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ABSTRACT

The primary object of this thesis is to make a comprehensive study 

on the transient behaviour of a dynamic system under unbalanced operations. 

Encountered In our study are a set of differential equations with 

coefficients containing periodic functions, and a method Is proposed 

for the solution of these equations. Our study Is made complete by 
Investigating the system behaviour when the transients die out.

This dissertation contains four chapters. The first chapter deals 
with the performance of a synchronous machine. With the use of matrix 

algebra, the performance equations referred to moving reference axes,

0 and B, are derived. In chapter II, the short circuit currents, result­

ing from a slngle-phase short circuit of the synchronous machine, are 
solved for by a proposed approximation technique. In chapter III, the 

resulting phase quantities, open-phase voltages, sustained currents and 

voltages, and short-circuit torque are found. Chapter IV Is the conclu­
sion, discussing the merits and highlights of our transient analysis, 

especially those of the proposed solution to differential equations 

with periodic coefficients. Appendix A, following the conclusions, gives 

the Fourier series expansion formulas pertinent to this thesis, while 
Appendix B gives a list of symbols used throughout the thesis.

11
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SUMMARY

Any system can be represented by a set of differential equations.

The system with which we are dealing is a power system —  in the form of

a synchronous machine —  which we will represent by a set of performance

equations. To arrive at our set of performance equations, we will cut 
out unnecessary labour by employing a strategic mathematical tool —  tensor 
analysis, In Its grand concepts and broad generalizations.

Tensor analysis, first Introduced by Gabriel Kron In 1935, has 
become one of the most powerful analytical tools and methods of analysis 

In modem engineering. Its unsurpassed supremacy as a means of general­

ization, Its great unifying concepts. Its beauty of expression, and the 
ease with which It may be learned and applied, establish It as perhaps 

the most powerful analytical tool at the disposal of the engineer.
More conspicuous In the first chapter of this thesis, will be the 

transformation tensor —  which expresses the relationship between old
coordinates or variables and new coordinates or variables —  plus the

use of matrix algebra which handles the routine operations Involved In 
the applications of tensor analysis.

Now, we begin our transient analysis of an unbalanced dynamic 

system by considering as an example a line-to-neutral short circuit on
our three-phase synchronous machine, and then solving the resulting 
equations due to the short circuit. Because there Is no direct method 
available of solving these differential equations which have periodic 
coefficients, an approximate method Is proposed, using successive 

approximations.
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The first approximation Is to neglect all resistances In the 

differential equations to be solved. Having Integrated both sides of 

each equation, the short circuit currents are solved for and expanded 

Into harmonic series. We should note at this point that the currents 

just calculated must be Initial short circuit currents, since neglecting 

resistances Is the same as computing the Initial values.

The second approximation Is to account for the presence of resist­

ances by multiplying each harmonic series type In each current expression 

by a decrement factor which Is a function of time. Equations Involving 
the decrement factors are found by substituting the new expressions for 

currents Into the previously derived equations with periodic coefficients, 

expanding the trigonometric terms, and equating coefficients of 

corresponding trigonometric terms on both sides of the equations.

The third approximation is, in equating coefficients of trigono­

metric terms, to neglect the relatively small resistances In the 

coefficients of the harmonic terms, and to retain them In the d.c. terms.

The above process of approximation gives three Independent equations 

with the three unknown decrement factors. Having solved for the decrement 
factors, they are substituted Into the previously derived expressions 

for the short circuit currents. Hence the differential equations are 

solved completely.

Complete expressions can now be written for the short-circuit
currents, and consequently the phase—currents and voltages, and short— 

circuit torque of the system can be found. A thorough analysis of the 

system Is not completed until we have studied the sustained (or steady- 

state) currents, and voltages. The resulting electromagnetic action 
and Inter-actlon Involved leads to Induced voltages and electromagnetic 
forces on particular elements of the system.

vl
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CHAPTER I

PERFORMANCE OF A THREE-PHASE SYNCHRONOUS MACHINE 

Coordinate Trans f ormatIons ;

First of all, we will make a transformation from 3-phase (a,b,c) to 

direct-quadrature-zero (i.e. d,q,0) axes, where the direct and quadrature 
axes are defined as pole and interpolar axes respectively.

From the elementary diagram of a 3-phase machine.

I  (u u *  Y  fktLSa e

FIG.l
we have.

i COS0 + i, cos(120 - 0) + i cos(240 - 0) a o c

i sin0 - i, sin(120 - 0) - i sin(240 - 0) a D c

(1)

(2)

The factor, /y, was first introduced by G. Kron so that the 

armature circuit and the field will have reciprocal mutual inductance. 

