
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

1-1-1968 

Theoretical and experimental investigation of biaxially loaded Theoretical and experimental investigation of biaxially loaded 

rectangular tubular columns. rectangular tubular columns. 

Zia Razzaq 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Razzaq, Zia, "Theoretical and experimental investigation of biaxially loaded rectangular tubular columns." 
(1968). Electronic Theses and Dissertations. 6537. 
https://scholar.uwindsor.ca/etd/6537 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6537&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/6537?utm_source=scholar.uwindsor.ca%2Fetd%2F6537&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


THEORETICAL AND EXPERIMENTAL INVESTIGATION OF 
BIAXTALLY LOADED RECTANGULAR TUBULAR COLUMNS

A Thesis
Submitted to the Faculty of Graduate Studies through the 

Department of Civil Engineering in Partial Fulfilment 
of the Requirements for the Degree of 

Master of Applied Science at the 
University of Windsor

by
Zia Razzaq

B.E.(Hons.), University of Peshawar, 1966

Windsor, Ontario 
1968

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: E C 52719

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®UMI
UMI Microform EC52719 

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 E. Eisenhower Parkway 

PO Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Approved By:

219881

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A B S T R A C T

This investigation is a theoretical and experimental 
study of biaxially loaded beam-columns. The columns con
sidered are simply supported at each end and loaded with a 
constant axial load with a constantly increasing moment 
applied at one end. Rectangular, tubular cross-sections 
are considered. The analysis presented includes the effect 
of strain-hardening.

Five tests were performed and moment-deflection curves 
obtained. The tests were on medium length columns acted 
upon by light to medium loads. Comparison of the theoreti
cal curves with the experimental curves shows good agreement 
with the maximum error in predicted ultimate moment being 
about two percent. Because of residual stresses, the pre
dicted deflections are generally less than those observed. 
Measurements of twisting of the cross-section indicate that 
it is negligible as expected since the section used has a 
large torsional stiffness.

Limited theoretical results indicate that for some 
columns, at least, strain-hardening can substantially increase 
their strength.

iii
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CHAPTER I - INTRODUCTION
i

1*1 Preliminary Statement
The analysis of members loaded inelastically is becoming 

more and more important because of the increased use of plas
tic analysis and design* By allowing inelastic strains to 
penetrate into a structural member, its load-carrying capacity 
is increased appreciably without resulting in excessive 
deformation*

The behavior of columns stressed inelastically is of 
prime concern in structural design. Determination of the 
strength of such a member becomes very complicated since the 
bending stiffness varies along its length due to the varying 
extent of yielding, A fairly large number of papers have 
appeared in the past on inelastic single axis bending. Most 
of the methods given in these papers such as those presented 
by Bleich (3) and Timoshenko and Gere (28) are numerical
''itypes and are based on an assumed shape for the column,

Closed solutions for the displacements of beam-columns 
loaded inelastically are not possible® One form of the 
solution is to replace the governing differential equation(s) 
by equivalent finite difference equation(s) and write a set 
of homogeneous, simultaneous equations by applying the differ
ence equation(s) at panel points on the member0 The deter
minant of the coefficients must be zero for a nontrivial 
solution to exist. Successive approximations may be used to 
find the lowest root of the polynomial resulting from the
expansion of the determinant ( the lowest root yields the

1
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critical load for the member )• This method has been pro
posed by Salvadori (20)®

I Newmark (17) has presented an iterative numerical 
technique in which external moments are found from an assu
med deflection curve and a new deflection curve calculated 
by numerical integration using the moment-curvature relation 
for the cross-section considered® This process is continued 
until the correct shape is obtained, that is, until the cal
culated deflection curve is the same as the assumed one.
Ketter, Kaminisky, and Beedle (14) and Galambos and Ketter
(9) have applied Newmark8s procedure to determine load-deflec
tion curves of wide-flange columns. The theoretical solutions 
given in these investigations are also compared to tests by 
Mason, Fisher, and Winter (15).

Ketter (13) has determined the combination of load and 
moment necessary to cause collapse of a member subjected to 
a constant load with increasing moment. Jordan (12) has 
considered the problem of an eccentrically loaded column 
subjected to loads which resulted in small amounts of inelas
tic action. He determined the load-deflection curve for the 
given column from two families of curves derived from simple 
equilibrium conditions and assumed stress distributions in 
the members. This method proves to be rational, but diffi
cult to apply. Shanley (22) has proposed a semi-rational 
method in which he used approximate moment-load curves, the 
ultimate bending moment for the section, and the critical 
buckling load for the centrally loaded column.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Osgood (18) has proposed an approximate method which
I

essentially consists of replacing the given beam-column by
j  .

an eccentrically loaded column. Available methods are then 
applied to the resulting eccentrically loaded column. Theo
retical solutions are presented for several cases but no 
test data is given®

The differential equations governing the elastic response 
of the biaxially loaded column have been formulated by Goodier
(10), Timoshenko (27), Bleich (3), and Vlasov (29)® Approxi
mate solution to these equations are given by Thurlimann (26), 
Dabrowski (5), and Prawel and Lee (19)„ The exact solution 
of these equations has been given by Culver (4)0

The study of the inelastic behavior of the biaxially 
loaded beam-column has only recently been attempted. This 
is because of the much more complex nature of this problem 
compared with that of single axis bending® Sharma (23) and 
Birnstiel and Michalos (2) have presented analytical solutions 
of biaxially loaded wide flange columns® Sharma has presen
ted an approximate method for determining the ultimate load 
of columns having the same eccentricity of loading at each 
end. The basis of this procedure is the assumption that the 
lateral and twisting displacements vary sinusoidally along 
the column. At midheight, a value of the second derivative 
of one of the lateral displacements is specified, and equi
librium between internal and external forces and moments is 
established. Knowing the displacement at midheight thus 
determines the deflected shape of the column. By incrementing
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the specified second derivative, a load-deflection curve is 
obtained. Comparison of the theoretical results with a large 
number of test results showed good agreement. In the analysis 
presented by Birnstiel and Michalos, the column is first divi
ded into a number of panels. Values of the second derivatives 
of the three displacements, that is, the lateral displacements 
in two directions and a rotation of the section about its 
center of twist, are assumed at each panel point. A trial 
equilibrium position is then determined by numerical integra
tion. The values of the curvatures and the second derivatives 
of the angle of twist are adjusted until equilibrium between 
external and internal forces and moments is established at 
each panel point. Internal moments and forces are found by 
dividing the cross-section into a number of elements by a 
rectangular grid, determining the strain on each element, 
and summing the results over all the elements of the cross- 
section. By assuming increasing values of the second deriva
tives of the displacements, a curve of load versus deflection 
is obtained, which leads directly to the collapse load of the 
column.

Another solution has been presented by Ellis (7,8) who 
determines the ultimate carrying capacity of biaxially loaded 
columns using the overlapping shape failure criterion (6). 

Briefly, this criterion requires that two intersecting column 
curves be determined so that a column on the verge of collapse 
has been defined, since between the points of intersection, 
two column deflected shapes exist for the same axial load and
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end conditions. Column deflection curves are found only for 
a square tubular section. Since this type of section is 
torsionally stiff, twisting displacements are neglected and 
thus only two deflections at any point along the column need 
to be determined. These deflections are found by considering 
a short element which is systematically subjected to rotations 
about each principal axis and acted upon by a specified axial 
load. For each combination of end rotations, the axial strain 
and bending moments are determined. This information is then 
used to " build-up " a column deflection curve..

McVinnie (16) considered the analytical study of a biaxi
ally loaded column as an integral part of an orthogonal space 
frame. Load-deflection curves were set up using a numerical 
integration procedure for rectangular tubular columns,of an 
elastic-perfectly-plastic material, Scott (21) used this 
method for analyzing biaxially loaded solid rectangular beam- 
columns. The same method forms the basis for the analytical 
study in this thesis and is described in detail shortly..

