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PART ONE

A STUDY OF THE DISSOLUTION OF TIN TUBES
IN HYDROCHLORIC ACID SOLUTIONS
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ABSTRACT

Horizontally positioned tin tubes, with hydrodynamic
entry and exit lengths, were incorporated into a closed
loop flow circuit, which was designed for the kinetic
study of the dissolution of tin in aerated and deaerated
hydrochloric acid solutions circulating through the system.

The effects of total tin ion concentration in the
bulk solution; acid concentration, temperature, oxygen
concentration, flow velocity of the corroding solution,
and the variation of the inside diameter and length of the
tin tubes on the dissolution rate of tin in HC1 solutions
were investigated.

Because the dissolution of tin in aerated hydrochloric
acid solutions appears to occur through three simultaneous
proceSSes ( hydrogen evolution, oxygen depolarization, and
an autocatalytic reaction ), the experimenﬁal results
obta;ned-in this investigation have been analyzed in terms
of th;ee parallel effects. Over the range of conditions
studied the dissolution rate of tin hés.been correlated'by_
an empirical rate equation showing the contributions of the
three possible processes. - |

Low temperature coefficiénts and significant effécts

of fluid velocity indicate that diffusional mass transfer

P2
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effects play a significant role in the overall dissolution

process.
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CHAPTER I
INTRODUCTION

The systematic study of corrosion and corrosion prevention
~is quickly becoming an important engineering science. People
-have learned that it is more economical to prevent corrosion
initially by proper material selection and protective systems

rather than pay for replacements and repairs made necessary
by the damages of corrosion. Consequently, the corrosion
engineer has established himself as a necessary member of the
industrial engineering tean.

The challenge in Chemical Engineering lies in predicting
the behaviour of a given material in a given environment.

. For many years, corrosion technology was an art rather than
& science, with experience and empirical data the only tools
available. Stimulated and facilitated by parallel advances
in other fields of technology and science, the present trend
is toward deepening the understanding of the mechanisms of
corrosion and the physical laws which govern corrosion
processes in the hope of improving predictions by a coherent
theoretical model of physical and chemical behaviour.

In recent years, many investigators have studied the
mechanisnm and kinetics of the dissolution of metals with
rotating cylindrical systems., DImpirical correlations have
been established and various criteria have been postulated for
different situations for prediction of dissolution rates. A

b
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0
survey of the literature ihdicates that little data exist for
the interpretation of the mechanism and kinetics of dissolution
of metals in recycling flow systens.

In studies on the dissolution and corrosion rates of
rotating metal cylinders, Luj_53 found the dissolution rate of
tin to be directly proportional to the square root of the

surface area of the specimen, while Bodner12

observed that the
dissolution rate of titanium increased with 3/4 power of the

surface area of the metal sample. There are examples of other
correlations between metal dissolutiPn rate and sample surface

63,82

area. Interpretations of these correlations ars open to

question. The effects of cylinder diameter and length have
never been incorporated into these correlations, although the
significance of these factors should not he ignored.

The present work was undertaken with the following aims
in mind: (&) to experimentally establish correlations between
physical properties of a system, geometrical and hydrodynamic
conditions, and rates at which metallic tin is dissolved from
the inner surface of a tube into the hydrochloric acid flowing
through a recycling system; (b) to compare the rate correlations
from this flow system with those obtained from rotating
Cylindrical systems, and examine whether they share any
important characteristics.

The particular system studied, tin-~-hydrochloric acid was
chosen for reasons of convenience and simplicity. Previously,

using rotating cylindrical systems, very extensive and
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systematic studies on the dissolution rates of tin in HC1

solutions were done by Lui?5 and the présent author.GBQfTheseg 
works provide readily available rate correlations whiéﬂi?f |
facilitate the second objective. Also, high purity:tiﬁ cén :
be easily obtained and cast into any desired geometry;v
Hydréchloric acid is one of the simpler acids and there is
Precise information available concerning many of its physical

properties,
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CHAPTER II
LITERATURE REVIEW

Over the last three decades, a large number of articles
has appeared in the literature on the general problem of
dissolution and corrosion rate of metals. Since the purpose
of this study is to obtain a betier understanding of the
dissolution kinetics of tin in HC1l solutions flowing through
a recycling system, the following survey will review only
those papers pertinent to this subject.

A. Kinetic Studies of Metal Dissolution
Lu and Graydonm’52 studied the mechanism and kineticg

of copper dissolution in agueous ammonium hydroxide and aqueous

0]
o)
[l
(o
£
b
(]
[
6]
o
]
o
0]
Pas
’.._l
o3
5]
[l
(¢
$ 3
o
£
@

sulfuric acid solutions. Veeks

initial corrosion rate of copper in HC1l solutions. Their work
Z

was extended by Gnyp.5) Other systematic researches on the

dissolution kinetics of metals including brass, by Kagetsu and

40 16 12

Graydon and Bumbulis and Graydon,

82

titanium, by Bodnsr,

and iron, by Taneja have been carried out. Using rotating

" metal cylinders, the above investigators studied the rate of
metal dissolution as a function of temperature, oxygen partial
pressure, rotational speed, sample surface area, corroding
solution volume, and acid concentration. Over a wide range of
C6nditions, all of them found an autocatalytic effect, with
dissoiution rate increasing with increasing metal ion

concentration in solution.
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B. General Review of Studies on Tin Dissolution

As early as 1813, the dissolution of tin in acid solutions
was examined by Berzelius§’9 According to his reﬁprt, tin
dissolves in deaerated hydrochloric and sulfuric acid solutions
in the stannous form with the evolution of hydrogen gas.

The effect of oxygen on tin dissolution in various acidic
media was studied by Whitman and Russe1.92 Their results
showed that, in most cases, oxygen acts as a depolarizer, and
if added to acids, will increase the attack on tin. In the
absence of alr or other oxidizing agents, tin was very resistant
to dilute acids. This is because tin has a high hydrogen
overpotential, and becomes quickly polarized by hydrogen which
prevents the flow of current that accompanies corrosion.

W

Koliman and Sanborn reported that, in air-{rec solutious,
tin is depolarized by increasing the temperature of the
solution, and hydrogen evolution occurs. The effect of
temperature on the corrosion of tin in acid solutions was
investigated by Khitrov and Shotalova.45 The rate of tin
corrosion in 1-7M solutions of hydrochloric acid and sulfuric
acid was observed to increase with increasing temperature.
The increase of corrosion rate with increasing temperature is
associated with a fall in hydrogen overpotential, decresse in
rolarization, decrease in viscosity of the solution, and
destruction of protective films.

The phenomenon of localized corrosion of tin was examined

electrochemically by Hoar.§8 He studied the attack on tin by
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nearly neutral solutions containing numerous different anions
and cations. Brennert14 investigated the formation of "black
spots! on tin in sodium chloride, sulphate, and nitrate
solutions. Britton and Michael15 studied the local corrosion
of tin in chloride solutions. Their results showed that the
formation of black spots was an actual building up of the
oxide film originally present on the tin surface. Anodic
attack at a weak spot on the oxide film covering the metal
would not cause tin cations to pass into liquid, but rather
cause an increase in the film thickness by deposition of oxide
and hydroxide. After a certain time the accumulated acidity
at these points apparently became sufficient for the formation
of soluble stannous ions, which ruined the film so that break-
down occurred with the formation of black spots. The blackness
of these spots, according to Britton, was probably due to the
absence of reflection from the locallyvroughened surface.

Hagymas and Quintin54 studied the corrosioh of tin in
sulfuric acid. In O.1 to 1.0 M solutions the hydrogen
overvoltage on the tin electrode did not vary with acid
concentration. Kohman and Sanborn44 also reported that there
was no apparent influence of acid concentration on the
corrosion of tin in air-free solutions.

Probably the most extensive and systematic investigation
on the dissolution of tin was doné by Lui.53 He reported
that over a wide range of conditions the dissolution of tin

in. hydrochloric acid solutions proceeds in two autocatalytic
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stages with the rate during each stage being dependent on the
square root of the tin ion concentration in the corroding

solution. His work was extended by this auther.63

C. Hydrodynamic and Diffusional Mass Transfer Effects

A review of the literature concerning the relative
movement between the corroding solution and metal surface in
corrosion processes is given on the following pages.

In 1921 Friend29 studied the effect of velocity on iron
dissolution using a stirrer method and a weight-loss technique.
He found that in natural water the corrosion rate decreased
with increasing velocity and at high velocity no weight losses
were observed. However, in acid solutions the corrosion rate
increased with increasing velocity. The rate of dissolution
of a rotating disc in dilute acid with no depolarizer was
found to be linear with rotational speeds up to 4,000 r.p.m.

Speller and Kenda1175 investigated the flow of natural
water in steel pipes in 1923 and published results
contradictory to those of Friend. They observed that the
corrosion rate was low in the laminar flow region, increased
rapidly in the transition region, and continued to increase
but at a lower rate in the turbulent region.

Romeo et a1.69, in 1958, reported that for turbulent
flow, in small steel pipes, the corrosion rate was found to
be proportional to the velocity raised to the power of 0.88.

Roethelli and Brown72 rotated steel specimens in

oxygenated water. Their results showed an increase in the
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corrosion rate at low velocities followed by a decrease at
intermediate velocities. At higher velocities the corrosion
rate once more increased with increase in Vvelocity. This
rate enhancement they attributed principally to erosiqn. The
minimum at intermediate velocities was due to a change in the
corrosion product, ferrous ions being oxidized to ferric.

Both Whitman?' and Wilson”®, in 1913, stated that velocity
was important in determing the thickness of the film through
which oxygen must diffuse.

Makrides and HackermanSE, using a stirrer technique to
investigate the behaviour of iron in hydrochloric acid,
observed that the dissolution rate was small and independent
of the stirrer speed in air-free solutions, but showed a
marked dép&ndenco on stirrer speed wien oxygen was present.

Hatch and Rice37, in 1945, stressed the importance of
velocity as a means of regulating the rate of supply of oxygen
or inhibitor to a corroding surface. They investigated the
problem by using a weight loss technique on a mild steel pipe
in aerated tap water. At high values of Reynolds number the
corrosion rate attained a steady valus. The oxygen was being
supplied to the metal surface in sufficient quantities for
the actual rate of cathodic discharge to be the controlling
step.

Ross and Jones71, in 1962, studied the effect of flow on
mild steel in sulfuric acid with and without added inhibitors.

They observed that;
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(1) dissolution rate (Re)% for laminar flow conditions.

(2) dissolution rate ol (Re) for turbulent flow conditions.

At Re values of 100,000, the dissolution rate still
increased rapidly, the systems apparently still being diffusion
controlled. It was not stated whether the system was
oxygenated, and 1if so, to what degree.

The dissolution of rotating steel specimens in 1.0M HasO4
was studied by Uhlig84 under both aerated and deaerated
conditions. In deaerated acid low carbon iron corroded at the
same rate at all flow velocities. This was attributed to the
activation energy of the cathodic reaction being the controlling
factor. In aerated acid, velocity very much accelerated
corrosion but at a decreasing rate as the velocity increased.

Levichqg was one of the first workers to present his
findings in terms of dimensionless groups. He studied rotating
disc electrodes and derived the following expression for the

thickness of the Nernst diffusion layer;

s
H

PD .33 50
1.62 (ZR2) (0
1.62 (Sc)~*22(Re)~+°

I

where: &

1

diffusion layer thickness;

w = angular velocity of the electrode;

Riddiford and Bircumshaw68 reported on the kinetics of
dissolution of zinc in aqueous iodine solutions. The rate of
dissolution was found to be a function of the stirrer speed.
The reactions being‘diffusion controlled, they established

the following relationships between the dissolution constant
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k and the stirrer speed;
k = 0,0103 (r.p.m.)??°

or in dimensionless groupings

Nu = 0.558 (Re)?+90(5¢c)0-27

Wilke et a1%> evaluated mass transfer coefficients for
free convection from limiting currents and correlated their
data by;

Nu,. = 0.66 (5¢)0+%2 (6r)©+22

The results were in good agreement with those predicted
from the boundary layer theory for mass transfer by free
convection.

In 1954, Eisenberg et ala5 investigated the dissolution
of metal cylinders by varying, systematically, the rotational
Speed, the limiting current, and the cylinder diameter. 1t
was possible to correlate their results by;

Nu = 0.079 (Re)?*79(5c)0+356

].\'Iak:r:'de~,>s5LlL used the rotating electrode technique in his
study of the anodic dissolution of iron in sulfuric acid and
ferric sulphate solutions. He expressed the dependence on
hydrodynamic flow conditions at a constant oxidant concentration
as;

E = 8 log v - ). const.,

Where v

"

linear velocity

7 const,

i

6 = Tafel slope
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Lin et al?C, in 1951,and Von Shaw et a1°7, in 1963,
studied several diffusion controlled processes under forced
flow conditions using circular tube flow systems. In the
laminar region their results were in excellent agreement with
the Leveque47heat transfer equation in which the Prandtl group

was replaced by the Schmidt group;
Nu = 1.614 (Re)'/3 (s0)1/3(&)1/3

In the region of turbulent flow, Von Shaw, Reiss, and

Hanratty87

expect the average Nusselt number in circular tubes
to be given by;
Z
Nu = 0.276 (Re) 998 (50)0+33( & )0.35

Cornet et al20

studied the effect of flow rate on a

copper tube in Z2.1N HZSOQ' They found that al high Reynolds
numbers there was little increase in corrosion with increase
in flow rate. This behaviour was attributed to control by a
slow cathodic discharge process. In laminar flow the system

was diffusion controlled. Cornet's group correlated their

data in the turbulent region by;
Nu = 0,053 (Re)?+68(5c)0+53

Q

Wranglen and Nilsson’5, in 1962, studied cathodic
deposition on horizontal plates under forced convection.
Under limiting current density conditions they expressed their

results as;

Nu = 0.34 (Re)o'5O(Sc)O'53 for laminar flow, and

Nu = 0.17 (Re)o‘6o(Sc)O°33 for fturbulent flow
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Two papers published recently, one by Ibl39 in 1959 and

the other by Elder and Wranglen26

in 1964, present theoretical
studies of the application of dimensional analysis to electro-
chemistry. The latter paper gives a detailed theoretical
treatment'of mass transfer at plane plate electrodes under
conditions of both forced and natural convection.

The agreement between the results of all investigations
is quite good considering the difficulty of the problem. In
general the power of the Reynolds number varies from 0.50 to
0.70, and the Schmidt number from 0.25 to 0.356 under turbulent
flow conditions. Most of the later workers have compared
their correlations with standard heat transfer correlations

and obtained excellent agreement.
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CHAPTER III
THEORY

‘In the first section of this chapter, the mechanism of
dissolution of a metal in electrically conductive solutions
(electrolytes) is briefly presented by examining a typical
case of electrochemical corrosion - dissolution of metal in
hydrochloric acid solutions. In the second section, effects
of diffusional mass transfer on the dissolution process are
discussed. The reason for this special emphasis is that
previous workers53’63 found the reaction of tin with
hydrochloric acid to be mass transport controlled.

