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ABSTRACT

This thesis is  concerned with, the design of a hardware 

implementation of a Number Theoretic Transform b u tte rfly  structure. 

The butterfly  is being used as the computational element in a 

Number Theoretic Transform processor suitable for d ig ita l signal 

processing operations. The b u tte rfly  has been realized using 

arrays of read-only-memory (ROM), and table look-up techniques. All 

mathematical operations performed by the Number Theoretic Transform 

b u tte rfly  have been carried out using the Residue Number System.

The; ROM oriented structure lends i ts e lf  to an e ffic ie n t realization  

using very large scale integration CVLSIl technology. The use of 

high density EPROMS in a pipeline configuration results in a 

structure suitable for real time signal processing applications.

\
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CHAPTER 1

INTRODUCTION

1.1 PREAMBLE

This thesis describes a hardware realization of a number 

theoretic transform b u tte rfly . The work. forms part of a more general 

-development of a d ig ita l signal processing fa c i l i ty  that is being 

constructed by the signal and systems laboratory at the University 

of Windsor. The authors responsibility in this project was to design 

an NTT b u tte rfly  that can be multiplexed with a memory support structure 

to ultim ately provide a d ig ita l f i lte r in g  capability.

1.2 NUMBER THEORETIC TRANSFORM

Fin ite d ig ita l convolution has many practical applications in 

d ig ita l signal processing. I t  can be used to implement non-recursive 

d ig ita l f i l te r s .  I t  can also be used to carry out auto and cross

correlation, as well as, polynomial m ultip lication. The direct
✓

method of computing a convolution sum involves a number of m ultiplications  

proportional to the product of the' length of the two inputs [143. 

M ultiplication in a d ig ita l system, is a re la tiv e ly  slow operation 

and. therefore techniques were investigated to minimize the number of 

multiplications in the convolution sum. The use of transform 

techniques to compute convolution is  quite popular and the savings in 

m ultiplication time over direct method depends upon the transform length.

1
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The characteristic of these transforms ara such that the 

convolution in time domain is equivalent to pointwisa multiplication  

in transform domain.

The discrete Fourier transform CDFT) is defined in the complex 

number f ie ld  and is  one of the transforms that exhibits the cyclic

convolution property. The DFT is  defined as
N-l -j.2ir/N.nfc. •

XQc) = I  xCnl e , Ic = 0 ,1 , . . .  ,N-1 U *U
n=0

The DFT becomes very attractive  to use as i t  can be implemented 

e ffic ie n tly  using the Fast Fourier Transform (FFT) type algorithm 

[15]. The two main disadvantages associated with the FFT are the 

m ultiplication by irra tional coefficients and the inherent number 

growth. Both of the above introduce truncation and/or round-off 

errors when implemented on a f in ite  wordlength machine.

Pollard [4 ] has shown that transforms defined in a f in ite  ring 

also exhibit the cyclic convolution property. These transforms are 

named as Number Theoretic Transforms (NTT) because number theoretic 

concepts are used in th e ir defin ition . The number theoretic 

transform is defined as

N - 1 n l r
XCRL = | I  *CnI a | k •  0 ,1 ,2 , . . .  ,N-1 0 .2 )

n=0 M

where a is the cyclic generator of order N. These transforms are 

implemented using an integer number system. Since these transforms are 

defined in f in ite  rings, the number growth problem is inherently 

solved. The value of M is  chosen such that the result of the
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convolution is within the defined range. Whenever the result of an 

operation exceeds M, the number is reduced modulo M and i f  the 

fina l result is within the dynamic range, the intermediate overflows 

can Be ignored. Thus the computation is  exact and truncation- 

roundoff errors do not arise.

The proposed implementation of the NTT requires a supporting 

memory structure and a computational unit commonly known as the 

b utte rfly  unit CBFJ.- The operations performed by the butterfly  unit 

are addition, subtraction and m ultip lication, but no division. The 

complexity of the BF unit depends upon the choice of the fie ld  and 

also the form of the generator, which is used to define the number 

theoretic transform.

1.3 THE NTT BUTTERFLY UNIT

The binary operations in the BF unit are performed modulo an 

integer M, which is used in the definition of the NTT. Modulo reduction 

is  not an easy operation unless the modulus M has a simpler form, 

preferably a power of two fo r the Binary number system implementation 

of the BF unit. Radar [63 used the Mersenne number and Agarwal and 

Burrus [73 used the Fermat numbers to ease of the computation in 

the BF unit using the binary number system to perform the required 

arithmetic operations modulo M. McClellan [163 has b u ilt hardware 

for implementing the Fermat number transform and used adders-subtractors 

to implement the BF unit. The generator was chosen such that the 

multiplications by twiddle factors were replaced by b it  shiftings.
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These adders-suhtractors and the h it  shifting were arranged tn a pipeline 

configuration for a high, throughput rate.

In using an array of ROMS, rather than adder-subtractor, e tc . , an 

extremely simple structure emerges that offers identical characteristics 

for any required operation and is inherently simple to pipeline. The 

use of ROM arrays for implementing BF unit also relaxes the constraints 

on the choice of the parameters for NTT and they can be chosen freely  

on purely number theoretic basis to maximize the transform length.

1.4 OBJECTIVE AND OUTLINE OF THE WORK.

The use of NTT to compute convolution is  very attractive because 

of its  error free computation. The heart of the processor is the 

computational unit or the Butterfly unit. The orientation in this  

.work, is  to u t iliz e  the advancement in memory fabrication technology 

and build up a b u tte rfly  unit using arrays of look up tables arranged 

in a pipeline configuration. The look up table approach is quite attractive  

because of the fact that multiplication can be performed by 

accessing the data from the tables and thus the multiplication time 

is  reduced to the access time of the ROMS.

Normally the dynamic range assocaited with an NTT processor would 

be too large to allow an e ffic ie n t realization based on table look, up 

techniques. In th is work the Residue Number System has been employed 

so that a problem with a large dynamic range can be converted to a number 

of paralle l operations with small dynamic ranges. In th is manner a re a l­

ization based on array of ROM is not only practical but desirable as i t  

is  ahle to exploit the rapidly evolving VLSI technology associated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5

with memory fabrication.

The present work was divided into three phases. The f ir s t  phase

of the work consisted of a litera ture  survey to establish the

theoretical basis for the design of the NTT processor. Pollard [4]

has defined transforms in f in ite  rings/fie ld  and has showed the cyclic

convolution property (ccp). of the transforms. Agarwal and Burrus [7] 

have established the necessary conditions for the transforms to exhibit 

the ccp. Baraniecka [ 8 ] has proposed the look-up table approach using 

the residue number system to implement the computational unit of 

Number Theoretic Transform (NTT) processor. The use of look-up tables

relaxes the constraints on the choice of the parameters of the NTT.

Baraniecka [8]  also outlined the procedure for selecting the NTT para­

meters for look-up table implementation.

Pease [9] has presented a procedure for the design of the memory

organization of a FFT processor and Corinthois [1 0 ] - [ l l ]h a s  used this 

idea as the basis for a proposed memory organization for a FFT processor. 

The same memory organization is used for the FNTT processor because of 

the similar structure of the two transforms.

The second phase of the work was to design a complete read-only-memory 

oriented hardware implementation of the NTT Butterfly unit. The design 

u tilizes  the table look-up approach and employes a pipeline configuration.

A computer simulation of the hardware structure of the NTT bufferly and 

the associated memory organization was carried out on the IBM 370/3031 

fa c il i ty  to verify the va lid ity  of the proposed structure. The simulation 

consisted of generating the look-up tables and then arranging them in the 

pipeline configuration to check the operations of the pipeline. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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convolution of sequences was performed to establish the right 

selection of the parameters.

The fina l phase of the work was to actually build a prototype 

computational unit using 2708 Eproms and 8212 as registers arranged 

in a pipeline fashion. The registers are necessary for storing the 

intermediate data to keep the pipeline fu l l .  This unit was then 

tested for real time application.

1.5 THESIS ORGANIZATION

Chapter 2 provides a review of the basic modular arithmetic - 

used in the design. The advantage of using the RNS for a look-up 

table implementation, especially for m ultip lication, is established. 

Binary operations using sub-moduli techniques are also described and 

the implementation of addition-subtraction using look up tables is 

shown. An e ffic ie n t way of performing multiplication fo r large 

primes is also described in this chapter.

Chapter 3 starts with an introduction to d ig ita l convolution and 

its  implementation using transform techniques. Decimation in time 

CDITl and decimation in frequency (DIF) forms of the FFT algorithm are 

presented in deta il.

The choice of the parameter for the NTT and the construction of 

the 2nd degree extension Galois fie lds are reviewed. A suitable 

choice of parameters for an RNS based implementation of the Number 

Theoretic Transform is discussed.

The concept of an NTT processor is provided in Chapter 4. A 

memory structure for real time applications is described and a suitable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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memory organization is suggested. The selection of the primes for 

an e ffic ie n t hardware realization of the NTT butterfly  unit is 

discussed and a final design of the butterfly  structures for both 

kind of primes ,is presented. These butterfly  structures were 

simulated on an IBM 370 computer and the details of the simulation ,

are included in this chapter.

The butterfly  unit for 4n + 1 type primes was then implemented 

in hardware using 2708 Eproms and 8212 latches. The sim plicity of 

the structure using ROM arrays is obvious from the hardware design. 

The generation of the look up tables on an Intel 220 system, and 

the other relevant material is discussed, and the clock c ircu itry

for running the pipeline is given.

Chapter 5 summarizes the work presented in the thesis and 

Chapter 6 presents the conclusions that can be reached regarding this 

work.
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CHAPTER 2

LOOK UP TABLE IMPLEMENTATION OF RESIDUE ARITHMETIC

2.1 INTRODUCTION

The look up table approach offers the potential fo r a ROM oriented 

high speed rea lization . This approach is p articu la rly  advantageous in 

rea liz ing  m ultip lication operations, which now become as simple and fas t 

as addition. The use of the Residue Number System (RNS) to implement addition,

subtraction and m ultip lication in look up tables provides a great saving in
!

hardware and is more e ff ic ie n t than the BNS. The RMS is also an inherently 

carry-borrow free system and does not introduce internal delays due to 

carry-borrow d ig it  propagation.

In 'th is  chapter a detailed discussion of the residue number system 

and its  implementation using look up tables is presented. The concepts 

developed here w ill be applied to the number theoretic transform (NTT) 

in the next chapter.

The residue number system is an integer number system and in the
i

following discussion, a l l  the variables take on integer values only.

2.2 MODULAR ARITHMETIC

I f  two integers,a and m,are related by the following equation

a = q . m + r  (2 . 1 )

where q and r  are integers and r e  0 , 1 , ____ _ m-1 , then r

is the residue of a, modulo m, and is represented as:

8
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From eq. (2.1) i t  is clear that q is the quotient and r  is the

least positive remainder of — .m

Definition 1: I f  two integers have the same residue then they are

called congruent and represented as: 

a h b mod m

such that

I a I = I b | = r'm 1 'm

This also implies that (a-b) is d ivisible by m and written as m|(a-b).

Thus a ll integers are congruent mod m to some integer in the f in ite  set 

( 0 , 1 , 2 , . . . ,m-l} and are said to belong to one of the m classes. The 

residue classes mod m form a commutative ring with identity  with respect to 

modulo m addition and multiplication and' is denoted by Z^. For example, i f  

m=7,*there are seven d is tinct classes and the integers belonging to these are

{0} =    -14, -7 , 0, 7, 14,
{1}..= .................. .. -13, - 6 , 1, 8 , 15,
{2}..= .................. .. -12, -5 , 2 , 9, 16,
( 3> = ..................   -11 . -4 , 3, 10, 17,
{4} = ..................   -10, -3 , 4, 11, 18,
{5}..= ............ ........ -  9, -2 , 5, 12, 19,
{ 6}..= .................. .. -  8 , -1 , 6 , 13, 20,

e.g. 13 and 27 belong to the same class as |13|^ = |27|^ = 6 or 13 = 27 

mod 7.

The following basic arithmetic operations are permissible with 

modulo arithmetic

(2 . 2 )

(2.3)

(2 .4)
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a) addition: 8 + 12 = 20 s 3 mod 17

b) negation: -7 s (-7  + 17 » 10) mod»-T2™-~

c) subtraction: 7 -  12 = 7 + ( - 12) = (7--M>-= -12) mod 17

d) m ultiplication: 7 x 12 = 84 = 16 mod 17

e) division: ^-exists i f  b has a m ultip licative inverse and

b divides a

2.3 RESIDUE NUMBER SYSTEM (RNS)

2.3.1 Representation of Numbers

The representation of an integer in the residue number system 

takes the form of an n-tuple

a = (a-j, a2 , . . . ,  an) (2 . 5 )

of the least positive residue with respect to the set of moduli

(m-j, , . . . ,  mn). '

The residues, a^, are formally written a.. = |a |^  . The residue 

representation of a number is  unique. The converse of this statement 

is true only i f  the numbers considered are in the range of 0 to M-l 

where
M = n m. (2.6)

i= l 1

and a ll the m.'s are re la tive ly  prime. I f  negative numbers are to be 

represented in this system, then the number range can be divided into 

two parts. The f i r s t  part represent positive numbers and second, 

negative numbers.

For M = even

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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x = +ve no i f  x e { 0 , 1 ,2

-ve no i f  x e{£, !r+  ^ •  *  •  •  > M-n

For M = odd

x = +ve no. i f  x e{Q ,l ,2 9  •  •  •

-ve no. i f •  •  •  9 M -n

Example 1:

fo r n = 3

and m̂ = 5; = 7; = 9

3
M = n m. = 5 . 7 . 9 = 315 

- i= l 1

positive numbers e {0 *1 , . . .  *157} f ” 

negative numbers e {158*...*314}

2 .3 .2  Basic Arithmetic Operations in the RNS 

Definition 2: A binary operation defined on a set s of elements is

a rule that assigns to each pair of elements from s a unique element 

from s.

Definition 3: A set s is  closed with respect to binary operations i f

where a, b and c are any element in s and is the binary operation. The 

residue number system is , in general, not closed under the binary operation of

t  The conversion from the residue number system to signed number 
system is explained in Sect. 2 .3 .3  by giving an example.

a □  b = c (2 .7 )
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division as the resu lt o f division may not be an integer.

The residue number system is inherently a carry/borrow free  

system. The binary operations under which the system is closed can 

be performed by independent operations on the respective d ig its , i . e . ,

Z = x □  y implies I .  = |x. □  y .| (2 .8 )

where Q  represents the allowed binary operations.

I t  is useful to be fa m ilia r with the idea of the m ultip licative inverse 

before considering division in the residue number system.

Assume i t  is desired to divide x by y in the real number system,
y y 1 1

then — can be w ritten as ^  = x . — where — is the m ultip licative  inverse
j  y j j

of y , and thus division by y can be replaced by m ultiplication with j  .

I f  ^  is  not an integer in the real number system, then i t  can 

not be represented in the residue number system and division o f x by

y is not defined in the RNS. But fo r y  an integer, in other words, when

x is a multiple o f y , the idea o f a m ultip licative inverse can be used 

to perform division.

Definition 4: I f  0 < a < m and l ab |m = ^en a 1S ca^ed the m ultip licative

inverse of b. mod m and is  denoted by a *  |g jm .

The quantity |g |m exists i f  and only i f  (b,m) = 1 and |b |m i  0 .

In this case |g |m is  unique and division can be performed as

ljH« = 'x • 'jUm (2-9>
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2.3.3 Conversion From RNS Using Chinese Remainder Theorem (CRT)

In this section conversion from the RMS to any other number system is 

discussed. This conversion is made possible using a theorem from number 

theory [1] called the Chinese Remainder Theorem.

Given the residue representation (r-j, r2 , . . . ,  rn) of x, the 

Chinese Remainder Theorem makes i t  possible to determine |x |^ , provided 

the greatest common divisor of any pair of moduli is one or moduli are 

pairwise re la tive ly  prime, l-xl^ is then given by the following equation:

III *

J J

The following example illu s tra tes  the procedure to convert a 

number from its  residue representation using Chinese Remainder Theorem.

Example 2:

le t  m-j = 5, m2 = 7, = 9

3 ,
then M = H m. = 5 . 7 . 9 = 315 

i= l 1

m-j = 63, m2 = 45, m̂  = 35.

n r .
(2 . 10)

n
where M = n m., 

i= l 1

m. "i.
represents the m ultip licative inverse of m̂ mod m̂ .
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nu 2 45 7

' i '-3  '3 3
= 1 =  In  = 8 since |35 

35 y
x 8|

Chinese Remainder Theorem

( x L,= | in-, I —  L  + mo I == L  +M 1 1 1 r; 'm, 2 1 i  'm ,m-j 1 * -
fi3 1 f  

m3

o r

1 x lM= 1 63 . | r-j . 2 | 5 + 45 | r£ . 5 >7 +

Addition
moduli 5 7 9

x * 173 & 3 5 2

+y = 94 /| 3 4 +

|267|315 = 267 -------2 1 6

using equation (2.12) where ^ = 2 , ^ = 1 and r 3 :

|x |M = |63.4 + 45.5 + 35 .3 |3]5 = 1582 J315 = 267

which is the correct resu lt o f addition.

Subtraction
moduli 5 7 9

.x = 173 rt ? 5 2J W

-y = 94 /I 1 4 -

(2 . 11)

315 (2 . 12)

79  >  4
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using eq. (2.12) for (4 ,2 ,7 ) as (r-j»r2 , r 3)

|63.3 + 45.3 + 35.2 | 315 = 79.

I f  -ye nos. are also to be represented then the number range,

0 to 314, is divided as

0, 1, 2, . . . ,  157 positive numbers

158, 1 5 9 , . . . ,  314 negative numbers.

The following example explains the procedure when the result of 

subtraction is-negative
moduli 5 7 9

x = 94 - - r *  4
3 4

-y  = 173 — 1> 3 5 2

-79 - —o  1 5 2

using equation (2 . 12) ,  ( 1 ,5 ,2 ) ^236 since the result lies in the 

negative number range, i t  is a negative result therefore: subtract 315 

from this^236 -  315 = -79 which is the correct result of subtraction 

in signed number representation.

Multiplication

Choose the numbers such that the result of m ultiplication is

contained in the dynamic range
moduli 5 7 9

y = 6  1> 1 6 6 x

246  o  1 1 3

using (2.12) (1 ,1 ,3) -  246.
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Division

x = 312 = (2 ,4 ,6 ) 

y = 13 = (3 ,6 ,4 )

F irs t find the m ultip licative inverse of y^'s

1

lml 1 3 I5

1 | = I 1 1

H 'm2 1 5
1
7

i | = 1 1 1

y3 3 1 4 '9

= 2 since |3x2|g = 1

Division can now be performed by multiplying x..'s with m ultip licative  

inverses of y . 's

moduli 5 7 9

x = 312----------------------------- >  2 4 6

1  ̂ 2 6 7 x=---------------------------------------- o
y

312
using equation (2 .1 2 ), (4 ,3 ,6 ) -> 24 which is - y j  •

To ve rify  that division in RNS w ill not produce the closest integer value i f  

x is not d iv is ib le  by y , take 

x = 311 = (1 ,3 ,5 )  

y = 13 = (3 ,6 ,4 )

| |  | 315 = C l.3 ,5) . (2 ,6 ,7 ) = (2 ,4 ,8 )
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(2 ,4 ,8 ) -  242 f  [£ ]r = 24

where [ .J R indicates rounding to nearest integer. Note that there

is no relation between ^7 and |£-| . The reason is quite obvious.
y y 315

7̂ is not an integer and so |̂ -| has no meaning in the RNS. Two 
y y 315
conclusions can be drawn from the above examples: ( i )  The RNS is not

a weighted magnitude representation. The residue representation does 

not give any idea of magnitude and sign of the number represented.

( i i )  Division is not a simple operation. ( i i i ) Operations on a pair 

of residues is independent of other residue operations.

2.4 IMPLEMENTATION OF RNS USING LOOK UP TABLES

Recent advances in high density memory technology have made i t  

possible to implement the RNS operations using look-up tables stored in 

ROMS. The results of the operations can be precalculated and stored 

in the locations addressed by the input data. Binary operations are

then reduced to the accessing of data from the stored tables. This is

particularly advantageous in multiplication which becomes as simple and 

fast as addition. Speed of operation is then dependent only on the 

access time of the ROMS.

For a given modulus, m. <. 32, the operation of m ultiplication and 

addition modulo m. of the two numbers can be computed by looking up 

the result in a Ik x 8 bits commercially available ROMS. Using the 

same approach, operation moduli m-, 32 < m. <_64, would require a 4k x 8 

bits ROM or four Ik x 8 bits ROMS and so on.

The RNS is more e ffic ie n t than the binary number system for look 

up table implementation as i t  requires less memory for the same
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D
dynamic range. For example, with a wordlength of B b its , 2 numbers

p  p  OR
can be represented and therefore a total of 2 . 2  = 2  entries are

required to store the result of operations in look up tables. For
n Bthe same dynamic range, m.'s can be choosen such that n m. > 2 , then

2 1=1 each m. requires m. entries in the table. Hence a total of

n 2£ m. entries are needed as compared to the direct implementation 
i= l 1

or n p
which requires 2 n m. and for a reasonable value of n and m.'s

i= l 1 1

I  m, 2 «  22B .
i= l 1

As an example of an RNS implementation using look up tab le, Fig. 2.1 

illu s tra tes  a residue m ultip lier for modulo 31, followed by a 

residue adder to implement the function | |a .b |3-j + J c . d j 3-j. The input 

to each tab lesmodulo 31, can be represented by a maximum of 5 bits 

and the total of the two inputs require ten address lines, the 

output is five bits and so commercially available Ik x 8 bits ROMS can 

be used to implement this function. A total of three Ik  x 8 ROMS and 

two stages are required to compute the result. From Fig. 2 .1 , i t  is 

noted that ROM arrays o ffer the possibility of easy pipelining fo r high 

throughput. The data .from each ROM is latched and used as a partia l 

address for the next ROM. The only control function required is a latch 

pulse. For every latch pulse, new input is accepted and a new output 

is generated. The throughput rate o f  the system is equal to the 

inverse of the access time of ROM plus latch settling  time.
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Another advantage of the look-up table is that i t  does not 

require any extra hardware for addition or multiplication with a 

constant. The constant can be pre-multiplied or added and can be 

stored along with the result of the operation.

Example 3:

For modulus m = 9 compute

Z = | 5 |a . bI + 3 fc .d [ | with a=3, b=4, c=6 , d=8 .
9 9 9

The resu lt of the computation using residue arithmetic is 6 . Fig. 2.2 

shows the entries and the interconnections between the look up tables.

Two m ultiplication and one addition table is required to compute Z. 

The f i r s t  mil tip iica tio n  table generates the result of m ultiplication  

per-multiplied by 5, modulo 9, and second table generates the result of the 

second m ultiplication pre-multiplied by 3, modulo 9. Note that 

jnuItiplication by 3 and 5 does not require any extra storage and does 

not introduce any extra delay.

2.4.1 Addition/Subtraction Using Sub-Moduli 

As mentioned e a r lie r , commerically available ROMS can be used to 

store tables for the RNS arithmetic, but this imposes an upper lim it  

on the largest modulus to be used. To implement arithmetic modulo 

m. < 32, Ik  x 8 bits ROMS can be used, operation modulo 32 < m.. ^ 6 4  

would require a 4k x 8 bits ROMS or four Ik x 8 bits ROMS and operation 

modulo 64 < m. <, 128 would require 16k x 8 bits ROM or sixteen of Ik  x 8 

bits ROMS and so on. As w ill be explained in the next chapter, prime 

moduli, 64 < m̂ < 512, are required to implement a pratical NTT, the use
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of sixteen or more ROMS does not seem a very e ff ic ie n t approach. In 

order to increase the implementation e ffic iency , the same technique 

of Breaking a large dynamic range into smaller moduli can be used to 

implement the addition/subtraction modulo a large modulus. The 

only constraints on the choice of sub-moduli is that they should be 

large enough to contain the result o f the operation modulo main 

modulus and should be re la tiv e ly  prime. For example, i f  main modulus 

is m.j, then the maximum number which can occur is m.. -  1. The maximum 

result of addition is 2 (m.. -  1 ) and therefore the sub-moduli should be 

chosen such that th e ir  product is greater than 2(m. -  1). Mathematically 

the condition can be represented as

ml i  x m2 i > 2 m̂i " ^  (2 * 13)

where m .̂ and are the sub-moduli.

M ultip lication can not be implemented e ff ic ie n tly  using the sub-moduli 

approach as more than two sub-moduli are required to contain the result of 

m ultip lication , modulo the main modulus. However, for prime moduli, there 

exists an e ff ic ie n t method to implement m ultip lication u tiliz in g  the • 

sub-moduli approach and w ill be dealt with la te r .

Fig. 2.3 illu s tra tes  the addition modulo 19 using 6 and 7 as sub­

moduli. F irs t note that 6.7 > 2 0 9 -1 ) and so these are appropriate 

sub-moduli, which w ill produce the correct result of addition modulo 19.

This example is  c learly  not an e ff ic ie n t one as only one ROM would be 

necessary to implement addition modulo 19 but this e x p lic it ly  shows the
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implementation using sub-moduli.

Example 4:

Assume Ik x 8 bits ROMS are available to implement addition/ 

subtraction modulo 191. Numbers from 0 to 190 can be represented 

by 8 b its  and hence a to ta l of 16 input (address) lines are required 

and therefore the memory needed is 64k x 8 b its  or 64 ROMS of Ik  x 8 

bits each. The maximum value o f the sub-moduli that can be chosen 

is 31 which have five  b it  representation and the look up table w ill  

require a to ta l of 10 address lines and so Ik  x 8 ROMS can be used 

to store the tables. Fig. 2.4 shows the implementation using sub­

moduli 17 and 23, both have five  b it  representation. In the f i r s t  

stage, the numbers to be added are reduced modulo 17 and 23. In the 

next stage, addition modulo 17 and 23 is performed and in the fin a l stage, 

the result is reconstructed and corrected using Chinese remainder 

theorem to produce the resu lt modulo 191.

A to ta l of seven Ik  x 8 ROMS are required to implement addition/ 

subtraction. I t  is obvious from th is example that sub-moduli scheme 

saves a lo t of memory at the cost o f increasing the time of operation.

I t  requires three stages to compute the result whereas direct implementation 

would have required only one stage but the tremendous saving in hardware 

is obviously more advantageous.

For implementing subtraction, the same scheme is used except that 

subtraction tables are required in the 2nd stage of Fig. 2.4 and the 

entries in reconstruction tables are d iffe ren t.
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2.4 .2  M ultip lication Modulo A Prime Number

As explained in the previous section, look up tables speed up 

the operation of addition-m ultip lication , i f  they can be implemented 

e ff ic ie n tly  in hardware. For moduli m.. <_32, commercially available  

lk  x 8 ROMS can be used to store the tables of addition/m ultip lication .

For large moduli, addition/subtraction can be implemented e ff ic ie n tly  using 

the sub-moduli approach. For m u ltip lication , however; the d irect application 

of the sub-moduli scheme does not o ffe r an e ff ic ie n t way. Taylor [2] recently 

proposed a scheme to implement m ultip lication modulo (2njJ ,2 n)'. Jull.ien [3] 

presented an e ff ic ie n t scheme to implement m ultip lication modulo a prime 

number. For practical NTT's, moduli of in te rest are primes and 

therefore Ju llie n 's  scheme can be used to implement m ultip lication .

A complete description of the scheme is as follows.

The residue classes (mod m) form a, commutative ring with iden tity  

with respect to addition and m ultip lication modulo m, tra d itio n a lly  

known as the ring of integers modulo m or the residue ring and denoted 

by Zm> The ring of residue classes (mod m) contains exactly m d is tin c t  

elements. The ring o f the residue classes (mod m) is a f ie ld  i f  and 

only i f  m is a prime number. Thus the non-zero classes of Zm form a 

cyclic m ultip lication group o f order m-1 , { 1 ,2 , . .  ,m -l}, with

m ultip lication  modulo m, isomorphic to the addition group {0 ,1 ,2 , . .  ,m-2 } 

with addition modulo m-1 .

This property of isomorphism can be used to implement m ultip lication  

and is analogous to m ultip lication  using logarithms.
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For a prime modulus, there exists a set of integers, called prim itive  

roots, whose repeated m ultiplications generates a ll the elements of the 

m ultip licative group.

\at \m = a e (1 ,2 ,. .  ,m-l > (2.14)

where a is the prim itive root and t  is  the index of a. For d iffe ren t  

values of t ,  d is tin c t elements o f the f ie ld  are generated. Note that 

zero does not have an index and therefore m ultip lication by zero needs 

extra care. However in look up table implementation, m ultip lication  

by zero can be taken care o f easily.

Example 5:

For modulus 11, the prim itive root is 2. Table (2 .1 ) shows the 

element and the respective indices o f the f ie ld .  M ultiplication |6xl0|-j^=5 

can be mapped into addition of indices |9+5|^q=4. 4 is the index of

5 and the correct result of m ultip lication is obtained. In th is way

X indg *

1 0
2 1
3 8
4 2
5 4
6 9
7 7
8 3
9 6

10 5

Table 2 .1 : Index of the elements mod 11.
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m ultip lication is replaced by addition and can be implemented using the 

sub-moduli approach fo r large moduli.

The following steps are required to perform m ultip lication  

using the index method.

CiI Find the indices of the numbers to be m ultip lied.

C iil  Add indices mod m-1.

C i i i l  Perform inverse index operation.

Our main in terest is in look up table implementation and therefore 

a sub-modular ROM adder can be considered. Here the modulus is 

decomposed into two re la tiv e ly  prime moduli and the addition is 

carried out within this two moduli system. The fina l result is re­

constructed using another look up table. This reconstruction table can 

include:

Ci) sub-moduli reconstruction using Chinese remainder theorem.

C ii) Modulus over flow correction.

C iii)  Inverse index look up.

The following example illu s tra te s  the complete procedure. Consider the 

operation, |x.y|^g=Z and choose sub-moduli 6 and 7 which gives a composite 

modulus 6x7 = 42 > 2x19. Fig. C2.5) shows the required tables and 

appropriate interconnection. M ultip lication  by zero is  invalid  using the 

index method, an invalid  index (in this case,7 ), is stored as the index of 

zero. In the inverse look up, knowing that 7 w ill never occur except 

by m ultip lication of zero, zero is stored to give the correct result 

of m ultip lication . Consider x=13 and y=15, the resu lt is |13xl5|^g=5.
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I f  the look up tables of Fig. (25  ) are followed (resu lt at every 

stage is in square ) the correct resu lt is obtained.