\ Birnstiel and Michalos (2) and Sharma (23) have given a 
review of the literature.on the experimental investigations 
of biaxially loaded columns. Most of these experimental 
results are for columns having equal eccentricities at each 
end with cross-section being either wide-flange, I, or channel. 
Baker (1) tested beam-columns having solid rectangular and 
wide-flange sections. No experimental results for biaxially 
loaded columns of rectangular tubular cross-section have been 
published to the author's knowledge.
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1*2 Ob ject and Scope of Investigation
The object of this investigation is to study analytically 

and experimentally, simply-supported columns loaded with a 
constant axial load and a biaxial moment at one end. The 
moment increases from zero to the ultimate capacity of the 
column. Previous theoretical solutions (16,21) are extended 
to include a material which exhibits strain-hardening. Only 
rectangular, tubular cross-sections are considered.

Five columns were tested and momentr-deflection data ob
tained from each test. Theoretical results are determined 
and compared with each of the five tests. In addition, a 
theoretical study of some parameters which were not considered 
experimentally is presented. A thorough study of all the 
parameters involved is .beyond the scope of the present 
investigation.
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CHAPTER II - THEORETICAL SOLUTION

2.1 Description of the Problem
A biaxially loaded beam-column of the type studied is

shown in Fig. 2.1. The column has a length h and is simply-
supported at each end, that is, the displacements are zero,
but rotations are permitted about the x and y axes. The
loads on the column are such that the axial load P is applied
and maintained constant and then end moments about the x and 

x yand respectively, are applied at one end of the 
column and increased simultaneously to collapse. To further

y xdefine the loading, the ratio is maintained constant
at a value Y.

Rectangular tubular cross-sections are assumed in this 
investigation (Fig, 2.2). The half depth of the cross-section 
is taken as D, the half width as K*D. The x and y axes are
the principal axes of the cross-section.

\

2.2 Theoretical Behavior of the Column
\ The behavior of the column is fully defined by a moment-
\

deflection curve of the type shown in Fig..2.3. The deflection
plotted may be any of a number of deflections associated with

/

the column deflected shape, deflections taken to include 
rotations.

The analysis used has been previously given by Scott (21) 
in a study of solid rectangular cross-sections and is briefly 
summarized.

The assumptions involved in this analysis are:

y axes,
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1) Deflections and rotations are small in accordance with
ithe small deflection theory./

2) Deflections occur in the x and y directions only, no
twisting of the column is allowed.
3) Plane sections before bending remain plane after bending.
4) The material is mild structural steel which is assumed to 
have strain-hardening in the inelastic range, the stress-strain 
curve for which is of the type shown in Fig. 2.6. It is fur
ther assumed that the tension and compression stress-strain 
curves are identical.
5) No unloading occurs in yielded portions of the column.
6) Residual stresses are neglected.
7) The column is originally straight and prismatic.
8) Axial shortening of the column is neglected.
9) The effect of shear on the bending resistance of the
cross-section is neglected.

A typical point on the moment-displacement curve is
found from a column deflection curve (Fig. 2.4) which is
defined by the shape a column will take if the load and
deflection at any point are specified. In this problem,
the x and y displacements, u and v respectively, are zero
at the origin whereas the rotations at this point about the 

x yx and y axes, 0 and 0^, are specified, integration for the 
column -deflection curve is started at the origin and proceeds 
a panel length "a" at a time until the desired length,h, is 
reached. The equations used are given shortly. The column 
deflection curve is then rotated about the origin until the
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displacements? at h are zero. This gives a deflected column
acted upon by the moments

x —/ M, s P v, ,h h *
and s p uh .

If ^ for the assumed values of 0* and 0^, then one
point on the moment-deflection curve for the column has been

X Vdetermined. In this case, 0 and 0 are incremented and ao o
second point found. This procedure is continued until the 
curve is completely defined.

X VIf for any combination of 0 and 0 the moment ratioo oV XM^/ is not equal to V , adjustment to one of the initial
rotation values must be made. This adjustment is best
described using Fig. 2.5. A value of 0 is assumed and aoyvalue of 0 is calculated such that if the column were to o y  ,
remain elastic, M^/M^ would be equal to the value of o for
the problem. This results in point a of the curve in Fig. 2.5.
A new value of is found by approximating the curve (which
is unknown) by the secant 0=»a which results in point b on the

y xcurve. If the calculated ratio M^/M^ at b is not close enough
to Y, the curve is then approximated by the secant a-b. This

V Xprocedure is repeated until an acceptable value of M“/m  ish h
attained.

The dimensionless extrapolation equations similar to those 
used by Scott for determining the column deflection curve are 
given as;

x x xv. , v. ^ r  e . e 2 03-*l „ i , a 51 c fe~ i V /a.\ i /o i \~ e T  “ TT * D 3 T7W y “x ~ 2 (D ) “  (2*1)
0 0 y y
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1 0

x y ,yu u r 0 . G 2 g5 .i+l 1 , a it C ~ r 1 _J£ (3ii _i n—  = "D + D ? D^£y “  2 V  ^  (2,2)e 0y y
X xe . , 0.i*l » -1 „ 3D_rr" /a,v j_i . .IT" “ x x^ y V  x u *
0 0 nr„ J5y  y  C y

y y y
e ' 0i+l „ i _ 3D fc / 3l

_  0.
fe (§.) _Jk (2 4)X X X V y VD ; X0 0 nr 0y y c y

where and v^ are the x and y displacements at a panel
point i, and u. . and v, . are the displacements at i+l. i+l i+l
Likewise, ^  and 0̂ f are the slopes at i of the projections
of column deflection curve onto the y-z and x-z planes,

x yrespectively! and 0 . and 0" . are the slopes at i+l.i+l i+l
e is the yield strain of the material®
y

These equations are based upon the assumption that over 
a panel length "a" of the column, the deflected shape is a 
segment of a circle, the curvature of which is the curvature 
at start of the segment. As evident from Equations 2.1 
to 2,4 the displacements at point i+l on the column deflec
tion curve are determined from the displacements at i and 
the curvature at i. The moments at i are given by:

ft = p v (2.5)

m T - P u. (2.6)i x
Once the moments are known, the curvatures are found using 
the procedure outlined in Section 2.3,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 1

I The accuracy of Equations 2.1 to 2.4 is increased by 
first obtaining the deflections at point i+l assuming the 
curvature of the segment between i and i+l to be equal to 
the values at i. Using the values of the deflections at 
i+l thus obtained, curvatures at this point are found and 
a second set of deflections at i+l calculated assuming the
segment curvatures to be the average of those at i and i+l.! . . .

2.3 Load-Moment-Curvature Relationship
The load-moment curvature relationship described has1 I

been partially given elsewhere (16). This, procedure is
summarized herein and extended to include the effect of
strain-hardening in the material of the column. Detailed
derivation of equations used is given in the Appendix.

The relationship between load, moment, and curvature
is conveniently represented by the two sets of curves shown
in Fig. 2.7. For both sets of curves, the load is constant
at P. Each curve in Fig. 2.5(a) gives the relationship 

x , x jc ,jX _ - .V ,,Xbetween M /M^ and <p /0^ for constant values of 0v0y. In 
Fig. 2.5(b) the curves show the relationship between M^/M* 
vs. 0^/0* for constant values of 0X/0X .

2.3.1 Establishing the M-0 Curves
Neglecting the variation in strain through the wall 

thickness, there are ten possible yield configurations for 
the biaxially loaded cross-section. These configurations 
are shown in Fig. 2.8 where the shaded portions represent 
the yielded material. A particular configuration for a
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1 2

given set of moments and load is determined by the strain
distribution while, on the other hand, any strain distribu-

/’tion determines a load and a moment about each axis of the
cross-section.

