
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

8-2017

Efficient And Flexible Continuous Integration Infrastructure to Efficient And Flexible Continuous Integration Infrastructure to

Improve Software Development Process Improve Software Development Process

Daehyeok Mun
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

Recommended Citation Recommended Citation
Mun, Daehyeok, "Efficient And Flexible Continuous Integration Infrastructure to Improve Software
Development Process" (2017). All Graduate Plan B and other Reports. 1045.
https://digitalcommons.usu.edu/gradreports/1045

This Report is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/127677751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/1045?utm_source=digitalcommons.usu.edu%2Fgradreports%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

EFFICIENT AND FLEXIBLE CONTINUOUS INTEGRATION INFRASTRUCTURE

TO IMPROVE SOFTWARE DEVELOPMENT PROCESS

by

Daehyeok Mun

A report submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Young-Woo Kwon, Ph.D. Stephen Clyde, Ph.D.
Major Professor Committee Member

Tung Nguyen, Ph.D.
Committee Member

UTAH STATE UNIVERSITY
Logan, Utah

2017

ii

Copyright c© Daehyeok Mun 2017

All Rights Reserved

iii

ABSTRACT

Efficient And Flexible Continuous Integration Infrastructure to Improve Software

Development Process

by

Daehyeok Mun, Master of Science

Utah State University, 2017

Major Professor: Young-Woo Kwon, Ph.D.
Department: Computer Science

Continuous Integration (CI) is a proven software-engineering practice that can solve several

issues occurring when a programmer integrates code changes into a shared source repository.

Although extensive academic research efforts and implementations have been made in the

industry or academia, due to the complexity of software execution environments and limited

resources of CI infrastructures, CI services need further improvements. The aim of this

thesis is to increase the utility and efficiency of a CI framework by adding new features as

well as enhancing existing CI frameworks. First, we introduce a configuration method that

can dynamically compose software execution conditions to reflect real software execution

environments. Then, we present resource-usage profiling techniques that can provide statis-

tical data collected during testing, so that a programmer can easily understand how his or

her code changes impacted on the the current version of a program. Finally, we present a

scheduling algorithm that can efficiently utilize limited resources of a CI infrastructure. Our

experiments indicate that the proposed approaches can help programmer discover potential

problems of a program and understand the impact of code changes as well as increase the

efficiency of the overall CI service.

(55 pages)

iv

PUBLIC ABSTRACT

Efficient And Flexible Continuous Integration Infrastructure to Improve Software

Development Process

Daehyeok Mun

Continuous Integration (CI) is a popular software-engineering methodology for co-working

between programmers. The key function of CI is to run, build and test tasks automatically

when a programmer wants to share his or her code or implement a feature. The primary

objectives of CI are to prevent growing integration problems, and to provide feedback with

useful information for resolving these issues easily and quickly. Despite extensive academic

research and popular services in the industry, such as TravisCI, CircleCI or Jenkins, there is

practically have limitations, which result from limited available resources, including budget

and low computing power. Moreover, the diversity of modern computer environments, such

as different operating systems, libraries or disk sizes, memory, and network speeds, increase

both the costs for CI and difficulties in finding bugs automatically in every cases.

This study aims to propose supplemental external and internal methods to solve the

above obstacles. First, our approach enables programmers to configure different execution

environments such as memory and network bandwidth during CI services. Then, we in-

troduce an enhanced CI infrastructure that can efficiently schedule CI services based on

resource-profiling techniques and our time-based scheduling algorithm, thereby reducing the

overall CI time. Our case studies show that the proposed approaches can report the resource

usage information after completing a CI service as well as improve the performance of an

existing CI infrastructure.

v

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

1 INTRODUCTION . 1

2 BACKGROUND . 3
2.1 Continuous Integration and workflow development 3
2.2 Approach overview . 4

3 DYNAMICALLY GENERATED EXECUTION ENVIRONMENTS 6
3.1 Introduction . 6
3.2 Background and motivation . 7

3.2.1 Diversity on software execution environments 7
3.2.2 Existing problem and gaps in CI . 7

3.3 Approach . 8
3.3.1 Proposed design architecture overview 9
3.3.2 Environments composer . 10
3.3.3 Environment manager . 13
3.3.4 Resource-usage profiler . 13

3.4 Use case studies . 14
3.4.1 Android application . 14
3.4.2 Python script for reading file contents 16

3.5 Summary . 19

4 DYNAMIC CI SCHEDULING . 21
4.1 Introduction . 21
4.2 Background and motivation . 22
4.3 Approach . 23

4.3.1 Problematic situation . 23
4.3.2 Small commit . 24
4.3.3 Time-based dynamic scheduling overview 25

4.4 Continuous Integration simulation . 26
4.4.1 Comparison algorithms . 26
4.4.2 Experiment-scenario generator . 27

4.5 Evaluation . 30
4.5.1 Experimental environment . 30
4.5.2 Baseline benchmarks . 30

vi

4.5.3 Experimental result . 31
4.5.4 Summary . 38
4.5.5 Threats to validity . 38

4.6 Summary . 39

5 RELATED WORK . 40

6 CONCLUSION AND DISCUSSION . 43

REFERENCES . 45

vii

LIST OF TABLES

Table Page

3.1 Example of buggy python code and desirable testing environment components 16

3.2 Number of cases with example . 17

3.3 Number of cases for environment composing 18

3.4 Number of cases for Python 3.6 is combined with Windows (total 84) 19

4.1 CI task time for Git . 23

4.2 Baseline Times (seconds) . 30

4.3 Experiment results when CI frameworks are used by one project 31

4.4 CI task triggered time for first experiment . 32

4.5 Experiment result when CI frameworks are shared by two different projects . 35

4.6 CI task triggered time for second experiment 36

viii

LIST OF FIGURES

Figure Page

2.1 Workflow development with a CI tool . 3

2.2 The overview of proposed CI framework . 4

3.1 The approach overview . 9

3.2 Architecture of CI framework . 9

3.3 Build and test processes in container overview 14

3.4 The CI test with two different network conditions 15

3.5 Example of feedback with resource usage . 16

4.1 The comparison of Hypervisor and Container 22

4.2 The CI task scheduling problem . 24

4.3 CI task time for 30 recent PHP pull-request 24

4.4 Time range and mean value for the first experiment case 32

4.5 The CI experiment time line with PHP . 33

4.6 The CI experiment time line with GIT . 34

4.7 Time range and mean value for second experiment case 35

4.8 The CI experiment time line with PHP and GIT 37

CHAPTER 1

INTRODUCTION

In software engineering, CI has been used to refer to practices or tools that help pro-

grammers merge working copies into a shared mainline repository. One benefit of CI is

integrating automatic build and test processes into a version-control system. When a pro-

grammer edits code, his or her changes are integrated a main branch or master after auto-

matically building and testing. As a result, such a automated process enables programmers

to find code conflicts or bugs at the early stage of software development, thereby improving

their productivity and the quality of software.

A recent survey conducted by Hilton [1, 2] has demonstrated benefits of CI services in

open-source and private projects. According to his research, open-source projects that use

CI show the following three tendencies: 1) accepting pull-requests early, 2) releasing code

twice as often, and 3) less concerning about breaking a build process compared to projects

that do not utilize CI. The statistical results indicate that 70% of popular projects hosted

at GitHub more extensively use CI services than other projects.

Even though the usefulness of CI has led to the growth of frameworks for in-house

implementations and Software As A Service (SAAS) in the past few years, the demanding

nature of CI tasks still remains a concern due to the limited capability of available resources

and the diversity of software environments. The dependence of software and execution en-

vironments such as network bandwidths, memory size might affects to software’s behaviors.

Consequently, CI tasks should be progressed multiple times with various environments, since

some bugs do not arise every time. However, testing with all possible cases for each commits

is almost impossible because it might require high costs.

For these reasons, we address the following challenges faced when employing a CI ser-

vice:

2

• Selecting and configuring the software-execution environment to run multiple CIs with

different combinations in the limited resource pool.

• Improving the CI framework’s performance, which is implemented with multiple servers

to provide timely feedback to the developers, and increase the infrastructure’s capa-

bility.

In this report, we introduce supplemental services and algorithms in terms of usability

and efficiency. First, we present a configuration method to help programmers test their

code changes under different execution environments. Then, to enhance the efficiency of a

CI infrastructure, we design an algorithm that can fairly schedule Ci services by estimating

the resource usage and the completion time of a CI service for the given CI service. The

primary contributions of our work are as follows:

• We purpose configuration methods to increase the possibility of discovering potential

problems while maintaining the infrastructure with limited resources. We also propose

feedback with supplemental stats, which automatically collect resource usage during

the test. This data will be helpful in revealing changes that affect the software’s quality;

however, this is difficult to detect without the developer’s benchmark program.

• We present use cases which may discovering potential problems with our approaches

but difficult with existing CI frameworks.

• Finally, we develop scheduling algorithms with execution-time prediction for CI in-

frastructures in the cloud system.

3

CHAPTER 2

BACKGROUND

2.1 Continuous Integration and workflow development

The term ‘CI’ was introduced by Grady [3], and has been used to refer to the software-

engineering practice of merging all local change sets to a shared code repository. In terms of

workflow practices, the CI task is started by multiple triggers. First, all submitted commits

are built, and a test script is executed to verify the minimal quality of code; this test script

provides useful information to a user prior to merging the code changes. Figure1 illustrates

the workflow of this type with a version-control system and a CI tool. Then, the CI tool

either periodically checks the last available commit or manually checks the last fixed commit

before releasing a new version of the product. In this case, tasks should be triggered less

frequently and more test units should be checked, which require more resources than tasks

for each commits.

