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ABSTRACT

The primary object of this thesis is to make a cdmprehensive study
on the transient behaviour of a dynamic system under unbalanced operations.
Encountered in our study are a set of differential equations with
coefficients containing periodic functions, and a method is proposed
for the solution of these‘equations. Our study is made complete by
investigating the system behaviour when the transients die out.

This dissertation contains.four chapters. The first chapter deals

. with the performance of a synchronous machine. With the use of matrix
algebra, the performance equations referred to moving reference axes,
a and B, are derived. In chapter II, the short circuit currents, result-
ing from a single~-phase short circuit of the synchronous machine, are
solved for by a proposed approximation technique. In chapter III, the
resulting phase quantities, open-phase voltages, sustained currents and
voltages, and short-circuit torque are found. Chapter IV is the conclu-
sion, discussing the merits and highlights of our transient analysis,
especially those of the proposed solution to differential equatioms
with periodic coefficients. Appendix A, following the conclusions, gives
the Fourier series expansion formulas pertinent to this thesis, while

Appendix B gives a list of symbols used throughout the thesis.

ii
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SUMMARY

Any system can be represented by a set of differential equations.
The system with which we are dealing 1s a power system -- in the form of
a synchronous machine -- which we will represent by a set of performance
eduations. To arrive at our set of performance equations, we will cut
out unnecessary labour by employing a strategic mathematical tool ~- tensor
analysis, in its grand concepts and broad generalizatioms.

Tensor analysis, first introduced by Gabriel Kron in 1935, has
become one of the most powerful analytical tobls and methods of analysis
in modern engineering. Its unsurpassed supremacy as a means of general-
izétion, its great unifying concepts, its beauty of expression, and the
ease with which it may be learned and applied, establish it as perhaps
the most powerful analytical tool at the disposal of the engineer.

More coﬁspicuous in the first chapter of this thesis, will be the
transformation tensor -— which expresses the relationship between old
coordinates or variables and new coordinates or variables -- plus the
use of matrix algebra which handles the routine operations involved in
the applications of tensor analysis.

Now, we begin our transient analysis of an unbalanced dynamic
system by considering as an example a line-to-neutral_éhort circuit on
our three~phase synchronous machine, and then solving the resulting
equations due to the short circuit. Because there is no direct method
available of solving these differential equations which have periodic
coefficients, an approximate method is proposed, using guccessive

approximations.
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The first approximation is to neglect all resistances in the
differential equations to be solved. Having integrated both sides of
each equation, the short circuit currents are solved for and expanded
into harmonic series. We should note at this point that the currents
just calculated must be initial short circuit currents, since neglecting
resistances is the same as computing the initial values.

The second approximation is to account for the presence of resist-
ances by multiplying each harmonic geries type in each current expression
by a decrement factor which is a function of time. Equations involving
the decrement factors are féund by substituting the new expressions for
currents into the pre#iously derived equations‘with periddic coefficients,
expanding'the trigonometric terms, and equating coefficients of
corresponding trigonometric terms oh both sides of the equatioms.

The third approximation is, in equating coefficients of trigono-
metric terms, to neglect the relatively small resistances in the
coefficients of the harmonic terms, and to retain them in the d.c. terms.

The abo§e process of approximation gives three independent equations
with the three unknown decrement factors. Having solved for the>decrement
factors, they are substituted into the previously derived expressions
for the short circuit currents. Hence the differential equations are
solved completeiy.

Complete expressions can now be written for the short=-circuit
currents, and consequently the phase-currents and voltages; and short-
circuit torque of the system can be found. A thorough analysis of the
system is not completed until we have studied the sustained (or steady-
state) currents, and voltages. The resulting electromagnetic action
and inter—-action involved leads to induced voltéges and electromagnetic

forces on particular elements of the system.

vi
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CHAPTER I

PERFORMANCE OF A THREE-PHASE SYNCHRONOUS MACHINE

Coordinate Transformations:

First of all, we will make a transformation from 3-phase (a,b,c) to
direct-quadrature~zero (i.e. d,q,0) axes, where the direct and quadrature
axes are defined as pole and interpolar axes respectively.

From the elementary diagram of a 3-phase machine,

* direct

| axis

. axis o phase b axis of phase a

uadralure
axss

._..__.
i
o

FIG.1

we have,

i, = »%‘ [ia cos@ + 1b cos (120 - 0) + 1c cos (240 - 6)] (1)

b

i -v}—zt[i 8ind -~ 1
q 3 |7a

s1n(120 - ©) - 1_ sin (240 - e)] (2)

The factor, j%—,- was first introduced by G. Kron so that the
armature circuit and the field will have reciprocal mutual inductance.
This will be evidenced later.

In general, under transient or unbalanced ‘condit:ions, 1, and 1q

are functions of time.
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To complete the analysis and to allow for conditions where, during
unbalance, there is current flow in the neutral of the armature, it is
necessary to define a zero-sequence current which is equal to /3 times
the conventional one of symmetrical components.