A. Reaction Mechanism

It was established many years ago that metals corrode in
aqueous environments by an electrochemical mechanism. On a
piece of metal that is corroding there are both anodic and
cathodic sites. These may be permanently separated— from each:
other, but in many instances the whole of the metal surface
consists of anodic and cathodic sites which are continually
shifting. At an anodic site an oxidation process occurs
through a loss of electrons and the metal goes into solution

by a reaction that can be depicted as(for example):

Sn - 26 —— o Sn' "
(metal) (ionized in solution)

At a cathodic site a reduction process occurs (a gain of

electrons). This will result in the reduction of dissolved

16
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oxygen or the liberation of hydrogen gas (particularly from
acid solutions) or other less common reactions. The two most

common reactions can be depicted as:

O, + e + ZHZO — LOH™

20" + 2e ———fm H2

Very detailed descriptions of the mechanism of dissolution

82 63

of metals were given elsewhere by Taneja and this author

The fundamental mechanism of such a process can be represented
in the following manner: |

1. The dissolution of a metal, capable of existing in
two oxidation states, by a hydrogen evolution process can be
described in terms of the following elementary stages:

a. Firét, when an acid such as hydrochloric acid

dissolves in water, we have

HCL  +  H,0 ——= H30+ +  c1”

The bualk solution, therefore, consists of water molecules,
hydronium ions, and chloride ions. In general, contact
between two immiscible phases is accompanied by an increased
concentration in the fluid phase close to the interface. This
tendency leads to the formation of a ”diffﬁsion layer',
Therefore,‘when a metal is placed in the deaerated acid
solution, the hydrogen ions will diffuse through this layer,

from the bulk solution to the metal—solution interface,

+ +

Hb L Hi
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where subscript b denotes bulk solution, and subscript

i denotes metal-solution interface. (Hereafter we use H+

instead of H3O+ for convenience.)

b. The adsorption of hydrogen ions on the metal surface

HY + M === M-H
* * 5

1

where g-H; denotes a‘hydrogen ion édsorbed on an active
site, g,on the metal surface:
¢c. Discharge of adsorbed hydrogen ions by virtue of
electron transfer through the metal: |
(c1) Electrons transferred from a neighbouring vacant

site on the metal surface

.’, .’_
B , I i I
!
M e M =M -M-Me- e MM MIM M-
* * * * * ¥*

(¢c2) Electrons transferred directly from the surface

atoms on which adsorption occurred

+ +
b;I-'H s T I;f—H .

d. Formation of molecular hydrogen from atomic hydrogen,

by one of the following possible modes:

(a1)

B H HZ

| 4+ y o |

~-M-M-M~-M-Me- e oM e M=M= M =-M~
3 * * * * *

%
(d2) 2 (M-H) —= 1" 4 Mem

* * ¥* ds
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(d3) I;I+_Hs o, Hj_ — If+iH25-
e, The removal of molecular hydrogen from the metal
surface by one or more of the following possibilities:
(e1) Dissolution of molecular hydrogen into the
solution at the metal-solution interface |
I;‘/I“.H‘Zs--m—-m g ) Hzigdissolved
(e2) Absorption of molecular hydrogen from the metal

surface into the 1attice structure of the metal

~M-H ~M-

e ;
-M=-MM=-M~-M = -M~-M o M-M-
| | P — l | “21 |
-M-M~-M~-M- -M=-M-M~-M -~

(e3) Formation of hydrogen g2s bubbles on the metal

surface and their subsequent detachment from the metal surface

-H —=  M-(H + - 1)M
n( M-Hp) -(y), ¢+ (a- DN

M), —= M e (),

*

where M—(Ha)n represents a hydrogen gas bubble attached on
*

the metal surface:

f. Desorption of metal ions from the metal surface
+ -+ -+

MS —_— M.

g. Diffusion of metal ions(probably hydrated) from the

metal~solution interface to the bulk sclution

+ 44
Mi + nHBO —_— M —nHaO
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2. In aerated solutions, two other processes can occur
together with hydrogen evolution, namely, oxygen depolariza-
tion and autocatalysis.

Investigati0n823’45’83 have shown that the following
successive stages are in good agreement with experimental
data for the reaction of oxygen depolarization:

a. Diffusion of molecular oxygen from the bulk solution

to the metal-solution interface

0 0
b 25

where b denotes bulk solution, and i denotes metal-

2

solution interface,
b. Adsorption of oxygen on the metal surface; there are
13,80,

two types of adsorption possible for oxygen on metal surface

(b1) Molecular adsorption

M + 02

M-0
* i *

s

(p2) Dissociative adsorption

2M + 0, === 2( M-0O
: 2, ( 1-0,)

¢c. Formation of a mono-valent oxygen ion

(c1) M-0 M203
2 r2
M- M- M=M- M-M-M-M-
(c2) .
4 - 4 -
M-0 M-0 M'-0"  M'-0
* * + 9:'
M e M =Me M —— M- =-M-M-

d. TFormation of perhydroxyl radical or hydroxyl radical
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(a1)

M =07 + M-H' —= M'-HO

* —28 ! * B I':I H 25 ’ I;IS
(a2)

+ - +

*

4
w0y vty

e. Formation of perhydroxyl ion by virtue of electron
transfer + b
M —HO2 — M "HOZ

* s * S
f. Formation of hydrogen peroxide by one of the

following possibilities:

(£1)
b - o et iy ! +
M --Ho28 ¢+ MeHy —= 1;1}12028 Mg
(£2)
2( M'-HO — M-H,O oM
( * ) * 2 e ‘ s

s

g. Reduction of hydrogen peroxide with the formation of
hydroxyl ions, This step is itself a complex process and can
be further broken down into the following sequence:

(g1) Reduction of hydrogen peroxide to hydroxyl ion

and hydroxyl radical

M-H,0, ——= M'-HO_ + OH;
% 2 ZS B s i
(g2) Reduction of hydroxyl radical to hydroxyl ion
+ 4 o —
g -HO, — gs + OHi
h. Desorption of the metal ions from the metal surface
NI+ i —e— M"r +

-

%5 i
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i. Diffusion of the metal ions from the metal-solution
interface to the bulk solution

+ 4

Mi + nHao

4
M =nH50p 1k

Many of these elementary stages are experimentally proven
facts., For instance, the existance of mono-valent oxygen
ions (05) in the cathodic reduction of oxygen in aqueous
solutions has been verified by Krasilshchikovi?.

5. For metals that can exist in two or more oxidation
states in acidic media, an autocatalytic reaction should be
considered as a possibility. The foliowing reaction scheme
is suggested as a possible mechanism for this process when
the ion of higher oxidation state is quadrivalent of the
type M* 7T

a. An oxidation process1 caused by dissolved oxygen

with the formation of peroxide intermediate according to

++ o+ o
M + 0

2 + 2H * ——— M + HEOZ

This process can occur in the bulk of the solution, at

the metal-solution interface, or at the metal surface

4+t + oo
(al) Mb + Oab + ZHb-—4~ Mb + HaOab
(a2) M + 0, + 2H — M7 + H0

. . i 272,

i i i

— o4 “ 4
(a3) %s + g-oas + Zf-HS —R
+ ook N ]
BT w0, 2
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+ 4 +
(ak) gs + g-OS + g—Hs e
MY 4 MeOHT 4+ M
*S * *S

b. An oxidation process caused by the peroxide
intermediates67(produced in stage a and in the oxygen

depolarization reaction) according to

+ 4 oo o -
E_HS + Mi -+ Haoai Mi + I.:I—OHs + HZO
or
+ ++
M-H -+ M + M-H.O
* = *s * 2 25
Ao -
¥s * E-OHS * f"HZOs

c. An equilibrium7 between metal ions of higher and
lower oxidation states by virtue of electron transfer, either

at the metal surface or at the metal-solution interface:

(c1)
~Mat ML M- MY M - M-
* * * * ¥* *
| Lo | L
M -M=-M=-M=MN- ==-M=M=M~-M - M-
Ao - 4 o4
(c2) My Yy = aM

Stages a, b, and ¢ constitute an autocatalytic reaction
Sequence.
B. Mass Transfer in Electrochemical Dissolution Processes
1. Fundamental Equations
The laws of transport in dilute electrolytic
solutions have been known for many years and have been

discussed in detail elsewhere'1’48. The flux of a species is
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due to migration in an electric field, diffusion in a

concentration gradient, and convection with the fluid velocity.

sz-zjquCJVCD - DJ.VCJ. + Gy (I-3-1)

where Nj = flux of species j (mole/cnS-sec)

Zg = charge number of species J

U = mobility of species j(sq.cm.-mole/joule-sec)

F = Faraday's constant(coulomb/equiv.)

Cj = concentration of species j(mole/c.c.)

® = electrostatic potential (volt)

Dj = diffusion coefficient of species j(sq.cm./sec)

v = fluid velocity(cm./sec.)

A material balance for a small volume element leads to

the differentiasl conservation law:

oC .

s = NN i . 32

<% VNJ + Ry (I-3-2)
where Rj = homogeneous rate of production of species j

(mole/c.c.~scc
Since reactions are frequently restricted to the surfaces
of electrodes, the bulk reaction term Rj is often zero in
electrochemical systems. To a very good approximatioﬁ the
solution is electrically neutrél hence

Y20, =0 . (I-3-3)
7373

The current density in an electrolytic solution is due

to the motion of charged species:

i = Fyz i, (I=3-1)
j J J
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where i = current density(amp/sq.cm.)

These laws provide the basis for the analysis of electro-
chemical systems. The flux relation, Equation(I-3-1), defines
transport coefficients - the mobility uj and the diffusion
coefficient D:j of an ion in a dilute solution. Many
electrochemical systems involve flow of the electrolytic
solution. The fluid velocity is to be determined from the

Navier-Stokes equation

Q( %% + veVv ) ==Up -~ ,/“Y;; + g (I-3-5)
where @ = fluid density(gm./c.c.)

p = fluid pressure(gm./cm.~sec?)

M = fluid viscosity(gm./cm.-sec.)

g = gravitational acceieration(cm./sec?)
and the continuity equation

V-v = 0 (I-3-6)
For the reaction of minor species in a solution containing

excess supporting electrolyte, it should be permissible to

neglect the contribution of ionic migration to the flux of the

reacting ions, so that Equation(I-3-1) becomes

.= =D.VC. C. 3
N vty TV (I-3-7)
and substitution into Equation(I-3-2) yields
2C. o ‘72
- . C. = . . o 2o
3t M i~ P23V e (I-3-8)

This is the general equation of convective diffusion.

For a full solution of the equations of hydrodynamics and
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convective transfer, we must also know the boundary and
initial conditions that satisfy the different systems under
consideration. It would, of course, be more satisfactory to
obtain a complete solution of these equations, but, this is,
in most cases,impossible. Therefore, in practice, most of the
work in this field has been done by dimensional analysis and
empirical approach.

2. Nernst Diffusion Layer Theory

Essential to the understanding of convective transfer

problems is the concept of the diffusion layer. Frequently,
due to the small value of the diffusion coefficient, the
concentrations differ significantly from their bulk values
only in a thin region near the surface of an electrode.
According to Nernst6!, a practically stationary liquid layer
must be assumed in contact with the electrode surface,
regafdless of whether the electrplytic solution is stirred or
not. Within this layer molecular diffusion and ionic transport
are of primary importance to the transport process, while
outside this layer the convective transport dominates and the
concentration is maintained at a constant value by convection.

The concentration gradient was assumed to be linear and

related to the solute mass transfer flux Nj by the equation

D

Ny=t (0 = Gy (I-3-9)

where Ci = concentration of species Jj at the solution-

electrode interface(mole/c.c.)
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aQ
H

b concentration of species J in bulk solution
(mole/c.c.) ' |

s

diffusion layer thickness(cm.)

In general, the flux Nj of the ions through a cross
section parallel to the surface and away from the surface is
additively composed of the diffusion term and the migration

term. The flux is therefore, given by

(C. = C, ) i-t.
b +
N. = D. S S Tm3=10
J J 8 Z ok (1-3-10)

J
where tj = transport number of species J
Nernst's theory postulates that the liquid is stationary
within the diffusion layer, which is contrary to expérimental
data obtained for fluid flow near solid surfaceshS. In
realilty the transition from diffusion to convection takes
place continuously. Furthermore, the theory does not allow

quantitative predictions to be made as to the dependence of §

on the flow conditions.

3. Application of Dimensional Analysis
The diffusional flux is now usually written in the

62
form N. =k.(C, - ¢C

where kj = mass transfer coefficient of species j.
| The value of kj can be determined by dimensional analysis
and the correlations have the general form
Nu = const. (Re) (5¢) (I-3-12)

for forced convection
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and Nu = const.(Gr)' (Sc)t. (I-3-13)

for natural convection
The exponents «, {, v, and e are determined by experiment

where the dimensionless groups are

3
Grashof number, Gr = géﬁgﬂ( ﬁ )2

Reynolds number,Re = L%ﬁ

k.L
Nusselt number, Nu = _%~
Schmidt number, Sc = 7#5

where L = characteristic length(cm.)

The physical significance of the dimensionless groups is
of interest. The Reynolds number is defined as the ratio of
the non~viscous or inertial forces toc the viscous forces
acting on the element of fluid. At low values of Reynolds
number the inertial forces are small compared with the viscous
forces and the flow is streamlined. At high vaiues of Reynolds
number the inertial forces predominate and the flow becomes
turbulent.

The Schmidt number is the ratio of the fluid property
governing the transfer of momentum by viscous forces, the
kinematic viscosity, to the fluid property governing mass
transfer by difiusion, the diffusivity.

It is possible to obtain the dimensionless correlations
(I-3-12) and (I-3-13) by;

(a) direct dimensional analysis,
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(b) writing the fundamental equations of motion and
diffusion in dimensionless terms,
and (c¢) employing the Prandtl-Taylor or Chilton-Colburn
extensions of the Reynolds Analogy as applied to
mass transfer.

By analogy with their jH factor for heat transfer Chilton
and Colburn deduced a factor for mass transfer jD and showed
that the two were approximately equal. Thus it is possible
to calculate mass transfer coefficients from data obtained
from heat transfer experiments62.

L., Diffusional Mass Transfer in a Circular Tube

In this section we consider a special simple case
as an example of the application of the dimensional analysis
method by writing the fundamental equations of motion and
diffusion in dimensionless terms. Consider the steady
isothermal flow of an acid solution inside a tube of circular

cross section as shown in Figure I-3-1,.

I!]H 112!1
i L o
[ {//f/fi/&/ i/q,/{»/t/f/l/l ]
Q.Fluid r Y ¥ Fluid leaves with
— enters witils z _ bulk composition—™>
J uniform composition Cy Cy
[ it S T S SR S R, SO S JE P | 2
y 3.7 A A A 0 S A BV A A A A . A | \
/ /
Plastic <£/§I;id composition next Velocity of dissolved
tube to metal wall surface metal ions away from
maintains constant value metal wall is assumed 10 be
CM . very small

i

FIGURE I-3=-1, Mass Transfer in a Tube With a Soluble
Metal Wall.
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Assume that the flow pattern is fully established and the
velocity distribution is known at plane®1!" and that the fluid
concentration is uniform at CM in the region z<0. From
z =0 1to gz =1L, the tube is made of a metal or other soluble
s0lid, which dissolves slowly and maintains the liquid
composition along the dissolving surface at constant value
CMi . We further assume that the physical properties p , u,
and DM are constant.

The diffusional mass transfer at the solution-metal

interface can be described by starting from Equation(I-3-7).

Ny

in this case jJ

i

DVl Py (I-3-14)

M, and at the metal surface, within the

i

diffusion layer, the fluid velocity is very small and the term
VCM can be neglected., Therefore, the flux of M away from the

metal surface is
Oy

or
The total molar rate of addition of species M by diffusion

Ny = =DyVCy = -Dy (I-3-15)

over the whole metal tube surface between plane "1" and "2"
in Figure I-3-~1 is given by the following expression, valid for

either laminar or turbulent flow:

Total molar rate of addition of SpecieslM

ZH u
M ar

where R is the radius of the tube.

rop JRAG dz (I-3-16)

But from Equation(I~3-11), we have

)

3

N, =k, (C,, -
M M M My,
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and therefore;

The total molar rate of addition of species M

_ . =~
= kM A(C C

)
M My

= kMIILd ( CMi - CMb) (I-3=-17)

where d denotes the inside diameter of the metal tube,
and A denotes the inner surface area of the metal tube.

Substitution of Equation(I-~3=17) into Equation(I~3-16)

gives

L(21 oC
K, = ‘ D, ~=
M omia( e, -, oJo TMorr
i b
This equation can be reduced to & dimensionless form by

_p)RA0 dz  (I-3-18)

¥* *
introducing the dimensionless quantities; r = r/d, z = z/d,

* b1 . a .
and G, = (CM - CMi)/(CMb - Cy. ). Using these quantities

w

in the equation and rearranging it gives

k.
k,d L/af2l ¢
M 1 M * _
Nu = ﬁaf = SRT d,[o J; (=~ ST r%s%)de dz (1-3-19)

The general equation of convective diffusion for any

Species is -~ 2
%\% ¢ vTC = DVC (1-3-20)

This equation can be simplified if radial symmetry is
present to the convective diffusion equation in cylindrical

coordinates
oC ' oC
EF Vr(ar)

Bra r\or
(I-3-21)

y 2rv ~t
-2 (p s . D<§~¥> . 26&&)
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This equation may now be reduced to dimensionless form
by introducing a characteristic flow velocity Uo ,» which is
the uniform velocity of the solution in the tube.’