Build Test

Test

CI Trigger

Code Review

Discuss Provide
Infomation

Fix Bug/
Refactoring

Writing Code

CI Framework

Version Control SystemDeveloper

Merge

Commit

Feedback

Fig. 2.1: Workflow development with a CI tool

Throughout this thesis, the term ‘CI’ will be used in its broadest sense to refer to a

framework or infrastructure that automatically run build and test tasks for every commits.

4

2.2 Approach overview

To enhance the utility of CI, we suggest the following requirements based on previously

mentioned assumptions:

• The CI framework listens to events from the version-control system, and automatically

triggers tasks.

• The CI framework provides methods to flexibly configure build environments, including

software dependencies and physical environments.

• The CI framework dynamically composes environment components to use limited re-

sources efficiently.

• The CI infrastructure should allocate tasks efficiently into server clusters, which are

constructed with multiple worker nodes.

• When the build or test run is completed, CI feeds results and other information back

to developers.

The remaining part of this thesis describes several components in the CI framework to

address the above requirements. Figure 2.2 provides a brief overview of our proposed CI

framework and overall workflow.

Time based
task scheduler

Build/Test
worker pool

Resource Profiler

Environment Composer

Feedback
SDK 21

512MB

3G

Testing EnvionmentSDK 21

512MB

3G

Testing Envionment

SDK 21

512MB

3G

Testing Envionment

API Level

SDK 21

SDK 22256MB

512MB

Memory Size

Network Speed

3G

LTE

Configuration

Random-based
Selection

Fig. 2.2: The overview of proposed CI framework

For handling triggered tasks, CI frameworks compose build environments from a user’s

configuration file. Each task is deployed to one of the worker servers, and is then run with

the composed environments combination. When the task is completed, CI provides task

5

results and resource usages, which are collected by a profiler. in addition to conventional

methods, to dynamically compose environment combinations, we present a random-based

selection, which is described in chapter 3 along with resource profilers. For increasing internal

efficiency, we argue the necessity of a scheduler, which specializes in CI tasks, and present

time-based task schedulers in chapter 4.

6

CHAPTER 3

DYNAMICALLY GENERATED EXECUTION ENVIRONMENTS

3.1 Introduction

Automatic testing by CI services is used for improving the software-development pro-

cess. Previous studies suggest that the use of CI often results in higher productivity, with

a shorter release cycle and time to merge code changes [2, 4]. It has also been found that

most of the costs of managing CI are spent configuring build matrixes (environments).

While the response regarding improved productivity with CI is positive, most users

believe that CI does not help find bugs [2, 5]. One reason for this might be the diversity

of execution environments. Various components of environments can lead to abnormal

testing results. A shared object is a useful illustration of this problem. Software written

with deprecated API will not work on other machines that use the newest version of the

shared library. Moreover physical environments, such as hardware specifications and network

conditions affect software behavior, for example, network-connection failures or timeout, and

I/O errors. Therefore, CI services should provide features for running test applications in

varied environments. However, the practical number of testing environments is limited by

usable resources and time.

To address the above issues, this chapter describes new features that enable testing

on the dynamically generated run-time environments and resource-usage profiling without

a user’s extra effort; we specifically argue that CI should also control physical conditions.

Then we present a solution based on random selections for testing environment generation.

To cover all of the components of environments with minimizing or reduced entries, CI

provides different sets for each triggered job. In addition, CI yields the resource-usage data

collected during the test process without other extra profiling tools.

7

We also evaluate the usefulness of the approach by applying it to the use cases, which

indicate that the presented method provides more chances of finding bugs.

3.2 Background and motivation

3.2.1 Diversity on software execution environments

We divide the diversity of the software-execution environment into two groups,namely

software diversity and physical environment diversity, and then briefly explain potential

problems.

Software diversity Many applications rely on existing components in both the compilation

(development) and execution phases. For example, a web application written by

Python might use Flask1 as a web framework and SQLAlchemy2 for abstracting

SQL code. Then, it might run with MySQL3 or PostgreSQL4 as a data store, and

Apache5 or NginX6 as a web server, depending on the user’s choice. A well-known

problem called ‘dependency hell’ arises when different versions of the same package

or library are required, but cannot work at the same time.

Physical environment diversity Modern computing devices have a wide range of computation

and memory capabilities, disk sizes, and network bandwidths. This diversity may

cause errors or abnormal behavior. For instance, an application that consumes too

much disk space could experience I/O errors on limited disk devices. Even if the

application does not throw an error directly, it could still have a potential problem,

such as network-connection failure or testing timeout, depending on the physical

conditions

3.2.2 Existing problem and gaps in CI
1https://flask.pocoo.org
2https://www.sqlalchemy.org
3https://www.mysql.com
4https://www.postgresql.org
5https://httpd.apache.org
6https://www.nginx.com

https://flask.pocoo.org
https://www.sqlalchemy.org
https://www.mysql.com
https://www.postgresql.org
https://httpd.apache.org
https://www.nginx.com

8

In this subsection, we argue that existing CI services cannot sufficiently cover the fol-

lowing problems or gaps:

Fixed physical environment While existing CIs already support software-execution environ-

ments to select or compose multiple options for build and test tasks, features for

verifying software with the different physical environments is relatively ignored. Al-

though some components, such as network bandwidth and maximum memory size,

could be controlled dynamically by virtualization of a platform, most of the phys-

ical conditions are fixed to the service provider’s setup or predefined framework’s

configuration.

A ruinous number of tasks Multiple tasks can be included in a single CI to test in various

environments, and multiple projects or a development team can share the CI infras-

tructure. Thus, the workload for CI could be increased dynamically, for example,

according to Google’s presentation [6], 150 million tests are executed per day on

their internal infrastructure, which might require unacceptable maintenance cost.

Therefore, users should select envrionments that work on CI. However, most ex-

isting CIs do not support methods for dynamically composing environment com-

ponents; instead, they perform hand-picked combination or generate all possible

combinations.

Insufficient information on feedback Most current CI implementations focus on reducing user

effort for constructing CI infrastructure, and providing configuration methods to

automatically run the user’s build or test script. Except for the success or failure

of the script, the feedback content from CI is totally dependent on the output of

the user’s test application.

3.3 Approach

The presented approach aims to fill the gap described in the previous section, and to

provide complementary features for utilizing CI with limited resources.

The following three features play key roles in our proposed CI framework design:

9

SDK 21

512MB

3G

Testing Envionment

SDK 21

512MB

3G

Testing Envionment

SDK 21

512MB

3G

Testing Envionment

API Level

SDK 21

SDK 22

256MB

512MB

Memory Size

Network Speed

3G

LTE

GSM

Profling Data

Parent Data

FeedBack Data

Random CompareBuild/Test

Fig. 3.1: The approach overview

1. Present CI feature to configuration physical environment like software component

2. Compose environment component based on random selection

3. Provide resource-usage data

3.3.1 Proposed design architecture overview

As with other CI frameworks, our design is constructed based on the master/slave

model: the controller server manages the receiving and sending of data from the source

repository, and the generating and running of a task for the worker; the worker’s environment

is generated by a virtualization platform (for example, Hypervisor, Docker, or an Android

device emulator). Figure 3.2 provides an overview of the architecture for the proposed CI

framework.

User Script Runner

Environment Composer

Resource Profiler

Controller Worker

Environment ManagerEnvironment Manager

Fig. 3.2: Architecture of CI framework

10

The proposed framework has three key components: the environment composer, the

environment manager, and the resource profiler. The environment composer selects the

environment list for build and test tasks based on the user’s configuration. In addition

to fixed component composition, our composer also uses alternative methods to increase

coverage in the limited resource pool. The environment manager initializes each component,

including the configurable physical or software environment that the composer generates.

The resource profiler profiles resources used for the test, and then provides that information

to the user. In the following pages, we will describe how each component works.

3.3.2 Environments composer

Configuration file

Yet Another Markup Language (YAML) is a simple human-readable, data-serialization

language that is widely used to define configurations for task including commands, virtual

machine images, and environment variables in decent CI, such as TravisCI and DroneCI.

We use YAML file which contained in the code repository with other source files instead

of other configuration methods such as external web UI or API due to following benefits:

• The build configuration can be shared with the source code, which helps developers

to build and test more easily in local environments.

• Different configurations could be used depending on the branches or versions.

• As with other files, changes can be reviewed before they are merged to the shared code

base, and can be reverted to undo negative change.

In this thesis, we modified DroneCI to experimental implementation, and added a

‘shuffle’ definition to the configuration syntax to support our random-based environment

selection.

11

Listing 1 presents an example of CI configuration with YAML in which each CI task

is composed of two parts: first, the worker is lunched with golang virtual machine image to

build the process, then, the built binary is tested on the Ubuntu environment.

Three different GO_VERSIONs and two different RELEASE_TYPEs could be com-

bined for each task. DroneCI already supports the ‘matrix’ syntax to automatically run

with all possible combinations. In this case, CI tasks expand to six individual (3× 2) jobs.