Fig. (2 .6 ) shows the block diagram for m ultip lication modulo

191 using sub-moduli 30 and 31. Note the s im ila rity  between Fig. (2 .4 )

to perform addition and Fig. (2 .6 ) to perform m ultip lication . Both 

operations now take the same time, number o f stages and same number 

of ROMS.

2.5 SUMMARY

In th.is chapter the basic idea of modular arithm etic was presented.

The residue number system was described and was applied to perform 

binary operations namely addition, subtraction, m ultip lication and 

division. The method was c learly  illu s tra te d  by using examples. The 

a d o p tib ility  of the RNS fo r a look up table implementation of 

m ultip lication and addition was shown.

From the discussion in th is chapter i t  can now be concluded that

the RNS is an e ff ic ie n t and fas t way of performing addition, subtraction

and m ultip lication since i t  is inherently a carry borrow free system and 

there is  no in te rd ig it  dependence. Division is possible only in certain  

cases.

The RNS also offers the best resu lt fo r hardward implementation 

using look up tables. M ultip lication  modulo a prime number can be 

e ff ic ie n t ly  implemented and offers the same speed of operation as 

addition.

The ideas w ill now be used in the next chapter fo r the defin ition  and 

implementation of NTTs.
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CHAPTER 3

DIGITAL CONVOLUTION AND IMPLEMENTATION 

USING TRANSFORM TECHNIQUES

3.1 INTRODUCTION TO DIGITAL CONVOLUTION

Fin ite  d ig ita l convolution has many powerful applications in 

d ig ita l signal processing. I t  is used to implement non-recursive 

or f in ite  impulse response d ig ita l f i l te r s .  I t  is also used to carry 

out auto and cross correlation as well as fo r computation such as 

polynomial m ultip lication [43.

3.1.1 F in ite  Linear Convolution

Fin ite  lin ear discrete convolution of two sequences is mathematically 

represented as
n.,+n2- i

yCn) = £ h(n-m) x(m) n=0 , l  , 2 , . .  .(N-,+N9 - l ) (3 .1 )
m=0 1 *

where x (n ), h(n) and y(n) are the f in ite  d ig ita l sequences of length 

N.j, N2 and N-j+Ng-l respectively. Fig. 3.1 shows a simple p ic toria l 

representation of how linear convolution is carried out in practice.

Fig. .3 . 1 (a) shows a typical sequence x(n) that is non-zero in the range 

0 < n < 4. Fig. 3.1(b) shows the sequence h(n) that is  non-zero for 

0 <_ n _< 7. Fig. 3.1(c) shows the mirror image of h(n) along the y-axis.

Fig. 3.1(d) to Cf) show simultaneous plots of x(m) and h(n-m). for 

n=T j4 , 11 . Clearly fo r n < 0 and n > 11, there is no overlap between 

x(m) and h(n-m), therefore y(n) is  exactly zero. F inally  Fig. 3.1(g)

32
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shows y (n ), which is the desired convolution.

"3.1 .2 Periodic or Cyclic Convolution 

I f  h(n) represents one period of the periodic sequence hp(n ),

and xCn) represents that of xp(n ), of both period N samples, then the

periodic or cyclic convolution of h(n) and x(n)  is defined as

N-l
yCn) = I  x(m) h |n -m |N fo r n = 0 , 1 , . .  ,N-1  (3 .2 )

m=0

and is represented as y(n) = x(n) *  h(.n). Because of the 

period ic ity , sequences x (n) and h (n-m) are considered
r r

only in the interval 0 _< m <_ N -l.

As the samples of hp(n-m) slide past m=N-l, the identical samples

appear at m=0. Thus the term cyclic convolution is a description of 

the convolution of two sequences defined on a c irc le . When two periodic 

sequences are convolved, the output sequence is periodic and of the same 

period.

3 .1 .3  Linear Convolution Via Cyclic Convolution 

Consider two f in ite  duration sequences x(n) and h(n). The duration 

of x(n) is N-j and the duration of h(n) is Ng. The lin ear convolution of 

x(n) and h(n) yields the sequence y ( n )  of duration N^+Ng-l. To obtain 

th is sequence using cyclic convolution, both input sequences should also 

be of period N -j+ ^ -l. Zeros can be appended to these input sequences 

to make them of duration N^+Ng-l and then c ircu lar convolution can be 

used to obtain y (n ).
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3.2 DISCRETE FOURIER TRANSFORM

Fin ite  d ig ita l convolution can be implemented using transforms 

having the cyclic convolution property (ccp). The characteristics of 

these transforms are such that the transform of convolution in the time 

domain is equal to the term by term product in the transform domain.

One of the transforms that exh ib it ccp is the Discrete Fourier 

Transform (DFT) and is given by

N-l nl>
DFT X(k) = I  x(n) W , k = 0,1

n=0

where W = exp ( -0  j|p).

N-l (3 .3 )

The inverse transform (_IDFT) is given by

(3.4)

Then the cyclic convolution property is given as 

I f  yCn) -  x(n) ( * )  h(n)
(3 .5 )

then Y(k) = X(k) . H(k)

where X, H and Y are the respective transforms of x, h and y. 

To prove the ccp of DFT, take 

N-l
(3 .6 )

Take the transform of both sides of equation (3.6)

YDCk) = I I I  x CD hCn-D } e
p n=0 1=0 p

N-l N-l
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N-l N-lIN-1 N - l
I  -xD0 1 i I  h(n-U • e 

1=0 p n=0_______ __

, 2*  Cn-l)-k  
N } e

J

KpCk)

XpCk)

or

YpCk} = XpCk) • HpCk). which is the desired resu lt.

Using the ccp of DFT, convolution can be implemented in the 

following way

i )  take the DFT of both the input sequences 

i i )  obtain the term by term product in transform domain 

i i i l  perform the inverse DFT to obtain the output sequence.

The block diagram of Fig. 3.2 shows the complete procedure to 

perform convolution.

3.3 FAST FOURIER TRANSFORM (FFT)

The term FFT refers-to  a number of algorithms that employ a 

number of methods for reducing the computation time required to 

compute a DFT. They make use of the symmetry and periodicity of 

the exponential factors, W, used in the defination of DFT, to de-
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DFT
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DFT

Fig. 3.2 Convolution using DFT method
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compose a long DFT computation into smaller length DFT computations.

To compute an N point DFT, a to ta l o f (N -l) complex m ultiplications

and N(N-l) additions are required while using the FFT for the same
Ntransform requires approximately loggN m ultip lication and N log2N 

addition for radix 2 algorithm. Basically there are two types of 

FFT algorithms, called'decimation in time (DIT) and decimation in 

frequency (D IF).

3.3.1 Decimation in Time Algorithm (DIT)

The algorithm in which the input sequence (time domain) is 

decomposed into smaller sequences is called a DIT algorithm. The 

procedure is illu s tra te d  fo r an N point sequence where N = 2r , 

r is an integer.

By defin ition :

N- 1 _ u
X(k) = I  x(n) W k = 0 ,1 ,2 , . . ,N-l

n=0

Define two point sequences x-j(n) and x2 (n) as the even and odd 

members of x(n).

x-j (n) = x (2n) '
n = 0 , 1 ,2 , . .  , |  -  1

x2 (n) = x(2n+l)
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Then N-point DFT is

Xtk) = I  x(2n l W?n k + I  aC2n+l) WNC2n+1)k 
n=0 n n=0  N

. 2 ir 0 . 2u/N/2
? M * “J

where WN = e = e = WN /2

N , n ,
2 2 

XCk) = J x-jCn) Wjk2 + wĵ  I  x2 (n) wj] k 2

= X-j (k) + Wk X2 Ck) 

where X-jCk) and X2 Ck) are point DFT's, and of period ^  . Therefore,

XCk) = X1 Ck) + Wk X2Ck) 0 < k < | - 1

= X1 Ck-J-) + wj X2Ck4) |  < k £  N-l .

2As mentioned, fo r d irect evaluation of an N point DFT, N m ultiplications
Nare required. S im ilarly , d irect eva-luation of an ^ point DFT, requires 

t?r} 2 m ultip lications. I f  the above procedure is used to compute an N point 

DFT, a to ta l of 

m 2
Ĉ -) • 2 + N m ultiplications are required and

i.2 ^2
fo r F  »  N approximately g- m ultip lication are required and

a 50% saving over the d irect evaluation of an N point DFT is obtained fo r
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a reasonably large N, The procedure is repeatedly applied to each of the 

successive subsequences, until only two point DFT's are le f t  to be 

evaluated.

A flow graph representing the basic operation o f the decimation in 

time algorithm is called a b u tte rfly  and has inputs A and B that are 

combined to give two outputs x  and y via the operation

-X = A + B

y = A -  wj; b.

Fig. 3.3 shows the b u tte rfly  unit and Fig. 3.4 shows the flow graph 

fo r 8 point DIT algorithm.

3.3 .2 Decimation in Frequency Algorithm DIF

In this version of the FFT, the.input sequence x(n) is partitioned  

into two sequence each of length jj- in the following manner. The f i r s t  

sequence xq(n) consists of f i r s t  rj- points of x(n) and the second 

sequence x2 (n) consists of the la s t j  points of x (n ). Thus
M

x-j(n) = x(n) n = 0 , 1 , 2 , . . .  ,^ -1

x2 (n) = x(n + ?[■) n = 0 , 1 ,2 , . . .  , | - 1 .

The N- point DFT o f x(n) is then

L i  N.!

X(k) = I  x-,(n) Wjjk + I  x2 (n) wjjk+NK/ 2 
n=0 1 N n=0  ̂ N

N- l
2 _ - j  TTk k

= I CxqCn) + e x«Cn)) WN 
n=0
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X « A + Wjj B

4**N

F i g .  3.3 2 point butterfly  (DIT)

x(0) X(0)

x(7) X(7)

F1g. 3.4 Eight point butterfly  (DIT)
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Decompose X(_kl into even and odd sample sequence

2T 1
XC2k}= I £x1Cni + *,CnU wjrk

n=0

N_!
2
*  ,nkJ(C2k) = ^  Cx-,Cn> + *2(n)) wf™2 (3.7)

and

n=0

N 1 r1
XC2k+l) = I  Cx, Cn) -  x2 (n )) w|](2k+1)

n=0

N 1 r1
I  {Cx-jCn) -  x,Cn) wjj } V # 2 (3 .8 )

n=0

(3 .7) and (3.8) are equivalent to two points DFT's. The procedure is 

repeatedly applied to each of the even and odd samples output subsequences 

until f in a lly  two point DFT's are le f t  to be evaluated. Fig. 3.5 shows 

the b u tte rfly  unit and Fig. 3.6 shows the flow graph fo r 8 point DFT 

using DIF algorithm.

3.4 NUMBER THEORETIC TRANSFORM (NTT)

Agarwal and Burrus [5 ] have showed that the existence of an N point 

transform having the cyclic convolution property depends on the existence 

of a .generator alpha (a) that is a root of unity of order N, and the 

existence of N"^. In the complex number f ie ld ,  the DFT is the transform 

which exh ib it cyclic convolution property with a equal to exp (,-j j^-)*
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A

B

X * A + B

Y » (A-B) W,N

Fig. 3.5 2 point butterfly  (DIF)

x(0)

* 0 )

x(2)

x(3)

x(4)

x(5)

x{6)

x(7) X(7)
J--------------------►! Stage 0 J*. -►{Stage 1 |«— Stage 2

F1g. 3.6 Eight point butterfly  (DIF)
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I t  supports any length of the transform because of the variable periodic ity  of

exp C-j . 2 tt/N) but at the same time i t  involves m ultip lication by

irra tio n a l coefficients (sines and cosines) making exact computation 

impossible on a d ig ita l machine. At each stage, the output has to be 

scaled down to avoid overflow thus requiring some kind of scaling 

operation and at the same time introducing extra computational errors.

Pollard [4 ] has shown that transforms defined in a f in ite  ring or 

f ie ld  exh ib it the cyclic convolution property with a suitable choice of 

the ring or f ie ld  and the appropriate alpha. These transforms are 

known as Number theoretic transforms (NTT) and defined as

XCkl -  I I  Jt(nl cnk' | (3 .9 )
n=0 M

and

*Cn) = | N" 1 I  X(k) c fnk | (3.10)
k=0 M

where N”  ̂ belongs to the r in g /f ie ld . Unlike the DFT, NTT's do not 

allow arb itrary transform lengths. The maximum attainable length N, 

depends upon the choice of the ring or f ie ld  and alpha. Before discussing 

the choice of parameter, the in v e r t ib i l i ty  and convolution property of 

NTT is established in the next section.

3.4.1 In v e r t ib ili ty  and Convolution Property o f NTT

I f  a is the root o f unity o f order N, which is one of the basic 

conditions fo r the existence of the NTT, then the following relation holds

|aN jlM-l = 0  j  = an integer (3.11)
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which can be factored aŝ

N- 1 n-i
Cot -  1 }  1  ct = 0

p=0

Therefore

N" 1 n i
I  aPJ = N i f  j  3  0 mod N

p=0

N-l .
£ ap = 0 otherwise

p=0

since fo r j  t  0 aJ -  1 f  0 

In v e r t ib ility

Assuming a ll  the operations are performed mod m, substituting  

C3.9) into C3.10) and using C3.13)

.1  N-1 n\f i N-l N-l nlr
JcCn) = N X XCk) ct = N 1 1  * ( u )  a  . a

k=0 k=0 u=0

1 N "1 N - 1 V ( n
= N I  I  x(u) aktu' n) = x(n)

k=0 u=0

and hence the in v e r t ib il i ty  of NTT is proved.

Convolution
N-l f

Let X (f) = I  uCt) a 
t =0

N-l
H (f) = 1 hCv) ct 

v=0

Y (f) = X (f) . HCf)
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Then, by (J3.101, the inverse transform o f Y (f l

1 N-l
yCsl = n” I  x i f t  • HCfi • o'

f =0

-fs

N-l N-l N-l
= N I  I I  -xCtJhCv) afCv+t-s)

f =0 t=0 v=0

I  aCtlhCs-t) • N -  I  x ( t )h (s - t )
t =0

Since the summation is modulo N, hence this is  the

cyclic convolution and the CCP is proved.

3.5 CHOICE OF THE PARAMETERS FOR THE NTT

Practical considerations dictate a selection of r in g /f ie ld  that 

supports a transform whose parameters lead to e ff ic ie n t implementation 

of modular arithm etic, e ith e r in hardware or software. Most o f the 

reported work on the NTT has supposed that the hardware w ill be 

implemented using the binary number system. In the conventional binary 

arithm etic, residue reduction is p articu larly  easy when the modulus can 

be represented as power of two. Also m ultip lication by a w ill be simpler 

i f  a is  also a power of two. In that case m ultip lication by o reduces 

to b it  sh iftin g . These restric tions severly l im it  the maximum a tta in ­

able transform length.

We are interested in the implementation of NTT using ROM arrays 

and therefore the moduli and generators can be selected purely on number 

theoretic basis to maximize the transform length. The following
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definitions and theorems w ill be helpful in determining the attainable  

transform length fo r d iffe re n t .moduli.

Definition 1: The Euler's to tie n t function t (M} is defined as the number 

of integer in ZM that are re la tive  prime to M, e .g .,  fo r M = 5 ’i'CS) = 4.

Definition 2: For M a prime number HM) = M -l.

r l  r 2  r nD efin ition 3: I f  M can be represented as M = p̂  . Pg . . .  Pn 

where p .'s  are primes than 'i'CMl = M(1 -  ^—) 0  -  -J—) . . .  0  -  )•

Theorem 1: Euler's theorem states that the maximum order of an element 

in ZM is ^CM).

The implications of Euler's theorem are that maximum order o f a 

in the ring ZM is ^(M) th at is 1 or the maximum value of transform

length in Z  ̂ is ^CM). Mathematically Nmax = y (M) and the allowed transform 

lengths should divide

Consider the case when M is  even, then i t  contains a factor of 2 

and therefore the maximum transform length is  one, which is p rac tica lly  

useless. This implies that M can not be taken as a m ultiple of two.

Next take the case when M is odd and represented as 2 -  1. Let 

k be composite and represented as pQ, with p prime, then 2 ^ - 1  divides 

2 ^  -  1 and the maximum transform length is  2? -  1. Therefore only 

prime values o f k need to be considered. These numbers are known as 

Mersenne numbers. Radar [ 6 ]  has proposed transforms defined in the ring 

of integers modulo Mersenne nuntoer. These transform are referred to as 

Mersenne Number Transform CMNT).
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I t  has been shown that transform of length 2p exists and the 

corresponding a is -2. The disadvantage of th is m ultiplication free 

MNT is that the transform length, is  not a power of 2 and not even highly 

composite and therefore fast FFT-type computational algorithm can not 

be used.
k k+1For M = 2 + 1  and k odd, 3 divides 2 and the maximum transform

length is 2. Consider k even and le t  k = s • 2t  where s is odd. Then

2  ̂ + 1 divides 2 S*  ̂ + 1 and the length of the possible transform w ill
2̂  2*” be governed by 2 + 1 .  Therefore, integers o f the form 2 + 1  are of

in terest. These numbers are known as Fermat numbers. Agarwal and

Burrus [7J proposed transforme defined in the ring of integers modulo

Fermat number. These transforms are referred to as Fermat number

transforms. Fermat numbers up to F  ̂ are primes. In [7 ] ,  i t  has been

shown that an FMT-with a = allows N = 2t+^.

However the main disadvantage of the MNT and FNT is the rig id

relationship between the dynamic range and attainable transform length.
32For example, with a 32 b it  word machine using Fg = 2 + 1, N = 128 for

a = fZ . There is also a lim ited choice of possible word lengths.

Other authors have used d iffe ren t fie lds but s t i l l  the 

transform length is severly lim ited. The solution to this problem 

is found by computing the transforms over extension fie lds .

3.5.1 Transforms Defined Over Galois Fields 

Definition 4: For any prime m and any positive integer n, there exists

a f in ite  f ie ld  with m11 elements. This unique f ie ld  is commonly denoted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

by the symbol GF(mn) and is called a Galois f ie ld . Any f in ite  fie ld  

with mn elements is a simple algebric extension of the f ie ld  Z^.

Let F be a f ie ld . Then any f ie ld  K containing F is an extension 

of F. I f  x is a root of some irreducible polynomial f(x )  e F[x] such 

that fOO = 0, then the extension f ie ld  arising from a f ie ld  F by the 

adjunction of a root X is called a simple algebric extension,denoted 

by FCx).  Each element of FCx) can be uniquely represented as a polynomial.

3q  ̂ â  x "J* . . . .  a  ̂ i ^  , â  e F.

The f ie ld  of complex numbers is an example of an extension of

the f ie ld  of real numbers, i t  is generated by adjoining a root j  = S-\
?

of the irreducible polynomial a  + 1 .

I f  f (x )  is an irreducible polynomial of degree n over Z^, m prime, 

then the Galois f ie ld  with m11 elements GF (mn) is defined' as the f ie ld  

of residue class o f polynomial of Zm [x ] reduced modulo (fO O ).

Pollard [4 ] has shown that transforms of the form

N-l .
X(k) = I  x(n) a 

n=0

l N" 1 n b
xCn) = N I  x tk ) a 

k=0

defined over the Galois fie lds  of mn elements, where m is a prime, also 

exh ib it ccp. The maximum attainable transform length is given by Nmax=mn -  1 

with, restric tion  that a is cyclic of order N in GF (m11).

Thus the extension fie ld s  allow a greatly increased transform length 

fo r the same value of m and the problem of obtaining large transform
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length is resolved. In order that the implementation of 

e ff ic ie n t ,  two things must be considered a fte r the choice of m and 

N:

Ci) construct the Galois f ie ld  GF (mn) such that the m ultip lication  

and addition of f ie ld  elements require the smallest possible 

number of operations;

C i i l  search fo r the generator o f an N element cyclic sub-group in

GF Crnn 1» a, that has the simplest form possible so that the number 

o f operations required fo r m ultiplications by powers of a are 

minimized.

3.5 .2 Construction of Galois Field GF Cm11)

To construct a Galois f ie ld  o f m11 elements, f i r s t  an irreducible  

polynomial is to be formed. The form o f the irreducible polynomial 

dictates the complexity of the computation in the f ie ld  since addition 

and m ultip lication is defined as the polynomial addition and 

m ultip lication , followed by polynomial reduction modulo f (x ) .  We re s tr ic t  

our in terest to GF of 2nd degree as they s t i l l  o ffe r simple hardware 

implementation and prov-fde transform lengths which are quite suitable  

fo r practical purposes. We take the two cases o f irreducible polynomial 

and find out the complexity o f the computation.

p
Case 1: Let f (x )  = x + x + 1 be an irreducible polynomial o f degree

2 over GF (m). Then, the extension f ie ld  in which the given polynomial 

has a root, denoted by w, may be described by
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GFCm2) = {a + bw| a, b e  GFCm}}

and w2 + w + 1 = 0 in GFCm2 ).

Take the m ultip lication of two elements of the fie ld

| (a + bw) • (a 1 + b'w) |m

= | (aa1 + bb'w2 ). + wCab' + a 'b ) |m 

2Dividing the result by w + w + 1

= | ( a 1a -  bb')  + wCab' + a'b -  bb' ) |

Thus m ultip lication of f ie ld  elements require 4 binary m ultiplications  

and three binary additions.

p
Case 2: Let f (x )  = x -  r  r  e GFCm). Then the extension f ie ld ,  in

which the given polynomial has a root is described by

GFCm2) = {a + Ab| a, b e GFCm)}

and A2 -  r  = 0.

M ultip lication of two elements is now performed as

Ca + bA) • Ca‘ + b'x) = | ( a a '  + bb'A2) + A(ab' + a 'b ) |m

= |Caa' + r b b ' )  + A(ab‘ + a1 b) | m

2 2 Residue reduction mod ( a -  r ) is simple since A = r. M ultip lication of

f ie ld  elements require 4 binary m ultip lication  and 2 addition. Since

ROM arrays w ill be used fo r the implementation of NTT, m ultip lication by
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constant, r  does not require separate stage. Because of the
2sim plicity of the (x -  r) polynomial, i t  is used to construct the 2nd 

order Galois f ie ld .

After the structure for irreducible polynomial has been decided,
p

the next problem is to find a suitable value of r  such that x = r (mod m) 

is not solvable in GF(m).

Baraniecka [ 8 ] has described a complete procedure for finding the 

values of r for d iffe ren t fie ld s . Following is a b rie f discussion of 

the method presented in [ 8 ] ,

All the prime numbers can be divided into two groups.

4n + 1 e .g ., 1, 5, 13, 17, . . .

4n + 3 e .g ., 3, 7, 11, 19, . . .

The most t r iv ia l  value o f r is -1 but for the case of 4n + 1 type

p rim e s ,/T  can be considered as a member of GF(m) and hence Galois
p

fie lds of 2nd degree can not be constructed using the polynomial, x + 1 .

For example, i f  m = 5, f -T  is congruent modulo 5 to 2 and 3. For 4n + 3

type primes, / T  can be used to construct Galois fie lds of 2nd degree 
2

and GF(m) is isomerphic to the residue class of complex, so called  

Gaussian integers. The elements of the f ie ld  are defined as 

a + /^T b, a, b e GF(m). To find an irreducible polynomial for primes 

of 4n + 1 type, we make use of the following theorem.

Theorem 2: I f  g is a generator for the m ultip licative group GF(m) -  {0} >
2

then x -  g is an irreducible polynomial in GF(m).

For example, 13 is a prime of 4n + 1 type. I t 's  generator of the 

cyclic group is 2 . I t  can be easily verified  that
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p
x = 2 mod (13) has no solution

2
or x -  2 is an irreducible polynomial in GF(m). Hence a Galois f ie ld  

of 2nd degree can be constructed using r= 2. The elements of GF(m ) 

w ill be defined as a + b, a, b e GF(m).

3 .5 .3  Searching fo r the Generator a in GF(m )

We f i r s t  summarize what has been presented so fa r:

( i )  choose the transform length N which is suitable for the application

( i i )  choose the prime which w ill give this transform length over a Galois 

f ie ld  of 2nd degree

(iii)c o n s tru c t the 2nd order fie lds in which binary operations are simpler.

The next problem is now to find out the generator,a,which is of

the order N in GF(m ). To search fo r the generator a fo r 4n + 3 type, 

the following theorem is stated. The prime, m. = 4n + 3, can be represented 

as m. = q . 2  ̂ -1  with q odd.
2Theorem: Given a base f ie ld  Zm and an irreducible polynomial x -  r

over GF(m), the extension f ie ld  Zm( / r )  has a cyclic subgroup of order
D

N = 2 . The maximum value of B is P + 1* The generator a has the form

3 +  y  v ' r .

For 4n. + 3, a prime m. = r can be taken as -1 and hence the general form 

of a is 3 + YvCf . Transforms over GF(m2) with r  = -1 can be used 

to compute convolution on. complex data or convolution on two blocks of 

real data.
3

Example: For m = 7 =1.2  -  1 the maximum radix two transform

over GF(72) is N = 2 ^  = 16. a fo r th is prime can be chosen to be
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2 + 3-7-T and i t  can be verified  that the generator has order 16.

Other values of a are also possible and can be used fo r the transform.

4n + 1 primes can be represented as m = q • 2P + 1 where (q,2) = 1. The

largest possible radix 2 transform length in GF(n£), is N = 2P+^. For

primes of th is  form, the generator has a simple form a = where
2 2x -  r  is an irreducible bionomial in GF(m ) .  This property is obtained 

from the following theorem.

Theorem 3: Let m = q • £  + 1, be an odd prime number. Then:

i )  I f  g is generator: for the m u ltip licative  group GF(m) -  (0 ) ,  then

x -  g is an irreducible polynomial in GF(m).

i i )  I f  g is as in ( i ) ,  then >̂g has m ultip licative  order q • 2k+1 in GF(m )̂

where elements are given as a + bv'g a, b e  GF(m).
_  k+1

iii)W e can find a generator vr, of a cyclic subgroup or order 2 in

GF(m )̂ where r  = geq with (e ,2 ) = 1 and x  ̂ = r  an irreducible polynomial 

in GF(m).

Example: Let the prime be m = 97 = 3.2 + 1. Maximum radix 2 transform

length over GF(97^) is N = 2^ = 64. From the tables of the prim itive  

roots, i t  can be found out that for the prime 97, g = 5.

According to theorem 3, v̂5 w ill  generate a cyclic subgroup of order 192, 

and the generator of the m u ltip lica tive  order 64 is given by a = / r  = ( y ^ 3e 

where (e ,2 ) = 1. A rb itra r ily  choosing e = l ,  a = >^8^ i t  can be verified  

that this a has order of 64 in GF(97^).

3.6 NTT USING RNS CONCEPTS

From the previous discussion, i t  can be seen that the NTT defined over 2nd 

order Galois f ie ld s , yields a practicable transform length and these 2nd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



order fie lds  can be constructed using polynomials for wh-ich the binary 

operation in GF(m ) is simplest. Although the transform length achieved 

is large enough fo r practical purposes, dynamic range is s t i l l  severely 

lim ited. This problem can be solved using RNS concepts. The NTT can be 

performed over d iffe ren t Galois fie lds  and then the fina l result can be 

reconstructed using the Chinese remainder theorem or a mixed radix 

conversion scheme [ 8 ] .  Thus computing the transform over a f in ite

ring which is isomorphic to a d irect sum of several Galois f ie ld  of 2nd
2 2 degree, R = GF(m-| ) + ........ + GF(mn ) increases the dynamic range to

n
n m.. The conditions for the existence of the NTT over the f in ite  

i= l 1
ring can now be restated.

2
i )  For each m., must be a prim itive Nth .root of unity in GF(m.. )

i i )  N [(m . 2 -  1) i = 1 ,2 , . .  ,n or in other words N|gcd(m..2 -  1 ), 

i 1 , . . .  ,n

As a practical example, assume a transform length of 32 points is

required. The prime moduli 17, 31 and 47 can be used and the dynamic
14 65range is then given by th e ir  product 17x31x47 -  2 ' and therefore

a word length of approximately 14 b its  is achieved. These are not the 

only choice of primes. Other primes can also be used for the same 

transform length but which w ill give d iffe ren t dynamic ranges.

Table 3.1 shows the primes and the maximum transform length that 

can be achieved using these primes. I t  may be noted that for any 

transform length N and the generator a , the transform, length is 

halved i f  a is raised to power two, fo r example, fo r prime 193
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Primes
m.

Factorization 
of m .-l

Factorization  
of m2- l

Maximum 
Radix 2 
Length 

in 
GFCm.)

Maximum 
Radix 2 
Length 

in 
GFCm?)

3 2 2 3 2 8

5 22 3.23 4 8

7 3.2 3.24 2 16

11 5.2 5.23 2 8

13 3.22 7 .3 .2 3 4 8

17 2 * 32 .2 5 16 32

19

C
M

C
MC

O 5.32 .2 3 2 8

23 1 1 .2 11.3.24 2 16

29 7.22 7 .5 .3 .23 4 8

31 5.3 .2 5 .3 .26 2 64

37 32 .22 19.32 .23 4 8

41 5.23 7 .5 .3 .2 4 8 16

43 7.3.2 11 .7 .3 .23 2 8

47 23.2 23 .3 .25 2 32

53 13.22 13.33.23 4 8

59 29.2 2 9 .5 .3 .23 2 8

61
2

5 .3 .1c 31 .5 .3 .23 4 8

Table 3.1 TABLES OF FIRST FEW PRIMES AND THE 
ASSOCIATED TRANSFORM LENGTH.
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the maximum transform length is 128 and the corresponding a is

/125. This same prime can be used for transform length 64 and the
\

a would be 125, for N = 32, a = 185 and so on. Thus fo r the smaller 

transform length, large primes can be used to provide large dynamic range.

Fig. 3.7 shows a conceptual block diagram to implement an NTT using 

the RNS. At the f i r s t  stage a d is tribu tor is required which can feed the data 

modulo respective primes to d iffe ren t units. Each prime requires a 

supporting memory structure and a computational un it. The advantage 

of using RNS is that the computation can be performed in para lle l and the 

speed of operation does not depend upon the number of primes used and 

hardware is the only lim ita tion  on the number of primes to be used.

After the computation, the fina l resu lt of the transform can be 

reconstructed in a reconstruction stage, using the ch. rem. theorem 

or mixed radix conversion.

3.7 SUMMARY

In this chapter, the implementation of convolution using transform 

technique has been discussed. I t  was shown that certain transforms 

exh ib it cyclic convolution property and can be used to implement c ircu la r  

or lin ea r convolution. The general structure of these transforms is

N ~ 1 n kX(k) = I  x(n) a where a is the Nth root of unity and N is the 
n=0

- i  —*Ntransform length. In a complex number f ie ld  fo r a = e , the 

transform is known as the DFT and exhibits the cyclic convolution 

property. The main disadvantage of the DFT is the m uliplication by
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irra tion a l coeffic ients , thus making i t  impossible to compute 

the transform exactly using binary arithm etic.