Assuming that plane sections remain plane, (which is
consistant with neglecting twist) the normal strain €. at any
point (x,y) on the cross-section may be written as

e = $ C y + < £ / x + e  (2.7)o
where e is the uniform normal strain due to the thrust and o

and (p? are, respectively, the curvatures about the x 
y axes of the section. In this equation, tensile strains 
are considered as positive. Referring to the bilinear stress- 
strain curve of Fig. 2.6, the stress distribution correspond
ing to Equation 2.7 can be expressed in the following form;

CT = Ee - E (1 -a) [e± ey] (2.8)
where a is the strain-hardening factor given by Et/E, that 
is, ratio of the tangent modulus to Young's modulus for the 
material and 6 is given by Equation 2.7. The brackets [)
have the special significance that when |e| < e , the term11 Y
in the brackets is sero. When e is negative and le] > e ,I i y
the plus sign is used for the term inside the brackets and 
the brackets are replaced by parentheses, that is, normal 
multiplication. When e is positive and greater than e , the 

negative sign is used for the term inside the brackets and 
the brackets are replaced by parentheses. A typical stress- 
strain curve for strain-hardening material is shown dashed 
in Fig. 2.6. The bilinear approximation to this curve has
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been shown to yield fairly good results for m&Ytvjinaterials with 
the error involved in a load-deflection relation being on the

i

order of 1 or 2 percent (24).
The axial thrust P acting on the section is expressed in

terms of the stresses on the cross-section by the equation
P = Ja CT d h (2.9)

Substituting CT from Equation 2,8 into 2.9:
P = E f edA - E (1 -a ) $ [e + e ] dA (2.10)A A “ y

In this equation the first integral represents the value
of P if the section were everywhere elastic. The second in
tegral accounts for yielding of the cross-section. Moments 
x yM and M about the x and y axes of the section are given by . 
the following two equations.

MX = E fA y € dA - E (1 - «  ) y[ e + e ] dA (2.11)

M ^ s E ^ x  e d A - E  (1 - a ) e + 6y-̂ ^A (2.12)
Equations 2.7, 2.10, 2.11, and 2.12 relate the thrust 

and moments acting on a cross-section to the three factors 
defining the strain distribution on the cross-section, 0 ,
0^, and eQ. The analysis is complicated because each of 
Equations 2,10, 2.11, and 2.12 has a different form for each 
of the ten possible yield configurations. These are given in 
the Appendix.

The procedure used to determine the moment-curvature 
curves of Fig. 2.7 is summarized as follows:
1) For a given value of P, f t  and 0^ are assigned specific 
values, leaving eQ as the only unknown in Equation 2.7,
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2) Using Equation 2.10, a value for e is determined thato^ y
corresponds to the specified 0 , 0 , P, and an assumed yield 
configuration® (An assumed configuration is required since 
there are ten possible forms for Equation 2®10, one for each 
possible yield pattern). The yield pattern corresponding to 
the calculated can be readily found (by checking the magni
tude of total strains at corners of the cross-section) and
compared with the assumed pattern. If these are the same, 
then eo has been determined® If the yield patterns are not 
the same, a new pattern must be assumed and a new value of 
eQ calculated. The process is continued until a yield pattern 
compatible with the starting assumption is determined. The 
sequence used in considering the yield configurations is shown
in Fig. 2.9C In this figure the (i = 1,2, 3, 4) is the
strain caused by the curvatures only, that is, = 0 in 
Equation 2.7. These "bending11 strains control the path used 
in assuming the configurations 0
3) Once eQ has been determined, Equations 2.11 and 2.12 are

X Vused to find M and M •
, X ,y4) By varying 0 and 0 systematically over the range of 

curvatures desired, the required curves are determined.
The above procedure is performed for each value of the 

axial thrust prior to maKing the numerical integrations nece
ssary to determine the deflected shape of the column. The 
assumed range of curvatures 0X and 0^ should be large enough 
to produce inelastic strains of at least ten times the yield 
straino
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I For a given pair of moments (Equations 2® 5 and 206) the
curvatures are found in the following manner*

I X X1) For any value of M = Mo> the curvatures resulting in this
xmoment are found at the intersections of M with the constantoy0 curves of Fig® 2®7(a)® A plot of these curves is shown as 

curve A of Fig® 2®10.
Y Y2) F£>r any value of M = Mq the curvatures resulting in this

I ymoment are found at the intersections of M with the constant
I °jX

<p curves of Fig. 2®7(b). A plot of these intersections is
shown as curve B of Fig. 2®10®
. x y3) The resulting curvatures for Mq and acting together are

determined by the intersection of curve A with curve B. The 
co-ordinates of the intersection point are designated as

( C O  in Fis« 2ol°.
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CHAPTER III - EXPERIMENTAL SET-UP AND TEST PROCEDURE
iI

3»1 General Considerations
The experimental investigation described herein presented 

the author with the major problem of designing and construct
ing the test set-up and required a considerable amount of time 
and effort. The requirements for the design were to simulate 
in the laboratory the column support and load conditions des
cribed in Section 2.1. This necesitated end fixtures to 
permit free rotation, about any horizontal axis and a means 
of applying and measuring the direct axial load and the bi
axial bending moment® This chapter describes the test set-up 
and the test procedure.

3.2 Overall Description
The apparatus used for the column tests is shown in

Figs. 3.1 and 3.2. Referring to Fig. 3.1, the test specimen 
*

[1] is welded to base plates which in turn are bolted to 
end fixtures at the top and bottom [2] and [3] . The top end 
fixture is attached to a cross-beam [4] which is free to 
move in the vertical direction and which can be adjusted in 
the horizontal direction. The bottom end fixture is attached 
to a fixed support*

Axial load is applied to the specimen using two, 10-ton 
capacity jacks [6]. Biaxial moment is applied to the speci
men at the bottom end fixture by means of a load (W) acting 
on a lever arm [5]. The overall assembly is mounted between
a. ; : ~ 1 — —Brackets refer to numbers in Fig. 3.1.
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a pair of columns [9 J which are bolted to a test bed at
j

their base and braced at their tops0
/

3.3 End Fixtures
To provide the simply supported end-conditions referred

to in Section 2.1, gimbals are used. Details of the end
fixtures are shown in Fig. 3,3 and a schematic representation
is given in Fig. 3.4. The inner part of the end fixture
rotates on a shaft along center-line 1 which is supported
by self-aligning spherical roller bearings housed in the
walls of the outer part0 Each end of the test specimen is
welded to a 3/4 inch base plate and then bolted to the inner
part of the end fixture. This provides nearly frictionless
rotation at the end of the specimen about center-line 1,

The outer part of the end fixtures rotates on two stub
shafts along center-line 2. These shafts are firmly attached
to the walls of the outer part and supported by bearings in
pillow-blocks. This arrangement provides nearly friction-
less rotation of the entire end fixture about center-line 2,
The net effect of the arrangement described is that rotation
of the specimen end is permitted about any horizontal axis.

Using this arrangement, the column tested is not simply
the specimen, but consists of the specimen plus the inner
part of the end fixture above the point of rotation (the
intersection of the center-line 1 with center-line 2). This 

7distance is 3^ inches at each end of the specimen and must 
be considered in the theoretical analysis of any specimen 
tested.
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The seperate plates making up the inner and outer parts
iIof the end fixtures were bolted together using high strength 

cap screws. Before being used, they were proof-loaded to
28.000 pounds in a hydraulic testing machine to check the 
strength and assure that bearings would rotate freely under 
this load,

3.4 Application and Measurement of the Loads
3.4.1 Direct Axial Load

The external support for the top end fixture is provided 
by the moveable cross-beam [4] (Fig. 3.1). The detail of the 
end support for the cross-beam is shown in Fig. 3.5. A cha
nnel shaped guide is attached to the support columns [. ̂  ]
(Fig. 3.1). Plates with spherical recesses machined in them 
are attached to the cross-beam using threaded rod. Ball
bearings are placed in the recesses' with a total of eight 
balls used at each end. These ends then fit into the guide 
and ride on smooth, vertical inner surfaces to give free 
vertical movement0 Horizontal adjustment of the cross-beam 
is provided by the threaded rods and is used for vertical 
alignment of the specimen.