Listing 1 Example of a YAML configuration file
pipeline:

build:
image: golang:${GO_VERSION}
commands:

- go build

test:
image: ubuntu:16.04
commands:

- ./test.sh
environment:

- RELEASE_TYPE=${RELEASE_TYPE}

#Include all possible combinations.
matrix:

go: [1.6, 1.7. 1.8]
RELEASE_TYPE: [release, debug]

#Include combinations which generated by our approach.
shuffle:

go: [1.6, 1.7. 1.8]
RELEASE_TYPE: [release, debug]

In the following section, we describe how to compose the environments with the ‘shuffle’

syntax, and our approach.

Random-based environment selection

The presented algorithm 1 demonstrates our approach as a pseudo code. The role of this

procedure is to return randomly composed environment sets, and the results are produced

by the following operations:

1. Let component_dict be the associative array that has an environment’s name as a

key, and list of options in that category as a value. Iterating all of the categories in

12

given component_dict (line 8).

2. If previously un-selected options still exist in the category, randomly pick from the

un-selected options in that category, then move that option to selected_group (line

9-11).

3. If all of the options in the category are selected at least once, then randomly select

from the selected group (line 13).

4. Append composed matrix to env_list (line 17), then repeat the above process until

component_dict is empty

5. Return env_list, which contains all of the composed environment combinations

Algorithm 1 Random Testing Environment Selecting
Require: component_dict . associative array
1: procedure randomSelector(component_dic)
2: env_list← empty
3: keys← {key values in component_dict}
4: selected_group← empty
5: repeat
6: env ← Empty . new environments composition
7: for all category ∈ keys do
8: if component_dict is not empty then
9: Ec ← Random(component_dict[category])

10: Delete(component_dict[category], Ec)
11: Append(selected_group[category], Ec)
12: else
13: Ec ← Random(selected_group[category])
14: end if
15: env[category]← Ec

16: end for
17: Append(env_list, env)
18: until component_dict is not empty
19: return env_list
20: end procedure

Result sets produced by our approach have the following two characteristics: each

component option is guaranteed to be included at least once, and the size of the result set

is equal to the length of the longest list in the given component array.

13

3.3.3 Environment manager

Prior to running a build or testing process, CI should initialize the selected environ-

ment. To dynamically configure both the physical and software environments, the environ-

ment manager should work on both the controller and the inside of the virtualized working

environment.

Environment manager in controller Manager in controller initializing physical environment

and create virtual environment, Configurable options are might be various depend

on used virtualization platform. Most of virtual machine’s option’s change is im-

possible, after boot up machine, This process should be processed by the controller.

For example, if CI is working with Hypervisor, then CI cloud flexible limit or pro-

vide memory, number of core, disk size. On the other hand, CI run for mobile

device with emulator, disk size also cloud be selectable.

Environment manager in worker This component have a charge to initializing software envi-

ronments, including installing third-party software and setting up shell variables.

Most software could be installed through a well-maintained package manager (for

example, Advanced Package Tool7, Chocolatey8, Nuget9). Combination of OS and

program also dynamically by our composing approaches. Using package manager,

Eliminating running user-script for initalize envrionments is necessary.

3.3.4 Resource-usage profiler

This component aims to collect resource-usage data during testing, either without or

with minimum supplemental configuration effort from a user. Most of the profiling tools for

sampling statistics require at least two inputs indicated at the start and stop positions. As il-

lustrated in Figure 3.3, when CI works with a virtualization platform for clean environments,

each individual system is created and destroyed on demand.
7https://wiki.debian.org/apt
8https://chocolatey.org
9https://www.nuget.org

https://wiki.debian.org/apt
https://chocolatey.org
https://www.nuget.org

14

Create
Build VM/Container

Manage Server

Destroy
Build VM/Container

Build VM/Container

Run
Build Script

Send
Feedback

Run
Build Script

Create
Test VM/Container

Destroy
Test VM/Container

Test VM/Container

Run
Test Script

Send
Feedback

Get
Statistics

Fig. 3.3: Build and test processes in container overview

Under this situation, the life cycle of the virtual machine is almost identical to that

of the testing process. The quantity of resources related to testing could be simplified to

the total amount of resources used in a testing machine. Most virtualization platforms or

operating systems provide API or other methods for statistical data used by the system, for

example, Docker API, perf for Linux, and dumpsys command for an Android emulator or

device. Therefore, the data can be collected in a unified way with little overhead, regardless

of the user’s build/test script.

3.4 Use case studies

This section demonstrates a use-case scenario to explain the necessity of the features

described in the previous sections. For the experimental use case, we modified Drone CI10

to provide our proposed features, and used Github as a source-code repository.

3.4.1 Android application

Initially, we developed an Android application that downloaded files from a given URL

using HTTP/1.1 [7].

Testing with two different network conditions

First, for arguing the necessity of flexible physical environment testing in CI, we wrote

a UI testing code that clicks the button on the main screen, waits until a file download is
10https://github.com/drone/drone

https://github.com/drone/drone

15

complete, then configures a CI run-test script with a full-speed network or GSM. Due to

the low network bandwidth, a test with GSM (Global System for Mobile Communications)

displays a timeout error. This problem might not be a bug; however, it could affect the

user’s experience, and should be closely inspected.

Fig. 3.4: The CI test with two different network conditions

Refactoring pull-request with resource usage

One of the common refactoring patterns involves changing a sub module to a third-party

library, which is considered well designed.

Let us suppose the following scenario: The developer decides to use the third-party

library instead of his own implementation with the native URLConnection API. One of the

contributors made a pull-request for the above refactoring, and when his code change triggers

CI tasks, the built binary successfully passes all of the user’s tests. Then code readability

is also better than the previous version, In the view of maintainer, no other reasons exist to

deny this pull request.

With the proposed resource profiling approaches, perhaps CI could provide clues that

maintainers should inspect before merging commit in above case. For example, used modules

do not support an HTTP-compressed header, which could lead to CI indicating that a

changed code uses more memory and network traffic. If CI reports that less than 10%

16

Fig. 3.5: Example of feedback with resource usage

increased memory usages. When considered with the advantage of improved code readability,

this changed amount might be ignorable. However, the traffic increase was 30 times more

than the base version. The traffic change amount might be a significant factor which affects

the overall quality of mobile software.

3.4.2 Python script for reading file contents

The newest version of Python demonstrates the effectiveness of the random-based en-

vironment composer. Table 3.1 contains examples of Python code and CI configuration.

1 import platform
2

3 # MBCS (EUC-KR) encoded file path
4 filepath = bytearray.fromhex("c6 c4 c0 cf 2e 74 78 74")
5

6 if platform.system() == ’Windows’:
7 contents = open(filepath, ’r’).read()
8 else:
9 contents = open(filepath.decode("cp949"), ’r’).read()

shuffle:
Python: [2.7, 3.5, 3.6]
OS: [Ubuntu, Windows]
DB: [PostgreSQL, MySQL, Redis, MongoDB]

Table 3.1: Example of buggy python code and desirable testing environment components

Given code chunks are written for reading content from the predefined file. Prior to

17

calling the ‘open’ function, the application checks the type of operating system to determine

whether it requires converting byte array to sting. When this code is executed on a non-

Windows system, such as Linux, the file path is string decoded from an EUC-KR11 byte

array to the UTF-8 string. In contrast, an unconverted byte array is passed as an argument

on Windows. MBCS (MultiByte Character Set) was adopted as the default file-system

encoding in the previous Python. However, Python 3.6 was patched12 to use UTF-8 for

default Windows file-system encoding. As a result, it is working well, with the exception

that the platform is composed with both Python 3.6 and Windows.

Table 3.2 compares three different environment-selection strategies with case-size testing

when a user wants to support three different versions of Python, or four different databases

under Windows or Linux. The total number of cases to test all possible combinations is

24(3× 2× 4 = 24). Even though testing on every possible environment is the best practice

for verifying reliability, if this code is part of the largest size of the application, the user might

want to reduce the number of CI jobs triggered by every commit. User-defined configurations

produce fixed environments; however, unknown problematic environments are impossible to

discover.

For each CI job, our random composing approach selects different environment combi-

nations as much as a length of largest option list (database). Therefore, the size of the task

is reduced from 24 times to four times.

Number of Cases Possibility of Fail
All Case 3× 2× 4 = 24 Always

Random Approach 4 58%(84/144)
Manually Fixed by user N/A

Table 3.2: Number of cases with example

For calculating the possibility of discovering problematic combinations, let ESelected

be the list of all environments, where an environment is defined as a tuple of component.

Therefore, we can represent ESelected like (Python, OS, DB).
11https://tools.ietf.org/html/rfc1557#ref-EUC-KR
12https://www.python.org/dev/peps/pep-0529

https://tools.ietf.org/html/rfc1557#ref-EUC-KR
https://www.python.org/dev/peps/pep-0529

18

The database is not related to the above problem; we can simplify the environment as

tutple of Python and OS. The number of all possible cases for ESelected with our approach

is 144, and the number of the cases in which tuple (3.6, Windows) is included at least once

is 84. Therefore, the possibility of discovering a bug is approximately 58%. A more detailed

process to calculate possibility is described in the next sub section.

Compared with test all cases every time, the number of running tasks fell by nearly two

fifths. However, the success rate only dropped by 42%.

Possibility of discovering bugs on example

We can represent the result of our random composer as a two-dimensional matrix in

which each column presents a set of composed environments, and each row presents the

category of components. The database is not related to our example problem, and to

simplify calculations, we can ignore the DB row. When we named each column as a slot

from 1 to 4, the function f(category, n), which denotes the number of cases in each cell, can

be measured as follows

f(category, n) =


size_of_category + 1− n if n ≤ size_of_category

size_of_category if size_of_category < n

(3.1)

Table 3.3 Table 3 presents the results of each cell, and the number of all possible cases∏
c∈{Python, OS}

1≤n≤4

f(c, n) is 144.