I t  was shown by d iffe ren t authors that the NTT defined over

f in ite  rings or fie lds also exhibit the ccp for suitable a. I t  was

assumed that these transforms w ill be implemented using binary

arithmetic and thus stress was given to the f ie ld  for which residue

reduction was simpler, a was chosen to have a simpler form preferably

a power of 2 so that m ultip lication by a reduces to b it  sh ifting .

This severly restric tes the choice of r in g /f ie ld  and also a can not

be chosen to y ie ld  the maximum transform length. In this chapter i t

has been assumed that the NTT w ill be implemented using ROM arrays

and therefore the moduli and a can be chosen free ly  to obtain the

maximum transform length. A ROM array implementation s t i l l  did not

allow a suitable large transform length in GF of 1st degree and therefore

GF of 2nd degree were introduced. The implementation of NTT in GF of

2nd degree were discussed and also i t  was shown that using GF of 2nd

degree increases the transform length to more than the square of the

transform length in the 1st degree fie ld s . The use of 2nd degree f ie ld ,

though increasing the transform length, does not solve the problem of

dynamic range. For an increased dynamic range, large moduli were

to be used, which are not e ff ic ie n t fo r hardware implementation. This

problem is solved through the use of the RNS by computing transform

in parallel^modulo several primes, (m^}, so that the dynamic range is 
n

given by M = n m..
i= l 1
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In summary, the following procedures may be followed for 

selecting the parameters of NTT.

(1) Choose the desired transform length N fo r the particu lar 

application.

(2) Find the dynamic range required fo r the particu lar application.

C3) Depending upon the dynamic range and transform length, choose

the suitable prime. For N > 64 and for large dynamic range 

requirements, i t  is more e ffic ie n t to go fo r the 2nd degree fie ld s .

(4) Construct the 2nd order fie lds  using a simple form of irreducible  

polynomial.

(5) Find out the generator a, which has the simplest form and have 

an order of N.

The complete discussion on choosing these parameters was presented 

in this Chapter. The above procedure is a tentative procedure and the 

fina l choice of the parameter is dictated by the e ff ic ie n t hardware 

realization  and the cost of the system. In the following chapter, a 

detailed discussion on e ffic ie n t hardware realization w ill be presented.
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CHAPTER 4 

IMPLEMENTATION OF AN NTT BUTTERFLY

4.1 INTRODUCTION >

The NTT processor mainly consists of a supporting memory structure 

and a computational unit commonly known as the b u tte rfly  unit. The 

main aim of the work presented, is to rea lize  the b u tte rfly  unit in 

hardware, compatible with the memory structure used with the NTT 

processor.

In th is chapter the design of the NTT b u tte rfly  is developed. The 

associated memory structure to support the NTT b u tte rfly  is  discussed 

as required but the actual hardware design of the memory structure is 

not undertaken. A multiplexed b u tte rfly  unit was designed fo r hardware 

implementation,using look up tables and the pipeline configuration*for 

real time applications. A detailed simulation of the basic required 

memory structure and the b u tte rfly  unit designed fo r hardware implementati 

was done. A fter the verifica tio n  of the simulation resu lts, the 

b u tte rfly  unit was implemented in hardware using look up tables stored 

in Eproms. The only control required to run the b u tte rfly  unit is  

a clock pulse and a c irc u itry  was designed and b u ilt  fo r generating 

control pulses.

61
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4.2 NTT PROCESSOR

The NTT has the same structure as the DFT and therefore for highly

composite transform length N, the fas t algorithm fo r computing the DFT

can also be used to compute the NTT. Analogous to the FFT, the fast algorithm

to compute the NTT w ill be called FNTT. Usually a sequential type

processor is used to compute the transform*-which saves hardware a t the

cost of slowing down the speed of computation. A multiplexed radix r

b u tte rfly  is used as a computational unit with some supporting memory
N Nstructure. This b u tte rfly  is accessed — x logr times where r  is the 

radix of the FNTT algorithm and N is the transform length. A conceptual 

block diagram of the NTT processor is shown in Fig. 4 .1 . The supporting memory 

is used to store the input data and the intermediate results of the 

computation. A control unit is also required to control the data 

flow to and from the memory, to keep track of stage of computation and the 

position of the b u tte rfly  in that stage.

4.2.1 Memory Structure

A great deel- of lite ra tu re  is availab le -fo r the memory organization 

of a FFT processor and is equally applicable to the FNTT. Pease [9] 

brought out an idea to use slow memory e ff ic ie n tly  by s p littin g  main 

memory into several sub-memories. Corinthois [10] used the idea presented 

by Pease and came up with an 0100 (ordered input-ordered output) 

algorithm which makes use of sequential memory.

A radix 2 b u tte rfly  unit requires a minimum of hardware and we re s tr ic t  

our interest to Radix 2 transform. The transform matrix can be 

represented as the product of matrices givesn by equation 4 .1 .
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Tm = n p' um s n " m m C4.1)
m=n

whera n =

and

log2  ̂ and s = ( 1  ̂ *  TgL and .x represents Kronecker product 
2

T2
1 1

1 -1
(4 .2 )

p' i  = r2 1-l X PN C4.3)
i - l

ui  = ^ i - l  x °N (4 .4 )
T -l

P'n = un = TN (4.5)

The operator, s, performs the two point transform on the input fed to

the computational unit. The two point transform requires only addition

and subtraction of the input data as is  obvious from the operator s.
NThe input data accessed from the memory are always j  points apart. The 

operator u performs m ultip lication by twiddle factors and p' is the 

permutation operator which shuffles the data to obtain the fina l output 

in ordered form.

This machine oriented algorithm requires two memory buffers, the 

input memory and the output memory, consisting of long s h ift
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registers and a computational un it. The input memory is divided into
Ntwo sub-memories which store ^ points. The one input from each sub­

memory is  fed to the computational unit and the output from the 

computational unit is stored in the output memory. A fter completion of 

each stage (|- b u tte rfly  computation), the data from the output memory 

is fed to the input memory and the shuffling on the data is performed 

as required by the operator p ^  in equation (4 .1 ). A block diagram 

of the processor is shown in Fig. 4.2.

The main drawback to this kind of implementation is that each 

stage ca lls  fo r a feedback phase in which data are s e ria lly  moved 

from the output buffer to the input buffer in an order determined 

by the permutation operator. Corinthois [113 modified the above 

algorithm to eliminate the feedback process and the fina l form is 

given by the following equations, 

n
Th = n um sm (4 .6 )N m m

where in general

V l  = s Pm (4 ' 7)

sn = s (4 .8 )

u-, -  I N (4 .9 )

where u and p have been defined e a r lie r . In th is algorithm, the
Noperator s always ca lls  for data that are at least 4- words apart

Nexcept at the f i r s t  stage where they are ^ words apart.
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Example 1: Consider the ease when N=8 . The matrix is given as:

graph implementing the transform is shown in Fig. 4 .4 . This algorithm 

does not require an extra feedback operation. The input and output 

memory consists of FIFOs and can be divided into 4 sub-memories which

the operator sn at each stage.

A block diagram of the above processor is shown in Fig. 4.5. 

Assuming the input is already stored in MEMORY 1, the input data is 

fed to the computational unit and the output from the computational 

u n it' is then stored in MEMORY 2. " A fter the f i r s t  stage,

the role of the memory is changed and MEM2 now becomes the 

input memory and MEM! the output memory, and so on.

For real time applications, three memory buffers are required. 

While two buffers are being used fo r the computation, the th ird  

buffer can then-be-used to store the input sequence and also to supply 

the transformed sequence. A conceptual block diagram for a real time
9

processor is shown in Fig. 4 .6 .

3
(4.10)

since

C4.l l )

and s3 = s = ! 4 x t 2 (4.12)

The expansion of these matrices is shown in Fig. 4 .3 , and the flow

Nstore — words. The data flow can be handled according to
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RADIX 2BUF 2 MUX
DISTRIB­
UTOR BUTTERFLY

MUX

Fig. 4.6 An NTT pro cessor f o r  real time 0100
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The addition-subtraction of the input points and the m ultiplication  

by the twiddle factors is performed in the computational unit. The computation 

is done in two stages, the addition-subtraction stage and the m ultiplication  

stage, the order determined by the algorithm used. For a high throughput, 

the structure of Fig. 4.6 requires that the input-out rate of the 

computational unit should be equal to the data rate of the memory structure.

A pipeline structure seems a very good choice for the computational un it.

I t  w ill be shown that the ROM oriented structure is extremely simple to 

pipeline and thus can be used with the above memory organization. The 

computational unit from now on in the thesis, w ill be referred to as a 

b u tte rfly  structure and w ill be restricted  to radix 2 , as mentioned e a rlie r .

4.2.2 The B utterfly  Unit

The input to this unit from the memory structure is two input complex 

points. The control unit supplies the information about the stage of 

computation and the position o f the b u tte rfly  in that stage. The twiddle 

factors are generated in th is unit and m ultiplied at the appropriate 

stage in the b u tte rfly  unit. By looking at the matrix expansion of the 

transform matrix (Fig. 4.3) we note that the FNTT algorithm obtained is 

of DIF type where the input points are f i r s t  added-subtracted and then 

m ultip lied by the twiddle factors.

The selection of the fie ld  for NTT dictates the form of the 

cyclic generator and thus the twiddle factors. Therefore the fie ld  

or the prime moduli should be chosen such that the generator is simple 

and also such that the resulting b u tte rfly  unit requires less hardware.

The concept developed in the previous chapter w ill be applied for selecting 

the primes for e ff ic ie n t hardware realization  of the b u tte rfly  unit.
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4.2 .3  Efficiency of Primes

Large transform length- is achieved by the use of prime 

moduli. Prime moduli can be divided into two groups, • 4n •**' 1 

type and 4n + 3 type. For 4n + 3 type primes, the generator is  of
p

the form y  + b / - T  where y  & B e GF(m) and x + 1 is an irreducible

polynomial in the f i r s t  order f ie ld . Fig. 4 .7 (a) shows the radix

2, DIF type b u tte rfly  and Fig. 4.7(b) shows the implementation of

the b u tte rfly  using look up tables. The operation represented by

o are performed in look up tables. The input points are the 
*  2elements of GF(m. ) and can be considered as complex points. In the 

f i r s t  stage, addition-subtraction is performed. The subtracted part is 

then m ultiplied with the proper twiddle factors. All the binary 

operation performed are complex. M ultip lication by twiddle factors 

requires 4 m ultiplications and one addition and subtraction. A to ta l 

of three stages and 10 binary operations are required to obtain the 

output points.

For 4n + 1 type primes, a can have the simple form / r  where 

r e GF(m-j) and x - r  is an irreducible polynomial in f i r s t  order f ie ld . Fig.

4.8 shows the implementation of the b u tte rfly  unit fo r 4n + 1 type prime.

Two d iffe ren t configurations are shown for the m ultiplications by powers of a. 

Even.powers af a can be considered as purely real and therefore only-real 

m ultiplications-are-required. The odd powers of a require a multiplexing stage 

a fte r m ultiplication and also an additional m ultiplication by r  which in 

look up table implementation does not require any extra stage.

Two stages and 6 binary operations are required to compute the 

output points. A comparison between two kind of primes is shown in
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A«W=T b

B-aV^T b*

0(A+8)«cV^T d

*  — i -- m

0«{A-3> xan»c+/pT d' 

T lg v  4.7 a) Radix 2 butterfly for 4n+3 prime

/

Fig. 4.7 b) Implementation of radix 2 butterfly  unit for 4n+3 prime
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Fig. 4.8 a) Butterfly unit for 4n+l prime (n-even)

a ’-p /F "

F1g 4.8 b) Butterfly unit for 4n+1 prime (n-odd)
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the following table

primes add. subt. mult. stages

4n + 3 3 3 4 3

4n + 1 2 2 2 2

Table 4.1: Comparison between the 
primes.

From the tab le , i t  is obvious that 4n + 1 type primes are 

more e ff ic ie n t than 4n + 3 type primes. They not only require 

less number of stages, but also require less number of binary 

operations. Therefore, while choosing the primes fo r NTT, the 

preference should be given to 4n + 1 type primes. Tables 4.2 and

4.3 l i s t  the suitable primes and the transform length associated 

with them.

4 .2 .4  Selection of the Primes fo r Hardware Implementation

Discussed in the previous chapter, the NTT is computed over a 

ring which is a d irect sum of several second order Galois fie ld s  for 

a large dynamic range. A transform length of 128 points is quite 

reasonable fo r practical application. The primes w ill be selected to 

provide this transform length and a reasonable dynamic range.

4n + 1 type primes can be represented as m = q . 2P + 1 where 

q is odd and the maximum transform length over the second order f ie ld  is 

equal to 2P+^. Fora 128 point transform length, p is 6 and the f i r s t  

few selections are:
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Transform Length 

N = 2k+1

Representation of 
Primes fo r Trans­
form Length N

m. = q*2 k+l

Prime
m.

- ........ ■" 1 i
Representation of 
m̂  in Number of 

Bits

32 = 24+1 q = 1 1 .2 4+1 17 4.087
q = 7 7.24+l 113 6.820

-q = 15 15,24+l 241 7.913
q = 21 2 1 .2 4+l 337 8.397
q = 25 25.24+l 401 8.647
q = 27 27.24+l 433 8.758

64 = 25+1 q = 3 3.25+l 97 6.644
q = 11 1 1 .2 5+l 353 8.464

128 = 2 6+1 q = 3 3 .26+l 193 7.592
q = 7 7.26+l 449 8.811

Tahle 4.2 TABLES OF PRIMES m. = 4n + 1 LESS THAN 

9 BITS
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Transform ^ength 

N = 2p+1

Representation of 
Primes for Trans­
form Length N

m. = q*2 p- l

Prime
m.

... '
Representation 
in Number of 

Bits

+
C

MIIC
M

CO q = 3 3 .24- l 47 5.555
q = 5 5.24- l 79 6.304
q = 15 15.24-! 239 7.901
q = 17 17.24—1 271 8.082

- q = 23 23.24- l 367 8.520
q = 27 27.24—1 431 8.752
q = 29 29.24—1 463 8.855

64 = 25+1 q = 1 1 .25-! 31 4.954
q = 7 7 .25—1 223 7.801
q = 15 15.25-! 479 8.904

128 = 26+1 q = 3 3 .26-1 191 7.577

256 = 27+1 q = 1 1 . 2 7-! 127 6.989
q = 3 3 .27- l 383 8.581

Table 4.3 TABLES OF PRIMES m. = 4n + 3 LESS THAN 

9 BITS
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m = q . 2 6 + 1

for q = m = 65 which, is  not a prime

for q = 3 m = 193

for q = 5 m = 321 which is  not a prime 

m = 449for q = 7

fo r q = 9 m = 557 .

The dynamic range associated with the f i r s t  three moduli is:

3
n m. = 193 x 449 x 577 * 2 

i= l 1
2 5 ,6  which is quite

reasonable for most of the applications. We are interested in 

implementing addition-subtraction using sub-moduli and IK x 8 

commercially available ROMS. The IK x 8 ROMS have 10 address lines  

and the two numbers which are to be added-subtracted should not have 

a combined address of more than 10 b its . The sub-moduli are chosen 

such that th e ir  product is equal to or greater than two times the 

main modulus and therefore the main modulus should not have more than 

9 b its  representation. Moduli 193 and 449 have nine b its representation 

and a combined dynamic range of approximately 16 b its . I f  a dynamic 

range of more than 16 b its  is required, then we are forced to use 

moduli of 4n + 3 type which are- less e ff ic ie n t than 4n + 1 type.

The moduli of 4n + 3 type can be represented as m = r . 2 -  1 

where r  is odd and the maximum transform length in 2nd order f ie ld  

is equal to 2 * ^ .
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For N equal 128, k is  6 and the f i r s t  few selections are as

follows:

m = r . 2 6 -  1

fo r r  = 1 m = 63 which is  not a prime

for r  = 3 m = 191

for r  = 7

for r  = 5 m = 319 which is  not a prime 

m = 447 which is not a prime

For r > 7, moduli have more than 9 bits representation 

and are not useful fo r our purposes. Table 4.3 shows that modulus 

127 can also be used fo r a transform length of 128 points. For the 

same transform length, 191 provides larger dynamic range than 127.

The fina l selection of moduli, from hardware constraints, is then m1 =

191,mg ~ and nî = 449, and the dynamic range is 23.98 b its . This 

is equivalent to saying that the number theoretic transform is 

computed over a f in ite  ring which is isomorphic to the d irect sum of three 

Galois fie lds of second degree that is :

R r^GF0912l  0  GF0932) ©  GFC4492).

The generator for these primes are as follows:

modulus m.j = 191 = 66 + 6 / T

modulus mg = 193 ag = A  25

modulus m3 = 449 = /391
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4.3 ROM REALIZATION OF BUTTERFLY STRUCTURE

A conceptual block diagram of the b u tte rfly  unit Is shown In 

Fig. 4.9. The two input points are supplied to the b u tte rfly  

unit along with the stage of computation and the position of the 

butte rfly . Another control is required to distinguish between the 

d irect or inverse transform fo r generating the proper twiddle 

factors. For each input set of data, an output set is obtained with 

an in i t ia l  lag of 5 or 7 stages depending upon the primes used.

The computation inside the b u tte rfly  unit is performed using sub­

moduli fo r e ff ic ie n t hardware rea lization .

4.3.1 ROM Realization for 4n + 1 Primes

Fig. 4.10 shows the implementation of the b u tte rfly  unit for a 

4n + 1 type prime. Each rectangular block represents a ROM and a 

latch. For the DFT- algorithm, the input points are f i r s t  added and 

subtracted. The f i r s t  stage therefore consists of residue tables, named 

as TRSM, sub-modulo 30 and 31. Eight tables are required to reduce 

the input data points modulo the sub-moduli. In the 2nd stage, sub-modulo 

addition is  performed and at the 3rd stage the added part is  

reconstructed whereas the subtracted part is  f i r s t  reconstructed and 

then is converted into index form, again in sub-moduli. Reconstruction, 

index look up and sub-modulo reduction is performed in one table for 

each input and each sub-modulus. The twiddle factors in index form 

are also accessed at th is stage. The fourth stage consists of addition 

of indices using sub-moduli. An extra m ultip lication table fo r pre-
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INPUT A OUTPUT C

INPUT B OUTPUT D

CONTROLS

TWIDDLE FACTORS

CA+B)

CONTROLS:
DIRECT/INVERSE: DIRECT OR INVERSE TRANSFORM

STAGE: STAGE OF COMPUTATION

POST: POSITION OF THE BUTTERFLY

IN THE STAGE

Fig. 4.9 CONCEPTUAL DIAGRAM OF THE BUTTERFLY UNIT
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m ultip lication by r  is  also required at th is  stage and depending upon 

the power of alpha, the proper table is enabled. The f i f th  stage consists 

of accessing of the resu lt of the m ultip lication from inverse look, 

up tables and the multiplexing of the resu lt according to even-odd 

powers of alpha. Looking at th is structure, we find that a fte r an 

in i t ia l  delay of five  stages, an output w ill be obtained and there is 

always a lag of five  stages between input and output data.

4.3.2 ROM Realization for 4n + 3 Primes

Fig. 4.11 shows the implementation of the b u tte rfly  structure 

for 4n + 3 type primes. The f i r s t  three stages of this structure are 

the same as that of 4n + 1 type. M ultip lication  by twiddle factors 

is complex for 4n. + 3 type and therefore a complex m u ltip lie r is  

required. At the fourth stage, the addition of the indices is performed 

and then the f i f th  stage computes the real m ultip lications. An extra

addition-subtraction is required to complete the complex m ultiplication  

which is done in the~6th and 7th stages. A to ta l of seven stages are 

required to compute the two point b u tte rfly  and a lag of seven stages 

is presented between input and output. Table 4.4 shows the requirement 

fo r both type of primes.

primes ROMS Stages MUX

4n + 3 48 7 -

4n + 1 32 5 2

Table 4.4 Requirements for both type of 
primes.
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From table 4 .4 , -ft is  obvious that i t  both type of 'primes 

are used, then fo r 4n + 1 type primes, a delay of two stages should 

be introduced in the p ipeline.

4.4 COMPUTER SIMULATION OF THE BUTTERFLY STRUCTURES

The b u tte rfly  structures fo r the three moduli were simulated on an 

IBM 370 using look up tables. The exact structures shown in Fig. 4.10 

and Fig. 4.11 were simulated and the pipeline structure was preserved 

during simulation. The basic requirements fo r memory organization were 

used in the simulation part and the program for simulating memory structure 

was sim plified. The shuffle operators were not used in the memory 

simulation part and the output obtained was in b it  reversed form. A standard 

shuffle routine was used to change the b it  reversed output into ordered 

output. This does not a ffec t the b u tte rfly  structure in any way. The 

simulation programs were divided into three parts. 

f i )  MAIN PROGRAM: From Fig. 4.10 and 4.11, we note that output from

each table is latched on each clock pulse. The latching is necessary 

to allow the (.i+l) th  stage to capture data before the address lines of 

the ith  stage change. A pointer was in it ia liz e d  in the main program 

to clear a ll  the registers before the application of the f i r s t  data set.

The subroutine table is then called to generate a ll the tables required 

for the b u tte rfly  unit. A double DO loop is used to keep track of each stage 

of the computation and the position of the b u tte rfly . The input data 

points which are always ^  points apart are fed to the NTT subroutine and 

the output is stored in the c o n s e c u t i v e  memory locations. A fter the
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completion of the transform, the data is  then shuffled to obtain the 

ordered output.

The subroutine NTT is  the simulation of the b u tte rfly  structure.

The controls to th is  subroutine are passed in the calling  argument.

The NTT call is

CALL NTT CINV, INP1 , INP2, STG, POST,"OUT!, 0UT2).

The m ultip lication by N” 1 fo r inverse transform is also performed 

in the main program although fo r hardware implementation, m ultip lication  

by N"̂  can be performed before starting the processing. The main 

program is the essential part fo r testing the working of the b u tte rfly  

structure.

f i i )  SUBROUTINE TABLE: This program generates a ll  the required tables

for each moduli. Modulo reduction was done using the instruction  

mode

IR = MOD (IR , MMOD) 

where MMOD is the modulus and IR is  the number to be reduced. The NTT 

is  an integer number system and the im p lic it integer statement was used to 

declare a ll the variables as integers. The index and inverse index 

tables are quite easy to generate. The following six statements generates 

the complete index as well as inverse index tab le. PRIM is the 

primitive root and PER is the order of the prim itive root. Starting value 

of VAL is one as zero does not have any index. IND is the index of 

the number and IIND is the inverse index
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DO 21 K. = 1, PER 

VAL = VAL *  PRIM 

VAL = MOD (VAL, MMOD).

IND CVAL+1) = K.

I  IND O U  = VAL 

21 CONTINUE '

The following steps were required to generate the powers of a

(a) in i t ia l iz e  the value of a

(b) m ultiply the value with a. The m ultip lication performed is 

an extension f ie ld  mil tip iic a tio n

(c) reduce the value to proper modulus

(d) store the value of a as the next value

(e) repeat step (b) t i l l  | c/* |m = 1

128Noting that | a | = 1, the powers of alpha for the inverse transform
"3  128 -3  125are obtained by adding 128 to negative powers, e .g .,  a "  = a = a

Other parts of the subroutine table are s e lf explanatory. The complete

lis tin g  of the program is given in the Appendix.

(iii)SUBROUTINE NTT: This program simulates the b u tte rfly  structure.

This part assumes that the b u tte rfly  structure is arranged in pipeline  

configuration. Each call to this subroutine sh ifts  the data to one 

stage. The subroutine call is

CALL NTT (INV, INP1, INP2, STG, POST, 0UT1, 0UT2), 

where INV is for d irect or inverse transform. INP1 and INP2 are the
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two complex input points, STG is the stage of the computation and 

POST, is the position of the b u tte rfly  in that stage. 0UT1 and 0UT2 

are the output points of the b u tte rfly . A ll the registers are 

numbered and , before applying any input to the NTT, these registers are 

in it ia liz e d  by the control pointer named point, which clears a ll the 

registers when the subroutine is  called fo r the f i r s t  time. The twiddle 

factors fo r a particu lar b u tte rfly  are generated in this routine. The 

powers of a from 0 to 64 are stored in a table TF. The address fo r the 

twiddle factor is generated as follows:

Cl) b u tte rflies  are numbered from 0 to 63 starting from the top in 

the flow graph, e.g. Fig. 3.6

C2 ) stages' are numbered from 0 to 6

(31 the. proper address is then generated by marking the number of

bits equal to the stage number starting from the least 

sign ificant b i t ,  e .g .,  fo r stage 2 and b u tte rfly  8 , the power 

of a is given by

power of a = P0ST/C2**STG) *  C2**STG)

8 4= — 5-  x 2 = 4 and the twiddle factor is a .
2

Multiplexing is  also required fo r the moduli of a 4n + 1 type prime. The 

power of a is checked for even or odd and then the appropriate action is  taken. 

The statements check are the status of m ultiplexer control.

The other parts of the program are s e lf explanatory. The complete

program can be found in Appendix A.
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4.4.1 The Transform of Real and Complex Data for Both. Primes 

Before discussing the results of the simulation, the procedure fo r

convolving real and complex data using the NTT is described. As mentioned 

in the previous chapter, 2nd order Galois f ie ld  is isomorphic to the 

complex residue ring fo r 4n + 3 type prime. Therefore the complex 

data can be convolved using 4n + 3 primes. In the case of real data, 

two successive blocks of the data can be transformed simultaneously by 

feeding one block as the real part of the data and the other block as the 

imaginary part. This e ffe c tiv e ly  increases the transform length in the 

case of real data.

For primes of 4n + 1 type, / T  can be considered as a mentier of 

the f ie ld  and therefore the maximum order of any element in the 

m ultip licative  group of the complex ring is m. -  1 , i . e . ,  the length of 

the transform is the same as in the real residue f ie ld  modulo m.. One 

possible implementation of the transform of the complex data is  to 

separately transform the real and imaginary parts in two Galois fie lds  

GF(m) fo r 4n + 1 type, prime.

4 .4 .2  Upper Bound on the Convolution

To compute the convolution unambigously, the components of the 

c ircu la r convolution sum in a single Galois f ie ld ,  are required to have 

an upper bound m.*, i . e . ,  signed numbers should remain in the interval

-  m .-l m .-l
——  < y < ---------- . The absolute upper bound on the input

2 2

sequences is
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m.-l
max |x| . max |h-t < —■—  (4.13)

2N

where x(ji) and h(n) are the input sequences. This bound on the 

dynamic range is pessimistic fo r many practical applications and i f  

the sequence h(n) is  known, i t  is enough to have 

m.-l
max |x| £ -------  (4.14)

N-l
2 I  IhCt) 1 

t =0

I f  the input sequence consists of a set of positive numbers, the above 

can be restated as 

m.-l
max [x ( <--------  (4.15)

N-l
I  IhCtll

t =0

The components of the complex c ircu la r convolution of sequences

x ( t )  = XgCt) + j  x . ( t )  and hCt) = hr ( t )  + j  h . ( t )  are required to

have an upper bound m.. Hence the absolute upper bound on x and h is :

m .-l
max I x l  • max | h l  -  max |x .| • max |h. | < -------- -  . . .  (4.16)

r r  1 1 2N
m. —1 ( a i 7 ^

and max |xr | . max |h.j| + max |x .|  • max 1 hr | <_ ——  -  ' J

when the convolution is  performed over residue class rings (more than one 

modulus), a ll m̂ are to be replaced by M in the above equations.
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4.4 .3  Simulation Results

Three main programs were written to tes t the pipelined b u tte rfly

structure for both kind of primes. The f i r s t  program tests the

in v e r t ib ili ty  of NTT. The 2nd program was written to tes t the convolution

property of NTT using one block of real data. The 3rd program was to

convolve two d iffe re n t sets of real data with a sequence with constant

value in the defined in te rva l. The details  are as follows:

(1) Two separate sequences were taken as input. The real part

consisted of a RAMP function, ris ing  from 0 to 127. The imaginary

part was also a ramp from 127 to 0. The 1st part of the program

consists of in it ia l iz in g  the tablesby ca lling  subroutine TABLE. The

input data is then in it ia liz e d  and a double DO loop then computes the
Ntransform. Input data is divided into two blocks of ^ points. The

input to b u tte rfly  consists o f one point from each part. Thus, the
Ninput points are always ^ points apart. A fter the transform is 

computed, i t  is permuted to produce an ordered output. INV control is then 

set to one and the transformed sequence is used as input for the inverse 

transform. A fter the inverse transform, each point is m ultiplied by

|= lm. to produce the original sequence. When implementing in hardware,

m ultip lication by N  ̂ is implemented in look up tables and does not 

require any extra stage or delay. The above procedure was repeated 

for three choqsen moduli and in v e r t ib i l i ty  was proved. Fig. 4.12(a) 

shows the real and imaginary parts of the input sequence. Fig. 4.12(b) 

shows the transformed sequence in GF(193 ) and Fig. 4.12(c) shows the
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2
transformed sequence in GF(449 )_. D ifferent transformed sequences 

are obtained in d iffe ren t fie lds  fo r the same input sequence. A fter 

talcing the inverse transforms in both the fie ld s , same input sequence 

was obtained.

(21 This part was w ritten to perform convolution of two sequences.

Only one block, of data was taken and was fed as the real part. The imaginary 

part was set to zero. To avoid ambiguity, the input sequences were 

chosen such that the result of the convolution is contained within the 

dynamic range. The 1st sequence was a rectangular pulse of height 1.

The 2nd sequence was another rectangular pulse of height 2. These 

sequences were transformed, m ultiplied and then an inverse transform was 

performed to obtain convolution of the sequence. Zeros were appended 

to both the input sequences to compute lin ear convolution using the ccp of 

the NTT. Fig. 4.13Ca). shows the real part of the two input sequence.

The imaginary part of the sequences were taken as zero. Fig. 4.13(b) 

shows the transform of x(n) and Fig. 4.13(c) shows the transform of 

h (n l in GFC193 ). Note that imaginary parts are present in the 

- transform domain although the original sequences had no imaginary 

parts. Fig. 4.13(d) shows the result of the convolution in GFQ93 ).

(3L This program was the same as in part two except that the one 

of the input sequence was taken as a complex sequence. This sequence 

was convolved with another sequence whose imaginary part was set to 

zero. Fig. 4.14(a) shows the input sequence x (n l and Fig. 4.14 (c) 

shows the sequence h (nl. Fig. 4.14(b) shows the transform of x(n) 

and Fig. 4.14(d) shows the transform of h(n) in GF(4492) .  Fig. 4.14(e)
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p
shows the results of the convolution in GF(449 L. In th is way two 

blocks of the real data can be simultaneously convolved with the other 

sequence and the e ffec tive  transform length, for the input, sequence is 

doubled. The simulation programs can be found in Appendix A.