Multiplying Equation(I-3-21) by j—4— » Where C, is the

0’0
uniform concentration in the bdbulk of the solution, we have

L C C c
>+ > F— > F
5.0 o EB% 0 a%
e
C c C
2% P (VB
_o_n (N L o () 5 [°%
- 2 2 k 2 2 ‘ 2 r\\ T
d d ry\5x
d 4
(I-3-22)

¥*
Introducing the dimensionless quantities; V. =V VAR
% #* # * *
v, = vz/Uo s, t = tUO/d , v =1vr/d, z = 2z/d, and C = C/CO

we obtain

2 ‘v Q.gi + V*(?”Q:)
R e R e

_ p(2%"\, b %"\ ., _0Dp <ac*>
7. a 2 T a2 Tar \or

Zr* Z
' (I-3-23)

: U d
The dimensionless ratio, Pe = 2 , 15 known as the

D
Peclet number, Introducing the Peclet number into

Equation(I-3-23), we have
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oC *(90 ) *(BC )
ot "\or "\ oz
_ 1 2°¢* . 2% 1_fac”
= Pe T R2 2 T T¥|IF
or 22" AU
(I-3-24)
va UL ,
But Pe = —%— =y = Re«3c, Therefore, Equation(I-3-24)
becomes
et 1 2%t 28t i ot} xact ¢
r . % 7 Re+Sc %2 I * ¢ Z ¥ *
or r Iz r 2ar 0z 2t
(I-3-25)
Equation(I-3-25) shows clearly
¥*
2 . ¥ ( Re, Sc) (I-3-26)
or

and consequently, BEquation(I-3-19) is of the form

Nu ¥ (Re, Sc, d4/L)

1

or HNu

1

const. (Re)™(Sc)™( % )P (I-3~27)
where the exponents, m, n, and p for the dissolution of
metal tubes of circular cross section can be experimentally

39,87,95

determined, Previous workers showed that m varies
between O.4 and 0.8, n between 0.3 and 0.4, and p between

0.3 and 0.4,
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CHAPTER IV
EXPERIMENTAL

A. Equipment
1. Design of Liquid Recycle System and Accessories

The schematic diagram of the experimental equipment
is shown in Figure I-4-1, The flow system is a closed loop
which was constructed from plexiglas tubing. A three-
fifteenth horsepower Dynalab Model 4-~MD magnetic drive pump,
capable of delivering 660 gal./hr. water against 3 feet head,
was used to circulate the corroding solution.

Adjustment of the electrolyte flow rate was achieved by
means 0f globe valve B in the pump by-pass. Two rotameters
equipped with stainlcss stecel [loats provided an indication
of actual flow rates.( One was calibrated to 4 USGPM of 1.0N
HC1 at 25°C and the other to 15 USGPM.)

The 20-litre QVF glass supply tank was eqqipped with an
immersion Vycor brand glass heater, a thermo-regqlator
thermometer, a Teflon coated stirrer, and a gas saturation
system, The 35-litre polypropylene make-up tank was equipped
with a Teflon coated electric stirrer.

The test section, mounted in a horizontal position, was
located on the downstream side of .the pump. The only part
of the system on the suction side was about 6 feet of PVC
pipe leading from the top supply tank to the pump. This
meant, that if any leaks developed, escaping electrolyte

3l
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SCHEMATIC DIAGRAM OF FLUID RECYCLE SYSTEM

FIGURE I-4-1.



LEGEND = For Figure I-4-1

A, ¥, G, H
D, E, B
C

= < o Bt WO " o = =B O KR o9 H

>3

PVC ball valves

PVC globe valves

QVF glass globe valve

Sealless, magnetic drive pump
Make-up tank, 35 litre, polypropylene
Teflon coated electric stirrer
Compressed gas cylinder

Test section

Rotameter

Supply tank, QVF glass, 20 litre
Constant temperature water bath
Relay

Electric heating coil

Stirrer

Thermo-regulator thermometer
Glass washing tower

Gas dispersion tube

Vycor brand glass heater

Thermometer
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57

would be easier to see thanvair being drawn into the system.

Eight feet of clear plexiglas piping immediately
preceded the test section to allow development of the
hydrodynamic boundary layer. Three feet of clear plexiglas
piping immediately followed the test section to ensure steady
flow in the test section.

Gas saturation of the acid solution was achieved by
passing the appropriate gases from compressed gas cylinders
through a series of wash bottles containing HCl solution of
the same concentration as in the supply tank. All wash
bottles were kept at the same temperature as the corroding
solution by immersing them in a constant temperature bath.

The return dinlet to the supply tank was located below the
soluticn surface and directed away from the gas dispersicn
tube to prevent large gas bubbles from being drawn into the
system.

A thermometer, incorporated near the return inlet by
means of a polypropylene T-piece, provided a check on the
temperature variation of the system.

Except for the calming and test section, the circulation
loop consisted only of standard half inch plexiglas and PVC |
pipes, valves, and Jjoints. As a result of the choice of
materials and equipments the only metal components contacting
the corroding solution other than the surface of the test

section are two Type 304 stainless steel floats in the

rotameters. The dissolution of Type 304 stainless steel in
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dilute HC1l solution (up to 6.0N) is negligible.
2. Details of Test Secticn Construction
A detailed drawing, illustrating the design and
materials used in the construction of the test section, is
provided as Figure I-4-2.

Tin bars, originally about 1.02 cm. in diameter, were
melted and remoulded into 1 inch and 1.5 inch diameter rods
under argon gas in a vacuum furnace. Tin tubes of 0.25 to 1.0
inch inside diameter, 2.5 to 5.5 inches in length were
produced from these remoulded tin rods.

Pairs of spigot were machined from 1.5 and 2 inch
diameter polypropylene rods to different dimensions to
accommodate the tin tubes.

Both ends of the tin specimen were recessed into the
spigots and secured firmly with plastic cement. In addition,
functioning as watertight seals, two Teflon washers were
placed between the end surfaces of tin Specimen»and the
stopping edges of the spigots. |

Before any test section assembly was incorporated into
the system, it was held together, under pressure, so that
any Teflon washers projecting beyond the inner surface could
be machined flush with the tube walls.

5. Temperature vontrol and Measurement

The temperature control of the corroding solution
was achieved by setting the desired temperature on the

thermoregulator-thermometer which sensed the temperature
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variation of the corroding solution and maintained it at the
set-point by activating a 500 watt immersion Vycor brand

glass heater through a relay. The temperature control used
in this system was supplied by the Chemical Rubber Company
who claimed that it was capable of controlling the temperature
within + 0.01°C,

The temperature of the solution at the return inlef was
also checked and recorded. If the difference between this
temperature reading and the temperature reading of the bulk
solution exceeded 0.1°C the average value would then be used

for data analysis.

B. Chemicals and Materials

The Analar grade tin bars used in this study were supplied
by British Drug House LTD. The purity of metal was 99.92 per
cent tin. The exact analysis according to the manufacturer
showed 0.01 per cent lead, 0.0025 per cent copper, 0.002 per
cent bismuth, 0.002 per cent iron, 0.004 per cent total
foreign metals, 0,0001 per cent arsenic, and 0.025 per cent
antimony.

Hydrochloric acid and all other reagents'used were of
analytical grade. Dilute HC1l sclutions were made with
distilled water. |
C. Procedure

1. Experimental Preparation

The two rotameters were calibrated by maintaining

a particular reading and measuring the volume of effluent
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collected during a known time interval. Details of rotameter
calibration are given in Appendix 1.

The make-up tank and the‘QVF glass supply tank were alsd
calibrated. The liquid capacities at different liquid levels
were measured and marked.

Before the tin tube was integrated into the flow system
it was polished manually to 3/0 emery paper smoothness(average
surface roughness less than 20 microinches) and washed
initially with distilled water and dried with filter paper,
then washed with acetone for degreasing, and finally rewashed
with distilled water. After each run, the tin tube was washed
and dried. A check on the material balance was maintained by
weighing the clean dry tin tube before and after each run.

When not in use, the tin tube was filled with distilled
water. At the start of a run, 0.5N HCl was flushed through
for about 5 minutes. This removed any oxide built up during
storage in distilled water. |

2. Procedure for Dissolution Run

The HC1l solutions were made up and mixed in the
make-up tank with valves A and H closed(refer to Figure I-4-1).
Valves A, D, E, I'y and G were then opened, valve C closed, and
the solution was pumped from the make-up tank into the supply
tank. After the volume of solution in the system was adjusted
vby letting the excess solution drain through valves D, &, F,
and G into the make-up tank, valve A was closed and C opened.

At this stage the system was operational. The appropriate gas
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was then introduced into the solution through the dispersion
tube.

After the solution was flushed overnight, the temperature
control system and the stirrer in the supply tank were switched
on. During the time required for the acid solution to reach
the desired temperature, the test section was prepared and
connected to the flow system as previously described;

After the solution reached the desired temperature, the
pump was switched on and the flow rate was regulated by
adjusting valves B, D, and E.

A 5 ml. sample of the corroding solution was withdrawn for
routine analysis at convenient intervals of time from the top
supply tenk. TFor every sample of corroding solution withdrawn,
an equal volume of HC1 solution of the same concentration was
added to the supply tank to minimize solution volume change
during the dissolution run.

Tin concentrations were determined by means of a Jarrell-
Ash Model 82-526 Maximum Versatility Atomic Absorption
Spectrophotometer. Details of the analytical procedure are
given in Appendix 2.

Upon termination of a dissolution run, the system was
drained of corroding solution, flushed with city water three
or four times and then flushed with disﬁilled water once.

The test section was then disconnected from the system and

stored in distilled water until further use.
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CHAPTER V
EXPERIMENTAL RESULTS AND DISCUSSION

A, Method of Analysis of Experimental Data; A Typical
Example

In Chapter III details of the mechanism of dissolution of
a metal, capable of existing in two oxidation states invacid
solutions, were presented. On the basis of that discussion the
following characteristics of dissolution can be visualized:

The corroding solution concentration-time plot for the
dissdlution of such a metal in aerated solutions will show an
autocatalytic effect, with dissolution rate increasing with
increasing metal ion concentration in solution. The over-all
dissolution rate is a combination of the following three
parallel corrosion effects: hydrogen evolution, oxygen
depolarization, and autocatalysis. The rates of hydrogen
evolution and oxygen depolarization are independent of the
metal ion concentration in the solution(zero order dependency
on metal ion concentration). Therefore, the corroding solution
concentration-time plots for these two reactions should be
straight lines. The oxygen depolarization and autocatalytic
reactions can occur only when oxygen gas is introduced into
the solution. The autocatalytic effect is negligible at the
initial stage because no metal ilons are present in the solution
at the start of a dissolution process.

The analysis of the dissolution data obtained in this

43
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study is based on the above discussion with experimental data
recalculated to a metal dissolved per unit surface area basis.
A typical model of this analysis is illustrated in Figure I-5-1,
where OA shows the plot of the rate data for the dissolution
of tin in deaerated hydrochloric acid solution, a condition
under which only hydrogen evolution can occur. Curve OC shows
the rate data obtained under the same conditions as those of
OA except that the acid solution was air saturated.

The shape of OA, a straight line, conforms to a zero
order plot of metal ion concentration vs time. The
exponential concentration-time plot of curve 0C is a
confirmation of an autocatalytic process. The straight line
OB has been drawn asymptotically to curve OC at its initial
stage where autocatalysis is negligible. This linearity
essentially represents an extrapolation of the initial corrosion
rate under aerobiq conditions in the absence of autocatalysis.

The total area under curve OC is divided by straight lines
OA and OB into three regions, each of which corresponds to a
specific effect on the over-all dissolution reaction as shown
in Figure I-5-1, where slope of line OA = Ty slope of line
OB = ry *+ Ty, and slope of curve 0C = r, + I, + Iz ( r., Ip
and ry are the reaction rates in moles of metal dissolved per
square centimeter per minute for hydrogen evolution, oxygen
depolarization, and autocatalysis respectively.)

This analysis provides a pattern for the interpretaticn

of the tin dissolution data c¢btained during this investigation.
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B. Reproducibility

In order to éheck the reproducibility of experimental
determinations duplicate runs were made under various
conditions. A typical plot of a duplicate run is shown in
Figure I-5-2.
C. Effects of Different Factors on the Dissolution Rate

of Tin
1. Rate Dependence on Tin Ion Concentration
As shown in Figure I-5-3, the autocatalytic

dissolution effect, which is represented by the difference in
tin ion concentration between curve OC and the linear zero-
order initial rate plot OB as shown in Figure I-5-1, can be
correlated by a half-order plot. The reaction rate of
autocatalysis, rB, is proporitional to the total tin ion
concentration in the bulk solution raised to the 0.5 power.
Experimental evidence'shows that the autocatalytic reaction
becomes important only after an elapsed time of 40 to 120
minutes. The beginning of noticeable autocatalysié, as
determined by the deviation from the asymptotic line OB in
Figure I-5-~1, depends on thé dissolution conditions, but in
general the bulk tin ion concentration must be greater than
0.35x10™% moles/litre.

2. Rate Dependence on Fluid Volodity

The effect of the velocity of the acid solution

flowing through the tube was studied for velocities ranging

from 1,175 to 16,600 cm./min. in tin tubes of different
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diameters and lengths, at three different temperatures.

The results shown in Figures I~5-4,'I-5-5, and I-5-6
indicate that Ty, the reaction rate for hydrogen evolution, rs s
the reaction rate for oxygen depolarization, and r,, the
reaction rate for autocatalysis are proportional to fluid
velocity raised to the 0.67, 0.59, and 0.61 powers respectively.

This behaviour indi.cates that resistance to diffusional
mass transfer is operative for the range of velocities
(turbulent flow in all cases) investigated.

5. Rate Dependence on Temperature

The rate dependence on temperature was studied over
the range 25 to EOOC under nitrogen, air, and oxygen saturation
at four different flow velocities. The results are illustrated
by the Arrhenius' activation energy plots shown in Figures
I-5-7, I-5-8, and I-5=9.

The temperature variations correspond to apparent
activation energies of 4.25 kcal per mole for the hydrogen
evolution reaction, 5.45 kcal per mole for the oxygen
depolarization reaction, and 5.8 kcal per mole for the
autocatalytic reaction. Thése low values of activation
energy suggest that the temperature coefficients for these
reactions are low and the controlling step 1s more likely
physical than chemical.

L. Effect of Hydrochloric Acid Concentration

The effect of hydrochloric acid concentration was

studied in aerated and deaerated solutions over the
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concentration range 0,10 to 4.0 M HCl. Analysis of the data
obtained in these investigations shows that the rate of
dissolution of tin tubes is essentially independent of HCl
concentration. Table I-5-1 indicates that there is no apparent

trend for rys Too and r3 over the range of concentration

studied.
TABLE I-5-1
Effect of HCl Concentration on Tin Dissolution
T = 30°C, v = 16,600 cm./min., 4 = 1.27 cn.
L = 10.16 cm., [Sﬂ] = 2,0 x 10'3moles/litre
HC1 aHCl r1 rZ r5
() (W) ( moles ) ( mgles ) ( mgles )
cme~min. Cm.-min. CH.-in.
0.10 | 0.079| 7.93 x 10~ 2.60 x 1077 L.05 % 1077
0.25 0.10L | 7.32 = 2.55 = 4,18 =
0.33 0.253 | 6.95 =~ 2.50 = 3,96 =
0.50 0.379| 7.15 =~ 1.95 ~ 3.85 =
0.75 00586 7065 - 2.05 - 4‘22 -
1.00 0.809| 6.82 =~ 2.86 - 3.75 -
2000 20018 ?495 - 2025 - 4.15 had
3000 4.080 7.20 bt 1.85 had 4.20 -
1-{—.00 7.280 6175 - 2.55 - 3&80 b

Dissolution rates independent of acid concentration were
also reported by other investigatorsl6’44’52. This behaviour
is an indication that the diffusion of hydrogen ions from the
bulk solution to the solution-metal interface and the
adsorption of hydrogen ions on the active sites on the tin
surface are fast steps. Therefore, the variation of hydrogen
ion concentration in the bulk sclution has little influence on

the dissolution rates of tin in hydrochloric acid solutions.
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5. Effect of Oxygen Partial Pressure in Gas Phase
The variation of the concentration of oxygen in the
gas mixtures used to saturate the acid solutions and purge
the flow system was achieved by adjusting the ratio of
volumetric flow rates of oxygen and nitrogen from gas
cylinders. '

The influence of oxygen concentration on the dissolution
rate was determined by saturating the acid solutions with air,
and gas mixtures of oxygen and nitrogen. The proportion of
oxygen in these gas mixtures was varied over the range O to
1.0, This investigation was performed at three different
velocities; 16,600cm./min., 10,280 cm./min., and 4,150 cm./min.

The results shown in Figures I-5-10 and I-5-11 indicate
that the rate of dissolution can be well correlated in terms
of the square root of the oxygen partial pressure in the gas
phase with which the solution is equilibrated. The reaction
rates rs and r5 are directly proportional to thé.square root
of the oxygen partial pressure. This behaviour suggests that
the adsorption of oxygen on the metal surface is possibly of
the dissociative type.

6. Effect of Tube Inside Diameter

The effect of the inside diameter of the tube was
studied over the range 0.953 to 2.54 cm., under nitrogen and
air saturation, and at the following three flow velocities;
1,175 cm./min., 5,730 cm./min., and 16,600 cm./min. It was

found that the dissolution rate in moles/cm?-min. decreased
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slightly with increasing tube diameter.