Slot 1 Slot 2 Slot 3 Slot 4
Python 3 2 1 3
OS 2 1 2 2

Table 3.3: Number of cases for environment composing

Python 3.6 must have occurred only once in slots 1 to 3, and might be re-selected in

slot 4. Therefore, for finding a number of cases for Python 3.6 combined with Windows, we

19

can divide the cases into the following two cases

Combined only once in slot 1 to 3 The number of cases for slot 4 is always five (all cases

except Python 3.6 with Windows). The number of cases for slots 1 to 3 is 4×5×3 =

60 cases.

Combined in slot 4 (regardless of the state of the other slots)
∏

c∈{Python, OS}
1≤n≤3

f(c, n) is 24

Table 3.4 illustrates the detailed process for calculation.

Finally, the possibility of discovering a bug using our approach in the example python

problem is 84/144 = 7/12 ≈ 58%.

Slot 1 Slot 2 Slot 3 Slot 4
Python 1(3.6) 2 1 5OS 1(Windows) 1 2

Slot 1 Slot 2 Slot 3 Slot 4
Python 2 1(3.6) 1 5OS 1 1(Windows) 2

(Python3.6, Windows) combined only in slot 1 (total 20) (Python3.6, Windows) combined only in slot 2 (total 20)
Slot 1 Slot 2 Slot 3 Slot 4

Python 2 1 1(3.6) 5OS 2 1 1(Windows)

Slot 1 Slot 2 Slot 3 Slot 4
Python 3 2 1 1(3.6)
OS 2 1 2 1(Windows)

(Python3.6, Windows) combined only in slot 3 (total 20) (Python3.6, Windows) combined in slot 4 (total 24)

Table 3.4: Number of cases for Python 3.6 is combined with Windows (total 84)

3.5 Summary

The purpose of this chapter was to design supplemental CI-service features to help

developers to discover potential problems with the CI tasks. Our study was based on

the following assumption: due to CI’s high demand for maintenance costs, building and

testing all possible conditions is almost impossible. Also, existing CI frameworks still do

not provide enough configurable methods for physical environment and feedback. Therefore,

we suggested a design for physical environments that is also included in CI’s configurable

options; then, the random-based component selector was presented to find bugs, which

only occur during particular conditions. Finally, the delivered information collected by

statistics data was suggested. However, these results may not be applicable to all situations.

For instance, this feedback might only be useful when modified code affects most of the

test units or significantly changes the software’s behaviours. Additionally, although some

20

environments cannot combine with each other, we ignored this to simplifying our research

scope. Future studies are required to develop syntax for describing the complex association

between each environment’s components.

21

CHAPTER 4

DYNAMIC CI SCHEDULING

In the previous chapter, we described the reason and problem regarding the same testing

tasks running in multiple environments. In this circumstance, it is clear that the effcient use

of available resources in infrastructure is another key issue for CI. In this section, we propose

a CI task-scheduling algorithm, which will be used to develop an effcient CI infrastructure.

4.1 Introduction

Virtualization techniques have achieved significant development, and are widely used in

many computing domains. Continuous Integration is one area that has actively adopted vir-

tualization to isolate and reuse build and test environments. In particular, modern CI tools

are implemented using a container-based virtualization technique, which is more lightweight

and easier to configure than system-based virtualization technologies. By using a container,

CI tools can easily reproduce the same build and test environment, which makes CI services

more popular than past years.

While there are several commercial CI services, many start-ups or small businesses still

operate their CI services using open-source projects and public clouds or in-house services

due to their operational costs. In this circumstance, multiple CI tasks run concurrently due

to the limited computing resources of a CI infrastructure; therefore, the distributing method

remains a major technical challenge to improving the overall performance of CI jobs.

In this chapter, we present a CI-scheduling algorithm that can dynamically allocate

multiple CI tasks on different servers based on previous CI-execution results. To avoid

or minimize resource competition between different CI tasks, this approach profiles their

executions time to calculate remaining time of current tasks then dynamically allocates the

next task to the best node. Our approach focused on implementing CI frameworks built

on container technology. Frameworks should not manipulate the testing processing in the

22

container because CI used containers and test scripts that were either predefined or provided

by the user.

4.2 Background and motivation

For the CI to verify the code, it is important to providing different and isolated testing

environments. The automated build and testing script should run in a clean environment,

and start from scratch. To archive this goal, virtualization techniques have been widely

used in past years. In particular, modern CI tools are implemented using a container-based

virtualization technique. With the container, the CI can create an environment for software

testing, and reuse it often for rapid iteration. Some of the popular container frameworks

include Docker and rkt1.

Hardware

Hypervisor

Host OS

Guest
OS

Guest
OS

Guest
OS

Shared
files

Shared
files

Shared
files

App 1 App 2 App 3

Hardware

Host OS

Shared files

App 1

Shared
files

App 3App 2

Container Engine

Hypervisor Container

Fig. 4.1: The comparison of Hypervisor and Container

Figure 4.1 compares applications on container or Hypervisor technologies, and indicates

that Container shares more common components than Hypervisor. Container consequently

has less overheads and is easier to configure than system-level virtualization, also known as

Hypervisor, including VMware and XEN. In the many previous researches [8], performance of

container was almost the same with bare metal, and was quickly used to replace Hypervisor.

However, a shared OS kernel throughout co-hosted containers contributes to the lack of
1https://coreos.com/rkt

https://coreos.com/rkt

23

isolation. As a result, applications on container may suffer from performance interference

by other tenants. For many years, this phenomnon was neglected.

Table 4.1 presents the average times when CI container for GIT runs alone or with

another container. Compared to with processing time when one GIT container monopolized

node’s resources. When two GIT containers shared a node, task time was 50% longer. In

the worst case, if another CPU-intensive processing CI task (FFMpeg) was co-located in the

node, the CI task times increased by almost two times.

Table 4.1: CI task time for Git
CI task time (seconds)

1 CI task (Git) 494.4675
2 same CI tasks (Git/Git) 768.047

2 different CI tasks (Git/FFMpeg) 985.348

Therefore, it is clear that reducing interference is a key factor to improving overall

CI performance. To date, however, there has been little discussion about minimizing the

performance reduction that container interference causes in CI. In this thesis, we argue

that the CI infrastructure could be improved when scheduling a new task to a node, with

consideration for the above problem.

4.3 Approach

The primary objective of our approach was to reduce the amount of processing time

in the CI infrastructure when it constructed with multiple servers. In this section, we first

define the underlying problem in existing CI, and then describe our insights that led to

improving performance with a time-based scheduler.

4.3.1 Problematic situation

Considering the CI scenario that is illustrated in Figure 4.2, CI frameworks try to deploy

three different tasks to two nodes. When those tasks are triggered by chronological order

and CI server using round-robin, Task 3 is allocated to the first node. However, if Task

2 has a shorter processing time than Task 1, the second node becomes a wasted resource.

24

!

! Task 2

Task 3

Task 1

Fig. 4.2: The CI task scheduling problem

Also, as we described in section 4.2, it might increase the processing time of Tasks 1 and 3.

4.3.2 Small commit

In many software-engineering practices, developers are encouraged to commit often. For

example, ‘Extreme Programming’ [9] which is one of the most popular software-engineering

principles, proposes merging code into the code repository every few hours. Moreover, each

commit should ideally have a single functional change. It allows the reviewer to check only

related files for bug fixes instead of checking multiple potentially unrelated files. Based

on this principle, we assume that build and test behaviors commonly do not changed dy-

namically. To verify this assumption, we build 30 recent pull-requests in the PHP-SRC

repository.

464

242

476

241

476

242

473

241

477

243

464

243

478

241

478

242

475

242

474

241

483

238

467

241

482

241

477

241

489

238

470

242

484

237

463

242

476

240

475

240

478

239

476

243

477

239

488

240

480

240

488

239

490

241

488

237

706 717 718 715 720 707 720 720 717 715 722 709 723 718 727
713 722

706 716 716 718 719 716 729 720 728 732 726

0

200

400

600

T
im

e
(s

ec
on

d)

Task Type
build

test

Fig. 4.3: CI task time for 30 recent PHP pull-request

Figure 4.3 illustrates CI task (build and test) time. From the chart, it can be seen

that total processing time took from 706.27 seconds to 732.32 seconds, and averaged at

25

718.85 seconds. Therefore, even the largest time gap is less than 4% of the average time.

As we expected, a significant processing time change is not found, and this result provides

key insights for our approach. To improve performance, we use this characteristic of CI

to predict the remaining time of the current task. In the following section, we present our

scheduling algorithms.

4.3.3 Time-based dynamic scheduling overview

The main goal of the suggested scheduling approach is to dynamically schedule CI tasks

while considering the capacity of each CI server. The major contribution of this chapter is

that we present task-scheduling algorithms that select an appropriate CI server through the

logged data. We named our proposed approach Time-Based Dynamic Scheduling (TDS).

Algorithm 2 displays TDS in pseudo code.