The pillow-blocks supporting the top end fixture are 
mounted on the bottom of the cross-beam and direct axial 
load applied to the specimen using the two, 10-ton jacks 
resting on the top of the beam and reacting against a fixed 
member [8](Fig. 3.1). These jacks are connected to a
300.000 pound Riehle hydraulic testing machine by a single 
hose with a Y connection at its end [7] (Fig. 301). Hydraulic
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pressure from the pump of the testing machine is used to 
operate the jacks® A fairly good indication of the load 
is given by

(Total Area of the Jacks> , x7~— "— — - - - - t--— t x Dial Load (3.1; (Area of the Testing Machine Cylinerj
A better value for the load was obtained using a load cell 
mounted between the top end fixture and the specimen (Fig.
3.6)• The position of the load cell added a further modi
fication to the theoretical solution since it also is a 
part of the column being tested. The load cell was cons
tructed from a six inch long piece of 2 inch tubing which 
was the same as the square specimens tested. 3/4 inch plates 
were welded to the tube at each end for attachment to the 
end fixture and the specimen end. Eight strain gages were 
symmetrically mounted at mid-height and the cell calibrated. 
Because of the symmetry of the strain gages, the effect of 
any bending stress on the cell is eliminated. The strains 
from the load cell were recorded using a Budd automatic 
strain indicator.

The above described load cell was used for the last 
three specimens tested (see Section 4.1). For the first 
two specimens, strain gages were symmetrically mounted on - 
the specimen itself and the load determined by taking the 
average strain times Young•s modulus for the material of 
the column. Care was taken to mount the gages at a location 
which remained elastic throughout the test.

3.4.2 Biaxial Bending Moment
Biaxial moment is applied at the bottom end of the
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specimen using a lever arm attached to the inner part of
the end fixture ( [5], Fig0 3.1 and Fig* 3.8(b))• A moment-
producing load W is applied near the end of the lever arm 
giving

x yM *5 W e
y xM ss W e

x ywhere e and e are the eccentricities along the x and y
axes, respectively* The angle of attachment of the lever

x y warm is such that e /e = 0.5. Thus all tests were for o = 0.5.
The load W is applied through two threaded rods about 

50 inches long. These rods are separated at the top and 
bottom by thick steel plates about 9 inches long (Fig. 3.8) 
forming a closed ring0 The bottom plate is connected to the 
lever arm by means of a ball and socket arrangement (Fig. 
3.8(b)) and the top plate is connected to a load cell using 
a similar arrangement (Fig. 3.8(a))<, The load cell is suppor
ted on a tripod. The column is deflected by tightening the
nuts at the top of the rods and the load measured by the

\load cell.
\

The above described procedure for applying the moment 
to the specimen was used for the last four specimens tested.
The initial test was performed using a small hydraulic jack 
in place of the load cello Pressure was applied by means of 
a hand operated pump, and a calibration curve of pressure 
vs. load used to determine the moment on the specimen.

During trial testing, it was found that the specimen 
end reactions caused by the applied moment induced excessive
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lateral deflections at the top of the specimen* To alleviate 
this situation, tie rods ([ 1OJ , Fig® 30l(b)) were attached 
to the two top pillow-blocks* These were made adjustable 
so that any lateral deflections could be controlled during 
the progress of a test*

305 Specimen Preparation
| Specimens to be tested were prepared by first cutting 

■' to length using an automatic hacksaw® The ends were
milled to assure that the cut edges were flat and per-

■ I
pendicular to the axis of the specimen0 The centers of the 
four sides were carefully determined and marked at each end* 
These marks were then matched with center marks on the base 
plates and clamped in a jig® The specimen and base plate 
were then welded all aroundo

The center marks on the base plates were carefully 
determined to coincide with projections of center-lines 
1 and 2 of the end fixtures (Figs* 3*3 and 304). This 
arrangement automatically positioned the centroid of the 
specimen on the line of action of the axial load to within 
the accuracy of the assembly*

3*6 Test Procedure
After the specimen was prepared, it was bolted in place 

for testing* The nuts at the end of the moveable cross
beam were then adjusted until the specimen was vertical* 
Vertical alignment was checked using a 30 inch spirit level 
placed on the sides of the specimen and rechecked using a

tnem
then
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tra^sito
I Ames dial gages accurate to *001 inches were then placed

i
to obtain the required deflections. Fig. 302 shows a typical 
placement of the dial gages. End rotations were measured 
by fixing a bar to each of the inner and outer parts of the
end fixtures and measuring the deflection at a known distance
from the center of rotation (Fig. 3.9). For rotation of the 
outer part of the end fixture the angle of rotation is given 
by j

X X , X , „ „ ,e s d /c (3,2)
where 0X = angle of rotation about the x axis (assumed to i>& 

small such that 0 = tan©)?
Xd = measured vertical displacement? and 
c = horizontal distance from the x axis of rotation. 

Rotation about the second axis is complicated by the fact 
that the bar used to measure the rotation was placed off 
center. Thus, displacements measured are functions of both 
rotations. A slightly more complicated expression for the 
rotation results and is given by

eY = V  i  Ay ex )/cy (3.3)
Vwhere 0 = angle of rotation about the y axis?
yd k  measured vertical displacement? 
yc = horizontal distance from the y axis of rotation? & 
y^  = horizontal distance from the x axis of rotation. 

The sign inside the parentheses (Equation 3.3) depends on 
the rotation 0 •
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I  Dial gages were also mounted at key spots on the appara- 
tus to check movements external to the specimen® Typical 
locations were at the top and bottom pillow-blocks® Fig® 3*2 
shows the gage locations for a typical testo

After obtaining zero readings for all dial gages and the 
load cells, a small bending moment was applied to the speci
men in order to pretension the tie rods to the moveable cross
beam® The desired value of the axial load (to be maintained 
conjstant throughout the test) was then applied to the speci
men assuming Equation 3*1 applies* The tie rods to the move- 
able cross-beam were then adjusted to remove any resulting 
lateral displacement of the top of the specimen® At this 
stage the load measured by the axial load load cell was deter
mined from its calibration curve to see if the desired load 
was being applied to the specimen* It was generally found 
that due to frictional and other losses the load indicated 
on the Riehle testing machine dial had to be increased some
what over that indicated by Equation 3*1.

Upon final adjustment of the axial load, load cell 
readings were automatically recorded, the dial gages read, 
and the load cell readings recorded again prior to the next 
increment in moment. In general it was found that both 
sets Of column load cell readings were the same within the 
accuracy of the recorder. However, the load cell measuring 
the moment-producing load was found to drop very slightly, 
particularly in the latter stages of the test. This was 
probably due to "creep" or plastic flow. The magnitude of
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the/ moment was determined from the last set of load cell 
readings,

I After all the readings were obtained, the moment was 
incremented and the procedure just described was repeated, 
that is,
1) The top tie rods were adjusted,
2) The axial load Was adjusted if necessary, (It was found!
that with each moment increment, only a slight, if any, 
adjustment was required to the load indicated on the testing 
machine dial),
3) Load cell readings were recorded and the dial gages read,
4) The final load cell readings recorded.

In the early stages of the test, the moment was incremen
ted by observing the load cell readings. In other words, 
an increment in moment-producing load was applied. In the 
latter stages of the test, an increment in one of the deflec
tions was applied, that is,.the column was strained rather 
than loaded.
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CHAPTER IV - DISCUSSION OF RESULTS

4.1 Specimens Tested
In planning the experimental investigation, it was 

decided that only a few tests could be performed. Owing 
to the large number of possible variables (that is, slender
ness ratio, axial load, cross-sectional shape, material pro
perties, etc.), it was difficult to decide on which should 
be varied in the tests. Since the primary purpose of the 
ivestigation was to check the theoretical analysis, it was 
decided that at least two different cross-sectional should 
be investigated. Table 4.1 summarizes the specimens tested.
As noted in this table a 2 inch square cross-section (speci
mens 1, 2, and 5) and a 1*5 inch by 2 inch cross-section 
(specimens 3 and 4) were selected. Specimens 1 to 4 inclu
sive had approximately the same minimum slenderness ratio 
(h/r ) and can be considered as medium length columns. Medi
um length (as opposed to short or long) columns were selected 
so that column action is demonstrated, that is, stability 
failure. This length of column has the ability to carry 
fairly large bending moment along with medium size axial 
loads (P/Py 0.2 - 0.4, where P^ = yield load for the cross- 
section). Each type of cross-section was then tested under 
a medium load (specimens 2 and 3), comparison thus gives the 
effect of axial load on the moment carrying capacity of the 
column, A fifth specimen of square cross-section (specimen
5) but with a smaller slenderness ratio than the others was 
tested. The load for this specimen, was about the same as

219881
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for specimen 2 and direct comparison gives the effect of 
slenderness ratio on the strength of the column* Only two 
specimen lengths were tested because of the difficulty in 
changing the test set-up to accomodate different lengths.

