQO 13 - MVI C.O®
@015 79 1a L2: MOV AsC
' BO16 A3 .15 - .- ANA B ; .
0817 2678 16 MVI . . H,78H 3ALPHA'STORED'IN MEMORY
T800H .

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P19 6F .
PB1A TE
PB1B EI
BBIC 77
01N 23
BBI1E ES
PO1IF BC
.0020 79
PN21 FE4Q

PR23 DA1500

0026 N4
AQ27.-78
Pn28 FEB7
0A2A DABEDN

Q02D 210076
N30 ES
2031 0600
@033 58
A@34 JEFF
@36 1D

BO37 FA3FOO

ge3A B7
ga3s 17
®B3C C33600
PO3F 5F -
0040 QEOQO
042 79
@043 A3
0Q44 2679
0B 46 6F
po47 TE
0048 E1
8049 77

Go4A 23
AE4B ES
. @04C ,BC
- PP4aD 79
. @QA4E FE4O. -
' O050 NDA4200
- DGS3 04
A(2Sas 78 .
Q@SS FERT
APS7 NDA33NG
205A C355F8
 opne

N

:C,'

© . 48

181

17 MOV Ls,A
18 MQV AsM . -
19 STOR: POP H
20 . MOV Ms>A
21 INX H
22 | PUSH H.
23 - ‘ INR (of
24 MOV T A,C
25 CP1 64 = : .
26 JC L2, S
27 INR B .
28 . © MOV AsB .
29 . CP1 7 - B :
30 . -JC. BEGIN -~ o ~
31 3 INVERSE NTT TWIDDLE FACTORS
32 - 3STORED AT 7600H
33 510TH BIT | FOR INVERSE.
3a. LXI H, 7600H - L
3S . PUSH ~ H - = ¢
36 o MV 1 B,0
37 L3: MOV EsB ‘ :
38" MV \ A, @FFH o
. 39,La: DCR E . S
40 JM, NOSHF)
4] ORA A
42 RAL o -
43 | . JMP La .- ' . :
44 NOSHF: -~ MOV S - S
45 MV1 Cs0 - : -
46 LS MOV - AsC .y '
a7 ANA BT
MVI - Hs 79H
49 MOV LsA . e
Se MOV A>M . v K
S1 STR: POP Ho .)
52 MoV MrA ‘
53 : INX H T T
54 - . PUSH: H
55 INR ‘C.
56 . MOV AsC .
57T " CPI 64 Ty =
58 JC Ls ‘
59 INR © ..B . . ,
60 Moy AsB S A
61" CPI 7 . \
. 62 Jc L3 '
63 JMP OF855H
64 END START

R N I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

ASMB0O TF31.SRC

03]

_THIS PROGRAM GENERATES TWIDDLE FACTORS MODULO 30

ISI1S-11 808Q/8085 MACRO

LoC

eloleRs)
o063
ano6

3007

neo9
pBOC
POOE
2A11
T @Aa13
Pa15
ee18
2an19
AU1A
L0018
Pe1C
aoIn
pnez20
72021
o2

ne2sS:

aoae

0BJ

210074
010004
7E
FEFF
CA1800
FEIF
DA 1800
D61F
FEIF
D21169
77 '
23

28

79

B7
C20600
78

B7
C20630
C355F8

LINE

VRANOU L WD —

182

- .

ASSEMBLER, V3.0 - MODULE PAGE 1

SOURCE STATEMENT -

: CSEG . ' . o

START: LXI H» 7400H 3 INDEX STORED IN 7400H
LXI B,1824 ;COUNTER

‘Lls MOV AsM ' T a

) EPIL. QFFH R :

Jz " STOR . - _ v -
cPI .31 - P
JC ~~ S8TOR T ' o

SUBT: SuUT| 31 :

- CPI " 31
‘ JNC = SUBT ' .
STOR: MOV ML A -
» INX H .

DCX B , .
MOV .ALC .
ORA A :
JNZ L1 o o
MOV A,B R
ORA -+ A -
JNZ Lt
JUP @F855H

- END START

.- - . . e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

N " THIS PROGRAM GENERATES TvJIDDLE. FACTQRS MODULO 31

e

ASM8O TF30.SRC PAGEWIDTH(42) L ' S

ISIS-I1" 80BOB/8OS8S MACRO ASSEMBLER, V3.0 . MODULE PAGE 1
Loc o8J "LINE . - . SOURCE’ STATEMENT _

. : . : [I - }

' B 1 - CSEG o -7 ‘

POB0 210074, . 2.START: LXI H»7400H s INDEX STORED IN 7400H .
A003 0106004 3 , LXI . B,1@24 3COUNTER
0006 TE . 4 L - MOV AsM .