This will be evidenced later.
In general, under transient or unbalanced conditions, i^ and i^ 

are functions of time.
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To complete the analysis and to allow for conditions where, during 

unbalance, there is current flow in the neutral of the armature, it is 

necessary to define a zero-sequence current which is equal to /3 times 

the conventional one of symmetrical components.
Hence,

-/= (1. + lb + »>

The factor 1//J is introduced so that, under this transformation, 

the power formula will remain both invariant in form and in magnitude.

In matrix form, the transformation from a,b,c to d,q,o, or vice

versa, i.e. [1****°] - [C^®]

a

, Is

b c

f Y/ cos 6 cos (6-120) /|~ cos (0-240)

q / y  sin 6 8in(e-120) sin(0-24O)

o 1 1
/I

or conversely,
!

d q o
(4)

a COS0 sin0 _1
/3

b ^  COS(0-120) / j  sin(0-120) _1
/3

c  ̂COS(0-240) / j  sin(0-240)
/3

(5)
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3.

Note:

For unsymmetrical short circuit cases (or cases of unbalance), it is 
more convenient to use a set of orthogonal moving reference axes, (o,B). 
The a-axis is rigidly attached to phase ^  and the g-axis is the common 

axis of both phases ^  and jc. Consequently, we will transform our 

stationary d-q-o axes to the moving o-g-o axes.

The elementary diagram of a 3-phase machine with moving reference 

axes is represented in the following manner:

«

FIG. 2

where the displacement of the new axes from the stationary axes is 8(t),

a function of time.
From the diagram we find.

ij - i COS0 - i. sinG d o 3
i - 1 sin© + i. cos©q a 6 (6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



also i = i (i.e., remains unchanged)o o ■'

In matrix notation, [i^^°] = [i°®°]

4.

and COS0 - sin © 0

sin© cos © 0

0 0 1

(7)

or conversely.

cos© sin© 0

- sin© cos© 0

0 0 1

(8)

Now, the transformation from a,6,o quantities back to phase (a,b,c) 

quantities and vice versa is readily found as follows:

d q o a b c
cos© sin© 0 d cos© / |  cos (©-120) >y^os (©-240)

- sin© cos© 0 X q sin© / |  sin(©-120) /^in(0-24O)

0 0 1 o 1
/T

1
/I

1

/3
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5.

l e t '
a Æ/3 - 1//6 - 1//6

0 - 1/v^ 1//2

1//3 1//3 1//3

(9)

and conversely.
a B o

f C '  ■ ' C ' "  - ' m 0 1//3

b - 1//6 - 1//2 1//3

c - 1//6 1//2 1//3

(10)

Voltage-Current Relations in o-g-o:

Now that we have obtained the tools (matrix tensors,[C]), we can 

develop the voltage-current relations in a,6,o components;

.h«e

(11) 

(12)

As we can see, we must first develop the voltage-current relations 

in d,q,o components, and then transform them in the above manner to 
a,g,o.

Now, with the general equations of induced voltage and armature
reaction applied to our synchronous machine, we have an equivalent 

3circuit (excluding damper circuits):
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6.

-Q-Q-ûi - -----------
t

«XfS

FIG.3

vhere, i, + Lj ij

♦o ■ '-o ^
The voltage-current equations in matrix form is

'%of' - '%ofl

where

(13)

(14)

d q o f
^^dqof^ " d + PLj) -pL^e 0 ■P“af

q pLd9 + PLq) 0

o 0 0 -(*a + pV

f P \ f 0 0 (5f + pL^j)
(15)
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7.

where p d̂t •
It can be readily verified that the given equivalent circuits 

generally satisfy the machine performance equations and accurately 

represent the actual synchronous machine.

Now, for the voltage-current relations in 0,6,0 quantities:

■ ' Æ f l t  (IG). “

Utilizing our previously derived matrix tensors, [C],

d q 0 f

* ■ “ cos 6 sin6 0

6 -sin0 cos 6 0

0 0 0 1 0

f 0 0 0 1

d q 0

d -(R,+ pL,) -PLq® 0 -■’"af

q p^d® - - < v  p\) 0 "“af®

0 0 0 P^o) 0

f P \f 0 0 (R,+ PLjP

X
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8.