Originally it was intended that the material should be 
the same for all specimens. However, a quick glance at 
Table 4,1 shows that this was not the case. All materials 
were hot-rolled, low-carbon steel. The tubes had a single 
weld along one side and cold formed. During initial stages 
of the investigation, 2 inch square tubing was purchased to 
provide one specimen and enough material for material pro
perties tests. After completion of the tests, additional 
material was sought. Properties tests on the second,
"similar" tubing indicated a much stronger material than 
the first. The rectangular tube was still a third, type and 
was treated by heating to 1200° F for about 15 minutes and 
cooled in still air.

The properties of the material were determined by tests 
on stub columns having a slenderness ratio less than 10 
and by tension tests. For the stub column tests, four elec
trical resistance strain gages were mounted symmetrically on 
the tube and the specimen tested in a Tinius-Olsen (small) 
hydraulic testing machine in accordance witb the procedure 

given in Reference 11. The tension tests were performed in 
accordance with the ASTM specifications®

For specimen 1, only tension tests were performed. Test 
coupons were cut from all four sides and tested to determine
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the stress-strain curve. All the four curves were very
similar in shape and showed a maximum variation in "yield
stress" of about six percent. The average of the four sides
is shown in Fig. 4.1 and was used to determine ch(-.e /E)t
and e .y

For the remaining specimens, stub column tests were 
used to determine the mechanical properties. In addition 
a tension test on material of specimen 2 was performed and 
found to be very similar to the stub column test. The main 
difference being that the knee of the curve from stub column 
test was not as sharp as from the tension tests owing to the 
effect of residual stresses in the cross-section. These 
stresses can be as high as 20 ksi (24).

Results of the stub column test from the material of 
the specimen 2 are given in Fig, 4.2 and those from speci
men 3 are given in Fig. 4.3. The curve of Fig. 4.2 was 
assumed to represent the material of specimen 5 since it 
came from the same length as specimen 2. The specimen 3 
and 4 were also the same material, but were received in two 
different pieces, thus it could not be determined if they 
were both from the same length. Tests on the material of 
specimen 4 indicated a yield of 38.3 ksi as compared with 
34.8 ksi from specimen 3. In determining the yield stress 
for specimen 4 no strain gages were used, the yield load 
being determined by the stop of the dial and also local 
buckling of the walls of the specimen.

The approximation of the bilinear curve for specimen 2
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and 5 needs some explanation. It was found from the theo
retical results that due to the size of the axial load and

islenderness of the columns, the maximum strains at failure 
were quite low (on the order of 4 times the yield strain). 
Strain measurements on specimen 5 (to be mentioned shortly) 
bore this out. Hence, if the stress-strain curve were app
roximated by neglecting the Knee of the curve, the results 
would be erroneous. The bilinear curve used was found by 
approximating the curve up to about 5 times the yield strain. 
Although this is not a particularly good approximation, the 
theoretical results compared very favorably with the experi
mental results (Section 4.2).

4.2 Experimental Results
For the specimens described in Section 4.1 deflections 

in the principal directions of the .cross-section were mea
sured at the midpoint of the specimen excluding end fixtures. 
End rotations about each axis were also measured. Dimension- 
less plots of the experimental results are given in Figs. 4.4 
to 4.8 inclusive along with theoretically obtained curves.

3Since the moment arm was attached considerably (11- in.)O
below the axes of rotation of the end fixture, a correction 
in the experimentally determined moments was made to account 
for the change in length of the moment arm due to the rota
tion of the end of the specimen. The maximum correction ob
tained was about three percent. Owing to the length of the 
rods applying the load to the lever arm (minimum of 50 in.), 
the load on the moment arm can be considered to be vertical.
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I In determining the theoretical curves, the theory was 
modified to include the end fixtures and the column load cell. 
For all practical purposes, the end fixtures used in this 
study can be considered as rigid; hence their curvatures are 
zero. The column load cell always remained elastic; thus its 
shape is easily determined from elastic theory.

Table 4.2 shows the theoretical and experimental values
jof the peak moment about the x-axis divided by M . As notedy

from this table the results compare very favorably with the 
maximum error being about two percent*

Of prime importance to the test results is the variation 
in axial load during the progress of a test, since comparison 
between theoretical and experimental deflections depends on 
the load being constant. The percent variation in load as 
determined by the strain gage readings is shown in Fig. 4.9 
for each of the five tests. The maximum variation noted is 
three percent with the average variation being considerably 
less. As evident from these figures, a high degree of success 

was achieved in maintaining a constant axial load throughout 
the test. This can be credited to using fairly small incre
ments in moment, adjusting the axial load at each increment, 

and a constant'surveilence of the hydraulic testing machine 
load dial throughout the test.

Referring again to Figs0 4.4 to 4.8, it can be seen 
that the shapes of the experimental and theoretical curves 
are very similaro As expected, tests 2 and 5 show the most
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variation since the bilinear stress-strain curve is not too 
good an approximation to the true stress-strain curve. The 

• effects of residual stresses is also quite evident in the 
results. Once inelastic action begins, the predicted deflec
tions and rotations are less than those determined in the 
tests. As noted in previous research (23) the effect of 
residual stresses is to reduce the ultimate capacity by a 
smajLl amount which depends on the dimension of the column,
Thip is probably the main reason for the deviations noted in 
Table 4,2, The main effect of residual stresses is thati
yielding begins at a lesser moment which results in greater 
deflections. This can be seen clearly from Figs. 4,5 and 4,6 
and partly from results of the remaining tests.

For all tests no twisting could be detected visually. 
Measurements on columns 4 and 5 were attempted by clamping a 
bar perpendicular to the column near midheight and measuring 
two displacements on the bar a distance 14 inches apart. The 
differences in the two gage readings for test 4 increased 
slightly (.02 inches) from zero to about two-thirds of the 
ultimate moment and then remained constant. For test 5 there 
was at most a difference in the two readings of o003 inches.

For column 5 a comparison was made of the maximum strains 
measured at a section 14 inches from the bottom end (excluding 
the end fixture) with those obtained theoretically as shown in 
Fig. 4,10. This also established the presence of residual 
stresses in the material used for specimens 2 and 5.

The effect of unloading and reloading was observed on
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specimens 2 and 5. Specimen 2 was reloaded after initial
j

failure by first applying the moment given by peak of the
j

curves in Fig. 4.5 and then applying the axial load. The 
column remained in equilibrium as long as the peak moment 
was there but became unstable on the application of a negli
gible amount of the axial load. Specimen 5 was reloaded by 
first applying the same constant axial load as given in 
Table 4.1 and then incrementing the moment till the column 
became unstable. The column could carry about 93 percent 
of the previous peak moment (that is, the peak moment in 
Fig. 4.8).

4.3 Theoretical Study
4.3.1 Study of Variables

The effect of varying the following factors is studied:
1) the moment ratio
2) the strain-hardening factor a of the material;
3) the number of points to be used in a column integration; &
4) the length of the rigid end fixtures forming part of the 
beam-column in the apparatus used for the testing.

The column selected for the study of the above four fac
tors has the same dimensions as for the first test specimen.

A plot of the peak moments versus Y is shown in Fig. 4,11. 
It is evident from the figure that an increase in the applied 
moment about one principal axis of the column cross-section 
reduces its carrying capacity about the other principal axis.