4.5 HARDWARE IMPLEMENTATION OF THE BUTTERFLY STRUCTURE

A complete b u tte rfly  structure for modulus 4n + 1 was implemented 

in hardware. The modulus 193 was choosen because i t  yields hardware 

of the simpler form. The hardware implementation is that of a proto type and 

the Eproms used are not the fastest available in the market. The 

access time of the Eproms used is 450 nsec and the registers used 

have a settling  time of 30 nsec. The b u tte rfly  structure is a 

pipeline structure and the throughput rate depends on the access time 

of the ROMS and latch se ttling  time. The data on the output of the 

ROM is latched before the new address is supplied. The clock pulses 

are therefore delayed for every stage starting from the output stage.

Fig. 4.15 shows the clock pulses required for latching the data, from 

the Eproms, at each stage.
1

The width of the clock pulses is equal to the latch settling  time 

say t s nsec. Before the clock pulse can be applied to any stage, the 

address lines on Eproms should be stable for at least t  _ ns (address
cLCC

to output delay) and therefore the maximum rate at which the pipeline 

can run is equal to Z^t,. + t 3„ .5 qCl

4.5.1 Description of ICs Used

( i )  Eproms 2708 were used to store the look up tables for the butterfly  

structure for mod 193. The complete data for this Eprom can be found
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in [12]. Fig. 4.16 shows the pin connection* of the 2708.

The Eprom requires three power supplies in the read mode, V , VDD
CC d o

and VDQ which are +5, -5 and 12 vo lt respectively. I t  is a Ik  x 8

b its  Eprom and has 10 address lines and 8 data lines. Higher address

lines are grounded i f  they are not in use, e .g .,  table of residues

where only 8 address lines are required fo r modulus 193. All the

computation in the b u tte rfly  was done using the sub-modular approach,

therefore, only five  data lines were used. The other three data

lines can be used as controls, e .g .,  fo r parity  check. We have used

the 6th data lin e  as a control lin e  fo r multiplexers. The Eproms

can be programed on an In te l universal prom programmer. These Eproms

have tris ta ted  outputs which are controlled by the volta.ge level on ci/WE pin.

Thus the output of more than one Eprom can be hooked together without

any problem of a bus-conflict. The access time of the Eprom is 450 nsec.

( i i )  8 b i t  input output port, 8212 was used as the latch. This is

a very powerful chip and can be used for multiple purposes. The 

pin configuration is  shown in Fig. 4.17. To use i t  as a latch , the 

device selection logic (DSI* DS2) is set true and the mode pin is  

kept at high leve l. The strobe pin is used as input for clock, pulses.

When the strobe is high, the output follows the input and fo r strobe 

low, output does not change. The maximum latch s e ttlin g  time is  30 nsec. 

and therefore the clock, pulse which is  used to strobe the data 

has a pulse width of 30 nsec. The CLR pin is permanently kept 

high fo r the latch operation.
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PIN CONFIGURATIONS BLOCK DIAGRAM
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Fig. 4.16 BLOCK DIAGRAM AND PIN CONFIGURATION OF

27o8, IK x 8 EPROM
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The 8212 was also used as a m ultiplexer. When the device selection 

logic is zero, the output goes to a high impedence making 

multiplexing possible.

4.5.2 Generating and Storing The Tables

For the storing of the tables, a universal prom programmer, by 

In te l1, was used and the tables were generated using assembly language to 

program an Intel 220 system. The Intel 220 system is a microprocessor 

based system and uses an 8085, 8 b it ,  microprocessor chip as the central 

processor unit.

All the programs w ritten to generate tables can be found in 

the Appendix R. Modulo reduction is not as simple as in WATFIV and 

separate subroutines were written to reduce modulo 30, modulo 31 

modulo 192* modulo 193 and modulo 930. Two more subroutines were 

written to compare the results to 738 fo r negative numbers and to 

reduce negative- numbers modulo 193, namely C0M738 and NEGC0N. These 

were required to obtain the correct resu lt a fte r the subtraction of numbers 

using sub-moduli. The maximum resu lt of addition of two numbers, modulo 

193, is 384 and the maximum negative result is -192. When the fina l 

resu lt is reconstructed using the Chinese Remainder Theorem, the negative 

number, say x, w ill  be represented as 30 • 31 -  x or 930 -  x and 

therefore the number range 738 to 929 is used fo r negative numbers. The 

division of the dynamic range is as follows:

0 < x < 384 positive numbers

384 <_x < 738 - prohibited combinations, they never
occur as a resu lt of an operation
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738 <- .x < 929 negative numbers

A fter the reconstruction, i f  the number occurs in the negative 

range, i t  has to be represented modulo 193 and correction has to 

be done. Subroutine C0M738 is called to find out the range in 

which number lie s . I f  the number is greater than or equal to 738, then 

subroutine NEGCON is called to convert the negative number to mod 193. 

Consider the numbers 30 and 182. The result of subtraction is 

30 -  182 = -152, which in sub-moduli w ill be represented as 778.

To convert i t  to main moduli, subtract 930 from i t  and add 193 which 

is  778 -  930 + 193 = 41 and is  the actual representation of -152 

modulo 193. The following is a lis tin g  of the program which converts 

the negative number to modulo 193.

PUBLIC NEGCON

CSEG

NEGCON: PUSH H

LXI ' H, 8400H; no. to be converted is  in 
memory location 8400H

MOV A,M

SUI 162

ADI 193

MOV M,A

POP H

RET

END
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9.30 can he represented as 00000011 10100010 in the binary number

system. Subtracting 930. frcm any number, greater than or equal to 738,

is  equivalent, to subtracting the lower byte of 930,which is 162>from 

the number and then adding 193. The one byte resu lt is the correct 

conversion of the negative number. The reader can verify  that the above 

program converts a ll negative numbers from 738 to 929 correctly.

The main programs for addition tab le , subtraction tab le , index 

tab le , inverse index tab le , twiddle factors tab le , and the reconstruction 

table were written separately and are given in the appendix. The generation 

of the twiddle factor table requires special attention. The memory 

organization which is  used fo r th is implementation sim plifies the 

generation of the twiddle factors. The following procedure was used 

to generate the table.

C.iL s to re  the values o f the powers o f alpha from 0 to  63 

C i i l  number the b u t te r f ly  from 0 to 63 in b inary number system from the 

top where the 1st in p u t p o in t is  supplied as in pu t

C tiiInum ber the stages from 0 to  6

Civ) mask the number of least s ign ificant b its  equal to the number of 

stage, e .g .,  fo r stage 2 , numbered as one, only one b it  is masked.

b u tte rfly  no. masked b it  power of a

000000 000000 0
000001 0 0 0 0 0 1  0
000010  000010  2
000011 000011 2
000100 0001 Off 4
000101 000101 4
000110 000110 6
000111 00011T  6

•  •  •
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Hence the correct twiddle factors are generated for each stage. There are 

64 b u tte rfly  computations per stage and seven stages, therefore a storage 

of 64 x 7 words is required fo r the twiddle factors fo r a d irect transform. 

Aq to Ag address lines on the Eproms were used for specifying the b u tte rfly  

position, and Ag to Ag to specify stage of the computation of the 

transform. The Ag address lin e  is used fo r addressing the twiddle 

factors fo r inverse transform.

The addition table storage is quite simple. The f i r s t  five  

address lines are for the addend and the next five  the adder. The 

f i r s t  f iv e  address lines on the subtraction table are for the subtractor 

and the next five  fo r subtrahend.

The inverse look, up table TINV and fina l look up table TFIN 

are stored such that input modulo 30 is applied on Ag - Â  and 

modulo 31 on Ag -  Ag.

In the index look up tab le , 31 is stored as the index of zero.

In the index addition tab le, which is same as the standard addition tab le , 

31 is stored in the locations addressed by 31. TINV tables contains zero 

in the location addressed by 31, so that the correct result of 

m ultip lication by zero is obtained.

4 .5 .3  A Typical Pipeline Interconnection_____

Fig. 4.18 shows a typical connection between Eproms and the latches. 

The address to the Eproms comes from the previous stage. Every look 

up table (Eprom) requires ten address lines, except the tables of 

residues which require only 8 lines. The other inputs to the Eproms are
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connected to the power supply at proper voltage levels as required.

The output data from the tables is  fiv e  b its  since a ll the computation 

is  done using sub-moduli. These data lines are connected to the 

input of the latch. The remaining three input lines to the latch are 

obtained from the other table. The 8212 is used as a latch and appropriate 

input levels are supplied to i t .  When the clock 'pulse is applied on the 

strobe input of 8212, the data from the Eproms is  latched and is available  

on the output lines of 8212 a fte r  30 nsec. Two separate tables for 

m ultip lication by twiddle factors are required fo r even and add 

powers of a. One of the m ultip lication

pre-m ultiplication by r  fo r odd powers of a. The sixth b it  from the 

twiddle factor table is used to select/deselect the proper m ultip lication  

table. The cTs/we pin on the Eprom is  used for selecton of the table. The 

tr is ta te  output of the Eproms enables the connection of the output of two 

tables together. An inventer is used to select-deselect the tables 

for even/odd powers of alpha.

Fig. (4.19) to Fig. (_4.22l shows the block diagram of the b u tte rfly  

structures, which was b u ilt  on protoboards. These figures are included 

to help the debugging of the un it. Table 4.5 gives the necessary 

information about the control connections and the power supply connection 

fo r both, Eproms and the latches. Fig. 4.23" shows the photograph of 

the b u tte rfly  un it.
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COLOUR OF WIRES FUNCTION

BLACK GND

RED + 5 V

ORANGE -  5 V

BLUE + 12V

YELLOW CONTROLS FOR EVEN/ODD POWER OF ALPHA

WHITE CLOCK FOR THE LATCHES

Table 4.5 NECESSARY INFORMATION ON THE 

HARDWARE UNIT.
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4.6 CLOCK. CIRCUITRY

A specific clock, pulse is  required to s h ift the data in the pipeline. 

The c irc u it diagram for the generation of the clock, pulse is given in 

Fig. 4.24. The square wave from the function generator is made TTL 

compatible by using an NPN transistor. The output from the transistor 

stage is then fed to a 4 b it  binary counter. The outputs of the 

counter are then fed to one of sixteen decoders. Only one output line  

of the decoder goes low at each count. This negative going pulse is 

then fed to an invertor, to obtain a positive going pulse. A buffer 

is used to supply enough current to operate the latches at each stage.

The alternate pulses were taken from the decoder for each stage.

The b u tte rfly  unit has five  stages of computation and only five  pulses 

from the decoder are used. The frequency of the function generator 

can be varied up to 1.96 MZ without affecting the working of the pipe­

lin e .

4.7 EXPERIMENTAL VERIFICATION

The B utterfly  structure, was tested for real time application.

An input data from the simulation results was used for testing the 

b u tte rfly . The answer was verified  from the simulation results. The 

input data, the b u tte rfly  position and the stage number are: 

input point 1 30 + 65 A 25

input point 2 41 + 103 A 25

stage 2

b u tte rfly  4

The value of a fo r  the 2nd stage and the 4th b u tte rfly  is  125. The
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b u tte rfly  input and outputs are shown in Fig. 4 .25(a}. The working 

of the pipeline can not be tested fo r real time application i f  the 

input is  fi:xed. One b it  o f the data was therefore constantly varied 

and the intermediate results were checked on a display. The rate  

of data input and the frequency of the clock pulses were varied to 

see the e ffec t on the pipeline structure. I t  was noted that 

when the clock pulse rate was slower than the rate of change of input 

data, the output was not correct. The

b it  of the data are shown in Fig. 4.25Cb1. The input and output are: 

a + f\2 5  b = 30 + 65 AZ5  = 00011110 + 01000001 /125

a' + AZ5 b '= 41 +103 A 25  = 00101001 + 01100110 AZ5

c + f\Z 5  d = 71 +168 AZ5 = 01000111 + 10101000 f\Z5

c* + f\2 5  d ' =169 + 75 AZS = 10101001 + 01001011 AZ5

changing the least s ign ificant b it  of a, gives the results as:

a + /f25* b = 31 + 65 AZ5  = 00011111 + 01000001 AZ5

a' + /n n r b'= 41 +103 = 00101001 + 01100111 f i2 5

c + A 25" d = 72 +168 AZ5  = 01001000 + 10101000 /125*

c1 + A25  d* =101 + 75 f\2S  = 01100101 + 01001011 f\2S

e .g .,  by changing the least s ign ifican t b it  of a from 0 to 1 changes 

the most s ign ificant b it  of c1 from 1 to zero and also the other b its  

of c and c‘ change. Thus any b it of c or c 1 can be checked to verify
r

the working of the pipeline.
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30+65 /T2?T

41+103/125

7T.+168/T2T

169+75/125

a)

31+65 M S

41+103 ^25"

72+168 VT?5

101+75 vT25

b,)

F1g. 4.25 INPUT-OUTPUT OF THE BUTTERFLY 
BEFORE-AFTER CHANGING ONE BIT

i
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4.8 DrSCUSSION ON THE HARDWARE REALIZATION OF THE B.F. UNIT

The b u tte rfly  unit for modulus 193 was realized using 2708 Eproms 

and 8212 latches. The addition-subtraction in the B.F. unit is  

performed using sub-moduli 30 and 31. The m ultip lication is  performed 

using the index addition method and the addition of the indices is 

done using the sub-moduli method.

In comparison with the d irect method of implementing addition- 

subtraction using look up tables, the sub-moduli approach offers  

a saving in the storage fo r tables. Another way of implementing 

addition-subtraction is the use of an adder-subtractor followed by a ROM 

fo r the correction look up. Fig. 4.26 shows the implementation of 

addition-subtraction using an adder-subtractor fo r modulus 193.

The two inputs, modulo 193,are fed to the adder-subtractor and 

the 9 b it  resu lt of addition is then fed to a ROM which contains 

the corrected result of addition modulo 193. The correct resu lt is  

stored in the location addressed by the 9 b it  result of addition. For 

example i f  a=l91 and b=189, the resu lt from the adder is 380 and 

represented as 101111100. The correct resu lt of addition modulo 193 

is  187 and therefore 187 can be stored in the location with the 

address 101111100 .

The adder-subtractor which is commercially available* performs 4 

b it  addition-subtraction and use two's complement arithm etic. The 

clock to output time is  14 nsec for an Am25LS15 (Advanced Micro-Devices). 

Addition modulo 193 would require two packages and one ROM. Assuming 

that the input is in sub-moduli form and no residue tables are required,
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three ROMs are required to perform addition-subtraction using sub­

moduli CFig. 2.4) .  The package count is the same fo r adder-subtractor 

or sub-moduli implementation. Tf the input is  not in sub-modular 

form, then sub-moduli approach requires 7 ROMs and three stages as 

compared to 3 packages and 2 stages fo r adder-subtractor approach.

Thus, the choice of implementation depends on the form of the input.

Another c rite rio n  fo r the choice of adder-subtractor is the type 

of ROMs which are used fo r the implementation of the complete butter­

f ly  structure. The pipeline structure of the b u tte rfly  unit requires 

latches a t the output of each computation stage and i f  Shottky Proms 

63RA883 are used, no additional latches are required as these Proms 

contain latches at the output o f the Proms. I f  the adder-subtractor 

are used, then fo r the pipeline structure,an additional 18 b it  latch 

w ill be required.

The m ultip lication in the b u tte rfly  structure is performed by the 

addition of indices method. The addition of indices modulo 192 is  

performed using sub-moduli method. In the sub-moduli approach, the 

m ultip lication by zero can be eas ily  corrected and no extra logic is  

required fo r detecting the m ultip lication by zero. However, i f  the 

adders are used to perform indices addition, extra logic is required fo r 

zero m ultip lication [13].

The complexity of the structure increases i f  d iffe ren t kinds of 

IC's are used. Because of the s im plic ity  of the ROM based structure, 

the a d d e r - subtractors were not used in the hardware realization  and the 

prototype unit was b u ilt  using 2708 Eproms. The ROM based structure is  

preferred because of the fac t that i t  can immediately make use of the 

advances in the VLSI technology associated with memory fabrication. The
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Eproms used can he replaced by fas t memory for a p articu lar application.

The 8212 registers were used to la tch  the data at the Ci+11th 

stage before the data changes at the i t h  stage. These registers are 

level sensitive and the output follows the input as long as the clock 

is  high. A delayed clock pulse fo r every stage is  required as shown in 

Fig. 4.15.  The access time of the ROM is 450 nsec and the latch se ttling  

time is 30 nsec. , The rate of clock pulses is  equal to the access 

time of the ROM plus two times the latch se ttlin g  time. From Fig.

4.15 i t  is  seen that there is an overlap at the negative going pulse 

and the positive going pulse of successive stages, showed in the figure  

by dotted lines. This overlap created a problem in running the 

structure for real time data. The clock pulses were generated using 

a one of 16 decoder and alternate pulses were used to strobe the data 

so that enough time was available between transitions. This in e ffe c t, 

slowed down the clock rate and the theoretical maximum speed could 

not be achieved. These latches were used because of th e ir  a v a ila b ility .

The remedy to th is problem is the use of latches which are edge 

trigged, e .g. ,  Am 25LS07 (Advanced Micro-Devices). These latches 

are positive edge triggered and have a latch se ttlin g  time of 17 nsec.

The same clock pulse can be applied to a ll  the stages. At the 

positive edge, the data w ill be latched at a ll the stages and the output 

of the ROMs w ill not change un til 17 nsec. The clock rate is then the access 

time of the ROM plus the latch settling  time which is now only 17 nsec, 

and thus the b u tte rfly  unit can run at a faster rate.

Assuming that the two output points from the pipe!ined b u tte rfly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124

unit are obtained a fte r every t  nsec, where t  is equal to the 

access time of the ROM plus latch se ttlin g  time, then the time to 

compute one stage of the NTT transform is equal to 64t  for a 

transform length of 128 points. The radix 2, 128 point transform 

length requires seven stages and the time to compute d irect or 

inverse transform of an input sequence is  equal to 7 x 64 x t  nsec.

The Eproms used in the implementation of the b u tte rfly  unit 

have an access time of 450 nsec and i f  the AM25LS07 latches are 

used then t is equal to 467 nsec and the maximum clock rate is then 

equal to 2.14 MHz. Thus th is b u tte rfly  unit can be used with a 

memory structure which supplies data at 2.14 MHz rate.

4.9 SUMMARY

The design of an NTT processor was described in th is Chapter.

A study of the supporting memory structure was also undertaken.

The choice of primes fo r NTT fo r e ff ic ie n t hardware implementation 

was discussed and i t  was shown that 4n + 1 type primes not only require 

less hardware but also require less number of stages fo r the b u tte rfly  

unit. A procedure was described to choose the primes for e ffic ie n t

hardware rea liza tion  o f the b u tte rfly  un it. A ROM structure fo r both

kinds of primes fo r b u tte rfly  unit was suggested for pipeline configuration.

The simulation of both kinds of structures was done and the

convolution property of NTT fo r the selected primes was v e rifie d . The

deta ils  of the simulation were presented in this Chapter.

F in a lly , a b u tte rfly  structure for 4n + 1 type primes was b u ilt
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using ROM arrays and a complete discussion was presented. The pipeline 

structure was tested using time varying data. This b u tte rfly  u n it, 

b u ilt  in hardware, w ill be used to perform number theoretic transforms 

with a supporting memory structure.

/
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CHAPTER 5

SUMMARY

The Number Theoretic Transform has a recent origin and is useful 

for the applications where exact computation is required. The NTT is 

defined over an f in ite  ring or f ie ld  and has the same structure as 

the DFT. I t  can thus be computed e ff ic ie n t ly  using fas t algorithms 

fo r high-ly composite transform length. A machine that computes-the 

number theoretic transform of a sequence is  called an NTT processor.

The basic parts of the NTT processor are the supporting memory structure 

and a computational unit commonly known as the b u tte rfly  unit. A 

saving in hardware of the NTT processor is achieved i f  a sequential 

type of processor is b u ilt .  Such a processor requires some supporting 

memory and a multiplexed b u tte rfly  unit which is accessed N /r logrN 

times where N is the transform length and r  is  the radix of the fast 

number theoretic transform. The binary operations of addition, 

subtraction and the m ultip lication on the input sequence are performed 

in the b u tte rfly  u n it. The parameters o f the NTT given by a, N and 

m, determine the complexity of the b u tte rfly  un it. The binary 

number system has usually been used to perform arithmetic operations 

in the b u tte rfly  unit and consequently restric tions were imposed 

on the parameters of the NTT to allow fo r an e ff ic ie n t realization  of 

the computational requirements of the B.F. u n it. These restrictions

126
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made i t  impossible to choose the parameters of the NTT on a purely

number theoretic basis and thus the effic iency of the NTT was much less

than the lim iting  theoretical effic iency.

The recent advances in VLSI technology associated with memory

fabrication have aroused in te rest in the implementation o f the

b u tte rfly  unit using look up tables stored in high density ROMs.

The look-up table approach relaxes the constraints on the parameters

of the NTT and thus the theoretical e ffic iency of the NTT can be

reached. I f  the binary number system is used, then the look-up table

approach does not seem very promising because of the tremendous size of

memory required to store the tables, e . g . ,  the addition modulo 193

would alone require 64k o f memory.

The use of the residue number system allows one to break a large

dynamic range problem into a number of smaller dynamic range problems.
L

The combined dynamic range of L moduli is given as M = n m*. These m.'s
i= l 1 1

can be chosen to be small enough fo r an e ff ic ie n t rea lization  of arithmetic  

operations moduli m.. The operations modulo m̂ can be performed 

in para lle l because of the in te rd ig it independence 

property of the residue number system, e . g . ,  modulo 193 addition can 

be implemented in 7k memory using m.'s as 30 and 31.

The use of the RNS allows one to implement the b u tte rfly  unit in

look-up tables e ff ic ie n tly . The large dynamic range is  achieved by 

implementing the B.F. in para lle l in smaller moduli and then recombining 

the resu lt using the Chinese remainder theorem or a mixed radix 

conversion scheme.
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The modular addition-subtraction requirement in the B.F. unit 

does not o ffer any prohlem and can be e ff ic ie n t ly  implemented e ither 

using the sub-moduli approachor using adders-subtractors. The 

complexity of performing m ultip lication by the twiddle factors in the 

B.F. unit depends upon the f ie ld  or prime used , and the generator 

a. The primes are divided into two groups, the 4n + 1 type and 

4n + 3 type. The 4n + 1 type primes o ffe r a simpler structure fo r the 

b u tte rfly  u n it, and are preferred over 4n + 3 type primes.

In th is work, the objective was to design a b u tte rfly  unit for 

number theoretic transform capable of exploiting the recent advances 

in memory technology. A structure fo r a NTT processor has been 

developed which is useful fo r real-tim e applications. A pipelined 

butte rfly  structure was found to be most suitable for use with the 

supporting memory structure fo r the real time applications. The 

b u tte rfly  units for both kinds of primes were designed using a 

pipeline structure. The structure based on the look-up tables stored 

in ROM is simplest to p ipeline, and requires only a clock pulse to 

s h ift the data in the p ipeline, thus the control c irc u itry  is  

extremely simple. The package count fo r the b u tte rfly  unit fo r 4n + 1 

and 4n + 3 type primes is  32 and 48 respectively including the 

storage tables fo r twiddle factors. The number of stages for 4n + 1 

type primes is 5 and for 4n + 3 is  seven.

The b u tte rfly  units were simulated on an IBM-370 computer along 

with the basic required memory structure to establish the fe a s ib ility  

of the proposed NTT processor. After the verification  of the

i
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simulation results, the b u tte rfly  unit for modulo 193 (a 4n + 1 

type primel was implemented in hardware using 2708 Eproms and 

8212 latches. The addition subtraction operations were realized  

using the sub-moduli approach. This approach was used because 

of the a v a ila b ility  of Eproms and also for the sim plicity of Eprom 

based structures. The package count fo r the b u tte rfly  unit is 32 

Eproms, 31 latches and 4 multiplexers. The 8212's were used as 

latches and i t  was found out that they are not suitable fo r a 

pipeline structure since they slow down the speed of operation. 

Edge trigged latches are recommended. The 8212 latches were used 

because of th e ir a v a ila b ility .

I
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CHAPTER 6 

CONCLUSIONS

The design of a ROM oriented implementation of an NTT b u tte rfly  

has been carried out in th is work. The b u tte rfly  has been 

realized usTng Eproms and latches in an extremely simple pipeline 

structure. Level sensitive latches require slower clock rates to 

function e ffe c tive ly  and hence edge triggered latches are preferable.

The addition-subtraction operations have been carried out using 

sub-moduli approach because of the sim plicity of the resulting  

pipeline structure. The adder-subtractor approach requires less 

number of stages and a small package count but increases the complexity 

of the unit. The adder-approach fo r summing indices to implement 

m ultip lication is not that viable as i t  requires extra logic c irc u itry  

to detect zero m ultip lication and thus further increases the complexity 

of the b u tte rfly  unit.

A memory support structure has been simulated at the logic 

level in order to investigate the fe a s ib ility  of the NTT processor 

described in the thesis. The proposed structure is such that the data 

transfer time associated with the memory is  the same as the computational 

time of the b u tte rfly  unit. This further enhances the NTT processor's 

capability  as a real-tim e signal processing fa c i l i ty .  The memory 

structure can be realized using long s h ift registers fo r the dynamic
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storage of the data. The use of these s h ift  registers eliminates 

the need for addressing the data.

Future work in th is area w ill be to actually implement the 

memory support structure in hardware and to u ltim ately construct 

the complete NTT processor.

i
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APPENDIX A

SIMULATION PROGRAMS

The simulation of the b u tte rfly  unit was done on an IBM-370-3031 

computer. Listings of the programs are given here.

132
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I M P L I C I T  IN T E G E P .< A —H , 0 - Z >
D IM E N S IO N  NUOP 
D IM E N S IO N  I N P i 1 
COMMON T IN V < 2 ,

1 2 P., 2  > .• T E M < 1 2 S , 2 >
2 > ,  I N F 2 < 2 > ,  0 U T K 2 X .  0 U T 2 - '.2 >

2 2 ::- , 7 S U E X 2 , 2 1 ,  2 1  > , T F I N  < 2 0 ,  3 1 X  T F K 2 ,  £ 4 ,  2 >  
COMMON T P .S M < 2 , 1 9 1 !:- ,  T A D D < 2 , 2 2 ,  2 2  X  T S U IN < 2 ,  2 1 ,  2 1 X  T F < 2 ,  6 4 ,  2 >  
COMMON P O IN T

C
C G E N E R A T E  T H E  T A B L E S  FO R N T T  B U T T E R F L Y
C
C MMOD I S  T H E  M A IN  M O DULUS. N IN Y  I S  T H E  M U L T IP L IC A T IV E  IN V E R S E  OF

R E A D  < 5 , 20:1..' MMOD, N IN V  
2 0 1  FO R M AT ‘11 2 ,  5 N , I2 ? 1

C A L L  T A B L E S
C
C S E T  T H E  P O IN T E R  FO R C L E A R IN G  L A T C H E S
C

P O IN T - 0  
I  N V = 0

C
C I N I T I L I Z E  T H E  IN P U T
C

DO 5 0  1 = 1 ,  1 2 S  
N U O P -C l, i > = < I —1 >
N U O P - II ,  2::' =  < 1 2 S - I >

5 0  C O N T IN U E
C
C S T A R T  T H E  C O M P U T A T IO N  FO R S E V E N  S T A G E S . L  I S  FO R S T A G E
C

2 0  DO 1  L = i ,  7  
S T G = L —1 
N J = i

C
C NN I S  FO R  T H E  P O S IT IO N  OF B U T T E R F L Y  IN  T H E  S T A G E
r.