Algorithm 2 Time-based Dynamic Selection (TDS)
1: procedure Time-based Dynamic Selection()
2: min_task_count← Min({node.task_count | node ∈ {all nodes}})
3: if min_task_count == TASK_CAPACITY then . all servers are fulled
4: return NULL . wait until there is an available node
5: end if
6: candidate_group← {node | node.task_count == min_task_count, node ∈ {all node}}
7: candidated_node, estimated_time← NULL, ∞
8: current_time← Now()
9: for all node ∈ {candidate_group} do

10: for all t ∈ {all task in node} do
11: avg_time← AverageT imes(t.project_type) . Previous average processed time
12: progessed_time← current_time− t.start_time
13: remain_time← avg_time− progessed_time
14: if remain_time < estimated_time then
15: candidated_node, estimated_time← node, remain_time
16: end if
17: end for
18: end for
19: return candidated_node
20: end procedure

1. Initially, the TDS select nodes that have the least number of tasks. (line 2-6)

2. Iterating selected nodes and task in nodes, then the remaining time is calculated by

the gap between the average time of previous jobs in the logged data (line 11) and

progressed time until the current time (line 12).

26

3. Return node that have a shortest remaining time.

The basic idea behind this is to avoid resource competition by dynamically allocating

CI tasks on different servers. If the competition is unavoidable, this algorithm provides an

alternative that minimizes overlapped execution time by anticipating completion times. The

anticipated completion time of a CI task on each server node can be computed using the

profiling data obtained from previous tasks.

4.4 Continuous Integration simulation

To analyze the effects of our proposed approach and compare them with existing algo-

rithms, we developed a simulator that mimics task triggers (for example, commit to source

repository) and test scenario generator to more efficiently plan experiments in a small lab.

4.4.1 Comparison algorithms

For the comparison, we selected four different algorithms that were implemented in

open-source tools such as Kubernetes or Docker Swarm.

Round Robin assigned each task to a node in circular order without any priority, except nodes

that had reached limitation. Ideally, this algorithm was expected to demonstrate

the best performance when one project utilizes CI because the scheduler minimizes

overlapped task times.

Binpack places a new task on the most loaded node that has not reached limitation. If mul-

tiple nodes are included in the most-loaded group, unlike round-robin, the binpack

algorithm selects the most recently used node. Ideally, this scheduler maximizes

overlapped task times. Therefore, this algorithm was expected to demonstrate the

worst performance.

Random selects a node from all of the available nodes without priority.

27

Spread places a new task on the least loaded node to spread tasks evenly across the nodes.

If multiple nodes are included in the least loaded group, then this algorithm selects

a node randomly from the group.

4.4.2 Experiment-scenario generator

To explore the different behaviors and effects of each algorithm, it was necessary to use

a simulator instead of a real version-control server. The simulator allowed us to trigger tasks

in the same chronological order, but with different CI algorithms to compare performance.

Another benefit of this method is that we can experiment in a small testing lab. If every

node is either empty or filled most of the time, regardless of the scheduling method, then

most of the tasks either do not overlap or always overlap. To minimize this situation during

the test, we generated testing scenarios in a probabilistic manner depending on a number of

current nodes and tasks. Algorithm 3 illustrates how both the order of tasks and the wait

time are generated prior to simulation. The test scenario generated the following order

1. Let task_deck be the list of all tasks which used to be the experiment. Initially, 10

tasks for every two projects are shuffled randomly (line 39-43).

2. CI simulator begins with the spread algorithm.

3. The function GENERATE is called, and then called again whenever any task in the

CI infrastructure is completed. The role of GENERATE is to probabilistically decide

whether to push the new task into the CI job que. The possibility this process depend

on task_count which refers total number task in nodes or waiting in pushTask function

(line 15-18). If task_deck is less than a number of nodes in infrastructure, then the

new task is always pushed. However, if it is between the minimum and maximum total

capacities of infrastructure, then the new task is pushed with a 40% success rate (line

24-33). This process is repeated when task_count is less than a number of nodes in

infrastructure.

28

4. The function pushTask takes charge of pushing the new task to the CI job queue.

Each task has an additional delay of between 1 and 150 seconds before being pushed.

For replaying the generated task order with other algorithms, the elapsed times, from

the moment the generator started, are saved in a history list (line 10).

5. The generator waits until all 20 tasks, which shuffled in the first step, are finished.

Then, it returns a history list.

29

Algorithm 3 CI Test Scenario Generator
1: wating_task ← 0 . Global variable for counting sleeping task before pushed
2: task_deck ← empty . Global list for remained task
3: stat_time← now() . Program start time
4: history ← empty . Global list to writing generated scenario

5: function pushTask() . Insert new task to CI que
6: wating_task ← wating_task + 1
7: wait_time← random(1, 150) . Random integer from 1 to 150
8: sleep(wait_time)
9: t← pop(task_deck)

10: Append(history, (t,NOW ()− start_time)) . Log pushed time
11: push(CI_TASK_QUE, t)
12: wating_task ← wating_task − 1
13: end function

14: function generate()
15: task_count← watint_task
16: for all n ∈ {all node in infrastructure} do
17: task_count← task_count+ n.current_task
18: end for
19: node_count← length(node) . Number of node in infrastructure
20: maximum_task ← node_count× TASK_CAPACITY . Maximum number of task to CI run currently
21: if node_count <= maximum_task OR empty(task_deck) then . All nodes is fulled or all task is pushed
22: return
23: end if
24: barrier ← 40
25: if task_count <= node_count then
26: barrier ← 0
27: else if task_count == maximum_task − 1 then
28: barrier ← 100
29: end if
30: if barrier < random(1, 100) then
31: return
32: end if
33: pushTask()
34: if task_count < node_count then
35: Generate()
36: end if
37: end function

38: procedure GenerateScenario(project_1, project_2)
39: for i← 1, 10 do
40: Append(task_deck, project_1)
41: Append(task_deck, project_2)
42: end for
43: shuffle(task_deck) . randomly shuffle task_deck
44: RUNCI(Spread) . Run CI with spread scheduling algorithm
45: Generate()
46: repeat
47: if Any CI task is finished then
48: Generate()
49: end if
50: until All CI task is done
51: return history
52: end procedure

30

4.5 Evaluation

4.5.1 Experimental environment

The experimental setup is comprised of one CI-simulation server and three CI servers.

Each CI server is compounded of an Amazon Web EC2 c4.xlarge instances with 16GB

SSD, Ubuntu 16.04 64bits, and Docker 17.03.1-ce. Each node is limited to working with a

maximum of two concurrent tasks. We used two open-source projects, Git and PHP, for our

experiment. Both projects were hosted on Github and integrated with Travis CI, through

their code, and the configuration for CI and build status were publically accessible. In the

Travis CI, the PHP project currently runs two different build environments, and GIT works

with seven different configurations. To more closely mimic our experiment to the real-world

development process, we selected and followed one build condition from each project’s CI

configuration.

4.5.2 Baseline benchmarks

First, to investigate the best and worst cases of each CI task and base information, we

manually ran CI tasks with the following benchmark cases:

• Executing one CI task on a CI server

• Executing the same two CI tasks concurrently on a CI server

Table 4.2 summarizes the statistics for the above scenarios.

Mean Standard deviation Min Max

GIT 1 CI task 303.4 2.718 302 309
2 CI task 507.4 6.328 492 514

PHP 1 CI task 880.6 12.65 866 893
2 CI task 1137.6 21.12 1113 1172

Table 4.2: Baseline Times (seconds)

As indicated in Table 4.2, the task time of GIT is less than half that of PHP. However,

comparing the two projects, GIT received more interference from each other. When we ran

31

two tasks concurrently, GIT increased by 204 seconds (approximately 60%); however, PHP

only increased by approximately 26% (257 seconds). One reason for this difference may be

that GIT uses more CPU and memory than PHP. In summary, regardless of their processing

time, the depth of interference by other CI containers can vary depending on the project.

4.5.3 Experimental result

For the purpose of analysing our approach, we compared our algorithm in two different

test cases. In both cases, the first step for the experiment is to generate test scenarios,

followed by algorithm 3 with selected one or two projects. Then we ran four different

algorithms include three comparison methods with the same scenario.

Case 1: When CI frameworks are used by only one project

First, we set up the CI simulator to work with PHP and GIT separately. Table 4.5

and Figure 4.7 compare the statistical results for these two experiments, and the detailed

CI task-process times and how to allocate the tasks to each strategy for each CI experiment

are illustrated in Figures 4.5 and 4.6.

Execution Time (seconds)
Mean Standard deviation Min Max

GIT

BINPACK 574.45 130.149 342 836
RANDOM 491.6 82.703 337 570

ROUND ROBIN 473.9 78.870 336 558
SPREAD 504.2 78.532 341 571

TDS 474.65 79.457 337 558

PHP

BINPACK 1102.3 84.591 911 1175
RANDOM 1098.3 84.888 907 1173

ROUND ROBIN 1088.7 93.005 898 1184
SPREAD 1099.6 87.535 902 1180

TDS 1085.7 89.282 908 1178

Table 4.3: Experiment results when CI frameworks are used by one project

All of the tasks are expected to have the same processing time; therefore, ideally, the

task that has the earliest start time is always expected to finish the earliest. As a result, our

TDS approach demonstrates the same behavior with the round robin algorithm. In both the

PHP and GIT cases, TDS and round robin displayed the best result, while BINPACK always

32

574.45

504.2 491.6
473.9 474.65

1102.3 1099.6 1098.3
1088.7 1085.7

GIT PHP

900

1000

1100

400

500

600

700

800

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

BINPACK SPREAD RANDOM ROUND ROBIN TDS

Fig. 4.4: Time range and mean value for the first experiment case

presented the worst result, which was maximized overlap time. Similarly, with the baseline

benchmark, GIT demonstrated more of a difference than PHP. When comparing GIT’s and

BINPACK’s mean times, GIT received a benefit of approximately 18%, whereas PHP only

received a 2% benefit. The range of progress times with PHP do not vary significantly;

however, in contrast, the progress time of BINPACK with GIT are much higher than the

other four strategies.