Fig. 4.12 shows effect of the strain-hardening on strength 
of the column. The variation of the peak moments with a follows
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I
approximately the relation

[mV m *] = 0.9489 + 1.43a | A y
for this particular case and for a between 0.0 and 0.08.
It is readily apparent that for a  -  0.08, the moment capacity 
of the column increases by about 12 percent. Larger values 
of a would undoubtedly show a much larger increase in moment 
capacity.

In effect, considering the strain-hardening would mean 
that the material in the column which is strained beyond the 
yield changes its modulus of elasticity to Et which is less 
than E and is, therefore, still able to carry extra load, 
while neglecting it would mean that no load is carried by 
the yielded material in the column and the only load-resisting 
portion is the remaining elastic core. This can be clearly 
seen from the curves shown in Fig. 4.12. As long as the col
umn remains elastic, strain-hardening does not come into play 
and the moment-deflection curve is common for all a values, 
however, thereafter, yielding begins and the column whose 
yielded material also offers resistance to the external load 
gives a higher peak moment than the one whose yielded material . 
offers a little or no resistance.

The effect of the number of points selected for the col
umn integration procedure (summarized in Section 2,2) on the 
prediction of the peak moment is shown in Fig. 4.13. The 
length of a panel (which in turn determines the number of 
points for column integration) directly affects the computa
tional time required for convergence of the solution. Since
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the column integration is carried out on the basis of assu- 
mihg each individual panel to be a segment of a circle, it

iimplies that every section has the same moment. Speaking 
in the absolute terms, this is not true because the moment 
varies along the length. Nevertheless, it is reasonable to 
assume that the change in moment between two consecutive 
sections is fairly small if their mutual distance is small. 
Fig. 4.13 shows that, for the case considered, as low as 
seven points for column integration yield fairly good results 

Fig. 4,14 shows the variation of the peak moment with 
the length of the rigid end fixtures that form a part of the
beam-column. For a small value of L /D, that is, the non-
dimensional length of the rigid end fixture, the peak moment 
remains almost unaffected, however, it increases with bigger 
values of L^/D, This is understandable because if a greater 
part of the column is rigid, the non-rigid portion will be
more stocky and hence carry a higher load.

4.3.2 Column Integration Using Single Pass
For an increased accuracy, two passes through each panel

point in the column integration procedure are made as des
cribed in Section 2.2. Since this involves extra computa
tional time, the effect of making only a single pass through 
each panel point is studied by means of the following example 

Section : 2 in, by 2 in. by 0.1325 in.
Axial Load, P/P = - 0.2
Moment Ratio, ^ =0.75 
Strain-hardening factor, a = 0.0322
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j Yield Strain, = 0.0011 in. per in.
' Slenderness Ratio, h/r^ = 40.0c

I It was observed that this resulted in a thirty percent 
saving in the total computational time as compared to that 
required by making two passes, A very slight variation in 
the collapse load and the deflections was noted even though
a small slenderness ratio was chosen, and the results were]
fouhd to be on the conservative side.

•I .
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Table 4.2 Comparison of Theoretical and 
Experimental Peak Moments about the x-axis

Test

(1)

yExperimental
(2)

mV m*yTheoretical
(3)

(2)
(3)

> 1 0,980 0.985 1.00

2 0.486 0.498 0.98

3 0.715 0.722 0.99

4 0.958 0.956 1.00

5 0.695 0.701 0.99
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| CHAPTER V - CONCLUSIONS AND FUTURE RESEARCH

5.1, Conclusionsj
The following conclusions are drawn from this study
1) The experimental results agree very closely with 

those predicted hy the theory. This shows that 
the theoretical solution can be used to predict

j the load-deflection curves and the collapse load
I " with a high degree of accuracy, at least for the
j range of parameters considered.
!' I
2) Twisting may be neglected for columns of hollow 

tubular cross-section.
3) Residual stresses in the columns tested appear 

to have very little effect on their strengths.
4) Strain-hardening increases the carrying capacity 

of at least some columns. For design purposes, 
it will be conservative to neglect it. On the 
other hand, if considerable strain-hardening is 
present it should be considered in determining 
the strength of the column.

5) An increase in the bending moment about one 
principal axis of the column's section reduces 
its carrying capacity about the other principal 
axis assuming the same value of the axial load.

6) An increase in axial load or slenderness ratio 
results in a reduction of the moment carrying 
capacity of the column.
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5•2 Future Research
A study of some of the remaining parameters not done 

in this thesis should be made such as the width-to-depth 
ratio of the section, wall thickness, effect of residual 
stresses, etc. A comparison of the carrying capacity of 
the beam-column with the section studied herein should be 
made with those having other cross-sectional shapes such 
as hollow circular, solid rectangular and wide flange to 
determine the most efficient section.

An attempt should be made to develop thrust-mornent.- 
curvature relationships for columns of nonlinear materials, 
since if this can be made possible, the same or a similar 
method of analysis can be applied to concrete and aluminum 
columns.

\
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Fig. 2.2 Beam-Column Cross-Section
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0  = Constant for 
each curve
Constant for 
all curves

(a)

0  = Constant for 
each curve
Constant for 
all curves

Y(b)
Fig, 2.7 Moment-Curvature Curves
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Fig® 2®10 Constant Moment, Curvature Curves
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Fig. 3.1(a) Elevation of Main Skeleton of the 
^  Apparatus shown Schematically

Reproduced with permission of the copyright owher. Further reproduction prohibited without permission.



Strain
Recorder___ r

77/7

W/2 W/2

I l l /

Fig, 3.1(b) Schematic End-View of
the Apparatus

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig. 3.2 Test Set-up
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///

*
Fig. 3.3(a) Sectional Elevation of 

the End Fixture

-£

l - j—

Fig. 3.3(b) Plan View of the End Fixture

Refer to the Table on page 51.
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Fig. 3.3(c) Sectional End-View of 
the End Fixture

c
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Table Corresponding to Fig. 3.3

1 Inner Part of the End Fixture
2 Outer Part of the End Fixture
3 Shaft with the center-line i
4 Frictionless Spherical Roller—Bearing at end of the shaft
5 Shaft with the center-line ?->
6 Frictionless Sperical Roller-Bearing in the Pillow-Block
7 Base—Plate for the Beam-Column End
8 Specimen Position9 Weld

10 Wall of Outer Part of the End Fixture, housing shaft
11 Reinforcing Wall for 10
12 Wall of Outer Part of the End Fixture, housing 4

Notesi (l)^The point of intersection of the center-line 1 with the 
center-line 2 is the real "end" of the beam-column.

(2) Bix dotted "X" mark represents a bearing.
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Lever Arm
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Inner Part of the 
End Fixture

Outer Part of the 
End Fixture

5 2

Fig. 3.4 Schematic View of the End Fixture
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Back Plate

Side Plate 5

Moveable Cross-Beam

Section at a-a

Fig. 3.5 End-Support for the Beam 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

Fig* 3.8(a) Load Cell for Measuring the 
Moment-Inducing Load W, placed on the Tripod

Fig. 3.8(b) Lever Arm and Its Connection
with the Tie Rods
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Fig. 3.9 Measurement of End Rotation
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APPENDIX
' THRUST-MOMENT-CURVATURE RELATIONS

/

This appendix describes how for a constant axial load P 
acting on top of a beam-column of known cross-section a set 
of moment-curvature curves such as those shown in Fig. 2.7
can be determined. The problem posed is to find what moments
X V “M and Rr should be applied, under a constant axial load P,

which would give a set of presumed curvatures and about
the x and y axes of the column cross-section,

Cross-Section Properties
The terms used to describe the beam-column cross-section .

are defined in Fig. 2.2, K^, and are non-dimensional
factors describing the wall thickness, half the outside width,
and half the inside width, respectively, in terms of half the
depth of the section, D. The important properties of the
section may, thus be written as

A = 4 K. (1 + K ) D2 (A. 1)c 1 3
IX = % K M  + 3 K - 3 K, K_ + K ) D4 (A.2)