COS0 -sln0 0 0

sin0 COS0 0 0

0 0 1 0

0 0 0 1

[sin0(pL^0) -[sin (pL^e) sin0(pM^^0)
=  a -cos 0(R^+pLj]cos 0 - cos (R^+pLj) ]sin8 0 -cos0pM^j

-[cos0(pLq0) -[cos (pL^e)

+ sin0(R +pL )]sin0 a q + sin (R +pL )]cosâ a q

[sin0(R^+pLj) -[sin0(R^ + pLj) sin0(pM^^)

6
+ cos0(pLj0)]cos6 + cos0(pLj0)]sin6

0 +cos0(pM^^0)
+[sin0(pLq6) +[sin0(pLq6)

- cos0(R +pL )]sin0 a q - cos0(R +pL )]cos6 a q

o 0 0 -(R^+ pL^) 0

f pM^2 COS0 - pM^£ sin0 0 * (R^+ pLfg)

Note; (cos6 p - sin0 p0) i

(sin6 P + COS0 P0) i

amd A - ^d , B

“ p (cosO i) 

• P (sln0 i)
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9.

a 6 o f

-'-''aeof' ■ “ -[Rg+p(A + Bcos 26)] p. Bsin 20 0 -pM^^cos0

6 p Bsin 20 -[R^+(A-Bcos 20)] 0 pM^^sinO

o 0 0 -(R^+pLo) 0

f pM^gCOS0 -pM -sin0 at 0 (Rg+pL^g)

»“ '• ■ (Z.eofl (U)
(17)

Torque and Flux Expressions;
The torque and flux expressions are found thus;

The impedance matrix of our machine may be broken down into three 

component matrices^;

(1) Resistance matrix, comprising all resistance terms

(2) Inductance matrix, comprising all terms having p as a coefficient

(3) Torque matrix, comprising all terms having p6 as coefficient

Hence [Z^^] - [R^g] + [L^glp + [G^g]p6 

The torque equation Is; T«(l“®] [G^g] [1*®] 

From the preceding page, we find
a 6 f

o
sin6 COS0 Lj 

-sin0 COS0 Lq

-sin^0 Lj 
2-COS 0 Lq

“af «1=®

6
COS^6 Lj
+ sin?0 Lq

-sin0 COS0 L, a
+sin0 COS0 Lq

COS0

f - sin0 — M - COS0 at 0

(18)

(19)
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10.

;a 6 f

= “ Bsin 26 - (A-Bcos 20) M - sin0 af

B
A + Bcos 20 - Bsin 20 M - COS0af

f - M , sin0 at - M , COS0at 0

(20)

[G^„l -
(cross-flux
vector)

-[A-B cos 20)ig - Bsin 20 i^ - M^^sin0 i^]

6

f

[A + B cos 20)i^ - Bsin 20 ig + M^^cos0 i^]

- (M . sin0 i + M . cos© i.) af a af 6

T . [i“»l

“ - {(A-B cos 20)i. - Bsin 20 i - M - sin© i.}i6 a af f o

(21)

+ {(A+B cos 20)i - Bsin 20 i, + M , cos0 i.}i.u p at I p (22)

Now, consider the general torque equation,

T « (j) X Î, i.e. the vector product of flux-linkage and current

o _

.*. T - (î^ + ?g) X (î^ + îg)
I

“ - V s

or, T - K|P t+gl„ - V s ’ (23)

in which P ■ number of poles.
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11.

If M.K.S. units were used, K is equal to unity when the unit of 

torque is the Newton-meter. If the torque is desired in pound-feet,

K - 550/746.

Comparing equations (23) and (22),

. . <()o, the 6-axis flux linkage ■ -{(A - B cos 26)i„ - Bsin 20 iP p ot

- sinO ij} (24)

. . i|)̂, the a-axis flux linkage * -{(A + B cos 20)i^ - Bsin 26 ig

+ COS0 ig) (25)

Summary of Results;

Performance equations describing completely the physical facts 
involved in a synchronous machine have been derived in the preceding 

sections. Under any unbalanced operation conditions, having substituted 

equation (17) into equation (11) it is possible to solve equations (11) 

for the four unknown currents (i^, ig, i^, i^). Then by using equations 
(10), the phase currents (i^, î ,̂ i^) may be found. Substituting the 

solved currents (i^, ig, i^) into equations (24) and (25), gives the 
6-axis and a-axis flux-linkages respectively. The torque can then be 
found by equation (23),after substituting the current values (i^, ig) 
and the values of equations (24) and (25). Finally the voltages can 

be found by simply differentiating the flux-linkage expressions with 

respect to t.
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CHAPTER II

SOLUTION OF SHORT-CIRCUIT CURRENTS

The slngle-phase short circuit of the synchronous machine 

which we are Investigating Is a llne-to-neutral short circuit;

t«o

FIG. 4

For such a case, as shown, with a short circuit on phase and the 

machine unloaded, we have

e = 0a

1, “ 1 " 0  b c (26)

In terms of a, 6, o quantities defined by equations (9, 10), the
conditions for the present case become:

(27)

1 4 i
/J

g
/I (28)

(29)

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13.

\  “i  (30)
/2

Constant synchronous speed is assumed so that ~  = w; and the open 

circuit voltages before short circuit are:
Va = Eg sin (wt + 0 )̂

« slnG (31)

\  » Ej sin (0 - 120) (32)

\  » Eg sin (0 - 240) (33)

where 1. = constant field current before short circuitfo

0  ̂ = angle between a- and d- axes at t - 0

By equation (9), the a-axis voltage before short circuit is.