Hence, .
1
1, -/—3; (1, + 1, + 1c) (3)

The factor 1/v3 is introduced so that, under this transformation,
the power formula will remain both invariant in form and in magnitude.
In matrix form, the transformation from a,b,c to d,q,0, or vice

versa, i.e. [idqo] - [C:g‘:] [iabc], is

a b c
[quol - d /ZCOS 6 / 2z cos (6-120) /2 cos (6-240)
abe 3 3 3
q v/gsin ] @sin(ﬁ—lZO) % in(6-240)
o 1 1 1
£ £ 3
/ (4)
or conversely, ' d q o
[Cabc] - [quo]-l_ a v/~2: cos® /Zsine L
dqo abe 3 3 -1
- rndqo
g [c ]
abc't ‘
b Z cos (6-120) /Zsin(e-lzo) 1
3 cos( 3 5
¢| /2 cos(e-240)| /2 sin(o-240y| -
3 3 /3
(5)
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3.

dqo

Note: [e abe

ave) ™ (Capele(eqo]
For unsymmetrical short circuit cases (or cases of unmbalance), it is
more convenient to use a set of orthogonal moving reference axes, (a,B).
The a-axis is rigidly attached to phase a and the B-axis is the common
axis of both phases b and ¢. Consequently, we will transform our
stationary d-q-o axes ‘to the moving a-f-o axes.
The elementary diagram of a 3-phase machine with moving reference

axes 1s represented in the following manner:

Ad
I
I

FIG.2

where the displacement of the new axes from the stationary axes is 6(t),
a function of time.
From the diagram we find,

id - .ia cosf - iB siné T

iq - 10 sind + 18 cosod . (6)
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also io = io (i.e., remains unchanged)
In matrix notation, [idqo] = [ngg] [iuBo]
o B 0
and [quO] = 4! cosd |~ sin 6
aBo
q| sin® cos 8 0
o 0 0 1
or conversely,
d q o
afo dqo,-1
= - 0 in6 0
[quo] [Caso] o cos sin
= dqo
- [CaBo]t
g - giné cos®
0 0 0

4.

(7

(8)

Now, the transformation from a,f8,0 quantities back to phase (a,b,c)

quantities and vice versa is readily found as follows:

,[CGBOJ - [Caso] [quo]

abc” - dqo abc
d q 0
= cos8 isin6| O
B{~ sinbjcos6| O
o 0 0 1

a b c
/ig.cose /ﬁg.cos(e-lzo) /cgcos(e—zao)
-23-sin6 /% s1n(6~120) /—g-sin(e—zao)

1 1 1

V3 'K&) V3
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5.

. [caBo] a b C
* *Tabe
«| V275 | - U/ | - 1

B 0 -1/v2 1/7/2

9
ol 1//3 1/V3 1//3
and conversely,
o 8 o
abe afo.~1
[Coeg) = [Capel = @ V273 0 1/V3
b|=-1//6 | -1/V2 | 1/Y/3 (10)

el - 1//6 1/V2 | 1//3

Voltage~Current Relations in a-8-o0:

Now that we have obtained the tools (matrix tensors,[CD,'we can
develop the voltage-current relations in a,8,0 components:

aBof]

leggor) = [Zggof] [1 (11)

‘ - dqo
where [Zaso] [caBO] ¥4

dqo
e[Zgq0] 16 00] (12)

As we can see, we must first develop the voltage-current relations

in d,q,0 components, and then transform them in the above manner to

a,B,0.

* Now, with the general equations of induced voltage and armature
reaction applied to our synchronous machine, we have an equivalent

circuit3 (excluding damper circuits):
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6.

FIG.3
where, ¢d = Maf if + Ld id
% = Lq 1q (13)
¢c> = L o
The voltage-current equations in matrix form is
dqof
. - 14
[egqor) = [Zgqor) (177 (14)
wher_:e d q o - c
(Z4q0e) = -(R_+pL,) | -pL 8 0 —pM
q d a T Ply q Plaf
- 0
q pL,® (R, + qu)
o 0 0 v-(Ra + pLo)
(15)
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where p E—%E .

It can be readily verified that the given equivalent circuits
generally satisfy the machine performance equations and accurately
represent the actual synchronous machine.

Now, for the voltage-current relations in «,B,0 quantities:

dqof dqof

[Cosoflt [Zdaqof) [Capor

[zaBof] - ] (16), as before;