PHP Triggered Time (seconds) 1 35 52 76 213 965 1152 1262 1269 1398

2254 2286 2302 2304 2340 3408 3453 3460 3479 3527
GIT Triggered Time (seconds) 1 62 104 157 431 473 480 481 635 882

904 927 932 966 1038 1459 1495 1501 1502 1878

Table 4.4: CI task triggered time for first experiment

33

214 ~ 1184

966 ~ 2051

1270 ~ 2364

2287 ~ 3450

2364 ~ 3535

3461 ~ 4407

52 ~ 1219

77 ~ 1252

1399 ~ 2361

2255 ~ 3412

2361 ~ 3522

3480 ~ 4635

3528 ~ 4698

2 ~ 1134

35 ~ 1179

1153 ~ 2239

1263 ~ 2391

2303 ~ 3214 3409 ~ 4537

3454 ~ 4595

Node 1

Node 2

Node 3

BINPACK

52 ~ 1152

214 ~ 1377

1153 ~ 2278

1399 ~ 2545

2305 ~ 3289 3409 ~ 4562

3480 ~ 4648

35 ~ 979

966 ~ 2011

1270 ~ 2343

2303 ~ 3467

2343 ~ 3522 3529 ~ 4479

2 ~ 1114

77 ~ 1214

1263 ~ 2165 2255 ~ 3392

2287 ~ 3444

3454 ~ 4634

3461 ~ 4634

Node 1

Node 2

Node 3

SPREAD

77 ~ 1187

214 ~ 1367

1270 ~ 2229 2255 ~ 3410

2305 ~ 3478

3461 ~ 4396

35 ~ 1202

52 ~ 1224

1263 ~ 2374

1399 ~ 2563

2375 ~ 3348 3409 ~ 4535

3528 ~ 4674

2 ~ 909 966 ~ 2032

1153 ~ 2236

2287 ~ 3424

2303 ~ 3452

3454 ~ 4586

3480 ~ 4628

Node 1

Node 2

Node 3

RANDOM

2 ~ 1139

77 ~ 1261

1153 ~ 2244

1400 ~ 2527

2304 ~ 3271 3410 ~ 4558

3481 ~ 4655

36 ~ 1134

215 ~ 1357

1264 ~ 2223 2256 ~ 3414

2306 ~ 3489

3455 ~ 4601

3529 ~ 4700

53 ~ 960 967 ~ 1973

1271 ~ 2301

2288 ~ 3402

2342 ~ 3476

3462 ~ 4360

Node 1

Node 2

Node 3

ROUND ROBIN

1 ~ 1144

76 ~ 1254

1152 ~ 2243

1398 ~ 2528

2302 ~ 3278 3408 ~ 4548

3479 ~ 4642

35 ~ 1132

213 ~ 1339

1262 ~ 2208 2254 ~ 3404

2304 ~ 3472

3453 ~ 4598

3527 ~ 4689

52 ~ 960 965 ~ 1973

1269 ~ 2297

2286 ~ 3398

2340 ~ 3474

3460 ~ 4369

Node 1

Node 2

Node 3

TDS

Project PHP

Fig. 4.5: The CI experiment time line with PHP

34

432 ~ 953

474 ~ 1076

954 ~ 1569

955 ~ 1569

1570 ~ 2405

1571 ~ 2407

1572 ~ 2406

105 ~ 617

158 ~ 698

636 ~ 1078

883 ~ 1460

1079 ~ 1635

1461 ~ 1879

1879 ~ 2221

2 ~ 509

62 ~ 614

509 ~ 1065

615 ~ 1175

1066 ~ 1625

1175 ~ 1686

Node 1

Node 2

Node 3

BINPACK

62 ~ 404 474 ~ 1023

481 ~ 1041

1024 ~ 1595

1024 ~ 1595

1879 ~ 2220

2 ~ 344 432 ~ 942

482 ~ 1032

942 ~ 1491

1033 ~ 1571

1496 ~ 2041

1572 ~ 2096

105 ~ 609

158 ~ 677

636 ~ 1046

883 ~ 1449

1046 ~ 1584

1460 ~ 2014

1585 ~ 2086

Node 1

Node 2

Node 3

SPREAD

2 ~ 504

62 ~ 604

505 ~ 884

883 ~ 1424

905 ~ 1441 1460 ~ 1985

1496 ~ 2027

104 ~ 441 474 ~ 1024

481 ~ 1033

1024 ~ 1588

1025 ~ 1595

1589 ~ 1927

158 ~ 530

432 ~ 906

636 ~ 1181

928 ~ 1493

1181 ~ 1742

1502 ~ 1975

1879 ~ 2254

Node 1

Node 2

Node 3

RANDOM

2 ~ 436

158 ~ 685

482 ~ 907

884 ~ 1413

929 ~ 1450 1461 ~ 1974

1505 ~ 2011

63 ~ 399 433 ~ 942

485 ~ 1022

943 ~ 1493

1024 ~ 1568

1497 ~ 1869 1880 ~ 2216

105 ~ 441 475 ~ 909

637 ~ 1191

909 ~ 1467

1193 ~ 1722

1503 ~ 1931

Node 1

Node 2

Node 3

ROUND ROBIN

2 ~ 435

158 ~ 684

481 ~ 904

883 ~ 1412

928 ~ 1447 1460 ~ 1969

1503 ~ 2025

62 ~ 399 432 ~ 941

482 ~ 1021

942 ~ 1496

1021 ~ 1570

1502 ~ 1871 1879 ~ 2218

104 ~ 441 474 ~ 904

636 ~ 1190

905 ~ 1463

1190 ~ 1717

1496 ~ 1926

Node 1

Node 2

Node 3

TDS

Project GIT

Fig. 4.6: The CI experiment time line with GIT

35

Case 2: When CI frameworks are shared by two different projects

Table 4.5 and Figure 4.7 provide the summary statics for the test results when the CI

simulator works with PHP and GIT together.

Execution Time (seconds)
Mean Standard deviation Min Max

GIT PHP GIT PHP GIT PHP GIT PHP
BINPACK 437.9 1139.8 55.277 84.842 359 984 515 1251
RANDOM 419.8 1141.8 55.599 95.926 337 1022 503 1295
SPREAD 446.1 1095.0 90.136 124.826 335 912 563 1306
ROUND ROBIN 429.8 1089.6 86.504 85.268 336 987 542 1240
TDS 406.3 1092.8 51.549 90.445 336 900 493 1221

Table 4.5: Experiment result when CI frameworks are shared by two different projects

Due to the problem that we presented in section 4.3.1, the round robin method no

longer guarantee selection of the best node. In the GIT’s results, both the random and

TDS algorithms demonstrated shorter mean times than round robin. However, the random

approach allocated resources unfairly; as a result, PHP still suffered resource competing.

437.9
446.1

419.8
429.8

406.3

1139.8

1095

1141.8

1089.6 1092.8

GIT PHP

900

1000

1100

1200

1300

400

500

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

BINPACK SPREAD RANDOM ROUND ROBIN TDS

Fig. 4.7: Time range and mean value for second experiment case

Figure 4.7 verifies that even though the random strategy progressed GIT’s task, which

presented the second-best performance, it presented the worst performance with the PHP

task. Our approach also presented slightly longer performances than round robin; however,

36

it significantly reduced GIT’s mean time – more so than other strategies. With both GIT

and PHP, TDS’s longest time did not exceed the longest time with other strategies. Detailed

CI task-process times and how to allocate tasks to each strategy are illustrated in Figure

4.8.

Triggered Time (seconds) 2 10 51 294 359 460 899 905 952 1011
Project PHP GIT GIT PHP PHP GIT GIT PHP GIT PHP

Triggered Time (seconds) 1394 1427 1437 1516 1866 1891 1994 2382 2384 2699
Project GIT PHP GIT PHP GIT PHP PHP GIT GIT PHP