C 3 1 3 1 3  1 3
y 4 , 3 _ 2 _ 2 . 4I = r K.(K0 + 3 K_+ 3 K. L  + K,) D (A.3)C 3 J -  -5 -5 X  6 X

These quantities in the non-dimensional form may be
written using the following notation:

- * / 2A = A /DC C
_x x 4
I = I /D  c c
_y y 4
i  = I  /D  c c

81
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The non-dimensionalizing factors for the thrust, moments, 
and curvatures are given, respectively, as follows:

i

P = E e A (A.4)y y C

M* i E e I /D (A.5)y y c
%

d> = e /D (A. 6 )
r y y

A,2 Equilibrium Equations
Equations A,7, A,8 , and A.9 are the non-dimensional 

equilibrium equations for the thrust and moments in terms of 
the strain on the cross-section. These equations follow
directly from the Equations 2,10, 2,11, and 2,12, upon divi
ding by the appropriate non-dimensionalizing factors,

_ 2  2
£ - J  ( r—  + 11 ( A T )p - nr JA E -2 ~ir 11 V T  i IJ r? 1 • ’y c y D c y D

x 4 , , 4= D_ C y _ £ _ d A „ D _ ( n z ,, dA 8x
X  -  x  %  D  €  2  X  U  “  > i & D  t - € -  S  U  —  lA ' 8>
y c y D xc Y D

V 4 ^M D f X £ dA D  / -I \ f — r ̂  . -I I dA ,, q *“  = T  4  U "  T  7  (1 “ a ' JA D L“ ± 1 j “7  (a*9)M l  Y D  I y Dy c c

The significance of the brackets [ ] of the second integral 
has been mentioned in Section 2,3, The strain at any point 
(x»y) of the cross-section is given by Equation 2,7, Dividing 
Equation 2,7 by and expressing x and y in terms of D gives 
the strain in terms of the yield strain, e ,y

€ y x $  Go
=
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Equation A.10 is used in the evaluation of Equations A.7,
A. 8 , and A. 9,

I Neglecting the variation in strain through the wall 
thickness, the strain distribution is specified by deter
mining the strain at the center-line of the cross-section. 
Since plane sections are assumed to remain plane and resi
dual strains are neglected, the strain distribution for any 
side of the cross-section is completely specified by the
strains at the ends of the side. Therefore, only four strain

The subscripts 1 through 4 in these equations refer to the
four corners of the cross-section, and K and K are dimen-

4 5
sionless factors describing dimensions of the center-line 
of the cross-section in terms of D. Equations A.11 through 
A.14 can be written as:

valtes need to be evaluated. With reference to Fig, A,1
these are

e
1 (A.11)ey

e
e (A. 12)

(A.13)

(A.14)
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e , / e s * /e + e / € (A. 15)
1 y 1 y O y

E2 7  y = ̂ 2 /Ey + So A y (A’16)

*3 /6y = r3 /Sy + "o /6y <A -17>

e4 / y  “ / sy + %  / ey (A. 18)

where ^ ‘ y ’  e 2 ^ 'y ’ e 3 ^€y* ant"* €4 ^ey are *:7ie ^en^in9 
strains given by

ei s - K, L  + K, iL. (A, 19)
y 5 f  4 Jy y

— y x
€2 = K £- + K 1- (A.20)
V  s £  4 £

(A.21)
e ey y

%  a ^1 (A.22)
e ey y

and depend on the values of 0 X/0* and ĵ /jzS** The term 
eQ/^ will depend on the magnitude of the axial thrust*

An examination of the possible yield patterns for the 
section (Fig* 2 08) shows that all may be made up of some 

combination of the five yield patterns shown in Fig. A,2*
In this figure, the length of the side ij will depend on 
its position in the cross-section, thus K will take the 
values or K^» The i end of the side represents the
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8 5

end with the algebraically largest strain# The length of
tension and/or compression yield on a side, a K D andi j K
a.. K, D, respectively, can be found in terms of the strain ji k
at i and j. Consider the strain distribution for case V of 
Fig, A.2, By proportion

2 (ei / %  " 11 aij “ — r ----r — 7--  (A.23)J £ /e ~ e /£i y j y

a . (A.M)
ji € /e - e /e l y j y

The strains at i and j are written in terms of the bending 
strains and the uniform strain as

e /e = e /e + e /e (A.25)i y i y o y

/ e = 6, /£ +e / e (A,26)j y j y o y

Substituting A,25 and A,26 into A,23 and A.24 and 
introducing the notation

' = «i /ey - r j /ey (A-27>

A ij = <ri /ey ‘ (A,28)

= " (e, /e + 1 ) / q (A,-29)J j y

these equations become

aij ' Aij + (A-30>
^ k

a = A - o f y (A,31)ji i i -----
j ek
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An examination of Equations A. 19 through A.22 leads to the 
fact that

x
£ = K„ ^  when k = 4 (A.32)

y
IP = K <L — when k = 5 (A033)k 5 x
y

Equations A,15 through A.22 and A.28 through A.33 are used
in the evaluation of Equation A.7,

The first term on the right side of Equation A.7 
2represents D /A times the volume of the e/e distributionc y

on the cross-section if the section were to remain elastic.
This quantity may be expressed in terms of as

2 2 e A
L  ^  (A 34)A ^A e 2 f t  e 2 tA.J4;c y D c y d

The second term bn the right side of Equation A.7 accounts
for the effect due to yielding. The integral in this term
represents the volume of the [e jj distribution on the

e —y
cross-section. Table A.l gives this volume for each of the
five yield patterns of Fig. A.2. Table A.2 gives the values
of A. A.., a. a., for different values of i and j. It Ji ij Ji J
may be noted that the initially eight A, A, terms boillj ji
down to only four terms, namely, Q /(0*/0X ), Q /(0X/ ) >

x y 2 y
Q /(0y/0X ), and Q. as given in the table.3 y 4 y

The total integral Q [e/c + li dA for a n y  particularA y - J 2 D
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yield pattern (Fig. A.2) is evaluated as the sum of the
integrals for the four sides0 Table A.3 gives the specific
/'

form of Equation 3.7 for each yield pattern.
As can be seen from Table A,3, Equation 3.7 in all

cases reduces to an equation relating P/P to e /e ofy o y
the form

_ e 2 e
a + b (— )+ c (A.35)P e ey y y

where a, b, and c are coefficients depending upon the
cross-sectional dimensions and the particular values of
0 /0X and 0^ M X selected. If P/P , is specified, Equationy r  f y y
A,35 reduces to a quadratic equation in e /£ as given byo y

« 2a (_£) 4. b (_£) 4- (c - P ) = 0 (A. 36)G e Py y y
The solution of this equation.is

_jO _ - b ±  Jb - 4a(c - P/Py) 
e 2ay

(A.37)

except for a = 0 , in which case the solution is

-2 . - P/Pv )/be jy

Since increases algebraically with P, tbe sign wifcb tbe 
radical in Equation A.37 must be positive so that

e / 2 _
- r J S L *  ~ ialc j z ^ L Z l x l  (A.38)

e 2ay
After has been evaluated, the moments are found using
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Equations A ,8 and A.9, The first term in each of these 
equations is the moment if the section were to remain elastic, 
and the second term accounts for the yielded material in the 
section* Accordingly, these equations may be rewritten as

4  = €  - %  (1 5  [ T  * 13 ‘t  (a,39)My 0y i c A y D

y 4

. C  = t f  ± 1 ] «  (A,40)
My Tc t y Xc  h  V !>

For any particular yield pattern the values of the integrals
in Equations A.39 and A»40 are evaluated as the moments about
the x and y axes of the volumes of the [ ~  + 1 ] distribution

6y
on the section* It Should be noted that these equations are 
not applied until has been determined and consequently a 
particular yield pattern found* The form of Equations A,39 
and A«40 for each yield pattern is given in Tables A,4 and 
A.5, respectively,

\ To verify the validity of the relationships given in 
this appendix, a numerical integration procedure was also 
used* This was accomplished by dividing the column cross- 
section into a number of small elements and then summing-up 
the contribution of forces acting on each element to give 
the axial load P/P^ > and by taking moments of these forces 
about the centroidal axes of the cross-section to give the 
moments M*/M* and respectively.
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Table A.l - Volumes of Yielded Material

' * Case dA/D2

I 1CK, ( e . / e  + e . /e  -2+2e /e  ) 
I V  1 y  j  y  o ' y '

I I KnK. ("e. /e + e . / e  +2+2e /e  ) I V  i '  y  ,j y  o ' y '

I I I K K  [ ( e /e  ) 2/C, + ( e . / e  - l+ €  A. ,)e  / ( e  £ )+A. . ( e . / e  + l )  ] / 2I k '  o ' y '  ' vk  ' r  y  k  ij o' yb k ' i j  o' y  ' .