Utilizing our previously derived matrix tensors, [C],

d q 0
$ =
F! [zaBof] a | cosf | sind 0
' B |-sin6 | cosd | 0
x
o 0 0 1 0
f 0 0 0 1
d q o f
d -(Ra+ pLd) -que 0 —pMaf
q pL8 ~(R_+ qu) 0 pM_ 0
x

o 0 0 ~(R_+ pL_) 0 -
f 1::Maf 0 0 (Rf+ pof)
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o 3] (o)
d | cosé -8ind 0
q| sind cosf 0
x ;
o/l O 0 1 0
£f! 0 0 0 1
o 8 o f
[sine(pLde) =[sin (pLde) sine(pMafe)
-cose(Ra+pLd]cose - cos (Ra+pLd)]sin8 0 -cosepMaf
-[cose(que) ~[cos (que)
+ sine(Ra+qu)]sin6 + sin (Ra+qu)]cose
[sine(Ra+pLd) -[sine(Ra + pLd) sin@(pMaf)
+ cose(pLde)]cose + cose(pLde)]sine 0 +cose(pMaf6)
+[sin9(qu0) +[sin6(que)
- cose(Ra+qu)]sin9 - cose(Ra+qu)]cose
0 0 -(Ra+ pLo) 0
pMaf cosb - pMaf siné 0 - (Rf+ pof)

Note: (cos6 p - sinf pd) i =

(sin® P + cosd PO) 1 =

L. +L
A dzg

amd

p (cos6 1)

P (sind i)

B=Lg "Ly

2
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9.

o B o f

. '[zaBof] - q -[Ra+p(A + 3;05 29)] :p Bsin_2e -pMafcose
B P Bsin 26 ;-[Ra+(A-Bcos 26)] 0 pMafsine
o 0 0 -(R_+pL ) 0
f pMafcose -pMafsinO 0 (Rf+pof)

(17)
Now, [e goc] = [Zyg0] [1%°°F] (1D) |

Torque and Flux Expressions:

The torque and flux expressions are found thus:

The impedance matrix of our machiné may be broken down ipto three
component matriceslz |

(1) Resistance matrix, comprising all resistance terms

(2) Inductance matrix, compfising all'ﬁerms having p as a coefficient

(3) Torque matrix, comprising all terms having p6 as coefficient

Hence [Z ] = [RuB] + [LaB]p + [GaB]pe (18)

af

The torque equation is: T%[iaB] [GaB] [iaB] ‘ (19)

From the preceding page, we find

a 8 f
[Gan] = |'ginb cose_Ld -sinZO Ld
a 2 Maf sinb
=ginf cosf L -cos 0 L
q q
2
cos 6 L ~5in6® cos6 L
8 d d M 8
2 : .f €08
+ 8in“ 0 L +s8inf cosp L
q q
£) - M_. sin® - M . cos8 0
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10.

0 B f
= o |Bsin 26 - (A-Bcos 26) Maf sin6
A + Bcos 26| - Bsin 26 M _ cos®
B af (20)
f |- Maf sin® | - Maf cosb 0

. Bf
e (6 ) U =y ] = A - -
apf aBf o [A-B cos 26)1B Bsin 260 ia Mafsine if]
(cross~flux
vector) B! [A+ B cos 26)ia -~ Bsin 26 18 + Mafcose if]
f|- (Maf sinb ia + Maf cos® iB)
(21)
. af
- Te«[1i ] [waB]
« - {(A-B cos ze)iB - Bsin 260 1 - M_. sin® if}ia
+ {(A+B cos 26):[“ - Bsin 260 iB + Maf cos if}iB : (22)

Now, consider the general torque equation,

T « 3 x I, i.e. the vector product of flux-linkage and current

L1 A
i ‘
. : ,"‘
T (G +d) x A+ 1
belq = falp
or, T= K%g [¢Bia - ¢a18] : ) (23)

in which P = number of poles.
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11.

If M.K.S. units were used, K is equal to unity when the unit of
torque is the Newton-meter. If the torque is desired in pound-feet,
K = 550/746.

Comparing equations (23) and (22),

S ¢g> the B-axis flux linkage = -{(A - B cos 26)1B - Bsin 20 1

- M ¢ sind 1.} (24)
< ¢a, the a-axis flux linkage = -{(A + B cos 29)ia ~ Bsin 26 iB
+ Maf cosb if} (25)

Summary of Results:

Performance equations describing completely the physical facts
involved in a synchronous machine have been derived in the preceding
sections. Under any unbalanced operation conditions, having substituted
equation (17) into equation (11) it is possible to solve equations (11)
for the four unknown currents (ia’ iB’ io’ if). Then by using equations
(10), the phase currents (ia, : ic) méy be found. Substituting the
solved currents (ia’ iB, if) into equétions (24) and (25), gives the
R-axis and a-axis flux-linkages respectively. The torque can then be

found by equation (23), after substituting the current values (ia, i)

B
and the values of equations (24) and (25). Finally the voltages can
be found by simpl& differentiating the flux-linkage expressions with

respect’ to ¢t.
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CHAPTER IT

SOLUTION OF SHORT=-CIRCUIT CURRENTS

The single-phase short circuit of the synchronous machine

which we are investigating is a line-to-neutral short circuit:

'tso

{ Lb
SN\ &7 b
n
$ =
&
e

For such a case, as shown, with a short circuit on phase a, and the

machine unloaded, we have

e =0
a

ib = ic =0 (26)

In terms of o, B, o quantities defined by equations (9, 10), the

conditions for the present case become:

ia = v2/3 ia 27

s - L1 =Ty

° 3 /T (28)

iB =0 | (29)
12
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13.