Table 4.6: CI task triggered time for second experiment

37

360 ~ 1611

461 ~ 954 955 ~ 1361 1395 ~ 1827

1612 ~ 2845

1867 ~ 2334 2385 ~ 2776

52 ~ 411

295 ~ 1362

900 ~ 1294 1428 ~ 2661

1438 ~ 1953 1954 ~ 3057

2701 ~ 3685

2 ~ 1181

10 ~ 522 906 ~ 2013

1181 ~ 2321

2014 ~ 3115

2383 ~ 2793

Node 1

Node 2

Node 3

BINPACK

2 ~ 914

906 ~ 2128

953 ~ 1472 1517 ~ 2616

2128 ~ 3140

51 ~ 392 461 ~ 799 900 ~ 1350

1012 ~ 2318

1395 ~ 1837 1867 ~ 2269 2384 ~ 2943

2386 ~ 2949

10 ~ 345

295 ~ 1400

360 ~ 1468

1428 ~ 2632

1467 ~ 1979 1980 ~ 3023

2701 ~ 3640

Node 1

Node 2

Node 3

SPREAD

10 ~ 352

295 ~ 1590

461 ~ 936 953 ~ 1368 1395 ~ 1848

1590 ~ 2859

1867 ~ 2338 2383 ~ 2777

2 ~ 1024

360 ~ 1481

1025 ~ 2193

1481 ~ 1889 1892 ~ 2976

2385 ~ 2785

52 ~ 389 900 ~ 1403

906 ~ 2131

1428 ~ 2552

2131 ~ 3218

2700 ~ 3723

Node 1

Node 2

Node 3

RANDOM

3 ~ 1011

296 ~ 1405

1013 ~ 2100

1429 ~ 2512

2101 ~ 3153

2701 ~ 3688

11 ~ 347 360 ~ 1385

900 ~ 1296

1396 ~ 1906

1439 ~ 1981

1907 ~ 2434

1981 ~ 3210

2437 ~ 2859

52 ~ 391 461 ~ 800 907 ~ 2147

954 ~ 1475 1518 ~ 2594

2384 ~ 2750

Node 1

Node 2

Node 3

ROUND ROBIN

2 ~ 1105

461 ~ 866 900 ~ 1343

1106 ~ 2203

1517 ~ 2578

2384 ~ 2747

2701 ~ 3601

10 ~ 346

295 ~ 1359

906 ~ 2093

1438 ~ 1843 1867 ~ 2302

2093 ~ 3269

2385 ~ 2840

51 ~ 388

360 ~ 1415

953 ~ 1344 1395 ~ 1888

1428 ~ 2649

1892 ~ 2956

Node 1

Node 2

Node 3

TDS

Project GIT PHP

Fig. 4.8: The CI experiment time line with PHP and GIT

38

4.5.4 Summary

The results of this study indicate that the scale of interference from other cohosted

projects is variable, and could affect performance of CI infrastructure. In our experiment

with GIT and PHP, GIT’s CI tasks presented more fluctuated process times than PHP.

Performance decreases as overlap times increase; to avoid this, we presented time-based

dynamic CI task-scheduling algorithms based on predicting remaining time, then evaluated

our approach with four different algorithms that container-management tools utilize. In the

first benchmark, we experimented with the same CI tasks. As described in Table 4.3, our

approach, TDS, consistently demonstrated either the best or close to the best results. In the

second benchmark, we experimented with different CI tasks (Git and PHP) simultaneously.

As described in Table 4.5, unlike the other strategies, which demonstrated either the worst

performances in both the project results or better performance in only one project, our

approach presented a similar result to the first benchmark result. In summary, our approach

does not guarantee the best result because the scheduling algorithm selects the most suitable

CI server for the given CI task based on estimation.

4.5.5 Threats to validity

The experimental results are subject to both internal and external validity threats.

Internal validity is threatened by the way in which the source repository for triggering CI

task is simulated. Rather than using the real data in the source repository, we generated

own testing scenarios the programmatic way, which depends on the number of current jobs.

Therefore, the possibility exists that there is a gap between the experiment process and the

rea- world scenario. However, as mentioned in section 4.2, algorithms could not have different

behaviors when CI infrastructure is used highly intensively or occasionally. Therefore, this

might affect the performance gap between the algorithms, but not the relative priority.

External validity is threatened by the build or test software’s dependencies, for example,

if testing depends on external modules that must be downloaded before the build or test pro-

cess. Process times will change depending on network bandwidth or server status. However,

we used the default CI configuration in real projects to validate our approaches. Moreover,

39

modern CI frameworks provide a caching feature to reduce the download or duplicated-

initialization process. In these cases, external dependencies might not significantly influence

the total process times.

4.6 Summary

We introduced the TDS CI task-selection algorithm that estimates the CI completion

time for each CI task, and then selects the most suitable CI server. Decreases in performance

in CI services are usually due to resource competition between CI services on the same CI

server. To minimize the side-effect of resource competition between CI services, we used

previous task times to predicting a remaining time of current tasks. Compared to other

methods such as round robin, binpack, and random, our approach demonstrated a shorter

time for completing the task, and allowed the task to use resources fairly in shared CI

infrastructure .

The limitation of the proposed approach is that instead of fully considering character-

istics, it only uses a portion of the tasks in each node and an average time of previous jobs.

Furthermore, it was only tested on our small test set with the simulated scenario.

In subsequent work, our approach should be verified with a realistic scenario. To en-

hance the scheduling algorithm with more accurate profiling and monitoring techniques to

estimate CI task completion times, the plan is to consider resource usage per task to increase

the accuracy of prediction times.

40

CHAPTER 5

RELATED WORK

To date, a number of studies [1, 2, 10–12] have indicated the usage and benefit of CI

through surveys or data collection from open-source projects. The results obtained from the

preliminary study of open-source projects using CI are presented by Vasilescu et al. [10].

They found that developers who work with CI experience more productivity. Hilton et al.

[1] confirmed positive outcome through qualitative studies with the open-source projects

[2] and proprietary projects [1]. Similarly, Debbiche et al. [5] interviewed major Swedish

telecommunication company but contrasts with above studies focused on challenges of CI.

The practice and implementation of CI varies. Ståhl et al. [13] present current descrip-

tive models that facilitate the documentation of CI practices and other researchers [14, 15]

introduced visualization techniques to foster project visibility. Leading companies such as

Facebook [16, 17] and Google [6, 18] also presented implementations and practices.

Practical problems owing to size and complexity are argued in multiple studies. The

majority of previous studies [19–21] are based on applying different types or number of tasks

to each development process, for instance, the regression-test selector-collecting test [18, 22],

which related to code change, and then skipped the other test cases for verifying each commit.

However, all of these cases are always tested either for the merged code branch or before

releasing the product. Similarly, several studies [23] have attempted to reduce task time by

improving re-usability through the reuse of previous outputs, which did not affected by code

changes. Other researchers introduced techniques that change either the task order [24] in

the CI task queue or the processing order of the task by prioritizing test cases according to

code coverage [25] or previous historical data [26, 27] to fail and stop in early stage. Unlike

previous research works, our work for task scheduling focused on improving the utilities

of the CI infrastructure without modifying internal processes. Therefore, our research and

other existing approaches could have a complementary relationship.

41

Testing as a Service is a similar concept to CI; however, it only focused on testing and

implementation for the SAAS model. Recently, TAAS has received attention in relation

to mobile apps due to the fragmentation problem on the mobile platform. According to a

market report from opensignal [28], over 24,000 distinct Android devices produced by 1,294

manufacturers were presented in 2015. To handle the diversity of environments during the

development process, in the industry, few companies lauched a commercial TAAS service

for mobile devices, such as firebase test lab1, AWS device farm2.

Academic researchers also proposed testing the model [29, 30], platform [31, 32] and the

platform, and prioritizing the devices to test [33–35]. Vilkomir[35] prove that effectiveness

of random selected testing environments. In his experiment, he investigated how many

devices are needed to cover device-specified bugs. He reported that tests with five randomly

selected device demonstrated an 85% effectiveness and 13 different devices achieved 100%

effectiveness. Although the above studies have a similar purpose to our thesis, and TAAS

could be used through a CI framework, using separate services or frameworks increases

a user’s effort in relation to configuration and maintenance. Therefore, we attempted to

improve CI frameworks, instead of using another framework or service.

To the best of our knowledge, our approach is the first work that demonstrates how to

optimize the performance of container clusters for CI. Regardless of CI, most tools, such as

Docker Swarm3 and Kubernetes4, are designed for managing multiple containers in the cloud,

and support few options to select scheduling strategies. While Docker swarm and Kubernetes

are widely used in the industry, their main goal is to help construct a fault-tolerance system,

so new containers are considered running forever. Empirical researches reported [8, 36] that

containers have a higher performance than conventional virtual machines. As a result,

studies for utilizing container in software engineering are becoming increasingly popular;

many researchers [37, 38] introduced container-based methods and tools for the software-

development process. While the many existing studies have focused on performance aspects,
1https://firebase.google.com
2https://aws.amazon.com/device-farm
3http://www.docker.com/products/docker-swarm
4http://kubernetes.io/

https://firebase.google.com
https://aws.amazon.com/device-farm
http://www.docker.com/products/docker-swarm
http://kubernetes.io/

42

interference from other tenants has not been noticed. Sharma et al. [39] found that container

shows more performance interference by co-hosted machines than Hypervisor, and resource

limitation was also less effective to reducing interference.

Similarly to our resource-profiling approach, other researchers [40, 41] introduced au-

tomated regression benchmarking, and Waller et al. [41] suggested including benchmarks

into CI to detecting performance issues in the early stages. However, their implementation,

which uses shell scripts to call benchmark tools, requires a user’s effort to write separate

scripts for each project.

43

CHAPTER 6

CONCLUSION AND DISCUSSION

Continuous integration requires increasing coverage for software-execution environments,

and requires techniques for enhancing the efficency of infrastructure. In this thesis, we pro-

posed the supplementary configuration method to improving the utility of CI by increasing

the chance of discovering potential software problems with limited available computing re-

sources. Then task-scheduling algorithms, which allocate tasks to the best node in the server

cluster to improve the performance of the CI infrastructure, were presented. Through use

cases and simulation, we obtained promising results, which suggest that this approach could

benefit a developer’s productivity and improved effectively of CI infrastructure.

However, our study was validated by suggested use cases and a small simulation. Thus,

these results may not be applicable to all situations. To apply this approach to real projects,

further studies are required to improve its applicability.

In terms of directions for future research, further work could include the following:

• Develop configurational syntax to describe more complex compositions for build and

test tasks.