./?^ao 2̂ ^f GinG (34)

After short circuit on phase the a-axis voltage is, from 

equations (10) with short circuit condition, = o,

®a = ® (30)
/2 °

G â'
.*. Ae^, change in a-axis voltage  ------~ J ~  sin0 (35)

Æ  2

The effect of the short circuit on phase a_ is simulated by applying
Ae^ to the armature with field voltage equal to zero. To simplify the
analysis we will assume that the machine has no damper circuits. Then

by substituting Ae^ = e^, ig » 0, i^ - ^a and - 0, the voltage-
/2

current differential equations (17) become

- ^  sin0 * - pM^g CO80 ig - [R^ + p( A+B cos 20)] i^

(36)
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14.

*0 " "o

" + PLp) ip (37)

0 - (Rg + pLgg)ig + pM^g cose (38)

where R " R + 3R , L' - L + 3L , o a q’ o o q *
and, Rq and represent resistance and reactance from neutral to ground. 

Simplifying above equations,

sln8 ■ pM^g cos6 ig + [r + p(A + ̂  + Bcos 26)] i^

(39)
where r " R + R a _o

2

0 - (Rg + pLgg)ig + pM^g COS0 i^ (38)

The short-circuit currents due to fault are the solutions of the 

above equations (38) and (39).

Approximate Solution;

The coefficients in equations (38, 39) are not constant and it is 

practically impossible to find an exact solution. However, an approximate 

solution can be obtained by successive approximations.

As a first approximation, we neglect all the resistances and 

integrate equations (38, 39) between the limits 0^ and 0 to give

- /3/2 E. (cos0 - COS0 ) ■ M . cosB i_ + (A + L ' + Bcos 20)i  r o at t o a
u

(40)
0 - Lgg ig + M^g COS0 i^ (41)
or i_ ■ -M . COS0 i (42)i ar Cl

^ff
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15.

Solving above equations simultaneously, the short-circuit currents
due to the fault are 

1_ -
^  E. (cos0 - COS0 ) I o
(X' + X ) + (X' - X ) cos 20 + X' d q d q o (43)

. M  ̂ E, (cos0 - COS0 ) COS0If " at r of —  ----------------------------------
ff (X* + X ) + (X' - X ) COS 20 + X' d q d q o

(44)

where X' = wL' o o

X: - w(L. - ̂  )

X “ wLq q
Re-writing above current expressions, 

i^ - - Eg (cos0 - cos0 )̂

where

(A' + B') + (a' - B') cos 20 

ig ■ yê M^g Eg (cos0 - cos0 )̂ cos0

'ff (Jt + B') + (A' - B') cos 20
A' - X' + X' d o

(45)

(46)

B' - X' + X'q _£2

Applying the mathematical expressions (i.e. Fourier series 

expansion formulas) given in Appendix A, the currents of above 
equations (45, 46) may be resolved into the harmonic series:

i ■ - V6 E. a f
a ' + A'B'

+ /6 E_ COS0 r o

COS0 +  ̂ b^ cos(2n + 1) 0 
n=l

cos 2n0
n*»l

(47)
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lb.

and Ig ■ ^af
 ̂ A' + /A'B'

1 + (1 + b)  ̂"b^ cos 2n 6 
b n=l

/6 î k  cose, (1 + b)

where b ” /B' -
Æ T +  Æ T

/A'B' - a' 
/a' B ' + A'

COS0 +  ̂b^ cos(2n + 1 ) 6
n=l

(48)

(49)

Equations (47, 48) show that there is an unending series of reflec­

tion between armature and field. The odd-harmonic series for the armature 

current corresponds to an even-harmonic series for the field-current 

components, while the even harmonics series for the armature current 

corresponds to an odd-harmonic series of field current components.

The currents calculated above must be the initial short circuit 
currents, since neglecting resistances is the same as computing the 

initial values.
The second approximation is to make a correction for resistance by 

considering that the current components may be affected gradually by the 

effect of d.c. resistance drops. Hence the presence of resistance 

is effected by multiplying each harmonic series in each current expression 

by a decrement factor which is a function of time. In doing this, it 

is assumed that all harmonic terms of the same series are subject to a 
decrement factor with the same time constant.