e
e =_
a "2 (30)
V2
de
Constant synchronous speed is assumed so that ac = w; and the open
circuit voltages before short circuit are:
v
a = Ef sin (wt + 60)
= Ef 8inb (31)
v
b = Ef sin (6 - 120) (32)
v
c = Ef sin (8 - 240) (33)
where i = constant field current before short circuit

fo

60 = angle between a- and d- axes at t = 0
By equation (9), the a-~axis voltage before short circuit is,
/3
e my -~
o 5 Ef sin® (34)

After short circuit on phase a, the a-axis voltage is, from

equations (10) with short circuit condition, e = 0,

Sa=T= (30)
V2
e 3
e Aea, change in a-axis voltage = - — = /= Ef sinb (35)
] Y2 2

The effect of the short circuit on phase a is simulated by applying

Aea to the armature with field voltage €, equal to zero. To simplify the

f
analysis we will assume that the machine has no damper circuits. Then

= i
by substituting Aea e, iB = 0, io -.;% and ef = 0, the voltage~
2

current differential equations (17) become

3
-//;— Ef sind = -~ pMaf cost if - [Ra + p(A+Bcos 20)] ia

e
]
2 (36)
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14.

€ = !
] -(RO + pLO) 10

- Iy 37
(Ro + pLO{_ig | (37)
V2
0= (Rf + pof)if + pMaf cosb ia (38)

where R, = R + 3R , L' =L + 3L ,
o a q’ "o o q
and, Rq and Lq represent resistance and reactance from neutral to ground.

Simplifying above equations,

’

3 L
//; Ef ginf = pMaf cosf if + [r + p(A + 32'+ Bcos 28)] ia
' (39)
where r = R+ R
a _o
2
0 - (Rf + pof)if + pMaf cosb ia (38)

The short-circuit currents due to fault are the solutions of the

above equations (38) and (39).

Approximate Solution:

The coefficients in équations (38, 39) are not constant and it is
practically impossible to find an exact solution. Hoﬁevér, an approximate
solution can be obtained by successive approximations.

As a first approximation, we neglect all the resistances and

integrate equations (38, 39) between the limits eo and © to give

— - t ] ,
v3/2 Ef (cos8 coseo) Maf cos® if + (A +.EQ + Bcos 26)ia
w 2
(40)
0= Lff if + Maf cosb icl (41)
or if = —Maf cosf ia (42)
Leg

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15.

Solving above equations simultaneously, the short-circuit currents

due to the fault are
/6_Ef "(cosb - coseb)

i B e
\ a ] [} - [} 43
(xcl + xq) + (xd xq) cos 26 + X! (43)

.. if - @Maf Ef (cosb -‘coseo) cosb
T . ' . — (44)
ff (Xd + xq) o+ (Xd - Xq) cos 26 + XO
whéré X' = ol
“o o
2
X! = WL, - Jaf )
d d 'f-—
ff
) X = wL
q q
Re-writing above current expressions,
ol ia - - /6 Ef (cosb - coseo) (45)
(A' +B') + (A' - B') cos 20
i, = J6 M. E (cosb - coseo) cosb o |

Lee 4" +3) + (A’ - B') cos 20

where A = X+ X
d 0

2
B = X/ + x/
) q _o°
2
Applying the mathematical expressions (i.e. Fourier series

expansion formulas) given in Appendix A, the currents of above

equations (45, 46) may be resolved into the harmonic series:

ia = - /6 Ef v cosb + z " cos(2n + 1) 6
———— n=1
A’ + A’B’
+ /6 E; cosé [}- +] b cos ZnGjI (47)
0 2 n=1
YA’ B’
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lo.

.. (¢
and 1= /& Mar B J1+@+b) T =b® cos 2a 6
2 Lee A 4+ ATH b n=1
- %E: Maf Ef coseo (1 +b) | cosb + z 1% cos(2n + 1)6
2 Lee mm | n=1
(48)
where b = VB - /AT . YATB - A
/BT + /AT YA'B + A (49)

Equations (47, 48) show that there is an unending series of reflec-
tion between afmature and field. The odd-harmonic series for the armature
current corresponds to an even-harmonic series for the field-current
components, while the even harmonics series for the arﬁature current
corresponds to an odd-harmonic series qf field current components.

The currents calculated above must be the initial short circuit
currents, since neglecting resistances is the same as computing the
initial values.

The second appréximation is to make a correction for resistance by
considering that the current components may be affected gradually by the
effect of d.c. resistance drops. Hence the presence of resistance
is effected by multiplying each harmonic series in each current expression
by a decrement factor which is a function of time. In doing this, it
is assumed that all harmonic terms of the same series are subject to a
decrement factof with the same timé constant.