The results given in Figures I-5-12, I-5-13, and I-5~=14

"0005 "Oo]]
9 ?

show that ryy oo and r3 are proportional to d a

and d'o'loreSPectively.
This behaviour can be explained by the effect of tube
diameter on the thickness of the diffusion layer &.
Levich48, who examined the case of the inside surface of
a tube serving as the reaction surface under conditions of

both laminar and turbulent flow through the tube, derived the

following relationships for the thickness of the diffusion

layer: _
b ot (a)!/3
for laminar flow
and '504(d)1/8

for turbulent flow
The range of Reynolds number encountered in this study is
between 3,940 - 74,500, As a result all experimental data fall .
within the region of turbulent flow. Therefore, according to
Levich, the relationship, & ac(d)]/S, should hold true for
this investigation. In other words, the diffusional mass

transfer flux should follow the relationship; N & @ 3,

A comparison of the results obtained in this investigation .
with the above relationship shows that they are of the right

order of magnitude.
7. Effect of Tube Length

The effect of tube length on the dissolution rate
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was studied over the range 5.075 - 13.950 cm., under nitrogen
and air saturation, at 30 and 4000, and at the following
three flow velocities: 2,350 cm./min., 8,300 cm./min., and
16,600 cm./min. |

Figures I-5-15, I-5-16, and I-5-17 show that the rates
of dissolution are influenced by the length of the tube. The

reaction rates, ry, r,, and ry are proportional to L-O‘BO,

L'O‘BB, and 1,70+32 respectively.

This phenomenon can be interpreted in terms of a
progressive decrease 0f concentration gradient of reacting
species in the immediate vicinity of the metal surface as
the solution moves from one edge of the tube tc the other edge.

According to LevichhS, the diffusional mass transfer flux,
against the inside surface of a tube, iz a function of the
distance along the tube in the inlet section of the mass
transfer entry region. It extends for a distance of about
100 diameters for laminar flow. The mass transfer region is
much shorter in turbulent than in laminar flow. Von Shaw,
Reiss, and Hanratty87, indicate that this length ranges from

2 diameters to 0.5 diameters as the Reynolds number varies

from 5,000 to 75,000.

D. Proposed Mechanism for the Dissolution of Tin in
Hydrochloric Acid Solutions
On the basis of the estavlished experimental results, tin
dissolution may now be interpreted in terms of the following

mechanism:
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1. The reaction scheme proposed for the hydrogen
evolution reaction is: '
a. Diffusion of hydrogen ions from the bulk solution to
the metal-solution interface

+ +

Hb Hi

b. Adsorption of hydrogen ions on the metal surface

HY + Sn == 5n-H
1 * *
¢c. Discharge of adsorbed hydrogen ions by virtue of

electron transfer through the metal:

(c1) Electrons transferred from a neighbouring vacant

site on the metal surface

+ +

H H H

1 . . ! 13 . L I
N~ SN=SN=S1=5N= ——3wm =SNeSn=SD = S5n=-S1-

* * ¥* * * %

(c2) Blectrons transferred directly from the surface

atoms on which adsorption occurred
- v “}
Sn=H_  -——= Sn -H
% s % s

d., Formation of molecular hydrogen from atomic hydrogen,

by one of the following modes:

(a1)

H H H
P ! e i2
~SH=5n=5SN ~SNn=Sn= ——>~ =SN=Sn=Sn =Sn-Sn-
* * ¥ % x S
(a2) 2 (sn"-H_ ) ——= Sh7 +  Sn-H,

% 8 x B * s
2 R . 1Y e SHYeU
(a3) :h HS Hi ;n 28
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e. Removal of hydrogen molecules from the metal surface,
elther by dissolution into the solution'or by the formation of
gas bubbles and their subsequent detachement from the metal
surface.

1 Sn-H —_— 5 + H
(e1) | *n 28 *ns 2

i,dissolved
el Sn=-H e Sne (H + - 1)S
(e2) n ( Sn 2_ ) Sn ( 2)ns (n )*n

in-(Ha}n ——=  Sn o+ (HZ)n

s *

where Sn—(HZ)n represents a hydrogen gas bubble attached
* S

on the metal surface.

f. Desorption of stannous ions from the metal surface to

the metal-solution interface

g. Diffusion of hydrated stannous ions from the metal-
solution interface to the bulk solution

++ + -+ ;
Sni + nHZO —a  S7 _nHZObulk

2. In serated hydrochloric acid solution, the dissolutioh
of tin is accelerated by two other simultaneous reactions.
These are oxygen depolarization and autocatalysis.

The mechanism proposed for the oxygen depolarization can
be described by the following elementary stages:

a, Diffusion of oxygen from the bulk solution to the

metal-solution interface

2y i

o
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b. A dissociative adscrption of oxygen on the metal

surface

Oai + 2 in e 2 ( En—Os )

¢c. Formation of mono-valent oxygen ions by virtue of
electron transfer
+ -
.in--OS in «Os
d. Formation of hydroxyl radical
4 - + +
En -OS + in—Hs — gn -HOS 4+ ins

e, TFormation of hydrogen peroxide

2 ( Sn"=0H ) —m- Sn=H,0,  + Sh
* +* s ¥*

0+

f. Reduction of hydrogen peroxide with formation of

hydroxyl ions

Sn-H,0, ——= Sn'-HO, + OH™
* S % a2

Sn*-HoS Sn;+ " OH"
+* *

g. Desorption of stannous ions from the metal surface

to the metal~solution interface

(ot o
Sn —_— ..
s i

h. Diffusion of hydrated stannous ions from the metal-
solution interface to the bulk solution

-+ -3

Sn. ¥+  pH,0 —o= SA=niH,0
i <

2 bulk
3. The following reaction scheme is propbsed for the
autocatalytic process:

, . . 1 . ,
a. An oxidation process caused by dissolved oxygen
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with the formation of peroxide intermediate according to

4+ + g A
Eni + O21 + ZHi — Eni + Haoai

b. An oxidation process caused by the atomic oxygen

adsorbed on the metal surface with the formation of hydroxyl

ion :
4 < + P -
Sn + Sn~0_~ + Sn-H_ — Sn + Sn=-0H + Sn
x B % B * S * * = % 8

c. An oxidation process caused by the peroxide
intermediates67(produced in stage a and in the oxygen

depolarization reaction) according to

+ ot ok “OH" +
in-Hs + Sny + H2021—~—J- bni + En OHS HZO
or ‘
o o o 4 o 4+ -
iﬁn-—HS + Ens + En-HZOZS‘ Ens + gn-OHS ¢ En—HEOS

d. An equilibrium’ between the stannous and stannic ions
is established at all times at the metal surface by virtue

of electron transfer:

R + o+
+ . — .
ng Sn:L e Snl

* Lo

As reported by other investigators53’56, the specimen
surface became coated with a grayish film during tin
dissolution in acidic media., Chemical analysis56 and X-ray
diffraction’analysis53 of the surface film showed that it

consisted of redeposited pure tin.

E. Empirical Rate Equation for Tin Dissolutiorn
The experimental data for the dissolution of tin in

hydrochloric acid solutions in the presence or absence of
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oxygen may be summarized by the following equation:

1 dasn _ Vv alsnl
Adt - A dt

' ' 20 - 4250
k9 [zeq] ©(v) 87 (0)7+ 0% 1)~ 2% TRT

i

. ] .
+ kg @Cl]o(v)osg(d)".11 (L>—'3')(P02)‘500- 2%%.

. ~ 5800
. kg[Hc£]°(v)'6’(d)"‘O(L)")a(PO )29 [sn]*?%~ “FT
2

. . 1 dS8n .- .
where the dissolution rate, i E%g , 18 expreseged in moles

of tin dissolved per square centimeter of metal surface per
minute. The tin ion concentration, [Sﬁ], is expressed in
moles per litre. The values of k?, kg, and kg have been found
to be 3.37x1077, 3.05x1072, and 6.45x10"% respectively. The
detailed calculations are given in Appendix 3.

Therefore, the empirical rate equation for the dissolutiocn

of tin in HC1l solutions can bhe established as:

1 dasn _ v afsn]
39t © %4t

- 250
3.37x1077 [ ©(v) 07 (@)~ 07 (1) 70" AeZl

n

51,50
3.05x1072 [HC] °(v)'59(d)‘°11(L)“'35(P02)'5Oe' S

. ‘” -5800
6.45x1074[mcT ©(v) O @ 10wy 22 (p, )20 [5n) e RT
2

I

in which the third term(autocatalysis) applies only after an
elapsed time of 40 to 120 minutes. The beginning of noticeable
autocatalysis depends on the dissolution conditions, but in

general the bulk tin ion concentration must be greater than
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0.35x10™% moles/litre.

Range of experimental conditions:

T 298.15 - 323,15%

I

v = 1,175 - 16,600 cm./min.
d = 0.953 - 2.54 cn.

L = 5.075 - 13.950 cm.

v = 8,000 = 14,000 ml.

Po, = 0-1.0atu.

[wci] = 0.1 - 4.0 M

An example of the application of the above empirical
rate equation to predict the changes in tin ion concentration

in the corroding solution is given in Appendix 4.
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CHAPTER VI
SUMMARY AND CONCLUSIONS

A. Comparison of Present Results with Previous Work

In earlier studies with rotating cylindrical systemséB,

experimental data were correlated by the following empirical
rate equation designed to express the changes in tin ion

concentration in the corroding solution:

3060
5.31x1077 & [kcd] ©(v) 9B~ R

d!SnI
dt

H

3660
2.88x10™7 & [ke1] °©(v)* B (p, RE +50g= =i

+

+

0
1.esxio” A7 %Fﬂ (V)™ (P, )HNAB] )50 S

where: n = 0.30 for 2,840<y \41,230 cm./min.

= 0.90 for 21,230<v<34,100 cm./min.

Rearranging the above equation gives

3060
1858 5. 51x1077 [101] © (v) * Fe™ “RI

' 660
2.88x107 [1c1] ° (v) * B (p, )%~ kT
2

+

4

~1[mc] ® . in .50 .50 ~ 2449
1.25%10 (A>550(v) (Poa) A[sa] 5)*7"e” “RT

The rate equation obtained in the present investigation
is very similar to the above corre;ation, Both rate equations
shbw that, (a) the dissolution rate of tin is independent of
the hydrochloric acid concentration, (b) in aerated acid

solutions, the dissolution reactions show an autocatalytic

74
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' effect, with dissolution rate increasing with increasing tin

' iqn concentration in corroding solution, and the autocatalytié
process shows a half order dependence on tin ion concentration,
(c) the rates of oxygen depolarization and autocatalytic
processes are proportional to the square root of the oxygen
partial pressure, and (d) there is no direct proportionality
between the dissolution rate and the apparent surface area of
the dissolving metal for the autocatalytic component.

The respective values of apparent activation energies
appearing in these two equations fall within the same order
of magnitude. It is also interesting to note that the values
of activation energies in both correlations show the sane
important characteristic; that is, the hydrogen evolution
process has a smailer value of activation energy than those
of the oxygen depolarization and autocatalytic processes.

The low activation energy, along with independence on
hydrogen ion concentration and other chemical factors, but
significant dependence on flow velocity suggest that the
hydrogen evolution component is essentially under diffusional
mass transfer control.(Probably the diffusion of hydrated tin
ions from the metal-solution interface to the bulk solution
is a very slow step.)

Because the rates of the oxygen depolarization and
autocatalytic processes are proportional to oxysgsen partial
pressure raised to the 0.5 power, it would appear that the

adsorption of oxygen on the metal surface is a dissociative
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type, and also a slow step. Therefore, the oxygen
depolarization and autocatalytic processes have a combination
of physical(the diffusion of hydrated tin ions from the metal-
solution interface to the bulk solution) and chemical(the
dissociaticn of oxygen molecules on'adsorption) slow stéps
involved in their elementary stages. In other words, the
oxygen depolarization and autocatalytic processes are under
mixed control.

Significant differences are shown befween the effect of
velocity on dissolution rates from cylindrical and tubular
specimens. For the rotating cylindrical system, the reaction
rates are proportional to peripheral velocity raised to the
0.90 - 0.98 powers.(The rate of the autocatalytic process is
proportional to peripheral velocity raised to the 0.350 power
for a narrow range of lower velocities.) For the tubular
flow system the reaction rates are proportional to linear
velocity of the corroding solution raised to the 0.59 - 0.67
powers. This difference in magnitude of the flow velocity
effect is probably due to the significant differences in flow
patterns in these two systeﬁs. The flow pattern in the
recycling flow system was well established, while that in the
rotating cylindrical system was made far more complex by the
baffles incorporated into the solution containerez. The
violent turbulence of the corrcding solution caused by these
baffles surely enhanced the effect of velocity on diffusional

mass transfer. Therefore, the same apparent increase in
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relative movement between the metal surface and corroding
solution would cause a much higher‘turbﬁlence (consequently
‘a much larger effect on dissolution rate of tin) in the case
of the rotating cylindrical system than in the tubular flow
system.

B. Comparison of Present Results with Mass Transfer
Correlations
Diffusional mass transfer correlations for the dissolution
of so0lids into fluids moving through a tube of circular cross
section, as discussed in Chapter III, have the following
general form:

Nu = const. (Re)T(sc)( % )P , (I-6-1)

where the exponents m, n, and p are usually determined
experimentally.

To compare some of the chargcteristics of the rate equation
obtained in this investigation with those of the above general
correlation, consider the case of any general dissolution run
of tin in HCl solution. At any given instant, the following
properties of the corroding solutionj temperature, oxygen
partial pressure, and tin ion concentration are fixed. Under

these conditions, the empirical rate equation reduces to

1

alen] _ oL ()67 (a)=+05)=+30

+

ey ()27 @ @)™
c3.<v)-6’<a>"‘O<L>“°52 (I-6-2)

+

where Cis o and 05 are constants.
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With some further assumptions and rearrangements, the

above equation can be converted to the following form:

I, d ,
_%— = Nu = c;-(Re)‘67(Sc)‘67( % )'29
+ cé-(Re)'Bg(Sc)'sg( % )21
v oy (Re) 8T (sc) 01 (£ )+20 (1-6-3)

where c;, cé, and c; are constants. (A detailed derivation
along with the necessary assumptions is given in Appendix 5.)

Equation(I-6-3) is essentially similar to Equation(I-6-=1).
This general agreement is an indication that some very slow
diffusional mass transfer step (or steps) is involved in the
dissolution processes of tin in hydrochloric acid solutions.

rt

C. Conclusions
1. The dissolution of tin in hydrochloric acid solutions

appears to occur through three parallel reaction paths. In
deaerated acid solutions there is a single slow hydrogen
evolution process. In aerated acid solutions there are three -
simultaneous reactions; hydrogen evolution, oxygen
depolarization, and an autocatalytic process. The last
reaction becomes significant only after sufficient tin has
been dissolved to create a tin ion concentration of about
0.35x10™% moles/litre.

| The hydrogen evolution process is essentially under
diffusion control, while the oxygen depolarization and

autocatalytic processes are under mixed control, because they
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have a combination of slow physical and chemical steps involved
in their elementary stages.

2. On the basis of the experimental results it is
reasonable to believe that, (a) the diffusion of hydrogen ions
from the bulk solution to the solution-metal interface and

the adsorption of hydrogen ions on the metal surface are fast

steps; fast
ag .
Hy — K,
K
fast
+ ;- > e gt
Hi 4 in En HS

(b) the adsorption of oxygen on the tin surface is a
dissociative type of adsorption, and is probably a slow stevp,

s1low
5 " s

* o

and (c¢) the diffusion of hydrated tin ions from the metal-
solution interface to the bulk solution is a slow step.

o slow

. ‘ ot
bni + n HZO S —nH20bulk

3. The dissolution rate of tin in HCl solutions is not
directly proportional to the inner surface area of the tin
tube. It is, instead, a function of the inside diameter and
length of the tin tube.

4. Formation of gray film on the tin surface was observed.
Other investigatorsBB’63’67have reported this film to be

composed of pure tin.

5. The stannous species, stannic species equilibrium:
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Sn + sSn. S
Sng i .~r-*' 2 Sni

is assumed to be established at the metal surface very

quickly.
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PART TWO

A POTENTIOSTATIC INVESTIGATION OF THE POLARIZATION
AND CATHODIC PROTECTION OF TIN TUBES IN HYDROCHIORIC
ACID SOLUTIONS

81
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ABSTRACT

A horizontally mounted tubular electrolysis cell,
incorporated into a closed loop flow circuit, was used for
the potentiostatic investigation of the polarization and
cathodic protection of tin tubes in aerated and deaerated
hydrochloric acid solutions.

The counter electrode consisted of a coaxial length of
17 s.w.g. platinum wire.

Some preliminary studies on stationary tin cylinders
immersed in HCl solutions were carried out to determine the
magnitude of the required protection current and the
&pprOPriate potential range likely to he encountered.