In general form the currents may be thugly modified:

i„ - - /§■ Eg 7^(t)

A + /KTsr

+ /6 Eg COS0Q ?2(t)

/ A'B'

cos 6 + ][ b” cos(2n +1)6 
n«l

1̂  ̂ b* cos 2n 0
n-1

(50)
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17.

i » I (t) + ff_________ F,(t)
 ̂^ff h* + /A'B'

1 + (1 + b) % b" COS 2n 8 
b n=l

- * ^ ! k  ^f o (1 + b) F (t) 
 ̂^ff / P W

COS0 + '[ b^ cos(2n+l)6 
n=l

(51)

where F^(c) and F2(t) are decrement factors,

and Ig(t) is a transient d.c. component introduced to include the 

effect of field resistance.
It is readily seen that the values of F^, F2 and Ig at t * 0 are 

unity, unity and zero respectively.
In 'closed form', the currents may be written as:

i . _ Bf (^1 cose - F2 cose^) (52)
a ---- --- -—

(Â  + s') + (Â  - s') cos 20

! , - ! , +  "'1 cos6^) cos6f f      ■
ff (A' + B') + (A" - b ') cos 26

The three unknown factors can be found by substituting equations 

(50, 51) into the differential equations (38, 39), expanding the 
trigonometric expressions, and equating coefficients of corresponding 

terms on both sides of the equations.
In equating coefficients, we can make a third approximation —  that 

of neglecting the relatively small resistances in the coefficients of 
harmonic terms (I.e. r << wL), but retaining the resistances in the d.c. 

terms. This process results in many conditional equations for the three 
unknown current factors. However, it has been found that only three of 
the conditional equations are non-redundant — hence independent, whereas 
the others are superfluous and furnish the same information.
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18.

More explicitly;
First, on substitution of equations (50) and (51) into equation (38), 

and noting that equation (51) for i^ is more feasible in this form

we get

i. “ If(t) - ^af COS0 i ,r r aLff

0 « (R^ + pL^g)!^ - R^ ^af cos6 i^

(54)

"ff
M- (Rj + pLg^)!^ + Rg af
"ff

Æ F Ï  F^{1 + (1 + b) cos 26
k' + /p-g7-

+ b(l + b) cos 46 + ... ,y 
/3/Y COS0Q Fg ^(1 + b) cos6 + b(l + b) cos 36

/A' B'
(55)

Equating the coefficients of the constant terms on both sides of 

the above equation and remembering to neglect the resistances in the 

coefficients of the harmonic terms but retaining them in the d.c. 

terms, we have:
' F, (56)

^ff k' + /A"B'
Our second substitution, is that of equations (50) and (54) into 

equation (39), and the result is,

/3/2 E^ sin6 ■ pM^g cos6 - pM^^Z cos^6af
"ff

+ [r + p(A + 1/ + Bcos 20)]i^

pM^2 cos6 + r + p(A + L' + {B-N^g2}cos 26
2Lff

-

2Lff
a
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Continuing,

J T Ej sine ■ cose 1^ - r E^ F,

a ' + /aTb^

[cosô + b cos 30 + b^cos 56 +,...]
+ r /6 E_ cos6 F I o z

A '

t pA /6 Eg /-Fj
' K»

j  + b cos 26 + b^ cos 40 + ....

COS0 + b cos 38 + b% cos 56 +...

+  COS0 F_ o z
/A'B'

k* + /A'B'

Y  + b cos 20 + b^ cos 40 +....

k* +/A'B'
COS0 + b cos 30 + b^ cos 50 +.

+ o ^2 
/A' B/

Y  + b cos 26 + b^ cos 46 +....

2Lff k* + /A'B:

+  COS0 F_ o i.

COS0 +  b cos 30 +....

/A'B'

-r \
Y  +  b COS 20 4- ....

/

+ p B /6E. b^)cos 30

+ cos F,  o Z
/A'^irr

f- F^ j~(l + b) COS0 + (1 +

^ a ' + v/A' B'
+ b(l + b^)cos 50 +...^

b +(1 + b^)cos 28 + b (1 + b^) cos 40 +...

- pMafS A" Eg (- F (1 + b)cos0 +
4Lff A'+ /A' B '
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+ cosGgFg |b + (1 + b^) cos 20 +....
/ T b~ (57)

Being careful to note,that, for example, pM^f cos01f(t)= sin0
+ M^g COS0 pif, we can proceed to equate coefficients of the sin0 terms on 
both sides of equation (57).
Hence,

/3/2 Eg - - M^g 0) Ig + /6 A Eg 0) F, + /6 L E, w F. 1 o f 1
a' + /A'B'

a ' + /A'B'

- /6 Ej w

^^ff A' +/A'B'
Fĵ  + /6 B Eg(l + b) w F^

a ' + ATP"

- /6 M^gZ Eg (1 + b)
4L

or - /J/2 E,

ff a ' + /A' B'

wM _ I- - oi/S E. af f f
A' + /A'B'

0) F,

A + ^  - ^af^ + B (1 + b)
2 2Lgg 2

- \ f ^  (1 + b) 1 F,
4Lff (58)

Equating the coefficients of the constant terms on both sides of 
equation (57), we have:

0 “ r /6 Eg COS0Q F2 + p F2

2 /A'B'

A }/6 Er- COS0 + ^o /6̂ E. cos0

2 /A'B' 2 /A'B'

M /6 E, COS0 , B /6" E- b cos0 M /6* E, b cos0 - af f o +  f o - af f o
2Lff 2 2 /A' B' 4L

or 0 - r FL + p F. (a + ^ - + »> bB
2Lff (59)

The three equations (56), (58) and (59) just found, to determine 

the unknowns, are the independent equations, and are simplified to give:
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f af
^ff a! + /A'B'

21.