In general form the currents may be thusly modified:

iy = - /g'Ef Fl(t) [%ose + z 1bn cos(2n +1)6
n.
A+ JATBT
+ /6 E; cosb_ F,(t) |2+ ] b™ cos 2n 0 (50)
o 2 2 n=1
VAT
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@
1, = I.(t) + /6 “af F () |1+ (1+b) §b" cos2n @
2Lee A+ JATBY | b n=l
- B Mar Be o088 o 14 F,(t) | cosé + Y b" cos(2n+l)8
2Lee AT n=1
(51)

where Fl(t) and Fz(t) are decrement factors,
and If(t) is a transient d.c. component introduced to include the

effect of field resistance.

It is readily seen that the values of Fl, F2 and If at t = 0 are
unity, unity and zero respectively.

In 'closed form', the currents may be written as:

Qo

_ /6 E; (F; cosb - F, cosé ) (52)

(A" + BY) + (A - B') cos 26

=T + /g'Maf Ef (F1 cosbh - F2 cosGo) cosH

i
f f I

ff (A" + B') + (A - B’) cos 26

The three unknown factors can be found by substituting equations
(50, 51) into the differential equations (38, 39), expanding the
trigonometric expressions, and equating coefficients of corresponding
terms on both sides of the equatioms.

In equating coefficients, we can make a third-app{oximation -~ that
of neglecting the relatively small resistances in the coefficients of
harmonic terms (i.e. r << wL), but retaining the resistances in the d.c.
terms. This process results in many conditional equations for the three
unkno&n current factors. However, it has been found that only three of

the conditional equations are non-redundant -~ hence independent, whereas

the others are superfluous and furnish the same information.
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More explicitly:
First, on substitution of equations (50) and (51) into equation (38),

and noting that equation (51) for if is more feasible in this form

1, = 1.(t) - Taf cosb 1, (54)
£ e 4 i——' o
£f
we get
M
0= (R + pL.)I. - Rf —af cosb 1
Leg
M
= (Re + pL )T, + R, Egi 372 E Fl(l + (1 +b) cos 26
ff |A’ + /AB”

+ b(l + b) cos 46 + ....y

_ v3/2 Ef coseo F2 (Kl + b) cos® + b(L + b) cos 30 +r
/A7 B’
(55)
Equating the coefficients of the constant terms on both sides of
the above equation and remembering to neglect the resistances in the
coefficients of the harmonic terms but retaining them in the d.c.
terms, we have:
0 = (R, + pL.)I. + R

M. /3/2E, F

Lee A + /&7B°

£ 1 (56)

Our second substitution, is that of equations (50) and (54) into
equation (39), and the result is,

- - 2 2
v3/2 E; sinf = pM_. cos® I - pM_.° cos®®

£
Lee
+ [r+p(A + L]+ Beos 20)14
2 .
PM_. cosd I + {% + p(A +‘;2'+ {B-Mafz}cos 20
7L

- 2

Maf ) ia

2Leg
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~ ‘Continuing,
[‘_g_ E; 8in6 = pM  cosd I, -r Y6 E.  F
A" + /A'BY

[cos® + b cos 36 + b2cos 56 +eeee]

+r v/6_Ef cosb_ F, E--J-b cos 20 + b2 cos 48 + J

2
/B
1+ pA \/6_Ef {—Fl cos® + b cos 36 + b2 cos 56 +....]
[ S |
A’ + /A'B :
+coseo F2 [—;—+b cos 20 + b2 cos 46 +...]}
VA" B’ '
+pLO/6_Ef {- Fl cosf + b cos 36 + b2 cos 56 +....]
2 A" +/ETE
4+ cos F l+b cos 20 + b2 cos 48 +....
S0 "2 2 ‘
YA’ B/
2 _ 1
_PM_. /EEf{ F) cos® + b cos 36 +....
2Lge A’ + /AP’
+ cosf F l+b cos 20 + ....
o 2 2
VA’ B/ -
+pB /6_Ef {- Fl‘ . El 4+ b) cos8 + (1 + b%)cos 36
2 A" +VA'B’

+ b(1 + b%)cos 56 +...]

+ cos o F2 E-&-(l + b%)cos 206 + b(1 + b2) cos 46 +...]

JYA7T BT

- ' + b 0 Feees
pMaf§ /6—Ef Fl El Yecos ] -+
4L, A+ YA B
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+ cosé _F, E) + (1 + b2) cos 26 +J

YA B (57)
Being careful to note,that,for example, pMgf cosfIlg(t)s= —wMy e If sin®
+ Maf cos® plf, we can proceed to equate coefficients of the sind terms on

both sides of equation (57).

Hence,
/3/2.Ef--mafm1f+/€AEf wFl+/€_1_.2Ef w F,
A' + 'l/A‘B' __..2____..
A+ /AT
- 2
/EMaf - Eg wFl+/6"%Ef(1+b) w Fy
2Lff A' +/A'B’ A' + /A'B’
- 2
/é'Maf Eg (1+b) w Fy
41‘ff A+ VAR
2
or "‘/3/2Ef"‘“‘MafIf",‘”‘/6_Ef A+_I_‘_'Q-Maf + B (1 +0b)
A + /AT 2 2 2
2
Mt 1+ F
4L 1
ff (58)

Equating the coefficients of the constant terms on both sides of

equation (57), we have:

L.l
0 . r /gEf c:ose0 F2 +p F2 A /gEf coseo +_2_c_>_ /6—Ef coseo
2 V/A"B! 2 /ATB!