For both the stationary and flow systems plots of
potential-log(current density) showed well defined linear
portions (Tafel lines). The values of the Tafel constants,
B, and B, , given by the slopes of these Tafel lines decreased
with increasing hydrochloric acid and oxygen concentrations
and flow velocities of the corroding solutions.

The corrosion current (IC) of tin in HC1 solutions, as
determined by the intersections of the anodic and cathodic
Tafel lines, was found to be proporitional to the fluid velocity
raised to the 0.65 power, and also airectly proportional to
the squarevroot of the oxygen concentration, but essentially

~ independent of the hydrochloric acid concentration.

32
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The relationships between imposed cathodic potential on
the tin tubes, protectioa current densities, and dissolution
rates of tin were presented in the form of [Sn]melectrode
potential-protecticn current density plots.

The experimental results showed that cathodic protection
of tin can be achieved in both aerated and deaerated HCL
solutions. The protection current requirements increased
with increasing oxygen concentrations, flow velocities, acid

concentrations, and temperatures of the corroding solutions.
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CHAPTER T
INTRODUCTION

The application of cathodic protection is ehcountered
in many industrial and civic facilities such as petroleum,
gas, and water pipelines, hulls of ships, chemical storage
tanks, boilers, heat exchangers, cooling towers, drying
cylinders in paper-making machines, and other equipment.

Cathodic protection is perhaps the most effective of all
approaches to corrosion abatement. By means of an externally
applied electric current, the corrosion rate is reduced
virtually to a negligible value, thus a buried or immersed
metallic structure can be maintained in a corrosive environment
for an indefinite time without deterioration.

This technique is usually concerned with the protection
of ferrous materials, because these constitute the bulk of
the objects that are used in industrial situations. As a
result of this general dependence on iron containing metals,
most of the earlier works, on the applicability of cathodic
protection to control corrosion, have been done with ferrous
materials in a variety of systems. A survey of the literature
indicates that little attention has been paid to the study of
cathodic protection of tin in electrolytic solutions.

In the application of cathodic protection, either in
industrial or research projects, the coupled anode is usually

connected externally to the system which is under protection.

8l
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There are two important disadvantages to this type bf
connection. The first results from the uneven protection-
current distribution on the metal surface of the protected
structure., As a result the most accessible parts of the
structure are made more cathodic than necessary, while the
current density on the metal surface of the least accessible
parts is insufficient to offer pfotection. The second
disadvantage is due to the inability of the protection current
to enter electrically screened areas such as interiors of
water condenser tubes and inner pipe surfaces of double pipe
heat exchangers.

This study was conducted to investigate the applicability
of cathodic protection to control corrosion of tin in HClL
solutions under controlled flow patterns. This was
accomplished through the following program:

1, Experimental examination of the behaviour of tin
samples during anodic and cathodic poliarization.

2. Experimental measurements to determine the dissolution
rate of tin as a function of imposed cathodic potential.

3. Experimental measurements to determine the dependence
of protection-current density on temperaturé, corroding
solution velocity, acid concentration, and oxygen partial
pressure.

An additional purpose of this study was to seek a way of
obviating the difficulties presented by uneven protection-
current distribution and electrically screened areas. To

achieve this objective, a coaxial length of platinum wire
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was used ae the counter electrode(i.e. an internally coupled

anode was employed in the specially constructed tubular

electrolysis cell).
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CHAPTER II

LITERATURE REVIEW

A, Electrochemical Theory of Corrosion

In aqueous media, metallic corrosion is the result of
basic electrochemical reactions which can be separated into
two or more partial reactions. These partial reactions are
divided into two classes: anodic reactions and cathodic
reactions.

The electrode at which oxidation reactions occur is
called the anode85. An example of anodic reaction is:

Sn ——— 5n° + 2" (II-2-1)

This reaction is the basis of the corrosion of tin.
The electrode at which chemical reduction occurs is
called the cathode85. One of the commonest cathodic processes

during corrosion is that of hydrogen evolution:

2H o+ 2e

Ha (I1=2~2)
To view the over-all reaction, one combines the oxidation
and reduction reactions.

ES e s
Sn 4+ 2 H -—————— Sn +  Hy (IT~2-3)

1+ Thermodynamics of Electrochemical Corrosion Processes
In any electrochemical corrosion reaction, the
driving force is the potential difference which exists between
the anode and cathode.

For these electrode potential calculations, the concept
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88
of standard half-cell potentials has been developed85.
Arbitrarily, the hydrogen electrode has been universally
chosen as the standard reference electrode, and assigned a
standard potential of zero volts at all temperatures. The
standard potential of an electrode, E°, is that potential
which exists between the electrode and a standard hydrogen
electrode When all reactants and products are at unit activity.
If the activity of any of the products or reactants is not
unity, a new electrode potential can be calculated from the
Nernst equation:

E=%r8 4 3-2 1ng-92-{-'—- (II-2-4)
nk ared. _

=
"

standard electrode potential, volts

s
1

electrode potential, volis

= gas constant, cal./g.mole=-"K

¢

absolute temperature, K

oo
n

= Faraday,coulomb/g.equiv.

o]
1]

number of electrons transferred in the

reaction

Aox.

ched. = activity of reduced species

I

activity of oxidized species

The potential of a reaction is related to its free energy

28,73, ‘
by ? . AG = -nFk (11—2—5)

where 4G is the change in free energy for the reaction.
A negative value for the change in free energy corresponds
28,73

10 a spontapneous reaction It can be seen also from
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Equation(II-2-5) that a reaction which has a positive potential
will proceed as written.

The application of thermodynamic principles to corrosion
studies haé been further generalized by means.of potential-pH
plots. Pourbaix and his co—worker831’65’66 have calculated the

- phases at equilibrium for metal-water,and for other systems at
25°C, from the chemical potentials of the species concerned in
the equilibrium, and have expressed the.data in the form of
equilibrium diagrams having pH and potential, E, as ordinates.

The main uses of the potential-pH diagrams are (1)
predicting the spontaneous direction of reactions, (2)
estimating the composition of corrosion products, and (3)
predicting environmental changes which will prevent or reduce
corresion attack?3= |

The potential-pH diagrams for tin have been constructed
by Deltombe, zoubov, Vanleugenhaghe, and Pourbaix65. These
diagrams predict a domain of passivation in moderately acid,
neutral and slightly alkaline solutions, in the pH range
between 3.5 to 9.0, This passivation would correspond to
the metal being covered with a protective film of stannic
oxide in the absence of substances capable of forming soluble
complexes with tin or insoluble compounds. On the other hand,
acid solutions and moderately alkaline solutions( pH value
between about O and 12) are passivated if they contéin
oxidizing agents capable of raising the potential to about

+0.2v in acid media to -0.7v in alkaline media. From these
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diagrams it also appears to be possible to bring about the
cathodic protection of tin by lowering its potential to values
included between two well defined limits, which are about
-0.3 and 1.0 v in very acid solutions, and -1.1 and -1.8 v in
very alkaline solutions.

Potential-pH diagrams are subject to the same limitations
as any thermodynamic calculations. They represent equilibrium
conditions and hence can not be used to predict the velocity
of a possible reaction.

2. Kinetics of Electrochemical Corrosion Processes

One of the keystones of electrochemistry is Faraday's
law which relates chemical change and electrical energy27.
For every equivalent of chemical reaction 96,500 coulombs
must pass through the cell. This equivalence between chemical
reaction and electrical charge mekes il possible to write the
rates for electrochemical reactions in terms of electrical
currents.

The discussion of the kinetics of electrochémical
reactions is based largely on the mixed poteﬁtial theory of
electrode kinetics as stated by Wagner and Traud88. The basic
assumptions of this theory are (a) the kinetics of the various
partial reactions can be treated separately and (b) no net
current flows from an electrode which is in equilibrium or at
‘steady state. The condition of no net current flow means the

, total rate of reduction must equal the total rate of oxidation

on the electrode surface if the electrode is at steady'state
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or equilibrium.
The relationship between exchange-reaction rate and

current density can be directly derived from Faraday's law:
5 .
- R
/?gxd. - /éred. ~ nr (I1-2-6)
where /1oxd. and 4 ., are the equilibrium oxidation and
reduction rates and io is the exchange-~current density.
When a reaction is forced away from equilibrium, the

potential at which the reaction is occuring changes. The

amount by which the potential changes is the overvoltage,

defined as77: o
1 = Eeq. -~ E (II-2-7)
where:
7 = overvoltage, volts
Eeq = equilibrium potential, volts
5, = polarized( current flowing ) potential, volts

The current applied to cause the departure from equilibriun

is the net rate of reaction. Thus:

i = i - i. Tie=2 e
app. a z - ( 8)
where:
ia = anodic current density, amp./cm?
i, = cathodic current density, amp»/cm?
iapp = applied current density, amp./cm?

The overvoltage, exchange-current density, and the rates
of the various partial processes can be related in the form

3

of a chemical rate equation’”.

203
i, = igexp( ”"’"";f“é ) (II1-2-9a)
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2.3,

c
where /Ba and g, are constants (Tafel constants) of the

i, =i exp( ) (II~2-9b)

c

system and may be equal to one another. For corrosion and

electrochemical studies, Equation(II-2-9) is usually written

79 and called the Tafel equation81.

7@ = ~Blog i /iy =G log i /i (I1-2-10)

in logarithmic form

where: 71 = activation overvoltage, volts
In Figure II-2-1, polarization curves have been constructed
for a reaction whose rate is described by Equation(II-2-9),

Which may be applied whenever corrosion is solely electro-

28

chemical and governed by activation overvoltage™.
3
E, = Corrosion potential ~
I, = Corrosion current //////

fA Activation Overvoltage, (volts)
2

1 | | |
c 1 10 10 10°

Log (current density)

Figure II-2-1. Activation Polarization Curve for a
Reversible Electrode

|
-1 i
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In Figure II-2-1, the zero-net-current point for a
reversible system is the equilibrium potential. 1In a
corroding system, the no-current point is the corrosion
potentia128.

Besides activation polarization, it is possible to have
concentration polarization at an electrode. ;

Concentration polarization occurs when one or more of the
reactants are consumed at an electrode faster than they can be
supplied from the bulk of the solution or when products
accumulated at the electrode surface. The rate of the reaction
is then limited by diffusion of ions or dissolved species
toward or from the metal-solution interface. This limiting
rate can be expressed as a current density( the limiting

current density ij ) by the equaﬁion75:

ip = P—?—Ac (II-2-11)
where:
i; = limiting current density, amp./cm?
D = diffusion coefficient of reacting species,
cra/sec.
= concentration difference between ions in the

AC
| bulk solution and that at the metal~solution
interface,
The amount of concentration polarization overvoltage,
Mg is related to the limiting current density by the

7

equation’’:
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_RT i,
" = oF log( 1 - EL ) (I1-2-12)

where: 2.= concentration‘polarization overvoltage, volts

A schematic plot of this equation is shown in Figure
IT-2-2. .It is seen that concentration polarization does not
become effective until the net reduction current density

‘ approaches the limiting current densityac.

i,

OfF=-=-- N\

] | ] | ]
Log (current density)

Figure II-2-2. Concentration Polarization Curve
(Reduction Process)

It was observed46 that,vin practice, both activation
and concentration polarization usually occur at an electrode.
At low reaction rates, activation polarization usually
controls, while at higher reaction rates( higher currenﬁ
densities ) concentration polarizaﬁion becomes controlling.

For cbrrosion reactions it is usvally sufficient to

- consider the measured cvervoltage to be the sum of the
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concentration and activation overvoltage79:

A=7r " Tc * T (11-2~-13)

The last term in BEquation(II-2=-13), fﬁ , 1s the resistance
polarization which is merely an error produced by the potential
measuring circuit. It is important only et high current
densities or in high resistance solutions.

During reduction processes such as hydrogen evolution or
oxygen reduction, both types of polarization are present, and
the over-all equation for the overvoltage of the reduction

process is formed by combining Lguations (II-2-10) and (II-2~12):

%Ta ﬁ N ?c

= 1 A . B..'I,‘. .:.]:. )
= -/{}og i/1, *+ 2.3+ log(l - 11,) (II-2-14)
Equation(II-2-14) is graphically illustrated in Figure
II~2-30
+
0

Activation
polarization

Concentration
polarization

| {
Log(current density)

Figure II-2-3%., Combined Polarization Curve - Activation
and Concentration Polarization

(Reduction Process)
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B. Polarization Studics of Tin

»

. - L2 . .
in 1938 Kerr ™ investigsted the formation of oxide

films on tin during ancdic polarization in scdium hydroxide
solutions. He observed that the nature (such as colour,
composition, etc.) and the rates of growth of the films
depended on various factors, including alkali concentration,
temperature; and current density. He also found that, in

the presence of oxidiziug agentis such as chromates, chlorates,
etc., the anodic polarization curves showed that tin became
passive for any current density.
2D

In 1968 Hampson and Spencer examined the anodic

polarization of tin in potassium hydroxide solutions. They
reported that the orientation of the anode played an important

part in the observed bebaviour; p2rmanent passivity occurred

when the potential rose tc that required for oxygen evolution

from a film of stannic oxide. In potassiwm hydroxzide
solutions of concentration higher than ?7M, anodic filaus

3

formed with less and less dependence on mass transfer in the
electrolyte.

70

In 1963 Ross and Iiroiu studied the cathodic
polarization behaviour of tin in potassiun hydroxide
solutions at four concentrations and three temperatures.

They reported that the hydrogen overvoltage values, obtained

in solutions of 0.01, 0.05, 0.10, and 1,0- N KOH, were in

full agreement with Tafel's equation. The =lope of the
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potential-log(current density) plots%/g , was 0.12v at 2500 for
all concentrations. The effect of temperature was investigated
at 25°, 40°%, and 55°C in O.1N KOH solution. The hydrogen
overvoltage decreased by approximately 2mv/°C, whilst the
constant & increased approximately in direct ratio to the
absolute temperature.

C. Cathodic Protéction of Metals

The rate of electrochemical corrosion of buried or
immersed metallic structures can be reduced by cathodic
polarization or by contact with an additional electrode
sérving as an anode relative to the corroding system. This

phenomenon has long been known( first noted by Davy22

in 1824)
and serves as a basis for a wide spectrum of protective
methods, generally known as cathodic protection. It is
accomplished (a) by cathodic polarization through the
application of an impressed potential from an external source
such as a d-c generator or a rectifier, or (b) by connecting
the metal to be protected with another metal which has a
more negative( active ) electrochemical potentia15’28’59.

Many different theories have been advanced to explain
the mechanism of cathodic protection. Evansa7 assumed that
the basic reason for cathodic protection was the formation
of alkali which would produce protective hydroxide films on
cathodically polarized surfaces.
156

Harker et a have expressed opinions that to obtain

complete protection it is sufficient to provide a cathodic
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current density equal to the total local current density on
the metal surface. Cathodic protection, according to these
authors, is due to a reverse electrolysis of the dissolving
metal, Later, similar points of view on the mechanisms of

cathodic protection were expressed by Mears and Brown57’58.

Stender, Artamonov, and Bogoyavlenskii76 suggested an
entirely different approach. They proposed that cathodic
protection could be explained by the fact that the atomic
hydrogen evolved on the protected surface during cathodic
polarization completely tied up the oxygen diffusing to the
corroding surface. This retardation process'would limit the
access of the corroding surface to the oxygen essential for
depolarization. However, this does not completely explain
the mechanism of cathbdic’protection. For instance, it is
well known that cathodic protection can be attained in the
absence of oxygen and also in acid media where the oxygen
supply is not the controlling factor of corrosion.

In general, the priﬁciples of cathodic protection may
be explained by considering the corrosion of a typical metal
M in an acid environment. The electrochemical reactions
occuring are the dissolution of the metal and the evolution

of hydrogen gas:
M — e pe” (II-2-15)

2H" 4+ 28T, (II-2-16)
Cathodic protection is achieved by supplying electrons

to the metal structure to be protected. Examination of
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Equations(II-2-15) and (II-2~16) indicates that the addition

of electrons to the metal will ténd to suppress metal
dissolution and increase the rate of hydrogen evolution. If
current is considered to flow from (+) to (-), as in
conventional electrical theory, then a structure is protected
if current enters it from the electrolyte. Figure II-2-4 7
illustrates cathodic protection by supplying an external current
to the corroding metal on the surface of which local action
cells operate. Current leaves the auxiliary anode and enters
both the cathodic and anodic areas of the corroding surface,
returning to the source of d-c current B. Thus the corroding
metal will be made more ﬁegative by electrons flowing to it.
These electrons will attract the positive ions and thus reduce
the tendency for these ions to go into solution (i.e. corrosion

rate will be reduded).

e
B
Z -
% 2
//7' Electrolyte ~ EE
7 - F
o =
7
Corroding
Metal

Figure II-2-l4. Cathodic Protection by Superposition of
Impressed Current on Local Action Current
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There are three mechanisms which cause reduction of
corrosion when cathodic protection is applied73:

1. The potential of the metal is lowered so that
cathodic processes actually occur on all surface areas of the
metal, i.e. M — M®" + ne” is prevented.