0 - (R, + pLff) If(t) + Rf A T I  Eg F^(t) (60)

- /3/2 Eg = w M^g Ig(t) - /ÎTY Eg F^(t) (61)

0 = r F2(t) + p Fg(t) /A'B'
w

(62)

Solving for F2(t), noting that 2^(0) = 1,

?2(t) = 0 “ (63)
/A'B'where ‘ = ----- = armature time constanta wr

Define /A B » X_ + 0.5 X .Z o
Solving for F^(t) and Ig(t) simultaneously, noting that F^(0) = 1

and lg(0) = 0,

F^(t)

and .'. Ig(t)

or

x' + X' + x_ d o 2
X, + X' + X.d o 2

%d - %d
X( + X' + X.d o z

(64)

/3/2 E- X- - X' t a  a
w M . %. + X' + X.af d o 2

-t/t'
€ - 1

Iff %d + %o + %2

(65)

where t'd «d +
(x^ + x; + %2

Field time constant
Tf
do Lgg = open circuit field time constant

" r T

X- « Axp^' T'TiX ~ ¥ X T  - 0.5 x' 2 d _o q _o o (66)
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The final approximate current expressions in ’open form’ become:

[/ + X/ + X_ X. + X' + x_,.d o 2 d o 2j

X. + X' + X_d o 2

A  E- cos + f o
X. + 0.5 X' I o

cos8 +  ̂b^ cos (2n + 1)0
n=l

0.5 +  ̂ b^ cos 2n0
n=l

-t/1
(67)

i, + Ej
■•ff X. + X' + X.d o 2

+ Ej
h f

-t/tv

X. + X' + x_d o 2
1 + (1 + b) 'l b” cos 2n0 

b n=l

- /3/2 M^g Eg CO80 (1 + b)
l 77 X- + 0.5 X' rr z o

COS0 + b‘cos(2n+l) 0 n=J-
(68)

- t r

where ±. is initial d.c. value of field current, to
Applying the formulas from Appendix A, the preceding expressions 

for current can be written in 'closed form' as:

where

s — /s "f COS0 - Fg cos0^]

%
+ Xq + »d'- ) cos 20 +

1 o

- %d + + ^2 A d - +
^d + X / + o ^2 + x; + %2

" ^ d  + X ' + o %2 +  1fl - " d - " c "  ='2
X ' + o %2

1 X , + X ' + x_ d o z

(69)
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i T f
i. = 1. + /3/2 M „ E A ^  ^ -1/ + 2CF, COS0 - F.cosG )cos6f fo af f\—— ■ 1__________2 o'

L_. L d o 2 X' + X +(X' - X )cos26 + X' ff d q d q o

(70)

or «= + I. - M - COS0 i (70 a)fo f af a
^ff

Summary of Results:

The short circuit currents have been solved for in the foregoing 

sections. The complete expressions for the currents (i^, ig) are given 

by equations (67) and (68). The voltage-current differential equations 

resulting from the unbalance (i.e. short circuit), that were solved by an 

approximate method, are given by equations (38) and (39).
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CHAPTER III 

PHASE CURRENTS, SHORT-CIRCUIT TORQUE AND 

OPEN CIRCUIT VOLTAGE

Phase Current:

All the phase currents for the line-to-neutral short circuit may be 

readily obtained by equations (9,10); since i, = i = 0  and 1 = 2°

. . i^ “ —  current (27)

From equation (69),

(x; + X ' + X, " x^ + x; + x )

/2

la - - 3 %f e-t/Td

X. + X' + x_d o 2

+ 3 Er COS0 r o

%d + %o '
00

COS0 + ^,b^(2n+ 1)0n=l

0.5 + ^.b^ COS 2n0n=l
X. + 0.5 X' L2 O

-t/r
(71)

or, in 'closed form', 

i = 3 Eg [F^ COS0 - F2 cos0^]

x' + X +(x' - X )cos 20 + x' d q d q o

where F^ and'Fg are given by equations (64) and (63).