DO 2  N N = i ,  6 4  
I  N P i  < 1  > =N U O P  CNN, 1  ;>
I  N P i  < 2  > =N U O P  < N N , 2  
IN P 2  1  > =N U O P  < N N + 6 4 ,  1  >
IN P 2  < 2  > =N U O P  >1 N N * S 4 ,  2  >
P O S T = N N —1

r
C C A L L  T H E  N T T  TO C0i*1F'UTE TWO P O IN T  B U T T E R F L Y
C

C A L L  N 7 T C IN V ,  I N P I ,  IN P 2 ,  S T G , P O S T , 0 U T 1 ,  0 U T 2 >
C
C DO NOT S T O R E  O U T P U T  FOP. I N I T I A L  7  S T A G c  D tL A Y
r

IF C N N . L T . ? >  GO TO 2  
TEM  < N J ,  1  > = O U T  1  < 1  !:*
T E M C N J , 2 > = 0 U T i< 2 r *
TEM  < N J - i , 1  > -O U T ? . < 1  :•
T E M N J - i ,  2  > = 0 U T 2  ■: 2  >
N J = N J + -2

-■ mv.iTTKJi i r  _____  __
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C O E 'T R IN  T H E  LP .S T  S E V E N  P O IN T S  FROM T H E  P I P E L I N E  B U T T E R F L S
r

[■0 4 J J = i -  7

i  N P i  ■: i > = i  n p i  •: 2  :• =  i  N P 2  <: i  > =  i  n p s  •: 2  > =0
C P L L  N T T <  IN V -  I N P I -  IN P 2 -  S T G - P O S T - 0 U T 1 -  0 U T 2 >
T E M N .J -  1  > = Q U T i < i  >
TEM  N J - 2  > = 0 U T 1  < 2  >
TE M  N J + i  - 1  = 0 U T 2  <; 1  ;<
TE M  < N J + 1 -  2  = 0 U T 2  < 2  :■
N J = N J + 2  

4  C O N T IN U E
DO 5  K = l -  L 2 S  
DO 5  K K = 1 -  2  
N U O P C K - K K  > = T E M  < K - KK."1 

5 . C O N T IN U E  
1  C O N T IN U E

C
C U S E  T H E  S H U F F L E  PROGRPM  TO  Q B T R IN  T H E  O R D ER ED  O U T P U T
r

N U = i2 = ?
N V 2 = N U /2
N M :1 .=N U -1
J = i

 _______ DO 2 0 7  1 = 1 -  Ni-11
I F  < I . GE. J  > GO TO  2 5 5  
R E -N U O P  •' J -  1 >
n u o r < j -  j .  :• = n u o p  i  - ± ; -
N U O P •' I -  i : - = R E  
IM = N U O P < J -  2 >
n u o p  < j ,  2 :■ = n u o p  < i  - 2 >
N U 0 P < I -  2  > =  IM  

2 5 5  K = N V 2
2 0 S  I F  CH. GE. J:< GO TO  2 0 7  

J - J —K 
K = K / 2  
GO TO 2 0 S 

2 0 7  J = T + K
P R IN T  1 0 1 -  K O U N T - IN V

1 0 1  F O R M R T •' 2 0 X -  'K O U N T = '-  1 2 -  2 0 X -  ' I N V = - ' -  1 2 11
DO 5 o  J = l -  2
P R IN T -  '.NUOP'CNN- J > -  N N = i-  1 2 0 >

5 S  C O N T IN U E
I F  < IN V . EG. i >  GO TO  1 0 2  
I  N V = 1  
GO TO 2 0

1 0 2  DO 1 1 0  1 = 1 -  1 2 c  
DO 1 1 0  J —1 -  2  
R =N U O P  < I . J > * N I N V  
NUO P < I  - J :■ =MOD < R- 1 9 1  >

1 1 0  C O N T IN U E  
P R IN T  7 0

7 0  F O R M R T < • ' - • ' -  2 0 X -  T H IS  I S  T H j=. F I N R L  R E S L 'L T "
DO 7 1  J = l -  2
P R IN T -  vN U O P ':M M - J >  - H M = 1 - 1 2 S O

7 1  C O N T IN U E  
S T O P
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C *  MR I K  PROGRAM TO C O N V O LV E  TWO SEQ UEN C ES. IM A G IN A R Y  *
C + P A R T S  R EE ZERO  *
r- *

I M P L I C I T  IN T E G E R C A -H , 0 - Z >
D IM E N S IO N  N U O P < 1 2 3 ,  2 > ,  T E M < 1 2 3 ,  2 > ,  T E M K 1 2 3 ,  2>
D I  MENS I  ON I  N P I  < 2  > , IN P 2  < 2  >, O U T 1  < 2  i>, 0 U T 2  < 2  :<
COMMON T IN V < 2 ,  Z 2 ,  3 2  >, T S U B < 2 , Z l ,  3 1  > , T F IN < 3 0 ,  3 i . \ .  T F I  < 2 , 6 4 ,  2 >  
COMMON T E S M < 2 , 1 9 1  >, T f lD D < 2 , 3 2 ,  3 2  > , T S U IN < 2 , 3 1 ,  3 1  > , T F < 2 ,  6 4 ,  2 >  
COMMON P O IN T

C
C G E N E R A TE  T H E  T E B L E S  FOR N T T  B U T T E R F L V
C
C MMOD I S  T H E  M R IN  MODDULUS. N IN V  I S  T H E  M U L T IP L IC A T IV E  IN V E R S E  OF

R E R D < 5 , 2 0 1  :■ MMOD, N IN V  
2 0 1  FO R M R T< 1 3 ,  5 X ,  I 2 >  *

C R L L  T R B L E S
C
C S E T  TH E  P O IN T E R  FOR C L E A R IN G  L A T C H E S
C

P O IN T = 8
C
C I N I T I L I Z E  TH E  CO UNTER TO PERFO RM  TR AN SFO R M S
C

KO U N T=Q  
IN V = G

C
C I N I T I L I Z E  T H E  IN P U T
C

DO 5 0  1 = 1 ,  6 4  
N U O P < I ,  1 > = 1  
N U O P < I ,  2 : -= 0

5 0  C O N T IN U E
DO 5 1  1 = 6 5 ,  1 2 B  
NUOP < I ,  1 > = 0  
N U O P < I ,  2 > = 0

5 1  C O N T IN U E
C
C S T A R T  T H E  C O M P U T A T IO N  FOR S E V E N  S TA G E S . L  I S  FOR S T A G E
C

2 0  DO 1  L = i ,  7  
S T G = L - 1  
N J = ±

C
C NN I S  FOR TH E  P O S IT IO N  OF B U T T E R F L V  IN  TH E  S TA G E
r

DO 2  N N = i ,  6 4  
I  N P I  < 1  =N U O P < N N , 1  >
I N P I < 2  >=N U O P < NN, 2  >
IN P 2  < 1  :■ =N U O P < N N + 6 4 , 1  >
IN P 2  < 2>  =N U O F < N N + 6 4 , 2  
P O S T = N N -1

C
C C R L L  T H E  N T T  TO COM PUTE TWO P O IN T  B U T T E R F L V
C

C R L L  N T T < IN V ,  I N P i ,  IN P 2 ,  S T G , P O S T , O U T i,  0 U T 2 >
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C DO NOT S TO R E  O U TP U T FOR I N I T I A L  7  S TA G E  D E L A V  136
0

IF < N N . L T . S' > GO TO 2
te m  •: n j ,  i  y = o u t i  < i  :■
TEM  < N X  2 y =O UT:l. •'. 2  
TEM < N J -* - i,  i  > = 0 U T 2  1  !•''
T E M <N J + 1 ,  2?■ = 0 U T 2 C 2 >
N .J = N J -2  

2  C O N T IN U E
r
C O R T A IN  TH E  L A S T  S E V E N  P O IN T S  FROM TH E  P IP E L IN E  B U T T E R F L V
<-sL..

DO 4  J J - 1 ,  7

I  N P I  < 1  = I  N P I < 2  > =  IN P 2  < 1  > =  IN P 2  < 2  > = 0
C A L L  N T T  < IN V ,  IN P 'l. .  IN P 2 ,  S T G , P O S T , G U T 1 , 0 U T 2 >
T E M C N X  1 ) = 0 U T 1 < 1 )
TEM  >: N J , 2  > - Q U T i  < 2  >
TEM  N J-4- ! ,  1 } = 0 U T 2 < 1 *
T E M < N J + 1 , 2 > = 0 U T 2 < 2 >
H J = N J + 2  

4  C O N T IN U E  
DO 5  K = l ,  1 2 3  
DO 5  K K = 1 , 2
NUOP < K , K K  >= T E M <K , K K  > •

. . . . 5  C O N T IN U E
1  C O N T IN U E

C
C USE TH E  S H U F F L E  PROGRAM TO O B T A IN  T H E  O RDERED O U TP U T
r

N U = 1 2 3
N V 2 = N U /2
N M i= N U - i
J = i
DO 2 0 7  1 = 1 , NM1
I F 1-. I .  GE. J>  GO TO 2 5 5
R E = N U O P < J , i : -
NUQP < X  1  > =N iJO P < 1 , 1
NUOP < I ,  1  > = R E
IM = N U O P < J , 2 >
N IJO P < J ,  2 >  =N U O P < I ,
NUOP< I ,  2  > =  IM  

2 3 5  K = N V 2
2 0  F  IF < K .  GE. J '' GO TO 2 '3 7  

r = j-k  
K = K / 2  
GO TO 2 0  F  

2 0 7  J = J * K
P R IN T  1 0 1 ,  KO U N T, IN V  

10:1. F O R M A T 1'  2 0 X ,  'K O U N T = -- ', 1 2 ,  2 0 X ,  ■' IN V = - " ,  12l>
DO 3 F  J = i ,  2
P R IN T ,  <N U O P <N N , J > ,  N N = i ,  1 .20>

5 F  C O N T IN U E
K O i.JN T = K O U N T + l
I F < IN V . EG. !;■  GO TO 1 0 2
I F ‘'K O U N T . GT. i  > GO TO 1 0 2

C
C S TO R E  T H E  F IR S T  TR AN SFO R M ED  SEQ U EN C E

U N IT
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DO 5 7  1 = 1 , 1 2 ?
H'L' ? r' -■ = -.-'
TEM :! < 1 , J :•■ -M U O P  I .  7 7 137

5 7  C O N TIN U E.
C
C IN 'JT T L . 7 Z F  TH E  SECOND SEO UENCE
r

DO 5 -? I  “ I ,  -F4 
NDO 1 > = 2  
N v  D - P I  1  : "-0 

5 0  C O N T IN U E
DO- 5 ?  “ —r 7 . 1 2 '?
DO 5? 7~L. 0 
M i.. * ? >! J .■ 7 :• •=0 

5 ?  C O N T IN U E
t?
C TRANSFO RM  TH E EEC O N f - SEQ UENCE
C

GO TO 2 0
C
C M U L T IP L Y  TH E  SEQ U EN C ES IN  THE TR AN SFO R M S DOME IN
0

1 0 7  DO SQ 1 = 1 ,  1 2 ?
r = n u o p >-:i , 1  > 
p=nuqf •: j, 
c = t f :m i < i , i . '
D = T E M 1<  I .  2 . '
RC'—R+:;7

RC=NOR •'! FiC, MMOD 
P D = B + D
E'tD=M0D’'IED , MMOD 
R D = f i* D
RD=MOD»'.AD. MNOD>
E 'C =F :*'C
p c = m o d -:E'C, m m o d :- 
R E = R C -B D
r e = m c d <:e e , m m o d :-
T F  < RE. !.T . 0 >  RE=RE+M M OD 
NUOP C I  .• : ! . /  =R E  
JM A = R D *= C
NUOP*'. I.- 2  > =MOD C I  MR, MMOD 7 

0 0  C O N T IN U E
C
C TRK.E TH E IN V E R S E  TRANSFO RM
r

T N V = 1  
GO TO 2 0

C
C M U L T IP L Y  N IT H  N IN v'E .R EE
(-•

1 0 7  DO ;1:10 1=1, 12?
DO _ ! !0  7 = 1 , 2  
R=NUOF ■" J. .TV*NINV
n u o p  •: i , j  :• = m o d  r ,  m m od >

1 1 0  C O N T IN U E  
P R IN T  7 0

7 0  FO RM AT-! -  N 2 0 X . " T H IS  I S  TH E F IN R L  R E S U u T ' !• 
DO 77 7 = 1 . 2
P R IN T ,  -’INUOF <MN, J :- ,  M M =1, 12? .:- 

7:1 C O N T IN U E
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*  M A I N  P R O G R A M  T O  C O N V O L V E  A  C O M P L E X  S E Q U E N C E . *
*  S E C O N D  S E O U E N C E  I S  R E A L .  *
:+:

I M P L I C I T  I N T E G E R < R - H -  0 - 2 5
D I M E N S I O N  N U O P < 1 2 3 -  2 > -  T E M < 1 2 3 /  2 > -  T E M 1  < 1 2 8 -  2 >
D I  M E N S  I  O N  I  N P I  < 2  !• - I N P 2  < 2  > - 0 U T 1  < 2  >.. 0 U T 2  < 2  >
C O M M O N  T I N V 2 /  2 2 . -  2 2 > -  T S U B < 2 -  2 1 -  2 1 5  - T F I N < 2 0 -  2 1 X .  T F K 2 -  6 4 -  2 >
C O M M O N  T F : S M 2 -  1 9 1  > -  T A l> D < 2 -  2 2 -  2 2 > -  T S U I N C 2 -  2 1 -  2 1 > -  T F < 2 -  6 4 -  2 >
C O M M O N  P O I N T

C
C  G E N E R A T E  T H E  T A B L E S  F O R  N T T  B U T T E R F L V
C
C  M M O D  I S  T H E  M A I N  M O D D U L U S . N I N V  I S  T H E  M U L T I P L I C A T I V E  I N V E R S E  O F  f

R E A D < 5 -  2 0 1 >  M M O D - N I N V  
2 0 1  F O R M A T < 1 2 -  5 X -  1 2  >

C A L L  T A B L E S
0
C  S E T  T H E  P O I N T E R  F O R  C L E A R I N G  L A T C H E S
C ....................

P 0 I N T = 0
C
C  I N I T I L I Z E  T H E  C O U N T E R  T O  P E R F O R M  T R A N S F O R M S
C

K O U N T = Q
I N V = 0

C
C I N I T I L I Z E  T H E  I N P U T
C

D O  S O  1 = 1 -  6 4  
N U Q P  < I  - 1 > = 1  
N U O P < I -  2 > = 0

5 0  C O N T I N U E
D O  5 1  1 = 6 5 -  1 2 3  
N U O P ''.  I -  i : : - = 0  
N U O P  < I  - 2  :■ = 0

5 1  C O N T I N U E
C
C  S T A R T  T H E . C O M P U T A T IO N  F O R  S E V E N  S T A G E S .  L  I S  F O R  S T A G E
C

2 0  D O  1  L = l -  7  
S T G = L - i  
N  J = 1

0
C  N N  I S  F O R  T H E  P O S I T I O N  O F  B U T T E R F L V  I N  T H E  S T R G E
C

D O  2  N N = i -  6 4  
I  N P I  < 1  > = N iJ O P  < H N -  1  >
I  N P I  < 2  :• = N U G F  •' N N -  2  >

’ I N P 2  < 1 > = N U O P < N N + S 4 -  1 >
I N P 2  2  :>= N U O P  < N N + 6 4 -  2  >
P O S T = N N —1

C
C  C A L L  T H E  N T T  T O  C O M P U T E  T W O  P O I N T  B U T T E R F L V
C

C A L L  N T T < I N V -  I N P I -  I N P 2 -  S T G -  P O S T -  O U T i -  0 U T 2
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c
c

DO NOT STO R E  O U TP U T FOR I N I T I A L  7  S TA G E  D E L A V

I F  ''N N . L T . SO GO TO 2  139
TEM < N J , ±  > =O U T:l. < 1  !:•
T E M <N X  2 > = 0 U T 1 < 2 >
TEM < N J + ± ,  1  = 0 U T 2  < ±  >
TEM C N J + ± ,  2  = 0 iJ T 2  < 2  
N J = N J + 2  

2  C O N T IN U E
C
C O B T A IN  T H E  L A S T  S E V E N  P O IN T S  FROM TH E  P IP E L IN E  B U T T E R F L V  U N IT
C

DO 4  J J = ± ,  7

I N P ±  < 1  > =  I  N P I  C 2  > =  I N P 2  < :1. > =  I  N P 2  < 2 5 = 0
C A L L  N T T < I N V ,  I N P I ,  I N P 2 ,  S T G ,  P O S T ,  O U T ± ,  0 U T 2 ?
T E M  < N  J ,  1  > = 0 U 7 ±  1  >
T E M  ■' N J ,  2  = O U T ±  < 2  >
T E M C N J + l ,  1 > = 0 U T 2 < 1 >
T E H C N J + i ,  2 > = 0 U T 2 C 2 >
N J » N J + 2

4  C O N T IN U E -
D O  5  K = l ,  ± 2 8
D O  5  K K = 1 ,  2
N U O P < K, KK = T E M • 'K , KK>...

5  C O N T I N U E  
1  C O N T I N U E

C
C U S E  T H E  S H U F F L E  P R O G R A M  T O  O B T A I N  T H E  O R D E R E D  O U T P U T
C

N U = ± 2 S
N V 2 - N U / 2
N M ± = N U - ±
J = ±
D O  2 0 7  I  = 1 ,  H M ±
I F 1' I .  G E . J >  G O  T O  2 5 5  
R E - N U O P  \  J ,  ± ; -
n u o p  < J ,  ±  > = n u o p  •: i ,  i  >
N U O P < I ,  ± > = R E  
I M = N U O P < J ,  2 >
N U O P  < J ,  2  = N U O P  < 1 ,  2  >
N U O P - ' . I ,  2 * I M  

2 5 5  K * N V 2
2 0 6  J F O C  G E . J >  G O  T O  2 0 7  

J = . J - K
K = K , - '2  
G O  T O  2 0 6

2 0 7  J = J - )-K
P R I N T  ± 0 : 1 ,  K O U N T , I N V  

± 0 1  F O R M A T '.- ; -  - - ' ,  2 0 N ,  " K O U N T * " ,  1 2 ,  2 0 X ,  " I N V * " ,  I 2 >
D O  5 6  J = ± ,  2
P R I N T ,  ( N U O P < N N ,  J > , N N = ± ,  ± 2 8  >

5 6  C O N T I N U E
K O U N T = K O U N T + ±
I F - ;  I N V .  EC!. ± >  G O  T O  ± 0 2  
I F - ; K O U N T .  G T . ± >  G O  T O  ± 0 2

C
C  S T O R E  T H E  F I R S T  T R A N S F O R M E D  S E Q U E N C E
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DO 5 7  I - I . . -  ± 2 0
DO 5 7  J = ± ,  2  140
7 c M i ■' I.. J>~N U O P< I.- J>

5 7  C O N TIN U E
C
C I N I T I L . I Z E  THE SECOND SEQUENCE
C

DO 5 0  I —± , 5 4  
NUOP': I..- ±v1 = 2
n u o p  < i  , 2 :>=o

5 8  C O N TIN U E
DO 5 ?  1 = 5 5 , ± 2 8  
DO 5 8  J = ± , 2  
NUOP C l ,  J > = 0  

5 8  C O N TIN U E
C
C TRANSFORM THE SECOND SEQUENCE
C

GO TO 2 0
C
C M U L T IP L Y  THE SEQUENCES IN  THE TRANSFORME D O M AIN
C

± 0 2  DO 5 0  I = ± ,  1 2 3  
R=NUOP>-.I, ±>
E?=NUOP< I ,  2>
C = T E M ± -'.I, ±>
D = T E M ± < I, 2>
A C = A *C

AC=MOD ■; AC, MMOD >
BD,= B :+:D
ED=MOD<BD, MMOD >
R D =A *D
AD=M OD<AD, MMOD'.-1 
B C = B *C
BC=M0D*CBC, MMOD >
R E = A C -B D
r e = m o d -:r e , m m o d  >
IF ':R E . LT . GO RE=RE+MMQD 
N U O P ':I,  ± > =RE 
TM A-R D +BC
N U O P < I, 2 !> = M 0D < IM A , MMOD>

5 0  C O N TIN U E
C
C TA K E  THE IN V E R S E  TRANSFORM
C

IN V = ±
GO TO 2 0

C
C M U L T IP L Y  W IT H  N IN V E R S E
C

± 0 7  DO ± ± 0  I = ± ,  ± 2 3  
DO ± ± 0  J = ± , 2  
R=NUOP I , J  > +-NINV 
NUOP< I ,  J>=M O D <A , MMODO 

± 1 0  C O N TIN U E  
P R IN T  7 0

7 0  F O R M A T ' : 2 0 N ,  ' T H IS  IS  THE F IN A L  R ESU LT 
DO 71  J = ± ,  2
P R IN T , ■:NUOP';MM, J >, MM=±, ± 2 8 >

7 1  C O N TIN U E  
STOP 
END
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& ■■¥
*  S U B R O U T IN E  TO GENERATE LO O K -U P  T A B LE S  FOR N T T  *
*  M 0 D U u U 5 = l? L  *
:i>  r-K:+; -+r:+!:+::+: :+!:•»<■+• :+::+t s+'Mc+st+T:*:̂ *f+t :+c jf;:4<:4<;4: :•*■:

S U B R O U T IN E  T A B LE S  
I M P L IC IT  IN T E G E R  < A -H , 0 - 2  5
D IM E N S IO N  M 0 D L K 2 5 , IN D < 1 9 1 5 ,  11 HD < 1 9 1  5 , A i_P A < 2 , 1 2 8 ,  25
COMMON T IN V < 2 ,  32.. 2 2 5 ,  T S U B < 2 , 3 1 ,  3 1 5 ,  T F IN < 3 6 ,  3 1 5 ,  T F I  < 2 , 6 4 ,  25
COMMON TR S M <2, 1 9 1 5 ,  T A D D < 2 , 3 2 ,  3 2 5 ,  T S U IN C 2 , 2 1 ,  2 1 5 ,  T F < 2 ,  6 4 ,  2 5
COMMON P O IN T
M M O D -191
P R IM = 1 9
M O D U L I5 =30 ;. M G D U < 2 5 = 2 1
IN D  < 1 5 = 2 1 .: I  NO < 2  5 =0.: 11ND < 1 5  = 1
P E R = M M 0D -2
PRO=MODU < 15  *M O D U < 2  5
NMOD=MMOD-1
V A L - 1

IN D E X  T A B LE

DO 2 1  K = l ,  PER 
V A L = V A L + P R IM  
VAL=M OD < V A L , MMOD 5 
IN D  < V A L + 1 5= K  
11 Ni5 < K+i 5 = V A L

2 1  C O N T IN U E

SUB M O D U LI R E S ID U E  T A B L E

DO 1  1 = 1 , 2  
DO 2  N = l ,  MMOD 
A =N —1
TR SM < I ,  N 5 = M 0 D < A , MODU< I  5 5 

2  C O N T IN U E  
MM=MODU<I 5

A D D IT IO N  T A B L E

DO 1 1  N = i ,  MM 
DO 1 1  N N = 1 , MM 
A = N + N N -2
TADD< I ,  N , N N 5 =M OD< A , MODU< 15 5 

1 1  C O N T IN U E

S U B T R A C T IO N  T A B L E

DO 3 1  K = l ,  MM 
DO 2 2  1 = 1 , MM 
A = K - J
I F  < A. L T . 0 5  A =A *M M  
T S U B < I,  K , J 5 = A

2 2  C O N T IN U E  
2 1  C O N T IN U E

1  C O N T IN U E
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DO 5 0  11  = ± .' DO 
DO 5 1  J J = 1 .  3:1 
X i = C I I - l > * l  
v : ; =  j  j —i  ;■< *  DO
x 2 = m o d c x 2 .  d i >
X D =  < X 1 *M G D U  C 2  > + X 2 * M 0 D U <  1 > >

> i4 = M 0 D C X 2 . PRO';*
X 5 = M 0 D C X 4 . NHOD>
X =  11  ND C X 5 -K l. >
t  i  h v  < i. .  T i  .• j j  :•= m o d  •: x .  m o d u  c i  > >
I 1 N V .4 , I  I .  J = M O D X, M 0D U C 2>  !'•

* .

•_ ! i-itfL h  PDF. F I  N A L  LO O K U P
r% f

M O D S = P P. O—M N O D 
IF C X 4 .  L E . M O DS!' GO TO  5 2  
X 4 = X 4 —PRO 
X 4 = X 4 + M M G D  
GO TO  5 D  

5 2  X 4 = M G D C X 4 . MMOD >
5D- T F I N C I I .  J J > = X 4

C
C S U B T R A C T IO N  T A B L E  IN D E X E D
C

b = i n d c x 4 + i > . . . .
T S U IN C 1 -. I I . .  j j > = m o d c b .  d o  
IF C X 4 .  EQ. 0 >  T S U IN C 1 .  I I . .  J J > = 2 1  
T S U IN C 2 .  I I .  J J> = M O D C B .. 2 1  >
IF C X 4 .  EQ. 0 >  T S U IN C 2 .  I I .  J J > = 2 1  

5 1  C O N T IN U E  
5 0  C O N T IN U E

C
C T A B L E  FO R  POW ERS O F A L P H A
C

A A = 6 S .; B B =S .; C C =S S .i D D = S  
A = IN D  C 2  >
C = IN D C 6 7 >
D =  I  ND C 7
A L P  A  C l..  1.. 1 > = M G D C A . 2Q >
A L P  A  C 2.. 1 .  1  > =M OD C A . 2 1  >
A L P A C 1 .. 1.. 2  > = 2 1  
A L P A C 2 . 1 .  2  > = 2 1  
A L P A C 1 .. 2 .  1  > =M OD C C . 2 B >
A L P A C 2 . 2.. 1 > = M 0 D C C . 2 1  >
A L P A C l.  2 .  2 > = M 0 D C D . 2Q >
A L P  A  C 2 .  2 .  2 > = M 0 D C D . 2 1  >
DO 6 1  N H = 2 . 1 2 7  
R E = A A :+:C C —B B :+=DD 
.RE= MOD C R E . MMOD >
I F  C R E. L T . O > R E =R E +M M O D  
IM  A G= A A *  D D B B  *  C C 
IM A G = M O D C IM A G . MMOD > 
f l= I N D C R E * l>
B =  I  ND C IM  A G -*-i >
A L P  A C1 .  N N * 1 .  1  > =M OD C A . DO >
I F  C A. EQ. 2 1  > AL.P A  C1 .  N N + 1 . i > = 2 1  
A L P A C 2 . N N + :U  1 > = M 0 D C A . 2 1  >
T ^  o a p  M r . i j . - 1  -1 - t - 1 _______ _____
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R LPR >'.L , N N + 1 , 2 > = M 0 D -:B , 2 0 ;*
IF '- .B . EQ. 2 1 >  f l L P R i ' i ,  N N + 1 , 2  > = 2 1  
R L P R C 2 , N N + 1 , 2 > = M 0 D < B , 2 1 >
IF C B . EQ. 2 1  > R L P R C 2 , N N + 1 , 2  > = 2 1  
R R =R E  
B B = IM R G  

6 1  C O N T IN U E
C
C T R B L E  FO R T W ID D L E  FR C TO R S
C

DO 6 2  1 1 = 1 , 6 4
T F C 1 , I I ,  l > * R L P f i < l ,  I I ,  1 >
T F < 1 ,  I I ,  2 > = R L P R < 1 ,  I I ,  2 >

‘ T F < 2 ,  I I ,  1 > = R L P R « :2 , I I ,  i >
T F < 2 ,  I I ,  2 > = R L P R C 2 , I I ,  2 >

C
C T R B L E  FO R IN V E R S E  N T T  T W ID D L E  FR C TO R S
0

I N K = I I —1
IF 's  IN K . NE. 0 >  I N K = 1 2 S - I N K  
T F I < 1 ,  1 1 , 1  > = R L P R  < 1 ,  IN K + 1 ,  1  >
T F i a ,  I I ,  2 > = R L P f i« '. i ,  I N K + i ,  2 >
T F I C 2 ,  I I ,  l> = f lL P R C 2 ,  IN K + 1 ,  1 >
T F I < 2 ,  I I ,  2 > = R L P R C 2 , IN K + 1 ,  2 >
T T = IN K + 1  

6 2  C O N T IN U E
C
C C O R R E C T IO N  FO R ZE R O  M U L T IP L IC R T IO N
r ___________

DO 2 3 1  1 = 1 ,  2  
DO 2 5 2  J = l , 2 2  
T R D D < I ,  2 2 ,  J > = 2 1  
T IN V  < 1 , 2 2 ,  J > = ©

2 3 2  C O N T IN U E
DO 2 5 2  1 = 1 ,  2 2  
T R D D C I, J ,  2 2 > = 2 1  
T I N V C I ,  J ,  2 2 > = 0  

2 5 2  C O N T IN U E  
2 5 1  C O N T IN U E  

R E TU R N  
END
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;+ : :+ •■ :+ ::+ ::+ :i t : :+ : :+ r:+ : v f { ^ H ” +" +:  :+c

*  it:
*  S U B R O U T IN E  TO G E N E R A T E  L O O K -U P  T A B L E S  FOR N T T  *
*  M 0 D U L U 5 = ± 9 2  *
h*: : f - i t :  :+ : : f - i t :  i f -  '•+ "+ :i t : i t :  i t :  i t :  i t :  i t :  i t :  i t :  i t : : t :  i t : :+  i t :  i t :  J t: : t :  it i> k : t : i t :  i t :  '- t :  i t : :+ :

S U B R O U T IN E  T A B L E S  
I M P L I C I T  IN T E G E R <A - H ,  O - Z ?
COMMON T R S M C 2, ± 9 2 ? ,  T A D D C 2 , 2 2 ,  2 2  ? , T A D M U L < 2 , 2 2 ,  2 2 ? ,  T S U 3 < 2 ,  2 ± ,  2 1 ?  
COMMON T S U IN < 2 ,  2 1 ,  2 1 ? ,  T IN V -C 2 2 , 2 2 ? ,  T F IN C 2 0 ,  2 1 ? ,  T F < 2 ,  6 4 ? ,  T F I  < 2 , 6 4 ?  
COMMON P O IN T
D I  MENS I  ON MQDU 2  ? , I  ND < 1 9 2  ? , 11  ND < 1 9 2  ? , A L P A  *C 2 ,  1 2 S  ?
M M 0 D = ± ? 3 ; P R IM = C ; IN D > ;± ? = 3 ± ;  IN D - '.2 ? = G ; I IN O < :± ? = ±
MODU< 1 ?  = 2 0 ;  MODU< 2 ?  = 2 1  
PER=M M OD—2  
N M O D = M M O D -l 
PRO=MODU < 1  ? +-MODU < 2  ?
MODS=PP.O—MMOD 
V A L = 1

IN D E X  T A B L E

DO 2 1  K = ± ,  P E R   ..............................................................
V A L= 'v ’A L :+:PR IM  
V A L=M O D  -C V A L , MMOD ?
I  ND •' V A L 4- !  ? = K
I I  ND K + l  ? =  V A L  

2 1  C O N T IN U E

T A B L E  FOR POWER OF A L P A

A A = Q ; B B = ± ; C C =Q ; D D = 1
A L P A 1 , 1 ? = 0 ;  A L P A < 2 , ± ? = 8 ;  A L P A ' : ! ,  2 ? = 0 .*  A L P A C 2 , 2 ? = 0
DO 2 1  N N = 2 , 1 2 7
R E = A A * :C C + ± 2 ? * B B * D D
IM A G = A A *D D + C C *B B
RE=M OD C R E , MMOD ?
IM  AG=MOD >: I  MAG, MMOD ?
I F  ''R E . HE. 0 ?  T E M =R E  
I F  < I  MAG. NE. 0  ? T E M =  I  MAG 
A =  I  ND < TE M -*-! ?
A L P A  < 1 ,  N N + 1 ? = M 0 D * '.A , 2 8 ?
A L P A  < 2 , N N -1 ? = M 0 D -::A , 2 1 ?
A A = R E  
B B - IM A G  

2 1  C O N T IN U E

T A B L E  FOR T W ID D L E  F A C T O R S
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DO 3 4  11  = ± , 6 4
DO 3 5  I  - ± ,  2
T F  I , I I  i'' = A L P A  ■:! 1 , 1 1  >

r
C T R B L E  FOP. IN V E R S E  T W ID D L E  F A C T O R S
C

I N K = I I - ±
I F 1'  IN K .  N E . 0 >  I N K = ± 2 3 - 1 N K  
T F  I  •' I , I I j = A L P A  •' I ,  I  N K + 1  >

3 5  C O N T IN U E  
3 4  C O N T IN U E  

DO 1  I = ± ,  2  
M S U B = M O D U < I>

C
C S U B -M O D U L I  R E S ID U E  T R B L E
C

DO 2  H = ± ,  MMOD

R = N - ±
T R S M  < I ,  N ::*= M O D ''.f i, M S LE O  

2  C O N T IN U E
C
C A D D IT IO N  T A B L E
C

DO ± ±  N = ± ,  M S U B  
DO ± ±  N N = ± ,  M S U B  
A = N + N N —2
T R D D < I ,  N , N N > = M O D < A , M S U B >

C
C • T R B L E  W IT H  M U L T I P L I E R  
r

B = N + N N —2 + 3
T R D M U L 1'  I ,  N , N N 5 = M O D C B , M S U B j 

± ±  C O N T IN U E
C
C  S U B T R A C T IO N  T R B L E
r ___________________

DO  1 5  K = ± ,  M S U B  
DO 1 5  K K = ± ,  M S U B  
f l= K - K K
I F '- i f i .  L T . 0  > A = A + M S U B  
T S 'J B  < I , K , k j o = r  

1 5  C O N T IN U E  
1  C O N T IN U E

DO 4 G  1 1 = 1 , 3 0  
DO 4 1  J J = ± ,  3 1  
N l=  <11  —1  > +1 
X2= < J J -1  :> +30 
:••••:2=MOD < V 2 ,  3 1  >
X 3 =  < X l+ M O D U  < 2  :• + X 2 + M 0 D U  1  >>  
N 4 = M 0 D  < !::!3 ,  PR O  ">
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T R B L E  FO R  IN V E R S E  LO O K  UP 

X 5 = M 0 D < X 4 , NMOD?
11 ?-Jl> i' Xci-*-!