2. The electrolyte adjacent to the metal surface

'bedomes more alkaline owing to the reduction of oxygen or
hydrogen ions, and for ferrous metals this increase in pH
will cause inhibition of corrosion.

3. The increase in pH will cause the precipitation
of insoluble salts, i.e. CaCO3 and Mg(OH)2 , which may deposit

on the metal surface and produce a protective film.

D. Current Density Requirements for Cathodic Protection
The current density required to protect a metal surface

is usually determined empirically, because it depends on a

78

large number of factors. According to Stern’”, Shreir73

59

)
Morgan~ -, and Tomashov83, the current requiremént depends to
-a large extent on the following environmental factors;

1. Oxygen accessibility. This factor is associated
with oxygen concentration in the electrolyte and degree of
turbulence. The latter reduces the thickness of the diffusion
layer through which the oxygen must diffuse. In highly
turbulent oxygenated liquids substantially higher current
densities are required to protect an uncoated metal surface.

2. The nature of the electrolyte. In the presence of

high concentrations of cathode depolarizers very large current
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densities may be required to produce protection. The most
important instance is that of acid solutions in which hydrogen
ions can be discharged.

3. The temperature of electrolyte. Because an increase
in temperature of the electrolyte is associated with a fall
in hydrogen overvoltage, increase in depolarization, decrease
in viscosity of the solution, and destruction of protective

film, the current requirement is usually increased with
] q 3

increase in temperature.

E. Overprotection

Current used in excess of that required does no good, and
may do harm to metals. In 1931 Akimov4 Observed that in a
case of extraordinarily high protection current in the cathodic
protection of Duralumin in a 3% solution of NaCl, instead of
~the expected increase in the protective action there occurred
Jjust the reverse. This overprotection phenomenon was later
also observed by Slowyanskaya74 with stainless steel in sea

60

water. Muller”~ pointed out that the rate of dissdlution of
chromium in acid solutilons can be increased by cathodic
polarization. Kabanov and Kokoulinag],in 1958, observed
that the cathodic protection of iron and stainless steel by
high current densities in nitric acid solutions can
“considerably increase their rates of dissolution.
It is generally accepted that the negative protective

effect( overprotection ) is caused by the destruction of the

protective film and reactivation of the metal by one of the
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following destructive aétions:

1. Chemical dissolution of the protective oxide films by
the alkali formed at the cathode during cathodic polarization
( as may occur with amphoteric metals such as aluminum).

2. Cathodic reduction of the protective film( for metals
with not too high negative potential - Cu, Ni, Fe).

3., Purely mechanical destruction of the protectivé film
by the liberation of hydrogen on the cathode.

The critical cathodic current density at which the
negative protective effect appears depends on the operating

conditions of the protected metal surface.

F. Studies on Cathodic Protection

Most of the earlier work on the applicability of cathodic
protection to control corrosion was done with ferrous
materials. In addition, the emphasis was generally focussed
on special applications under very limited experimental
conditions.,

Recently, a systematic study of cathodic protection of.
a rotating vertical Monel cylinder in a 4% aqueous solution
of sodium chloride was carried out by Cornet and Kappessera].
They observed that at -0.97v vs S.C.E. the Monel cylinder
was cathodically protected from chemical attack in aerated
sea water. Constant voltage runs at'this potential were made
to determine the correlation of Sherwood number with Reynolds
number for the diffusion of oxygen to the surface of the

cylinder under limitiug current conditions.
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The anodic behaviour of tin in alkaline solutions plays
an important part in the vprocess of tin-plating and has been
the subject of various studies, because over half of the tin
produced goes into coating other metals, primarily steel to
make the tin can. The cathodic behaviour of tin in acid

media has not bheen paid much attention.

G. Polarization Studies Employing Potentiostatic Techniqueé
A potentiostat, as the name implies, maintains an
electrode at a pre-set potential with respect to a reference
electrode., If the potential drifts from this value, an error
signal is generated, amplified, and fed to an output stage
where the error is corrected by changing the current to the

cauxiliary electrodeau.
A schematic diagram of a potentiostatic circuit for use
in the study of metallic polarization behaviour is shown

in Figure II-2-5.

©

=

mV

=

O]

[{‘ux * W . E .

Figure II-2-5,., Electric Circuit for Polarization
Measurements
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The metal sample is termed the working electrode (W.E.)
and current is supplied to it by means of the auxiliary
electrode composed of some inert material such as platinum.
Current is measured by means of an ammeter A, and the
potential of the working electrode is measured with respect
to a reference electrode. In practice, current is increased
by reducing the value of the variable resistance R.

To obtain polarization curves, the metal sample is made

~~ the cathode or anode by adjusting the potential of the sample
to the desired potential which is then maintained between
the working electrode and the reference electrode. This is
accomplished by automatic regulation of the current which
floWs between the auxiliary electrode and the working
electrode. After the desired potenilial is adjusied, the
current is allowed to stabilize and notedaq. A new potential
is set, and the process is repeated until the desired portion
of the polarization curve is obtained.

The chief use of a potentiostat is in elucidating the
kinetics and mechanism of corrosion processes. This normally
involves the study of potential-current characteristics as

@
a function of the corroding system and of timejo.
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CHAPTER III
EXPERIMENTAL

A. Details of the Design of the Stationary System

The following is a description of the equipment used
for conducting preliminary polarization measurements and
cathodic protection tests of tin in stationary HCl solutions.
These preliminary experiments were carried out to determine
the proper potential range,and the magnitude of the required
protection current likely to be encountered in order to limit
the surface area of the specimens to be used in the flow
system,so that the current output would fall well within the
range of the potentiostat.

1. The Assembly of the Test Cell

The test cell was assembled as shown in Figure

I1I-3%-1, The cell consisted of a 1,500 ml. reaction vessel
fabricated from plexiglas pipe and plate. The four sockets
on the top cover were used to hold the test electrdde, gas
bubbler, counter electrode,. and reference electrode probe.
The reference electrode probe was connected by a salt bridge
0f KC1 to a saturated calomel reference electrode contained
in a separate constant temperature water bath. A description
of the preparation of the saturated calomel electrode used in
this study is given in Appendix 6.

2. Test Blectrode Design

The design of the test electrode is shown in

105
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Figure II-3-2.
3. The Counter Electrode

The counter electrode was an eight inch length of
17 s.w.g. platinum wire.

4. The Potentiosta%

The potentiostat used in this stqdy was a Model
4700M Research potentiostat produced by Magna Corporation,
Santa Fe Springs, Calif. The essential features of the
circuit of this potentiostat are shown in Figure II-3-3,

The principle of operation of this potentiostat is that
a desired potential is pre-set into the potential control
circuit. The potential difference between the reference and
test electrode is then read and balanced against this pre-set
potential., The difference or erreor signal is fed into the
gontrol Amplifier. The resultant control signal varies
the output of the Current Supply as necessary to maintain the
pre-set potential., A chopper circuit is incorporated into
the Control Amplifier tec counteract any drift and to prevent
accumulation of error signal. Because of the extremely high
input impedance, essentially no current is drawn through the
reference electrode, and its potential remains stable.
Specifications of the Model 4700M potentiostat are given in
Apﬁendix 7.
B. Details of the Design of the Flow System and the Tubular

Flectrolysis Cell ‘

1. Design of the Liquid Recycle System and its Accessories
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Copper nut
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Figure 1I1-3%-2., Schematic Diagram of Test Electrode
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Figure II-3-3. Block Diagram of Model 4700M Magna
Potentiostat
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Details 6f the design of the liguid recycle system
and its accessories have been given in Part One, Chapter IV,
2. Tubular Electrolysis Cell Design
The construction of the tubular electrolysis cell
is shown in Figure II-3-4. A tin tube of half inch inside
diameter and four inches in length was produced from a
remoulded one inch diameter tin rod.

A pair of spigots were machined from 1.5 inch diameter
polypropylene rod to different dimensions to accommodate the
tin tube as shown in Figure II-3-4.

Both ends of the tin tube were recessed into the spigots
and secured firmly with plastic cement. In addition two

Teflon washers, functioning as watertight seals, were placed

hetween the end surface

0]

of tin specimen and the stopping
edges of the spigots. |

A capillary tube was machined from 0.25 inch diameter
Teflon rod to the dimensions shown in Figure II-3-4. One end
of the capillary was inserted tightly into a hole drilled
through the wall of the tin tube, and fixed firmly with
plastic cement. This system constituted the probe for the
reference electrode. A salt bridge of saturated KC1l solution
contained in a length of Tygon tubing connected the short
capillary tube to the saturated calomel reference electrode.

A portion of the outside surface of the tin tube between
the two connecting polypropylene spigots was exposed for

electrical contact with the control lead of the potentiostat.
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3. Design of the Counter Electrode
The construction of the counter electrode is shown
in Figure II-3-5. This electrode was a ten inch length of
17 s.w.g. platinum wire. The main body of this platinum wire
projected through the centre of the tin tube when the
electrolysis cell was assembled. This central location of the
counter electrode ensured a uniform electrical field,

One end of the platinum wire was inserted tightly into
and led through the wall of a five inch length polypropylene
tube. This polypropylene tube was used as a supporting base
for the platinum wire. |

L. Electrical Circuitry

The electrical circuitry of the assembled
electrolytic cell is shown in Figure I1II-3-6.
C. Materials and Chemicals

A description of the materials and chemical reagents

used in this study has been given in Part One,»Chapter Iv.
D. Procedures for Polarization Measurements and Cathodic
Protection Tests Using a Stationary System
e The corrosion behaviour of the stationary tin bar was
determined by potentiostatic polarization (the variation of
current was examined as a function of imposed cathodic or
anodic potential).

1. Preparation

Prior to testing, the test cell was filled with

1,000 milliliters of test solution, placed in the constant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

9P0J300TH JI83UNQ) JO WelSeTq oTeWeydss *E-¢-TI1 oanSTg

axTs unutTyerd

Qm.gom RU—.

/ 2
,50,6L0

nNNNmNMQNNNGS_WVNNsQQN\\\\\\L|k v

aqna //tmnﬁmmﬁpm
susTLdoadLTog uotral

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

Ws3sAg MOTS JO AJI3TNOIT) TeOTIZOOTH JO welxdeT OT3eWsUdS °*Q=¢=T] oINI T4
3e350T3US30d

O OO

|

SPO0JI309Te

J34UN00

\vmnﬁ uTL muTeTd

ﬂOwMMWHWM W O O W YO A ,QMUHWHU FVVKHL[FL(P%_J, T X MNNrE: T /MMVWCC///%ﬁ44AAAJ
b L [
—{ ! m m |
0 Y0 T 1 W O O —/,\J.NS§§§§C R W Y N W | - | N W WO WO /_///,//,M

////lum@onpomﬁm

1oWOTed Pojednies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

temperature water bath, and saturated with appropriate gas
for three hours.

The test electrode(tin bar),polished manually to 3/0
emery paﬁer smoothness, was washed initiélly with distilled
water, then washed with acetone for degreasing; and finally
rewashed with distilled water.

The power supply of the potentiostat was then turned on
and allowed to warm up in the "standby" position for
approximately 30 minutes prior to testing.

The test electrode and counter electrode were then placed
in the test cell. The probe of the salt bridge was inserted
into the test cell and the probe tip positioned approximately
half inch from the test electrode surface. Precautions were
taken to ensure that the prove faced the test electrode
without blocking the current path from the counter to test
electrode.

All electrical leads were then connected as shown in
Figure II-3~3., The zeroing of the potential measuring circuit'
was adjusted prior to the test and approximately every 10
minutes through . the test period.

2. Polarization Testing

After the preparatory steps were completed, the
potentiostat was first adjusted to the rest potential with
respect to the saturated calomel reference electrode and
then switched to the "on' position. At the rest potential

no current flowed between the test electrode and the counter
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~electrode.,

The imposed potential of the test electrode was then
changed by approximately 50 millivolt increments, allowing
the current to stabilize for 5 minutes, and recording the
potential and current. This process was repeated until the
desired potential range was covered.

3. Cathodic Protection Study

The cathodic protection study was conducted by
méking the tin sample(test electrode) the cathode as shown
in Figure II-3-3., The potential of the test electrode was
adjusted to the desired potential which was then maintained
between the test electrode and the reference electrode., After
the desired potential was reached, a record of current versus
time was made.

When the termination point (after 3 hours) of the test
was reached, an appropriately sized sample of the corroding
solution was withdrawn for routine Atomic Absofption Analysis.,

After the test was completed, the potentiostat was |
switched off, all electrical leads were disconnected and the
purge gas was turned off. The test cell was disassembled,

cleaned, and the acid solution discarded.

E. Procedures for Polarization‘Measurements and Cathodic
~ Protection 'Tests Using a Flow System
1. Preparation
Prior to testing, hydrochloric acid solutions were

made up and mixed in the make-up tank as described in Part One,
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‘Chapter IV. 4 proper volume of the solution was then pumped
into the top supply tank. After the soiution was saturated
with the appropriate gas overnight, the temperature control
system and the stirrer in the supply tank were switched on.
During the time required for the acid solution to reach the
desired temperature, the electrolytic cell was prepared and
connected to the flow system. The power supply of the
potentiostat was turned on and allowed to warm up in the
"standby!' position for approximately 30 minutes.
| After the acid solution in the supply tank reached the
desired temperature, ?he Dynalab Model L~MD pump used to
deliver the corroding‘solutions was switched on and the flow
- rate was regulated. All electrical leads of the electrolytic
cell were {hen connected to the potentiostat as shown in
Figure II-3-6. |
2. Polarization Measurements
After the preparatory stgps as described in the
above section were completed, the potentiostat was adjusted
to the rest potential with respect to the reference electrode.
The imposed potential of thé test electrode was then changed
by approximately 50 millivolt increments, allowing the current
to stabilize for 5 minutes, and recording the potential and
current. This process was repeated until the desired
| potential range was covered.
5. Cathodic Protection Study

After the preparatory steps as described in Section 1
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-were completed, the test electrode(tin tube) was made cathodic
by adjusting its potential to the desired value which was then
maintained between the test electrode and the reference
electrode. After the desired potential was reached, a record
of current versus time was made. Besides the current-time
record, an appropriately sized sample of the corroding solution
was withdrawn for routine Atomic Absorption Analysis at
convenient intervals of tinme.

L. Shut-down Procedure

When the test was terminated, the potentiostat was

switched to the '"standby' position, and all power to the
circuit was turned off. All electrical leads were then
disconnected. The acid solution was drained from the flow
system. After the flow sysztem was flﬁshed with water twice,
the electrolytic cell was disconnected, cleaned with distilled

water, and stored.
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CHAPTER IV
EXPERIMENTAL EESULTS‘AND DISCUSSION

The results obtained from the polarization and cathodic
protection studies are presented in this chapter.

For each polarization test, a separate plot of current
densiﬁy versus electrode potential with respect to a saturated
calomel electrode was constructed. Current density values at
each potential were calculated from the measured current and
the exposed surface area of the electrode.

For each cathodic protection test,; in addition to the
current density-electrode potential plot, a separate plot of
metal ion concentration in the corroding solution versus time
was made for the purpose of examining the protective effect of
the impressed current on the test electrode at each potential.
A, Results of Stationary System Tests

1. Pblarization Tests

Preliminary polarization tests were conducted at
25°C by immersing stationary tin samples in aerated and
deaerated solutions over the concentration range 0.0625 to
2.0 M HC1l. The results are illustrated by the electrode
potential-log(current density) plots shown in Figures II-4-1
and II-4=2. The polarization curves shown in these Figures
are of similar form. This similarity in form of the
polarization curves confirmed that the electrical circuitry
of‘the electrolytic cell; including the potentiostat,

119
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.functioned satisfactorily.

The dashed lines in Figures II-4-1 and II-4-2 are the
estimated Tafel lines for the anodic and cathodic processes.
These linear portions of the polarization curves are well
defined. The intersection of the anodic and cathodic Tafel
lines gives both the corrosion current (Ic) and corrosion
potential (EC) as specified by theory79;

Figure II-4-1 shows that the anodic slopes of the
potential-log(current density) plots (/§a in Tafel equation)
for tin in 1.0M and 2.0M HC1l solutions are 0,17 volt and 0.14
volt, respectively. The cathodic Tafel SlOpeS,/é% s are 0,19
volt and 0.17 volt, respectively. Figure II-4~2 shows that at
25°C, in aerated 1.0M HC1 solution, /B for tin is 0.12 volt,
;% is 0.14 volt.