QOD7 FEFF 5 CP1 @FFH . . | ‘ '
@Qe9 CA180Q8. C - 6 BN 4 STOR- - - :
0@OC FEIE 7 CP1 .38 - : :)
AA0E NDALIBRANA cC. - 8 T Jce STOR _
AA11 D6LE . 9 SUBT: ~ SUI - 30

0013 FEIE ; 10 . CPI © 3@ -
AB15 D21100 C 11 . YUNC SUBT -
@18 77 ' 12 STOR: MOV U I -
AB19 23 13 . CINX T W '

' @81A 28" | 14 ' DCX . B . .o .
2a1B- 79 . | 15 - - MOV ALC R
@21C B7 ' 16 .- ORA : ' A I
001D C20600 C 17 JNZ . L1 -
0020 78 ' 18 - - MOV . A,B ‘ - .
@021 B7 19 . ORA . A . v
8022 C20600 cC .20 SoJdNZ o L i
@02S C35S5F8 21 . o+ JMP Q@FBSSH
0000 ' c 22 END - . START, ~

IS . QPP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[1]

[2]

£3]

[4]

(5]

(6]

(7]

B

[9]

[10]

(1l

[12]

REFERENCES

N.S. Szabo and R.I. Tanaka, "Residue Arithmetic and its
Application to Computer Technology", McGraw Hill, New York,
1976.

F.J. Taylor, "Large Moduli Multipliers", Proc. International
Conference on Acoust. Speech,. Signal Processing, April 1980.

G.A. Jullien, "Implementation of Multiplication Modulo a
Prime Number with Application to Number Theoretic Transform",
IEEE Transactions on Computors, Vol C-29, No. 10, October
1980, pp. 899-905.

J.M. Pollard, "The Fast Fourier Transform in a Finite Field",
Math. Comp., V. 25, April 1971, pp. 365-374.

R.C. Agarwal and C.S. Burrus, "Fast Convolution Using Fermat
Number Transform with Applications to Digital Filtering“,
IEEE Transactions, Acoust. Speech, Signal Processing,

Vol. ASSP-22, No. 2, April 1974.

C.M. Rader, "Discrete Convolution Via Mersenne Transform",
IEEE Transactions, Comput., Vol. C-21, December 1972.

R.C. Agarwal and C.S. Burrus, "Number Theoretic Transform to
Implement Fast Digital Convolution", Proc. IEEE, Vol. 63,

April 1975.

A.Z. Baraniecka, "Digital Filtering Using Number Theoretic
Transform", Ph.D. Dissertation, Electrical Engineering, University
of Windsor, Windsor, 1980.

M.C. Pease, "An Adaptation of the Fast Fourier Transform for
Parallel Processing", J. Ass. Comput. Mach., Vol. 15, April 1968.

M.J. Corinthios, “A Time Series Analyzer", Vol. 19, MRI
Symposia Ser., Polytechnic Press, New York, 1969.

M.Jd. Corinthios, "A Fast Fourier Transform for High Speed
Signal Processing”, IEEE Transactions Computors, Vol. C-20,
August 1971.

Data Catalog 1978, Intel.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[13]

[14]
[15]

[16]

185

"M.A. Soderstrand and C. Vernia, "General Modulo P1 Multiplier

with RNS Arithmetic Operations", Proc. IEEE, Vol. 68,
No. 4, April 1980.

J.H. McClellan and C.M. Rader, “"Number Theory in Digital Signal
Processing', Prentice Hall Inc., New Jersey, 1979.

B.Gold and C.M. Rader, "Digital Processing of Signals", McGraw
Hi11 Book Co., New York, 1969.

J.H. McClellan, "Hardware Realization of a Fermat Number
Transform", IEEE Trans. Acoust., Speech, Signal Processing,
Vo. ASSP-24, No. 3, June 1976.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1952

1966

1973

1975

1981

VITA AUCTORIS

Born on the 15th of January in Rawalpindi, Pakistan

Completed high school in Govt. High School,
Islamabad, Pakistan

Graduate from the University of Islamabad,
Pakistan with the degree of Master of Science in

Physics

Served in Suparco, Islamabad, Pakistan

- Candidate for the degree of M.A.Sc. in Electrical

Engineering at the University of Windsor, Windsor,
Ontario, Canada.

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A read-only-memory oriented implementation of the number theoretic transform butterfly unit.
	Recommended Citation

	tmp.1506712331.pdf.DqL3r