(72)

Open-Clrcult Voltage;

The open-phase voltage is e^ - e^ which equals, by equations (9), 
- /2 e„, and we know that e^ “ - d<|)„ .p p __p

dt

The S-axis flux linkage for the present case is, by equation (24)

= B sin 20 i + M . 1, sin0 (73)p a af f

24
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Substituting equations (50) and (70 a)—  for i^, ig-- into above 

equation (73), and rearranging a few terms, there results,
1 y/ _ Y

="2 d q sin 26 i 
0) a + ' / ï  ^ f  ^1 *

(I)
- ?  X' - X sin 26 E, F, [cos6 + b cos 382 _d SL J i 1___

U) + /a 'B' + b^ cos 50 +....]

- /6̂  Eg COS0Q F2 [0.5 + b cos 20 + b^ cos 40 +

/A'B'

+ /3/Y Eg F^ sin @ 
0)

- /3/2 E. F, (X' - X ) [(l-b)sin0 + (l-bZ)sin 30 r i d  q
2w (a ' + /A' B' ) + b(l-b2) sin 50 + ---- ]

+ /3/Y E. F_ COS0 (X' - X ) (l-b2) [sin 20 + b sin 40 ______ t z_____ o d____g_
2w /A'B' + b^ sin 60 +...]

+ /3/Ï Eg sin0 (^4)
w

Simplifying, we get

4»g = /3/2 Eg F^ (1+b) [sin0 + b sin 30 + b^ sin 50 +....]
0)

- 2b /3/2 Eg F2 cos0^ [sin 20 + b sin 40 + b^ sin 60 +....]

“ * (75)

By differentiation we have the open-phase voltage: 
e - e  ts-/2'e = A "  dip.D C  P  P

dt

- - /3 Ef (Xj - X')(l+b)

“’d + +

[sinG + b sin 30 + b^ sin 50 +....]

UNIVERSITY OF WINDSOR LIBRARV /  ?
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-t/T
+ 2b V 3 Eg cosG^ ^  _ [sin 26 t b sin 40 + b^ sin 60 +... ]

w Ta

+ /T Eg (1 + b) [cos0 + 3b cos 30 + 5b^ cos 50 +...]

- 4b /J Eg Fg COS0Q [cos 20 + 2b cos 40 + 3b^ cos 60 +...]

(76)

From equations (71) and (70), the sustained armature and field 

currents are;

i^ = - 3 Eg [cos0 + b cos 30 + b^ cos 50 +...]

X. + x' + X. (77)d o 2

ig = ig^ + /3/2 M^g Eg (1+b) [cos 20 + b cos 40 + b^ cos 60 +...]

Also, from equation (76), the sustained open-phase voltage is;

- ® = /3 E. 2 X_ + x' Icose + 3b cos 36 + 5b^ sin 50 +...b e  f 2 o L
X. + X' + x_

 ̂ (79)
We see that the armature current and voltage contain a fundamental 

frequency component and odd harmonics, while the field current contains 

even harmonics.

As the absolute value of b is less than unity, each succeeding harmonic 

is less than the preceding one, and when b is small the higher harmonics 

may be neglected.

The equations (77), (79) above, show that the fundamental frequency 

components of armature current and voltages are the same as those calculated 

by the method of symmetrical components. The quantity X^ is defined as 

the negative sequence reactance for the line-to-neutral case, where

X„ ■= / P P "  - 0.5 X ' = /(X' + X')(X + X O  - 0.5 X'.2 o d _£ q o o
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The general torque equation, developed in Chapter I, for the present 

case (line-to-neutral short circuit case) reduces to

(SO)

Short-Circuit Torque;

Substituting the values of <j>g and i^ as given by equations (74) and

(52) into above equation (80), gives the following expression for the 

short-circuit torque:

T. = K 3 p 4  ^d " \  sin 26 i + ^f ^1
- T Y  w “  w--- /

■= - K3P ^3 F (P., COS0 - F„ cosB ) sin0
4ü) -S  ---       —

^  (a ' + s') + (A'' - s') cos 20

. X - X' [/6 EU(F. COS0 - F„ COS0 )]^ sin 20 + q g r 1 z_____ o________
 ̂ [(A' s') + (A' - b O  cos 20]2

With the aid of trigonometric expansions plus the expansion formulas

given in Appendix A, the above equation (81) is resolved into Fourier

series to yield,

T, « - K3P 3 E-2 iF.F. COS0 [sin0 + 3b sin 36 +Xrn f 1 1 2  oK3P 3 Eg2 J f

4w (A' + W W )  L

F? /A'B' - p2 a '- /A'B' cos^01 — —  2     0
A' + A'B' /A'B'

•[sin 20 + 2b sin 40 + 3b^ sin 60 +...] }
or

T^_^ = - K3P. 3 Eg2 jp̂ ^Fg cos0^[sin0 + 3b sin 36 +5b% sin 56 +..]
4w(X' + X' + X_)Q O Z
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+ 0 - K )  - i  «  - ^2) C.s2e
X : + X ' + X- d o 2 X- + 0.5 X ' 2 o