T I N V < I I ,  J J ? = X

T R B L E  FO R  F J N R L  LO O K  UP

IF < X 4 .  L E . MODS> GO TO  5 2  
X 4 = X 4 - P R 0  
X 4 = X 4 + M M 0 D  
GO 'T O  SB 

S 2  X 4 = M 0 D O !4 ,  MMOD?
S B  T F  I N  I I . -  J  J  ? = X 4

S U B T R A C T IO N  T R B L E  IN D E X E D

B = IN D < X 4 + 1 ?
T S U  I  N C I ,  I I ,  j j ? = m o d *:b , 3 0 ?
IF C X 4 .  EG!. 0 ?  T S U IN - C l,  I I ,  J J ? = 3 1  

, T S U IN  «',2, 1 1 , J  J ? =M OD < B , 3 1  ?
I F  4 . EQ. 0 ?  T S U  I N  < 2 ,  I I ,  J J ? = 3 ±

4-1 C O N T IN U E  
4 0  C O N T IN U E

C O R R E C T IO N  FO R  Z E R O  M U L T IP L IC A T IO N

DO 2 5 1  1 = 1 ,  2  
DO 2 S 2  J = ± ,  3 2  
T R D D C I,  3 2 ,  J ? = 3 1  
T R D M U L  1 , 3 2 ,  J ? = 3 1

T I N V  3 2 ,  J ? = 0  
2 3 2  C O N T IN U E

DO 2 3 3  J = l ,  3 2  
T R D D <  I ,  J.- 3 2 ?  = 3 1  
T R D M U L < I ,  J .  3 2 ? = 3 1  
T I N V C J , 3 2  ? = 0  

2 5 3  C O N T IN U E  
2 3 1  C O N T IN U E  

R E T U R N  
END
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I"; : + : : + :  :+<:+::+::+::+::+::+: :+::+: >K :+::+: :-K ^ ^ :+::+: :+c *:+:
C :+: *
C *  S U B R O U T IN E  TO G E N E R A T E  L O O K -U P  T A B L E S  FOR N T T  *
C *  M 0 D U L U S = 4 4 9  ' *
f: ••+: :+:■+: H: :-K •+"+:'■¥=+"+: +■:+: :+(••+: :+•■:+: :+i 'M ■+■■:+: ■+: :+:*::+: *:+• '•+< *

S U B R O U T IN E  T A B L E S  
I M P L I C I T  IN T E G E R <A - H ,  O - Z  5
COMMON T R S M < 2 , 4 4  9 5 ,  TA D D  *; 2.' 2 2 ,  2 2 5 ,  T A D M U L C 2 , 2 2 ,  2 2 5 ,  T S U B < 2 , 2 1 ,  2 1  

. COMMON T S U  IN  < 2 ,  2 1 ,  2 1  5 , T IN V  < 2 2 ,  2 2 5 ,  T F  I N  <; 2 0 ,  2 1  5 , T F  < 2 ,  6 4  5 , T F  I  < 2 ,  
COMMON P O IN T
D IM E N S IO N  MODU < 2  5 , IN D  < 4 4 9 5 ,  I I N D  < 4 4 5 0 ,  A L P A  < 2 ,  1 2 S  5
MMOD= 4 4 ? ;  PR I  M = 2 ; I  ND < 1 5 = 2 1 ;  I  ND < 2  5 = 0 ;  1 1  ND < 1 5  = 1
MODU < 1 5  = 2 G ; MODU < 2  5 = 2 1
FER=M M O D—2
N M 0 D = M M 0 D -1
P R O =M O D U < 1 5 *M O D U < 2  5
M O DS=PRO —MMOD
V A L = i

C
C IN D E X  T A B L E
C i

DO 2 1  K = i ,  P E R  _____ _____
V A L = V A L * P R IM  
V A L=M G D  < V A L , MMOD 5 '
I  N D V A L —1 5  = K  
I IN D < K + 1 5 « V A L  

2 1  C O N T IN U E
C
C T A B L E  FO R POWER OF A L P A
C

A A = 0 ; B B = i ;  C C = 0 ; D D -1
A L P A < 1 , 1 5 = 0 ;  A L P A < 2 , 1 5 = 0 ;  A L P A < 1 ,  2 5 = 0 ;  A L P A < 2 , 2 5 = 0  
DO 2 1  N N = 2 , 1 2 7  
R E = A A * C C + 2 9 1 * B B * D D  
IM A G = A A *D D + C C *B B  
R E =M O D <R E , MMOD5 
IM A G = M O D < IM A G , MMOD 5 
I F <  RE. NE. 0 5  T E M = R E  
IF <  I  MAG. NE. 0 5  T E M = I  MAG 
A =  I  ND < T E M **-i 5 
A L P A  C l ,  N N + 1 5 = M 0 D * ;A , 2 0 5  
A L P A < 2 , N N + 1 5 = M 0 D * ;A , 2 1 5  
A A = R E  
B B = IM A G  

2 1  C O N T IN U E
C
C T A B L E  FO R T W ID D L E  F A C T O R S
C

DO 2 4  11  =1.* S 4
DO 2 5  1 = 1 ,  2
T F *; I , I I  5 =  A L P A  •; I ,  1 1 5

C T A B L E  FOR IN V E R S E  T W ID D L E  F A C T O R S
£

I  N i<= 11 —1
I F ' I N K .  NE. 0 5  I  N K = 1 2 8 — I  NK 
T F T *; I ,  11  5 =  A L P  A*: I ,  I N K - 1 5  

2 ?  C O N T IN U E  
2 4  C O N T IN U E  

DO I.  1 = 1 ,  2  
M SUB=M ODU < I  5
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S U B -M O D U L I R E S ID U E  TR B LE  

DO 2  N = l ,  MMOD

148

A = N —I
TRSM < I , N > ®MOD C f i ,  MSUB >

2  C O N TIN U E
r
0  R D D IT I  ON T E B L E
r

DO 1 1  N = i ,  MSUB 
DO 1:1 N N -1 ,  MSUB 
A=N-‘-NN—2
TRDD -I I , N, H N > =MOD < R, MSUB i'1

C
C T R B LE  W IT H  M U LT T P LT E R
C

B = N + N N -2 -7  . ■
T A D M U L C I, N- N N ^ M O D 'IB ,  MSUB>

1 1  C O N T IN U E
0
C S U B T R A C T IO N  T R B LE

JO. _ - -
DO 1 3  K = l ,  MSUB 
DO 1 3  K K - 1 ,  MSUB 
f l= K -K K
I F  < R. L.T. CL- R=A-H ‘1SUB 
T S U B C I, K , K K > = A  

1 5  C O N T IN U E  
1  C O N T IN U E

DO 4 0  1 1 = 1 ,2 0  
DO 41  J J - 1 ,  2 1  
X l= <  I  i - i : > * i  
>=:2=*: j j - i i ' * 2 0  
X 2=M 0D '-:X 2 , 21.1
x b = x i  * m o d u  •: 2  ;•+ X 2 :+'M0DU <: i  :> :>
X 4 = M 0 D < X 2 , PRO>

c
C T R B LE  FOR IN V E R S E  LOOK UP
c

X 5 = M 0 D X 4 ,  N i’IOD >
X = I  IND*:X5-+-1>
t i n v c i i , j j :>=x

r
C T R B LE  FOR F IN A L  LOOK UP
0

X B =M 0D '1X 4 , MMOD>
T F IN C I I . -  j j :> -x b

C
C S U B T R A C T IO N  T R B LE  IN D E X E D
C

IF C X 4 . LE . MODS> GO TO 5 5  
X 4 = X 4 —PRO 
X 4 = X 4  M f1 i iJ D 
GO TO 5 6  

5 ?  X 4 = M 0 D < X 4 , MMOD j 
5 6  B =  I  ND < X 4 —1 1'

1 TSU I  N C I,  I I . '  JJ>=M O D C B , 2 0 >
I F  r|X4. EQ. TSU I  N C I ,  I I ,  J J 1 = 2 1
TSU  IN  -12 ,  I I . '  J  J  'J' =MOD < B, 2 1  > 
t f >:X4. EQ. 0>  TSU IN  < 2 , I I ,  J J > = 2 1
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41 CONTINUE 
4 0  CONTINUE

CORRECTION FOR ZERO M U L T IP L IC A T IO N

DO 0 51  1=1... 2  
DO 2 5 2  J = ± , Z 2  
TRDD1'! . .  22.. J > —2 1  
T fiD M U L * '!, 2.2, J>  = 2 1  
T IN V '3 2 ,  I)--*

2 5 2  CONTINUE

TfiDD'C I ,  J ,  22> = 21 . 
TRDMUL.1' I ,  J ,  2 2 > = 2 1  
T IN V 1- J , 2 2 > = 0  

2 5 2  CONTINUE 
2 5 1  CONTINUE 

RETURN 
END
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r* &  'M

C *  PROGRAM TO S IM U L A T E  TH E  HARDWARE D E S IG H  N T T  S TR U C TU R E *
C *  M O D U L U S = i? ±  *

S U B R O U T IN E  N T T ''i IN V , IN P 1 ,  IN P 2 ,  STG , P O S T , OUT:L, 0 U T 2 >
I M P L I C I T  IN TEG EP. C R -H , G -Z  >
COMMON T IN V < 2 ,  2 2 ,  2 2  > , T S U B -I2 , 21., 2 ± > ,  T F T H < 2 © , 2 ± > ,  T F  I  \  2 ,  6 4 ,  2 >
COMMON TR S M C 2, l. :? ± > , T A D D < 2 , 2 2 ,  2 2  >, TS U  IN  < 2 , 2 1 ,  2 1  >, T F C 2 , 6 4 ,  2 >  
D IM E N S IO N  I N P i ^ 2 > ,  IN P 2 'C 2 > , Q U T 1 < 2 > , 0 U T 2 < 2 >
COMMON P O IN T
IF - :  POT NT. NE. 0 >  GO TO 2 O 0
R ± = R 2 = P .2 = R 4 = R 3 = F :6 = R 7 = P .S = R 9 = R ± 0 = R ± J .= R 1 2 = R 1 2 = R ± 4 = R ± 5 = R ± 6 = R ± 7 = R ± 8 = O
R 1 ? = R 2 0 = R 2 1 = R 2 2 = R 2 2 = R 2 4 = R 2 3 = R 2 6 = R 2 7 = R 2 S = F :2 :? = R 2 0 = R E 1 = = R 2 2 = R 2 2 = R 2 4 = 0
R 2 3 = R 2 6 = R 7 7 = R 2 3 = R 2 S = R 4 O = R 4 1 = R 4 2 = R 4 2 = F :4 4 = R 4 5 = R 4 6 = R 4 7 = R 4 S = R 4 9 = R 3 0 = 0
P .5 2 = R 3 2 = P .5 2 = R 3 4 = R 5 5 = R ? 6 = R 3 7 = R 5 8 = R 3 S = R 6 0 = R S 1 -R 6 2 = R 6 2 = R 6 4 = R 6 5 = R 6 S = 0

C
C LP.TCH TH E  O U TPU T
C '

2 0 G  O U T ! 1 = R S 2  
0 I J T l ‘:2 O = R 6 4  
OUTS i  '■ = R 6 3  
0 U T 2 < 2 :-= R 6 6

C
c TH E  S E V E N TH  STRG E
C

P .S Z ^T F  I N R 5 3 - * - l ,  R 5 6 -* - l>
F .S 4 = T F IN • 'R 3 7 + 1 ,  R 53-*-i:>
R S 5 = T F IN C R 5 9 + ± , F :S 0+ 1>
R 6 6 = T F IN ' 'R 6 1 + 1 ,  P .6 2 + 1  >

C
c  TH E  S IX T H  STRG E
C

R 3 5 = R 4 2
R 3 6 = R 4 4
R 3 7 = F :4 5
R 5 8 = R 4 6
R ? ? = T S U B < i,  R 47-H L, R32-*-±>
R 6 0 = T S U B  'C 2 ,  R 4 9 + 1 ,  R 3 4 + i>
R S 1 = T A D D < ± , R 4 9 + 1 ,  &5±->-±:<
R 6 2 = T R D D < 2 , R 3 0 + 1 ,  R 5 2 + 1 *

C
C T H E  F IF T H  STAG E
r

F :4 2 = R 2 ±
P .4 4 = R 7 2
R 4 3 = R 2 7
R 4 6 = R 2 4
R 4 7 = T IN V  1 ,  R 2 3 + 1 ,  F :2 6 + l>
R 4 £ t= T IN V \2 ,  R 3 5 + 1 ,  R E E -^ i;1 
P 4 < ? != T IN V < i, P .7 7 + 1 , R 2 c - 1  >
P 5 0 = T  I  NV < 2 ,  P.27-+-1, R 2 2 -** l>
R 3 1 - T I N V ' : ± ,  R 2 S + 1 , P.40-+-±>
R 5 2 = T IN V < 2 ,  R 2 .9 + 1 , F :4 0 + ± >
R 5 7 = T  I  NV < 1 ,  R 4 1 + 1 ., R 4 2 -*- l>
R fi4= rT T N 'v ',' 2 ,  R 4 ± -* - l,  R 4 2 * l>

r
C TH E  FO URTH STRGE
C
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E 2 i= R i?
R 3 2 = R 2 0
R 73= R 2 :1
R 2 4 = R 2 2
E 3 3 = T R D D R 2 2 + 1 ,  R 2 7 + l>  
R 2 £ = T R D D < 2 , P .2 4 + 1 , P .2 8 + l>

R 3 7 = T R D D < 1 , P .2 3 + 1 , R 2 7 ~ l  i'- 
R 3 8 = T P .D D < 2 , R 2 6 + 1 ,  R 2S +±;:. 
R 2 9 = T R D D < 1 , R 2 3 + 1 ,  R 2 9 + 1  i> 
R 4 6 - T R D D 2 ,  P .2 4 + 1 .. R 3 6 + 1 > 
R 4 i= T R D D - ' l ,  R 2 3 + 1 ,  R 29+ ± ;<  
-R 4 2 = T R D D < 2 , P .2S + 1 , R 3 0 + 1 J

T H E  T H IR D  STR G E

R1.9=R:1.0
R 2 0 = R 1 1
P .2 1 = R 1 2
R 2 2 = R 1 3
R 2 3 = T S U i r K i ,  R 1 4 + 1 ,  R 1 5 + i:>  
R 2 4 = T S U IN < 2 ,  P .1 4 + 1 , F M 5 + i>  
R 2 3 = T S U I f K l ,  P . iS + 1 ,  R 17+1;:* 
R 2 S = T S U IN •'2.. R i S + l ,  R ± 7 + i>  
TF-C IN V . NE. 0:.' GO TO 3 6 6  
R 2 7 = T F O i,  R 1 8 + 1 ,  I!:. 
R 2 8 = T F < 2 ,  R 1 8 + 1 ,  1 >  
R 2 9 = T F * : i ,  P .1 8 + 1 , 2>  
R 3 0 = T F < 2 , R 1 8 + 1 ,  2>
GO TO 4 9 6  

2 6 0  R 2 7 = T F I  * '1 , P .1 8 + 1 , J.;:.
R 2 3 ~ T F  I  < 2 ,  R i  8 + 1 ,  1  !> 
R 2 8 = T F I  R 1 8 + 1 ,  2>  
R 3 S = T F I  < 2 , R 1 8 + 1 ,  2:>

TH E  SECOND STRG E

4 0 6  R 1 0 = T R D D < 1 , R l+ 1 ,  R 5 + l>  
R ± i= T R D D < 2 ,  P .2 + 1 , R S + 1 ?  
R 1 2 = T R D D < 1 , R 2 + 1 , R 7 + l>  
R 1 2 = T R D D < 2 , R 4 + 1 , R S + 1 >  
R 1 4 = T S U B '' i ,  R l+ 1 ,  R 5 + l>  
R 1 5 = T S U B  >C 2 ,  P .2+ 1 , R 6 + l>  
R 1 £ = T S U B < 1 , R 3 + 1 , R 7 + l>  
R 1 7 = T S U B ''2 ,  P .4 + 1 , R S + 1 >  
R:1.8=R:9

TH E  F IR S T  STRG E

T i  =  I  N P i  < i  > + 1  
T 2 “  I  N P i  •' 2  > + 1  

_ T 3 = IN P 2 < 1 > + 1
"  T 4 = IN P 2  < 2  > + 1  

R 1 = T R S M < 1 , T l>
R 2=TRSM >'.2, T±':‘
R 3= T R S M > '1 , T 2 >
R 4 = T R S M -:2 , T 2 >
R 5 = T R S M -: i,  T 3  j
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R 7=T R £M  7 4  >
F :8 = T R 5 M 2.' T 4 >

GENERP.TE THE POWER OF A LP H A

R 9 = P 0 S T /  < 2 :+"+:STQ > *  < 2 * * S T G  }
P O IN T a P O IN T + 1
RETURN
END
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C :*■■ *
C *  PROGRAM  TO S IM U L A T E  T H E  HARDW ARE D E S IG N  N T T  S T R U C T U R E  *
C + M O D U L U S -1 9 3  *
C :+: *

S U B R O U T IN E  N T T -C IN V , IN P 1 ,  IN P 2 ,  S T G , P O S T , O U T i ,  O U T 2>
I M P L I C I T  IN T E G E R C A -H , G -Z :>
COMMON T R S M < 2 ,  1 9 3 > ,  T R D D C 2 , 3 2 ,  3 2 : * ,  TR D M U L-C 2, 2 2 ,  3 2 > ,  T S U 3 < 2 ,  3 1 ,  2 1 >  
COMMON T S U  IN C  2 ,  2 1 ,  3 1  X . T I N V < 3 2 ,  2 2 > ,  T F I N < 2 0 ,  2 1 X  T F < 2 ,  S 4 X  T F I  < 2 ,  S 4 >  
COMMON P O IN T
D IM E N S IO N  I N P 1 < 2 > ,  I N P 2 < 2 > ,  O U T 1 < 2 > ,  0 U T 2 < 2 >
I F <P O IN T . NE. 0 >  GO TO  2 0 0
R 1 = R 2 = R 2 = R 4 = R 5 = R S = R 7 = R S = R 9 = R ± 0 = R 1 1 = R 1 2 = R 1 3 = R 1 4 = R 1 5 = R 1 S = R 1 7 = R 1 S = 0
R l? = R 2 0 = R 2 i= R 2 2 = R 2 3 = R 2 4 = R 2 5 = R 2 S = R 2 7 = R 2 S = R 2 S = R 2 0 = R 3 1 = R 3 2 = R 3 3 = R 3 4 = 0
R 3 3 = R 3 S = R 3 7 = R 2 S = R 2 S = P .4 0 = 0

C
C C H E K S  A R E  T H E  C O N T R O LS  FO R  E V E N /O D D  POWER. O F A L P H A
C

C H E K 1 = C H E K 2 = C H E K 3 = C H E K 4 = C H E K 5 = 0  
C '
C L A T C H  T H E  O U T P U T
C

2 0 0  O U T 1  < 1  > = R 2 7  
O U T IC  2  > = R 2 S  
0 U T 2 < 1 > = R 2 9  
0 U T 2  < 2  > = R 4 ©

C
C T H E  F IF T H  S T A G E
C

R 3 7 = R 2 3
R 3 8 = R 2 4  {
I F 1'C H E K S . NE. 0 >  GO TO  2 O 0
R 2 9 = R 3 5
R 4 0 = R 3 S  ,
GO TO  3 0 1

3 0 0  R 3 9 = R 3 S  
R 4 0 = R 2 3

3 0 1  R 3 3 = R 2 7  
R 3 4 = R 2 S
R 3 E = T IN V  <R 3 1 + 1 ,  R 3 2 + 1 >
C H E K 5 = C H E K 4

C
C T H E  FO U R T H  S T A G E
C

R 2 7 = R 1 9
R 3 3 = T I N V <R 2 9 + 1 ,  R 3 0 + 1 >
R 2 8 = R 2 0
R 2 9 = T R D D < 1 , R 2 1 * l ,  R 2 5 + l>
R 3 0 = T A D D < 2 , R 2 2 + 1 ,  R 2 S + 1 >
IF < C H E K 3 .  NE. 0 >  GO TO  3 8 2  
R 3 1 = T A D D  1 ,  R 2 3 + 1 ,  R 2 5 + 1  >
R 3 2 = T A D D  < 2 ,  R 2 4 + 1 ,  R 2 S + 1 ;.  ;
GO TO  3 0 3  I

3 8 2  R 3 1 = T A D M U L < 1 , R 2 3 + 1 ,  R 2 S + i;>  f
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C T H E  T H IR D  S TAG E
i—•

3 G 3  C H E K 4 = C H E K 3
R i.? .= T F  IN  < R 1 0 + 1 ,  R l± + 1 >
R 2 0 = T F  IN  < R 1 2 + 1 ,  R 1 3 + 1  > 
R 2 1 = T S U Z N < 1 , R 1 4 + 1 ,  R 1 5 + 1 > 
R 2 2 = T S U IN '::2 .. R 1 4 + 1 ,  R 1 5 + l>  
R 2 2 -  TS U  IN  < 1 ,  R 1 S + 1 , R 1 7 + i;>  
R 2 4 —T S U IF K 2 ,  R I S + i ,  R 1 7 + l>  
IF O .N V .  NE. 0'.> GO TO 4 6 0  
R 2 ? = T F '.1 , R 1 8 + i>
R 2 6 = *T F < 2 , R 1 8 + l>
GO TO 4 0 1  

4 G 0  R 2 5 = T F  I  < 1 ,  R 1 3 + 1  >
R 2 6 = T F I< 2 ,  R 1 8 + l>

C
C T H E  SECOND S TAG E
C

4 0 1  C H E K 3 = C H E K 2
R -1 0 = T R D D -:i,  R l+ 1 ,  R 5 + l>
R 1 1 “ T A D D < 2 , R 2 + 1 ,  R S + ± >  
R 1 2 = T R D D < i,  R 3 + 1 ,  R 7 + l>  
R 1 3 = T A D E K 2 , R 4 + 1 ,  R S + l* 1 
R 1 4 = T S U B < 1 , R l+ 1 ,  R 5 + l>  
R 1 5 = T S U B < 2 , R 2 + 1 ,  R S + 1 >  
R lo = T S U B 's l ,  R 3 + 1 ,  R 7 + l>  
R 1 7 = T S U B < 2 , R 4 + 1 ,  R S + 1 >

■ R 1 S = R S  
CH EK2=C-H EK1

C
C T H E  F IR S T  S TA G E  
C

RsINPi<l>
B = IN P 1 < 2 ; . '
C = IN P 2 < 1 >
D = IN P 2 < 2 >

. R:l. =TR SM  < 1 ,  A + l>
R 2= T R S M  < 2 ,  A + l>
R ":=TR S M  < 1 ,  B + ± >
R 4= T R S M  < 2 , E + l>
R 5 = T R S M * '. l,  C + l>
R 6 = T R S M < 2 , C + l>
R 7 = T R S M < 1 , D + l>
R S =TR S M  •' 2 ,  D + l>

C
C G E N E R A TE  T H E  POWER OF A L P H A
C

R 9 = P 0 S T /  ■: 2 + + S T G  > *  < 2 + + S T G  >
c h e k :i = m o d <r s , £>
P O IN T = P 0 IN T + 1
RETU RN
END
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/

:+> ^ :+: :** ; + : i+r: + : : + : >K :+*:+: * !:+ : :*::+ : 'M :+: *  :+- A  *  :+ " *  :+ :H* :4< s+e ^  ̂ :+: & >fc:+:'M*R'¥■:+::+::+■.:4*:+:^H e H* He:+: He

*  PROGRAM TO S IM U L A T E  THE HARDWARE D E S IG N  N TT STRUCTURE *
+ M Q DULUS=44S *
:+v<f* :A?:+: % ?a» •+• •*: «*• H* ?+•:+: ?+: t+::+::+::+e:+r r+e H: *x*;+: >ft >H:+: :+r :+• H:•+? ?+: H»•+? :+? He H? H? vf:H? H: :4<:+: 'M  ?<f::+: r+: !+: *fe t+: He He H* H* HeHeHeHeHe He He ’ ¥

S U BR O U TIN E  N T T C IN V , IN P 1 , IN P 2 , STG, POST, O U T i,  0U T 2>
IM P L IC IT  IN T E G E R < fi-H , 0 -Z >
COMMON TRSMC2, 4 4 ?  >, TRDD<2, 0 2 , 3 2  >, TRDMUL<2 , 2 2 , 2 2 ;-, TSUB<2, 2 1 , 2 1  > 
COMMON TSU IN  -C 2 , 2 1 , 21 > , T I  NV < 2 2 , 2 2 > , T F IN C  2 0 , 21  >, TF < 2 , 6 4  >, TF I  < 2 , 6 4  > 
COMMON PO IN T
D IM E N S IO N  IN P 1 < 2 > , IN P 2 < 2 > , 0 U T 1 < 2 > ,0 U T 2 < 2 >
IF - '.P O IN T . NE. iIC- GO TO 2 0 0
R 1 = R 2 = R 3 = R 4 = R 5 = R S = R 7 = R 3 = R S ^R 1 0 = R 1 1 = F :1 2 = R 1 3 = R 1 4 = R 1 5 = R 1 S = R 1 7 = R ± 8 = 0
R i9 = R 2 O = R 2 i= R 2 2 = R 2 2 = R 2 4 = R 2 f.= R 2 6 = R 2 7 = R 2 8 = R 2 9 = F :3 O = R 2 1 = R 2 2 = R 2 2 = R 2 4 = 0
R 2 5 = R 3 6 = R 3 7 = R 2 -8 = R 3 ? = R 4 0 = 0

CHEKS RRE THE CONTROLS FOR E V E N /O D D  POWER OF ALPHA 

C H EK.1=C H E K 2=C H E K 3=C H E K 4=C H E K 5=0 

LATC H  THE OUTPUT

2 0 0  O U T 1 < 1 > = R 2 7  
0 U T 1 < 2 > = R 2 8  
0 U T 2  -'. 1  ;■ = R 2 ?
TnUT2C2>=R46

THE F IF T H  STRGE

R 2 7 -R 2 3
R 3 8 = R 2 4
I  F< CHEKS. NE. 0!- GO TO 3 0 0
R 2 9 = R 3 3
R 40= F :36
GO TO 3 0 1

3 0 0  R 3 9 = R 2 6  
R 4 0 = R 2 ?

3 0 1  R 2 3 -R 2 7  
R 3 4 = R 2 S
R 2 3 = T  IN V  P .29+1 , R 3 0 + 1  :- 
P .26=T IN V  R 2 1 + 1 , R 3 2 + 1  ;- 
C H EK5«C H EK4

THE FOURTH STRGE

P.27=F:iL='
F .2 8 -R 2 0
R 2 ? = T A D D -'. l,  R 2 1 + 1 , P.25+1 
R 30=TR D D  f. 2 ,  R 2 2 + 1 , R 2 6 -1 ;:- 
IF < C H E K 2 . NE. 0> GO TO 2 0 2  
F :3 1 = T R D D -:i, R 2 3 * l ,  R 2 3 + i>  
R 32=TR D D -'.2 , R .24+1 , R 2 6 * i : -  
GO TO 2 0 3

3 0 2  R 31=TR D M U L 1 , R 2 2 + 1 , R 2 5 * l>  
R 22=TRDM Ui. < 2 , R.24-^1, R 2 6 + l>
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c
C TH E T H IR D  STRGE
C

3 0 2  C H E K 4--C H EK 2
E 1 9 = T F IN  <R 1 0 + 1 ,  R ± 1  + 1  > 
R 2 0 = T F IN  < R 1 2 + 1 ,  P. 1 3 + 1  > 
F :2 2 = T S U T N < i,  P .1 4 + 1 , R 1 5 + 1 > 
R 2 2 = T S U IN < 2 ,  R 1 4 + 1 ,  R 1 5 + l>  
R 2 ? - T S U I N v l ,  R 1 G + 1 , R 1 7 + i>  
R 2 4 - T S U  IN  ■' 2.' R 1 S + 1 ,  R 1 7 + l>

I F < I N V .  NE. {?> GO TO  4 0 8  
R 2 3 = T F < 1 ,  R 1 8 + l>
R 2 F = T F ';2 ,  R 1 8 + 1  >
GO TO 40-1  

4 0 0  R 2 3 = T F T  <!.• R i S + i >
R 2 S = T F T  < 2 , E 1 S + 1 >

C
C T H E  SECO ND S T R G E
C

4 8 2 . C H E K 3 := C H E K 2
R2 0 -T R D D  < 2./ R l+ 1 ,  R 3 + 1 U  
R l l= T R D D - '2 ,  R 2 + 1 ,  R S + i>

. R 1 2 = T R D C K 1 , R 3 + 1 ,  R 7 + 1  > 
R 1 2 = T R D D < 2 , R 4 + 1 ,  P .8 + l>  
R 1 4 « T S U B < 1 ,  R l+ 1 ,  R 5 + i>  
R 1 5 = T S U B - :2 ,  P .2 + 1 , R E + i>  
R 1 S = T S U B < 1 , R 3 + 1 ,  R 7 + l>
R 1 7 = T S U B  <2 ,  R 4  * 1 ,  R S + 1 >

, . . R 1 S = R ?
C H E K 2 = C H E K 1

C
C T H E  F IR S T  S T A G E
C

. R = I N P 1 < 1 >
B a IN P 2 < 2 >
C = IN P 2 < 1 >
D = IN P 2 < 2 >
R 1 = T R S M < 1 , f i + l >
R 2 = T R S M < 2 , f i + i >
R G -T R S M -M , B + l >
R 4 = T R S M < 2 , B + l  >
R 5 = T R S M < 1 , C + l>
R S = T R S M < 2 , C + l>
R 7 = T R S M * : i,  D + i>
R 3 = T P .S M 2 ,  D + i . '1

C
C G E N E R A T E  T H E  POWER O F A L P H A
C

R S - P O S T /  2 + + S T G  > *  < 2 -+ + S T G  > 
C H E K 2 “ MOD<R S , 2 >
P O IN T = P O IN T + 1
R E TU R N
EN D
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00  1 E 7  7 . ^ 2 3 M O V
0 0 I F E-J / * 2 a P O P  ' ‘ H  ■
0020 D r '  2 5 - , w ~ P O P  • '■ D
0021 C9 * . 2 6 • t

/. K E T  • "  ̂ .
.. - 2 7

> •

- - - V EN  D '  •

4 0 ? I T  N ^ . ^ O C U L O  192  
M E M .  L C C A T I ' "  '*£.£& — '# Ztt/- f  I

\

v-_

L O C  ' O B J l / I^ E SC/UK C E  S 1 A T EALEN1 T
. l

9
* • * * «“

" r  1

• < -

r S U F K Q b T I X E .  TO
. ••

* K ED'UC E a  1 0  F I T  .  M0 D L L O  1 9 3
* “* / ’ 2 P iVO^TO PE K E D L C F D  1 5  I v  V E M  .  L O C A T I O i X  8 A p 0 - 3 . c f * i H

3 ? K E 5 L L T  I t \  m e m . . . L O C A T I O N  R A 0 0 W
* 1

/ *
' A - -  * ’ P L B L I  C K E D 1 9 3

r * . - 5 '  , . ' 'CHEC­ '
0 0 0 0 D 5

*1* 6 KE D  1 9 3  r  P U S H  • D
0 0 0 1 - E 5  . , ■ 7 - v . • - P l - S H  -• H ‘ . ’ • -/ '

... 0 0 0 2 2 .1 P 08-A ' f t '•* - - L X I  . '  H , 8 A 0 0 W  ‘ '  • '. .
0 0 0  5- 5 E  . • -.*9 ' MOV ■ E^M

. 0 0 . 0 6 2 3  - ' ' 1 0  ■ 1 NX __H
0100 T ,56 - 11 . MG.V D , M  • ‘
0 0 0 8 7  A ■" 12 L O O P :  M OV “ A , D  * '  '
0 0 0 9 B 7  ... . 13 - O K A A .
0 0  0 A C 2 1 3 0 0 C 1 A - J N E d s U e  , ,
0 0 0  D 7 B 1 5 • ’ * . ' MOV A> F -
0 0 0 E F E C I , 16v *  . -  . ' C P I 19 3
0 C' I 0 DA 1 8 0 0  . c 1 7 ' - /  J C  >. - 6 T G K
0 0  1 3- 2 1 3 P F F r.8 D S U B :  L X I H ^ - 1 9 3  • • - '
0 0 1 6 19 , . 1 9 ! DAD ' . D - ^
00.1 7 ? e  " 2 0 XCHL- *
00 ’ 1 R C 3 0 8 0 0 c 2 1 j M p  ‘ L O O P  '
0 0  l  B 2 1 0 0 R a 2 2 S T O P :  * L X I „ W j FT400H
? 0 i  E •7 7- 2 3 .-MOV » M ,  A . • '  ; - • *
0 0 T F E l  "  s ' 2 A POP H . ’ "  ■

C 0 2 D D 1 ■ 2 5 . V POP - D - - i . ■ '
0 0 2  1 C9 2 6 >• r - E T t

: 2 7 EN D r
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. . . . .  r. • .*'* “ —  ̂• ,4̂ •  .