2 V/A'B!

M 2 /6 E. coso B /6 E. b cosb M .2 V6 E.b cosb
af £ 0 f o~ a f o)

+ £
Lee o D 9 JAB ALgg VA" B

¢

2
or 0-rF2+pF2 Q&+L0-Maf (1+D) +bB)

2 2L

£5 (59)

The three equations (56), (58) and (59) just found, to determine

the unknowns, are the independent equations, and are simplified to give:
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0= (R +pL,) T (t) +R M . V3/ZE, F,(t)

(60)
Lee & + /ATH
- v3/2 Ef = Maf If(t) - V3/2 Ef Fl(t) (61)
0 = r-Fz(t) + p Fz(t) VA’B/ (62)
V]
Solving for Fz(t), noting that FZ(O) =1,
- T
S F,y () =8 /7, (63)
‘/ (a1
where T = A'B. . armature time constant
a wr
Define YA B = X, + 0.5 x; :

Solving for Fl(t) and If(t) simultaneously, noting that Fl(O) = 1

and 1.(0) = 0,

. = [ / - / - ’T/
e Fl(t) Xd + Xo+ x2 Xd Xd e t/ d +1| (64)
’ /& ’ 8
Xd+XO+X2 Xd+X0+X2
. -t/tl .
and .". I_.(t) = Vv3/2 E. X, - X d o
f £ d d e 1 (65)
7
w Maf Xd + Xo + X2
-t/t!
or = ¥3/2 Ec M_, 1 e d-1
—_— !
Lff Xd + Xo + X2
T = T/ [4 /
where d do (Xd + Xo + X2
/
(Xd + Xo + X2
= Field time constant
T/ = =
do Lff open circuit field time constant
f
= /AT F X)X FXY -0.5x7
X2 4 + _é q T X 0.5 Xc (66)
2 2
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The final approximate current expressions in 'open form' become:

: -t/t’
= - /_E [_/ 1 _ 1 d
TFXIFX, X t X +X
d o 2
+ 1 cos + z b" cos (2n + 1)6
4 =
Xd + XO + X2 n=l
¢ .n _t/Ta
" /€Ef cos 0.5 + Z b cos 2n8 | € (67)
X, + 0.5 X n=1
(o)
- | -t/17 _ ]
io=di. +V32 M Ef[e d-1
Lff Xd + Xc’> + X2
+ V372 M . E, V 1 _ 1 e
’ / /
Les k{d+xo+x2 X, + X +X
+ 1 1+§1+b22b cos 2nd
- X, + X+ X n=]1
d o 2
. © t/T .
- V372 Maf Ef coseo (1 + b) cosb + Z n(:os(2n-!-1)€:-l a
Lff X2 + 0.5 X(’) (68)

where ifo is initial d.c. value of field current.

Applying the formulas from Appendix A, the preceding expressions

for current can be written in 'closed form' as:

i =-/6 E. [F; cosé - F, cos® ]

/ 4 /- /
Xd Xq + (Xd Xq) cos 26 + XO

(69)

PR -

1 =% X X (X - X] e +1
2 / /

X, + X+ X, \X{+X/+%,

o]
]

where

- ’ o w? YR -t/T
KgrEgr X 4 [1-x] XX, T
4 7
Xd+X°+X2 Xd+X°+X2
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-t/ T
v3/2 Maf E <}2 d_1 + Z(Fl cosf - cmcseo)cose

i =1 +
£ Tfo A+ X+ %, o , s
Lff d o Xd + Xq +(Xd - Xq)cos + Xo
(70)
or = ifo + If - Maf cos8 id (70 a)
Leg

Summary of Results:

The short circuit currents have been solved for in the foregoing
sections. The complete expressions for the currents (ia’ if) are given
by equations (67) and (68). The voltage-current differential equations
resulting from the unbalance (i.e. short eircuit), that were solved by an

approximate method, are given by equations (38) and (39).
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CHAPTER III
PHASE CURRENTS, SHORT-CIRCUIT TORQUE AND
OPEN CIRCUIT VOLTAGE

Phase Current:

All the phase currents for the line~to-neutral short circuit may be

readily obtained by equations (9,10); since iB = ic = 0 and io = ig
- V2
.« . ia =/[§ ia = phase ~ a current 27)
From equation (69),
/
C.oi=-3E, ( 1 _ 1 >et/Td
a 7 7 7
Xd+X°+X2 Xd+Xo+X2
| n
+ 1 cosb + n=lb (2n+ 1)8
,
Xd+Xo+X2‘
A /7,
+ 3 Ef coseo 0.5 + n=1b cos Zné] e ) (71)
X+0-5XI -
2 o
or, in 'closed form',
iﬂ =~ 3 Ef [F1 cosb - F2 coseo] (72)
’ 4 /’
Xd + Xq +(Xd - Xq)cos 20 + Xo

where F1 and‘F2 are given by equations (64) and (63).