• Develop a composing algorithm to generate environment combinations more effectively,

for example, excluding or including combinations that a user manually selected or that

were recently tested.

• Increase the scheduling algorithm with accurate profiling and monitoring techniques

to reducing the scale of interference with overlapped time.

• Develop data-analysis techniques with resource usage to provide processed or visualized

data to users instead of raw statistics.

44

• Experiments should be applied during real-world software-development processes, and

effect and benefit should be analyzed.

45

REFERENCES

[1] M. Hilton, N. Nelson, D. Dig, T. Tunnell, and D. Marinov, “Continuous Integration
(CI) Needs and Wishes for Developers of Proprietary Code,” Corvallis, OR: Oregon
State University, Dept. of Computer Science, Tech. Rep., 2016.

[2] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs, and benefits
of continuous integration in open-source projects,” in The 31st ieee/acm international
conference, New York, New York, USA: ACM Press, 2016, pp. 426–437.

[3] G. Booch, Object-oriented analysis and design with applications. Benjamin Cummings,
1994.

[4] M. Leppänen, S. Mäkinen, M. Pagels, and V. P. Eloranta, “The highways and country
roads to continuous deployment,” Ieee software, vol. 32, no. 2, pp. 64–72, 2015.

[5] A. Debbiche, M. Dienér, and R. B. Svensson, “Challenges When Adopting Continuous
Integration: A Case Study,” in Product-focused software process improvement, Cham:
Springer, Cham, Dec. 2014, pp. 17–32.

[6] J. Micco, “The State of Continuous Integration Testing@ Google,” Google, Tech. Rep.,
2017.

[7] R. Fielding, J. . Gettys, J. Mogul, H. Frystyk, L. . Masinter, P. . Leach, and T. Berners-
Lee, “RFC 2616, Hypertext Transfer Protocol – HTTP/1.1,” Tech. Rep., 1999.

[8] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, IBM Research Report: An Updated
Performance Comparison of Virtual Machines and Linux Containers. IBM Research
Division, 2014.

[9] K. Beck, Extreme Programming Explained, ser. Embrace Change. Addison-Wesley Pro-
fessional, 2000.

[10] B. Vasilescu and S. Van Schuylenburg, “Continuous integration in a social-coding
world: Empirical evidence from GitHub,” . . . (icsme), pp. 401–405, 2014.

[11] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, Quality and productivity
outcomes relating to continuous integration in GitHub. New York, New York, USA:
ACM, Aug. 2015.

[12] D. Ståhl and J. Bosch, “Experienced Benefits of Continuous Integration in Industry
Software Product Development: A Case Study,” in Artificial intelligence and applica-
tions, Calgary,AB,Canada: ACTAPRESS, 2013.

[13] D. Ståhl and J. Bosch, “Modeling continuous integration practice differences in indus-
try software development,” Journal of systems and software, 2014.

[14] A. Nilsson, J. Bosch, and C. Berger, “Visualizing Testing Activities to Support Contin-
uous Integration: A Multiple Case Study,” in Agile processes in software engineering
and extreme programming, Cham: Springer, Cham, May 2014, pp. 171–186.

[15] M. Brandtner, S. C. Muller, P. Leitner, and H. C. Gall, “SQA-Profiles: Rule-based
activity profiles for Continuous Integration environments,” in 2015 ieee 22nd inter-
national conference on software analysis, evolution, and reengineering (saner), IEEE,
2015, pp. 301–310.

46

[16] C. Rossi, E. Shibley, S. Su, K. Beck, T. Savor, and M. Stumm, “Continuous deployment
of mobile software at facebook (showcase),” in The 2016 24th acm sigsoft international
symposium, New York, New York, USA: ACM Press, 2016, pp. 12–23.

[17] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm, “Continuous
deployment at Facebook and OANDA,” in The 38th international conference, New
York, New York, USA: ACM Press, 2016, pp. 21–30.

[18] S. Yoo, R. Nilsson, and M. Harman, “Faster fault finding at Google using multi ob-
jective regression test optimisation,” 8th european software . . ., 2011.

[19] R. M. de Abreu, “Multi-Stage Continuous Integration: Leveraging Scalability on Agile
Software Development,” Metropolia Ammattikorkeakoulu, Tech. Rep., 2013.

[20] R. O. Rogers, “Scaling continuous integration,” . . . conference on extreme programming
and agile . . ., 2004.

[21] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving regression test-
ing in continuous integration development environments,” in The 22nd acm sigsoft
international symposium, New York, New York, USA: ACM Press, 2014, pp. 235–245.

[22] G. Rothermel and M. J. Harrold, “A safe, efficient regression test selection technique,”
Acm transactions on software engineering and methodology (tosem), vol. 6, no. 2,
pp. 173–210, Apr. 1997.

[23] A. Gambi, Z. Rostyslav, and S. Dustdar, “Poster: Improving Cloud-Based Continuous
Integration Environments,” in 2015 ieee/acm 37th ieee international conference on
software engineering, IEEE, 2015, pp. 797–798.

[24] M. Waterloo, “Improving the Efficiency of CI with Uber-commits,” Master’s thesis, De-
partment of Computer Science, University of Nebraska–Lincoln, Department of Com-
puter Science, University of Nebraska–Lincoln, 2016.

[25] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases for
regression testing,” Ieee transactions on software engineering, vol. 27, no. 10, pp. 929–
948, 2001.

[26] J.-M. Kim and A. Porter, “A history-based test prioritization technique for regression
testing in resource constrained environments,” in The 24th international conference,
New York, New York, USA: ACM Press, 2002, p. 119.

[27] M. Gligoric, L. Eloussi, and D. Marinov, “Ekstazi: Lightweight Test Selection,” in
2015 ieee/acm 37th ieee international conference on software engineering, IEEE, 2015,
pp. 713–716.

[28] OpenSignal, “Android fragmentation visualized,” OpenSignal, Tech. Rep., Aug. 2015.

[29] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic testing of
smartphone apps,” in The acm sigsoft 20th international symposium, New York, New
York, USA: ACM Press, 2012, p. 1.

[30] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and A. Stavrou, “A white-
box approach for automated security testing of Android applications on the cloud,”
in 2012 7th international workshop on automation of software test (ast), IEEE, 2012,
pp. 22–28.

47

[31] C. Tao and J. Gao, “Modeling mobile application test platform and environment:
testing criteria and complexity analysis,” in The 2014 workshop, New York, New York,
USA: ACM Press, 2014, pp. 28–33.

[32] C. Tao and J. Gao, “On building a cloud-based mobile testing infrastructure service
system,” Journal of systems and software, vol. 124, pp. 39–55, 2017.

[33] H. Khalid, M. Nagappan, and E. Shihab, “Prioritizing the devices to test your app on:
A case study of android game apps,” in Proceedings of the 22nd . . ., 2014.

[34] X. Lu, X. Liu, H. Li, T. Xie, Q. Mei, and D. Hao, “PRADA: Prioritizing android
devices for apps by mining large-scale usage data,” in Proceedings of the 38th . . .,
IEEE, 2016, pp. 3–13.

[35] S. Vilkomir, “Multi-device coverage testing of mobile applications,” Software quality
journal, vol. 2, no. 3, p. 46, 2017.

[36] M. Raho, A. Spyridakis, M. Paolino, and D. Raho, “KVM, Xen and Docker: A per-
formance analysis for ARM based NFV and cloud computing,” . . . electronic and
electrical . . ., pp. 1–8, 2015.

[37] M. Rahman, Z. Chen, and J. Gao, “A Service Framework for Parallel Test Execution on
a Developer’s Local Development Workstation,” Service-oriented system . . ., pp. 153–
160, 2015.

[38] J. Cito and H. C. Gall, Using docker containers to improve reproducibility in software
engineering research. New York, New York, USA: ACM, May 2016.

[39] P. Sharma and L. Chaufournier, “Containers and Virtual Machines at Scale: A Com-
parative Study,” in Proceedings of the . . ., 2016.

[40] T. Kalibera, J. Lehotsky, D. Majda, B. Repcek, M. Tomcanyi, A. Tomecek, P. Tuma,
and J. Urban, Automated benchmarking and analysis tool. New York, New York, USA:
ACM, Oct. 2006.

[41] J. Waller, N. C. Ehmke, and W. Hasselbring, “Including Performance Benchmarks into
Continuous Integration to Enable DevOps,” Acm sigsoft software engineering notes,
vol. 40, no. 2, pp. 1–4, Apr. 2015.

	Efficient And Flexible Continuous Integration Infrastructure to Improve Software Development Process
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	Continuous Integration and workflow development
	Approach overview

	DYNAMICALLY GENERATED EXECUTION ENVIRONMENTS
	Introduction
	Background and motivation
	Diversity on software execution environments
	Existing problem and gaps in CI

	Approach
	Proposed design architecture overview
	Environments composer
	Environment manager
	Resource-usage profiler

	Use case studies
	Android application
	Python script for reading file contents

	Summary

	DYNAMIC CI SCHEDULING
	Introduction
	Background and motivation
	Approach
	Problematic situation
	Small commit
	Time-based dynamic scheduling overview

	Continuous Integration simulation
	Comparison algorithms
	Experiment-scenario generator

	Evaluation
	Experimental environment
	Baseline benchmarks
	Experimental result
	Summary
	Threats to validity

	Summary

	RELATED WORK
	CONCLUSION AND DISCUSSION
	REFERENCES