•[sin 20 + 2b sin 40 + 3b^ sin 60 (82)

Summary of Results;

The phase currents have been found, by substituting equation (69) 

into equation (27), of the preceding chapter, and are given by equations 

(26) and (71). The open-phase voltage is given by equation (76), after 

differentiating equation (73) and employing the substituted values of 

equations (50) and (70 a). Substituting equations (74) and (52) into 

equation (80) gave the equation (81) for short-circuit torque. The 

sustained currents and voltages have been found (by letting time t 

approach infinity), and are given by equations (77, 78, 79).
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CHAPTER IV

CONCLUSIONS

In this dissertation, we have accomplished the following. We have 

derived differential equations that can be used to solve apy number of 

problems of synchronous machines under unbalanced and transient conditions, 

and have developed new and complete expressions for armature and field 

currents of an alternator for a line-to-neutral fault. Most important, 

we have developed a new method for an approximate solution of differential 

equations with coefficients containing periodic functions and a small 

parameter. Lastly, but by no means least of all, we have paved the way 

for a complete and comprehensive investigation of our unbalanced system by 

considering the electro-magnetic action and inter-action involved.

In developing our performance equations, the matrix-tensor technique 

utilized proved to be a remarkably powerful and excellent tool for the study 

of electrical systems such as ours. It exhibited a clear-cut interpretation 

and understanding of the underlying physical phenomena in question. The 

transformation tensors proved to be labour-saving devices, as they were 

found to evolve quite naturally and painlessly, and required no great amount 

of mathematical knowledge.

Our developed method for an approximate solution to 'differential 

equations with coefficients containing periodic functions and a small 

parameter' is different from that given by any other author, and reveals 

more accurate answers to the case under investigation. The mathematical 

analysis, using our method of successive approximations plus Fourier series 

expansions, seems to be an effective, fool-proof and direct method to 

obtain the correct answer to the problem. There is no reason to doubt 

that the proposed method for solution to our problem is useful not only 

to machine analysis, but to other problems involved in other dynamic
29 liigRHRPsnrif nir «wiEwisicnB i
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systems in which equations of a similar type are involved.

Finally, our investigation leads us to an encounter with electro­

magnetics. Firstly, as a result of a current-carrying coil (i.e. the 

phase ^  armature coil with its sustained current) in a magnetic field 

(due to the sustained current in the field coil), a force or more precisely, 

a torque is produced on the armature coil. Secondly, with both current- 

carrying coils (i.e. armature and field) in close proximity, a force 

develops between them. Thirdly, the current flowing in the phase ^  

armature coil causes a voltage to be induced in the open-phase armature 

coils. Hence, an extensive study of such electro-magnetic actions and 

inter-actions completes a thorough investigation of our system in question.
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APPENDIX A

The Mathematical Expressions necessary for the Series expansion are

sin6______________
X +  y + (x - y) cos 20

“ 1 [sin0 + b sin 30 + b^ sin 50 + b^ sin 70 +...]
y + (A-1)

(A-2)where b = - /x = - x
/y + Æ  /xŷ  + X

 _______ COS0__________
X + y + (x - y) cos 20

” 1 [cos© + b cos 30 + b^ cos 50 +....] (A-3)
X + A y

X + y + (x - y) cos 20

' [0,5 + b cos 20 + b^ cos 40 + ....] (A-4)
A y

31
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APPENDIX B 

LIST OF SYMBOLS 

a, b, c axes - . 3-phase axes

d, q, o axes - direct, quadrature, zero axes respectively

a, B, o axes - orthogonal moving reference axes

i^, ig, i^ - instantaneous phase currents

ij, iq, ig - direct, quadrature and zero components of current

B e ea’ b’ c - open phase voltages
(^a, ^b, ^c)

6j, , 6.̂  - direct, quadrature and zero axes components

of armature voltage 

e^, e.g - moving axes components of voltage

<|»d» <l>q> - direct, quadrature, zero axes flux linkages

<j>̂, 4>g - a-axis, g-axis flux linkages

6(t) - angular displacement of a and g axes from

d and q axes, respectively 

u - synchronous speed, 2irf

- armature resistance per phase

Rg - field resistance

X^ *» wL^ - zero sequence reactance

Xj = wL^ - synchronous reactance, direct axis

Xq “ wLq - synchronous reactance, quadrature axis

X . * uM , - mutual reactance between direct axis armatureaf af
circuit and mainfield circuit

32
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Xj,- = wL.r - field reactanceff f f

T - torque, 3-phase

X - armature time constanta
x' - field time constantd

R - resistance from neutral to ground

L - inductance from neutral to groundg

P - number of poles

p _É
dt
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