Open-Circuit Voltage:

The open-~phase voltage is - e _which equals, by equations (9),
% T %

- /2 eB, and we know that eB = - d¢B .
dt

The B-axis flux linkage for the present case is, by equation (24)

¢B = B gin 26 i, + Maf if sin6 (73)

24
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Substituting equations (50) and (70 a)-- for iq, if-- into above

equation (73), and rearranging a few terms, there results,

1 x- . Jﬁi | .
¢B=2 - g sin 26 1a+ 2 Ef F1 sin 0
(V]
- X7 - X sin 20 [V6 E_ F [cos® + b cos 36
2 “d q £ 1
w A + VA'B’ + b2 cos 50 +....]
- /6 E; cosb_ F, [0.5+Db cos 26 + b2 cos 46 +....E>?
VA'B’ |
+ V372 E, | sin 0
w
= - : i - 12
3/2 Ef I‘1 (Xd XSL)_ [(1-b)sin® + (1-b%)sin 30
20 (A + /ATB' ) + b(1-b2) sin 50 +....]

+ /372 2 E. F, cosf_ (xé - xq) (1-b2) [sin 26 + b sin 46

2w VA'B” + b2 sin 60 +...]

+ v3/2 Ef Fl sin (74) |

w
Simplifying, we get

¢g = /372 E; F, (1+b) [sin® + b sin 36 + b2 sin 56 +....]
w
- 2v 372 Ep F, cos®_ [sin 20 + b sin 46 + b2 sin 66 +....]

W

- (75)
By differentiation we have the open-phase voltage:
eb-ec=-/2—e8=/2— E?i.@
dt

= - -t/

/‘Ef(x x)(LH» e d

w’t' (X + X + Xz)

[sin® + b sin 36 + b2 sin 50 +....]

UNIVERSITY OF WINDSOR LIBRARY ) 354/ %
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-t/
+2b /3 E_ cos8_ @ 2 [sin 20 + b sin 46 + b2 sin 66 +...]

w T
a
+ /g'Ef F1 (L + b) [cosO + 3b cos 36 + 5b2 cos 50 +...]

- 4b JBTEf F, cosd_ [cos 20 + 2b cos 46 + 3b2 cos 66 +...]

2
(76)
From equations (71) and (70), the sustained armature and field

currents are:

ia = - 3 Ef , [cos® + b cos 30 + b2 cos 50 +...]
/
Xg+ X+ X, an
= 2
if ifo + v¥3/2 Maf Ef (1+E? [cos 26 + b cos 40 + b* cos 60 +...]
L X, + X +X
ff d o 2 (78)

Also, from equation (76), the sustained open-phase voltage is:

e - ec=/§Ef 2x2+x; l:cose+3b cos 36 + 5b2 sin se+...]

b
’
X, + X+ X

2 (79) |
vWe see that the armature current and voltage contain a fundamental

frequency component and odd harmonics, while the field current contains

even harmonics.
As the ;bsolute value of b is less than unity, each succeeding harmonic

is less than the preceding one, and when b is small the higher harmonics
may be neglected.

The equations (77), (79) above, show that the fundamental frequency
components of armature current and voltages are the same as those calculated
by the method of symmetrical components. The quantity X2 is defined as

the negative sequence reactance for the line-to-neutral case, where

X

= 17-Y 2 - 7 7 7y - /
) G o.sxo /(xd+§2)(xq+z<_g) o.sxo.

2 2
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The general torque equation, developed in Chapter I, for the present

case (line-to-neutral short circuit case) reduces to

Tn T KB 41, (50)

Short—-Circuit Torque:

Substituting the values of ¢B and ia as given by equations (74) and
(52) into above equation (80), gives the following expression for the

short-circuit torque:

Tl-n

/ ‘/ . .
= K3P<']é" Xd - Xg gin 26 ia + 3/2 Ef Fl Slne) 1(1
4 w o

- 2 g _ .
IZZP {3 EZ F, (F, cos6 - F, cosd ) sind

(A’ + 8’) + (A - B’) cos 26

-/ - 2
+ er Xd [V/6 Ef(F1 cos® F2 coseo)] sin 26

2 B’) cos 20]2

[(a” B) + (&7 8

With the aid of trigonometric expansions plus the expansion formulas
given in Appendix A, the above equation (81) is resolved into Fourier

series to yield,

- - 2
Tlrn K3P 3 Ef {%le coseo [sind + 3b sin 36 +
/ rd
bw (A7 + VA’B") 4+ 5b2 sin 50 +...]
+ Fi /AR’ - F% A=~ /ATRY coszeo
A’ + A B/ VA’ B

[sin 26 + 2b sin 46 + 3b2 sin 69 +...]}

orx

— 2 . . 2
T[-n K3P. 3 Ef Fle coseo[31n6 + 3b sin 36 +5b“ sin 56 +..]