L C C O B J  ’ -1 L I N E ' • ' b G L R C E  b T A 7 E M F N T

/ • - 1 l  b l 'E K O  U T I N  E T O h E D . D L L . A  11 1
\  v 'f 2 ; THEj.  MAX. .  . N O .  I b  I 8  6 0  .\ • • ~ '/ \ ‘ ? . - 3  .' j n o . k e d u g L d  t o •' B E  FOUND' '  I N
/ - ‘- ‘J 4 J . h F b O b J  ITv TH H' b A M E  L O C A T H

’ v  - 5 . P U B L I C '  K E D 9 -3 0V
6 - C S E P  '

• • >
•• i

'p p p p . D b ' 7 k ED9 3 P t  P U b r l  ' ■ * ’ D •
P P P  1 F b "  ' ' • ' '  8 *P l )bH  ' H '
0 0  0 2 2 1 0 0 8  4 ■ 9 L X . I  \  . P , 8 A 0 - 0 H  .:
P0-P5. b F  ■■ I P MOV ■£>■"' 1  '
P 0  0  6 23 - .1 1* > * ' ’ ' I N X  ' H
P P P 7  ■• 5 6  *• . 12 . ' . -MOV • D ,  M
P P 0 8 7 A ’ > 1 3 b T A R :  MOV A , D
0 0 0 9 F F 0 3 • 1 4 ' C P I . . 0  3 "  J C
■ 0 00? DA 1 CPP C 15 - \  J C  ' •

b T O R  " •: N

P 0 P E C 2 1 7 0 0  ' ^  • ' 16 '. ' J N Z  • . 
T  • * i

. S O F T  > I F  H

0 0 1  1 7 E - i- ' 1 7 MOV A ,  E. _ 7 ^
0 0  1 2 *> 18 . • • ,c p i  . 16 '2  \

— - - . 0  . ' ..  ̂» . .

0 0  1 4 .D AJC PP C' 19 J C  ^  - • b T O h
P.P 1,7 2  1 5EFC, { 2 0 bU P T :  . / L X I f t , - 9 . 3 P

• P P l  A 1 9 . ,21 - DAD ' D • • - ■ ■ ■ '  ,*v.
PC; I B £ E  , : . '£ .2 • . ' XCKC- ■
0 0  1 C 2 1 P P R 4 2 3 i T u h s *  . £ X I . H ,  8  4 0 R H '
0 0  1 F 7-3 *  2rA. ^  ^ c M O V - ■
0 0 2 0 2 3 ■ 2  b s - \  ' I 'N X  " • H "  -  ' ■/
0 0 2 1 7 2 ■ V 2 6 ' MOV.  ' ; ; -
0 0 2 2 E l  ' - . ' ’ 2 7 POP : , H
0 0 2  3 D 1 . 2 8 POP -D  ■ •
. 0 0 2 4 C9 j ' .  -r* . ? 9 ' • . . R E.T ’ ' ■ . ‘ •

. 0 3 0 . ■ v, .END *t .

* V

' . . A C T I O N

SU m " O F  L O N  FN F Y T E  <JF 9 3
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L  u  C 0  E  J LINE' ' ^ C U h C E  E T A  1 EM  E N T
)• •• ^

1 J ,EL'£W 0  UT-r N-E TO Ub f t  P L * /  TMD * 8 ' B I  . f  NO .
2  - J N O  . T O  B E  MUL-T I  P L I E D  I N  R E C - /  0  *  "
3 ; KE EL'L T I  (V M E M .  LC )C A T 1  ON B 4 0 0 T 8 4  0 1H 
A - F U R L I C »  M L L T I , P , \  , '

- ' n - C E F G <
CiPiO-.P C N 6 . M L’L  T I P :  P O S H

> p r .-1 E E / -  ’ 7 ip  U E H
f  ? C: 2 F  1 r / f * r '0 8 * ' L X I ,

..

f ’ P’0 5 2 E P B . 9 M v r  .

- f ;  P A 7 _ 7  A - I P N X 7 P 1 T :  M O \y
I F - . . "11 /  ' K A P ~

' :  ■ m o  v' 5 7 . 12’
f ' F P A L 2 1000 G 1 3 —  J N C
f'.C> K L 7 8 14- M O V
O P  P E. " 8 3 . l'S. A D D
& 0 0 F • - r6.

- M O V "
p-p l f: 7 8 '  1 f N O A D D :  M O V

- -  f - (  11 IE ' ■ AS '  '  P A R
- 0 0 12 , 47 . : • 19 M O V

c-'f’ 1 3 ' 7 9 20 V  M O V
• . P P  1 4 I F 21 h A h
■ 0 0  1 5 4 F  r 2 2 M O V

0 0  1 6 2 V 2 3 - D C K
I ' f ' M  7 C-2 0 7 0 0 C '  2 4 »- J N ’ Z

f/ . f /  1 A 2 1 0 0 8  4 /  2  5 '•*  -  L X I
‘ F f - 1 D 7  1 " 2 6 I' N 10 V  .

A F  1 E 2  3 '  2 7 ' I  N X
O F  1 F ' 7 0 , . M O V  *

'  O F  2 0 E K  _ • ,  2 ? "  P O P : '
. 0 0 2 1 . C i  . / - - 3 0 ^ P O P

' P F 2 2 C 9 >  3 1 R E T
-• .

3 2 ' E N D . .
• v. •< -

'F
H
B t  P.. J T E M p .  R E S U L T  I  N »BEC- . ’ P A  I R  B

L j B-«.
: o

' - 0 , A  '
■» N 0  A D D  ■•./'- 

A ' ,  B  '
• E '

B > A  - 
* A , B  ' -

v.. * . ’

HE > A  *
A , C  '

3 C >  AV 
Li.. ' ■

'  N X 3- P T T  .
•- H , . 8  4 0 PH  

lM r  C *
H ' ■

> i #  b  ■
v H*. . / . /  
-  B:.
' •'*7 m

A * . • •

(  ■

V
V
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L C C O B J L / I ■X F . S O U R C E '  S I A T E M E N T
t V .

1 K S y B R O  U I I X  E T O A D D  T w O  '1 6 . B I  7
/ 2 1 N O E . S J ' O h  E D  I N B 4 l 0 U p ( 4 j 3 H '

, \ ■* •- 3 • : '  P U B L I C A D S K  . . : * • /
4 V .  C S E O *  • 1 ■ ' . .

P 0 P 0 ' C‘5  •
f 5  ' A D b  R :  . - P U S P f  - B

000  1- D 5 • 6 .'/• F U S H  - D ‘ , .  ~~
' P‘C: 02 £ . 5 .  ' . 7  ' P U S H  .

P O P  3 2 1 1 0 8  A 8 . ' • • L X I  *. H i  8 4 1 0 H .  . . .
• 0 0 0 6 A F  . . " \ 9 \  M O V £ , M  •

0 0 0 - 7 . 2 3  "  • 1 P .  • N  X H
p p p r ' A 6 .. 1 1 M O V ■P>.M , ^

■ ' - 0 0 P 9 a : r " 1 2 „  ‘ . I  N X ' -H .
. pif/ic*. A . * ■ 1 3 M O V - E - * M  • : r ;

-  00  0 R 2 3 1 4 - - - I  N X  , '’■ H . -A ■

00 0 C 5 6 ' ■ 1 5 . M O ,V  . . D >  M . • ' '  '
.0 P P D ' 7 9 1 6 • • . m o v  ; . A  .»• C . * -
P P F E 8 3 ■ _  ^ 1 7 , A D D ■ E /  ' ' ' •  -
000  F 4 F % - 1 8 . v .  • -  . . .  M O V -  C i  A -  ,

001-0 7 8 -  . L . Y 1 9 • •• M O V  . , ' A , a  : • . • , -  • * .
00.1 1= 8 A • 20 ' • - A D C  > ' D  ; '  X .  - • ^
P P 12 - 4 7 21 . 1 ' M O V  *■ '  f f / A - . . - ’ - . • » .

. P P  1 3 2 1 0 0 8  A  •* 22 ✓ L X ’I  * H , 8 4 0 0 ^ , -  . . .

m  1 6 7  1 '  - ‘ * 2 3 . M O  V  r  ' M / C
» *  . »

P P T 7 2 3 2 4 I i V X . *  .

.00 14? 1 7 0  "  ' \ 2 5 •M 0  V  -  ' •M i  B
0 P 1 9 " E .1 2 6 . F O R  ■

»  .• . |
H. . .  . :

.  0 0 1 A . D 1 • 2 7 .  p o p  . D '  '  ,  . '  ‘

0 0  I B C l  ' ■ 2 8 POP' ,  • b  . • x -
p . p  1 C C 9 \ •  2 9 “ -  , ' ; RET. • * ,

f  * \ 3 0 ~ E N D  /
-  - i  •» . . i  ;

\ " %
*

_.  ___ ,  t  L '- V *  —  . - i  — 1 ~ - »

NOS
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L O C  O B J L I N E S O U R C E  S T A T E M E N T

1 r ; B U B k O L ' i r N  E f T O  C O M P A R E  T V O  1 6  F I T  N O  .  <> I - T P  7 3 8
2  5 N O S . . -  M O R E D  IN- .rvTEM. LO C A TIO N ' P 4 0  0 - 8 4 0  1 W

* 3 • .
/ I - . P  U F L ' I  C... C O M 7  3 8

. V 5 — C S F  C- ■ ' -
0 0 . 0 0 D 5 . * 6 C O M  7 * 3 8 : P U S H D
F O R  1 E 5 . 7  - * P U S H ' ' H

• P 0 0 2 2 1  P O P A 8 - L X I H >  8 4 0 0 H .
.  P P P 5 5 E 9 M O V E # M

P P 0  6 2 3 , 1 0 ' \ i n x H.  .-■
P 0 0 V  5 6 ' . ‘ ,  1 1 M O V D,N»
P P P 8  . 7  A . 1 2 4 M O V  ' A / D -  -

- 0  0Xi 9 E 6 P 2  • \ ' 1 3 A N  I  - . ' 0 2 \  -' - 1
P P P B C A 1 F 0 P  . C- . \ vJZ U E S S

. R F  0  E 7  A * 1 5.- M O V -  . - x A , D  .
v  P P P F E 6 0 1 •j* I  6 * A N i  • ; P i  n  .. '

p e n C 2  1 A P P .C ' x ’ 1-7 J N Z  n G K E A T
0 0 1 4 7 b  ■ ' ■ 1 8 . vt O V ‘
00  1 5 F E E 2 1 9 - c p r - 2 : 2 6  • .

' ■* 00  1 7. D A  1 FPPr c 2 P J C ' L E ' S S .  .
W l A 3 . E P  1 ' 2 1 G K  F A T :  ' m v i A , .  1
00  1C. C 3 2 1 j > r A c 2 2 - J ^ p -  ■ • L I  ’ '

’ \  P P 1 ‘ F S E 'P P .. , 2 .3 L E S S :  .* m V T  .. 1 A * P-
- . 0 0 2 1  . 2 1  0 2 8  a . ' 2 4 L 1 :  \  ; : L X I  - H > 8  A 0 2 H '

0 0 2 4 ' 7 7 ^ 5 • M O V  . . M i . A
• P 0 2 5 F I  ‘ ■ 2 6 ■ -• .- - p o p f . - H, 7 ■

002-6 D 3 ' % . 2 7 - ■ ' P O P  , D ' v  V
0 0 2 1 . . C 9  : 2 8 •JvE T V  - ' *» .*

* - 2 9 4 - *■*"” E N D
- • H. 4*. . r i* n  ^

F J "  • - . • . L I N E

POPP D5 v '
0 0 0  1 F .5  
P P P 2  2  1 f'PP 4 ■
0. P f -  5 .  -1 L  - 
( ' C P  6  D 6 A 2  
w . P P ^  d  6  C 1 -

i l
' / ■ ! - F  1 1  
Pff-C L I ; •' 
"’pc- C9

• . .S O  U R C  E\  S  T A T  E M  E tv 't

- .5  N E G C O N  

7
■'■■8 ■ \  • 
. 9 .  v 
'1C 
J )
lx  ■ "
1 2 ' -  
l'A-
1 5

. 1 } S U B R O U T I N E - *  T O  C O N V E R T  -A ' N E G A T I V E  N O ' . M O D U L O  1 9 3  
• 2  T H E  N O .  H O -  . , F % C O f r V . E H T E £  I E  :  n  t ’M>. L O C .  ? 4 R P - P 4

c i x .  n o n ' V - ' n ;  • . n n -  • ..>?: ' • - ’ •
■■3'... •’- 1 •. - P U B L I C T - '  N E G C Q N ’- -• '

o% ' '  •' ■: 
- -v-; , _

; -..p u s h t , ; • : . « / .  ■--■•J--. '»  ,
' ' l d x . I ‘ , 0 "  -H>.'8 Af5.0H~ . o  '- ; " V ' .  ■ .

•' M O V  <a ; m  ‘ •• ' "  0  .-■ - \
' S U I  **-■ 162 i * T H  F ' 'B U M  L O v E V x - F i q r s  0 F  ' 9  3 f  -

; A  p i  . - •  1 ^ 3 .  "  -  . ■
-• - - n  -  .

 ̂ -pi’ip - . H » • •' . -  ̂ - ...
P O P  D ”

' P E T -  . .. \ ■-
'  0 END . ‘ . / / ' ' / ' :

 ̂   _ *._**«* -
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; PROGRAM TO GENERATE THE S UB-M ODULO 3 1  R E S I D U E  TABLE 
i T R S M 3 1

CSBG
S T A R T :  L X I  H, 7 4 0 8 H

M V I  B, 1 3 3  ; S T A R T  TH E COUNTER
M V I  C, 0

L O O P : MOV A.. C
C P I  3 1
JC  STORE

S U B T :  S U I  3 1
S T O R E : MOV M.. A

MOV C.. A
I  NX H
DCF: E
J N Z  LOOP
JMP 0 F S 5 5 H
EK'D ST A R T

; PROGRAM TO GENERATE THE S UB-M ODULO 3 0  R E S I D U E  T A B L E  
i TR S M 30

S T A R T :
CSEG
L X I H.- 7 4 O 0 H
M V I B,  1 9 3
M V I C, 0

L OOP : MOV A, C
C P I 3G
JC STORE

SUBT : S U I 3 0
S T O R E : MOV M, A

MOV C.' A
I  NX H
DOR B
J N Z LOOP
JMP 0 F S 5 5 H
END ST AR T
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ASM 80 T - A D D 3 0 . S R C  P A G E W I  DTH C 3 2 )

^  • \

I S I S - I I  8 0 8 0 / 8 0 8 5  MACRO

LOC O B J  ' L I N E

■
1
2

0 0 0 0 2 1 0 0 7 4  . 3
0 0 0 3 L0E00 .4
0 0 0 5 1 6 1 E 5
0 0 0 7 0 6 0 0 • 6
0 0 0 ^ I T  I E 7
0 0 0 B A F  ■ 8
0 0 0 C 7 8 9
0 0 0 D 81 10
0 0 0 E F E 1 E  ■ 1 1
0 0 1 0 D A I  5 0 0 C 1 1 2

.0 0  1 3 D6 I E 13,
0 0 1  5 7 7  - 1 4
0 0 1  6 2 3  •' 15
0 0 1 7 0 4 16
0 0 1 8 I D  ' '  17
0 0 1  9 C 2 0 B 0 0 c 18
0 0  1C 2 3 19
0 0  1 D 2 3 2 0
0 0 1  E 0C ‘ 2 1
0 0 1  F 1 5 2 2
0 0 2 0 C 2 0  7 0 0 c -23
0 0 2 3 C3 5 5 F 8 • 2 4
0 0 0 0 ‘ C . 2 5

A S S E M B L E R ,  V 3 . 0

SOURCE S T A T E M E N T

J A D D I T I
CSEG . ■

S T A R T : . L X I Hi> 7 4 0 0 H
M V I C > 0  /
MVI. D ,  3 0

L I  : M V I ' 9  » 0  - '
'  M V I . E ,  3 0

LOOP i , XRA ' A
MOV • A ,  B ,

’ ' ADD C
* CP. I 3 0

\
j c  • STOR

• S U I  - 3 0  '
STOR' : M O V’ ' M ,  A -

I  NX 'H
I  NR B
DCR e ;
J N Z  - LOOP.
I  NX 'H
I  NX H
I  NR C ■
DCR D , .
J N Z L ' l
J M P  - 0 F 8 5 5 H

4 • e n d . , ....; START, . .

M O D U L E  PAGE 1
N

\

ON T A B L E  FOR MODULO 3 0

i

; COUNTER FOR M2
'  i

J.COUNTER FOR M l
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A S M 8 0  T A D D 3 1 • SRC P A G E W I D T H C 3 2 )

i I S - I I 8 0 8 0 / 8 0 8 5 m a c r o A S S E M B L E R j V 3 . 0. M O D U L E  P A G E
r v

LO C O B J

t

L I N E SOURCE. S T A T E M E N T

t - 1 ; A D D I T I O N  T A B L E  FOR MODI
2 C SEG

0 0 0 0 2 1 0 0 7 4 3 S T A R T : L X I H j 7 4 0 0 H
0 0 0 3 0 E 0 0 4 M V I C * 0
0 0 0 5 1 6 1 F 5- , • M V I D j 3  1 ; C O U N T E R  F O R ' M 2
0 0 0 7 0 6 0 0 6 L 1 : M V I B V 0
0 0 0 9 1 E 1 F V 7 M V I E / 3 1 ; C O U N T E R  F O R . M l
0.0 0 B A F 8 L O O P : X R A A /  •

*

0 0 0  C 7 8 9 MOV A j B
0 0 0 D . 81 10 ADD c
0 0 0  E F E 1 F 1 1 • C P I 3 i ’
0 0 ]  0 D A I  5 0 0 C 12 J C - STOR *

0 0 1  3 D 6 1 F 1 3 . S U I 3 1 J >-

' 0 0 1  5 7 7 1 4 S T O R : MOV M>,A
0 0 1  6 2 3 15 I  NX H
0 0 1 7 0 4 16 1 I  NR . B
00.1 8 I D 17 - DCR E '
0 0 1  9 C 2 0 B 0 0 c 18 J N Z L O O P

t

0 0 1  C 2 3 19 I  NX . H
0 0 1  D 0 C 2 0 I  NR C"'
0 0 1  E 1 5 . 2 1 DCR D
0 0  1 F C 2 0 7 0 0 c 2 2 J$iZ L I
0 0 2 2 C 3 5 5 F 8 2 3 J M P 0 F 8 5 5 H
0 0 0 0 . c - 2 4 END S T A R T  .
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ASM8 0  A D M L 3 0 • SRC P A G E W ID T H C  4 2 )  '

* ’ ’

I S I S - I I '  8 0 8 0 / 8 0 8 5  MACRO A S S E M B L E R j  V 3 f . 0  M O D U L E -  PAGE*  ' l

LOC o b j  '  • ; L I N E I
* ..

SO U R C E- S T A T E M E N T  . '

1
. 1 ' i * , .
' i . A D D I T I O N  T A B L E .  FOR MODULO 3(

’ ,2 CS EG  • > '
0 0 0 0 2 1 0 0 7 4  - •3 S T A R T : L X I  . . ' H j 7 4 0 0 H
0 0 0 3 0 E 0 0 4 > M V I C > 0  - . ‘
. 0 0 0  5 1 6 1 E 5 M V I  . D j -30 J C O U N T E R  FOR M2
0 0 0  7 0  6 0 0 6 L I  : M V I  / B * 0  - . *
0 0 0 9 1 E 1 E ' 7 • M V I E > 3 0  , J C O U N T E R  FOR M l  •
0 0 0 B AF. 8 L O O P : XRA ■ . a  • • ;  .

0 0 0 C 7 8 s  9 MOV. • A , B  \  •
0 0 0  D 81 1 0 •ADD- ' c  '
0 0 0 E C60.3 1 1 ’ A D I  • ' . 0 3 .  - . J A D D  I N D E X  OF, 1 2 5 ( 3 )
0 0 1 0 f e i e  ; • . 1 2 C P I • 30 -
0 0 1 2 D A 1 C 0 0 C •13 J C  ' STOR • • '
0 0 1  5 ' D61  E - 1 4 S U B T : S U I 3 0 . -  V  - .
0 0 1  7 F E I E ' ■ • 1 5 C P I 3 0  * ' • . v  •
00  r 9 ‘ D 2 1 5 0 0 ,c . 1 6 J N C S U B T .  • ,
0 0  1 C 7 7  ‘ 17 S T O R : MOV - Mj A ■ J '
0 0  I D 2 3 • 18 . I  NX H , .
0 0 1  E 0 4  * • 1’9 I  n r  ' B ' • •
0 0 1  F • I D

I -
2 0 DCR . E :

0 0 2 0 C 2 0 B 0 0 ■ c 21 . J N Z . l o o p . ,  ; • . ■
0 0 2 3 2 3 2 2 • . I  NX : h ; ,■ - ' v
0 0 2 4 2 3  * 2 3 . I  NX - H ;  . ■ •
0 0 2 5 0 C 2 4 I  NR C. . '  . . -
• 0 0 2 6 . 1 5

•
2 5 1 DCR . D . \  •

0 0 2 7 C 2 0 7  0 0 c 2 6 • J N Z L  I v
0 0 2 A C 3 5 5 F 8 2 7 J M P  , 0 F 8 5 5 H
0 0 0 0 , c 2 8 ' END S T A R T  •
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SO URCE S T A T E M E N T

J A D D I T I O N  T A B L E . F O R  M ODULO  31
• CSEG

S T A R T : L X I H j 7 4 0 0 H
• MW I C > 0 j

M V I D ,  31 .J C O U N T E R FOR M2 . ’ _ ,
L I : M V I ' B j 0

M V I E . , 3 1 i  C O U N T E R FOR Ml .  :
L O O P : XRA' * A 1• • ^

MOV. A , B  -- v ’ * *.
ADD C ‘

f
I

A D I 0 3 3 A D D  I 'N D E X  OF l *25C3->
C P I  ' 31 *• ' *
J C STOR • • - ■

S U B T : S U I  ■ 31 \ w -
C P I 3 1 1 ji
J,NC S U B T .. • ' . ✓

S T O R : MOV f t *  A V
I  NX . H * 7 • . *

I  NR ■ B
DCR , '  E
J N Z L O O P -
I  NX H t (
I  NR C . /
DCR D

* ,

J N Z L I L * 1
. * w ‘ .

JM P 0 F 8 5 5 H * i , «. -

- END- S T A R T , ■%»*+ r».

\
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ASM80 T S U B 3 0 • SRC

I S I S - I I ' 8 0 8 0 / 8 0 8 5  MACRO A S S E M B L E R *  V 3 . 0 M O D U L E  ' P A G E

-r \ y * 1 ' • - k

LO C O B J L i N E
*

S O U R C E S T A T E M E N T

1 C SEG  - - t

0 0 0 0 2 1 0 0 7 4 • 2 . S T A R T - : L X I H * 7 4 0 0 H
0 0 0 3 0  E 0 0 • 3 MV-I C * 0  .
0 0 0 5 1 6 1 E 4 i M V I  ' D * 3 0  • ; C O U N T E R
0 0 0 7 0 6 0 0 5 L  1 : M V I B / 0  '
0 0 0 9 I E  I E '  ' 6 M V I  - E *  3 0  - ; C O U N T E R
0 0 0 B A F • 7 L O O P : X R A A
0 0 0 C 7 8 8 MOV A *  B •
0 0 0  D 91 9 SUB c  - t . ' ’

0 0 0 E D 2 1 ,300 *c. 10 • J N C STO R , •

0 0 1  1 C6 1 E 1 1 A D I  - , 3 0  ' -  ■

0 0 1 3 1 1 ' ' 1 2 S T O R : .  MOV M * A \

0 0 1  4 2 3 13 I N X ’  '  H ‘

0 0 1  5 0 4 1 4 I  NR ' .B .

0 0 1  6 I D 1 5 DCR E
0 0 1 7 C 2 0 B 0 0 c 16 J N Z '  . L O O P
0 0 1  A 2 3 • 17 I  NX * H ,
0 0  I B 2 3 18 " I  NX H :
0 0  1 C 0 C . 1 9 I  NR . c •

0 0 1  D 1 5  ' 2 0 *  DCR ' ‘ D
0 0 1  E C 2 0 7 0 0 c 21 J N Z L I -

0 0 2 1 C 3 5 5 F 8 2 2 -  ' JM P 0 F 8 5 5 H  ■ *

0 0 0 0 • c . 2 3 * END ■ S T A R T V

» 1 . . . . .  . . . . -»• — “  -• we-." * *■ ■> . . .