IV ICK, [~ (e  /e  )^ /p , -C e . /e  +1-6, A . . )e / ( e  6  ) + A . . ( e . / e  + l )  ] / 2~L V  ' o' y '  'mc v j ' y  k  j i '  o' y  k '  j i  o' y  '

V K K. [ ( e . / e  - e . / e  + £  A. .+£  A. . -2 )e  / ( e  0. )+A. . ( e \ / e  - l ) +  l i t 1'  i '  y  o' y  vk  i j  k  o i  o' v y V  i j v i y  '

*

A. . ("e . /e + l ) ] / 2  
0i o y

Numbers refer to Fig. A.2.
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Table A.2 - Various Forms of A... A ... a.., and aiJ ji iJ Ji
*Side

i
**Equations

1-3
k-2

3-1
^ 2 k ^ 2 . X ) / K k f ^ z / f

2-k

1-42
Als“A1.3=~ ( e!+1 )/K/ ' “ci3^3

2-1-1!
A2X=A3lt=(e2-:L)/K/ y”q‘t/|i,y3-1+

1-2 a12=( Q3-£o/K5V0y
2-1
1-3 ai3=(<W V /f!X
3-1 a3l=(̂ - %  /ty/l**
2-k

k-2

3-1+
l+_3

Numbers 1, 2, 3, and k refer to Fig. A.I.
-x-x- ,xAll strains are in terms of e and all curvatures are in'terms of 0 .y ry
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Table A . k - Equations for M*/M* for Various Yield Patterns
*Case **

(a) 0X+(l-a) ( K ^ / l ^ )  [K5(e3+€1|-e1-e2+U)+K1, -a^Cl-a^/3) (^ J O + a ^ d - a ^ / 3) (e3+l) -a2l̂ l-a2l/3) (eg- 

l)+a1+2(l-a1|2/3)(eJ++l) /2]

00 0X+(1h x)(K^/I*)[K5 (e3+ei|+2-a21(62-l)/2 +K^ - a ^ d - a ^ / 3 ) (G2-l)+a42(l-a42/3)(e j + l J + a ^ d - a ^

/ 3 ) ( y D  /2] '

(c) 0X-f(l-o:)(K;LKi|/rx )[K5 ^ ZL(e^l)/Z-&12^l)/&-^+ek+Z ( e ^ V s - a ^ d - a ^ )  ( e ^ l H a ^ U -  

a ^ / s X v 1^  1

(a) 0x+ (1-a) (K ^ / I x) [K^ a^2 (l-a42/3) (^ - H H a ^ d - a ^ / 3 )  (y l )  e ^ + 2 )  ]

(e) 0X+(lKO(K1K1/ r x)[fC5 -al2(e1+l)/2te3+e^+2 +K^ (e3- ^ )/ 3 - a ^ (l-a^/3) (^ +1)/2 ]

OVER*Letters refer to Fig. 2.8.
.y.y. ^All strains are in terms of e and all Curvatures are in terms of 0 .y

vouo
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Table A. 5 - Equations for My/M* for Various Yield Patterns

*Case

(a) f i l l e d  -a) (K^/T*) [K5( e1+63-e2-e4)/3+K4 ^ ( y l ^ C  e^l) -a^C ̂ -l) -a^(e^l) /2]

0>) 0yTy/T*+( 1-a)(K1K5/T^)[K5 -a21(l-a21/3)(e2-l)/2+(e3-e1|)/3 +K^ 

/2]

(c): 0yTy/T^+(l-a)(K1K5/T^)[K5 -a21(l-a21/3)(e2-l)/2+al2(l-a12/3)(61+l)/2+(e3-e4)/3 +K^ ^+ €3+2-
a2i|(e2-1)/2-a42(e]++1)/2 ]

(a) 0yry/T^+(l-a)(K1K5/Tj)[K1+ -a^2(^+l)+a31(e3+l) / a - K ^ - e ^ ]

(e) 0yIy/l^(l^)(K1K5/l^)[K5 8l2(l-a12/3)(61+l)/2+(e3-64)/3 +K4 e ^ e ^ - a ^ C ^ + l ) ^  ]

Letters refer to Fig. 2.8.
-x- ,xAll strains are in terms of e and all Curvatures are in terms of 0 .y ry

vovji
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Table A.5 - Conti’

*Case

(f) ^/Tj+d-a)(K^/T*)[K^(ei+e3-ei;-€2+lf)+K5 - a ^ d - a ^ / 3 ) (^ - D + a ^ a - a ^ / 3)(e3+l)-a^l- 

a2 1 ^  (V l)+a12(l'®i2^3) (Gl+l) /2l
(g) f j y j j^+(1_a)(KiK5/Tj)[K4 e3+e1+2-a2),(e2-l)/2 +K$ -»21(1-a21/3)(e2-i)+a12(l-al2/3)(e;L+l)+

a3^^-a3^/3)(€3+l) ^
00 (K^/T*) [K5 a ^ d - a ^ / 3 )  (e ^ l ) ^  (l-a^/3) (^+1) /2+K^C e ^ + 2) ]

(i) (K.K5/I^) [K5 -a21(l-a21/3) (e2"l)+a3l|(l-a3l/3) (^+l) /2+K^ -a^( ̂ - 1)+
»3l(e +1) /2]

(J) 1-a) (K^/T*) [Kua31+K5a3l;(l-a3)/3) 1 ( € ^1) /2

Letters refer to Fig. 2.8.

All strains are in terms of e and all Curvatures are in terms of 0 .
J  ■ y
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+ 1

I - Side Yielded 
in Tension

h II - Side Yielded
in Compression

III - Side Partially 
Yielded in 

A-.f^D Tension

IV - Side Partially 
Yielded in 
Compression

V - Side Yielded both 
in Tension and 
Compression

Fig. Ac 2 Correction Volumes for Various 
Side Yield Patterns
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NOMENCLATURE
a length of a typical element of the column deflection

j curve
a. .,a factors defining the length of tension or compress-,

ion yield on an edge
X  Ve ,ey eccentricities from the x and y axes respectively
i,i+l points on the column deflection curve
i,j corner of the edge under consideration
X  ■ Vr ■. radius of gyration about the x and y axes respec

tively
u ,v lateral displacements of the shear center in the

x and y directions respectively
z cordinate along the member
A area of the cross-section
c

D half depth of the cross-section
E Young's Modulus
E _ Tangent Modulus
I* , ! 7 moment of inertia of the cross-section about the

x and y axes respectively
K factor defining the wall thickness of the cross-
1 section in terms of D

K factor defining half the outside width of the
2 cross-section in terms of D

K factor defining half the inside width of the
cross-section in terms of D

K4 ,K factors describing dimensions of the center-line
5 of the cross-section in terms of D

h length of the column
M* , bending moments about the x and y axes respectively 
P axial load applied to the column
P yield loady
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£>( strain-hardening foactor of the material
s/ ratio of the y-moment to the x*»moment at the

same end of the column
£  Strain

bending strain
C  uniform normal strain
'- 'o

yield strain
rotations about the x and y axes respectively 
yield rotation 

CT  stress
0  ,0 * x and y axes curvatures
0 *  yield curvature
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