7 7
4w(Xd + Xo + X2)
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+ Fi(xz + 0.5Xé) - F% (XJ - Xz) c0326°

e ———————————————

’ ’ /
Xd+XQ+X2 X2+0.5 Xo

] 2
[sin 26 + 2b sin 46 + 3b2 sin 60 +...]} (82)

Summary of Results:

The ﬁhase currents have been found, by substituting equation (69)
into equation (27), of the preceding chapter, and are given by equations f
(26) and (71). The open-phase voltage is given by equation (76), after
differentiating equation (73) and employing the substituted values of
equations (50) and (70 a). Substituting eqﬁations (74) and (52) into
equation (80) gave the equation (81) for short-circuit torque. The
sustained currents and voltages have been found (by letting time t

approach infinity), and are given by equations (77, 78, 79).
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CHAPTER 1V
CONCLUSIONS

In this dissertation, we have accomplished the following. We have
derived differential equations that can be used to solve any number of
problems of synchronous machines under unbalanced and transient conditiomns,
and have developed new and complete expressioﬁs for armature and field
currents of an alternator for a line-to-neutral fault. Most important,
we have developed a new method for an approximate solution of differential
equations with coefficients containing periodic functions and a small
parameter. Lastly, but by no means least of all, we have paved the way
for a complete and comprehensive investigation of our unbalanced system by
considering the electro-magnetic action and inter—action involved.

In developing our performance equations, the matrix-tensor technique
utilized proved to be a remarkably powerful and excellent tool for the study
of electrical systems such as ours. It exhibited a clear-cut interpretation
and understanding of the underlying physical phenomena in question. The
transformation tensors proved to be labour-saving devices, as they were
found to evolve quite naturally and painlessly, and required no great amount
of mathematical knowledge.

Our developed method for an approximate solution to 'differential
equations with coefficients containing periodic functions and a small
parameter' is different from that given by any other authqr, and reveals

more accurate answers to the case under investigation. The mathematical
analysis, using our method of successive approximations plus Fourier series
expansions, seems to be an effective, fool-proof and direct method to
obtain the correct answer to the problem., There is no reason to doubt

that the proposed method for solution to our problem is useful not only

to machine analysis,‘but to other problems involved in other dynamic

29 IINVERCITY A IUnenD ! IRBARY
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systems in which equations of a similar type are involved.

Finally, our investigation leads us to an encounter with electro-
magnetics. Firstly, as a result of a current-carrying coil (i.e. the
phase a armature coil with its sustained current) in a magnetic field
(due to the sustained current in the field coil), a force or more precisely,
a torque is produced on the armature coil. Secondly, with both current-
carrying coils (i.e. armature and field) in close proximity, a force
develops between them. Thirdly, the current flowing in the phase a
armature coil causes a voltage to be induced in the open-phase armature
coils. Hence, an extensive study of such electro-magnetic actions and

inter—-actions completes a thorough investigation of our system in question.
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APPENDIX A

The Mathematical Expressions necessary for the Series expansion are

sinb
x+y+ (x=-y) cos 26

= 1 [sin6 + b sin 36 + b2 sin 50 + b3 sin 70 +...]

y + /;; (A-1)

where b = ¢§'— Vx = /§§'- X (A-2)
vy + vx Xy + x

cos®
Xx+y+ (x -y) cos 26

= 1 [cos6 + b cos 36 + b2 cos 56 +....] (A=3)
x + /;;

1
x+y+ (x~-1y) cos 286

L [0.5+ b cos 26 + b2 cos 40 + ....] (A-4)
Vxy :

31
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APPENDIX B

LIST OF SYMBOLS

a, b, ¢ axes - . 3-phase axes

d, q, o axes - direct, quadrature, zero axes respectively
o, B, 0o axes - orthogonal moving reference axes

ia’ iB’ ic - instantaneous phase currents

id’ iq, io - direct, quadrature and zero components of current
e . e e

a’ b’ ¢ - open phase voltages

Vv, V., V.

("a, 'b, "¢)
e.,e ,e - direct, quadrature and zero axes components
d’> q o

of armature voltage

ea’ QB - moving axes components of voltage

¢d’ ¢q, ¢o - direct, quadrature, zero axes flux linkages
L ¢B - a~axis, B-axis flux linkages

6(t) - angular displacement of o and B axes from

d and g axes, respectively

w - synchronous speed, 2nf

Ra - armature resistance per phase

Rf B - field resistance

XO = wLo - zero sequence reactance

Xd = QLd | - . synchronous reactance, direct axis

Xq = wlL - synchronous reactance, quadrature axis

Xaf = wMaf - mutual reactance between direct axis armature

circuit and mainfield ceircuit

32
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= - field reactance
Xff “Lff i
T - torque, 3-phase
T - armature time constant
a
ta - field time constant
Rg - resistance from neutral to ground
Lg ‘ - inductance from neutral to ground
P - number of poles
p - d

dt
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