FOR M2

FOR M l
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A S M 8 0  T S U B 3  1 . S R C

I S I S - I I 8 0 8 0 / 8 0 8 5 MACRO A S S E M B L E R ^  V 3 . 0 MOD U LE

LOC O B J L I N E SOURCE S T A T E M E N T

1 CSEG
•

0 0 0 0 2 1 0 0 7 4 • ' ; 2 S T A R T : L X I H / 7 4 0 0 H
;  0 0 0 3 0 E 0 0 3 ( M V I C« 0 • *

0 0 0 5 1 61 F 4 « M V I ’ . 0 *  31 ; 'C O U N T E R
0 0 0 7 0 6 0 0 ' 5 L l  : M V I  * B , 0
0 0 0 9 1 E 1 F 6 M V I E j 3 1 J COU N TER
0 0 0 B AF 7 L O O P : XRA A
0 0 0 C 7 8 8 MOV ' A , B . ' 4

0 0 0 D 91 9 ■ SUB C '
0 0 0 E D 2 1 3 0 0 C. 10 J N C STOR \
0 0 1  1 C 6 1 F 1 1 A D I 31
0 0 1  3 7 7 12 STOR-: MOV 1 M> A
0 0  1 4 2 3 13 $ I N X H
0 0 1  5 0 4 1 4 I N R B
0 0 1 6 I D 15 DCR E
00.1 7 C 2 0 B 0 0 c 16 J N Z ' • LO O P
0 0 1  A 2 3 17 I N X H -

0 0 1  B 0C ‘ 18 . INR C *
0 0  1 C 15 19 DCR . D •
0 0  1 D C 2 0 7  0 0 c ' 2 0 * J N Z L I  . y
0 0 2 0 C 3 5 5 F 8 21 JM P 0 F 8 5 5 H 1
0 0 0 0 c 2 2 END S T A R T

PAGE

FOR M 2

FOR M l
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S T A R T : 

T N I T 1 :

S U B T :

CORRECT
STO R :

172

/ G E N E R A T E  S U B T R A C T IO N  I N D E X  T A B L E  
S U I N 7 0

CSEG
L X I S P / S T A C K
L X I H / 7 4 0 0 H
L X I B,  1 0 .24  ; COUNTER .
MOV E, M
PUSH H
MOV A.. E
ORA A
J Z CORRECT ; I F  ENTRV I S  0. NO IN D E X  E X I S T S
MOV A.. E
C P I 0 F F H  ; I F  FF .  NO A C T I O N
JNC . CORRECT
MOV H/ 7 3  ; IN D E X  T A B L E  STORED I N  7 3 0 O H
MOV L-.i E
MOV A/ M ; B R IN G  TH E  IN D E X
C P I CO j REDUCE T H E  IN D E X  I N  SUB-MODULO
JC STOR
S U I SO
C P I 7 3
JN C SUBT
JMP STOR '

M V I A/  0 F F H  ; STORE F F  FOR IN D E X  OF ZERO
POP H
MOV M/ A
I N X H
DCX B
MOV A/ B
ORA A
J N Z I N T I
JMP S F 8 5 5 H
END S T A R T <
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j  G E N t R A T E  S U B T R A C T  I  ON I N D E X  T f i B L E  
i S U I N Z 1

S T A R T

I N I T i

S U B T

S T O R

C SE G
L X I S F ,  S T A C K t

L X I H;  7 4 0 0 H
L X I 5 ,  1 0 2 4  ; C O U N T E R
MOV E ,  M
P U S H H
MOV A,  E
ORf i A
J Z C O R R E C T  ; I F  E N T R V  I S  O. NO I N D E X  E X I S T S
MOV A,  E
C P I O r  F H  ; I F  F F .  NO A C T I O N

' J N C C O R R E C T
MOV H,  7 0  i I N D E X  T f i B L E  S T O R E D  I N  7 3 S 0 H
MOV L ,  E
MOV A ,  M B R I N G  T H E  I N D E X
C P I • Z 1  ; R E D U C E  T H E  I N D E X  I N  S U B - M O D U L O
JC S T O R

. S U I Z 1
CPI. Z 1
J N C S U B T
J M P S T O R

C T : M V I A ,  O F F H  j S T O R E  . F F  F O R  I N D E X  OF Z E R O
POP H
MOV M, A

-------- I N X H •
D C X B
MOV A ,  B
ORA A
J N Z I N T I
J M P 0 F O 5 3 H
END S T A R T

\
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T F  I N

LOC 'O B J * L I N E SOURCE. S T A T E M E N T

■ ‘ 1 EXTRN RED9 30-* R E D 1 9 3 * R E D 3 0 * R E D 3 1
2 EXTRN,. M U L T I P *  A D S R *  N E G C O N * C 0 M 7 3 8
3 CSEG

0 0 0 0 3 1 0 0 0 0 S 4 S T A R T : L X I SP r STACK
0 0 0 3 2 1 0 0 7 4 .5 L X i • H *  7 4 0 0 H
0 0 0 6 E5 ’ 6 'PUSH H .
0 0 0 7 0 E 0 0 7 ’ MVI C * 0 J C O U N T E R  FOR R2-
0 0 0 9 0 6 0 0 . " 8 L i : ,  • M V I B i  0 i COUNTER FOR R l
0 0 0 B 59 - 9 ' • MOV E* c

0 0 0 C 1 6 1 E 10 • /M V I D V 3 0 D
0 0 0 E C D 0 0 0 0 E .1 1 1 C A L L  • M U L T I P J R E S U L T  NOW I N  8 4 0 0 * 8 4 0 1
0 0 1  1 C D 0 0 0 0 E 12 C A L L  • R E D 31  . i  REDUCE MOD 31.
0 0 1  4 161 E . 13 " M V I . D * 3 0 D  ’ } M U L T I P L Y  BY M2 BAR
0 0 1  6 2 1 0 0 8 4 1 4 ■ L X I H i 8 4 0 0 H
0 0 1 9 5E 15 ~M0V E i M *
0 0  1 A C D 0 0 0 0 E 16 C A L L M U L T I P
0 0  1 D 5E ■ 17 ’ MOV E *M ,

0 0 1  E 2 3 18 - I N X H - . ! •
0 0  1 F 5 6 19 MOV • D iM 4
0 0 2 0 21  1 0 8 4 2 0

U
L X I .. H j. 8 4 1 0  H i S T O R  TH E R E S U L T  I N  8 4 1 0

0 0 2 3 7 3 21
n

MOV - m ; e
. .

0 0 2 4 2 3 2 2 I N X  . H ' . .

0 0 2 5 7 2 23- MOV ' M» D
0 0 2 6 58 2 4 L 2 : MOV ’ E*  B
0 0 2 7 1 6 1 F 2 5 ' - M V I D * 3 1 D
0 0 2 9 C D 0 0 0 0 E 2 6 * C A L L . • M U L T I P  •’ 1 M U L T I P L Y  BY M l  BAR
0 0 2 C 2 1 0 0 8 4 x . 2 7 L X I ‘ H i 8 4 0 0 H -

0 Q 2 F 5E 2 8 MOV ' . E * M  - i

• 0 0 3 0 2 3  - - 2 9 I N X . H ’ \  ‘

0 0 3 1 56 ' 3 0 MOV • ' D* m
3 0 3 2 21  1 2 8 4 3 1 .

r L x r H * 8 4 1 2 H
0 0 3 5 7 3 ' 3 2 ,1 MOV M i E  ' '■

0 0 3 6 2 3 3 3 I N X H
0 0 3 7 7 2 * . ' 3'4 MOV . , M i D  '
0 0 3 8 C D 0 0 0 0 E 3 5 C A L L ADSR ;.ADD: TWO 1 6  B I T  NUMBERS
0 0 3 B C D 0 0 0 0 E 3 6 C A L L  ■ R ED 9  3 0  . 3 REDUCE MOD M l * M 2
0 0 3 E ■CD0000 E 3 7 O A L L COM7 3 8

\
j  c o m p a r e  t  i . v j l  ",

. t - 1 0 2 8 4 .3.P L X I H j 8 4 0 2 H
0 0 4 4 7 E 3 9 MOV A > M 1 CHECK THE S T A T U S
0 0  4 5 5 7  . 40 ORA A .
3 0  4 6 C2 53.30 C 41 J N Z . CON S S T A T U S  1*- GO TO CONVERS

I O N
0 C 4 9 C D 0 0 0 0 E 4 2 C A L L R - E 0 1 9 3 \ J O T H E R W I S E  REDUCE MOD 19

0 0 4 C 2 1 0 0 8 4 4 3
o

L X I H j 8 4 0 0 H i

0 0 4 F 5E 4 4 MOV E* m
0 0 5 0 C 3 5 A 0 0 C ' 4 5 . JMP STOR
0 0 5 3 C D 0 0 0 0 E 46 CON: C A L L ' NEGCON
0 0 5 6 21 0 O 8 4 47 L X I H i 8 4 8 0 H
0 0 5 9 - 5E 4 8 MOV • E * M
0 0  5A E l . 49 S T O R : ■ POP v • H
i-t.zv-e* ._ .... __ C/>__ _________ M m / NL-.r.............. *
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I S I S - I I  8 0 8 0 / 8 0 8  5 MACRO ASSEMBLER* V 3 . 0  MODULE

\

LOC OBJ L I N E SOURCE STATEMENT

005C 23 51 . IN X . H ' •
005D E5 52 ‘ PUSH H
0 0 5 E 04 .53 ! i Kir B
00 5F 78 54 . . MOV '• A* B i
0 0 6 0 FE1 E 55 C PI  . 30D .
0 0 6 2 C22.600 C 5 6 JNZ L2

'0 0 6  5 El - V  57 POP - H
0 0 6 6 23  ‘ ' 58' INX H
0 0 6 7 23 5.9 IN X  . H ’ ‘

' 0 0 6 8 E5 60 • 'PUSH H
0 0 6 9 0C 61 - INR • C '
0 0 6  A 79 62 , MOV A> C
006B FE1F • 63 ■ CPI 31 D
006D C 2 0 9 0 0 C 64  ' ' JNZ L I
0 0 7 0 C3 5 5F8 V 6 5. JMP 0 F 8 5 5 H

. 0 0 0 0 c 66 END « START

PAGE'

\  •

i
\
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ASM8 0  T - I N V . S R C  Pa G E W ID T H C A 2 )

I S I S - I I  8 0 8 0 / 8 0 8 5  MACRO ASSEMBLER.*.  V 3 *

LOC OBJ L I N E , SOURCE.’

- 1 EXTRN
2 EXTRN

/ 3. CSEG ’
0 0 0 0 3 1 0 0 0 0 S 4 S T A R T : L X I  .
0 0 0 3 2 1 0 0 7 4 5 * '  L X I
0 0 0  6 E5 . . 6 P U S H ' -
0 0 0 7 0 E 0 0 7 • M V I
0 0 0  9 0 6 0 0 8 L I  : M V I  -
0 0 0 P 59'. 9 - MOV -
0 0 0 C 1 6 1 E 10 , M V I .
0 0 0 E C D 0 0 0 0  • E 1 1 . C A L L
0 01  1 C D 0 0 0 0 E 12 C A L L
0 0  1.4 1 6-1 E .  ‘ 13 t • MV I
0 0 1  6 2 1 0 0 8 4 14 L X I  .
0 0 1  9 5E 15 . m o v  ;
0 0 1  A C D 0 0 0 0 E . 16 m “' C A L L
0 0  1 D 5E . 17 ; MOV •
0 0 1  E 2 3 18 I N X  .
0 0 1  F 5 6  ■ . ‘ . 1 9 MOV
0 0 2 0 .21 1 0 8 4 2 0 L X L

-H ,
0 0 2 3 73 21. MOV
0 0 2 '4 2 3 22* I N X
0 0 2  5 7 2 ' 2 3 MOV'
3 0 2 6 58 2 4 L 2 : -. MOV
0 0 2 7 1 6 1 F 2 5 MVI
0 0 2 9 CD0O0G E 2 6 C A L L
0 0 2 C 2 .1 0 0 8 4 2 7

0 0 3'^ 2 0 2 9 I N X
0 0 3  1 56 ■ 30 , MOV-
0 0 3 2 2 11 2 8 4 31 L X I  '
0 0 3 5 7 3 3 2 MOV

, 0 0 3 6 2 3 33- I N X
0 0 3 7 72 . 3 4 MOV •
0 0 3 8 C D 0 0 0 0 r 3  5 CALL.
0O 3 B C D 3 0 0 0 ' E 3 6 C A L L
0 0 3 E C D O 0 00 E 3 7 C A L L

M -  1 )’
:0 o 4 1 2-1 008-4 38 L X I
0 0  4 4 5E 39 MOV •
0 0 4 5 2 6 7 9 40 S T O R : ’ m v i

S.E I N D E X .  _

•0 M O D U L E '  -PAGE 1

S T A T E M E N T  ‘

RED9 30 j RED 192 j RED3 0 j RED31 ,,
v MULTIP> ADSR • . ■ ' • •

S P j S T A C K  • . .
K > 7 4 0 0 H  .
H'.
C i  0  J C O U N T E R  FOR R2
B ^ 0  } C O U N T E R  FOR R l
E j C 
D / 3 0 D
M U L T I P  J R E S U L T  NOW I N / 8 4 0 0 , 8 4 0 1  
R E D 3 1  i R E D U C E  MOD 31 
D> 3 0 D  ' M U L T I  P L Y  BY M2. BAR
H * 8 4 0 0 H  * • . . . I - '

• E j M ‘ '
M U L T I P  

- /E> M ’ •
.H . '* ;

. ,D*M ' " .
i - L 8 4 i 0 H  > STOR T H E  R E S U L T  I N  8 4 1 3

M * E ; ’’ ' '
H
M j D . '  '
E *  B
D.» 3 1J3 '

• "  - M U L T I P  ; M U L T I P L Y  BY M l  BAR 

. < EiM* • • ,

8.4T 2H  . , ,
M> E • • -
■H . . ■ - '
mv b
A D S R - J ADD TWO 16 B I T  NUMBERS
R E D 9 3 0  ; R E D U C E  MOD M 1 *M 2
RED 1 9 2  -  ; REDUCE MODULO C

H * 8 j4 00H  ■ .
E> M

' H * 79H  ; L 0 0 K  UP T A B L E '  FOR I N V E R
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0 0 4 7 ' 6 B 41 M O V L j  e

0 0 - 4 8  5E 4 2 M O V • E j M

0 G 4 9 .  E.t - 4 3 p o p - - H

0 0  4.A 7 3 4 4'' ' . . M O V ' M j E

0 0 4 B  2 3 4 5 I N X H

0 0 4.C E 5 4 6 . . ' P U S H  ' H

0  0 4 D 0 4 47 I  NR ’ B

0 0 4 E  7 8 4 8 M O V • A> B

0 0 4 F  F E I E 4 9 C P I ' 3 0  D #

0 0 5 1  0 2 2 6 0 0  C ■50 J N Z . L 2

0 0 5 4  E l 51 POP h  ;

* •
I S I S - I I  S 0 8 0 / 8 0 8 5  MAC RO A S S E M B L E R j  V 3 . 0  M O D U L E

LO C  O B J  L I N E  S O U R C E  S T A T E M E N T  -

0 0 5 5  2 3  V 
0 0 5 6 ,  2 3
0 0 5 7  E 5
0 0 5 8  0C
0 0 5 9  7 9  •
0  0' 5 A F  E 1 F 
0 0 5 ' q  C 2 0 9 0 0  
0 0 5 F  C 3 5 5 F 8  
0 0 0 0

52 INX H .
53 . INX H
54 PUSH H
55 INR c  ‘
56 MOV A,C .  . ' ,
57. c ? r ' 3 i d -

C ’58 JNZ L I  ■„
■ 59 JMP 0FB55H

c  . 60 e n d ; START'

' P A G E

i
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ASM80 INDEX . SRC PAGEW IDTH ( 3 2 )

I S I S - I I  8 0 8 0 / 8 0 8 5  MACRO ASSEMBLER.*. V 3 - 0  , MODULE PAGE . 1 •

L O C O B J  • L I N E \ S O U R C E S T A T E M E N T .

1 E X T R N M U L T I  P ,  RED 1 93*  -
2 - C S E G  ■

. 1

0 0 0 0 3 I 0 0 0 0 • S 3 I  N I T : . L X I . S P , S T A C K  '  '
0 0 0 3 0 6 B F 4 . M V I  • B ^  1 9 1  i S E T  T H E  C O U N T E R
0 0 0  5' 0 E 0 1 • 5 M V I ’ cJ. 1 s I N D E X  I n  REG C- '
0 0 0 7 1 E 0  1

•
6’

A T I  ON
M V I ■Ej I  * j I N I  T I L T  Z E  T H E  M U L T I P L I C

0 0 0 9 1 6 0 5 '7 . M V I D , 5  J P R I M  I* T I  V E  R OO T I S  5

0 0 0 B C D 0 0 0 0 . E 8 MY : C A L L M U L T I P  ^  ’

0 0 0 E C D 0 0 0 0 E ■ 9 C A L L ’ R E D  1 9 3  : "
0 0 1  1 2 1 0 0 8 4 10 L X I H ^  8  4 0 0 H  •
■001 4 5 6 1 1 V MOV. - D , M  ,  -

0 0 1  5 2 6 7 8 - 12 • M V I H .* 7 8H
0 0 1 7 6 A 1 3 ' MOV ' L *  D

0 0 1  8 7 ! 1 4 • . MOV M , G  . . . ,  - /  '
0 0 1 9 0 C • 15 \ I N R c  ' •.
0 0 1  A 5 A . . . 16 MOV . E j D ;
0 0  I B 1 6 0 5 17 1 v M V I • \  . . .  • . -
0 0  1 D 0  5 . 18 ' DCR B •
0 0 1  E C 2 0 B 0 0 C 19 . J N Z MY .. '

I . 2 0  
21

- J I N V E R S E  I N D E X  T A B L E
»
9

0 0 2  1 2 1 0 0 7 8
2 2
2 3 I N I N D ' : L X I  '

• •
. 9

H , 7 8 0 0 H  . ■ . ,
0 0 2  4 1 6 7 9 2 4 - M V I D.» 7 9 H  i  I N V E R S E  I N D E X  T A B L E  S T A

0 0 2 6 0 6 C 1
<' - 2 5

R T  A T  .7 9 H  ’ 
M V I • B > 1 9 3

0 0 2 8 5 E  " - 2 6 . . B E G I N : MOV E ^ M
0 0 2 9 7D ‘ 2 7 ■ - MOV • a > l

0 0 2 A 1 2 - -
i 2 8 S T A X d. ‘ •

0 0 2 'B 2 3 2 9 I N X  ; . H ' • V
0 0 2 C - 0 5 '  , " 3 0 DCR B ' ' • * ,  '
0 0 2 D C 2 2 8 0 0 c 31 J N Z . B E G ! N
, 0 0 3 0
0 0 0 0 '

C 3 5 5 F 8 ' 3 2 * JM P 0 F 8 5 5 H  '
■ c . 3 3 E N D .  , _ I N I T /  . ....... ......  . . .  . . . ..
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A )  T H I S  P R O G R A M  G E N E R A T E S  THE. V A L U E S  OF POWER S OF
. A L P H A . S A M E ' V A L U E '  OF A L P H A  I S  S T O R E D  I  N T * 0  .M E M O *  I ES

LOC O B J  L I N E  S O U R C E S T A T E M E N T .

1 CSEG
2. EXTRN

:• 3 STKLN
0 0 0 0 3 1 0 0 0 0 S 4 START: L X I
0 0 0 3 2 1 0 0 7 £ 5 L X I  •
0 0 0 6 360  1 . 6 MVI,-
0 00 8 ‘ 23 7 IN X  -
0O0 9 3601 • . 8 MVI -
O00B 23 9 INXv
O0OC E5 ' .• 10 ' P U SH
0 0 0  D 0 640 - 1 1 . MVI •
0 0 0 r 1 E0 1 1 2 'MVI
0 O 1 1 167D ' 1 3 B EG IN : MV I
001 3 cnoooo- 14 CALL
00  1 6 CDOOO" ' E 15 CALL
001 9 2 1 OO 8 4 16* L X I
00 1C 5E - ’ 17 '• - MOV
00 I D El - 18 ' STOR: - POP.
00  1 E 73 ' '19' ’* MOV .
00  1 F 23 .2 0 •I NX
0 0 2 0 73

i
21 MOV ,r.

0 0 2  1 23 2 2 * . I N X
0 0 2 2 E5 ■ 2 3 \ . P U S H  '
0 0 2 3 - 0 5  - 2 4  • OCR
0 0 2 4 - C 2 1 1 0 0  -C 2 5  :  J N Z

2 6  
• S

!
2 7

EMOR v 7 8 0 0 H '
0 0 2 7 0 6 8 0 -  . 2 8 M V I  J - 

'  L X I - '0 0 2 9 2 1 0 0 7 C  i 2 9
3 0 2 C 5 E 3 0 I N D : * / MOV ' 7
0 0 2 D E 5 3H P U S H  *
O 0 2 E 2 6 7 8 ’ 3 2 ' M V I
0 0 3 0 6 3 . 3 3 , . ■ MOV 

MOV0 0 3  1 5 E 3 4
0 0 3 2 E l  '  - '3 5 POP
0 0 3 3 7 3 3 6 MOV
0 0 3 4 2 3 3 7 I N X  ^
0 0 3 5 7 3 3 8 MOV
0 0 3 6 2 3 . * 3 9 ' I.N&
0 0 3 7 0 5  ' v 4 0 DCR
0 0 3 8 C 2 2 C 0 0  C 4 l 

4 2
T O R S  ..

J N Z

M U L T I P j  R E D 1 9 3  .
100  .

S P * S T A C K
■ H t l  COOH - ..
• M » 1 • , - j
•H
M > 1 •
H •

’ H < 'v'
B j 6 4  i C O U N T E R  • ■
E > 'K  '5 M U L T I P L I C A N D  . ,
D *  1 2 5  ; M U L T I  P L  I E R
M U L T I P ,
R ED  1 9 3 -  . . ' . • .
H j S 4 0 0 H ?
EsM ' - 1 ■
H /  " - V  ~
M j E .. f. ' ■>t
H . . . .
,M> E
'H * -- ' ,
H - .. ,

B : ‘ 1
B E G I N  i

. J F I N D  T H E  I N D E X  OF A L P H A

• . ' ’ ;  I N D E X  T A B L E  ST O R ED  I N  M
t

• B j 1 2 8  i C O U N T E R  -
Hs7C0OH

: ELM ’ ' • -.J.'-. ■ ■
* *  ■'

H
H j 7 8 H  -
L , E  '
£ j M
H  r
M< E , . ' . '
H  -
M j E ' >
H ‘ ’ \  - • ;  .
B
I N D  . . • .  ’

J - I N V E R S E  N T T  T W I D D L E  F A C

I
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43. '• J
• i iA . ' ;

0 0 3 B 0 6 0 0 4 5 M V I Bj 0 -

0 0 ’3D 0 E 8 0 4 6 . M V I C> I 2 8
O 0 3 F 2 1 0 0 7 D 47  L I  : ' L X I H * 7 D 0 0 H ; I N V E R S E  T W . F A .

N MEMORY 7 D 0 0 H
0 0 4 2 E5 4 8  . 1 PUSH H . -
0 0 4 3 79 49  L 2 :  ’ MOV a >:c - :

' 0 0 4 4 9 0  • -
-

50 SUB . . B

S I S - 1 1  8 0 8 0 / 8 0 8 5 m a c r o  A S S E M B L E R j V 3 • 0 • MODULE PAGE

LOC OBJ L I M E f O U R C E S T A T E M E N T
\

0 0 4 5 2 6  7 C 51 M V I H j .7CH ' -

0 0 4 7 6 F 52 MOV L . A
0 0 4 8 5E 5 3 - MOV • E.» m '
0 0 4 9 E l  ■ ' '  5 4  S T :  ' • POP H !
0 0 4 A .7 3 5 5 MOV- M j e

0 0 4 B 2 3 , 56 : I  NX H ti
0 0 4 C E5 57 : , . PUSH H*
0 0 4 D 0 4 . ^ 8  • I N R B

’ %

0 0 4  E' 7 8 ’ : 59 MOV ; A ^ B '■
0 0 4 F F E 8 0  • . 6 0 C P I . ' 1 2 8 m
0 0 5 1 D A 4 3 0 0 C 61 . ’ JC • L 2  • •
0 0 5 4 C 3 5 5 F 8 6 2 JMP 0 F 8 5 5 H
0000

/ 1 c 6 3 END S T A R T  '
* Vr m. 1 • • t * 1

. . -

I ____
B) T H I S  PROGRAM G E N E R A T E S  THE Tto T DDLE f a c t o r s .

LOC O B J  ■■ L I N E SOURCE STAT E M E N T -
I-

*

\ 1 . CSEG ' ' '
■0000 2 1 0 0 7 4  , * 2  S T A R T : L X I H j 7 4 0 0H

4

0 0 0 3 E5 ' 3 PUSH - H i. T A B L E STORED I N
• 7 4 0 0 H - . "

0 0 0  4 0 6 0 0 4 ‘ M V I
9*0

i STAGE COUNTER
0 0 0 6 58 5 B E G I N : . MOV’ • Z j B

0 0 0 7 3 E F F 6 , M V I A.* 0 F F H
0 0 0 9 1 D 7 L I  : DCR -. E
0 0 0 A FA 1 2 0 0 c .8 . . JM . N O S H I F
0 0 0 D B7 • 9 ORA 1 A
0 0 0  E 17 10 R A L
0 0 0 F C 3 0 9 0 0 c 1 1 • JMP L  1
0 0  1 2 ’ 5F ■ 12 N O S H I F : MOV . E> A
0 0 1  3 0 E 0 0 13 • M V I C j 0 ‘

0 0 1  5 7 9 14  L 2 : MOV At  C
0 0 1  6 A3 15 - ■ ANA E
0 0  1 7 2 6 7 8 16 M V I H * 7 8H ; A L P H A 1 S T O R E D ’ I N

7 8 0 0 H

STOKED I
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0 0  1 9 6 F 1 7 - MOV l > a '
0 0  1 A 7 E 1 8 MOV A j M  .

0 0 1  B E l 1 9 STO R  : POP H . '
0 0 1  C 7 7 2 0 MOV M > A
0 0  1 0 2 3 21 I N X H
0 0 1  E E5 2 2 I P U S H H .
0 0  1 F 0 C 2 3 * I N R c  ■

. 0 0 2 0 7 9 2 4 - MOV - A , C
0 0 2  1 F E 4 0 2 5 C P I  • 6 4  •
0 0 2 3 DA 1 5 0 0 C 2 6 J C L 2 . '
0 0 2 . 6 0 4 27 I N R B
0 0 2  7. .-7 8 28 MOV a , b  - '
0 0 2 8 F E 0 7 2 9 ✓ C P I  . 7 -
0 0 2  A D A 0 6 0 0 C 3 0

31
3 2
3 3

\ . J C . b e g i n

i I N V E R S E  N T T  T W I D D L E  F A C T O R S
; S T O R E D  A T  7 6 0 0 H
J 1 0 T H  B I T  1 FOR I N V E R S E .

0 0 2 D 2 1 0 0  7 6 3 4 . L X I V U 7 6 0 0 H  - ' .
0 0 3 0 E 5 3 5 P U SH H *
0 0 3  1 0 6 0 0 3 6

i
M V I B > 0

0 0 3 3 5 8 3 7 L 3 : MOV E / B
0 0 3 4 3’E F F 3 8 M V I 1 A> 0 F F H
0 0 3 6 I D .. 3 9 , L 4 : DCR E
0 0 3 7 F A 3 F 0 0 C 4 0 J M , N O S H P
0 0 3 A B 7 41 ORA A .
0 0 3 B 17. . 4 2 « R A L  . J

0 0  3 C C 3 3 6 0 0 ■ C -
*>43

J M P L 4  .
0 0 3 F 5 F  - 4 4 N O S H F : ' MOV E *  a  ,  . '

0 0 4 0 0 E 0 0 4 5 M V I C ^ 0  • '

0 0 4 2 7 9 4 6 L 5 : MOV Aj C ■ \

0 0 4 3 ; A 3  - 4 7 A N A • E ■

0 0 4 4 2 6 7 9 V 4 8 M V I H j 7 9 H  '

0 0  4 6 6 F 4 9 MOV L  j A - >
0 0 4 7 7 E 5 0 * MOV A j M  i ‘ •
0 0 4  8 E l 51 S T R : POP H . , '
0 0 4 9 7 7  . 5 2 MOV M j A

0 0 4 A 2 3 5 3 I I N X H
0 0 4 B E 5 5 4 ■ ■* P U S H ' H '
0 0 4 C , 0 C  . ' 5 5 * I N R sc-
0 0 4 D 7 9 5 6 MOV A j C
0 0 A E F E 4 0 57 »

C P I 6 4  . < "
0 0 5 0 DA 45? 0 0 . -C - ■ 5 8 J C L 5
‘0 0 5 3 0 4 5 9 I N R  ■ • B  • • ,
0 0 .5  a 7 8  ■ 6 0 MOV ' A j B . t
0 0 5 5 F E 0  7 4 61 • C P I 7 .
0 0  5 7 D A 3 3 0 0 c ■ - . 6 2 J C L 3
0 0 5 A C 3 5 5 F 8 6 3

t JM P 0 F 8  5 5 H
0 0 0 0 c 6 4 END S T A R T
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C )  - T H I S  PROGRAM  G E N E R A T E S  T W I D D L E  F A C T O R S  M O D U LO  3 0

!

- '
\ . . .

1 ’ •

A S M 8 0  T F 3 1 . S R C . . , .

I S I S - I I  8 0 8 0 / 8 0 8 5  MACRO A S S E M B L E R j V 3 . 0  M O D U L E  P A G E  1

. 1

LO C O B J L I N E S O U R C E S T A T E M E N T
■

1 CSEG
'

0 0 0 0 ? 1 0 0  7 4 2 S T A R T : L X I H , 7 4 0 0 H J I N D E X  S T O R E D  ' l N  7 4 0 0 H
0 0 0  3 0 1 0 0 0 4 3 L X I  ' B * 1 0 2 4 ; C O U N T E R
0 0 0 6 7 E 4 ' L l : MOV A j M ■
0 0 0 7 ' F E F F 5 C P I . 0 F F H ' ' -  '
0 0 0 9 C A 1 8 0 0 • C . .6 J Z ' S T O R  . 1 *

0 0 0 C F E1  F 7 C'PI . 3 1 /
0 0 0  E DA 1 8 0 0 C - 8 J C STOR
0 0  1 1 0 6  1 F 9 S U B T : S U I | 31
0 0  I 3 F E1  F 10 - C P I ‘ 31
0 0  \ 5 D2 1 1 0 0 C 1 1 J N C S U B T \
0 0  1 8 7 7 12 STOR.: MOV . M j a

0 0  1 9 2 3 1 3 I N X H ' , /  '

0 0  1 A 0 B 1 4 DCX B 4 '

0 0 1  B 7 9 1 5 MOV . A j C , *

0 0  1 C B 7 1 6 ORA A
0 0  1 D C 2 0 6 0 0 C. 17 • J N Z L I

»

0 0 2 0 7 8> 1 8 MOV A * B ' ;

0 0 ?  1 B7 19 ORA » A
0 0 2 2 C 2 0 6 0 0 c 2 0 J N Z L I
0 0 2  5 C.3 5 5 F 8 21 JMP 0 F 8 5 5 H
0 0 0 0 c 2 2 • END S T A R T _

I
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D ) T H I S  PROGRAM G E N E R A T E S  T W I D D L E  F A C T O R S  MODULO 31

AS M 80  T F 3 0 . S R C  P A G E W I D T H C 4 2 )

I S I S - I I 1 8 0 8 0 / 8 0 3 5  MACRO A S S E M B L E R *  V 3 . 0  - MOD U LE

LOC O B J L I N E SOURCE

* »
s ta te m e n t"

• ' , 1 CSEG
i i ' . - !

t
0 0 0 0 2 1 0 0 7 4 . 2 . S T A R T s L X I H j 7 4 0 0H  .2 I N D E X  STORED
0 0 0 3 0 1 0 0 0 4 3 L X I . . B j 1 0 2  4 i  COUNTER
0 0 0 6 7E .4' L ' l  : MOV A i M
0 0 0 7 F E F F .5 C P I 0 F F H
0 0 0 9 C A 1 8 0 0 . C 6 . J Z STOR . '
0 0 0 C FE1 E 7 C P I . 3 0 '  -

. 0 0 0  E DA 1 8 0 0 c  • * 8 '  • J C STOR
0 0 1  1 D6 I E 9 S U B T : - S U I 3 0
0 0  1 3 FE1 E 10 . C P I 3 0  •
0 0 1  5 D 2 1 1 0 0 c 11 v J N C S U B T
0 0 1 8 7 7 12 S T O R : MOV M i A  1
0 0  1 9 2 3 13 I  NX ' . h* -
0 0  1 A 0 B 1 4 DCX . B , • • 1 . •
0 0 1 B - 79 15 MOV ’ A ^ C
0 0 1 C B7 1 6 . ORA ' A- :
0 0  1 D C 2 0 6 0 0 c 1 7 J N Z  . Ll ' -
0 0 2 0 7 8 18 . MOV '  A , B  '  •
0 0 2  1 B7 19 . ORA A • '  ■ * ; . ’
0 0 2 2 C 2 0 6 0 0 c ■ 2 0 J N Z  ■ L I
0 0 2 5 C 3 5 5 F 8 21 JMP 0 F 8 5 5 H
0000 c 2 2 END . S T A R T /

1

N 7 4 0 0 H  -

I
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