A literature survey19’ 64’85 showed that the value of/43
for electrochemical reactions ranges between 0,05 and 0.15
volt per tenfold increase in current. However, in the
presence of readily adsorbed impurities, the vaiues of & may
be twice the values quoted above and may also vary irregularly

28,64 - Conway' 7 has reported a B value

with current density
of 0.15 volt for the hydrogen overvoltage of tin in deaerated
1.0M HC1 solution at'2OOC, and Potter64 has given a @& value of.

0.1% volt for hydrogen overvoltage of tin in deaerated 2.0N
H,50, solution at 20°¢.
When compared with the data in the literature, the

presently determined values of & are of the right order of
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-magnitude., ‘

Figures II-4=1 and II=4=2 indicate that at lower reaction
rates(lower current densifies), activation polarization
appears to be controlling for both anodic and cathodic
reactions, because the linear portions of the potential-
log(current density) plots are well defined. At higher
reaction rates(higher current densities) the effect of
concentration polarization becomes significant. It is also
noted that the value of current density at which the
concentration polarization effect starts to show up is always
lower for the cathodic reaction than that for the anodic
reaction. For instance, the polarization curves obtained at
2500, in nitrogen saturated 1.0M HC1l solution(as shown in

- Figure II-4~1) indicate that for the cathodic reaction the
effect of con¢entration polarization starts to show up at a
current density of 5 ma/cm% , for the anodic reaction the
concentration polarization effect starts to show up only when

the current density reaches a value of about 20 ma/cm?

Both'Figures II-4=1 and II-4-2 show that changes in the
HCl concentration of the cofroding solutions produce no
apparent variation in the corrosion current. This behaviour
is consistent with the results obtained in Part One.

Theoretically the corrosion current should be directly
proportional to the dissolution rate of a metal. In Part One
it has been shown experimentally that the dissolution rates of
tin are essentially independent of acid concentration dver the

range 0.10 to 4.0 M HCI1.
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Fgures II-4~1 and II-4~2 also show that the values of the
cathodic and anodic Tafel slopes,,é% and B, , decrease with
increasing HCl concentrations in the corroding solutions. This
behaviour is consistent with theory which predicts that an
increase in HCl concentration generally results in a decrease
in the overvoltage of metals.

2, Cathodic Protection Tests

A series of preliminary cathodic protection tests
were carried out at 2500 by immersing stationary tin samples
in air saturated 1.0M HCl1l solutions. At each test potential,
the tin ion concentration in the corroding solution was
determined after the test electrode had been immersed in the
solution for three hours. The current corresponding to the
applied potential was recorded after it became stabilized.

Figure.II-4—3 shows these results in the form of a [?@]-
potential=-protection current density plot. This Figure
indicates clearly that the corrosion rate of tin in HCl
solutions can be reduced sharply by means of an externally
applied electric current.

In Figure II-4=3 the point labeled "“from unprotected
sample! represents the tin ion concentration obtained by
immersing a stationary, unprotected( no external protection
current was impressed on the specimen) sample in the corroding
solution for three hours.

The main advantage of representing the experimental data

according to the plot of Figure II-4~3% is that it reveals the
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optimum region of applied cathodic potential. From this
Figure, it becomes easy to select the most desirable potential
which, if imposed on the test electrode, will offer the most
effective protection and at the same time require the least
protection current. For instance, Figure II-4~3 shows that the |
most desirable rénge of applied cathodic potential is -0.8 to

-0.95 volt for the conditions specified,

B. Results Obtained from Flow System

1. Polarization Tests

The cathodic and anodic polarization tests were

conducted ét 30°C, in nitrogen, air, and oxygen saturated HCL
solutions, at the following three flow velocities; 2,650 cm./min.,
8,350 em./min., and 14,300 cm./min. The results are presented
by the potential-~log(current density) plots shown in Figures
IT-4~4 and II-4-5. The general form and characteristicé of
these polarization curves are internally coasistent and are
consistent with those for stationary specimens.

It can be observed that an increase in the fluid velocity,
or an increase in the oxygen concentration of the corroding
solutions lowers the values of the cathodic and anodic Tafel
slopes., It can also be observed that the values of corrosion
currents given by the intersections of these Tafel slopes
increase with an increase in the fluid velocity, or an
increase in the oxygen concentration in the corroding solutions.

Figures II-4~6 and II-4~7 indicate that the corrosion

current (IC) obtained frbm the intersections of the anodic
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Figure II-4~6. Effect of Oxygen Concentration on

Corrosion Current for Tin in 1N
HC1l Solutions
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and cathodic Tafel lines plotted in Figures II-4-L4 and II-4-5,
is proportional to the fluid velocity raised to the 0.64
power, and also directly proportional to the square root of
the oxygen concentration in the corroding solutions. This
behaviour is completely consistent with the results obtained
in Part One, which showed similar proportionalities between
the spontaneous dissolution rate of tin, fluid velocity, agd
oxygen concentration in the corroding solution.

2. Cathodic Protection Tests.

The cathodic protection tests were carried out at
30°C, in nitrogen, air, and oxygen saturated HCl solutions,
and at flow velocities of 2,650 and 14,300 cm./min. The
results of these tests are given in Figures II-4-8 through
II~-4-11 which are’presented in pairs. An explanation of
Figures II-4~8A and II-4-8B is given here as an example to
show how these Figufes were constructed.

Figure II-4-8A shows nine plots, of tin ion concentration
versus time, which represent the results of a series of nine
testing runs conducted at 30°C, in air saturated 1.0M HC1
solutions flowing at 14,300‘cm./min. EBach curve is the result
of a separate run conducted by maintaining the test electrode
(tin tube) at a pre-assigned potential. These plots clearly
indicate that the tin tube received cathodic protection of
‘different effectiveness at different potentials.

In the construction of Figure II-4~-8B, the [ﬁi]-electrode

potential-protection current density plot, tin ion
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concentrations corresponding to 480 minutes of exposure to
the corroding solution at the nine different electrode

potentials were adopted from Figure II-4-8A. The time of 480

&

minutes at which the values of tin ién concentrations were
taken is purely arbitrary. Figure II-4-8B will show the same
general characteristics if tin ion cbncentrations are taken
at any other exposure time. The protection current densities
.were calculated from the stabilized currents recorded at

each potential.

The general form and shape of Figure II-4-8B is consistent
with Figure II-4-3., The point labeled "from unprotected
sample' in Figure II-4-8B represents the tin ion concentration
obtainéd from a spontaneous dissolution run which was carried
out under a condition of no external protection current bheing
impressed on the specimen.

An examination of Figures II-4-8 to II-4=11 reveals the
following characteristics:

(a) Cathodic protection of tin can be achiéved in both
aerated and deaerated hydrochloric acid solutions.

(b) The effect of overprotection appears in certain
situations. For instance, Figure II-4-8B shows that, at BOOCQ
in air saturated 1.0N HCl solution, at a velocity of 14,300
Cmy/min., when the impressed protection current density
exceeds 20 ma/cm?, instead of the expected decrease in the
dissolution rate of tin there may be just the reverse, an

increase in the dissolution rate.
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This damaging overprotection effect was probably caused
by (1) excess alkalies generated at the metal surface. Since
tin is one of the amphoteric metals, excess alkalies can damage
tin by causing increased aftack rather than reduction of
corrosion, and (2) mechanical destruction of the protective
film and disturbance of diffusional mass transfer layer by
the liberation of hydrogen on the eléctrode. Because the
overprotection effect was more significant in the aerated
systems, the first reason appears to be the more damaging
factor.

(¢c) The range of electrode potential within which the
metal can be satisfactorily protected becomes narrower when
the fluid velocity or the oxygen concentration of the corroding
solution increases.

3. DProtection Current Dependence on Temperature

The protection current dependence on temperature was
studied over the range 25 to 55°C, in air saturated 1.0M HC1
solutions, at three different velocities and two different
potentials. The results presented in Figure II-4-12 show that
the protection current density increases with increasing
temperature of the corroding solutions at a rate of
approximately .12 ma/cm>-°K.

An increase in temperature of electrolyte is usually
.associated with a fall in hydrogen overvoltage, decrease in
viscosity of the solution, and destruction of protective films,

These are probably the factors which contribute to the increase
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in the protection current.

4, Protection Current Dependence on Fluid Velocity

The investigation of the protection current dependence

on fluid velocity was carried but at BOOC, in air saturated 1.0M
HC1 solutions, and at three different electrode potentials.
The fluid velocity was varied over the range 1,150 to 14;300
Cm./min.

The resdlts, as shown in Figure II-4~13, indicate that the
protection current increases with incféasing floW velocity of
corroding solution. - This behaviour can be interpreted by the
fact that a higher solution velocity can cause a higher degree
of turbulence which reduces the thickness of the diffusional
mass transfer layer through which the reactants must diffuse.
Most.previous inveshigatbra*sg’ 78 observed that in highly
turbulent fluids substantially higher currents were required
to protect metal surfaces.

5. Protection Current Dependence on Oxygen concentration

The protection current dependence on oxygen

concentration in the corroding solution was studied at 30°C,
in 1.0M HCl solutions, and at two different fluid velocities.
The results are presented in Figure Il-4-1l.,

It was found that the protection current increased
continuously with increasing oxygen concentration in the
acid solutions. The same effect was observed by most other
corrosion researcherssg’gi.

Because oxygen is a strong depolarizer, its accessibility

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(ma/cn?)

Protection Current Density,

16— 12,0

i 30%

E =

o -
12|~
10/
8_

00 ml. 1N HCl

-0.6 volts vs S.C.E,
14,300 cm./min.
2,650 cm./min.

v

v

H

Li— e
" .///////
» .3
e—//////
ol ! S T R | A l
0 o2 o .6 .8 1.0
( P ) hand atmo ’
0o

Figure II-4~1l4, Protection Current Dependence

on Oxygen Concentration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145



9
- 12,000 ml.. Air Saturated
30°C, E = -0.6volts vs S.C.E.
8 - ®- Vv = 14,300 cm./min.
B O0-v = 9,100 cm./min.
56 -v = 8,350 cm./min.
7 A-v= 2,65 cm./min. o
///‘//
B o
—~ ///
g 6 °
< ®
j% =
]
£ o e
« /
o B @
[
()
g4 /
(- )
Er
5
O o _-0O
g > D/D
-~ — A
-g - D/TJ A
3 e e A///A
Eo2 -/ /D A/
=/ D/A/
, ‘A////  A—A
1 4::; A_——K
D A/
oA —
_,D// A/A
LA
ol | I | ! | | |
0 o2 o .6 .8 1.0 1.2

[HCJJ - molar

Figure II-4=15, Protection Current Dependence on HCl

Concentration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146



147

to the metal surface is a very important factor in determining
the density of protection current.

6. Protection Current Dependence on HCl Concentration

The protection current dependence on the HCl
concentration in corroding solution was investigated at 30°C,
in air saturated solutions, and at four different fluid
velocities. The concentration of the HCl solutions was varied
over the range 0.0625 to 1.0M. The results, as plotted in
Figure II-4~15, illustrate that the protection current
initially increases sharply with increasing HC1l concentrations.
The rate of increase of the protection current decreases when
the acid concentrations become higher than about 0,.3M.

This phenomenon has been observed by mahy other
investigators? P2 73182 mhoy pointed out that in acid solutions
in which hydrogen ions can be discharged, the presence of high
concentrations of such acids generally creates a much larger

current requirement for protection of metal surfaces.
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CHAPTER V
SUMMARY AND CONCLUSIONS

An examination of the experimental results obtained from
the present polarization and cathodic protection studies
revealed the following characteristics:

1. The polarization curves (potential-log(current density)
plots) are of similar form. They are internally consistent.
At lower reaction rates (lower current densities), activation
polarization appears to be controlling for both anodic and
cathodic reactions, because the linear portions (Tafel lines)
of the potential-log(current density) plots are well defined.
At higher reaction rates (higher current densities) the eifect
of concentration polarization becomes significant. It is also
noted that the value of current density at which the
concentration polarization effects starts to show up is always
lower for the cathodic reaction than that for the anodic |
reaction. For instance, the polarization curves obtained at.
BOOC,‘in air saturated 1.0M HC1l solution flowing at 14,300
cm./min. (as shown in Figure II-4-5) indicate that for the
cathodic reéctions the effect of concentration polarization
starts to show up at a current density of about 9 ma/cm?; for
the anodic reaction the concentration polarization effect
starts to show up only when the current density reaches a value

of 20 ma/cm?
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2. The values of Tafel constants, B 's and g 's ,
(0.12 = 0.32 volts as given by the slopes of the Tafel lines)
are of the right order of magnitude when compared with the
data reported by other investigators19’64‘ The present results
show that increasing HC1l concentrations, flow velocities, ahd
oxygen concentrations of the corroding solutions lower the
values of Tafel constants. This behaviour is an indication
that the activation overvoltages for both anodic and cathodic
reactions occurring at the tin electrode decrease with
increasing HCl concentrations, flow velocities, and oxygen
concentrations of the corroding solutions. ‘

5. The corrosion current Ic, as indicated by the
intersections of the anodic andAcathodic Tafel lines, is found
to be proportional to the fluid velocity raised to the 0.64
power, and also directly proportional to the square root of the
oxygen concentration; but essentially independent of the HCL
concentration. This behaviour is consistent with the results
obtained in Part One, which show similar proportionalities
between the spontaneous dissolution rates of tin, HC1
concentrations, flow velocities, and oxygen concentrations of
the corroding solutions.

4. The cathodic protection of tin can be accomplished in
both aerated and deaerated hydrochloric acid solutions. To
achieve the most effective cathodic protection (maximum
protective effect with lowest protection current), optimum

regions of applied cathodic potentials under different
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-conditions have been determined; for the stationary systemn,

the most effective range of applied poténtial is =0.8 to -0.95
volt, for the flow system the effective range is generally
-0.6 to =-0.9 volt. The range of applied cathodic potentials
within which tin can be satisfactorily protected becomes
narrower when the flow velocity or oxygen concentration of the
corroding solution increases.

5. Negative effects of overprotection were observed in
the flow system with air and oxygen saturated solutions. This
damaging overprotection effect was probably caused by (1)
excess alkalies generated at the metal surface, and (2)
mechanical destruction of the protective film and disturbance
of the diffusion layer by the liberation of hydrogen on the
cathode., Since tin is one of the amphoteric metals, excess
alkalies can damage tin by causing increased attack rather
than reduction of corrosion. Because the overprotection effect
was more significant in the aerated systens, the first reason
appears to be the more damaging factor.

6. The protection current density required to protect

"the tin tube increases with.increasing temperature at a rate
of approximately 0.12 ma/cm®-%K, and it also increases with
increasing hydrochloric acid concentration, flow velocity,

and oxygen concentration of the corroding solution.
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APPENDIX 1
CALIBRATION OF ROTAMETERS
Two rotameters were used tolmeasure the full range of

flow rates of corroding solutions.

1. 12=1000 Brooks Glass Tube Rotameter (Tube:R-12M-25-5)

Flow capacity: 1.5 = 15 USGPM
Accuracy: + 2% of maximum flow
Tube: . Borosilicate glass
Packing: Teflon

Float: - Hasteloy B

2. 10-1000 Brooks Glass Tube Rotameter(Tube:R-10M-25-1)

Flow capacity: Ay - L USGPM
Accuracy: * 2% of maximum flow
Tube: Borosilicate glass
Packing: Teflon

Float Hasteloy B

The rotameters were calibrated by maintaining a particular
reading and measuring the volume of effluent collected in a
known time interval. The calibration curves are shown in

Figures A-1-1 and A-1-2.
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APPENDIX 2
ANALYTICAL METHODS AND CALIBRATION

A, Instrumentation

A Jarrell-Ash Model 82-526 Maximum Versatility Atomic
Absorption Spectrophotometer was used for the analysis of tin
ion concentrations in the corroding solutions. This instrument
features a 500 mm focal length Ebert Mount Monochrometer with
two interchangeable gratings with 1,180 grooves/mm. A choice
of three burners is available; a total consumption Hetco
burner, a 5 cm.and a 10 cm. slot laminar flow burner. The
instrument can simultaneously accommodate two fuels and two

oxidants.

B. Analytical Methods

The analysis of tin by the Atomic Absorption Spectro-
photometric method has been developed by Allans, Agazzia,
Amas and Willis6, Capacho=Delgado and Manning17, Gatehouse

and Willis>©, Gibson and Grossman-2, and Vollmero®,

C. Preparation of Standard Solution

A stock of 2x10™°M tin ion solution was made by dissolving
Analar Grade tin bars in 1M HCI. §tandard tin ion solutions
were prepared by diluting aliquot samples of the stock solution
with 1M HCl1.

A new calibration curve was arawn each time a series of
samples was to be analyzed. The calibration curves were made

154
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by plotting tin ion concéntration against absorbance on linear

scales. A typical calibration curve is shown in Figure A-2-1.

D. Analytical Conditions and Instrument Settings

The 10 cm. laminar flow bﬁrner was used in this analytical

work. The fuel and oxidant used were hydrogen and air,

respectively.

Following are the instrument settings which were used in

the analysis of tin:
Wave length:
Hollow cathode current:
High voltage:
H2 tank regulator pressure:
Air tank regulator pressure:
fHZ flow:
Air flow:
Burner height:

Damping:

2246 2

12 ma
0.65 kv
20 psi
30 psi

50 SCFH
17.5 SCFH
10 mm

minimum
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APPENDIX 3

CALCULATIONS OF RATE CONSTANTS FOR TIN DISSOLUTION

The

following equations:

4250
(1888, ()7 07(a)*%5(w) 3% kT

5450
(480 @)@ T w e 2)'-5e RT

5800
(%d“)<>~5Nm'°@>5%pa'5@@"5eIm

"

it

0

have been used for the determination of k?, kZ, and k> to

3

give the average values of these constants, with an average

deviation of + 4 per cent &s shown in Tables A-3-1, A=3-2, and

A-3-3,
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TABLE A-3-1

~Evaluation of Velocity Constant

(k? for hydrogen evolution)

158

(1320, | v K L T 1

( czgfz:n )| ) cma )| Coma ) | (%K)

3.31x10-8 4,700 | 1.905 7.620 298.15 3.27x10-7
3.97 - 5,730 | 1.270 | 10.160 | 303.15 | 3.30 -
5.81 - 10,280 | = - - - -~ |3.55 -
2.11 = 2,350 | 1.902 7.620 | 298.15 | 3.42 -
1.35 - 1,175 - - - - - - |3.31 -
7.20 - 14,300] 1.270 | 10.160 | 303.15 | 3.57 =
7.93 - 16,600 | = - - - - 3.37 -
8§.89 - - - - - - - 308.15 | 3.36 -
9.95 = - - - - - - 3i3%.15 3.29 =
1.23x1077 -] - ~ - | 323.15 | 3.35 -
7.21x10-8 - - - - 13.970 303.15 3.37 -
742 - - - - - 12,700 — 3.39 -
8.25 - -= -- 8.900 | - =~ 3.45 -
9.76 - --] -- 5.075| =~ - | 3.38 -
4.03 - 5,730 | 0.953 | 10.160 | - - 3.17 -
3.93 - - - | 1.588 - - - - 3.43 -
3.8y - - - | 2.540 - - - - 3.32 -
3.22 - 4,150| 1,270 - - - - 3.19 -
4,87 - - 8,500 1.905 7.620 298.15| 3.42 =
5.51 = 10,280 -~ = - - - - 347 -

Average = 3.37x10-7
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| TABLE A-3-2
Evaluation of Velocity Constant

( kg for O, depolarization )

1 ds
(53 ) v 4 L po2 T kg
(B35 )) (= N ems) | Coma) | Gatma)| (%K)
1.10x10~7 | 4,700 | 1.905 | 7.62| 0.21 |298.15 | 2.95x107°
1.37 = | 5,730 | 1.270 | 10.16| = - |303.15 | 3.20 -
1.95 - 10,280 | = = -- ma| - | 3.04 -
7.29x1078 | 2,350 | 1.902 | 7.62| - - |298.15 | 3.11 -
4,80 - 1,175 -- - - - - -- 3.15 =
2.38x10° |14,300 | 1.270 | 10.16| - - |303.15 | 3.10 =
2.61 - 16,600 | - - - - - = == | 2.97 -
3,01 = - - - - - - - = 1306.15 | 3.14 =
3,47 - - -- -- - = |313.15 | 2.98 -
4.56 - - - - - - - - = 1323.15 | 3.01 =~
2.35 - - - - - 13.97 - - |303.15 | 3,09 =
2.42 - -- - | 12.70] -=| -~ | 3.12 -
2.72 - -- -- 8.90! =-=-| -- | 2.96 -
3,25 - - - - - 5,08 == | == | 3.13 -
1.42 - 5,730 | 0.953| 10.16| ==| - | 3.00 -
1.35 = - - 1.588| = = - - - - 2,95 =~
1.28 - - - 2.540| - = - -] - | 2.97 -
1.75 - 4,150 | 1.270] - - | 0.50| -~ | 3.06 -
2.07 - -- - - -= | 070 -~ | 2.9 -
2.47 - - - - - -= 1} 1.0 == | 3.5 -
-5

Average = 3.05x10
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TABLE A-3-3

Evaluation of Velocity Constant
(kg for autocatalytic reaction)

(3525 v d S 4] oJ P

( cz?izzn) (~SBeo) ( om.) | ( om.)|( atm.) (%g%%g) (°k)
2.15%x1077 16,600 |1.905 | 7.62 |0.21 |3.20x107%|298.15|6.40x107H
2.40 - - | -- -=| -~ |4.00 - - - |6.35 -
2.72 - -- |- -=| == 15.15 - - - |6.51 -
3.18 - - | -- -~ -= {7.10 - ~ = |6.55 -
3.61 = SRR RV -=| -~ ]9.20 - - - |6.30 -
1.18 - 8,500 | - = - =] == ]12.00 - - - |6.,22 =
.70 - - - - - =] == |45 - -~ |64 -
2.20 - - | .- -] == |7.20 - - - |6.65 =
7.8Ox10-8 4,700 | o _ - =] == [1.35 = - = |6.37 =
1a5x1077 | == | .. =] == j2.95 - - - |6.90 -
To41 - - - - - - - == |4.75 = - - {6.20 ~
1.55 =~ - - - -_-f == - - 303.15|6.63 -
3.90 - 1,175 (1,270 | 10,16 | = = |1.70 - - - |6.42 -
6.02 - 2,350 | . . -] - - - - - - = | 6.46 -
1.06x1076 | 5,700 | _ _ U B - = |6.61 -
1.55 - 10,280 | . . S B B - = |6.45 -
4.10x1077 | 155800 | _ _ wm| == |1.20x1073] - - |6.57 -
6.20 - - - - - - - |0.50 - - --16.27 -
8.51 - -= | -- -={1.00 | - - - - 16.39 -
L.35 - 16,600 | 0,953 - -] 0.21 - - - - |6.30 -
4.05 - - - ]1.588 N T . - - |6.55 -
3.85 - - - |2.540 R - - - =16.63 ~
3.25 - - - |1.270 | 5.08| - ~ |6.80x107% . - |6.71 -
2.68 - - - - 8.90| - - - - - - 6.1 -
2.41 - - | == [ 12.720] == | - - - -16.65 -
2.32 - === | e = | 1397 == | - - - - |6.55 -

Average = 6.45X?0-4
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APPENDIX 4
An Example of the Application of the Empirical

Rate Equation

The application of the empirical rate equation to the
prediction of changes in tin ion concentration din corroding
solutions may be illustrated by considering the following
dissolution conditions:

Solution volume = 12 liters
Fluld velocity = 14,150 cum./min.
Temperature = BOOC

P

0. = 0.21 atnm.

2
[Hei] = 1.0M

Inside diameter of tin tube = 1.27 cm.
Length of tin tube = 10.16cm.
Substitution of these values into the empirical rate

equation gives

dSn _ V dngI

———— —

1
7 4t 4 dt

1

7.148 x 1070 + 2,365 x 1077 + 2.802 x 1076 [Bn] ">
(A=4=1)

Rearranging gives

ddgn] = 2 (7.148x10™° + 2.365x1077 + 2.802x1070 sn *9)
= 1.041 x 1078 4 945 x 107%[Bn]"? (A-fy=2)
hence

i

alBn] = (1.041%107% + 9.45x1070 [Bn]"° )at (Amlj=3)

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



162

and '

AfSnT = (1.041){10'6 + 9.45x10‘6[3n] 5 YAt (A=l=4y)

To calculate the tin ion concentratibn for the initial

period of dissolution, only the first term on the right
hand side of Equation(A-4-4) is applied. When the tin ion
concentration thus calculated exceeds the value of .35}:10"1+
moles/liter, the second term on the right hand side of
Equation(A-4-4) is also applied. By employing appropriate
numerical techniques a dissolution curve can be predicted as
shown iniFigure A-4i~1, where an experimental dissolution
curve is also drawn for comparison. Figure A=-4~1 shows that
the rate equation works well even for quite large time
increments (about 100 minutes). The accuracy of the prediction
can be improved by decreasing the time increments used in the

numerical calculations.
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12,000 ml. Air Saturated IN HC1 ¢

Teb— 30%, 4 = 1.27 cm. /A/
L = 10,16 cm. ‘/
B v = 14,150 cm./min. /C
- @® - experimental data ;7
: A - predicted curve //
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Figure A-4-1. An Example of the Application of the

’ Empirical Rate Equation
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APPENDIX 5

Diffusional Mass Transfer Correlations

To appreciate the role of diffusional mass transfer in

the dissolution of tin in HCl solutions, it is possible to

write ' [s ']
: aisSnl _
S5 = kAC (A-5-1)

where kL is the mass transfer coefficient for the species
concerned.

For the purpose of illustration, let us consider the casé
in which the diffusion of stannous ions from the metal-solution
interface to the bulk solution, Sn;+———=-8ng+, is the important
physical step, then

AC = Csﬁ; - Csﬁg (A=5=~2)

Because the concentration of stannous ion in the bulk of
the solution is negligible in comparison to the concentration
at the metal-solution interface, CSn§+ <3<Csﬁ;r Also Csﬁ; )
which is the saturation concentration of stannous ion
corresponding to the specific conditions, caﬁ be regarded as

a constant. Therefore, from Equations(A-5-1) and (A-5=2), we

obtain U
Qé%éL = k- const (A=5-3)

By combining Equations (I-6-2) and (A-5-3), we obtain
consty « (v) 87 (@)™ 09 1)=+30
<:onsté-(V)'Eg(d)“'”(L)"”33
consty (v) 01 (@)= 101)=+32 (A=5-4)

i

ky,

+

+
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We further assume that the physical properties of the
corroding solution, ¢ , 4, and D+ are‘constants, then,
Equation(A-5-4) can be changed into the following form by
multiplying both sides by d, dividing both sides by DSﬁ* ,

and rearranging slightly:

%Li = const] <é3££>.67<é’4( >°67 <d'28\ 1
-+

‘ ' [ av <59 A «59 d»30 1
" eonet <:ZZ‘ ) <€ Dsﬁ*‘) L2 /(Dgys) !
¢ gyﬁ— -6] /{( 061 d.29\ 1 (A~5—5)
+ consty U CDgh+ L‘Ba/(DS++)’39
n

Since the diffusion coefficients of metal ions at the
metal-solution interface are generally not measurable, the
correlations between dissolution rate constants and DSﬁ*
were not directly investigated. However, for a discussion
which requires only characteristic comparison it is quite
reasonable to assume that the value of Dsﬁ+ is constant.
Therefore, the three factors of Dsﬁ+ at the right-hand side
of Equation(A=-5=5) can be cémbined with their respective
constant. Thus, we have

k.4
.ﬁé_ = Nu c; (Re)*67 (gc)+67¢

o

Sn

i

+

o, Ho

cé (Re) *27 (s¢) 29

+

cé (Re)'61(SC)'61(

o fa?

(I-6-3)
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| The above equation is consistent in form with Equation
(I-6-1), which is the generally accepted form of dimensionless
Correlations for diffusional mass transfer for a fluid moving

through a tube of circular cross-section.
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APPENDIX 6

Preparation of Saturated Calomel Electrode

A sketch of the saturated calomel electrode used in this
investigation is shown in Figure A-6-1.

First, pure mercury was added to the reference electrode
compartment to produce a layer of 1 to 2 cm. depth. This
was covered with an equally thick layer of a paste made Dby
stirring equal weights of mercurous and potassium chlorides
with a saturated potassium chloride solution containing a

large excess of so0lid salt. After the cell was filled with

~1 —we—— Connection to KC1
2 salt bridge
%
7
Z
Hg \é ‘
%
L~
) // \\ Saturated KClL solution
z
z
~
:ﬁ, Hg2012 + KC1 (paste)

Mercury pool

Platinum wire
Figure A-6-1. Saturated Calomel Electrode

saturated potassium chloride solution, two days were allowed

for the S.C.E. to reach its equilibrium potential.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX 7
Specifications of the Model 4700M Research Potentiostat

Following are the specifications of the Model 4700M
Research Potentiostat used in this investigation:
Potential control range: + 1, 3 and 6 volts.
Potential control stability: + 0.5 mv/24 hours.
Potential meter scales: + 1, 3 and 6 volts.
Potential recorder output: 0 - 10 mv,
Anodic and cathodic current capacity: 10 amps at + 10
volts and 5 amps at + 20 volts.
Current meter scales: + 1004a to + 10 amps in 6 decades.
Current recorder output: 0 - 10 nmv.
Voltage meter scales: + 10 and 20 volts.
Rise time: less than 2 microseconds at rated currents
 into a resistance load over the full + 6 volt
potential range.
Noise: less than 150 microvolts RMS
Input impedance: 500,000 ohms at maximum imbalance,
resistance component greater than 100
megohms at balance, constant offset
current over full potential control

range typically S4a.
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APPENDIX 8

DATA OF TIN DISSOLUTION
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NOMENCLATURE

A apparent surface area of specimen, cm%
a activity
A%xd. activity of oxidized species

A, .q. activity of reduced species

T

c concentration, moles/liter

Cy concentration of metal ion, moles/liter

D diffusion coefficient, sq.cm./sec.

Dy diffusion coefficient of metal ion, sg.cm./sec.
a diameter of specimen, cm.

E electrode potential, volts

= standara electrode potential, volts

Ec corrosion potential, volts

Eeq. equilibrium potential, volts

Ei polarized potential, volts

F Faraday, 23,063 sal./volt-mole (96,500 coulomb/equiv.)
G Gibbs free energy, cal.

g gravitational acceleration, 980.665 cm./sec?
I, corrosion current density, amp./cm?

i current density, amp./cm?

iapp. applied current density, amp./cm?

ig, limiting current density, amp./cm?

io exchange current density, amp./cm%

k? reaction rate constant for hydrogen evolution
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kg reaction rate constant for oxygen depolarization

kg reaction rate constant for autocatalytic reaction

kj mass transfer coefficient of species j, cm./sec.

ky mass transfer coefficient, cm./sec.

L length of specimen, cm.

M an atom of metal

N mass transfer flux, moles/cmo-sec. v

Nj mass transfer flux of species J, molés/cm?-sec.

NM mass transfer flux of metal ion, moles/cm?-sec.
number of electrons transferred in a reaction

PO2 partial pressure of oxygen, atm.
gas constant, 1.987 cal./deg-mole

r, reaction rate of hydrogen evolution, moles/cmS-min.

r2 reaction rate of oxygen depolarization, moles/cm?-min.

r3 reaction rate of autocatalytic reaction, moles/cm?-min.

Sn tin ions in solution, moles

[Sn] tin ion concentration, moles/liter

Alsn] tin ion concentration resulted from H, evolution,
moles/liter

z;[Sn]atin ion concentration resulted from oxygen depolarization,
moles/liter

Alsn].tin ion concentration resulted from autocatalytic
“reaction, moles/liter

Sn active sites on a tin surface

T absolute temperature, ok

t time

Uy mobility of species j, cm?umole/joule—sec.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



230

Vv solution volume, liter
v fluid velocity, cm./min.
zj charge number of species J

GREEK SYMBOLS

a constant
Y constant
$ constant
€ constant

constant
Tafel constant

anodic Tafel constant

¢

/6

ﬁi cathodic Tafel constant
5 aiffusion layer thickness, cm.
¢ density, gm./cm>

yZ4 viscosity, gm./cm.-sec.

v kinematic viscosity, cm%/sec.
name of function

nane of function

¥
¥
7 overvoltage, volts

7k activation overvoltage, volts
70 concentration overvoltage, volts
7R resistance overvoltage, volts

fﬁ total overvoltage, volts
%) angular velocity, Te«DP.ll,

5] angle, radians
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electrostatic potential
SUBSCRIPTS

acti#ation

anodic

bulk solution
concentration
cathodic or corrosion
interface

jth species

netal atom or ion
resistance

radial direction of tube
surface

total

time

axial direction of tube

DIMENSIONLESS GROUPS

3
Grashof number, 5L3&£~(2%,)2

. kI,
Nusselt number for mass transfer, Y

Reynolds number, %%g

<o - /!/C_
Schmidt number, 7&?

,q‘ 1’1
Shervood number,-%j
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